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Abstract

The high increase in traffic and data rate for future generations of mobile communication systems,
with simultaneous requirement for reduced power consumption, makes Multihop Cellular
Networks (MCNs) an attractive technology. To exploit the potentials of MCNs a number of new
network paradigms are proposed in this thesis.

First, a new algorithm for efficient relaying topology control is presented to jointly optimize
the relaying topology, routing and scheduling resulting in a two dimensional or space time routing
protocol. The algorithm is aware of intercell interference (ICI), and requires coordinated action
between the cells to jointly choose the relaying topology and scheduling to minimize the system
performance degradation due to ICI. This framework is extended to include the optimization of
power control. Both conventional and cooperative relaying schemes are considered.

In addition, a novel sequential genetic algorithm (SGA) is proposed as a heuristic
approximation to reconfigure the optimum relaying topology as the network traffic changes.
Network coding is used to combine the uplink and downlink transmissions, and incorporate it into
the optimum bidirectional relaying with ICI awareness.

Seeking for a more tractable network model to effectively use context awareness and relying
on the latest results on network information theory, we apply a hexagonal tessellation for inner
partition of the cell into smaller subcells of radius r. By using only one single topology control
parameter (r), we jointly optimize routing, scheduling and power control to obtain the optimum
trade-off between throughput, delay and power consumption in multicast MCNs. This model
enables high resolution optimization and motivates the further study of network protocols for
MCNs. A new concept for route discovery protocols is developed and the trade-off between
cooperative diversity and spatial reuse is analyzed by using this model.

Finally, a new architecture for MCN is considered where multihop transmissions are
performed by a Delay Tolerant Network, and new solutions to enhance the performance of
multicast applications for multimedia content delivery are presented.

Numerical results have shown that the algorithms suggested in this thesis provide significant
improvement with respect to the existing results, and are expected to have significant impact in
the analysis and design of future cellular networks.

Keywords: cooperative diversity, dynamic traffic distribution, intercell interference,
multicast, multihop cellular network, network optimization, reuse factor, routing,
scheduling, topology control
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Tiivistelma

Tiedonsiirron ja tiedonsiirtonopeuksien suuri kasvu seké tehonkulutuksen pieneneminen tulevien
sukupolvien matkapuhelinjarjestelmissa tekevat monihyppyiset matkapuhelinverkot houkuttele-
viksi vaihtoehdoiksi. Téssé tydssa esitetddn uusia tiedonsiirtoverkkojen paradigmoja monihyp-
pyisten matkapuhelinverkkojen hyddyntdmiseksi.

Tyossé esitelld&n uusi algoritmi tehokkaaseen releointitopologian hallintaan, joka optimoi
yhtdaikaisesti topologian, reitityksen seké l&hetyshetkien ajoituksen ja mahdollistaa tila-aika-rei-
titysprotokollan toteutuksen. Esitetty algoritmi huomioi solujen keskindishairion ja vaaditulla
solujen vélisell& koordinoidulla hallinnalla saadaan yhdesséa valittua topologia ja ajoitus, jotka
minimoivat solujen keskindisisté hairidista johtuvan suorituskyvyn heikentymisen. Mydhemmin
tatd viitekehysta on laajennettu lisaédmaélla siihen tehonsdadon optimointi. Tydssa on tutkittu sekd
perinteisia ettd kooperatiivisia releointimenetelmié.

Liséksi tydssa esitetddn uusi geneettinen algoritmi heuristiseksi approksimaatioksi verkon lii-
kenteen muutoksen vaatimaan releointitopologian uudelleen jérjestelyyn. Tydssé tarkastellaan
lisaksi verkkokoodausta yl&- ja alasuuntaan tapahtuvan tiedonsiirron yhdistdmiseksi sisallytta-
malla se solujen keskindishdirién huomioivaan kahdensuuntaiseen releointiin.

Etsittdessa paremmin mukautuvaa ja kontekstitietoisuutta hyddyntavaé verkkomallia, joka
kayttad hyvékseen viimeisimpid verkkojen informaatioteoreettisia tuloksia, voidaan verkon solut
pilkkoa pienempiin kuusikulmaisiin alisoluihin. Kayttdmélla ainoastaan ndiden alisolujen s&dettd
r voidaan puolestaan verkon reititys, ajoitus ja tehon satd optimoida yhtaaikaisesti saavuttaen
paras mahdollinen kompromissi verkon lapaisyn, viiveen ja tehonkulutuksen vélilla. Kehitetty
malli mahdollistaa korkean resoluution optimoinnin ja motivoi uusien verkkoprotokollien kehi-
tystd monihyppyisissé matkapuhelinverkoissa. Téata mallia kayttaen esitelladn myds uusi konsep-
ti reitinetsintaprotokollille sekd analysoidaan kooperatiivisen diversiteetin ja tila-avaruudessa
tapahtuvan uudelleenkdyton valistd kompromissiratkaisua.

Lopuksi tydssa tarkastellaan monihyppyisen matkapuhelinverkon uutta arkkitehtuuria, jossa
monihyppylahetykset suoritetaan viivesietoisella verkolla ja esitetdan uusia ratkaisuja multime-
diasisallon monilahetysten tehokkuuden parantamiseksi.

Ty0ssa saadut tulokset osoittavat, ettd ehdotetut algoritmit parantavat jarjestelmien suoritus-
kykyad verrattuna aiemmin tiedossa olleisiin tuloksiin. Tyon tuloksilla voidaan olettaa myds ole-
van suuri vaikutus tulevaisuuden matkapuhelinverkkojen analysointiin ja suunnitteluun.

Asiasanat: dynaaminen liikenteen jakauma, kooperatiivinen  diversiteetti,
monihyppyinen matkapuhelinverkko, moniléhetys, reititys, topologiakontrolli,
uudelleenkéyttokerroin, verkon optimointi
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List of symbols and abbreviations

Availability matrix

Access vector

Differential access vector

Access vector corresponding to the intial traffic
Access vector after the traffic has changed
Interfering Access Point

Reference Access Point

Time slot index

Length of the scheduling cycle

Number of time slots for the initial optimum topgly
Number of time slots for the optimum topology asated to the
differential access vectar

Capacity vector

Capacity of link

Capacity of the rout&

Destination matrix

Number of destinations

Channel defading distance

Interfering distance

Distance between useand usej

Unit distance

Relaying distance

Infection rate of destination infected by packet
Set of all destination users

Average of packet delivery delay

Vector of flow rates

Flow on linkl

Set of contention based schemes

Multicast gain

Lagrange dual function

Graph

Channel gain between usesind usef

Number of times a packet is copied in its entiietiine
Number of times a packet is copied at the timdeadivery
Hop index
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Hop distance

Maximum number of hops

Identity matrix

Interference power at the position of the refeecreceivej
due to the cochannel interfering signal transmditigi
Intercell reuse factor

Set of base stations

Link index

Number of links

Lifetime of packef

Set of links

Set of links actived in sldd
Set of links used by node

Maximum number of sessions in the network
Mobile user

User location in polar coordinates

Mobile destination

Mobile user located in reference cell

Mobile user located in reference cell

Location in polar coordinates of the user beloggdim clusterl”
Set of intermediate users

Number of users in the network

Number of cells

Number of topologies generated by exhaustive searc
Number of topologies generated by genetic algorith
Number simultaneous transmissions

Node

Number of mutations

Set of nodes

Set of nodes using link

Transmission power

Protocol index

Maximum power
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Probability of recovery from infection

Partial topology in slob



0oy

To
Thr
Tb
0@
T

U
u (down)

yr
Vv
Wy, Wo

a(on p)

SO > e B

Set of multicast protocols

Subcell radius in the tessellation scheme
Cell radius

Routing matrix

Partial routing matrix in sldb

Recovery rate from packet

Set of relaying users

Set of two dimensional relaying topology
Cell area

Topology matrix

Packet delivery delay fdd destinations
Throughput

Set of candidate users available to transmitonis|
Set of two dimensional topologies
Topology submatrix

Utility function

Utility function on the downlink

Utility function on the uplink

Terminal speed

Weights of the optimization
Transmission rate vector

Extended rate vector

Rate of sourca

Resource allocation at network elemgnt
Set of physical layer resource allocation schemes

Propagation constant

Routing matrix in polar coordinates
Spatial user distribution matrix

Gene index

Clustering factor

Variation of the traffic in the network
Overall downlink network traffic

Energy efficiency

Time efficiency

Location of the user in polar coordinates
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om Set of angles for the users located in hop

A Overall uplink network traffic
Am Arrival rate of usem
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2G 2" Generation
3G 39 Generation
4G 4" Generation
5G 5"Generation
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BS Base Station
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CDMA Code Division Multiple Access
CONR CONventional Relaying
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CPU Central Processing Unit

DCM Destination Cooperative Multicast
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DSL Digital Subscriber Lines
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DTN Delay Tolerant Network
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GA Genetic Algorithm

1M Intercell Interference Management
ICFC Intercell Floofing Coordination
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TDMA Time Division Multiple Access
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UMTS Universal Mobile Telecommunications System
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1 Introduction

1.1 Motivation

Multihop cellular networks (MCNSs) are proposed espond to the demand for
next generation cellular systems to support higta dates with efficient power
consumption, enlarge coverage area and provide dg@o8 for multimedia
applications [1], [2]. Simultaneous need of inciegsthe capacity and reducing
the power will require more spatial reuse. One mémple under consideration to
achieve this goal is the deployment of small céBig.scaling down the cell size
and so increasing the total number of channelpéts, the network capacity can
be linearly increased, proportional to the numiderew base stations (BSs) or the
scaling factor. However, the deployment of more B8&d their interconnections
to the wired backbone results in high network ccoBiis problem can be
overcome by deploying wireless multihop routergeas of new BSs or allowing
selected mobile terminals to act as routers, tabdish a wireless MCN. In this
way, by shortening the links, the required transpuotver is reduced which is
highly desirable in interference-limited networksdgprovides the opportunity for
capacity increase when suitable techniques areeabpl

MCNs are economically convenient due to the capgloff providing faster
deployment by using the existing infrastructureceflular networks. Different
architectures based on 2G, 3G and WiIMAX can coexist different types of
networks such as femtocells, delay tolerant netwo¥WLANs might be used as
an augmented technology.

The concept of adding ad hoc capabilities to caflmlodes is widely explored
in MCNs [1], [2]. The advantages of thigybrid architecture include increasing
the throughput of the network, enlarging the cogerarea of the base station,
decreasing the power consumption of the mobile gysand increasing the
network scalability. In order to exploit those adtages, the selection of the most
appropriate relays among the existing mobile teaisin3] should be jointly
considered with routing and scheduling. The thrgughon each hop and
opportunity for spatial reuse increases with thember of hops, but the
complexity of the system also increases. Consetyeat large number of
possibilities results in a large scale optimizatmoblem. Additionally, the delay
from source to destination is increased with moopsh which may not be
tolerated by delay-sensitive services. The abowblpm becomes more complex
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in the multicell scenario where intercell interfiece (ICI) is present. Thus, to
exploit the potentials of MCN, a systematic appfo&s network optimization is
needed to study the gains and trade-offs assocatbdhis type of networks.

A number of radio resource management (RRM) schemeash as relay
selection and radio resource partition, along wathnumber of routing and
topology control algorithms have been proposedafbhoc networks [4]. Some of
the earliest information theoretic work by Coveddsl Gamal [5] gave capacity
bounds for the simple relay channel, while moreenécwork by Gupta and
Kumar [6] expanded this work to give asymptoticutesfor general ad hoc relay
networks. However the problems associated with thgjge of networks are
different from those of cellular networks, so tlesults are not directly applicable
to cellular multihop relay scenarios.

A number of potential opportunities and challenges related to MCNs. To
take advantage of such potentials, it is necesgaryovercome important
technological challenges, such as the design aimd @ptimization of robust,
adaptive and context aware multihop routing prokecas well as scheduling and
energy efficient radio resource allocation. Differerchitectures, protocols, and
analytical models for MCNs have been proposed inlitierature where different
system aspects were investigated. This chapter wnmovide a survey of the
major research issues and challenges in MCNSs.

1.2 Research challenges in multihop cellular networ ks

1.2.1 Overview

In this section, some of the most important redeagsues in MCNs are
summarized, and in each subsection the main saokitior the introduced
problems are presented.

The architecture of MCNs consists of cellular and hoc relaying
components as shown in Fig. 1. In suaybrid network architecture, MCNs
combines the benefits of single-hop cellular netw®o(SCNs) and ad hoc
networks. The SCNs have reliable performance antimadaechnology support.
However, their infrastructure is costly to builddasuffers from some limitations
on the channel data rate when the number of maoisidées is high or there is heavy
traffic during peak hours. They also have limitagoon system capacity and
network expansion. On the other hand, ad hoc néssvare cheap to deploy but
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channel contention and interference between nodesnare difficult to predict
and control, and the end-to-end paths between soamd destination are more
vulnerable to node mobility and failure. To presethie advantages and cope with
the limitations of both networks when operatingnst@one, a number of factors
should be taken into account for designing a MCN.

The most important factors are multihop routinggdimgy control, the design
of RRM protocols, particularly for the managemehthe ICI, and load balancing
schemes. These factors are closely inter-related adffect power consumption,
capacity, coverage and QoS provisioning.

a)

. ) )
¥/ mobile station

A base station
———»  wireless link
——— Dbackbone link

Fig. 1. a) Single hop cellular network; b) Multihop cellular network.

In Fig. 2 we represent the protocol stack indiaativhere each of those functions
is located. A number of papers have shown thatX{pjoiting useful interactions

of protocols in different layers, the network perf@ance can be improved
significantly (cross-layer optimization). For exapthe coordination between
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routing and resource scheduling in MCNs is crucad warrants careful
investigation [7]. A cross-layer routing protocoltiw constrains in relay node
selection and source to destination path seledtigroposed in [8] for a single
cell scenario. In [9] a cross-layer throughput gsisl is presented for fixed
topologies and without optimization of the powerdoahtion. The jointly

optimization of ICI avoidance and load balancinpesoes in a multicell network
is addressed in [10].

The above examples are just few, from a vast wanétissues addressed in
the literature of MCNSs. In the remainder of thisctsen, each of those main
problems is discussed in detail in separate suilosescto bring more insight in
their impact on overall characteristics of MCNSs.

/\ Application
A
Transport
Network Routing
— Topology Control
Data Link Scheduling (MAC)
L
\ / . Intercell Interference
Phy3|cal Resource Allocation (powgr)
Fig. 2. Protocol stack illustrating different design decision factors in MCNs.

1.2.2 Multihop routing

The relaying technology has been studied intengif@ applications in MCNs
and is included in most third- and fourth-genemtiavireless system
developments and standardizations [11]-[12]. Tha&yrehannel was introduced in
[13] by assuming that there is a source that wémtgansmit information to a
single destination and a relay terminal that issabl help the destinatiomef{ay-
assisted transmissidnThe relaying concept is the basis of multihoptimy and
cooperative transmission too [14].
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Routing is a major issue in MCNs because it affpetsket delay and system
throughput. In mobile ad hoc network (MANET) marguting algorithms have
been proposed [15]. These algorithms are designdd nvetwork infrastructure
nonexistence in mind, and their main objectiveasestablish/maintain network
connectivity, rather than to maximize system cafyacAs a result, these
algorithms are not suitable for MCNSs.

A routing algorithm in MCN introduces extra sigmaji overhead when
broadcasting route information which adds extrarference. The effect of the
interference is normally ignored in MANETs but cahibe neglected in cellular
networks. This is mainly because the transmissimngr of nodes in MCNs can
be several orders of magnitude higher than thatasfes in MANETSs. In both
MANETs and MCNs, the amount of signaling overheaainty depends on the
chosen routing algorithm. The routing algorithms cgnerally be classified into
two categories: aproactiverouting and bYyeactiverouting [16], [17]. Proactive
routing mechanisms discover and calculate routésthe time. Each node
periodically exchanges its routing information witk neighbors by continuously
broadcasting hello/topology messages, and thussigtsaling overhead depends
on the broadcasting interval and the number of add¢he network. On the other
hand, reactive routing schemes find and maintaine® only when needed. The
signaling overhead of reactive routing increaseth whe increasing number of
active communication pairs as well as with the naméf nodes [16], [17]. In
MCNSs, the radio resources are centrally controleu thus, a mobile terminal
has to establish a connection with the BS befota datransmitted. In such an
environment, reactive routing offers several adsgas over proactive routing.

First, reactive routing produces less signalingrbgad, as there is no routing
unless data transmission is required. Second, iveacbuting only maintains
necessary routing entries. Most of the routing ieatmaintained by proactive
routing could be obsolete due to discontinuous poe (DRX) [18] or users’
mobility. In reactive routing, a source node normaitilizes flooding to deliver a
route request (RREQ) packet to the destination.eOan RREQ reaches its
destination, the destination reports a route respRRES) back to the source
along the nodes that the RREQ has traversed. licabe when multiple RREQs
are received, the route with the best performanegimwould be reported.

During the route-discovery phase, the RREQ canrbadzast to the entire
network (.e., complete flooding) or a certain part of ite(, directed flooding).
For example, dynamic source routing (DSR) [19]izei6 complete flooding to
find a route to its destination if a source canrezich the destination in a single
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hop. In contrast, the Ad-hoc On-Demand Distancetdfe¢AODV) routing
protocol[20] uses incremental scoped flooding to find ateo\ source gradually
enlarges the flooding diameter until it finds atdestion or the search diameter
reaches a predefined “time-to-live (TTL)” threshdice., the maximum number
of relay nodes in the routing path). AODV should wmplete flooding if no
route is found when the search diameter hits thestiold. The drawback of the
proactive routing is the delay in the data transiois.

It seems that for MCNs that enable DRX the reaatowging approach would
be a better choice. Hence, the existing routingtqumls proposed for MCNs
normally adopt DSR to discover the best route. Soouting protocols utilize a
scoped flooding approach to reduce the signalireyltead of DSR. For example,
Choi and Cho [21] proposed an inhibit access contrethod that utilized the
path loss (or, equivalently, distance) to eliminaseless forwarding participants.
In [18] TTL threshold is used to limit the searchardeter of each RREQ.
Generally, the TTL threshold can be derived basedh® given system level
constraints of MCNs. For example, the TTL threshohdy depend on the
maximum intracell interference [22], the end-to-etelay requirement of the
multihop transmission [23], the maximum route diseny time [21], or the
performance metric of the routing protocol [18].

When designing a routing protocol, the control tetgg and path selection
metric (cost function) need to be defined. As MGi¥stain coordinators (BSs or
APs) and mobile users, routing control may dentralized de-centralized or
hybrid. In centralized routing, BSs are responsible foute discovery and
maintenance. BSs have unlimited power supply amgh ltiomputational power
which helps to avoid consuming the limited battpower of mobile nodes for
route information exchange and route computationCAHAN [24], a central
controller periodically receives the location infaation from each user in the cell
to determine the route of thed hocsubnet (cluster) heads with which mobile
users communicate. However, when mobiles are atgfli the maximum
transmission range of a BS or an AP, a decentil{distributed) routing scheme,
such as DSR, is desirable. Some MCN proposals gmgistributed routing
schemes. For example, in mobile-assisted data foing (MADF) [25], mobile
nodes may be willing to relay data packets basetheirn local traffic condition.
If the traffic is less than a certain thresholdeythbroadcast a message to their
neighboring mobile nodes indicating that they hasaailable channels for
relaying data packets. Then, a mobile node in gested cell chooses a relaying
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node to relay its data packets to a less congestaghboring cell based on the
link quality between itself and the relaying nodwl &stimated packet delay.

In MCNs, a hybrid routing approach is commonly usBaute control is
shared by the BS and mobile users. For examplegliolar based routing (CBR)
[26] and cellular based source routing (CBSR) [2ifpbile nodes collect
information about the neighborhood and send ih®BS for route computation.
This helps reduce the route computation overheadlaying nodes. In addition,
not only source node can initiate a relaying retjueselaying node can also take
the initiative by advertising their free channedwdilable capacity) for relaying
[25, 26, 28]. Hence, routing overhead is shared ragab source nodes and
relaying nodes.

Different routing protocols consider different paélection metrics. Metrics
include BS reachability, hop count, path loss, lipkality, signal strength, bit
error rate (BER), carrier-to-interference ratio ljCflelay-sensitivity, throughput,
power, battery level, mobile speed, and energy wampgion. If BS reachability
information is available e.g., provided by relayimgdes, mobile nodes can select
the best next hop relaying node to reach the BS#itlrig the number of hops
helps bound the packet delay, but reduces the ehahobtaining relaying paths,
and, hence, the reachability. This can be overcbynesing topology control as it
will be explained in the next subsection. Nevemtiss| choosing paths based on
the smallest number of hops also raises fairnedseaargy efficiency issues [29],
[30].

Several routing algorithms have been proposed f@Nel based on e.g.,
location [31], path-loss [32], transmission-pow®8], and congestion [34]. In [35]
the relay station overload problem is consideredhi route selection protocol.
But in these approaches the selected routes amegessarily optimal in terms of
the system resource utilization and the signalingribead was ignored. Link
quality may be expressed as a function of path, IB&R, and C/I. Delay and
throughput are common metrics because they reftextnetwork performance
directly. Minimum power routing is important in CDMbased MCNs to reduce
interference and achieve high cell capacity. Bgtlevel, mobile speed, energy
consumption are useful for assuring the reliabildf relaying paths. Other
possible metrics include traffic load, mean quearggth, and number of packets
queued along the path.
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Joint routing and resource management schemes

The coordination between routing and resource adivedin MCNSs is crucial
due to the strong interdependency between the tnwetions. In MCNs, multihop
transmissions normally consume less system cap#cituting is appropriately
performed, and the radio resource scheduler shprdchptly capture the saved
resources and assign them to others who sufferfigitdeConsequently, radio
resource scheduling should be based on the resfuttaiting. On the other hand,
radio resource scheduling affects the system iatenice/loading pattern, which
in turn might affect the decisions of user routkesgon. Performing joint routing
and scheduling is known to produce superior perforce results, as compared
with decoupled scheduling and routing [36]. The impd radio resource
allocation problem in MCNs, with the objective ¢froughput maximization, is
proven to be NP-hard [37]. So, it is quite challeggto devise efficient RRM
schemes that tackle the joint problem.

The strategy for effective coordination of routingd packet scheduling in
packet-based MCNs is addressed in [38], and a $tauralgorithm, named
integrated radio resource allocation (IRRA) aldart is proposed to find
suboptimal solutions. In [39] the optimal placemehtrelay nodes and the time
allocation were studied for the system employing oglay in a cell with uneven
traffic distribution.

Several existing routing algorithms proposed inlitezature aim to minimize
total transmission power or maximize the transmisgiate on each routing path
while ignoring interference due to concurrent traissions on different hops and
among different routing paths [40]. When the effecf interference are not
considered, the optimum routing path and/or optimaoomber of hops can
usually be found given high node density. Thesdeagble capacity gains are,
however, very optimistic and much higher than wbatild be achieved in real
networks. When both intracell and intercell integigce as well as self-
interference on each routing path are taken intmauwt, there is a tight coupling
between the interest in high spatial reuse forciffit radio resource consumption
and the interference level in the network [39, 4d]fact, the interference level of
the network can be quantified through a Perron-Enals eigenvalue of the
system path gain matrix [41]. Therefore, the desifa joint resource allocation
and routing scheme should be done in such a watythieainterference level is
low enough and the desired QoS performance in tefst error rate (BER) or
signal-to-interference-and noise ratio (SINR) carabhieved.
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There are two popular approaches to modeling ieterfce in an MCN. In the
first approach interference is explicitly captuted SINR, and the feasibility of a
QoS constraint can be checked through the Perrohédrius eigenvalue of the
channel gain matrix [39, 41]. This approach was leygd to develop an
interference aware routing algorithm in [42]. Inathpaper the authors first
obtained the minimum path loss routing solutioneiflthis initial routing solution
was renavigated to find a routing path that impsotlee interference level in the
network based on the Perron-Frobenius eigenvalu@-flop relaying schemes
are the most commonly considered [43]. Limiting thember of hops to two
degenerates the routing problem into a relay selecone [39], which can
simplify the protocol design and minimize the conmwoation overhead
significantly, but this is a quite artificial mod¢hat may be far from a real
network.

For the second approach, the joint resource ailmtatnd routing problem is
solved by using graph theory [44]. In this approachnsmission links that
interfere with each other are assumed to be knd&sdd on interference range).
Given this information, only links that do not infiere with one another are
allowed to be active.g., transmitting data) at the same time. Given aingupath
for end-to-end data delivery.€., from the source node to the destination node),
there is an optimal transmission schedule of mimmeangth where in each time
slot of the schedule only noninterfering links alowed to transmit. Thus, the
joint resource allocation and routing problem isigglent to finding routing
paths for all active mobile users and a transmissichedule such that the total
number of time slots required to activate each bmke on these routing paths is
minimized. If all links in the network transmit #te same ratei.€., single-rate
transmission), the end-to-end throughput for eaative mobile user is equal to
the ratio between this transmission rate and thgtke of the scheduld.¢., the
minimum number of time slots used in the schedufe)e map each time slot in
the schedule to one color, the underlying problemedquivalent to a graph-
coloring problem which is usually NP-hard [44]. Téfre, good polynomial-
time heuristic algorithms with probable performant®unds are usually
developed to solve the problem. The penalty of ptibmlity is, however, quite
high in many cases, which may ultimately resulvary poor performance. For
example, the algorithm proposed in [44] for the ticalst problem achieves only a
quarter of maximum throughput in the worst caseictvimay be unacceptable
considering the potential gain due to multihop iempéntation.
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The latest trend in this field, especially for nmiédia applications, is based
on matrix game theory and soft graph colouring [45]

Multipath routing

The “cooperative diversity” concept in multihopaging networks is explored in
[14, 46]. The main objective of the cooperative edsity is to improve the
performance of cellular networks by using multipledes between the user and
BS to simultaneously carry the same informationisTidea resembles Multiple
Input Multiple Output (MIMO) systems in a distrilmgd manner. Since it is
physically difficult to deploy multiple antennas @nsingle palm-sized mobile
host, receiving multiple replicas of the main mggs&om different relay nodes
may improve the system performance due to its ditsernature. Multipath
routing is one way for such cooperation by usindtiple parallel paths between
source and destination nodes, where the main dagans is split into streams of
lower data rates and routed to the destinationuiinothe MCN. Multipath
cellular networks are capable of supporting highadeate services with less
transmission power consumption.

Several works explore the idea of multipath routingMCNs [47- 49].
However, sufficient attention is not given for rasce allocation and power
conservation in these works. The key issues relaiecboperation in multipath
cellular networks are efficient relay selection ardource allocation. The aim is
to find the best set of relays nodes that can cateeavith the user and the BS to
establish a high data rate cellular connection angsource allocation algorithm
that assigns appropriate transmission power aral @d¢s to each of the selected
relay nodes. Relay nodes will be selected amongdil nodes based on their
willingness to cooperate, their channel qualityd atiheir remaining battery
resources.

1.2.3 Topology control

Topology control was originally developed for wges sensor networks [50] to
reduce energy consumption and interference. It woals a middle ware,
connecting routing and lower layers as shown in Biglopology control focuses
on network connectivity with the link informatiorrqvided by medium access
control (MAC) and physical layers. When construgtinetwork topology in
MCNs, topology control takes care about the interiee and link availability
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prediction. The way the network topology is definkds a strong impact on
routing. Topology control aims to simplify the ring process by providing: a)
connectivity between nodes, b) energy efficientkdinc) robustness against
changes in location and removal of nodes, and dinmiaation of link capacity.

From routing perspective, it is expected that dsdaakets are routed via a
stable and reliable path to avoid frequent rerautproblem, since frequent
rerouting may induce broadcast storm to the netwavkste scarce radio
resources and degrade end-to-end network perfornanch as throughput and
delay [51] which is especially critical in MCNs.

Previous work on interference avoidance topologgdsased on one of these
two assumptions: the network has power control i metwork has channel
control. Topology control through transmit powerntol generally utilizes a
single shared channel and assumes a MAC for terhpeparation of interfering
transmissions. Burkhart [52] pioneered the powentmd based approach,
assigning weights to connections that are equathto number of radios the
connection interferes with. This is used in the NMax Link Interference with a
propertyP (MMLIP), Minimize the Average Interference Cost WéhiPreserving
Connectivity (MAICPC) and Interference Minimum Sparg Tree (IMST) [53]
algorithms. Another power control based approachsua radio interference
function, in which the interference contribution af radio is the maximum
interference of all connections incident upon hisTis used in the Min-Max Node
Interference with a propertl? (MMNIP) [53] and the Low Interference-Load
Topology (LILT) [54] algorithms. Alternatively, théverage Path Interference
(API) [55] approach trims high-interference, redant edges from the Gabriel
graph (GG}. The channel control approach assumes the conitgctf the
network is fixed and that two radios can only commiate if they share a
common channel, of which there are fewer availattlan needed; this is
illustrated by Connected Low Interference Channgsignment (CLICA) [56], a
heuristic approach, and Subramanian’s [57] Tabuebehased algorithm. Several
cooperation-based topology control algorithms hdeen proposed to create
power efficient topologies (for a recent surveye 9§60]). These algorithms
assume total cooperation amongst radios, whiclectilely set their transmission
power level so as to achieve a network-level goal.

! Graph with vertex se$ in which any point$® andQ in S are adjacent if they are distinct
and, thecloseddisc of the line segmeRQ is a diameter containing no other elementS. of
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In cellular networks there are nodes of differelasses (e.g., BS and mobile
users), where BS is the origin/termination of alahlinks/uplinks of its service
area. Topology control algorithms for ad hoc andsse networks are designed
with infrastructureless networks in mind and uspadistributed, whereas in
cellular networks it is possible to use centralizdglorithms run within the base
station. In the former, the aim is to maintain twnectivity between the nodes
with minimum energy consumption. In contrast, in NI&; energy consumption is
less important than link throughput and delay. B8][several classic topology
control algorithms for ad hoc networks, such as righlgraph (GG), relative
neighborhood graph (RNG), Yao graph (YG) and Detsugraph (DG) are
adapted to the cellular environment.

Limited work has been done in designing effectiopaiogy reconfiguration
algorithms to offer optimal routing solutions in NdS. The future data
transmissions will have to face multiple radio a&axetandards and complex
spectrum allocation situations, and topology reimpumition has emerged as a key
technological enabler for supporting transmissioamong heterogeneous
networks, adapting to the time-varying environmamtl managing the joint radio
resources across different spectrum bands. In [88, authors provide an
overview of the research in the field of topologgntrol for cognitive radio
networks, proposing Prediction-based Cognitive Togp Control (PCTC) to
predict the duration of link availability. Based tiis prediction, PCTC constructs
a reliable topology which is aimed at improvingwetk performance. Recently,
some work has been done in applying bio-inspiregorlhms for topology
reconfiguration [60]-[62]. In [60] a particle swaraptimization is presented for
minimum spanning tree (MST) problem for WSNs. Ii][@ genetic algorithm is
used for topology control in ad hoc networks to imize the node degree, while
preserving the network connectivity. A genetic alfon with immigrants and
memory schemes is presented in [62] to solve theanhyc shortest path (SP)
problem in MANETS.

1.2.4 Intercell interference management

The exponential increase on data traffic demandeitular networks requires a
highly efficient exploitation of the available spaon. 4G cellular standards are
targeting aggressive spectrum reuse (frequencyeréito achieve high system
capacity and simplify radio network planning. Theeriease in system capacity
comes at the expense of link SINR degradation duentreased IClife.
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interference that two or more neighboring cellmgghe same frequency resource
cause to each other), which severely impacts dgeeuser capacity and overall
system throughput. Hence, advanced interferenceagenent schemes are
critical to improve the performance of cell edgenss The main ICI management
schemes for improving system performance can bssifiad in the following
three groups:

a) Radio resource management through adaptive fradtioequency reuse:

Multicellular RRM efficiently partitions resourcesross cells in order to manage
per resource interference experienced in each Elbrid schemes that are a
combination of universal reuse and higher reustofacso called fractional reuse
(FFR) partitioning, were first introduced in [63h@ are suggested for standards
like LTE and WiIMAX [64].

In particular, a mix of high and low reuse frequgnesources (e.g.,
frequency reuse 1 and 3, respectively) are allowezhch cell as shown in Fig. 3.
Resources governed by frequency reuse 1 can bgnasisio users that are closer
to the center of the cell and hence experienceitegssference from other cells,
while the lower reuse resources are assigned &ference-limited users at the
cell edge. Allowing a combination of frequency reusatterns overcomes the
capacity limitation inherent with lower frequenause, while also keeping a low
interference environment to retain throughput andecage for cell edge users.
The definition of what constitutes cell center wexscell edge users is an
important part of FFR design and is typically bas@dSINR metrics rather than
actual user location within the cell.

Different FFR schemes are proposed for interferemamagement in the
downlink, while uplink is closely tied to power dool mechanisms for
interference management. From a link perspectigeddwnlink allows for a more
tractable analysis since if the desired mobile teainlocation is known, the
distances to all potential interfering BSs can bsilg determined based on the
network geometry, and hence a probabilistic esémat the SINR can be
calculated based on the channel fading conditiongHe desired signal and the
interfering signals.

Analysis of the uplink interference requires knosge of not only the
location of the desired mobile terminal under cdasation, but also the relative
locations of all potential interfering mobile temmais. This includes the locations
of the interfering terminals, the number of potahterminals, and their speed.
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Nevertheless, these a-priori hand-crafted schemeestdl far from optimal in
the sense that they do not adapt to dynamic netwoarironments, e.g., time-
varying user loads/locations. In addition, user esthHing working
opportunistically based on perceived time-varyihgrmnels must be considered in
conjunction with ICI management to achieve a highfgrmance gain.

Fig. 3. FFR scheme.

More elaborate work on mitigating ICI has been ddye[65]-[66]. Resource
allocation management can prevent in-band concurtramsmissions to cause
intra-cell and inter-cell interference by full tinand frequency orthogonalization
of resources. But such orthogonal allocations artespectral efficient. Let al.
[65] formulated an optimization problem to maximibe system throughput in a
multicell OFDMA system. In their solution, a Radietwork Controller (RNC)
coordinates the interference among multiple callshat each cell utilizes not all
but around 80% of its subbands to avoid the domin@h Bonaldet al. [66]
examined the capacity gains achievable by interiele resource sharing in
CDMA/HDR systems. They formulated an optimizatiorrolgem which
coordinates the activity phases of BSs so as twigeohigher data rate for
boundary users by mitigating ICI. In both [65] af@b], it is noteworthy that
using only partial resources (frequency and timesspectively) is essential to
obtain potential performance gains associated mitfgating ICI.

b) Power control:

Historically power control has been employed inldal systems to minimize
near-far dynamic range effects by constraining upénk power to be received
with a constant power level at the base statiorchSan approach, while not
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optimal from an aggregate throughput or spectriitiehcy perspective, assures
fairness to cell edge users.

