OULU 2012

C 420

’m—ﬂl UNIVERSITATIS OULUENSIS
(] (] ———
Sy

O]eg Davidyu]e

AUTOMATED AND INTERACTIVE
COMPOSITION OF UBIQUITOUS
APPLICATIONS

UNIVERSITY OF OULU GRADUATE SCHOOL;

UNIVERSITY OF OULU, FACULTY OF TECHNOLOGY,
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING;
INFOTECH OULU

ACTA UNIVERSITATIS OULUENSIS
C Technica 420

OLEG DAVIDYUK

AUTOMATED AND INTERACTIVE
COMPOSITION OF UBIQUITOUS
APPLICATIONS

Academic dissertation to be presented, with the assent of
the Doctoral Training Committee of Technology and
Natural Sciences of the University of Oulu, for public
defence in Wetteri-sali (IT115), Linnanmaa, on 8 June
2012, at 12 noon

UNIVERSITY OF OULU, OULU 2012

Copyright © 2012
Acta Univ. Oul. C 420, 2012

Supervised by
Professor Jukka Riekki

Reviewed by
Professor Aaron Quigley
Professor Tommi Mikkonen

ISBN 978-951-42-9837-0 (Paperback)
ISBN 978-951-42-9838-7 (PDF)

ISSN 0355-3213 (Printed)
ISSN 1796-2226 (Online)

Cover Design
Raimo Ahonen

JUVENES PRINT
TAMPERE 2012

Davidyuk, Oleg, Automated and interactive composition of ubiquitous
applications.

University of Oulu Graduate School; University of Oulu, Faculty of Technology, Department of
Computer Science and Engineering; University of Oulu, Infotech Oulu, P.O. Box 4500, FI-
90014 University of Oulu, Finland

Acta Univ. Oul. C 420, 2012

Oulu, Finland

Abstract

Application composition refers to the creation of applications by using Web Services and
resources such as mobile devices, displays, and various augmented everyday objects as building
blocks. This approach is especially useful for ubiquitous applications which focus on supporting
users' needs and everyday activities. This thesis proposes to compose these applications by
choosing the appropriate set of resources and services and their configuration as dictated by the
users themselves, together with their needs and other contexts.

This thesis studies automated and interactive application composition. The first approach
enables the system to act upon users' needs and intentions, while the second enables users
themselves to specify their needs and achieve their goals. The research was carried out by
designing, implementing and evaluating eight prototypes for automated and interactive
application composition. The evaluation methods used included performance analysis and user
experiments.

The main results include (1) the design and implementation of automated composition
mechanisms which rely on evolutionary computing and genetic algorithms, (2) a detailed
performance analysis of these mechanisms using synthesized datasets and in a real networking
environment; (3) the design and implementation of interactive application composition prototypes
which rely on graphical and physical (i.e. touch-based) user interfaces for mobile devices and
utilize various contexts; (4) an evaluation of these prototypes in a series of user experiments. The
evaluation studied the following issues: users' attitudes towards an automated composition system
which makes decisions on their behalf; users' attitudes towards a context-aware composition
interface; and the issue of balancing user control and system autonomy.

Keywords: application composition, interaction design, physical user interface design,
ubiquitous computing

Davidyuk, Oleg, Automatisoitu ja vuorovaikutteinen jokapaikan tietotekniikan
sovellusten kokoaminen.

Oulun yliopiston tutkijakoulu; Oulun yliopisto, Teknillinen tiedekunta, Tietotekniikan osasto;
Oulun yliopisto, Infotech Oulu, PL 4500, 90014 Oulun yliopisto

Acta Univ. Oul. C 420, 2012

Oulu

Tiivistelma

Sovellusten kokoamisella tarkoitetaan sovellusten luomista kéyttden rakennuselementteind Web
Services -ohjelmistojdrjestelméad, sek& muita resursseja, kuten mobiililaitteita, ndyttolaitteita ja
monenlaisia lisdvarusteltuja tavanomaisia esineitd. Tdma menetelma on erityisen kayttdkelpoi-
nen sellaisten jokapaikan tietoteknisten sovellusten luomisessa, joiden tarkoitus on tukea kayt-
t4jan tarpeita ja pdivittaisid toimia. Tutkimuksessa esitetdén, etta tallaisia sovelluksia voidaan
koota valitsemalla sopivia palvelu- ja resurssipaketteja seké niiden konfiguraation kédyttajien
vaatimusten mukaan, ottaen huomioon heidén tarpeensa sekd muut kontekstit.

Tassa véitoskirjassa tutkitaan automatisoitua ja vuorovaikutteista sovellusten kokoamista.
Automatisointi mahdollistaa sen, ettd jarjestelméa toimii kdyttajan tarpeiden ja pddmaarien
mukaisesti, kun taas vuorovaikutteisuuden ansiosta kdyttaja voi maaritella tarpeensa ja padsee
néin haluamaansa lopputulokseen. Tutkimus toteutettiin suunnittelemalla, toteuttamalla ja arvi-
oimalla kahdeksan automatisoidun ja vuorovaikutteisen sovelluksen kokoonpanon prototyyppié.
Arviointimetodeina kaytettiin suorituskykyanalyysid ja kayttajakokeita.

Tutkimuksen t&rkeimpid tuloksia ovat (1) evoluutiolaskentaan ja geneettisiin algoritmeihin
perustuvien automatisoitujen kokoamismekanismien suunnittelu ja toteutus; (2) ndiden mekanis-
mien yksityiskohtainen suorituskykyanalyysi syntetisoitujen tietoaineistojen ja todellisten verk-
koymparistdjen avulla; (3) graafisille ja fyysisille (I. kosketus) mobiililaitteiden kayttoliittymille
perustuvien ja monenlaisia konteksteja hyddyntavien vuorovaikutteisten kokoamissovellusten
prototyyppien suunnittelu ja toteutus; (4) prototyyppien arviointi erilaisin ké&yttajakokein. Arvi-
oinnissa tutkittiin kdyttajien asenteita k&yttajan puolesta p4atoksié tekevad automatisoitua koko-
amisjarjestelmaa kohtaan, kayttajien asenteita kontekstitietoista kokoamiskayttéliittymaa koh-
taan, seka kayttajalle jadvan kontrollin ja jarjestelméan autonomian vélistd tasapainoa.

Asiasanat: fyysisten kéyttoliittymien suunnittelu, jokapaikan tietotekniikka,
kayttajavuorovaikutuksen suunnittelu, sovellusten kokoaminen

1o my parents, Elena and Stanislav Davidyuk

Acknowledgements

First of all, I would like to express my sincere appreciation to my thesis advisor Prof.
Jukka Riekki for supporting and guiding me patiently from the time when I joined
MediaTeam Research Group as an MSc thesis student. Thank you for your kind support.

I would like to acknowledge all my colleagues who contributed to the development
and implementation of the system prototypes and applications throughout this thesis
project. In particular, I wish to express my gratitude to Istvan Selek, Ivan Sanchez,
Ekaterina Gilman, Josu Ceberio, Jon Imanol Duran, Jussi Mikipelto, Marta Cortés and
Mikko Pyykkonen. Your efforts have been vital for the successful realization of all these
prototypes.

I acknowledge Prof. Valerie Issarny and Dr. Nikolaos Georgantas for supervising
and guiding my research during my visits to the ARLES project-team at INRIA.

Finally, I wish to express my thanks to Gordon Roberts and Richard James for their
revision of the language.

My work on this thesis has been funded by GETA (the Finnish Graduate School
in Electronics, Telecommunications and Automation), by the Academy of Finland
and the National Technology Agency of Finland (TEKES), the Nokia Foundation, the
Tauno Tonning Foundation, the Walter Ahlstrom Foundation, the Elisa HPY Research
Foundation, the University of Oulu Scholarship Foundation and the Research and

Training Foundation of TeliaSonera Finland Oyj. Their financial support is appreciated.

