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Abstract

The use of autonomous robots in our society is increasing every day and a robot is
no longer seen as a tool but as a team member. The robots are now working side
by side with us and provide assistance during dangerous operations where humans
otherwise are at risk. This development has in turn increased the need of robots
with more human-awareness. Therefore, this master thesis aims at contributing to
the enhancement of human-aware robotics. Specifically, we are investigating the
possibilities of equipping autonomous robots with the capability of assessing and
detecting activities in human teams. This capability could, for instance, be used
in the robot's reasoning and planning components to create better plans that ulti-
mately would result in improved human-robot teamwork performance. we propose
to improve existing teamwork activity recognizers by adding intangible features,
such as stress, motivation and focus, originating from human behavior models.

Hidden markov models have earlier been proven very efficient for activity recog-
nition and have therefore been utilized in this work as a method for classification
of behaviors.

In order for a robot to provide effective assistance to a human team it must
not only consider spatio-temporal parameters for team members but also the psy-
chological. To assess psychological parameters this master thesis suggests to use
the body signals of team members. Body signals such as heart rate and skin con-
ductance. Combined with the body signals we investigate the possibility of using
System Dynamics models to interpret the current psychological states of the human
team members, thus enhancing the human-awareness of a robot.
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Sammanfattning

Anvindningen av autonoma robotar i vart samhdlle okar varje dag och en robot
ses inte ldngre som ett verktyg utan som en gruppmedlem. Robotarna arbetar nu
sida vid sida med oss och ger oss stod under farliga arbeten ddr mdnniskor annars
dr utsatta for risker. Denna utveckling har i sin tur okat behovet av robotar med
mer mdnnisko-medvetenhet. Ddrfér dr mdlet med detta examensarbete att bidra
till en stdrkt ménnisko-medvetenhet hos robotar.

Specifikt undersoker vi méjligheterna att utrusta autonoma robotar med formd-
gan att bedéma och upptdicka olika beteenden hos mdnskliga lag. Denna férmdga
skulle till exempel kunna anvdndas i robotens resonemang och planering for att ta
beslut och i sin tur forbdttra samarbetet mellan mdnniska och robot. Vi foreslar
att forbdttra befintliga aktivitetsidentifierare genom att tillfora formdgan att tolka
immateriella beteenden hos mdnniskan, sdsom stress, motivation och fokus.

Att kunna urskilja lagaktiviteter inom ett mdnskligt lag dr grundldggande for
en robot som ska vara till stéd for laget. Dolda markovmodeller har tidigare visat
sig vara mycket effektiva for just aktivitetsidentifiering och har ddirfor anvdnts i
detta arbete.

For att en robot ska kunna ha mdéjlighet att ge ett effektivt stod till ett mdn-
skligt lag mdste den inte bara ta hénsyn till rumsliga parametrar hos lagmedlem-
marna utan dven de psykologiska. For att tyda psykologiska parametrar hos mdn-
niskor foresprdakar denna masteravhandling utnyttjandet av mdnskliga kroppssig-
naler. Signaler sa som hjdrtfrekvens och hudkonduktans. Kombinerat med krop-
pens signalerar pavisar vi mojligheten att anvdnda systemdynamiksmodeller for att
tolka immateriella beteenden, vilket i sin tur kan stdrka mdnnisko-medvetenheten
hos en robot.
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1 Introduction

In recent years there has been a shift towards using robots in operations that are
considered too dangerous or even physically impossible for humans to complete.
For instance, in the oil disaster in the Gulf of Mexico in 2010, underwater robots
were used to assess and finally stop the oil leak at a depth of nearly 1500 meters
[37]. Many of today's robots are remotely controlled and are therefore relatively
expensive to operate due to the cost of training operators as well as paying their
salaries. Furthermore, when robots are used in situations such as military operations
that are considered stressful, the human operator may act too slowly, or even worse
irrationally, which would reduce robot's effectiveness [50, 18]. Hence, a lot of
research has been conducted towards creating autonomous robots that can perceive
and act in the environment by itself [29, 38].

To achieve a more human-aware robot, knowledge from several research fields
is required. Some of these fields are for example:

* Artificial Intelligence (Al), contributing with machine learning algorithms
and pattern classification methods [61].

» System Dynamics (SD), contributing with models of human behavior ex-
plaining the dynamics between physical and physilogical features [49, 48,
52].

* Wireless Body Area Network (WBAN), contributing with sensor technol-
ogy for reading body signals without mobility constraints [73].

* Psychology, contributing with knowledge about the human mind and its be-
haviors [64].

* Human-Robot-Interaction (HRI), contributing with interaction models be-
tween robots and humans [22].

In order for a robot to extensively assist a human team it must first understand the
behaviors of the team. This implies that the robot must not only understand team
dynamics but must also be able to interpret the individuals within the team. Human
constellations are complex and the existing representations of human-robot team-
work are insufficient [65]. To realize robots which can provide effective assistance
in a human team a better understanding of human-robot teamwork is crucial. The
fact that it requires a great amount of expertise from different domains makes it
hard to achieve a robot with total human-awareness. However, the research has
advanced through a synergy of several research areas in the recent years proving
that robots will be able to assist human teams more extensively in a near future.
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An essential part of a sufficient human-robot teamwork model is the robot's
capability of recognizing teamwork behavior. The existing teamwork activity rec-
ognizers [45, 46, 75] typically take into consideration spatio-temporal features such
as relative position and orientation over time, they do not, however incorporate fea-
tures describing the inherently fuzzy concepts of human behavior.

To assess the behaviors and activities of a human team we assume that the team
changes its behavior according to the change of the situation around it. Thus, when
a situation changes it will most certainly affect the members of the team physi-
cally, physiologically and psychologically. With the help of sensors we can ob-
serve physiological and physical changes such as position, orientation, heart rate
and skin conductance of team members. To observe psychological changes a more
sophisticated method must be applied. By utilizing these signals in a psychological
model we can estimate the current state of team members and better classify team
behavior [6].

In this thesis we are focusing on how autonomous robots can be integrated in
human teams. Specifically, we are investigating the possibilities of equipping au-
tonomous robots with the capability of assessing and detecting activities in human
teams. This capability could, for instance, be used in the robot's reasoning and plan-
ning components to create better plans that ultimately would result in improved
human-robot teamwork performance. we propose to improve existing teamwork
activity recognizers by adding intangible features, such as motivation, satisfaction
and stress, originating from human behavior models.

The thesis work has contained a wide variate of challenges. Research of how the
human body can be interpreted have been conducted parallel to the development of
the proposed and extended recognizer system. A validation process was designed
and applied to prove the advantage of the proposed system. A data acquisition
program was also built and used to produce artificial datasets for the validation.
The feature extraction process in the data acquisition program is using a SD model
to interpret body signals in order to extract the vague physiological behaviors of the
human team members. The actual recognizer is based on hidden markov models
(HMM). HMMs have been proven very efficient for activity recognition [47, 30]
and are often used in the field of probability theory. More about the fundamentals
of HMMs can be found in Appendix A.

The purpose of the extended recognizer system is to be utilized in order to en-
hance the human awareness of robots.

The thesis also discuss related subjects that are relevant for enhancing the human-
team awareness of a robot, such as existing representation models of human behav-
iors, classification methods, sensor systems for reading body signals and how these
signals can be utilized.

10
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1.1 Problem statements

* Integration of a human-team oriented robot

The long term goal for this thesis is to enable the use of robots in human
teams. For this to be possible it is a requirement for a robot to have the ability
to interpret individuals in a team. Only then can a robot have the possibility
to fully understand the behaviors and dynamics in a human team.

* Interpretation of intangible behaviors of a human team

This thesis aims to solve a problem that arise when integrating autonomous
robots into human teams. Namely the interpretation of intangible behaviors
of human teams and individuals, which is a problem that can manifest itself
in different ways. There are numerous human behaviors that are of interest
for the human awareness of a robot, even behaviors that are difficult to as-
sess only by looking at spatial-temporal data. Behaviors such as confusion,
motivation, stress and focus to mention a few.

* Datasets for validation

The method chosen to solve the problem stated first requires a validation to
prove its reliability and importance. This validation in turn give raise to the
problem of finding suitable datasets for the validation.

1.2 Challenges

Some of the major challenges that are addressed in this thesis are listed below.

» Synergy of research domains is required

It is very challenging to equip a robot with the ability to understand intangible
behaviors since it requires a synergy of knowledge from different research
domains. The problem solving involves everything from medical domains,
such as psychology and physiology, to technical domains, such as sensor
networks and machine learning.

* Development of an adequate SD model

To solve the classification of intangible behaviors of humans and human
teams we utilize a SD model. There is a great lack of detailed and presented
SD models of human behaviors which makes it hard to establish an adequate
model. Most of the existing models are merely concepts of human intangible
behaviors and have no implementation. In this thesis, as much knowledge as

11
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possible about the human physiology and psychology have been retrieved in
order to estimate the interdependencies of the developed SD model.

* Creation of suitable datasets for validation

Suitable datasets are essential in order to validate and emphasize the impor-
tance of the SD model. The specific dataset originates from a specific sce-
nario which must include all necessary agent features and team behaviors
to be useful as a validation dataset. Thus, the scenario can point out which
applications and scenarios the proposed method can be useful in.

1.3 Applications

Potential applications for a robot equipped with the proposed system are listed be-
low.

* Search and rescue operations
* Military operations

* Police operations

* Firefighting operations

* Space operations

12
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1.4 Tools

In this thesis work we have utilized several tools to accomplish the goal. They are
all free for educational use and are listed below.

* Eclipse RCP - Eclipe is a multi-language software development environment
and provides a platform for the development of general applications. It is
called the Rich Client Platform (RCP) and was used to build a data acquisition
program in this thesis.

* JaHMM - JaHMM is a Java framework for hidden markov models. It pro-
vides the necessary tools for building and customizing own models. It also
provides various algorithms that can be used on models. Algorithms such as
Forward-Backward, Viterbi, Baum-Welch and K-Means among others.

* RapidMiner - RapidMiner is a Java-based open-source data mining and ma-
chine learning software program. It has a Graphical User Interface (GUI)
where the user works with blocks of various functionalities and links out-
and inputs. RapidMiner provides a wide variety of functionalities which the
operator blocks can have. A linked pipeline of operator blocks is called op-
erator tree. The operator tree is in turn generated in to an XML (eXtensible
Markup Language) file which defines the processes that the user wants to ap-
ply to a dataset. RapidMiner can present results of processed data in terms of
matrices and graphs. The functionalities in RapidMiner can be extended with
additional plug-ins. A plug-in based on JaHMM for HMM learning devel-
oped at FOI was utilized in this thesis work. More about the specific plug-in
and how it is used is described in Section 6.2.4.

