
A
B
C
D
E
F
G

UNIVERS ITY OF OULU  P.O.B . 7500   F I -90014  UNIVERS ITY OF OULU F INLAND

A C T A  U N I V E R S I T A T I S  O U L U E N S I S

S E R I E S  E D I T O R S

SCIENTIAE RERUM NATURALIUM

HUMANIORA

TECHNICA

MEDICA

SCIENTIAE RERUM SOCIALIUM

SCRIPTA ACADEMICA

OECONOMICA

EDITOR IN CHIEF

PUBLICATIONS EDITOR

Senior Assistant Jorma Arhippainen

Lecturer Santeri Palviainen

Professor Hannu Heusala

Professor Olli Vuolteenaho

Senior Researcher Eila Estola

Director Sinikka Eskelinen

Professor Jari Juga

Professor Olli Vuolteenaho

Publications Editor Kirsti Nurkkala

ISBN 978-951-42-9858-5 (Paperback)
ISBN 978-951-42-9859-2 (PDF)
ISSN 0355-3213 (Print)
ISSN 1796-2226 (Online)

U N I V E R S I TAT I S  O U L U E N S I SACTA
C

TECHNICA

U N I V E R S I TAT I S  O U L U E N S I SACTA
C

TECHNICA

OULU 2012

C 424

Davide Macagnano

MULTITARGET 
LOCALIZATION AND 
TRACKING
ACTIVE AND PASSIVE SOLUTIONS

UNIVERSITY OF OULU GRADUATE SCHOOL;
UNIVERSITY OF OULU, FACULTY OF TECHNOLOGY, 
DEPARTMENT OF COMMUNICATIONS ENGINEERING;
CENTRE FOR WIRELESS COMMUNICATIONS;
INFOTECH OULU

C
 424

AC
TA

D
avide M

acagnano

C424etukansi.fm  Page 1  Monday, May 28, 2012  12:39 PM





A C T A  U N I V E R S I T A T I S  O U L U E N S I S
C  Te c h n i c a  4 2 4

DAVIDE MACAGNANO

MULTITARGET LOCALIZATION 
AND TRACKING
Active and passive solutions

Academic dissertation to be presented with the assent of
the Doctoral Training Committee of Technology and
Natural Sciences of the University of Oulu for public
defence in OP-sali (Auditorium L10), Linnanmaa, on 27
June 2012, at 9 a.m.

UNIVERSITY OF OULU, OULU 2012



Copyright © 2012
Acta Univ. Oul. C 424, 2012

Supervised by
Professor Giuseppe Abreu
Professor Jari Iinatti

Reviewed by
Professor Robert Piché
Associate Professor Henk Wymeersch

ISBN 978-951-42-9858-5 (Paperback)
ISBN 978-951-42-9859-2 (PDF)

ISSN 0355-3213 (Printed)
ISSN 1796-2226 (Online)

Cover Design
Raimo Ahonen

JUVENES PRINT
TAMPERE 2012



Macagnano, Davide, Multitarget localization and tracking. Active and passive
solutions
University of Oulu Graduate School; University of Oulu, Faculty of Technology,  Department of
Communications Engineering; Centre for Wireless Communications; Infotech Oulu,  P.O. Box
4500, FI-90014 University of Oulu, Finland
Acta Univ. Oul. C 424, 2012
Oulu, Finland

Abstract

Localization and tracking of multiple targets is becoming an essential feature of modern
communication services and systems. Although necessary in many contexts, such as surveillance
and monitoring applications, low-complexity and reliable solutions capable of coping with
different degrees of information are not yet available. 

This thesis deals with different problems that are encountered in localization and tracking
applications and aims to establish a broad understanding of multitarget systems ranging from
complete active to incomplete passive solutions in dynamic scenarios. Thereby we start by
investigating a fully algebraic framework which is proved to be advantageous in dynamic contexts
characterized by no a-priori knowledge. Subsequently we extend the approach to improve its
robustness versus corrupted observations. Finally we focus on a Bayesian formulation of the
passive multitarget tracking (MTT) problem. 

The Thesis is based on three parts. The first part focuses on a low complexity mathematical
representation of the active problem (i.e manifold-based solution). In particular, the spectrum of
the matrices used to represent target locations within an algebraic, multidimensional scaling
(MDS) based, solution is characterized statistically. In so doing we propose a novel Jacobi-based
eigenspace tracking algorithms for Gramian matrices which is shown to be particularly convenient
in a multidimensional scaling formulation of the multitarget tracking problem. 

The second part deals with incomplete-active multitarget scenarios as well as eventual
disturbances on the ranging measurements such as bias due to non-line-of-sight conditions. In
particular the aforementioned algebraic solution is extended to cope with heterogeneous
information and to incorporate eventual knowledge on the confidence of the measurement
information. To do so we solve the classical multidimensional scaling (C-MDS) over a novel
kernel matrix and show how the intrinsic nature of this formulation allows to deal with
heterogeneous information, specifically angle and distance measurements. 

Finally, the third part focuses on the random finite sets formulation of Bayesian multisensor
MTT problem for passive scenarios. In this area a new gating strategy is proposed to lower the
computational complexity of the algorithms without compromising their performance. 

Keywords: adaptive gating, Jacobi algorithm, multidimensional scaling (MDS),
multitarget localization, passive multitarget tracking, subspace tracking





Macagnano, Davide, Monikohdepaikannus ja seuranta. Aktiiviset ja passiiviset
ratkaisut
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Tiivistelmä

Useiden kohteiden yhtäaikaisesta paikannuksesta ja seurannasta on tulossa olennainen osa nyky-
aikaisia viestinnän palveluita ja järjestelmiä. 

Huolimatta siitä, että yhtäaikainen paikannus on erittäin tarpeellinen osa monissa yhteyksis-
sä, kuten valvonnan ja kontrolloinnin sovelluksissa, siihen ei ole olemassa kompleksisuudeltaan
alhaista ratkaisua, joka ottaisi huomioon kaiken saatavilla olevan informaation. 

Väitöskirja käsittelee useiden kohteiden paikannukseen ja seurantaan liittyviä ongelmia, ja se
keskittyy antamaan laajan ymmärryksen aktiivisista täydellisistä menetelmistä passiivisiin epä-
täydellisiin menetelmiin dynaamisissa ympäristöissä. Saavuttaakseen tavoitteen väitöskirjassa
esitetään algebrallinen kehys, jonka todistetaan olevan edistyksellinen dynaamisissa ympäris-
töissä, joissa ei ole ennakkoinformaatiota saatavilla. Seuraavaksi väitöskirja laajentaa esitettyä
lähestymistapaa parantamalla sen vakautta vääriä havaintoja vastaan. Lopuksi esitetään bayesia-
lainen formulointi passiiviselle usean kohteen seuranta -ongelmalle (MTT). 

Väitöskirja on jaettu kolmeen on osaan. Ensimmäinen osa käsittelee aktiivisen ongelman
kuvaamista matemaattisesti säilyttäen alhaisen kompleksisuuden. Erityisesti tässä osassa karak-
terisoidaan tilastollisesti matriisien spektrin käyttäminen kohteiden paikan esittämiseen moni-
ulotteiseen skaalaukseen (MDS) pohjautuvassa menetelmässä. Saavuttaakseen tämän väitöskirja
esittää Jacobin ominaisavaruuksiin perustuvan seuranta-algoritmin Gramian matriiseille, joiden
osoitetaan olevan erityisen soveltuvia usean kohteen seuraamisongelman kuvaamiseen MDS-
menetelmän avulla. 

Toinen osa käsittelee epätäydellistä aktiivista usean kohteen skenaariota, kuten myös mittaus-
ten lopullisia häiriötä, esim. ei-näköyhteyskanavasta johtuvaa harhaa. Edellä mainittu algebralli-
nen ratkaisu on laajennettu ottamaan huomioon heterogeeninen informaatio sekä tieto mittausda-
tan luotettavuudesta. Lisäksi tässä osassa esitetään ratkaisu klassiseen moniulotteiseen skaalaus-
ongelmaan (C-MDS) esittelemällä uudenlainen ydinmatriisi ja osoitetaan, kuinka tämä mahdol-
listaa heterogeenisen informaation, tässä tapauksessa kulma-ja etäisyysmittauksien, huomioon
ottamisen. 

Viimeisessä osassa käsitellään äärellisten satunnaisten joukkojen soveltuvuutta bayesialaisen
MTT-ongelman ratkaisuun passiivisissa skenaarioissa. Väitöskirja esittää uuden porttistrategian
algoritmien kompleksisuuksien pienentämiseksi säilyttäen kuitenkin samalla niiden suoritusky-
vyn. 

Asiasanat: adaptiivinen portitus, alivaruusseuranta, Jacobin algoritmi,
monikohdepaikannus, moniulotteinen skaalaus (MDS), passiivinen monikohdeseuranta
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Symbols and abbreviations

∠ (·, ·) angle between two points
| · | absolute of the argument
‖ · ‖F Frobenius norm of the matrix
(·)T transpose of the argument
(·)�m m-th element-wise (Hadamard) power
(·)† Moore-Penrose pseudo-inverse
(̆·) approximation of the argument
(̃·) perturbation of the argument
(̂·) estimate of the argument
(·)k̄ argument at time k̄
[·]ij the (i, j)’th entry of the matrix given as argument
[·]a:b,c:d elements from the a-th to the b-th rows and from the c-th to the

d-th columns of the matrix given as argument
rank(·) rank of the matrix given as argument
diag(·) diagonal matrix with the elements of the matrix given as argument

on the main diagonal
trace(·) trace of the matrix given as argument
det(·) determinant of the matrix given as argument
Tria(·) lower triangular component of a general triangularization

algorithm
∼ distributed according to
≈ approximately equal to
, defined as
◦ Hadamard product
� inverse of the Hadamard product
⊗ Kronecker product
∂(·)/∂(·) differential operator
>p indicates that a random variable is larger than another with

probability p
6p indicates that a random variable is smaller than another with

probability p
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Pr{·} probability of the random variable given as argument
E [·] expectation
⊥ boolean indicator
log10(·) logarithm in base 10
cos(·) cosine function
sin(·) sine function
cosh(·) hyperbolic cosine function
atan(·) arctangent function
0 zero matrix; a subscript can be used to indicate the dimension
1 vector of ones; a subscript can be used to indicate the dimension
arg max(·) maximum argument
arg min(·) minimum argument
N (x; m,Σ) multidimensional Gaussian with mean m and covariance matrix

P = Σ · (Σ)T

a RN centering vector
A(i) area defined by the i-th pair of measurements
AT area defined by the intersection of A(i), ∀i = {1, . . . , BA}
A RBA×BA first minor of KE

A RN×N component of G∗T
bd parameter used to simulate NLOS range observations
BA number of combinations between the anchor nodes
BT M −BA
B RN×N component of G∗T
Bk̄ RFS describing the spewing targets at k̄
c cutoff value in the OSPA metric
cnz surface of the unit hypersphere in the nz dimensional space
cp propagation velocity
C`j binomial coefficient
C(·) cardinality operator
CS(·) STRESS cost function
CT (·) STRAIN cost function
CM (·) majorizing function of STRESS
C RM×N involutive operator
C RN×η component of B

Ci i ∈ {1, . . . , 4} constant terms used in Nyström
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d0 reference distance in RSS measurements
dg Mahalanobis distance
dij Euclidean distance between the xi and xj

d̄(c) (·, ·) Weierstrass distance
d̄

(c)
p (·, ·) OSPA metric

dE RM Euclidean length for the M edges in ~VE

dM RM Euclidean distance from the origin for the M edges in
Gη,N (·, ·, ·)

dN RNEuclidean distance from the origin for the N points in X

dBA RBA Euclidean length for the BA edges in ~VA

dBT RBT Euclidean length for the BT edges in ~VT

Dν(x) Parabolic Cylinder function
D(X) functional relation between X and the corresponding EDM
Di i-th Gershgorin disc of K

DN (η) space of EDM generated by N points in a η dimensional space
D RN×N EDM
D̃ RN×N perturbed EDM
ej (·) elementary symmetric function
exp(·) exponential function
EN closed convex set of possible dissimilarity matrices
Ek̄ RFS describing the prediction of the surviving targets at k̄
f(·) dynamic model
fC(·) generic cost function
fM (·) majorizing function of fC(·)
FG̃q indicator function for the superdisc G̃q
F (·) space of all finite subsets of space given as argumentX
2F0(·, ·; ·; ·) Hypergeometric function
Fk̄−1 Rnx×nx transition matrix
g(·) measurement model
GQ set of Gershgorin groups
Gη,N (·, ·, ·) oriented graph
GN subset of SN
Gk k-th Gershgorin group
G Rnz×nx observation matrix
G RN×N Gram matrix
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GT RN×N Gram matrix at T
G∗T RN×N rotated Gram matrix at T
hk̄(·|·) multitarget likelihood function at k̄
H k̄ RFS accounting for the clutter measurements at k̄
H RN×N eigenvalue matrix for K̆

HW RN×N matrix accounting for W in CM
ī iteration index
I set of indexes associated with the Gershgorin of K

I(·) Gaussian integral of the function given as argument
I0(·) modified Bessel function of order 0

I identity matrix; a subscript can be used to indicate the dimension
Jk̄ number of GM components at k̄
JΓ,k̄ number of GM components at k̄ for the RFS Γ

J RN×N double-center matrix
J∗ RN×N centering matrix for dynamic scenarios
J(a) RN×N generic centering matrix
k̄ discrete time index
K(∆,a) functional relation between the kernel matrix Ka, ∆ and a

K k̄ Rnx×nz Kalman gain
K RN×N double-centered kernel
K∗ RN×N dynamic double-centered kernel
Ka RN×N kernel matrix
KE RM×M Edge-kernel matrix
K(i) RN×N kernel matrix centered at the i-th anchor matrix
Ld0

attenuation at d0

Lk̄ number of targets at k̄ in a MTT scenario
Lν1/2(·) generalized Laguerre polynomial of degree 1/2

mn measurement noise
m

(j)

k̄
Rnz mean vector for the j-th component of a GM

m
(j)

Γ,k̄
Rnx mean vector for the j-th component of a GM representing
the RFS Gamma

m
(j)

S,k̄ Rnz mean vector for the j-th component of a GM representing
the surviving targets at k̄

Mqk(·, ·) envelope moment function of the Nakagami-m pdf
M number of combination without repetition between N points
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Mk̄ number of observations at k̄ in a MTT scenario
M k̄ RFS accounting for the detection probability pD
nk̄ cardinality of the RFS Xk̄ at k̄
nx size of the state vector x
nz size of the observation vector z
N number of targets in the scenario
Nc number of cubature points
NS number of sweeps for the Jacobi algorithm
O (·) complexity order
p(·) probability density function of the argument
pk̄(·) probability density function of the argument at k̄
pC,k̄|k̄(·) cardinality distribution at k̄
pΓ,k̄(·) cardinality distribution for the RFS Γ at k̄
pD detection probability
pK,k̄(·) distribution intensity of clutter arrival at k̄
pS survival probability
pS,k̄(·) cardinality distribution of the surviving targets at k̄
pS,ij (i, j)’th entry of PS

pGauss(·; ·, ·) monodimensional Gaussian distribution
pGamma(·; ·, ·) monodimensional Gamma distribution
pGumbel(·; ·, ·) monodimensional Gumbel distribution
pNakagami(·; ·, ·)monodimensional Nakagami distribution
pNSCχ(·; ·, ·, ·) monodimensional non-central χ distribution
pRayleigh(·; ·) monodimensional Rayleigh distribution
pSCχ(·; ·, ·) monodimensional central χ distribution
pTikhonov(·; ·) monodimensional Tikhonov distribution
Pg gate’s probability
Pnj+u permutation coefficient
Pt transmitted power
PGamma(·; ·, ·) Gamma cumulative density function
P(I) powerset of I
PS RN×N matrix used in the SMACOF algorithm
Px,k̄ Rnx×nx state covariance matrix at k̄
Pxz,k̄ Rnx×nz cross-covariance matrix at k̄
qk̄ Rnx process noise at k̄
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Q number of Geshgorin groups
Q RN×N eigenvector matrix for K̆

Qk̄ Rnx×nx covariance matrix for the process noise at k̄
rk̄ Rnz measurement noise at k̄
R second parameter Rayleigh distribution
R(i, j, ϑ) Jacobi-Givens rotation
Rk̄ Rnz×nz covariance matrix for the measurement noise at k̄
S0 Gershgorin null superdisc
SN (η) space of symmetric PSD matrices with rank at most η
Sk̄ Rnz×nz innovation covariance matrix at k̄
T (·) functional relation between the Gram matrix G and the EDM D.
T̄ reference time
Tg gate’s threshold
T RBT×BT second minor of KE

U (·, ·) monodimensional uniform distribution
U (·, ·; ·) Hypergeometric function also known as Kummer’s function
U Rη×η right singular vectors of X

UA RBA×BA set of eigenvectors of A
V(·) functional relation between ~V and X

V surveillance volume used during filtering
VS total surveillance volume
VU upper bound for the surveillance volume
V

(j)
A (·) surveillance volume j-th adaptive gate
V

(j)
E (·) surveillance volume j-th elliptical gate

V RN×N matrix containing the eigenvectors of K

Va RN×N matrix containing the eigenvectors of Ka

~V RM×M set of edges
~VA RBA×BA set of edges for A
~VE RM×M set of edges for KE
~VT RBT×BT set of edges for T

wij (i, j)’th entry of W

W RN×N weighting matrix
W RN×η component of A

x Rnx state vector
xk̄ Rnx state vector at time k̄
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xi Rη point corresponding to the i-th row of X

x` Rη coordinates lower point defining the squared feasibility region
xr Rη receiver’s coordinates
xt Rη transmitter’s coordinates
xu Rη coordinate upper point defining the squared feasibility region
x̂LS Rη least square estimate of x

x̂MAP Rη maximum a posteriori estimate of x

x̂ML Rη maximum likelihood estimate of x

x̂MMSE Rη minimum mean square error estimate of x

X state space for a MTT scenario
x1:k̄ set of state vectors x from time 1 until time k̄
X k̄ RFS describing the Lk̄ targets at k̄
X RN×η matrix containing the set of Cartesian coordinates of N

points in an η dimensional space
XC RN×η coordinate matrix centroids
XT̄ RN×η matrix X at time T̄
X̄T̄ RN×η sample mean of XT̄

yk̄ innovation for the observation at k̄
Y RN×η Gaussian perturbation matrix
zAOA AOA observation
zRSS RSS observation
zTOA TOA observation
z Rnz generic observation vector
zk̄ Rnz observation at time k̄
Z observation space for a MTT scenario
z1:k̄ set of observations from time 1 until time k̄
Z̃ k̄ reduced set of observations at time k̄
Z k̄ RFS describing the Mk̄ observations at k̄
α parameter monodimensional central and non-central χ distribution
αRSS path-loss coefficient
β parameter monodimensional non-central χ distribution
β(j) Boolean variable indicating the emptiness/non-emptiness of the

j-th gate
βk̄ intensities of the RFS Bk̄

χ2
n χ2 distribution with n degrees of freedom
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δ second parameter Gamma distribution
δij dissimilarity between the i-th and j-th point
∆̄ reference time
∆ RN×N generic dissimilarity matrix
∆(·, ·) subspace distance between the matrices in argument
ε random variable upper bounding ε
ε

(ij)

k̄
Rnz×1 innovation vector associated with the i-th measurement
with respect the j-th predicted observation

η parameter monodimensional central and non-central χ distribution
η dimension embedding space
γ first parameter Gamma distribution
γr angle difference between the absolute and the relative reference

system at the receiver
γ (·) intensities of the RFS Γk̄

Γ(·) Gamma function
Γk̄ RFS describing the new target birth at k̄
κ first parameter monodimensional Gumbel distribution
κk̄(·) clutter distribution at k̄
λc clutter intensity
λi i-th eigenvalue of Λ

Λ RN×N matrix containing the eigenvalues of K

Λa RN×N matrix containing the eigenvalues of Ka

ΛA RBA×BA set of eigenvalues of A
µ mean monodimensional Gaussian distribution
ν̄ average target dynamic
νk̄ intensity function at k̄
νS,k̄ intensity function for the surviving targets at k̄
νΓ,k̄ intensity function for the RFS Γ at k̄
ωij (i, j)’s entry of Ω

ω
(j)

k̄
weight for the j-th component of the GM

ω̄i radii i-th Gershgorin disc
Ω turning rate
Ω RN×N hollow matrix containing the off-diagonal entries of K

Φ Rη×η first minor of Ω

Πb permutations of the set {1, . . . , b} with b ∈ N ∈ {1, 2, . . . }
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Ψ RN−η×N−η lower right block of Ω

ρ parameter Tikhonov distribution
σ standard deviation monodimensional Gaussian distribution
σd standard deviation measurement noise on d
σ2
y variance single random variables in Y

σΓ standard deviation used to model the RFS Γ

σq standard deviation process noise q
σr standard deviation measurement noise r
σθ standard deviation measurement angle θ
σΩ standard deviation turning rate Ω

Σ RN×N singular values of K

Σx,k̄ Rnx×nx Cholesky factorization of the state covariance matrix at k̄
Σ

(j)

x,k̄
Rnx×nx Cholesky factorization of the state covariance matrix for
the j-th component of a GM

ΣQ,k̄ Rnx×nx Cholesky factorization for the process noise covariance
matrix Q

ΣR,k̄ Rnz×nz Cholesky factorization for the measurement noise covari-
ance matrix R

Σ
(j)

S,k̄ Rnx×nx Cholesky factorization of the state covariance matrix for
the j-th surviving component of the GM representing the targets

Σ
(j)

Γ,k̄
Rnx×nx Cholesky factorization for the j-th component of the GM
modeling the RFS Γ

τt transmitter’s reference time
τ second parameter monodimensional Gumbel distribution
θi,j angle between the i-th and j-th point as seen from the origin
Θ Rη×N−η second minor of Ω

ΘA RBA×BA angle matrix for A
ΘC RM×M angle matrix computed from XC

ΘE RM×M angle matrix for KE

ΘK RN×N angle matrix for K

ΘT RBT×BT angle matrix of T

υi center i-th Gershgorin disc
υi i-th diagonal element of Υ

Υ RN×N diagonal matrix containing the diagonal entries of K

ζ(·) function f(·) or g(·) normalized by (2π)|x|/2 ·Px
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εθ Tikhonov distributed angle error
ε RN−η×1 first η diagonal elements of Υ

ε(i) i-th cubature point
$(i) i-th cubature weight
ϕk̄|k̄−1(·|·) multitarget transition density
% Rη×1 first η diagonal elements of Υ

ϑ angle Jacobi-Givens rotation

ADOA angle difference of arrival
AOA angle of arrival
BP belief propagation
cdf cumulative density function
CB-MeMBer cardinality balanced multi-target multi-Bernoulli
Cell-ID cell identification
CIR channel impulse response
CKF cubature Kalman filter
C-MDS classical multidimensional scaling
CPHD cardinalized probability hypothesis density
CRLB Cramér-Rao lower bound
DSSS direct sequence spread-spectrum
DWT discrete wavelet transform
E-911 enhanced-911
EDM Euclidean distance matrix
EKF extended Kalman filter
FCC Federal Communication Commission
FIM Fisher information matrix
FISST finite set statistic
GM Gaussian mixture
GNN global nearest neighbor
GNSS global navigation satellite system
GPS global positioning system
HMM hidden Markov model
ID identification
IMM interactive multiple model
IPDA integrated probability data association

20



IR infrared radiation
IT information technology
JIPDA joint integrated probability data association
JPDA joint probability data association
KF Kalman filter
LBS location based services
LG linear Gaussian
LOS line of sight
LS least squares
LT localization and tracking
LM largest mean
MAP maximum a-posteriori
MDS multidimensional scaling
MHT multi hypothesis tracking
ML maximum likelihood
MMSE minimum mean square error
MSE mean square error
MTT multitarget tracking
NBP non-parametric belief propagation
NCV nearly constant velocity
NLOS non line of sight
NLS non-linear least square
NN nearest neighbor
NNKF nearest neighbor Kalman filter
OFDM orthogonal frequency-division multiplexing
OSPA optimal sub-pattern assignment
pdf probability density function
pmf probability mass function
PCA principal component analysis
PDA probability data association
PF particle filter
PHD probability hypothesis density
PMHT probabilistic multi hypothesis tracking
POA phase of arrival
PSD positive semi-definite
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RF radio frequency
RFID radio frequency identification
RFS random finite set
RMS root mean square
RMSE root mean square error
RSS received signal strength
RSSD received signal strength difference
SDP semi-definite programming
S-CKF square-root cubature Kalman filter
SMACOF scaling by majorizing a complicated function
SMC sequential Monte Carlo
S-MDS super multidimensional scaling
SN strongest neighbor
SNR signal-to-noise-ratio
SONAR sound navigation and ranging
SR-LS squared range least squares
STT single target tracking
S-UKF square-root unscented Kalman filter
SVD singular value decomposition
TDOA time difference of arrival
TOA time of arrival
UKF unscented Kalman filter
UT unscented transform
UWB ultra-wideband
WLS weighted least squares
WSN wireless sensor network
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1 Introduction to the multitarget localization &
tracking problem

1.1 Motivation: why MTT for wireless systems

Localization and tracking is one of the latest major innovations of wireless and
personal communications. In the last decade the need for highly personalized
information services has thriven the creation of novel location based services
(LBS), contributing to make accurate location and tracking information anywhere
anytime to become a strategic asset for companies operating in the information
technology (IT) business. The core technology behind LBS are positioning and
tracking applications.

Although localization and tracking (LT) services were brought to the attention
of the mass market through the introduction of global positioning system (GPS)
technology, in cellular systems, this revolution started at the end of the 90’s,
when the US federal communication commission (FCC) mandated the operators
to estimate the position of emergency callers with an error of less than 100
meters in the enhanced-911 (E-911) service.

In addition to these more conventional applications, the appearance of new
technologies, such as Ultra-WideBand (UWB) with its sub-centimetre accuracy,
as well as the improvement and commercialization to the consumer market of
well known ones (e.g. Wi-Fi), represented the thriving factor that allowed for
the development of the new LT services currently available to mass consumers.

In the near future, instead, it can be expected that benefits coming from
proper LT solutions could also allow the investigation of techniques able to
enhance communications system in terms of performance and efficiency. Indeed,
it can be foreseen that location-aware systems will be able to acquire and
disseminate information through improved routing, relaying and data fusion
techniques based on the LT information. Efficient and reliable localization
algorithm will therefore serve the study of strategic cross-layer optimizations
for networking and communication functionalities, e.g. optimum strategies to
perform communications using location awareness.

Although a number of LT algorithms is already available in the literature,
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often those methods are designed under specific needs and consequently do not
exploit the potential that the different radios currently available offer.

For this reason the design of low-complexity solutions capable to exploit
the heterogeneity of information available (ranging, angle, signal strength, hop
count etc.) while being still able to cope with dynamic (mobility) of the targets,
often more prone to outage (packet loss, activity factor, fading, and so forth), is
becoming the biggest challenge in defining future location aware systems.

In addition to the above, the fact that LT services are more and more
frequently used in handset devices, such as PDA, mobile phones and so forth,
increases the need for novel algorithms that, developed in centralized as well
as distributed fashion, can provide the service at a reasonable complexity and
possibly without any substantial delay.

In particular, concerning multitarget localization and tracking scenarios,
under the assumption of reliable location estimates, it can be expected that
the driving factor that will motivate the choice amongst the different solutions
will be the computational time employed by the algorithm. With this in mind,
the thesis proposes low complexity solutions to a vast variety of multitarget LT
scenarios and compares them to the current state-of-the-art.

1.2 Scope and objectives of the thesis

Efficient multitarget tracking algorithms are an important component of multi-
user localization and navigation schemes which is attracting much attention
in the last few years due to the new frontiers of application in future wireless
communications and services [1–3].

Progress has been made on various aspects of the problem including increasing
accuracy and robustness of ranging in the presence of non-line-of-sight (NLOS)
conditions and interference [4–8], as well as exploiting the geometrical properties of
the network topology and ranging statistics in order to combat harsh propagation
conditions [9–11]. Due to the diversity of the possible application scenarios of
LT systems, e.g. wireless sensor network (WSN), maneuvering target tracking,
navigation and so forth, it is hard to imagine that a single algorithm will ever be
suitable to solve all the possible scenarios.

The scope of this thesis in a broad sense is to develop LT algorithms for
multitarget scenarios with particular emphasis on centralized range-based and
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range-bearing systems.1 Starting from the simplest case of active systems
in which, except for the range measurement, no other side information is
assumed, active harsh environments characterized by line-of-sight (LOS) and
NLOS conditions in which the measured data are subject to data erasures and
biases are investigated.

Heterogeneous observations are also considered in presence of passive MTT
in which part of the measurements are due to clutter and no information about
the number of targets is provided.

The common denominator of real-time multitarget LT systems is the need
for computationally efficient solutions. With this is mind the frameworks and
solutions proposed in the Thesis are always aimed at, while ensuring precise and
reliable location estimates, the computational complexity of MTT systems as a
whole.

1.3 Author’s contributions

Original work of the author cover different aspects of multitarget LT systems
which was presented in a number of publications, i.e. two journal papers [12, 13]
and several conference publications [14–22], whose contribution is addressed in
detailed in the following.

A non-parametric solution to the active multitarget problem is investigated
within the C-MDS framework in dynamic scenarios. Specifically, in [12, 16, 17]
it is shown how to statistically characterize the eigenspace associated to the
Euclidean kernel matrices used in the C-MDS algorithm. A further contribution
of the articles is a statistically-optimized and truncated variation of the Jacobi
algorithm, designed specifically to suit the structure of the dynamic MDS kernels
used in the C-MDS framework [12, 16, 17]. The modified Jacobi technique
proposed, which is founded on the aforementioned statistical eigenspectrum
analysis of the associated with the eigen-decomposition of dynamic MDS kernels
used in the C-MDS algorithm, has a computational cost which is brought down
to a remarkably low complexity2 of order O(

√
N) and where N is the size of

1Note that many of the solution proposed can be modified to be implemented in distributed
fashion.
2Measured in terms of the number of plane rotation sweeps normalized to the subspace
distance.
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the kernel matrix. This, combined with the inherent non-parametricness of the
MDS method itself, and non-parametric pre-filtering techniques, such as the one
proposed by the author in [14, 15], make a strong case in favor of MDS-based
algorithms for future multiuser location-based wireless communication systems.

To compensate for data erasures in the observed distance measurements, the
aforementioned method is used together with a Nyström-inspired method [12, 19]
which allows, at a limited increase in computational complexity, to exploit all the
information available at the LT unit. The same technique proved to be useful as
initialization algorithm for optimization techniques where simulation proved
that, when used in conjunction with low complex optimization algorithms, e.g.
the scaling by majorizing a complicated function (SMACOF), it is capable to
approach the theoretical limit expressed by the Cramér-Rao lower bound (CRLB)
[19]. In the context of multi-source localization scenarios characterized by partial
range and angle information and subject to NLOS conditions similarly to [23] in
[18] it was shown how to extent the C-MDS framework by rewriting the kernel
matrix to describe the edges associated to the graph of the network.