10

Abbreviations

Al

AIRES
ANSO
BPEL
BRITE
CADEAU

CANS
CAPNET
COCOA

CC/PP
EA

GA

GUI
HTTP

I/0
MEDUSA
MGA
MUSIC

NFC
OWL-S
PalpCom
PC

PICO

PiP

PSC

QoS
REACHeS
RFID

Artificial Intelligence

Automatic Integration of Reusable Embedded Software

Autonomic Networks for Small Office/home office users

Business Process Execution Language

Boston University Representative Internet Topology Generator
Collecting and Delivering Multimedia Content in Ubiquitous Environ-
ments

Composable, Adaptive Network Services

Context-Aware Pervasive Networking

Conversation-based Service Composition in Pervasive Computing Envi-
ronments

Composite Capabilities/Preference Profile

Evolutionary Algorithm

Genetic Algorithm

Graphical User Interface

Hypertext Transfer Protocol

Input/Output

Middleware for End-User Composition of Ubiquitous Applications
Micro-Genetic Algorithm

Self-Adapting Applications for Mobile Users In Ubiquitous Computing
Environments

Near Field Communication

Ontology Web Language for Services

Palpable Computing Project

Personal Computer

Pervasive Information Community Organization

Pervasive Interactive Programming

Pervasive Service Computing

Quality of Service

Remotely Enabling and Controlling Heterogeneous Services

Radio-Frequency Identification

11

SEA
SOAP
STEER
Ul

UML
URL
WSBPEL
WSCL
WSDL
XML

12

Straightforward Evolutionary Algorithm

Simple Object Access Protocol

Semantic Task Execution Editor

User Interface

Unified Modeling Language

Uniform Resource Locator

Web Services Business Process Execution Language
Web Services Conversation Language

Web Service Definition Language

Extensible Markup Language

Glossary of terms

Application Composition is an approach to create ubiquitous applications by composing
the appropriate set of services and their configuration as dictated by users, their
needs, the situation and other contexts. The result is an application which may

consist of one or multiple services

Automated Composition is an approach to construct ubiquitous applications using an

automated composition mechanism

Composition Mechanism is an intelligent mechanism capable of acting and making
decisions according to users’ activities and needs. A composition mechanism may

rely on some existing heuristic or planning algorithm

Composition Process is a continuous process which manages the life-cycle of applica-

tions from their initialization to the execution and termination

Context is an aggregation of relevant information such as a user’s location, his/her

preferences and the situation in the environment

Interactive Composition is an approach to construct applications by employing user

control which users exercise through appropriate tools and user interfaces

Interaction Method is a user interface to control application composition that may

optionally rely on some composition mechanism

Service is a set of capabilities of a physical resource (e.g., a computation, storage, or

I/O device) that can be accessed through some software interface

Ubiquitous Application is an application which can be dynamically linked to multiple
resources providing services and human-computer interaction capabilities for

users

13

14

List of original publications

This dissertation is based on the following publications which are referred to in the text

by their Roman numerals (I-VIII):

I

II

I

v

VI

VIl

VIII

Davidyuk O, Ceberio J & Riekki J (2007) An Algorithm for Task-based Application
Composition. In the 11th IASTED International Conference on Software Engineering
and Applications (SEA’07), Cambridge, MA, USA, November 2007: 465-472. URI:
http://www.actapress.com/Abstract.aspx?paperId=32100.

Davidyuk O, Selek I, Ceberio J & Riekki J (2007) Application of Micro-Genetic Algorithm
for Task Based Computing. In the 1st International Conference on Intelligent Pervasive Com-
puting (IPC’07), Jeju Island, Korea, October 2007: 140-145. DOI: 10.1109/IPC.2007.23.
Davidyuk O, Selek I, Duran JI & Riekki J (2008) Algorithms for Composing Pervasive
Applications. International Journal of Software Engineering and Its Applications 2(2):
71-94. URIL: http://www.sersc.org/journals/IJSEIA/vol2_no2_2008/7.pdf.
Sanchez I, Davidyuk O & Riekki J (2009) Towards User-Oriented Application Composition.
In the IEEE International Workshop on Pervasive Service Computing and Applications
(PSCA’09), As part of the 4th International Conference on Frontier of Computer Sci-
ence and Technology (FCST’09), Shanghai, China, December 2009: 698-704. DOI:
10.1109/FCST.2009.76.

Davidyuk O, Sanchez I, Duran 1J & Riekki J (2008) Autonomic Composition of Ubiquitous
Multimedia Applications in REACHES. In the 7th International ACM Conference on
Mobile and Ubiquitous Multimedia (MUM’08), Umea, Sweden, December 2008: 105-108.
DOI: 10.1145/1543137.1543159.

Davidyuk O, Sanchez I & Riekki J (2011) CADEAU: Supporting Autonomic and User-
Controlled Application Composition in Ubiquitous Environments. In Malatras A (ed)
Pervasive Computing and Communications Design and Deployment: Technologies, Trends,
and Applications, IGI Global, Chapter 4: 74-103. DOIL: 10.4018/978-1-60960-611-4.ch004.
Davidyuk O, Gilman K, Sanchez I, Mikipelto J, Pyykkonen M & Riekki J (2011) iCompose:
Context-Aware Physical User Interface for Application Composition. Central European
Journal of Computer Science 1(4): 442-465. DOI: 10.2478/s13537-011-0031-z.
Davidyuk O, Georgantas N, Issarny V & Riekki J (2011) MEDUSA: A Middleware for
End-User Composition of Ubiquitous Applications. In Mastrogiovanni F & Chong N-Y
(eds) Handbook of Research on Ambient Intelligence and Smart Environments: Trends and
Perspectives, IGI Global, Chapter 11: 197-219. DOI: 10.4018/978-1-61692-857-5.ch011.

15

16

Contents

Abstract

Tiivistelma

Acknowledgements

Abbreviations

Glossary of terms

List of original publications

Contents

1

Introduction
1.1 Background e
1.2 Research scope, thesis statement and research objectives.................
1.3 Scientific contributions and the author’srole............................
1.4 Research hiStOrycoitiii i e i
1.5 Research methodologyc.oviiiiiii i
1.6 Structure of thesis. i e
Composition of ubiquitous applications
2.1 Automated vs. interactive COMPOSIHONvvvtteeeniieeennnen.n.
2.2 The generic COMPOSIION PIOCESS« vt vve vttt et eaeae e eaenns
Techniques for automated application composition
3.1 Syntactic COMPOSItIONt vttt ettt e
3.2 Semantic COMPOSIION v vttt ettt et e eaee e
3.3 Policy-based COMPOSItION.vvvnuttttt i
34 SUMMALY . .ottt ettt ettt e e et
Techniques for interactive application composition
4.1 Visual application composition toolSc.vviiieiiiiieennn...
4.2 Non-visual application composition tools....................ooviiaa...
4.3 Tools for runtime application composition control.......................
4.4 SUMIMATY . ot v ettt ettt e ettt e e ettt ettt et aaiee s
Research and experiments
5.1 Prototypes for automated application composition.......................
5.1.1 The straightforward evolutionary algorithm (SEA)................
5.1.2 The micro-genetic algorithm (MGA),

11
13
15
17
19
19
21
23
25
29
31
33
33
35
39
40
41
42
43
45
47
50
52
53
55
55
58
59

17

5.13
5.14

5.2 Prototypes for interactive application composition

5.2.1
522
523
524

6 Discussion

Modified evolutionary (EA) and genetic algorithms (GA)..........

Evaluation of the EA with the REACHeS infrastructure

The automated composition prototypeccovuueeeennnn..

CADEAU ..
TCOMPOSE .« v v vttt ettt e e e et e
MEDUS A ..

6.1 Revisiting thesis statement and research objectives

6.2 Main contributions

6.3 OPENISSUES . ..ttt et e e e
6.4 Future Work...... ... i

7 Conclusions

References

Original articles

18

1 Introduction

1.1 Background

The origin of software composition research can be traced back to 1969, when Douglas
Mcllroy coined the term ‘software component’ and proposed the concept of ‘coupling
programs like a garden hose - screw in another segment when it becomes necessary’
in his landmark paper that motivated the whole software engineering discipline [1].
Nowadays, software composition is a widely used software engineering method for
constructing and maintaining complex software structures using small software parts
as building blocks. These parts are accessible runtime units of software, such as
components, services, or some objects. Software composition research emphasizes the
following three principles: i) reducing the complexity of the design and construction of
software systems, ii) reusing software parts as much as possible, and, iii) combining
these parts in many different ways to meet the requirements imposed, among others, by
software developers, users and the environment.