Recently many works have been done on coordinaedurce allocation in
cellular wireless networks, including batkentralizedanddistributedprocedures.
Centralized algorithms (e.qg., [67], [68], [69], amdny references in [70]) require
global information to compute the transmit poweueDto the hardness of the
problem, however, even centralized algorithms cagoarantee that the globally
optimal solution is found. Optimal binary power tah (BPC) for sum rate
maximization was considered in [67]. They showedttBPC could provide
reasonable performance compared with the multitlpgever control in the multi-
links system.

On the other hand, distributed algorithms (e.gl]{7#5]) do not require a
central controller and may demand less informa@gohange and computational
complexity. Huanget al. [71] derive a distributed algorithm for interferenc
mitigation by using a game-theoretic approach: heéhe transmit power is
considered as a continuous variable which is adfusd maximize some network
utility function. In [72], it is proposed to firgdentify the users whose power
should be set to zero and then Huang's approach i§7 applied. Continuous
power control requires more information exchangthauit significant benefits as
shown in [68], [69]. Another drawback of the sotuts in [71], [72] is that they
require the knowledge of the channel gains fromottiler BSs to the scheduled
users. Kianiet al. [73] propose a distributed binary power controlcaithm for
maximizing the total throughput which makes useao$implified interference
model. Stolyaet al.[74] propose a distributed algorithm aimed at miizimg the
network power consumption while maintaining constaitrrate for every user in
each cell. In [75] a multicell power control optimation for interference
management is presented to improve the spatiaéraacsor.

Another approach to power control for multicell ®ms is Opportunistic
power control (OPC) and has been shown to be thmoutgoptimal for data traffic
[76]. OPC exploits channel fluctuations such thaintreases the transmission
power when the channel is good and the transmissitenis adjusted according to
the received SINR ratio. Although the OPC conceptattractive because it
maximizes the multicell throughput and lends itsetér distributed
implementations, it can become extremely unfairdeld, previous works

21n the two-link case, BPC assigns full power t@ dink and minimum to the other, or full power on
both links depending on the noise and channel gains
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proposed computationally efficient algorithms thatl with the fairness issue of
OPC [76], [77], typically at the expense of somsslin the overall throughput.

c) Smart antenna techniques to null interference fosiner cells:

To attain the full potential gain of multicell netvks, smart antenna techniques
that exploit the spatial diversity for interferenggtigation are proposed in the
literature [78]. The key idea is to equip transerdtand receivers in the system
with multiple antennas and then utilize the direityi and/or diversity properties

of the multi-antenna processing. The main methoéds a

cl) Transmit beamforming:

Transmit beamforming is an efficient way to comb@&t, and in particular to
protect the user at the cell edge. By transmitiimga narrow beam directed
towards the desired user instead of a sector-wéden) it is possible to reduce the
interference spread to other cells in the systenaddition, the transmitted signal
also gets a power boost from the resulting array.g@eamforming can be carried
out in different ways; at the highest level we idigtiish adaptive and fixed
beamforming. In adaptive beamforming the antennmhts are adaptively set in
order to optimize the antenna pattern accordingdme optimization criteria.
Fixed beamforming is a low-complexity approachwinich a finite set of antenna
weights is used which generates a set of predefihedms. Hence, the
beamforming problem reduces to beam selection, whégjuires less feedback
information than adaptive approaches.

Research on downlink beamforming using antennaysraa the BS can be
categorized into two classes. The first class aeagch focuses on designing
algorithms for computing the beamforming weights.(relative amplitudes and
phase shifts of antenna elements) and transmigsiorer for each user given a
set of scheduled users [79]-[81]. This is often mled as an optimization
problem, where the objective is to minimize theakdtansmission power subject
to the constraint that each user’'s SINR requireneesttisfied. The second class
of research focuses on the MAC layer with physilzgler user separability
constraints. The goal of this class of researchioisnaximize the number of
scheduled users while satisfying their SINR comstra his problem is extended
and combined with other multi-user access schemels as TDMA, OFDM and
CDMA in [82]. The performance of various beamforguitechniques has also
been studied in the context of UMTS [83]-[85].
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c2) Spatial antenna techniques such as MIMO and SDM

Gains due to SDMA [86], [87] and MIMO [88], [89] ipementations have been
extensively researched, and a number of MIMO andM&Dtechniques are
included in the LTE standard. The notion of netwbtkMO involves the use of
multiple antennas at both the transmitter and r&ceside. Joint encoding over
geographically distributed antennas renders thavardét into a super-cell, which
is related to the MIMO broadcast scenario [90]. tBa downlink, multiple base
stations can transmit one or more MIMO paths tocodite, whereas on the uplink,
the transmission by a mobile can be received by@nmore BSs. The gains of
these techniques have been well established threirghlation [91] as well as
trial implementations. In case that full channeltstinformation and all data are
available at a central controller, network MIMO cefficiently exploit all spatial
degrees of freedom to eliminate ICI. Although thrework’s performance is no
longer limited by interference, there is a huge amoof additional complexity
and coordination overhead compared to single apllad processing.

¢3) Decoding algorithms:

The use of multiple antennas at receivers faod#taéstablishment of spatial
diversity branches, which can be used for implemton of receive diversity
and/or interference rejection techniques in theirer processing. Since the radio
channels from a transmit antenna to the receiveranats tend to fade differently,
multi-antenna receivers provide diversity —both floe signal of interest and for
the interference. With appropriate selection of #r#enna combining weights,
accounting for the radio channel, the interferepower and the spatial coloring
of the interference, such multi-antenna receiveray nprovide increased
robustness to both fading and interference.

The most well-known method for receive diversitytiaditional Maximum
Ratio Combining (MRC) [92]. Other recent receivecdding innovations include
Sphere and dirty paper coding [93].

1.2.5 Load balancing

Another important issue in multicell networks is resolve the load imbalance
problem between cells. In order to balance the laaing different cells, it is
needed to transfer the over-loaded traffic fromt"toells to neighboring “cooler”
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ones. Various dynamic load balancing schemes tbwidigfathe unbalanced traffic
problem are proposed in the literature. We can diyoalassify them into four
groups: a) Strategies based on channel borrowing fcooler cells [94]; b)
Strategies based on BS selection [95]; c) Straseb&sed on power control and
cell breathing [96],[97],[99]; and d) Strategiessbd on relay-assisted traffic
transfer [100]-[102].

The basic idea of channel borrowing is to borrowed of channels from
“cooler” cells (with less traffic load) to “hot” ds. However, this will change the
pre-defined spectrum reuse pattern and introducee mmochannel interference.
Also, as future cellular networks move towards tavarsal frequency reuse,
there is little space for channel borrowing schenmiasBS selection schemes,
mobile users in hot cells will try to associatelwé BS in a neighboring cooler
cell and get service, but the throughput is limiteek to low signal strength. The
cell breathing effects allow adjustment of transpatver to reduce the size of hot
cells to release over-loaded traffic to neighborowpler cells. Sangt al. [96]
proposed an integrated framework consisting of aQvVilayer cell breathing
technique and load aware handover/cell-site selett deal with load balancing.
Bu et al. [97] were first to rigorously consider a matheroatiformulation of
proportional fairness PF [98] in a network-wide manwith users' associations
to BSs. They showed that the general problem ishiife and proposed a
heuristic algorithm to approximately solve the pesh. [99] extends this
network-wide PF to the multicell network with paftifrequency reuse where
each BS has limited resources based on ICI predovation scheme and
independently runs a PF scheduler. Therefore, ihbteathing schemes, close
cooperation among adjacent cells is required torantae full coverage and
mitigate ICI. The last strategy consists of takthg advantage of MCNs to relay
over-loaded traffic from hot cells to cooler cellad balancing in MCNs not
only involves balancing among cells, but also beiag among relaying nodes
and the choice of relaying device. Compared witkvjmusly discussed dynamic
load balancing schemes, relay-based load balareihgmes are more flexible
and will introduce less interference.

In [100], a mobile-assisted call admission schesngroposed to achieve load
balancing in cellular networks, which requires @ahhac overlay network on the
cellular network. The authors divided the chanmais two groups, one for the ad
hoc overlay network and the other for the cellulatwork. The simulation results
showed that a fixed division of channels is noticeéght. In [101]-[102], the
authors proposed dynamic load balancing scheméseinntegrated cellular and
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ad hoc relaying systems (iCAR) [101] and PARCel82]1 The ad hoc relaying
stations (ARS) compose an overlay ad hoc netwotlighvcan help relay traffic
among different cells.

In iCAR, low cost limited mobility ARSs are placed hot spot areas for
traffic relaying. This strategy is not only costlyt also not flexible enough to
handle the highly dynamic load scenarios in 4G oete. PARCelS uses mobile
nodes for relaying. When a BS is congested, mahbildes search best routes to
other non-congested cells. Route information isveorded to BSs for selection.
This strategy requires considerable routing ovetherad does not take advantage
of the presence of powerful BSs. In addition, betthemes do not take into
account the load balancing among mobile users.ri8alg among the users is
important to avoid the situation where over-loadethying nodes run out of
battery. This affects the availability of routeslaronnectivity. Although this issue
is more related to routing, balancing load amongscand mobile users is
important to achieve good network performance.

ALBA [103] is a dynamic load balancing scheme fdDMA-based MCNs
which considers the location and priority of mohiledes for load migration. The
basic idea is to shift traffic load from a hot c#ll cooler cells in a best effort
manner by checking periodically the load statushef cells in the network. Best
effort is assumed because relaying routes for lpdagration may not exist
especially in a highly dynamic loaded network. #ildoad deviation is greater
than a global load deviation threshold, then stiaxdsl migration planning. ALBA
may be also applied to any heterogeneous load @mwient. Although simulation
results show that this scheme has good performamterms of throughput and
lower call blocking ratio, like most load balancisghemes, ALBA is a heuristic.

A novel message forwarding mechanism for load kafnin relay based
multicell topologies is presented in [104]. Whemsidering mobile relay nodes,
the actual mobility of nodes can be used to phylsigaropagate information
messages. Furthermore, while full connectivity barprovided by the supporting
BS, store-carry and forward SCF) paradigm is proposed to provide the target
performance gain at the expense of message delieday. It is important to note
that the SCF paradigm was originaly conceived asway to provide
communication in intermittently connected netwofk85]. However in this case,
message forwarding is deliberately delayed to alloimthe physical propagation
of information messages. With knowledge on datdfitrdoad conditions of
neighboring cells, a BS has the flexibility to nextit delay tolerant information
messages to adjacent cells by utilizing the unge8&F scheme. In this way,
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delay tolerant traffic can be guided to neighbdtscerhich have lower utilization
level to avoid resource stagnation at the targeédid

Load balancing for multicast applications

Network integration also represents an interestiay to support multimedia
services in cellular systems as it allows incregdime efficiency of the whole
system in terms of coverage area, resource capaeahd number of
simultaneously active users. The network load iis tlype of applications is
especially critical.

Cellular service providers have already had diffies to keep up with the
staggering increase in data traffic [106], [10fdawill have to carefully engineer
their networks to support the tremendous amounobile video traffic in the
future. Today, cellular networks are unable to hanldrge scale live video
distributions since existing cellular deploymentsrbt natively support multicast
and broadcast.

Cellular service providers may address the capasitye by: a) deploying
more base stations, b) upgrading their base sttieny., to support Multimedia
Broadcast Multicast Services (MBMS) [108], or c)ilding dedicated broadcast
networks, such as Digital Video Broadcast—-Handh{@%BH) [109]. However,
these solutions incur high infrastructure costs armay not be compatible with
current mobile devices. Hence, a better solutioneisded. Since modern mobile
devices are equipped with multiple network inteefsccellular service providers
may offload mobile video traffic to anauxiliary network. In MCNs mobile
devices relay video data among each other usinigoadinks. Exploiting such a
free mechanism of distribution alleviates bottleneckd aeduces cost for cellular
service providers.

While MCNs have the potential to capitalize on toemplementary features
of both networks for low cost yet reliable massilee video distribution,
transmission of video data must adhere to the timmeeds inherent in the
delivery and playback of video content.

Law et al.[110] evaluate a hybrid network in which some ni@levices act
as gateways and relay data to mobile users outbEl@ange via a multihop ad
hoc network. Lao and Cui [111] propose a hybridwwek, in which each
multicast group is either in the cellular mode orthe ad hoc mode. Park and
Kasera [112] consider the gateway node discoveoplpm, and model ad hoc
interference as a graph coloring problem. Bhatial. [113] formulate a problem
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of finding the relay users to maximize the oveddta rate, and they propose an
approximation algorithm to solve it. Qin and Zimmmamn [114] present an
adaptive strategy for live video distribution totelenine the number of quality
layers to be transmitted between two mobile devitkset al. [115] formulate
an optimization problem in a hybrid network to detne the cellular broadcast
rate of each quality layer. In the ad hoc netwaK]ooding routing protocol is
used to discover neighbors and a heuristic is eyagldo forward video data. A
lot of work remains to be done in this area sinasstrof the previous works are
based on single-cell scenario.

1.3 Aims and outline of the thesis

The aim of the thesis is to present a number of network paradigms for future
MCNs. The -contributions include solutions for reétay topology control
optimization, network reconfiguration issues, salliad), new multihop routing
protocols and different proposals for multicastfficaoptimization in cellular
networks as well as the integration of differemiey of networks within the MCN.
A novel approach to the optimization, control andhlgsis of MCNs is used to
address those paradigms.

Physical layer issues, such as a new channel nfodehultihop networks,
new interference management schemes and powerotaptimization, are also
covered in this thesis.

The thesis is organized in 6 chapters:

— In Chapter 1, the introduction is presented adeadiure review of the most
important research results for MCNs. Open probleand future research
directions are pointed out to highlight the motigatfor the researchrhe
main contributions of this thesis are included frGtmapter 2 to 5 as follows:

— Chapter 2, the results of which have been present¢til 6]-[118], presents
an algorithm for efficient relaying topology controwvhich is aware of
intercell interference. The algorithm jointly chessthe relaying topology
and scheduling in the adjacent cells in such a twaginimize the system
performance degradation due to the intercell ieterice. A new topology
search (TSL) program is developed to find the lbegblogy in accordance
with a given objective function. The set of consita in the optimization
program includes relaying specific system paranset@nd temporal and
spatial nonuniform traffic distribution.
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This framework is also extended to include theraptation of the power
allocation and, the network performance is compangdising cooperative
diversity relaying scheme (COOR) and conventionalaying scheme
(CONRY), resulting in two intercell interference ragement protocols’\-
COOR and IM-CONR, respectively. By including weights in theility
function we analyze the trade-off between througlgmd power allocation.

Numerical results demonstrate that an adaptiveyirejatopology control
provides the network utility improvements and preasethe framework for
quantifying these improvements for spatially andperally varying traffic.
Chapter 3, the results of which have been preseint§ti19]-[121], extends
our previous results on relaying topology optimiaatand presents a novel
sequential genetic algorithm (SGA) for dynamic mHgguration of the
relaying topology to the traffic variations in thetwork.

Duplex transmission is considered and network opdis used to
combine the uplink/downlink transmissions and, mpooate it into the
optimum bidirectional relaying with ICI awarenessesulting in a
comprehensive solution for 4G/5G common air integfa

Numerical results show that SGA-TSL provides boifjhhperformance
improvements in the system, fast convergence (astleone order of
magnitude faster than exhaustive search) in a dimaetwork environment.
Chapter 4, the results of which have been presantgkP?2]-[124], presents a
new approach to optimization in MCNs. A nano sgcaevork model (NSNM)
is developed for high resolution optimization. Bypdying hexagonal
tessellation, the cell is partitioned into smalkubcells of radiusr. By
adjusting the radius of the subce]ldifferent hopping ranges are obtained
which directly affect the throughput, power constimp and interference.
With r as the optimization parameter, we jointly optimineting, scheduling
and power control to obtain the optimum trade-@&fvieen throughput, delay
and power consumption. By using only one singletogy control parameter
(r) for multi objective system optimization we minimitiee control traffic
overhead that makes the system feasible for peddtigplementation.

A set of numerical results demonstrates that NSNMabées high
resolution optimization of the system and an effectuse of the context
awareness. A special nano scale channel model (NSGiMhis application
is also included together with a new concept fateadiscovery protocols for
MCNs which is aware of the mutual impact of all tes in the cell.



Numerical results show that our proposed algoritiensuperior when

compared to other existing route discovery prote@mlapted to this scenario.
In addition, the NSNM is used to analyze the traffe-between

cooperative diversity and spatial reuse in multikepular networks.

— Chapter 5, the results of which have been preseimdd25], provides a
promising way to support multimedia services inludal networks by
integration of Delay Tolerant Network (DTN) and loér network.
Polymorphic Epidemic Routing (PER) is proposed fioulticast DTN and
new adaptive recovery schemes are developed to veeniloe delivered
packets from the network (recovery from infectioAhalytical model of this
system is presented to study the effects of differecovery schemes on the
performance of multicast DTN. Numerical results whthat our adaptive
schemes increase the efficiency of the whole systetarms of reducing the
message delivery delay and the resource consumptimipared to existing
schemes.

- Finally, Chapter 6 concludes the thesis. The masults are summarized and
future research directions are suggested.

1.4  Author’s contribution to the publications

This thesis is mainly based on four journal pagéis, 119, 122 and 125], and

six conference papers [117, 118, 120, 121, 123124d. Most of the results have

been published or are under consideration for patibn. | have coauthored all

these papers with my supervisor Prof. Glisic. Th#har has had the main

responsibility for performing the analysis, devetap the simulation software,

generating the numerical results, and writing ladl aforementioned papers. Prof.
Glisic provided opportunities, motivations, reviewsd suggestions related to
technical issues, editorial corrections and guidaimcthe study and publication

process. All results and analysis presented inttiésis have been produced by
the author.
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2  Optimization of relaying topology in MCN

In this chapter, we propose an optimization frameéwfor relaying topology
control in MCNs aware of the intercell interfereng€l). Firstly, we define the
relaying topology in MCNSs to answer the questio®vis transmitting to whom,
and when, in such a way to insure the best systfioqmance. The transmission
scheduling is included in the optimization to reelube effects of the ICI while
providing channel reuse factor one. The algorittmimtly chooses the relaying
topology and scheduling in the adjacent cells iohsa way to maximize the
system performance. This results in a multicelhilyi optimal relaying topology.
In case of temporally and spatially varying traffitistribution, the optimal
topology will also vary in time and an efficient waf topology control is needed.
The optimization problem is formulated by using NUfNetwork Utility
Maximization) formulation and the aim is to jointlgptimize the relaying
topology, routing and scheduling in MCNs with ICivareness. The utility
function includes data rate, power consumption adwlay. The overall
optimization is solved by using the combination afnew topology search
program (TSL) developed for this application and>Cptogram [126].

Numerical results demonstrate that an adaptiveyirgdatopology control
provides the network utility improvements and preésethe framework for
quantifying these improvements for spatially andperally varying traffic.

This framework is then extended to include the rojgation of the power
allocation and the utility function is modified ldding weights to model the
trade-off between throughput and power consumptide. also compare the
performance of conventional relaying (CONR) andpmrative relaying (COOR)
schemes, resulting into two intercell interferemoanagement protocol$M-
CONR and fM-COOR, respectively. Numerical results show tHa-COOR
offers an improvement in the network throughputadfleast 4 times and a
reduction of power consumption up to 3 times coragap FM-CONR.

The remainder of this chapter is organized asofadl An overview and
background of cross-layer optimization is giverSiection 2.1. System model and
assumptions are then given in Section 2.2. The rigggmn of the relaying
topology and motivating example are presented icti®e 2.3. Section 2.4
extends this model to cooperative relaying sche@@Q@R). The traffic modeling
is presented in Section 2.5. Jointly optimizationrelaying topology control,
routing and scheduling is shown in Section 2.6Skttion 2.7, the throughput-
power trade-off is presented. Numerical results sinewn in Section 2.8 to
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illustrate the performance of the proposed algorgh Finally, Section 2.9
concludes the chapter.

2.1 Overview and background

In the past, network protocols in layered architext have been obtained on an
ad hoc basis, and many of the recent cross-laysigae are also conducted
through piecemeal approaches. Only recently, ndtwporotocol stacks are
analyzed and designed as distributed solutions oimes global optimization
problems in the form of generalized Network Utilitaximization (NUM),
providing insight on what they optimize and on thteuctures of the network
protocol stack. Such a framework dayering as optimization decomposition
provides a common framework for modularization, aywo deal with complex,
networked interactions. It exposes the intercorinacbetween protocol layers
and can be used to study rigorously the performéamacke-off in protocol layering,
as different ways to modularize and distribute atdized computation. Even
though the design of a complex system will alwagsbboken down into simpler
modules, this theory will allow us to systematigaihrry out this layering process
and explicitly trade off design objectives.

By this framework, the network utility function isnaximized by its
decomposition into components which are implememedifferent layers of the
protocol stack. Each layer corresponds to a decseghsubproblem, and the
interfaces among layers are quantified as functmfnthe optimization variables
coordinating the subproblems. Different layersateron different subsets of the
decision variables using local information to aeeiéndividual optimality. Taken
together, these local algorithms attempt to acha&gébal objective.

Intuitively, layered architectures enable a scaablevolvable, and
implementable network design. Each layer in thetqmaol stack hides the
complexity of the layer below and provides a sextiz the layer above. It adopts
a modularized and often distributed solution apphoto network coordination
and resource allocation. Such a design process oflutarization can be
quantitatively understood through the mathematiaaguage ofdecomposition
theory for constrained optimization [127]. Decompositidmedry provides the
analytical tool for the design of modularized anstributed control of networks.

The application of fayering as optimization decompositiorhas been
illustrated through many case studies. The congestiontrol functionality of
TCP has been reverse engineered by implicitly aghtheBasic NUMproblem
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[128]. Other results also show how to reverse esgiBorder Gateway Protocol
(BGP) as the solution to the Stable Path Probleg&®]jland contention based
Medium Acces Control (MAC) protocols as a noncoapige selfish utility
maximization game [130]. A number of papers havenbpublished in this area
with the focus on jointly optimized congestion awhtand routing [131], [132];
routing, scheduling and power control [133], [13dfingestion control, routing
and scheduling [135], [136]; congestion control gutnysical recource allocation
[137], [138]; and different combinations of thoseolplems [139]-[142]. The
feasibility of using the above framework in mobdemmunications with fading
and mobility is described in [140].

Since the early 1990s, it has been recognized ftraefficient solution of
optimization problems we neegbnvexity Convex optimization has become a
computational tool of central importance in engimeg, thanks to its ability to
solve very large, practical engineering problemgibdy and efficiently. Many
communication problems can either be cast as orcdreverted into convex
optimization problems, which greatly facilitate theanalytic and numerical
solutions. Furthermore, powerful numerical algarithexist to find the optimal
solution of convex problems efficiently [143].

In the sequel we provide the formulation of NUMde@scription to the most
common decomposition methods and the decomposifiofiUM. For the basics
in the area of convex optimization, the basics ohwexity, Lagrange duality,
distributed subgradient methods and other solutimethods for convex
optimization, the reader is referred to [143].

NUM formulations

We consider a network modeled as a Sebf links (scarce resources) with finite
capacitiesc=(c,I0L) . They are shared by a saf of sources indexed by.
Each sourcen uses a sef(n) d £ of links. Let A/(I) ={nON |I0L(n)} be the
set of sources using link. The sets{£(n} define aLxN routing matrix
R ={r} with r, =1,if 10L(n),i.e., sourcen uses link and 0, otherwise.

The Basic NUMproblem is the following formulation, known as nodropic
programming. TCP variants have recently been revergjineered to show that
they are implicitly solving this problem, where soa rate vectox =0 is the
only set of optimization variables, and routing matR and link capacity vector
¢ are both constants:
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maximize DU, &) 0

subjectto Rx<c ,

where the utility functiorlJ | is often assumed to be smooth, increasing, concave
and dependent on local rate only, although recewmtstigations have removed
some of these assumptions for applications whexg dine invalid.

Many of the papers ondyering as optimization decompositioare special
cases of the followin@eneralized NUMor the entire protocol stack:

maximize DU, & R, )+ZVJ- @)
n J

subjectto Rx<c £ R ), 2
xOC R, )xOC, E prOM 4 ),
ROO FOF z0OZ

where the rate of souraeis designated ag,, and these rates are arranged in
vectorx. Parameterz; denotes the physical layer resource at networknefg).
The utility functionsU, andV, are concave functions and in general may be any
nonlinear, monotonic function® is the routing matrix, and arethe logical link
capacities as functions of both, physical layepuvesesz and targeteddecoding
error probabilitiesP, which capture for example, the functional depemngeaf
power control and interference level in the netwdRbuting matrixR =[r,] has
entriesr,, =1if sourcen (n = 1,2,..,N is using linkl (I = 1,2,..,1) and 0 otherwise.

If in addition an ARQ protocol is used, a consttasetC,(P,) is included. The
issue of rate-reliability trade-off and coding iaptured in this constraint. The
rates are further constrained by the medium acsessess probability which is
modeled byC,(F) , whereF is the contention matrix, or the scheduling caaistr
setIl. The sets of possible routing algorithms, schedulbr contention based
MAC schemes and physical layer resource allocatmremes are represented by
0O, F and Z, respectively. Within these algorithms the optiatian variables
arex, z,P,, FandR.

1T e

Decomposition Methods

The basic idea of decomposition is to split theyioidl large problem into smaller
subproblems, which are then coordinated by a mastéslem by means of some
kind of signalling. Most of the existing decompamit techniques can be
classified into primal decompositionand dual decompositionmethods. The
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former is based on decomposing the original priprablem, whereas the latter is
based on decomposing the Lagrange dual of the @mabPrimal decomposition
methods have the interpretation that the mastebleno directly gives each
subproblem an amount of resources that it can Ube. role of the master
problem is then to properly allocate the existiegaurces. In dual decomposition
methods, the master problem sets the price forg¢heurces to each subproblem
which has to decide the amount of resources todeel Wepending on the price.
The role of the master problem is then to obtam likst pricing strategy. Primal
decomposition and dual decomposition can in fact ibger-changed by
introducing auxiliary variables [127]. Almost alé papers in the vast, recent
literature on NUM use a standard dual-based digteith algorithm. Contrary to
the apparent impression that such a decompositichea only possibility, there
are in fact many alternatives to solve a given woekwwtility problem in different
but all distributed manners [147], including mu#tirel and partial
decompositions as shown in Fig. 4. Each of thermdttves provides possibly
different network architectures with different emgéring implications.

Prices/resources

Secondary
=

PROBLEM

MASTER

PROBLEM
k Prices/resources
Subprobler

. J J
Y Y
First Level Second Level
Decompositio Decompositio

Fig. 4. Multilevel decomposition.

Dual decomposition of the Basic NUM

In this section, we illustrate how the dual decosipion approach can be applied
to the Basic NUM problem to produce the standard dual-decomposhased
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distributed algorithm. Assume that the utility ftions are concave, and possibly
linear functions. The Lagrange dual problem ofi¢lformed as

L(X,u)=ZUn(Xn)+ZM[q -2 &J, 3)

n | noON (1)

where g =0 is the Lagrange multipliei.€., link price) associated with the linear
flow constraint on link. Additivity of total utility and linearity of flowconstraints
lead to a Lagrangian dual decomposition into irdlinal source terms

L) =D U (%)= (D #)x]+D. Gu,

10£(n) |

4
:ZLn é(n ’Qn )+Z Cllul ’

where g, :ZIDK(n),ul . For each source, L (x, q,) =U,(x)- d,x, only depends
on local ratex, and the path price, (i.e., sum of z4 on links used by souras.

The Lagrange dual functiog(n) is defined as the maximizedx, n) overx
for a givenp. This “net utility” maximization obviously can beonducted
distributively by each source

x(a) =argmax U, &, ) a,x,10n )

The Lagrangian maximize¢ (n) will be referred to as price-based rate alloaatio
(for a given prican). The Lagrange dual problem of (1) is

minimize gft)=L& fu)n)
n
subjectto p= O,

(6)

where the optimization variable js Sinceg(p) is the point wise supremum of a
family of affine functions inu, it is convex and (6) is a convex minimization
problem. Sinceg(n) may be nondifferentiable, an iterative subgradiemthod
can be used to update the dual variaplés solve the dual problem (6)

H (t+D) =[4 O - SO - Z“)m(q(t»)r, ol 7

ncON

where ¢ —znm,(l)&(qj(t)) is thelth component of a subgradient vectorggt), t
is the iteration index, ang(t) > O is the step size. Certain choices of stepssiz
such asp(t) = Boft, p > 0, guarantee that the sequence of dual varigiogs
converges to the dual optimpl ast — o . It can be shown that the primal
variable X' (u(t)) also converges to the primal optimal variakle For a primal
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problem that is a convex optimization the conveggens towards a global
optimum.

In summary, the sequence of source and link algwst (5), (7) forms a
standard dual-decomposition-based distributed d#lgor that globally solves
NUM (1) and the dual problem (6)g., computes an optimal rate vectorand
optimal link price vectop™ without explicit need for signalling. This is berse
the subgradient is precisely the difference betwbenfixed link capacity and the
varying traffic load on each link, and the subgeadiupdate equation has the
interpretation of weighted queuing delay update.

In the Generalized NUMcoupling can happen in the constraints, and aiso i
the objective function, where the utility of soumneUn(xn,{ x}im(n)), depends on
both its local rate, and the rates of a set of other sources with irsdioeset
Z(n). If U, is an increasing function ofx}m(n) , this coupling models
cooperation in a clustered system, otherwise it@®dompetition such as power
control in wireless network or spectrum managemerDSL. Such coupling in
the objective function can be decoupled [147] bsstfiintroducing auxiliary
optimization variables and consistency equalitystiaints, thus shifting coupling
in objective to coupling in constraints. This cam teecoupled by applying dual
decomposition and solved by introducing “consisyepices”. These consistency
prices are iteratively updated through local messaassing. For more details in
the area of decomposition theory, the reader ereeffto [127].

In what follows, we present a new design of relgyitopology control
algorithms for MCNs based on Network Utility Maximation (NUM)
formulation. The design jointly optimizes the rdlay topology, routing and
scheduling resulting in a two dimensional or spto® routing protocol. This
framework is also extended to include the optimizabf the power allocation in
cooperative and conventional relaying schemes.

2.2 System model and assumptions

In this section, we describe the system model abfur relaying in MCNs and
the model of ICI. We use generic notation for vhléaX asXgyansmitter receiveWhere
the first index refers to the position of the tnamitser (terminal or base station)
and the second one to the position of the receiver.

We consider the uplink transmission in a cellulatwork with a setZ ={i}
of base stations. For a systematic presentatiadgheoproblem, hexagonal cells are
approximated by circles of radil® and the cell area is divided into concentric

51



rings with indexm; as shown in Fig. 5. We assume that thebile users are
located on those rings at distandg, = md, from the base stationwherem is
an integer andl, is a unit distance. We consider that there isuser per channel
in each ring. Users are equipped with omnidire@lamtennas and transmission
rates depend on the instantaneous SINR at thevezsei

AP, 3 AR

mo 1 2 | 2 1 owm

- oW

b - ——
Nol ToN

Fig. 5. a) Modeling interfering users positions for 2-cells; b) Possible transmission
schedule.

Let us assume that in a reference cell with index, there is a referenaaobile
user my transmitting (relaying) to anothemobile userm, with channel gain
Gmlmz. At the same time, a cochanrieterfering mobile usermy; is transmitting
to anothemobileuserm, in celli, i0Z_, ={i #r} with channel gaierlv )

We will use notation(m , m ,m, ,m ), to denotesimultaneousransmission
(relaying) on reference route from mobile usartom, rZ and cochannel
interfering mobile users frorm tom, iJZ_, position in all interfering cells.

Assuming thathl,rTFZ and Pml,nl12 are the transmission power of the useful and
interference signal respectively, the received poateuseran,,andm;, are given
by
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S"h!mz = Pml:% G ‘1 rDI (8)
Sml,mz = Pmlv m Gml,mz’ IDI_ r (9)

Let Im represents the interference power at the positibrthe reference

1

2
receivermy, due to the interfering cochannel signal transmdity m;. This can
be presented as

Imlvmz - P’“lv”ﬂszly m Smlv M2 Gm mz/ G.rriv.nz’ (10)
where G is the gain of the channel between the interfedsgrm; and the

1 2

reference useam;,.
The signal to interference plus noise raSlNRrn o atm., in the presence of
172
all interfering users is

S,
SINR (m,,m |=—=t—0), (11)
nhvmz( ) nr +Zi¢r |m1,m2

wherem;; = (M, Myy,..., M ), M; ,= (M,, N,,..., M ), 10Z_, are the positions of
the cochannel interfering mobile users in all ifegng cells and,n is the
background noise power.

Under these conditions the corresponding link ceparill be denoted as
¢.(m,m,m_m ) and can be calculated by

¢(Mmy mymym,)=log(1+ SINR . m,); DT, . (12

We start by considering that there is no power draind later on, in Section 2.7
we will remove this assumption. So, in the casemitiee transmission power is
the same for the referent user and interferences e, = Pml m o We have

12 B

SINR (. m)=(N'+Y, G /G ). (13)

where N, = P/ n = SNF.

In general, links between the mobile and &R may require less power if
space time coding is used. The maodifications toluite this fact are
straightforward.

We define now the multihopH( hops) route as a series of relaying
transmissions

O, My My M B MM My My ). (14)
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The above equations correspond to the conventiorlying scheme
(CONR), in the first phase of the communicatiae.{ first hop), an intermediate
user fromm,, receives the transmission of usgf_, that is destined to the base
station AP,. In the next phase (hop), the intermediate uggersimply forwards
the information to the following intermediate usery,,,. The users continue
relaying to the next user until the signal thatytheave received during the
previous phases reaches the base staiiBn There can be many concurrent
transmissions in each phase (within the same cellia the adjacent cells). The
choice of the most appropriate relays to satisfyate network requirements will
be address in next section. The extension to catiper relaying will be
introduced in Section 2.7.

The capacity of the route is then defined as

C;, =min, ¢ (Mg, M,m;;,m; ;) (15)
Co,  (My Mym M ) = Iog(1+ SINB}PWZ (i, m;, ) ' (16)

which is equal to the minimum link capacity on tloate. The optimum set of
relaying routes is the one that maximizes the dapaxf the network and is
defined as

{0,}=max,, C,; whereC, =) ¢ , ;rOT. (17)

Due to the fact that a node can not receive anmsiné the signal simultaneously
on the same channel, only a subset of transmissiande active simultaneously.
For that reason a scheduling in different timessisiil be introduced in the sequel.

2.3 Two dimensional relaying topology

Full real time knowledge of all cross channel ciméfihts between all users would
provide complete insight into the mutual interfearenand basis for optimal
scheduling. However the channel measurements, miegsaoverhead and
transmission coordination (scheduling) for suclelaesne would be very complex.
For this reason we suggest an alternative (singol)fischeme that requires only
positioning. In this section, we start with a siempmodel that requires only the
distance from the base station/access point, wtdcan information relatively
easy to acquire and already available in existiygjesns. High resolution model
that requires full informationr(p) on the user position will be presented in
Chapter 4. In this section, we have approximatesl ¢bntinuum of possible
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positions of the terminals with a discreet set aues, represented by rings in the
cells. For such a scheme we include the impadtefading into the model.