This revised MDS technique is shown to be robust to erroneous angle
information. Differently from [23] the proposed solution is shown to cope with
data erasures on both the distances between all pairs of points as well as the
angles of the triangles formed by all triads of points. In this way the algorithm
is made suitable to many multi source localization scenarios of interest, in
particular those characterized by networks with meshy topologies of relatively
large dimensions, where node-to-node distances and angles can only be measured
within vicinities and where the collection of all such information may be a
problem. The second main problem of the solution proposed in [23] is that
it requires the eigen-decomposition of a kernel matrix whose size increases
quadratically with the number of nodes in the network. The author showed
in [18] that this problem can be coped with by incorporating the Nyström
approximation and the interval analysis tools respectively.

Finally passive MTT targets are covered in [13, 20, 21]. Specifically in [20]
it was shown how to incorporate the cubature Kalman filter (CKF) into the
probability hypothesis density (PHD) filter implemented as a Gaussian mixture
(GM) for multisensor, multitarget scenarios. In [13, 21], due to the Gaussianity
assumption in the GM-cardinalized probability hypothesis density (CPHD), we
propose to integrate the square-root cubature Kalman filter (S-CKF) into the
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GM-CPHD recursion, which is not only the more suitable, i.e. the best design
under the Gaussian assumption, but also superior to state-of-the-art solutions
such as extended and unscented implementation of the Kalman filter (KF), since
no inconsistency in the covariance matrix can arise. A novel weighted gating
strategy, which exploits the GM implementation of the proposed S-CKF-GM-
CPHD filter, is offered to lower the computational time by adaptively increasing
the gate sizes in proportion to the likelihood of the single GM components.

1.4 Outline of the thesis

The thesis is structured as follows. Chapter 2 presents a comprehensive overview
of the current state-of-the-art for multitarget LT systems in active and passive
scenarios, which serves to contextualize the work presented in thhis manuscript.
In Chapter 3 the fundamentals and the algorithms for the different formulations
that will be used in the sequel of this thesis to solve the multitarget LT problem
are introduced.

Chapter 4 focuses on the STRAIN formulation of the complete active MTT
problem, showing how to exploit the structure of random Gram matrices emerging
in dynamic scenarios within the C-MDS framework. In particular the statistical
analysis of Gram matrices using the Gershgorin spectral bounds is performed and
a statistically-optimized and truncated variation of the Jacobi technique, which is
founded on the aforementioned statistical Gershgorin-theoretical eigen-spectrum
analysis and designed specifically to suit the structure of the dynamic MDS
kernels under consideration is proposed.

Chapter 5 deals with the data erasure problem and the integration of range-
bearing measurement information in active multitarget scenarios. A solution to
the first problem, namely the Euclidean distance matrix (EDM) completion
is proposed in the form of a kernel approximation solution obtained through
the Nyström method. It is also shown that the same technique can be used in
conjunction with solutions based on the optimization of a cost function (e.g.
the STRESS and the SSTRESS cost function). Specifically, within this context
it is shown that by coupling low-complexity optimization algorithms with the
efficient initialization method proposed is sufficient to bring the performance
of low-complexity algorithms such as the SMACOF close to that of far more
sophisticated alternatives such as the semi-definite programming (SDP) approach.
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The second part of Chapter 5 deals with an algebraic solution that allows
for both distance and angle information to be processed algebraically (without
iteration) and simultaneously by solving the C-MDS framework over the edges of
the graph associated to the network form by the nodes. Due to the flexibility of
the method, the algorithm can be executed relying on the Nyström approximation,
reducing computational complexity to that of a few matrix multiplications.

Passive MTT scenarios are the subject of Chapter 6. In particular, due to the
Gaussian assumption in the GM-CPHD recursion, it is shown how to integrate
the S-CKF into the aforementioned filter, leading to the more suitable, i.e. the
best design and superior to state-of-the-art solutions in which inconsistence in the
covariance matrix can arise. Moreover, to lower the computational time of the
solution, a novel weighted gating strategy, which exploits the GM implementation
of the proposed S-CKF-GM-CPHD filter, by adaptively increasing the gate sizes
in proportion to the likelihood of the single GM components is presented. The
results reveal that the proposed gating strategy yields considerable savings in
processing requirements without suffering any degradation in performance. Final
remarks and future works are discussed in Chapter 7.
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2 Literature review

In the last 20 years astonishing progresses in the filed of wireless technologies
had major influence on a large number of markets and applications. Particularly
in the positioning field, supported by mature technologies the initially limited
number of applications e.g. navigation based on GPS, nowadays extended to
global navigation satellite system (GNSS) and emergency calls based on the
phase 1 of the FCC-E-911 service, has stimulated an increasing demand for new
LT services in a variety of scenarios.

Understandably this diversity of LT applications translates into the need for
different system architectures capable of providing services according to the
specific requirements imposed by the scenario.

This chapter provides a classification of the building blocks and solutions
nowadays available in designing LT systems. Specifically, starting from a
characterization of the most common types of information, i.e. sensor models,
the systems are classified into active and passive and for each one of those a
brief review of the state-of-the-art is provided.

2.1 LT algorithms for wireless systems

A classification of the different LT systems requires the definition of the intended
technology as well as the application scenario. A simplified representation of a
wireless LT system is offered in Figure 1.

Specifically, the sensor’s antenna captures the energy emitted by the targets in
the form of radio signals, reflected waves or other forms of waves generating from
the targets (e.g. infrared radiation (IR)). Together with the desired information,
corrupted data, e.g. clutter measurements, are also sensed. Therefore, in order
to improve the reliability of the measurements, a signal processing block is
often added to the sensor unit to remove part of these perturbations on the
observations. The last component of the LT system is responsible for fusing the
information available, e.g. received at multiple sensors, to provide the desired
output, e.g. target locations in wireless sensor networks or the values of the
state vector parameter in an LT system.
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Fig 1. Generic representation of a wireless LT system.

While Figure 1 provides an oversimplified representation of a wireless LT
system, a better definition of the functions of the single blocks requires a
more precise characterization of the scenario under investigation, as well as the
technologies that will be employed in the system. Some of the criteria commonly
adopted are:

– Type of system: active versus passive. Active systems assume that during the
measurement phase there is an exchange of data between targets and anchor
nodes. Differently in passive systems the measurements are sensed from the
environment in the form of energy that is either reflected or emitted by the
target nodes.

– Sensor model : any quantity that is directly or indirectly position-dependent,
such as time of arrival (TOA), received signal strength (RSS), angle of
arrival (AOA), phase of arrival (POA), and that can be measured by the
anchor nodes.

– Architecture: centralized versus distributed. Centralized architectures assume
that all the information is made available at one node, which is also responsible
for recovering the network topology. In distributed systems on the other hand,
the location information is recovered by merging the contribution of each node
on the basis of the information it gathered from its neighbors.

– Reference system: geographical versus relative/symbolic. In the case of
geographical reference systems the solution is a physical location, i.e. in the
form of latitude and longitude coordinates, differently in presence of relative
reference systems the targets positions are expressed with respect to specific
sets of points. More generally, relative solutions include symbolic systems in
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which the output can be in the form of natural-language, e.g., floor and room
number.

– Type of implementation: iterative versus closed-form, often related to the
computational complexity, namely the scalability of the solution as well as its
stability.

– Processing scheme: real-time/recursive, batch and fixed-lag solutions. The
choice is strongly dependent on the scenario under investigation. For instance,
in maneuvering target tracking applications it is desirable to have recursive
solution that, at a fixed computational cost, provide continuous updates of the
targets locations.

– A priori information. Whenever available, prior knowledge, such as dynamic
target models or statistical characterization of the measurements, can be used
to improve the overall performance.

Obviously the criteria above interrelate amongst themselves. As an example
distributed localization algorithms for dynamic scenarios require information
that can be gathered in an asynchronous manner between the nodes, e.g. TOA
measurements, possible knowledge on the kind of motion as well as a common
reference system. In the following, we focus on the most common type of
information available for LT applications and how they influence the solution.

2.2 Sensor and system models: the input information

Amongst the technologies available to be used in an LT system, a first broad
distinction can be made between:

– RF based: WiFi, UWB [7], Bluetooth [24], ZigBee, RFIDs (passive vs active)
[25], and so forth

– non-RF based: infrared (e.g. “Active Badge” system), ultrasound (e.g. “cricket”
system) [26], camera vision [27], lasers, and many more.

Once the radio interface is chosen, the next step is to extract from the
measurements the observations that are directly or indirectly related to the
targets’ positions.3 The most common observations are TOA, AOA and RSS.

TOA observations depend on the distance between a transmitting and a
receiving node by means of the propagation velocity cp, e.g. the speed of light in
3In this work it is assumed that targets are points in space without physical dimensions.
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a vacuum. Let xt and xr be the vectors containing transmitter and receiver
coordinates, then the relation between the two sensors’s coordinates and the
measurement is given by [28]

zTOA = τt + 1
cp
‖xt − xr‖2 +mn, (1)

where τt is the reference time at the transmitter and mn the measurement noise.
Since τt needs to be known at both transmitter and receiver, a direct

implication of equation (1) is that the devices involved in the measurement
phase need to be synchronized amongst themselves. TOA estimates between
asynchronous devices are also possible by relying on communication schemes,
namely two and three way ranging techniques [29], to infer the value of τt during
the measurement phase.

A second type of observation commonly encountered in LT systems are AOA,
which can be modeled by [28]

zAOA = −γr + ∠ (xt,xr) +mn, (2)

where ∠ (xt,xr) is the angle between transmitter and receiver measured with
respect to the geographical reference system, and γr is the difference between the
absolute and the relative reference system used at the receiver.

The third type of observation commonly used are the ones based on RSS
measurements, in which propagation/attenuation models of the transmitted
signal are used at the receiver to infer a range estimate. One of such model is
[28]

zRSS = Pt − Ld0
− 10αRSS log10

‖xt − xr‖2
d0

+mn, (3)

where Pt is the power transmitted at xt, Ld0 the (dB) loss at the reference
distance d0 and αRSS the attenuation rate of the signal, namely the path-loss.

A clear advantage of RSS measurement is that, being already available in
every wireless device, RSS-based LT systems become merely a software problem.
However, especially in the environments characterized by harsh propagation
conditions, e.g. indoor scenarios, RSS models are often inadequate to describe
the real signal attenuation and multipath effects.

A common feature amongst the types of observation mentioned above is
that they all require precise knowledge of a specific parameter, namely τt

for TOA observations, γr for AOA and Pt for RSS observations. When such
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knowledge is not available, the measurement process can be simplified at the
expense of performance. In particular, TOA and RSS give rise to time difference
of arrival (TDOA) and received signal strength difference (RSSD) when the
signal emitted by the target is received at multiple anchor nodes, while AOA
becomes angle difference of arrival (ADOA) when the receiver measures the
angle difference between two transmitters [28].

The theoretical limits achievable using the measurement models above have
been widely investigated in the literature [30, 31]. Following the geometric
interpretation of the systems based on the measurement models described above
is provided.

2.2.1 Distance information (TOA, TDOA sensors)

Given an η-dimensional embedding space and provided that at least η + 1

anchor-to-target TOA measurements are available, a geometric solution to the
localization problem can be found by trilateration [25].

A representation for the 2-D case is provided in Figure 2 from where it is
clear that the target location is found by intersecting the circles associated to
each one of the anchor-to-target TOA measurement.

A1 A2

A3

(a) Geometry of trilateration algorithm.

 

 

Anchor Nodes
Sensor Node

A1 A2

A3

(b) Geometry of multilateration algorithm.

Fig 2. Representation of a single target system based on TOA and TDOA informa-
tion.
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As mentioned above, to compute TOA estimates using equation (1) anchor-
to-target synchronization must be ensured. One convenient way to do so relies
on communication schemes [29], which are here indicated by the double direction
of the arrows in Figure 2(a).

For the reason above, TOA-based solutions are suitable and often preferred
in distributed scenarios or mash networks where the communication between
agents is allowed. Alternatively, if the targets are mere transmitters and the
anchor nodes are connected and synchronized amongst themselves, e.g. cellular
network scenarios where a backbone infrastructure can be used to share a
common reference time [25], then TDOA-based algorithms, usually referred to as
multilateration [25] techniques, can and should be used. As Figure 2(b) shows,
from a geometrical perspective multilateration algorithms find the intersection
point of the hyperbolas whose focal points are the pair of anchors used to
compute the TDOA measurements.

Depending on the synchronization requirement, trilateration and/or mul-
tilateration schemes can be used with e.g. UWB radios, direct sequence
spread-spectrum (DSSS), Orthogonal frequency-division multiplexing (OFDM)
systems, POA-based system, lasers radio doppler shifts, ultrasound signal, and
many other technologies.

2.2.2 Angle information (AOA sensors)

AOA-based systems find the target location by intersecting the direction lines
obtained from the angles measured at the receivers by means of sensor arrays [32].
The algorithms used to find the target location on the basis of AOA observations
are often referred to as triangulation techniques.

A geometric representation of the problem in a 2-D scenario is provided in
Figure 3(a). Notice that AOA measures are computed according to the sensor
array orientation, from which it follows that the correction terms γr at the
anchors must be considered during the triangulation phase.

Although AOA-based systems can and are commonly used in radar scenarios
[27], the application of AOA-based LT systems in wireless networks is quite
limited.

38



x

y

α

lll

(a) Sensor array for AOA estimation.
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(b) Geometry of triangulation algorithm.

Fig 3. Representation of a single target system based on AOA information.

Some of the reasons are: the relatively large and expensive hardware, namely
the sensor array represented in Figure 3(a), the quality of the angle measurements
that can be particularly compromised in presence of shadowing and multipath4

as well as the need to compensate γr amongst all the anchor nodes. Therefore,
although the application of AOA-based algorithms can be still envisioned in
cellular network scenarios characterized by a considerable number of anchor
nodes with limited connectivity, due to the problems mentioned above they are
not practical in distributed systems where there is no clear distinction between
anchor and target nodes and where all agents are allowed to move.

2.2.3 Connectivity information (proximity sensors)

Although equation (3) shows that RSS measurements provide range estimates and
therefore can be used in conjunction with the trilateration and multilateration
schemes described in Section 2.2.1, it is also possible to use simplified RSS models,
e.g. detection models, to use localization schemes based on mere connectivity
information. Due to the intrinsically low cost of the information used, and more
importantly because of the wide number of emerging applications requiring less
stringent location notions [33], systems based on this type of information gained
significant interest. As Figure 4 shows, using connectivity information only it is
4Also the accuracy of AOA-system degrades as the source move farther from the measuring
unit.
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possible to define a feasibility region in which the target is ensured to be.
Moreover, although a punctual estimate of the target estimate can be

inferred directly once this feasibility region is known, e.g. its barycenter, more
sophisticated LT techniques integrate this notion about the feasibility region as
a constraint into optimization algorithms that are capable of improving the
estimates for the targets’ locations [33].
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Pair 2-3
Feasible Region
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Fig 4. Representation of a single target system based on connectivity information.

This is particularly true for TOA solutions where the feasibility region is
used to compensate eventual bias on the range measurements [4, 34, 35].

In addition to RSS-based observations, proximity based LT systems can also
rely on radio frequency identification (RFID) and cell identification (Cell-ID)
information. However one problem of this approach is represented by the quality
of the information which is strongly dependent on the density of the anchor
nodes as well as the detection model used.

2.2.4 Other types of information

Other types of information, e.g. root mean square (RMS) delay spread, channel
impulse response (CIR) or maximum excess delay, can be used in pattern-
matching systems, also known as fingerprinting, to provide LT services. This
type of systems consist of two phases. Namely, an off-line training phase, during
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which a representation of the environment is built on the basis of a measured
model and the sensed information, and an on-line phase during which the
target’s location is estimated by matching the measured information with the
mapping of the environment built during the off-line phase.

Figure 5 provides a representation of a fingerprint system for navigation
purposes, e.g. the system proposed in [26], in which the computation is performed
at the target node. Although the approach can be successfully employed in
specific applications, in general the time used during the off-line phase as well as
the need for frequent database updates to account for changes in the environment,
represent strong limitations often preventing its usage in practical scenarios.
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Fig 5. Representation of a fingerprint system for navigation.

2.3 Active systems

As already anticipated in Section 2.1, in this thesis, active systems are LT systems
in which target nodes participate in the measurement phase by exchanging data
with the anchor nodes. This, in turn, implies that:

– targets are distinguished by an identification (ID) number
– observations are uniquely associated to the targets from which they generated,
namely there is no data association problem

– depending on the type of architecture, both targets and anchor nodes can
be transceiver (e.g. in cooperative TOA-based scenarios) or targets are
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transmitters and the anchors are receivers (e.g., TDOA-based scenarios).

Concerning the solutions that can be used in active LT problems, a first
distinction must be made between parameter and state estimation approaches.
The former refers to the estimate of time-invariant quantities, namely multitarget
localization problems, and the latter to the estimate of the states5 of a time-variant
system, commonly encountered in tracking scenarios.

A brief classification for the state-of-the-art solutions to the active LT problem
is provided below, in which a distinction is observed between non-Bayesian and
the Bayesian techniques.
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Fig 6. Representation of a cooperative multitarget scenario.

2.3.1 Non-Bayesian solutions

In this category belong all those methods that can be used to solve the standard
Euclidean embedding problem, namely: given a dissimilarity [36, 37] matrix
∆, find the configuration of points in an Euclidean embedding space [38, 39]
such that the mutual distances amongst the points match the corresponding
dissimilarities in ∆.

Depending on the kind of formulation used in the algorithms, the solutions of

5As explained later, states are the variables of interest whose value must be coputed by the
algorithm, e.g. coordinates, velocity and so forth.
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the aforementioned problem can be distinguished between indirect and direct
methods

1. Indirect parameter estimation methods

As suggested by the name, indirect methods find a solution which is indirectly
related to the targets’ locations,e.g. in form of a distance or a kernel matrix.
Once the solution space, e.g. the EDM cone is defined6, these methods, also
called matrix proximity methods [40, 41], find the closest matrix to ∆ with
respect to a specified norm, e.g. the Frobenius norm. More importantly they
often rely on a convex formulation of problem which can be solved optimally
[40, 42].

Amongst such methods, a solution originally used in psychology as a data
analysis technique [38] and that is becoming increasingly popular in the field of
localization [12, 43–45], is the C-MDS algorithm [37]. The C-MDS is a particular
formulation of the proximity problem on the space of positive semi-definite (PSD)
matrices [40] and it is appealing since it represents the optimal closed form
solution to the problem with respect to its cost function [46, 47].

However, since the method relies on the eigen-decomposition of the typically
large Euclidean kernels constructed from the observations, its usage in dynamic
scenarios where continuous updates of the solution are required could be
problematic [12]. Moreover, in its standard formulation the C-MDS approach
does not cope with possible data erasures in ∆, which is typical in localization
scenarios characterized by mesh topologies.

More complex approaches relax the matrix approximation problem to a
weighted, nearest, completion problem over the space of PSD matrices, often
solved using SDP techniques [42, 48–50]. Differently from the C-MDS, the
SDP weights the single dissimilarities in ∆, solving the data erasures problem
as well as the problem of considering the dissimilarities in proportion to the
quality of their estimates. In [51, 52] an SDP formulation over the space of
Euclidean distance matrices was proposed. While the formulation of the problem
is somehow more involved than in [50] the output of the method is the complete
EDM that approximates the entries in ∆. This implies that the SDP algorithm
is only a block of the localization system since an additional algorithm, e.g.
6In the subspace of symmetric matrices, the closed convex set of all Euclidean distance matrices
is what is generally referred to as the EDM cone.
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the C-MDS discussed above, is still required to compute the target estimates.
Extensions of the SDP formulation to TDOA scenarios were proposed in [53, 54].

Although SDP formulations allow to pose the problem as a convex optimiza-
tion problem [42, 55], they doi it at the price of a high computational complexity.
Some recent solutions that try to relax the computational requirements of the
aforementioned SDP formulations were recently proposed in [56, 57].

2. Direct parameter estimation methods

Differently from the above direct non-Bayesian methods7, solve the localization
problem directly but without ensuring its convexity [58]. Indeed, given a set
of data, these type of solutions adjust the model parameter values such that
the distance between an objective function and the data is minimal. This is
done applying numerical optimization algorithms to the cost function used to
represent the problem.8 In particular, given the observation vector z ∈ Rnz and
f(·) as the function relating measurements and the vector parameter x ∈ Rnx ,
most of the formulations used to do parameter estimation rely on either of the
following:

– minimization of a least squares (LS) function

x̂LS , arg min
x
‖z− f (x) ‖2 (4)

– maximization of a likelihood function

x̂ML , arg max
x

p (z|x) . (5)

While the LS approach does not assume any characterization of the noise
statistic affecting the observations, as equation (5) shows, the maximum likelihood
(ML) approach requires the conditional distribution p (z|x). However, under the
condition of zero mean Gaussian noise the ML and the LS estimators are proved
to be equivalent.9

7These methods, also known as Fisher methods have a lower bound on the error covariance
matrix which is given by the inverse of the Fisher information matrix (FIM), namely the
CRLB [30].
8Often the cost function is non-convex and therefore there is no guarantee that the solution
corresponds to the global minima.
9In the more general case of multiple observations affected by zero mean Gaussian noise with
different standard deviations the ML is equivalent to a weighted least squares (WLS) estimator.
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Since the ML estimation applied to sensor localization scenarios is generally a
non-linear and non-convex optimization problem whose global solution is hardly
obtained, it is often preferred to rely on LS formulations that can solve the
localization problem without requiring a full characterization of the measurement
statistics. In the attempt of balancing between the sub-optimality of the solution
and its complexity many different LS algorithms have been proposed in the
literature [58]. A first broad distinction can be made between gradient search
and direct search methods.

Gradient-based methods depend on the derivative of the objective function
and therefore can only be applied to differentiable problems10. Steepest descent
methods use the gradient to set the direction of convergence. Newton methods
usually have faster convergence than the steepest descent methods but require at
each step of the optimization the Hessian matrix, namely the inverse of the
second derivative of the objective function11[58]. The Levenberg-Marquardt
method combines the two approaches above using a PSD approximation of the
Hessian matrix whenever it gives good convergence results and the steepest
descendent otherwise [59].

Although suboptimal, gradient-based methods are used in localization
applications in both centralized as well as distributed localization scenarios
[60–64].

Modifications of the LS objective into squared range least squares (SR-LS) are
also possible and were discussed in [65, 66] in the context of source localization
for TOA and TDOA schemes, where it was also shown that the SR-LS approach
is only sub-optimal compared to the LS method. More importantly, some
algorithms modify the LS objective function during the optimization phase
to improve the speed and the properties of the convergence of the algorithm.
One such example is the SMACOF algorithm [67, 68], where instead of the
standard LS objective function, its majorized version is used at each step of the
optimization, resulting in a monotone and fast convergence method [69, 70].

Direct search methods aim at finding the global minimum of the objective
function and although they do not rely on derivatives they still require that
the objective function is continuous [71]. Grid search, random walk (which is a

10Although the algorithms would require the analytical expression of the gradient, numerical
approximations are also possible [58].
11Quasi-Newton methods avoid to recompute the Hessian at each step.
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variation of the random search approach), multi-start and tunneling methods are
few of the solutions available in the literature [38, 72]. However one common
problem of direct search methods is that they are usually too computationally
demanding for real time applications.

Other approaches that modify the LS cost function to improve the convergence
of the algorithm exist, some recent solutions were proposed in [73, 74].

2.3.2 Bayesian solutions

Let the parameter x be a random variable with a prior probability density
function (pdf) p (x) and z1:k̄ the set containing the observations from time 1

until time k̄, namely {z1, . . . ,zk̄}. Then the inference process on x operated by
the Bayesian theory can be understood as the correction of the prior subjective
probability distribution by the objective data z1:k̄ [75], which is based on the
following building blocks:

– prior model p(x): representing the subjective belief for the parameter x before
the realized measurement value is considered,

– likelihood model p (z|x): defining the stochastic relationship between z and x.

Under the assumption that a realization of p (x) occurred and that its value
is constant during the measurement process, then the solution of Bayesian
estimators is represented by the posterior probability distribution conditioned
on the data pk̄ (x|z1:k̄), which is computed using Bayes’ rule [30] as

pk̄ (x|z1:k̄) =
pk̄ (z1:k̄|x) pk̄−1 (x)

pk̄ (z1:k̄)
, (6)

where
pk̄ (z1:k̄) =

∫

Rnx

pk̄ (z1:k̄|x) pk̄−1 (x) dx. (7)

Once pk̄ (x|z1:k̄) is available, the estimate of x based on pk̄ (x|z1:k̄) becomes
a decision theory problem which is solved by performing expectations and
maximizations (or equivalently minimizations). Amongst all possibilities, two
choices commonly employed to estimate x from pk̄ (x|z1:k̄) are the minimum
mean square error (MMSE)

x̂MMSE = E [x|z1:k̄] ,
∫

Rnx

x · pk̄ (x|z1:k̄) dx, (8)
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and the maximum a posteriori (MAP) estimator12

x̂MAP , max
x

pk̄ (x|z1:k̄) . (9)

Depending on the problems at hand the Bayesian solutions can be distin-
guished in:

– parameter estimation techniques for time invariant system
– state estimation techniques for time variant systems.

In the context of LT applications parameter estimation solutions are commonly
employed in static scenarios where the single target locations are inferred on the
basis of anchor-to-target as well as target-to-target measurements13. For instance
in [76] it was proposed to represent the cooperative multitarget case by a graph
whose solution can be found using non-parametric belief propagation (NBP)
algorithms, namely a distributed Bayesian approach.

Differently from the above, when targets are assumed to evolve in time
according to a stochastic model14, a state-vector is used to summarize the past
of the system in a probabilistic sense [77]. Starting from the KF which was
originally proposed in [78] to deal with linear Gaussian (LG) systems, over the
years a huge number of approximations have been proposed to solve the nonlinear
single target tracking (STT) filtering problem that arise in real systems15.

Following [77] a broad classifications of the Bayesian solutions proposed to
solve the filtering problem can be made between:

1. Analytic approximations
2. Numerical approximations and Gaussian sum filters

To the first group belong all those solutions that solve the problem by
linearization, such as the extended Kalman filter (EKF). Due to their good
performance and relatively low complexity these solutions are still applied to
a large number of real LT applications [27, 30]. Solutions based on numerical
12Notice that the ML solution can be interpreted as the output of a MAP estimator with
uniform a priori distribution for x.
13For multiple observations the estimates for x can be recursively updated on the basis of the
new observations [30]
14Usually the dynamic models are restricted to be probabilistic Markov sequences [30].
15Approximations are necessary to make the computation involved in the Bayesian framework
feasible.
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approximations involve numerical integrations to solve the multidimensional
integrals appearing in the Bayesian recursions, while GM solutions approximate
p(x|z) by a weighted sum of Gaussian functions [79].

Although GM solutions were extensively applied to maneuvering target
tracking problems, novel techniques aiming at improving the weights and
moments computations are still subject of intensive research [80–82].

3. Sampling approaches
4. Particle filters.

Sampling approaches approximate the posterior density p(x|z) by a defined
function, e.g, the Gaussian function, whose moments are then captured by a
small set of deterministically chosen points. The unscented Kalman filter (UKF)
and the CKF are successful examples of these type of filters that have been
intensively applied to tracking scenarios [83, 83–85].

The last suboptimal solution to the nonlinear filtering problem is based on
the particle filter (PF) method which perform sequential Monte Carlo (SMC)
estimation using point mass representation of the posterior probability density
[86]. Although the approach is well known since several decades, only recently
it gained popularity in nonlinear filter applications, such as target tracking
problems [77, 87, 88] due to the inclusion of the resampling step [89].

While the state estimation techniques mentioned above are mainly concerned
with STT scenarios, recently the implementations of distributed KFs [90–92] and,
more general distributed Bayesian estimators for statistical inference extended the
application of the Bayesian paradigm to dynamic cooperative scenarios [93–95].
Details about the implementation and the theory behind those algorithms are
offered in [96, 97].
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2.4 Passive systems

Unlike active systems, in a passive setting targets have no direct involvement in
the measurement phase Consequently the output of the signal processing block
in Figure 7 are observations related to energy either transmitted or reflected by
the targets.

Signal
ProcessingProcessing
Data

[x1, y1, z1]
[x2, y2, z2]
[x?, y?, z?]

S1

S2

S?

Prior
Knowledge

Fig 7. Representation of a passive system.

An example is the sound navigation and ranging (SONAR) system which can
be used to listen for either the sound originated by other vessels or the eventual
echoes generated from other vessels in response to pulses of sound emitted by
the LT system itself [98–100].16

While the solutions discussed in Section 2.3 could be used in STT scenarios, in
the MTT case, the interdependence between target’s locations and measurements
requires more sophisticated solutions. The uncertainty on the source of the
measured data is what is generally referred to as the data association problem
and it arises in the more general case of an unknown number or targets and/or
when sensors are subject to false alarm and clutter measurement.

Therefore a first distinction can be made between passive STT settings,
in which the data association ambiguity is a consequence of clutter and false
alarm measurements only, and the passive MTT settings in which there is a
further degree of uncertainty due to the presence of an unknown number targets,
possibly more than one.

16Strictly speaking the two SONAR architectures are usually referred to as active and passive
systems. This should not be confused with the more general definition of active and passive
system given in Section 2.3-2.4 which is used in this work.
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Generally speaking, MTT solutions are a generalization of STT approaches
and aim at providing consistent estimates of the number of targets in the scenario
as well as their trajectories.

A brief review of the conceptual solutions of the MTT problem [27, 101, 102]
that rely on explicit associations between measurements and tentative tracks is
offered in Section 2.4.1. A recent formulation of the problem based on the finite
set statistic (FISST) framework [103], which does not necessitate any association
step, is introduced in Section 2.4.2.

2.4.1 Legacy methods

Nearest neighbor and track-splitting methods

The nearest neighbor (NN) solution is the simplest and a relatively low complexity
method that solves the data association problem. As suggested by the name,
it is based on the assumption that measurements17 are generated from the
closest, in a likelihood sense, point in the space. While this approach is only
suitable to solve the STT problem [102] extensions to the MTT scenario exist
under the name of global nearest neighbor (GNN) and are based on the global
optimization of a cost function, e.g. the sum of the likelihood measures. Also
know as 2-D assignment, this was the first algorithm designed to solve the MTT
problem. A first enhancement aimed at improving the tracking performance
consisted in combining the NN method in STT settings or the GNN solution in
MTT scenarios together with Bayesian filters. An example of this is the nearest
neighbor Kalman filter (NNKF) solution where in the update phase of the
recursion the measurement closest to the prediction resulting from a KF is utilized
to estimate the target state vector. A variation of the NNKF is the strongest
neighbor (SN) filter proposed in [104]. However, the impact of fault assignments
can be particularly problematic when dealing with filters since it could make
them diverge from the true track. To improve the target-to-measurements
assignment more sophisticated solutions were proposed [101].