Recently, software composition research has resurfaced with the emergence of
ubiquitous computing. As the founder of this research field, Mark Weiser, described
in his pioneering work [2]; ubiquitous environments are future worlds consisting of
a number of different resources which integrate into human activities and support
users’ everyday lives. These environments enable ubiquitous applications which are
dynamically linked to multiple resources providing services and human-computer
interaction possibilities for users. In this context, a service can be defined as the
capabilities of a resource (e.g., a computation, storage, or I/O device) that can be
accessed through some software interface.

This thesis focuses on application composition to emphasize that the result of
software composition has a user interface and is designed to help users to perform
some task. This approach is specifically useful for creating ubiquitous applications as it
proposes constructing applications by composing the appropriate set of resources and
services and their configuration as dictated by the users, their needs, the situation and
other contexts.

The application composition approach brings a number of benefits to ubiquitous

environments. First, by composing services across multiple resources, a collection

19

of resources may be able to provide a seamless application functionality that would
otherwise not be available. For example, a group of resource-limited devices can
share their individual capabilities within the network and provide so-called virtual
device functionality [3]. Other devices can combine and use these shared capabilities
as part of a virtual device in order to extend their physical capabilities (e.g. lack of
memory or sensors) or for the benefit of users. Second, application composition can
be used to build multimodal user interfaces by combining and controlling inputs and
outputs from multiple resources. For example, [4] uses this approach to enable rapid
prototype development of applications integrating various interaction technologies
(object identification, finger localization, tracking, etc). In addition, application
composition allows ubiquitous applications to be developed that can dynamically adapt
according to changes in the environment. For example, an application may need to
recompose the set of services to achieve fault-tolerance [5] or to achieve late binding,
which means making use of some services that are only available at runtime [6].

However, the main motivation for using application composition in ubiquitous
computing is the requirement to support users’ needs and activities. Users are essentially
the focus of any ubiquitous system which always shapes the computation around what
users need and how their needs can be supported. Application composition promises to
meet users’ needs by choosing the appropriate set of services and their configuration
which create the application as required by the users. At a coarse grain, this requirement
targets the issues related to the functionality of the application, quality of service
(QoS), and context. The application functionality may serve multiple purposes for
users including learning, home and office automation, task facilitation and pleasure,
play and fun. Quality of service may serve as a measure of user satisfaction or as a
quantitative characteristic that denotes performance and other application properties.
Context refers to an aggregation of relevant information such as a user’s location, his/her
preferences and the situation in the environment [7]. The ability to support users’ needs
and activities is also reflected in application composition approaches used in ubiquitous
computing. The research presented in is thesis is also motivated by this goal.

This research is multidisciplinary, and falls at the intersection of several established
disciplines including software engineering, computer science, usability and human-
computer interaction. The thesis combines methods and scientific practices of these
disciplines in order to better suit the research problem and study application composition
from different angles. Particularly, two topics are studied: automated and interactive

application composition. Although the topics are closely related to each other, they are

20

addressed using different approaches. Automated application composition addresses
computer science and software engineering, while interactive application composition
targets human-computer interaction, usability and software engineering. The scientific

practices and the methodology used are described further in Section 1.5.

1.2 Research scope, thesis statement and research
objectives

As envisioned by Mark Weiser [2], a ubiquitous environment contains three essential
elements: multiple resources providing various services, multiple applications utilizing
these services, and multiple users interacting with these applications. The applications
can be used by one or multiple users at a time, and each application can utilize one or
many services simultaneously. Users interact with the applications by means of user
interfaces. In contrast, the services interact (i.e. exchange information) with each other
and with the applications by means of software interfaces.

A ubiquitous environment is naturally dynamic, as its users and some of the resources
are mobile. The resources’ properties (e.g. availability and load) are variable, as are
the users’ preferences and needs - which further complicates the matter. Evidently,
application composition has to be dynamic in order to react to all these changes over
time. Assuming that the environment provides a large number of resources, it might be
appropriate to choose different sets of resources even to compose the same application
at different times. Indeed, the characteristics of the resulting application mainly depend
on the properties of the chosen resource set. Moreover, the application might need
to be recomposed in order to react to changes that occur during application usage.
In this setting, the high-level research problem for application composition can be
specified as follows: How can one choose a set of resources, and their configuration,
that supports a user’s needs, and takes into account his/her preferences and the situation

in the ubiquitous environment?

Theoretical aspects. This research problem requires the creation of a composition
mechanism capable of finding the set of resources and their configuration that implement
the application according to the multiple constraints and criteria specified by the
users, software developers and characteristics of the environment. We consider that a
composition mechanism has to be efficient, robust, accurate and scalable. An efficient

mechanism consumes as little computational, memory and other resources as possible.

21

A robust mechanism guarantees to find a solution, if one exists, within a specified
time period. An accurate composition mechanism finds solutions of high quality. A
scalable composition mechanism demonstrates its suitability when operating with large
problems.

A composition mechanism requires the creation of a model describing users,
applications and resources in the environment. This model provides a foundation for the
composition mechanism which uses the model’s elements to build applications. We
consider that the application composition model should essentially be extensible, formal
and generic. An extensible model allows the easy addition of new concepts. A formal
model enables state-of-the-art heuristics and optimization schemes to be applied. A

generic model implies the ability to describe various application domains.

Practical aspects. As the requirement for any ubiquitous computing system is to be
user-centric, the role of the user is also emphasized in this work. This research targets
the following user-centric issues: the balance between the system’s autonomy and user
control in a composition mechanism, the user interface design, the utilization of context
and the user experience. Moreover, in order to verify the system in a real world setting,
this research introduces a further requirement: completeness, which is to say that the
application composition system has to be a fully implemented solution. Therefore,
the practical aspect of this research is centered around designing and implementing a
system that uses the aforementioned model and composition mechanism, and resolves
multiple research and engineering issues related to the implementation of application
composition in a real-world setting.

These theoretical and practical aspects can be summarized in the thesis statement:
Providing a system which enables composing ubiquitous applications in a real-world
setting.

Hence, the first objective of this research is the construction of an application
composition mechanism which has to be evaluated for efficiency, accuracy, robustness
and scalability. The second objective is the construction of a fully functioning system
prototype that provides appropriate user interfaces to enable user control for application

composition, and the evaluation of this prototype in a series of user experiments.

22

1.3 Scientific contributions and the author’s role

This thesis contains eight publications. The author of this thesis is the main author
of all the publications, except for Publication IV. The prototypes of algorithms and
systems described in these publications were built in close collaboration with a number
of researchers. The scientific contribution of the individual articles, the roles of the
author and the other researchers in each article are as follows.

Publication I introduces the graph-based model to represent formally application
composition, and contributes to the design, implementation and performance analysis
of the application composition mechanism based on the straightforward evolutionary
algorithm (SEA). The idea for the paper was developed by the author of this thesis. The
SEA algorithm is compared empirically with a greedy algorithm. The design of the
evolutionary and greedy algorithms and models was undertaken by the author of the
thesis. The implementation of the algorithms and the collection of data was performed
by the author of this thesis together with Josu Ceberio. The analysis of the collected
measurements was performed by the author of this thesis alone.

Publication II presents the design, implementation and performance analysis of the
application composition mechanism which was based on the micro-genetic algorithm
(MGA). The idea for the publication was developed by the author of this thesis. The
MGA algorithm was compared empirically with the algorithm presented in Publication I.
The task of designing the MGA was performed together by the author of this thesis and
Istvan Selek. The implementation of the algorithm and the data collection tasks were
accomplished by Josu Ceberio. The task of analyzing the collected measurements was
performed by the author of this thesis alone.

