
A
B
C
D
E
F
G

UNIVERS ITY OF OULU P.O.B . 7500 F I -90014 UNIVERS ITY OF OULU F INLAND

A C T A U N I V E R S I T A T I S O U L U E N S I S

S E R I E S E D I T O R S

SCIENTIAE RERUM NATURALIUM

HUMANIORA

TECHNICA

MEDICA

SCIENTIAE RERUM SOCIALIUM

SCRIPTA ACADEMICA

OECONOMICA

EDITOR IN CHIEF

PUBLICATIONS EDITOR

Senior Assistant Jorma Arhippainen

University Lecturer Santeri Palviainen

Professor Hannu Heusala

Professor Olli Vuolteenaho

University Lecturer Hannu Heikkinen

Director Sinikka Eskelinen

Professor Jari Juga

Professor Olli Vuolteenaho

Publications Editor Kirsti Nurkkala

ISBN 978-952-62-0029-3 (Paperback)
ISBN 978-952-62-0030-9 (PDF)
ISSN 0355-3191 (Print)
ISSN 1796-220X (Online)

U N I V E R S I TAT I S O U L U E N S I SACTA
A

SCIENTIAE RERUM
NATURALIUM

U N I V E R S I TAT I S O U L U E N S I SACTA
A

SCIENTIAE RERUM
NATURALIUM

OULU 604

A 604

Pasi Kuvaja

SOFTWARE PROCESS
CAPABILITY AND
MATURITY DETERMINATION
BOOTSTRAP METHODOLOGY AND ITS EVOLUTION

UNIVERSITY OF OULU GRADUATE SCHOOL;
UNIVERSITY OF OULU,
FACULTY OF SCIENCE,
DEPARTMENT OF INFORMATION PROCESSING SCIENCE

A
 604

AC
TA

Pasi K
uvaja

A C T A U N I V E R S I T A T I S O U L U E N S I S
A S c i e n t i a e R e r u m N a t u r a l i u m 6 0 4

PASI KUVAJA

SOFTWARE PROCESS CAPABILITY
AND MATURITY DETERMINATION
BOOTSTRAP methodology and its evolution

Academic dissertation to be presented with the assent of
the Doctoral Training Committee of Technology and
Natural Sciences of the University of Oulu for public
defence in Auditorium IT116, Linnanmaa, on 4 December
2012, at 12 noon

UNIVERSITY OF OULU, OULU 604

Copyright © 604
Acta Univ. Oul. A 604, 604

Supervised by
Professor Markku Oivo
Professor Jouni Similä

Reviewed by
Professor Mark C. Paulk
Professor Jarmo Ahonen

ISBN 978-952-62-0029-3 (Paperback)
ISBN 978-952-62-0030-9 (PDF)

ISSN 0355-3191 (Printed)
ISSN 1796-220X (Online)

Cover Design
Raimo Ahonen

JUVENES PRINT
TAMPERE 604

Kuvaja, Pasi, Software process capability and maturity determination.
BOOTSTRAP methodology and its evolution
University of Oulu Graduate School; University of Oulu, Faculty of Science, Department of
Information Processing Science, P.O. Box 3000, FI-90014 University of Oulu, Finland
Acta Univ. Oul. A 604, 604
Oulu, Finland

Abstract

Software process assessment and improvement came under the spotlight in the discussion of
software engineering when the Software Engineering Institute published the maturity model for
software process capability determination in 1987. Since then, several new approaches and
standards have been developed. This thesis introduces a European software process assessment
and improvement methodology called BOOTSTRAP, which was initially developed in an
ESPRIT project starting from lean and kaizen philosophy. The focus is on the evolution of
methodology and how it was developed, using an experimental research approach. The work
covers also enhancements to the methodology investigated in the SPICE, PROFES and
TAPISTRY projects. The enhancements expand the original methodology into new specific
application areas, keep it compliant with new quality standards and certification, improve the
efficiency of the assessment method, enhance the focus from process to product and strengthen
improvement monitoring and support. To address these areas, the new BOOTSTRAP
methodology releases offer tailored and enhanced assessment reference models and enhanced
assessment and improvement methods. The new features also facilitate more frequent and even
continuous assessments with software measurement-based indicators.

The thesis explains the origin and features of BOOTSTRAP software process assessment and
improvement methodology and how it was developed for professional use. The discussion starts
with the evolution of the methodology. Then the new trends and demands are introduced and new
features of the BOOTSTRAP methodology described. The conclusion discusses how the
methodology developed to be able successfully to support professional software process
assessment, to align it with the evolution of software engineering, to adopt the features and
requirements of the underlying standards in order to conform to the requirements set by ISO 15504
standard and to become validated in practice.

Keywords: assessment, assessment methodology, assessment model, BOOTSTRAP,
capability, capability level, CMM, CMMI, Drive-SPI, ESPRIT, ESSI, EUREKA,
improvement, ISO 15504, ISO 9001, kaizen, lean, MONICA, MOOSE, process model,
PROFES, software process, SPAM, SPICE, SPIRE, TAPISTRY, technology support

Kuvaja, Pasi, Ohjelmistoprosessin kyvykkyyden ja kypsyyden arviointi.
BOOTSTRAP menetelmä ja sen kehittyminen
Oulun yliopiston tutkijakoulu; Oulun yliopisto, Luonnontieteellinen tiedekunta,
Tietojenkäsittelytieteiden laitos, PL 3000, 90014 Oulun yliopisto
Acta Univ. Oul. A 604, 604
Oulu

Tiivistelmä

Ohjelmistoprosessin arvioinnista ja parantamisesta tuli ohjelmistotekniikan keskeinen kiinnos-
tuksen kohde kun Carnegie-Mellon yliopiston ohjelmistotekniikan instituutti SEI julkaisi kyp-
syysmallinsa ohjelmistoprosessin kyvykkyyden arviointiin vuonna 1987. Siitä lähtien maailmal-
la on syntynyt lukuisa määrä uusia malleja ja standardeja tälle alueelle. Tässä väitöskirjassa esi-
tellään eurooppalainen ohjelmistoprosessin arviointi- ja parantamismenetelmä BOOTSTRAP,
joka kehitettiin alun perin Euroopan unionin ESPRIT tutkimusohjelman rahoittamassa projektis-
sa lähtien japanilaisesta ohut-ajattelusta (Lean) ja sen jatkuvan parantamisen periaatteesta (Kai-
zen). Esitys keskittyy menetelmän kehittymiseen ja siihen miten menetelmä käytännössä kehitet-
tiin käyttäen kokeellista tutkimustapaa teollisessa ympäristössä. Työ kattaa myös alkuperäiseen
menetelmään tehdyt laajennukset, jotka syntyivät yhteistyössä SPICE, PROFES ja TAPISTRY
projekteissa tehdyn tutkimuksen tuloksena. Tehdyt laajennukset mahdollistavat menetelmän
käytön uusilla sovellusalueilla, takaavat menetelmän yhteensopivuuden alan laatu- ja sertifiointi-
standardien kanssa, parantavat menetelmän tehokkuutta, laajentavat menetelmän käyttöaluetta
prosessin arvioinnista sisältämään myös tuotteen kehittämisen arvioinnin ja vahvistavat paranta-
misen seurantaa ja tukemista. Toteuttaakseen näiden uusien ominaisuuksien vaatimukset uudet
BOOTSTRAP menetelmän julkistukset tarjoavat räätälöityjä ja laajennettuja mallikuvauksia
arviointien tekemiseksi sekä entistä täydellisempiä lähestymistapoja arviointien suorittamiselle
ja parantamiselle. Menetelmän uudet ominaisuudet mahdollistavat myös usein toistuvien arvi-
ointien suorittamisen ja jopa jatkuvan arvioinnin ohjelmisto-mittauksia hyödyntäen.

Väitöskirjassa kuvataan yksityiskohtaisesti BOOTSTRAP menetelmän lähtö-kohdat ja omi-
naisuudet ja se kuinka menetelmä onnistuttiin kehittämään ammattimaiseen ohjelmistoprosessin
arviointiin ja parantamiseen sopivaksi. Ensin kuvataan menetelmän kehittyminen ja sitten ede-
tään alan uusien kehitystrendien ja vaatimusten esittelyyn siihen kuinka BOOTSTRAP menetel-
mä uudet ominaisuudet vastaavat näihin vaatimuksiin. Yhteenvedossa osoitetaan kuinka kehittä-
misessä onnistuttiin saamaan aikaan uusi menetelmä, joka sopii ammattimaiseen ohjelmistopro-
sessin arviointiin, vastaa kaikilta osin alan kehittymisen vaatimuksia, sisältää alan standardien
vaatimukset täyttävät käytännössä koestetut ominaisuudet, jotka takaavat menetelmän vastaa-
vuuden ISO 15504 standardin vaatimuksiin.

Asiasanat: arviointimalli, arviointimenetelmä, BOOTSTRAP, CMM, CMMI, Drive-
SPI, ESPRIT, ESSI, EUREKA, ISO 15504, ISO 9001, jatkuva parantaminen,
kyvykkyys, kyvykkyystaso, MONICA, MOOSE, ohjelmistoprosessi,
ohjelmistoprosessin arviointi, ohut-tuotanto, PROFES, prosessimalli, prosessin
parantaminen, SPAM, SPICE, SPIRE, TAPISTRY, teknologiatuki

To my family

8

9

Acknowledgements

Writing this thesis took me seven years, distributed over thousands of random fifteen-

minute writing periods, except for the last “scrum”, which filled my summer holidays

in the cool, rainy summer of 2012. During that time I was able really to enjoy the

privilege of focusing full-time on writing and thinking, without the stress of

preparing, managing and reporting on research projects. For that privilege I have to

thank my colleagues Dr. Kari Liukkunen and Dr. Jouni Markkula, who helped me

clear my calendar for the writing. Additionally, my supervisors, Professor Markku

Oivo and Professor Jouni Similä, injected me full of motivation to engage in this final

summer of writing, and Professor Harri Haapasalo encouraged and supported me

greatly during this time. I am deeply grateful to all of them for giving me the

opportunity of my life to complete the thesis.

The research reported in this thesis was conducted in international research

projects and institutes during the years 1990 to 2004. The research started in the

BOOTSTRAP project, which was part of the Third Research Framework Programme

funded by the European Commission and, for the Finnish participants, by the Finnish

Funding Agency for Technology and Innovation (TEKES), as Finland was not at that

time a member of the European Union. I would like to thank Professor Volkmar

Haase and Dr. Richard Messnarz from the Technical University of Graz in Austria for

inviting the Finnish consortium to participate in the project and Professor Günter

Koch for leading the project successfully. Professor Jouni Similä and Professor

Samuli Saukkonen supported the idea and made it possible for Finland to participate.

The research continued in the BOOTSTRAP Institute, which was established as a

spin-off from the project. The Department of Information Processing Science joined

as an academic member of the Institute. I am very grateful to the directors of the

Institute, Professor Roberto Galimberti, Mr. Scott Hansen and Mr. Peter Bölter, who

offered me an excellent opportunity to participate in the worldwide “bootstrapping

research and development experience” at the Institute internally and in cooperation

with the international SPICE project, which covered all continents. I am grateful too

to the project manager, Mr. Alec Dorling, for allowing me to serve as a work package

co-leader for the development of the process improvement guide.

The research continued within the Institute in a European research project called

TAPISTRY, which was part of the ESPITI programme of the ESSI initiative, funded

by the European Union Fourth Research Framework Programme. In parallel to

TAPISTRY, the research was also conducted in the PROFES project, which was

accepted as one of 23 candidates for the “the basket of process improvement” in the

10

last call of the Fourth Research Framework Programme. I would like to thank project

manager, Mr. Frank van Latum, for his cooperation and for educating me about the

interior workings of the European embedded systems industry.

In the course of this research, I have cooperated, discussed, argued and shared

understanding with more than 200 members of the projects, all of whom were

knowledgeable, leading edge experts and researchers. There being so many, it is not

possible for me to name the individuals here but I am deeply thankful to all of them

for giving me such a superb opportunity to learn about an international way of life. I

thank also the European Union and TEKES, especially Mr. Matti Sihto, for organising

funding for the research. Additionally, I would like to thank the Tauno Tönning

Foundation for awarding me a grant to assist in finalising the thesis.

Serious research is never the work of just one person, although the results have

too often been reported in one person’s name. This thesis too is based on research

results that were created by a great number of participants acting together. The results

were reported in six publications by the key researchers and the author of this thesis. I

thank all co-authors for their contributions.

I thank also all members of the Department of Information Science and especially

Professor Pentti Kerola for offering me basic education on software engineering and

an excellent environment in which to grow as an internationally recognised

researcher. I am indebted to all staff of the department for their marvellous

collaboration and colleagueship. During the work in the department, I had the

opportunity to establish a dynamic research group called M-group with Professors

Markku Oivo and Jouni Similä. M-group is international and deeply networked and

cooperates with the industry in Europe and all over the world. I thank all M-group

members for their efficient cooperation, support and inspiring team work.

I respectfully thank the pre-examiners of this thesis, Professor Mark C. Paulk

from Carnegie-Mellon University and Professor Jarmo Ahonen from the University of

Eastern Finland, for their thorough and encouraging reviews of this work. Finally, I

thank my beloved wife, Kaisa, and daughter Paula, and my son in law Tuomas who

have whole-heartedly supported me throughout my journey.

You are not important but life is!

11

List of abbreviations

CMM Capability Maturity Model

CMMI Capability Maturity Model Integrated

DoD Department of Defence

Drive-SPI Risk Driven Software Process Improvement

EER Explorative empirical research

ESA European Space Agency

ESPRIT European Information Technologies Programme

IDEAL Software improvement model by SEI

ISO International Standardisation Organisation

ISO 15504 ISO standard number 15504

ISO 9000 ISO standard number 9000

ISO 9000-3 ISO standard number 9000 part 3

ISO 9001 ISO standard number 9001

PDCA Plan–Do–Check–Act

PROFES PROduct Focused software procESs improvement

SCAMPI Software Capability Appraisal Method for Process Improvement

SEI Software Engineering Institute

SEL Software Engineering Laboratory

SPAM Software Portability Assessment Method

SPI Software process improvement

SPICE Software Process Improvement and Capability dEtermination

SPIRE Self-assessment based software process improvement

SPU Software producing unit

TAPISTRY A software process improvement approach tailored for small

enterprises

TEKES The Finnish Funding Agency for Technology and Innovation

12

13

List of original publications

I Kuvaja P & Bicego A (1994) BOOTSTRAP – A European assessment methodology.
Software Quality Journal 3(3): 117–127.

II Similä J, Kuvaja P & Krzanik L (1995) Bootstrap: a software process assessment and
improvement methodology. International Journal of Software and Knowledge
Engineering 5(4): 559–584.

III Bicego A & Kuvaja P (1996) Software process maturity and certification. Journal of
Systems Architecture 42(8): 611–620.

IV Kuvaja P (1999) BOOTSTRAP 3.0 – A SPICE conformant software process
assessment methodology. Software Quality Journal 8(1): 7–19.

V Kuvaja P, Palo J & Bicego A (1999) TAPISTRY – A Software process improvement
approach tailored for small enterprises. Software Quality Journal 8(2): 149–156.

VI Kuvaja P, Maansaari J, Seppänen V & Taramaa J (1999) Specific requirements for
assessing embedded product development. In: Oivo M & Kuvaja P (eds) Proceedings
of International Conference on Product Focused Software Process Improvement –
Profes ’99. VTT Symposium Series 195: 68–85.

14

15

Table of contents

Abstract

Tiivistelmä

Acknowledgements 9
List of abbreviations 11
List of original publications 13
Table of contents 15
1 Introduction 17

1.1 Background and overview .. 17
1.2 Scope of the research .. 20
1.3 Research objectives and questions .. 25
1.4 Research strategy .. 31
1.5 Outline of the thesis .. 34

2 Related works and evolution 37
2.1 Capability Maturity Model developments ... 37

2.1.1 Capability Maturity Model ... 38
2.1.2 Capability Maturity Model for Software 41
2.1.3 Capability Maturity Model Integration ... 43

2.2 Other assessment and improvement models ... 44
2.2.1 Healthcheck .. 44
2.2.2 Software Technology Diagnostic .. 45
2.2.3 TickIT ... 46
2.2.4 Trillium ... 47

2.3 Standards and guidelines ... 48
2.3.1 Quality standards .. 49
2.3.2 Lifecycle standards ... 51
2.3.3 Conformity standard ... 55

3 Research process 59
3.1 Phase 1 – Initial development ... 61
3.2 Phase 2 – Methodology professionalisation .. 63
3.3 Phase 3 – Methodology enhancement ... 65

4 Analysis and main results 69
4.1 Phase 1 – Research prototype ... 70
4.2 Phase 2 – Commercial methodology ... 73
4.3 Phase 3 – Different versions ... 75

5 Introduction to original publications 81

16

5.1 Publications and author’s contribution .. 81
5.2 BOOTSTRAP – a European assessment methodology 83
5.3 BOOTSTRAP: A Software process assessment and improvement

methodology .. 86
5.4 Software process maturity and certification .. 87
5.5 BOOTSTRAP 3.0 – A SPICE Conformant Software Process

Assessment Methodology ... 88
5.6 TAPISTRY – A Software Process Improvement Approach

Tailored for Small Enterprises ... 89
5.7 Definition of an embedded systems process frame to enhance

ISO 15504 conformant assessments .. 90
6 Conclusions 91

6.1 Main contributions .. 91
6.2 Validity of the research .. 98
6.3 Limitations of the study .. 102
6.4 Future research .. 104

References 105
Original publications 117

17

1 Introduction

This thesis arose out of work carried out originally in the BOOTSTRAP project1

(Kuvaja & Bicego 1993; Koch 1993) and continued in the SPICE2 (Dorling 1993)

and TAPISTRY3 (Kuvaja et al. 1999b) projects on the behalf of the BOOTSTRAP

Institute (Kuvaja et al. 1994) and PROFES4 (Oivo et al. 1999; Bicego et al. 1997)

project, along with the wider European industry. The aim of the projects was to

develop an assessment methodology for professional use, specifically in the

European industry. The thesis will elaborate the development results, starting

from the methodology prototype, proceeding to the professional product and

ending with product differentiation for special purposes, and show their

interchange with and impacts on the evolution of the external knowledge base and

use environment. The research methodology applied was constructive (Järvinen

1999) and empirical (Wohlin et al. 2003) in nature and applied ideas of design

science (March & Smith 1995), Deming’s (Deming 1986) Plan–Do–Check–Act

(PDCA) cycle and Basili’s (Basili 1992) Goal–Question–Metrics (GQM)

paradigm. The thesis comprises the published contributions of the author in the

above-mentioned projects.

1.1 Background and overview

The software process assessment and improvement movement in software

engineering started in the USA in the 1980s, when the Department of Defence

(DoD) became concerned about software problems within their military systems.

In order to improve the situation, the DoD launched a bid to American research

institutes to improve their contractors’ software quality. Two main approaches that

were recognised were Vic Basili’s measurement-based software process

improvement (Basili & Weiss 1984) and Humphrey´s approach for software

1 An ESPRIT Project No. 5441, BOOTSTRAP, funded by the European Commission during 1990–
1992.
2 Software Process Improvement and Capability dEtermination – SPICE, an international project set
up by ISO JTC1, Technical Committee 7 (Software engineering) Working Group 10 (Software
process assessment) to develop initial working draft material for the forthcoming standard ISO 15504
“Information technology – Software process assessment”.
3 ESSI Esprit Project (No. 24238), called “TAPISTRY”, Tailored Application of Software Process
Improvement Techniques for Small Enterprises, funded by the European Commission during 1996–
1997.
4 ESPRIT Project No. 23239, PROFES (PROduct Focused improvement of Embedded Software
processes), funded by the European Commission during 1997–1999.

18

(development) process capability evaluation (Humphrey 1989). Humphrey’s

group at the Software Engineering Institute (SEI) at Carnegie-Mellon University

in Pittsburgh published “A Method for Assessing the Software Engineering

Capability of Contractors” in 1987 (Humphrey & Sweet 1987). This was the

starting point for a worldwide phenomenon called “software process assessment”.

In Europe, the American experiences inspired an Esprit project called

BOOTSTRAP (from 1989 to 1992) to develop a European process assessment

methodology based on Humphrey’s model and the ISO 9000 standards, which

were becoming the main references also for the software industry. Further, the

software lifecycle standard developed by the European Space Agency (ESA)

(ESA 1991 February 1991) was used as one of the initial references. The ISO

9000 series formed a family of standards (ISO 9000:1987 1987) and guidelines

that specify the minimal requirements for a quality system to underpin the

relationship between the purchaser and the supplier within a contractual

agreement. Within these norms, ISO 9001 (ISO 9001:1987 1987) specifies the

requirements for the quality system of an organisation, covering the entire product

lifecycle, including design, development, production, installation and servicing.

The standard applies to a large group of products, including among others

hardware and software. Additionally, a guide dedicated to software (named ISO

9000-3) was provided to help in applying the ISO 9001 requirements to a

software organisation (ISO 9000-3:1991 1991).

Development in software measurement also continued, perhaps the best-

known effort being that of Basili’s group, which formed the Software Engineering

Laboratory (SEL) together with the National Aeronautics and Space

Administration’s Goddard Space Flight Center (Basili & Green 1994). Similarly,

where software development was seen as processes, software process modelling

became one possible method of improving the processes (Kellner 1989; Basili

1992; Rombach & Verlage 1993).

The three main types of approach that constitute the main avenues of a

phenomenon called software process improvement (SPI), which has its origins in

total quality management (TMQ) (Juran 1986a; Juran 1986b; Deming 1981), are

CMM-based, standard-based, and measurement-based. The CMM-based

approaches apply software process assessment for diagnosing the needs for

improvement. The standard-based approaches focus to certify the conformity

towards the requirements of the applied standard and indicate the topics for

improvement based on the found deficiencies. The measurement-based

approaches derive from measurement theory (Fenton 1991: 17–19), and use a set

19

of metrics for monitoring process performance. No matter which of these three

improvement approaches is applied, SPI can be seen in general as the discipline

of characterising, defining, measuring and improving software management and

engineering processes, leading simultaneously to successful software engineering

management, higher product quality, greater product innovation, faster cycle

times and/or lower development costs. The motivation behind the SPI comes from

the needs and business goals of an organisation, which are often centred on

achieving enhanced customer satisfaction and greater competitiveness in cases

where the software offer is greater than the market demand5. For software

producing organisations (SPU), the key management concerns become drivers

that initiate software process improvement throughout the organisation, with

goals of higher software quality, lower development and maintenance costs,

shorter time to market or increased predictability and controllability of software

work products and processes.

Nearly all assessment-based improvement approaches include or are based on

Watts Humphrey’s six-step improvement cycle (Humphrey 1989). Of these, the

best-known is the IDEAL model (McFeeley 1996), which describes a series of

steps for making improvements to software processes in the CMM assessment

framework. Together with CMM, it has become the de facto standard model in

CMM-based software process improvement. The original model was developed

by SEI (Humphrey 1993) and successfully applied to a number of practical cases

in industry (Humphrey et al. 1991). The latest development of these models has

resulted in the Capability Maturity Model Integration (CMMI) and the Software

Capability Appraisal Method for Process Improvement (SCAMPI). Additionally,

so-called “SPICE” assessment approaches have been developed both internally by

individual companies and by consortia such as Auto-Spice. They meet the

requirements of the ISO 15504 suite of standards and guidelines. BOOTSTRAP

methodology forms one step in this development path and builds on the initiatives

and traditions developed earlier (Koch 1993) and was fed directly into the

development of ISO 15504 standard as one of the background models (Paulk &

Konrad 1994b), as described above.

5 The other two cases are the situation where the offer is equal to market demand and where the offer
is less than market demand. In the former case, the quality attribute is called “fitness for use” and in
the latter “conformance to specifications or standards” (Juran 1992: 9–11).

20

1.2 Scope of the research

The aim of this thesis is to illuminate the issues related to defining, developing,

maintaining and using software process assessment methodology in professional

software process improvement, in the light of the evolution of the field. The

research reported here has been a part of that evolution and the result is one of the

recognised relevant methodologies, called BOOTSTRAP.

Software process assessment has its origins in the total quality management

(TQM) movement, and derives from the basic assumption that the quality of

manufactured products is largely determined by the quality of the processes that

produce them (Deming 1982). Put at its simplest, “assessment is seen just as a

determination of how various parts of a software project (such as people, tasks,

tools, (internal) standards, and resources) interact to produce software” (Bollinger

& McGowan 1991: 25). More broadly: “the objectives of software process

assessment are to understand and improve how an organisation uses its resources

to build high quality software” (Bollinger & McGowan 1991: 25). According to

Humphrey (Humphrey 1989: 14), the first step in software process improvement

is to understand the current status of the process6. The objectives of the

assessment are to learn how the organisation works, to identify its major problems

and to enrol its opinion leaders in the change process (Humphrey 1989). All these

elements are quite important during the first stage of improvement in order to

make it continuous and involve senior management leadership and support for the

change7.

In general, software process assessment may be used for two different

purposes, namely software development capability determination and software

process improvement, as shown in Figure 1. Within the context of process

capability determination, software process assessment is concerned with

analysing the capability achievements of selected processes against a target

process capability profile, in order to identify the risks involved in undertaking a

project that uses the selected processes or in establishing customer relationships

with the organisation performing the processes. The proposed capability may be

based on the results of previous process assessments in the target organisation or

on the assessment carried out for the purpose of establishing the proposed

6 The subsequent steps are: develop a vision of the desired process, establish a list of required process
improvement actions in order of priority, produce a plan to accomplish the required actions, commit
the resources to execute the plan and start over at step 1 (Humphrey 1989: 14).
7 See the principles of improvement in Humphrey’s work (Humphrey 1989: 19).

21

capability in the potential client organisation (Kuvaja et al. 1995a). Capability

determination is used mainly in second-party assessment context, but even in this

context the target organisation should take the results as indication for internal

process improvement. If that will not happen it might lead to dysfunctional

behaviour as Austin (Austin 1996) has pointed to happen to an organisation in

measurement context.