For instance, under the principle that better assignments can be expected
introducing a lag in the computations and using multiple sets of measurements
at different times, new approaches based on the construction of decision trees

17Only the current set of information is used to make the assignment.
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describing the likelihood of different associations at different times were proposed
in [102].18 Due to the combinatorial nature of the methods, these track-tree
approaches suffer from an explosion in the number of branches used to represent
the possible outcomes for the trajectories.

In response to this problem a measure of track likelihood was included in the
approach to serve as basis for different pruning schemes, such as:

– delete unlikely tracks
– keep a fixed number of tracks
– merge track nodes

with the latter pruning scheme suggested in order to remove the unrealistic
condition occurring in the track-splitting approach that tracks may share
measurements. A solution to this problem was offered in the form of a batch
solution in [105] with the joint likelihood method.

However a common problem for all the methods mentioned above is that
they do not handle track initialization and termination.

Multi-hypothesis tracking methods

The multi hypothesis tracking (MHT) filters are an improvement to the MTT of
the solutions discussed in the previous section. At the core of the MHT filter is
the concept of hypothesis, which is defined as the exhaustive association of all
measurements to all possible disjoint tracks.

The filter starts by building a tree whose leaves are the sets of hypotheses
containing active tracks and operates by recursively updating the posterior
probability of each hypothesis on the basis of the current observations [27]. At
each iteration only the hypotheses with higher probability are selected, making
the MHT filter essentially a MAP estimator. Once the most likely hypotheses
are selected the target’s states are updated using different filters such as standard
KFs or interactive multiple model (IMM) methods19.

Differently from the NN solutions, the problem of track initialization and
termination is inherently handled by the filter during the update phase when
18These solutions consider as tracks the sequence of measurements originating from the same
point in the space [102].
19The MHT is intrinsically an MTT filter although it is possible to modify it to work in the
STT scenario.
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new measurements are associated to either current tracks, new tracks or clutter
measurements.

Depending on the strategy used to create the hypotheses the MHT imple-
mentations can be classified into measurement-oriented and track oriented [27].
In the former solution, which was also the first to be proposed in [106] for
STT scenarios, new hypotheses are retained and propagated in time. In turn
in the track-oriented approach only the tracks are propagated in time and
the hypotheses are reproduced each time from the tracks. This formulation
is often preferred over the original measurement-oriented approach since less
computationally demanding.

To obviate the exponential complexity inherent in the approach, the MHT
filter is used together with pruning schemes that limit the branching in the
hypothesis tree by clustering the tracks, merging the track histories or pruning the
low-probability branches from hypothesis trees [107]. Although in its standard
formulation the MHT filter makes hard associations/decisions, a novel variation
of the filter which bases the measurements to targets association on soft decisions
exists under the name of probabilistic multi hypothesis tracking (PMHT) [108]
which admits an efficient implementation under the name of turbo PMHT [109] .

Probability data association methods

Despite the pruning stage, the MHT filter still suffers from an exponentially
growing complexity. This motivated the investigation of new data association
schemes that, albeit suboptimal, could be implemented with almost fixed
computational complexity. One such solution is the probability data association
(PDA) filter in which, differently from the NN approach where only the closest
measurement is used for the update stage, each single measurement is considered
in proportion to the probability that it was generated by a target [110].

In the PDA the update is performed using the average of all measurements
weighted by the corresponding posterior probability computed through the
Bayesian recursion. Although the PDA filter was originally proposed to cope
with STT scenarios in which the target track is already initialized, the joint
probability data association (JPDA) extended the approach to MTT applications
with fixed and known number of targets.

The recursion used in the JPDA filter is the same used in the PDA, with
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the exception that instead of normal association probabilities joint association
probabilities are computed to avoid conflicting measurement to track assign-
ments. However, the computation of the joint association probabilities grows
exponentially with the number of targets and measurements. In addition to
this complexity problem, the JPDA filters operate under the assumption that a
known and fixed number of targets are allowed in the scenario, meaning that the
filter cannot cope with track initiation and deletion.

To overcome this problem a generalization of the PDA allowing target
appearance and disappearance was proposed in [111] under the name of integrated
probability data association (IPDA) and in [27, 112] as the joint integrated
probability data association (JIPDA) filter.

2.4.2 State-of-the-art method

A common feature of the methods discussed in Section 2.4.1 is that current
targets’ states are inferred after fitting the current set of measurements to the
existing tracks. Those solutions are therefore often referred to as report-to-track
methods [113]. They solve the MTT problem relying on measurement to track
associations and have the advantage that the target identities are a direct
outcome of the algorithms. However, when wrong associations occur, estimation
errors may result.

A recent formulation which uses the FISST theory developed by Mahler
[103, 114] to cast the MTT problem into the random finite set (RFS) framework
is of particular interest since it requires no assumption on the number of targets
and does not rely on the idea of hypothesizing associations between measurements
and targets. However, since the approach avoids solving the data association
problem, it only provides the target’s locations without identities.20

A brief overview on the RFS principle, the formulation of the MTT problem
based on this framework and the conceptual solutions that it offers is presented
in the following.

20Labeling-algorithms can be used in conjunction with this solution to recover this information
[115].
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The random finite set framework

The MTT methods discussed in Section 2.4.1 can be seen as the outcome of a
series of approximations, such as the one in the correction-update stages of the
Bayesian recursion used to update the tentative tracks or the ones made to include
target initialization and termination. A different perspective is offered by Mahler,
who, in a series of works suggested to consider the tracking problem as a whole
first, offered its conceptual solution in the form of a generalization of the Bayesian
solution to the MTT problem and finally proposed practical implementation of
this based on an approximation of the entire model [113, 114, 116].

Using the FISST tool as a basis, in particular the notion of set derivatives and
set integrals, Mahler built a calculus of probability for RFSs making therefore
available to the field of RFS ideas from statistic (e.g. ML estimate) as well
as information theory (e.g. Kullback-Leibler divergence) [103]. Then using
the generalization of likelihood and prior for RFS Mahler constructed the
conceptual solution to problem in the form of the Bayesian recursion for the
MTT filtering problem allowing clutter and false alarm measurements as well as
target appearances and disappearances directly into the formulation.

The probability hypothesis density approximation

As discussed in Section 2.3.2 for the active STT problems, the multivariate
integrals involved in the Bayesian recursion rarely have closed form solution [30]
and become even more difficult to solve once the problem is generalized to the
passive MTT scenarios by means of the RFS framework.21

Once again Mahler, resembling the success of moment matching methods
often used in STT problem, e.g. the KF-based solutions, proposed to propagate
in time only the first moment of the entire MTT posterior pdf, also known as
the PHD function.

One major difference between the the entire posterior pdf and the PHD
functions is that while the former is defined over the state space of the RFS, the
PHD is defined over the space of the single state vector. Consequently, the PHD
is not only less complex but also fixed dimensions in time. In addition when the

21Under such circumstances the dimension of the state vector describing all targets’ parameters
become an unknown random number.
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PHD is integrated over a portion of the state space it returns the number of
targets in it, suggesting that the target’s locations can be found by the local
maxima of the function.22

Since RFSs are fully characterized by a pdf and a cardinality number,
with the CPHD Mahler improved the approximation for the MTT posterior
pdf by propagating in time both the PHD function and the probability mass
function (pmf) for the discrete random variable describing the targets’ cardinality.

Although both the PHD and the CPHD recursions represent a substantial
simplification compared to the propagation in time of the entire MTT posterior
density, they still require the computation of multidimensional integrals. Due to
this reason practical implementations of the PHD and the CPHD filters have
been proposed in the form of SMC methods [117] and GMs [118, 119]. Both
implementations have been shown to converge to the true PHD function as the
number of particles and Gaussian Mixture components increase [120] and they
both compared favorably when compared to JPDA and MHT solutions [121].

2.5 Summary and discussions

After the broad overview offered in this chapter it should be clear that a
unique solution to the variety of possible LT multitarget scenarios is not
plausible. Depending on the criteria covered in Section 2.1, different mathematical
models/formulations are required to formalize the problem in the best possible
way. In particular Chapter 3 introduces the formulations and the algorithms
that will be employed to solve the different LT multitarget scenarios covered in
the thesis.

Moreover, although different solutions might achieve the same performance
in terms of accuracy, another important aspect that must be considered while
dealing with multitarget problems is the scalability of the solution, which in turn
is affected by the computational time required by the method under investigation.
This is one of the driving aspects that motivated the work proposed in the sequel
of this thesis.

Specifically, starting from the active-complete case, which is the subject of
Chapter 4, the proposed framework is extended to the case of incomplete and

22Since the PHD does not integrate to one it is not a pdf.
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heterogeneous information in Chapter 5.
Chapter 6 instead uses the emerging RFS formulation of the passive MTT

problem mentioned in Section 2.4.2 to cast and solve the problem into a Bayesian
framework. Even in the case of passive scenarios, incomplete range-based and
incomplete range-bearing systems are considered modifying the system model
used in the algorithms.
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3 Fundamentals of multitarget localization
and tracking

This chapter introduces the formulations used to solve the LT multitarget
scenarios discussed in this thesis.

Starting from a non-parametric approach based on a matrix-proximity
formalization of the problem, more complex solutions based on LS and Bayesian
formulation are discussed as possible approaches to deal with active LT scenarios.

The conceptual solution to the passive MTT scenario relying on the theory
of FISST and a RFS formulation of the problem is introduced in the second part
of the chapter. For each formulation a short description of the algorithms used
later in the thesis is also provided.

3.1 The multitarget LT problem with active sensors

Let X ∈ RN×η denote the matrix containing the set of Cartesian coordinates for
N points in an η-dimensional space. Then, the Euclidean distance between two
generic points xi and xj is

dij = dji ,

(
η∑

k=1

(xik − xjk)2

) 1
2

. (10)

Also let the squared Euclidean Distance Matrix EDM D be such that
[D]ij = d2

ij , ∀(i, j) = ({1, · · · , N}, {1, · · · , N}), which in matrix form yields

D(X) = D =




0 d2
1,2 d2

1,3 · · · d2
1,N

d2
2,1 0 d2

2,3 · · · d2
2,N

d2
3,1 d2

3,2 0 · · · d2
3,N

...
...

. . . . . .
...

d2
N,1 d2

N,2 d2
N,3 · · · 0



. (11)

While a detailed description of the properties related to D is available in
[40, 41, 48] it is important to realized that since D is a symmetric matrix
with zero diagonal elements, only the M =

(
N
2

)
= N(N − 1)/2 entries of its

upper/lower triangular part are informative.
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Using equation (10), the distance d2
ij can be written as

d2
ij = xi · xT

i + xj · xT
j − 2xi · xT

j , (12)

which is the well known cosine-law [40].
It follows that the generic ij-th entry of D is related to the triangle obtained

from the points xi, xj and the origin of the reference system used. Moreover,
since any rigid transformation of X produces the same EDM D [40], algorithms
that rely exclusively on D to infer X can only find the solution up to an isometry
in the embedding space. To resolve this uncertainty it is necessary to perform a
rigid transformation of the solutions which can be done by the Procrustes [37]
transformation detailed in Appendix 1.

3.1.1 The STRAIN formulation

Let DN (η) be the space of N ×N distance matrices generated by N points in an
η dimensional space and let δij be an arbitrary dissimilarity between xi and xj .
Now consider the squared dissimilarity matrix ∆ ∈ R[N×N ] such that [∆]ij = δ2

ij

and its transformation

K(∆,a) = −J(a)T ·∆ · J(a), (13a)

J(a) ,
1√
2

[
I− 1N · aT

]T
, (13b)

where 1N is a vector whose entries are all one and a is a signed distribution

of N terms such that
N∑
i=1

ai = 1 and whose values influence the origin used to

represent X [41].23

Recall Schoenberg’s embedding theorem for Euclidean distance matrices
[122] which states that the dissimilarity matrix ∆ ∈ DN (η) if and only if
K(∆,a) ∈ SN (η), where SN (η) is the space of symmetric PSD matrices with
rank at most η.24

Then the metric scaling problem [37] can be seen as the minimization of
the distance between the closed convex set of dissimilarity matrices and the
set of symmetric positive matrices, which can be expressed as the following
23Notice that equation (13a) is simply the generalization of equation (12), i.e. the cosine-law,
to all points of X.
24Equation (13) is a linear mapping from DN (η) to SN (η).
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optimization problem

min
G

‖K (∆,a)−G‖2F , (14)

s.t. ∆ ∈ EN
G ∈ GN

where EN is the closed convex set of possible dissimilarity matrices and GN a
subset of SN [47].

In the special case of a single dissimilarity matrix, namely EN = {∆}, the
optimization problem in equation (14) modifies into

min
G

‖K (∆,a)−G‖2F , (15)

s.t. G ∈ SN (η),

where the objective to be minimized is the STRAIN cost function in metric
MDS [47].

As shown in [46] and further generalized in [47], an attractive feature of
STRAIN is that its global solution can be computed explicitly. Moreover,
accordingly to Schoenberg’s embedding theorem D(X) = ∆ if and only if
K(∆,a) is a Gram matrix (i.e, X ·XT), from which it follows that X can be
obtained by matrix factorization of a PSD matrix.

Indeed, let Ka = K(∆,a) be a kernel matrix constructed according to
equation (13) for a particular value of a, then the coordinate matrix X can be
recovered – up to similarity transformation25 – by

X = [Ua]1:N,1:η · [Λa]
� 1

2
1:η,1:η , (16)

where (Λa,Va) is the eigen-pair for Ka containing the decreasingly ordered
eigenvalues and their corresponding eigenvectors respectively, and where �m

denotes the m-th element-wise (Hadamard) power.
Some important generalizations of STRAIN are discussed in [47] while

considerations about the robustness of STRAIN applied to metric MDS problems
are offered in [123, 124]. More specifically it is shown that in the presence of
dissimilarities corrupted by zero mean Gaussian noise STRAIN is comparable to
a sub-optimal, in the ML-sense, cost function called SSTRESS.
25Similarity transformation includes scaling, rotation and shift and is recovered by Procrustes
transformation [38].
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In the particular case of a = 1N/N , then kernel matrix G ∈ SN (η) can be
mapped into D ∈ DN (η) by the following linear operator

T (G) , 1N · diag(G)T + diag(G) · 1TN − 2G. (17)

Also notice that that the inverse mapping is performed using the operator
K(∆,a) defined in equation (13) [50].

Classical multi-dimensional scaling

Consider the double-centred Euclidean kernel constructed from equation (13a)
setting a = 1

N · 1N and using all the M pairwise distances between the N points
in X as [40]

K = −JT ·D · J, (18)

where
J =

1√
2

[
IN − 1

N · 1N1TN
]
. (19)

The C-MDS algorithm recovers the estimated configuration of points X̂ from
K using equation (16). This solution represent the best approximation of K

[46] that can be obtained under the constraint of rank(K) = η and it is exact
provided that D ∈ DN (η). In practical localization applications, however, one
can only obtain a dissimilarity matrix ∆̃, corrupted by noise and bias26, with
the obvious consequence that no optimal close form solution is possible and
where the value for the STRAIN cost function

CT = ‖X̂ · X̂T −K(∆̃,a)‖2F
is a measure of the quality of the approximation obtained by the spectral
truncation in equation (16).

Moreover using equation (17) it follows that

[K̃]ij = −1

2


[D̃]ij − 1N·

∑

i

ai[D̃]ij − 1N·
∑

j

aj [D̃]ij +
∑

i

∑

j

aiaj [D̃]ij


 .

(20)
From above is clear that the Euclidean kernel K̃ used in the C-MDS solution

is structured in such a way that each one of its elements depends on all the
entries of D̃ simultaneously, resulting in an error-propagation-prone algorithm.
26As discussed later, erasures may also occur.
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Some interesting relations between the C-MDS algorithm and solutions based
on principal component analysis (PCA) can be found in [36, 37].

3.1.2 The STRESS formulation

The other formulation commonly used in MDS, often referred to as the closest
Euclidean distance matrix problem [50], which measures directly the fit between
the dissimilarity matrix ∆ and an EDM,

min
D

∥∥∥W�1/2 ◦ (D�r −∆�r)
∥∥∥

2

F
, (21)

s.t. D ∈ DN (η)

where W∈RN×N is a weight matrix whose entries account for the confidence on
the corresponding dissimilarities in ∆ and ◦ denotes the Hadamard product.

As discussed in [125], the constraint in equation (21) is usually removed by
exploiting equation (10), which has the effect of changing the objective function
from

min
d

∑

i<j

wij
[
(d2
ij)

r − (δ2
ij)

r
]2
, (22)

into

min
x

∑

i<j

wij

[(
η∑

k=1

(xik − xjk)2

)r
− (δ2

ij)
r

]2

. (23)

Clearly, different cost functions result from different values of r in equation
(23). Specifically, for r = 0.5 the objective function commonly referred to as the
STRESS cost function in the MDS literature corresponds to the least squares on
the distances. For specific values of wij , it was shown that STRESS is equivalent
to the ML formulation of the localization problem [65]. In contrast, when r = 1

the objective function computes the least squares on the squared distances, and
it is known as the SSTRESS cost function.

Both loss functions mentioned above were brought to the attention of the
MDS community in the context of non-metric MDS by Kruskal in [126] and de
Leeuw in [127].

While SSTRESS is generally everywhere smooth [125], it is often characterized
by a large number of local minima and tends to favor large distances [38]. This,
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together with the fact that in the localization problem affected by Gaussian noise
SSTRESS is only a sub-optimal solution in the ML sense [65, 128, 129], makes
STRESS cost function often preferable in the context of localization problems.

Concluding, it is important to notice that while the cost function in equation
(14) solves the embedding problem by minimizing a least square objective
function on inner product matrices, the formulation in equation (22) operates
directly on the single distances dij and solves the closest-EDM problem.

The SMACOF algorithm

Although many standard minimization techniques could be used to solve
STRESS, below we consider a solution based on the majorization algorithm
initially proposed by Jan de Leeuw [130] and known under the name of SMACOF.

The idea is to minimize not the cost function fC(x), but a function fM (x, y)

such that, except for the support point y in the domain of fM where the two
functions coincide, for any other generic point x in the domain of fC , fM is a
majorizer of fC(x), namely

{
fC(x) 6 fM (x, y),

fC(y) = fM (y, y).
(24)

If the conditions above are satisfied fC can be solved through the majorizing
function fM . In context of metric MDS problems this majorization is obtained
starting from the STRESS function CS defined in equation (23) for r = 0.5, here
rewritten as

CS (X) = η2
δ + η2

d (X)− 2ρ (X) , (25)

where η2
δ =

∑
i6j wijδ

2
i,j and η2

d (X) =
∑
i6j wijd

2
ij (X) while the last term is

ρ (X) =
∑
i6j wijδijdij (X).

Rewriting equation (25) in matrix form yields [38]

CS (X) = η2
δ + trace

(
XT ·HW ·X

)
− 2 · trace

(
XT ·PS (X) ·X

)
, (26)

where HW is such that

hW,ij =

{
−wij i 6= j,∑
k 6=i wik i = j,

(27)
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and PS is such that

pS,ij =





−wijδijd−1
ij (X) i 6= j dij (X) 6= 0,

0 i 6= j dij (X) = 0,

−∑k 6=i pS,ik i = j.

. (28)

As shown in [38, 131] a majorized form of equation (26) is

CM (X,Y) = η2
δ + trace

(
XT ·HW ·X

)
− 2 · trace

(
XT ·PS (Y) ·Y

)
. (29)

The function above is minimized by iteratively equating its gradient, computed
with respect to the matrix Y, to 0, yielding

∂CM
∂Y

= 2HW ·X− 2PS (Y) ·Y = 0. (30)

It follows that the solution at the iteration [̄i + 1] is obtained from the
previous one from what is commonly known as the Guttman’s transform, namely

X[̄i+1] = H†W ·PS

(
Y[̄i]

)
·Y[̄i], (31)

where † indicates the Moore-Penrose pseudo-inverse.
Although different and more complex optimizations, such as Newtonian

or Quasi-Newtonian solutions [125, 131] could be used to solve STRESS, the
majorization employed in SMACOF has the advantage of generating convex
approximations of the original function, which in turn implies non-decreasing
sequences of the values for the cost function, making the solution more robust to
local minima [38]. Motivated by this reason, the SMACOF algorithm has been
used to solve multitarget localization problems with centralized and distributed
system architectures [69].

In addition to the above, in [132] it is shown that in many cases the search
direction for the SMACOF algorithm can be inferred from the previous iterations,
giving the possibility to add a vector extrapolation stage inside the algorithm to
accelerate the convergence time of overall optimization.27

27Bear in mind that vector extrapolation techniques do not ensure convexity and for this
reason they usually incorporate a check on values of the cost function to ensure the convergence
of the optimization to a minima.
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3.1.3 The Bayesian formulation

Differently from above where the STRAIN and the STRESS formulation were
introduced to cope with parameter estimation problems commonly encountered
in localization applications, in the following STT scenarios are modeled as
discrete-time filtering problems which can be optimally solved, in a Bayesian
sense, through the filtering distribution.

Let k̄ ∈ N be the discrete time index assigned to the sampling interval
T̄k̄−1 , tk̄ − tk̄−1 and let also the target state vector xk̄ ∈ Rnx with initial
probability p(x0) be a Markov chain. Under the assumption xk̄ depends only on
xk̄−1, which translates into the two following properties:

1. Independence from the past :

p(xk̄|x1:k̄−1, z1:k̄−1) = p(xk̄|xk̄−1),

2. Independence of the past from the future given the current state:

p(xk̄−1|xk̄:k̄+T̄ , zk̄:k̄+T̄ ) = p(xk̄−1|xk̄).

In addition to the Markovian property of the state vector, defied by the two
properties above, it is common to assume conditional independence between the
observations z1:k̄ and between observations and the state history x1:k̄, yielding

pk̄|k̄(zk̄|x1:k̄, z1:k̄−1) = pk̄|k̄(zk̄|xk̄). (32)

Under the assumptions above, the system is said to evolve as the hidden
Markov model (HMM) illustrated in Figure 8, and it can be represented by the
discrete-time28 system model:

xk̄|k̄−1 ∼ pk̄|k̄−1(xk̄|xk̄−1), (33)

zk̄ ∼ pk̄|k̄(zk̄|xk̄), (34)

where pk̄|k̄−1(xk̄|xk̄−1) defines the prior knowledge on the model and the
likelihood function pk̄(zk̄|xk̄) represents the knowledge on the measurement
process.29

28Although not considered in this work, models for continuous-discrete and continuous-time
systems are known in the literature and can be found in [30, 133] while recent advances in the
area are offered in [134].
29Implicitly it also defines the noise statistics.
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Observed:

Hidden: · · · xk̄−1 xk̄ xk̄+1

zk̄−1 zk̄ zk̄+1

· · ·

Fig 8. Representation of the HMM commonly employed in recursive systems.

As a consequence of the assumption on the system model, the joint prior
distributions and the joint likelihood for the system are computed as

pk̄|k̄−1(x0:k̄) = p(x0)

k̄∏

i=1

pī|̄i−1(xī|xī−1), (35a)

pk̄|k̄(z1:k̄|x0:k̄) =

k∏

i=1

pī(zī|xī). (35b)

If follows that the joint posterior density pk̄(x1:k̄|z1:k̄) is obtained applying
the Bayes’ rule as

pk̄|k̄(x1:k̄|z1:k̄) =
pk̄|k̄(z1:k̄|x1:k̄)pk̄|k̄−1(x1:k̄)

pk̄|k̄−1(z1:k̄)
∝ pk̄|k̄(z1:k̄|x1:k̄)pk̄|k̄−1(x1:k̄).

(36)
Although pk̄|k̄(x1:k̄|z1:k̄) represents the conceptual solution to problem at

time k̄, it suffers from an increase in computation time. Therefore it is common to
replace the full posterior distribution by the filtering distribution30 pk̄|k̄(xk̄|z1:k̄).
This is particularly useful in LT applications where it is of interest to recursively
quantify the belief in xk̄ given z1:k̄ and which is obtained through the marginal
posterior distribution pk̄|k̄(xk̄|z1:k̄) [30]. Thus, assuming31 pk̄−1(xk̄−1|z1:k̄−1)

known, then the filtering distribution at k̄ can be computed using the discrete-time
Bayesian, that is:

– Prediction: use the Chapman-Kolmogorov equation and the system model

30The following marginals can also be computed:

– prediction distribution pk̄+n̄|k̄(xk̄+n̄|z1, . . . ,zk̄), marginal of the future states;
– smoothing distribution pī|1:k̄(xī|z1:k̄), marginal of xī given the set z1:k̄ where 1 6 i 6 k.

31The distribution p0(x0) , pk̄|k̄−1(xk̄|z1:k̄−1) at k̄ = 0 is assumed known.
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defined in equation (35) to compute the prediction density as

pk̄|k̄−1(xk̄|z1:k̄−1) =

∫

Rnx

pk̄|k̄−1(xk̄|x)pk̄−1(x|z1:k̄−1)dx. (37)

– Update: use the Bayes’ rule to correct on the basis of the current observation
and the statistical characterization of zk̄:

pk̄|k̄(xk̄|z1:k̄) = pk̄|k̄(xk̄|z1:k̄, z1:k̄−1) (38)

=
pk̄|k̄(zk̄|xk̄, z1:k̄−1)pk̄|k̄−1(xk̄|z1:k̄−1)

pk̄|k̄−1(zk̄|z1:k̄−1)

=
pk̄|k̄(zk̄|xk̄)pk̄|k̄−1(xk̄|z1:k̄−1)

pk̄|k̄−1(zk̄|z1:k̄−1)
,

where the normalizing constant is

pk̄|k̄−1(zk̄|z1:k̄−1) =

∫

Rnx

pk̄(zk̄|x)pk̄−1(x|z1:k̄−1)dx. (39)

Once pk̄|k̄(xk̄|z1:k̄) is known, the optimal state estimate is obtained using
the predefined decision criterion, for instance the MMSE or the MAP estimator
mentioned in Section 2.3.2. Similarly, a measure of accuracy of a state estimate
(e.g., covariance) may also be obtained from pk̄|k̄(xk̄|z1:k̄).

Alternatively, when target motion and measurement statistic are characterized
by a transition density pk̄|k̄−1(xk̄|xk̄−1) and a likelihood function pk̄|k̄(zk̄|xk̄),
the system can be described using the following discrete-time stochastic model

xk̄ = f
(
xk̄−1, qk̄−1

)
, (Dynamic Model) (40a)

zk̄ = g (xk̄, rk̄) , (Measurement Model) (40b)

where f(·) and g(·) are known, possibly nonlinear functions, used to describe the
motion and the measurement model of xk̄−1 while qk̄−1 and rk̄ are the process
and measurement noise sequence used to account for miss-modeling effects and
disturbances in systems. Let xk̄|k̄−1 A representation of the recursive estimate
of the filtering distribution for the system model in equation (40) is provide in
Figure 9.
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pk̄−1(xk̄−1|z1:k̄−1)
PREDICT UPDATE

pk̄|k̄−1(xk̄|z1:k̄)pk̄|k̄(xk̄|z1:k̄−1)

Dynamic Model
f(·,qk̄−1)

Observation
g(·, rk̄)

Fig 9. Representation of the Bayesian recursion used to compute the filtering
distribution.

However, the optimal filtering recursion described above is theoretical since
only in a limited number of cases it can be computed analytically.32

Such cases are [77]:

– LG models
– discrete state space with a finite number of states
– few other subclasses of nonlinear problems different from the ones above [30].

In all other cases, which include the most practical situations, it is necessary
to rely either on approximations or suboptimal Bayesian algorithms.

Kalman filters

Let f(·) and g(·) in equation (40) be two known linear functions of {xk̄−1, qk̄−1}
and {zk̄, rk̄} respectively with qk̄−1 and rk̄ as mutually independent zero-mean
white Gaussian distributions whose covariance matrices are Qk−1 and Rk

respectively. Then the system in equation (40) can be written as

xk̄ = Fk̄−1 · xk̄−1 + qk̄−1, (41a)

zk̄ = Gk̄ · xk̄ + rk̄, (41b)

where Fk̄−1 ∈ Rnx×nx and Gk̄ ∈ Rnz×nx are known matrices.
Under the assumption that p0(x0̄) is Gaussian, it follows that pk̄|k̄(xk̄|z1:k̄)

is also Gaussian and therefore completely characterized by its first two moments,
mean and covariance [30]. Using equations (37) and (38), the relations for the

32Its computation would require the entire filtering pdf obtained solving the multidimensional
integrals in equation (37) and (39).
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filtering distribution are

pk̄−1(xk̄−1|z1:k̄−1) = N (x;xk̄−1,Σx,k̄−1), (42)

pk̄|k̄−1(xk̄|z1:k̄−1) = N (x;xk̄|k̄−1,Σx,k̄|k̄−1), (43)

pk̄|k̄(xk̄|z1:k̄) = N (x;xk̄|k̄,Σx,k̄|k̄), (44)

where N (x; mx,Σx) is a Gaussian distribution with mean mx, and Σx is the
Cholesky factorization of the state covariance matrix, i.e., Px = Σx · (Σx)

T.
In particular, the parameters characterizing the filtering distributions above

are computed applying the Bayesian recursion as:
Step 1 - Prediction

mk̄|k̄−1 = Fk̄−1 · xk̄−1, (45)

Px,k̄|k̄−1 = Qk̄−1 + Fk̄−1 ·Px,k̄−1 · FT
k̄−1. (46)

Step 2 - Update

mk̄|k̄ = mk̄|k̄−1 +K k̄ · (zk̄ −Gk̄ ·mk̄|k̄−1), (47)

Px,k̄|k̄ = Px,k̄|k̄−1 −K k̄ · Sk̄|k̄−1 ·KT
k̄ , (48)

where

Sk̄ = Gk̄ ·Px,k̄|k̄−1 ·GT
k̄ +Rk̄, (49)

is the covariance of the innovation term yk̄ = zk̄ −Gk̄ · xk̄|k̄−1, and

K k̄ = Px,k̄|k̄−1 ·GT
k̄ · S−1

k̄
, (50)

is the gain matrix.33

At the following iteration the state vector x is then set equal to the previous
estimate of m.

The recursion presented above is the well known KF [78, 87] which is proved
to be optimal in the presence of LG problems.34 The KF can also be used as a
suboptimal solution to the more general case of nonlinear problems in the form
of EKF [30], UKF [83] and CKF [84] based filters.