Publication III introduces the generic graph-based model for application com-
position, and sets out the design, implementation and performance analysis of two
composition mechanisms. The idea for this publication was developed by the author
of this thesis. The introduced mechanisms were the genetic and the evolutionary
optimization algorithms which relied on the three-phase evaluation schema and used a
customizable optimization criteria. The algorithms and the model were generic, i.e.
were capable of describing different application domains. In addition, new concepts
could be added to the model without redesigning the algorithms. The task of designing
these algorithms was jointly accomplished by the author of the thesis and Istvan Selek.
The implementation of the algorithms was a shared task between Istvan Selek and Jon

Imanol Duréan. The data was collected by Jon Imanol Duran. The author of this thesis

23

organized a series of experiments and was responsible for analyzing the collected data.

Publication IV describes the detailed performance analysis of the application
composition mechanisms (presented in Publication III) working in two setups: as
a standalone tool on synthesized datasets, and with a multimedia application when
integrated as part of the REACHeS infrastructure. The idea for the paper was created
together by the author of this thesis and Ivan Sanchez. The solution, which integrates
the application allocation with the REACHeS infrastructure, was designed together by
the author of this thesis and Ivan Sdnchez. The solution was implemented by Jon Imanol
Durén. The thesis author participated in collecting the measurements and analyzing the
bottlenecks introduced by integrating the algorithm with the REACHeS infrastructure.

Publication V presents the system prototype which uses the genetic algorithm
(presented in Publication IIT) to compose a multimedia application. The prototype and
the application were fully implemented and were evaluated in a user experience study
which involved 10 test subjects. This publication reports the study of user attitudes to an
automated composition system making decisions on the user’s behalf. The concept of
the prototype was developed jointly by the author of this thesis, Ivan Sdnchez and Jon
Imanol Duran. The prototype was implemented by Ivan Sédnchez and Jon Imanol Duran.
The thesis author organized the user evaluation experiment, collected data through
interviews and questionnaires, and analyzed and interpreted this data. The idea for this
publication was developed by the author of this thesis.

Publication VI introduces an architecture, a system prototype and three interaction
methods for application composition. Two of these interaction methods used the
application composition mechanism presented in Publication III. This publication
reports the comparison of the interaction methods in a large-scale user experience study
which involved 30 test subjects. This study identified the factors and the contexts which
affected the decisions of users to rely on the interaction methods. The publication also
presents the study of finding a balance between user control and autonomy for the
application composition system, using a smart newspaper application as an example.
The idea for the prototype and the publication was created by the author of this thesis
and Ivan Sanchez, working together. The author of this thesis participated in the design
of the interaction methods. The system prototype and the demo application were
implemented jointly by Jon Imanol Durén, Ivdn Sdnchez and Marta Cortés. The user
evaluation experiments were organized and conducted jointly by the author of this thesis
and Ivan Sanchez. The author of this thesis carried out alone the tasks of analyzing and

interpreting the data collected during the user experiments.

24

Publication VII sets out the design, implementation and evaluation of a system
prototype for context-aware application composition. The prototype was fully imple-
mented and evaluated with a learning application in a user experience study, which
involved 21 test subjects. This publication reports a study of how various context data
can be utilized to compose applications. This study also analyzes user attitudes towards
a context-aware composition interface. The idea for the publication, the prototype and
the demo application were created by the author of this thesis, who later also designed
the user interfaces of the prototype and the application. The graphical icon design
for mobile devices, and the graphical design of elements of the desktop application
were drawn up by Mikko Pyykkonen. The system prototype and the demo application
were implemented by Jussi Mikipelto. The reasoner component was designed and
implemented by Ekaterina Gilman. Ivan Sdnchez designed the REACHeS infrastructure
used in this prototype. The author of the thesis was responsible for organizing and
conducting the user evaluation experiment, collecting data through interviews and
questionnaires, and analyzing and interpreting the results.

Publication VIII reports the design and evaluation of the middleware for end-
user application composition (MEDUSA). The publication presents a user experience
and feasibility study of a physical interface for end-user application composition.
The idea for the publication was developed by the author of this thesis. The author
accomplished the work alone, from the concept to the design, and conducted the
user evaluation experiment. Dr. Nikolaos Georgantas and Professors Valérie Issarny
and Jukka Riekki contributed valuable ideas for the middeware and suggestions for
improving the manuscript.

Professor Jukka Riekki supervised the research presented in all the above mentioned
publications, and advised the author of this thesis regarding the analysis of results,
drawing conclusions and outlines of these publications. Nikolaos Georgantas and
Professor Valérie Issarny supervised the research work for Publication VIII during the

author’s research visit to INRIA Paris-Rocquencourt.

1.4 Research history

The research presented in this thesis was carried out in the Context-Aware Pervasive
Networking (CAPNET), UbiLife and Pervasive Services Computing (PSC) projects
between 2006 and 2011 at the University of Oulu. In addition, this research was partly
accomplished during the author’s two visits to the ARLES project-team at INRIA (the

25

Interactive Application

Composition —
Automated / BOB Vil
Composition CADEAU
PubV Pub VI MEDUSA
~_ PubVIll

Automated Application
Composition

SEA —~ MGA —| EA & GA i“ EA & GA
Publ Pub Tl 0 Pub IV

Fig 1. Evalution of the prototypes.

French National Institute for Research in Computer Science and Control) in the years
2008 and 2010.

This research started in the CAPNET project (2002-2007), which aimed to develop a
component-based middleware for context-aware mobile applications [8]. In 2003, the
author of this thesis joined the project, and took over the responsibility for developing
the middleware component which a) controls the execution of applications and other
components, and b) processes the requests for the components to gain access to each
other. The idea for this thesis originated from this work; the idea was to support the
composition of complex applications of components on physically distributed mobile
devices. The challenge was to adapt the composed applications at runtime, in order to
reflect changes in the mobile environment.

In 2006, the initial idea gave birth to the application allocation problem which
described an application whose components need to be allocated onto the devices that
constitute a ubiquitous environment. A solution to this application allocation problem
(i.e. a mapping of the application components onto the device nodes) was subject
to multiple constraints and optimization criteria. This problem was modeled using
the concepts of graph theory. The initial prototype of the algorithm which solves the
allocation problem was designed using the greedy optimization schema. Although
capable of finding solutions on small-sized graphs, this algorithm had a rather simple
design, and its performance characteristics were far from being excellent. The following
short account illustrates this. The author was experimenting with the algorithm by
running its instances on several departmental servers. Each experiment took from three

to five days to complete. A few days after starting an experiment, some researchers

26

came to complain to the thesis author about the overloaded servers: the greedy algorithm
was consuming almost all their computational capacity. Obviously, a better optimization
schema had to be found.

During 2007, two alternative algorithm prototypes were introduced, one following the
other. These algorithm prototypes were reported in Publications I and II, correspondingly
(see Figure 1). Both operated with the graph models designed earlier for the greedy
optimization schema. The first algorithm used the classical evolutionary schema,
while the second one used the micro-genetic schema invented by Carlos Coello Coello
[9]. However, despite the improved performance and smaller failure ratios, their
computational loads and efficiency were only acceptable for small and medium-sized
graph models. In addition, the graph models which we used to evaluate the algorithms
were synthesized with our proprietary graph generator component. The value of our
results would have been greater if we had used some well-known third-party graph
generator for the experiments. This time the graph models had to be reconsidered, in
addition to algorithm design.

In early 2008, the author thoroughly studied the related work in order to identify
the common features of the formal models used in existing solutions. As a result,
the author introduced a solution using customizable optimization criteria that was
capable of working in different application domains (reported in Publication III). That is,
new properties could be added to the model without redesigning the actual algorithm.
The main goal, however, was the design of a new algorithm with better performance
characteristics on large graph models. The new prototype introduced two algorithms: a
modified genetic algorithm and an evolutionary one. These algorithms used a novel
evaluation schema which allowed the time-to-convergence to be significantly improved.
Both algorithms were tested using the widely known BRITE network emulator software
tool [10] that randomly generates graphs and their properties. Finally, the performance
characteristics of both algorithms were sufficient for them to be used in a real mobile
environment.