Within the process improvement software process, assessment provides the

means of characterising the current practice in an organisational unit8 in terms of

capability. The results of the evaluation are analysed in the light of the

organisation’s goals and business needs in order to understand the strengths,

weaknesses and risks inherent in the processes. This, in turn, leads to the ability to

determine whether the processes are effective in achieving their goals and to

identify significant causes of poor quality or overruns in time or costs. These

provide the drivers for prioritising improvements for the processes (Kuvaja et al.

1995a).

Fig. 1. Software process assessment context (Kuvaja et al. 1995a:.3).

Methodologically, software process assessment is understood as “disciplined

examination of the processes used by an organisation against a set of criteria to

8 The part of the organisation that is the subject of an assessment. An organisational unit is typically
part of a larger organisation, for example a specific project or set of related projects or a part of an
organisation responsible for a particular product or product set.

22

determine the capability of those processes to perform within quality, cost and

schedule goals. The aim is to characterise current practice, identifying strengths

and weaknesses and the ability of the process to control or avoid significant

causes of poor quality, cost and schedule performance” (ISO/IEC-

JTC1/SC7/WG7/SG1 1992). As already mentioned, process assessment is

performed either during a process improvement initiative or as a part of a

capability determination exercise. As such, it is invoked by and returns results to

either the improvement or the capability determination (Dorling 1993). In either

case, there should be an input to the process assessment, defining the purpose

(why the assessment is being carried out), scope (what processes should be

assessed) and what constraints, if any, will apply in the assessment. The

assessment input also defines the responsibility for carrying out the assessment

and gives definitions for any processes within the scope of the assessment that are

variants of the standard reference processes of the approach applied. Figure 2

illustrates the entire context of a software process assessment as defined initially

in the SPICE project (Dorling 1993). It shows the assessment input and output, as

well as other relevant components and their relationships in a professional

assessment.

23

Fig. 2. Software process assessment (Dorling 1993).

In this thesis the focus is on assessment-based software process improvement,

which is intended to become continuous in the target organisation and whose

goals are aligned with the company’s own goals (Kuvaja & Bicego 1993). This

assumes that the improvement will be based on the results of software process

assessment. The idea conforms to Humphrey’s (Humphrey 1989) cycle of six

steps, as set out in Table 1. The cycle starts with process assessment (to

understand the current status), proceeds by a series of improvement activities and

ends by beginning a new improvement cycle. In the BOOTSTRAP methodology,

identification of the organisation’s needs and business goals was added as a

preliminary step before the assessment, in order to guide the assessment and

improvement planning (Bicego & Kuvaja 1996). This idea was further conveyed

to the SPICE project9, as was also the idea of considering software process

improvement as a continuous process.

9 As well as to ISO/IEC standard 15504 (ISO/IEC 15504-4:2004 2004: 14).

24

Table 1. Improvement of software development organisation (Humphrey 1989: 14).

Step Contents

1 Understand the current status of the development process

2 Develop a vision of the desired process

3 Establish a list of required process improvement actions in order of priority

4 Produce a plan to accomplish the required actions

5 Commit resources to execute the plan

6 Start over at step 1

In continuous improvement, an organisation is supposed to move continuously

around an improvement cycle, where the improvement is accomplished in a series

of steps or specific actions such as introducing new or changed practices into

software processes or removing old ones. An important step in the improvement

cycle (Kuvaja et al. 1995b) is the execution of a software process assessment to

Fig. 3. Scope of research in the continuous software process improvement cycle.

25

understand the current (initial) state of an organisation’s software processes, to

use the results of the assessment to formulate and prioritise improvement plans

and subsequently to confirm the improvements resulting from the actions

performed (see Figure 3).

This work covers the following activities and their inputs and results, as

highlighted in blue in Figure 3:

– examine organisation’s needs and goals

– perform process assessment, and

– analyse results and derive improvement action plans.

The other activities described in Figure 3 are considered to belong to the

organisation’s own management, as they require decision making, organisational

changes, resource allocations and investments.

1.3 Research objectives and questions

This research grew out of the software problems called the “software crisis”

(Brooks Jr 1987), which stimulated several initiatives to tackle the problem, one

of which is software process assessment-driven improvement, as described in

section 1.2. The best-known initiative was established by the Software

Engineering Institute at Carnegie-Mellon University, resulting in an approach

called Capability Maturity Model (CMM) (Paulk et al. 1991; Paulk et al. 1995).

The success of CMM initiated a new phenomenon called “software process

assessment and improvement” and many follow-up initiatives were launched

worldwide, among them a European research and development (R&D) project

named BOOTSTRAP10 (Kuvaja & Koch 1992; Koch 1993).

The initial idea of the BOOTSTRAP project was encouraged by the initial

SEI Model (Humphrey & Sweet 1987) at the beginning of BOOTSTRAP project

and then the Capability Maturity Model (CMM) (Weber et al. 1991; Paulk et al.

1991), which was considered to have good potential for improving the

competitiveness of the European software and software-intensive industry, despite

not fitting perfectly into the context owing to its background (see Tully et al.

10 The BOOTSTRAP project was defined and accepted as one of the pathfinders for the European
System & Software Initiative (ESSI) established and funded by the European Commission. ESSI was
a software technology transfer programme aimed at catalysing market pull and motivating software
producers and users to introduce new methods and tools for software development and maintenance
(Koch 1993: 387).

26

1999: 64). In the European software and software-intensive industry, small and

medium-sized companies made up more than 80% of the total at that time,

whereas CMM had originally been developed for large software contracting

companies of the US Department of Defense. A further European need was to

have an assessment methodology that would help software companies to comply

with ISO 9000 requirements and sustain them in continuous improvement, rather

than just perform software development capability evaluation (SDCE) to an

American military standard (DoD-STD-2167A), which was the background

reference model of CMM. During the BOOTSTRAP project, criticism was

levelled at CMM by Bollinger and McCowan (Bollinger & McGowan 1991),

specifically its scoring and rating, evaluation of technology usage and method for

dealing with process risks. Commenting on the criticism, Humphrey and Curtis

(Humphrey & Curtis 1991) granted, for example, the problems of scoring and

agreed on the need to improve the rating, although in their view the structure of

the stages was firm and based on statistical analysis and a long history of

development in total quality management (Humphrey & Curtis 1991: 48). That

discussion gave support to the original motivation for the BOOTSTRAP project.

The mission of the BOOTSTRAP project was to lay the groundwork for

technology-transfer programmes in European industry to help software producers

and users to improve their software quality through process improvement and

introduce new methods and tools for software development and maintenance. The

aim was to develop means to analyse the current state of affairs, identify potential

for change and motivate and support the changes in software engineering

instituted by real companies (Koch 1993: 387). In practice, this required the

development of a software process assessment and improvement methodology for

the European context. The methodology was meant to be used by all European

software industry and software-intensive product development companies

including non-defence sectors such as banking, insurance and administration, as

well as software product development, embedded systems development and

telecoms.

From the European industry context, this meant that the assessment and

improvement approach should:

1. fit the assessment-driven software process improvement initiatives

implemented also in SMEs

2. support application of the requirements of international quality standards

recognised in European industry

27

3. provide reliable results for improvement initiatives

4. keep the contents comparable with other worldwide accepted software

process assessment and improvement approaches and standards (for

benchmarking certification purposes, for example), and

5. avoid the criticism directed at existing assessment and improvement

approaches.

At the beginning of the BOOTSTRAP project, the research group became

familiar with “lean thinking” (Womack et al. 1991; Dertouzos et al. 1989), which

was projected to take over all areas of industrial activity including software

production (Koch 1993, based on Cusumano 1991). The BOOTSTRAP

hypothesis, developed in accordance with this thinking, was that before any

investments are made in technology (T) upgrade (i.e. tools and infrastructure), it

is critical to invest in methodology and methods (M) (i.e. how to build solutions)

and before that in the working organisation (O) (i.e. how to organise software

development and maintenance) (Koch 1993). This basic hypothesis was

considered a means of helping software development out of the crisis on a

company level and it established the foundation for all research and development

efforts of the BOOTSTRAP methodology11.

More specifically, the BOOTSTRAP methodology development goals

derived from the concept of kaizen in lean thinking, namely:

– to recognise existing problems of the organisation

– to support gradual change (improvement) in the organisation

– to involve all personnel in the change

– to get management support and commitment for the change

– to maintain and apply a set of relevant standards and at the same time to seek

new ways of upgrading the standards, and

– to provide a method and instruments for problem identification, i.e. for

precisely defining where the organisation stands and what gradual changes

are to be recommended in the next steps (Koch 1993).

According to Koch (Koch 1993: 388), kaizen brings the following aspects to

software process improvement in an organisation:

– recursiveness and regularity

11 It has also been applied in the subsequent research projects (SPICE, TAPISTRY, Drive-SPI
(Maupetit et al. 1995) and PROFES).

28

– feedback looping (retrospectives)

– self-organisation, and

– self-development (autopoiesis) or “bootstrapping”.

At the completion of the BOOTSTRAP project, an international initiative called

Software Process Assessment and Capability dEteremination (SPICE) (Dorling

1993) was established for the development of an international standard for

approaches. All recognised process assessment and improvement methodology

developers participated in the project, including BOOTSTRAP (Kuvaja & Bicego

1993; Kuvaja et al. 1994), CMM (Humphrey & Sweet 1987; Paulk et al. 1991),

Healthcheck (Norris et al. 1994), Trillium (Coallier et al. 1993; Coallier et al.

1994), Quantum (Barford et al. 1992), STD (Craigmyle & Fletcher 1993),

Software Quality Improvement Method (Thomson & Mayhew 1994a; Thomson

& Mayhew 1994b) and TickIT (TickIT 1992; Ould 1992). The general tendency

was to develop better approaches for software process assessment and

improvement, and in SPICE specifically to contribute to the contents of the

forthcoming standard and learn from other approaches.

This thesis cannot cover all the ideas, initiatives, needs, requirements,

problems or targets mentioned above. The research problems of the thesis are

defined by focusing only on those specific research problems that are covered in

the original publications of the thesis. Starting from that idea and based on the

introduction above, the research problems to be investigated in this thesis can be

described as follows.

Research question 1 (Q1): What should a software process assessment

methodology include, such that it supports professional software process

assessment?

To answer this question needs clarification of what a professional software

process assessment means in this context. Software process assessment is based

on the essential assumption that assessment consists of evaluating the capability

of an organisation and its processes by comparing performance against some form

of structured process model that serves as a yardstick, allowing the development

of a ‘‘rating’’ of maturity or capability (Rout et al. 2007). To do this in a

professional way requires that the assessment have a stable form and contents that

can be communicated to all stakeholders. The formality of the assessment

presupposes that the approach is disciplined and coherent; provides objective,

reliable and repeatable evaluations and fits different application and business

29

areas. For the assessment to be disciplined and coherent, it must be a well-defined

process that includes objects, actors and operations. The objects include the

process model that is used as a reference in evaluation, objective evidence that is

collected from the entities that are the subject of assessment and process attributes

that are the objects of evaluation12. The process assessment model contains

process and capability dimensions. The actors are assessors, sponsors and other

stakeholders involved in the assessment or having an interest in its results. The

operations include assessment planning, data collection and validation, scoring

and rating the process attributes and reporting the assessment. To provide

objective, reliable and repeatable evaluations requires clear and transparent

scoring scale and rating principles, trained and experienced assessors, supportive

performance and capability indicators and documentation of the assessment

context. To be suitable for different application and business areas, the process

reference model used must include processes that fit the assessment target (Rout

et al. 2007).

Research question 2 (Q2): What should a software process assessment

methodology include, such that it supports continuous software process

improvement?

Continuous software process improvement is one of the cornerstones of

professional software process assessment and improvement methodology for use

in the European software-intensive industry. Here the concept of continuous

improvement comes from the kaizen principle, recognised as one of the starting

points of the BOOTSTRAP project. Kaizen is a Japanese philosophy for process

improvement; the name comes from the Japanese words “kai” and “zen”, which

translate roughly as “to break apart and investigate” and “to improve upon the

existing situation”13. The idea of continuous improvement necessarily implies that

it is constant and never-ending (Womack et al. 1991) and proceeds iteratively by

small steps. Applying kaizen in an organisation is an acknowledgement at the

outset that every organisation has problems, which provide opportunities for

improvement. Improvements through kaizen have a process focus. Therefore, the

companies that apply Kaizen philosophy place emphasis on understanding why a

process works, whether it can be modified or replicated somewhere else in the

company and how it could be improved. Kaizen means continuous improvement,

12 Instead of “evaluation”, the term “measurement” might also be used, but in the assessment context,
“evaluation” fits better, as the measurement is done using an ordinal scale with subjective scoring.
13 See http://www.michailolidis.gr/pdf/KAIZEN08.pdf, which refers to the Kaizen Institute.

30

involving everyone in the organisation from top management to workers, all of

whom contribute improvements by understanding and communicating how their

own work activities fit into the process and may influence change. In essence,

support for continuous improvement means that the improvement is guided by the

organisation’s own improvement goals, based on its own problems, is carried out

through small steps iteratively and aims to involve all personnel.

Research question 3 (Q3): What should a software process assessment

methodology include, such that it supports the requirements of relevant

standards and their evolution?

Standards may be seen as documented agreements containing technical guidelines

to ensure that materials, products, processes, representations and services are fit

for purpose (Allen & Sriram 2000). One type of standards is process-oriented or

prescriptive, where descriptions of the activities and processes are standardised

and provide a methodology to perform processes in a consistent and repeatable

way (Allen & Sriram 2000). This is the role of the standards considered here,

reflected in the BOOTSTRAP project’s original statements that it should consider

international quality initiatives that specifically apply in Europe. Accordingly, the

relevant standards should involve international standards (ISO, IEEE), European

standards (ESA) and de facto standards (CMM, CMMI).

Research question 4 (Q4): What should a software process assessment

methodology include, such that it supports different assessment settings?

Software process assessments can differ in many ways while aiming for the

same overall target, applying the same principles and producing comparable

results. What makes assessment types different from one another is their settings,

which include the purpose, mode, scope and context of the assessment. The

assessment purpose is the statement provided as part of the assessment input14,

defining the reasons for performing the assessment (ISO/IEC 15504-1:2004

2004). In principle it is either process improvement or capability determination.

Additionally it may be benchmarking, for example against ISO 9000

requirements. The assessment mode can be self-assessment, second-party

assessment or third-party assessment. The assessment scope is a definition of the

boundaries of the assessment, encompassing the organisational limits of the

14 “Information required before a process assessment can commence” (ISO/IEC 15504-1:2004 2004:
2).

31

assessment, the processes to be included and the context within which the

processes operate (for example software development or product development)

(ISO/IEC 15504-1:2004 2004). The assessment context is defined by the process

context, which is a set of factors that influence the judgement, comprehension and

comparability of the assessment results (ISO/IEC 15504-1:2004 2004).

1.4 Research strategy

This study aims to contribute to understanding a phenomenon called software

process assessment and improvement, as explained in the previous sections (1.2,

1.3). More specifically, the objective of the research is to contribute to the

development of assessment and improvement methodology. The research

approach used in the thesis belongs to the category of constructive research,

occasioned by research questions (Järvinen 1999) stated in the previous section

(1.3). According to Järvinen, “…constructive research is applied research that

builds a new artefact and this process is based on existing knowledge and/or new

technical, organisational etc. advancements. Then the utility of the new artefact is

sooner or later evaluated” (Järvinen 1999: 59). The artefact here is the assessment

and improvement methodology called BOOTSTRAP. The methodology

development will happen in collaboration between practitioners from industry and

researchers in European and international R&D projects and evaluations will be

done in numerous practical experiments.

The conduct of the research is to be iterative and happen in experimental

cycles. The scientific basis and structure of the activities of the research derive

from Deming’s cycle (Deming 1986), which proposes one full experimental cycle

to include Plan–Do–Check–Act (PDCA) steps in sequence. The PDCA cycle is

further supported by the ideas of design science defined by March and Smith

(March & Smith 1995) as including build, evaluate, theorise and justify activities,

and concepts of artefact and performance as the topic and result of the activities.

Additionally, design science defines the concepts of external knowledge base and

(use) environment.

Although the Goal–Question–Metrics (GQM) approach (Basili 1992) was

originally developed for measurement purposes, its principles can also be applied

to this research approach by seeing measurement from a wider perspective and

understanding it as evaluation. On that assumption, GQM is considered here to

support the cyclic structure when applied to the entire research process. This

allows the concepts of Goal–Question–Metrics to be related to the PDCA cycle,

32

as illustrated in Figure 4. The concepts may then be applied to an entire research

project or one research cycle. In the former, the goal is derived from motivations

and research problems of the project and in the latter from the goals of the

research cycle, which become more precise during each cycle.

A modified conceptual structure based on the assumptions characterised

above forms an overall framework for the research strategy of this thesis. The

framework is outlined in Figure 4; the elements (which are given in italics at their

first appearance) will be described in more detail in the subsequent paragraphs.

Fig. 4. Research approach.

Plan, the first step in the PDCA cycle, begins with discovering and analysing the

motivations, goals, targets, expectations, needs or problems that initiate the cycle.

33

The analysis is done with the state of the art, state of the practice and state of the

experience captured from external sources. This is followed by choosing and

deriving a specification15 for the solution design or concept, which, together with

the initiating reasons, forms the design rationale16. The design rationale defines

what to construct or build and why, and is, therefore, in line with the concept of

the question part of the GQM approach.

In the Do step, the requirements set out in the design rationale are used as

guidelines to build or construct the artefact. Applicable knowledge from external

sources is also used in the building process. The artefact can be a construct,

model, method, solution, instance, etc. In this research the artefact is an instance

of BOOTSTRAP software process assessment and improvement methodology

(Kuvaja et al 1994). The applicable knowledge can be descriptions and/or

experiences of related approaches or background standards available from

external sources or knowledge bases.

The purpose of the Check step is to experiment with the solution instance in

practice and collect results and feedback from the behaviour of the solution

instance and experiences of its use. Collecting the results can be considered as

measurement (in a wider perspective), which is in line with the concept of the

measure stage of the GQM approach. The results constitute lessons learned that

will form the input for the next step.

In the Act step, the lessons learned are analysed and evaluated, corrective

actions defined for an immediate construct, the solution instantiation, evaluation

results and experiences packaged and communicated for the next experimental

cycle, and contributions prepared to be communicated to academia and external

industry, which form the external knowledge base (Hevner & Chatterjee 2010;

March & Smith 1995: 259).

The entire PDCA cycle may include both internal and external iterations.

Internal iterations insert corrective actions into the experimental cycle and

external cycles are initiated with new understanding of the artefact and its context

(March & Smith 1995: 259).

During the experimental research cycles, literature analysis, interviews with

experts, experts’ external reviews, brainstorming, interactive workshops,

15 An assessment method is in itself a product designed from specifications (April & Coallier 1995b:
175).
16 Design rationale is the notion that design goes beyond merely accurate descriptions of artefacts,
such as specifications, and articulates and represents the reasons and the reasoning processes behind
the design and specification of artefacts (Moran & Carrol 1996: 2).

34

experiments, pilot testing through assessments and evaluations, experience

analysis and wider retrospectives are used as actual research methods. The

approach is quite similar to that used for example in CMM development (compare

(Humphrey & Curtis 1991: 45).

The research strategy described in this section has been applied in the

activities that produce the contribution reported in this thesis. The application is

described in chapter 3.

1.5 Outline of the thesis

This thesis consists of six sections, outlined in Figure 5, which shows the main

contents of and logical interrelationships between the sections. In the first section,

the research area, problem and research strategy are defined. The research area

comprehends both the background and the scope of the thesis. The research

problem is further elaborated into specific research questions, according to

subtopics of interest. The research strategy is aligned with the research questions

defined and describes the dynamics of the activities to be followed in conducting

the research.

In the second section, related research efforts are outlined in order to set the

contents of the thesis in their scientific context and to demonstrate the new

knowledge the thesis is bringing to light. The section is focused on the approaches

and their evolution, which have a direct link to BOOTSTRAP methodology

development and its evolution. It gives an account of CMM evolution from its

beginnings, other assessment approaches that have been recognised in the area

and BOOTSTRAP methodology development. There follows an overview of the

international reference standards.

In section three, the developments of BOOTSTRAP methodology are

presented in three phases, aligned with the evolution of the methodology versions.

In this section, “the design rationale” of the methodology is presented, including

its specific features, and put forward for critical observation.

In section four, the findings of the study and their relationships and

contribution to the evolution of the external knowledge base are presented. The

section starts with a summary of the results and their relative impact in answering

the research question stated in section 1.3. The outline refers also to original

papers published during this phase of the research. Results of each research phase

are analysed individually.

35

In section five, original publications are introduced separately. The purpose,

contents and main contribution of each publication are proposed and related to the

research questions. Also, the author’s role in conducting the research and

reporting the results is clarified.

Fig. 5. Contents of the thesis.

In section six, the main contribution of the thesis is presented by answering the

research questions one by one. Validation of the research and results is then

described using the guidelines defined by Hevner (Hevner & Chatterjee 2010) for

the design science research that underlies this thesis. In this section also, the

36

limitations of the research are identified and the potential for future research

outlined.

37

2 Related works and evolution

The scope of this research is to study and develop software process assessment

and improvement approaches, also called software process appraisal (Olson et al.

1989; Paulk 2009), as described in section 1.3. In this chapter, all related

background approaches and their evolution that influenced or have been

combined into the methodology development are discussed. The emphasis is on

the approaches that have directly impacted on BOOTSTRAP methodology

development or that help in understanding the artefact in its own context.

Specifically, we describe those methods, standards and research results that have

served as sources of inputs to this research effort, or which are elements of the

knowledge base that may potentially receive an additional contribution based on

the results of this study.

 The chapter contains four main areas of interest. The first section describes

Capability Maturity Model (CMM) developments17, which were one of the

triggers and background models for the BOOTSTRAP methodology

development. CMM is a de facto reference and reflection model for

BOOTSTRAP development and a de facto international standard for software

process assessment and improvement. The first versions of the CMM model and

Software CMM tackle similar research and practical problems, make quite similar

theoretical assumptions and end up with similar technical solutions such as

BOOTSTRAP, although they exhibit a number of distinct differences. The second

section introduces other assessment and improvement models that have been

devised in various parts of the world and discovered during the BOOTSTRAP

research. The third section outlines the background standards for reference

models of the assessment approaches and guidelines for improvement. The last

section is dedicated to the Software Process Improvement and Capability

dEtermination (SPICE) initiative, which has packaged the assessment and

improvement approaches into the form of requirements that increase the

possibilities of benchmarking the results of different assessments.

2.1 Capability Maturity Model developments

The Capability Maturity Model (CMM) resulted from research conducted at the

Software Engineering Institute (SEI) at Carnegie-Mellon University in Pittsburgh,

17 Including CMMI.

38

Pennsylvania. The SEI was established to support advancement of the software

engineering practices adopted by suppliers of the US Department of Defense

(DoD) to improve the quality of software-dependent systems. Later on, the results

of the work were disseminated to a wider community beyond the military.

2.1.1 Capability Maturity Model

The initial version of the CMM was first published in the shape of a technical

report describing the maturity framework (Humphrey & Sweet 1987), general

assessment procedure, four questionnaires and algorithms for defining the

maturity level and technology support stage (generally called the “SEI model”)

(Humphrey & Sweet 1987). The original goal of the SEI model was to provide

guidelines and procedures for assessing the ability of potential Department of

Defense (DoD) contractors to develop software in accordance with DoD

standards. The primary objective in developing the structured assessment

approach was to provide a standardised method that is documented, publicly

available and periodically modified as experience is gained with its use. A further

objective was to provide a public process to assist software organisations in

identifying areas where they should make improvements in their own capabilities,

specifically to be able to secure contracts with the DoD (Humphrey & Sweet

1987).

In complete SEI assessment, a specific questionnaire was used to evaluate the

level of experience of the software development personnel, to define the maturity

level of the software engineering process, to classify the stage of software

technology and to receive an assessment perception of the target organisation18.

Evaluation of the experience level is based on a questionnaire of nine questions

with numeric answers19 regarding years of experience of the personnel and size of

the organisation20. The nature of the numeric information collected using these

questions is informative and intended to assist assessors in evaluating the

relevance of the target organisation in a particular procurement context21

(Humphrey & Sweet 1987).

18 Originally “contractor” (Humphrey & Sweet 1987).
19 The questions are expected to be answered with numbers like “years of experience of software
development managers”, “percentage of the software development staff who have a bachelor degree or
higher in computer science or software engineering”, etc. (Humphrey & Sweet 1987: 21).
20 Or organisational unit.
21 In general the information can also be used for classification of the target organisations in
comparing the results of different assessments when using maturity levels and technology stage (the

39

The software engineering process maturity level is evaluated using a

questionnaire comprising 85 questions with “yes” or “no” answers. The maturity

levels are: Initial22, Repeatable23, Defined24, Managed25 and Optimised2627, Initial

being the lowest level and Optimised the highest. Each maturity level builds on

the previous level. The starting point for assessment is that the software

engineering process is on the Initial level at the beginning and rises when

attributes of good software engineering practices are recognised. At the end of the

assessment, the real maturity level of the software engineering process of the

organisation is defined, based on answers given in the questionnaire28.

subsequent two questionnaire parts of the model) as the means of comparison (Humphrey & Sweet
1987: 5).
22 At the Initial level (level 1), the software engineering environment has ill-defined procedures and
controls. The organisation does not consistently apply software engineering management to the
process, nor does it use modern tools and technology. Level 1 organisations may have serious cost and
schedule problems (Humphrey & Sweet 1987: 5).
23 At the Repeatable level (level 2), the organisation has generally learned to manage costs and
schedules, and the process is now repeatable. The organisation uses standard methods and practices
for managing software development activities, such as cost estimating, scheduling, requirements
changes, code changes and status reviews (Humphrey & Sweet 1987: 5).
24 At the Defined level (level 3), the process is well characterised and reasonably well understood. The
organisation defines its process in terms of software engineering standards and methods, and it has
made a series of organisational and methodological improvements. These specifically include design
and code reviews, training programmes for programmers and review leaders and increased
organisational focus on software engineering. A major improvement in this phase is the establishment
and staffing of a software engineering process group that focuses on the software engineering process
and the adequacy with which it is implemented (Humphrey & Sweet 1987: 5).
25 At the Managed level (level 4), the process is not only understood but also quantified, measured and
reasonably well controlled. The organisation typically bases its operating decisions on quantitative
process data and conducts extensive analyses of the data gathered during software engineering reviews
and tests. Tools are used increasingly to control and manage the design process as well as to support
data gathering and analysis. The organisation is learning to project expected errors with reasonable
accuracy (Humphrey & Sweet 1987: 6).
26 At the Optimised level (level 5), organisations have not only achieved a high degree of control over
their process but also have a major focus on improving and optimising its operation. This includes
more sophisticated analyses of the error and cost data gathered during the process as well as the
introduction of comprehensive error cause analysis and prevention studies. The data on the process are
used iteratively to improve the process and achieve optimum performance (Humphrey & Sweet 1987:
6).
27 After 1987 the SEI used Optimizing rather than Optimized
28 The questions have been developed keeping in mind (among other things) that the quality of a
software product stems, in large part, from the quality of the process used to create it; the software
engineering process is a process that can be managed, measured and progressively improved; the
quality of a software process is affected by the technology used to support it; the level of technology
used in software engineering should be appropriate to the maturity of the process; and software
products developed by contractors for DoD use are acquired under contracts invoking DoD-STD-

40

The questions cover organisation and resource management and software

engineering process and its management. Organisation and resource management

deals with functional responsibilities, personnel and other resources and facilities

of the target organisation. Software engineering process and its management

concern the scope, depth and completeness of the process and how the process is

measured, managed and improved. Both of the objects of evaluation are

composed into specific topics of interest, which have all been further elaborated

into assessment questions. Altogether there are seven interest topics grouped into

the maturity levels29, so that the questions relating to a specific level are

considered as a hurdle that must be negotiated in order to pass on to the level. The

questions are also classified as standard questions and important questions30. The

maturity levels are considered to build upon the previous levels and therefore

each level has its own questions, which are considered together with the questions

of the previous level when evaluating fulfilment of the threshold criteria. The

threshold is 80% for all questions and 90% for important questions (Humphrey &

Sweet 1987).