33Also notice that Px,k̄|k̄ = [I−Kk̄ ·Gk̄] ·Px,k̄|k̄−1.
34The derivation of the KF equations can be obtained using a LS argument [30].
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Gaussian mixture filters

The main limitation of the KF approach mentioned above is the Gaussian
assumption implicit in the filtering distribution pk̄|k̄(xk̄|z1:k̄). To overcome
this problem and extend the approach to more general scenarios, e.g. pdfs
characterized by multimodal distributions, it was proposed to represent a generic
filtering distributions by the sum of Gaussian distributions [79].

This is in agreement with Wiener’s Theorem on approximation which proves
that any distribution can be approximated up to an arbitrary degree by a sum
of Gaussian distribution [120]. Let the filtering distribution at k̄ − 1 is given in
the form of the following GM

pk̄−1(xk̄−1|Z k̄−1) =

Jk̄−1∑

j=1

ω
(j)

k̄−1
· N (x; m

(j)

k̄−1
,Σ

(j)

x,k̄−1
), (51)

such that
Jk̄−1∑
j=1

ω
(j)

k̄−1
= 1.

Then, for LG system models the filtering distribution at k̄ can be computed
using the Bayesian paradigm, namely:
Step 1 - Prediction

pk̄|k̄−1(xk̄|k̄−1|z1:k̄−1) =

Jk̄−1∑

j=1

ω
(j)

k̄−1
· N (x; m

(j)

k̄|k̄−1
,Σ

(j)

x,k̄|k̄−1
), (52)

where m
(j)

k̄|k̄−1
and Σ

(j)

k̄|k̄−1
are computed using the KF prediction equation (45)

and (46).
Step 2 - Update

pk̄|k̄(xk̄|k̄|z1:k̄) =

Jk̄∑

j=1

ω
(j)

k̄
· N (x; m

(j)

k̄|k̄,Σ
(j)

x,k̄|k̄), (53)

where m
(j)

k̄|k̄ and Σ
(j)

x,k̄|k̄ are computed using the KF update equation (47) and
(48) and

ω
(j)

k̄
= ω

(j)
¯k−1
·
N (x;Gk̄ ·m(j)

k̄|k̄,Gk̄ ·P(j)

k̄|k̄−1
·GT

k̄ +Rk̄)

Jk̄∑
i=1

N (x;Gk̄ ·m(i)

k̄|k̄,Gk̄ ·P(i)

k̄|k̄−1
·GT

k̄ +Rk̄)

. (54)
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Once the filtering distribution at k̄ is available, the state variable and the
associated covariance matrix are found as:

xk̄|k̄ =

Jk̄∑

j=1

ω
(j)

k̄
m

(j)

k̄|k̄, (55)

Px,k̄|k̄ =

Jk̄∑

j=1

ω
(j)

k̄

[
P

(j)

x,k̄
+ (xk̄|k̄ −m

(j)

k̄|k̄) · (xk̄|k̄ −m
(j)

k̄|k̄)T
]
. (56)

3.2 The MTT problem with passive sensors

In the STT scenario the filter is constructed under the knowledge that a single
target exists, such that only the state vector and measurements vary in time.
In contrast, in MTT scenarios, also the number of targets change with time.
Furthermore, typically there is no model to govern the likelihood with which the
targets appear and fade from the surveillance region.

In order to cope with this difficulty specific to the MTT scenario, the
standard Bayesian framework associated with the conventional Kalman filter
briefly discussed above needs to be replaced by more flexible frameworks. Such a
framework was suggested by Mahler, who used the FISST tools to extend the
Bayesian formulation to the MTT scenarios [103].

3.2.1 The Bayesian formulation with random finite sets

Among other possibilities, the recently emerged Random Finite Set (RFS)
framework [116] is of particular interest since it requires no assumption on
the number of targets, unlike more established alternatives such as the JPDA.
Differently from the MHT approach, does not rely on the idea of hypothesizing
associations between measurements and targets [121, pp. 8].

Let X and Z denote the state and the observation spaces, respectively. Let
also the RFS X k̄ describe the set of state vectors corresponding to Lk̄ targets,
and the RFS Z k̄ describe the Mk̄ observations at instant k̄, i.e.

X k̄ = {xk̄,1, . . . ,xk̄,Lk} ∈ F (X ), (57)

Z k̄ = {zk̄,1, . . . ,zk̄,Mk
} ∈ F (Z), (58)

where F (X ) is the space of all finite subsets of X and F (Z) is the space of all

70



finite subsets of Z.
Both X k̄ and Z k̄ are described by a discrete distribution and a joint

probability density function characterizing the number of elements of the sets as
well as the distribution of their states. Following the model suggested in [118],
the RFS for the target states is given by

X k̄ =


 ⋃

ξ∈Xk̄|k̄−1

Ek̄|k̄−1(ξ)


∪


 ⋃

ξ∈Xk̄|k̄−1

Bk̄|k̄−1(ξ)


∪ Γk̄, (59)

where Ek̄|k̄−1(ξ) is the RFS describing the evolved (or the prediction of surviving)
targets xk̄|k̄−1 in time, Bk̄|k̄−1(ξ) is the RFS describing the targets that spawn
from previous trajectories ξk̄|k̄−1 and Γk̄ an additional RFS included to account
for new target births at instant k̄.

Similarly the RFS describing the observations can be expressed by

Z k̄ =


 ⋃

x∈Xk̄

M k̄(x)


∪H k̄, (60)

where H k̄ accounts for the clutter measurements and M k̄ models the measure-
ments generated by xk̄ conditioned on the detection probability pD.

Using the definition of set integral and set derivative from FISST theory the
probability density function for the RFS is

pk̄

(
{x(1)

k̄
, . . . ,x

(n)

k̄
}|n
)

= n!pk̄

(
x

(1)

k̄
, . . . ,x

(n)

k̄

)
, (61)

where the factorial term n is a direct consequence of the definition of set integral
in FISST and indicates the probability of the existence of the elements of X k̄

independently on their possible permutations. As already mentioned above,
equation (61) shows that the RFS X k̄ is described by pk̄ (X k̄) and a cardinality
distribution from now on denoted by pC,k̄|k̄(·). Therefore, bearing equations (59)
and (60) in mind and relying on the FISST tool an analogous to the Bayesian
recursion for the STT problem the conceptual solution to the MTT case becomes
[113, 116, pp. 14]

pk̄|k̄−1(X k̄|Z1:k̄) =

∫
ϕk̄|k̄−1(X k̄|X) pk̄−1

(
X|Z1:k̄−1

)
µ(dX) , (62)

pk̄ (X k̄|Z1:k̄) =
hk̄ (Z k̄|X k̄) pk̄|k̄−1

(
X k̄|Z1:k̄−1

)
∫
hk̄ (Z k̄|X) pk̄|k̄−1(X k̄|Z1:k̄)µ (dX)

. (63)
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where ϕk̄|k̄−1(·|·) and hk̄|k̄−1(·|·) are the multitarget transition density and
likelihood function respectively.

A SMC recursion that propagates in time the entire MTT posterior pdf
described in equation (63) was proposed in [117]. It was also discussed thereby,
however, that such a solution becomes prohibitive in systems with more than a few
targets, among other reasons, because equations (62) and (63) contain integrals
with multiple and variable dimensions. A representation of this conceptual
solution is provided in Figure 10. Bear in mind that since both Figure 9 and
10 are Bayesian solutions to the STT and MTT problem respectively, they
both share the prediction and update stage. However, as shown in Figure 10,
in presence of MTT problems the entire RFS used to represent X must be
propagated forward in time by the recursion. Indeed, while in the STT case the
posterior pdf of the single state vector is propagated in time, in the MTT case
this is substituted by the posterior pdf of a RFS describing the evolution of the
targets in time.

pk̄−1(Xk̄−1|Zk̄−1)
PREDICT UPDATE

pk̄(Xk̄|Zk̄)pk̄|k̄−1(Xk̄|Zk̄−1)

Dynamic Model
ϕ(·|·)

Observation
h(·|·)

Fig 10. Representation of the Bayesian recursion used to compute the MTT filter-
ing distribution.

The probability hypothesis density filter

The propagation in time of the entire MTT posterior pdf defined in equation (63)
would be too computationally demanding for any practical system. Fortunately,
a suboptimal solution was proposed in [116] where only the first order moment ν
of the MTT posterior pdf – referred to as the PHD – is propagated. Specifically,
under the assumptions that [118]:

– targets evolve and generate observations independently of one another
– clutter and target measurements are independent of each other
– the predicted multitarget RFS governed by pk|k−1 is Poisson,
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then the posterior intensity can be propagated in time by PHD recursion:

νk̄|k̄−1(x) =

∫
pS,k̄ (ξ)ϕk̄|k̄−1(x|ξ) νk̄−1 (ξ) dξ (64)

+

∫
βk̄|k̄−1(x|ξ) νk̄−1 (ξ) dξ + γ (ξ) ,

and

νk̄|k̄(x) =
[
1− pD,k̄ (x)

]
νk̄|k̄−1 (x) (65)

+
∑

z∈Zk̄

pD,k̄ (x)hk̄(z|x) νk̄|k̄−1 (x)

κk̄ (x) +
∫
pD,k̄ (ξ)hk̄(z|ξ) νk̄|k̄−1 (ξ) dξ

,

where pS,k̄ (ξ) is the probability of survival of the target in ξ at k̄, βk̄|k̄−1(·|ξ)

and γ (·) respectively the intensities of the RFS Bk̄ and Γk̄ at k̄, pD,k̄ (x) is the
detection probability of x at k̄ and κk̄ (·) is the intensity of the clutter RFS.

The PHD35 is based on the first order approximation of the function that
maps sets of targets into a probability space, namely Dirac delta at the targets’
locations and it is characterized by the property that the cardinality of X k̄ can
then be estimated by

nk̄|k̄(X) =

∫

X
νk̄|k̄(x) · dx. (66)

One advantage of the PHD framework is that the MTT posterior pdf can (in
principle) be evaluated via the Bayesian rule (equation (62) and (63)), estimates
of X can be computed, similarly to the Bayesian STT case, under different
optimality criteria.36

A further advantage is that the PHD intensity function νk̄|k̄ is a function of
the state vectors of individual targets37, and therefore has a fixed number of
dimensions, specifically as many as the size of the state vector x.

Nevertheless, propagating νk̄|k̄ may still be computationally challenging, since
it is still a multivariate function which must be approximated accurately enough
over the entire surveillance region. Initial attempts to mitigate this problem

35Since the PHD does not integrate to 1, it is not a density function.
36Depending on the algorithm used to implement the PHD recursion, different techniques can
be employed to extract the states of the nk̄|k̄(X) targets. Specifically SMC implementations
require a clustering stage [117], while GM-based approaches rely on the fact that the means of
the GM components are the maxima of the intensity function [118].
37For details we refer readers to [116].
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were based on SMC (particle) implementations [117], which may suffice in some
cases but quickly becomes unfeasible as the number of targets increases.

To alleviate the computational complexity of SMC implementations of the
PHD, a close-form solution of the recursion based on the GM of the MTT
intensity function was proposed in [118]. This solution was shown to be optimum
under the assumption that:

– target trajectories and sensors measurements follow linearGaussian models
– clutter measurements follow Poisson processes
– the probabilities of survival and detection are constant (i.e., pS,k̄ (ξ) = pS,k̄

and pD,k̄ (x) = pD,k̄)
– the intensity of the birth RFS is a GM.

Outside these assumptions, however, the GM implementation of the PHD
filter is suboptimal as it relies on approximations such as linearization (in
similarity to the EKF) or the unscented transform (in similarity to the UKF).

The cardinalized probability hypothesis density filter

One problem of the PHD recursion mentioned above is that, although the RFS
X k̄ is described by both the distribution of its elements as well as a cardinality
distribution, in the PHD recursion the latter is not considered since the the
number of targets at k̄ is computed as the mean of the PHD function through
equation (66). As explained in [119], this results in inconsistent estimates of
the number of targets. To overcome this problem in [135] Mahler proposed to
propagate in time the cardinality distribution pk̄(n) for the number of targets
together with the intensity function.

The assumptions at the core of the CPHD recursion are:

– targets evolve and generate observations independently of one another
– new-born and surviving targets are independent of each another38

– clutter measurements are an i.i.d cluster process
– prior and predicted multitarget RFS are i.i.d cluster processes.

Let C`j = `!/j!(`− j)! be the binomial coefficient, and 〈·, ·〉 the inner product
between the two real valued functions given as argument, then the posterior
38The formulation can be extended to include target spawning from previous trajectories as
well.
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intensity ν(·) and the cardinality distributions pC(·) are propagated in time by
the CPHD recursion as

pC,k̄|k̄−1(n) =

n∑

j=0

pΓ,k̄(n− j)
∞∑

`=j

C`j
〈pS,k̄, ν〉j〈1− pS,k̄, ν〉`−j

〈1, ν〉` , (67)

νk̄|k̄−1(x) =

∫
pS,k̄ (ξ)ϕk̄|k̄−1(x|ξ) νk̄−1 (ξ) dξ + γ (ξ) , (68)

and

pC,k̄|k̄(n) =
Υ0
k[νk̄|k̄−1,Z k̄]pC,k̄|k̄−1(n)

〈Υ0
k[νk̄|k̄−1,Z k̄], pC,k̄|k̄−1〉

, (69)

νk̄|k̄(x) =
〈Υ1

k̄
[νk̄|k̄−1,Z k̄]pC,k̄|k̄−1〉

〈Υ0
k[νk̄|k̄−1,Z k̄], pC,k̄|k̄−1〉

×[1− pD,k̄(x)]νk̄|k̄−1(x)

+
∑

z∈Zk̄

〈Υ1
k̄
[νk̄|k̄−1,Z k̄ \ {z}]pC,k̄|k̄−1〉
〈Υ0

k̄
[νk̄|k̄−1,Z k̄], pC,k̄|k̄−1〉

× ψk̄,z(x)νk̄|k̄−1(x), (70)

where

Υu
k [ν,Z](n) =

min (C(Z),n)∑

j=0

(C(Z)−j)!pK,k̄(C(Z)−j)Pnj+u (71)

× 〈1− pD,k̄(x), ν〉n−(j+u)

〈1, ν〉n ej (Ξk(ν,Z)) ,

ψk̄,z(x) =
〈1, κk〉
κk(z)

h(z|x)pD,k̄(x), (72)

Ξk (ν,Z)) = {〈ν, ψk̄,z〉 : z ∈ Z}, (73)

with κk̄(·) and pK,k̄(·) as the intensity of clutter and the distribution for the
number of clutter arrivals at k, Pnj+u the permutation coefficient, ej (·) the
elementary symmetric function, pΓ,k̄ as the cardinality distribution of the birth
RFS and C(·) the cardinality operator.

As for the PHD filter, the propagation of νk̄|k̄ and pC,k̄|k̄ in time would be too
computationally demanding for any practical usage. To alleviate this problem in
[136] proposed to approximate νk̄|k̄ by a GM.

An interesting physical interpretation of both the PHD and the CPHD
recursions in terms of the bin-occupancy filter is provided in [137] while the
application of the filters to smoothing and prediction problems has been covered
in [138].
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Concluding, differently from the PHD filter where the cardinality of Xk is
estimated using equation (66), with the CPHD recursion this can extracted
directly from pC,k̄|k̄ by means of MAP or MMSE estimators.

3.3 Performance metrics

The performance metric commonly used in active LT application and adopted
here to asses the algorithm performance is the root mean square error (RMSE)
computed over the location estimates X̂ and averaged over the number of
realizations

RMSE , 1√
N
· ‖X − X̂‖F. (74)

Since the RMSE measures the error in terms of distances, this metric makes
the comparison of the results from different algorithms straightforward. It should
be kept in mind that when dealing with NLOS conditions, RMSE measures may
be heavily affected by outliers, making it a rather coarse performance measure
when compared to the cumulative density function (cdf) of the error. However,
since the vast majority of the scenarios considered in the present work deals
with LOS observations only, it was decided to keep the RMSE as the metric that
measures the performance in accuracy of the active-LT algorithms discussed in
the sequel of this work.

Differently from active scenarios, the joint cardinality and targets’ states
estimate encountered in the passive MTT scenario makes this comparison more
complicated. To overcome this difficulty, in this work the performance for the
passive algorithms are compared using the optimal sub-pattern assignment
(OSPA) metric recently proposed in [139].

Let d̄(c) (x, x̂) = min (c, d(x, x̂)) be the distance between the two elements
(x, x̂) ∈ X with c > 0 as the cutoff value and Πb the permutations for the set
{1, . . . , b} with b ∈ N = {1, 2, . . . }, then the OSPA metric d̄(c)

p is computed as

d̄(c)
p

(
X, X̂

)
=

(
1

n

(
min
π∈Πn

m∑

i=1

d(c)
(
xi, x̂π(i)

)p
+cp(n−m)

))1
n

, (75)
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if m 6 n and d̄(c)
p

(
X, X̂

)
= d̄

(c)
p

(
X̂,X

)
if m > n; moreover,

d̄
(c)
∞

(
X, X̂

)
=





min
π∈Πn

max
16i6n

d(c)
(
xi, x̂π(i)

)
if m = n,

c otherwise.
(76)

In the equation above the parameter p is used to weight the outliers differently,
while c assigns a penalty proportional to the cutoff value to faulty assignments.
Specifically, the lower the parameter c, the higher the relevance of tracking
accuracy in the OSPA value, conversely, the higher c is, the more is the emphasis
of cardinality error into the OSPA metric.

The other type of error that must be considered in passive MTT scenarios is
the cardinality error which is here measured by

E
[
|C(X̂k)− C (Xk) |

]
,

where | · | denotes the absolute value operator.
As already mentioned above, one objective of this work is to investigate how

to lower the computational load of current state of the art solutions for MTT-LT
applications without affecting the localization accuracy. Since a comparison
in terms of floating point operations would be too dependent on the specific
machine and implementation used during the evaluation, it was decided to
perform such a comparison using specific variables directly related to the state of
the art solution we improve upon.

Specifically, for the subspace tracking technique proposed in Chapter 4, the
computational time is measured in Section 4.3 in terms of the number of times
the kernel matrix K is “swept” by plane rotations. Differently, in the passive
case the computational complexity is measure in terms of number of gated
measurements that are fed to the CPHD filter.39

3.4 Summary and discussions

The chapter focused on the different formulations of the multitarget LT problem
in active and passive scenarios that will be used in the sequel of this work.

In particular relying on the STRAIN formulation of the active multitarget
problem in dynamic scenario in Chapter 4 a scheme to track the eigenspace
39Notice that also a comparison in terms of computational time is offered in Table 2.

77



associated to the kernel matrix used in the C-MDS formulation of the problem is
proposed. Chapter 5 deals with two limitations of the aforementioned technique,
namely the data erasure problem over the EDM used to infer the targets location
and the restriction of the approach to distance, or equivalently TOA observations.

The Bayesian approach instead is exploited in Chapter 6 to solve, by means
of the RFS formulation, the MTT problem in passive scenarios. In this context
it is shown that by integrating the S-CKF filter into the GM-CPHD solution it
is possible to improve robustness of the resulting filter versus numerical problem.
More importantly a novel gating scheme is proposed to limit the computational
complexity of the approach as well as to improve the accuracy of the filter.
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4 The active MTT Problem: complete
scenarios

This chapter focuses on an efficient multitarget LT algorithm for the MTT
problem in active scenarios using TOA-based range measurements between all
the agents to be localized.

In so doing we use the C-MDS approach, that recently, due to its non-
parametric formulation, has been shown an advantageous technique compared to
more conventional methods especially when the targets’ mobility cannot be
simply and reliably modeled a priori [43–45, 129]. A problematic characteristic
of the MDS method, however, is the need to continuously eigen-decompose the
typically large Euclidean kernel constructed from the observations, which in
turn calls for efficient eigen-decomposition algorithms capable of updating the
eigenspace associated with an earlier kernel into the one of the latest observation
[140–142],[143, pp. 431]. With regard to the latter, two important questions
arise which motivate and the subject of the chapter:

– how large may the subspace distance of two subsequent kernels be, such that a
subspace-tracking approach is still advantageous

– how to exploit the specific structure of such kernels so as to maintain complexity
as low as possible.

With regard to the latter issue, in this chapter a statistically-optimized
and truncated variation of the Jacobi algorithm, designed specifically to suit
the structure of the dynamic MDS kernels under consideration is proposed.
This modified Jacobi technique, which is founded on a statistical Gershgorin-
theoretical eigen-spectrum analysis, mitigates the latter problem resting on the
statistically ensured fact that only a fraction of the elements of dynamic MDS
kernels need be swept by Givens rotations. Consequently, the computational
cost associated with the eigen-decomposition of dynamic MDS kernels is brought
down to a remarkably low complexity40 of order O(

√
N).

40Measured in terms of the number of plane rotation sweeps normalized to the subspace
distance.
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4.1 The C-MDS algorithm in dynamic scenarios

4.1.1 Static MDS kernels

Let X ∈ RN×η denote the matrix containing the set of cartesian coordinates for
N points in an η-dimensional space, and let the dissimilarity of two points at
locations xi and xj be given by their pairwise Euclidean distance defined in
equation (10). Let D denote the squared EDM [40, pp.186] defined in equation
(11). Next, consider the double-centered Euclidean kernel constructed in equation
(18). In the C-MDS algorithm [144] the coordinate matrix X is recovered – up
to rigid motion41 – from the kernel42 K by

X = [V]1:N,1:η ·Σ = [V]1:N,1:η · [Λ]
1
2
1:η,1:η, (77)

where (V,Λ) is the eigen-pair of K and Σ , [Λ]
� 1

2
1:η,1:η.

4.1.2 Dynamic scenarios

Let X ∈ RN×η and XT̄ ∈ RN×η denote two consecutive observations of a
time variant real random process corresponding to the cartesian coordinates of
objects to be tracked. Assume that X is perfectly known and, without loss of
generality, represent XT̄ , X + Y, where the dislocation matrix Y is unknown,
and consequently so is XT̄ .

Consider now the associated Gramian matrices

G , X ·XT, (78)

GT̄ , XT̄ ·XT
T̄

= G + Y ·YT + X ·YT + Y ·XT. (79)

Let (V,Λ) denote the eigen-pair of G such that G = V ·Λ ·VT and consider
the Gramian matrix G∗

T̄
obtained from GT̄ by the eigenstructure-preserving

similarity transformation

G∗T̄ , VT ·GT̄ ·V = Λ + A + B + BT, (80)
41Rigid motion includes scaling, rotation and shift, which can be corrected by the Procrustes
transformation detailed in Appendix 1.
42The kernel K obtained from equation (18) with J as in equation (19) is here referred to as
the static MDS kernel in allusion to the fact that it is not constructed under the knowledge of
the eigen-structure of previous data.
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where Λ , diag({λ1, · · · , λη, 0 · · · , 0}), with λ1 > · · · > λη and

A , VT ·
(
Y ·YT

)
·V, (81)

B , VT ·X ·YT ·V. (82)

Furthermore, let the dominant spaces of G and GT̄ be defined as the η-
larger-column partitions of their corresponding eigenvector matrices, respectively
denoted by [V]1:N,1:η and [VT̄ ]1:N,1:η, such that the subspace distance between
G and GT̄ can be defined by [143, pp.76]

∆(G,GT̄ ) , ‖ [V]1:N,1:η · [V]
T
1:N,1:η − [VT̄ ]1:N,1:η · [VT̄ ]

T
1:N,1:η ‖F, (83)

where ‖ · ‖F denotes Frobenius norm.
Clearly, if the subspace distance between G and GT̄ is sufficiently small,

equation (80) quasi-diagonalizes43 GT̄ to an extent inversely proportional to
∆(G,GT̄ ).

Several problems in signal processing – including the multitarget track-
ing problem of interest here – amount to obtaining estimates of the matrices
{X,XT̄ ,X2T̄ · · · } given a sequence of Gramian matrices {G,GT̄ ,G2T̄ · · · } peri-
odically “observed” (i.e. either acquired directly or constructed out of other
measurable quantities).

Of relevance to such applications is the well-known fact that under the above
conditions, sequential eigen-decomposition algorithms (e.g. [143, pp.431]) can
exploit the similarity of G and GT̄ – in terms of a sufficiently small subspace
distance ∆(G,GT̄ ) – to obtain the eigen-pairs of the sequence of matrices
{GT̄ ,G2T̄ , · · · } successively.

What is not as well-known, however, is how small must the subspace distance
∆(G,GT̄ ) be for such eigen-adaptation approach to be advantageous. In other
words, how large may ∆(G,GT̄ ) be for the eigen-pair (V,Λ) to still contain
sufficient information on the eigen-pair (VT̄ ,ΛT̄ ) of GT̄ to justify the adaptation
of (V,Λ) into (VT̄ ,ΛT̄ ), as opposed to the direct computation of (VT̄ ,ΛT̄ )?
While an answer to this question may never be found generally (that is, for
arbitrary matrices), the answer for the particular case of the Gramian matrices
specified above is one of the contributions of this chapter. In particular, it

43The term quasi-diagonal refers to an off-diagonal square-norm sense clarified in Section 4.3.2.

81



is shown that in the most relevant case44 where Y’s are random zero-mean
Gaussian matrices with independent and identically distributed (i.i.d.) elements,
even for substantially large ∆(G,GT̄ ), the dynamic kernel G∗

T̄
can (with high

probability) be diagonalized at a fraction of the cost typically associated with
the eigen-decomposition45.

Notice also that it is well-known to those familiar with random matrix theory
that, in general, one “cannot find the eigenvalues of the sums of random matrices
from the eigenvalues of the individual matrices” [145, pp. 19]. In order to obtain
our result, however, in Section 4.2 we will make use of the elegant theory of
Gershgorin spectrum bounds.

4.1.3 Dynamic MDS kernels

In coherence with the notation of preceding subsections, denote the squared
Euclidean distance matrix associated to XT̄ = X + Y by DT̄ . Next, consider
the alternative dynamic MDS kernel46 K∗ constructed from DT̄ as defined in
equation (18), but with J replaced by J∗

J∗ = V − 1
N · 1N ·

[
1TN · v1 · · · 1TN · vN

]
, (84)

where vi is the i-th column of V, the eigenvector of the preceding kernel (see
equation (87)).

Notice that the structure of J∗ is very similar to that of J and therefore the
dynamic kernel K∗ is constructed essentially as efficiently as the static kernel K.
Furthermore, observe that the conventional MDS algorithm operates with static
kernels and consequently its direct utilization in tracking applications amount
to a re-localization technique. In contrast, the MDS method over dynamic
kernels constructed using equation (84) has a truly tracking nature, as it maps a
trajectory tracking problem onto a subspace tracking problem.

Now, consider the following result.
44Under the absence of a priori mobility information, zero-mean Gaussianity amounts to the
weakest possible assumption on the directions targets may move to, i.e., maximally entropic
dislocation likelihood with equiprobable directions.
45The complexity required by the Jacobi algorithm to eigen-decompose a symmetric matrix
employing a standard sequential sweeping strategy is used as reference.
46The slight abuse of not including the subscript T̄ in the notation of K will prove convenient
shortly.
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Lemma 1 (Equivalence of K∗ and G∗
T̄
). Let the coordinate matrices XT̄ ∈ RN×η

be outcomes of an uncorrelated zero-mean point process. Then for N →∞ the
kernel matrix K∗ converges in probability to G∗

T̄
, i.e

lim
N→∞

Pr{K∗ −G∗T̄ } = 0. (85)

Proof. : The proof is trivial and thus given in a concise form. First notice
that J∗ = J · V and therefore K∗ = VT · K · V. Now, K is known as the
double-centered Euclidean kernel due to the equivalence [40, pp. 195-196]
K=(XT̄ − X̄T̄ ) · (XT̄ − X̄T̄ )T, where X̄T̄ denotes the sample mean of XT̄ . But
by assumption E[X] = 0[N×η] – where E[·] denotes expectation47 – such that
lim
N→∞

X̄T̄ = 0[N×η], which concludes the proof.

Before we conclude this subsection, let us point out that although MDS
kernels in principle require complete Euclidean distance matrices DT̄ to be
constructed, as Chapter 5 shows, this issue can be overcome using a technique
referred to as Nyström approximation48 [146–148].

4.2 Gershgorin spectral analysis of random Gramian
matrices

Gershgorin’s elegant and powerful theorem is most often utilized to study
the properties of deterministic matrices [149]. For instance, the radius of the
Gershgorin discs of a given matrix can be used to verify how close the matrix is
to its diagonal form [150]. Likewise, the positive definiteness of a matrix can
be studied by simply investigating if its Gershgorin discs all lie on the right
complex semi-plane [151]. Here, however, due to the randomness of the unknown
dislocation Y and the arbitrariness of the location matrix X, which together
determines XT̄ , the characterization of the quasi -diagonality of G∗

T̄
can only be

performed in a statistical sense.

47In this work, expectations with respect to different domains are considered, depending on
corresponding contexts. For instance, here we refer to expectation with respect to the N
number of points in the space. In the context of Section 4.2, however, expectation is considered
with respect to different outcomes of a random variate.
48In the case of Euclidean kernels, the Nyström “approximation” is actually an exact completion
if the entries of the required minors are error-free.
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For convenience, let us briefly review and contextualize the theory of Gersh-
gorin bounds.

Let K ∈ RN×N be a square matrix decomposed into the sum K = Υ + Ω,
where Υ is diagonal and Ω is a matrix whose diagonal entries are all zero (i.e.,
hollow). Let also υi = [Υ]ii, ωij = [Ω]ij and ω̄i ,

∑N
j=1 |ωij |, then:

– The i-th Gershgorin disc associated to the i-th row of K is defined as the
interval Di , [υi − ω̄i, υi + ω̄i] ∈ R. Accordingly, the quantities υi and ω̄i are
respectively referred to as the center and the radius of Di.

– Let I , {1, · · · , N} be the set of indexes associated with the Gershgorin
discs and define its powerset P(I) , {∅, {1}, · · · , {N}, {1, 2}, {1, 3}, · · · , I} ≡
{∅,P1, · · · ,P2N−1}. The Gershgorin group Gk is defined as

Gk ,
⋃

i∈Pk

Di. (86)

– A pair of Gershgorin groups Gk and Gq is said to be disjoint if and only if
(iff) Gk ∩Gq = ∅. Otherwise, Gk and Gq are said to be joint.

– The cardinality of a Gershgorin group Gk is denoted C(Gk) and defined as
the cardinality of the associated set of indexes Pk, i.e., C(Gk) , C(Pk).

– Consider any49 bijection between {G1, · · · ,G2N−1} and the set given by
{G̃1, · · · , G̃Q, G̃Q+1, · · · , G̃2N−1} and satisfying the conditions:

1. All Gershgorin Groups in GQ , {G̃1, · · · , G̃Q} are mutually disjoin

2. Q is the largest possible number

3. Di ⊆ GQ, ∀ i ∈ I.

Then, each disjoint Gershgorin Group G̃q ∈ GQ is referred to as a Gershgorin
superdisc.