* Vensim - Vensim is a software tool for creating SD models developed by
Ventana System, Inc. The software was used for developing SD models of
human behavior.

13
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1.5 System overview

This section describes the high-level design of the validation process of the devel-
oped system. It consists of five sections which together create, refine, assemble,
utilize and analyze data. The process is shown in Figure 1.

Data Acquisition

i i ——Body Signals
Scenario Builder l
System Dynamics models
Spatial Data of human behavior
i Vensim model
Feature

«—Intangible Features——
Processor

Extracted Features

.

Experimental
Setup
RapidMiner

Results——s| Analysis

Figure 1: High-level design of the validation process of the system.

* The green block represents the data acquisition tool called Scenario Builder.
It was developed in order to create datasets for custom scenarios which in turn
was used to test and validate the system.

* The purple block is the feature processor. It is in fact a part of the data
acquisition tool but is very important and is therefore placed outside the green
block for clarity. The feature processor is the system element which assemble
raw data into datasets.

14
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* The blue block extend the feature processor with the ability to include in-
tangible features in the datasets. The block receives raw data from Scenario
Builder which is inserted in a SD model. The model in turn generates new
features which are acquired by the feature processor.

* The orange block represents a more comprehensive subprocess of an exper-
imental setup for testing the developed recognizer. Generally, it utilizes the
extracted features i.e. the dataset from the feature processor to train HMMs.
The extracted dataset contains a large amount of features also known as at-
tributes. Since it is non-optimal to use all features [33] for classification the
subprocess selects which features to train the HMMs with. To assess the clas-
sification performance of the recognizer the subprocess executes a 10 fold
cross-validation of the recognizer. In order to have the possibility to com-
pare the developed recognizer with existing recognizers the same validation
procedure was applied on the system without the extension of the blue block.

* The red block illustrates the analysis stage of the process. The results from
the orange block are compared and evaluated in order draw conclusions and
prove the advantage of the extended recognizer.

15
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1.6 Contributions

This section presents the contributions this thesis has produced.

1.6.1 System Dynamics integrated human activity recognizer

A system dynamics extended recognizer with the proven ability to better assess
intangible activities of human teams. It is the system dynamics model that improves
the capability of the recognizer by refining raw data into intangible features which
can be utilized. The recognizer increases the possibilities of enhancing the human-
awareness of robotic agents. Thus, this contribution addresses the second challenge
in Section 1.2.

1.6.2 Data acquisition tool - Scenario Builder

A Java based program for creation of custom scenarios with the ability to extract
datasets. It is a flexible and expandable data acquisition tool which allows the user
to compose scenarios of any kind. It enables the possibility to extend and improve
a dataset bit by bit until it is adequate. The user defines everything from world
context to agent features and behaviors. Thus, this contribution manage the third
challenge in Section 1.2. The tool has the functionality to utilize SD models in order
to generate new feature data. The export option in the program is customizable,
making it possible to customize the dataset in terms of included features and sample
rate. The program also supports save and load option of scenarios.

1.6.3 A concept of human-robot interpretation

A comprehensive literature study in the fields of HRI and WBAN has led to the
development of a human-robot interpretation concept. This thesis advocates that
humans in a human-robot team utilize WBANSs to provide the robot with essential
body data. Combined with the proposed activity recognizer the signals obtained
by a WBAN can be used to enhance the human awareness of a robot. Thus, this
contribution suggests how the first challenge in Section 1.2 can be managed.

16



FOI, Kista Enhancing the human-team awareness of a robot

1.7 Outline

The remainder of this thesis is organized as follows.

Chapter 2: Related work

Chapter 2 reviews related research. It gives a brief background on existing human-
robot teamwork models. Other essential areas are studied and their specific impor-
tances are discussed.

Chapter 3: Human-Robot concept
Chapter 3 briefly introduces the proposed concept of how to provide a robot with
essential data from the human body in order to utilize it.

Chapter 4: Data acquisition and feature processing
In Chapter 4 describes the creation of artificial datasets with data acquired from
Scenario Builder. The feature processor which assemble the dataset is explained.

Chapter 5: Extending the feature processor with features of human behavior
Chapter 5 introduces human-factor modeling with System Dynamics and the devel-
opment of a model is discussed. The chapter also describes how intangible features
are generated by the model.

Chapter 6: System test and experimental results
In Chapter 6 an experimental setup is used to test and validate the developed sys-
tem. The outcome is discussed and evaluated.

Chapter 7: Conclusions
Finally in Chapter 7 conclusions of the thesis work is presented and future work is
discussed.

17
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2 Related work

2.1 Human-Robot teams

Humans have worked as a team for as long as we have known. It is a way of en-
hancing our capabilities. We have learned that we can accomplish more by working
together.

Humans have also discovered that tools and machines can be used in order to
increase efficiency or even to enable execution of certain tasks. The machines can
be seen as a team member aiding the team and in some cases even replace a human
team member. With the declining costs and increased availability of robotic agents
the use of robots will increase. A robot in a human team will act more as a team
member rather than a tool.

This section briefly discuss human-robot teaming which refers to the collabo-
ration between humans and robotic agents [40]. Today we have both autonomous
and remotely operated robots that aid human teams.

The main reason for having a robot in a human team is to extend the capabilities
of the team. A robot may be able to perform tasks that are unsuitable or even im-
possible for a human. This leads us to another important reason, the fact that a robot
can replace a human in situations where the human otherwise would be exposed to
danger. Due to our human limitations such as vulnerability, oxygen requirement or
body structure many tasks are impossible for us to solve. A robot on the other hand
can be designed for a specific task. Hence, future teams consisting of both humans
and robots have more potential in means of performing tasks efficiently and safely.

Integrating robots into human teams is challenging in many aspects. The team
members, both humans and robots must understand each other and be aware of the
situation of the team. Situation awareness (SA) is a key research [41, 14, §] in
the field of HRI. Researchers suggests that shared mental models (SMM) should
be used to achieve a sufficient situation awareness [9, 20]. SMMs are measurable
models developed among team members prior to task execution and are correlated
to team performance [55]. It is an approach to predict needs and coordinate the
behaviors of the team.

The ability to recognize, classify and predict human behavior is another im-
portant part of a team-working robot's Al. Research [30, 39, 1, 62] emphasizes the
importance for a team working robot to understand human behavior. By possessing
such ability a robot will be more human-aware. In [53] a human-aware framework
is presented and discussed. The framework monitors user state, both physical and
psychological in order to achieve an extensive human-context-awareness.

19
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2.1.1 Real-world applications

In hazardous environments where humans are exposed to danger it is preferable to
replace them with a robotic agent. Space exploration takes place in such hazardous
environment. NASA and General Motors have developed a humanoid robot called
robonaut stationed at the International Space Station [17]. It is a robot designed to
work with humans in space. It has the ability to use the same tools as the human
astronauts which makes it a good robotic astronaut to solve problems with.

Human-robot teams have been used and explored extensively in search and res-
cue operations [27, 31]. In urban search and rescue operations the specific objective
is to rescue victims from collapsed man-made structures. It is clearly dangerous to
have humans searching for survivors in collapsed and unstable buildings. This sug-
gests that Human-Robot teams are suitable in search and rescue operations. Search
and rescue exercises have shown that a human-robot team with an effective SMM
are nine times more likely to find victims [9]. During the aftermath of the World
Trade Center disaster small mobile robots collaborated with humans in order to lo-
cate and rescue victims [10]. The rescue operations revealed that both humans and
robots contributes with unique qualities to the team. Robots are able to go in to
difficult environments and spaces deemed too small or dangerous for humans or
dogs. Human team members contribute with SMMs which enhance the situational
awareness which in turn provide effective search and rescue.

Military environment is also hazardous for humans and there has been extensive
research in the field of HRI for military purpose [2, 35]. Military forces have always
used high tech machinery in order to lower the rates of causalities in field. The
usage of robots in warfare is yet another try to reduce those numbers of causalities.
In todays warfare robots have multiple purposes and objectives such as decision
support, espionage, surveillance, locate mines and detonate them and so on. Robots
are used in all three main forces; Army, Navy and Air.

Robots have also been proven useful in the hospital domain. Robotic agents
in hospitals can contribute with routine delivery of medicine to patients and trans-
port medical devices within the hospital [24, 68]. This relieves hospital personnel
allowing them to pay more attention to the patients and focus on treatment.

20
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2.2 Teamwork and multi-agent activity recognition

Teamwork activity recognition is crucial for the intelligence of a team-working
robot. In order to interpret and understand the team the robot must recognize occur-
rence of team behaviors. Team activity encompasses several different sub-activities
such as movement, formation, gestures-communication and speech-communication.
Sub-activities in turn have different patterns that will appear and reveal the on going
activity. It is possible to classify some of the activities in the team by focusing on
one or more of these sub-activities. To fully interpret a team it would be necessary
to capture all of the sub-activities.

An essential part of activity recognition is pattern classification. It contributes
with pattern matching algorithms which search for matches in the input with pre-
existing patterns. In teamwork activity recognition it is used to identify and classify
team activities. Each known activity has its correlated pattern modeled in some
way.

Existing teamwork activity recognizers are focusing on movement classifica-
tion [45, 46, 75]. It takes into consideration spatio-temporal features such as rela-
tive position and orientation over time. In [46] HMMs are used in order to represent
team activities which in this particular case correlates to patterns of spatio-temporal
features. Experiments have validated that HMMs have good recognition accuracy.

Other activity recognizers that focus on activity classification rather than team-
work activity classification have classified human daily activities [82, 3]. Video
and motion data is used in order to identify the different activities. Gesture classi-
fication research has specifically been conducted to enhance HRI [43].

21
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2.3 System Dynamics

System Dynamics originates from research in business and economics [23]. Basi-
cally it is a way to model the behavior of complex dynamic systems over time. It
do so by breaking down a complex system into separate parameters that is inter-
connected within the system. SD models represent the systems through feedback
loops and time delays which brings forth the characteristics of the system.