The questionnaire includes an additional 16 “yes or no” questions that cover

tools and technologies used in the software engineering process and form a

method for evaluating the software engineering technology of the organisation.

Additionally there are ten follow-up questions for the assessment team to request

amplification of responses. The answers to the questions are expected to reflect

standard organisational practice. The result of the technology assessment places

the target organisation either at stage A (inefficient technology) or stage B (basic

technology) (Humphrey & Sweet 1987).

The maturity levels of the SEI model were further elaborated in an article

published in IEEE Software (Humphrey 1988), and more comprehensive

description of the background ideas and main features of the maturity framework

and process improvement were published in a book by Humphrey in 1989

(Humphrey 1989), which also gave more details on a framework to define a

maturity level for the target organisation. The model attracted both positive and

2167/A, Defense System Software Development, as tailored for each contract (Humphrey & Sweet
1987: 5).
29 In Humphrey and Sweet (Humphrey & Sweet 1987), the levels are called maturity levels and the
“overall maturity” of the assessed contractor is called “capability”; “ the capability of a contractor to
perform software engineering has been divided into three areas”, namely organisation and resource
management, software engineering process and its management and tools and technology.
30 The important questions are marked in the questionnaire with an asterisk and are considered to have
“greater importance for the indicated maturity level” (Humphrey & Sweet 1987).

41

negative criticism from Bollinger and McCowan (Bollinger & McGowan 1991),

to which Humphrey immediately responded (Humphrey & Curtis 1991).

The assessment results obtained using the SEI model were collected and

analysed over four years from 1987 to 1991 and the analysis published in a

technical report by Kitson and Masters in 1992 (Kitson & Masters 1992). A

summary article also appeared in the International Conference of Software

Engineering Proceedings in 1993 (Kitson & Masters 1993). The results had been

obtained from 59 assessments and 296 projects. Thirteen assessments were

conducted as SEI-assisted (Olson et al. 1989), encompassing 63 projects, and 46

were self-assessments, encompassing 233 projects.

2.1.2 Capability Maturity Model for Software

Based on the experience with the SEI software maturity framework and the

maturity questionnaire, the SEI formalised the concepts and evolved the maturity

framework into the Capability Maturity Model for Software (called Software

CMM version 1.0), released in August 1991 (Paulk et al. 1991). In the model, the

maturity levels were further elaborated by introducing concepts of key process

areas, key practices and key indicators, which together formed the basis for a new

maturity questionnaire to be used in CMM assessments and which were described

in detail in a separate report entitled “Key Practices of the Capability Maturity

Model” (Weber et al. 1991). In the model, software process assessment and

software capability evaluation were clearly separated. Software process

assessment was meant to be conducted by an organisation and focus on

identifying improvement priorities within its own software process (Paulk et al.

1991), whereas software capability evaluations were meant to be performed by a

third party and focused on identifying contractors who represented the lowest risk

for building high-quality software on time and within budget (Paulk et al. 1991).

The common steps for software process assessment and software capability

evaluations were also defined. The maturity questionnaire was published in June

1994 (Zubrow et al. 1994), replacing the former questionnaire published in 1987

as the “SEI Model Questionnaire” (Humphrey & Sweet 1987). Therefore, in the

assessments performed with Software CMM version 1.0, the older version of the

maturity questionnaire was used. Software CMM version 1.0 attained a great

success in industry, as 157 SEI assessments had already been conducted by

December 1992 and the results provided to the SEI (Kitson & Masters 1993).

42

Software CMM version 1.1 was published in February 1993 as two technical

reports, “Capability Maturity Model for Software, Version 1.1” (Paulk et al.

1993) and “Key Practices for the Capability Maturity Model, Version 1.1” (Paulk

et al. 1993) and published as a book in 1995 (Paulk et al. 1995). The new version

included few substantive changes, although almost every practice was changed by

clarifying its meaning and making the wording of practices more consistent

(without substantively changing their content or intent). Additionally, the wording

of the goals was changed by omitting subjective expressions (such as “reasonable

plans” and other goodness attributes). The purpose was to use the goals in rating

satisfaction of the key process areas. According to Paulk (Paulk 2009), the

problem of dysfunctional behaviour remained in the model as a result of its

targeting the improvement towards maturity level rather than improvement

against business objectives. “The Software CMM has now been retired in favour

of the CMM Integration (CMMI) model, but has inspired many other standards

and frameworks, including the People CMM (Curtis et al. 1995), the Systems

Engineering CMM (Bate et al. 1995) and the Systems Security Engineering

CMM (Hefner 1997). It was also was one of the drivers in the development of

ISO/IEC 15504 (Process Assessment), notably Part 7 on the assessment of

organisational maturity (ISO 2008)” (Paulk 2009: 5).

In fact, the development of Software CMM version 2 had already started

during the development of version 1.1, as requests for change that involved

radical revisions (for example, adding new key process areas) were deferred to

version 2, which was planned for 1997 (Paulk 2009). During version 2

development, SEI was participating actively in the SPICE project and alternatives

to include aspects of continuous representation were being investigated (Paulk et

al. 1995; Paulk 1999). Both the staged and continuous perspectives were

recognised to have value and to be conceptually compatible (Paulk 1996). The

result of the process was to make the relationships between the two perspectives

explicit but leave the staged architecture as the primary representation (Northcutt

& Paulk 2010). The relationship was implemented by including

institutionalisation from general practices in the continuous model architecture

into a maturity level goal for each key process area of the resulting stage model.

Additionally, process contents were changed or split and new key process areas of

“risk management” and “organisational software asset commonality” were added

(Paulk 1997; Paulk 2009). The release of Software CMM version 2 was planned

for the end of 1997 but was halted in favour of work on the CMMI in October of

that year (Paulk 2009).

43

2.1.3 Capability Maturity Model Integration

Capability Maturity Model Integration (CMMI) was developed by the CMMI

product team, a team of process improvement experts from the government,

industry and the SEI, to improve the Software Capability Maturity Model (SW-

CMM) released in 1991 (Paulk et al. 1991; Weber et al. 1991). The SW-CMM

was a “roadmap” that described “evolutionary stages” consisting of key practices

that guide organisations in improving their software capability. After SW-CMM

was released and updated (Paulk et al. 1993; Paulk et al. 1993), the Enterprise

Process Improvement Collaboration (EPIC), a US industry and government

collaborative effort, together with SEI, developed and published the Systems

Engineering Capability Maturity Model (SE-CMM) (Bate et al. 1995) and the

International Council on Systems Engineering (INCOSE) developed and

published the Systems Engineering Capability Assessment Model (SECAM)

(Sheard 1997). Several systems engineering maturity models supported systems

engineering process improvement (Sheard 1997; Paulk 2004). The EPIC SE-

CMM and the INCOSE SECAM were alternative models and were amalgamated

with the Electronic Industries Alliance (EIA) to create EIA/IS-731 (Sheard &

Lake 1998). Additional CMMs were also developed, including: the Software

Acquisition CMM, the People CMM and the Integrated Product Development

CMM. In the creation of the CMMI systems engineering from EIA/IS-731

(Systems Engineering Capability Model), software engineering from SW-CMM

(version 2C) and integrated process and product development from the Integrated

Process and Product Development IPPD-CMM (version 0.98) were integrated

into a single model that incorporated both the staged (CMMI 2002b) and

continuous (CMMI 2002a) representations.

CMMI continued to evolve; version 1.2, an upgrade to version 1.1, was

published in 2006. The new overall feature was the concept of CMMI

“constellations”. A constellation can produce one or more related CMMI models

and related appraisal and training materials. Version 1.2 contains three

constellations. CMMI for Development was the first of these constellations; it is a

reference model that covers the development and maintenance activities applied

to both products and services (Chrissis et al. 2007). The second constellation was

CMMI for Acquisition (CMMI 2007), which represents best practices for

improving relationships with suppliers through improvements to internal

processes. It can be used to increase control of projects, better manage global

sourcing of products and services and more successfully acquire solutions that

44

meet organisational needs. The third constellation of the version 1.2 was CMMI

for Services (CMMI 2009), which contained descriptions of best practices for

service provider organisations.

Currently CMMI is already published in version 1.3. In this version, the

practices for maturity levels 4 and 5 have been revisited, the representation of

staged and continuous models made better aligned and modern engineering

practices like “agile” included (Phillips 2010). The version follows the line of the

previous version (1.2) and includes three constellations, namely CMMI for

Development (v.1.3) (Chrissis et al. 2011), CMM for Acquisition (v.1.3)

(Gallagher et al. 2011) and CMM for Services (v.1.3) (Forrester et al. 2011). The

evolution of CMMI will certainly continue and new versions will appear. One

obvious line to be updated will be the inclusion of agile principles (Glazer et al.

2008) in all constellations; at present, agile development is included in CMMI

Development only.

2.2 Other assessment and improvement models

At the beginning of the BOOTSTRAP project and even before (Kuvaja 1992),

many other research and development efforts were directed towards assessment

and improvement approaches. Most of them were inspired by the SEI model, and

experimented or followed the ideas of the model in their own developments. The

most recognised approaches are outlined here. All of them also participated in the

SPICE project (Dorling 1993). The general intention was to develop better

approaches for software process assessment and improvement, and in the SPICE

project specifically to aim for standardisation of the contents and learn from the

other approaches.

2.2.1 Healthcheck

Healthcheck was developed within British Telecom (BT) in 1989. The purpose

was to find a method of assessing software process against current world best

practice to enable direct improvement initiatives for process, product and people

working in software development (Mackie & Rigby 1993). The objective was to

improve the quality of the software and hence to understand where to allocate

investment in changes. The idea was to apply an improvement cycle that included

steps identified as assess, analyse, modify and execute. Before the development of

Healthcheck, extensive trials were conducted in BT using the SEI model

45

(Humphrey & Sweet 1987). At first the model was found to lack certain key

practices in requirements for capture and analysis and for verification, validation

and testing, which were deemed important in the telecoms business. Accordingly,

checklists were added to the basic model. The additions were developed internally

by experts in various software engineering disciplines. However, the outcome was

felt to be a failure for many reasons (Mackie & Rigby 1993) and the CMM was

abandoned. At end of the experiment, the additions made to the CMM were

substantially augmented and reviewed and formed the nucleus of the Healthcheck

assessment method (Mackie & Rigby 1993).

Healthcheck assessments consist of a series of one-to-one interviews with

people working in a particular unit or project. Each interview lasts one to two

hours. All interviews are based on the Healthcheck questionnaire, which consists

of nine key process areas, each containing from ten to 16 questions. The key

process areas are project management, requirements capture and analysis,

metrication, design, configuration management, verification, validation and

testing, performance engineering, maintenance and release and implementation.

The key process area fulfilments are scored on a percentage scale. A 100% score

for a key process area indicates that a unit is, in BT’s experts’ view, working

according to current world best practice. Healthcheck also allows the collection of

other data, which may include a limited collection of “people” and “product”

related data. The results are presented as radar diagrams using a percentage scale

(Mackie & Rigby 1993; Norris et al. 1994).

According to Mackie (Mackie & Rigby 1993: 270), “The primary aim of the

Healthcheck process is to assess groups of engineers in order to assist in process

improvement. It has also been applied to big software programs where a rapid

assessment of the state of software engineering across the program is required.

This is most important where the development is taking place on geographically

different sites.” Healthcheck has also been used to assess potential software

suppliers. Between 1990 and 1993, approximately 1,000 software engineers were

interviewed within Healthcheck assessment in British Telecom (Mackie & Rigby

1993).

2.2.2 Software Technology Diagnostic

Software Technology Diagnostic (STD) was developed in 1989 by the Scottish

Development Agency (SDA) as part of their software technology programme.

The aim of the programme was to support small and medium-sized organisations

46

(4–50 staff members) in their efforts to stay competitive (Tully et al. 1999). STD

is a process assessment approach designed as an integral part of a performance

improvement programme, which can be conducted speedily and without major

disruption to the group being assessed (Craigmyle & Fletcher 1993). Craigmyle

and Fletcher characterised the model as follows: “A key feature of the STD is the

gathering of business data so that the assessment results can be judged in the

context of the organisation’s own business needs” (Craigmyle & Fletcher 1993:

257).

STD follows the classical three-step assessment, including preparation,

diagnosis and a feedback clinic, which they call the “improvement programme

establishment” (Craigmyle & Fletcher 1993). The preparation step includes two

tasks, which are to commit senior management to the improvement and get them

involved in the assessment process, and to define the scope of the assessment and

improvement (personnel to be interviewed and projects to be assessed). In the

diagnosis step, assessors interview the personnel (one assessor per interview) and

collect the data using STD evaluation forms based on the reference architecture of

STD processes. The assessor then evaluates the data systematically, provides a

quantitative percentage rating of the capability and effectiveness of the processes

and a qualitative assessment of the priority areas for improvement and prepares an

outline action plan. In the feedback clinic, the results of the assessment are

communicated to the senior management (Craigmyle & Fletcher 1993).

 The STD approach (version 2.5) includes a reference framework of 20

processes allocated to three capability levels (2 to 4) according to CMM (Tully et

al. 1999). Most of the processes span levels 2 and 3, and only three processes

reach level 4. Processes on level 2 have six common practices and between two

and 12 key practices, varying between the processes. Processes on level 3 have

seven common practices and from one to five key practices, accordingly.

Processes reaching level 4 have seven common practices and only one or two key

practices. Assessors score the existence of practices on a binary scale (“yes” or

“no”) and give a percentage rating to management practices and use of

technology (Compita 1993b; Compita 1993a).

2.2.3 TickIT

TickIT is a certification scheme, initiated by the UK Department of Trade and

Industry (DTI), to regulate third-party certification of software quality

management systems under ISO 9001/9000-3, and in that way to improve

47

professional practice and market confidence in software quality management

systems (QMS) audit. TickIT addresses those aspects of an organisation’s QMS

that are concerned with the specification, design, development, installation and

support of software. TickIT is seen as a stepping stone in the development of a

QMS in the context of TQM, based on the use of definitive standards. TickIT

applies the ISO 9000-3 guidelines to ISO 9001, which details the quality

requirements for systems in general. It is advised to use also the ISO 9002 part of

the ISO 9000 series of international standards in TickIT certification, particularly

in relation to production, installation and servicing activities. TickIT has been one

of the approaches influencing the ISO working group for the development of

international standards for software process assessment, improvement and

capability determination (SPICE). The scheme applies mainly to the UK but has

been adopted in other countries as well (Thomson & Mayhew 1994b; Tully et al.

1999; TickIT 1995).

2.2.4 Trillium

In 1991, the first version of the Trillium model was elaborated by Bell Canada,

Nortel and Research Bell Northern. This model and its application method have

been improved based on experience and feedback from suppliers. From 1992 to

1993, version 2 with variations was used extensively and data about assessment

were collected from assessment teams and management. In January 1995, version

3.0 was issued to Bell Canada suppliers and placed in the public domain. Trillium

has been used worldwide within the above-mentioned group of companies, both

for self-assessment and for the assessment of existing and prospective suppliers

(Tully et al. 1999; April & Coallier 1995b).

Trillium was designed initially to be applied to embedded software systems

such as telecommunications systems. It incorporates requirements from the ISO

9000 series, the CMM for Software and the Malcolm Baldrige criteria, with

software quality standards from the IEEE and internal Bellcore standards. The

telecoms standards bring a telecommunications orientation to the model, which

therefore cannot necessarily be adopted as-is, because in some cases, goals of the

frameworks are used rather than their detailed requirements and because the

model includes process information that is unique to the telecommunications

field. However, much of the model can be applied to other segments of the

software industry such as Management Information Systems (MIS). Furthermore,

a significant percentage of the practices described in the model can be applied

48

directly to hardware development. The Trillium model covers all aspects of the

software development lifecycle, most system and product development and

support activities and a significant number of related marketing activities.

Altogether, the model serves as proof that the requirements of several of the

popular frameworks can be combined, and it provides a template for additional

efforts in this area (April & Coallier 1995b; Sheard 1997).

Although the Trillium model is based on the SEI model (CMM version 1.1),

the architecture and the concepts of capability and maturity differ from it

significantly. The most notable differences are the roadmap-based concept

(instead of key process areas), product perspective (instead of software), wider

scope of capability (all functions that contribute to the customer’s perception of

the product, including engineering, marketing, customer support and quality

assurance) and strong customer focus (capability from the customer and

development perspective). The Trillium model is based on the concept of a

roadmap, a set of related practices that focus on an organisational area or need or

a specific element within the product development process. Each roadmap

represents a significant capability for a software development organisation.

Within a given roadmap, the level of the practices is based on their respective

degree of maturity. The most fundamental practices are at a lower level, whereas

the most advanced ones are at the higher level. The roadmaps are organised into

capability areas, each representing a significant capability for a software

development organisation. The model thus contains capability areas, roadmaps

and practices, where each capability area incorporates one or more roadmaps, and

each roadmap comprises one or more practices that span several Trillium levels.

Trillium version 3.0 had eight capability areas, 28 roadmaps and 508 practices.

More detail on Trillium is given in the next section. In addition to process

maturity, it offers the ability to assess the appropriateness of the technology used

in the process (Tully et al. 1999; April & Coallier 1995b).

2.3 Standards and guidelines

Process assessment in companies relies on comparing their own practices with the

best and successful organisations. In practice this means benchmarking their way

of working in software development against professional, national or international

standards, as well as other organisations in the same market segment. The

assessment approach should therefore map to existing engineering standards as

well as quality standards. It should also provide an output that can be used easily

49

to benchmark against “best-in-class” organisations (April & Coallier 1995b). The

number of process-related and quality standards and their relationships is

continuously developing and even considered to be a quagmire (Sheard 1997;

Paulk 2004). Still, certain groups of standards and guidelines to apply them

constitute the background of and are referred to in the main software process and

assessment approaches. From that point of view, they can be classified as quality,

lifecycle and conformity standards.

2.3.1 Quality standards

In the late 1980s, the International Standardisation Organisation (ISO) published

the ISO 9000 standard series, to rule the relationships between the purchaser and

the supplier within a contractual agreement. ISO 9000 is a family of standards and

guidelines that, when first published, contained: Model for quality assurance in

design, development, production, installation, and servicing (ISO 9001:1987

1987) (for companies and organisations whose activities includes the creation of

new products), Model for quality assurance in production, installation, and

servicing (ISO 9002:1987 1987) (including the same material as ISO 9001 but

without covering the creation of new products) and Model for quality assurance

in final inspection and test (ISO 9003:1987 1987) (covering only the final

inspection of the finished product with no concern for how the product was

produced). ISO 9001 specified the minimum requirements for the quality system

of any organisation to form the basis of a relationship between purchaser and

supplier. The requirements covered the entire product lifecycle, including design,

development, production, installation and servicing. The standard applied to a

large set of products including hardware and software.

The family of ISO 9000 standards was updated in 1994, with the emphasis on

quality assurance by using the concept of preventive action. A new version of ISO

9001 was published in 2000 (ISO/IEC 9001:2000(E) 2000), replacing all three

previous standards (ISO 9001:1994 1994; ISO 9002:1994 1994; ISO 9003:1994

1994) of the 1994 issue. It also focused on processes and included concepts of

process management, process performance measurements and continuous process

improvement. As this version represented quite a radical change by shifting

emphasis from inspection of the final product to monitoring and optimisation of a

company’s tasks and activities, the new version in 2008 (ISO/IEC 9001:2008(E)

2008) introduced only clarifications to the requirements of ISO 9001 and

improved consistency with other ISO standards.

50

After more than twenty years’ evolution, the ISO 9000 series of standards have

come to provide requirements for defining, establishing and maintaining an

effective quality assurance system for manufacturing and service industries. The

current version of the standard (ISO/IEC 19011:2011(E) 2011), a corrected

edition from 2009, forms the core of the current ISO 9000 family, together with

ISO 9004 (ISO/IEC 9004:2009(E) 2009; Gallagher et al. 2011) and ISO 19011

(Gallagher et al. 2011). ISO 9001 is used when seeking to establish a quality

management system that provides confidence in an organisation’s ability to

provide products that fulfil customer needs and expectations. There are five

sections in the standard, specifying activities that need to be considered when

implementing a quality management system: overall requirements for the quality

management system and documentation; management responsibility, focus,

policy, planning and objectives; resource management and allocation; product

realisation and process management; and measurement, monitoring, analysis and

improvement. All except the product realisation section are applicable to all

organisation types (ISO 2009 2009).

ISO 9004 is used to extend the benefits obtained from ISO 9001 to all

stakeholders in the company. ISO 9001 and ISO 9004 are compatible and can be

used separately or in combination to meet or exceed expectations of customers

and interested parties (ISO 2009 2009). “Both standards apply a process

approach. Processes are recognized as consisting of one or more linked activities

that require resources and must be managed to achieve predetermined output. The

output of one process may directly be input to the next process and the final

product is often the result of a network or system of processes” (ISO 2009 2009).

The following quality management principles provide the basis for performance

improvement: customer focus, leadership, involvement of people, process

approach, system approach to management, continual improvement, factual

approach to decision making and mutually beneficial supplier relationships (ISO

9000:2005 2005). ISO 9004 (ISO/IEC 9004:2009(E) 2009) gives guidance on a

wider range of objectives of a quality management system than does ISO 9001,

particularly in managing for the long-term success of an organisation. ISO 19011

(ISO/IEC 19011:2011(E) 2011) covers the area of auditing of quality and

environmental management systems. It provides guidance on the audit

programmes, the conduct of internal or external audits and auditor competence. It

also provides an overview of how an audit programme should operate and how

management system audits should take place. Effective audits ensure that an

implemented QMS meets the requirements specified in ISO 9001.

51

Additionally, a guide dedicated to software (ISO 9000-3:1991 1991) was

provided to help in applying the ISO 9001 requirements (ISO 9001:1987 1987) to

a software organisation. The guidelines covered contract-based development

where two parties require the demonstration of a supplier’s capability to develop,

supply and maintain the software product. It formed also the basis for TickIT

certification. The guidelines suggested controls and methods for producing

software that meet a purchaser’s requirements, notably by preventing

nonconformity at all stages, from development through to maintenance. The

guidelines define the overall framework for a quality system and quality activities

during lifecycle and supporting functions. They provide quite detailed guidance

for software development organisations and set requirements for their

performance assessment. The guidelines were updated in 1994 (ISO 9000-3:1994

1994) and 1997 (ISO 9000-3:1997 1997). The current version, published in 2004

(ISO/IEC 90003:2004(E) 2004), has wider scope and provides guidance for

organisations in the application of ISO 9001 standard to the acquisition, supply,

development, operation and maintenance of computer software and related

support services. The application of the guidelines is appropriate to software that

is part of a commercial contract with another organisation, a product available for

a market sector, used to support the processes of an organisation, embedded in a

hardware product or related to software services. Whatever the situation is, the

organisation’s quality management system should cover both software related and

non-software related aspects of the business.

2.3.2 Lifecycle standards

The lifecycle models have their origins in the concept of the waterfall model, a

sequential design process, often used in software development processes, in

which progress is seen as flowing steadily downwards (like a waterfall) through

the phases of conception, initiation, analysis, design, construction, testing,

production/implementation and maintenance. The first formal description of the

waterfall model was in the article (Royce 1970) by Winston W. Royce, although

the concept of waterfall was obviously the result of a misunderstanding (Larman

& Basili 2003), as Royce did not use the term “waterfall”. Instead, he presented

an iterative model that contained the following steps: system requirements,

software requirements, analysis, program design, coding, testing and operations

(Royce 1970: 330). The lifecycle phases were thereafter named accordingly.

52

Military organisations, commercial bodies, national standardisation

organisations, aeronautics and space organisations and international

standardisation organisations then proceeded to develop lifecycle models.

Lifecycle standards cover software lifecycle models for software development

and systems lifecycle models for embedded and information systems

development. In the USA, the Department of Defence published a standard

(DOD-STD-2167A:1988 1988) in 1988 for software development that was an

update of the previous version from 1985. This document established uniform

requirements for software development that are applicable throughout the system

lifecycle and encompass software development management, engineering, testing,

product evaluations, configuration management and support. The standard was

designed to be used with another military standard (DOD-STD-2168:1988 1988)

defining requirements for the development, documentation and implementation of

a software quality program. These standards were used in building the original

SEI model (Humphrey & Sweet 1987). Even earlier, NATO had published their

own military standard for quality (AQAP-13:1981 1981), which was followed in

the development of assessment models. A new standard for software development

and documentation was established from the earlier such standards (DOD-STD-

2167A:1988 1988; DOD-STD-7935A:1988 1988; MIL-STD-498:1994 1994).