The cochannel interference can be further redugeddheduling different
transmissions in different subchannels (time slisequency bins). All necessary
transmissions between all users and their respedicess points should be
completed irB slots écheduling cycle

Motivating example: Limited interference relaying topology with same data
rate/source.

As an illustration, for the two cells scenario andtation shown in Fig. 5, a
possible (feasible) topology is shown in Fig. 5br B systematic presentation of
the problem, the cell area is divided into condenings (e.g. three rings for each
cell in Fig. 5), and we assume that the users acatéd on those rings. It is
assumed that there is one cochannel user in eagharid each user has the same
amount of information to transmit.

The topology consists of four partial topologiepresenting transmissions in
four consecutive time slot8(= 4). In the first time slot (the first partial topap)
there are two simultaneous transmissions: packigfinating from ring 3 in
reference cell is transmitted from ring 3 to ring 2 and at thensatime packet
originating from ring 1 of interfering cell is transmitted from ring 1 to access
point AP, In the second time slot (the second partial togg), packet originating
from ring 3 in cellr is transmitted from ring 2 tAP, and at the same time packet
originating from ring 2 of celi is transmitted from ring 2 to access poi®.
Similarly the same notation is used for transmissiotime slot 3 and 4.

Limited interference in this context means that tlistance between the
active receiver ;) and the closest point reached by the omnidireetio
interfering transmissiomtg;,), referred to as interfering distandg equals tadl,d,.
The minimum interference distance in the previmpotogies id, = 2.

So, in the above example, there will be limitectiférence transmission for 3
users per each cell in four channels (4 time siotsig. 5b), giving the “intercell
throughput” 3/4 (3 users/4 time slots), as opposedthe 3/6 =1/2 in a
conventional TDMA system where each cell uses & bflvailable channels
(slots), and each ring transmits in separate cHaBl).

These four partial topologies together are refetoeds apossibleor feasible
two dimensionaltime and spacetopologyand will be represented in the sequel
by a given topology indek For this concept (17) becomes
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{Dﬁz)} =max, . o Cye whereC , = > Ge 10T (18)

and 0? is two dimensional relaying topology to be elatiedain more detail in
the next section. For each sldi=1,....B, parametercmgz) is given by
corresponding (15)-(16).

TSL program is developed to find the optimum rehayitopology for the
problem described in the previous example. It penfo a search through all
feasible topologies, gives users different priesdtto transmit, all possible options
for relaying and coordinates the transmission betwhe different cells, to find
the best topology in accordance with a given neftwaility function.

To generalize this modeling and further explain theeaning of the
scheduling intervaB, we use analogy with standard contention graphetiogl of
MAC layer operation by representing users in thayieg rings from the previous
examples as nodes in the network. Designing a MAdgZogol can be modeled as
a bandwidth allocation problem at the link layerh& considering link layer
flows, contention relations between the links carrdépresented bylak conflict
graph In such a graph, vertices represent link flowd adges between vertices
denote contention between links, which is the situawhere there is interference
between either the sender or the receiver of arleMiith either the sender or the
receiver of the other link. A fully connected sudgh in a conflict graph is
referred to as alique andmaximal cliqueis a clique not contained in any larger
clique. Therefore, a maximal clique representstatmel resource”, which has a
given fixed capacity. The basic requirement forsfbdity of a schedule or
bandwidth assignment is that the total flow rateach clique does not exceed the
clique’s capacity, subject to the conflict congttai In addition, the bandwidth
allocation should satisfy some performance requénr@nsuch as fairness.

Assuming all nodes use omnidirectional antennasaosmit packets in the
same shared wireless channel, a link conflict greph be used to describe the
contention relations between link flows, and eadximal clique is treated as a
“channel resource” with a given fixed capacity. Tdepacity of a clique depends
on the topology of the network, and the fairnesaqgiple under consideration. In
the previous example, transmissions within the seligee are shared on the time
scale by scheduling transmissions in different tgtogs. AfterB slots (scheduling
cycle) the transmissions can be repeated in the sader.
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2.4 Cooperative relaying scheme

In this section, we assume that the users are pgdivith cooperative diversity
receivers, so they can exploit the broadcast naifithe wireless transmission to
cooperate and improve the SNR at the intended yeceCooperative multihop
networks can improve the performanve via coopegatiiversity, reducing the
transmission power and increasing the capacitynidtiple communication links
to a single destination [14], [46].

The Cooperative Relaying Scheme (COOR) proposéhisnsection works as
follows. In the first phase, in the reference aelhe set of intermediate users
located inM,, ={m},,....m,} andAP; listen to the transmission coming fram,.

In the next phase, the set of intermediate userd{p and AP, listen to the
transmission of intermediate user located mp. The same scheme continues
until the last intermediate user from,y transmits toAP,. This transmission
model is presented in Fig. 6. Meanwhile in the samak and in adjacent cells,
many concurrent transmissions may take place. Wainas that the set of
intermediate users itM,; and AP, combine the received signals in a diversity
receiver [176], so that the equivaleBINR®" atAP, afterH hops is

H G. P
SINR (m, ,m, )=>" e , (19)
i nr +ZZG"\pvr Pmpvn?p+1

i0Z p=1

where Pt and Pmp,% are the transmission powers of usey, and my,

respectively,G,,  is the channel gain betweem, and AP, and the same applies
for Gmp',, andn, is the background noise power.

Fig. 6. Cooperative relaying scheme, ([118] [OIEEE 2  011]).
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The capacity of the routé, is now defined as
c, = |og(1+ SINR  (m, ,miz)). (20)

The optimum set of relaying routes is given agaif{br) withc,  =c, .

2.5 Traffic modeling

In a real network, the traffic will vary in time drspace. To model the network
traffic dynamics we introduce the following definihs. We denote by, the
number of rings in celland N = ZINln the total number of rings in the network
where N, is the number of cellsN, =|Z|). The vectork, =(A,....4,;),A OR"
defines the amount of generated source traffidieyusers situated in the different
rings in celli to be transmitted to the access pdif on the uplink. For the same
traffic vector); the base station can schedule the transmissi@ughr different
channels (time slots) resulting in temporal andiagh®AC protocol. The overall
network traffic on the uplink is defined as=(,,A,,....hy )= @, ,...Ay ).

The base stations jointly assign an access vecto@,, a,,...,3, )= @,,---Ay
to the different rings to give them permissionransmit, where each component
a,0(0,1). With a, = 1 the users from ringn are allowed to transmit otherwise
not. In the two cell casa=(a,, a,), the first half of the coefficients represent the
permissions to transmit for the rings in referegit c and the second half for rings
in interfering celli, iOZ_, . The index pattern is presented in Fig. 7.

2.6 Joint optimization of relaying topology, routin g and scheduling

In this section, we define the optimization procdss using Network Utility
Maximization (NUM) formulation, the definition oftility function and necessary
constraints which are result of the physical limidas of the system. The utility
function and constraints sets have been furthdroeéded compared to those in (1)
to model MCNs with ICI and traffic awareness.

The examples of topologies presented in SectionaPe3based on intuition
and we need a systematic approach to the systeimination. The optimization
of the relaying topology in MCNs should answer thaestions “who is
transmitting to whom” and “when”, to ensure the tbegstem performance. In
order to define the optimization problem, we intnod the following definitions.
ForidZ,
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We define the topology matriX; :[T(mz, ml)] with T(m,, m) =1, if node
my is transmitting tam, and O otherwise, with indexes,;,m,=0,1,2,...,n, and
m, < m,. Each(m,, m,) pair is represented by a specific link indeas shown in
Fig. 7 for the case of two cellgVith this notation the column vector of equivalent
(source + relayed) rates in cetbecomes

X =[%,, ] wherex, =x, +3 T(m, m) %, (21)

where X, is the source rate of usen,, x, and x, are the overall rate of the

traffic sent by usem, and m, respectively. The overall topology matrix will be
formally defined asT = diag[Ti] , and x :[xi } is the concatenated column vector
of the overall aggregate rates.

l30— I3 l30— o

l20—lg

l31— s

Fig. 7. Link notation.

The routing matrixR =[r,] has entries,, =1 if sourcen (n =1,2,..,N is using
link I (1=1,2,..,) and O otherwise. Recall that, parameteis the number of
overall rings in the network. Parametelrrns:rIrTh of the routing matrixR are
calculated asrlmﬂ:Umzrlsz(mz,ml), and the number of links is given by
L= T(m,m).

The scheduling sdil will be combined with the routing matriR resulting
into two dimensional routing protocol characterizzdextended routing matrix
R®00@ . Depending on the type of scheduler this will feguo space time or
space frequency routing. By assuming that the sadheg cycle within the
maximum clique haB steps, the remaining NUM will include:

a) Utility function that characterizes the design aijees
U=(1/B)>,aU.(x)/R, (22)
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whereU, (x,) =log(x,), X, and P, are the aggregate rate (source + relays) and
aggregate power respectively needed for transnmissfoinformation from the
sourcen to the access poing, is the access parametex, € 1 indicates that
sourcen is active and, = 0 otherwise). We assume that the buffers ofubers

are infinite, and we maximize the sum of the traission rates and leave to the
internal node fairness policy as a parameter tarobmhe share of the channel
between the local and relayed traffic.

b) Constraint R@x® <c®(R®) with the following definitions of extended
system parameters

X" = (x"(@).x"(2),..x" 8) 627 =(c" @<’ (2)...6" B)
R® =diag|R(b), b=1,2,...B (23a)
ROO,xOm=R®00®,

wherec arethe logical link capacities calculated as discusse8ection 2.2
for conventional relaying (CONR) and Section 2.4 ¢ooperative relaying
(COOR). They capture the functional dependencyafdmission power and
interference level in the network an&(b) is the partial routing matrix
(subset of active users on matfin slotb).

c) Each component of the set of feasible routes[if should provide
directional connection for each terminal to theresponding access point.
This means that the sequence of links generated glique cycle must
provide connection for all terminals to the cormsging access point. To
define this constraint explicitly we introduce tlrek hopping distanceh and
the vectorh =(h,...,h ). Parameteh, represents the number of rings that link
| is hopping over, from its transmitter/receiver tbet corresponding
receiver/transmitter. Similarly, the source hopptigtance vector is denoted
asd=(d,,...,dy ), whered,is the hopping distance between the source and
the access point. The sum of link hopping distarmrethe route from source
n to the access point should be equal to the sdwpping distance

szT (b)h(b) =d. (23b)
d) The overall transmission rate is defined as

(I1-T)X =X¢ « X, =X, +Zm1T(mE, m) %, (23c)
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Formulation of the problem defined by equations){(2@3a)-(23c) can be
summarized as:

maxiTmizeU
subject toR®@x® <c® R® )
|(—T X) =X
ROO xOII = R®0O0® .

The results presented in Section 2.8 show thatothtemal relaying topology
depends on a given access vedolFor this reason for a given spatial traffic
distribution the access vector should be varieprtwide

E(a(t)) = A(t). (25)

The set of feasible topologies obtained by TSLdagivena will be denoted as
0? . These topologies are represented formally as lection of partial
topologies (links) generated iB=1,...b slots 0® = JPT® ={ J£®, where £”
indicates the set of active links in shot b b

The algorithm works as follows:

1. Calculate the access vectaffor a given traffic distributiord by using (25).
2. Use TSL to generate the set of feasible candiagteldgies 1 for a.
3. For each topology in the séf'®:

4. Use CVX [126] within TSL to optimize the sourcesgat

5. Calculate the aggregate powers needed for usersdétiver the
information.

6. Calculate the utility using (22).

7. Go to 3) until the best utility is obtained.

2.7 Throughput-power trade-off with ICI awareness

In interference limited systems the throughput aogver optimization becomes
non trivial due to network-wide coupling of the pewallocation. Different
approximations are presented in [141-143] to coifyethe problem. Recently,
Papandriopoulugt al. [144] proved how the problem can be rendered conve
and that the global optimum can be found throughdard Lagrange duality.
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In this section, we extend our previous optimizatpyoblem (24) to include
the optimization of the power allocation. We defimenew utility function that
strikes a balance between maximizing the sum rliyuU,, and minimizing the
cost (total power consumptiok), to model the trade-off between throughout and
power allocation in MCNs with ICI awareness. Thenstoaints (23a)-(23c)
defined for problem (24) are now extended to ineluble dependence on the
power. This framework will be evaluated in SectihB by using the conventional
relaying scheme (CONR) described in Section 2.2 aodperative diversity
relaying scheme (COOR) described in Section 2.4. gtimization of the power
allocation further reduces the effects of the ifeiesnce and prolongs the battery
life of the relaying users. The resulting interdellerference managementN1)
protocols by COOR and CONR schemes will be refeaedM-COOR and M-
CONR, respectively.

The throughput-power trade-off is defined by assignveightsw; w,to the
utility U, and costJ,

U= V\ﬁUl—WzUz

(26)
U =23 au,0x) U, =X R,

where U, is the sum rate utilityand U, is the overall power consumption. The
resulting optimization problem is defined as wilihaximization with pricing

- 1
maximize w =3 aU, & yw) B
subject to R@x@ sc(z’(R‘z) F,"z’)
2. RTHBH K ¥d (27)
[T x)=x,
ROO xOm = R@00@
P < P< P™
wherew; W, are the weights controlling the trade-off betwelea throughput and
the power allocatiorg, is the component of the access vector assignedenbBS,
U, is defined adJ,(x,) =log(x,), P, is the overall power consumed by user from
ring n. The first constraint has been modified with redpéo (24) as

c‘z)(R(z’,P(z)) to include the dependence with the poviReis the routing matrix,
b is the index of time slot is the vector of source ratés|s the topology matrix,
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O is the overall set of feasible routeB™ and P™ are the minimum and
maximum values of the trasmission power, respelstive
The optimization is solved in three steps:

1. The topologies are generated for a given accegswvady TSL.

2. To render the problem formulation (27) convex, waplg an exponential
variable transformation as in [144] — € and P, — e along with a log-
transformation of the rate constraints to arrive at

maximize w» aU, € »w) &

) X (27a)
subjectto log}. €"> r ¥ logt ¢ € )),

where

R= > R
i £ n)

and £”(n) is the set of links used by nodein slot b. After the log-
transformation the constraint set is now convexthsutility function used is
(log, x)-concave, the transformed problem (27ajasvex, see [144, theorem
2]. Under these conditions problem (27a) can beegblto optimality via
standard Lagrange duality.

3. By Dual decomposition the optimization problem iscdmposed in the
following subproblems:

D, (jt) = max {Lx )2 M%Znanun € )r2.¢2, rnﬂ.}
(28)

=2 max L ki )éyl%anun € rey, m}
D@ =max {L, P )2y, c € ¥ -rY, &}, (29)

where D, is the routing subproblem in the network lay®y is the power
allocation subproblemg is the vector of source rate® is the vector of
allocated powers anfl is the vector of Lagrange multipliers.

Due to the strict concavity of the partial LagragiunctionsL,(X,i) and
Lﬁ(l5,ﬁ), by [145, Prop. 6.1.1] the dual function3,(i) and D,(ji) are
differenciable everywhere. The dual function can beritten as
D(t) = D,(jt) + D,(jt) . We can solve the dual problem
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minimize D fi)
subjectto p= 0

using the gradient-descendent method where theéegadf D(ji) can be shown
to be

Qa)=26EE-2 €Y kA (30)
with X and P" the optimal solutions in (28) and (29). Given tbeally optimal
solutions X (t) and P’ (t), the algorithm updateg; as follows

B+ =[ 40O -B0%(4)]

I (31)
where f(t) is the appropriate step-size in iteratibn The algorithm for the
optimization problem in (27) iteratively updates tbual variable by (31), and
solves the subproblems (28) and (29) until the gllghoptimal solutions are
achieved.

The dual decomposition method leads to a distribalgorithm, where user
keeps track on its own transmission rate and power.

The Intercell Interference ManagemeriM) algorithm works as follows:

1. Generate the feasible set of topologigd for a given access vectar by
using TSL program.
2. For each topology in the séf®:

3. Solve subproblem (28) and (29) by using CVX [12&hwhe capacity
defined by (15) fo’M-CONR and (20) for’M-COOR.

4. Update the dual variablgi by (31). Go to 3) until the subproblems
converge to the optimum solutio&s and P .

5. Evaluate the objective function in (26) for the io@tl valuesX’ and

obtained in 3), by using certain weights and w, . Go to 2) until we find
the optimal values for all feasible topologies.
6. As result, the optimum topolodly , the optimalX and P* are obtained for a
given access vecter.

The optimum throughput is defined as

Thr' =%Zna\]>§1, (32)

where X' is the optimum vector of source rates.
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2.8 Performance evaluation

In this section, we provide several numerical exispto illustrate the
performance of the proposed algorithms. We considerscenario presented in
Fig. 5 and assume that the users are situatedeirtirth that connects both BS,
which represents the worst case in terms of intenfee.

2.8.1 Joint optimization of relaying topology, routing and scheduling

We start by considering the conventional relayinojesne (CONR) and calculate
the link capacitiesc,(m,, m,,m ,m,) as specified in Section 2.2. For this
calculus we need the channel ga@slv i and Gnh,mz that depend on distance
between the transmitter and receiver, and fadinigil&\the analysis is general, for
simplicity in this section we model only propagatitbsses a§3 - ~1/dml .
where dml‘m is the distance between the interfering transmiitering m, and
reference receiver in ringn,, and a is the propagation constant. In the
simulations we user =4. The calculation oﬁmlvmzis straightforward from the
geometry presented in Fig. 5a.

In Figs. 8, 9 and 10 we present the utility fofeliént access vectoesversus
the topology indext] for the scenario presented in Fig. 5a. The togploadex ¢)
represents each feasible topology in the [$ét obtained by TSL for a givea,
and defines a certain combination of the activ&diriThe ring and link notation
used for the access vectoaga,,...,a,), all (0,1) is shown in Fig. 7 where
corresponds to the index of the ring.

In Fig. 8, we present the utility verstgor a = [001001]. In this case, users
located at the border of the cell are allowed tm$mit. Different values of the
utlity are obtained for different feasible topolegit. The maximum utility is
obtained fort = 100 (u,y, = 0.4366) defined by the set of linkg ={{I,,} {1, }}
where the first subset corresponds to the pamiablogy in the first slot and the
second subset to the second slot.

As an illustration, we present in Fig. 8a the trarssion pattern that
corresponds to this optimum topology. We can alse that the number of
feasible topologies obtained by TSL for thiss 106.
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a=[001001]
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Fig. 8. Utility function versus topology index for access vector a =[001001]. The

maximum utility corresponds to topology index t =100 (Uigo = 0.4366) defined by the
setoflinks £ ={{l,,} {1,/ ¢} . (216] [oIEEE 2009)).

| @ | | Time slot 1

|
! 1 2 3 3 2 1 '
AP AP,
' My2, My n,my '
lso— 3
l2o— 8
. N
. 1! 3 p a 7 E APi Time slot 2
AP,
' M2, My m, M
Fig. 8a. Representation of the transmission pattern defined by the topology index
t =100.
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In Fig. 9, access to 3 rings is allowea=[011010]) and we can see that the
maximum utility is obtained for= 400 (u,,, = 0.5888). The optimum topology is
now given by the set of linksC={{I} {I,}{l.) 4} . As we increase the
interference level by allowing more concurrent sm@ssions (activating more
rings in the access vector) we can see that theowement in the system
performance is higher. We should also notice tha tumber of feasible
topologies () generated changes for different access veetorhis demonstrates
that for different traffic distribution vectors, éhalgorithm outputs different
optimum topologies. In this example, we have olgdimear 700 feasible
topologies, and the value of the utility signifitignchanges depending on the
topology. As the utility includes the logarithm thfe rates, negative value of the
utility is obtained when the rates are lov@{x<1). More details about the
different topologies for this are provided in Table 1 wher&® indicates the
active links (active = 1, non active = 0) in shot

a=[011010]
06+
04+
S \J
S
g 02 n
z
2
5 o
-02+
-04 L L | | L L
100 200 300 400 500 600
Topology Index
Fig. 9. Utility function versus topology index for access vector a= [011010]. The best

utility corresponds to topology index t = 400 (u400 = 0.5888), defined by the set of links
c={1}.{1.} {1) &} . @161 (o1EEE 2009)).
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Table 1. Representation of different topologies for the access vector a =[011010],
([116] [©IEEE 2009])

@, b) L0 Utility Function
1) {0,1,0,0,0,0,0,0,0,0,0,0}

1.2) {0,0,1,0,0,0,0,0,0,0,0,0}

3) {0,0,0,0,0,0,0,1,0,0,0,0} 0.04
(7.2) {0,1,1,0,0,0,0,1,0,0,0,0} 0.0009
(62,1) {0,0,0,0,1,0,0,0,0,0,0,0}

(62,2) {0,1,0,0,0,0,0,0,0,0,0,0}

(62,3) {1,0,0,0,0,0,0,0,0,0,0,0}

(62,4) {0,0,0,0,0,0,0,0,0,1,0,0}

(62,5) {0,0,0,0,0,0,1,0,0,0,0,0} 0.1966
(400,1) {0,0,0,0,0,1,0,0,0,0,0,0}

(400,2) {0,0,0,1,0,0,0,0,0,0,0,0}

(400,3) {1,0,0,0,0,0,0,1,0,0,0,0} 0.5888
(402,1) {0,0,0,1,0,0,0,0,0,0,0,0}

(402,2) {1,0,0,0,0,0,0,0,0,0,0,0}

(402,3) {0,0,0,0,0,1,0,0,0,0,0,0}

(402,4) {0,0,0,1,0,0,0,0,0,0,0,0}

(402,5) {1,0,0,0,0,0,0,0,0,0,0,0}

(402,6) {0,0,0,0,0,0,0,0,0,1,0,0}

(402,7) {0,0,0,0,0,0,1,0,0,0,0,0} 0.3745
(640,1) {1,0,0,0,0,1,0,0,0,1,0,0}

(640,2) {0,0,0,1,0,0,1,0,0,0,0,0}

(640,3) {1,0,0,0,0,0,0,0,0,0,0,0} -0.3529

- For topology indext=1, the topology is given by the set of links
L={1}3,{ L{ ¥ splitinthree time slotsbE1l, 2, 3). These are the links that
connect the users activated &directly to their respective access points. This
topology corresponds to conventional system in TDM#@&de, and the utility
is u, =0.04, which is far from the best utility for this (u,,, =0.5888). The
explanation to this behaviour is that these lirdguire that the users transmit
with the highest power.

- For topology indext=7, the topology is given by the set of links
L ={l, 1,14 where all users transmit simultaneous (one slat)guthe links
that connect them directly to their access poihisTopology corresponds to
conventional system in CDMA mode. The utility fohig topology is
u, =0.009 which is low because the interference level ishhigesulting in
low capacity of the links.
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- For the topology index t=62, the following set of links
{13 {3 {1} {4 {4} is activated. These links required less
transmission power and generate no mutual interéereThe utility now is
higher than in the two previous cases,(=0.196€), but still is not the
optimum because we are using 5 times slots.

— In the topology with index = 400, we get the optimum topology with utility
U, =0.5888, defined by the set of linkg ={{I} .{I,} {I.) 4} . The users
transmit with low power and use 3 time slots. Tp&rmum topology gives an
utility significantly higher than for conventionaystems in TDMA (), =0.04)
and CDMA (u, =0.009).

- In the topology with indext=402, the topology is defined by

= {34383} We need 7 time slots for the
transmission. All users transmit doing relaying dahdy transmit their own
information and the relaying information in diffetetime slots. The utility is
Uy, =0.3745 We have the same utility for indexes= 402-590 that
corresponds to different combinations of the sagteo§ links as we can see
in Fig. 9.

— In the topology with indext=640, we have the smallest utility

u640: -0.352¢ . The topology is defined by the set of links

£={{lls). {14 3 § 3} Although the transmission power is low, we have
three simultaneous transmissions in the first tglo and two in the second
slot which results in high interference level.

In Fig. 10, we present the utility when 4 rings @apermission to transmit
(a=[101110]) and an additional improvement is ofeai. The best utility is
obtained for topology indek= 602 (uy, =0.6991), defined by the set of links

{1303 {13 {.¢ 3} 1t is worth noticing that as traffic increaseet
topology that contains isolated and short rangestrasions is favoredn Fig. 11
we present the overall capacity, defined as

ZZC(b)—Z ,

for the samea as before We can see that the overall capacity of the system
improves by a factor 6 compared with the worst case
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Fig. 10. Utility function versus topology index for access vector a =[101110]. The best
utility corresponds to topology index t =602 (ueo2 = 0.6991), defined by the set of links

c={{1 {3 {3 {1, {4} qaae) (oiEEE 2000)).

a=[101110]
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12+ B

10+ B

Overall Capacity
o]
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Topology Index (t)

Fig. 11. The overall capacity versus topology index for access vector a= [101110],
([116] [©IEEE 2009)).
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2.8.2 Throughput-power trade-off with ICl awareness

In the results presented in this subsection, wee lansidered the same scenario
as in the previous subsection and extended thasdtseto include cooperative
relaying scheme (COOR). The link capacit@ém,, m,,m,,m ,) are calculated
as specified in Section 2.2 and Section 2.4 for ®O&dhd COOR schemes,
respectively.

In Figs. 12, 13 and 14 we present the utility defirby (26), throughput and
power consumption respectively versus the topoliogiex t for 1°M-CONR and
I’M-COOR schemes. The traffic distribution in thewetk is given by access
vectora = [001001] and the weights for optimization are= 1 andw, = 0.2. The
optimum utility is obtained for topology indéx= 18 given by the following set of
links £={{1,,1.;} {l.¢ {l §} where the first subset corresponds to the partial
topology in the first slot and the same appliestfi@ second and third subset.

a=[001001]

-1 [

Utility

-3+ ‘ M] . .
\ I conventional relaying
|
[l ] ----- cooperative relaying

20 40 60 80 100
Topology Index

Fig. 12. Utility versus topology index for a =[001  001], ([118] [©IEEE 2011]).

We can also see that the optimum topology hasatget utility because the
power consumption is quite low (about 4), and twughput is about 0.5. The
topology index that obtains the highest rates @oltogy indext =12, but the
power consumption for this topology is very highigfresults in low value of
the utility. We can see an improvement of at lehsgimes in terms of network
throughput and the power consumption is reducedimé&s by using™M-COOR
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with respect to®-CONR scheme. The variation in the power consuampfor
the optimum topology is 3 times inferior with respéo non-optimum options,
and the variation in the throughput is about 6 sméth respect to the maximum
one.

a=[001001]

1.4

Throughput

20 40 60 80 100
Topology Index

Fig. 13. Throughput versus topology index for a = [ 001001], ([118] [©IEEE 2011]).
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Fig. 14. Power consumtpion versus topology index for a =[001001], ([118] [©IEEE

2011]).
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In Fig. 15, we present the trade-off betwedp and power for the optimum
topology (topology index 18), versus, with w; = 1. We can see that for
w, = 0.13 the power consumption by cooperative relgyis 4.83 compared to
6.62 by conventional relaying. We can see also ftoeengraphic that by reducing
the power for a factor less than 2; will be reduced by factor one (throughput
approximately by factor 10 due to the logarithméale). By increasingv, for a
fixed value ofw, the power is reduced because we are increasingaight of its
minimization, until the power gets the minimum waluAt the same time, by
highly decreasing the power we also decrdaseDue to the level of interference
in the network, by slightly decreasing the poweotifi 7 to 5) we are still keeping
good value ofU; because this power reduction is reducing the tffeé the
intercell interference. If the power is lower thegrtain threshold (P = 5) theuy
gets to its minimum values too.

Topology Index=18, a=[001001]

— Power consumption

~ . \\
6 \\\ \\\\ 7
4t T
:2“ ——— conventional relaying-rates (U1)
=3 — - - cooperative relaying-rates (Ul)

coventional relaying-power consumption
***** cooperative relaying-power consumption

Fig. 15. U; and power consumption U, versus w; for topology index t = 18, ([118]
[©IEEE 2011)).

In Fig. 16 and 17 we present the utility and thiougt respectively versus the
topology index when the traffic distribution in theetwork is changed and is
given by access vectar=[001110], forw; = 1 andw, = 0.2. We can see again
significant improvement by usingM-COOR with respect t&"M-CONR.

In this case, there are more options for the Basiopologies and the

optimum topology is given by= 120 (C ={{I,} {I,} {1} { 4 { 4 § I})-
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In Fig.18 we show the improvement in the power comgtion obtained for
this optimum topology by usingM-COOR, we can see from the graphic that the
reduction in power consumption fer, from w, = 0.01 to 0.28 is about 3 times
with respect to4M-CONR.

a=[001110]

conventional relaying |
fffff cooperative relaying

0 20 40 60 80 100 120 140 160
Topology Index

Fig. 16. Utility versus topology index for access v ector a =[001110], ([118] [CIEEE
2011)).
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Fig. 17. Throughput versus topology index for a = [ 001110], ([118] [©IEEE 2011]).
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Fig. 18. Power consumption versus w , for topology index t =120, ([118] [©IEEE 2011]).

2.9 Chapter summary

In this chapter, we have presented an optimizafi@mework for relaying
topology control which is aware of the ICI requgicoordinated action between
the cells and resulting in multicell jointly optimnaelaying topology. The
algorithm jointly chooses the relaying topology ascheduling in the adjacent
cells to minimize the system performance degradatae to ICl. The utility
function under consideration includes data rateygyoconsumption and delay.
The cooperation between the cells does not reqadditional exchange of
messages except to synchronize the slots and fabewscheduling as specified
by the protocol.

Numerical results demonstrate that a reconfiguratdkaying topology
provides the network utility improvements and preésethe framework for
quantifying these improvements for spatially anchperally varying traffic. As
the traffic increases in the network, higher ufilis obtained for topologies that
favour isolated and short range transmissions. dpgmum topology gives a
utility 10 times higher than conventional TDMA a6f times higher than CDMA
systems for certain traffic distributions. The irapement obtained in the overall
capacity can reach up to 6 times with respect tnoptimum solutions. The
overall optimization problem is defined and sohmdusing the combination of a
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new topology search TSL (Oulu) program and convetingization CVX program
[126].

In practice the overall optimization program mayifpglemented in different
ways depending on the specification of the avaflablformation about the
network and acceptable amount of overhead traffiowad for necessary
messaging for optimization purposes. An interestipgion is also to run TSL
program in centralized way because it requires eékehange of information
between the access points and CVX in distributegt using the Lagrange dual
problem. The extension of this approach would beptecompute optimum
topologies for all possible access vectaend for a givera use a look up table to
find the optimum topology. For a given topologyterallocation optimization
may be run by using distributed approach.

As an extension of the previous framework, we haauded the power
allocation into the optimization problem. By addiwgights in the utility function
we analyze the trade-off between throughput and gpowonsumption. We
consider conventional relaying (CONR) and coopeeatrelaying (COOR)
schemes and presented two intercell interferenagagement protocols based on
those schemes referred to a8HCONR, and fM-COOR, respectively.
Numerical results show an improvement of at leatsinés in terms of throughput
and a reduction on power consumption up to 3 tirhgsusing fM-COOR
compared to®M-CONR for different traffic distributions.
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3 Sequential genetic algorithm for dynamic
topology reconfiguration in MCNs

In a real network, where the traffic distributiomamges (in time and space) due to
the changes in available link capacities and loachahds, the network topology
should be reconfigured dynamically to track theiatéons in the network and
guarantee good network performance. When consigierimulticell scenario with
nonuniform traffic distribution in MCNs, the searébr the optimum topology
becomes an NP-hard problem. For such problems,t edgorithms based on
exhaustive search are only useful for small mod&dsheuristic algorithms such
as genetic algorithms (GAs) must be used in practic

Topology control in this scenario involves the cartgtion of new topologies,
rerouting and rescheduling to dynamically optimibe network performance.
GAs have shown to be efficient in solving problembere the space of all
potential solutions is too large to be searchedaastively in any reasonable
amount of time. GAs provide optimal or good submwyati results in a short period
of time [146].

For this purpose, we present a novel SequentiabtieAlgorithm (SGA) for
joint relaying topology, routing and scheduling iagzation in multihop cellular
network aware of the intercell interference and #patial traffic distribution
dynamics. SGA dynamically adjusts the relaying togg to the traffic variations
in the network, reducing considerably the numberopgrations required by
exhaustive search, and improving the network sdéhab

The topologies are encoded as a set of chromosamsspecial crossover
and mutation operations are developed to searclth®ioptimum topology. The
performance is measured by a fithess function thatudes throughput, power
consumption and delay. Improvement in the fitnesacfion is sequentially
controlled as newer generations evolve and whengker improvement is
sufficiently increased the current topology is ugediaby the new one having
higher fitness. As a result, a specific encoding fithess control in a SGA is
developped for relaying topology update.

A comprehensive scenario is considered includinglinkflownlink
transmission and network coding [147] to reducentmber of slots needed for
the users to complete their transmission. The phece that reconfigures the
relaying topology based on observation of the temalpaffic in the network, will
be referred to as Traffic Cognitive Topology Coh(f6C)? and network based on
this approach as Traffic Cognitive Network (TCN).
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Numerical results show that SGA provides both higerformance
improvements in the system and fast convergendedat one order of magnitude
faster than exhaustive search) in a dynamic netwawkironment. Different
options are discussed for the initialization of #igorithm to show the robustness
of SGA with respect to the initial state of thewetk i.e., the algorithm can be
initiated with any feasible topology. Different amts for implementation,
discussion on system dynamics and comparison wilteroheuritics are also
provided.

The rest of the chapter is organized as follows.o&arview and background
on genetic algorithms is given in Section 3.1. krt®n 3.2, the system model
and assumptions are presented. This includes theorie model, the physical
layer model and traffic dynamics. Section 3.2 pnésehe bidirectional relaying
topology with network coding. Section 3.4 definhe system optimization while
Section 3.5 presents the new topology search pnodpased on genetic algorithm
SGA-TSL. Traffic Cognitive Topology Control algdmin (TC) ? is developed in
Section 3.6. Details on algorithm implementatioa also provided in this section.
Section 3.7 presents numerical examples to denatesthe efficiency of the
algorithms, discussion on system dynamics and diberistics. Finally, Section
3.8 concludes the chapter.

3.1 Overview and background

A comprehensive survey of the previous work onrfietence avoidance topology
control is presented in [Section 1.2.3, Chapter Te potential for network
performance improvement by topology reconfiguratidn time-varying
environments is emphasized and the limited reseavohk done so far in
topology control for MCNs is outlined.

Recently, there have been increasing interests pplyang biologically
inspired approaches to topology control in MSNs aWldNETs [60]-[62].
However, the problems associated with these typegtworks are different from
those of cellular networks as already mentionefbection 1.2.3, Chapter 1]. For
this reason, in this chapter we present a sequeaydieetic algorithm for dynamic
topology control in MCNs. The efficiency of our akithm is achieved by
considering dynamic joint optimization of relayitmpology, routing (power) and
inter relay scheduling in multicell MCNSs.
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In the remaining of this subsection, we provideoaarview on GAs and their
efficiency in solving dynamic problems which jusg its selection to solve our
problem.