Since 2008, the author of this thesis has changed the research focus from application
composition mechanisms to system-wide issues, particularly feasibility and user
experience. This shift can be also interpreted as moving towards the practical, applied
side of this research problem. This shift was reflected not only in the significantly
increased resource demands necessary for designing and implementing each subsequent
prototype, but also in the overall design approach that changed to user-centered design.

In particular, the success of the CADEAU and iCompose prototypes was mainly due to

27

this design methodology which involved the users in the early phases of the development
process.

In spring 2008, we started working towards building a complete application composi-
tion system which could be demonstrated. The goal was to study user acceptance of the
whole application composition concept, and the composition algorithms in particular. A
simple multimedia player application was implemented for demonstration purposes. The
algorithms were integrated as part of the REACHeS infrastructure [11] where they were
responsible for the composition of the multimedia application upon users’ requests. This
prototype was automated, i.e. the users were supposed to start the composition and then
only observe the result. However, we anticipated that users wanted to interact with the
composition algorithms. For this purpose, we built an interactive poster which played
the role of a remote control panel. Users triggered the composition by touching the
NFC tags embedded in this poster with their mobile devices, which were equipped with
NFC readers. The implementation was followed by two user evaluation experiments
which studied user acceptance, feasibility and other issues. This prototype and the user
evaluation experiments were described in Publications IV and V.

The results of these user experiments determined the most promising further research
direction of this thesis project: user controlled and interactive application composition.
Next, we designed three control interfaces for the application composition prototype
(later, we called them interaction methods) and a new application scenario. This is
how the CADEAU prototype was born. The idea behind this work was to compare
the interaction methods and identify the situations in which the users preferred to use
one method rather than another. Since we aimed to study the balance between user
control and system autonomy in different contexts, these methods were designed to
differ in how much the users were involved in the control of the application composition.
CADEAU was designed and fully implemented in a very short time, during the summer
2008. However, the work on CADEAU was interrupted by the author’s research visit
to France and resumed one year later. The CADEAU prototype was evaluated in a
large-scale user experience study which involved 30 participants. The results of this
user study and the CADEAU prototype’s design were presented in Publication VI. In
addition, the author published a video deliverable [12] which demonstrated the setup of
the user study, the designed interaction methods and the CADEAU application in action.

During 2008-2009, while visiting the ARLES research team at INRIA, the author
designed the MEDUSA middleware, which focused on an interface for end-user (i.e.

manual) application composition and the underlying software infrastructure. The

28

suggested design aimed to reuse the existing open-source solutions as much as possible.
This work resulted in Publication VIII.

In 2010, the author refocused on developing the ideas which originated from the
experiments with the CADEAU prototype. The goal was to create an interaction method
that was capable of adapting itself to the user needs and the context. Such an interaction
method promised a higher degree of user control and a more pleasurable user experience.
As a result, we abandoned the application composition algorithms in favor of the context
reasoner service [13] which took over the decision-making responsibility in our system.
This was motivated by the fact that the context-based application composition offers
greater flexibility in personalization than an optimization algorithm with customizable
criteria. The iCompose interface that used the context reasoner service was designed
and implemented as part of the prototype for application composition at the beginning
of the year 2011. We also implemented the QuizBlasters learning application which we
used together with the prototype during the user evaluation experiments. The work on
the iCompose interface, the corresponding system prototype and the results of the user

evaluation experiment were reported in Publication VII.

1.5 Research methodology

The research reported in this thesis followed constructive research principles [14, 15].
The research was performed through the development of real-life prototypes which
were evaluated empirically. In general, the prototypes were developed iteratively,
using Extreme programming methodology [16]. Each prototype underwent several
development iterations, and selected evaluation methods were applied at each iteration.
The number of iterations varied in each case and depended on the prototype’s size. This
means that larger system prototypes needed more than two consequent development
iterations. This approach made it possible to continuously accommodate new ideas and
features during the construction of the prototypes, while maintaining the focus of the
implementations. The evaluation methods included simulations, evaluations in a real
deployment environment, and user experience studies.

The algorithm prototypes reported in Publications I-IV were developed as a result of
literature studies and a series of consultations with the experts in the field. After the
development, the algorithms underwent a series of small tests in order to identify the
values of the control parameters that resulted in the desired algorithm performance.

These values were identified both empirically and based on consultations with experts.

29

Then, the author used these values in the experiments reported in publications. All
algorithm prototypes were evaluated using the synthesized datasets. In addition,
Publication IV reported the experiment which was organized with 30 real devices in the
network of the University of Oulu.

The synthesized datasets were produced by either the graph generator component
developed by the author (Publications I and II), or the BRITE network emulator software
tool (Publications III and IV). The BRITE tool was chosen due to its status as the de
facto standard in the research community.

The analysis of the algorithms was conducted using the metrics common for
the research community, including performance, scalability, quality of solutions and
algorithm failure rates. Due to the unique characteristics of the search problem (described
in detail in Publication III), the algorithms were compared against either the greedy
algorithm developed by the author (Publication I) or each other (Publications II, III and
V).

In contrast, the prototypes reported in Publications V-VII were implemented as
fully functioning systems with demo applications. These prototypes were developed in
several iterations, each followed by a user experience study. This made it possible to
resolve the drawbacks and difficulties that our test users had stumbled upon during
evaluations in the subsequent development iterations. The user experience studies were
conducted to evaluate feasibility and interaction design and make an assessment of user
acceptance of the developed prototypes.

The CADEAU prototype and the newsreader application (Publication VI) were
evaluated in a large user study which involved 30 participants. The users were carefully
selected to comprise three focus groups of 10 individuals each, representing IT experts,
average technology users and conservative users. Each evaluation event lasted approxi-
mately an hour. At the beginning, all users were given a short introduction in which
the functionality of the prototype was explained and demonstrated. Then, those users
unfamiliar with the RFID technology utilized in the CADEAU interaction methods were
given additional time to practice reading RFID tags. Then, users performed the tasks
given by the organizers and provided their opinions about the prototype.

The iCompose prototype (Publication VII) was evaluated in a similar fashion. The
user study involved 21 participants who were recruited according to their background and
attitudes towards new technologies. The users formed two focus groups that consisted of
advanced and novice users. The users arrived for the evaluation of the prototype in

groups of two or three individuals. Each evaluation event took approximately 40 minutes.

30

The users were given several tasks to complete and were asked to finish evaluating the
prototype when they felt they fully understood how the prototype works.

The organizers collected data using the notes taken during the evaluation, anonymous
questionnaires and informal interviews. The questionnaires were used to compare the
interaction methods, while the interviews collected feedback on the concept and the
system prototype in general. The notes provided feedback about the behavior of users
during the test. The anonymous questionnaires included multiple choice questions,
questions with a 5-point Likert-scale (from strongly disagree to strongly agree), and
open questions. After the users had filled the questionnaires, they were invited to discuss
the difficulties they had experienced with the prototype, and also their ideas for future
improvements. The organizers asked questions based on their earlier observations.

MEDUSA (reported in Publication VIII) underwent the conceptual design phase
and was evaluated using the so-called low-fidelity prototyping approach. That is, the
author designed a full-sized mockup of the MEDUSA user interface which was made of
paper and carton. This interface was evaluated in a small-scale user experience study
which involved two participants. The data was collected through observations during the

experiment and also in an informal interview after the evaluation.

1.6 Structure of thesis

The rest of the thesis is organized as follows. The next chapter starts by discussing
the principles of application composition and presents the concepts that form the
foundation of our work, the user-centric application composition process. Then we
move on to an overview of the field of automated application composition and discuss
the state-of-the-art composition approaches in Chapter 3. Chapter 4 surveys the existing
interactive application composition approaches, and discusses their user interfaces and
the related underlying software infrastructures. Chapter 5 states the research contribution
of this thesis in detail. Chapter 6 discusses the lessons learned, and highlights future

research directions, while Chapter 7 concludes the thesis.