– Out of the Q Gershgorin superdiscs of a matrix K ∈ RN×N of rank(K) < N ,
the one that contains the origin is referred to as the Gershgorin null
superdisc is denoted S0.

We are now ready to introduce the Gershgorin Theorem in a concise form
convenient to the needs hereafter.

49The order of G̃q is arbitrary, and the number Q ∈ [1, N ] is uniquely determined by the three
conditions (see Corollary 1).
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Theorem 1 (Gershgorin Theorem). Let {λ1, · · · , λN} be the N eigenvalues of
K ∈ RN×N . Then

C(G̃q) =

N∑

i=1

FG̃q (λi),∀ q 6 Q,

where FG̃q denotes the indicator function for the superdisc G̃q.

Proof. See [149, 150].

In plain words the Gershgorin Theorem establishes that each superdisc Sk
contains exactly as many eigenvalues of K as the number of discs that compose
it. And since the discs are constructed directly form the elements of K, the
theorem draws a direct relationship between the eigen-spectrum of a matrix and
its elements.

To conclude, notice that an important corollary of Lemma 1 is that the
analysis performed in the following subsections over G∗

T̄
applies straightforwardly

to the dynamic kernels K∗ constructed as specified in Section 4.1.3.50

4.2.1 Structure of G∗
T̄

To gain insight, first recall from Section 4.1.2 that the Gramian matrices under
consideration are η-ranked, and consider the matrix VT ·G ·V = Λ. Obviously
all the Gershgorin discs or superdiscs of the diagonal matrix Λ are deteriorated
to (at most) η + 1 points, specifically, the multiset of the non-zero eigenvalues
{λ1, · · · , λη} and the null eigenvalue 0.

Next, consider the similarity transformation of equation (80). By force of
the Wielandt-Hoffman Theorem [143, pp.395], the Gershgorin discs of G∗

T̄
are

enlarged compared to those (points) of Λ, and their centers are likely to be
shifted away from {λ1, · · · , λη, 0}. And by force of the Gershgorin Theorem
and the fact that rank(G∗

T̄
) = η, it is certain that the null superdisc S∗0 of

G∗
T̄
∈ RN×N contains at least N − η null eigenvalues. What cannot be known a

priori, however, is if S∗0 is expanded enough by the terms A + B + BT to include
one or more non-zero eigenvalue of G∗

T̄
, and if S∗0 is still associated to its bottom

N − η rows.
50As shown in [40, pp. 194] the equivalence between K∗ and G∗

T̄
can be established

independently of N using the full-rank skinny Schoenberg auxiliary matrix to center the EDM
D to the origin.
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The occurrence of either of these phenomena indicates that GT̄ is not brought
sufficiently close to a quasi -diagonal form (orderly, and otherwise unaffectedly)
by the similarity transformation of equation (80). In order to quantify the
probability of the latter, a statistical analysis of the Gershgorin discs of G∗

T̄
is

required. This, in turn, calls for the statistical characterization of the elements of
G∗
T̄
. From equation (81), it is clear that if the increment matrix Y is statistically

dense so is the matrix A. As a consequence, the structure of B can be better
understood by expanding equation (82) as follows.

First, consider the singular value decomposition (SVD) of X

X = V ·Σ ·UT, (87)

where we used the facts that the left singular-vector and singular-value matrices
of X are identical to V and [Λ]

� 1
2

1:η,1:η, respectively (see Section 4.3).
From equations (82) and (87) we readily obtain

B = Σ ·UT ·YT ·V, (88)

which, due to the structure of Σ, implies that the elements of B below the η-th
row are zero.

Next, let us rewrite G∗
T̄
in the form

G∗T̄ = Υ + Ω, (89)

where Υ is the diagonal matrix

Υ=


 diag(%)η×η 0

0 diag(ε)(N−η)×(N−η)


, (90)

in which diag(%) and diag(ε) denote the diagonal matrix forms of the vectors %
and ε, respectively, and Ω is a hollow symmetric matrix with structure

Ω =




Φη×η Θη×(N−η)

ΘT
η×(N−η) Ψ(N−η)×(N−η)


 . (91)

The partitions shown in equations (90) and (91) are there to indicate the fact
that, given a random Y, the random matrices Φ, Ψ, Θ, diag(%) and diag(ε) all

86



follow distinct statistics, which will be described shortly. For now, suffice it to
convene that the non-zero elements of these matrices be referred to as φ-type,
ψ-type, θ-type, %-type and ε-type random variates, respectively. In the sequel,
all these random variates are characterized in their relation with the Gershgorin
center (υi) and radii (ω̄i).

4.2.2 Centers of Gershgorin discs of G∗
T̄

From Subsection 4.2.1 it follows that the centers of the Gershgorin discs of G∗
T̄

are determined by %-type and ε-type random variates, about which the following
holds.

Lemma 2 (Statistics of %i). Let the elements of the matrix Y be independent
and identically distributed (iid) zero-mean Gaussian variates with variance σ2

y,
and X ∈ RN×η be an arbitrary matrix with SVD as in equation (87). Consider
furthermore the matrix G∗

T̄
in the form given in equation (80) and structured

as in equation (89) and let r ∼ p(r) indicates that r has distribution p(r) and
pGauss(r;µ, σ) is the Gaussian probability density function (pdf) with mean µ
and standard deviation σ

pGauss(r;µ, σ) ,
1

σ
√

2π
· exp

(−(r − µ)2

2σ2

)
. (92)

Then
%i > ρi ∼ pGauss

(
r;λi, 2σy

√
λi

)
. (93)

Proof. Referring to equations (80), (81) and (88), it is clear that %i = λi+aii+2bii

with 1 6 i 6 η. Next, notice51 that bii ∼ pGauss
(
r; 0, σy

√
λi
)
, while aii ∼

pGamma(r; η/2, 2σ2
y), where

pGamma(r; γ, δ) ,
rγ−1

Γ(γ) · δγ · exp
(
−r
δ

)
. (94)

Next, define ρi , (λi + 2bii), such that %i > ρi since aii is non-negative, and
finally recognize that due to the distribution of bii, ρi ∼ pGauss

(
r;λi, 2σy

√
λi
)
.

The advantage of using ρi to lower bound %i in the context of our analysis
will become clear soon. Let us also point out that while the relation ρi 6 %i
51See equations (81) and (82).
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holds with probability 1, a similar but more general notion of bounding a random
variable by another, with a certain probability, will be useful in the sequel. Thus
the following definition.

Definition 1 (Upper/Lower-bound in Probability). Let y and x be random
variates with arbitrary distributions. The notation y >

p
x indicates that y is

larger than x with probability p, namely Pr{y > x} = p. Likewise, y 6
p

x

indicates that y is not larger than x with probability p. It is said, respectively,
that y is an upper/lower bound of x in probability p.

Lemma 3 (Statistics of εi). Let the elements of the matrix Y be independent
and identically distributed (iid) zero-mean Gaussian variates with variance σ2

y,
and X ∈ RN×η be an arbitrary matrix with SVD as in equation (87). Consider
furthermore the matrix G∗

T̄
in the form given in equation (80) and structured as

in equation (89). Then
εi 6p ε ∼ pRayleigh(r;Rε), (95)

with bounding probability

p =

(
Rε

16σ4
y

)η
4
· U
(
η

4
,

1

2
,
Rε

16σ4
y

)
, (96)

where U (ν, κ; r) is the hypergeometric function known as the Gordon, Tricomi
or Kummer’s function of the second kind and pRayleigh(r;R) is the Rayleigh pdf

pRayleigh(r;R) ,
2r

R
· exp

(−r2

R

)
. (97)

Proof. See Appendix 2.

Notice that equation (96) is in the form p = rν · U(ν, 1/2, r), which admits
the asymptotic expression [152, pp.190] (for large r) p ≈2F0(ν, ν + 1/2; ;−1/r).
It follows therefore that lim

r→∞
p = 2F0(ν, ν + 1/2; ; 0) = 1. In other words, as

expected, the parameter Rε can be chosen to ensure that the inequality ε 6
p
ε

holds with any desired probability p.
Furthermore, E[ε2]/E[ε2] = Rε/(η

2 + 2η)σ4
y, such that equation (96) can be

cast as a function of the square root of the second moment ratio, or else the root
mean square ratio (rms-ratio) of ε and ε. In the appropriate context, this figure
of merit is also known as the “power ratio” or signal-to-noise-ratio (SNR), and is
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Fig 11. Upper bounding probability of ε as a function of the rms-ratio of ε and ε

(see proof of Lemma 3). Revised from [12].

widely used as a measure of how larger a random variate is compared to another.
Figure 11 shows plots of equation (246) as a function of the rms-ratio of ε and ε,
which indicate that the Gamma-distributed variate ε is upper-bounded with
high probability by Rayleigh variates ε with only slightly larger “power.” For
example, p = 0.85 if E[ε2] ≈ 25E[ε2] for η = 3 and E[ε2] ≈ 36E[ε2] for η = 10.

To conclude this subsection, let us point out that the approach of lower-
and upper-bounding the variates % and ε, respectively, leads to conservative
estimates of the probability that GT̄ is quasi-diagonalized by equation (80),
therefore only strengthening the results hereafter.

4.2.3 Radii of Gershgorin discs of G∗
T̄

Referring to equation (91), recall that the evaluation of the radii of the Gershgorin
discs of G∗

T̄
requires the statistics of the row-wise sum of the absolute values

of φ-type and θ-type variates for the upper η rows, and of θ-type and ψ-type
variates for the bottom N − η rows. Specifically,

89



ω̄i ,





η∑

j=1
j 6=i

|φij |+
N∑

j>η

|θij | for 1 6 i 6 η, (98a)

η∑

j=1

|θji|+
N∑

j>η
j 6=i

|ψij | for i > η. (98b)

In order to better understand the statistics of the φ-type, θ-type and ψ-type
variates, let us first rewrite equations (81) and (88) as

A = W ·WT, (99)

B = C ·WT, (100)

where (W,C) ∈ RN×η, but where cij ’s are zero for i > η and constant for
1 6 (i, j) 6 η, while wij ∼ pGauss(r; 0, σy).

Thus we may write

aij =
η∑
k=1

wik · wjk, ∀(i, j) 6 N, i 6= j, (101)

bij =





η∑
k=1

cik · wjk for 1 6 i 6 η,

0 otherwise.
(102)

Clearly, for i < j, aij ’s are i.i.d. random variates, moreover aij = aji.52

Furthermore, it can be seen from equation (102) that the elements of the j-th
column of B are different linear combinations of the same random variates
{wj1, · · · , wjη}. Due to the orthonormality of the matrix U, the constant vectors
ci , [ci1, · · · , ciη] are orthogonal with norm equal to λi (see equation (87)).
Therefore, the rightmost summations in equation (98) can be written as

N∑
j>η
j 6=i

|ψij | =
N∑
j>η
j 6=i

∣∣∣∣
η∑
k=1

wik · wjk
∣∣∣∣ , (103)

N∑
j>η

|θij | =
N∑
j>η

∣∣∣∣
η∑
k=1

(cik + wik) · wjk
∣∣∣∣ , (104)

where wik and cik + wik are constant with respect to j,thus the following result.
52As equation (99) shows, the matrix A is Gram and therefore symmetric.
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Lemma 4. Consider random variates in the form

zi =

M∑

j=1

∣∣∣∣∣

η∑

k=1

hik · wjk
∣∣∣∣∣ , (105)

where wjk are real-valued zero-mean Gaussian variates with variances σ2 and
distinct i.i.d. outcomes for each k and j, while hik’s are also Gaussian variates
with variances σ2, with an arbitrary mean, and i.i.d. outcomes with respect to
i and k.

Then, the asymptotic distributions of zi (for large M) are

zi ∼





pSCχ(r; η, α) ,
2 rη−1

α
η/2 · Γ(η/2)

· exp

(−r2

α

)
if E[hik] = 0∀ k,

pSNCχ(r; η, βi, α) ,
2 r

η/2

α · βη/2−1
i

· exp

(
−r

2 + β2
i

α

)
· Iη/2−1

(
2βir

α

)

otherwise,
(106)

where pSCχ(r; η, α) and pNSCχ(r; η, βi, α) denote the central and non-central
scaled χ distributions respectively and

α ,
4M2σ4

π
, (107)

βi ,

√
α

2
·
η∑
k=1

E[hik] 2

σ2
. (108)

Proof. See Appendix 3.

Corollary 1 (Statistics of
∑ |θij | and

∑ |ψij |). Let the elements of the matrix
Y be independent and identically distributed (iid) zero-mean Gaussian variates
with variance σ2

y, and X ∈ RN×η an arbitrary matrix with SVD as in equation
(87). Consider furthermore the matrix G∗

T̄
in the form given in equation (80)

and structured as in equation (89). Then, the asymptotic distributions of
N∑
j>η

|θij |

and
N∑
j>η
j 6=i

|ψij | (for large N) are

N∑
j>η

|θij | ∼ pSNCχ
(
r; η, (N − η)σy

√
2λi/π, 4(N − η)2σ4

y/π
)
, (109)

N∑
j>η
j 6=i

|ψij | ∼ pSCχ(r; η, 4(N − η − 1)2σ4
y/π). (110)
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Proof. For the case of the upper η rows, notice that hik in Lemma 4 are the
constants cik such that E

[(∑η
k=1 h

2
ik

)n/2]
= λ

n/2
i . Furthermore, recognize that

M = (N − η), which immediately yields equation (109).

In turn, for the lower N − η rows, E[hik] = 0 and M = (N − η − 1), leading
to equation (110).

As for the remaining terms in equation (98) the following result applies.

Lemma 5 (Statistics of |φij | and |θji|). Let the elements of the matrix Y be
independent and identically distributed (iid) zero-mean Gaussian variates with
variance σ2

y, and X ∈ RN×η an arbitrary matrix with SVD as in equation (87).
Consider furthermore the matrix G∗

T̄
in the form given in equation (80) and

structured as in equation (89). Then, the asymptotic distributions of |φij | and
|θji| (for large η) are

|φij | ∼ pNakagami
(
r; 1

2 , (ησ
2
y + λi + λj)σ

2
y

)
, (111)

|θji| ∼ pNakagami
(
r; 1

2 , (ησ
2
y + λj)σ

2
y

)
. (112)

Proof. See Appendix 4.

Despite being asymptotic, the above results are found to accurately charac-
terize the statistics of the Gershgorin radii ω̄i also for reasonably small η and
N .

4.2.4 Cardinality of the null superdisc

To return to the discussion that initiated this section, the results of the preceding
Subsections can now be employed to assess the effectiveness of equation (80) in
quasi-diagonalizing GT̄ while preserving its row structure. Equivalently the
above results can be used to estimate the likelihood that the cardinality of the
Gershgorin null superdisc of G∗

T̄
surpasses the limit N − η. With respect to the

latter, the following result can be stated.

Theorem 2 (Cardinality of Null Superdisc of G∗
T̄
). Let the elements of the

matrix Y be independent and identically distributed (iid) zero-mean Gaussian
variates with variance σ2

y, and X ∈ RN×η be an arbitrary matrix with SVD
as in equation (87). Let the descending list {λ1, · · · , λ`, · · · , λη} of non-zero

92



eigenvalues of the matrix GT̄ be known, and consider the matrix G∗
T̄
as given in

equation (80) with structure as in equation (89), and recall that S∗0 denotes the
null superdisc of G∗

T̄
. Then,

Pr {C(S∗0) > N − `+ 1} 6
∞∫

0

(pGauss ? pGumbel) (r;µU` , σU` ;κL, τL) dr, (113)

where pGumbel(r;κ, τ) is the Gumbel asymptotic extreme value distribution

pGumbel(r;κ, τ) ,
1

τ
· exp

[
−r − κ

τ
− exp

(
−r − κ

τ

)]
, (114)

the integrand (pGauss ? pGumbel)(r;µ, σ;κ, τ) is the cross-correlation function of
the Gaussian and Gumbel pdfs, and all the remaining parameters are defined or
detailed below

µU` , λ` +
√

2
π

η∑

j=1
j 6=i

√
R`j + (N − η)σ2

yL
η/2−1
1/2

(
−(N − η)2σ2

yλ`/π
)
, (115)

σ2
U` , η + 4σ2

yλ` +
(
1− 2

π

) η∑

j=1
j 6=`

R`j + 2λ`
π (N − η)2σ2

y − µ2
U` , (116)

R`j , (ησ2
y + λ` + λj)σ

2
y, (117)

κL , P−1
Gamma

(
1− 1

N−η ;mL, RL

)
, (118)

τL , P−1
Gamma

(
1− 1

(N−η)e ;mL, RL

)
− κL, (119)

RL , R(2; {mk}, {Rk}), (120)

mL ,
R2
L

R(4; {mk}, {Rk})−R2
L
, (121)

R(n; {mk}, {Rk}) , n! · ∑
{q1,··· ,qK}

K∏
k=1

Mqk(mk, Rk)

qk!
, (122)

m1 , 1; R1 , 8(η2 + 2η)σ4
y, (123)

m2 , η/2; R2 , 4
π (N − η − 1)2σ4

y, (124)

mk>2 , 1/2; Rk>2 , (ησ2
y + λk−2)σ2

y, (125)

in which Lν1/2(r) is used to represent the generalized Laguerre polynomial of
degree 1/2, PGamma(r;m,R) denotes the Gamma cdf, the summation in equation
(122) is taken over all possible K-tuples satisfying the Diophantine constraint
q1 + · · ·+ qK = n, Mqk(mk, Rk) is the moment function defined in equation
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(251) and ({mk}, {Rk}) are the K-tuples of parameters described in equations
(123)-(125).

Before offering a proof for the above theorem, let us explain that the slight
abuse of notation committed (for the sake of notational simplicity and without
sacrifice of clarity) in the symbols R`j , RL and Rk is motivated by the fact (as
revealed in the proof) that all these quantities are indeed second raw moments
of Nakagami-m variates53.

The different subscripts utilized are respectively meant to clarify the de-
pendence on λ` and λj , the reference to the lower N − η rows of G∗

T̄
, and the

indexation with respect to k as detailed in equations (123)-(125).

Proof. Start by invoking Theorem 1, which establishes that the cardinality of a
superdisc is given by the number of eigenvalues it encloses. It follows that the
cardinality of the null superdisc S∗0, which is at least N − η since it encloses all
null eigenvalues of G∗

T̄
, is augmented by η − `+ 1 with the probability that the

`-th largest eigenvalue is also enclosed by S∗0. This probability is upper-bounded
by the probability that the rightmost point of S∗0 is not inferior to the leftmost
point of the disc Di that encloses λ`, e.i,

Pr {C(S∗0) > N − `+ 1} 6 Pr
{

max
∀i>η

υi + ω̄i > υ` − ω̄`
}
. (126)

The latter probability can be evaluated by invoking the results above. Indeed,
from the definition of Gershgorin discs, Lemma 2 and equation (98a) it is seen
that υ` − ω̄` is lower-bounded by

υ` − ω̄` > ρ` −
η∑

j=1
j 6=i

|φ`j | −
N∑

j>η

|θ`j |, ` 6 η. (127)

In the above, ρ` is Gaussian-distributed (see equation (93), Lemma 2),∑N
j>η |θ`j | follows a scaled non-central χ distribution (see equation (109), Corol-

lary 1) and |φ`j | are Nakagami-m variates (see equation (111), Lemma 5).
By force of the Central Limit Theorem, the righthand side of inequality

(127) is well approximated by a Gaussian-distributed variate, which due to the
independence amongst ρ`, |φ`j | and

∑N
j>η |θ`j |, has mean µU` and variance σ2

U`

53The same is true for the parameter Rε appearing in Lemma 3.
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given by the sum of the means and variances of the corresponding components.
Thus,

(υ` − ω̄`) ∼ pGauss(r;µU` , σU`), (128)

where µU` and variance σ2
U` can be shown from equations (93), (109) and (111)

to be as described in equations (115) and (116).
Likewise, from the definition of Gershgorin discs, Lemma 3 and equation

(98b) we have

υi + ω̄i 6 ε+

η∑

j=1

|θji|+
N∑

j>η
j 6=i

|ψij |, i > η. (129)

In other words, each variate υi+ ω̄i, with i > η, is upper bounded by a sum of
Nakagami-m variates whose parameters can be shown from equations (95), (110)
and (112) to be as described54 in equations (123)-(125). In turn, it has been
shown in [153] that the sum of Nakagami-m variates is itself well approximated
by a Nakagami-m variate, whose parameters can be computed by definition
based on the moments of the variates summed utilizing the multinomial theorem,
which leads to the expressions provided in equations (120) and (121).

Returning to inequality (126), recall that we seek to characterize the proba-
bility that the largest of the N − η distinct (υi + ω̄i)’s obtained with a given
realization of Y is larger than υ` − ω̄`. In other words, we are concerned with
the extreme value statistics [154] of N − η independent Nakagami-m variates.
Fortunately, it has been shown [155] that the asymptotic extreme value statistics
of Nakagami-m variates are described by the Gumbel distribution defined in
equation (114). Thus,

max
∀i>η
{υi + ω̄i} ∼ pGumbel(r;κL, τL), (130)

where the parameters κL and τL, computed from [155, Lem. 1] and equations
(123), (124) and (125), are as given in equations (118) and (119).

It follows that the probability on the righthand side of inequality (126) is in the
form Pr {rGumbel − rGauss > 0}, where the distribution of the variate difference

54Recall that ε is a bound in probability of εi, with bounding probabilities increasing fast with
the second-moment ratio

√
E[ε2]/E[ε2], as illustrated in Figure 11.
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(a) Comparison between the theoretical models derived in Section 4.2.4 for the
extremes of the Gershgorin discs of G∗

T̄
and the empirical distribution obtained

from random data.
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is given by the cross-correlation of corresponding pdf’s, i.e, (rGumbel − rGauss) ∼
(pGauss ? pGumbel)(r;µ, σ;κ, τ), from which equation (113) results immediately,
concluding the proof.

Theorem 2 provides a detailed recipe to evaluate analytically the likelihood
and the extent to which a Gramian matrix GT̄ is brought to a quasi-diagonal
form by the similarity transformation VT ·GT̄ ·V, where V is the diagonalizer
of a matrix G whose subspace distance to GT̄ is given by ∆(G,GT̄ ). To be
precise, equation (113) yields the probability that the null superdisc S∗0 includes
the `-th largest non-zero eigenvalue of G∗

T̄
. Consequently, if one sets ` = η, the

probability that the null superdisc includes at least one (the smallest) non-zero
eigenvalue results. Notice that such a probability is the likelihood that the
eigen-spectrum of GT̄ cannot be obtained by processing (see Section 4.3) only
the first η rows of G∗

T̄
.

Let us now illustrate the accuracy of the analysis carried out in this section.
First, consider Figure 12(a) which illustrates the accuracy of the two models

for the statistics of the bounding variates appearing on the righthand side of
inequalities (127) and (129), as well as the extreme value distribution of the
quantity on the lefthand side of equation (130). Specifically, the upper plot in the
figure shows the superposition of a Gaussian pdf with mean and variance as given
by equations (115) and (116), respectively, against the empirical distribution of
the left limit v2 − ω̄2 of the Gershgorin discs associated with the second-largest
eigenvalues of various realizations of G∗

T̄
constructed using equations (79) and

(80) with N = 25, the random dislocation matrices given by Y = [yij ] with
yij ∼ pGauss(r; 0, σy = 1), and the constant location matrix given by X = [xij ]

with xij , (5(i− 1), 5(j − 1)).
Likewise, the middle plot in Figure 12(a) shows a superposition of the

Nakagami-m model for the righthand side of inequality (129) for arbitrary
i > η, with RL and mL as in equations (120) and (121), against the empirical
distribution obtained from random data. And finally, the lower plot compares the
empirical distribution of the largest Gershgorin right limit vi>2 − ω̄i>2 observed
in each realization, against the corresponding Gumbel extreme value distribution
of equation (114) with parameters as in equations (118) and (119).

To further reinforce the accuracy of the statistical models as indicated
by Figure 12(a), a comparison of the theoretical and empirical moments of
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Fig 13. Representation of the probability of overlap between the null-superdisc S∗0
and the smallest non-null Gershgorin discs of G∗T̄ as a function of ∆(G,GT̄ ) for
the grid scenario described in Section 4.4. Revised from [16].

corresponding random variables are also shown in Figure 12(b). Overall Figure
12 demonstrates that the two critical Gershgorin limits that determine the
likelihood that the null superdisc includes the non-zero `-th largest eigenvalue
– namely υ` − ω̄` and max

∀i>η
{υi + ω̄i} – are accurately described by the models

indicated in equations (128) and (130), respectively.
An illustration of integral in equation (113) is given in Figure 13, while

Figure 14 illustrates the computation of the bound accuracy of the bound given
by equation (113) put forward in Theorem 2 by comparing the analytically
evaluated probability of overlap between the `-th Gershgorin disc and the null
superdisc S∗0. The figure confirms that the various bounding procedures adopted
in the analysis thus far, without which the relatively simple result obtained
would hardly be possible, do not undermine its accuracy.

While it is understandable that readers may wish to draw a parallel between
the quantity ∆(G,GT̄ ) – which albeit the relevant one, is indeed abstract – and
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Fig 14. Probability of overlap between the null-superdisc of G∗T̄ and its non-null
Gershgorin discs, as a function of ∆(G,GT̄ ) for the grid scenario described in
Section 4.4. Revised from [17].

tangible physical parameters, such a relationship is non-trivial in face of the fact
that ∆(G,GT̄ ) actually depends on multiple factors, including the progress of
targets between samples, but also the size of the matrix, the noise power and the
actual location of targets (X) at the sampling moment.

This can be better understood from Figure 15, where ∆(G,GT̄ ) is plotted as
a function of the dislocation variance σy (which captures the effects of velocity,
noise, sampling period, etc).55

Finally, Theorem 2, seen through the prism of MDS-based multitarget
tracking, tells us that the information on the eigen-spectrum of dynamic MDS
kernels lays, with high probability (also quantified by the Theorem), in the first
η rows of G∗

T̄
. In other words, Theorem 2 suggests that the eigen-decomposition

of G∗
T̄
can be done efficiently and accurately at a fraction of the cost, by focusing

on a selection of elements. The latter is the subject of the next section.

55Curves obtained for a “grid” scenario described in Section 4.4. Different realizations of X

would obviously yield slightly different relationships between ∆(G,GT̄ ) and σy .
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4.3 Jacobi MDS-based multitarget tracking

Let us put the results presented thus far into the context of MDS-based multitarget
tracking. Specifically, our objective is to show how the results above can be used
to optimize the eigen-decomposition of dynamic Euclidean kernels arising in
multitarget tracking schemes as described in Section 4.1.

4.3.1 Jacobi and Gershgorin over Gramian matrices

First, notice that one implication of the Gershgorin Theorem (Theorem 1) is
that if a row of G∗

T̄
has an associated disc disjoint to all other discs56, then that

row determines the “ location” (within a margin of error) of one of the eigenvalues
of G∗

T̄
. In other words, the Gershgorin Theorem establishes a direct, one-to-one

relationship between the given row and the corresponding eigenvalue of G∗
T̄
.

Therefore, what is required in order to exploit this feature of the Gershgorin

56Accordingly, if a set of rows is associated to a superdisc disjoint to all other discs.
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bound is an algorithmic tool to, loosely speaking, process the entries of the given
row of G∗

T̄
into the corresponding eigenvalue.

Such tool is the Jacobi-Givens rotation. Indeed, in the context of MDS-based
tracking, the eigenvector matrix VT̄ of G∗

T̄
is given by

VT̄ =



NS∏

s=1

∏

(is,js)

R(is, js, ϑ)


 ·V, (131)

where NS denotes the number of times the matrix is “swept” by plane rotations57

and R(i, j, ϑ) is the Jacobi-Givens rotation matrix58 associated to a quartet
{kii, kij , kji, kjj} of a generic symmetric matrix K ∈ RN×N .

Now, define the quantities

ϕij(K) , k2
ii + k2

jj , (132)

$ij(K) , 2

(
N∑
`=1
` 6=i

k2
i` +

N∑
`=1
` 6=j

k2
j`

)
. (133)

Then, the following applies59 [156, pp. 178]

ϕij
(
R(i, j, ϑ)T ·K · R(i, j, ϑ)

)
= ϕij (K) + 2k2

ij , (135)

$ij

(
R(i, j, ϑ)T ·K · R(i, j, ϑ)

)
= $ij (K)− 2k2

ij . (136)

Clearly ϕij and $ij relate to the centers and the radii of the i-th and j-the
Gershgorin discs Di and Dj , respectively. In particular, equations (135) and
(136) indicate that each Jacobi-Givens rotation acts upon Di and Dj , dislocating
their centers and shrinking their radii.

In general one cannot infer any further as to how the centers of Di and Dj
are dislocated, individually. In the case where the matrix K under consideration
is the positive semidefinite G∗

T̄
, and the indexes i and j are such that i 6 η and

57In other words, NS = 1 indicates N(N − 1)/2 plane rotations.
58A concise definition of the elements of R(i, j, ϑ), given the quartet {kii, kij , kji, kjj}, is [143]

[R(i, j, ϑ)]`q , (`⊥q) · cos[(`⊥i+ `⊥j) · ϑ] + (`⊥i) · sin[(q⊥j) · ϑ]− (`⊥j) · sin[(q⊥i) · ϑ], (134)

where ϑ , 1
2
· atan

(
kij+kji
kii−kjj

)
with atan(·) defined between (−π/4, π/4], and where ⊥ denotes

Boolean equality such that `⊥q , 1 if ` = q and 0 otherwise.
59The result shown here is slightly stronger than that in [156, pp. 178] and follows from the
latter combined with the symmetry of Gramian matrices and the fact that the Jacobi rotation
performed by R(i, j, ϑ) annihilates the element k2

ij .
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j > η, however, we can infer – by force of Theorem 2, the absolute and step-wise
convergence of the Jacobi algorithm [157, 158] and equations (132) and (135) –
that with a high probability every Jacobi-Givens rotation yields

k̃2
ii = k2

ii + 2k2
ij + c, (137)

k̃2
jj = k2

jj − c, (138)

where k̃ii and k̃jj represent here the i-th and j-th diagonal element of R(i, j, ϑ)T ·
K · R(i, j, ϑ), and c is an unknown positive number.

In other words, in the case under consideration, the impact of Jacobi-Givens
rotations on the centers of Di and Dj is understood, separately, as a consequence
of the facts that, under the conditions outlined above, kii and kjj are positive
and kjj is brought closer to 0 with every Jacobi-Givens rotation, since Theorem
2 establishes that with a high probability the bottom N − η rows of G∗

T̄
is

associated with null eigenvalues only.

4.3.2 Statistical optimization of Jacobi algorithm

It is known that quadratic convergency (on the number of plane rotations) is
ensured if every Jacobi-Givens rotation is optimized by selecting the quartet with
the largest off-diagonal element [156]. Unfortunately, however, this “conventional”
optimal sweeping strategy is somewhat computationally demanding since it
requires that all the off-diagonal elements of the matrix to be decomposed be
compared before each plane rotation.