Basic concepts of Genetic Algorithms

Genetic Algorithms (GAs) are adaptive methods basadthe mechanics of
natural selection [148]. The basic principles of $G&re described in many texts
[148]-[150].

The first step in GA is to encode the problem asheomosome or a set of
chromosomes that consist of several genes. Thdi@olin its original form is
referred to aphenotypewhereas its binary encoded version is cafjedotypeor
simply chromosome

Next, a pool of feasible solutions to the probleralled initial population, is
created. Each chromosome in the population is @ésacwith a fitness value that
is calculated using a fitness function that indésahow good the chromosome is.

Genetic operators’selection crossover and mutation operate on the
population to generate a new generation of pomnatie., a new set of feasible
solutions, from the old ones. Good feasible sohgi@re selected with higher
probability to the next generation, in line withetidea ofsurvival of the fittest
The standardctrossoveroperation recombines arbitrarily selected chromasom
pairwise, by interchanging portions of them, pradgcnew chromosomes to
explore the search space. An occasianakation operation is performed on a
chromosome to facilitate jumping of solutions toanenexplored regions of the
search space. As the algorithm continues and neygeerations evolve, the
quality of solutions improves. The success of GAeiplained by the schema
theorem and building-block hypothesis in [148].

Genetic algorithms for dynamic environments

Genetic Algorithms have been shown to be a usdterrmtive to traditional
search and optimization methods, especially foblgmms where the space of all
potential solutions is too high to be searched astigely in any reasonable
amount of time. They are very efficient in direcfithe search towards relatively
prospective regions of the search space. Empisitalies have shown that GAs
do converge on global optima for a large class Bftvird problems [146].
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A key element in a genetic algorithm is that it mains a population of
candidate solutions that evolves over time. Theupaipn allows the genetic
algorithm to continue to explore a number of regiaf the search space that
appear to be associated with high performanceisokit The distributed nature of
the genetic search provides a natural source ofepdar searching in changing
environments. As long as the population remaingitdisged over the search space,
there is good reason to expect the genetic alguoriith adapt to changes in the
utility function by reallocating future search eaffaowards the region of the
search space that is currently favored by thetyfilinction.

A number of previous studies have addressed thefugenetic algorithms in
changing environments such as dynamic shortest noating in MANETS [62],
dynamic coverage and connectivity problem in WSIS1]]l dynamic resource
allocation problem in cellular networks [152] angndmic network coding
problems [153].

In the sequel, a novel sequential genetic algorithmresented for dynamic
topology reconfiguration in MCNs. A special encaglischeme, crossover and
mutation operations are proposed to search forogtenum topology when the
traffic in the network changes. Improvement in fieess function is sequentially
controlled as newer generations evolve and whenégher improvement is
sufficiently increased the current topology is ugdhby the new one having
higher fithess. Numerical results show that SGAvmtes high performance
improvements in a dynamic network environment.

3.2 System model and assumptions

In this section, we extend the model considere@Siection 2.2, Chapter 2] to
include duplex transmission (uplink/downlink) in M. We consider a cellular
network with a setZ ={i} of base stations. It is assumed that the arehetell

is divided into concentric rings as before withemnan, for the reference ceil=r
and m for the interfering cell, iOZ_, ={i #r} . We assume that one cochannel
user from each ring has bidirectional connectiothwthe corresponding access
point. Conventional relaying scheme (CONR) is usket us consider that a
referencanobileuserm,, (located in ringm,,) is transmitting (relaying) to another
mobileuserm,, (located in ringm,,) in the reference cetland, at the same time, a
cochannelnterfering mobile usermy; is transmitting to anothenobileuserm;, in
celli.To keep the notation general, in the uplink lagp-ktransmissiom,, denotes
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the reference base statiéd?,, and on the downlinlAP, refersto m;. The same
applies for the interfering base statiaR,.

By this generalization, the physical layer modedéscribed again by (8)-(17).
As an illustration, for the two cells scenario, #dension to downlink topology
is shown in Fig. 19b.

AF, AF;
e B
m=0 1 2 2 1 0=m
b- —® . NON
downlink @ ()
HOR — &

Fig. 19. a) Modeling interfering users positions fo r 2-cells; b) Possible transmission
schedule for downlink.

In the example shown in Fig. 5b for uplink, 4 slatsre needed to complete the
transmission. In this case, for the scenario prteseim Fig. 19b for downlink, as
the hopping distance is larger, the transmissiaoimpleted in 3 slots. So, only 7
time slots are required for all 6 users to transonit the up and down link.
Classical TDMA scheme would require 6 + 6 = 12 slofhe optimum set of
relaying routes is defined as in (18).

To model the network traffic dynamics, we extend tiotation presented in
[Section 2.5, Chapter 2] for uplink and we denogedp=(J,,....9,, ).9, OR" the
traffic that the access poiAP; is transmitting to the users on the downlink where
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n; is the number of rings in cell The overall network traffic on the uplink and
downlink is defined asi=(r;,h;,...h )= ,..Ay ) and 8=(8,,8,,...8, )
=(9,,....0 ), respectively where\, is the total number of cellsN; :|I|) andN

is the total number of rings in the network obtalirses N :Zihfln . For the same
traffic vectorsk;, 8;, the base station schedule the transmission thralifferent
channels (time slots) which results in temporal spatial MAC protocol.

The base stations jointly assign an access vextdia,, a,,...,8, )= @,.--Ay ,
to the different rings to give them permissionransmit, where each component
a,=(a,,3;) with a, ,a, [J(0,1). With a, = 1the users from ring are allowed
to transmit uplink otherwise not, and witly =1 the users from ring are
allowed to transmit downlink otherwise not. In ttveo cell casea=(a,,a,), the
first half of the coefficients represent the pemsioss to transmit for the rings in
referent celr and the second half for rings in interfering ¢eildZ_, .

Symmetric bidirectional transmission is consideliadthe sense that the
access point will only transmit to the users siédain the rings activated by
where both components af = (3, , ;) are active, or not active, simultaneously.
Recall that the index pattern faris presented in Fig. 7. The link notation for the
bidirectional case will be address in the follows®gtions.

3.3 Bidirectional relaying topology with physical | ayer network
coding

In this section, network coding [147] is additidgaintroduced and combined
with the previous results on optimum relaying taluee the number of slots
needed for the users to complete their transmissiand achieve further
improvements of the system performance.

Let us assume that the hops are indexed in incrgasider for uplink ash®”
and for downlink ash®" . By combining the uplink and downlink traffic from
the previous hop at holp as y\®"* = y [ y{ *» the number of overall time
slots needed for transmissionBrcycles can be reduced.

To elaborate this concept in more detail, an examoplpossible topology that
includes network coding is shown in Fig. 20 for teells. The traffic between
users and access point is bidirectional. So givestledule that alternates the
transmissions between the different rings, aftetaé® number of time slots all
intermediate userém, i0Z) have information frames buffered for transmission
in both directions. Whenever an opportunity arisd® intermediate users
combine two information frames, one for each dimtct with a simpleXOR
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operation and send it to its neighbors in a sirgienidirectional transmission.
Both receiving nodes already know one of the fram@mbined (have it stored
from the previous transmission), while the otheanfe is new. Thus, one
transmission allows two users to decode a new paeiiectively doubling the

capacity of the path, reducing the power consumpoibthe transmitter node and
reducing the number of time slots required to catgpthe transmission.

The transmission schedule presented in Fig. 2ndefa possible topology
for two cell scenario and access vecaor 1. In this case all rings have duplex
connection and the topology consists of eight phrtopologies representing
transmissions in eight consecutive time slotshinfirst time slot (the first partial
topology) there are two simultaneous transmissipagket originating from the
access poinAP, (addressed to user in ring 3) is transmitted g &in cell r and
at the same time packet originating from ring 2dfadsed to access poiaP)) of
cell i is transmitted from ring 2 to ring 1. In the sedaime slot (the second
partial topology), packet originating from accessnp AP, (addressed to user in
ring 1) is transmitted to ring 1, at the same tipaeket originating from ring 3
(addressed to access poki®,) is transmitted from ring 3 to ring 2 and, packet
originating atAP, (addressed to user in ring 2) is transmitted tg rl in the
adjacent cell. Similarly the same notation is thesed for transmissions in time
slots from 3 to 8. As already discussed earliers¢height partial topologies
together are referred to agassibletwo dimensionaltime and spadetopology
and will be represented in the sequel by a giveoltmy index ).

AP, AF;
T
m=0 1 2 2 1 O=m
. p)
slot: 1 5 Ss ., 2i s
r1y ¢ 3r 1.2
A 09, A 0 3 2
3 €30y 2L S
4 /‘zr Aiﬂ 1
X /‘ I
5 21 1.3
6 92, S,
7 A, 00, A
«¥--TZy —_
A, A
8 ‘ ;

Fig. 20. Possible schedule by using network coding.
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So there will be limited interference transmission3 users per cell in 8 channels
(8 slots in Fig. 20) giving the intercell throughpd/8 = 3/4, as opposed to the
6/12 =1/2 in a conventional TDMA system where easl uses a half of
available channels (slots). Although schedulingrig. 5b and Fig. 19b requires 7
time slots in total (for uplink and downlink) itsad assumes transmissions over
three rings which requires higher power.

The optimization process defined by (18) now become

{DEZ)} =MmaxX, @ Cu<2> ; whereCDm = Zr G (33)
D - D(up) D D(dowr)’

where 0 is a two dimensional relaying topology to be ekated in more detail
in the next sectiorB is the number of slots needed for the users topbetm their
transmission uplink/downlink (scheduling length),is the number of hops and
0 stands for the network coding operation. For egloh b=1,...,.B, parameter
Co is given by corresponding (15)-(16) af,, is the network capacity.

3.4 System optimization

The extension of the optimization problem presentefSection 2.6, Chapter 2]
by (24) to bidirectional traffic is straighforwardn independent set of equations
(23) should be written for both directions and (84puld be modified to include
the overall utility function

U =yt 4yt (34)

with separate set of constrains for both directidtta each direction of the traffic,
U is given by (22) and includes data rate, power gonsion and delay.

TSL algorithm has been modified to search for thgénoum topology for the
scenario presented in Fig. 20. In a real netwoitkene the traffic is dynamic, the
network topology should be reconfigured to track trariations in the network
and guarantee good network performance. In multigdlNs with nonuniform
traffic distribution, the search for the optimumptdogy becomes an NP-hard
problem. TSL algorithm results in high complexitydafor this reason in the next
section we define an evolutionary sequential genaligorithm that can be used
for readjustment of the topology due to trafficiasion.
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3.5 SGA-TSL algorithm

In this section, a Sequential Genetic Algorithm & presented to dynamically
adjust the optimum topology to the traffic variaisoin the network. As result,
routing and scheduling will be implicitly adjustedth the relaying topology.
SGA represents a suboptimum solution which provigdegormance close the
optimum with less complexity or with shorter comguidnal time.

3.5.1 Encoding scheme

For simplicity of presentation we start this sewtioy considering only uplink
transmission which will be further extended to tbalirectional case. The
topologies are encoded as a set of chromosomesegwlaeh chromosome defines
a partial topology.

A chromosome consists of a number of gene-instamceéyl,...,yNC)
=(),,...Vy) wWhere N, is the total number of cells and is the total number of
rings in the network. Each vectqyconsists ofn. components, where, is the
number of rings in cell. These gene-instances in our design correspomnbtile
users that are transmitting from specific rings. ¥ge binary coding scheme and
the value of the gene will be 1 if the correspogdiuser is transmitting in that
time slot or O otherwise.

On the other hand, the phenotype information fogemotype instance is
represented by the set of active links that theesponding users are activating in
each time slot. For the two cell example, usingnibtation of the links shown in
Fig. 7 for uplink transmission, the phenotype ohge, is 1 (linkl; is used), for
geney, can be 2 or 4 (link; orl, can be used), and so on.

With this scheme the topology is given by a setlmfomosomes that define
the partial topologies generatedBrtime slots and are denoted Wy‘“(t), where
t is the index of the topolog¥ is the index of the time sldt = 1,...,Bandy the
index of the gene.

To illustrate the encoding scheme a simple examopla possible topology
(t=1) is considered, for two cell case amd 1, that consists of the set of links

T ={PT@} ={{ 1} {L}{13.{1}.{13.{1 4} asshown in Fig. 21.
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Fig. 21. The transmission pattern for topology inde xt=1.

In this case every user transmits in a separate siiot directly to its access point.
The partial topologies are:

PT(1)={L} ~ genotype (100000)~ phenotype1-0-0-0-0-(
PTyb:2 @ ={1,} - genotype= (010000)- phenotype0-2-0-0-0-
PT*1)={L} - genotype= (001000)- phenotype0-0-3-0-0-
PT*(1)={1,} - genotype= (000100)~ phenotyped-0-0-7-0-C
PT;’:5(1) ={l} - genotype= (000010)- phenotype0-0-0-0-8-
PT°(1)={l} - genotype (000001) phenotype0-0-0-0-0-

As we can see, the previous topology consistssaftaf six chromosomes (partial

topologies) that give the information of which usertransmitting in each time
slot and which link is being used.
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To extend the previous notation to bidirectionahk$i, the genes are
duplicated. So, every partial topology is definedy hwo genotypes
(uplink/downlink) and two phenotypes. The vectorgefhe-instances now should
include also the access pomt(y,,.... ¥y, )= (%o Vi v Vuen-1)-

Each vectory, consists now ofn, + 1 components, wheng is the number of
rings in celli and the first entry of, represents transmissions from/to ilie
access point. To illustrate the encoding schemeén widirectional links, we
present an example where the transmission pattezsepted in Fig. 25a is
defined by the following partial topologies:

PT() ={ o) {genotypé“:v: 0 phenoty@ =0 n

genotyp€&°"" = (10000000); phenotyff&" = 1-0-0-0-0-0-0-0
genotypé&” =(00000010); phenotyff& = 0-0-0-0-0-0-10-0
genotyp&°™ =0; phenotyp&°™ =0
genotypé&” =(00100000); phenotyf§l® = 0-0-4-0-0-0-0-0
genotyp&° =0; phenotyp8” =0

PTE(0={1"} - {

PT () ={I"} - {

PTo=4(1) :{ |(d0wn)} genotyp&™ =0; phenotyf8 =0
g ! genotyp&°™ = (00001000)phenotypé® = 0-0-0-0-7-0-0-
PTybzs(t) :{ Il(up) 0 |£down’|§up 0l iodow)w}

genotyp&® =(01000100); phenotyfy® = 0-1-0-0-0-7-0-0
genotyp&°” =(0100010); phenotyp&°*® = 0-4-0-0-0-10-0-(

where upper indexuf) corresponds to uplink transmission andbown to
downlink.

3.5.2 Population: structure and initialization

The initial population consists of topologies (setdf chromosomes).
Combinations of the chromosomes from the initigbylation enable definition of
all possible routes to/from the access point. Ia ttay the reproduction operators
will produce as result new chromosomes that defalle possible feasible
topologies through the pass of the generationsekample, for the two cell case
in Fig. 7 anda = 1, the initial population is formed by:
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- T@={PT M)} :{{Il} {3343 9}} as defined in the previous
section, with the genotypes and phenotypes fomlfiliownlink transmission
and I, ={{1*"h{ 10 } .

- T@Q={{l} {1} {13134 .4 § ]} where the genotypes and phenotypes
are defined in the same way as before.

- TE={{ {00 A )

In the general case fdX. cells, andn; rings per cell, the initial population is

formed by(J' {T( ={1.}} with link index ¢ given by

m,, (N, -1+ m, if H=1
c=im,+hm,+ h-L.m,(N- 10+ @+ h
(N~ +m,+ h-L. (N-D0L+m  if H> :

wherem, =1,2,..n, m,=1,2,...n, and L :Z:Flm is the number of links per
cell.

A new generation of population is formed by apptymreproduction operators’
crossover and mutation that combine the partiabltmgies PTf (chromosomes) or
modify them respectively, to form new feasible thgges.

3.5.3 Fitness function and SGA

The quality of the solution is judged by the fitadanction {) defined as in (34)
and is included in the global optimization defirt®d(24) withf = U for a “given
T". The topologies that correspond to the best vadfi¢ke fithess are kept in the
pool for possible future reconfiguration of thewetk, and the optimum topology
which corresponds to the highest fitness will beigised to the network.

In order to compare convergence of GA and exhaeigearch method, we
use as givenT” an optimum topology found by exhaustive searchSkction 3.7
we discuss other options to calculdteln a practical implementation of GA this
variable is not known so we run GA as long as wel f topology that provides
Af >threshold where Af is the difference in utility function between the
previously accepted solution and the new one. algsrithm will be referred to
as SGA since the usable topolo@y., is produced as a sequence of solutions
satisfying Af =threshold.
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3.5.4 Crossover operator

In our algorithm, we adopftarithmetic crossover[149] that defines new
chromosomes as a result of the following arithmeperation:

(Tt ={PTo} ={ P8} oR{ m) (). (35)

whereb=1,..B-1h h=1..Bwith h #b andk=0,...N+ N, - 1.

From ei%gj initial topology, we generate a new $dbpologies {l,e. that
consists of topologies as a result dDR operation between all pairs of
chromosom TyID that define certain topology(t). If the new topology is not
feasible it will be excluded from the population.

To guarantee that all feasible routes are genertiiexigh the pass of the
generations, we allow certain level of elitism ame let the chromosomes of the
initial population survive to the next generation.

As an illustration, we consider the transmissionttgga for topology
TO=(Po} ={1} {1} {13 {1 } { 4 { 4} as shown in Fig. 21. The crossover
operation defined aBT?™(1) OR P (1)={l,|,} results in a partial topology
that is not feasible, because thE cannot receive two signals at the same time.
The same situation occurs for the crossover definad PTyt‘zl(l)
OR PT'?(@W={l,|}. So, in this case the first feasible topology Hésg from
the crossover operation BT (1)=PT™(1) OR PT*@)={l,l,}, and the
overall topology is shown in Fig. 22.

By analogy other topologies can be obtained asltrefuthe crossover
defined as PT)™(1) OR PJ'° (1), PT'*(@1) OR P} (1), PT'*(@) OR
PT"™(1) and so on.

3.5.5 Mutation operation

Mutation probability is normally set to be smallhi¥ is because even though
mutation can enable the algorithm to search a nearck space, it actually
destroys the current pattern. If the optimum topglds not obtained after

successive crossover operations, we mutate themdsome by choosing for a
given geney a different phenotype. This means that for a aemiger (gene) we

select another link from the set of possible linkpresented in Fig. 7 for the two
cell scenario. The maximum number of mutations thatcan perform in this

scenario is 3 mutations per cale. froml; — I5, fromls — lg and froml, — I,as
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shown in Fig. 23. The same applies for the adjacelhtIn general, the maximum
number of mutations i{izgﬁ(m -1), i0Z. After mutating one chromosome,
if the resulting topology is not fit enough\{ = threshold), then we perform the
crossover operation with this new mutated chromasom

Iy
= N 2 X N N :’/’\ Time slotb=1

1 2 3 5 P i b=1 _
AP m,,m, m,,m, APy Tnewv {Il I }
I2
, \ . . \ , Time slotb=2
1 2 3 3 7 1 b=2 _
AP, AP PT, = {IZ}
I
/—‘\ Time slotb=3
' ! } + 4 | b=3 _
AP, 1 2 s 8 2 ! ap, Pl = {I }

. /_I\ Time slotb=4

| + t 1 3 > b=3 _
AP, 1 2 AR PTL S {I }
lg
/_\ Time slotb=5
b=6
- : ' | | PT _{ | }
I AP, ; 2 3 3 2 1 AP, newy 9

Fig. 22. Topology obtained after the crossover oper  ation.

b Mutations
= 3

I I /‘\/:‘\I
F T T 3

1 2 3 1 2
Yo
|2 I1 2 3
= L
. ' M .
1 2 3 2 3
My,My m,_,m

r227 01

Fig. 23. Possible mutations.
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3.6 Traffic cognitive topology control

After modeling our dynamic topology search problbyngenetic algorithm GA-
TSL, in this section the functioning of the netwdrksed on this approach is
described. The network will be referred to as Tca@ognitive Network (TCN).
More specifically we discuss the operation of thafflc Cognitive Topology
Control (TC)? algorithm to adjust the topology to the trafficriegions in the
network by sequential genetic algorithm. The terogritive refers to the
awareness of the traffic variation.

To model the traffic in a TCN, we use the traffiectorsk andé described in
Section 3.2. For a given spatial traffic distriloutithe access vector should be
varied in time to provide

E(a, () =A(t) and E(a,(1) = 3(t). (36)

The variation of the traffic in the network is defd by the vector
A=(A,.. Ay )= @, ,...Ay ) Where N, is the total number of cells ard is the
total number of rings in the network the traffic in the network changes due to
users that became inactive then the correspondangponent ofA, where the
change occurs is negative. On the other hand iEw source appears in the
network this componerns positive.

The differential access vector corresponding totth#ic variation is given
by a'=a 0 g, wherea, is the access vector corresponding to the initeific
andag is the access vector after the traffic has charfiedl). We assume that the
traffic distribution is observed (cognition) in tarintervals short enough to detect
each change in the traffic so that traffic changly an one ring is assumed in a
given observation instant.

(TC)? algorithm described below uses an exhaustive ke@iSL) algorithm
to find initial optimal topology and SGA-TSL for écking traffic variations.
Different options to initialize SGA-TSL are disceskin the following section.

The (TC)? algorithm works as follows:

1) Calculate the access vectarfor a given traffic distributionl and é, by using
(36).
2) Use TSL to generate the set of feasible cangligiologies® for a,.

3) For each topology in the s&®:
4) Calculate the aggregate powers neededders to deliver the information.

5) Calculate the utility using (23).

91



6)
7)

Use CVX [126] to optimize the source sate (34).

Go to 3) until the optimum topolody is obtained or if the traffic
distribution in the network has chanded# 0), use SGA-TSL to find the
new optimum topologly and go to 3).

The operation 06§GA-TSLprogram can be summarized as:

10.
11.
12.

13.
14.
15.
16.
17.
18.

19

20.
21.
22.

23.
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B;: number of time slots of the initial optimum toapgy T® for a (initial
traffic)

f,: value of the fitness function (utility) associhigith the initial topologyT *

B’: number of time slots of the optimum topoldgy for a' (differential access
vector)

fo. value of the fitness function (utility) associteith the initialization of the

new topologyT® (after traffic variation)
Na: number of active rings in the network after theffic variation

NA = ZnaFn
procedure Check_traffic_variation
E(ag, (1)) =A(1); E(a-;(t)) =6(t) {Assign access vectag based on the
existing traffic}
a'=a lUa
If a'#0
Apply TSI() to obtain the optimum topology fat.
Check the value afto initialize the new topology:
- IfA>0, initialize the new topology as the set of chromas®m
T% ={PT? PT®}.
- IfA, < 0, the new topology is initialized as the set of thifeent
chromosomes in both sets={PT &- PT %}
Calculate the fitness functiaf) iy using (23) and (34) with,-HU
Initialize f=gf n_m=0;a = ar
end
end
procedure Calculate_fitness
Calculate f by using (24) and (34) withU
If (f-f)>threshold
Reconfigure the system Withe Thew that corresponds to the fithess
fopt = T

d=1



—————————————— SGA-TSL algorithm ----------
26. While (1)

27. Check_traffic_variation

28. forb=1t0B

29. Thew= CrossoverPT®, PT DM y.

30. Calculate_fitness

31. end

32. If (n_m <N {number of mutations < number of rings actived}
33. Thew= mutation(T® ,y, 1);

34. n_m++;

35. Calculate_fitness

36. end

37. end

Lines 1 to 5 define the variables used in the mogrFrom line 6 to 18, the
procedureCheck_traffic_variationis defined. In line 7, the access vectgris
assigned depending on the traffic variation. Lineca@culates the differential
access vectoa'. Line 9 examines if the traffic has changed. Imelil0, TSL
program is used to obtain the optimum topology eisded with the traffic
variation in the networkT® . This topology is needed to initialize the algonit
This topology has only one active source and TSigmm should complete the
search in few iterations. From line 11 to 14 theology depending on the traffic
variation is initialized to start the program. Ihaw source has appeared, the new
topology T® is initialized as the set (union) of partial topgies (chromosomes)
of the initial topologyT™ and the set of partial topologies corresponding ta
On the other hand, if a source has become inathiee the new topolog¥ ® is
initialized as the difference between the two sdtpartial topologies. In line 15,
the fitness functiorf, for the new topology is calculated. In line 16 timstant
fitness valud, the number of mutations_ mand access vectar are initialized.

From lines 19 to 25 the procedualculate fitnesss defined. In line 20, the
fitness valuef is calculated as result of the optimization desdlilby (23). Line
21 checks if the new fitness valfies higher than the previous ofigplus certain
threshold. The threshold can be zero or a positalae depending on how often
the traffic changes in the network. If the previoosndition holds, line 22
reconfigures the system with the new topoldgy
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From lines 26 to 37, SGA-TSL algorithm is describkthe 27 checks if the
traffic in the network has changed. In line 28, time slots of the new topology
T® are assigned to inddx The crossover of the partial topologies corresium
to T® is performed in line 29 to obtain the new topolo@y., In line 30,
procedure Calculate_fitness is called.

Lines 32 to 36 perform the mutation operatiohdid not follow the previous
requirements for the topology to be updated. Asmthaation is performed gene
by gene, line 32 checks if the number of mutatien¢ess than the number of
active rings in the network. Line 33 realizes thetation operation over geng n
Line 34 updates the number of mutations. In linepB&cedureCalculate_fitness
is called again to check if the new fithess values improved compared to the
previous onefy to reconfigure the network with the topology asated tof.
Finally, the algorithm goes back to 26 to checkiaghe traffic or to continue
with the crossover and mutation operations to firtlzktter fitness.

An extensive set of examples is given in Sectiod & illustrate the
performance of SGA-TSL algorithm for different fiiafvariations.

Implementation

The algorithm may be implemented in one of the Isiagons, where cooperating
base stations must exchange information aboutrdféct distribution §;, 8;) in
their respective cells The base station or an equivalent coordinating should
pass the information about the resulting accestoveg back to the cooperating
base stations.

The system can be implemented in different waysnope still the
possibilities for different proprietary rights. Fitre functioning of the protocol the
access point needs to know the position of activdes which is information
already available in these systems. This infornmatghould be exchanged
between the adjacent access points. The transmsssshould also be slot
synchronous. The optimum schedule is communicatethé¢ terminals so that
they know the slot index that they can use. Thepkist way to implement
messaging is to use separate control channel thatre the whole cell (already
exist in cellular networks) and use relaying onty flata channel. This can be
afforded since the data rate in the control chaimegignificantly lower than in the
data channel so that the power consumption neealefllf cell coverage is not
excessive. The topology where the control plane #6) data plane (D) are
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implemented on different concepts will be refertecs Inter System Networking
or InSyNet(C,D)

This combination of cellular network concept (irpane) and elements of ad
hoc network (D plane) is the main advantage over @her solution that would
be based exclusively on one of these conceptsul@ethetworks need relaying in
order to reduce the terminal power especially fghhdata rates. Ad hoc networks
provide relaying type transmissions but there is aveareness of the overall
network state and mutual impact between differearigmissions in different parts
of the network. The awareness of dynamic changékeanraffic distribution and
possible network topology due to the node appeavdisappearance [138,
Chapter 13] propagates slowly throughout the nektwbBor all these reasons ad
hoc networks routing algorithms [155]-[157] are mdficient. The same applies
for bio inspired routing protocols [158] like swaiimtelligence based routing in
ant colony system models.

3.7 Performance evaluation

3.7.1 Numerical examples

In this section, we provide some examples to evalihe performace of the
proposed SGA-TSL algorithm. The link capacities(m,, m,,m,m,) are
calculated as specified in Section 3.2. The chargmhsG s and G
depend on the distance between the transmitterraoeiver, and fadmg For
simplicity, we adopt the same model as in Sectidh &here only propagation
losses are consirered. The channel gains are de&ee o, ~1/d" Where
dmm is the distance between the interfering transmlttermg m, and reference
receiver in ringm,, and a is the propagation constantr € 4). The calculation
of d o, is straightforward from the geometry presentedim E9.
In Fig. 24, the utility function versus the topojotndext for access vector

=[010010] is shown. With this access vector useaing 2, in both, celt andi
have permission to transmit. As the number of pgadesiopologies obtained for
this access vector is very high, we plot the segnoértopologies close to the
optimum topology. With no coding the maximum utilis u = 0.5826 while with
network coding maximum utility is increased upue 0.6991. We can see that
different topology indexes can provide the samealf utility. This is due to the
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fact that those topologies consist of different bomation of the same active links

in different slots.
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Fig. 24a. Representation of the transmission patter n defined by the topology index

t=7.
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In Fig. 24a the transmission pattern is shown fae of the optimum
topologies (topology index= 7) in the case with no coding, for the previous

access

T, ={U RGP IR TRE 150 190 13,7

vector,

defined

by the

set

of

links

We can see that

isolated short range transmissions are favored whan simultaneously reduce
the intercell interference and power consumption.
In Figs. 25a and 25b the transmission patterngsviortopology indices that
correspond to the maximum utility with coding=5571 andt = 5621) for the
previous access vector are presented. The optinopwidgies for the two cases
are given by T, ={{1%}{ 149.0 190 15990 14%00 &N v Y and
Taooy S{{E OISR TR0 102D 4P 1o om)

Fig. 25a. Representation of the transmission patter

t=5571.

Fig. 25b. Representation of the transmission patter

t=15621.
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We can see an improvement in the number of slo¢sled when network coding
is used (5 slots) compared to 7 slots in the caffe mo coding. So, for the same
type of isolated and short range transmissionsutiilgy function is improved
with network coding by reducing the number of slots

In Fig. 26 the overall capacity for the previousess vectoa is presented.
We can see that the overall capacity of the sysbtéained for the optimum
topologies is improved by a factor 1.5 when netwodkling is used compared
with the case with no codingThe overall capacity obtained for optimum
topologies is 4 times higher than for non optimwitutons.
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Fig. 26. Overall capacity for a = [010010].

In Fig. 27, the utility function is shown fa = [010100]. With this access vector
user from ring 2 in cell and user from ring 1 in cedllhave permission to transmit.
The maximum utility is obtained for topology indéx 478 (475 = 0.8739) by
using network coding. We can see a significant ompment compared with the
maximum utility with no coding, obtained for topglp index t=215
(u>15= 0.6640). Both utilities are higher than in thee\pous case due to lower
interference level.
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The optimum  topologies for both cases are given by
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Fig. 27. Utility function for access vector a=[01  0100].

In Table 2 the reconfiguration results obtainedhw&GA-TSL algorithm are
presented for uplink transmission and localizedatmms in the trafficA,. The
initial state in the network is defined by the optim topologyT™ associated
with the access vectay. As mentioned in Section 3.6, we consider thatithffic
distribution is observed in time intervals shorbegh to detect each change in the
traffic so that traffic change only in one ringassumed in a given observation
instant. The traffic change is given by accessoeat.

The new optimum topology¥,.,. as a result of the reconfiguration of the
initial optimum topology, is associated with thecass vectoa.

As the first step, we show the number of gener&tedlogies needed to find
the optimum one by exhaustive seaify and by GANg, and the fitness value
fopt @associated to the new optimum topology.
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Table 2. Different topologies after the traffic var  iation A.
An = t a as
[010000]
1 |1} [110001]
-0 : Ul {03 00 000 3)
Nes= 209,Nys = 8,fop = 0.6554
[001000] [101001]
o e qeogy e300
[100001] 6112
B Nes= 412,N;a = 11,6, = 0.6554
_{{ I12} ’{Il} '{I 8}} [000100] [100101]
>0 3 :{|7} new {{llz} {ll} {li} {l }}
Nes= 59, Nyja = 1,fop = 0.6554
[000010] [100011]
-0 R T (PR OXTRE O B
1077 Nes = 163,Nya = 9,fop = 0.5243
[010100] [010110]
) I[oooo10] T :{ 1LY 1) ,{l I }}
>0 :{{|4}’{|11|7}} 5 TB :{|10’|7} ew { 10} { 7} |2 7
Nes= 70, Nya = 8, fop = 0.5888
[010101]
[010001] l . [000100] {{I 12} {I ls} { } { A}}
>0 TR :{{|4},{|1,|9}} :{|7}
Nes= 205,N;a = 13, = 0.5243
[002001] [011001]
. [010000] _
S TN TS By L CXCUA TR
Nes= 1579,N;a = 27, = 0.4406
[010010] [011010]
| [001000] _ '
0 :{{ 3 ful }} T =03 0 fuis 0]
Nes= 560, Nja = 4,fop = 0.4957
[011100]
[001100] [010000] {{lﬁ} {|4} {| 2} { ]} { }}
>0 :{{ |6} '{IZ} '{|7}} ° :{|4'|1} “eW Nes= 154, Nja = 9,fopt = 0.5243
[110010] (110110]
[000100] _
>0 :{{ Im} '{|2,| 7} 7{' J}} 10 T"EW_{{ b} {lot {124 3 { 1}}

={1;}

Nes= 257, N = 1,fopt = 0.6600

100



An aq t a as
[000100] [100011]
<0 nopeoy TS0 00HY
! Nes= 163, Nya = 2,fp = 0.5243
[100111] [000010] [100101]
<o T 2 TR ({1} T =00 {0
Nes= 59, Nja = 5,fopt = 0.6554
[000001] [100110]
<0 3 :{{llz}’{ls}} Toew = {{I Al {1 7}}
Nes= 22, Nja = 1,fope = 0.6815
[100011] [000001] [100010]
<o TG 0 TO {0 T ={{Ld {13
Nes= 8, Nga = 3,fop = 0.5823
[001110] [001100]
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o =l e T =) 0) Toe={i}03.03)
Nes = 20, Nyja = 2,fop( =0.5826
[100110]
[101110] 1001000] )
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- Entries fromt = 1 tot = 4 in Table 2 represent the reconfiguration ressfdr
a, = [100001] when a new source appears in ringa2=(010000]), 3
(a =[001000]), 4 4 =[000100]), or 54 =[000010]), respectively. In the
first case, topology index= 1, Nes = 209 topologies are generated to find the
optimum one by exhaustive search when a new soappears in ring 2
compared td\g, = 8 generated by GA. Far= 2, as a new source appears in
ring 3, we have more routes than in the previousecsoNe= 412, and
Nga = 11. Fort =3, as the new source just introduces one mouterwe
obtain Nes = 59 andNg, = 1. Fort =4, we haveNes= 163 andNg, = 9. The
optimum topologies foa,, a8’ and arare presented in Table 2. Fram 5 to 10,
we show more examples for different traffic patteamd traffic variations for
An > 0.