This standard was intended to be an interim standard, to be replaced by an

international commercial standard, ISO 12207 (ISO/IEC 12207:1995(E) 1995).

In Europe, the European Space Agency (ESA) developed a comprehensive set

of software engineering standards, the first complete version of which was

published in 1984 (ESA.BSSC1-1:1984 1984). This was replaced by (ESA.PSS-

05-0:1987 1987) in 1987 and (ESA.PSS-05-0:1991 1991) in 1991. The later

version (Issue2) was reviewed by users, whose feedback and experiences the

standard development group, called the Board for Software Standardisation and

Control (BSSC), used to write a set of ten guides, covering both the lifecycle

phases (Product Standards) (Mazza 1994) and the management aspects

(Procedure Standards) (Jones et al. 1996). The standard describes the processes

involved in the complete lifecycle of a single software project, from its inception

to its retirement. The standard is split into lifecycle models and management

activities, thus reflecting an “operations and control” pair. The lifecycle models

include: definition of user requirements, definition of software requirements,

architectural design, detailed design, transfer and operations and maintenance.

The management activities contain: software project management, software

configuration management, software verification and validation and software

53

quality assurance. Altogether there are about 200 mandatory practices, split

roughly equally between lifecycle models and management activities. The

descriptions contain material that defines what has to be done and gives some

advice about how it can be done. The standard does not prescribe any particular

methods to support the various phases but equally favours lifecycle models such

as waterfall, incremental and evolutionary development (Jones et al. 1997).

The further development of the standard reflects the experiences and

feedback received. One piece of feedback was that the standard was too heavy to

be applied to small projects. In order to solve the problem, ESA published a guide

to applying the standard in small projects (ESA.BSSC(96)-1:1996 1996) in 1996.

When ISO 12207 standard became the main international lifecycle standard, ESA

published within the European Cooperation for Space Standardization (ECSS) a

new version based on ESA-PSS-05-0 called ECSS-E-40 (software engineering).

The standard first appeared in 1996 (ECSS-E-40A:1996 1996) and was updated

in 2003 (ECSS-E-40B-1:2003 2003) and 2005 (ECSS-E-40B-2:2005 2005) and

published in the current issue in 2009 (ECSS-E-40C:2009 2009). The standard

has six parts: space segment software, ground segment software, software

lifecycle, software verification, validation and testing and software development

for reuse. The new standard is based on ISO 12207 (ISO/IEC 12207:2008(E)

2008) and tailors it specifically for space projects. The standard is recommended

to be used together with quality assurance standard ECSS-Q-80 (Software product

assurance) (ECSS-Q-ST-80C:2009 2009), which is also based on ISO 12207.

ECSS-Q-80 contains four parts, which are guidelines on: the reuse of pre-

developed software, software process assessment and improvement, software

dependability and safety methods and techniques, and for software metrication

programme definition and implementation (Jones et al. 2002).

Today the main international standard for “software life cycle processes” is

ISO/IEC 12207 (ISO/IEC 12207:2008(E) 2008), which establishes a common

framework for software throughout its lifecycle, from conception through to

retirement. It addresses the organisational context of these software processes,

both from the system’s technical viewpoint and from the enterprise’s business

viewpoint (Paulk 2004). It is defined at the process rather than the procedure

level, including three categories of processes, namely primary (business and

technical), supporting and organisational processes (Paulk 2004). Primary

processes include: acquisition, supply, development, operation and maintenance.

Supporting processes include: documentation, configuration management, quality

assurance, joint review, audit, verification, validation and problem resolution, and

54

organisational processes consisting of management, infrastructure, improvement

and training. In the description, each process is divided into activities and each

activity into tasks. The description includes 23 processes, 95 activities, 325 tasks

and 224 outcomes. The standard has strong TQM orientation and commitment. In

addition to the specific and verification quality-directed processes (quality

assurance, joint review, audit, verification, validation and improvement), each

process has a built-in PDCA quality cycle (Tully et al. 1999). The first edition of

the standard (ISO/IEC 12207:1995(E) 1995) was published in 1995 and the

second and current edition (ISO/IEC 12207:2008(E) 2008) in 2008.

An international system lifecycle standard ISO 15288 was initiated by the

group that created the ISO software lifecycle standard ISO/IEC 12207, and

augmented by people with systems engineering expertise (Sheard 1997). The

standard was intended to become companion in the systems engineering domain

to ISO 12207 in the software engineering domain. Work on the standard started in

1994 and the first edition (ISO/IEC 15288:2002(E) 2002; ISO/IEC 15288:2002

2002) was issued in 2002. The standard dealt with the need to apply systems

engineering principles to non-technical systems and to put more emphasis on

management in systems engineering and its impact on business (Arnold &

Lawson 2004). It provided a collection of system lifecycle processes based on

system principles and concepts that govern their application. The standard

provides support for technical systems, non-technical systems and systems

composed of both technical and non-technical system elements. The processes in

the standard were grouped into technical, project, enterprise and agreement

processes. Technical processes include: definition of stakeholder requirements,

requirements analysis, architectural design, implementation, integration,

verification, transition, validation, operation, maintenance and disposal. Project

processes consist of: project planning, project assessment, project control,

decision making, risk management, configuration management and information

management. Enterprise processes include: enterprise environment management,

investment management, system lifecycle management, resource management

and quality management. Agreement processes consist of: acquisition and supply.

Each process is defined by a purpose, outcomes and activities. Altogether there

are 25 processes, which have 123 outcomes derived from 403 activities. The

standard was updated in 2008 (ISO/IEC 15288:2008(E) 2008; Arnold & Lawson

2004).

55

2.3.3 Conformity standard

In June 1991, the International Standards Group for Software Engineering

approved a study period (ISO/IEC :1991 1991) to investigate the need for and

requirements of a standard for software process assessment. The international

study (ISO/IEC :1992 1992; ISO 9000:1992 1992, ISO/IEC :1992 1992)

International Standards Organization (ISO 9000 Series et al. 1992, ISO/IEC:1992

1992) concluded that there is an urgent need for a worldwide standard for process

assessment. It found that the development should include trialling to provide

usable output in an acceptable timescale and to ensure that the standard fully met

the needs of its users. The resulting project was named SPICE (Software Process

Improvement and Capability dEtermination). The project aimed to build on the

best features of existing software assessment methods such as the Capability

Maturity Model (CMM) (Paulk 1993), Trillium (Coallier et al. 1993), Software

Technology Diagnostic (STD) (Craigmyle & Fletcher 1993) and the

BOOTSTRAP method (Koch 1992) developed as part of a European ESPRIT

project. In addition to preparing initial drafts of the standard, the project would

also conduct application experiments whose results would be disseminated to the

international community, assist in revision of the standard and market the overall

activity (Dorling 1993).

The SPICE project was accordingly organised into seven working groups

aiming to create material to establish a standard for software process assessment

and improvement. The working groups had precise targets for generating the

seven products that were to comprise the SPICE product suite. The products

were:

– Introductory Guide (IG) (a top-level architecture document that describes

how various parts of the standard fit together and provides guidance for their

selection, use and creation of conformant variants)

– Baseline Practices Guide (BPG) (defines the goals and fundamental activities

that are essential for good software engineering, and more precisely describes

what activities are required but not how they are implemented)

– Assessment Instrument (AI) (a guide for designing instruments that extract

data related to the processes undergoing assessment)

– Process Assessment Guide (PAG) (a document that specifies the assessment

method, which in turn defines how to conduct an assessment using the

assessment instrument and baseline practices)

56

– Process Improvement Guide (PIG) (provides guidance on how to use the

assessment results for process improvement)

– Process Capability Determination Guide (PCDG) (provides generic guidance

on how to use the results of an assessment for capability evaluation), and

– Assessor Training and Qualification Guide (ATQG) (provides generic

guidance for the development of programmes designed to train people as

assessors using this standard, and procedures for the qualification of assessors

who intend to act in third-party situations) (Dorling 1993; Paulk & Konrad

1994a).

The SPICE project developed the initial sets of draft working documents between

1993 and 1995. The cores of the draft documents were used in two main rounds

of trial assessments performed by the working group members in their own or

customer organisations. In the first round (Woodman & Hunter 1996), so-called

“SPICE version 1” was trialled. After that, ISO 12207 ideas were inserted into the

draft documents and a second round of trials (Jung et al. 2001) was performed

using so-called “SPICE version 2” documents. The drafts were then submitted to

the normal standards balloting process. “During the course of these ballots, the

SPICE Trials pursued a detailed series of investigations, aimed at demonstrating

the extent to which the new International Standard met its original requirements,

and validating its usefulness to the software development industry. The results of

the Trials provided substantial empirical evidence supporting the approach to

assessment embedded in the Standard, and also identified significant ideas for

improvement” (Rout et al. 2007: 1484). The balloting process changed the

original architecture considerably. The first version of the standard was released

as a Technical Report (Type 2) in 1998, including: Part 1 – Concepts and

introductory guide (ISO/IEC 15504-1:1998(E) 1998), Part 2 – A reference model

for processes and process capability (ISO/IEC 15504-2:1998(E) 1998), Part 3 –

Performing an assessment (ISO/IEC 15504-3:1998(E) 1998), Part 4 – Guide to

performing assessment (ISO/IEC 15504-4:1998(E) 1998), Part 5 – An assessment

model and indicator guidance (ISO/IEC 15504-5:1998(E) 1998), Part 6 – Guide

to competency of assessors (ISO/IEC 15504-6:1998(E) 1998), Part 7 – Guide for

use in process improvement (ISO/IEC 15504-7:1998(E) 1998), Part 8 – Guide for

use in determining supplier process capability (ISO/IEC 15504-8:1998(E) 1998),

and Part 9 – Vocabulary (ISO/IEC 15504-9:1998(E) 1998). Thereafter, the

technical reports went through a study, review and revision period before

becoming a full standard (Rout et al. 2007).

57

The first versions of the standard were published in five parts between 2003

and 2006. The purpose of the standard was to provide a framework for

harmonising different approaches to assessing and improving the software

process. It was meant to be used by an organisation as an aid to understanding the

state of its own processes for process improvement or determining the suitability

of its own processes for a particular requirement or set of requirements, or by an

organisation for determining the suitability of another organisation’s processes for

a particular contract or set of contracts. It was designed also to provide a basis for

a common approach to describing the results of process assessment for

benchmarking between different but compatible models and methods (ISO/IEC

15504-1:2004 2004).

The first part of the standard was published in 2003, including “Part 2:

Performing an assessment” (ISO/IEC 15504-2:2003 2003). The part is normative

and sets requirements for process assessment and for process models used as a

reference in an assessment. It defines also a measurement framework for

evaluating process capability. The measurement framework defines nine process

attributes grouped into six process capability levels, making up an ordinal scale of

capability that is applicable across all selected processes. “This capability

dimension can be applied, in principle, to any process e.g., the processes in

ISO/IEC 12207 or ISO/IEC 15288 (System Life Cycle Processes)” (Paulk 2004).

It also sets conformance requirements for the assessment process to be followed,

the measurement framework to be applied (including capability dimension) and

process models to be used as a reference (ISO/IEC 15504-1:2004 2004).

In 2004, three new parts were published containing “Part 1: Concepts and

vocabulary” (ISO/IEC 15504-1:2004 2004), “Part 3: Guidance on performing an

assessment” (ISO/IEC 15504-3:2004 2004) and “Part 4: Guidance on use for

process capability determination” (ISO/IEC 15504-4:2004 2004). In Part 1 all

other parts of the standard are introduced. It also contains the consolidated terms

and definitions used in the standard. Part 3 is informative and provides guidance

on meeting the requirements for performing an assessment as defined in Part 2,

describes the capability dimension and rating principles and gives guidance for

selecting process reference and assessment models. It also provides guidance for

verifying the conformity of process reference models, process assessment models

and performed process assessment. Part 4, likewise informative, gives guidance

on using process assessment in process improvement and capability

determination.

58

“Part 5: An exemplar process assessment model” (ISO/IEC 15504-5:2006

2006) was added into the ISO 15504 suite of standards in 2006. It was directly

based on Technical Report (ISO/IEC 15504-5:1998(E) 1998), entitled “An

assessment model and indicator guidance”. It contains detailed descriptions of the

process dimension, including indicators of process performance, and of the

capability dimension, including indicators for process capability. There are also

practical hints and guidance on performing an assessment. The exemplar model

has been the basis of most of the assessments called “SPICE assessments”.

The first versions of the standards focused on software development

processes, but were later enhanced to cover six business areas, including:

organisation, management, engineering, acquisition, support and operations. The

issued standard now includes four additional parts, namely “Part 6: An exemplar

system lifecycle process assessment model” (ISO/IEC 15504-6:2008 2008), “Part

7: Assessment of organisational maturity” (ISO/IEC 15504-7:2008 2008) and

“Part 9: Target process profiles” (ISO/IEC 15504-9:2011 2011). The missing

“Part 8: An exemplar process assessment model for IT service management”

(ISO/IEC PDTR 15504-8:2012 2012 (target)) is due to be published in 2012.

59

3 Research process

The research of this thesis is constructive in nature and was performed in

experimental cycles following the approach described in section 1.3. The research

was carried out in international collaboration in industrial R&D projects between

1990 and 2004. The projects constituted the context of the research and

established natural phases in time, as described in Table 3. The phases included

different organisational settings and evolved iteratively, developing experimental

frameworks that were adjusted to the research context. The research was done in

collaboration with experimental researchers and software professionals who were

experts in software development, software quality and/or software process

assessment and improvement. This formed the practical settings for conducting

the research (see Table 3).

The first phase of the research was performed in an ESPRIT project called

BOOTSTRAP (Kuvaja & Koch 1992; Koch 1993) funded by the European

Commission31. The phase may be called “initial development”, as it encompassed

the initial development of the methodology. The author of the thesis was a project

manager and one of the main contributors in a research team assigned by the

Department of Information Processing Science of the University of Oulu, which

was a full partner of the project.

The second phase of the research and BOOTSTRAP methodology

development was done within the BOOTSTRAP Institute, where the Department

of Information Science of the University of Oulu became an Academic member.

This phase may be called “methodology professionalisation”, as it aimed to

achieve a professional assessment and improvement methodology that conformed

to the emerging standards of the area and had a supportive mechanism to further

develop and sustain the methodology. The author of the thesis represented the

Department in the management of the Institute and was a contributing member of

the methodology development team in the Institute. The research and

development within the Institute was threefold. One part of it was done internally

in the Institute and other two parts in the International ISO project, SPICE

(Dorling 1993) and the European ESSI ESPRIT project, TAPISTRY (Kuvaja et

al. 1999b). In the SPICE project the author of this thesis represented the

Department via the BOOTSTRAP Institute and became a member of the

31 The funding for the Finnish partners of the project was provided by the Finnish Technology
Development Centre – TEKES. Finland was not yet a member of the European Union but belonged to
the European Economic Area.

60

development team and co-leader of the work package responsible for the

development of the process improvement guide (Kuvaja et al. 1995b). In the

TAPISTRY project, the author was project leader on behalf of the BOOTSTRAP

Institute and one of the key developers of the TAPISTRY approach.

The third research and development phase took in place in a European IST

project called PROFES (Oivo et al. 1999), together with wider European industry.

In that project, the methodology was enhanced to include product development

lifecycle processes and combined with Goal–Question–Metrics (GQM), quality

improvement paradigm (QIP) and Experience Factory (EF) PROFES

methodology. Therefore, the phase may be called “methodology enhancement”.

In the PROFES project, the author was a project leader of the research team of the

Department of Information Processing Science in the University of Oulu, which

was a full member of the project. The author contributed also as a member of the

entire PROFES research team to the results of the project. Other related research

projects that have provided enhancements for BOOTSTRAP methodology were:

ESPRIT Project Drive-SPI32, ESSI ESPITI project SPIT33 and EUREKA/ ITEA

project MOOSE34.

32 Esprit Project 20474 – Drive-SPI, “Risk Driven Software Process Improvement”, funded by the
European Commission.
33 SPIT, “Software Process Improvement Training in Finland”, a sub-project of ESPITI, “European
Software Process Improvement Training Initiative”, funded by the European Commission.
34 European EUREKA/ITEA/MOOSE Project No. 01002, “Software Engineering Methodologies for
Embedded Systems”.

61

Table 2. Overall research process.

Phase Research context Research setting Research cycles

1

1990–1993

BOOTSTRAP

project

European R&D

project

Interactive collaboration between

experimental researchers and

software professionals (experts)

Two entire experimental

PDCA cycles with internal

iterations in industrial

settings

2 1993–2004

BOOTSTRAP

Institute

Internal methodology

development team

Interactive collaboration between

researchers, software

professionals and BOOTSTRAP

assessors

Numerous experimental

PDCA cycles with internal

iterations, and external

experience interchange

International SPICE

project

Experts’ role in SPICE and

interactive collaboration between

researchers, software

professionals, BOOTSTRAP

assessors and international

researchers and experts

Numerous internal

experimental PDCA cycles

with internal iterations, and

internal and external

experience interchange

3 1996–1999

BOOTSTRAP

Institute and

IST

cooperation

European

TAPISTRY project

Interactive collaboration between

researchers and software

professionals

Numerous experimental

PDCA cycles with internal

iterations and experience

interchange

European PROFES

project

Interactive collaboration between

researchers, software

professionals, BOOTSTRAP

assessors and international

researchers and experts

Numerous PDCA cycles

with internal iterations and

internal and external

experience interchange

Thanks to the settings and memberships of the teams and projects set out in the

table, the author of this thesis was able to contribute both to the research and

development of BOOTSTRAP methodology and to international standards in the

area. The results have been published in international publications, as described in

this thesis. Additionally, the development of the research methodology through

learning and reflections on the literature form part of the thesis. The phases, their

research settings and applied research cycles, outlined in Table 3, will each be

described more precisely in the following sections.

3.1 Phase 1 – Initial development

Initial research and development of BOOTSTRAP methodology was conducted in

the BOOTSTRAP project of the third research Framework Programme (FP-3) of

the European Commission. According to its mission statement, “the project shall

62

fertilize the grounds for introducing modern software technology into industry.

The means are through analysis of the current state of software engineering in

industry, identification of the potentials of change and motivation for accepting

new contexts for software engineering” (Koch 1993: 387). This set out the

motivation for the project and was elaborated more specifically as described in

section 1.3 above. The research in the BOOTSTRAP project was experimental

and applied constructive approach, implemented in two full-scale PDCA cycles.

The Plan step in both cycles started from the project goals and background

assumptions, performed state of the art and practice analysis based on the

literature and experts’ understanding, and produced a design rationale and

requirements for a new version of a software process assessment and

improvement approach. Researchers and experts of the partner companies worked

together in the project team. In the first cycle, the project goals and background

assumptions played a major role. In the second cycle, the analysed experiment

results and industrial experiences and retrospective comments from the

participating and target organisations became more important.

In the Do step, the process assessment and improvement approach was

constructed in both cycles by following the requirements set out in the Plan step.

The design rationale helped the building team to make choices and reminded

them of the purpose of the specific requirements. The construct contained an

assessment instrument in the form of a questionnaire, guidance on how to use the

questionnaire, an assessment model as a description of the assessment process, an

algorithm to produce and show the assessment results and guidance on how to

record the results and collect experiences and lessons learned. The step was

mainly performed by the researchers who constructed the instantiation of the

methodology based on analysis of the external knowledge base and feedback

received previously from the practice and experiments.

In the Check step, extensive experimental assessments were performed in

numerous industrial settings. In the first cycle, assessment was performed in 20

Bosch GmbH software development units. In the second cycle in total 53

assessments were performed in different European countries by the partner

organisations. The starting point for the first cycle was methodology version 1

and for the second cycle methodology version 2. The experiments were initiated

and run by the researchers and their results communicated to the experts and to

software engineers and the management of the assessment target organisation in

common workshops. During the workshops, immediate feedback from and

63

experiences of the researchers, experts, software professionals and management

were collected for analysis in the next step.

In the Act step, the performance, results and experiences of the assessment

were analysed collaboratively by the research and development team and

industrial experts from the partner companies of the project. The analysis yielded

corrections to be made to the approach, new ideas and lessons for the next

development iteration cycle. The project team was highly professional and had

solid relevant industrial background and expertise. This gave a good starting point

for publishing the findings from the cycle in academia and learning also from

their feedback. At the end of the second cycle, the collected feedback, assessment

experiences and lessons learned indicated many immediate changes to the

approach, which the development team implemented.

3.2 Phase 2 – Methodology professionalisation

The BOOTSTRAP Institute was a spin-off of the BOOTSTRAP project and

established at the moment when several new initiatives in the area of software

process assessment and improvement emerged and the markets for professional

third-party and second-party assessments started to grow. The Institute was a non-

profit European Interest Economic Group (EEIG) established according to

European law to bring BOOTSTRAP methodology into the professional market

and take care of its further development. The research and methodology

development within the Institute was organised into a methodology development

team, led by the director of the Institute, which performed both internal

development activities and cooperative activities with external partners (e.g. the

European Software Institute) and initiatives (e.g. the SPICE project).

The development team continued internal research and development by

carrying out experimental PDCA cycles. Design rationales and requirements were

set up and constructed (Plan and Do steps) and then tested by the Institute

members and licensees in practical assessments (Check step). The new features

were communicated twice a year at organised assessors’ days and assessors’

update (for the new version) training courses. The feedback was collected (Act

step), together with the assessment results registration, into the BOOTSTRAP

data base managed by the Institute. The assessor feedback was then summarised

as lessons learned. The data base itself was also used to analyse the validity of the

assessments and assessment methodology versions.

64

The external development was organised so that the internal development

team planned (Plan step) new features (including a design rationale and

requirements) for the methodology, based on its own internal and continuous state

of the art and practice analysis and deep interaction with external research

projects and initiatives. This work was highly iterative and had internal iterations

before the requirements for internal implementation (Do step) were released by

the development team. Typically, the new plans and features were released for

external consideration outside the development team, for example to the SPICE

project (the case reported in this thesis) and feedback was collected in order to

help in choosing the features for the implementation.

The main external development that impacted on BOOTSTRAP methodology

happened in the SPICE project (Paulk & Konrad 1994b). The purpose of the

SPICE project was to develop material (in practice the ISO Technical Report) for

establishing a new ISO standard for software process assessment (Kuvaja et al.

1995a) and improvement (Kuvaja et al. 1995b). The BOOTSTRAP Institute

participated the project in an expert role for the purpose of defining the contents

of the forthcoming standard and at the same time to develop new versions of

BOOTSTRAP methodology ((Kuvaja 1999; Hamann et al. 2000; Kuvaja et al.

1999a) that would conform to ISO 15504. All recognised process assessment and

improvement methodology developers participated in the project including CMM

(Humphrey & Sweet 1987; Humphrey 1989), Healthcheck (Norris et al. 1994),

Trillium (Coallier et al. 1993; Coallier et al. 1994), Quantum (Barford et al.

1992), STD (Craigmyle & Fletcher 1993), Software Quality Improvement

Method (Thomson & Mayhew 1994a; Thomson & Mayhew 1994b) and TickIT

(TickIT 1992; Ould 1992). The author of this thesis acted as work package leader

in the development of an improvement guide (Kuvaja et al. 1995b) in the SPICE

project.

Three members of the development team were also members of the SPICE

project, ensuring that the results of the SPICE work were available “online” for

the development team. This information was valuable in choosing the features for

implementation. The new versions of the methodology were then experimented

with by following the same procedure as described in the internal development

step (Check step) above. In addition, trial results of the SPICE project (Check

step) were used in collecting assessment results and feedback for the internal

analysis. In this case, the collaboration between the experimenters and subjects

included also external experimenters and subjects of the SPICE project. The

analysis was performed inside the development team and also by utilising the

65

analysis of the SPICE project in order to ensure that new BOOTSTRAP

methodology versions would conform to the standard under development.

3.3 Phase 3 – Methodology enhancement

Since companies differ in size and internal culture, operate in different business

areas, are in different stages of attaining maturity and have different goals, there

was and still is a need for assessment to fit for different purposes. This was the

motivation to start the research and development aimed at producing different

versions of BOOTSTRAP methodology. The BOOTSTRAP development team

and the SPICE project defined assessment modes to include internal assessment,

second-party assessment or third-party assessment. In BOOTSTRAP

methodology, internal assessment is performed either by an internal software

process assessment team as professional assessment or by software engineers

themselves as self-assessment. The professional internal assessment team

performing a BOOTSTRAP assessment is led by a certified lead assessor and

includes trained and certified process assessors, assessment facilitators and an

assessment sponsor. The self-assessment is done by the software engineers

themselves using a lightweight version of an assessment and improvement

methodology, preferably supported by tools and templates.

The first step towards developing a specific version of BOOTSTRAP

methodology focused on self-assessment. The methodology research and

development team in the BOOTSTRAP Institute, together with the European

Software Institute (ESI) (Doiz 1997), developed a self-assessment version of the

methodology implemented in a software tool called BootCheck. The next

research and development steps were performed in TAPISTRY (1996–1997),

SPAM35 (1996–1998) and SPIRE36 (1997–1998) projects, which all were “sister

projects” in the ESSI ESPRIT programme. The projects had similar aims to

develop a self-assessment based approach to deploy software process

improvement for SMEs in the European software industry. In parallel to the

projects, BOOTSTRAP methodology was further enhanced in the PROFES

(1997–1999) project.

35 In the SPAM project, BOOTSTRAP methodology was used as a starting point for the development
of a software portability assessment approach.
36 In the SPIRE project (Sanders & SPIRE Partners 1998), the purpose was to encourage small to
medium-sized enterprises to perform self-assessment based software process improvement.

66

The motivation for the TAPISTRY project was a desire to understand that,

although a quantity of research results, tools, methods and recommended

strategies was available, it was quite difficult for any small to medium-sized

enterprises to choose an improvement approach and apply it in their company

(Kuvaja et al. 1999b). The need for the project became even more urgent as it was

recognised that small software development organisations are able to improve

their software processes as well as large organisations (Paulish 1993; Damele et

al. 1995) if they get the right and reliable information at the time when it is

needed. Small to medium-sized enterprises were found to have the following

weaknesses, preventing them from improving their processes:

– no substantive expertise

– scarce personnel and economic resources, and

– no knowledge of how to start or what experts to hire (Kuvaja et al. 1999b).