System dynamics is suitable for any complex system that change over time and
have therefore many fields of application. It is an established and useful simulation
approach and it has the ability to predict how a system will react and evolve due
to changes in the system. More about the fundamentals of system dynamics can be
found in Appendix B.

System dynamics has been applied in several research projects to address spe-
cific problems of the development of urban areas [72, 66]. Urban development
is composed of many variables which makes system dynamics a suitable model-
ing approach. Created SD models can be used to simulate the interaction between
transport, population, resources and economic activity etc. in an urban environ-
ment.

In[12] a systems dynamics approach was used to model the flow and circulation
of material, energy and information in an eco-city which is a city coordinated with
three aspects; economy, society and nature. The purpose of the model was to sim-
ulate different scenarios of the city development. The system dynamics software
Vensim PLE was used to emphasize the most optimal scenario.

More interesting for this thesis work is the research of modeling human behav-
ior with system dynamics. It is a wide research area with many science domains
involved. The SD model MODERE (Motivation, DEsire, REality) [25] describes
parts of the dynamics of human behavior and motivation. It is based on theories of
human behavior originating from social science proven helpful in analysis of hu-
man motivation and corresponding behavior. The model attempts to explain what
induces individuals and groups to act in response to changes. The model was further
developed and implemented as a tool in [48]. The MODERE-model is addressed
more in Section 5.

Good human-factor modeling is difficult to achieve but is essential for a robot in
a human team. Human-factor models can be used to enhance the human awareness
of a robot [52]. It allows robots to mimic human behavior in order to achieve more
human-like AI. SD models provide a better understanding and a chance to interpret
the fuzzy behaviors of a human individual or group.

Human-robot teams are most used or intended to be used for tasks that are dan-
gerous and stressful. Therefore, It is important for robotic agents to have the ability
to understand human stress response. Psychiatric research have applied a system
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dynamics approach in order to understand the correlation between cortisol reac-
tivity and stress disorders [49]. The result have shown that the proposed model
has a powerful predicting potential in clinical practice. Besides, medical research
has also revealed that certain transitions of breathing patterns over time may have
high co-occurrence with stress levels of patients [71]. Knowledge discovery was
conducted in [78] to identify key sequences of patterns for classification of stress
levels.
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2.4 Interpretation of human behavior

Human behavior express itself physically , physiologically and psychologically.
They are however connected and it is essential to take into account all three when
interpreting human behaviors. For instance when humans are stressed psychologi-
cally the body reacts by releasing hormones that physiologically affects the organs
which in turn affect the physical ability. Research in all three areas have contributed
to a better understanding of human behavior.

Much research has been dedicated to find different approaches for interpreting
various human activities. It has contributed with a wide variety of approaches, such
as capturing human emotion patterns that is connected to human inner states (mo-
tivations, drives and personalities) [21] to approaches for interpretation of physical
behaviors such as gestural communication [70, 56].

Both physical and physiologic activity can be interpreted with the help of sen-
sors. Especially for humans that are on the move a WBAN is suitable for data col-
lection. The fundamentals of WBAN is presented and discussed more in Section
2.5.

As mentioned throughout the thesis, stress detection is essential for interpreta-
tion of human behavior. Human stress is a state that occur when a person respond
to the demands and pressures that arise from a situation. It can have both positive
and negative impact on a human. Thus, it reveals a lot about the human status and
the current situation which can be used to enhance situation awareness in robotic
agents. Former approaches for solving the stress detection problem have been based
on physiological signals or behavioral characteristics.
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2.4.1 Stress detection by means of physiological signals

When developing stress detection by means of physiological signals it is important
to know which signals that can be related to stress. Signals that have been utilized
in former research are presented in Table 1. More than one of these signals are
often used in order to obtain a better understanding of the state of mind and in turn
achieve accurate and precise stress detection.

Physiological signals Abbreviation Reference
Heart Rate HR [11, 16,57, 76]
Heart Rate Variability HRV [59, 26, 74]
Galvanic Skin Response GSR [16, 58, 80, 81, 57, 59, 60]
Skin Temperature ST [80, 79]

Finger Temperature FT [5, 4, 19]

Pupil Diameter PD [80, 81, 60]
Blood Volume Pressure BVP [80, 59, 60]

R wave to R wave interval RR [57, 59]
Electrocardiogram ECG [57, 59]
Electromyogram EMG [59, 60]
Electroencephalogram EEG [59]

Table 1: Former research by means of physiological signals

A stress detection system can be used in a variety of applications. For exam-
ple, the work presented in [15] utilizes physiological signals for stress detection to
enhance the performance of biometric security systems. The signals that was used
and provided a precise stress detection was galvanic skin response (GSR) and heart
rate (HR). The work is real-time orientated which often leads to a reduction in stress
detection accuracy. However, a real-time stress detection is necessary in many ap-
plications. In [16] HR and GSR signals was utilized and achieved a real-time stress
detection rate of 99,5% in a study of 80 subjects.
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2.4.2 Stress detection by means of behavioral characteristics

When recording behavioral characteristics for stress detection the most common
approach is to use a video stream. It is important to note that this are behaviors that
a human can control and manipulate. However, a stressful situation will affect the
behaviors to a certain extent. Table 2 presents a couple of behavioral characteristics
that have been observed and utilized in former research.

Behavioral and physical signals Reference

Movement [63, 44]
Eye Gaze [60, 44]
Facial Expression [44]

Table 2: Former research by means of behavioral characteristics
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2.5 Wireless Body Area Network

In recent years patient monitoring has gained much interest in the field of health
care. This have triggered extensive research and development of wireless sensor
systems with the purpose of monitoring the human body and its environment [73].

Recent advances in electronics and sensor technology have enabled the devel-
opment of tiny biomedical sensors which can be implanted in the body or deployed
on the outside. Previous approaches have used a wired solution between sensors
and a data acquisition unit. It has proven to be a less optimal solution in terms of
deployment and maintenance costs. Therefore, a wireless approach is suitable and
have lead to the development of WBAN [42, 13].

WBAN is a radio frequency based network of various sensors and in some ap-
plications actuators that is attached on, in or around the body. The sensors measure
certain physiological or physical parameters of the human body such as heart ac-
tivity [36], skin temperature [7], body movements [34] and skin conductance [7].
Actuators can utilize acquired sensor data and act accordingly in order to interact
with the human body. All the sensors and actuators are connected to a common
gateway unit also called personal server that for instance can be a smart phone or
a Personal Digital Assistant (PDA). The personal server can analyze data, control
actuators and transmit essential data wireless to an antenna for broadcasting or to
an external server for further processing.

2.5.1 Applications

Patient monitoring

WBAN:S are already in use at health service facilities and are helpful by providing
a better health care. It allows continuous monitoring of a humans physiological
signals. This allows physicians to observe a patient and detect abnormalities. A
WBAN equipped with actuators such as injectors for injecting life-saving drugs
can be used by diabetics for example. There are several application field tests [5]
where WBANSs and medical record servers have been used for medical diagnosis.

Safeguarding of uniformed personnel

Uniformed personnel are often exposed to great risks and stressful situations. To
lower the risks a WBAN can be used to read physiological signals that can indicate
stress levels [58]. A network equipped with gas sensors can be used to detect and
read levels of toxics in the air. This way the WBAN user can be aware of the risks.
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physical rehabilitation

By utilizing a WBAN equipped with motion sensors it is possible to achieve a better
physical rehabilitation at lower cost. In [28] a WBAN approach was used to detect
and classify limb activities in an arm rehabilitation scenario.

Training professional athletes

In[54] WBAN is used to provide coaches and their athletes with training data which
they can analyze. By looking at recorded data it is possible to follow and control the
development of the athlete and ultimately enhance his or her performance. Another
research [69] implements a WBAN to enhance the performance of rowing athletes.
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3 Human-Robot concept

This chapter briefly describes the proposed concept of human-robot interpretation.

It is crucial for any team that all team members have a good understanding of
the current state of the team and its individuals. This applies even if a team member
is an autonomous robot. A sufficient amount of information and the ability to in-
terpret it is a requirement in order to have a good understanding. Teams consisting
of only humans are often attuned due to knowledge in terms of previous experi-
ence. This leads to much higher task performance and indicates that a robot also
must have experience and knowledge. With experience it is possible for a robot
to utilize acquired data to interpret the human team members and achieve a better
understanding [51]. Thus, a first step of achieving a good human understanding is
to acquire the essential data.

A WBAN is suitable for collecting signals emitted from the human body as
described in Section 2.5. Data can easily be distributed with a WBAN which makes
it possible to connect team members to a robot as this thesis suggest. Another
benefit with a WBAN is the fact that it does not limit the mobility of the user.

To interpret the acquired data a recognizer of human behavior can be utilized.
Such as the recognizer proposed in this thesis. Figure 2 illustrates the concept struc-
ture.

WBAN Robotic Agent Broadcasting

) @ Actuators

/
L Personal Server/Gateway Unit

Figure 2: Concept structure of WBAN utilization.
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3.1 Capture human activity

The human body is a biological system that is constantly changing. To classify the
current state of a human body or determine the state of mind it is essential to gather
both physiological and physical data. Section 2.4 presents many of the signals
that can be interpreted with a WBAN. Figure 3 illustrates a proposed WBAN with
various devices and sensors which can obtain and transmit specific body data. A
WBAN can also contain devices for interaction with the human user such as head-

mounted displays and headsets.

# Device Functionality

1 Personal server Collect and broadcast
acquired data

1 GPS State position

1 Magnetometer  State orientation

1 Gas sensor Warn for toxic gases

2 ECG Monitor heart activity

3 GSR sensor Read skin conductance

4 Temp. sensor Monitor finger
temperature

5 Motion sensors Capture body motion

6 Eye Cameras Observe pupils and eye
gaze

6 Head-mounted Display information

display
7 Headset Provide audio

communication

Figure 3: Conceptual WBAN with various devices and sensors.
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4 Data acquisition and feature processing

This section describes the green and purple blocks shown in Figure 1 of the system
overview.

4.1 The creation of a scenario dataset

This section present the creation of a dataset that was used to train HMMs and they
in turn used to classify the corresponding scenario.

When developing a scenario it is important to keep in mind that it should re-
assemble the real world as much as possible. It can be of interest to consult with
professionals in the specific domain that the scenario relates to. For example, if the
scenario relates to the domain of emergency rescue operations, experienced people
in the domain can be of great assistance to assure an accurate scenario. The same
applies to any other scenario whether it is fire or police operations. The creation of
a scenario dataset in Scenario Builder involves seven steps. Figure 4 illustrates the
approach.