- Fromt=11 to 13, the reconfiguration results far=[100111] are shown
when a source becomes inactive in ringa4=[000100]), 5 4 = [000010]),
or 6 @ =[000001]), respectively. Fotr=11, one route from the initial
topology is eliminated to obtained the optimum afeer the traffic has
changed and we hawys= 163 compared tblg, = 1. Fort = 12, more routes
are eliminated, so we need to generate more tomsddan in the previous
case to obtain the optimum topology resultingNig = 59 andNg, = 5. For
t = 13, the source in the border of the cell becametive so the number of
routes is significantly reduced and we obtaifNgg= 22 compared tdlg, = 1.
Fromt = 14 to 20, other examples are shown for diffeteadfic patterns and
traffic variations forA, < 0.

We can see that the number of generated topoldgyiesing GA in the search for
the optimum one is significantly reduced. In sonfighe examples the mutation
operation is needed to obtain the optimum topolagy is indicated by arrow}*
over the mutated link. Due to the symmetry of the scenario presentdegnl9,
ag =(a,a,) anda;, =(a,,a) will produce symmetrical topologies.

The previous examples represent some illustratimses to show the
performance of the algorithm for different traffiariations. In order to calculate
the total number of possible combinations, we dennt ;| and §,| the number
of rings active in cell 1 and 2, respectively. Pgr> 0, taking into account the
symmetry of the scenario considered, the numbecashbinations where the
changes can occur is
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For the previous examples, =n, =3 (3 rings per cell). Fon, < 0, the number

of combinations is
b Iail+|azlJ
101 (4] (i L

The performance of the algorithm is evaluated usivg performance parameters:
the success ratiSR = 1/N whereN;, is the number of generated topologies in the
search for the optimum solution and, the improvenfector F given byF = Ng¢/
Nga. These performance parameters for the previousipbess, described in Table
2, are shown in Table 3. The computational tiffie needed for SGA-TSL
algorithm to find the optimum topology is also pated in Table 3 and it will be
analyzed in the following subsection.

leu/=0egl=

i 0

- Entryt=1, in Table 3, showSR, = 1/8 compared t&Rs= 1/209 to obtain
the optimum topology foa: = [110001] which gives an improvement factor
F =209/8.

- Entryt=2, in Table 3, showSR,, = 1/11 compared t8Rs= 1/412 to obtain
the optimum topology folar = [101001]. In this case the number new of
routes introduced by’ is higher than in the previous case,ds increased
and it gives an improvement facter= 412/11.

- Entryt = 3,F is significantly increased=(= 59/1) because the new optimum
topology is obtained by concatenating the activakdi from the initial
topology andT®, which is the first operation of SGA-TSL algorithfar
A, > 0. Equivalently, forA, < O the first operation to obtain the new optimum
topology is eliminating the active links @ from the initial topology. This
is the case df= 13 F = 22/1), and = 17 F = 71/1).

In all cases, independently of the location of titadfic variation in the network,
Nga is at least one order of magnitude less tNan
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Table 3. Performance evaluation of GA-TSL.

t ar SRga (TC)ga SRes F
(CPU seconds)
1 [110001] 1/8 9.6253 1/209 209/8
2 [101001] 1/11 13.4005 1/412 412/11
3 [100101] 171 1.4196 1/59 59/1
4 [100011] 1/9 10.8265 1/163 163/9
5 [010110] 1/8 9.4693 1/70 70/8
6 [010101] 1/13 16.4737 1/205 205/13
7 [011001] 1/27 35.8802 1/1579 1579/27
8 [011010] 1/4 4.3212 1/560 560/4
9 [011100] 1/9 10.9825 1/154 154/9
10 [110110] 171 1.7784 1/257 257/1
11 [100011] 1/2 1.4040 1/163 163/2
12 [100101] 1/5 4.7892 1/59 59/5
13 [100110] 171 1.4352 1/22 22/1
14 [100010] 1/3 1.7472 1/8 8/3
15 [100010] 1/2 0.8268 1/20 20/2
16 [100110] 1/11 13.2133 1/23 23/11
17 [010110] 171 1.4508 171 71/1
18 [001001] 1/4 1.7628 1/105 105/4
19 [101010] 1/9 9.3133 1/166 166/9
20 [010010] 1/4 2.6988 1/22 22/4

So far, we have initialized SGA-TSL algorithm byetloptimum topology
calculated by exhaustive search. In more complécatenarios exhaustive search
is not practical. In the sequel, we calculate tp&noum topology for the cases
t=1,2,3,4 from Table 2 and 3, when the initialdlggy is any of the feasible
topologies fora, = [100001]. In Fig. 28 we present the utility vessthe topology
index for access vect@. We can see that there are 20 feasible topoldgiahat
access vector, and the optimum topologies corrasporindexes 16 to 18 in the
figure. To show the robustness of our algorithm wwitialized GA with any
feasible topology (SGA-AFT), to calculate the optim topology after the traffic
changes as in the cagdes 1,2,3,4 from Table 2 and 3.

In Fig. 29 we show that to obtain the optimum tagyl for ar = [1100001]
starting for any feasible topology, in the worss€ave need to generatg, arr =
31, compared tdNg, = 11 needed for SGA-TSL. F@= [101001] in the worst
case we neebly,aer = 15 to obtain the optimum topology, compared\ig = 8
needed by SGA-TSL. Fa:= [100101] we obtailNg..arr = 13, compared tdlg,
= 1. Finally, forag = [100011], SGA-AFT in the worst case neddg.aer = 17,
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compared toNg, = 14. We can see that our proposed algorithm ofdpes
exhaustive search even when the initial topologyoisthe optimum one.

a=[100001]
c
o
I3}
c
=}
T
2
3
0.1 I I I I I I I I I
2 4 6 8 10 12 14 16 18 20
Topology Index (t)
Fig. 28. Utility function for access vector a | =[100001].
— a.=[110001 R
30 a ] ‘ e
a,=[101001]
25 3=(100101] ‘ Nga for an initial
-~~~ a=[100011] \topology=optimum topolog
20+ — X i
g I // A S < TN
Z 15 \ / \\\ S ~L7 TN ~ -1
\’ / 3 \ -
10+ NS - / I / i
5 . i
O 1 1 1 1 1

1 1
2 4 6 8 10 12 14 16 18 20
Topology Index (t) associated to a=[100001]

Fig. 29. Nga to obtain the optimum topology for access vectors ar = [110001], [101001],
[100101], [100011] when a ; = [100001] and GA is initialized by any feasible topology t.
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3.7.2 Comparisons

We compare the results obtained by SGA-TSL algoriih Table 2, with the
conventional routing protocols, used in ad hoc meks, which are based on
collecting the information from the nearest neighbo this case, the topology is
reconfigured in such a way that the users relayhtir nearest neighbor. The
results of this comparison are shown in Fig. 30e Titness function obtained by
nearest neighbor heuristic is significantly lowean the optimum value obtained
by SGA-TSL. In some cases the value obtained byeseaeighbor heuristic can
reach up to 50%.

0.65

0.6

0.55

o
o

0.45

Utility Function

o
~

0.35

1 1 1
2 4 6 8 10 12 14
Topology Index (t) associated to Table 2

Fig. 30. Utility function for topologies t associated to Table 2 by SGA-TSL and nearest
neighbor heuristics.

3.7.3 System dynamics

The main objective of any optimization process agsfind the best possible
solution and performance limits of a system thatuldde used as a bench mark
for any suboptimal solution that may be simpler amdre affordable to
implement. Even if not immediately implementabldim@l solutions set up the
target for the further development of the technglothat would enable
implementation of such solutions. In the sequel avgue that our optimum
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solutions are feasible for practical implementatwen at the current state of the
art of the technology.

In order to get an insight into the system dynanties computation timédc
for SGA-TSL algorithm on Intel Core i7 620M 2,66 Gprocessor with 4GB
RAM memory is shown in Table 3. As one can see d¢bevergence of the
algorithm depends on the changes in the trafficdareand for typical examples
from Table 3,Tc varies in the range 1-30 seconds with more thah dfathese
values being below 10 sec.

— Traffic dynamics: For the typical call arrival rate.,, = 0.01calls/s[159],
Tc < 1M, and the algorithm will be able to compensate th@nges in traffic
vector, resulting in proper reconfiguration of tietwork topology.

— Mobility: The equivalent traffic vector will be also changiige to mobility
(terminal moves from one ring to the next neighbgrring). As long as
VT, <Ad, whereAd is the distance between two adjacent rings, warie
terminal velocity, the proper reconfiguration ofetmetwork topology is
possible.

— Channel DefadingThe program run time for rate optimization for aegi
topology is of the order of 0.01 sec. Furthermdog, the purpose of this
analysis we can model the channel as a Rician dadihich steady state
component is increasing as the hopping distancecesd So, for the hopping
distance short enough the random component wilislkemwhich is referred to
as the channel defading, and the algorithm willalide to converge. More
details on channel defading will be provided in Qtea 4.

Impact of mobility and fading on the system effitig can be further reduced by
splitting the traffic into two groups, static/lowyiamics and high dynamic and
applying the above algorithm only on static/low dymic users. Another

possibility is to use more parallel processing eettliceTc, or faster processor.

3.7.4 Discussion on other heuristics

Over the years, several approaches have been @edeléor evolutionary
algorithms to address dynamic environments, suchmataining diversity
during the run via random immigrants [150], usingmory schemes to reuse
stored useful information [160], applying multi-pdation and speciation
schemes to search in different regions of the $eapace, and adapting (the
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parameters of) operators to quickly respond tova @evironment [154]. All these
approaches result into different heuristics to salynamic problems [154].

Changing environments usually require GAs to keepedain population
diversity level to maintain their adaptability. &oldress this problem, the random
immigrants approach has been proposed in [150haintains the diversity level
of the population through replacing some individuaf the current population
with random individuals, callechndom immigrantsin every generation.

However, with the traffic model that we assume his tchapter where the
traffic distribution is observed in time intervathort enough to detect each
change in the traffic, the introduction of randomniigrants may divert the
searching force of the GA because individuals & pinevious environment may
still be quite fit in the new environment. Our Seqtial GA allows certain level
of elitism and lets the chromosomes of the inifapulation survive to the next
generation to maintain the population diversity,aptd to the changing
environment, and thus guarantee that all feasin¢ess are generated through the
pass of the generations.

Other heuristics include memory schemes MEGA [160] that store useful
information from the current environment to reuskfier in a new environment.
Storing the optimum topology for each possible asceector in a real network
would be very inefficient and would require hugecamt of memory.

We have shown the robustness of our algorithm toitfitial state of the
network and, even when SGA is restarted from shrafter a change is detected,
it outperforms considerably exhaustive search.

3.8 Chapter summary

In this chapter, we have presented a dynamic joptimization of relaying
topology, routing (power) and inter relay schedglim MCNs. As a result we
have developed a specific encoding and fitnessrabim a sequential genetic
algorithm for relaying topology update. Dependingtbe traffic load, there may
be situations where searching for the new optimopology will be NP-hard.
Through numerical simulations we have shown thatusing SGA the
number of operations required to reconfigure thetinopm topology is
significantly reduced independently of the inittabology of the network. The
utility function used in the optimization processves the solution towards the
topology favoring simultaneously isolated and shahge transmissions. As
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expected, within these solutions further improvetaeare obtained by using
network coding to reduce the number of slots neddettansmission.

In addition to optimum performance in terms of netkv utility, numerical
results demonstrate also significant improvementthée convergence rate of the
new algorithm. The number of generated topologiethé search for the optimum
one by using SGA-TSL is at least one order of miagla less than by exhaustive
search. The same order of improvement is obtainatkpgendently of the
initialization of SGA-TSL. We also have compared trerformance of SGA-TSL
with nearest neighbor heuristic and the value & fitness obtained is about
50% lower than with SGA-TSL.

SGA may be implemented in one of the base stati@Quoperating base
stations must exchange information about the traffistribution, and the
coordinating base station should pass the infolonasdibout the resulting access
vectorag back to the cooperating base stations. This lefrebordination between
the base stations seems to be already considergulasticei.e., coordinated
multipoint transmission, where a cluster of basatiehs jointly perform
beamforming in order to reduce intercell interfaren
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4  Context aware nano scale modeling of MCNs
for high resolution optimization

In this chapter, the model from Chapter 3 is furtbgtended to provide higher
resolution optimization of MCNs. Instead of usiriggs, we apply a hexagonal
tessellation for inner partitioning of the cell ansmaller subcells of radius
Subcells may be several orders of magnitude smahlan e.g. micro cells
resulting in, what we refer to as, a Nano Scalewdet Model (NSNM). A
special Nano Scale Channel Model (NSCM), enablietayr hop distance
optimization, is developed for this application. Bgjusting the radius of the
subcellr we obtain different hopping ranges which directifeet the throughput,
power consumption and interference.

We first apply this scheme to downlink multicagtrtsmission in MCNs. By
decreasing the radius of the subce]lshe number of hops needed for the BS to
deliver the information to the final users is iresed, which increases the delay
and consequently decreases the throughput. Onttles band, as the hopping
range is reduced, less transmission power is ne@uexhch time slot which
produces less interlink interference and enablegetanumber of concurrent
transmissions.

By developing relations between the geometry ofcilé (tessellation factar)
and the physical layer model, routing and topoldbg, network can be optimized
by using one single control parameteiVith r as the optimization parameter, we
jointly optimize scheduling, routing and power cat aware of the intercell and
intersession interference to obtain the optimunderaff between throughput,
delay and power consumption in multicast MCNs. Nsutions to the problem
of reducing the impact of intercell or intersessionerference are presented
including a spatial interleaving SI MAC protocol tmordinate the multiple
concurrent transmissions due to multihop relaying.

A set of numerical results demonstrates that theorecale network model
enables high resolution optimization of the systenud an effective use of the
context awareness. In general these solutions deperthe location of sinks and
potential relays willing to cooperate. The sinkdtdon matrixD is used in the
system utility function to relate optimal tessathat to the location of the set of
the multicast receivers in the network. The relagilability and willingness to
cooperate is controlled by the relay availabilitatnix A which is included in the
constraints of the optimization program. Incorpumatof these two additional
context aware matrices, along with a new definitidrdirected flooding routing

111



protocol (DFRP) and inter flooding network codingNC) for such a system,
further improve the optimization process and sysmarformance. An intercell
flooding coordination (ICFC) protocol is developpé¢d reduce the intercell
interference.

A detailed discussion on network implementationinsluded addressing
control data collection/distribution, mobility, sigling overhead, cell design,
comparison with other protocols and node availgbili

The system performance in MCNs is affected by weidactors such as
mobility, battery power, coverage, interference dedsity of nodes. Due to these
factors, users may be temporally unavailable tayé&he message which degrades
the network performance and, establishing routesugh network efficiently is an
important and challenging research issue. Forpghipose, the NSNM is used to
present a new concept for route discovery protoatieh is aware of the mutual
impact of all routes in the cell. The efficiency tife Nano Route Discovery
Protocol (NRDP) is measured in terms of the utilftynction that includes:
throughput, power consumption, terminal time teelifdepletion) and delay. The
numerical results show that the proposed algorithsuperior when compared to
other existing route discovery protocols adaptethi® scenario.

Finally, the NSNM is used to analyze the trade-o#ftween cooperative
diversity and spatial reuse in multihop cellulatvmarks in order to maximize the
throughput in the network. The increased numbecaicurrent transmissions,
enabled by spatial cell partitioning, increases $iystem throughput but also
increases the level of interference that reducescdpacity of simultaneously
used links in the network. The radius of the sulsaetietermines the relaying hop
range and the amount of interlink interference. tRdinsmissions are recorded by
the neighboring receivers and combined in a codperaliversity transmission.
The increased number of hops increases the diyersiers but at the same time
reduces the throughput per user since the netwapadity has to be shared
between the increased number of users. By intraduaiutility function as a ratio
of the network throughput and the overall power sztonption we can
simultaneously optimize these parameters and tlukepadelivery delay, as a
function of relaying range. The optimum relayinghga defines the optimum
tessellation factor and the spatial reuse in the network.

The rest of the chapter is organized as follows.o&arview and background
in this area is given in Section 4.1. In Sectio®, 4he context aware nano scale
optimization of multicast MCNs is presented. In @t 4.2.1, we introduce the
system model and notation, the model assumptiodstarjustifications. Section
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4.2.2 presents the physical layer model with theonscale channel model for this
application. The network layer model is developed Section 4.2.3 which
includes the definition of the routing schemes,ology and intercell flooding
coordination (ICFC) protocol. In Section 4.2.4 npoptimization of tessellation,
scheduling, routing and power control for multicAd€Ns is shown. Context
aware route discovery protocol is developed andyaed in Section 4.3. The
trade-off between cooperative diversity and spataise is analyzed in Section
4.4. Numerical results that validate our theorétotaims in certain representative
scenarios are provided in Section 4.5. Implememtatssues are discussed in
Section 4.6. Finally, some concluding remarks dfered in Section 4.7.

4.1 Overview and background

This chapter provides a systematic approach to ertwptimization to study the
gains and trade-offs associated with MCNs. To He #&dbdeal with this level of
details the network model from Chapter 3 is extehdxy first applying a
hexagonal tessellation for inner partitioning oé tbell into smaller subcells of
radiusr as shown in Fig. 31. This partitioning can be cdestd as a special form
of surface tessellation technique used in conveatioetwork information theory
[44], [161] so that a number of results from thateaacan be adapted for the
evaluation of the proposed system. By adjusting theius of the subcelt
(tessellation factor) we obtain different hopping ranges which direcffect the
throughput, power consumption and interference. @sveloping relations
between the geometry of the cell (tessellationdiac) and the physical layer
model, routing and topology we can optimize thewwek by using one single
control parameter.

We first apply this tessellation scheme to joirdlgtimize scheduling, routing
and power control in multicast cellular networksullitast in MCNs has received
more and more research attention [44], [163]-[168%pired by the research for
unicast traffic, a number of hybrid architecturesdé been proposed for multicast
applications [163], [166]-[167]. In [163] near ap@l multicast relay strategies
are proposed to improve multicast throughput usiddioc relays in a single cell
environment. [166] develops a routing algorithm finod ad hoc paths from
proxies to cellular multicast receivers. A multicggoup selection algorithm is
presented in [167] to guarantee certain QoS whehipteigroups coexist in the
cell. Significant amount of study on multicast Heesen focused on higher layer
issues such as efficient design of routing prote¢d68]-[171]. Several works has
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been done on power aware routing since the nodeslaaracterized by their
limited battery-power [169], [171]. In [169], the immum-energy multicast

problem is studied by exploiting the “wireless nmdst advantage”. [171] finds a
path for each node-pair connecting the source raodethe destination set such
that any node in each path does not run out gfdtser during the transmission
of packets.

Multicast protocols have been shown to considerabtuce the bandwidth
and power consumption compared with unicast copatés [164]. For further
enhancement of overall throughput, lower layers @s® required to efficiently
combat the adverse fading effect on multicast wassion. In [164], [165]
opportunistic multicast schemes have been propdsedalance the trade-off
between multiuser diversity and the multicast gaifith the best user approach
base station transmits with the maximum rate touer with the best channel. In
this approach there is a risk of excessive delaygHe worst user. In the worst
user approach the base station transmits with timenmam rate so that all users
can simultaneously receive the signal. Besides Hate this approach faces the
problem of intercell interference.

Our proposed scheme provides new solutions to tbklgm of reducing the
impact of intercell or intersession interferenceclinling the problem of
coordinating multiple concurrent transmissions thuenultihop relaying.

The nano scale network model is further extendeish¢tude a conventional
resource reuse scheme used for cellular networlies@gn a new concept of route
discovery protocols aware of the mutual impactIbfautes in the cell. The same
model is also used to provide an analysis of optiniopping range, and analyze
the trade-off between spatial reusability and coafpee diversity.

4.2 Context aware nano scale optimization of multic  ast MCNs

4.2.1 System model and assumptions

The downlink transmission is considered in a makiccellular network with
hexagonal cells of radiuR and uniform distribution of the mobile users across
the cell. In addition, hexagonal tessellation iplagul in order to divide each cell
into inner hexagonal subcells of radiuss shown in Fig. 31. For simplicity we
assume the same tessellation facttor all cells. We consider that the location of
the mobile users is fixed during the schedulingleyand a potential, ready to
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cooperate, transmitter/receiver is in average wtlign the centre of those inner
cells. The actual presence or absence of such umses subcell will be

characterized by entry 1 or O respectively in spatiser distribution matrix

denoted ag =|B(h,6)| where the hopping indexand angleg define the spatial

position of the user in polar coordinates with exdpto the base station
(h=0,6=0).

Fig. 31. Multihop transmission scheme.

In each cell, the network topology is representgd llirected graplG :(N,E)
with a set of potential nodes (subcells) and a set of linksC . The actual
realization of the network will depend @ |B(h,8)|. Each link is associated
with a nonnegative real number representing its transmission capacity in bits
per unit time. Since the capacity depends on thell®f interference, this
parameter will be also controlled by the same patam.

As we can see from Fig. 31, the BS is surroundednpy=6 adjacent
subcells, situated one hadp=1 away from the BS, denoted as first ring of
subcells. We assume that the rings are circularcamgentric to the BS. In each
60 angular segment in the first hop, there is antamdil subcell in the second
hop (shaded), two new subcells in the third hop sadn. So, the number of
subcells per ring is, =6+ (h—1)6= 6Ch and the number of subcells per cell

N=3n =2 60h=3H(H+1), (37)

whereH is the total number of rings in the cell. Diffetdfrom Chapter 2 and 3,
with this tessellation scheme the users hoppintadie is the same in each hop
so that number of rings in all cells id . We should notice that with this
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definition of N we are including the subcells situated in the bowf the cell that
are part of two different cells. The transmissiogtviieen different subcells is
controlled by introducing an intercell flooding adination scheme (ICFC) that
will be explained later in Section 4.2.3.C.

. The angular separation between two adjacent subcell ring h is
6,=360 /n, =60 /h. The transmission/relaying or hopping distancewken
adjacent rings is denoted lasy as shown in Fig. 31 and is related to the subcell
radius asd, =./3[1 . The total number of rings in the cell is given by

H =[1/d, |=| HIGB3M)|=| Ri2D)], (38)

where H is the apothem of the hexagonal cell. The subeellusr determines
the number of ring$l and the amount of interference. These two aspeittbev
elaborated in detail in the next section.

In polar coordinate$h,9) we denote the location of a mobile user situated in
ring h at angled as

m(h6) = hg 6’ (39)
o0e" ={g") =(g" .4}, (40)

where @™ is the set of angleé for the users located in hdp and the number
of elements in this 346‘“)| =n,. The detailed computation of the elements of set
O™ is elaborated in Appendix A.

With this notation, the spatial user distributionatnix B =|A(h,6)| has
dimensionsH x8x, wherey is the overall number of different user anglee(se
Appendix A, e.g, (A3)). For the example shown in Fig. 31 for smglell case
with H = 4, 64 is 36.

In general, the user at location(h &) is denoted asn,, and any user in ring
h (for any angle&d) as m,. The BS is referred to as, and its location ian(0,0).

In multihop transmission, user at locationfh &) relays the information to
any of its adjacent users(h',8"). As we are considering the transmission in one
direction (downlink) we assume that the user wellay to any of its 5 adjacent
users on the way to the destination us#&h,,6,). If we denote the location of
user m(h 8) in vector representation as(h ) = h(ld 0é’, the adjacent relay user
at locationm(h',8") is calculated in vector form as

n n
i(Gsonz-6 yay o %3)

m(h,6") = hTld 0&” = f 1Y)+ dO € (41)
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. ( T sgnr- 5)”7h9 )
g'=arg(m( h,8")) = arg{ mho )+ de } (@, = Of 1t 2, (42)

where parametea, , is the routing parameter at subc(ahl H), and indicates the
direction to which of the 5 adjacent users we ataying. The routing across the
cell will be characterized by the routing matiix=||a(- 2)a(—1)a(0)a(1)a(2)|
—||u(ah9)|| which is (1x5 block matrix) with dimensionsl {64 | . As an
example, we writar. for the scenario presented in Fig. 31.

a(-2)=a(2)=0
h\@ 0 10 15.. 90..345 350 h\@ O 10 .. 30 ... 345 ... 35
10 0 0..1..0 ]0 10 00..0 .0
20 0 0.. 0..0 |0 @ 0 ..1..0 ..[
o(-1)= . ca@)= .
3l: 3:
40 0 0..0..0 |0 @ 0 ..0..0 ..[

h\@ 0 10 ..30..210..270 ..330...350

10 0 ..1..1..1..1.]0

20 0 ..0..0..0..0..]0
(l(O):S . .
40 0 ..0..0..0...00

In this examplea(-2)=a(2)=0. If the traffic from usem, , is relayed in the
direction with a,,=-1, the entry of the matrixa(-1) with indices h,d is
a,,(-1)=1and zero otherwise. We can see in Fig. 31 thatuser in f =1,
6 = 30°) relays to user im'(= 2, 8 = 30°) soa, (0)=1. The same applies for
users inh=1, § =210°,6 =270° andd = 330° The user inh(=1, § = 90°),
relays Withalygd (-)=1touserinly=2, 8 =60°), withd' calculated as (42),
and so on.

If users at locationan(h @) and m(h',8") are the origin and destination
respectively of linkl O£, then the link is represented b(smﬂ - nm,,g.) and its
vector representation as

§(Gson@r-6 yay 57 )

(M, - M) = MmN )= ()= doe by, = 08 B 2 (43)
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The values ofa, , will depend also on the relaying scheme used aslibe
explained in Section 4.2.2.

In addition we define the destination matrD(:"Dh,g” with dimensions
H x68u, where D, , =1 if the user at locatiorfh,) is a destination user (sink),
or 0 otherwise and is the number of different user angles defined ppéndix
A by (A3) for h = H. Destination users can also act as relays tormérthe data
to another destination. We denote Dy , the set of links that form the relaying
route from user in locatiom(0,0) to the destination (final) user at location
m(h,,8,). One should notice that for = h + 1 every route is effectively defined
by a particular choice of matrin :"a'hvg". The set of all routes to all destination
usersD is denoted by

0= U O

hy .6,0D

hy Oy ° (44)

The relay availability and willingness to cooper&echaracterized by the relay
availability matrix A :||A1‘5|| where A , =1 if user at location(h,8) is available
and willing to cooperate as relay, or O otherwiBee issue of stimulating the user
cooperation is studied extensively in the literat{it72, Chapter 16] and is in the
area of pricing. Game theory is used as a tooltieranalysis and billing with
awards for relaying as a method to implement ite irfterest to cooperate may be
also significantly influenced by its battery sta#dl together these issues are out
of the scope of this thesis.

A network topology graplG =(\,£), a set of link capacitie€ ={¢,10.} ,
a set of sinksD at positionsD :"thg" and a set of multicast connection
requirements (capacity, throughput) specify a multicast connection problem.

As the location of the mobile users is assumecetéixed during the duration
of the scheduling cycle, the sink locatibnand the user availabilith are also
assumed to be fixed during that period.

4.2.2 Physical layer model

After presenting the notation and the cell tesitatscheme, in this section we
focus on the channel model proposed for this apfita and the relaying
schemes used.
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A) Nano scale channel model

The channel model introduced in this section, whicheferred to as Nano Scale
Channel Model (NSCM), consists of a Rician chanmigh progressive decrease
of the steady state component with increase oftridwesmission range. In other
words, when the number of hops used to reach aaglestination is small (longer
transmission range) the channel has stronger rand@omponent due to
reflections, but on the other hand when the numdiehops increases (the
transmission range decreases) the random compaeenéases and the steady
(line of sight) component becomes predominant. Let denote byH, the
smallest humber of hops needed to make the trasgmisange, in a cell with
radiusR, such that the random component of the chanrdirisnated (details on
implementation are given is Section 4.6). Such eéeson is referred to as
channel defading (CD) tessellation. For any otlessellation, the channel model
can be represented as

1 H-1 H-1
Oon =+ Oy = [ +[1— ]X;HSH
h,h hh h K ) [Ho 1 H,-1 0 (45a)

x~N(o.)

2 2
0 1 (H-1 1 _H-1 ,
Gh,h' - Gh,h' + Gf:h' - (dr)a ( HO J + (dr)a (1 H0 } J)(’ (45b)

where (45a) defines the overall channel gain, gﬁ]rq:l, gy, are the steady state
and the random component of the channel gain réispéc In (45b),G§h.,G;fh.
are the power gain for the steady state and thdorancomponent respectively,
and y is circular complex Gaussian process. Fbre 1 the channel is pure
Rayleigh channel, forl < H <Hy Rician channel and foH =H, we have
Gaussian channel (no fading).

DeterminingH, for different types of channel (urban, suburbar), belongs
to the channel modeling and is not within the scofthis thesis.

In a CD tessellation the interference power produd® a cochannel
interfering userm,, transmitting at the same time from the positidny) , ¢ # 6
iS 1o =Gy yeone P WhereG, 4., i the channel gain between referent receiver
m,, and the cochannel interfering usem,,, approximated by
Gy geone =1/ (dys0.n0)" - Parameten is the propagation loss ard ..., is the
mutual interfering distance given by
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dh,¢¢5;h',€' = |ﬁ( h,0")— n( he # 5)|

=d,J 6§+ 65— Zp Thicod ¢ ) (46)
=d, (DAPIPp

The modification for the general case of non CDsédation is straightforward
and will be elaborated in next section.

The previous generations of mobile communicatioagehbeen also using
different approaches for channel defading. CDMA dohgechnology [172]
converts selective fading channel into a Gaussiaangel by first extracting
multipath component and after that combining thena iRake receiver. OFDMA
based technology [172] splits a given bandwidtlo mtnumber of subchannels by
choosing the number of the subcarriers large en@agthat the channel on any
subcarrier is nonselective. In this chapter, in tla@o model of cellular system,
we split the size of the cell into a number of sltsclarge enough for channel
defading. While the previous technologies achidwe ¢hannel defading in the
physical layer, the channel defading tessellatiehieves this effect on the
network layer by proper combination of topology andting.

B) Conventional Relaying with SI MAC (Protocols A & B)

Directed flooding routing protocols (DFRP) presehte this section are based on
the conventional relaying scheme where the signapggates through the cell
from ring h to h'=h+1as illustrated in Fig. 32 and Fig. 33 (protocol #daB,
respectively). In these figures, transmissions given hoph take place in a given
time slotb, so that¥’ (b = 1,2,...B) represent the positions of active transmitters
in slotb (delay) and small empty circles represent thetos of the receivers
where the signal is received with no collisionhatt particular hop.

We introduce the protocol transmission mat\]b?:"‘l‘b(h,é?)” with entries
¥°(h,8) =1if a given protocol assumes a transmitter at laath,8) in slotb
and zero otherwise. Matri¥ defined as‘I’:Ub‘I’b includes transmitters in all
slots. The dot matrix produdt®) defined as‘I":‘I‘E?A:|\P}L5|:|Whnghyg| has
value ¥, , =1if the required transmitter is available and O otVise.
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Fig. 32. a)-e) Network topology schedule for broadc  ast case (protocol A); f) All routes
available using protocol A, ([122] [©IEEE 2012]).

It should be noted that protocols A and B, shownFig. 32 and Fig. 33
respectively, have different scheduling patterrtse Tutual interference between
the links is controlled by proper spatial selectairthe transmission sites, which
is referred to as spatial interleavingl)( In order to avoid the collision between
adjacent subcells, in each rihghe simultaneously active transmitters, situated i
the center of the subcell, are separated (inteeldaw angular domain
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360
(n /2)

@, = =120 /h
with n, /2 simultaneously active transmitters per ring

The protocol is aware of the location of the mohikers in the cell and
assigns the transmission turn in such a way thatctillision between different
transmitters is avoided. More details about the lem@ntation are given in
Section 4.6.

By inspection of Fig. 32 we can see that the mimminterfering distance in
Fig. 32b (slotb = 2) denoted asl (W*") whereb is the slot ang denotes the
protocol, isd, (W**)=2d, , and the minimum interfering distance for subsexque
transmissions isd,(W**) =4/(2d )" +(3r)* , d,(W**)=3r and d (¥**)=3r.
Similar relations can be derived for protocol B whan Fig. 33. We can observe
from Fig. 32 and 33, that although in Fig. 33 onarenslot is needed to complete
the transmission, the interference produceditt is smaller than in¥** due to
larger distance between the transmitters of interge usersd (W*°)=2d,

d, (W) =/(d, /2)%+(9r /2% .
The signal to interference plus noise ratio SINRs#rm, is defined as

SlNRth(P, r) Gl,h' Fh)/LZ q{we;w,e* E+ ij

920
. RI(d)"
TSR ) * N, )

920

_ R
> RIZ% pigme + Ny N3O

976

and depends on the transmission power of msergiven by R,, Oh,d, and on
the tessellation factor r. In a non CD tessellation
R=S/G,- R=9%/ G,06 andN,. -~ N, +G,, whereG}, and G}, are
given by (45b) andN,. is the Gaussian noise power. The cons@pt,. , is
defined as in (46). Based on this definition of tBINR, the capacity of link

(M, - Mp) 00, 4 is
¢ =log(l+ SINR™ (P, n)= log(l+ SINR" P, n),0 O, , (48)

whereh’=h + 1 and@’ is given by (42).
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Fig. 33. a)-f) Network topology schedule for broadc  ast case (protocol B); g) All routes
available using protocol B, ([122] [OIEEE 2012]).
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The Shannon channel capacity is approximated irctigea by a specific
discrete value depending on the overall receivg@abdities (amount of coding,
modulation...). The capacity of the roufe, , is the minimum of the link
capacities on that route

Copas = min, ¢, D100, 4 - (49)

The multicast (broadcast) capacity of the overatiwork is the minimum of the
link capacities to all destination usergh,,6,)0D

C=c,=min__ ¢ , 00" (50)

hg.6g | E”:lhd: (]
and the throughputhr=C/ B where B is the number of slots needed for the
protocol to reach all destination usergh,,6,) 0D .

A) Cooperative Relaying (Protocol C)

The multicast transmission by cooperative diversitglaying scheme is
represented in Fig. 34 and referred to as prot@oUserm(h',8") receives the
signal simultaneously transmitted lmy(h &) and from different transmitters from
the positionsm(h,¢), ¢ # @ transmitting in the same ring. It combines allaiged
sighals by using diversity receiver. With this seleethe transmission delay to the
border of the cell is reduced to 4 instead of béngy 6 as it was in Fig. 32 and
Fig. 33 respectively. The signal to noise ratio SAlRuserm, is also improved
and now becomes

SN%.T(R '):[ Gh E*’Z Q,we;hxa' R+ Z g’}xp;h‘ﬂ' rP]/ N (51)
' pz6 n<h, ¢

with P =R and CD tessellation. The third term is due to awglated signals

received in the previous transmissions. The capasigiven again by (48) and
(49). We should notice that here in some transmissh'=h as there is no

collision due to the diversity receivers afidis given by (42). In this scheme the
spatial interleaving between simultaneously actiamsmitters is reduced with
respect to the previous schemes due to the diygesieivers.