Accordingly, the TAPISTRY project was set up to develop an approach focusing

on small and medium-sized enterprises that would be able to:

– inform SMEs of how process improvement techniques can be applied in

practice in their settings

– provide SMEs with practical and implementable process improvement

guidance specific to their current processes and company objectives

– demonstrate to SMEs that their software quality problems are not unique and

can be solved without buying expensive tools or implementing heavy

processes, which require additional staff to administer

– allow SMEs to compare their practices and policies with other SMEs, and/or

– provide SMEs with specific advice and consulting services by local and

international experts in software process improvement without the SME

incurring large consulting costs (ESSI 1998).

The TAPISTRY project was conducted under the guidance of the BOOTSTRAP

development team. The partners of the project were members of the

BOOTSTRAP Institute or BOOTSTRAP licensee organisations. The research

process followed the PDCA cycle described in section 1.3, with tens of

experiments carried out by project members around Europe. The development

team made a plan (Plan step) to construct a workshop for educating small to

medium-sized organisations about software process improvement. The workshop

was iteratively constructed (Do step) and experimented with (Check step) within

the project. The experiments were carried out in the customer organisations of the

67

project partners and lessons learned were collected from the workshop

participants and instructors. The lessons were analysed and immediate corrections

made to the TAPISTRY approach. Additionally, the project team organised public

TAPISTRY workshops within the ESPITI programme (validation cycle) and

feedback from the participants of those workshops was collected and published

(Kuvaja et al. 1999b). In internal development, the researchers, TAPISTRY

workshop instructors and software professionals and representatives of partner

organisations of the project worked interactively together.

The European IST project called PROFES37 (Oivo et al. 1999) was a three-

year project starting in 1997 and ending in 1999. In the PROFES project, the idea

was to start from product improvement and discover how it would be possible by

improving the process that produces it. For that purpose, BOOTSTRAP

methodology was enhanced to include product development lifecycle processes.

The main research effort in PROFES was, however, focused on discovering how

to combine Goal–Question–Metrics, Quality Improvement Paradigm and

Experience Factory approaches with the BOOTSTRAP methodology in such a

way as to produce results conformant with the emerging new standard developed

in the SPICE project. The goal was also to end up with a new product-focused

software process improvement approach that would contain the approaches

mentioned above as interchangeable elements, which might be replaced with

another similar approach if needed in practical settings. Fortunately, all the

approaches were goal-driven in nature and the members had personally

participated in the development of the background approaches and paradigms.

The PROFES project was a free-standing IST project funded through the

Fourth Research Framework Programme by the European Commission. The

project was organised into work packages according to the Quality Improvement

Paradigm. The project followed the PDCA cycle, the BOOTSTRAP methodology

being used in the role of measurement within the GQM approach (Plan step).

Then it was adopted and combined with the goals defined by the GQM paradigm

(Do step), and tested with GQM for defining process capability in several

experimental assessments (Check step) performed in partner companies (Dräger

Medical Electronics, Ericsson Finland and Tokheim (earlier Schlumberger RPS)).

The feedback was collected in iterative cycles and after several cycles the result

was reported (Act step) as PROFES methodology. The researchers

37 An ESPRIT Project No. 23239, PROFES (PROduct Focused improvement of Embedded Software
processes), funded by the European Commission during 1997–1999.

68

(experimenters) had a background in BOOTSTRAP methodology, GQM, QIP

and/or Experience Factory. The representatives of the industrial partners worked

in close cooperation with the researchers and other personnel from the same

companies provided feedback on the experiments.

In the PROFES project, the author was a project leader of the research team

of the Department of Information Processing Science in the University of Oulu,

which was a full member of the project. The author was also work package leader

of the “assessment” work package and a member of the entire PROFES research

team developing the PROFES methodology. Specifically, the author contributed

to the development of the enhancements to BOOTSTRAP methodology to

include product development lifecycle processes and close connection to the

GQM and QI paradigms.

69

4 Analysis and main results

In this chapter, the research conducted and main results are analysed through the

research phases and applied research approach, as described in chapter 3. The

research effort is iterative and the target artefact, BOOTSTRAP methodology, is

under continuous evolution. Each phase produces its own results, which

contribute to the research questions as to their own. Therefore, answers to

research problems will emerge from each research phase, building partly on the

results of the previous phase but also responding to the new specific requirements

of the phase. The strength of answers is evaluated and presented in Table 3, using

a relative ascendant scale from one to three expressed by the number of “+” signs.

This indicates how the research and results are focused on solving the research

questions. The outline of the research results and their relative allocation to the

research questions and presentation in the original publication for each phase are

presented in the table.

Table 3. Research results outline.

Phase Research results Research

problems

Articles

 1990–1993

BOOTSTRAP project

BOOTSTRAP methodology

versions 1.0 and 2.2

Q1 ++

Q2 +

Q3 +++

Q4 +

1.

 1993–2004

BOOTSTRAP Institute

BOOTSTRAP methodology

version 2.3

Q1 +++

Q2 +++

Q3 +++

Q4 ++

2.

3.

BOOTSTRAP methodology

versions 3.0 and 3.1

Q1 +++

Q2 +++

Q3 +++

Q4 ++

4.

 1996–1999

BOOTSTRAP Institute and

IST cooperation

Guided workshop for self-

assessment and improvement

supported with BootCheck tool

Q1 +

Q2 +++

Q3 +++

Q4 +

5.

BOOTSTRAP methodology

version 3.2 and element in

PROFES methodology

Q1 +++

Q2 +++

Q3 +++

Q4 +++

6.

70

The research process was performed in four evolutional phases, as described in

the previous chapter (Fig. 3). In the first phase, the initial research and

development of the BOOTSTRAP methodology resulted in a research prototype,

which was then further developed in the subsequent phases. The second research

and development phase started with the establishment of a spin-off organisation

from the project of the first phase. The spin-off was the BOOTSTRAP Institute,

which identified and organised the research and development for bringing

BOOTSTRAP methodology into markets worldwide. In the third phase, the

methodology was enhanced to fit different assessment modes, scopes and goals.

Finally, in phase four, the research was aggregated to a proposal for a new

approach called Empirical Explorative Research. In this chapter, the research

phases are renamed according to the main results from the viewpoint of

BOOTSTRAP methodology evolution. The contents and main results of each

phase are analysed and presented in the following sections.

4.1 Phase 1 – Research prototype

The first versions (1, 2.1 and 2.2) of BOOTSTRAP methodology were developed

in the BOOTSTRAP project. The specific goals of the project included the

following targets:

– to develop a software assessment methodology

– to validate the assessment methodology by applying it to a number of

companies to define their process capability and organisational maturity

profiles

– to develop an improvement methodology, including setting the targets and

generating improvement plans, and

– to validate the improvement methodology by applying it to a number of

companies (Kuvaja et al. 1994: 18).

As described in the previous chapter, the research process comprised two main

cycles. The first cycle started from the motivation and overall goals of the project.

In the planning step, it was decided to apply CMM methodology as much as

possible and enhance it with the main features of ISO 9001 and ISO 9000 part 3

requirements. Starting from the design rationale, BOOTSTRAP questionnaire

version 1.0 was constructed and tested in practice by using the CMM approach in

defining the maturity levels of the target software unit. In total, more than 20

assessments were conducted in ten different Bosch GmBH software units. The

71

feedback from the target software units indicated that it was not enough to show

the maturity level only as an integer indicating the overall level of the

organisation, as derived through the project level assessment, but more precise

result was needed. The assessors’ feedback focused mainly on categorising the

answers to the questionnaire using the binary scale (“yes” or “no”). The

researcher also faced the problem of finding a way to compare the results of the

experimental assessments with one another and the results of original CMM

assessments.

The second main research cycle started from the overall project goals,

feedback from the first research cycle and revisiting the background approaches

indicated by the design rationale of the first main cycle. A request to apply ISO

9000 principles and, from the target organisations, to provide more precise results

for the maturity led to the preparation of separate questionnaires for SPU and

project level. The binary scale having proved lacking, the design rationale divided

the “yes” answer into “a bit yes”, “quite a lot yes” and “fully yes”. The statements

of the design rationale were incorporated into the new construct of the model. The

result was intermediate version 2.1 of the model, including separate

questionnaires for SPU and projects, and a four-point (scoring) scale for

answering the questionnaires. The model was immediately tested to get quick

feedback for planning and help in deciding whether to proceed towards a version

that would completely satisfy the requests. Positive feedback from the quick

experiments confirmed that two separate questionnaires and the new four-point

scale worked quite well in practice. Specifically, the two levels of questionnaires

aligned the approach with the ISO 9000 certification schema. Additionally, the

four-point scale was found to be used also in the Rocky Mountain Questionnaire

(which allowed a variety of response types: binary, four-point scale and six-point

scale).

The planning phase was repeated, taking into account the positive feedback to

the initially implemented changes. In light of the project’s demands to align the

methodology towards European needs and continuous improvement, requests

were met to complete implementation of ISO 9001 by following ISO 9000 part 3

guidance and to apply the European Space Agency lifecycle standard. The

assessment experiences reported by NASA (Bush 1991) and new version of

CMM (version 1.1) prompted a revisiting of the questionnaire contents and

maturity level definitions. All these things together set the design rationale for

improvements to the approach.

72

Accordingly, BOOTSTRAP version 2.2, a draft version for the experiments,

contained a new process structure, changed questions, new questions added into

each process area and new naming conventions. The process structure was

divided into organisation (Q), methodology (M) and technology (T), which

became known as process areas. New questions were added in line with the

NASA experiences. The processes started to be called “attributes”, as they

together constituted the maturity of the target organisation and the questions

measuring process took on the form of statements postulating the way working.

The methodology was then tested in 40 assessments performed in 11 SPUs in

external companies and, after minor internal iterations, completed to form version

2.22.

At that point, one important piece of feedback from the target companies and

retrospectives of the assessments remained unresolved. The main feedback

received was a request to show the maturity levels for both the SPU and the

projects separately and in more detail than just an integer number indicating the

maturity level. Specifically, the managers wanted to know whether the maturity

level was only just on that level or already moving towards the next level.

Analysis of the assessment results and assessors’ experiences indicated that each

partner company had used the same questionnaire but applied its own method of

performing the assessments and interviews, interpreting the questions and scoring

the findings, and rating and presenting the results.

One result of the project was organising the IPSS38-Europe International

Conference on Lean Software Development on October 22nd to 23rd with tutorials

on October 21st in 1992 in Stuttgart, Germany. The conference may have been the

first in the world touching on the topic of “lean software production”. The

conference issued the following statement: “Lean Software Development hits the

Software Community while it is still struggling to understand and control the

software development process. What should we learn from concepts of lean

production? What are the specific rules of software development not to be

violated? How should we describe Lean Software Development?” The conference

presented the initial ideas of the questions and statements and offered a good

basis for the BOOTSTRAP methodology development team to evaluate their

results within the bigger picture.

38 IPSS: Information Processing Systems and Software Sub-programmes, European Commission, DG
XIII: Telecommunications, Information Industries and Innovation.

73

4.2 Phase 2 – Commercial methodology

The BOOTSTRAP project ended in February 1993 at the same time as the first

meeting of the SPICE project was held. At the end of the project, it was agreed to

establish an institute to continue the methodology development work and bring it

to the commercial markets, as high demand was recognised, particularly in

Europe. The key developers (including the author of this thesis) continued

research and development of the methodology during the interim period of the

establishment of the Institute. The research and development team took

BOOTSTRAP methodology version 2.22 and feedback collected at the end of the

BOOTSTRAP project as a starting point for planning the new version of the

methodology. The resulting design rationale included requirements to present the

assessment results in more detail, to create a common way to perform the

assessments, to establish a mechanism to collect and present the assessment

results and to support assessors in performing the assessments.

The result of the implementation of the requests was the first commercial

version (2.3) of the BOOTSTRAP methodology. It comprised a division of the

maturity levels into quartiles, an algorithm (Messnarz 1994) to produce ratings

based on scoring of the questionnaire, presentation of the capability of the

processes in the form of an attribute profile, initial computer-based tools for

supporting the scoring, rating and collecting the assessment results and common

templates for performing the assessments. The methodology was taken

immediately into commercial use by the partner companies of the BOOTSTRAP

project and founding members designate of the Institute. The methodology

content was also introduced worldwide in several publications (Kuvaja & Bicego

1993; Haase et al. 1994; Kugler & Messnarz 1994). This was the research and

development status at the moment when the BOOTSTRAP Institute was initiated.

The BOOTSTRAP Institute, the owner of the Bootstrap methodology, was

established (April, 1994) as an independent organisation and as a spin-off from

the BOOTSTRAP project. The Institute was a non-profit organisation dedicated

to the continuous development of the methodology. The main task of the Institute

was to provide fair and equal access to the methodology while allowing all

interested parties to participate in its evolution. In order to protect the intellectual

property rights of the methodology, the BOOTSTRAP trademark was registered

in Europe and the USA. Later, the Institute set out the following objectives for

BOOTSTRAP methodology development in the future, which were to:

74

– keep the methodology consistent and preserve its unique features (see unique

features more precisely in sections 3.4 to 3.6)

– keep the methodology up to date with main international standards such as

ISO 9000, results of the SPICE project, new CMM versions, etc.

– keep the BOOTSTRAP data base up to date

– maintain supportive computer-based tools

– ensure that all BOOTSTRAP assessments would be performed according to

BOOTSTRAP methodology principles

– control the use of the methodology, following the terms of the licence

agreements, and

– guarantee that the methodology would keep its position as the leading

European software process assessment and improvement methodology on the

market (Kuvaja 1995b).

The objectives were already applied in the development of the first commercial

version of BOOTSTRAP methodology. Further development of the methodology

was affected by the SPICE project (Dorling 1993; Kuvaja et al. 1995a) in which

the BOOTSTRAP methodology development team participated intensively (see

Paulk & Konrad 1994a). That work started just after completion of the

BOOTSTRAP project. The overall goals of the new methodology version

development were to follow the above-mentioned objectives, and the specific

goals were to ensure full conformity between BOOTSTRAP methodology and the

emerging ISO standard for software process assessment and improvement, better

known as SPICE (ISO 15504). Development started with these goals and a

thorough revision of BOOTSTRAP methodology version 2.3, SPICE version 1.0

requirements and ISO 12207 lifecycle standard requirements. The result of

combining these design rationales was BOOTSTRAP methodology version 3.0,

an updated and documented assessment (reference and capability) model with

SPICE conformant process and capability dimensions. The process dimension

documents the BOOTSTRAP processes and practices. The new BOOTSTRAP

processes were developed by carefully revising the earlier BOOTSTRAP process

model and updating it to include requirements from IS0 12207, the SPICE 1.0

process model, ESA PSS-005, IS0 9001 and IS0 9000-3. The capability

dimension was also aligned to the SPICE capability concepts, including six levels

from 0 to 5 (where 0 represents the lowest and 5 the highest capability level). The

main change was that all capability levels were applied to each process of the

process dimension, thus permitting a common improvement strategy. In addition

75

to standard SPICE results, BOOTSTRAP kept its feature for generating synthetic

profiles using quartiles within the capability levels, as in its previous versions.

Additionally, BOOTSTRAP 3.0 kept its original features for goal-oriented

improvement and technology support evaluation. The BOOTSTRAP Institute

participated in the SPICE version 1.0 trials by performing full experimental

assessments using the BOOTSTRAP version 3.0 methodology and reporting the

results to the SPICE project. The feedback received from SPICE formed the basis

for further BOOTSTRAP methodology development.

The SPICE project continued development of the (forthcoming ISO) standard

requirements and published version 2.0 of the work results. The version also now

applied ISO 12207 requirements for the lifecycle processes, which thus became

aligned with BOOTSTRAP version 3.0. Additionally, new process descriptions

and updates for the previous versions were added. Collaboration with the SPICE

project (1993–2004) provided the Institute with a good basis for further

development and validation of the methodology. As a result, BOOTSTRAP

methodology version 3.1 was developed, which included all the features that the

SPICE project had identified. The version became equivalent to the CMM-I

Continuous model while still keeping BOOTSTRAP methodology specific

features. The new SPICE requirements (SPICE version 2) were also trialled, as

was the new version of BOOTSTRAP methodology.

During the collaboration with the SPICE project, BOOTSTRAP methodology

contributed greatly to the SPICE results. The following specific features from the

original BOOTSTRAP methodology were incorporated into the contents of

SPICE:

– define the scope of the assessment according to the goals of the assessment

target organisation

– use a four-point scoring scale

– present capability separately for each process, and

– present the assessment results as capability profiles.

What was adapted from the SPICE project to BOOTSTRAP methodology was

mainly the definition of the processes for the assessment (reference) model.

4.3 Phase 3 – Different versions

In parallel with the developments emanating from SPICE, the BOOTSTRAP

methodology was quite actively used, especially in Europe, for software process

76

assessment and improvement. Experience with the methodology showed that

European organisations had quite different needs for assessment, depending on

how advanced they were in software process improvement. The extreme ends

were, on one hand large, leading-edge organisations with a fairly mature process

and a long history of process assessment and improvement, and on the other hand

organisations that did not have any process management experience and were not

yet aware of its potential benefits. Therefore, there was a need for a simple self-

assessment approach for beginners that could create awareness and motivate them

to continue to more serious software process improvement. In addition, the

advanced organisations needed more sophisticated and professional software

process assessment and improvement approaches (Bicego & Kuvaja 1996).

As companies differ in size and internal culture, operate in different business

areas, are in a different stage of achieving maturity and have different goals, there

was and still is a need for assessment fit for different purposes. This, along with

the findings above, was the motivation for starting the research and development

aimed at producing different versions of BOOTSTRAP methodology. The

BOOTSTRAP development team and the SPICE project defined assessment

modes to include internal assessment, second-party assessment or third-party

assessment. In BOOTSTRAP methodology, internal assessment is performed

either by an internal software process assessment team as professional assessment

or by software engineers themselves as self-assessment. The professional internal

assessment team performing a BOOTSTRAP assessment is led by a certified lead

assessor and includes trained and certified process assessors, assessment

facilitators and an assessment sponsor. The self-assessment is performed by the

software engineers themselves, using a lightweight version of an assessment and

improvement methodology, preferably supported by tools and templates.

As described in section 3.3 specific version of BOOTSTRAP methodology

focused on self-assessment was developed in collaboration between the

BOOTSTRAP Institute and the European Software Institute. The result was

implemented in a software tool, called BootCheck (Doiz 1997), which included

tool and template support and a lightweight version of the methodology for self-

assessment. Its role was to give an idea of software process assessment and

improvement, and provide “rough” overall capability profiles for the assessed

processes. The next steps were performed in TAPISTRY (1996–1997), SPAM

(1996–1998) and SPIRE (1997–1998) projects, which all aimed to develop a self-

assessment based software process improvement approach for SMEs. In the

SPAM project, BOOTSTRAP methodology was used as a starting point for the

77

development of a software portability assessment approach. In the SPIRE project

(Sanders & SPIRE Partners 1998), the purpose was to encourage small to

medium-sized enterprises to perform self-assessment based software process

improvement. In parallel to the projects, the BOOTSTRAP methodology was

further enhanced in the PROFES (1997–1999) project, where it was combined

with GQM, QIP and Experience Factory approaches and enhanced with product

management and lifecycle processes.

The motivation for the TAPISTRY project was the understanding that,

although research results, tools, methods and recommended strategies were

available in some number, it was quite difficult for any small to medium-sized

enterprises to choose an improvement approach and to apply it in their company

(Kuvaja et al. 1999b). The need for the project became even more urgent as it was

recognised that small software development organisations might improve their

software processes just as much as large organisations (Paulish 1993; Damele et

al. 1995) if they got the right, reliable information about software process

improvement at the time when it was needed. Small to medium-sized enterprises

found they had certain weaknesses that prohibited them from improving their

processes. One thing hindering them was that they could not afford to maintain

substantial expertise of software process improvement within their companies, but

instead had to hire external expertise. They also suffered a scarcity of resources,

both human and financial, just when they urgently needed them. Another problem

was that they did not know how to start the improvement and which experts to

hire (Kuvaja et al. 1999b).

Accordingly, the TAPISTRY project’s approach with regard to the small and

medium-sized enterprises aimed to:

– inform SMEs of how process improvement techniques can be applied in

practice in their settings

– provide SMEs with practical and implementable process improvement

guidance specific to their current processes and company objectives

– demonstrate to SMEs that their software quality problems are not unique and

can be solved without buying expensive tools or implementing heavy

processes, which require additional staff to administer

– allow SMEs to compare their practices and policies with other SMEs, and/or

– provide SMEs with specific advice and consulting services from local and

international experts in software process improvement, without the SME

incurring large consulting costs (ESSI 1998).

78

The motivation and project objectives set the design rationale for the research and

development.

The design rationale was fulfilled by applying a learning-by-doing paradigm

(Merrill et al. 1995), high consulting expertise from the project partners and

adoption of a downscaled model of the BOOTSTRAP assessment methodology,

implemented in the BootCheck tool. The result was a two-day workshop,

including a step-by-step self-assessment and improvement exercise focused on

the participants’ own organisations and tutored by the workshop instructors, who

were software process improvement experts. During the workshop, the

participants were instructed to perform a self-assessment using the BootCheck

tool, analyse the results and prepare an improvement plan for their own

organisation, the “doing” part of the approach. The purpose was to urge the

participants to learn why it is important to do software process improvement and

what the value of it for their own organisation might be, what the main problems

in their own organisation are (in order to understand where to start software

process improvement) and what the software process improvement activities

needed in their own organisation might be (documented in the form of the

software process improvement plan).

The workshop suite includes also supportive material for the participants and

a guide and training course for the instructors and coaches. The TAPISTRY

approach was validated through a large number of experimental workshops and

instructor training sessions in Finland, Germany, the UK, Norway and Iceland

(Kuvaja et al. 1999b). Thereafter, the TAPISTRY approach was licensed by the

BOOTSTRAP Institute and has been used internally in licensee companies for

internal SPI training, in SPI courses of higher education in universities and in

commercial consultancy for guiding a company towards taking the first steps in

SPI.

The purpose of the PROFES project was to develop a product quality

improvement-driven software process improvement methodology. The motivation

came from the practice of software process improvement, where the aim was to

improve the quality of the product that the process produced and not just the

quality of the process. It was understood that this viewpoint was not emphasised

in any available process improvement approach, which tended instead to rely on

the assumption that the better the process quality is, the better the quality of the

product it produces. In the PROFES project, the logic started from the opposite

direction. First the quality of the product was analysed, then the targets for its

improvement were set, the processes were assessed and only then were the

79

required process improvements made. From that starting point, the design

rationale for the research and development was set to develop a methodology by

integrating software process assessment, software measurement and

organisational learning guided by the relationships between product and process

characteristics (Bicego et al. 1997).

The resulting PROFES methodology combines and enhances the strengths of

goal-oriented measurement, process assessment, product and process modelling

and Experience Factory. PROFES goal-oriented measurement methodology GQM

(Goal–Question–Metric) and BOOTSTRAP (ISO 15504 compliant) process

assessment and improvement methodology provided the framework for analysing

the status, setting the targets and monitoring progress. The BOOTSTRAP

assessment model was enhanced to fulfil the requirements stated for embedded

systems development. The enhancements included product management,

development lifecycle and related processes. ISO 9126 standard was also used as

a background reference for the product quality characteristics but the actual

product measurements are based on the GQM approach. Process modelling was

needed to describe the software development processes. Furthermore, PROFES

introduced a method for establishing product process dependencies (PPD), which

are a core element of the method and so far unique in the world of software

process improvement. PPDs connect the product characteristics into the process

characteristics (Hamann et al. 1998). Additionally, the entire structure of the

method followed the Quality Improvement Paradigm and applied organisational

learning according to the Experience Factory approach. The resulting approach

included the following six steps:

– characterise the process improvement environment (product, processes)

– set goals for product improvement

– plan process changes and implementation

– execute product development project according to plans

– analyse data and findings, and

– package results for reuse (PROFES project team 2000).

The BOOTSTRAP methodology is mainly included in the first step, but has a role

also in all the subsequent steps except execution. The initial versions of the

methodology were tested at full scale in three industrial organisations, which

offered real-life experimental environments for the methodology development

and validation.

80

81

5 Introduction to original publications

In this chapter, the original publications, their main results and the author’s role

and contribution are presented. The chapter starts by introducing the publications,

their origin and the author’s involvement in them. The contents and main results

of each publication are presented in separate sections, as well as the author’s role

in and contribution to their compilation.

5.1 Publications and author’s contribution

The works included in the thesis were published between 1994 and 2004 in

journals and peer-reviewed international conference proceedings. The

publications present the results of work done in many international and national

research and developments projects and initiatives.

The starting point for the author’s work in the area was to join an ESPRIT

research and development project called BOOTSTRAP from 1992 to 1993 in the

role of project manager of the University of Oulu research group and active

member of the methodology research and development team. During that activity,

BOOTSTRAP methodology version 2 and its final version 2.2 were developed.

Subsequently, the members of the project established the BOOTSTRAP

Institute as a new European Economic Interest Group (EEIG), a non-profit

organisation. The purpose of the Institute was to ensure continuous development

of BOOTSTRAP methodology and to bring it to the market and support and

manage its use in practical software process improvement in industry. The author

of this thesis was a board member of the Institute with full responsibility for and

participation in the methodology development (1994–2004). BOOTSTRAP

methodology version 2.3 was the first release by the Institute.

In 1993, the BOOTSTRAP methodology development team joined an

international project called Software Process Improvement and Capability

dEtermination (SPICE). The author became a member of the project with special

responsibility for and expertise in all the process assessment and improvement

research from the BOOTSTRAP methodology development viewpoint. In 1994

the author was also nominated as product manager of Process Improvement

Guide development in the project, a position he held until 1998.