31

32

2 Composition of ubiquitous applications

2.1 Automated vs. interactive composition

Application composition approaches assume that it does not seem to be possible to
design a priori the applications that satisfy all the possible needs of all categories of
users in ubiquitous computing environments. As noted earlier, these environments
are populated with services (i.e. ubiquitous devices that export their functionalities
as services) which are capable of forming synergies in many different ways, and
thus collectively achieving various functionalities which may serve different purposes
in ubiquitous environments: pleasure, learning [17], play and fun, home and office
automation [18-20], or task facilitation [21-23]. Some existing solutions focus on
ensuring trustworthiness [24], reliability [25], fault-tolerance [5] and achieving the
so-called late binding [6], which means making use of some services that are only
available at runtime. Application composition can be used to facilitate multimodal
user interfaces as proposed by Mungellini et al [4]. Their approach enables building
multimodal user interfaces by integrating various interaction technologies (object
identification, finger localization, tracking, etc). In addition, application composition
can facilitate the so-called virtual device functionality [3, 26] by together composing
shared functions of surrounding devices to overcome their limitations.

In this thesis, we define application composition as an approach to constructing
the collective application functionality required to support the users’ activities, needs
and intentions. The result is an application which may consist of one or multiple
services. The main guiding factor for application composition is the requirement to
support the user’s needs and activities, i.e. functional properties and user experience.
Nevertheless, non-functional properties, such as QoS, security and reliability can also
be used to guide application composition. For example, Lagesse et al [25] propose
a composition mechanism which enhances reliability for composed applications by
determining trustworthy compositions and hosts. Buford et al [24] target the issue of
security and trust in application composition. Their approach is to apply the practices
of digitally signed software to provide trust to single services. Ben Mabrouk et al
[27] designed a QoS-aware composition mechanism which is capable of computing

applications according to multiple QoS constraints. However, the author of this thesis

33

considers non-functional properties beyond scope of this research, and these issues will
be not discussed further.

Generally, there are two approaches to application composition: the first uses
automated intelligent mechanisms that are capable of acting and making decisions
according to the users’ activities and needs, while the second approach aims to enable
users to achieve their goals and needs themselves, by providing appropriate tools to
create and customize ubiquitous applications.

The first path is followed by task-based computing approaches which adhere to the
minimum user-distraction principle in general [5, 21, 28]. Although users are expected
to interact with applications, such tasks as application configuration, management and
provisioning are performed by the system, i.e. with the goal to keep user involvement
to a minimum. Ideally, users should not be concerned with these tasks at all, thus
concentrating only on interacting with the application. These approaches assume that
application developers (or, alternatively, users) create a template where they specify a
set of service categories and their properties (i.e. functionalities) which are needed to
achieve some user task. The system automatically chooses the appropriate services
whose functionality matches the specified task template. Then, the chosen services are
dynamically allocated for this task.

On the other hand, applications can be composed by users themselves, interactively.
The composition approaches that follow this path provide user interfaces and various
tools to enable users to compose applications [20, 29, 30]. In other words, interactive
composition approaches employ user control which the users exercise through appropri-
ate tools and user interfaces. The main difference between automated and interactive
composition approaches lies in the fact that the first enables the system to act upon the
users’ needs and intents, while the second enables users to play an active role in defining
the application functionalities that they need.

One specific subgroup of interactive composition approaches provides further
flexibility by enabling end-user composition which allows ‘...end-user creativity to
emerge in a ubiquitous environment where people can create their own niche applications
or adapt their ubiquitous surroundings’ [31]. End-user composition approaches support
user control via an editor - a tool whose role is to allow users to create and edit composite
applications and visualize the environment in the user’s vicinity (i.e. the user’s local
environment). For example, editors are used in the following solutions for end-user
application composition [18, 20, 32-34].

A brief chronology of most influential automated and interactive composition

34

Memodules [32]

Touch &
InterPlay [19] Comop%cse [23]

HomeBird [36]

=
—=

; ™ Platform
PiP [33,34] Composition [59]

iCOCOA [22] ReWire [30] >

Accord [18]| | Collaboration Bus [53] Composition:

Deploy Automated,
STEER [21] Spontaneously [29] task-based

Interactive,
Aura [5,28] Palpcom [17] end-user

eGadgets Compose OSCAR Interactive
[31,35] Tool [52] [20,37]

2002 2003 2004 2005 2006 2007 2008 2009
Fig 2. A brief chronology of influential composition approaches.

approaches is outlined in Figure 2. We discuss these approaches in more detail in
Section 2.2 and Chapters 3 and 4 of this thesis.

To conclude, automated and interactive composition approaches differ in the degree
of user involvement and control, although both focus on the same goal - supporting
the users’ activities and needs in ubiquitous environments. Automated composition
approaches (presented mainly by task-based computing research) assume that user
distraction has to be minimized and, therefore, they apply automated mechanisms to
allow users to fully concentrate on interacting with their applications. On the other
hand, interactive, and especially end-user composition solutions assume a greater
degree of user control and, as a result, provide their users with greater flexibility and
freedom. Solutions for interactive composition tend to enable users to express their
needs, activities and various preferences themselves, while automated solutions rely on

various context-aware mechanisms that deduce information about the users’ activities.

2.2 The generic composition process

The generic composition process governs the life-cycle of applications from their
initialization to the execution phase, as shown in Figure 3. The process starts with the

initialization phase, which is a preparatory phase during which the basic elements for

35

Initialization Scenario Composition Execution
Definition
Service Control
Deployment Visual Editing Matchmaking
Service ;
Specification Adaptation

Fig 3. Workflow of the generic composition process.

the composition process (such as service specifications) are created and made available.
During the second, the scenario definition phase, the template, i.e. the description of
the future application is created. An application template usually consists of service
specifications. Next, this template is transformed into a real application during the
composition phase. The application that existed previously as a description is now being
materialized into a real entity in the ubiquitous environment. Finally, the execution
phase mainly governs the application usage and other real-time aspects such as, e.g.
control and adaptation.

Initialization. In general, initialization implies creating the specification of services
and making them available for application composition and usage. However, approaches
differ in how this phase is carried out. For example, some application composition
solutions assume that, in addition to service specifications, services have to be deployed
and configured by users [29, 31, 35]. Service deployment is also emphasized in the
Memodules project [32] which uses a Lay&Play tool to create digital counterparts (i.e.
avatars) of ubiquitous artifacts, and adds these counterparts to a repository, so that
they become available for the other phases of the composition process. In contrast,
interactive composition [30, 33, 34] and task-based computing solutions [5, 21] assume
that the initialization phase is limited only to creating service specifications, and adding
them to a repository that supports various ways of searching (i.e. querying) on these
specifications.

Scenario definition. During this phase, an application template or a scenario for
the future application is created. Most automated composition approaches omit this
phase, and assume that application templates are created at the same time as service
specifications (i.e. during the initialization phase) [5, 22], although Aura [5, 28] and
Interplay [19] do envisage a phase during which predefined application templates are
customized to match user’s needs. Unlike automated composition approaches, the
scenario definition phase is essential for interactive (and especially end-user) application

36

composition solutions which assume that applications are created interactively using
available scenario editing tools. Such an editor is usually based on a visual or a physical
interface which captures the user’s intent, and transforms it into an abstract (and formal)
application template. The template is later materialized during the composition phase
which results in a concrete application. However, some approaches use a different
method which allows users to create and edit compositions that consist of concrete
appliances (i.e. ubiquitous devices) available in the environment. These editors
perform two functions simultaneously: template creation and application composition.
Furthermore, the same editor can also be used to control and service the existing
application in real-time, as designed, for instance, in the eGadgets project [31, 35].