The fundamental concept at the physical layer ésddypacity regiorC which
characterizes the trade-off between power allopadiad link capacity. In the case
of multihop transmission we also need to includeapeeterH that is related to
the tessellation factar by (38). We consider slotted time, such that eaatket
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transmission takes one time slot (one hop per ,slatid multihop packet
propagation in a store and forward manner. The(s®r) defines the system
with link capacitiesc, links powerP provided to the transmitting users for a
given tessellation factor.

Fig. 34. Network topology schedule for broadcast ca se and cooperative diversity
receivers (Protocol C), ([122] [OIEEE 2012]).

4.2.3 Network layer model

In this section we elaborate the route discovencess and routing schemes for
the nano scale model. The available routes forogatA and B are presented in
Fig. 32f and Fig. 33g, respectively. The represioaof the available routes for
protocols C and D (introduced later) are omitted ¢an be easily calculated by
following the same logic.

By defining the topology matrix for each slot wenadescribe the routes that
the BS will use to reach different users as finastthationsD. We define the
network topology matrix in time slob as T°=|T2(h,8) T2 (h'@ j| with
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dimensions(H +1)><(5H +5H), where 8 is the number of angular positions of
the transmitters and receivers and is defined ipefgix A by (A3) forh = H and
h'=h+1. The topology matrix corresponds to a 1x2 blockrmmawhere the first
block corresponds to the transmitters and the stome to the receivers. In this
case the number of rows {#1 +1) because we are including the B&O0,0)
situated at hofn = 0. So, the transmitters are situated in op0,1,...H - 1, and
the receivers in hof'=1,2,...H , thus T2(H,8) =0, T2(0,8)=0.

The detailed calculation of the topology matrix fmrotocols A, B and C
presented in Fig. 32, 33 and 34 is elaborated ipefplix B.

An alternative  representation of T can be obtained by
T° =T, (6,6, with 3" T"=p and &' calculated as in (42). The topology
matrix T should provide that all destination nodes can bached. In the
broadcast casd) = .

A) Route discovery process

A source nodeam, multicasts information simultaneously to all raeet at rate.
The unicast relaying routg, , from userm, to destination usem(h,,6,)0D,

is defined by a sequence of routing coefficients, = algm,azﬂ(z),...,am_lg(m,l)}

with h=1,2,..h - 1. The relaying route is obtained from the topologgtrix and
matricesp,A,o andD in the following way:

Route discovery protocol
1) For each destination usen(h,,6,)0JD , depending on the protocol used, we

check the topology matrixT® :||T§(h,0) T (h, .6, )|| to obtain the candidate
transmitterm(h d) = m(h=h_,,6=46,_,) for that userm(h,,6,)0D..

2) If the transmitter is available\(h,d) =1, then we calculater, , as solution to
(42), and we get the first component of the relgyoute U, , :{ahﬂ} 3

3) If userm(h 6) # m(0,0) then go to 1) withh, — h,_,, 6, ~ 6,_,, and the process
is repeated until the route is complete.

® Modifications of the algorithm in the case when ad@ is not available are further
elaborated in Section 4.6 since the choices deparatceptable performance degradations.
Also, a nano route discovery protocol is preseimieSlection 4.3 to deal with this situation.
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The route, , from userm, to destination usem(h,d,)0D is feasible
(feasibility F, , ) if all required transmitters on the route are ide so that
Foo = [Tra o =1-

The multicast routé]” from m, to the set of sinkD is defined as in (44).
In the case of multisource multicast we haveinformation sources at,, M
groups of sinksD:{Dl,Dz,...,Dk ,..DM} and M independent data flows
fOF :{fl,fz,...,f",..,f“" . The flow from userm, to each destination user
m(tf,6)0D%, i=1.2... [0 is 1 ={ 1, 1 ={15] with m(0,0)= m(0) and
mk :{Di"} the set of relaying routes (muﬁicdést treé) fostifeation users irD.
Each flow component on that set will be denotedf&¢flow on link | in session
K).

Let x:{xk} :{ fk/B""’} be the vector of multicast throughputs for each
sessiork and B“”is the maximum number of slots needed in seskitmreach
the border of its broadcast area which also dementhe protocol) used. The
routing regiond defines the se{x,f) such that flow rated can support
multicast throughputx. The characterization of the routing regiéh is a
fundamental concept at the network layer, and dépem the specific choice of
the protocol pOO (A,B,C,D).

In the sequel, we include some additional constsaon the flows flow
conservation equatiofisWe denote byR the set of relaying nodes (a destination
node can act as relay too).

k _ £k . k gk K ok K
fO'O:hZ\ ok B fO,OhSJ gdkj ,DI'J ! m(hdw 'Bdi )' m(hh 'Hdl )DD (52)
PILAE (53)
X
fr600=0; L0 (54)
Z frvome _Z froms = 00w, m(h,8)0R", (55)
hw h,8

where (52) indicates that there is one flow persiges (53) requires that the
overall flow on each link should be less than ih& tapacity, (54) constraints all
flows directed into the source node to be equd,tand (55) indicates that the
net-in flow for the relays nodes must be equahtret-out flow.

B) Nano Scale Routing with Interflood Network Coding (Protocol D)

In general, it is theoretically possible to applgtwork coding on multiple
incoming streams of different sessions [173] whieheferred to as intersession
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network coding. However, we argue against this ipdgy, and usecoding by
superposition174], i.e., network coding applied only to incoming streamshaf
same session. This argument is mainly supported th®yy computational
intractability of the optimal throughput probleminiter-session coding is allowed
and it is not practical to code data streams frdfferegnt applications either.

In this section, we introduce Interflooding NetwdCloding protocol (IFNC)
which is explained by using the example shown ig. B5 (Protocol D). In the
first time slotb = 1, the base station transmits two bigs dndy,) to different
sectors as shown in Fig. 35a. This transmissiotesignated aSIlea,yb. For the
second slotb = 2, transmission (flooding) protocol A from Fig2 is used to
transmit bity, as shown in Fig. 35b. Fdr= 3, protocol B from Fig. 33 is used for
flooding bity, as in Fig. 35cFor b = 4, interflooding network codings used by
transmittingy, = y, + Yy, from positions designated AB‘;C as represented in Fig.
35d. By using the same notation the three followflogdings are designated as
Y® ,W° and W] as indicated in Fig. 35e, Fig. 35f and Fig. 35gpeesively.
One can see from the figure that in this way abcglls will be able to decode
both, bity, and bity, in seven slots.

We define the topology matrix with network coding a

T =[@ (h6) T(h.6) |
(56)
=T, To, Tou C=r o, o7 o)

The topology matrixT® includes submatrix@; that indicate the location of the
transmitters in slob, as with network coding we transmit bits y, andy. = y, +
Vb The location of this transmitters is indicated tlybmatrith‘;,ya,Ttﬁ% and

Tt‘;,yc respectively and the same applies for the locatiothe receiverst;, with

submatricesT;, , T, andT; . The detailed content of these submatrices can
be easily calculated based on the topologies frantopols A, B and C as
presented in Appendix C.

The network capacity by using network coding is

C= 2CDD = 2mi[‘]mﬂd Cﬂhd,ed , Dthﬂd ogP , (57)

wherec,  is the minimum of the links capacities on that eolt, , calculated
as in (49). Factor 2 is due to the fact that thetqarol will deliver two bitsy,, y;, to
the cell boundary afteB® slots.
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Fig. 35. Network topology schedule for broadcast ca  se and network coding with
Ye =VYa+ Yp (Protocol D), ([122] [OIEEE 2012]).
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C) Intercell Flooding Coordination (ICFC)

In a multicell scenario, in order to avoid intetdaterference the initiation of the
flooding in the cell should be coordinated withimetcluster of seven cells as
illustrated in Fig. 36 foH = 1, 2 and 3 hops. The hops are represented @s, rin
simultaneous transmissions are shown with the saaoter and the numbers
represent the time slots when the correspondingieats of the cells are active.
We can see that in these figures there are no Emabus transmissions at the
borders of the cells.

Formally, the intercell reuse factof is defined asrf =7 /7r® wherer™
is the time needed for all cells in the multicektwork to schedule their
transmission in the last ring ard’ is the time for an isolated single cell to
complete transmission from the BS to the bordghefcell. Let us first assume in
general that the protocols spend equal tam{@mounts of slots) in each hop (ring
of the cell).

In general, we require that for multihop transnossho two adjacent cells
are allowed to transmit in the last hbp= H at the same time. One can see from
Fig. 36 that for one hop multicadti & 1) the intercell reuse factorii§ = 3 since
=1 andr™ =3. So, 3 slots are needed to complete the transonissi all
cells.

In this three examples the transmission within ¢bl is completed within 3
slots for the whole network givinigf = 3/2 forH = 2 andirf = 3/3 =1 forH = 3.

In the case when the protocol spends uneven timeslifferent rings this
discussion requires more details. For this disaussve introduce the following
parameters:B? - number of slots needed for protocpl to complete the
transmission from the BS to the border of the e@ltl B"* - number of slots
protocol p spends in the last ring. From Fig. 36 we can beg¢ there are three
constellations of the multiple cells transmittingnaltaneously: outer ring marked
in 1) gray, 2) dashed or 3) white. For a givBh network need$SB" " slots to
schedule the transmissions in the last ring. Basmed this we have
irff =max(3B"°,B°)/ B” and irff =1 as long as3B""<B". Therefore in a
multicell network the throughput defined in the yaous section should be further
modified by factor 1ff.

The above examples are demonstrated in Fig. 3théocluster of 7 cells for
simplicity. By using the same definition fof and condition foirf = 1 as before,
these parameters can be calculated for any network.
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Fig. 36. Intercell flooding scheduling, ([122] [OIE = EE 2012]).

4.2.4 Joint optimization of tessellation, scheduling, routing and
power control

First, we assign a utility function U which measuthe degree of satisfaction

based on the achieved flow ratbs{ fk} , the total power consumption of all

nodethPh and finally the delayB“". This delay depends on the number of
hopsH, which is a function of the radius of the subcell# also depends on the

protocol useg. So, the utility can be written as

M |Dk|Ylog( fk*p)

1
UflP! 1|:| = T oKD, o~
(FPro)=i 2 5oy

whereirf is the intercell reuse factoy,is the number of bitsyY(= 1 for protocols
A, B and C, andy = 2 for protocol D) andM refers to the number of sessions.
The optimization problem can be formulated as

p OO (58)

maximize U (f P 1)) (59)
subjectto Y " f<q pIOO” (6
¢ = dg(1+SINR P, 1)), 01007 (61)
X = <P (62)
Xf, 00 ;R OIC (63)
P.<P<P._ ; 8r<R , (6¢

where the constraint (60) means that the physegdrl can support the network
traffic if and only if the aggregated flow on ealihk is less than the capacity.
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Equation (61) defines the capacity of lihkand (62) is the definition of the
multicast throughput in sessidn Equation (63) models the relation between the
achievable multicast throughput, the data flow routing schemk and the
relation between the link capacity the link power consumptio® and the
tessellation factor. The constraints (64) define the allowed poweelsyand is
the tessellation factor. We should notice thatttpmology, scheduling and routing
are implicitly included in the protocol typel and the user availability is
included on the set of routds” .

For certain tessellation factar, we obtain the optimum value for the
transmission power that maximizes the utility. A® wre assuming that the
tessellation factor is the same for all cells, the transmission powletained is
the same for all users. We also obtain which isgpg#mum scheduling (protocol
p) to achieve the maximum multicast throughput( x“ = f*/B*?). The BS
assigns the transmission turn following schedufrand the transmission power
P that the users need to achieve that optimum thmpuig The implementation
will be elaborated in more detail in Section 4.6.

A) Multicast Gain

For fair comparisons of the different systems’ igmpkentations we assume a
constant number of user® per cell. The user density is then defined as
p, =UIS whereSis the cell area. The multicast gain is definedh@snumber of
users reached by one transmissmzulzb|‘l’b| , Wherezb|‘l‘b| is the number
of transmissions per a complete flood of the cet +‘Pb| designates the number
of ones in matrix¥® i.e. |‘I’b| =2.,%(h6).

In accordance with the definition of the multicagtin we can define the
multicast gain per session aﬁ1:|Dk|/Zb|‘I‘b| where |Dk| is the number of
destinations in sessida In this case foP, = P (58) becomes

, pOO. (65)

B) Broadcast Directivity

If all receivers are located within the clusteraingular domaing the number of
activated transmitters will be proportional #/27=1/Q, where Q, is the
broadcast directivity and (65) becomes
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2nngIog( f ”)

1 M
u(f.p,rd) F; P
M

1

1 ngmYlog( f* ”) (66)
= —————, pOO

irf = B“PP
As it can be seen from (66), larger directivitythre spatial distribution of the
users increases (improves) the utility functiorcei®, >1. This results from the
fact that all users can be reached only by actigathe transmitters in the
direction of the users. This is equivalent to sceméend to the gain that can be
achieved in the classical broadcast system if astef omnidirectional antenna a
beam forming is used with the spatially limited éobnly in the direction of the
users. The segment of the cell not covered by ihimdcast can be reused for
other sessions.

4.3 Context aware route discovery protocol

4.3.1 System model and assumptions

The route discovery protocol presented in Sectign34assumed that all required
transmitters on the route to the destination usees available. In multihop
cellular networks (MCNSs), users may be temporalhaugilable to relay the
messages due to mobility, battery power, coveragejference and density of
nodes. The nodes might also belong to differentatpes which are not willing to
cooperate and relay each other’s traffic. Estabighroutes in such network
efficiently is an important and challenging reséaigsue.

To systematically address this problem, we applgoaventional resource
reuse scheme used for cellular networks to our recade network model as
shown in Fig. 37 and Fig. 38 for resource reuseéofalc =4 and 7, respectively.
The clustering factof , equivalent to the frequency reuse factor in audail
network, partitions the network into clusters lofdifferent types of users and
enablesl” -1 possible options for rerouting/rescheduling. Tyyeet of userm’ is
determined by its position within the cluster (ilgF37 m" =1,2,...]").

The location of a usem’ is approximated (polar coordinates) as

m' (h6) = hig 0é* (67)
where the user location depends alsdon
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Fig. 37. N-cell reuse patternfor [ =4

Fig. 38. N-cell reuse patternfor [ =7.

For the motivating example presented in Fig. 39 Us assume uplink
transmission and a potential, ready to cooperedasmitter/receiver is in average
situated in the centre of those subcells. The adjacsers (adjacent subcells),
which are on the way to the destination (BS), refasy transmission towards the
receiver.
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The transmissions are scheduled in time slots @éxrb and the scheduling
cycle B, represents the number of slots needed for a paeketby user (routei)
to reach the base station BS. It is assumed tleatoitation of the users is fixed
during the scheduling cycle. As before, the acaailability of such user in a
subcell is characterized by entry 1 or O respebtive the availability matrix
A=|Ah8)|.

Based on the previous definitions, we denote tlwation of any usem’
adjacent to the base station (first cluster of sisfar the scenario presented in Fig.
39, as

m @6 )=ni (0,0 ¢ D&e73 -2) " h=2 7 (68)

m’ (0,0) is the location of BS that corresponds in thisrepke to user type
m =1.

ideal case —p,.
scenario 1 — »

unavailable relaysX

Fig. 39. N-cell reuse pattern for [ =7 and transmission schedule for m =1.

We define the minimum distance between users usiegsame resource
(subchannel) asd, =d(nf (h6), M7,4)) where m (h8) is the reference
transmitter andm'’ (7,4) a cochanel interfering user. The distance between
adjacent relay users is denoteddas= d(ni (h8), ' ( h8")). The resource reuse
factor ' can be used to express the relation betwetemdd, as follows [175]:

d, =/, =/3r . (69)
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The interference distance between the referenceivecm' (h,8") and the
cochanel interfering usem' (7,¢) is denoted byd, = d(ni (H,8"), M (7,8)). If we
apply the second cosine law to the calculatiom.ofve obtain

d =d*+ ¢’ -2d 0d tosf] |, (70)

where 8 = £(d,,d,) and g, is calculated from the geometry as presented @n Fi
38 for I =7. For the other 5 interfererg) is given by

6=6,+60. (71)

We disregard the other interferences except therference from 6 nearest
interfering nodes (1-tier). So, the interferencevpp at the position of the relay
user m (h,8") due to the interfering cochannel signal transmditley user
m' (7,¢), can be presented as

&1

|=1¥ i ,

L(m" (7,¢),n (h,0))= | = (72)

where we consider the effects of the propagatiasds, but not the effects of
fading due to the proximity@QD networR between the users. The signal to
interference noise ratio at any relaying user byngighe conventional relaying

scheme presented in the previous section is giyen b

P/d" _
N, +1,

r I

[N ¢ '
- +z[\/d2+q -2d q, 0099]

By substituting (69) into (73), we have

o [N il
S'NR““_[ +Z[\/1+r 2fcosej] ’ S

whereN, is the background noise power, adrd:\/§Dr.

SINR®" =

= (73)
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4.3.2 Nano route discovery protocol

In order to illustrate the behaviour of the NanauRoDiscovery Protocol (NRDP),
we use the example presented in Fig. 39. It israssithat in certain time instant,
users typem =1 transmit to the BS by relaying to their adjsicasers on the
way to the BS. In thédeal casewhere all users are available for relaying, the
transmission follows the route indicated-as The transmission is scheduled in
such a way that in the first slot, all users typle = 1 transmit simultaneously,
and in the next slots the relaying transmissiommikhbe scheduled in such a way
that any two transmitters can transmit simultangoifsd, = d, . In this cased,
refers to the interference distance between thereate receivem’ (h',8") and
any cochannel interfering usen(7,¢) . In a real scenario, where the users
marked asx are unavailable, an efficient route discovery pcot is needed to
guarantee a good network performance.

The route discovery protocol proposed in this secis based on the fact that
the highest interference distance is obtained whenrelaying is made between
users of the same tyde'. So, when the adjacent users that are on the minum
distanced,,, from the BS are unavailable to relay, the transiois should be
rerouted/rescheduled in such a way that all tratismsi relay to the same type of
adjacent relay available. In the case that thelabl@ relay at the minimum
available distance is located at hdp>h, the user will not reschedule its
transmission to avoid the loop in the route.

This tessellation enableS-1 possible options for rerouting/rescheduling,
and it can be easily extended to any tessellafiofter the relays are found, the
schedule is performed in the same fashion as inidbal case where the only
constraint isd, =d as explained above. We will show in Section 4.atth
although the routes found by NRDP may not be thertekt ones, the gain
obtained in the increased capacity due to the otlett interference compensates
the impact of the increased delay on the throughput

In order to define the protocol, we denote BY ={m'(h#&} the set of
candidate users to transmit in slat and D:{(h,e) denotes the set of routes to
adjacent users that receive the transmission freenm’ (h8) in slotb. Then, the
route discovery protocol can be summarized asvialo
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1. b=1

2. whileh>0

3. all usersm’ 07" initiate the transmission to adjacent usefrlgnr(hg)
4 if there is any usem’ (h &) such that there is non (h',8)00°

m (h@)
that satisfies
d(nm"(h,8", M(0,0))= d., then

5. whilej < 7
6 m‘ =(nf +1) mod 7
find which is the commeentypen' to all usersm’ 07" to
reschedule
m(h,6)=ni (H6)+ d e+ -2))
j=i+ 1
7. end
8. m = nf
9. end

10. b=b+1;, h<h
11.  DefineT® such thatm' (h8), nf (7,¢)07°if

d(n'(h,6"), M @©.¢)z d
12. end

Details on the protocol implementation are giveiseattion 4.6.

4.3.3 Performance analysis of nano route discovery protocol

The calculation of the path cost is a critical cam@nt in the route discovery and
directly affects the resource consumption in théwoek. We define the cost
function of routei to reflect the impact of the traffic load on thewer depletion
and also the overall power consumption as

h
cost = wloag,,, + wl power cqst W load, + W P lead (75)
i=1
Here, coefficientsv; andw, are the weighting factors. The first term take® in
account the maximum number of transmissions froe mede on routegiven by
load,., . In order to reduce the energy depletion of threnieal this should be

kept low. The second term gives the power costouteri ( power_ cost) as the
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sum of the overall power used for necessary trassions on routé whereP is
the users’ transmission power alwéhd represents the traffic load at nodeBy
varying weighting factorsv; andw,, we can change the relevancy of these cost
metrics during route discovery.

The capacity of the network is defined as the sum of the minimum link
capacities of the different routes

C=> . C=> _min g, (76)

where ¢, is the link capacity defined as=log(1+ SINR(P). We evaluate the
performance of the algorithm in terms of the netwdnroughputThr = C/B
whereB is the delay, and the utility that includes théhpeost as

C
U=)>U whereU =————. 77
Z ' ' B [tost (77)
ParametetJ; is the utility of usei. The aim is to choose the route that favors the
least-cost path, where the path cost metric refléet optimization criteria.

4.4  Joint optimization of cooperative diversity and spatial reuse
factor in MCNs

In this section, the model presented in the previgection is extended to address
the trade-off between cooperative diversity andtiapaeuse in MCNs. We
consider uplink transmission in a MCN as shownigsF37 and 38.

To determine the number of concurrent transmissiortie cellNs, we first
define the number of subcells per ddllas a ratio of the area of the cell and the
area of the subcell, so

N = (R/ ). (78)

This definition ofN is equivalent to the one given by (37). The numifensers
transmitting packets simultaneousl,, is determined by the inner cell cluster
sizel , defined as

r=N/N.,. (79)

We assume cooperative relaying scheme as explaingthapter 2, Section 2.4].
This scheme exploits spatial reuse and cooperdiwersity. The diversity order
is denoted by which is defined as the number of previous tragsionsheard by
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a certain intermediate user and it depends on apatuse factor. The
transmissions produced by other users situatedstantes larger than the 1-tier
are discarded as shown in Figs. 37 and 38.

By applying the definitions presented in the pregicsection (69)-(72), the
equivalent SINR with the cooperative relaying scke8INR° at a diversity
receiver is given by [176]

o _ _ L P/(h a
SINRZ = SINR ,o+..+ SINR BS_,;(H
LI N(h'd)” & () ay (80)
& T+;Ul+r—2fcosﬂJ

where¢ is the diversity order that depends on the rouéing in general is higher
for largerT .

As the BS is surrounded by 6 subcells (we are censig hexagonal cells), if
we split the cell into 6 regions as shown in Fig.ehd 38, the number of subcells
in each of those triangular regions is

N, =%N=%(R/ )’ (81)

The arrival rate of usem is denoted by, and the rate received at any user
situated in the adjacent subcells to Bfgafter relaying the information isl, [4, .

As the 6 subcells, around the base station, araciigpbottleneck, then the
average cell capacity is determined by the relag@ggability of 6 subcells as

N, 4, =C/6, (82)

where the Shannon capacity is
C*" = log(1+ SINR™( P) (83)
C* =log(1+ SINR®( P) (84)

for conventional and cooperative relaying respetyiv
The throughput per usezgionis defined as

Thr, = N, 0. (85)
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By taking into account the previous analysis, wkndethe utility as

_Thr, _ C
> P N[IPB

U] (86)

By using this utility function we can simultaneoysbptimize the system
throughput, power consumption and packet deliveeyay] as a function of
relaying rangal, which is a function of the radiusof the subcell.

In order to define: a) the optimum relaying rande which implicitly
determines the optimum maximum number of hbps,=H and, b) the spatial
reuse (which determines the maximum diversity order cooperative
transmission) in the network, in the sequel we @néghe joint optimization of
cooperative diversity and spatial reuse, as

log(1+ SINR ( P)
N, [P®
subjectto P,,<P<P,_, . (87)
¥r<R

maximize U =
P,r

whereP, andP,,a are the minimum and maximum power respectively Ris
the radius of the cell.

The optimum subcell radius defines the optimum subcell partitioning and
the spatial reuse in the network. The number ofshppghat can be used to
improve cooperative transmission (diversity ordéepends on routing through
the inner cells cluster and in general is higherhigher reuse factor . In fact,
the maximum and minimum number of hofig, and &, respectively, can be
calculated as

& =| VT | andé,, =[VF]. (88)

Other forms of tessellation with regular polygon® gossible,i.e., square,
triangle tessellation. Hexagonal tessellation hesnbused because the hexagon is
the regular polygon that minimizes the coveringhpean between the cells.
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4.5 Performance evaluation

A set of numerical results is presented in thigieado validate our models.

4.5.1 Context aware nano scale optimization of multicast MCNs

A) Network tessellation

We consider the scenario presented in Figs. 32e81Rf= 1000manda = 2. In
Figs. 40a)-d) the throughput in the network is preed with intercell flooding
coordination (ICFC) versus the number of hdpswith D= (broadcast) for
protocols A, B, C and D and different transmisspowers. We can see that for
protocols A and B, with results shown in Figs. 4@ad 40b) respectively, the
maximum network throughput depends on both, thastrassion power P and
number of hops$d. The optimum number of hops lis= 3 for as long af<0.5.
As we further increase the number of hops, theutinput is reduced due to
increased delay and increased number of mutualtgrfering transmitters.
Similarly, if the power is further increase® % 0.5), one hop becomes better
option since the level of interference due to egbespower in multihop network
is higher. On the other hand, for protocols C (@afive relaying) and D
(network coding) with results shown in Fig. 40c)dad0d), respectively the
optimum number of hops Hd = 4 for all power levels. This is because therads
interference coming from adjacent transmissions, @ we increase the number
of hops the number of transmitters is increasedhsme are more useful signals to
combine in the diversity receivers. If the numbéhops is further increased the
performance start to degrade because the througspaversely proportional to
the number of hops and improvements due to diweraie lower than the
degradations due to increased delay.

Although for cooperative relaying and network cagirnthe system
performance is better foH = 4, the largest increment of network throughput
AThr/AH is obtained again fad = 3, suggesting these values as the best choice
when it comes to trade-off between performanceamplexity. We can also see
that the highest throughput is obtained by protddolFrom Figs. 40a)-d) one
should notice that protocols C and D provide mbant3 times higher maximum
throughput (forH = 4) than protocols A and B (with maximum valueHn= 1 or
H = 3) for the same transmission power. Or equivlleprotocols C and D (for
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H = 4) can provide same throughput than protoconA B (forH = 1 orH = 3)
with ten times less power.

03 a) Protocol A 03 b) Protocol B
. P=0.1 — P=01
0.25) - P=0.251 o251 . ~%— P=025
- ‘
Qo
K=
[=2)
=1
o
£
=
X
E
3]
=z
0 0
1 2 3 4 4 5 € 1 2 3 4 4 5 6

Fig. 40 a)-d) Network throughput versus the number of hops H with D=f for
protocols A, B, C and D, respectively and different power values P, ([122] [OIEEE
2012)).

B) Channel defading

In Fig. 41 we compare optimum tessellation for Idgdzannel (no fading) and a
fading channel defined by (45b) using protocol A.the case of ideal channel,
optimal tessellation is witld = 3 while in fading channel optimal tessellatien i
obtained for fully defaded channel. In this examptehave two types of channels,
one that is defaded fot > Hy = 3 and another one fét > Hy = 6. ForHy = 6, the
potential loss in throughput due to increased nunalbdops is overcompensated
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by the improved link capacities. For more details reetwork cell design and
channel defading see Section 4.6.

Protocol A

0.16

0.14} |

0.12+ i
5 /
£ ,
S 01} / |
=] / . X
g ideal channel
F 008} | | —s -channel defaded H,=3 1
X /
g 006t ' | —s— channel defaded H,=6 ]
g ”,

0.04 + / i

0.02} / |

1 2 3 4 5 6

Fig. 41. Comparison of the throughput for both chan nel schemes for P =0.25 and
protocol A, ([122] [©IEEE 2012]).

C) Multicast Directivity

In Fig. 42 we present 4 multicast scenarios. Inheacenario, there are 6
destination users situated in different locatiorighiw the cell which results in
different broadcast directivitf,. The location of the destination users in each
scenario defines the destination matfx The routes to the destinations, as
indicated in Fig. 42, follow protocol A. These reatcan be easily obtained for
protocols B, C and D from the schemes shown in .F&f to 35. In these
scenarios we have assumed that all required tratesmion the route to the
destination are available.
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Scenario 1024 =1 Scenario 2Q24=2

Fig. 42. Multicast scenarios 1 to 4. The routes to the destination follow protocol A,
([122] [OIEEE 2012]).

In Figs. 43-46, we present the network utility obeal by (66) versus the power
for scenarios 1-4 as shown in Fig. 42, respectiaaly protocols A, B, C and D.

In Fig. 43, the network utility is shown for sceimad (Fig. 42) where the
destination users are located witlgir 360 which results inQ, =1. For this
scenario, the highest utility is obtained by praio€ and D, while protocols A
and B give lower results. Similar results are attdiin Fig. 44 for scenario 2. In
this case, the destinations are located wiihm180 so thatQ, =2 and the utility
is higher than in the previous case. In Fig. 45slvew the results corresponding
to scenario 3, withQ, =3 (destinations located withig=120 ) which gives
higher utility. In this case, protocol B needs mtwmsmitters than protocol A to
reach the destinations and also one more slot phatocol A, so that the lowest
utility is obtained in this case by protocol B.

Finally, in Fig. 46 the network utility is shownrfscenario 4 where the users
are located in the clustgr=90 . The highest utility is obtained again for protbco
C. In this case the performance obtained by prdtbBcis considerably degraded
due to the additional number of transmitters neeoldg for the network coding
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function. We should notice that in all these sc&sathe maximum network
utility is obtained forP[[0.15,0.25].

0.3~ b

02  —

R IRX RIOUOAX KRR

Network Utility
o

0.1 Protolcol A | |
—— Protocol B

0.2y | e Protocol C | -
—— Protocol D

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 43. Network utility obtained by (66) versus P for the scenario 1 presented in Fig.
42, and Protocols A,B,C and D, ([122] [©IEEE 2012)).

Scenario 2, Qd=2
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Fig. 44. Network utility obtained by (66) versus P for the scenario 2 presented in Fig.
42, and Protocols A, B, C and D, ([122] [©IEEE 2012])
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Network Utility

Protocol A
——— Protocol B
Protocol C
—— - Protocol D

Fig. 45. Network utility obtained by (66) versus P for the scenario 3 presented in Fig.

42, and Protocols A, B, C and D, ([122] [OIEEE 2012])

Scenario 4, Qd:4
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Fig. 46. Network utility obtained by (66) versus P for the scenario 4 presented in Fig.

42, and Protocols A, B, C and D, ([122] [©IEEE 2012])

147



In Fig. 47 we present again the network utilityaibed by (66) for a multisession
scenario (scenario 5) consisting of four simultareesessions where each session
corresponds to one of the four scenarios preseirielig. 42. The largest
increment in the performance is obtained for lowuga of power and foP > 0.3
there is no further significant improvement. Thensiey of destination users in
this case is quite high (24 destinations) and we s2e that the best result is
obtained by protocol D. The largest difference e the protocols is for low
power. One should be aware of the log scale fax flates which means that for
e.g. P=0.1, protocol D offers two orders of magnitudeger flow rates than
protocol A.

Scenario 5, del

0 ; .
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_35 -
Protocol A
4 ——— Protocol B ||
45y | mm=— Protocol C |
—— Protocol D
-5 I I I I I I T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 47. Network utility obtained by (66) versus P for the multisession scenario
(scenario 5) consisting of 4 sessions where each se  ssion corresponds to one of the
four scenarios presented in Fig. 42, ([122] [OIEEE 20 12]).

4.5.2 Nano route discovery protocol

Different scenarios, with different sets wfiavailable usersas presented in Table
4, are simulated to show the performance of the RRIe tessellation presented
in Fig. 39 is used witliR = 100m, r = 15mand propagation logefficienta = 3.

We assume that users typg = 1 are transmitting and the rest of the available

148



terminals act as relays. This can be easily madiifie any other user typel or
their combination. In each of these scenarios #echeduling has been done
through different users typa’ = 2, 3, ..., 7 to cover all possible options.

Scenario 1 corresponds to Fig. 39 where the urabailusers are marked
with x. We compare these results for NRDP with another digcovery protocols
referred to as Shortest Available Path Routing (RABnd Load Aware Routing
(LAR). In SAPR, the protocol finds the shortest italale route for rescheduling
irrespective of the interference level that thigick produces in the network. In
LAR protocol, traffic load and power depletion aad&en into account in the route
discovery, so the protocol finds the route in suchwvay that the traffic is
uniformly distributed through the whole network.

Table 4.
scenario unavailable users rescheduling
_ . m*(2,0),nf (2,30 ),nd (2,120 )n§ (2,150
1 (Fo.39 P (1,210 )7 (2,120 )nf (2,300 ) m -2
e m*(2,0),n? (1,30 ),nf (2,60 )nf (3,110 ]
2 M (2,120 )7 (2,210 )nf (2,270) m -3
_[mP(2,0),n? (3,60 )T (2,90 )nf (3,110 ) ]
3 P m?(2,0 ),nt (2,240 )nf (1,270 )ni (2,330 m -7

4 All users typem’ =2 and 3 m -5
- m*(2,30 ),n7 (2,120 )n? (3,110 )nd (2,180
m’ (2,210 ),? (2,270 )nd (1,330 )i (2,33 MM -6

me(2,0),nf (2,60 ),nf (3,50 )i (2,120
6 z={nf(3,110 ),nf (2,210 )M (3,270), a4
m?(2,270 ),n? (2,330 )pd (1,330 )

In Fig. 48 and 49 the capacity and throughput aesgnted respectively for
the ideal case where all users are available fay.r&hose results are compared
with more realistic scenarios where different setusers are not available for
relaying as shown in Table 4. The performance aethby NRDP is compared to
SAPR and LAR protocols. In nonideal case, the hsgleapacity and throughput
are obtained by NRDP. By SAPR, the users experigheeshortest delay per
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route but on the other hand there is no contraheftraffic distribution through

the network, so there

is more

interference betwesljacent links and

consequently the capacity is lower. The capacittpioled by LAR is larger than
with SAPR and although more slots are needed toptatm the transmission with
LAR, the gain obtained in distributing the traffit some scenarios compensates
the delay as we can see in Fig. 49.

10+ b
9.5F
—#4— ideal case
2 9t NRDP
Q
& | L] e PR SAPR
3851
8 LAR
X
— 8 L |
E
275} 1
7, i
6.5 B
1 2 3 . 5 6
scenario
Fig. 48. Capacity versus the scenario as described in Table 4.
2
1.8} 8
- —
316 .
< N
[=))
> T,
g | e T
Flag ]
............ —&—ideal case | et
’ NRDP
1.2 7| e SAPR 7
LAR
l 1 1 1 1
1 2 3scenario 4 s €
Fig. 49.Throughput versus the scenario as described in Table 4.
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In Fig. 50 we present the utility withw; =1 and w, =0 to measure the
performance of our algorithm in terms of the tmaffbad. We can see that with
NRDP we obtained better results in most of the ades. LAR outperforms

SAPR for as long as there are users availableltotisp traffic in an efficient way.
In scenario 6, the routes found were not able stribute the traffic uniformly

due to the lack of users available in certain arddke cell.

x 10°

10

9 —4— ideal case
NRDP

3scenario4

Fig. 50. Utility with  w; = 1, w, = 0 versus the scenario as described in Table 4.