™\
@ Features of |r|terest N“mher"f'mh’“‘ :|
J ( agents Y,

h 4
/-'_'—‘_--. /.-- —‘_‘-\-\
[ Define sequences % Manipulate A}

| behaviors LT A }ﬂ—klut agents' courses ;Il
) "

"\,\_\_

4

Extract dataset

Figure 4: Approach to create a scenario dataset
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4.1.1 Scenario context

The scenario context is the environment with its contents where the scenario takes
place. In Scenario Builder the world is represented by a map. This map can be arti-
ficial or represent a real environment. For this thesis work a GIS map (Geographic
information system) over the Swedish city Norrkdping was used as context base.
When the scenario area has been chosen only a reference to the file location has
to be added in Scenario Builder. The map will be displayed in an own view in the
program as shown in Figure 5. The scenario context will also contain agents which
will move across the map throughout the scenario. The modeling of these agents
are explained in Section 4.1.3

I Morrképing Block View &3

Figure 5: Map View
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4.1.2 Features of interest

The features of interest are the features that all agents have. The objective of a sce-
nario creation can differ which leads to different features of interest. The features
can be of any kind such as position, skin temperature and orientation. If a needed
features is absent it has to be implemented in Scenario Builder in a programmatic
manner. The feature processor will later create a dataset in terms of sequences of a
scenario.

The values of the features, i.e. the raw data, is shown in a time stamp for each
time step of the scenario. Figure 6 displays the so called Scenario Builder View
consisting of every agent and their time stamps. The frequency of the time step can
be changed to the users preference. Figure 6 also shows that one spatial and one
physiological feature is implemented; position and heart rate. The time step is one
second.

Some features does not have to be added as features in the Scenario Builder
View. These features are features that will be calculated through other features that
are added in the Scenario Builder View. One example of such feature is velocity.
The velocity of the agent's movement is determined by the length it travels each
time step. This means that the velocity can be calculated from position data when
the scenario is being exported to a dataset. Other features that are important and
calculated during the exportation are relative features. A relative feature is a fea-
ture that represents the difference between two agent's feature values. Such as the
distance from one agent to another.

=

1 Scenario Builder View &2 @'ﬁ'}' [ | = [

4 Soldatl -
» Time: 2012-03-3010:42:1.0
« Time: 2012-03-30 10:42:2.0
» Time: 2012-03-30 10:42:3.0
» Time: 2012-03-30 10:42:4.0
» Time: 2012-03-30 10:42:5.0
» Time: 2012-03-30 10:42:6.0
4 Time: 2012-03-30 10:42:7.0
Position: [1522278.5,6496265.0,-0.0018163113)
Heart rate: 122 -

Figure 6: Scenario Builder View
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4.1.3 Modeling of agents

The modeling of agents covers three of the seven steps of a scenario creation. It
begins by adding the number of involved agents. It is simply done through an "add
agent" option. When all agents have been added the courses of the agents can be
plotted. This is done be clicking and drawing courses in the map view shown in
Figure 5.

After the courses have been plotted, agent features have to be added. A feature
is simply added with an "add feature" option. It is not necessary to add a feature
for each time stamp because Scenario Builder interpolates between each time step.
This simplifies the modeling since a big scenario is likely to have many time stamps.
Features that can be added are the features of interest described in the previous
section. To manipulate a feature value the user marks the specific feature and edit
the value in the Properties View as shown in Figure 7.

T Properties 23 :~=:D =
Property Value

Heart rate 122
4 il I

Figure 7: Properties View
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4.1.4 Behavior of a sequence

The second last step of the scenario creation is the defining of sequences of be-
haviors. This is done in the Sequence View shown in Figure 8. The behaviors are
defined by the user and can be of any kind such as patrol, rest and group movement
to mention a few. In Scenario Builder each behavior is represented by a sequence
class. The sequence class in turn contains multiple instances of the same behav-
ior. The specific behaviors which are intended to be classified with the help of the
dataset should be defined throughout the whole scenario for as many instances as
possible to provide the best result.

To define a sequence class the user first have to define the class name of the
specific behavior by using the "add sequence class" option. Once a sequence class
of a behavior has been defined specific sequences of the behavior can be added
with the "add sequence" option. Thereafter the start and end time for the added
sequence can be defined by clicking on a time stamp while the corresponding time
label is marked. Once the time span have been defined the agents that are involved
in the particular sequence can be added through the "add agent" option. It is only
the added agents' time stamp data that will be included in the sequence data. This
is important since there often are subgroups in a scenario and it is unlikely that all
agents have the same behavior at the same time.

] Sequence View &2

4 | ParallelMotion (4) -
4 Sequence
4 Start
2012-03-30 10:42:8.0
a End
2012-03-30 10:42:19.0
4 Agents (2)
Soldatl
Soldat3
- Sequence -

m

Figure 8: Sequence View
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4.1.5 Export feature data

The raw data can be exported to a dataset when the agents are modeled and the
sequences of behaviors are defined in the scenario . This is done through the export
option. The user can choose which features to include in the dataset and specify
the sample rate for the dataset. When the dataset is being created parts of the raw
data will be used to generate new features to the dataset using a system dynamics
model as illustrated in Figure 9. These are features that are more intangible and
difficult to interpret directly. This model is developed outside Scenario Builder
and is implemented by referring to the file location of the model. More about the
system dynamics model development is described in Chapter 5. The generation of
the intangible features is addressed in Section 5.3.

Feature
Raw data > | Feature Dataset
Processor data

F

k4
S0
maodel

Figure 9: The export process

4.1.6 The extracted dataset

The exported dataset have the file format ARFF (Attribute-Relation File Format)
and consists of two separate files. The files are ASCII text files that together de-
scribes the instances of the exported behavior sequences. The first file is an infor-
mation file which holds all the sequence classes and points out where in the second
file the corresponding feature data is located. The dataset can be used for any pur-
pose and by any software that can read ARFF files.
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S Extending the feature processor with features of human
behavior

5.1 Development of a System Dynamics model

The development of the SD model in this thesis work has been influenced much by
two specific previously researched SD models; The MODERE model [25] and the
model presented in [52].

The MODERE model captures human motivation and corresponding behavior.
Motivation is seen as the process which will lead one to make a certain act. It is
difficult to paramatarize a feeling but one could say that a human is more or less
prone to act. According to the MODERE model motivation can be parameterized as
either 100%, meaning that the human most likely decides to act and 0%, meaning
that the chances of acting are very low or the motivation can be somewhere in
between.

The research in [52] suggests a model to provide more human-like agents. The
model is considered to have the ability to do so by looking at two physiological
inputs; heart rate and cortisol level, combined with human perception and mental
coping knowledge. A human factor model of stress could provide a prediction of
upcoming stress levels unlike the existing stress classifiers that only classifies the
current stress level.

However as with many research papers that address human behavior modeling
the detailed and mathematical relation of interconnected parameters in the model
are not discussed. Only suggestions that possible relations between parameters
exist are presented in the research papers. This fact makes it very hard to develop
an accurate and adequate model based exclusively on previously published research
papers.

Due to the lack of good models with corresponding functions most models,
including the one developed in this thesis work, have more or less linear functions.
This is however enough to clarify the usefulness of a SD model and the benefits
that it can provide.

To develop an adequate and somewhat correct model of human psychophysio-
logic behavior a real-world sensor data acquisition is necessary. This is discussed
further in Chapter 7.

It is important for uniformed personnel to be focused in order to have good per-
formance. Therefore, the SD model developed in this thesis aims at capturing the
dynamics between focus, stress and the heart rate. A person is said to be focused
if he or she is concentrating on performing one and only one task. However, fo-
cus have a broader sense in this thesis. Focus reveals that if an agent is focused
the performance level is high and otherwise it is low. The research paper [77]
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presents a method for affect recognition using physiological signals; heart rate and
skin conductance. The research addresses the Yerkes-Dodson law which is of most
importance. It explains the relation between arousal, a physiological and psycho-
logical state of being awake, and task performance. Figure 10 shows the related
function of arousal and task performance, also called Yerkes-Dodson Curve.

Optimal arousal

Strong | —
£ Optimal performance
=T [} a
2 Impaired performance
o= . .
= because of strong anxiety
b5
= J\
Increasing attention
Weak and interest

Low High

Arousal

Figure 10: Hebbian version of the Yerkes Dodson Law

Many researchers have suggested that a similar correlation exist between stress
and focus which in turn affects task performance. A persons performance can be
strong or weak depending on the level of stress and focus. A certain amount of
stress have positive effect on a persons level of focus while too much have inhibitory
effect.

With the above mentioned taken into account, a SD model has been constructed
which is described in the following section.
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5.2 A model of stress and focus

It takes a lot of time and elaboration before the resulting SD model is accurate and
satisfying. For this thesis work an iterative approach was used which means that
the model was enhanced with time until it was finished. The guidelines in Section
B.2 was followed in order to get an effective work flow.

The finished model is shown in Figure 11 and the containing parameters is
explained in table 3

Focus"\ InitialdHR

StressProfile

NOwel

dStress I—IR «—InitialHR.

Figure 11: A System Dynamics model of Stress and Focus produced in Vensim

Parameter Description

HR Heart rate

Initial HR The initial heart rate at simulation start.

dHR derivative of heart rate, ie. at which rate the heart rate
increases or decreases.

Initial dHR The initial rate at which the heart rate increases or decreases
at simulation start.

Max HR States maximum heart rate.

dStress The rate at which the parameter Stress increases or decreases.

Stress Profile

Stress
Focus

Calibrates the model according to the characteristics of
a persons stress.

Parameterized value of Stress

Parameterized value of Focus

Table 3: Components of SD model with corresponding description
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It is difficult to parameterize intangible features such as stress and focus. One
must estimate how the feature can be represented by a number and how it is in-
fluenced by other parameters. It must all together work hand in hand with the
whole model. In this model, stress is influenced by heart rate such that if heart
rate increases stress increases. The relation between stress and focus have a more
complex nature as explained earlier.

Initial heart rate and heart rate derivative are individual parameters in the model
because they are determined by a dataset and can therefore not be predetermined.