BOOTSTRAP methodology development continued further in an ESPRIT

project called Product Focused improvement of Embedded Software processes

(PROFES) with the purpose of combining the methodology with Goal–

82

Questions–Metrics (GQM) and enhancing BOOTSTRAP with product

development assessment and improvement features. The author was project

manager of the University of Oulu project team and one of the key developers of

the methodology.

In parallel with the PROFES project, the BOOTSTRAP Institute, together

with the European Software Institute (ESI), developed a self-assessment tool

called BootCheck (Doiz 1997). The tool was based on a downscaled version of

the BOOTSTRAP methodology and helped users to perform a self-assessment

with interactive guidance. The author of the thesis managed the development

activity within the BOOTSTRAP Institute and participated as a key developer in

devising the downscaled version of the methodology.

BootCheck and the downscaled version of BOOTSTRAP methodology were

then further developed in an ESSI ESPRIT project called a Tailored Application

of Software Process Improvement Techniques for Small Enterprises (TAPISTRY)

during 1996–1997, where they were adopted into a new workshop-based

assessment and improvement approach. The author of the thesis was project

manager of the project and one of the main contributors to the development of the

methodology.

A number of articles and conference papers have been published arising out

of this work. Six of them have been chosen here to present different viewpoints of

the BOOTSTRAP assessment and improvement methodology and reflect the

different development expectations and experimental cycles that were part of

continuous international development in the area. The contents and roles of the

publications and the author’s role and contribution are summarised in Table 4 and

elaborated in more detail in the following sections of the chapter.

83

Table 4. Original publications and author’s contribution.

Publication Source Contribution

1. Kuvaja P., Bicego A. (1994):

“BOOTSTRAP – a European

Assessment Methodology”, Software

Quality Journal

BOOTSTRAP

Project,

BOOTSTRAP

Institute

member of the project, one of the main

developers of the methodology, main

author of the article

2. Similä J., Kuvaja P., Krzanik L. (1995):

“BOOTSTRAP: A Software Process

Assessment and Improvement

Methodology”, International Journal of

Software Engineering and Knowledge

Engineering

BOOTSTRAP

Institute, SPICE

Project,

BOOTSTRAP book

writing

member of the institute, one of the main

developers of the methodology,

member of the development team,

member of the project, main author of

the book, co-author of the article

3. Bicego A., Kuvaja P. (1996): “Software

process maturity and certification”,

Journal of Systems Architecture

BOOTSTRAP

Institute, SPICE

Project

member of the institute, member of the

development team, member of the

project, co-editor of work package in the

project, co-author of the article

4. Kuvaja P. (1999): “BOOTSTRAP 3.0 –

A SPICE Conformant Software Process

Assessment Methodology”, Software

Quality Journal

BOOTSTRAP

Institute, SPICE

Project

member of the institute, one of the main

developers of the methodology, co-

editor of work package in SPICE

project, author of the article

5. Kuvaja P., Bicego A., Palo J. (1999):

“TAPISTRY – A Software Process

Improvement Approach Tailored for

Small Enterprises”, Software Quality

Journal

BOOTSTRAP

Institute, TAPISTRY

Project

director of the Institute, one of the main

developers of the methodology,

member of the project, main author of

the article

6. Maansaari J., Kuvaja P., Taramaa J.,

Seppänen V. (1999): “Definition of an

Embedded Systems Process Frame to

Enhance ISO 15504 Conformant

Assessments”, International Conference

on Product Focused Software Process

Improvement – PROFES

PROFES Project member of the project, one of the main

developers of the methodology, co-

author of the paper

5.2 BOOTSTRAP – a European assessment methodology

This article was published in Software Quality Journal in 1994, presenting the

origin and motivations, development, contents and early validation data of a

European software process assessment and improvement methodology called

BOOTSTRAP. The methodology was developed in a three-year ESPRIT project

84

called BOOTSTRAP39, by keeping the original CMM (also known as an SEI

model) as the main background model and extending it with features based on the

guidelines from ISO 9000 quality standards and the ESA (European Space

Agency) lifecycle model (ESA standard No. PSS-005). The extensions were made

in order to fit the methodology to the European context and to obtain more

detailed capability profiles, in addition to maturity levels separately for

organisations and projects. The resulting methodology version (version 2.2)

includes assessment process description, questionnaires and an algorithm for

maturity and capability determination, tool and data base support for assessment

data collection and benchmarking.

BOOTSTRAP methodology originated in the European context, where

approximately 80% of all software was found to be developed in small to

medium-sized enterprises (SMEs) (Koch 1992) and 70% in non-IT sectors of the

economy (industry). Therefore, the ability to produce software efficiently, in a

timely manner and with consistently high quality was becoming increasingly

important to enable industries across Europe to maintain and enhance their

competitiveness. The BOOTSTRAP project was consequently identified and

accepted as one of the pathfinders for the European Systems and Software

Initiative (ESSI) (Koch 1992).

BOOTSTRAP methodology development was especially focused on the

needs of the European software industry. Therefore, the specific goals of the

development were that BOOTSTRAP methodology should be suitable for

software process assessment-based improvement in both SMEs and large

companies and should take into account the selection of software development

methods and lifecycle models, as well as processes and practices, and especially

adopt international software standards applied in Europe.

The first version of BOOTSTRAP methodology (version 1.0) was developed

in the BOOTSTRAP project by taking the CMM (version 1.0) as the basic

reference (capability and maturity levels and process definitions) and extending it

with the features of ISO 9000 quality standards and the European Space Agency

lifecycle model. The CMM model was applied in such a way that the results of a

BOOTSTRAP assessment could be comparable to CMM results. The adopted

ISO 9000 standards included guidelines for a company-wide quality system and a

39 The BOOTSTRAP project was ESPRIT project Number 5441, funded by the European
Commission, which preceded and had a role in preparing for the European System and Software
Initiative – ESSI programme.

85

distinction between organisation, methodology and technology. The ISO 9000

quality system certification schema gave us the idea of assessing the Software

Producing Unit (SPU) and its projects separately. This separation is not included

in the CMM model. Applying the lifecycle model defined in ESA PSS-005

enhanced the process suite of the process reference model used in CMM40,

especially with the addition of support processes and the contents of the ordinary

lifecycle processes common in Europe. That made the BOOTSTRAP reference

model more complete and applicable to the European context. Experiments were

done within the BOOTSTRAP project on the methodology by performing

assessments in Bosch software development units in Europe, the aim being to

define the maturity levels of the assessed organisations (as in the original CMM

assessments), gain experience of the workability of the methodology in practice

and collect feedback about the validity of the methodology version used.

Based on the experiences and feedback collected during the first experimental

cycle, a second version of BOOTSTRAP methodology was developed. The

second version included an algorithmic way to allow processes to attain capability

spanning more than one capability level, capability and maturity levels to include

quartiles inside the levels, and individual questions in the questionnaires offering

answers on a scale of five values, represented most commonly with such

adjectives as “absent”, “weak”, “fair”, “extensive” and “non-applicable”. All of

them were totally new features for software process assessment methodologies

developed at that time. The questionnaire version 2.1 included enhancements and

updates to process coverage based on new material published about CMM version

1.1, the “Rocky Mountain Questionnaire”, SQA process assessment by NASA

(Bush 1990) and HP’s SQPA approach (Grady 1992). The questionnaire was

tested internally in the project and then version 2.2 was devised to include

classification schemas both for projects and SPUs in order to help in systematic

assessment results collection and comparison. At the end of the BOOTSTRAP

project, the methodology version was 2.2.

The results at the end of BOOTSTRAP project and the experiences of its use

were published in the article. The maturity distribution profiles presented

included results of all experimental assessments carried out during the project but

now included in the BOOTSTRAP data base and reported in the format of the

new BOOTSTRAP data base output. The feedback presented in the article was

40 The processes used in the CMM are based on US Department of Defense lifecycle model standard
DoD-STD 2167A.

86

collected during the second experimental cycle of the project and relates to

methodology version 2.2. The results represented a strong incentive to develop

the methodology further for commercial use.

5.3 BOOTSTRAP: A Software process assessment and
improvement methodology

This article was published in the International Journal of Software Engineering

and Knowledge Engineering in 1995, presenting BOOTSTRAP software process

assessment and improvement methodology version 2.3. The article noted that the

next steps in methodology development were to enter into collaboration with the

European Software Institute (ESI) and to join the international SPICE project41, as

well as including new specific application areas such as embedded systems for

methodology use. The article was mainly based on the work done at the end of the

BOOTSTRAP project, when the research results were further developed for its

deployment42 in the industry, and BOOTSTRAP methodology version 2.3 was

developed. One part of that effort was the establishment of the BOOTSTRAP data

base, for which a classification schema for the assessments had to be devised. The

purpose was to collect all BOOTSTRAP assessment results into the data base by

offering the possibility of benchmarking the results of a single assessment against

the data base. At the same time, the data in the data base standardised and

validated the methodology contents.

The BOOTSTRAP project was concluded in 1993. Thereafter its members

founded BOOTSTRAP Institute43 to complete the methodology for commercial

markets and establish and maintain the BOOTSTRAP data base. The main

objectives of this new legal entity were to keep the methodology up to date,

spread and support its use, manage automatic data collection and data base

services and train the assessors in order to guarantee that all the assessments

fulfilled the same quality standards. Within the BOOTSTRAP Institute, version

2.3 of the methodology was developed and published, to include the

BOOTSTRAP assessor training and accreditation schema, a methodology

licensing policy, questionnaire version 2.3, computer-aided tools for scoring and

41 The author joined the SPICE project at its beginning in January 1994.
42 One part of that effort was writing a book: Software Process Assessment and Improvement – The
BOOTSTRAP Approach” (Kuvaja et al. 1994), which documented the main results of the project for
exploitation purposes.
43 The statute of the BOOTSTRAP Institute was signed on April 4th 1994.

87

data collection during assessment, results presentation profiles and data transfer

for the BOOTSTRAP data base that would enable benchmarking the assessment

results against the data base. Templates for on-site assessment meetings and

reports were included, as well as a description of the assessment process and

guidelines for process improvement and the generation of an improvement action

plan. The article focuses particularly on software process improvement, which

was explicitly the primary purpose of BOOTSTRAP assessment.

5.4 Software process maturity and certification

This article was published in the Journal of Systems Architecture in 1996. The

concepts of process maturity and certification were introduced through

representing the main maturity models and certification schemas of that time and

their subsequent development potentials in the SPICE project and BOOTSTRAP

methodology. The concept of a quality system and its certification was presented

according to the ISO 9000 suite of standards, leading on to a discussion of the

concept of process maturity by way of a short description of the objectives and

main technical characteristics of the Capability Maturity Model (CMM). An

introduction to SPICE followed, explaining the background and main objectives

of the emerging standard for software process assessment, process improvement

and capability determination. The article concluded by announcing the new

SPICE conformant version of BOOTSTRAP methodology.

The article considered process maturity and quality certification as a means to

improve customer satisfaction in terms of better product and service quality,

timeliness of delivery and cost-effective production that results in lower costs. It

took the software producer viewpoint, in which improved software quality means

better predicted and controlled software project costs, time schedule and results

and enhanced ability to manage the risks of development. Process maturity was

analysed through the main capability maturity model CMM and quality system

certification through the ISO 9000 suite of quality standards. CMM was seen as a

de facto international standard for software process assessments, originally

intended as “Contractor Software Engineering Capability Assessment (CSECA)”

that was used briefly and then replaced by “Software Capability Evaluation (SCE)

(Humphrey & Sweet 1987), and has been used in the same sense as ISO 9000 for

88

quality system certification in cases where the intended target maturity level was

assigned44.

The article introduced the foundation for combining international quality

standards and certification with process capability evaluation via the initiative to

develop an international standard for software process assessment and

improvement. The developed software process assessment standard was intended

to be applicable for both software process capability determination and software

process improvement. The article discussed further how BOOTSTRAP

methodology45 used the CMM46 approach for process assessment in combination

with ISO 9000 quality requirements for goal-oriented process improvement

purposes. This was seen as the main basis for further adoption of the requirements

of the forthcoming international standard for software process assessment to be

prepared and tested in the SPICE project. Conformance of BOOTSTRAP

methodology version 3.0, then under development, with the initial requirements

stated in the first results47 of the SPICE project was also demonstrated. The article

concluded by stressing the importance of quality improvement, especially in

small to medium-sized enterprises, by means of assessment, certification and the

application of international quality and process-related standards.

5.5 BOOTSTRAP 3.0 – A SPICE48 Conformant Software Process
Assessment Methodology

This article was published in Software Quality Journal in 1999. It introduced

BOOTSTRAP methodology version 3.0, which was compliant with the

definitions and process suite defined in the SPICE project, called SPICE version

1.0. The SPICE result was a basis for preparing the emerging ISO 15504 standard

for software process assessment. The core of the new methodology version

consisted of an assessment model and method. The assessment model of the

44 When CMM was used in the USA for evaluating the maturity levels of the subcontractors of the
Department of Defense, the target maturity level of the contractor organisation was set at level 3 in
bidding situations.
45 Version 2.3, see (Bicego & Kuvaja 1996: 618).
46 CMM versions 1.0 and 1.1.
47 So-called SPICE version 1.0.
48 Software Process Improvement and Capability dEtermination – SPICE, an international project set
up by ISO JTC1, Technical Committee 7 (Software engineering) Working Group 10 (Software
process assessment) to develop initial working draft material for the forthcoming standard ISO 15504
“Information technology – Software process assessment”.

89

version 3.0 was updated to align with the ISO 12207 and 15504 reference model

requirements. In addition to the process and capability dimensions, it contained a

technology dimension based on the earlier BOOTSTRAP questionnaire version

2.3. The process dimension contained 33 processes organised into six clusters:

Organisation, Lifecycle-Dependent, Management, Support, Customer–Supplier

and Process-Related. The capability dimension consisted of six levels, each

comprising one or more process attributes for scoring, adopted from ISO 15504

and included as quartiles in capability and maturity ratings. BOOTSTRAP

assessment was conducted at SPU and project levels, as was the earlier

BOOTSTRAP methodology version. The BOOTSTRAP Institute had already

released the methodology version in 1997 and it was used in SPICE version 1.0

trials as one of the complete assessment methodologies.

5.6 TAPISTRY – A Software Process Improvement Approach
Tailored for Small Enterprises

This article was published in Software Quality Journal in 1999 and introduced the

TAPISTRY approach that resulted from an ESSI ESPRIT project (No. 24238),

called TAPISTRY49, a tutored process improvement approach tailored for small

enterprises50. The article described how the TAPISTRY approach was developed,

used and validated by experiments. In the TAPISTRY project, a downscaled

model of the BOOTSTRAP assessment methodology, called BootCheck51, was

adopted and a workshop-based assessment and improvement method developed,

together constituting a process improvement approach for small to medium-sized

enterprises. In TAPISTRY workshops, the participants were tutored in self-

assessment and improvement planning by software process improvement experts.

The resulted TAPISTRY approach was validated through the experiments

performed during TAPISTRY project.

49 Tailored Application of Software Process Improvement Techniques for Small Enterprises.
50 Fewer than 60 staff members.
51 Developed in cooperation between the BOOTSTRAP Institute and European Software Institute –
ESI. Free versions of the tool can be downloaded from the following web addresses: bootstrap-
institute.com and esi.es. See also (Doiz 1997).

90

5.7 Definition of an embedded systems process frame to enhance
ISO 15504 conformant assessments

This publication is a conference paper published in the Proceedings of the

International Conference on Product Focused Software Process Improvement in

1999. The paper outlined the backgrounds for new features of BOOTSTRAP

methodology to be used in embedded systems assessment. It explained how

development of products that include embedded systems involve aspects that are

not found in traditional software development and how general software process

assessment methodologies neglect features specific to embedded systems. The

paper proposed a bridge between the development of embedded systems and

general software process assessment standards, by defining a process frame for

the development of embedded systems and by identifying key activities for each

process of the frame. The findings of the paper were based on an analysis of three

industrial organisations in the PROFES project52, in addition to an extensive

literature survey. They formed a basis for enhancing ISO 15504 (SPICE)

conformant assessment methodologies to cover the assessment of the embedded

systems development process.

52 Esprit project PROFES (EP 23239) funded by the EU.

91

6 Conclusions

In this chapter, the main results of the research are summarised, validation of the

results reported and the limitations and further research possibilities discussed.

6.1 Main contributions

The research reported in this thesis was iterative and conducted as part of

international research projects and an institute from 1990 to 2004. The research

process was divided into three chronological phases (Tables 2 and 3). In the first

phase, the research was carried out in a European R&D project (BOOTSTRAP),

the main result of which was a research prototype of the BOOTSTRAP

methodology. The main outcomes of the project were reported in the attached

paper (Kuvaja & Bicego 1994) (Paper 1), which was published in Software

Quality Journal. Additional results of the project were published in a book by the

author of this thesis and others (Kuvaja et al. 1994) and in the first international

conference on Lean Software Development53. The book describes the project,

introduces the initial ideas of the BOOTSTRAP methodology and reports the

main experiences of the methodology development. An additional result was the

establishment of the BOOTSTRAP Institute as a spin-off from the project.

The second phase of the research was conducted by the BOOTSTRAP

Institute internally and by participating in the SPICE project. The contribution

contains two main professional versions of the methodology. Based on the first

version, the BOOTSTRAP Institute registered BOOTSTRAP as a trademark in

Europe and the USA in order to protect the specific intellectual property rights of

the methodology in the markets. The results were reported in attached Paper 2

(Simila et al. 1995), Paper 3 (Bicego & Kuvaja 1996) and Paper 4 (Kuvaja 1999),

which were published in International Journal of Software and Knowledge

Engineering and Software Quality Journal. Additional publications of the

research performed during the phase that supported the BOOTSTRAP

methodology development were Kuvaja 1995a, Kuvaja et al. 1995a, and

Messnarz & Kuvaja 1996 and Kuvaja et al. 1995b).

53 Esprit BOOTSTRAP, IPSS–Europe International Conference, Lean Software Development,
Commission of European Communities, DG XIII: Telecommunications Information Industries and
Innovation, IPSS: Information Processing Systems and Software Sub-programmes, Steinbeis-Zentrum
Europäischer Technologietransfer, October 21st–23rd 1992, Stuttgart, Germany.

92

The third phase of the research was accommodated in two European research

projects with a view to enhancing the methodology to support software process

improvement in small enterprises and embedded product development. The

results were published as an article in Software Quality Journal, attached Paper 5

(Kuvaja et al. 1999b), and in the proceedings of the first PROFES conference,

attached Paper 6 (Kuvaja et al. 1999a). Other publications resulting from the

same research efforts and contributing equally to methodology enhancements

were Taramaa et al. 1998, Oivo et al. 1999, Kuvaja 1999 and Hamann et al. 2000.

The research efforts and results contributed iteratively to the research questions

set out for this research in section 1.3. Therefore, the specific contributions will

be outlined here for each question separately.

Research question 1 (Q1): What should a software process assessment

methodology include, such that it supports professional software process

assessment?”

BOOTSTRAP methodology was developed in a series of projects, as described

above. Each project contributed by providing answers to research question Q1.

The main result of the BOOTSTRAP project was the research prototype of the

methodology documented in Paper 1. The description contains overall goals of

the methodology and a detailed description of the assessment process, including

the roles and activities involved in the steps that constitute it, defines the

assessment questionnaire and reference model behind it, explains the scoring

principles, outlines an algorithm that is used for rating the evaluations and gives

an overview of the presentation of results using the CMM maturity levels with

quartiles. The model supports assessment to be performed in both SPU and

project levels, each having its own questionnaire with comparable contents.

Performing assessment at two levels gives an opportunity to compare the results

between the target SPU and its projects. This provides a means for evaluating

how far the projects are compliant with the organisation procedures and whether

the defined procedures are known and considered applicable and effective in

practice. The questions are answered by choosing from a list of adjectives,

namely “absent”, “weak”, “fair”, “extensive” and “non-applicable”. “Absent”

means “no”; “weak”, “fair” and “extensive” are three different degrees of a “yes”

answer, replacing CMM’s binary scoring; and “non-applicable” leaves the

question out of rating. The assessment results include maturity presentation as a

maturity tree that is read in top-down order. The top of the tree indicates overall

maturity, then moving downward and hierarchically, the maturity of the process

93

areas and sub-process areas, ending with single process capability ratings, in

which the capability can span two to three capability levels54. Another main

presentation form is the capability profile including all assessed processes. All

these features are unique but especially notable among them are the new scoring

principles and capability profiles, which were adopted by the SPICE work and are

now part of international standard ISO 15504. The validation data from 37

assessments55, including 37 SPUs and 90 projects, and lessons learned are

included in the presentation of results.

Answers to research question 1 in the second phase of the research were

published in three papers (Papers 2, 3 and 4). The main results of the phase were

two commercial versions of the BOOTSTRAP methodology developed under the

management and with the support of the BOOTSTRAP Institute. The first

commercial version (Paper 2) includes a comprehensive description of the

contents of the methodology and three case studies of typical assessment target

organisations and their goals for the assessment. In the development of this

version, concerns about objectivity, reliability and repeatability, which were

received as feedback on the research prototype, were taken into account. The

validation of the assessment methodology data contained overall results of 63

assessments and feedback from the assessed organisations. Intermediate results

were published (Paper 3) at the moment when the research had already started in

collaboration with the SPICE project. The publication explains the contents of the

quality standards and their role as the backbone of the reference model of the

methodology. It contains also the first outline of the SPICE conformant

BOOTSTRAP methodology and its objectives. The second commercial version of

the BOOTSTRAP methodology (Paper 4) contains the assessment method,

process model, capability levels, scoring, principles of ratings and results

presentation and process improvement guidelines. The assessment method and

reference model are ISO 15504 conformant. The results include enhancements in

the process dimension, with goals, base practices and work product indicators,

and in the capability dimension, with management practices, practice

54 Trillium had the same idea later in version 3.0 (April & Coallier 1995a).
55 This number compares quite well with, for example, CMM validation. See Humphrey’s comments
in “A Critical Look”: “…the SEI has conducted 16 SEI-assisted assessments and supported 37 self-
assessments. Because at least 50 people are involved in each assessment, several thousand US
software professionals have been directly involved in this work” (Humphrey & Curtis 1991: 45). The
same number of software engineers in Europe can be considered to have been involved in
BOOTSTRAP methodology research prototype validation, as the number of assessments includes 37
SPUs and their 90 projects.

94

performance characteristics and resource and infrastructure characteristics. It

includes also a technology dimension as its own third dimension and refines the

assessment results by subdividing the levels into quartiles. Validation of the new

methodology version was done as a part of the SPICE trials and own internal

assessment by the member organisations of the Institute and BOOTSTRAP

licensee organisations. The main contribution of the new BOOTSTRAP version

was to be ISO 15504 conformant, while still keeping its original and unique

features, rather than simply copying the contents of the standard.

In the third phase of the research, the BOOTSTRAP methodology got new

special features in order to address requests from the industry. First, the

methodology was downscaled for self-assessment and SME purposes. The

research effort was performed in the TAPISTRY project. The results (Paper 5)

include a description of the BootCheck assessment model (Doiz 1997), which was

incorporated into the TAPISTRY approach arising out of a collaboration between

the European Software Institute (ESI) and the BOOTSTRAP Institute. BootCheck

contains a classification schema, an assessment model and an assessment method

that are implemented and supported by a computer-based tool. The schema is

used for classifying the assessed organisations for benchmarking purposes. The

assessment model contains a process model, capability levels, scoring and

principles of ratings and results presentation. The assessment method is a self-

assessment, supported by the BootCheck tool. The process model is a downscaled

version of the complete BOOTSTRAP 3.0 process model, which includes 19

processes out of the total of 35 processes. The model was validated based on the

feedback provided by 61 beta test organisations in Europe and India (Doiz 1997).

The process capability dimension is equal to capability levels defined in the

original BOOTSTRAP assessment methodology, but contains levels from 0 to 3

only. In TAPISTRY, the BootCheck assessment method was rounded off with a

two-day tutored workshop on the step-by-step self-assessment and improvement

planning procedure. Workshop participants received tuition in evaluating the

software processes of their own organisations using BootCheck self-assessment,

analysing the results and developing a process improvement plan specific to their

organisation. The workshop was assisted with a portfolio of process improvement

templates and a standard workshop procedure of five steps with fixed contents.

The TAPISTRY workshop was validated by systematically collecting feedback

from the participants during the TAPISTRY project and then when the approach

was taken into commercial use. A summary of the feedback is included in the

results presentation.

95

As part of the research performed in the PROFES project, specific

requirements for assessing embedded product development were defined (Paper

6). This was an enhancement of the BOOTSTRAP methodology to embedded

systems development. The results contained a process frame for the development

of embedded systems and identification of the key activities for each process of

the frame. The findings were based on an analysis of three industrial partner

organisations of the PROFES project. The resulting process frame set out the

requirements for defining product development lifecycle processes, including

product requirements specification, product design, system design and

implementation, systems integration and testing, production and installation,

customer support and product improvement. The requirements were implemented

in the BOOTSTRAP methodology, where a new process area was added, called

“product development lifecycle processes”, and existing management processes

were updated to include product management processes. The result was

BOOTSTRAP methodology version 3.2, which includes features quite similar to

those of SE-CMM, while being ISO 15504 conformant at the same time. The

version can be kept as a pathfinder for later updates in ISO 15504 to cover

product development. Validation of the features was done in the assessments and

expert reviews during the PROFES project56.

Research question 2 (Q2): What should a software process assessment

methodology include, such that it supports continuous software process

improvement?

One cornerstone of the BOOTSTRAP methodology is total quality management

(TQM) (Paper 1), which takes ideas of continuous improvement, a Plan–Do–

Check–Act scheme, a process-oriented approach for the improvement of customer

satisfaction and productivity and time-to-market as the basic quality dimensions.