Composition. This phase is central to the whole process, and usually involves a
composition mechanism (or an algorithm) which takes an application description as
input and produces (i.e. composes) a concrete application using the service instances
that match the functionality specified in the description. A composition mechanism can
be automated or interactive. Automated composition can be based on matching (e.g.
syntactic or semantic matching) or knowledge inference algorithms (so called rule-
based composition). Interactive composition supposes that the process of establishing
application descriptions is governed manually by users through dedicated interface
support [23, 36]. However, some end-user composition approaches employ physical
interfaces which enable users to manipulate physical objects in the environment. This
has been demonstrated, for example, in the PalpCom project [17]. Detailed analysis
and discussion of automated and interactive composition mechanisms are presented in
Chapters 3 and 4, respectively.

Execution. This phase governs application usage and various real-time aspects of
application support, such as resource monitoring and adaptation control. For example,
task-based computing approaches employ automated monitoring of services and dynamic
adaptation in order to tackle service degradation issues. In particular, this issue is
considered in the Aura project [5, 28] in a soft-failure scenario where one or multiple
services become unavailable and, therefore, trigger the re-composition of the whole
application. Automated re-composition may be necessary when a user’s goals change
dynamically [30]. Some solutions assume that the users themselves should be able
to manually adapt (i.e. re-compose) the application, as it is not entirely possible to
proactively anticipate changes in a user’s goals. This feature is supported, for example, in
the CADEAU and iCompose prototypes (Publications VI and VII). Real-time debugging

of applications is another functionality that is necessary during the application execution

37

phase. This issue is, for instance, discussed by Mavrommati et al [31] who argued that
real-time debugging and service browsing are essential tools for controlling composite
applications. Automated monitoring and analysis of applications for diagnosing failures
and supporting new services has been designed as part of the OSCAR project [37]. That
project suggests sharing users’ applications in a privacy-preserving manner, so that users
are able to view and compare their own composite solutions, and thus choose the most

appropriate ones that match their needs.

38

3 Techniques for automated application
composition

The goal of a composition mechanism is to answer requests sent by users (or, alternatively,
by the system) and compose applications that provide the requested functionality. Such
a request describes the functional aspects of a composite application, for example, the
required service interfaces, their public methods and input/output message parameters,
service behavior and grounding. Some composition approaches assume that application
descriptions (i.e. templates) are processed by the composition mechanism directly.
Therefore, application descriptions are provided in a computer-readable form such as
templates [5] or specification language queries [38]. Both examples specify functional
requirements similarly. Another solution is to allow users to express what they need in a
pseudo-natural language [39, 40]. Such language supports pseudo-English sentences
that follow a predefined pattern which users need to fulfill in order to specify their
requirements. For example, InterPlay [19] proposed a ‘verb-subject-target’ pattern to
configure application tasks. Although this approach is straightforward for interactive
composition systems, it requires translation of the sentences given in the pseudo-natural
language to the specification language understood by the composition mechanism.
Upon receiving an application description, the composition mechanism matches it with
the service descriptions available in a service repository. The goal of this operation
is to find the service combination that matches the application description. Matching
(this operation is often called matchmaking) is performed according to the functional
elements of the service descriptions which are usually the following:

— Interface is usually the most essential element of any service description. Interface
describes the operations supported by the service. Generally a service interface can
have multiple operations, each of which provides certain service functionality when
executed.

— Inputs and outputs define the format of input and output values (or, sometimes, even
messages) of the service or concrete service operations.

— Behavior describes the possible states of a service. Modeling of service behavior is
needed when matching is performed on stateful services. A service is stateful if the
execution of the service methods changes its internal state. Service behavior can be
modeled using workflows [22], processes (BPEL) or pre- and postconditions. All

39

these examples are logical formulas that can describe a hierarchy of service states and
their conditions. Exposing service behavior makes it possible to perform detailed (i.e.,
white-box-like) matching of service functionalities, although at the expense of greater
complexity of the composition mechanism. On the other hand, stateless services do
not require behavior modeling.

— Grounding provides information for invoking service methods. Grounding is usually
a specification of access details, such as the concrete communication protocols

supported by the service.

Matchmaking corresponds to the composition phase of the generic composition
process (shown in Figure 3). As was mentioned earlier, this phase involves a composition
mechanism which takes an application description as input and produces (i.e. composes)
a concrete application using the service instances that match the functionality specified in
the description. Next, we overview the three most prominent approaches for developing
composition mechanisms. These are syntactic, semantic and policy-based composition.

3.1 Syntactic composition

Syntactic Composition is perhaps the oldest and the simplest composition mechanism
used for automated systems. This approach annotates each service with a description
containing a set of key-value attributes that specify service functionality. These attributes
are characterized by numerical values, or by enumeration (i.e. ‘low’, ‘average’ or ‘high’).
Service and application descriptions are represented as structured (i.e. with predefined
syntax), or unstructured data, using a markup language such as XML. An example
description of a composite application consisting of two services is shown in Figure 4.
There, services are annotated with interface names, versions and availability properties.

There are several syntactic specification standards developed for automated composi-
tion. For example, Web Service Business Process Execution Language (WSBPEL) [41]
and Web Service Conversation Language (WSCL) [42] concentrate on modeling Web
Service behavior using processes (WSBPEL) or conversations and finite-state machines
(WSCL). These specification standards can be used in conjunction with other standards,
such as Web Services Description Language (WSDL) [43]. WSDL is an XML-based
language that focuses on describing Web Service interfaces, and their methods and
messages.

In order to compose an application using the syntactic approach, descriptions of

40

available services are compared against the application description which specifies the
required functional properties. This operation is performed by a matching algorithm
whose aim is to choose a service only if all of its description elements (e.g. interface
names) match the elements specified in the application description.

Although the strongest point of the syntactic approach is simplicity and ease of
implementation, this approach has a number of drawbacks related to extensibility and
expressiveness which complicate its applicability. For example, changing the structure
of service descriptions makes it necessary to redesign the matching algorithm and
corresponding descriptions of all the services. This also means that if two services are
described using different versions of the same specification language, these descriptions
will not match. Another disadvantage of this approach is that it uses exact matching,
i.e. the algorithm registers a match between a service description and an application
template only when both descriptions contain exactly the same service properties. This
means that descriptions of services and applications must a priori adhere to a common
representation schema (or description language). Another disadvantage of XML is the
lack of semantics in XML-based descriptions; that is, the meaning of descriptions may

vary depending on the context of their usage [44].

3.2 Semantic composition

The semantic composition approach relies on service descriptions which adhere to a
common ontology. An ontology is a domain-specific model describing types, properties
and their relationships with explicitly defined and machine processable semantics [45].
For example, the Ontology Web Language for Services (OWL-S) [46] provides an
<task name="Messenger">

<service interface="fi.oulu.context.LocationSensor" isAvailable="true">

<settings key="service_url" val="http://10.10.1.16"/>
</service>

<service interface="fi.oulu.context.ContextBasedStorage" ver="2.0">
<settings key="user_name" val="Davidyuk"/>
<settings key="store_events” val="all">

</service>

<l >

</task>

Fig 4. An example of a key-value based application description.

41

ontology for describing the Web Services domain. Using the semantic composition
approach allows service descriptions to be combined with their meaning, which is
impossible in syntactic composition approaches.

A typical semantic composition mechanism works as follows. Given a set of service
descriptions, the mechanism selects the services that semantically match the application
description. A match between a concept in a service and in an application description
can be registered to a degree of similarity, despite syntactic differences between the
concepts [44]. Another way for matching service and application descriptions is to use
composability rules which determine, for example, whether two service candidates
can be assembled in an application [47]. Such rules link service properties on several
levels: the syntactic (e.g. service communication interoperability), the semantic (e.g.
message parameters and service operation semantic), and the composition level (e.g.
soundness of composition). A degree of semantic similarity can be also included in the
set of composability rules.

Semantic composition has a number of advantages. First, it enables semantic
heterogeneity among service and application descriptions provided by various parties,
because it does not assume any agreement on description syntax. As a result, this
approach allows service and application descriptions to be modified without changing
either the composition mechanism (or matching algorithm) or service and application
descriptions, which are annotated with descriptions of different versions. Second, the
approach supports flexible matches, i.e. it detects whether two descriptions partially
correspond to each other to some degree. Thus, it provides additional flexibility to the
composition mechanism, but at the expense of an increase in false positives and lower
efficiency.