In order to test the developed SD model one can use the simulation option pro-
vided in Vensim. The simulation runs over a certain time period which is set by
the user and the result is shown as graphs of each parameters over time. Figure 12
displays a simulation of 20 seconds of the developed SD model. The simulation
tool allows you to adjust various parameters in the model in order to understand the
behavior of the model.

r InitialdHRE
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”essdq—mmal}m

dStress

0.6157

/\/

1]
0 10

Figure 12: Functions for stress and focus presented in Vensim
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Stress if affected by heart rate and corresponding function may look like Figure
13.

Stress
E.447

/

0
0 20

Figure 13: A function over stress (Simulation length: 20 sec.)

As mentioned earlier a certain amount of stress will enhance a persons level of
focus while to much stress will do the opposite. The function of focus may look
like Figure 14.

Focuz
7102

-20.78
1] 20

Figure 14: A function over focus (Simulation length: 20 sec.)

Bear in mind that the model described in this section is very simplified com-
pared to the complexity of the real-world system it aims to represent.
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5.3 Generation of intangible features

This section explains how the SD model is utilized in order to generate intangible
features. As mentioned earlier the process involves a simulation of the model which
runs over a predetermined time period.The time period in this particular case is set
to 20 steps where each step is 1 second. These are all settings which can be defined
in Vensim.

Before the simulation starts the initial values of the model is set according to
data from the scenario as shown in Figure 15. After the initial state of the model
has been configured the simulation begins.

Scenario data,

— e

Focus‘_ e — T Initial dHR +—
_Siress ", e
stressProfile /A _,‘ #
tress Ern ile / maxHR dHR
'\‘ [
/ / | *
-~ |
S /

R

dStress
[t=0] -~

d__fHRﬂ—lmhalH.R -

Figure 15: The process of generating new data with a SD model.

The internal parameters are updated dynamically while the simulation is run-
ning as the name suggests. When the simulation is finished the values of the pa-
rameters that represents the intangible features are extracted and inserted into the
dataset as shown in Figure 16.

Dataset

lh————__
Focus e

. —_ T ImtialdHR
StressProfile ,ffs'tr;% \ “.f
T 1
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—

Figure 16: The process of generating new data with a SD model.

Which values from the simulation that is going to be stored in the dataset is
configurable .
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6 System test and experimental results

6.1 Test Scenario

MOUT (Military Operations in Urban Terrain) scenarios have been of most interest
for this thesis due to related research which formed the basis of this work. Military
personnel are often exposed at greater risks in an urban terrain due to the lack of
sight, mobility constraints and unpredictability of enemy whereabouts. It would
therefore be convenient to get support and assistance from a team orientated robotic
agent.

6.1.1 The scenario in short

The creation of this scenario is described in Section 4.1
Context base: Norrkdping Block

Number of Agents: 4

Time step: 1 Second

Features in Scenario Builder:

» Position
e Heart rate

Behaviors:

e Parallel motion
* Split motion
* Focused line motion

» Unfocused line Motion

The choice of which behaviors to add was made with two purposes in mind.
Parallel motion and split motion were mainly added in order to demonstrate the
spatial-temporal classification ability of HMMs. Focused and unfocused line mo-
tion were added with the purpose of highlighting the impact of the utilized physio-
logical signal and the developed SD model.

The dataset for this scenario has 6 sequences of different instances for each
behavior. The time length of a sequence varies from 5 to 25 seconds. The data
frequency, which is the time step between data in the sequence is 1 second. Each
sequence contains the time stamp data for all involved agents. A time stamp in the
dataset consists of 21 features. The number of involved agents in a sequence varies
from 2 to 4.
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6.2 Experimental setup

The purpose of the experimental setup was to validate the developed recognizer and
compare its performance with a standard recognizer. The setup was constructed
in RapidMiner and involved; feature selection, HMM learning and a validation
process as shown in Figure 17.

Selection of
Feature data

| |Testing| | | [ Training | |

HMM Result

Figure 17: An overview of the experimental setup.

The experiment was conducted several times with different settings and datasets
to assure a reliable validation. For each test the parameters inside the operators,
such as selected features, were configured to test the consistency of the recognizer.
The selectable features are described in Table 4.

The results from a validation in RapidMiner is displayed in confusion matrices
which makes it easy to see the characteristics of the recognizer. When both types
of recognizers had been tested their average accuracy and specific class precision
was compared.
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Feature description

A_Time numeric The specific time of a time stamp.

A X/Y/Z numeric The position in a single coordinate.

A ANGL_A/B/C/D numeric A numeric value of the relative angle.

between agent A and agent A/B/C/D.
A ANGL DISCR SoldatA/B/C/D | A discrete value of the relative angle.
between agent A and agent A/B/C/D.

A _DIST A/B/C/D numeric The distance between.
agent A and agent A/B/C/D.

A Velocity numeric The velocity.

A_HR numeric The heart rate.

A_dHR numeric The heart rate derivative.

A_Stress numeric The stress level.

A_Focus numeric The focus level.

Table 4: Selection of features for agents A, B, C and D.

6.2.1 Reading the dataset

The first step of the process is to import the dataset and it is done with an import
operator block that is set to read ARFF files. Both the information and data file
produced by Scenario Builder must be imported in order to interpret the whole
dataset. The first two blocks shown in Figure 18 import the dataset information
file. The last block in Figure 18 is a cross-validation operator block in which the
process continues.
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Figure 18: The three outer blocks of the experimental setup
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6.2.2 Cross Validation

The cross-validation is divided in to two parts; training and testing. It is a model
evaluation method for determining the performance and accuracy of predictive or
classification models; HMMs in this thesis. The cross validation type used in this
thesis is k-fold cross-validation (10-fold cross-validation specifically). The pro-
cess of 10-fold cross-validation which is iterative goes as follows. The dataset is
randomly divided into 10 subsamples of data, a training set of k-1 samples and a
testing sample. The entire dataset is not used for training the HMM in order to avoid
classification of data which the HMM already has encountered. Thus, the training
set is used for training the HMM as described in Section A.1.3 and the remaining
sample is used for testing the trained HMM as described in Section A.1.1.

The process is repeated k number of times and with each of the k subsamples
as testing sample exactly once. After the process have been repeated an average
result is calculated to produce a single estimation. This reduces the variability of
the result.

The first three blocks in the validation block import the data file of the dataset
as shown in Figure 19. When the whole dataset has been imported it is time to
define which features to train the HMMs with. The user do so by defining a subset
of features with a "Select Attribute"-operator block as shown in Figure 20 and de-
scribed in Section 6.2.3. The last block in the training part of the cross-validation
is the actual HMM learning and is described in Section 6.2.4.
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Figure 19: The first part of the cross-validation block
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6.2.3 Feature Extraction

The feature processor produce numerous features and not all of them are needed
or suitable for training the HMMs with. To determine which features that are of
significance one must understand each features influence on the HMMSs. Several
features may provide exactly the same property and only one of them will be needed
in the dataset for training. The best way to figure out which features that are of
importance is by testing different sets of features and compare the effects it has on
the HMMs classification performance.

The dataset produced in Section 4.1 holds as many as 21 features per agent as
mentioned before. Fortunately, RapidMiner provides an easy way to define features
of interest as shown in Figure 20.

Attributes

@]

Soldatl _ANGL_DISCRE_Saldatt
Soldatl _ANGL_DISCR_Saldat2
Soldatl _ANGL_DISCRE_Saldat3
Soldatl _ANGL_DISCRE_Saldatd
Soldatl _ANGL_Soldati

Soldatl _AMGL_Soldat2

Soldatl _AMGL_Saldat3

Soldatl _AMGL_Saoldatd

Soldatl _DIET_Saldati

Soldatl _DIST_Saldatz

Soldatl _DIST_Soldat3

Soldatl _DIST_Saldatd

Soldatl _Focus

Soldatl _HR

Soldatl _Stress

Soldat1 _Time

Soldat! _Melocity

Soldat _x

Soldatt _Y

Soldatl _Z

Soldat! _dHR

Figure 20: Feature selection.
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6.2.4 Machine Learning with Hidden Markov Models

The parameters that can be set in the HMM learner operator block is the number
of states, train iterations and gaussian components. All the parameters have major
impact on the classification result. A testing approach with different settings for
each test is required to achieve a suitable setting with satisfying result. The number
of train iterations were most often set to 10 while the other two parameters were
manipulated more frequently.

6.2.5 Testing the models

Figure 21 shows the second and last part of the cross-validation block which is the
testing. The first operator block applies the trained model on the testing dataset
as explained earlier in Section 6.2.2. This means that the model classifies the se-
quences of behaviors in the dataset originating from Scenario Builder.

The second block in the testing part of the cross-validation is an evaluator op-
erator and is used for classification tasks. It compares the classified and labeled
dataset with the actual dataset.

Apply Model Performance ...
miod :I {: mid — lab :1 {: lab — |JE"I':I f_ ave
tes :) {: unl 7| mod :1 (: per I% exd :1 (: ave
thr [ (%) )

Figure 21: The second part of the cross-validation block
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6.2.6 Result

This section presents a brief selection of obtained results generated from tests with
the experimental setup. Table 5 presents the average accuracy of classifications
based on included features that the HMMs were trained with.

Agents: A,B,C,D

Table 5: Matrix depicting the average accuracy of a model depending on included
features.

Selected
2 3 4

A X numeric

A_Y numeric

A_Z numeric

A_Time numeric
A_ANGL_A numeric

A _ANGL_B numeric

A _ANGL_C numeric

A _ANGL_D numeric

A ANGL DISCR_SoldatA
A_ANGL DISCR_SoldatB
A_ANGL DISCR_SoldatC
A _ANGL DISCR SoldatD
A DIST A numeric

A _DIST B numeric

A DIST C numeric

A _DIST_D numeric
A_Velocity

A_HR numeric

A _dHR numeric

A_Stress numeric

A Focus numeric

# of States in HMM
Gaussian components 4 5
Time in SD model (sec) 10 20

Average accuracy (%) | 26.4] 86.8] 90.8] 85.9] 29.5] 77.7| 89.5] 88.6|

Features
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Table 6 presents the result from test 1 in Table 5 where all features in the dataset
were selected.

Table 6: Confusion matrix depicting agent activity recognition performance.

True Precision
a b c d (%)
2 Parallel motion a |3 3 5 7 16.67
5 Split motion b |6 6 7 3 27.27
?é Focused line motion c |5 2 10 6 43.48
& Unfocused linemotion d | 6 8 5 2 9.52
Recall (%) 15.0 31.58 | 37.04 | 11.11

Table 7 presents the result from test 2 in Table 5 where only spatial features
were selected.