Improvement guidelines were devised along the same lines (Paper 1) describing

how to define and select gradual changes to improve the software production

process and formulate them into action plans. The first phase of the assessment is

assessment preparation, in which the people to be interviewed are informed about

the assessment, the target of the assessment selected, the assessment team

identified and a confidentiality agreement signed. The purpose of the phase, part

of a continuous improvement process, is to get the target organisation committed

to improvement. After each interview, the process ratings are analysed

56 See for example in (Taramaa et al. 1998: 909).

96

immediately and verified with the interviewees. Verified data are a basic

requirement for developing the improvement plan. The main goal of this phase is

to ensure that the people interviewed generally agree on the basic data collected

and to check for any incompleteness or inconsistencies in the results. The verified

assessment results are presented in the form of maturity trees, capability profiles,

strengths and weaknesses profiles and benchmarking against the BOOTSTRAP

data base, and evaluated against company goals and business needs. The resulting

improvement plan (Paper 2) includes descriptions of the small short- and long-

term actions that the target organisation is recommended to take before

implementing them as projects. The final assessment results including the

improvement plan are then presented to the target organisation with the aim of

obtaining commitment for the improvement proposals. This basic support for

continuous improvement is aligned with SPICE principles (Paper 3), further

updated (Paper 4) to maintain that alignment. The idea of continuous

improvement was disseminated via the workshops (Paper 5), in which

participants learn by doing an assessment process themselves with the help of

professional tutoring. The ideas (Paper 6) were incorporated into a new version of

BOOTSTRAP methodology, which became applicable as part of the PROFES

product-driven process improvement approach that follows the Quality

Improvement Paradigm (QIP) to achieve continuous improvement.

Research question 3 (Q3): What should a software process assessment

methodology include, such that it supports the requirements of relevant

standards and their evolution?

The first versions of the BOOTSTRAP assessment methodology including

research prototype versions (Paper 1) and the first commercial version (Paper 2

and Paper 3) were developed by applying the original SEI model as the main de

facto standard. The application includes two aspects, namely process dimension

and capability dimension, both of which are needed to answer research question

3. The process dimension of the SEI model was documented in the form of a

maturity evaluation questionnaire. The background standard of the questionnaire

was DoD standard number 2167A for software development, dating from 1988.

BOOTSTRAP development took that questionnaire as a starting point (Paper 1)

and enhanced it with new questions based on the guidelines from ISO 9000

quality standards and ESA (European Space Agency) process model standards.

Enhancements were made in order to fit the methodology into the European

context. ISO standards were applied in two different ways (Paper 3). First, the

97

requirements of the quality standard were applied in the quality-related section of

the questionnaires. Second, the requirements for a quality system were adopted,

with the result that the assessment was performed both on SPU and project levels,

as the ISO certification schemes required. Both SPU and project have specific

questionnaires with comparable contents, which permit comparison of the

maturity and capabilities between the two (Paper 2). Assessment performed in this

way is the main advantage of the BOOTSTRAP methodology when compared to

most CMM-based assessment methodologies, where the result of assessment of

the organisation is derived only from project-level assessments. Thanks to the

influence of ESA’s classical software lifecycle model on the contents of the

lifecycle questions, the questionnaires could be enhanced with support processes.

In the development of the ISO 15504 conformant methodology (Paper 4), the

BOOTSTRAP methodology development team made the decision to apply ISO

12207 lifecycle standard just after the first SPICE trials and became ISO 15504

conformant before the standardisation working group, SPICE, turned to the same

decision.

The original SEI model was also de facto the standard for software process

assessment approaches and for the capability dimension. The maturity levels of

the SEI model were applied as such in the BOOTSTRAP methodology in the

beginning (Paper 1) but were developed later to include quartiles within the levels

to get more detailed process capability profiles and maturity levels for SPU and

its projects. This was also found to support continuous improvement, as smaller

advancements in capability and maturity can be recognised and communicated

(Paper 2 and Paper 3). New capability concepts, though aligned with CMM, were

developed and trialled in the SPICE project. A brainstorming meeting in the

SPICE project, lasting several days and hosted by the Software Engineering

Institute in Pittsburgh in 1994, used the “taming the lion” metaphor57 and ended

up with six capability levels, which are now part of the ISO 15504 standard. The

current version of BOOTSTRAP methodology (Papers 4, 5 and 6) applies ISO

15504 requirements while keeping its original quartiles within the capability

levels and defining maturity for both the SPU and its projects. Also ISO has

followed the idea and in 2008 published requirements for determining

organisational maturity as part 7 (ISO/IEC 15504-7:2008 2008) of ISO 15504.

57 The more professional the performer is the more structured and managed is the process of taming.
The lions were considered to be as “wild” as the processes without management.

98

Research question 4 (Q4): What should a software process assessment

methodology include, such that it supports different assessments settings?

The purpose of BOOTSTRAP software process assessment is software process

improvement, which starts from the company goals and business needs. This

principle was already stated at the beginning of the BOOTSTRAP project (Paper

1) and pertains to all types of BOOTSTRAP assessments (Papers 4, 5 and 6). In

addition, BOOTSTRAP assessment can be applied when a company considers,

for example, IS0 9001 certification as the first step in software process

improvement (Paper 3). The scope of the assessment is addressed in

BOOTSTRAP in a unique way by assessing the organisation (SPU) level and

project level separately, according to ISO 9001 requirements (Paper 2).

Professional BOOTSTRAP assessment prefers that the assessments be performed

with assistance from an external assessor, although the purpose is software

process improvement (Paper 3). The recommendation is based on experiences

from the BOOTSTRAP project, where self-assessments did not have the same

effectiveness as assisted assessments and results were less reliable. In second-

party assessment, the methodology was seen to be applied more rigorously and

without any personal tendency to influence the results. The scope of the

assessment can be a full assessment that includes all processes found to exist in

the target SPU and its assessed projects (Paper 2 and Paper 4). Assessment can

also be focused on certain processes or parts of the SPU and projects. Typically

this is done in reassessments for monitoring the improvement progress.

6.2 Validity of the research

The research reported in this thesis contributes to understanding of the

phenomenon called software process assessment and improvement, as explained

in the previous sections (1.2, 1.3). The contribution development has applied a

design science58 paradigm, together with Deming’s cycle and the GQM paradigm.

Design science sets the research in a wider perspective and therefore confirms the

validity of the research. It also covers the general requirements of internal and

external validity, construct validity and reliability set originally by Yin (Yin 2009)

58 Design science research is a research paradigm in which a designer answers questions relevant to
human problems via the creation of innovative artefacts, thereby contributing new knowledge to the
body of scientific evidence. The designed artefacts are both useful and fundamental in understanding
that problem (Hevner A Chatterjee S 2010: 5).

99

for case studies in social sciences and recommended to be applied also in

empirical software engineering by Wohlin (Wohlin et al. 2003). As the design

science approach is directly aligned with the research questions of this thesis (see

Section 1.3), it fits better for validation of the results here.

According to Hevner, research that follows design science principles brings

into sharp focus knowledge and understanding of a design problem and its

solution in the building and application of an artefact (Hevner A & Chatterjee S

2010: 5). The artefact constructed in this research is the BOOTSTRAP software

process assessment and improvement methodology. The overall design problem

was described in section 1.3 and the solution is described in more detail in the

research papers represented in chapters 3 to 5.

The paradigm includes seven guidelines on performing design science

research, as presented in Table 5.

Table 5. Design science research guidelines (Hevner A & Chatterjee S 2010: 12).

Guideline Description

1: Design as an artefact Design science research must produce a viable artefact in the form of a

construct, a model, a method or an instantiation.

2: Problem relevance The objective of design science research is to develop technology-

based solutions to important and relevant business problems.

3: Design evaluation The utility, quality, and efficacy of a design artefact must be rigorously

demonstrated via well-executed evaluation methods.

4: Research contributions Effective design science research must provide clear and verifiable

contributions in the areas of the design artefact, design foundations,

and/or design methodologies.

5: Research rigor Design science research relies upon the application of rigorous methods

in both the construction and evaluation of the design artefact.

6: Design as a search process The search for an effective artefact requires utilizing available means to

reach desired ends while satisfying laws in the problem environment.

7: Communication of research Design science research must be presented effectively to both

technology-oriented and management-oriented audiences.

These guidelines are used here to demonstrate the validity of the research in a

structured manner.

Design as an artefact

As described in chapters 3 and 4, the artefact called BOOTSTRAP assessment

and improvement methodology was developed in a series of research projects that

100

logically formed three phases, each producing a new instantiation or version of

the methodology. The instantiations are research prototype, commercial product

and specific product versions. Each project had iterative development and

research cycles, as described in section 1.4. Within each research cycle, the

evolution of the end result starts with a problem statement, is followed by the

definition of the design rationale, produces a construct for evaluation,

experiments with the construct in practice, evaluates its performance and collects

feedback and experiences, has a short corrective action cycle after evaluation and

ends with a new instantiation to be communicated to the external knowledge base

and immediate use and system (application and problem) environment (Hevner &

Chatterjee 2010: 17). The environment in this research specifically contains

industrial base line projects involved in the experiments, user communities (e.g.

BOOTSTRAP assessors), collaborative development and research projects (e.g.

SPICE) or institutes (e.g. ESI) and other external industry interested in the

artefact or having similar initiatives, developments or use interests or experiences.

Problem relevance

The initial problem of this research comes from the practical problems of

software quality, development productivity and meeting the demands of the

marketplace. The overall research problem and the starting point for the research

were explained in section 1.3 in order to provide a rationale for the research. Each

reported project had its own research problems aligned with the overall problems

of this research or parts thereof. Each research cycle within the projects then

started with its own specific or more detailed problems that set the goal for the

cycle, as described in section 1.4.

Design evaluation

Each research cycle concluded with an experiment in a real industrial

environment and immediate feedback from practitioners and the developers was

collected and analysed. This and the problem setting follow the idea of the

relevance cycle defined by Hevner (Hevner & Chatterjee 2010: 16–17) for design

science research. Based on the analysis, corrective actions were devised and

carried out. Problems that could not be corrected immediately were fed into the

second research and development cycle. They might even initiate a new research

project and be communicated, with the experiences, to the external knowledge

101

base and the immediate use and system environment. It is remarkable that in this

research both methodology developers and practitioners from the industry worked

in close cooperation and the experiments were done in practical situations in

industry. This made it possible to achieve close cooperation and get rich feedback

immediately. Based on the feedback, the BOOTSTRAP methodology was given

new features (e.g. process capability), which are now part of an international

standard (ISO 15504).

Research contributions

Each new version of the artefact that was a result of a research phase and that was

communicated to the external knowledge base and immediate use and system

environment was subjected to verification in a practical environment. The

research prototype version of the BOOTSTRAP methodology at the end of the

BOOTSTRAP project had been used in 37 assessments including 37 SPUs and 90

projects, as reported in Paper 1. This number is comparable, for example, with

CMM validation such as reported by Humphrey in “A Critical Look” as follows:

“…the SEI has conducted 16 SEI-assisted assessments and supported 37 self-

assessments. Because at least 50 people are involved in each assessment, several

thousand US software professionals have been directly involved in this work”

(Humphrey & Curtis 1991: 45). About the same number of software engineers

can be considered to have been involved in the BOOTSTRAP research prototype

validation. In addition, the first reported assessment results of the use of the first

commercial version of the methodology included data from 63 assessments

(Paper 2). The further versions of the methodology were validated as part of

international SPICE trials and internally in TAPISTRY and PROFES projects, as

described in the previous section.

Research rigour

As described in section 1.4 the research and development of the artefact in this

research happened iteratively by applying Deming’s cycle. The final artefact is

the result of an evolution including different versions of the BOOTSTRAP

methodology. Each version was extensively verified in practical situations and

can be used for software process assessment and improvement when the context

suits the version purpose. For example, TAPISTRY is a very good means of

102

introducing software process improvement for the first time to practitioners or

students in higher software engineering education.

Design as a search process

The research was conducted in numerous different research and development

projects, involving many practitioners and researchers with high expertise in

specific topics of the research area. The research and development started in the

BOOTSTRAP project in the European context, and with that expertise entered

into a worldwide research and development initiative, the SPICE project. The

final phase of the research then focused on special purpose assessments requiring

special expertise in the focused area in the TAPISTRY and PROFES projects, as

described in chapters 3 and 4.

Communication of the research

The BOOTSTRAP project has published actively in the international and

European contexts, for both academia and industry. At the end of the project, a

spin-off called the BOOTSTRAP Institute was established, a book describing the

methodology published and its print-run of 2,000 copies sold. Additionally, the

first international conference on Lean Software Development was held, as

described above. The BOOTSTRAP Institute has actively participated in

European research projects and the SPICE project, which in turn has made a

substantial contribution to knowledge. The SPICE project has also started to

organise an international conference on software process assessment (SPICE

Conference).

6.3 Limitations of the study

The main limitation of this thesis is that it was written during a long time period,

starting in 2001 and finishing 11 years later. This required that the evolution of

the knowledge base, including background models and standards, and

developments in the immediate use and system environment be taken into account

and relate to the results of the study. The immediate knowledge base and

environment have evolved greatly since 2000 and the results of the research have

been applied in industry in practical assessments. The impact of the results can be

recognised in the contents and development of international standards, including

103

the last updates to ISO/IEC 15504-6:2008 (2008), ISO/IEC 15504-7:2008 (2008)

and ISO/IEC 15504-9:2011 (2011). The results of the study have been cited

copiously in international research and have had a significant impact on the

evolution of the external knowledge base. Solving the problems of evolution was

the motivation for the thesis work to illuminate the unpublished ideas and

rationales behind the publications. Chapter 2 describes the course of evolution of

the external knowledge base and the immediate use and system environment and

sheds light on the developments behind the methodology, which have never been

published before. The author of the thesis was one of the key developers of

BOOTSTRAP methodology development in all phases of the research and has

had access to the authentic results produced. Therefore, the thesis exhibits precise

knowledge of the way in which BOOTSTRAP methodology emerged and its

relation to the evolution of the general area. BOOTSTRAP methodology is still in

use and has good potential to be applied in improving software, systems and

services development in the future. The thesis provides a starting point to

continue into that direction.

Other limitations of the thesis are inherent in the area of software process

assessment improvement itself. Critics have raised their own concerns about this

field, for example Bollinger and McCowan (Bollinger & McGowan 1991), Gray

and Smith (Gray & Smith 1998) and Dekleva and Drehmer (Dekleva & Drehmer

1997). Bollinger and McCowan directed their criticism specifically towards the

maturity level definition of CMM. Others have criticisms of a more general

nature, relating to all assessment and improvement approaches. Dekleva and

Drehmer have gone deeper into the topic; their statistical analysis of the contents

of the CMM questionnaires, using Rasch theory, raised concerns similar to those

of Bollinger and McCowan. Gray and Smith claim that, although the ideal aim of

software process assessment and improvement is to furnish software developers

with a means to rate their software development and thereby empower them to

acquire a credible recognition of the degree of goodness of their practices and

hence continuously to improve the practices, the truth is different. According to

them, the assessment leads only to identification of those processes that need to

be improved. This result is then fed into the process improvement plans, which

they say do not necessarily guarantee any improvements to the work of practical

software engineers, as was the original goal.

104

6.4 Future research

The results of this thesis offer a sound basis for further study, including detailed

results of analysis and experiences of software process assessment and

improvement approach development and its relation to the current state of the art.

In specific the actual improvements gained using the assessment approaches

would be worth to be investigated in longitudinal quantitative studies. Some

unsolved problems also remain, suggesting possibilities for future research,

notably relating to the new developments in software engineering. The current

software process assessments are based on the requirements of international

standard ISO 15504, which specify that software process assessment should be

carried out by comparing the performance of the target organisation against the

suite of international standards for software, system and service development

lifecycles. It also includes comprehensive guidance on doing the assessments.

Nevertheless, the standards have not confronted and therefore do not encompass

the rapid development of the area, including for example agile and lean thinking.

Some assessment approaches have been proposed by Sidky for agile process

assessment (Sidky et al. 2007; Smith & Sidky 2009), but they have the same

limitations as the ISO 15504 conformant assessment approaches. The concept of

capability, despite its long history, needs to be rethought, as it is now based on

adaptation of management practices (Gray & Smith 1998), which do not apply in

the agile way of working. The contents of the maturity levels should also be

rethought. The next step following agile has been quite widely accepted to be the

adoption of lean principles, which operates at organisational level, whereas agile

remains at project level. This fits well with the BOOTSTRAP assessment

principle of performing it at both organisational and project level. The thesis

provides an excellent opportunity to follow the research line started by SEI and

apply the assessment in an agile and lean environment. The first efforts have

already started in the Finnish Cloud programme for the development of agile and

lean transformation research (Mandic et al. 2010).

105

References

Allen RH & Sriram RD (2000) The role of standards in innovation, Technological
Forecasting and Social Change 64(2): 171–181.

April A & Coallier F (1995a) Trillium V3.0: A Model for the Assessment of Telecom
Software System Development Capability, 2nd International SPICE Symposium
ASQRI. : 79–88.

April A & Coallier F (1995b) Trillium: a model for the assessment of telecom software
system development and maintenance capability. Proceedings of the Second IEEE
International Software Engineering Standards Symposium 1995 - ISESS'95,
'Experience and Practice', IEEE: 175–183.

AQAP-13:1981 (1981) AQAP-13, NATO Software Quality Control System Requirements.
AQAP-13:1981.

Arnold S & Lawson HW (2004) Viewing systems from a business management
perspective: The ISO/IEC 15288 standard, Systems engineering 7(3): 229–242.

Austin RD (1996) Measuring and managing performance in organizations, Dorset House
Publishing, New York.

Barford A, May G, Miller C, Ould M, Tait S, Thomas M & Watss J (1992) Quantum A
measurement-based framework for the assurance of software quality.

Basili V & Green S (1994) Software process evolution at the SEL, IEEE Software 11(4):
58–66.

Basili VR (1992) Software modeling and measurement: the Goal/Question/Metric
paradigm, Computer Science, Research Works (CS-TR-2956, UMIACS-TR-92-96).

Basili VR & Weiss DM (1984) A methodology for collecting valid software engineering
data, IEEE Transactions on Software Engineering (6): 728–738.

Bate R, Kuhn D, Wells C, Armitage J & Clark G (1995) A systems engineering capability
maturity model, Version 1.1, CMU/SEI-95-MM-003.

Bicego A & Kuvaja P (1996) Software process maturity and certification, Journal of
Systems Architecture 42(8): 611–620.

Bicego A, Kuvaja P, Van Latum F, Oivo M, Rodenbach E & Ruhe G (1997) PROFES:
Announcing the Marriage Between Process Assessment and Measurement,
International Conference of Software Engineering - ICSE'97, Poster.

Bollinger TB & McGowan C (1991) A critical look at software capability evaluations,
IEEE Software 8(4): 25–41.

Brooks Jr FP (1987) No silver bullet: essence and accidents of software engineering,
Computer 20(4): 10–19.

Bush M (1990) Improving software quality: The use of formal inspections at the Jet
Propulsion Laboratory. The 12th International Conference on Software Engineering -
ICSE´90, IEEE: 196–199.

Bush MW (1991) Process assessments in NASA. Proceedings of the 13th international
conference on Software engineering - ICSE´91, IEEE Computer Society Press: 299–
304.

106

Chrissis M, Konrad M & Shrum S (2007) CMMI® Guidelines for Process Integration and
Product Development, Boston, USA, Addison-Wesley.

Chrissis MB, Konrad M & Shrum S (2011) CMMI® for Development: Guidelines for
Process Integration and Product Improvement, Addison-Wesley Professional.

CMMI PT (2002a) Capability Maturity Model Integration, Version 1.1, CMMI for
Systems Engineering and Software Engineering (CMMI-SE/SW, V1.1), Continuous
Representation, CMU/SEI-2002-TR-001, ESC-TR-2002–001.

CMMI PT (2002b) Capability Maturity Model Integration, Version 1.1 - CMMI for
Systems Engineering and Software Engineering (CMMI-SE/SW, V1.1), Staged
Representation, CMU/SEI-2002-TR-00, ESC-TR-2002-002.

CMMI PT (2007) CMMI for acquisition, version 1.2, CMU/SEI-2007-TR-017.
CMMI PT (2009) CMMI for services, version 1.2, CMU/SEI-2009-TR-001.
Coallier F, Gammage N & Graydon A (1994) TRILLIUM-Telecom Software Product

Development Capability Assessment Model, Bell Canada.
Coallier F, Gammage N & Graydon A (1993) Trillium-Software Process Self-assessment

Capability Assessment (4.0), Bell Canada, Bell Northern Research, Northern Telecom
PI QOOS PI QOOOS(4.0).

Compita (1993a) Software Development Diagnostic Practitioner's Guideline, Version 2.5,
Compita.

Compita (1993b) Software Technology Diagnostic Preparation Guideline, Version 2.5,
Compita.

Craigmyle M & Fletcher I (1993) Improving IT effectiveness through software process
assessment, Software Quality Journal 2(4): 257–264.

Curtis B, Hefley WE & Miller S (1995) Overview of the People Capability Maturity
Model, Overview of the People Capability Maturity Model, CMU/SEI-95-MM-01.

Cusumano MA (1991) Japan's Software Factories: A Challenge to US Management ,
Oxford University Press, USA.

Damele G, Bazzana G & Maiocchi M (1995) Quantifying the benefits of software process
improvement in Italtel Linea UT exhange, ISS Conference.

Dekleva S & Drehmer D (1997) Measuring software engineering evolution: A Rasch
calibration. Information Systems Research 8(1): 95–104.

Deming WE (1981) On the management of statistical techniques for quality and
productivity , W. Edwards Deming.

Deming WE (1982) Quality, productivity, and competitive position, Massachusetts
Institute of Technology, Center for Advanced Engineering Study Cambridge, MA,
USA.

Deming WE (1986) Out of the Crisis, USA, MIT press.
Dertouzos M, Lester RK & Solow R (1989) Made in America: Regaining the competitive

edge, Cambridge: MIT Press 81: 93.
DOD-STD-2167A:1988 (1988) DOD-STD-2167A, Defence System Software

Development, DOD-STD-2167A.
DOD-STD-2168:1988 (1988) DOD-STD-2168:1988, Defence system Software Quality

Program DOD-STD-2168:1988.

107

DOD-STD-7935A:1988 (1988) DOD-STD-7935A,DOD Automated Information Systems
(AIS) documentation standards,. DOD-STD-7935A.

Doiz I (1997) ESI news, Software Process- Improvement and Practice 3(1): 62–63.
Dorling A (1993) SPICE: Software process improvement and capability determination,

Software Quality Journal 2(4): 209–224.
ECSS-E-40A:1996 (1996) Space engineering, Software, ECSS-E-40A.
ECSS-E-40B-1:2003 (2003) Space engineering, Software - Part 1B: Principles and

requirements, ECSS-E-40B -Part 1.
ECSS-E-40B-2:2005 (2005) Space engineering, Software - Part2B: Document

requirements definitions (DRDs), ECSS-E-40B-Part 2.
ECSS-E-40C:2009 (2009) Space engineering, Software, ECSS-E-40C.
ECSS-Q-ST-80C:2009 (2009) Space product assurance - Software product assurance,

ECSS-Q-ST-80C.
ESA 1991 (February 1991) ESA -Software Engineering Standards ESA PSS-05-0, Issue 2,

Paris, France, European Space Agency.
ESA.BSSC(96)-1:1996 (1996) ESA.BSSC(96)-1 Issue 1, A Guide to applying the ESA

software engineering standards to small software projects, ESA.BSSC(96), Issue1.
ESA.BSSC1-1:1984 (1984) ESA.BSSC-1-1 Issue 1, ESA software engineering standards

Issue 1, ESA.BSSC1-1, Issue1.
ESA.PSS-05-0:1987 (1987) ESA.PSS-05-0 Issue 2, ESA software engineering standards

Issue 1, ESA.PSS-05-0, Issue1.
ESA.PSS-05-0:1991 (1991) ESA.PSS-05-0 Issue 2, ESA software engineering standards

Issue 2, ESA.PSS-05-0, Issue2.
ESSI (1998) ESSI Training Action, 24238 TAPISTRY - Tailored Application of Software

Process Improvement Techniques for Small Enterprises.
Fenton NE (1991) Software Metrics - A Rigorous Approach, London, Chapman & Hall.
Forrester E, Buteau B & Shrum S (2011) CMMI® for Services: Guidelines for Superior

Service, Addison-Wesley Professional.
Gallagher BP, Phillips M, Richter KJ & Shrum SL (2011) CMMI for Acquisition:

Guidelines for Improving the Acquisition of Products and Services, Addison-Wesley
Professional.

Glazer H, Dalton J, Anderson D, Konrad M & Shrum S (2008) CMMI or Agile: Why not
Embrace Both! CMU/SEI-2008-TN-003.

Gray E & Smith W (1998) On the limitations of software process assessment and the
recognition of a required re-orientation for global process improvement, Software
Quality Journal 7(1): 21–34.

Haase V, Messnarz R, Koch G, Kugler HJ & Decrinis P (1994) Bootstrap: fine-tuning
process assessment, IEEE Software 11(4): 25–35.

Hamann D, Derks P & Kuvaja P (2000) Using ISO 15504 Compliant Assessment
Combined with Goal-oriented Measurement for Process Improvement at Dräger
Medical Technology, Proceedings of International SPICE Conference, Limerick,
Ireland.

108

Hefner R (1997) Lessons learned with the systems security engineering capability maturity
model, Proceedings of the 19th international conference on Software engineering ,
ACM: 566–567.

Hevner A & Chatterjee S (2010) Design science research in information systems - Theory
and practice, New York, USA, Springer.

Humphrey WS (1988) Characterizing the software process: a maturity framework, IEEE
Software 5(2): 73–79.

Humphrey WS (1989) Managing the software process, Boston, MA, USA, Addison-
Wesley Longman Publishing Co., Inc.

Humphrey WS (1993) Introduction to software process improvement, Research Showcase,
Carnegie Mellon University, Software Engineering Institute, Paper 180.

Humphrey WS & Curtis B (1991) Comments on a critical look'[software capability
evaluations], IEEE Software 8(4): 42–46.

Humphrey WS, Snyder TR & Willis RR (1991) Software process improvement at Hughes
Aircraft, IEEE Software 8(4): 11–23.

Humphrey WS & Sweet WL (1987) A Method for Assessing the Software Engineering
Capability of Contractors, Software Engineering Institute CMU/SEI-87-TR-23,
ADA187320.

ISO 2009 (2009) Selection and use of the ISO 9000 family of standards, ISO.
ISO 9000:1987 (1987) Quality management systems - Fundamentals and vocabulary, ISO

9000:1987 - First edition.
ISO 9000:1992 (1992) International Quality Standards: An Overview for American

Business, UK, Commerce Clearing House.
ISO 9000:2005 (2005) Quality management systems - Fundamentals and vocabulary, ISO

9000:2005, Third edition.
ISO 9000–3:1991 (1991) Quality management and quality assurance standards -- Part 3:

Guidelines for the application of ISO 9001 to the development, supply and
maintenance of software.