This drawback of the conventional Jacobi algorithm partially motivates
the effort to devise other alternatives (see e.g. [159, 160]), which typically
offer lower complexity at the expense of limitations in terms friendliness to
parallel/distributed processing, numerical stability, etc.

Fortunately, once again results from Section 4.2 can be invoked to circumvent
this problem. Indeed, recall that:

– The distribution of the diagonal entries of the first η rows of G∗
T̄
is described

by equations (93) and (92) of Lemma 2
– The distribution of the diagonal entries of the bottom N − η rows of G∗

T̄
is

described by equations (95) and (96) of Lemma 3
– The distributions of the off-diagonal entries of the bottom N − η rows of G∗

T̄
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are described by equations (248) and (249) of Lemma 4
– The distributions of the off-diagonal entries of the first η rows of G∗

T̄
are

described by equations (111) and (112) of Lemma 5.

It is important to highlight that in possession of this information, we are able
to determine a priori, in a statistical sense, which elements of G∗

T̄
are likely to

be largest and therefore should be chosen first to compose the quartets over
which R(is, js, ϑ) are constructed. Namely

1. The elements of the first η-by-η minor
2. The remaining elements of the first η rows.

Notice also that in light of Theorem 2, Jacobi-Givens rotations over this
smaller portion of G∗

T̄
ensures (with high probability) that all the non-zero

eigenvalues and eigenvectors of G∗
T̄
are found, such that tracking accuracy is not

in anyway compromised.
To conclude this subsection let us point out that the Jacobi algorithm also

offers several advantageous features of interest, such as: accuracy [161, 162];
numerical stability [156]; friendliness to parallel and distributed-processing
[163, 164]; and generalizability to joint-diagonalization applications [157, 165].

4.4 Performance evaluation and comparisons

In order to evaluate the performance of the Jacobi-based technique described in
Section 4.3, let us consider the number of plane rotations NS required by each
sweeping strategy in order to bring the sum of the off-diagonal terms of G∗

T̄
to

“zero”, that is, a reasonable machine epsilon [166] which we set to 10−8.
Specifically, let us consider the following sweeping strategies for the Jacobi

algorithm:

1. Cyclic: naïve strategy in which sweeps are performed sequentially, row by row
2. Optimum: at each rotation, search and annihilate the element with the largest
magnitude

3. Largest Mean: apply rotations designed to annihilate the elements of G∗
T̄

characterized by largest moments
4. Truncated LM : constrain the largest mean (LM) strategy to the first η rows
of G∗

T̄
.
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For the sake of completeness, the performances of these sweeping strategies
will be compared to the Symmetric QR algorithm, which is know to be equivalent
to a Jacobi algorithm with NS ≈ 2 complete sweeps [143, pp. 431]. These
eigen-decomposition techniques are applied to MDS kernels obtained as per
equations (79) and (80) with N = 25. The constant location matrix X = [xij ]

with xij , (5(i − 1), 5(j − 1)) – which yields a grid topology – and multiple
realizations of the random dislocation matrices are generated with Y = [yij ]

with yij ∼ pGauss(r; 0, σy) and (0 < σy < 25).
The results are summarized in Table 1. As expected, the results indicate that

the penalty of replacing the search for adequate (large) off-diagonal entries before
each rotation with a naïve cyclic sweeping is that a larger number of sweeps is
required, such that the cyclic strategy is more costly than the QR algorithm.

In comparison, the optimum sweeping requires the least number of sweeps
amongst all alternatives. It must be taken into consideration, however, that such
a strategy relies on an exhaustive search for the largest off-diagonal element in
the matrix before each plane rotation is applied, and therefore is highly costly.
The statistically optimum strategy based on performing rotations to annihilate
the entries of G∗

T̄
with the largest mean, which is made possible by exploiting

the statistical characterization of the entries in G∗
T̄
given in Lemma 5, allows for

eliminating the need for exhaustive searches while maintaining the number of
required rotations below 2, thus yielding an algorithm less complex than the
symmetric QR.

Table 1. Number of plane rotations for the Jacobi algorithm.

∆(G,GT̄ ) Number of Sweeps - NS - to decompose G∗
T̄

S. QRa Cyclic Optimum Largest Mean Truncated LM

0.1 2 2.65 0.24 1.12 0.24

0.2 2 2.65 0.26 1.17 0.28

0.3 2 2.58 0.28 1.20 0.31

0.4 2 2.59 0.30 1.21 0.31

0.5 2 2.62 0.30 1.60 0.31

a For the symmetric QR algorithm NS ≈ 2 [143, pp. 431].

Finally, invoking Theorem 2 the probability that the Gershgorin discs
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associated to the η-dimensional dominant eigenspace of G∗
T̄
– which suffice for

MDS-based tracking application – are disjoint from the null superdisc of the
matrix can be inferred. In other words, Theorem 2 provides an estimate of
the confidence that Jacobi algorithm converges to the η dominant eigenspace60

of the matrix if rotations are confined to the first η rows of G∗
T̄
, which is the

principle behind the truncated LM strategy.
It is seen from Table 1 that this new strategy only requires a fraction of

the original complexity, in fact achieving a complexity comparable to that of
the optimum strategy. But since the entries upon which the rotation matrix
R∗(is, js, ϑ) is to be applied is chosen a priori, no exhaustive search is required.

The trend seen in Table 1 is further corroborated by the results shown in
Figure 16 and 17 where the number of plane rotations required by the optimum
and the truncated LM strategy are compared for the entire span of values of
∆(G,GT̄ ). For comparison purposes, the figure also shows the performance of
the optimum strategy applied to GT̄ , from which it becomes evident that the
similarity transformation defined in equation (80) not only is never harmful.

Indeed, comparing Figure 14 and 16 it is found that Pr {C(S∗0) > N − `+ 1}
and the number of plane rotations required by the truncated LM strategy
undergo the same transients at the same values of ∆(G,GT̄ ), which explains
why the proposed sweeping strategy fully captures the relation existing between
subsequent Gram matrices.

Notice that Theorem 2 describes the Gershgorin spectral bounds of G∗
T̄
, thus

accounting only for the similarity transformation defined in equation (80), not
accounting for the changes on the statistics of the entries of the matrix being
decomposed after each plane rotation. Nevertheless, Figures 14 and 16 indicate
that the number of plane rotations required to eigen-decompose G∗

T̄
is properly

captured by the analysis. In particular, for the scenario considered, it has been
verified that the truncated criterion yields the exact dominant eigenspace of GT̄

up to ∆(G,GT̄ ) ≈ 0.75. In addition, by checking the diagonal terms of G∗
T̄
it is

possible to retrieve the eigenspace of G∗
T̄
even for ∆(G,GT̄ ) > 0.75 at the price

of only a slight increase in complexity. The results shown in Figure 16, 17 and
18 as well as in Table 1 use this modification.

60Although the truncated LM strategy only recovers the η dominant eigenspace of G∗
T̄
, the

null-eigenspace of the matrix can be computed at the price of an additional but limited number
of plane rotations by simply making the LM strategy to be followed by cyclic sweeping strategy.
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Next, the complexity – measured in terms of the number of sweeps normalized
by the subspace distance (NS/∆(G,GT̄ )) – of the Truncated LM algorithm as a
function of the size of the matrix (squared-rooted) is shown in Figure 18. It is
found that independently on the standard dislocation σy affecting the entries
of Y in equation (79), the truncated LM algorithm achieves a remarkably low
complexity of order O(

√
N).

Finally, the performance of the C-MDS solution is compared against the
full-set subspace formulation of the MDS problem proposed in [43]. The scenario
chosen for this comparison consists of 4 anchor nodes placed at edges of a 10× 10

square in a η = 2 dimensional space and 10 targets having trajectories generated
according to first order time homogeneous Markov processes restricted to the
20× 20 space centered on the area defined by the anchor’s positions. A typical
target trajectory is shown in Figure 19. Full connectivity (i.e., full EDM) is
assumed amongst all the nodes in the scenario where the anchor-to-target and
the target-to-target measurements are perturbed by ∼ pGauss(r; 0, σd).

The performance metric used in this comparison is the RMSE defined in
equation (74) and computed over the location estimates X̂ and averaged over
100 realization of 1000 steps long trajectories. The results are shown in Figure
20 and reveal that for any level of the perturbation σd over distance estimates,
the C-MDS algorithm is superior to the alternative subspace method.

Moreover, because of the truncated LM strategy utilized in the eigen-
decomposition of G∗

T̄
, the proposed algorithm is able to exploit the subspace

distance between subsequent Euclidean kernel to speed-up the computation of
the C-MDS algorithm.

Additionally, since the C-MDS algorithm has limited complexity, the compu-
tational power saved by utilizing this technique can be employed to improve
the robustness of the system against corrupted data by pre-filtering the entries
of DT̄ . Amongst several possible choices, a low-complexity non-parametric
candidate is the Wavelet-based filter used in [14, 167]. Indeed, by decomposing
the time series corresponding to the TOA observations through a discrete wavelet
transform (DWT) [168] it is possible to use the output of the scaling funtion to
estimate the target dynamic and the wavelet coefficients to infer on the noise
level σd.
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The performance achieved by the C-MDS-based tracking algorithm used
jointly with the filter described in [14] is compared against an EKF alternative
in Figure 21 as a function of the average target dynamic ν̄.

It is important to remember that, unlike the EKF, the filtered C-MDS based
tracking algorithm does not rely on any model nor on more than the last few
estimates and current observations in order to update the estimates of the
location of tracked target.

4.5 Summary and discussions

This chapter proposed a comprehensive algorithm to handle the problem of
simultaneously tracking a large number of targets with no a priori mobility
models, which is accomplished by modifying the Jacobi algorithm used to
eigen-decompose the subsequent Euclidean kernels in the MDS algorithm.

Specifically, it was first statistically characterized the spectrum of random
N × N Gramian matrices of the form of G∗

T̄
as a function of the subspace

distance ∆(G,GT̄ ), where G and GT̄ are themselves Gramian matrices. To do
so, an extreme-value and asymptotic take on the theory of Gershgorin spectrum
bounds was employed to characterize the statistical structure of G∗

T̄
. The results

revealed that even for relatively large ∆(G,GT̄ ), the matrix G∗
T̄
can, with a

high probability (quantified analytically), be eigen-decomposed by employing
a statistically optimized number of plane rotations R∗(i, j, ϑ). Moreover, we
showed that the Jacobi algorithm used together with the proposed truncated
LM sweeping strategy achieves the convergence rate of the optimal strategy
applied to G∗

T̄
but without requiring the search for the optimal element to be

annihilated.
All in all, the proposed MDS-based solution combined with the fact that the

Euclidean double-centered kernels of the classic MDS method are asymptotically
Gramian yields a highly flexible and efficient (fast) MDS-based multitarget
tracking algorithm which achieves a remarkably low complexity of order O(

√
N)

and which is immune to the non-stationarity of the target’s dynamics.
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5 The active MTT problem: incomplete and
heterogeneous scenarios

In the following the algebraic framework used in Chapter 4 is extended to cope
with scenarios characterized by incomplete EDM and heterogeneous information.
Specifically, the problem of randomly sampled EDM matrices is dealt with by
incorporating the Nyström approximation of the kernel matrix associated to DT̄ ,
resulting in an efficient and fully algebraic Euclidean Distance Matrix completion
technique. It is also shown that, under the assumption that the network is
percolated (as required by Graph-based Completion), the same technique can be
used in conjunction with low-complexity optimization algorithms as an efficient
initialization method, allowing to standard low-complex optimization solutions
to perform, similarly to SDP solutions, close to the CRLB.

Heterogeneous scenarios, in which both range and angle informations are
assumed to be known, are handled by solving the C-MDS algorithm over the
edges of the graph associated to the network of nodes. In so doing both distance
and angle information can be processed algebraically (without iteration) and
simultaneously. It is shown how by approximating the kernel associated to the
graph using the Nyström method it is possible to limit both the complexity
as well as the amount of information required by the algorithm, making the
approach suitable to real LT applications. Moreover, it is also illustrated how to
apply the aforementioned solution to scenarios in which only a subset of the
mere range information between the agents is available. The results demonstrate
the superiority of the proposed solution compared to the standard C-MDS and
the SMACOF algorithms under both LOS and NLOS conditions.

5.1 Incomplete scenarios

One limitation of the C-MDS algorithm discussed in Chapter 4 is that it requires
complete knowledge of the Euclidean distance matrix DT̄ . However, the fact
that the single entries of KT̄ depends on all the entries of DT̄ suggests that the
EDM matrix contains redundant information that could be used to cope with
the completion problem mentioned above, although the problem of choosing
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which elements of DT̄ to use to compute an approximate K̆ still remains.
Fortunately this problem can be solved relying on an approximation of the

eigen-spectrum of K computed through the Nyström method. In the following the
basics of the Nyström method are presented in Section 5.1.1, while Section 5.1.2
deals on how to use the algorithm in conjunction with the C-MDS framework in
LT scenarios to solve the erasure problem in DT̄ .

It is also shown that, due to its intrinsically low computational complexity,
the proposed solution can be used as an efficient initialization for low-complexity
optimization algorithms.

5.1.1 Nyström approximation

The applicability of the C-MDS approach discussed in Chapter 4, can be severely
limited by the fact that, in principle, to recover the eigen-pair associated to the
MDS kernels K, each single entry of the Euclidean distance matrices DT̄ must
be known.

Fortunately, however, there are methods that retrieve approximations of the
eigen-decomposition of K from a subset of its entries only. One such technique
is the so called Nyström method [148], which, by applying a quadrature rule
evaluated at the set of equally spaced points {ς1, ς2, . . . , ςn} ∈ [a, b], finds an
approximation to the eigen-function problems

∫ b

a

W (x, y)φ (y) dy = λφ (x) , (139)

as
(b− a)

n

n∑

j=1

W (x, ςj) = λφ̂ (x) , (140)

where φ̂ (x) is an estimate for φ (x).
Assume x = εi, then the system of equations above can be written as

(b− a)

n

n∑

j=1

W (ςi, ςj) = λφ̂ (x) , ∀i ∈ {1, . . . , n}. (141)

Let [a, b] = [0, 1] in equation (141), then the aforementioned system can
be expressed in matrix form as AΦ̂ = nΦ̂Λ,, where [A]ij = W (εi, εj), while
Φ = [φ1, . . . , φn] and Λ are respectively the eigenvectors and eigenvalues of A.
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It follows that the i-th eigenvector at the arbitrary point x, namely φi(x),
can be approximated by φ̂i (x) relying only on a subset of points, that is

φ̂i (x) =
1

nλi

n∑

j=1

W (x, ςj) φ̂i (ςj) . (142)

5.1.2 Initialization for non-convex localization problems

As mentioned above, the incompleteness problem in the C-MDS algorithm can
be overcome using the Nyström approximation61 [146–148], whose application to
the MDS problem can be summarized as follows. First, consider the Nyström
kernel given by [148]

K̆≈


 [K]1:η,1:η [K]1:η,η+1:N

[K]T1:η,η+1:N [K]T1:η,η+1:N ·[K]−1
1:η,1:η ·[K]1:η,η+1:N


, (143)

in which [K]1:η,1:η and [K]1:η,η+1:N denote the upper-left η − by − η, and the
upper-right η− by− (N − η) minors of the double center kernel matrix K defined
in equation (18).

Recall also that [169]

[K]1:η,1:η=−
1

2
·
(
[DT̄ ]1:η,1:η+C1⊗1η·1Tη −C2⊗1Tη−C3⊗1η

)
, (144)

[K]1:η,η+1:N=−1

2
·
(
[DT̄ ]1:η,η+1:N+C1 ⊗ 1η ·1TN−η
−C2 ⊗ 1TN−η −C4 ⊗ 1η

)
, (145)

where ⊗ denotes the Kronecker product and

C1 = 1
η2 ·

[
1Tη · [DT̄ ]1:η,1:η · 1η

]
, (146)

C2 = 1
η · [[DT̄ ]1:η,1:η · 1η] , (147)

C3 = 1
η ·
[
1Tη · [DT̄ ]1:η,1:η

]
, (148)

C4 = 1
η ·
[
1Tη · [DT̄ ]1:η,η+1:N

]
. (149)

61In the case of Euclidean kernels, the Nyström “approximation” is actually an exact completion
if the entries of the required minors are error-free.
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Finally, invoke the functional relation existing between the EDM and the
Euclidean kernel matrix defined in equation (17), namely

D̆T̄ = 1N · diag(K̆)T + diag(K̆) · 1TN − 2 · K̆. (150)

Equation (150) yields a complete set of distances associated with K̆, such
that any missing entries of [D]η+1:N,η+1:N can be replaced by corresponding
entries from D̆T̄ .

At this point, let us emphasize that [DT̄ ]1:η,1:η contains the distances amongst
anchors and consequently [K]1:η,1:η, C1, C2 and C3 are all constant, such that
K̆ can be updated very efficiently. Furthermore, the elements of [DT̄ ]1:η,η+1:N

are the distances from anchors to targets, and therefore constitute the least
(reasonable) amount of information required by tracking applications, such that
this “completion” procedure can always62 be applied.

Notice that also in the extreme case where [D]η+1:N,η+1:N = 0N−η, then
[X]η+1:N,1:η can be recovered from the eigenspace of [K̆]1:η,1:η [148]. Indeed,
let [K̆]1:η,1:η = Q · H · QT be the eigen-decomposition of [K̆]1:η,1:η. From
equation (77) it follows that [X]1:η,1:η = Q ·H� 1

2 , and because [K̆]1:η,η+1:N =

[X]1:η,1:η · [X]Tη+1:N,1:η then the estimate of [X]η+1:N,1:η reduces to

[X]η+1:N,1:η = [X]−T1:η,1:η · [K̆]1:η,η+1:N = Q ·H� 1
2 · [K̆]1:η,η+1:N . (151)

Therefore, when an incomplete EDM is observed the aforementioned steps
can be followed to complete DT̄ before constructing the dynamic MDS kernel K∗

as described by equations (18) and (84). Figure 22 shows that by completing the
eventual missing entries of [DT̄ ]η+1:N,η+1:N using the Nyström approximation
described above it is possible to exploit all the information available in DT̄ to
increase the accuracy of the estimates.

While the Nyström approach discussed above well suits tracking scenarios in
which the rows of DT̄ corresponding to the anchor-to-target measurements are
assumed always known, in presence of mesh networks where the observed EDM
matrices are punctured randomly, the method cannot be applied as it is.

62As discussed in the following, even the case of sparse incomplete EDMs in which none of
the rows of DT̄ is complete can also be dealt with by combining the Nystöm solution with
standard completion algorithms applied to a restricted subset of η rows of D [170].
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However, under the condition that the network is percolated (as required by
Graph-based Completion) this problem can be overcome by first completing
η + 1 rows of D using Dijkstra’s algorithm and only then K is approximated
using the Nyström method above.

The performance of this hybrid Nyström completion solution is compared in
Figure 23 against Dijkstra’ shortest path [170] solution and the semidefinite
programming approach suggested in [50]. Clearly the computational complexity
required by the three completion techniques under consideration is very different.
Indeed while the Nyström based solution only requires the usage of Dijkstra’s
algorithm on η + 1 rows of D̆ and few matrix multiplications, the shortest path
needs to complete all the N rows of the matrix while the SDP method needs to
find the solution of a complex constrained optimization.

As expected, Figure 23 confirms, especially in the case of low levels of
completion of D, the superiority of the SDP approach in presence of perfect as
well as corrupted distance information. However, the same figure also shows that
the gain is performance for the SDP method is heavily attenuated in presence of
noisy EDMs. The localization accuracy achieved by the Nyström method and
the SDP solution proposed in [51] are compared in Figure 24.

Once more the SDP approach is shown to outperform the proposed method
reaching the theoretical limit expressed by the CRLB formulated under the
assumption of full (deterministic) knowledge on the location of the targets.63

However, in light of the low complexity of the Nyström method and, similarly
to the philosophy adopted in the SDP64, it is possible to use equation (151) as
the initial guess for an optimization algorithm. The resulting hybrid Initialization
scheme has been tested on the SMACOF algorithm presented in Section 3.1.2.65

Figure 24 compared the performance of the algorithms for different meshness
ratio and the entries of D̃ subject to a perturbation ∼ pGauss(r; 0, σd) with
σd = 1. The results show that for almost all the meshness values considered,
the proposed hybrid initialization algorithms brings the performance of low-

63Closed form expressions for the FIM necessary to compute the CRLB for network localization
problems be easily found in the literature, e.g. [69].
64Notice that the solution to the localization problem through an SDP formulation, e.g. the
algorithms proposed in [50, 51], always assume a refinement stage which is usually performed
using a non-linear least square (NLS) algorithm.
65In the following the SMACOF algorithm initialized with the proposed hybrid Nyström based
solution is indicated by SMACOF*.
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complexity algorithm, such as the SMACOF approach, close to that of far more
sophisticated alternatives such as the SDP in [51].

Moreover the solution almost always approaches the CRLB and only for very
low values of completeness the SMACOF* diverges slightly.

5.2 Heterogeneous scenarios

In the following the integration of heterogeneous information within the C-MDS
framework is dealt with. In particular it is shown that using the C-MDS technique
to solve the edges of graph-associated network topology rather than the points’
coordinates, allows to jointly process distance and AOA information in the
optimization.

This revised C-MDS technique, labeled super multidimensional scaling
(S-MDS) algorithm, exhibits the potential to be robust to erroneous angle
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information [23]. However, one drawback of the original S-MDS approach is
that it requires the distances between all pairs of points, as well as the angles of
the triangles formed by all triad of points. Clearly the collection of all such
information may be a problem in many multisource localization scenarios of
interest, in particular those characterized by networks with meshy topologies of
relatively large dimensions, where node-to-node distances and angles can only be
measured within vicinities. A second main problem with the S-MDS solution is
that it requires the eigen-decomposition of a kernel matrix whose size increases
quadratically with the number of nodes in the network.

In the following the S-MDS algorithm is reconsidered and modified to handle
the aforementioned problems by incorporating the Nyström approximation and
the interval analysis tools respectively.

5.2.1 Partial heterogeneous information

Section 3.1.1 showed that through equation (13) the dissimilarity matrix D can
be transformed into the inner product matrix K. Moreover, the definition of
inner product between points for the ij-th element of K yields

[K]i,j , 〈xi;xj〉 = didj cos(θi,j). (152)

It follows that the kernel matrix K can be written as

K = ΘK ◦
(
dN · dT

N

)
, (153)

where ◦ is the Hadamard product, dN contains the distances from the origin for
the N points in X and

ΘK =




1 · · · cos(θ1,N )
...

. . .
...

cos(θN,1) · · · 1


 , (154)

includes the angles for the M edges in X as seen from the origin.
Using the definition of inner product matrix given in equation (153) then

X can be recovered from a kernel constructed on the basis of a subset of all
the possible range and angle measurements. A by-product of this feature is
that error propagation described in equation (150) is largely avoided, since the
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Gram kernel is computed (element-by-element), straight from distance and angle
estimates.

However, to be of any practical use the kernel K needs to be centered at a
i-th point of X from where those distances and angles can be measured66. Also
notice that the resulting K(i) kernel is equivalent to the one obtained starting
from the full set of all mutual distances between the points in X and computed
using equation (13) with a set to be everywhere zero except in correspondence of
the i-th position.67 Once the new kernel matrix K(i) is available, X is recovered
applying equation (16) followed by a Procrustes transformation detailed in
Appendix 1.

5.2.2 Full heterogeneous information

Although K(i) allows to process angle and distance information jointly, it only
includes only one of all possible subsets of distance and angle measurements
amongst the points in X. An extension of the C-MDS that potentially can
exploit all mutual distance and angle information was proposed in [23] under the
name of S-MDS.

The key idea in the S-MDS algorithm is to solve the cost function in equation
(14) for the kernel matrix associated the graph of X. Specifically, let us associate
to the network configuration a complete oriented graph Gη,N (X, ~V,D), where
~V = {~vn,m} is the set of edges with arbitrary, but unique, orientations (vectors).
For convenience, the orientation of all edges is chosen so that we may order the
M elements of ~V progressively, i.e., ~V = {~v1,2, ~v1,3, · · · , ~vN−1,N}.

In order to simplify the notation, let us also relabel each of the mutually
exclusive pairs of indexes (n,m), with n < m, by a different number i, such that
the edge departing from the vertex xn to the vertex xm can be denoted simply
by,

~vi=(xm−xn)=[(xm,1−xn,1), · · ·, (xm,η−xn,η)]T. (155)

66The matrix Θ is recovered from the angle measured from the i-th reference point using
equation (152).
67Centering on the first point results in J is the full-rank skinny Schoenberg auxiliary matrix
defined by [40]

J =
1√
2

[
−1T

IN−1

]
∈ RN×N−1.
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Next, define the dissimilarity metric ki,j of the i-th and j-th edges as the
inner product,

[KE]i,j , 〈~vi;~vj〉 = 〈(xm − xn); (xq − xp)〉
= dn,mdp,q cos(θi,j). (156)

where the set of all dissimilarity measures [KE]i,j , corresponding to all pairs of
edges in the graph, can be conveniently assembled into the edge kernel matrix

KE = 〈[~v1, · · · , ~vM ]; [~v1, · · · , ~vM ]T〉

= ~V · ~VT =



〈~v1;~v1〉 · · · 〈~v1;~vM 〉

...
. . .

...
〈~vM ;~v1〉 · · · 〈~vM ;~vM 〉


 . (157)

Notice also that ~V has the structure of a coordinate matrix associated to the
M points that define the vectors ~vi, i = {1, · · · ,M}.

The S-MDS algorithm results directly from the fact that KE is a Gram matrix
from which it follows that ~V can be recovered from KE using equation (16).
The final step of the localization algorithm is to recover X from the retrieved
vector matrix ~V. To this end, consider the following system of linear equations,
derived directly from equation (155),

C ·X = ~V, (158)

where the coefficient matrix C has the block upper-triangular structure shown
below

C =




1N−1×1 −IN−1×N−1

0N−2×1 1N−2×1 −IN−1×N−1

. . . . . . . . .

01×N−2 1 −1



. (159)

As shown in Figures 25 and 26 one benefit of the decomposition in equation
(157) is its robustness to corrupted angle information. Also notice that, as shown
in Figure 26(b) during the involutive mapping defined in equation (158) it is
possible to weight the rows of C and consequently the single entries D making
the S-MDS algorithm robust to the distance erasures problem, which is simply
handled by weighting to zero the rows of C corresponding to the missing entries
in D.
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Similarly to the above eventual knowledge on the confidence of the range
measurements can be incorporated in the estimation process through the matrix
C.

However, in this form the S-MDS algorithm still has the following limitations:

1. Increased complexity to eigen-decompose KE

2. All the angles between all the edges in ~V are required,

which are the objective of the following section.

5.2.3 Heterogeneous information with the MDS framework

Section 5.2.2 showed that KE ∈ RM×M , with M as the number of combinations
from the N points in X. The need to eigen-decompose KE represents a bottleneck
of the S-MDS algorithm when applied to networks whose number of nodes N is
sufficiently large.

Although different algorithms could be used for that purpose [143], since KE

is a Gram matrix, then the numerical approximation to the eigenfunction problem
used in the context of kernel-based predictors introduced in Section 5.1.1, namely
the Nyström approximation, can be used to solve the aforementioned problem.
Indeed, as already seen in Section 5.1 for the incomplete EDM problem, given
the kernel matrix KE with rank(KE) = η, the Nyström algorithm approximates
the eigen-problem associated to it as the one of a smaller system and then
expand back the result [148].

Let BA be a number of rows selected at random from the kernel matrix and
BT = M −BA the remaining edges in Gη,N (X, ~V,D). Without loss of generality
also assume that those are permuted to the first BA position of the the matrix,
resulting in

KE ≈
[
ABA×BA TBA×BT

TT
BT×BA TT

BT×BA ·A
−1
BA×BA ·TBA×BT

]
. (160)

Let A = UA ·ΛA ·UT
A be the eigendecomposition of the first minor of KE in

equation (160), then equation (16) yields ~VA = [UA]BA×η · [ΛA]
� 1

2
1:η , and since

KT = ~VA ·TT,

~VT = ~V−TA ·T = [ΛA]
�(− 1

2 )
η×η · [UA]TBA×η ·T, (161)
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where ~V =
[
~VT
A,
~VT

T

]T
.

Hence ~VT can be recovered from the eigen-decomposition of A only. This
approach is particularly convenient in all those cases, such as the multitarget
localization scenario here considered, where, BA � BT . Indeed, due to the
combinatorial relationship existing between the number of nodes and edges
in a graph, when NT > NA then BT � BA. It follows that the Nyström
approximation of the kernel KE only relies on the first BA rows of KE . More
importantly the edges associated to the targets are computed directly by means
of equation (161), namely without involving any decomposition.

A further implication of the Nyström method can be understood expressing
the edge kernel KE similarly to equation (153), namely

KE = ΘE ◦
(
dM · dT

M

)
, (162)

where ΘE is the matrix including all the edge-angles as seen from the origin and
dM ∈ RM×1 the vector containing the corresponding edge length for each one of
the M edges in Gη,N (X, ~V,D).

Due to equation (160) than an approximation of KE can be constructed on
the basis of

A = ΘA ◦
(
dBA · dT

BA

)
, (163)

T = ΘT ◦
(
dBT · dT

BT

)
, (164)

where ΘA and ΘT are respectively the matrix including all the anchor-to-anchor
and anchor-to-target angles as seen from the origin while dBA ∈ RBA×1 and
dBT ∈ RBT×1 are the vectors containing length fo the corresponding edges.

Since dM = [dBA ,dBT ] it is evident that the Nyström approximation
is capable to retain all range information in dM and only affects the angle
information included in ΘE by neglecting the mutual angles between the targets.
This can be particularly convenient in certain LT applications, e.g. cellular
network scenarios, where it can be expected that a subset of nodes, e.g. the base
stations, are equipped with the hardware necessary to estimate angle of arrivals.

In light of the above the S-MDS multitarget localization algorithm can be
summarized as follows:
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Inputs:

– Anchor’s coordinates
– Pairwise distance estimates amongst all the nodes
– Anchor-to-target pairwise angle estimates.

Steps:

1. Construct T using equation (156)
2. Estimate the edge vector ~VT using equation (161)
3. Apply the Procrustes transformation on ~VT

4. Map edges into points using equation (158).

5.2.4 Interval analysis for angle completion

Even though Section 5.2.2 already dealt with the problem of eventual erasures in
dM , the S-MDS approach still requires that all the angles in ΘE, or at least the
ones in its first BA rows using the Nyström approximation, are known.