Table 7: Confusion matrix depicting team activity recognition performance.

True Precision
a b c d (%)
] Parallel motion a |19 0 0 0 100.0
S Split motion b |1 19 0 11 61.29
B Focused line motion ¢ | 0 0 27 |0 100.0
® Unfocused linemotion d | 0 0 0 7 100.0
Recall (%) 95.0 100.0 | 100.0 | 38.89

Table 8 presents the result from test 3 in Table 5 where both spatial features and
focus were selected.

Table 8: Confusion matrix depicting agent activity recognition performance.

True Precision
a b c d (%)
] Parallel motion a | 20 6 0 0 76.92
5 Split motion b |0 13 0 1 92.86
_03 Focused line motion c |0 0 27 0 100.0
® Unfocused linemotion d | 0 0 0 17 100.0
Recall (%) 100.0 | 68.42 | 100.0 | 94.44
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Table 9 presents the result from test 6 in Table 5 where only spatial features
were selected.

Table 9: Confusion matrix depicting agent activity recognition performance.

True Precision
a b c d (%)
2 Parallel motion a | 18 0 0 0 100.0
5 Split motion b 19 0 13 55.89
?é Focused line motion c |0 0 27 0 100.0
& Unfocused linemotion d | 0 0 0 5 100.0
Recall (%) 90.0 100.0 | 100.0 | 27.78

Table 10 presents the result from test 7 in Table 5 where both spatial features
and focus were selected.

Table 10: Confusion matrix depicting agent activity recognition performance.

True Precision
a b c d (%)
] Parallel motion a |19 2 0 0 90.48
S Split motion b |1 12 0 0 92.31
B Focused line motion ¢ | 0 0 27 |0 100.0
® Unfocused linemotion d | 0 5 0 18 78.26
Recall (%) 90.0 | 63.16 | 100.0 | 100.0
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6.3 Discussion

The result in Table 5 shows clearly that the intangible features enhance the average
classification accuracy of behaviors. The table also clarifies that the usage of all
features will decrease the performance of the classification dramatically. This sug-
gests that when more features are used the feature space is increased and this affect
the classification negatively. Thus, the predictive power reduces as the dimension-
ality increases. This phenomena is called the curse of dimensionality and in the
machine learning domain specifically it is known as the Hughes effect or Hughes
phenomenon [32] . The size of the dataset i.e. the amount of data that is needed to
provide a good result often grows exponentially with the dimensionality. A larger
dataset would most likely provide a better result when all features are selected.

However, this thesis does not suggests the usage of a large number of features
even if a very large dataset is provided since the classification would be more time
consuming. The real-time classification in a robotic agent most be rapid and still
have high accuracy. Therefore it is preferable to use a lower number of features
which have high importance and still provides an accurate classification.

Table 5 also shows that a combination of the stress and focus feature lower the
average accuracy slightly. One reason for this can be the structure of the SD model.
Tests in the particular case have shown that a combination of the features enhance
the classification of behaviors that are more intangible and impairs the classification
of behaviors that can be classified only through spatial data. A model with more
accurate relationships would likely erase this flaw.

The results also show that recognizers with different HMM settings are con-
sistent, i.e. the precision and recall percentage of the classes are kept at a similar
level. See Tables 7, 8, 9 and 10.

6.3.1 Stand alone HMM compared with SD model extension

This section discuss the comparison of the already existing method of using HMMs
exclusively for classification and the suggested approach with a SD model exten-
sion. In the overview of the system illustrated in Figure 1 this means without and
with the blue block respectively.

Table 7 shows that a recognizer with a HMM stand alone approach have dif-
ficulties to classify unfocused line motion. Table 8 on the other hand highlights
that the recognizer extended with the SD model enhance the intangible behavioral
classification. The two tables also show that the extended system do so at the cost
of the spatial behavioral classification accuracy. Further tests with more instances
of the same behaviors in the dataset indicated that this most likely was a result of
an insufficient amount of training data. Thus, it is very important that the recog-
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nizer is trained with a sufficient amount of data. To determine if the dataset is big
enough one can estimate the needed data amount based on the number of selected
features. It is however easier to avoid this by decreasing the amount of selected
features if possible. For each selected feature the amount of needed of training data
is increased dramatically.

In order to assess more complex and intangible behaviors a more sophisticated
SD model must be applied to the recognizer. It would for instance be convenient to
have features for motivation and anxiety. With such and similar features it would
be possible for a recognizer to classify a wider variety of intangible human behav-
iors. A robot equipped with such recognizer could in turn achieve a much better
human understanding and provide reliable decision support. For example, if a team
member is facing a demanding task the robot could determine if the member is the
most suitable of the members to perform the specific task.

6.3.2 Datasets

The datasets that was utilized fulfilled its purpose and was sufficient enough to
prove the advantage of the extended recognizer. However, a real-world dataset
would have reflected the true performance of the recognizer. That however would
be much more time consuming to implement and would not provide the same flex-
ibility. At an early state of the development of this type of recognizer it is good to
have the ability to customize the datasets.

6.3.3 Stress profile

Another essential issue to discuss is the fact that all intangible features of the agents
are generated with the same model. In real life this is not the case since all people
react differently in situations. An individual stress profile for each agent, i.e. team
member, would be necessary to improve the classification process and get a more
real life depiction. It seems more or less impossible to find a stress model that is
general for all team members. The model developed in this thesis is as mentioned
before merely an estimation of the bodily behaviors. It is only good enough to
prove the usefulness of an SD model in team behavior classification.
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7 Conclusions

In this thesis we improved existing teamwork activity recognizers by utilizing a
physiological signal and a SD model which allowed the recognizer to better classify
intangible activities. The proposed method has been proven useful and is believed
to have significance for future teamwork activity recognizers and team orientated
robots. Specifically, the proposed SD model utilizes the physiological signal heart
rate to interpret intangible features such as agents' level of stress and focus. These
features in turn are used to distinguish more intangible behaviors from spatial be-
haviors. a SD model does not only enables interpretation of intangible features but
also provides the ability to predict how a scenario may evolve based on initial cir-
cumstances and simulation time. As part of this, a data acquisition tool has been
developed in order to produce artificial datasets for testing purposes. The results
from the system tests have been analyzed and compared with former methods. The
outcome is that an accurate SD model is able to classify a wider amount of human
behaviors.

The thesis has also proposed a conceptual approach of how robots can interpret
human behaviors by the utilization of WBAN. The concept is believed to be of
importance in order to establish a real time classification of human behaviors and
in turn achieve robots with sufficient human awareness.

Robotics with more human awareness would lead to a whole new era of hu-
man robot interaction and robotics applications. Most robots today have a lack of
perception and cannot provide the needed feedback that a human team demands.

The literary study in this thesis indicates that comprehensive knowledge from
several research domains must be applied in order to enhance the human aware-
ness of a team oriented robot. Some of the subjects that have been visited during
the thesis work are: Machine Learning (activity recognition), System Dynamics,
Robotics, Artificial Intelligence, Human-Robot-Interaction, Psychology, Physiol-
ogy and Sensor Systems (WBAN).
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7.0.4 Future Work

As far as the author knows, no one has never developed a concrete SD model of
human psychophysiologic behavior based on real-world sensor data. Such a model
would provide a much more accurate and true model of human psychophysiologic
behavior. The model would in turn have better qualifications of enhancing the hu-
man awareness of a robot. The development of an accurate and adequate model
would start by collecting real-world sensor data with a WBAN as suggested in Sec-
tion 2.5. With the collected data it would be possible to develop an extensive SD
model with adequate relationships between interconnected parameters.

It is also essential to expand the usage of physiological signals in the system. A
first step would be to integrate a GSR feature since it has high co-occurrence with
stress and reveals a lot about the state of mind. It would be desirable to utilize all
the signals provided by the WBAN presented in Section 1.6.3. Therefore, it would
optimal to realize a functional WBAN with all its sensors which would provide
body data to a robot. Once the suggested WBAN has been constructed it can be used
to collect real-world data which would be assembled into datasets. The datasets
would in turn be used in the already implemented validation process to validate the
developed recognizer with real-world data.

To further improve the classification of human team behaviors and individual
behaviors the stress profile mentioned in Section 6.3.3 must be addressed and devel-
oped. This has to be done by observing individual stress impact and management
and the development of a customized and unique SD model for the specific indi-
vidual. This applies to all features that can be of interest, stress is just one out of
many.
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A Hidden Markov Models

In a Markov Model we have a set of states in which one of these states the Markov
process starts. It then moves successively from one state to another but it can also
go to itself again. These moves are called transitions or steps and have a probability
associated to it. This transition probability states how likely it is that a transition
from one state to another is made. A graphical model of this is shown in Figure 22.
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Figure 22: An example of a three-state markov model.

A state is denoted w(t).
A sequence of states with length T is denoted w? = {w(1),w(2), ...,w(T)}

The transition probability between states are denoted with a;; where the transition
occurs between state i and j.

aij = P(wj (t4+1) | wi (1) ()

The sum of the transition probabilities from a state must be 1.

Zai]’ =1
J
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The simplest Markov Model is the First-Order Markov chain. In this model
the future only depends on the present state and is independent of the past. You
could say that the First-Order Markov chain is memoryless. This property of the
Markov Model is called the Markov property. The fact that first order Markov
models only depends on the current state makes it a bad choice for classifying se-
quential data that represent a behavior. Therefore a more suitable model must be
used, namely HMMs.

HMMs also consists of states that have possible transitions to other states but
there is also emission probabilities in each state which are the probabilities that in
a particular state, these particular outputs are emitted. The emission probability
is sometimes called observation probability pointing to that the emitted output is
observable. Each state have the same set of possible outputs. Ina HMM the internal
states are hidden from the observer and only the output that is emitted from the state
is observable. The emission probability can be denoted with bjy.

bjr, = P (v (t) | wj (1)) 2

Figure 23 illustrates the observable part of a HMM.