ISO 9000-3:1994 (1994) Quality management and quality assurance standards -- Part 3:
Guidelines for the application of ISO 9001 to the development, supply and
maintenance of software.

ISO 9000-3:1997 (1997) Quality management and quality assurance standards -- Part 3:
Guidelines for the application of ISO 9001:1994 to the development, supply and
maintenance of software.

ISO 9001:1987 (1987) ISO 9001 - Model for quality assurance in design, development,
production, installation, and servicing. ISO 9001:1987.

ISO 9001:1994 (1994) ISO 9001 - Model for quality assurance in design, development,
production, installation, and servicing. ISO 9001:1994.

ISO 9002:1987 (1987) ISO 9002 - Model for quality assurance in production, installation,
and servicing. ISO 9002:1987.

ISO 9002:1994 (1994) ISO 9002 - Model for quality assurance in production, installation,
and servicing. ISO 9002:1994.

109

ISO 9003:1987 (1987) ISO 9003 - Model for quality assurance in final inspection and test.
ISO 9003:1987.

ISO 9003:1994 (1994) ISO 9003 - Model for quality assurance in final inspection and test.
ISO 9003:1994.

ISO/IEC:1991 (1991) ISO/IEC JTC1/SC7 N872, Proposal for a Study Period on Process
Management, N872.

ISO/IEC:1992 (1992) ISO/IEC JTC1/SC7 N944R: The Need and Requirements for a
Software Process Assessment Standard, Study report, Issue 2.0., N944R, Issue 2.0.

ISO/IEC 12207:1995(E) (1995) ISO/IEC 12207, Information technology - Software life
cycle processes. ISO/IEC 12207, First edition.

ISO/IEC 12207:2008(E) (2008) ISO/IEC 12207, Information technology - Software life
cycle processes. ISO/IEC 12207, Second edition.

ISO/IEC 15288:2002 (2002) ISO/IEC JTC1/SC7 WG7 NO617, Systems Engineering -
Guide for ISO/IEC 15288 (System Life Cycle Processes), ISO/IEC PDTR 19760.

ISO/IEC 15288:2002(E) (2002) Systems and software engineering - System Life Cycle
Processes, First edition. ISO/IEC 15288:2002(E).

ISO/IEC 15288:2008(E) (2008) Systems and Software Engineering - System Life Cycle
Processes, Second edition. ISO/IEC 15288:2008(E).

ISO/IEC 15504-1:1998(E) (1998) Information technology - Software assessment - Part 1:
Concepts and introductory guide, WG10N221.

ISO/IEC 15504-1:2004 (2004) Information technology - Process assessment - Part 1:
Concepts and vocabulary. ISO/IEC 15504-1:2004, First edition.

ISO/IEC 15504-2:1998(E) (1998) Information technology - Software assessment - Part 2:
A reference model for processes and process capability, WG10N222.

ISO/IEC 15504-2:2003 (2003) Information technology - Process assessment - Part 2:
Performing an assessment. ISO/IEC 15504-2:2003, First edition.

ISO/IEC 15504-3:1998(E) (1998) Information technology - Software assessment - Part 3:
Performing an assessment, WG10N223.

ISO/IEC 15504-3:2004 (2004) Information technology - Process assessment - Part 3:
Guidance on performing an assessment. ISO/IEC 15504-3:2004, First edition.

ISO/IEC 15504-4:1998(E) (1998) Information technology - Software assessment - Part 4:
Guide to performing assessments, WG10N224.

ISO/IEC 15504-4:2004 (2004) Information technology - Process assessment - Part 4:
Guidance on use for process improvement and process capability determination,
ISO/IEC 15504-4:2004, First edition.

ISO/IEC 15504-5:1998(E) (1998) Information technology - Software assessment - Part 5:
An assessment model and indicator guidance, WG10N195.

ISO/IEC 15504-5:2006 (2006) Information technology - Process assessment - Part 5: An
exemplar Process assessment model, ISO/IEC 15504-5:2006, First edition.

ISO/IEC 15504-6:1998(E) (1998) Information technology - Software assessment - Part 6:
Guide to competency assessors, WG10N226.

110

ISO/IEC 15504-6:2008 (2008) Information technology - Process assessment - Part 6: An
exemplar system life cycle process assessment model. ISO/IEC 15504-6:2008, First
edition.

ISO/IEC 15504-7:1998(E) (1998) Information technology - Software assessment - Part 7:
Guide for use in process improvement, WG10N227.

ISO/IEC 15504-7:2008 (2008) Information technology - Process assessment - Part 7:
Assessment of organisational maturity, ISO/IEC 15504-7:2008, First edition.

ISO/IEC 15504-8:1998(E) (1998) Information Technology - Software assessment - Part 8:
Guide for use in determining supplier process capability, WG10N228.

ISO/IEC 15504-9:1998(E) (1998) Information technology - Software assessment - Part 9:
Vocabulary, WG10N229.

ISO/IEC 15504-9:2011 (2011) Information technology - Process assessment - Part 9:
Target process profiles, ISO/IEC 15504-9:2011, First edition.

ISO/IEC 19011:2011(E) (2011) Guidelines for auditing management systems, ISO/IEC
19011:2011(E), Second edition.

ISO/IEC 90003:2004(E) (2004) Software engineering - Guidelines for the application of
ISO 9001:2000 to computer software, ISO/IEC 90093:2004(E).

ISO/IEC 9001:2000(E) (2000) Quality management systems - Requirements, ISO/IEC
9001:2000(E).

ISO/IEC 9001:2008(E) (2008) Quality management systems - Requirements, ISO/IEC
9001:2008(E), Fourth edition, Corrected version 2009-07-15.

ISO/IEC 9004:2009(E) (2009) Managing for the sustained success of an organisation - A
quality management approach, ISO/IEC 9004:2009(E), Third edition.

ISO/IEC PDTR 15504-8:2012 (2012 (target)) Information technology - Process assessment
- Part 8: An exemplar process assessment model for IT service management, ISO/IEC
PDTR 15504-8 (under development).

ISO/IEC-JTC1/SC7/WG7/SG1 (1992) The Need and Requirements for a Software Process
Assessment Standard, Study Report, N944R, Issue 2.0.

Järvinen P (1999) On research methods, Finland, Opinpaja.
Jones M, Gomez E, Mantineo A & Mortensen U (2002) Introducing ECSS Software-

Engineering Standards within ESA, ESA bulletin: 132–139.
Jones M, Mazza C, Fairclough J, Melton B, de Pablo D, Scheffer A, Stevens R & Alvisi G

(1996) Software engineering guides, Prentice Hall International (UK) Ltd.
Jones M, Mortensen U & Fairclough J (1997) The ESA software engineering standards:

Past, present and future, Third IEEE International Software Engineering Standards
Symposium and Forum 1997 - ISESS 97 'Emerging International Standards',
IEEE:119–126.

Jung HW, Hunter R, Goldenson DR & El‐Emam K (2001) Findings from Phase 2 of the
SPICE Trials. Software Process: Improvement and Practice 6(4): 205–242.

Juran JM (1986a) Planning for quality, Juran Institute.
Juran JM (1986b) Universal Approach to Managing for Quality: The Quality Trilogy,

Quality Progress, August 1986: 19–24.

111

Juran JM (1992) Juran on quality by design: the new steps for planning quality into goods
and services, Free Press.

Kellner MI (1989) Software process modeling: value and experience, Carnegie Mellon
University, Software Engineering Institute.

Kitson DH & Masters SM (1993) An analysis of SEI software process assessment results:
1987--1991, Proceedings of the 15th international conference on Software
Engineering - ICSE '93, Los Alamitos, CA, USA, IEEE Computer Society Press: 68–
77.

Kitson DH & Masters SM (1992) An Analysis of SEI Software Process Assessment
Results: 1987 - 1991, CMU/SEI-92-TR-24, ESC-TR-92-024.

Koch G (1992) The BOOTSTRAP Initiative: Reported Benefits for the Industry,
Proceedings of the Esprit BOOTSTRAP Conference on Lean Software Development,
Stuttgart, Germany.

Koch G (1993) Process assessment: the 'BOOTSTRAP' approach, Information and
Software Technology 35(6): 387–403.

Kugler H- & Messnarz R (1994) From the software process to software quality:
BOOTSTRAP and ISO 9000. Proceedings of the First Asia-Pacific Software
Engineering Conference, 1994: 174–182.

Kuvaja P (1992) Effects of case implementation on the productivity and maturity level of
software development--a case study in a large industrial company, Annual Review in
Automatic Programming 16: 161–170.

Kuvaja P (1995a) BOOTSTRAP: A software process assessment and improvement
methodology, Objective Software Quality: 31–48.

Kuvaja P (1995b) BOOTSTRAP: European service for assessment and improvement of
software development organisations. In Anonymous Milano, Italia, A.I.C.A
Associazione Italiana per l'Informatica ed il Calcolo Automatico Sezione di Milano:
21–33.

Kuvaja P (1999) BOOTSTRAP 3.0—A SPICE Conformant Software Process Assessment
Methodology, Software Quality Journal 8(1): 7–19.

Kuvaja P & Bicego A (1993) BOOTSTRAP: Europe's assessment method, IEEE Software
10(3): 93–95.

Kuvaja P & Bicego A (1994) BOOTSTRAP - A European assessment methodology,
Software Quality Journal 3(3): 117–127.

Kuvaja P, Bicego A & Dorling A (1995a) SPICE: The Software Process Assessment
Model, ESI-ISCN´95 - Practical Improvement of Software Process and Products,
Volume 1: 87–100.

Kuvaja P, Bicego A & Jansen P (1995b) Overview of SPICE Process Improvement,
Proceedings of Software Quality Management, South Africa: Section 13.1.

Kuvaja P & Koch G (1992) Maturity of maintenance [software], Proceedings of
International Conference on Software Maintenance 1992, IEEE: 259–260.

Kuvaja P, Maansaari J, Seppänen V & Taramaa J (1999a) Specific requirements for
assessing embedded product development, International Conference on Product
Focused Software Process Improvement: 68–85.

112

Kuvaja P, Palo J & Bicego A (1999b) TAPISTRY—A Software Process Improvement
Approach Tailored for Small Enterprises, Software Quality Journal 8(2): 149–156.

Kuvaja P, Similä J, Krzanik L, Bicego A, Saukkonen S & Koch G (1994) Software process
assessment and improvement: the BOOTSTRAP approach, Blackwell, Oxford.

Kuvaja P (1999) BOOTSTRAP 3.0 A SPICE Conformant Software Process Assessment
Methodology, Software Quality Journal 8(1): 7–19.

Larman C & Basili VR (2003) Iterative and incremental developments. a brief history,
Computer 36(6): 47–56.

Mackie C & Rigby P (1993) Practical experience in assessing the health of the software
process, Software Quality Journal 2(4): 265–275.

Mandic V, Oivo M, Rodrıguez P, Kuvaja P, Kaikkonen H & Turhan B (2010) What is
flowing in lean software development, Proceedings of the 1st International
Conference on Lean Enterprise Software and Systems (LESS 2010). 65: 72–84.

March ST & Smith GF (1995) Design and natural science research on information
technology. Decision Support Systems 15(4): 251–266.

Maupetit C, Kuvaja P, Palo J, Belli M & Isokaanta M (1995) The DriveSPI project - a risk-
driven approach for software process improvement, Proceedings of 8th International
Conference on Software Engineering and its Applications.

Mazza F (1994) Software engineering standards, Prentice-Hall, Inc.
McFeeley B (1996) IDEAL: A User's Guide for Software Process Improvement,

CMU/SEI-96-HB-001.
Merrill DC, Reiser BJ, Merrill SK & Landes S (1995) Tutoring: Guided learning by doing,

Cognition and Instruction 13(3): 315–372.
Messnarz R (1994) Design of a Quantitative Quality Evaluation System, Doctoral thesis,

Technical University of Graz, Austria.
Messnarz R & Kuvaja P (1996) Practical experience with the establishment of

improvement plans, Proceedings of the ISCN’96/SP’96 Congress on SPI, December
1996, Brighton, UK.

MIL-STD-498:1994 (1994) MIL-STD-498, Military standard - Software Development and
Documentation, MIL-STD-498:1994.

Moran TP & Carrol JM (1996) Overview of Design Rationale,. In Moran TP & Carrol JM
(eds) Design Rationale: Concepts, Techniques, and Use, USA, Lawrence Erlbaum
Associates: 1–19.

Norris M, Rigby P & Stockman S (1994) Life after ISO 9001: British Telecom's approach
to software quality, Communications Magazine, IEEE 32(10): 58–63.

Northcutt DDM & Paulk MC (2010) Statistical Sampling for Process Assessments,
Practical Statistical Process Control for Software Metrics 9(4): 19–28.

Oivo M, Birk A, Komi-Sirviö S, Kuvaja P & Van Solingen R (1999) Establishing product
process dependencies in SPI. Proceedings of the Fourth Annual European Software
Engineering Process Group Conference, European SEPG´99, Amsterdam, The
Netherlands.

Olson TG, Humphrey WS & Kitson D (1989) Conducting SEI-assisted software process
assessments, Carnegie Mellon University, Software Engineering Institute, Paper 107.

113

Ould MA (1992) Software quality improvement through process assessment-a view from
the UK, Software Quality Improvement Through Process Assessment, IEEE
Colloquium on : 2/1–2/8.

Paulish D (1993) Case studies of software process improvement methods, CMI/SEI-93-
TR-26.

Paulk M (1993) Capability maturity model for software, Wiley Online Library.
Paulk M (1997) Software Capability Maturity Model, Version 2, Draft Technical Report,

Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pa.
Paulk MC (1996) Process improvement and organizational capability: Generalizing the

CMM, Proceedings of the ASQC's 50th Annual Quality Congress and Exposition,
Chicago, IL: 92–97.

Paulk MC (1999) Analyzing the Conceptual Relationship Between ISO/IEC 15504
(Software Process Assessment) and the Capability Maturity Model for Software,
Proceedings of the Ninth International Conference on Software Quality, Cambridge,
MA, 4–6 Oct 1999, pp. 293–303.

Paulk MC (2004) Surviving the quagmire of process models, integrated models, and
standards, Proceedings of the ASQ Annual Quality Congress, Toronto, 24–27 May
2004.

Paulk MC (2009) A History of the Capability Maturity Model for Software, ASQ Software
Quality Professional 12: 5–19.

Paulk MC, Curtis B & Chrissis MB (1991) Capability maturity model for software,
Carnegie Mellon University, Software Engineering Institute, CMU/SEI-91-TR-24,
August 1991.

Paulk MC, Curtis B, Chrissis MB & Weber C (1993) Capability Maturity Model for
Software, version 1.1. Capability Maturity Model for Software, Version 1, SEI
CMU/SEI-93-TR-24.

Paulk MC & Konrad MD (1994a) ISO seeks to harmonize numerous global efforts in
software process management, IEEE Computer 27(4): 68–70.

Paulk MC & Konrad MD (1994b) An overview of ISO's SPICE Project, American
Programmer (February): 16–20.

Paulk MC, Konrad MD & Garcia SM (1995) CMM versus SPICE architectures, IEEE
Computer Society Technical Council on Software Engineering, Software Process
Newsletter (3): 7–11.

Paulk M, Weber C, Garcia S, Chrissis M & Bush M (1993) Key Practices of the Capability
Maturity Model for Software, version 1.1, Software Engineering Institute Technical
Report CMU/SEI-93-TR-25 ESC-TR-93-178.

Paulk MC, Weber CV, Curtis B & Chrissis MB (1995) The capability maturity model:
guidelines for improving the software process. Boston, MA, USA, Addison-Wesley
Longman Publishing Co., Inc.

Phillips M (2010) CMMI Representations: Past and Future, Carnegie Mellon University,
Software Engineering Institute.

PROFES project team (2000) PROFES - User manual. Stuttgart, Fraunhofer IRB Verlag.

114

Rombach HD & Verlage M (1993) How to assess a software process modeling formalism
from a project member's point of view, Second International Conference on
Continuous Software Process Improvement, 1993: 147–158.

Rout TP, El Emam K, Fusani M, Goldenson D & Jung HW (2007) SPICE in retrospect:
Developing a standard for process assessment, Journal of Systems and Software
80(9): 1483–1493.

Royce WW (1970) Managing the Development of Large Software Systems, IEEE
WESCON: 328–338.

Sanders M & SPIRE Partners (1998) The SPIRE Handbook: Better Faster Cheaper
Software Development in Small Organisations, Centre for Software Engineering
Limited, Ireland.

Sheard SA (1997) The frameworks quagmire, a brief look. People 829(830): 1012–1016.
Sheard SA & Lake JG (1998) Systems engineering standards and models compared.

Proceedings of the Eighth International Symposium on Systems Engineering,
Vancouver, Canada, Citeseer: 589–605.

Sidky A, Arthur J & Bohner S (2007) A disciplined approach to adopting agile practices:
the agile adoption framework. Innovations in systems and software engineering 3(3):
203–216.

Simila J, Kuvaja P & Krzanik L (1995) BOOTSTRAP: a software process assessment and
improvement methodology,. International Journal of Software and Knowledge
Engineering 5(4): 559–584.

Smith G & Sidky A (2009) Becoming Agile... In an Imperfect World , Manning
Publications.

Taramaa J, Khurana M, Kuvaja P, Lehtonen J, Oivo M & Seppanen V (1998) Product-
based software process improvement for embedded systems, Proceedings of 24th
Euromicro Conference, 1998, IEEE, Volume 2: 905–912.

Thomson HE & Mayhew P (1994a) A practical approach for software process
improvement, Software Quality Management, edited by Ross M.et al., CMP 1: 149–
164.

Thomson HE & Mayhew P (1994b) The software process: a perspective on improvement.
The Computer Journal 37(8): 683–690.

TickIT (1995) Guide to Software Quality Management System Construction and
Certification Using ISO 9001, Issue 3.0, DTI, CSA, UK

TickIT A (1992) Guide to software quality management system construction and
certification using EN29001, DTI, CSA, UK.

Tully C, Kuvaja P & Messnarz R (1999) Software process analysis and improvement: a
catalogue and comparison of models. In Messnarz R & Tully C (eds) Better Software
Practice for Business Benefit - Principles and Experience. Los Alamitos, California,
IEEE, Computer Society: 51–106.

Weber CV, Paulk MC, Wise CJ & Withey JV (1991) Key Practices of the Capability
Maturity Model. Key practices of the capability maturity model CMU/SEI-91-TR-25,
ESD-TR-91-25.

115

Wohlin C, Höst M & Henningsson K (2003) Empirical Research Methods in Software
Engineering, Empirical methods and studies in software engineering: experiences
from ESERNET 2765: 7.

Womack JP, Jones DT & Roos D (1991) The Machine That Changed the World: The Story
of Lean Production, Harper Perennial.

Woodman I & Hunter R (1996) Analysis of Assessment Data from Phase 1 of the SPICE
trials, Software Process Newsletter (6): 1–6.

Yin RK (2009) Case study research: Design and methods, Sage publications, INC.
Zubrow D, Hayes W, Siegel J & Goldenson D (1994) Maturity Questionnaire, CMU/SEI-

94-SR-7.

116

117

Original publications

I Kuvaja P & Bicego A (1994) BOOTSTRAP – A European assessment methodology.
Software Quality Journal 3(3): 117–127.

II Similä J, Kuvaja P & Krzanik L (1995) Bootstrap: a software process assessment and
improvement methodology. International Journal of Software and Knowledge
Engineering 5(4): 559–584.

III Bicego A & Kuvaja P (1996) Software process maturity and certification. Journal of
Systems Architecture 42(8): 611–620.

IV Kuvaja P (1999) BOOTSTRAP 3.0 – A SPICE conformant software process
assessment methodology. Software Quality Journal 8(1): 7–19.

V Kuvaja P, Palo J & Bicego A (1999) TAPISTRY – A Software process improvement
approach tailored for small enterprises. Software Quality Journal 8(2): 149–156.

VI Kuvaja P, Maansaari J, Seppänen V & Taramaa J (1999) Specific requirements for
assessing embedded product development. In: Oivo M & Kuvaja P (eds) Proceedings
of International Conference on Product Focused Software Process Improvement –
Profes ’99. VTT Symposium Series 195: 68–85.

Reprinted with permission from Springer (I,IV,V), World Scientific Publishing

Co. (II), Elsevier (III) and VTT (VI).

Original publications are not included in the electronic version of the dissertation.

118

A C T A U N I V E R S I T A T I S O U L U E N S I S

Book orders:
Granum: Virtual book store
http://granum.uta.fi/granum/

S E R I E S A S C I E N T I A E R E R U M N A T U R A L I U M

589. Riipinen, Katja-Anneli (2011) Genetic variation and evolution among industrially
important Lactobacillus bacteriophages

590. Lampila, Petri (2011) Populations and communities in human modified forest
landscapes

591. Liukkunen, Kari (2011) Change process towards ICT supported teaching and
learning

592. Segerståhl, Katarina (2011) Cross-platform functionality in practice : Exploring
the influence of system composition on user experiences of personal exercise
monitoring

593. Tiikkaja, Marjo (2012) Value creation in collaboration between software suppliers
and customers: suppliers’ perspective

594. Rousu, Timo (2012) Liquid chromatography–mass spectrometry in drug
metabolism studies

595. Kangas, Teija (2012) Theoretical study of the oxidation of a pure and alloyed
copper surface

596. Härkönen, Laura (2012) Seasonal variation in the life histories of a viviparous
ectoparasite, the deer ked

597. Niinimäki, Sirpa (2012) Reconstructing physical activity from human skeletal
remains : Potentials and restrictions in the use of musculoskeletal stress markers

598. Mandić, Vladimir (2012) Measurement-based value alignment and reasoning about
organizational goals and strategies : Studies with the ICT industry

599. Leiviskä, Katja (2012) Why information systems and software engineering
students enter and leave their study programme : A factor model and process
theory

600. Siira, Tuula (2012) Value Creation by Enterprise Systems Value Added Resellers :
The Case of PLM Systems VARs

601. Kontula, Jukka (2012) New venture creation in software business : A contextually
embedded entrepreneur’s perspective

602. Juntunen, Kaisu (2012) Tieto- ja viestintätekniikan soveltamiseen perustuvat
toimintaprosessien uudistukset terveydenhuollossa : Sosio-teknis-taloudellinen
näkökulma

603. Seppä, Karri (2012) Quantifying regional variation in the survival of cancer
patients

A
B
C
D
E
F
G

UNIVERS ITY OF OULU P.O.B . 7500 F I -90014 UNIVERS ITY OF OULU F INLAND

A C T A U N I V E R S I T A T I S O U L U E N S I S

S E R I E S E D I T O R S

SCIENTIAE RERUM NATURALIUM

HUMANIORA

TECHNICA

MEDICA

SCIENTIAE RERUM SOCIALIUM

SCRIPTA ACADEMICA

OECONOMICA

EDITOR IN CHIEF

PUBLICATIONS EDITOR

Senior Assistant Jorma Arhippainen

University Lecturer Santeri Palviainen

Professor Hannu Heusala

Professor Olli Vuolteenaho

University Lecturer Hannu Heikkinen

Director Sinikka Eskelinen

Professor Jari Juga

Professor Olli Vuolteenaho

Publications Editor Kirsti Nurkkala

ISBN 978-952-62-0029-3 (Paperback)
ISBN 978-952-62-0030-9 (PDF)
ISSN 0355-3191 (Print)
ISSN 1796-220X (Online)

U N I V E R S I TAT I S O U L U E N S I SACTA
A

SCIENTIAE RERUM
NATURALIUM

U N I V E R S I TAT I S O U L U E N S I SACTA
A

SCIENTIAE RERUM
NATURALIUM

OULU 604

A 604

Pasi Kuvaja

SOFTWARE PROCESS
CAPABILITY AND
MATURITY DETERMINATION
BOOTSTRAP METHODOLOGY AND ITS EVOLUTION

UNIVERSITY OF OULU GRADUATE SCHOOL;
UNIVERSITY OF OULU,
FACULTY OF SCIENCE,
DEPARTMENT OF INFORMATION PROCESSING SCIENCE

A
 604

AC
TA

Pasi K
uvaja

	Abstract
	Tiivistelmä
	Acknowledgements
	List of abbreviations
	List of original publications
	Table of contents
	1 Introduction
	1.1 Background and overview
	1.2 Scope of the research
	1.3 Research objectives and questions
	1.4 Research strategy
	1.5 Outline of the thesis

	2 Related works and evolution
	2.1 Capability Maturity Model developments
	2.1.1 Capability Maturity Model
	2.1.2 Capability Maturity Model for Software
	2.1.3 Capability Maturity Model Integration

	2.2 Other assessment and improvement models
	2.2.1 Healthcheck
	2.2.2 Software Technology Diagnostic
	2.2.3 TickIT
	2.2.4 Trillium

	2.3 Standards and guidelines
	2.3.1 Quality standards
	2.3.2 Lifecycle standards
	2.3.3 Conformity standard

	3 Research process
	3.1 Phase 1 – Initial development
	3.2 Phase 2 – Methodology professionalisation
	3.3 Phase 3 – Methodology enhancement

	4 Analysis and main results
	4.1 Phase 1 – Research prototype
	4.2 Phase 2 – Commercial methodology
	4.3 Phase 3 – Different versions

	5 Introduction to original publications
	5.1 Publications and author’s contribution
	5.2 BOOTSTRAP – a European assessment methodology
	5.3 BOOTSTRAP: A Software process assessment andimprovement methodology
	5.4 Software process maturity and certification
	5.5 BOOTSTRAP 3.0 – A SPICE48 Conformant Software ProcessAssessment Methodology
	5.6 TAPISTRY – A Software Process Improvement ApproachTailored for Small Enterprises
	5.7 Definition of an embedded systems process frame to enhanceISO 15504 conformant assessments

	6 Conclusions
	6.1 Main contributions
	6.2 Validity of the research
	6.3 Limitations of the study
	6.4 Future research

	References
	Original publications