In Fig. 51 the utility is presented for the cage= 0 andw, = 1, to measure the
overall power cost of the proposed protocol. Agaacan see that the best results
are obtained by NRDP. In most of the cases SAPRopes better than LAR
because the routes found are shorter, so less weeesneeded for relaying and
thus, there is less overall power consumption.
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Fig. 51. Utility with  w; = 0, w, = 1 versus the scenario as described in Table 4.

4.5.3 Joint optimization of cooperative diversity and spatial reuse
factor in MCNs

In this subsection, simulation results are preskmteshow the performance of
this optimization problem foR = 100m,« = 3 and different values of the cell
reuse factor . In Fig. 52 we show the utility defined as in (8&¥sus the radius
of the subcellr, for different transmission powers amd=4. The reuse scheme
corresponding to factdr =4 is represented in Fig. 37. One can see that ikexe
clear optimum value for the format of cell partiting in terms of parameter As
expected, if for the given power the radius of shibcell is too low, there will be a
high level of interference and utility will be lodue to low link capacity. On the
other hand ifr is too high, the propagation losses for the ussifghal will be
excessive and although the interference levelustpthe received signal level is
lower and the capacity will be reduced resultingpiver utility.
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-4 r=4

Utility

Fig. 52. Utility versus r for different power values, [ =4 and conventional relaying
scheme, ([124] [OIEEE 2010]).

In general, for lower power the utility peak is héy since the utility function is
inversely proportional to power. For a given callliusR, parameter is related to

the maximum number of hops in the cell. Figs. 53a and 53b present the results
for utility function versudH for the case of conventional and cooperative iatay
respectively. One can see that in the case of ¢catipe relaying the utility is
higher which means that with less power higher capaan be achieved. This is

a direct consequence of signal accumulation in ecatjve diversity. Fig. 54a and
54b show that the capacity is higher for coopegatigaying and is increased as
the number of hops is increased.
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r=4

Utility

with conventional

r=4

power values and

Fig. 53a. Utility versus H for different
relaying, ([124] [©IEEE 2010]).

=4, Diversity order=2

Utility

" =4 and with cooperative

H for different power values,

Fig. 53b. Utility versus
relaying, ([124] [©OIEEE 2010]).
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r=4

Capacity

Fig. 54a. Capacity versus r for different power values, =4 and conventional

relaying scheme, ([124] [OIEEE 2010]).

=4, Diversity order=2
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Fig. 54b. Capacity versus H for different power values, [ =4 and cooperative relaying

scheme, ([124] [OIEEE 2010]).
In Figs. 55, 56a, 56b, 57a and 57b, we presensdnee set of results fdr=7.
The scenario corresponding to this reuse factprasented in Fig. 38.
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In general the shape of the curves remains the darh¢he values of the
utility and capacity are now higher than in the ecaghenl” =4. One should
notice that in this case the maximum diversity olide = 3 which contributes to

better results.
) r=7
1.2 . :

P=5

P=15
N
— - P=35
—e— P=45

0.81

Utility

[ =7 and conventional relaying

r for different power values,

Fig. 55. Utility versus
scheme, ([124] [OIEEE 2010]).

r=7

x10°

Utility

Fig. 56a. Utility versus H for different power values and [ =7 with conventional
relaying, ([124] [©OIEEE 2010]).
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Fig. 56b. Utility versus H for different power values and [ =7 with cooperative

relaying, ([124] [©IEEE 2010]).

Capacity

[[=7 and conventional

r for different power values,

Fig. 57a. Capacity versus
relaying scheme, ([124] [©IEEE 2010]).
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I'=7, Diversity order 3

Capacity

Fig. 57b. Capacity versus H for different power values, [ =7 and cooperative relaying
scheme, ([124] [OIEEE 2010]).

Figs. 58a and 58b show the utility verddsfor conventional and cooperative
relaying, respectively fof = 12. In Fig. 59 the capacity is shown for the edin
Figs. 60a, 60b and Fig. 61 present the utility amagbacity forT' = 19. The
schemes of the N-cell reuse patterns for theseeratsors can be found in [175].

x 10° r=12
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Fig. 58a. Utility versus H for different power values and [ =12 with conventional
relaying, ([124] [©OIEEE 2010]).
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Fig. 61. Capacity versus r for different power valu es, [ =19 and conventional
relaying scheme, ([124] [OIEEE 2010]).

In general, one can see from Fig. 52 to Fig. 6@t thtility function for
cooperative relaying is higher than for conventlomdaying. Also, it should be
noted that the peak of the utility for conventionallaying is uniformly increased
in the range 8 x 1§ 10° 1.2 x 1%, 1.3 x 1G° asT is increased in the range 4, 7,
12, 19 respectively. For the same rangd ofthe peak of the utility function for
cooperative relaying is uniformly increased in thage 1G, 1.4 x 1C°, 1.8 x 10,
2.1 x 10% which is approximately 50% higher than in the caseonventional
relaying. The optimum number of hops is highertfyher " .

Finally, Fig. 62 shows the number of concurrennsraissions (level of
spatial reuse in the network) fér = 4, 7, 12 and 19 versusWe can see that as
we increase the radius of the inner cellshe number of inner partitiori$ and,
consequently the number of concurrent transmisdiQrase decreased.
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[OIEEE 2010)).

4.6 Implementation

4.6.1 Context aware nano scale optimization of multicast MCNs

The objective of this optimization is to presenttiojum nano scale network
model of MCNs and suggest corresponding transmispiotocols for multicast
channel. The suggested solutions still leave aetaf practical implementation
options for competing for proprietary rights fortpntial industry manufacturers.
Even so, as illustrations in this subsection we ica some possible
implementation directions and their limitations.

A) Control data collection/distribution

The user position and willingness to cooperate @nmmunicated on the
conventional uplink signaling (control) channel.sBd on this information base
station determines the slot inde¥*( %2, ¥°,...) for each user. The index of the
current valid protocol (A, B, C or D) and slot inddor transmission are
communicated to the user on the downlink convemtfiogsignaling (control)

channel. The potential transmitter/receiver in ti@no cell is chosen to be the
most static and the most centric (closest to theereof the nano cell) user. Nano
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scale network with a specific uplink/downlink siding channel, implemented

separately from the data channel in the form ofglginhop transmission, is

referred to asnSyNet (Inter System Networkinghe name indicates the fact that
the overall nano network is implemented by integgttwo different systems:

single hop network for control channel and multihegawork for data channel as
already explained in [Section 3.6, Chapter 3].

B) Updating rate/mobility

The control data updating rate is equal to the dcaat cycleBT, whereB is the
maximum number of slots needed to reach the celidroandT, is the relaying
delay between two nodes.

The length of the message, transmitted in one slopuld be designed so that
the updating rate is high enough to compensate lityobin other words the
change in the position due to mobility, characediby the terminal velocity,
should be less than the nano cell radiuse. vBI, <r.

C) Signaling overhead

In SI MAC on the downlink, 3 bits are needed tomit its slot index to the user
(for the optimumH obtained,H = 3, we need 4, 5 or 6 slots depending if the
protocol used is A, B or C respectively) and 2 bitsransmit protocol index (4
different protocols). So less than a byte (5 < 8)smnaling information per
update is needed.

On the uplink the position is defined by the hopgah and the angle of the
cell. Since the BS has no direct contact with alittinals, positioning can be
calculated in the terminal by using separate, bedike signals transmitted from
the BS. The coverage of these transmissions dependshe type of the
positioning algorithms. For conventional triangidatthe terminal should be able
to see at least three beacons. This will requighéri power but the updating rate
is rather high since the beacon is available &lttine and mobility is no limiting
factor. Another option is to use a beam formertfa beacon and to transmit the
beacon withgy different angles. Each transmission will carry enégntly the
beacon (angle) index and strongest beacon willcatdi the angular position of
the terminal. The distance (paramelbgrcan be measured in the terminal if the
beacon is modulated by the pseudorandom sequertus. approach would
require lower transmission power from the beacorntle beam rotation time will
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be restricting factor for the location updatingeraind so the acceptable mobility
rate. Regarding the overhead, fdr= 3, we need 2 bits to transmit valuehof H
and 5 bits to transmifs =24 <2 values of the angle which sums up to
2 +5=7<8=1byte of information. One additibbhét can be used to indicate
readiness/not readiness to cooperate (1/0) so Tthatl = 8bits = 1byte of
overhead is sufficient to transmit all necessafgrimation. So the bandwidth of
the control channel on the uplink would beBIZ, bytes = 8B, bits/s.

If InSyNetarchitecture is used then these functions can@eimented on
the control signals directly since the control ptarvers the entire cell in a single
hop.

An alternative solution for positioning would be &RBystem. In this case
there would be no need for beacons x¥)(coordinates obtained in the terminal
should be passed to the BS with more precisions Mbuld require more
overhead bits. This increased overhead may be neduced by more
sophisticated messaging where the completg) (information would be
transmitted at the beginningy(y,) of messaging and in the sequel only the
changes in the positionAx,,Ay,) would be sent to the base station.
Dimensioning of the message in this case shouldttzéghtforward engineering
work. Using these two type of messaging, resuliing reduced overhead, would
handle higher mobility in the system.

D) Channel defading and cell design

Fig. 41 illustrates that the best system performeaiscobtained for the complete
channel defading. The channel defading distadgg is the given channel
parameter and cannot be changed. It depends omagatipn conditions and
represents the longest distance that the signabeamansmitted to on which the
random component of the channel transfer functemm loe neglected with respect
to its steady component. For the cell geometry used far we have
dep =d, =J3r and Ho can be obtained by (38). For a given channel,
characterized bylcp, and given technology that includes conventioraleivers
for which optimumHg = 3 or diversity receivers for whicHy = 4, we can find
optimum cell radiusR. If the cell is given in advance, characterized ®wand
given the channel witbcp, we can findH,.
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E) Other protocols

The conventional multicast/broadcast protocolséhutar networks use one hop
transmissions H = 1) and can be compared directly with our appno#ar
optimumH on Figs. 40a)-d). The superiority of optimum mhup schemes is
evident.

Recently there has been works on opportunistic dwast and multicast
schemes [177]. In this family two specific protacstand outthe worst case user
andthe best case userotocol.

The worst case user protocol adjusts the broadest to the receiving
capabilities of the user with the worst channel akhcan be approximated with
our protocols foH = 1 which is inferior compared with the optimutinprotocol.

The best user protocol adjusts the broadcast mtthé channel receiver
capability of the user with the best channel. Ttage is still lower of the rate
achievable in multihop network with defaded channéh addition the
opportunistic protocol assumes that all users duadbility will have a chance to
become the best user in acceptably short periduingf. This cannot be controlled
by the network and depends solely on the user ritybil

F) Node availability/Route discovery protocol modifications

The results presented in this section are basatieassumption that all required
transmitters on the route to the destination uaszsavailable. There are a number
of options how the network can deal with the siatwhere this assumption
does not hold and modify the route discovery protoc

a) First hopping distance can be increased (low®rfor all users that would
accordingly degrade the system performance as siowrevious figures.

b) The hopping distance can be changed only for aiggorf users that will
degrade performance less and result into an edutvalsystem
throughput/utility corresponding to some reducedintegerH = p;H; + p,H,.
The control of such a network would be also sigaifitty more complicated.

c) Another possibility is to do rerouting of the breadt, away from the
directions with no terminal available without chamgthe hopping distance
but increasing the number of hoHs This will increase the time needed for
the broadcast to reach the boarder of the cell.
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d) In the case of protocol C using transmit diversipnavailability of a node
will reduce signal to noise ratio (capacity) ofirzkldue to reduced number of
combined useful signals but the route can be miaietawithout presence of
the node.

e) In the case of protocol D we can use either renguif the node is not
available or accept the reduced capacity and Keepgdame route to simplified
control of the network. In this case the capacityl We reduced due to
reduced signal to noise ratio in the receiver diitgrcombiner, but also due
to the fact that network decoding might not be gadeswhich will for itself
reduce the capacity by factor %.

Depending on the compromise between the performdageadation and
the system complexity the route discovery protocady be extended
(modified accordingly).

f) A nano route discovery protocol is presented inti8ac4.3 to deal with this
situation. The implementations details are givelowe

4.6.2 Nano route discovery protocol

To avoid the excessive signaling and preserve thargages of the multihop
network, the signaling plan is designed as conweeali single hop cellular
network and data plan as multihop cellular netwaskexplained in the previous
section. The route discovery protocol is operatgdhie BS based on the terminal
location information. The availability for relayingnd the user location is
calculated in the same fashion as for the multicaste. In this case, the user
location also depends dn and the location of any user typé can be easily
obtained from (67) and (68). Based on the userailability for relaying, the BS
will send to the candidate transmiters which is tiegt relaying user available as
defined by NRDP. Once all transmiters are one hepyafrom BS (first cluster of
users), the cell partitioning enables the use dpacific Round Robin MAC
protocol within the cluster of subcells making the/stem feasible for
implementation.
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4.6.3 Joint optimization of cooperative diversity and spatial reuse
factor in MCNs

In practical implementation, for a given cell gedrye(radiusR) and type of
terminals (powelP), the optimum value of parameter(or H) can be obtained
from the optimization process (see numerical rasiit Section 4.5). For the
network operation, users should be frame (6 slsysichronized and aware of
their turn (slot) in the Round Robin schedulingisTban be controlled either by
the base station or in a distributive way by thebiteousers. In both cases the
controller should be aware of the transmitting ysasition in the cell.

4.7 Chapter summary

We have presented a nano scale model for highutsoloptimization of MCNs.
Four different protocols are developed and analypedhe multicast scenario by
using different relaying schemes and network codifsgspatial interleaving Sl
MAC protocol is introduced for context aware iniekl interference management.
The directed flooding routing protocol (DFRP) anter flooding network coding
(IFNC) are proposed for such network model. By atijig the radius of the
subcellr we obtain different hopping ranges which directffects the throughput,
power consumption and interference. Wittas the optimization parameter, we
jointly optimize scheduling, routing and power cmhtto obtain the optimum
trade-off between throughput, delay and power comion in multicast cellular
networks. The additional context awareness is dbarized by two parameters:
the sink location matri® and the relay availability matriA. The major results
of the chapter can be summarized as follows:

a) In the broadcast casB € B): For conventional relaying in nonfading channel
the optimum number of hops to reach the borderhef ¢ell isH = 3; For
cooperative relaying and network coding the systeerformance is
significantly better. The maximum throughput foesle protocols is obtained
for H = 4. However the largest increment of network tigloputoThr/oH is
obtained again foH = 3, suggesting this value as the best choice when
comes to trade-off between performance and complexi

b) In the multicast case, the best performance is ifda by protocol C
(cooperative relaying) or protocol D (network coglindepending on the
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c)

d)
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density of destination users in the network. Theatmns of the destination
users have significant impact on the performance.

The nano scale channel model (NSCM) gives an insigto how the
transformation of the fading process, resultingrfrimcreasing the number of
hops in the cell, impacts the system performanceak shown that the best
system performance is obtained with the number opsh needed to
completely transform fading channel into a non fadichannel. This
particular choice of is referred to as channel defading tessellaticatwerk
design procedure for channel defading is also e&tbd.

The nano scale network model is further extendehd¢tude a conventional
resource reuse scheme used for cellular networki®sgn a new concept of
route discovery protocols aware of the mutual impdall routes in the cell.
The novel nano route discovery protocol (NRDP) qarfs
rerouting/rescheduling when there are users tenigotnavailable for
relaying. NRDP provides results close to the ideale (all users available for
relaying) in terms of network capacity and throughpAlso, NRDP is the
most efficient in terms of traffic load, power comsption and delay.

We provide an analysis of optimum hopping rangeMi@Ns and we have
optimized the trade-off between cooperative digrsind spatial reuse to
maximize the throughput in the network. The inceshsumber of concurrent
transmissions, enabled by spatial cell partitionimgcreases the system
throughput but also increases the level of interiee that reduces the
capacity of simultaneously used links in the netwdrhe radius of subcells
determines the relaying hop range and the amoummteflink interference.
All transmissions are recorded by the neighborixeivers and combined in
a cooperative diversity transmission. The increasgmber of hops increases
the diversity orderf but at the same time reduces the throughput per us
since the network capacity has to be shared betteemcreased number of
users. By introducing a utility function as a ratibthe network throughput
and overall power consumption we can simultaneousiyimize these
parameters and the packet delivery delay, as giumof relaying range. The
optimum relaying range defines the optimum subgalititioning and the
spatial reuse in the network. The main results lef &nalysis show the
following:

— There is a clear optimum value for the format df partitioning in terms
of inner cell radius.



In general, for lower power the utility peak is hé& since the utility
function is inversely proportional to power consuiop.

In the case of cooperative relaying, the utilitthigher which means that
with less power higher capacity can be achieved.

The capacity is higher for cooperative relaying amdncreased as the
number of hops is increased. Higher capacity isaioled for higher
power.

The peak of the utility is uniformly increased &® tcluster factof” is
increased. The optimum number of hops is highehigherT .
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5 Enhancing multicast performance in MCNs
to support multimedia applications

In this chapter, we continue with our study of raast in MCNs and extend it to
support multimedia applications (transmission afyMarge files). As the network
load in this type of applications requires speaitiéntion, “store-carry-forward”
paradigm has been suggested to provide load balgmeiMCNs at the expense
of higher message delivery delay [104]. Since nehisers are equipped with
different interfaces, cellular service providersynodfload big multimedia files to
an auxiliary network to alleviate bottlenecks aaduce tranmission costs. “Store-
carry-forward” routing was originally conceived aa way to provide
communication inDelay Tolerant Network§DTN). We assume that a DTN is
used as auxiliary network and new algorithms aresg@nted to improve the
performance of DTN multicast in terms of averagdiveey delay, and energy
efficiency.

The most common “store-carry-forward” routing praabis epidemic routing.
Analogous to disease spreading, a user receivipgcket buffers and carries that
packet as it movesnfectingnew users that it encounters. The user possetsing
packet is referred to asfecteduser. Once the infected node meets the destination,
the network initiates the so called “infection reepy process” in order to remove
the delivered packet from the rest of the node® pdcket is deleted for efficient
buffer and bandwidth utilization. On the other harad node retains “packet
delivered” information in the form of amnti-packetthat prevents it from
accepting another copy of the same packet. HaasSamall [178] suggest the
following recovery schemes for unicast applications

— immune:An anti-packet is created at a node only afteréeta the destination.

— immune_TXA node carrying an anti-packet transmits it to &deotnode that
is carrying the associated obsolete packet tohat hode know of packet
delivery.

— vaccine: A node carrying an anti-packet forwards it to ather nodes
including uninfected nodes.

The conventional infection recovery process stastsoon as the packet reaches
the first destination which in the case of multicgesssion may reduce the chances
that the rest of the destination nodes receive migssage. So, in a multicast
application there is a need to delay the initidlaa of this recovery process in

171



order to allow more efficient delivery of the infoation to all intended
destinations.

The main focus of the work presented in this chajg¢o analytically study
the effect of different recovery schemes on thdqoerance of multicast DTN. In
addition, new adaptive recovery schemes are deedlophere the infection
recovery process is adjusted to the multicastitralit general for a multicast with
more destinations the initialization of the recovgrocess will be postponed
longer. The performance of these new algorithmsoispared to a number of
unicast recovery schemes modified for multicast DTWhich also represents a
contribution of this chapter.

Although epidemic routing achieves the highestwagl probability with the
least delays, it wastes much energy in excessi@iahtions. Variations of
epidemic routing have been proposed [179] to exptlois trade-off between
delivery delay and resource consumption. In [18@ran of network coding and
epidemic routing for unicast transmission in DTNaswsuggested. In general it is
known that in conventional multicast/broadcast meks, network coding
improves the performance by taking advantage ofréuindancy of packets in
the network and combining them by XOR operationuoss the number of new
transmissions [147]. The efficiency of network auglin multicast DTN was also
showed by [181] through simulations for Spray anditVforwarding [179]. So,
we include in our model network coding too combingth epidemic routing and
extend the study to the network behavior in mu#ticacenario. The resulting
routing protocol will be referred to as Polymorphpidemic Routing (PER).

The analytical framework considered is based onirarg Differential
Equations (ODEs) as a fluid limit of Markovian md&l§¢182]. Our analytical
study is able to provide insights for future desigf recovery process for any
routing protocol in multicast DTN.

The performance measures considered include thiwedgldelay to the
destinations, recovery delay from the infectiongass and energy efficiency in
terms of the number of packet copies made untitithe of delivery and recovery.
Numerical analysis shows the outstanding perforreaot our new adaptive
recovery schemes when cooperative and non-cooperd#stinations are used.
By adaptiveimmune immune_TXand vaccine schemes the delivery delay is
reduced up to 3 times compared to the conventicthlemes. By adaptive
timeout recovery scheme, the reduction in the @ejidelay can reach up to 5
times at the expense of larger recovery delay.r€balts are closely related to the
number of destinations.
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The rest of this chapter is organized as follows.o¥erview and background
of multicast in DTN is given in Section 5.1. Secti6.2 describes the system
model, traffic model and Polymorphic Epidemic Ragti(PER). In Section 5.3,
we present our adaptive infection recovery schemesg with performance
analysis in Section 5.4. Numerical results are shawSection 5.5. Finally, we
conclude this chapter in Section 5.6. A speciaiatige algorithm, developed to
solve the differential nonlinear system of equadiofDiNSE-algorithm) for
numerical solution of the problem, is presentethmAppendix D.

5.1 Overview and background

Delay Tolerant Networks (DTN) [179], in their basiform, provide
communication service in highly challenging sceosrivhere only intermittent
connectivity exists, and it is difficult to maintai paths between any
communication source and destination pair. Exampfesuch networks include
sparse sensor networks for wildlife tracking anditast monitoring [178],[183],
vehicular ad hoc networks for road safety and consiak applications [184],
mobile social [185], military [186], and deep-spastrplanetary networks [187].
In those scenarios, there has been a growing sité@remulticast DTN protocols
that enable the distribution of data to multiplecawers [187]-[189],i.e.,
providing update information such as news, weatheports, road, traffic
congestion, stock prices to a group of users ardisaster recovery scenes where
it is particularly essential to distribute criticahformation to rescue teams.
Traditional ad hoc routing protocols, which rely tre end-to-end paths [190],
may fail to work for such networks. In future wiess communication systems
low exposure networks will be more and more ativacand conventional cellular
and ad hoc networks may integrate concepts witkerimttent terminal
connectivity for delay tolerant but still delay ¢oolled traffic. In such networks
short distance (low power) transmissions will beduisvhenever possible avoiding
the long distance transmissions requiring high poamd high exposure of the
user to the radiation. As a result, researcherpge® a new routing mechanism
called store—carry—forward routing [191] to provic@mmunication.

For a detailed survey on the applications of sttaery-forward paradigm for
load balancing and multicast support in celluladtinast applications, the reader
is refered to [Section 1.2.5, Chapter 1].

Multicast in DTN is a fundamentally different andrld problem compared to
multicast in Ad Hoc networks due to the frequergcdinnections. Zhaet al.
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[192] developed several multicast algorithms witfiedent strategies depending
on the availability of knowledge about network ttgmy and group membership.
They have shown that by using broadcast epidemiting (BER) they achieve
the same delivery ratio under different amountsawvhilable knowledge. We
believe that including a learning process in digraw the topology drastically
increases the overhead as the number of hops seseheeet al.[193] study the
scalability property of DTN multicast routing andopose RelayCastscheme
based on 2-hop forwarding. This scheme does notptairly exploit the
characteristic of opportunistic forwarding, sinbere is a single relay node for a
given packet. An improved scheme, RelayCast withitighst Receiver Relay
(RelayCast-MRR) allows that each relay node can alkawodes for relaying.
However, they have shown that RelayCast-MRR caimptove the delay except
in the broadcast case. Gabal.[194] study the multicast problem from the social
network perspective. They formulate the relay gedes for multicast as a unified
knapsack problem and demonstrate the efficiencyhefproposed schemes by
simulation results. The main drawback of this schemthe low rate of node
contacts in DTN which results into very high dehyelelays.

Epidemic Multicast Routing (EMR) applies epidemigaithm [195] to the
multicast communication of DTN. Due to the floodimgechanism, the efficiency
of the algorithm will be poor unless some improvetsecan be done to solve the
resource problem. In [181] MIDTONE protocol is posed based on Spray and
Wait fowarding with network coding. The efficienayf network coding was
shown through simulations. They also proposed soawevery schemes where
the users keep a list of destinations that haveived the packets. Our recovery
schemes guarantee the delivery without any knovdedfneither the contact
information nor packet delivery. As users in DTNynfaave limited memory and
computational capabilities, our recovery schemelsice the overhead just to the
exchange of anti-packets.

The analytical models and feasibility of the systanplementation for our
proposed schemes presented in the sequel repagaificant contribution to the
concept of multicast DTN networks paradigm.

5.2 System model and assumptions

In this section, we introduce the traffic modelyiesv the concept of epidemic
routing and, define Polymorphic Epidemic Routing B for multicast DTN.
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5.2.1 Traffic model

We study a network consisting Nf + 1 wireless mobile nodes where there is one
source and a set of relaying nod’efs(|/\/| =N ) moving within a constrained area
according to a random mobility model. We consideultioast communication
from the source node to a set of destinati@hsl N/ where the destinations can
also forward the packet to each other which is rrefe to as Destination
Cooperative Multicast (DCM). Comments on the ca$eDestination Non-
Cooperative Multicast (DNCM) will be provided in 8®n 5.3. Since the density
of nodes is sparse in DTN environment, two nodes @anmunicate only when
they come within the transmission range of eachemtiwhich means a
communication opportunity to forward packets toteather. As the node density
is low, we ignore the interference among nodes.

To facilitate the analysis without loss of gendygalive assume that when two
nodes meet, the transmission opportunity is onfficsent to completely transmit
one data packet per flow. This assumption is jestifoy choosing the proper
packet length (maximum packet length allowed by thedezvous time) and
allowing only one packet transmission per flow per nadlering the nodes’
rendezvous. It is straightforward to extend thistihe general case where an
arbitrary number of packets can be delivered wHen dpportunity arises. We
start by considering that the nodes buffer can meoodate all packets that they
receive.

We assume that the time between two consecutivensmessions
opportunities (when nodes meet) follows an expaaédtstribution with a raté..
This model has been widely adopted in the receatdiure, e.g., in [196], [197]
and verified by both theoretical analysis [198] a@andmany practical systems
[199]. It also enables the theoretical analysisubing continuous Markov model
[182].

5.2.2 Polymorphic Epidemic Routing

In general it is known that in conventional mulst@roadcast networks, network
coding improves the performance of the network [LA7Zorm of network coding
and epidemic routinpr unicasttransmission in DTN networks was suggested in
[180]. So, we include in our model network codig tand extend the study to
the network behavior imulticastscenario. In order to be able to have a tractable
model for the analysis of the infection recoveriesmes we introduce a number
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of modifications into the concept of epidemic rogtiwhich represent a part of
the contributions of this chapter. We assume ths#teof destination® requests
a common packet from the multicast source. To keep the model simple
consider the case where the multicast source imfbet nodes with two packeds
andb (f = a,b) and their combinatiort = all b where O stands foiXOR operation
on binary data stream. By analogy between epiderpiting and disease
spreading, infection with two different packets d€ats) is referred to as
polymorphic infectiorandDNA combination of these agertss referred to as the
mutation. The incentive behind this approach ist thaw every rendezvous
between the two users increases the probability ahaseful transmission will
take place. Usex (infected with agent) will transmit a useful packet if it meets
either useb (sincec=al b) or usera (sincec=all b). The infection process is
illustrated in details in Fig. 63, where the newvelget received by the each node is
underlined.

a <> b a <« c=allb
v v
f=a, b f=ab f=ab f=a, b
<+—»{c=allk <>
v v
f=a,b f=ab f=ab f

Fig. 63. Polymorphic infection process.

To modelPolymorphic Epidemic Routinge will use the following notation. We
denote byA(t), B(t), C(t), and F(t) the number of users infected by agemntsb,
c=allb and f=ab respectively in time t. We denote by
I(t) = A(t) + B(t) + C(t) + F(t) the overall number of infected users in the nekwor

We model the infection rate for useaasb, c andf by using ODEs as a fluid
limit of the Markovian model [182]. Hence, we have

X'(t) =/1(X(t)+é FO)N=1(9) = A X(H(I(1) = X(D) (89)

for XO{AB,G, and
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F'(t) = AAM(B() + C()) + AB(I( A Y+ A1)
+AC )AL BOFAFE( X O F() -

In (89) an increment iX(t), denoted aX’(t) for X D{ A B, C} , is proportional to
two terms. The first term represents the rate dtkvh node infected by packet
meets a non infected node plus the rate that nofeeted byf meets a non
infected node when it randomly, with probability3,1£hooses one of the three
infection options: packed, b or c. It cannot infect byf since this would require
transmission of two packets. The second term reptssthe event that we lose
packetx (negative increment) which happens when it becofriesd meets any
other packet except

An increment inF(t) in (90), denoted aB’ (1), is obtained ifa meetsh, when
they exchange the packets and two riesvwill be created. This occurs with rate
proportional toA(t)B(t) + B(t)A(t) (first part of the first and the second term in
(90)) and it will further propagate randomly onetbh& three options specified
above. On the other hand fifmeetsa, b or ¢ only one extrd will be created,
which is included in the last term of (90). Simijapther terms in (90) can be
interpreted. An algorithm for iterative solution ¢89) and (90) is given in
Appendix D for the initial condition&(0) =B(0) =C(0) = 1 and~(0) = 0.

After introducing the scenario and the routing aiidpon for multicast DTN,
in the sequel we model the infection of the desiimausers and present the new
infection recovery schemes.

(90)

5.3 Recovery schemes for multicast DTN

In this section, we first extend the most commarorery schemes applied so far
to unicast to multicast and Polymorphic EpidemicuRRng (PER) by modifying
(89) and (90) to include the recovery process fient schemes. Later on, we
present the new adaptive recovery schemes.

5.3.1 Conventional recovery schemes applied to multicast DTN

Once a node delivers a packet to the destinatiaiauld delete the copy from its
buffer both to save storage space, and to prevennbde from infecting other
nodes. But if the node does not store any inforomatido keep itself from receiving
the packet againi.€., becomes susceptible to the packet), a packet dvoul
generally be copied, and the infection would nedierout. In order to prevent a
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node from being infected by a packet multiple tipees anti-packet can be stored
in the node when the node delivers a packet taddstination. Reference [200]
refers to this scheme @ammunescheme. Witimmunescheme, a node stores a
packet copy in the buffer until it meets the dediion, often long after the first
copy of the packet is delivered. A more aggressigproach to delete obsolete
copies is to propagate the anti-packets among tldesr The anti-packet can be
propagated (transmitted_TX) only to those infeatedes immune TX scheme),
or also to susceptible nodestcinescheme).

Similar to our earlier analysis in Section 5.2, @an derive ODEs to model
the infection and recovery process as the limitMdrkov models [182]. We
denote byD:|D| the number of destinations. In the sequel we @etive
expressions for the number of infectél) and recovered nodeR(t) for all
three schemes extended to our multicast system Roigmorphic Epidemic
Routing (PER) These expressions are obtained based on two dliffer
assumptions that are referred to as

- Option 1. A node can deliver up to two packets to the dettina This
assumption is based on the fact that there is masmission from the
destination to the intermediate node so, with tame rendezvous time the
destination can received both packetsa, b.

— Option 2. The node can deliver only one packet when it reactie
destination: the destination should be alreadyciafé bya or b or c in order
to becomd.

The infection rate and recovery rate for usgrb, ¢c andf, are obtained for each
recovery scheme, as follows:

A) Immune

By using the same logic as before in generatingfilid equations under this
condition, we have that the infection rate for gseib, ¢ andf for the assumption
made inOptionlare

X'(t) =/1(X(t)+% FOOYN-1() - RO - A XD - X(PH-AX(HD  (91)

for XO{AB,G, and
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F'(t) = AA(B() + C(9) + AB(I( A )+ A1)
+AC At BOFAF O - F O AFED.

The difference between (89)-(90) and the previogsadons (91)-(92), is in the
last term in (91) and (92). This term means that itifection rateX(t) or F(t)
decreases when a pack)dﬂ{a,b,(} or f, respectively meets the destinatidds
As users can transmit up to two packets when thegtrnthe destination, users
infected byf get recovered when they deliver the packet to dkstination
independently if the destination was already irddcby other packed, b or c.
Thus, the recovery rate for usexd, ¢ andf is obtained as

(92)

R*'(t) = A X(1) D
R () =AF(Y)D (93)
R()=R()+ R()+ R(}+ R(}

The infection rate of the destinations infectedxﬂ{a, b,(} when they cooperate
and forward the packet to other destinations (D@Mpodeled as:

D*'(t) = A(X () + D*(1))(D - D' (1))
—AD* () (X (}D' (D" )),

where D* is the number of destination users infected bykpacx and
D'(t) =D?(t) +D°(t) +D°(t) + D" (t). The infection rate D*'(t) in time t is
increased when packebr a destination infected just Bymeets a destination that
has not been infecte(D —D'(t)). On the other handD*'(t) decreases when a
destination infected just by meets other user or destination infected by other
type of packet (last term in (94)). The same reagpapplies for the infection
rate D' '(t) which can be written in compact form as

(94)

D" ') = A(F()+D' ()P~ D" (1)
+ 3 AKOFD XD ). (99)

{264 X

For the case of non-cooperative destinations, (98)-are modified as follows

D*'(t) = AX(t)(D- D' (t)) —AD*(t)(I (t) — X (1)) (94a)
D''(t)=AF@®)(D-D'(t)+ Y. AX(t) D.D’(). (95a)
x{a,b ¢ VT

In this case, the infection raf@*'(t) in timet is increased when packemeets a
destination that has not been infect@d—-D'(t)) and it decreases when a
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destination infected just bymeets a user infected by different pacléix. The
same applies foD"'(t) .

As destinations are not recovered from the infext{®4)-(95) or (94a)-(95a)
are the same independently of the recovery scheses

The difference betwee®ption 1andOption 2for immune comes from the
fact that inOption 2as the users can transmit just one packéhdodestination,
the destination should be already infectedatwyr b or ¢ in order to becomé This
modifies (93) as

R™'() =AF()(D (1)) (96)

and consequently the last term of (92) should bdified as in (96). The
infection rate of the destinatioB' '(t) in the case of DCM is also modified as

D*'(t) =)I(X(t)+:—13 F(t)+ Dx(t)+?13Df ()(D-D (1))

—AD* O)( ()X (}D' (}D* ()

D' ()= A(F(t)+D' (t»xqz o0 67)
£ 3 AK (D O D (),
xqa,b,¢ 2p3

where F(t) and D'(t) can transmit with probability 1/3 a packetwhen they
meet an uninfected destination and increase inwlagtD*'(t). The logic behind
D"'(t) can be easily deduced from the previous explanatiEquation (97) can
be easily modified for (DNCM).

The rest of the equations f@ption 2remain the same as in (91) and (94).