Figure 23: Only the emitted output is observable.
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Each state has a probability distribution over possible outputs. A sequence of
these outputs shows us the state sequence of the process which otherwise is hid-
den. Thus, a sequence of observations gives us the state sequence through which a
process passes. These observations can be placed into a feature vector. From this
vector we can try to determine the state sequence of the process. A sequence of
visible states can be denoted V7 where T is the length of the sequence.

vl = {v(1),v(2),...,v(T)}

Just like the transition probability the emission probability of a state must sum

upto 1.
D k=1
k
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A HMM is easier explained with an example. In this example the HMM has
two internal states with possible transitions between them and the the possibility of
emitting one of three outputs at a given time. The two internal states are Sunny and
Rainy and the three possible and visible outputs are Walk, Shop and Clean. Imagine
you live far away from your friend and you speak over the phone everyday about
what she has done during the day. You are then going to determine whether it is
sunny or rainy at your friends place depending on what activity your friend has been
doing. The activities represents the visible outputs. Figure 24 describes the HMM
of the scenario. The numbers are randomly assigned for this example.

/ -/ alk =

/
'\ Shop }_{ |

\ Start |

&

Figure 24: Example of a HMM with numbers.

Start is not a state, it only shows the probability of where the process will start.
Thus, it is the current weather when you receive the first call from your friend. In
the example in Figure 24 the HMM tells us for example that if it is sunny it is a
70% chance that your friend is out walking.
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To get an overview of the HMM transition probabilities the transition probabil-
ities can be arranged in a matrix.

Sunny Rainy
a;; = | Sunny 0.7 0.3
Rainy 0.4 0.6

Just like the transition probabilities the emission probabilities can be arranged
in a matrix.

Shop Walk Clean
bjrp = [Sunny 0.2 0.7 0.1
Rainy 0.6 0.1 0.3
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A.1 Utilization of Hidden Markov Models

To utilize the functionality of Hidden Markov Models we must understand some
processes. These processes are;

» Evaluation
* Decoding

* Learning

A.1.1 Evaluation

In the evaluation we want to determine the probability that a particular sequence
VT of T visible outputs v(t) was generated from a known HMM. With a known
HMM we mean a HMM were the transition and emission probabilities are known.
Thus, given a HMM © and a sequence of visible outputs V7, we want to find
P(vT|e).

The probability that a particular sequence of visible outputs V7" was produced
by a particular HMM is

Tmazx

pP(vT|e)= ZPVT\W P (wh) 3

In equation (3) w! is a sequence of hidden sates where T is its length and r indexes
the specific sequence. The summation consider all possible sequences of length T.

The second factor in equation (3) describes the transition probability a;; for the
hidden states and can be written as

T
Pw)=][Pw®|wi-1) )
t=1
Equation (4) gives us the product of the transition probabilities according to the
hidden sequence.
Since the output probabilities only depends on the hidden state the first factor
in equation (3) can be written as

T

PV w)) =[P @®) w(®) )

t=1

Equation (5) gives us the product of the emission probabilities according to the
hidden state and its possible outputs.
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Equation (3) can now be written with equations (4) and (5) as

r=1 t=1

Tmazx T
P(VTIG)):Z(HP(v(t)lw(t))P(w(t)W(t—l))> (©)

Equation (6) says that the probability that a particular sequence V7 of T visible
outputs v(t) was generated from a known HMM O is equal to the sum over all
possible hidden state sequences of the probability that a particular transition was
made multiplied by the probability that is then emitted the observed output in the
sequence V7,

We can calculate equation (6) recursively because each term in the summation
only depends on the observed output v(¢), the state w(t) and the previous state
w(t—1).

To better under stand the recursive algorithm we first denote that c;(t) is the
probability that a HMM is in a hidden state w; at time ¢ and have generated the first
t elements of the sequence V7. The Forward Algorithm is used to calculate the
probability and is shown in algorithm 1.

Algorithm 1 The Forward Algorithm
Initialization ¢ < 0, a;;, bjx, o;(0), observed output sequence V7
fort=0—t="1Tdo
t+—t+1
a;(t) = bjrv(t) 32; it — 1)ay
end for
return P (V7 | ©) + ao(T)

There is a time-reversed version of the forward algorithm called the Backward
Algorithm which begins at the last output in the observed output sequence and iter-
ates backwards to the first output. The Backward Algorithm is shown in algorithm
2.
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Algorithm 2 The Backward Algorithm
Initialization ¢ <— 7', a;;, bji, B;(T), observed output sequence VT
fort =T —t=1do

t—t—1
53'(15) — Zl Oéi(t -+ l)aijbjkv(t + 1)
end for

return P (VT | ©) + ay(T)

A.1.2 Decoding

The main goal with the decoding is to with a known HMM © and a sequence V7 of
observed outputs determine the most likely sequence w’ of hidden states that led
to the observed output sequence. Thus, we want to find the specific sequence w’
that maximize P (VT, wT | @). The decoding algorithm is shown in algorithm 3

P (VT,(A)T | @)max = Olj(t)max (7
a;(t) =biv(t) > ai(t — 1)aj (8)
() maz = argmazxo;(t) 9

For clarity we take an example. Imagine that you know what your friend from

the last example did the past four days. Now you want to figure out what kind of
weather it most likely was during those four days. The first day your friend was
out walking, the second day shopping, the third day cleaning and the last day your
friend was out walking.
For each time step we look for the state w(¢) with the highest probability a;(¢)maa
of having originated from the previous state w(t — 1) in which the observed out-
put v() could have been generated. Thus, the sequence of these hidden states
{w(1),w(2),...,w(T)} is the state path of the specific process. In our example
shown in Figure 25 the possible path is{ Sunny, Sunny, Rainy, Sunny}

To begin with we assume that the process starts in the state "Sunny" since it
has the highest probability of being the state when the your friend is out walking.
Equation (10) shows one step in the decoding process. Note that this is the same
procedure as in the forward algorithm.

a1(1)) =1x 0.7 % 0.2 =0.14 (10)
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Figure 25: Example of a possible sequence of hidden states that could have gener-
ated the output sequence. A graph like this is called a trellis.

Sunny Rainy
a;; = | Sunny 0.7 0.3
Rainy 0.4 0.6

Shop Walk Clean

bjrp = [Sunny 0.2 0.7 0.1
Rainy 0.6 0.1 0.3

The next probability is calculated in the same way in equation (11).

az(1)) =1 x 0.3 x 0.6 = 0.18 (11)

Now we can determine oj(1),,4, and continue on the path with the highest proba-
bility. The full path is shown in Figure 26.

74



FOI, Kista Enhancing the human-team awareness of a robot

Walk Shop Clean Walk
o~ ""\-\‘ r i \I
Sunny (1 ) (0.009 )
\__ h___/;_.
— /— ., / ,.-/ —— { T,
Rainy f/ 0 \j; | 0.18 —»0.0324 |f D.Dﬂl}
\-._,/ ‘k“‘"--__,pf/}Il 1\\__; ..\uq_,f’

Figure 26: A trellis with red arrows showing the most likely path of the hidden
sequence

Algorithm 3 The Decoding Algorithm
Initialization w” < {},# < 0
for (t<t+1) —>t="Tdo
Jg+1
for (j < j+1)—i=1do
a;j(t) = bjro(t) X it — 1)ay;
end for
j' = arg maxa;(t)
wl « §'
end for
return w

T

A.1.3 Learning

The learning part is used when the internal and visible states of a HMM are known
but not the transition and emission probabilities. By utilizing a sequence of ob-
servable training data (observed outputs) we want to determine these probabilities
a;; and bji. One learning algorithm is the Baum-Welch algorithm, also called the
Forward-Backward algorithm which will be explained in this section. Baum-Welch
algorith is a type of generalized expectation-maximization algorithm. This means
that the algorithm iteratively adjusts the internal parameters a;; and b;;, of the HMM
0 such that it is maximized. The forward and backward algorithm can be utilized
to calculate the maximum probability.
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A.1.4 Baum-Welch algorithm

In the previous section we defined «;(t) to be the probability that the model is in a
state w;(t) and has generated the observed output sequence up to time step ¢. In a
similar manner we can describe the probability that the model is in a state w; () and
will generate the remaining outputs of the observed sequence, v(t + 1) — v(T).
We denote this probability as [3;(t) and define it as (12).

Bi(t) = Bi(t+ Dagbjpv(t + 1) (12)
J
Equation (12) says that the probability f;(¢) that the model will generate the
remaining output sequence is the sum of the probability of making a transition to
the next state w; (¢ + 1) multiplied with the probability that this hidden state emitted
the correct observable output. Thus, we are going backwards in our sequence of
hidden states.
There are two cases where equation (12) does not apply. The first exception is
if we are at the final time step T and want to find out the probability (1) and the
state w;(T") is not the final state of the sequence.

Bit)=0  (if wi(t)#wy and t="1T) (13)

The second exception is if we are at the final time step T and want to find out
the probability 5;(7") and the state w;(T’) is the final state of the sequence.

Bi(t)=1 (if wi(t)=wo and t=T) (14)

Imagine that we know «;(¢) up to time step 7" — 1 and we want to determine
B¢(T'). Then we would have equation (15)

Bi(T —1) = Z Bi(T)aijbjro(T) (15)

By repeating this procedure we can determine 3;(7" — 2) and so on backward
in the trellis.

But one must remember that «;(¢) and 5;(T") are just estimates of the real values
since we do not know the real values for a;; and b

We will now look at a way to better estimate these probabilities. We first define
a new probability as in (16).

St — V)aiibinBi(t
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This is the probability that we are in a state w; (¢ — 1) and make a transition to state
w;(t) given that the model has generated the given training sequence. P(V7 | 6)
is simply the probability that the model by any path generated the given output
sequence. With other words it is the forward algorithm shown in algorithm (1).

Now we can denote the estimated transition probability between state w;(t — 1)
and w;(t) to be a;; and define it as equation (17).

4 = Y cijt)
’ Zf:lefik(t)

Thus, a;; is the ratio between the expected number of transitions between state
wi(t — 1) and w;(t) at any time in the given sequence and the number of total
expected transitions from w;(¢) to any other state.

The estimated emission probability that a particular output v(¢) is generated is
denoted Bjk and defined in equation (18).

(17

bji is defined as equation (18)

b — S Y Ea)
jk — T
D=1 2 Ei(t)

b 1s the ratio between the expected number of times a particular output vy, is
generated from state w; and the expected times state w; is visited.

By utilizing equation (17) and (18) we can calculate improved transition and
emission probabilities based on the given model and the observed sequence V7.
The calculations can be repeated until the probability values is satisfying a crite-
rion. The criterion is a boundary saying that the calculations will repeat until the
probability values does not change sufficiently much.