Fortunately, however, in light of the robustness of the S-MDS method to
erroneous angle information shown in Figures 25-26 it is possible to complete or
even replace the angle matrix ΘE with the following estimate

Θ̂E =
(
~̂VE · ~̂VT

E

)
�
(
dE · dT

E
)
, (165)

where ~̂VE = V(X̂) is the matrix of edges constructed from an initial estimates of
X̂, � is the inverse of ◦ and dE ∈ RM×1

+ is defined as

dE =
(
diag

(
~̂VE · ~̂VT

E

))� 1
2

, (166)

where diag(·) is a function that returns the diagonal elements of the matrix given
as argument.

Provided that Θ̂E is known an approximation for edge kernel matrix is
obtained as

K̂E = Θ̂E ◦
(
dM · dT

M

)
. (167)

Clearly there is still the problem to find the appropriate Θ̂E. One method
that does that on the basis of the set of anchor-to-target distance measurements
only is described in the following.
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Let {d1,j , . . . , dNA,j} be the set of distance measurements between the j-th
target and the anchor-to-target measurements, then it is known that [X̂C ]j can
be found jointly solving a set of i = {1, . . . , BA} constraints [35]. Specifically, in
the case of planar configurations68, namely η = 2 and denoting with x̂j = [xj , yj ]

the j-th target’s coordinates, the relation with respect to the i-th anchor can be
expressed by

‖ xi − xj ‖= di,j ⇒ (xi − xj)2 + (yi − yj)2 = di,j . (168)

In presence of noisy range measurements, however, equation (168) needs to
be modified. In particular, under the case of non-line of sight (NLoS) conditions,
the anchor-to-target equality in equation (168) changes into [35]

‖ xi − xj ‖6 di,j ⇒ (xi − xj)2 + (yi − yj)2 6 di,j . (169)

It is also known [35] that each one of the i-th circular constraints above can
be relaxed and expressed by a set of η linear constraints as

xi − x 6 di,j and −xi + x 6 di,j , (170)

yi − y 6 di,j and −yi + y 6 di,j . (171)

Let A(i) be the area defined by the i-th constraint relative to the j-th target,
then the intersection of the NA constraints defines a feasibility region in the
space where the target is ensured to be, namely,69

xj ∈ AT =

NA⋂

i=1

A(i). (172)

A representation of such region obtained from the set NA inequalities in
equation (169) or similarly the set of linear constraints in equation (170) is
provided in Figure 27(a) and 27(b) for different types of errors added to the true
anchor-to-target range measurements.

68The extension to the case of 3-D scenarios is straightforward.
69As Figure 27(a) shows the region given by the union of all the linear constraints is only an
upper bound to one obtained using the circular constraints.
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(a) Measurements affected by positive biases.
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(b) Measurements affected by positive and nega-
tive biases.

Fig 27. Feasibility region AT defined in equation (169) and (170) in presence of
positive biases (left) and positive and negative biases (right). Revised form [18].

In absence of any additional information about the range measurements,
e.g statistical model, each point inside the feasibility region can be assumed as
equally likely, implying that an estimate for x̂j can be obtained as the center of
mass of the region itself. Specifically for the circular constraints such a point
can be found by intersecting the radial lines defined by the pair or inequalities
[33]. Differently the feasibility region defined by the linear constrains is fully
characterized by a lower and an upper point whose coordinates are [35]

x` =
[
min
i
{xi + di,j},min

i
{yi + di,j}

]
, (173)

xu =
[
max
i
{xi − di,j},max

i
{yi − di,j}

]
. (174)

It follows that the center of mass for the linear constraints is simply the
average of the aforementioned points.70

To constrain x̂ to the feasibility region AT already found wide application
in constrained-optimization solution to the localization problem under NLOS
conditions [35, 171]. However, those optimization techniques are usually com-
putationally demanding when compared to method here proposed. Eventual
70As shown on the right hand side of Figure 27 differently from the system of linear constraints
that always return an estimated x̂j , the circular constraints only work when in presence of
biased or perfect measurements [35].
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extensions of the algorithm to dynamic scenarios are possible by combining the
approach above with the technique suggested in [172].

5.3 Performance evaluation and comparisons

In the following the performance of the S-MDS technique is compared against
the SMACOF algorithm [37] and the C-MDS based method described in Section
5.2.1. The comparison is carried out under the case of mere range information,
using the solution suggested in Section 5.2.4, as well as in heterogeneous scenarios
where both range and angle observations between the nodes are measured.

The simulations are designed to provide insight on how much accuracy can be
gained by utilizing angle information and how robust the edge-kernel formulation
is compared to the other alternatives. The scenario chosen for this comparison
consists of 4 anchor nodes placed at edges of a 2×2 square in a η = 2 dimensional
space and 5 targets uniformly displaced in the space centered on the area defined
by the anchor’s positions. All metric units are normalized and, therefore, shall
be omitted henceforth. Although the S-MDS algorithm allows to consider range
and angle measurements from each pair of sensors, in practice it can not be
expected to collect this information from each single device in the network.

On the contrary it is quite reasonable to assume that only a limited subset
of nodes is able to provide both measurements. For this reason below we will
restrict ourselves to a cellular network-like scenario in which only a limited
number (NA) of nodes, the anchor nodes, can measure angle and range with all
the users in their surroundings.

Range estimates, the noisy measurements of the distance between each pair
of sensors, are modeled as a Gaussian-distributed random variables with mean
given by the true distance and a standard deviation σd related to the ranging
error affecting its measurement. NLOS conditions are modeled by adding to the
mean of the aforementioned Gaussian random variable a sample from U (0, bd).
In turn, angle estimation errors are modeled as random processes distributed
according to the Tikhonov probability density function (pdf) [173]

pTikhonov(θ; ρ) =
1

2πI0(α)
· eρ cos(θ), θ ∈ [−π, π], ρ > 0. (175)

The parameter ρ controls the shape of this pdf, such that pT(θ; ρ) tends to a
uniform distribution for ρ→ 0, and to a Dirac delta at 0 when ρ→∞.
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Fig 28. Performance of metric and S-MDS as a function of σd and bd, for range only
and range-bearing measurements. Revised form [18].
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For a given ρ, we shall define the angle error εθ as the average absolute values
added to the true θ. The range and angle estimates perturbed according to the
Gaussian and Tikhonov distributions are then fed to the S-MDS localization
algorithm described above.

The performance of the algorithms are compared in Figure 28 for a LOS
and NLOS conditions. The plots reveal that the S-MDS algorithm implemented
as discussed in Section 5.2.3 has better accuracy than both the SMACOF
algorithm71 and the average of the method proposed in Section 5.2.1 computed
at each one of the NA anchor nodes. This advantage of the S-MDS solution
becomes particularly evident in presence of NLOS measurements. Moreover,
similarly to iterated Bayesian solutions, e.g. the iterated KF [30], in the case
of range only observations an additional improvement in performance can be
achieved by iterating the solution, namely updating Θ̂C on the basis of the
first solution and performing the S-MDS algorithm described in Section 5.2.3
once more on the same observed range measurements. Concluding, as Figure
26(b) shows a further advance of the S-MDS algorithm is its robustness to data
erasures in dM .

5.4 Summary and discussions

This Chapter extends the application scenario of the MDS-based method to
incomplete Euclidean distance matrices and/or heterogeneous information,
namely TOA and AOA. To do so, we suggested an efficient Nyström-inspired
method to compensate for data erasures in D and showed how this algebraic
solution can be used in conjunction with low-complexity optimization solution to
reach the theoretical limit represented by the CRLB.

The problem of using heterogeneous information within the same framework
was handled by exploiting the definition of inner product matrix for the kernel
matrix K and solving instead of the targets coordinates directly, the edges
associated to the graph resulting from the network configuration. It was shown
that is so doing it is possible to compensate biased range information as well as
weight the single distance measures.

71The algorithm is initialized with the centroids used to compute Θ̂C .
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6 The passive MTT problem: incomplete and
heterogeneous scenarios

This chapter deals with the MTT problem in passive scenarios. To this end
the RFS formulation is used to cast the problem into a Bayesian framework
which is subsequently solved using the CPHD algorithm detailed in Section
3.2.1. Within this framework the chapter extend the results shown in [20] by
incorporating the squared-root implementation of the Cubature Kalman Filter
(S-CKF) recently proposed in [84] into the GM-CPHD recursion, resulting in
better robustness and numerical stability of the algorithm. Subsequently it is
show that the processing requirements for the aforementioned algorithm can be
substantially reduced without compromising performance through the adaptive
elliptical gating strategy here proposed.

The solution is tested on both a multisensor MTT scenario in which at
each time k̄ a variable number of range measurements are simultaneously
observed at several sensor nodes and in a single sensor setting with range bearing
observations. The results show that the adaptive gate applied to the proposed
S-CKF-GM-CPHD filter offers lower complexity than the non-gated GM-CPHD
filter and better robustness than the standard elliptical gating solution.

6.1 The STT problem

As seen in Section 3.1.3, in the classical Bayesian state space formulation of
the STT problem, given the initial confidence on the state vector in the form
of p0(x0), the evolution of the system is inferred from real time information
(measurements) and prior knowledge in the form of a system model such as

xk̄ = f(xk̄−1) + qk̄−1 (Dynamic Model) (176a)

zk̄ = g(xk̄) + rk̄, (Measurement Model) (176b)

where q and r denote the process and measurement Gaussian noise respectively.72

72In the following we assume statistical independence amongst q and r. Also, although not
considered in this chapter, the system model and the following algorithms can be easily
modified to describe the more general case of non-additive Gaussian noise.
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The evolution of the state vector xk̄ ∈ R[nx×1] at the time k̄ is first predicted
using equation (176) and subsequently corrected on the basis of the observation
zk̄ ∈ R[nz×1], according to the measurement model in equation (176b).

While the Bayesian solution [30] of the aforementioned problem is general, it
requires the propagation in time of the full posterior pdf of the state vector, which
is often intractable. In practice, therefore, this problem is often solved through
KF presented in Section 3.1.3, in which the posterior pdf is approximated by a
Gaussian model, such that only its first two moments (mean and co-variance)
need be propagated. The Gaussian approximation employed in the Kalman filter
also yields typically easy updating of the system model when the functions f
and g are linear.

It is well known that in presence of linear Gaussian systems the KF solution
is optimal. But it is also common to find sub-optimal utilizations of linearized
versions of the KF, e.g. the EKF, beyond linear systems. Although the
EKF works reasonably well for somewhat non-linear systems, it requires the
computation of a Jacobian matrix in the approximation of the functions f and g,
which is often a source of numerical problems, not to mention that there are
cases (when f and g are not differentiable) in which the EKF can only be used if
a suitable approximation of the Jacobian can be found.

To mitigate the latter problem, under the principle that it is easier to
approximate a pdf than an arbitrary nonlinear function [83], the UKF extends the
KF by employing the unscented transform (UT) whereby a set of deterministically
chosen points, also known as sigma points, is used to capture high-order moment-
matching conditions of the pdf under investigation, which may not be necessarily
Gaussian. Variations of the UKF employing different sets of sigma points can
be found in the literature [83, 174, 175], and a square-root version of the UKF,
namely the square-root unscented Kalman filter (S-UKF), was also proposed
[176].

6.1.1 The CKF framework

A different perspective, unifying all the approaches based on the Gaussian
approximation of the filtering distribution, e.g. EKF and the UKF solution, is
provided by the Gaussian moment matching algorithm [177]. This method, also
known as Gaussian filter, simply matches the moments of the posterior pdf,
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assumed Gaussian, to the values obtained through the following recursion:
Step 1 - Prediction

mk̄|k̄−1 =

∫

Rnx

f(xk̄−1) · N (xk̄−1;mk̄−1,Σx,k̄−1) · dxk̄−1, (177)

Px,k̄|k̄−1 =

∫

Rnx

(
f(xk̄−1)−mk̄|k̄−1

)
·
(
f(xk̄−1)−mk̄|k̄−1

)T
(178)

·N (xk̄−1; mk̄−1,Σx,k̄−1) · dxk̄−1 +Qk̄−1.

Step 2 - Update

mk̄|k̄ = mk̄|k̄−1 +K k̄ · (zk̄ − zk̄|k̄−1), (179)

Px,k̄||k̄ = Px,k̄|k̄−1 −K k̄ · Sk̄|k̄−1 ·KT
k̄ , (180)

zk̄|k̄−1 =

∫

Rnx

g(xk̄) · N (xk̄; mk̄|k̄−1,Σx,k̄|k̄−1)dxk̄, (181)

Sk̄ =

∫

Rnx

(
g(xk̄)− zk̄|k̄−1

)
·
(
g(xk̄)− zk̄|k̄−1

)T
(182)

·N (xk̄; mk̄|k̄−1,Σx,k̄|k̄−1) · dxk̄ +Rk̄,

Pxz,k̄ =

∫

Rnx

(
xk̄ −mk̄|k̄−1

)
·
(
g(xk̄)− zk̄|k̄−1

)T
(183)

·N (xk̄; mk̄|k̄−1,Σx,k̄|k̄−1) · dxk̄,

where Sk̄ is the covariance of the innovation term εk̄ = zk̄ − zk̄|k̄−1, and

K k̄ = Pxz,k̄ · S−1
k̄
, (184)

is the gain matrix.73

From equation (181)-(183) it is evident that the fundamental challenge of
nonlinear Bayesian filtering problems is the efficient computation of multidimen-
sional integrals required to obtain the predicted measurement and the error
covariance matrices. With this in mind, in [84] it was shown that under the
assumption of Gaussian conditional densities, the integrals in the Bayesian
recursion are all of the form

I(f) =

∫

Rnx

ζ(x) · exp
(
−xT·x

)
dx, (185)

where the function ζ(·) in the context hereby is either f(·) or g(·), normalized by
(2π)|x|/2 ·Px, in which | · | denotes the cardinality operator.
73Notice that in case of LG systems the filter is equivalent to the KF described in Section 3.1.3.
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It was also shown in [84] that integrals in the form shown in equation (185)
can be accurately approximated by applying a third-degree spherical-radial
cubature rule, which yields,

I(f) ≈
N∑

i=1

$(i)ζ(ε(i)), (186)

with

ε(i) =

√
Nc
2
· [I,−I], (187)

$(i) = 1/Nc, (188)

where {$(i), ε(i)}, (∀i = 1, . . . , Nc), are the set of cubature points and Nc , 2 ·nx.
Although the UKF and the CKF filers both use sets of deterministic points

to capture the higher moments of the posterior pdf, the sets differ both in
values and numbers.74 More importantly, the set of cubature points used in the
CKF is designed under a Gaussian assumption and with the goal of accurately
approximating the integrals of the Bayesian recursion (which include the posterior
pdf in the integrand), while the sigma points of the UKF are computed with aim
at best approximating the posterior pdf itself (or its moments, to be precise),
without any specific assumption on the latter.

In addition to this philosophical distinction, the structure of the CKF
allows for proper square-root version of the filter to be implemented, with clear
advantages in term of numerical stability [84], since the cubature points are
all positive. In contrast, only a pseudo square-root version of the UKF can be
generally implemented.75

6.2 The S-CKF-GM-CPHD filter for MTT

Besides the issues surrounding the implementation and propagation of the
PHD intensity function discussed above, another problem with the original
PHD filter [116–118] is that the cardinality is propagated in time through “a
single parameter, [...] effectively approximat [ing] the cardinality distribution [by]
74While the CKF uses Nc cubature points, generally the UKF uses Nc + 1 sigma points [83].
75As mentioned in [84], the S-UKF proposed in [176] is only a pseudo square-root filter, since
it requires a correction step to ensure that the propagated square-root error covariance matrix
is positive semidefinite.
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a Poisson distribution with a matching mean”, such that the variance of the
cardinality estimate is directly proportional to the number of targets [119].

To overcome this weakness, Mahler proposed in [135] to propagate in time
the cardinality distribution76 pC,k̄(n), along with the intensity function νk̄|k̄,
under the assumptions that: a) target-generated measurements are independent
of each other; b) birth and survival RFS are independent of each other; c) prior
and predicted multitarget RFS are i.i.d. cluster processes [178, Def. 6.3.I, pp.
176]; and d) clutter measurements are i.i.d. cluster processes.77 In the resulting
CPHD filter, both νk̄|k̄ and pC,k̄ are propagated in time, such that the cardinality
nk̄|k̄ can be estimated more efficiently than in equation (66), specifically

nk̄|k̄(X) ,
∞∑

n=1

n · pC,k̄|k̄(n|Z k̄). (189)

Alternatively, a more stable estimate of nk̄|k̄ can also be obtained by means
of a MAP estimator78, namely

nk̄|k̄(X) , arg sup
nk̄|k̄

pC,k̄|k̄(n|Z k̄), (190)

which performs better at low signal-to-noise ratio (SNR) conditions [135].
It was shown in [119] that under the assumption of linear Gaussian sys-

tems with state independent survival and detection probabilities – specifically
pS,k̄ (ξ) = pS,k̄ and pD,k̄ (x) = pD,k̄ – the distributions of the RFS describing
the detected/surviving targets Sk̄|k̄−1(ξ) are in fact GM’s. If in addition the
intensity of the birth RFS Γk̄ is modeled as a GM, then, referring to equation
(59), it follows that the posterior intensity of PHD is also a GM. Furthermore,
in the linear case, the moments of the GM components can be easily obtained
form the system model, the observations and the previous estimates.

In the general case of non-linear systems, however, the moments of the GM
components cannot be computed directly (see Section 6.1.1), and instead must
be approximated. To do so, one approach would be to linearize the system
model, which would lead to an EKF-GM-CPHD filter. Another approach would
76An interesting physical interpretation of both the PHD and the CPHD recursions in terms
of the bin-occupancy filter is provided in [137].
77This amounts to relaxing the condition on the cardinality distribution so that it can be
arbitrary but with i.i.d. elements.
78The cardinality estimates shown in Section 6.4 are obtained using equation (190).
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be utilized the unscented transform, which would lead to an UKF-GM-CPHD
filter. In light of the discussion in Section 6.1.1, however, and given that we are
dealing with Gaussian Mixtures, it is clearly advantageous to instead employ
the S-CKF filter. In other words, in what follows a detailed description of the
GM-CPHD recursion in which the GM components propagate in time via the
S-CKF method will be proposed.

Suffice it to describe the recursion of the k̄ − 1-th to the k̄-th instance.79

Let us therefore assume that the cardinality distribution pC,k̄−1, the weights
ω

(j)

k̄−1
, the means m

(j)

k̄−1
and the matrices Σ

(j)

x,k̄−1
are known, such that the GM

representation of the PHD intensity function is given by

νk̄−1 (x) =

Jk̄−1∑

j=1

ω
(j)

k̄−1
· N

(
x; m

(j)

k̄−1
,Σ

(j)

x,k̄−1

)
, (191)

where the matrix Σ
(j)

x,k̄−1
is obtained from the Cholesky factorization of the state

covariance matrix P
(j)

x,k̄−1
, i.e., P

(j)

x,k̄−1
= Σ

(j)

x,k̄−1
·
(
Σ

(j)

x,k̄−1

)T
.

Then the CPHD recursion for the general nonlinear system model represented
in equation (176a) is described by the following two steps.
Step 1 - Predition:

pC,k̄|k̄−1(n) =

n∑

j=0

pΓ,k(n− j)
∞∑

`=j

C`jpC,k̄−1(`)pjS,k̄(1− pS,k̄)`−j , (192)

νk̄|k̄−1 (x) = νS,k̄|k̄−1 (x) + νΓ,k̄ (x) , (193)

where C`j = (`!/j!(`− j)!) is the binomial coefficient80, and

νΓ,k̄ (x) =

JΓ,k̄∑

j=1

ω
(j)

Γ,k̄
· N ·

(
x; m

(j)

Γ,k̄
,Σ

(j)

Γ,k̄

)
, (194)

νS,k̄|k̄−1 (x) = pS,k̄

Jk̄−1∑

j=1

ω
(j)

k̄−1
· N

(
x; m

(j)

S,k̄|k̄−1
,Σ

(j)

S,k̄|k̄−1

)
, (195)

in which νΓ,k̄ denotes the GM used to model the intensity function for the
birth process, the matrix Σ

(j)

Γ,k̄
is obtained by the Cholesky decomposition of

79The initialization of the cardinality distribution pC,k̄−1, and the GM component parameters

ω
(j)

k̄−1
, m

(j)

k̄−1
,Σ(j)

x,k̄−1
depend on the scenario and thus will be given in Section 6.4.

80Notice that equation (192) is the probability density for the process corresponding to the sum
of the birth and the surviving targets cardinality, the latter rewritten as sum of its moments.
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P
(j)

Γ,k̄
= Σ

(j)

Γ,k̄
·
(
Σ

(j)

Γ,k̄

)T
and

m
(j)

S,k̄|k̄−1
= 1

Nc

Nc∑

i=1

ψ
∗(ji)
k̄|k̄−1

, (196)

Σ
(j)

S,k̄|k̄−1
= Tria

([
A
∗(j)
k̄|k̄−1

, ΣQ,k̄−1

])
, (197)

with

A
∗(j)
k̄|k̄−1

= 1√
Nc

(
Ψ
∗(j)
k̄|k̄−1

−m
(j)

S,k̄|k̄−1
· 1TNc

)
, (198)

Ψ
∗(j)
k̄−1

=
[
ψ
∗(j1)

k̄−1
, . . . ,ψ

∗(jNc)
k̄−1

]
, (199)

ψ
∗(ji)
k̄|k̄−1

= f
(
ψ

(ji)

k̄−1

)
, (200)

ψ
(ji)

k̄−1
= Σ

(j)

x,k̄−1
ε(i) + m

(j)
k−1. (201)

In the last equations, Tria(·) denotes the lower triangular component of a
general triangularization algorithm (e.g. the R matrix of a QR-factorization),
1Nc is a column vector of length Nc containing only ones, ε(i) is the i-th cubature
point defined in equation (187) and ΣQ,k̄−1 is the square root factor of Q.

Let Jk̄|k̄−1 , JΓ,k̄ + Jk̄−1, then from equations (193) through (195), the
predicted intensity function is described by the GM

νk̄|k̄−1 (x) =

Jk̄|k̄−1∑

j=1

ω
(j)

k̄|k̄−1
· N

(
x; m

(j)

k̄|k̄−1
,Σ

(j)

x,k̄|k̄−1

)
. (202)

In possession of pC,k̄|k̄−1(n) as in equation (192), and νk̄|k̄−1(x) as in equation
(202), as well as the measurement set Z k̄, the recursion progresses with the
following updating step.
Step 2 - Updating :

pC,k̄|k̄(n) =
Υ0
k̄
[ωk̄|k̄−1,Z k̄](n)pC,k̄|k̄−1(n)

〈Υ0
k̄
[ωk̄|k̄−1,Z k̄], pC,k̄|k̄−1〉

, (203)

νk̄|k̄(x) =
〈Υ1

k̄
[ωk̄|k̄−1,Z k̄], pC,k̄|k̄−1(n)〉
〈Υ0

k̄
[νk̄|k̄−1,Z k̄], pC,k̄|k̄−1〉

[1−pD,k̄(x)] ·

νk̄|k̄−1(x)
∑

z∈Zk̄

Jk̄|k̄−1∑

j=1

ω
(j)

k̄
(z) · N

(
x; m

(j)

k̄
(z),Σ

(j)
x,k

)
,

(204)

where
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Υu
k̄ [ω,Z](n) =

min (|Z|,n)∑

j=0

(|Z| − j)!pK,k̄(|Z| − j) (205)

· Pnj+u
(
1− pD,k̄(x)

)n−(j+u)

〈1, ω〉n ej (Ξk̄(ω,Z)) ,

Ξk̄ (ω,Z)) =

{ 〈1, κk̄〉
κk̄(z)

pD,k̄ω
Tqk̄(z) : z ∈ Z

}
, (206)

ωk̄|k̄−1 =
[
ω

(1)

k̄|k̄−1
, . . . , ω

(Jk̄|k̄−1)

k̄|k̄−1

]T
, (207)

qk̄(z) =
[
q

(1)

k̄
(z), . . . , q

(Jk̄|k̄−1)

k̄
(z)
]T
, (208)

q
(j)

k̄
(z) = N

(
z; z

(j)

k̄|k̄−1
,Σ

(j)

z,k̄|k̄−1

)
, (209)

ω
(j)

k̄
(z) = pD,k̄ω

(j)

k̄|k̄−1
q

(j)

k̄
(z)
〈Υ1

k

[
ωk̄|k̄−1,Z k̄ \ {z}

]
, pC,k̄|k̄−1〉

〈Υ0
k̄

[
ωk̄|k̄−1,Z k̄

]
, pC,k̄|k̄−1〉

〈1, κk̄〉
κk̄(z)

, (210)

κk̄(z) = λc · V · u(z), (211)

m
(j)

k̄|k̄(z) = m
(j)

k̄|k̄−1
+K

(j)

k̄
·
(
z − η(j)

k̄|k̄−1

)
, (212)

Σ
(j)

x,k̄|k̄ = Tria
([

A
(j)

k̄|k̄−1
−K(j)

k̄|k̄ ·B
(j)

k̄|k̄−1
, K

(j)

k̄|k̄ ·Σ
(j)

R,k̄

])
, (213)

K
(j)

k̄|k̄ =

(
P

(j)

xz,k̄|k̄−1
/
(
Σ

(j)

z,k̄|k̄−1

)T)
/Σ

(j)

z,k̄|k̄−1
, (214)

Σ
(j)

z,k̄|k̄−1
= Tria

([
B

(j)

k̄|k̄−1
ΣR,k̄

])
, (215)

P
(j)

xz,k̄|k̄−1
= A

(j)

k̄|k̄−1
·
(
B

(j)

k̄|k̄−1

)T
, (216)

A
(j)

k̄|k̄−1
= 1√

Nc

(
Ψ

(j)

k̄|k̄−1
−m

(j)

k̄|k̄−1
1TNc

)
, (217)

B
(j)

k̄|k̄−1
= 1√

Nc

(
Φ

(j)

k̄|k̄−1
− η(j)

k̄|k̄−1
· 1TNc

)
, (218)

Ψ
(j)

k̄−1
=
[
ψ

(j1)

k̄−1
, . . . ,ψ

(jNc)

k̄−1

]
, (219)

Φ
(j)

k̄−1
=
[
φ

(j1)

k̄−1
, . . . ,φ

(jNc)

k̄−1

]
, (220)

φ
(ji)

k̄|k̄−1
= g

(
ψ

(ji)

k̄|k̄−1

)
, (221)

ψ
(ji)

k̄|k̄−1
= Σ

(j)

x,k̄|k̄−1
ε(i) + m

(j)

k̄|k̄−1
, (222)

η
(j)

k̄|k̄−1
= 1

Nc

Nc∑

i=1

φ
(ji)

k̄|k̄−1
. (223)
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In the above, pK,k̄(·) is the distribution of the number of clutter arrivals at k̄,
Pnj , n!/(n− j)! is a permutation coefficient, ej (·) is the elementary symmetric
function81, Σ

(j)

z,k̄|k̄−1
is the square root factor of the observation covariance

matrix P
(j)

z,k̄|k̄−1
, and κk̄(·) is the clutter distribution as function of the clutter

intensity λc, the adjusted surveillance volume V and a point process u(·), both
of which will be specified later in Sections 6.3.2 and 6.4, respectively. Let us
also point out that, since equation (213) is equivalent to the square root for the
Joseph form of the covariance update equation [84], the Kalman gain in equation
(214) is computed as two nested inverse solutions rather than the inverse of
P

(j)

z,k̄|k̄−1
and Σ

(j)

R,k̄
denotes the square root of Rk̄.

It is known that the main source of complexity in the CPHD recursion is the
sum over j of elementary symmetric functions ej(·) – see equation (205). Indeed
it was shown in [135] that such a sum is of complexity order O

(
n · |Zk|3

)
. In

addition, similarly to the GM-PHD filter [118], the number of GM components
propagated in time tends to grow unbounded as

(
Jk̄−1 + JΓ,k̄

)
· (1 + |Z k̄|) = O

(
Jk|k−1 · |Z k̄|

)
. (224)

This indicates that a suitable strategy to reduce computational complexity
of the recursion is to add, after the updating step, a pruning stage aimed at
limiting the number of GM components by discarding those with low weights
ω

(j)

k̄|k̄ and merging the ones that are sufficiently closed together. For details of
such a pruning stage we refer readers to [118].

Notice, however, that the pruning stage such as proposed in [118] only
reduces the complexity order associated with the number of GM’s, specifically by
controlling Jk̄|k̄−1 (see equation (224)), which is minor compared to the actual
complexity order O

(
n · |Z k̄|3

)
of the filter as a whole [135]. This calls for a

more effective method to reduce the complexity of the CPHD filter, which is the
subject of the next section.

6.3 Gating strategies for Gaussian mixture filters

Gating is a general term used to describe techniques that select reduced sets of
measurements Z̃ k̄, out of the observations Z k̄. This is typically achieved [27, pp.

81The elementary symmetric function can be efficiently computed using Vieta’s formulas [179].
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334] by defining a validation area on the basis of some knowledge about the
noise statistics and the set of predicted measurements {g(X k̄|k̄−1)}.

The first impact of gating is therefore to reduce the cardinality of “gated”
measurement sets, since only measurements satisfying a given inequality –
specifically inequality (228) in the case of Elliptical Gating, or (230) in the
case of Adaptive Gating – are retained in each step. Notice that the pruning
of Z k̄ onto Z̃ k̄ does not sacrifice the ability of the filter to handle new births,
since this is accounted for during the prediction step by the augmentation
of the RFS describing the predicted targets with the set Γk̄ describing the
predicted births [118, 180], as from equation (59). Furthermore, taking into
consideration the discussion concluding Section 6.2, it should be clear that while
gating reduces the computational complexity of the filter to O

(
n · |Z̃ k̄|3

)
, it

also changes the number of Gaussian Mixture components propagated in time to
O
(
Jk̄|k̄−1 · |Z̃ k̄|

)
, in accordance with equation (224).

The second impact of gating is to affect the volume of the surveillance region
V that parameterizes the clutter distribution82 κk̄(z) in equation (211). Of
course the surveillance region with gating is the union of all the non-empty
gates, that is, all j-th gates enclosing at least one observation. If we indicate the
emptiness/non-emptiness of the j-th gate by the Boolean variable β(j), then the
total volume of the surveillance region with gating can be upper-bounded by the
sum of validation volumes for which β(j) = 1, yielding

VU =





|{ωk̄|k̄−1}|∑

j=1

V
(j)
E (nz) · β(j) for Elliptical Gating, (225a)

|{ωk̄|k̄−1}|∑

j=1

V
(j)
A (nz) · β(j) for Adaptive Gating, (225b)

where the quantities V (j)
E (nz) and V

(j)
A (nz) will be defined in the following

subsections.
Notice that as a consequence of upper-bounding, VU can be larger than the

original surveillance region, which we shall denote by VS. With that in mind, for
consistency, the effective surveillance region V to be used in equation (211) can

82In the simulations shown in Section 6.4 the clutter distribution κk̄(z) is modeled by a
Poisson RFS with intensity λc.
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be finally determined by

V = min{VU, VS}. (226)

By associating with each predicted point a “feasible region” (the gate), and
discarding measurements incompatible with such a region/gate the impact of
spurious measurements is reduced and the possible estimation outcomes are
restricted. Therefore the effect of using gates of sufficiently large sizes is, with a
high probability, to reduce clutter without causing any further impact on the
filter’s performance.