Similarly, differential equation models fammune TX andvaccinescheme
can be derived from Markov model. To simplify thegentation, we provide the
infection and recovery rates for each scheme bysidening Option 1 The
expressions foOption 2can be easily obtained in the same way as expuldiore
immune scheme.

B) Immune_TX

In this scheme, the anti-packet can be transmttigthose infected nodes, so we
obtain a new recovered node when an infected nogletara node that has been
recovered or the destination. This modifies (89) 630) as
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X'(t) =/1(X(t)+:—13 F(O))(N-I() - R(9)
“AX OCOFX OFAX 0O+ R ¢+ R (1)
for XO{A B G, and

FO)=AA0BO + C(O+ABY(AY+ APN+A T A)+ BY
+AF OCO-F OFAF OD+R' ¢)),

where the last term in (98) and (99) indicates heéuction in the number of
infected nodes due to recovery. In this scheme sgirae that a node that has
been recovered frofcan recover a node infected txjﬂ{a, b,<} . This is justified

by the fact that if packethas been received, there is no need to transmié mor
packetsa, b or c. Thus, the recovery rates are given by

(98)

(99)

R () =AX(D)(D+ R()+ R())
RY'(t) = AF((D+ R (1) (100)
R()=R()+ R(Y+ R(x+ R(X

The infection of the destinations is modeled agasnin (94)-(95) for DCM or
(94a)-(95a) for DNCM. FoOption 2 the equations can be generated by analogy
to immunescheme.

C) Vaccine

In this scheme, in addition to the previous schemes also vaccinate the
uninfected users that are susceptible to receitiegpacket. We now additionally
recover (vaccinate) the users that have neithein Heé&cted nor recovered
(N -1(t) - R(1) when they meet a recovered node or a destinatianhas been
infected by that packet. The infection rates fogras, b, c andf are defined as in
immune_TXgiven by (98) and (99). But the recovery ratesraow obtained as

R =AX(O(D+ R(Y+ R(N+A(N=- (3= RO( DO x+ ROR
R"()=AF®O(D+ R (9)+A(N=- (- RN(D )+ R(}),
where the last term in (101) indicates the fact tha recovery rate®*'(t) and

R''(t) are increased if a uninfected nofk - I(t) - R(f)) meets the destination
infected byx andf, or a recovered node fromandf, respectively. The infection

(101)
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rate of destination users is modeled as in (94)-(66 DCM or (94a)-(95a) for
DNCM.

The previous recovery schemes start deleting thekgia when the first
destination is reached. This slows down the infecprocess in multicast DTN as
the packets are recovered before all destinatians heceived them. In the sequel,
we present different options for improvement depegan the level of signaling
available in the network. The issue of signalindl Wé additionally discussed in
the sequel.

5.3.2 Adaptive recovery schemes

We denote byp, (t) the recovery probability in timé In other words, when a
node meets a destination, the destination will sevedanti-packet to the node
with probabilityp, (t) . In the existing recovery schemegs,(t)= p =1. The aim
of the adaptive recovery schemes is to modifyt) based on the number of
destinationdD, so that the recovery is performed in such a vt the packets
are removed slower while the infection processtii lseing performed or, the
recovery is delayed until all (most) destinatiomsd received the packets.
We introduce a time dependent probability of packebvery

AN

p.(h=1-€° (102)

where the decay parameter is proportional to thetimg rateA and N, and
inversely proportional to the number of destinasi@h This approach requires
low level of signaling as all parametér,aN andD are known in the network.

As an alternative, we also propose to delay thewvexy for certain timeT,
whereT, is estimated as the time needed to deliver th&giado the destination
(delivery delay). The calculations for estimatifig will be elaborated in the next
section. In this case, we assume that certain levelgnaling is available in the
network (provided by the cellular network) so whée last destination receives
the packef can signal the source and then, the recovery psowéll start with
probability

o (=17 2T (103)
" 0, t<T/

The integration of the cellular network and DTN uks into alnter System
Networking paradignreferred to asnSyNefC,D) where the control plane (C) is
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designed to have full coverage through the cell thieddata plane (D) follows the
conventional DTN. This concept has been alreadyoéhiced in the previous
chapters. The signaling plane handles much lowéa dates. By usingnSyNet
the packet delivery to the last destination cowddsignalled instantaneously to the
source and to all users in the network.

Equations presented in the previous section shbeldodified by replacing
the meeting rate between the recovered node ancer othodes by
A - A(t) - Ap, (t) to modelimmune immune_TXand vaccine under different

P, (1) .

5.3.3 Timeout recovery scheme

This scheme was introduced in [178] and referredstqust-TTL recovery scheme.
In this section, we extend this scheme to PER fattimast DTN. The scheme
behaves as follows: when a node receives a paitlstarts a timer with duration
drawn from an exponential distribution with rate after the time expires the
packet will be removed from the buffer and the natieres an anti-packet to
avoid future infections by the same packet. So, tleele recovers from the
infectionx after the timer associated texpires, and there is no need for explicit
transmission of anti-packets. This is modeled keyfthlowing ODESs:

X(t) =/1(><(t)+‘;'3 F(O)(N=1() = R(1) = A X(O(CI() = X(D)
—AX(P-v KX €)X 1) (104)
Fi(t) =AAM(B() + C(O) +ABY(AY+ QN +A Q) Ay+ BY
+AF OCO-F QX AF(P-vE(F D
for X D{A, B,C}, where the last term in (104) indicates the nuntifepackets
recovered, and it is obtained as
R*'(t) =u(X(H)-2)
R"'(t) = u(F(t)-1) (105)
R()=R()+ R()+ R(}+ R(X

The infection rate of the destinations is defingdia as in (94)-(95) for DCM or
(94a)-(95a) for DNCM.
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The recovery schemes are evaluated by differerfopeance metricse.g,
delivery delay, energy consumption, time efficierafyjthe recovery schemes. All
these metrics are explained in more details in segtion.

5.4 Performance analysis

5.4.1 Delivery delay

We define the packet delivery deldy as the time from the moment when
packeta, b andc are generated at the source to the time whea,b is received
by all destinationsD, and its Cumulative Distribution Function (CDF) as
RY (t) = Pro(T, < 9.

We start by considering the delay when there is dastinationm, 0D
(unicast case), and later on we extend it for roa#f.

Let us denote by () the CDF ofT,  when the number of nodes in the
system isN + 1. Then, we can derive the following expression

Ry(t+d) - R ()= Prolf t< T, < t+ dt

= Prob{destination receives the packet {if +df] [T, >t}
= Prob{destination receives the packet {iift +dt] } (1- B, (t))
= E{Prob{ destination receives the packet ffirt +df] | D(1) }}

=E{AD'()db1 - R(}) =AE(D'(§}L ~R()) dt=AE D(X}@ - R(}) di
where D'(t) is given by (95) or (97), depending on the delvesption

considered.
Hence the following equation holds féy,(t) :

dR, _ f
- = AE{D' (1} @- R, (V). (106)

As N increasespP, (t) converges to the solution of the following equatio
P"'(t)=AD" (t)(1- P" (1)), (107)

where P,TL (t)=P'(t) is the cumulative probability of the time needext fhe
packetsf = a,b to reach the destinatiom, 0D . This can be solved by using the
iterative procedure presented in the Appendix Dvigg (95) or (97) foimmune
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immune_TXvaccine and timeout schemes together with (107), givEeg) with
initial conditionP(0) = 0.

From PWL (t), the average delivery delay can be explicitly foun closed
form as:

E[T,1= [ (@~ RL(D) dt (108)

In the multicast case, with the set of destinatimdesD of size D =|D|, (207)
for each destination node, gives PWL (). The multicast delay is defined as the
time needed for all destinations to recefvea,b. Formally, it can be defined as
Ty =maxT, .

The CDF of the time needed for the double patketreach all destinations
can be expressed as

D
R () =(RL()) . (109)
Finally, the average delay for multicast

E(T)) = T(l— R ()dt (110)

Another metric that quantifies how efficient aresthecovery schemes is the
average lifetimeWe define the averadiéetime L', of a packef as the time from
when packeta, b andc are generated at the source node to the time when a
copies of the packets are removea, (there are no more infected nodes by
packetsa, b, c andf in the network). So, the lifetime of packeis numerically
calculated as

L' =max{ t }= ma>{ t }
a,b,c,f| AR=0 abgc fl A FRe
AR=R-R, (111)
R=R,R, R, R,
where AR, are obtained formmune immune_TXvaccineand timeoutschemes
by solving (93), (100), (101) and (105) respectyek indicated in the Appendix

D.
The ratio

&=Ts /L (112)
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will be referred to asystem time efficiencyVe also define the recovery delay as
T. =L -TJ. We will show in the numerical results that foose schemes with
slow recoveryL' >T,, and T, >0. On the other hand, when the recovery is
faster than the infectioh’ <T; , and T, <0. Our adaptive schemes guarantee
the delivery to all destination® by adjusting the recovery probability to the
available network parameters.

5.4.2 Energy consumption

Two metrics related to the energy consumption amesiclered: the number of
times a packet is copied in its entire lifeting and, the number of times a
packet is copied at the time of delive@/, . These are random variables taking
value betweerf0,] . The energy consun’?ption grows linearly with thenter of
transmissions.

The energy efficiency of the system will be defireed

£.=G, /G, . (113)

We obtainG ; for each recovery scheme as

L'
G, = Al +AR

t=0
Al =1 -1 (114)
AR =R- Ry,

where Al,, andAR are calculated fommuneimmune_TX, vaccineandtimeout
schemes. In other words in each time slot trangarisswill increase the number
of deliveries to the destinations and the numbewv idections including those
that has been recovered.

Similarly, the number of times that a packet isiedfdn the network until the
time that the packet is received by all destination

15
G, =Y Al +AR, (115)
t=0

where T is the delivery delay given by (110). Equations4(t{115) counts in
each time slot all transmissions. Part of thesestrdssions are visible as an
increase in the number of infected packets but plthese infections are erased
by recovery process so both terms should be indiinl¢114)-(115).
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5.5 Performance evaluation

In order to compare the system performance foreddfiit recovery schemes, in
this section we present numerical results, genérayesolving the fluid equations
for different models using the algorithm presenitethe Appendix D. We set the
meeting raté. = 0.004,N = 100 and the number of destinations frbrs 1,...,N.

In Fig. 64 the average delivery deldy is shown versus the number of
destinationdD obtained by polymorphic epidemic routing. We conepthoe result
to basic epidemic routing without network coding§ations for this scheme are
presented in the Appendix E) and we can see Epawithout network coding is
in average about 10% higher than with our propasgteme. FoD = 1 (unicast
case), the improvement obtained by network codm@limost insignificant as
already noticed in [180]. So, performance improvetri®y network coding which
has been proved in multicast scenarios can beraigoed in multicast DTN. The
improvement increases as we increase the numbatesfinationsD. The f
infection with network coding propagates faster ebhienables the packets to
reach the destination sooner.

network coding
------ no network coding

12 1 1 1 1 1 1 1 1 1

14

10 20 30 40 5 60 70 80 90 100

Fig. 64. Average delivery delay versus D.

The efficiency ofimmune immune_TXandvaccineschemes is shown in Fig. 65
in terms of average delivery delay and lifetime whbke recovery probability is
fixed top,(t) = 1. We can observe a number of interesting phema.
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By immunescheme E[T)] < L' for any number of destinatior3. This is
because inmmunescheme the recovery from infection is very slowd aail
destinations receive the packet before all packetsecovered.

By immune_TXwe can see that fd>50, E[T,;] > L . The recovery now
works faster than inmmunescheme and the packets are recovered before the
infection of setD is completed.

Finally, vaccineis the faster recovery scheme aBd] > L' for anyD. The
average delayE[T,] for vaccineis the largest one as the number of infected
packets is significantly reduced during the infestprocess.

pr(t):l, Option 2
200 ~ :
\ P
180+ A l\ E[T,], immune
| \\ L L, immune
160+ |\

— E[TE], immune TX | |

140 L, immune TX 1

E[TE], vaccine

— - L, vaccine

120

100+

80"
60!,

a0

20 I I I - -4
0

Fig. 65. Average delivery delay E[TDf] and lifetime L versus D.

The average number of times that a packet is cdpiéd entire lifetimeG, and,

at the time of deliveryG, are shown in Fig. 66 formmune, immune_T4nd
vaccinefor p,(t) = 1. For small number of destinatiobs and immunescheme,
E[G] > H G ] . As mentioned before, the recovery withmuneis very slow and
many transmissions are made after the packets eieerkd to the destinations
(t>Tp). The values obtained fdE[G ] and E[G, ] forimmune_TXare practically
the same. Fovaccine as the recovery process finishes before the eiglito all
destinations is completed (this is more evident lfoger D), the destinations
continue infecting each other until all destinatidmave received the packet even
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when the rest of the users are recovered fromrifextion. For this reason, we
can see thaE[G ] < H G ] for largeD.

pr(t):l, Option 2
200 .

E[GTD], immune

180 -

E[GL], immune

160 E[GTD], immune TX |

—e— E[G, ], immune TX
140+ (G :

------ E[GL], vaccine

120 I E[GTD], vaccine

100

80

60 -

40 +

20t s

Fig. 66. Average number of copies E[G ] and E[GrD] versus D.

In Fig. 67, we show the effects of removing theuaggtion that destinations can
transmit to each other (DNCM) on the destinatiofieétion rate D'(t) for
immune TXscheme. Similar effects were noticed withmuneandvaccinebut to
simplify the presentation those figures are nospreed. We assume tHat= 30,
and we can see that whem(t) =1, D' (t)=18 for t ~ . As the packets are
recovered while the infection to the destinatiorss taking place, just 18
destinations out of 30 get infected by padkét/hen adaptivémmune TXs used
with p.()=p () or p()=p (1) we can see that the performance is
significantly improved and all destinations receive
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Fig. 67. Infection rate of destinations infected by f, Df(t), versus t when the

destinations cannot infect other destinations.

In Figs. 68 to 70, we show the behavioriofimune, immune_TX, vaccimad
timeout recovergcheme for different recovery probabilitig¢t). We assume that
D = 30 and that destinations can infect each other (PCM

In Fig. 68, the recovery from infection for packeis presented versus the
time t. We can see that fommune, immune_TXndvaccine R*(t) decreases for
p.()=p (Y and p.(t) = p, () compared to the case with fixgdt) = 1. This is
because with these adaptive recovery schemesgetiovery is slower while the
infection of the destination users is still takiptace, so the number of users
infected bya, b, or c decreases withwhile a number of new packdtare created.
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Fig. 68. Ra(t) versus t for a) immune, b) immune TX, c) vaccine for different values of
p«(t) and, d) timeout recovery scheme.

We can also see this effect in Fig. 69 wh&¥t) is shown for the same
schemes. The highest number of recovered packetstagned byaccinescheme.
It also worth noticing that byp, (t) = p, (), the recovery is delayed and start$>n
T, . Fortimeoutrecovery scheme, the number of packets recoveepérdis on
the timeout factor, and the recovery is much slower than with any offtdleme.
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Fig. 69. R’ (t) versus t for a) immune, b) immune TX, ¢) vaccine for different values of
p«(t) and, d) timeout recovery scheme.

In Fig. 70, the average delivery del&[T,] is shown for the previous
schemes. The highe§[T,] is obtained fovaccineandimmune_TXcheme with
fixed p;(t), while the lowest delay is obtained tisneoutrecovery withu =1 and
with adaptiveimmuneschemes, at the expense of larger recovery deVsgscan
see that the improvement obtained by using adaptitemes compared to those
with fixed p(t) can reach up to 50% foammunescheme, 30% formmune_TX
and 75% fowvaccinescheme, and wheb < 30. For higheD, E[T,] decreases in
the same proportion for all schemes as there anme mestinations to propagate
the infection within themselves. We can also sex the choice of parameter
also results in different values BT, ] .
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Fig. 70. Average delivery delay E[TDf} versus t for a) immune, b) immune TX, c)
vaccine for different values of p((t) and, d) timeout recovery scheme.

5.6 Chapter summary

In this chapter, we have considered a Delay Toteksmtwork (DTN) integrated
within the cellular network to provide support fonultimedia applications
(transmission of very large files). The integratibetween both networks is
referred to asnSyNefC,D) where the control (C) plane is designed taehfull
coverage over the entire cell and the data (D)elarthe conventional concept of
DTN.

We have presented an analytical framework to sttidy performance of
different recovery schemes for multicast DTN andvedeped new adaptive
recovery schemes where the infection recovery p®ce adjusted to the
multicast traffic. Different recovery probabilitiese used depending on the level
of signaling available in the network. The perfornoa of these new algorithms
was compared to a humber of unicast recovery schenmlified for multicast
DTN. Our analytical framework can be easily exteahde model the recovery
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process for different multicast routing schemese Hetwork model considered
enables us to discuss the above schemes in conuinatth some additional

advanced techniques that have been recently caoeside this field like network

coding. So, we have included in our model netwoddieg combined with

epidemic routing and extended the study to the akvbehavior in multicast
scenario. The resulting routing protocol is refdrte as Polymorphic Epidemic
Routing (PER).

The performance measures considered include thiwedgeldelay to the
destinations, recovery delay from the infectionga®s, and energy efficiency in
terms of the number of packet copies made untitithe of delivery and recovery.
Numerical results showed that the adaptive scharapseduce the delivery delay
by 2 times compared tonmunescheme, 1.5 times fammune_TXand 3 times
for vaccinescheme with fixed recovery probability. Byneoutrecovery scheme,
the reduction in the delivery delay can reach up tames compared to adaptive
vaccine at the expense of larger recovery delay.

The presented analytical models based on a systemndinear differential
equations and the iterative algorithm used to sdilve system numerically,
represent a contribution to the development of #malytical tools for the
theoretical analysis of these systems. We belibae further research can benefit
from these tools and result in additional developmef specific applications
based on the proposed multicast architecture.
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6 Conclusions and future work

In this chapter, we summarize the most importamtridoutions and results
obtained in this thesis, and we point out someréutesearch directions.

A number of new network paradigms for future MCNer& presented in this
thesis. The main contributions include solutions felaying topology control
optimization, dynamic topology reconfiguration, eduling, multihop routing
protocols, intercell interference management, netwooding and different
proposals for multicast traffic optimization in kear networks as well as the
integration of different types of networks withinet MCN. Several optimization
frameworks and network models were developed talystthe potentials
associated with MCNs. Physical layer issues, sigcla aew channel model for
multihop networks including channel defading anevrieterference management
schemes were presented. Power consumption awareveessalso considered
through the whole thesis.

The first chapter highlights the motivation for thesearch and provides a
comprehensive survey of the main research resnttdssues addressed in MCNs
so far. In Chapter 2, we have introduced an optutidn framework for relaying
topology control which is aware of the ICI requgicoordinated action between
the cells and results in multicell jointly optimadlaying topology. The algorithm
jointly chooses the relaying topology and schedylimthe adjacent cells in such
a way to minimize the system performance degradatime to intercell
interference. The utility function includes throymit, delay and power
consumption. The set of constraints in the optitigra program depends on
relaying specific system parameters and tempordlsgatial nonuniform traffic
distribution. A new topology search TSL programdesveloped to find the best
topology in accordance with a given objective fumct The overall optimization
problem is solved by combining TSL and CVX progrgla6].

Numerical results show that as the traffic incrsasethe network, higher
utility is obtained for topologies that favour iatéd and short range transmissions.
The optimum topology can provide up to 10 timeshkigutility than conventional
TDMA and 60 times higher than CDMA for certain frafdistributions. The
improvement obtained in network capacity can reaphto 6 times when the
optimum topology is used. These results show thaewnfigurable relaying
topology provides the network utility improvemerasd presents the framework
for quantifying these improvements for spatiall\daamporally varying traffic.
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This framework was further elaborated to include tptimization of the
power allocation. The network performance is coredaby using cooperative
diversity relaying scheme (COOR) and conventiomddying scheme (CONR),
resulting in two intercell interference managementocols fM-COOR and M-
CONR, respectively. By including weights in thelityi function we analyze the
trade-off between throughput and power allocatidamerical results show that
I’M-COOR offers an improvement in the network thropighof at least 4 times
and a reduction of power consumption of at leagin8s compared to’M-
CONR.

These results are extended in Chapter 3 to dyndlgnicaconfigure the
relaying topology to the traffic variations in tmetwork. As a result we have
developed a specific encoding and fithess controlai Sequential Genetic
Algorithm (SGA) for relaying topology update. Wecewled the topologies as a
set of chromosomes and new crossover and mutaperations were developed
to search for the optimum topology. Improvement the utility funtion is
sequentially controled as newer generations areatede and once the
improvement is sufficiently high the current topgyois updated by the new one
having higher fitness (utility).

The utility function used in the optimization pra@sedrives the solution
towards the topology favoring simultaneously isethtand short range
transmissions. Numerical results show an improvenienthe utility for the
optimum topology up to 1.5 times when network cgdis used compared to the
case without network coding. The utility functios improved with network
coding by reducing the number of slots needed tmpete the transmission.
Similar improvement is also obtained for networkpa&eity. In addition to
optimum performance in terms of network utility,merical results demonstrate
also significant improvements in the convergende @& the new algorithm (at
least one order of magnitude faster than exhausegaech) in a dynamic network
environment. We also compared the performance oA-$SL to the nearest
neighbor heuristic, where the topology is reconfggliin such a way that the
users relay to their nearest neighbor. In this ¢hsemprovement obtained with
SGA-TSL was about 50% higher.

In Chapter 4, we have further extended the modaehfChapter 3 to provide
a new, more detailed, approach to optimization @N&. A nano scale network
model (NSNM) is developed for high resolution optiation of multicast MCNs.
In the first step we partition the macrocell intaanber of subcells and adjust the
radius of the subcelf to obtain different hop range which directly atfethe
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throughput, power consumption and interference.hWitas the optimization
parameter, we jointly optimize scheduling, routimgd power control to obtain
the optimum trade-off between throughput, delay gmdver consumption in
multicast cellular networks. A spatial interleaviBg MAC protocol is introduced
for context aware interlink interference managemente directed flooding
routing protocol (DFRP) and inter flooding netwartiding (IFNC) are proposed
for such network model.

Four different protocols are developed and analylmeddifferent relaying
schemes and network coding. In the broadcast aasaoncooperative relaying
(protocol A and B) in nonfading channel, the optimumumber of hops to reach
the border of the cell isl = 3. For cooperative relaying (protocol C) andwaak
coding (protocol D) the system performance is digaintly better (3 times
increase in throughput with respect to noncoopegatelaying). The maximum
throughput for these protocols is obtained fdr=4. However the largest
increment of network throughputThr/dH is obtained again forH = 3,
suggesting this value as the best choice when rtesoto trade-off between
performance and complexity. In the multicast catde best performance is
obtained by protocol C or protocol D depending be tensity of destination
users in the network. The locations of the dedtmatuusers have significant
impact on the performance. A nano scale channelkem@®SCM) is developed for
this application which gives an insight into hove ttransformation of the fading
process, resulting from increasing the number gishim the cell, impacts the
system performance. It was shown that the besesygterformance is obtained
with the number of hops needed to completely trmmsffading channel into a
non fading channel. This particular choicerd$ referred to ashannel defading
tessellationNetwork design procedure for channel defadingss alaborated.

In addition, the nano scale network model (NSNMysgd to develop a new
concept for route discovery protocols in MCNs whishaware of the mutual
impact of other routes in the network. The routprgtocol resulting from this
model is referred to as Nano Route Discovery Pait@dRDP). The efficiency of
NRDP is measured in terms of throughput, power gongion, terminal time to
live and delay. We compared the performance of NREMA other two routing
protocols referred to as SAPR (Shortest AvailaléhARouting) and LAR (Load
Aware Routing). Numerical results shown that NRDBvjdes results very close
to the ideal case (all users available to relay)einms of network capacity and
throughput. Also NRDP is the most efficient in terrof traffic load, power
consumption and delay. By SAPR, the users expegighe shortest delay per
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route but on the other hand there is no contraheftraffic distribution through
the network, so there is more interference betwesljacent links and
consequently the capacity is lower. The capacittpioled by LAR is larger than
with SAPR. Although more slots are needed to cotepthe transmission with
LAR, the gain obtained in distributing the traffit some scenarios compensates
the delay. In terms of the traffic load, LAR outfmms SAPR for as long as there
are users available to split the traffic in an @fint way. Nevertheless, NDRP
obtained better results in most of the scenarios.

Finally, Chapter 5 integrates a Delay Tolerant N&tw (DTN) into the
cellular network to enhance the performance of iwasdt applications in MCNs
and to provide support for multimedia applicatiombe integration between both
networks is referred to as InSyNet(C,D) where thetwl (C) plane is designhed
to have full coverage over the entire cell and teta (D) plane is the
conventional concept of DTN.

A new routing scheme referred to as PolymorphicdEpiic Routing (PER)
was proposed for multicast DTN and new adaptiveovery schemes were
developed to remove the delivered packets from rtbevork (recovery from
infection). Different recovery probabilities areedsdepending on the level of
signaling available in the network. The performané¢hese new algorithms was
compared to a number of unicast recovery schemaeaffied for multicast DTN.
Numerical analysis showed the outstanding perfoogaaof our new adaptive
recovery schemes when cooperative and non-cooperagistinations are used. In
particular, by adaptivémmune immune_TXand vaccine schemes the delivery
delay can be reduced up to 3 times compared ta@oheentional schemes. By
timeoutrecovery scheme, the reduction in the delivery yielan reach up to 5
times at the expense of larger recovery delay. lgeve that collection of all
these improvements can provide significant progiasthe development of 5G
cellular systems.

The comprehensive work, analysis and results ptedean this thesis open a
number of new research directions for future MCAlsery interesting extension
of our models is in the area of hetereogenous mé&s@00] where different kind
of access technologies (e.g. picocells, microcefemtocells, WLAN, and
distributed antennas) are integrated within thdutal network. The resulting
architecture is referred to as Heterogenous CelNé&work (HCN).

ICI management schemes for HCN are especiallycatitdue to the rapid
changes in user demands and the different spaiaities, transmit powers, cell
sizes, and backhaul capabilities of the differestess points. Distributed
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algorithms should be designed for each network diffdrent level of overhead
would be defined depending on the type of netwdfkr these problems,
INSyNefC,D) could be extended to include different sigmgl priorities.
Topology control, routing and scheduling algorithpresented in this thesis can
be further modified for application in heterogenemetworks and the utility
functions used in optimization process can be gasillefined to optimize such
networks. The cost of implementing HCN will alsdlirence the design of the
new protocols.
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Appendix A

In this appendix we elaborate the computation @& tlser location in polar
coordinateﬁh,e) for the context aware nano scale network modesgrted in
Chapter 4.

For the first hop h=1, the set of angles®" :{6?,51)} is
6" =30; 9P =0% +6,=6",+ 60 ,n= 2,..n,, wheredVis the first angle of the
set. As we can see from Fig. 31 in the first rifigusersh = 1, the first user is
IocS\ted in 30° with respect to BS, and the sepandietween users in the first hop
is 8, =60°1 = 60°. The set of angl&" from h = 2 toH is calculated following
the same reasoning as

8?7=0; 9=62+30,n= 2,.n,

0% =10;609=6%+20;6"=0;0“=6“+ 15

6% =6; g°=6%+12, .. (A1)
O

g" =" +6,=6" +60 /h, n=2,.n,

30 /h, if h=2p+1 p= 0,1,..{”7_1}

(h) —
91 =

o, otherwise

By inspection of Fig. 31, we can see that usersatid in different ring$ can
have the same angte For example there are users situateti in1,2, ....H and
6 =30° To properly dimension the spatial distribot matrix p and other
parameters defined through Chapter 4, we need tavkthe number of new
anglesd in each hop. By observing the geometry of the aderin Fig. 31 we can
obtain the following relations between the setmjlas

eYne™, m=123,..H

e?D0e, m=123,.. H /7

oY 0e“" m=123,..,H /4 (A2)
e®0e m=123.}H/§, ..

o 0eM™, m=123,.]H h| ,h= 2,46, H

The set®@® corresponding tch = 1 is included in any hom=1,...H, the set
©® corresponding th = 2 is included in any even hop, and so on.
Consequently, the set of new angf@¥’ in each hogh can be calculated as
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|é(1)| =n =60=6; |é‘5)| =n —|é(“| = 30 § 24

|é(2)| =n, _|é(1)| =12- 6= 6; |é(e)| =n _|é<2)| = 36 12 24

|é(3)| =n, _|é(1>| =18-6=12: |é(7>| =n, _|é<1)| = 42 & 36

6] =n,~|6P|=24-12=12; |©®|=n, -|0| =48~ 24= 24,..
And the accumulated number of new angles umtil

@:ZL@% (A3)
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Appendix B

By using the notation presented in Section 4.8, rtetwork topology schedules

for protocols A, B and C presented in Fig. 32, 3@l 84 respectively, can be
written as:

A) Initialization:

H=4, 64 =Z;::1|C:)““’| = 36 where 64 is the number of angular positions of the
transmitters and receivers.

We start the transmission in slot= 1 from the BSm(0,0) to the first ring of
users situated im'=1. In this case we have entries 1 for the transmftssition
(h=0,0) and receiver position$1(= 1,0%). For the rest of the positions the
corresponding entries in the topology matrix an®ze

h\e“0 @® 30 90 150 210 270 330

o 1 0 00 0 0 O
1 o 111 1 1 1

T¥=2 0 0 00 0 0 O0f=|T,KO™ )T: K O™ | ;
3 0 0 00 0 O0 O
4 0 0 00 0 o0

h=00={0}; h'=1,0"={30,90 150,210,270 ,330
The topology matrix in slobb=1 is the same for protocols A, B and C,
Ti=Ti=T}.
B) Protocol A represented in Fig. 32 for the following slots b.
The topology matrix irb = 2 with (h=1, h'=2)is:
T LeY)=1 T (20@)=1

h=1, 69 =90;0% =09 + ¢ =6"+ 120 forn= 2,.n, /2
o ={g% =§0",210,330} ;

h'=2, 6” =eq(42);a,, = Ot 1,

©® ={4%} ={-60°,90",120 ,180 ,210240,300 ,33(
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h\©Y90 210 330 ©® 0 60 90 120 180 210 240 300 3
0 0 0 O 00 00O 0 OO O
1 1 1 1 00 00O 0 OO0 O
T2 = 0 0 O 11 11 1 1 1 1 1
3 0 0 O 0O 00O 0O O 00 O
0 0 O 0O 0 00 O 00 O
=T 0e™)| Ti 0™ |

Forb = 3,

T =BT @) T (2FB (23T (2
where B(1,:)represent the location of all users in the firsp o= 1, andp(2,:)in
h=2.

In slotb = 4, with the transmitters situated linrc 2, and receiverk’ = 3, the
topology matrix is calculated in the same fashisn a

TA209)=1 T (309 )=p (3,

0
6% =30; 6P =6%+¢,=6+120 /3 forn= 2,.n, /-
O ={g%; 6 =eq42); a,,=0,t1; 0% ={6)

Inéd=5,h=3andh’ =4

T2AB0%)=1 T4 (4e“)=p (4,)

0
09 =30; 89 =9%+¢,=6%+120 /4 forn= 2,.n, /:
09 ={g%; 6 =eq42); a,,=0,+L; 0 ={6";

The location of the receivers during the schedylelecB* should be such that
::1T,2'A=|3, where B is the spatial user distribution matrix. In theo&dcast
caseD=8.
In Fig. 32 we are assuming that in each s&loall required transmitters are

available, ¥, ,A , =1, 0Oh6.

C) Protocol B represented in Fig. 33.

The network topologies needed to generate prot@calan be calculated by
rotating the corresponding topologi€B) (from protocol A by an anglev. This
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operation will be denoted astate [T, w], resulting intoT”® :rotate[TbA'A,

So, we obtain
T =T, T 28 =rotatdT **,60],T *® = rotatqf */,60],
T® =rotatdG +*,30],
T28(3,:)=B(3,)-PB (3,{30 ,90 ,150 ,210 ,270,330})
ToP2)=B2)-Ty (2).T2° BoFB B T.° (B,
T°® = rotatdT%4,20], Yo TP°=

=1 IX

D) Protocol C: Cooperative Diversity Receiver

o).

By using the topologies already defined in protogand B, the topology matrix

for protocol C can be easily obtained as
Tl,C :Tl,A T 2C :T 2A T 3C :T 4B
T3(3,)=T2%(3,), T (2,)=8 (2, )—T2C (2,
T (3)=T (3, T (4:FB (4,),

TC(3)=BE)-Ti (B, Yo 1Tbc =
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Appendix C

The topology matrixT® for protocol D consists on the following submatsce

0y, (0,00)=1T,  (009)= 1T, , =0
Wlth oP = ={0}
T, LeY)=1T, 1eY)=1T, =0

with 0% ={90,210,33¢ ©? ={ 30,150 ,27
Tt2xy T[ZXA’ TIZ)(){,_O TIZX!_OI
rxy(2 )=T0 2005, G)=B @ Ty, @, =0.T5, =0
_0 T?X){] _TfXB’ T?Xx _0’

rxy _0 Tfxy(2 :):T (Z)Trxyb(l) B(l) Ttxxj (1 )Trxyc 0
T, =0, Ty, =0, Ty, =T

¥ % tx

Ty, (2)=BQ2)-T;, (2., (2B )3 T5, @)T5, =T
T5 —TfXB, IW—O foy =0;

rxy(3) B(B)Trxy _TAB Tny =0
0, =0 TS, =0, TS, =T%;

tX, ¥ X % x !
Tpy, =0 o, B)=BB)-Tg, B.2).T5, (4FB (4)
T7 —TfXB, TZXyD‘O szy =0;

Thy (4= B4, T, (497B (4,)T] =0
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Appendix D

For an iterative solution of (89)-(90), we rewritgpproximate) the differential
equationg=(y',y), y = (A,B,C,F), X>A,B or Cin difference form as=(Ay,y) :

AX=A(X+%F)(N—I)—/\X(I—X)
AF =AA(B+ Q)+ AB( A+ Q+A QG A B+A K % §

or
F YY) =F YY)
Xk_xk—le(Xk-'-% FI(N= 1) =A X (1,= X)) (D1)
Fe—F =AA(B+ C)+AB(A+ Q) +AC( A+ B+4 F( X~ F (D2)

with a given initial value o¥, which depends on the initialization of the protoco
In this way the system of nonlinear differentialuations is turned into an
iterative process where for eagh, calculated in the previous iteration, a system
of nonlinear equation$: (Ay,,y;)= F(y, -V...,Y;) has to be solved in order to
find the new vectoy;. This can be formulized d&3iNSE algorithm

1. Initializedyy = (1,1,1,0).
2. SolveFR (Ay,.y) =R ~¥-1.)%)

3. if wzs theny,, =y,and go to 2.
Vi +Yial
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Appendix E
The equivalent representation of (89)-(90) withoetwork coding is defined as

X':A(X+%F)(N—I)—/1X(I—X) (E1)
F'=AAB+ABA+AF( X- F), (E2)

where XO{A B andl =A+B+F.
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