The pseudo-code for the Baum-Welch algorithm is shown in algorithm (4)

where v(t) = vy (18)

Algorithm 4 The Baum-Welch Algorithm
Initialization V7' a;j, bk, A (convergence criterion),z < 0
for (x < = + 1) = mazfa;j(x) — azj(x — 1), bjr(r) — bjp(x — 1)) < Adoto
compute d;j(x) witha(x — 1) and b(x — 1)  Eq.(17)
compute l;]k(x) witha(z —land b(x —1)  Eq.(18)
aij(r) = aij(x — 1)
bik(x) < bj(z — 1)
end for
return a;j < a;j(x) and bjk < bjk(z)
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B System Dynamics

There are dynamics in every system which has mutual interaction within the system.
To predict the behavior of a dynamic system over a period of time it is important to
understand the structure of the system. In this chapter we will discuss a method for
modeling such a dynamical system. Specifically we are going to investigate how so
called System Dynamics models (SD models) can be utilized for this purpose. In a
SD model it is easy to understand and follow the system over time. It is a graphical
map over constituent components of a system and describes their interactions and
behaviors.

When a component in a dynamic system changes it will influence connected
components. This means that one change will cause other components to change
and those components will in turn affect its connected components and so on. In
most systems this chain of reaction will take place in a loop, meaning that one
component that changes will influence itself over time.

In System Dynamics loops are called feedback loops due to the fact that com-
ponents have feedback to its point of origin. Feedback loops are an important part
of System Dynamics.

Another part that have a major impact on the behavior of a dynamic system
is the internal time delays between components. That is the time it takes for one
component to affect a connected neighbor component. By capturing the relation-
ships between system components, i.e. time delays and interdependencies, we can
analyze and design systems more accurately.

An important aspect when analyzing or designing dynamic systems is that mi-
nor parts of a system may behave in a totally different manner when it is connected
to the entire system. One must keep in mind that in some cases the whole system
cannot be explained in terms of the behavior of its minor parts. Therefore, it is
crucial in System Dynamics to establish convenient boundaries of a system when
analyzing or designing it. If the boundary of a model is too wide it will be much
harder to handle and analyze. On the other hand, if it is too narrow it can mislead
and give an inaccurate model of the systems real behavior.

Thus, SD models are basically a computer-aided approach to present, analyze
and design dynamic systems. It is a good methodology to use when modeling com-
plex dynamic systems whether it is a economical, environmental or any other intra-
connected system. SD models have been used for various systems in different do-
mains and have been proven very helpful in previous implementations [49, 67].
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Below are just a handful of applications that System Dynamics can be applied
to.

Applications
» Economics
» Business

» Social Science

Population Science

» Environmental Science

Medical Science

In addition to the applications mentioned above there are many more fields where
System Dynamics are put to good use. It is an expanding field of science and have
been growing ever since Jay W. Forrester initially developed the field in the late
1950s[23].

To give an understanding of how SD models are structured and interpreted we
will in the following sections discuss System Dynamics concepts and thinking.
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B.1 The Concept of System Dynamics

A SD model can describe systems that includes:

Interdependencies

* Mutual interaction

* Circular Causality

* Information Feedback
» System Delays

Most complex systems are likely to contain all of the above properties. Each
property characterize the behavior of the system and influence the total outcome.
The following sections describes how the properties are captured in the model.

B.1.1 Interdependence: Positive and Negative Influence

In a SD model the interdependence between two components is denoted with an
arrow and a sign that explains how it influences the connected component. The
influence and the sign can either be positive (+) or negative (-). Figure 27 clarifies
the influence a change have depending on the type of sign.

Change Influence

T—1
1—1
T—d
1—1

Figure 27: Change and Influence relation.
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B.1.2 The Feedback concept

In System Dynamics the feedback is a core concept that is involved in most complex
systems. A feedback loop exists in a system if a change travels through the system
and at some time returns to its point of origin, hence the name. This can influence
a system in two ways. It can reinforce the initial change and is then called a posi-
tive feedback loop. A loop that oppose the initial change is called a balancing or
negative feedback loop. The causal relationship of the components in a feedback
loop is presented in a causal loop diagram, displayed in Figure 28. It is called a
causal feedback loop because it only consider how the components influence each
other and not at which rate they increase or decrease.

T T

+F/x K\.x‘ -i/z \\‘-
T N ® Ty w h
( Birth \]I_+ | { Population (- 1 Death )
\ L e N, Y Vi

" 1+ - A+

Figure 28: Causal loop diagram of population.

In Figure 28 there are two feedback loops, one positive displayed to the left and
one negative displayed to the right. When labeling a loop with either positive or
negative feedback (sometimes "R" for reinforcing and "B" for balancing) we define
the polarity of the loop. A system with only a positive polarity will continue to grow
with time until it probably collapse. A system with only a negative polarity have a
tendency to generate a oscillating behavior. Most complex systems are composed
through a mixture of positive and negative feedback loops. As in the example in
figure 28 population is regulated through a reinforcing loop and a balancing loop.
If the number of births increases it will of course increase the population which in
turn will increase the number of births, thus reinforcing the loop. This loop alone
would have an exponential growth. However the population is also affected by the
number of deaths and the number of deaths is regulated by the population in turn.
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If a feedback loop is have a long path it is still easy to determine the polarity
of the loop. Just by multiplying the signs along the path will give the polarity of
the feedback loop. One can keep in mind the following multiplication thumb rules
when determining the polarity of feedback loops:

_l’_

+ . —
— 4=

—+

+

As mentioned above the causal loop diagram does not reveal anything about in
which grade the components affect one another. It provides an qualitative analy-
sis, an insight of the structure and the behavior of the system. To achieve a more
quantitative model we must include equations explaining the dependencies between
components. How and in which grade components affect each other can be defined
with linear or differential equations depending on the dependence characteristics.

B.1.3 Equations and Notations
The equations for the system for the population example can easily be explained.

The population level at time t is denoted P(¢).
The number of births is denoted B and the number of deaths is denoted D.

The birth rate is denoted b and is the number of births divided by the total number
of the population: b = %

The death rate is denoted d and is the number of deaths divided by the total

f. gD
number of the population: d = %

With the above notations and equations we can calculate the quantity of the
population for the next time step:

Pt+1)=Pt)+B—-D
= P(t)+b-P(t) —d- P(t)
= P(H)(1+b—d)
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B.1.4 The Stock and Flow Concept

When dealing with levels of something in a dynamic system the approach is to
use a Stock and Flow Concept. A Stock and Flow diagram (SFD) distinguish the
causal relationship of levels, rates and constants which a causal diagram does not
distinguish. The Idea is to define some of the components as stocks. These stocks
contains a level of something and can increase or decrease depending on the flow
in and out. An excellent example containing such stock with in and outflow is
the population example mentioned in the previous section. The level of people is
regulated through the number of births (the inflow) and the number of deaths (the
outflow). The number of births and deaths are regulated through the birth and death
rate respectively. The Stock and Flow representation of the population example is
shown in Figure 29.

T

B Population -"(EJ Sink

Births Deaths
Figure 29: A SFD of population.

In Figure 29 the number of citizens i.e the population is represented by a rectan-
gle which symbols a stock of people and the rates are represented by valve symbols.

There are two clouds in Figure 29 which represent the in and outflow. The first
cloud represent an endless source of something that flows into the system, in this
case people and the other cloud represent a sink where people vanish after death.
thus, there is a endless flow from the source to the sink.

Figure 30 clarifies the relationships, loops and rates of the system. The con-
stants are denoted with a name. In this example we consider the rates controlling
births and deaths to be constant and have therefore no sign beside the arrows con-
nected to the valves. Also the feedback loop is highlighted in the SFD below.
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Birth rate Death rate

{ _|_"- A
+ IL\_____/'I _ 1 . \\-.:_-}l +

Y X
@ : ‘ = Population : ) : ’{@
Births + ! Deaths -

Figure 30: A detailed SFD of population.

B.1.5 System Delays

A problem that makes it difficult to model dynamic systems is that it can contain
internal delays. The delays will cause the entire system to behave differently com-
pared to the same system without delays. If a system contains delays it often means
that there will be oscillations in the system. Imagine that in the real world it takes
sometime for information to travel. For instance it will take a couple of days before
a factory perceives an increased demand of their product and can increase the man-
ufacturing speed. In the same way it will take a couple of days before the factory
perceives an decreased demand of their product so they can slow down the man-
ufacturing. This will cause the system to oscillate and affect the behavior of the
entire system making it more difficult to model. In a SD model this is represented
with two parallel lines on the linked arrow. Figure 31 clarifies the notation.

Demand

/

Manufacturing Products sold

Figure 31: An example of a delay scenario.
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B.2

A System Dynamics Approach

When developing a SD model one can follow the guide lines shown below. For a
good result this should be done together with experts in the field in question.

1.

7.

Define the situation, the problems and a boundary of the system with a dy-
namic aspect, i.e how the internal components affect each other.

Identify Interdependencies in the system.

Identify the most important stocks and flows that regulates these stocks.

. Identify the source that influence the flows and how it affects the system.

Identify feedback loops.

Use a graphical approach to draw a causal loop diagram over the system that
links all the interdependencies and clarifies feedback loops and delays.

Determine the equations explaining the relationship between components.

When a complete model have been developed and is going to be used for sim-
ulation one must first estimate initial values for the components. This can be done
through real world data acquisition, market research or through speculations based
on expert opinions.
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C Abbreviations

Abbreviation Meaning page
Al Artificial Intelligence 7, 14
SD System Dynamics 7,17,32
WBAN Wireless Body Area Network 7,22,24,25
HRI Human-Robot-Interaction 7,14
HMM Hidden Markov Models 8,41
SA Situation Awareness 14
SMM Shared Mental Models 14
HR Heart Rate 20
HRV Heart Rate Variability 20,42
GSR Galvanic Skin Response 20, 25
ST Skin Temperature 20

FT Finger Temperature 20

PD Pupil Diameter 20
BVP Blood Volume Pressure 20
RR R wave to R wave interva 20
ECG Electrocardiogram 20, 25
EMG Electromyogram 20
EEG Electroencephalogram 20
PDA Personal Digital Assistant 22
RCP Rich Client Platform 9
GUI Graphical User Interface 9
XML eXtensible Markup Language 9
GPS Global Positioning System 25
GIS Geographic information system 27
ARFF Attribute-Relation File Format 31,40
ASCII American Standard Code for Information Interchange 31
SDF Stock and Flow Diagram 77,78
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