6.3.1 Elliptical gating

Refer to the measurement model described in equation (176b) and let ε(ij)

k̄

denote the innovation vector associated with the i-th measurement z(j)

k̄
∈ Z k̄

and with respect the j-th predicted observation, i.e.

ε
(ij)

k̄
, z(i)

k̄
− g

(
x

(j)

k̄|k̄−1

)
. (227)

Under the assumption that rk̄ in equation (176b) is an additive zero mean
white Gaussian noise, the residual covariance matrix of ε(ij)

k̄
is known to be83

P
(j)

ε,k̄|k̄−1
= G ·P(j)

x,k̄|k̄−1
·GT +R, where P

(j)

x,k̄|k̄−1
= Σ

(j)

x,k̄|k̄−1
·
(
Σ

(j)

x,k̄|k̄−1

)T
is

the predicted covariance matrix of x and R the measurement noise covariance
matrix. Notice also that with respect to the S-CKF implementation of the
GM-CPHD offered in Section 6.2, P

(j)

ε,k̄|k̄−1
is the covariance matrix P

(j)

z,k̄|k̄−1
.

Therefore, for the sake of clarity in the following the innovation covariance
matrix will be still referred to as P

(j)

z,k̄|k̄−1
.

It follows that the Mahalanobis distance associated with ε(ij)T

k̄
is d2

g ,

ε
(ij)T

k̄
·
(
P

(j)

z,k̄|k̄−1

)−1

· ε(ij)

k̄
. In the case of linear Gaussian systems, ellipsoidal

validation gates (a.k.a elliptical gates) are known to be optimal [181] and can
be easily computed. Specifically, if Tg denotes the nz-dimensional validation
threshold, then elliptical gating amounts to selecting the measurements z(i)

k̄
as

83When g(x) is a nonlinear function of x, G can be recovered with a simple first order
approximation, that is G = ∂g/∂x calculated at x = xk̄|k̄−1 or by means of the cubature
transform [84].
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follows:

z
(i)

k̄




∈ Z̃(i)

k̄ if ∃ (i, j) | ε(ij)T

k̄
·
(
P

(j)

z,k̄|k̄−1

)−1

· ε(ij)

k̄
6 Tg,

/∈ Z̃(i)

k̄ otherwise.
(228)

Therefore, under the assumption that both noise processes q and r are
Gaussian, as well as the innovation vector ε, the optimal value for the threshold
Tg is the α quantile of the upper-tail of a chi-square distribution with nz degrees
of freedom [27, pp. 337]. In summary, due to the Gaussian assumption over ε(ij),
d2
g ∼ χ2

nz
, where χ2

nz
denotes a χ2 distribution with nz degrees of freedom, and

Tg is a threshold recovered from χ2 distribution tables. Notice also that this is
equivalent to setting the probability that a correct observation falls within the
gate Tg to be Pg = 1− α.

Let cnz
84 denote the surface of the unit hypersphere in the nz dimensional

space. Then, the volume for the ellipsoidal gate is

V
(j)
E (nz) , cnz ·

[
det(P

(j)

z,k̄|k̄−1
) · Tnz

g

] 1
2

. (229)

where we have omitted from VE(nz) the sub index k̄|k̄−1 for the sake of notational
simplicity.

It is clear from equation (228) that gating is performed for each i-th measure-
ment and against each j-th GM component. Notice that in equation (229) the
determinant of the residual covariance matrix P

(j)

z,k̄|k̄−1
needs to be computed

repeatedly. Under the square-root version of the CKF propagation of the
GM-CPHD filter described in Section 6.2, instead of propagating the covari-
ances P

(j)

z,k̄|k̄−1
themselves, it is their triangular components Σ

(j)

z,k̄|k̄−1
that are

propagated, which enables the fast evaluation of such determinants. In other
words, some complexity reduction on elliptical gating itself is also achieved as a
by-product of the contribution of Section 6.2.

6.3.2 Adaptive gating for GM filters

Although not emphasized before, one problem with the gating method discussed
above is to find the right value for Tg, or equivalently, through the α quantile of

84As shown in [27, pp. 338], cnz = πnz/2

Γ(nz2 +1)
, which for the particular cases of nz = 1 and

nz = 2 yield cnz = 2 and cnz = π, respectively.
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the upper-tail of a χ2 distribution with nz degrees of freedom [27, pp. 337], a
proper value for Pg. Indeed when Tg (namely Pg) is set too large, many false
alarm measurements will be selected (not gated), with clear impact on the
computational load of the algorithms. On the other hand, if the gate size is
too small, some of the measurements actually generated by targets might be
removed by the gate with potentially severe consequences on performance.

The aforementioned problem is the quintessential problem of gating techniques,
namely, they can reduce complexity but are sensitive to parameterization. In
addition to elliptical gating, other previously proposed gating methods also
exhibit the same drawback [181, 182]. In this section we propose an alternative
gating method that is robust to parameterization. The key to our gating
technique is to adaptively change the gate associated with each predicted
measurement g(x(j)

k̄|k̄−1
) by increasing the corresponding innovation covariance

matrix P
(j)

z,k̄|k̄−1
or equivalently augmenting the threshold of the corresponding

Mahalanobis distance by the ω(j)

k̄|k̄−1
used in the GM implementation of the

filters. Mathematically, the adaptive gating scheme is summarized as follows:

z
(i)

k̄




∈ Z̃(i)

k̄ if ∃ (i, j) | ε(ij)T

k ·
(
P

(j)

z,k̄|k̄−1

)−1

· ε(ij)

k̄
6 Tg ·

(
1 + ω

(j)

k̄|k̄−1

)
,

/∈ Z̃(i)

k̄ otherwise.
(230)

As implied by inequality (230), in the adaptive gating method the gate size
is adjusted not only with basis on the noise statistics (captured by Tg), but also
depending on the likelihood of the predicted points, as measured by the GM
weights ω(j)

k̄|k̄−1
.

Rewriting equation (229) in light of inequality (230), the volume of the j-th
adaptive gate becomes

V
(j)
A (nz) = cnz ·

[
det(P

(j)

z,k̄|k̄−1
) ·
(
Tg · (1 + ω

(j)

k̄|k̄−1
)
)nz

] 1
2

. (231)

While it is true that if compared individually the adaptive gates are always
larger than the elliptical one, elliptical gates are all of the same size, so that
the separation of spurious data from real measurements is not carried out in a
way that discriminates the variable likelihood these have. In contrast, in the
proposed technique, gates are larger around points with higher likelihood, and
smaller around points with lower, such that the overall effect is that it is possible
to be more aggressive in regions where measurements are more likely to be
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clutter, and more conservative where measurements are more likely to be truly
generated from targets.

6.4 Performance evaluation and comparisons

In the following the performance achieved by the gating techniques discussed
in Section 6.3 applied to the S-CKF-GM-CPHD filter are compared amongst
each other. To do so the two different scenarios represented in Figures 29-30 are
considered.

Specifically, the first scenario consists of a multisensor multitarget setting
in which the generic i-th target at time k̄ is described by the state vector
x

(i)

k̄
= [ρ

(i)

k̄
, %

(i)

k̄
, ρ̇

(i)

k̄
, %̇

(i)

k̄
]T with ρ

(i)

k̄
and %

(i)

k̄
denoting positions in the x − y

plane and ρ̇(i)

k̄
and %̇(i)

k̄
the corresponding velocity coordinates. Trajectories are

assumed to evolve accordingly to a nearly constant velocity (NCV) [30] with
transition and process noise matrix

Fk̄ =

[
I2 ∆̄ · I2

02×2 I2

]
, ΣQ = σq

[
∆̄2

2 · I2

∆̄I2

]
, (232)

where 02×2 is a 2× 2 matrix of zeros, ∆̄ is the sampling time and σq = 12 m/s2

represents the standard deviation of the process noise.
The target birth process is assumed to be Poisson distributed with νΓ,k̄ =

ωΓN (x; m1, σΓ · I4) + ωΓN (x; m2, σΓ · I4), where ωΓ = 0.1, m1 = [250, 250, 0, 0],
m2 = [−250,−250, 0, 0] and σΓ = 10. Targets trajectories are shown in Figure 29,
from where it can be understood that at k̄ = 1 two targets with 100 steps long
trajectories generate from the points [250, 250] and [−250,−250] respectively
and at k̄ = 47 a new target appears from the point [250, 250].

Range measurements are performed at fixed devices (or sensors) whose
absolute location is assumed to be known and that in the following will be
therefore referred to as anchor nodes. The range observation at the a-th anchor
and with respect to the i-th target is

z
(i)
a,k ,

√(
ρ

(i)
k − ρ(a)

)2

+
(
%

(i)
k − %(a)

)2

+ rk, (233)
where rk̄ ∼ N (·; 0, σr) is the measurement noise and where σr = 10.

Clutter measurements are generated accordingly to a Poisson process with
λc = 4× 10−3 over a measurement space of 2700m, resulting in an average of
10.8 false detection at each anchor per time k̄.
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Fig 29. Multitarget multisensor scenario described in Section 6.4. Each anchor is
subject to an average of 10 clutter measurements per time and the third targets
appears at k̄ = 47. Revised form [20].
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Fig 30. Sample scenario where the first two targets cross at time k̄ = 33 and the
third target appears at k̄ = 51. The average number of clutter measurements per
time is set to 50. Revised form [13]. 145
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Fig 31. Results for the CKF-GM-CPHD applied to the scenario in Figure 29 with an
average of 10 clutter measurements per time and rk̄ ∼ N (x; 0, σr) with σr = 10.
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The probability of target detection and survival are set to pD = 0.98 and
pS = 0.99 respectively. Following the performance for the S-CKF-GM-CPHD
filter used together with the gating strategies discussed in Section 6.3 are studied
as a function of Pg.85

Specifically, Figure 31(a) compares the error in the estimated cardinality as
well the residual clutter86 while Figure 31(b) shows the average OSPA metric
over the entire tracking period for the cutoff values c = 30, chosen to capture the
localization errors; and c = 2700 chosen to describe the impact of cardinality
errors.

The results show that by gating it is possible to remove most of the clutter
measurements in Z k̄ without compromising the filter performance. In particular,
elliptical gating causes performance to rapidly deteriorate for Pg < 0.92, whereas
with adaptive gating performance is not affected. Moreover, as shown later,
whenever elliptical gating is fed with erroneous estimates of the measurement error
covariance matrix R, it is more likely to discard target generated measurements,
resulting in a severe degradation of the filter performance.

The second scenario consists of a single sensor multitarget setting in which
targets are assumed to evolve according to the following nearly coordinated
turning model [30, pp. 467]

xk = F(Ω) · xk−1 + ΣQ, (234)

where the state vector xk̄ is modified to include the turning rate Ω as fifth state
and where the transition and process noise matrices are

F(Ω) =




1 0
sin(Ω · ∆̄)

Ω
−1− cos(Ω · ∆̄)

Ω
0

0 1
1− cos(Ω · ∆̄)

Ω

sin(Ω · ∆̄)

Ω
0

0 0 cos(Ω · ∆̄) − sin(Ω · ∆̄) 0

0 0 sin(Ω · ∆̄) cos(Ω · ∆̄) 0

0 0 0 0 1



, (235)

ΣQ =




∆̄2

2 · I2 02

∆̄ · I 02

0T2 ∆̄


 ·
[
σq · 12

σΩ

]
, (236)

85Since z(i)

a,k̄
∈ Rnz where nz = 1, then Pg and Tg are related by: Pg , 2√

2π

∫√Tg
0 exp (−u2/2)·

du.
86The term “residual clutter” refers to the difference between the average clutter intensity
λc · V and the average number of observations discarded from Zk̄ by gating.
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where σq = 12 m/s2 and σΩ = 2π/180 rad/s are related to the process noise
intensity and 02 is a column vector of zeros of length 2.

Assuming the measuring sensor at the origin of the reference system, then at
time k̄ the observation generated by the i-th target consists of a range-bearing
measurement

zk̄ =


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√(
ρ

(i)

k̄

)2

+
(
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(i)
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)2

tan−1

(
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(i)

k̄

%
(i)

k̄

)


+ rk̄, (237)

where rk̄ ∼ N (r; 0,ΣR) with ΣR,k̄ = diag ([σr, σθ]), σθ = 2(π/180) and σr = 10.
The birth process is assumed to be a Poisson and it is modeled by the

GM νΓ,k(x) = ωΓN (x;m
(1)
Γ ,ΣΓ) + ωΓN (x;m

(2)
Γ ,ΣΓ) with ωΓ = 0.1, m

(1)
Γ =

[−1100, 1200, 0, 0, 0]T, m
(2)
Γ = [1000, 1500, 0, 0, 0]T and the square-root of the

birth-covariance matrix given by ΣΓ = diag ([10, 10, 7, 7, 7(π/180)]).
Both pD and pS have the same values than in the multisensor scenario

described above while the clutter intensity is set to λc = 8 × 10−3 over a
surveillance region of [−π/2, π/2] rad× [0, 2000] m, resulting in an average of 50

clutter measurements per time. Figure 30 shows the targeted scenario, where
at k̄ = 1 two targets having 100 steps long trajectories are generated from the
points [−1100, 1200] and [1000, 1500] and cross at k̄ = 33. A new target appears
at k̄ = 51 from the point [−1100, 1200]. Similarly to the multisensor scenario,
the performance for the gating strategies discussed in Section 6.3 and applied to
the S-CKF-GM-CPHD filter are compared for different values of Pg.87

Figure 32(a) compares the error in the estimated cardinality as well the
residual clutter while Figure 32(b) the average OSPA metric over the entire
tracking period computed for the two cutoff values c = 30 and c = 2000.

Once again by gating it is possible to remove most of the clutter measurements
in Z k̄ without compromising the filter performance and more importantly
elliptical gating causes performance to rapidly deteriorate for Pg < 0.92, whereas
the adaptive strategy does not. Moreover, as Figure 33 shows, whenever
the gating strategies are fed with erroneous estimates of the measurement
error covariance matrix R, the elliptical gate always deteriorates the tracking
performance.

87Since z(i)

a,k̄
∈ Rnz where nz = 2, then Pg and Tg are related by: Pg , 1− exp(−Tg/2).
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Fig 32. Results for the S-CKF-GM-CPHD applied to the range-bearing scenario
described in Section 6.4 and represented in Figure 30. Revised form [13].
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Differently adaptive gating is still able to reach the performance of the
achieved by the S-CKF-GM-CPHD filter at a considerably lower computational
time. A time comparison between for the S-CKF-GM-CPHD filter with and
without the adaptive gating is offered in Table 2.

Table 2. Computational timea.

Multisensor Range-bearing

No Gating τ = 150.65 τ = 198.5

Adaptive
Pg = 0.98 τ = 96.0 τ = 29.50

Pg = 0.94 τ = 91.5 τ = 24.60

Pg = 0.90 τ = 85.5 τ = 20.95

Pg = 0.85 τ = 77.1 τ = 18.26

A Time τ in seconds and for the same machine.
B For the Scenarios described in Section 6.4.
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Fig 33. Results for the S-CKF-GM-CPHD applied to the range-bearing scenario
described in Section 6.4 and represented in Figure 30 where the value of σr in R

used in the filter is 7 rather than the true standard deviation on the range error 10.
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6.5 Summary and discussions

The chapter showed that under the framework here considered – namely the
Gaussian Mixture CPHD, in which Gaussianity is ensured by construction – the
integration of the square-root CKF into the GM-CPHD recursion is not only
more suitable (i.e. the best design under the Gaussian assumption), to state of
the art solutions, e.g. the EKF.

Moreover, by adaptively changing the gate associated with each predicted
measurement g(x

(j)

k̄|k̄−1
) in proportion to the likelihood of the single GM compo-

nents used in the filters, it is possible to achieve the same run time improvement
than elliptical gates without degrading the results.

It must be emphasized that the proposed gating strategy is applicable
(essentially) to any GM filter, including (but not exclusively) the GM-(C)PHD
filters and their variations, such as the GM implementation of the CB-MeMBer
filter proposed in [183]. In conclusion the proposed adaptive gating applied to
the S-CKF-GM-CPHD filter offers better robustness, numerical stability and, as
shown in Table 2 lower complexity than the non-gated GM-CPHD filter.
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7 Conclusions and future works

7.1 Summary and conclusions

Due to diversity of the scenarios requiring positioning applications, a unique
solution to the multitarget LT problem is not realistic. In this work several state
of the art algorithms to solve the MTT problem have been improved upon to
provide a lower computational complexity, better accuracy or wider range of
applicability.

In particular, in the context of active multitarget scenarios a comprehensive
algorithm to handle the problem of simultaneously tracking a large number of
targets with no a priori mobility models was proposed. This was accomplished
by modifying the Jacobi algorithm used to eigen-decompose the subsequent
Euclidean kernels in the C-MDS algorithm which in turn was based on the
statistical characterization of the spectrum of the random Gramian matrices
used in the algorithm, achieved by employing an extreme-value and asymptotic
take on the theory of Gershgorin spectrum bounds.

The results revealed that, even for relatively large subspace distance values,
the matrix can, with a high probability (quantified analytically), be eigen-
decomposed by employing a statistically optimized number of plane rotations.
Moreover, we showed that the Jacobi algorithm used together with the proposed
truncated LM sweeping strategy achieves the convergence rate of the optimal
strategy applied to but without requiring the search for the optimal element to
be annihilated.

To extend the application scenario of the MDS-based method to incomplete
Euclidean distance matrices, an efficient Nyström-inspired method to compensate
for data erasures was proposed in Chapter 5 where the problem of heterogeneous
information was also addressed by extending the C-MDS framework to work on
the edges of the graph generated by the target nodes.

To improve the computational time required by state-of-the-art solutions to
the passive MTT problem in Chapter 6 it was proposed to integrate the S-CKF
into the GM-CPHD recursion which is numerically superior to state of the art
solutions, e.g. the EKF and UKF.
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Moreover, by adaptively changing the gate associated with the predicted
measurements in proportion to the likelihood of the single GM components
used in the filters, it is possible to achieve the same run time improvement as
elliptical gating but without degrading the results. Although tested in range-only
multitarget multisensor and a baring single sensor MTT scenario, the approach
is applicable to any GM filter, including (but not exclusively) the GM-(C)PHD
filters and their variations.

In conclusion the proposed adaptive gating applied to the S-CKF-GM-CPHD
filter offers better robustness, numerical stability and lower complexity than the
standard non-gated GM-CPHD filter.

7.2 Future works

Although the algorithms proposed in Chapters 4 and 5 represent a comprehensive
solution to handle the problem of simultaneously tracking a large number of
targets with no a priori mobility models, similarly to the state covariance matrix
in the KF algorithm, some application scenarios might require feedback on the
quality of the location estimates.

One way to include such information as well as eventual knowledge about the
targets’ dynamic, is to add to the proposed C-MDS-based solutions an additional
stage based on the interval analysis tools. Indeed, in [172] it was already shown
that in tracking applications this framework allows to propagate in time, instead
of punctual estimates, sets of bounds which are proportional to the uncertainty
of the solution. Another point of future investigation, is the generalization of the
dissimilarity measures used in the subspace MDS-based algorithms discussed
in Chapter 4 and 5 to include, instead of simple range and angle information,
different kind of similarities, e.g. connectivity and or semantic information. In
this way it would be possible to extract in an efficient way information not
necessarily related to positions but anyway important in the more general case
of context-aware scenarios.

Differently, the analysis provided in Chapter 4 could be generalized to the
case of complex squared matrices, i.e. Hermitian matrices which could be useful
in a wide range of applications in communication (e.g. [184]).

Concerning the passive LT scenarios, the adaptive gating strategy proposed
in Chapter 6 could be applied, together with the S-CKF-GM-CPHD filter, to

154



the recently proposed Cardinalized Balanced Multi-Target Multi-Bernoulli
(CB-MeMBer) filter [183]. In addition, since the proposed gating strategy relaxes
the need for precise clutter rate information, in the future it is intended to
compare the proposed gated CPHD solution against algorithms that address this
specific problem directly, e.g. [185].

More importantly, due to the nature of the problem, namely a continuous
process sampled at discrete times, an additional point of interest for future
research activities would be to consider, instead of the discrete-discrete solution
presented in Chapter 6, a continuos-discrete filter, such as the ones discussed
in [134] and study the eventual gain in performance versus the increase in
complexity.
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Appendix 1: Procrustes analysis

As mentioned in Section 3.1 the methods solving the scaling problem, e.g. the
C-MDS, find a configuration of points that is geometrically congruent to the true
one up to an affine transformation, namely a rigid transformation88 and a scaling
factor. To remove this uncertainty in the solution the Procrustes transformation
detailed in the following must be utilized [37].

Assuming that the coordinates of at leastNA > η anchor nodes XNA ∈ RNA×η

are known, then the final estimate X̂ can be recovered from the output Y ∈ RN×η

of the scaling algorithm using the following isotropic dilation and the rigid
transformations

X̂ = α ·Y · FR + cD ⊗ 1[N×1], (238)

where the scalar α, the matrix FR ∈ Rη×η and the vector cD ∈ Rη are the
coefficients of the Procrustes transformation, calculated as

α = tr
(

[HT
NA
·HNA ]

1
2

)
· ‖X̄NA‖F
‖ȲNA‖F

, (239)

FR = UT
L ·UR, (240)

cD =
1TNA
NA
·Xa −

α · 1TNA
NA

· [Y]1:NA,1:η · FR. (241)

In the above, UL - UR are the left and right matrices of singular vectors of
HNA = X̄T

NA
· ȲNA = UL ·Σ ·UR, and X̄NA and ȲNA are the centralized true

and rotated coordinate matrices of the anchor nodes, given by

X̄NA = XNA −
1TNA
NA
·XNA ⊗ 1NA , (242)

ȲNA = YNA −
1TNA
NA
· [Y]1:NA,1:η ⊗ 1NA . (243)

88Rigid transformations are reflections, rotations and translations [37, 38].
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Appendix 2: Proof of Lemma 3

First, recognize that εi = aii ∼ pGamma(r; η/2, 2σ
2
y), which also implies that εi

are i.i.d. with respect to the subindex i which therefore will be temporarily
dropped from the notation, for simplicity.

Given the distributions of ε and ε, it is clear that

Pr{ε > ε | ε} =
2

Rε

∞∫

ε

r · exp

(−r2

Rε

)
dr = exp

(−ε2

Rε

)
. (244)

Marginalizing equation (244) over the distribution of ε yields

Pr{ε>ε} =

∞∫

0

exp

(−r2

Rε

)
· pGamma

(
r;
η

2
, 2σ2

y

)
dr (245)

=
1

(2σ2
y)
η/2 Γ(η2 )

∞∫

0

r
η/2−1 · exp

(
− r

2

Rε
− r

2σ2
y

)
dr.

Using the closed-form solution to the latter integral89 in [186, pp.297, Eq.(9)],
we obtain

Pr{ε > ε} =

(
Rε
8σ4

y

)η
4
· exp

(
Rε

32σ4
y

)
·D−η/2

(√
Rε
8σ4

y

)
. (246)

Finally, equation (246) reduces to (96) by use of the relation [186, pp.621]

Dν(r) = 2
ν
2 exp(−r2/4)U(−ν/2, 1/2, r2/2), (247)

which concludes the proof.

89Setting c = 0 in the cosh variation of [186, pp.297, Eq.(9)] yields
∫∞
0 exp(−ax2−bx)xα−1dx=

Γ(α)·(2a)−α/2exp(b2/(8a))·D−α(b/
√

2a), where Dν(x) is the Parabolic Cylinder function.
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Appendix 3: Proof Lemma 4

First, notice that the η-tuple hi , {hi1, · · · , hiη} is constant for any given
i. Let us define the variable ζij |hi , |

∑η
k=1 hik · wjk|. Obviously ζij |hi’s are

half-Normal or, alternatively,

ζij |hi ∼ pNakagami(r, 0.5, σ
2

η∑

k=1

h2
ik), (248)

where
pNakagami(r;m,R) ,

2r2m−1

Γ(m)
·
(m
R

)m
· exp

(
−m
R
r2
)
. (249)

For notational simplicity we shall hereafter omit the conditional dependence
of ζij |hi on hi and write simply ζij .

Consequently, the n-th moment of ζij , with respect to realizations over j, is
[187, pp. 47],

E[ζnij ] =
1√
π
· Γ
(
n+ 1

2

)
·



√√√√2σ2 ·

η∑

k=1

h2
ik



n

= Mn(1/2, 1/2) · F n
i , (250)

where the function90 Mn(m,R) and the auxiliary quantity Fi are defined below:

Mn(m,R) ,
Γ(m+ n/2)

Γ(m)
·
(
R

m

)n
2
, (251)

Fi ,

√
2σ2 ·

η∑
k=1

h2
ik. (252)

In light of the above, and by force of the multinomial theorem and the
independence91 of ζij , the n-th moments of zi with respect to different realizations
of hik and ykj , is

E[zni ] = E






M∑

j=1

ζij



n
=

∑

{q1,··· ,qM}

n!·
E[ζq1ij · · · ζqMij ]

q1! · · · qM !
(253)

= n! ·
∑

{q1,··· ,qM}

E



M∏

j=1

Mqj (1/2, 1/2) · F qji
qj !


,

90Notice thatMn(m,R) is simply the envelope moment function of the Nakagami-m pdf.
91To clarify, ζij are independent amongst themselves but conditionally dependent on hi.
Consequently, in equation (253), the Law of Iterated Expectations is implicitly invoked.
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where the summations in the two rightmost equalities are taken over all M -
tuples {q1, · · · , qM} of non-negative integers satisfying the Diophantine equation
q1 + · · ·+ qM = n, hereafter referred to as the Diophantine constraint.

Next, realize that due to the Diophantine constraint
∏M
j=1 F

qj
i = F

∑M
j=1 qj

i =

Fni . Furthermore,Mn(1/2, 1/2) = 1√
π

Γ
(
n+1

2

)
, such that equation (253) reduces

to

E[zni ] = n! · E[Fni ] ·
∑

{q1,··· ,qM}

∏

qj 6=0

1

qj
· Γ
( qj

2 + 1
2

)
√
π · Γ(qj)

, (254)

where we have used the relation r! = Γ(r + 1) = r · Γ(r) and the last product is
taken over the non-zero integers qk of the corresponding Diophantine-constrained
M -tuple {q1, · · · , qM}.

Using the Legendre duplication formula for the Gamma function [188, pp.
256, eq. 6.1.18] in the product appearing in equation (254) yields

E[zni ] = n! · E[Fni ] ·
∑

{q1,··· ,qM}

∏

qj 6=0

1

2qj · Γ
( qj

2 + 1
) . (255)

Due to the monotonically ascending behavior of the function 2rΓ(r/2 + 1) on
r > 1, the denominator in the product appearing in equation (255) is smallest
for qj = 1, ∀ j. Consequently min

qj
{2qj · Γ

( qj
2 + 1

)
} = 21 · Γ

(
1
2 + 1

)
=
√
π.

In other words, the dominant terms of the sum over all distinct M -tuple
{q1, · · · , qM} satisfying the Diophantine constraint are the ones associated with
the M -tuple in which all qj ’s are either 0 or 1, exclusively. Furthermore, in each
such M -tuple, there are exactly n distinct qj ’s equal to one, such that the largest
terms in the sum are π

−n/2 .
Next, realize that there are

(
M
n

)
as many such (dominant) terms, which yields

∑

{q1,··· ,qM}

∏

qj 6=0

1

2qj ·Γ
( qj

2 +1
) −→
M�1

(
M

n

)
1

π
n/2
. (256)

Furthermore, expanding the binomial coefficient and considering its largest
term we obtain

(
M

n

)
= M(M−1)(M−2)(M−n−1) −→

M�1
Mn. (257)

Substituting equations (252), (256) and (257) into equation (255), we finally
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obtain for a sufficiently large M

E[zni ] −→
M�1

(
2M2σ4

π

)n
2

·E





√√√√ 1

σ2

η∑

k=1

h2
ik



n
 =

(√
α/2

)n
·E[χni ], ∀ n ∈ N, (258)

where the σ2 dividing the sum inside the expectation is maintained explicitly for
future convenience, α is as defined in equation (107) and χi is a random variate
with distributions

χi ∼





pCχ(r; η) ,
rη−1

2
η/2−1 · Γ(η/2)

· exp

(−r2

2

)
if E[hik] = 0 ∀ k,

pNCχ(r; η, βi) ,
r
η/2

β
η/2−1
i

· exp

(
−r

2 + β2
i

2

)
· Iη/2−1(βir)

otherwise.

(259)

and where pCχ(r; η, α) and pNCχ(r; η, βi, α) denote the central and the non-
centrale χ distributions.

From equations (258) and (259) it is evident that asymptotically (for large
M), all the moments of zi are identical to the moments of a Chi random variate –
central or non-central depending on the means of hik – multiplied by the constant√
α/2.
In other words, zi is92, a scaled Chi variate, which immediately leads93 to

equation (106), concluding the proof.

92Rigorously speaking, this assertion implies the moment-determinance of the Chi distribution.
This has been proved to be true for the central case in [189], and a similar proof for the
non-central case can be easily obtained.
93It is well known that if a continuous random variate w = c · r, where c is a constant and
r ∼ p(r), then w ∼ 1

c
· p( r

c
).
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Appendix 4: Proof of Lemma 5

First notice that

φij = aij + bij + bji =
η∑
k=1

(wik · wjk + cik · wjk + cjk · wik), (260)

θji = aij + bji =
η∑
k=1

(wik · wjk + cjk · wik), (261)

where for each realization and the i-th row,

η∑
k=1

wik · wjk ∼ pGauss(0;σy
√∑η

k=1 w
2
ik), (262)

η∑
k=1

cik · wjk ∼ pGauss(0;σy
√
λi), (263)

η∑
k=1

cjk · wik ∼ pGauss(0;σy
√
λj). (264)

The relations in equations (262) and (263) are evident, while the one in
equation (264) follows from the fact that the η-tuples {cj1, · · · , cjη} are orthogonal
for different j’s.

Since σ̂y ,
√∑η

k=1 w
2
ik/η is the sample standard deviation of wik, it is

evident that for η sufficiently large
√∑η

k=1 w
2
ik → σy

√
η. It follows that

φij ∼ pGauss(r; 0, σy
√
ησ2

y + λi + λj) and θji ∼ pGauss(r; 0, σy
√
ησ2

y + λj), such
that their absolute values are Half-Normal, or alternatively a Nakagami-m
variate with m = 0.5, which yields equations (111) and (112).
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