The drawbacks of semantic composition include considerable development effort,
and issues of interoperability between different ontologies. For example, semantic
mismatches and conflict resolution between ontologies created by different vendor

developers is an issue that has yet to be resolved.

3.3 Policy-based composition

Policy-based composition is another approach for developing a composition mechanism.
Although this approach is more common in context-aware composition, it can also be
used for user-centric composition [33, 48, 49]. The main principle of this approach

is to create applications according to policies consisting of sets of event-condition-

42

action rules [33]. Actions are service methods that have to be executed when an
event occurs, and a rule’s conditions are met. Policies determine the behavior of the
application and the environment (i.e., the user’s personal space). For example, the
policy-based approach in the Tara project [49] is used to compose services and manage
their adaptive behavior. Tara’s automated composition mechanism is based on an
inference engine which performs matchmaking by reasoning about various functional
properties of services. Policies in Tara comprise composition rules, utility rules (i.e.
service interaction constraints) and behavior rules (i.e. behavior within the constraints
that are provided for the composed application). Application adaptation is naturally
specified as part of the behavior rules. All rules are classified as service level rules (i.e.
that govern a single service) and high-level rules (i.e. that define constraints for the
whole application). If policies are supplied by multiple parties (e.g. users, resources
and execution environment) at the same time, the composition mechanism can use the
hierarchical decision-making process as presented by Zhang et al [50]. In this process,
all policies are divided into hierarchical groups depending on, for example, priorities of
policies. A local decision-making (i.e. composition) process is executed for each group.
Although policies are usually written by application designers, solutions that enable the
users themselves to create their own application composition policies do exist [33].
Applying policy-based composition is straightforward for environments consisting
of a large number of semantic services, where a high degree of automation is needed
(such as in task-based computing). In spite of this, the approach suffers from the problem
of policy conflicts. Conflicts may occur when the same event satisfies the conditions of
two different rules, while each of these rules enforces actions conflicting with some
other rule [51]. At the moment of writing this manuscript, the author is not aware of any
existing policy-based composition approach which uses conflict resolution techniques.

3.4 Summary

Despite the obvious disadvantages of the syntactic approach, most of the related work
surveyed utilizes it because it is straightforward and simple. Indeed, researchers prefer
to adhere to some proprietary syntax for defining concepts rather than take into account
possible incompatibility issues. In fact, these issues only occur if the application
composition system has to be open and expandable.

Another tradeoff takes place between policy-based and semantic approaches. How-

43

ever, we consider this to be more of a design question for the following reason. The
policy-based composition approach is straightforward for automated and interactive
composition systems where events are crucial for maintaining system/application
behavior. This approach is particularly promising for composition systems with adaptive
and/or context-aware behavior. Indeed, policies are better suited for describing system
behavior than semantic application descriptions, which are only able to capture structural
(i.e. static) system properties. On the other hand, a policy-based composition approach
might prove to be cumbersome and even redundant for static systems, where events only
occur rarely.

Another advantage of the policy-based approach is its clear separation of concerns.
Policies, in addition to composition rules, can describe system behavior and application
logic. This makes it easier for application developers to create and modify composite
applications by specifying policies.

Whereas this chapter surveys the application composition mechanisms that can be
utilized to build an automated, as well as an interactive composition system, the next

chapter focuses on user issues usually attributed to interactive composition systems.

44

4 Techniques for interactive application
composition

In general, automated application composition approaches focus on minimizing the users’
distraction in ubiquitous environments, and they assume that users should not be aware
of how their tasks and applications are carried out. For this reason, user involvement in
the application composition process is limited. Despite the high degree of automation of
these approaches, their initialization requires the intervention of application designers
who have to create service descriptions and application templates and configure the
composition mechanism. This is done by setting up matching criteria or composition
rules, if a policy-based composition approach is used. However, minimizing user
involvement conceals the main disadvantage of the automated composition approach:
although the system aims to support the user’s needs, it does not guarantee that the
resulting application will match the one anticipated by the users. Several researchers have
taken steps towards resolving this issue and studied interactive application composition
approaches. These solutions are discussed in this chapter.

In their pioneering work, Masuoka et al [21] presented STEER, a Web browser-based
task composition tool which shows users what services are available in the current
context and allows users to compose and execute the tasks. STEER is essentially a
Webpage which consists of a set of drop-down menus, where each menu is associated
with a service. By clicking on the drop-down menus, users can choose services and
configure them using filenames or URLs. When all the services have been configured,
users can execute the composed task from the task management screen. The undoubted
advantage of STEER is its ability to create services that provide semantic versions of
various digital objects (e.g. business cards, files and addresses). For this reason STEER
has a drag-and-drop widget which ‘consumes’ digital objects dropped into it, and adds
their semantic versions to the Webpage. This functionality is essential to allow the user
to assign various objects with services’ inputs and outputs. STEER also offers a user
interface for task management, which allows users to relocate tasks by executing them
using a local or a remote (networking) computer.

Similarly to STEER, Messer et al [19] presented the InterPlay prototype where the
task composition screen allows users to choose and configure services available in their

vicinity. However, instead of awkward drop-down menus, this approach uses visual

45

‘verb-subject-target’ constructions which resemble pseudo-English sentences. In order
to execute a task, users choose first a ‘verb’ (i.e., a command ‘play’), then a ‘subject’
(i.e., content) and, finally, a ‘target’ (i.e., a target device). Although this approach clearly
offers a natural and an easy-to-learn user interface, it only supports pre-programmed
(hardwired) tasks which have just two parameters to configure. In other words, users are
not really able to compose tasks, but rather only execute the tasks that the designers
have introduced into the system.

The task composition screen created by Sousa et al [5] resembles the idea for the
STEER tool. However, Sousa et al’s approach assumes that composition is triggered
by dragging digital objects (e.g. a spreadsheet file) from a user’s desktop onto the
composition tool while the tool assigns a default command to these objects (e.g. ‘edit
spreadsheet’). Although this approach experiences the same problem as the Interplay
prototype[19], (i.e. only pre-programmed tasks are supported) Sousa’s tool is a unique
solution that, in addition to automated application composition, focuses on capturing the
users’ task-related QoS preferences. In particular, Sousa et al’s work allows tradeoffs
between different QoS dimensions (e.g. latency and quality of content). Although
default QoS dimension templates are provided for each task by the task designer, users
are able to override default values through the QoS preferences interface. This interface
is a pane with a set of QoS levels (from the lowest to the highest) where each QoS
level corresponds to a value that can be specified by the user. QoS dimensions that
are expressed by numerical values can be manipulated using slide bars, while QoS
dimensions that are described by enumerations (e.g. ‘high’,‘medium’ and ‘low’) can be
manipulated using matrices of multi choice buttons. The QoS preference interface aims
to capture how important are, or how much the user cares about, the quality dimensions
of each service in the composite task.

Perhaps the most advanced editor among the interactive composition solutions is the
Compose Tool developed by Wisner and Kalofonos [52]. Their solution is based on the
idea that users should be able to select services for composition intuitively, while the
system should automatically suggest possible interconnections between the services
chosen by users. The editor, called the Compose Tool, has a GUI which consists of three
panes, where the left pane shows a list of all known service types, the middle pane is an
editing canvas which shows the services available in the environment, and the right
pane shows the compositions proposed by the system. Users can drag-and-drop various
service types to the editing canvas where they are immediately associated through the

service discovery with the services available in the environment and are connected to

46

other services as proposed by the system. Users can choose from multiple proposals the
one that best suits their needs. The Compose Tool uses the pipeline metaphor, where
service compositions are depicted as directed graphs. Details of the pipeline metaphor

are discussed later in this chapter.

4.1 Visual application composition tools

In contrast to automated application composition, interactive composition approaches
exhibit a higher degree of user control, which is reflected in the number of visual
composition editors presented in related work. A visual composition editor is a tool
aiming to visualize services available for composition, provide an intuitive mechanism
to create compositions and, optionally, display the state of the entire environment.
Such a tool has a user interface which relies on a visual representation using graphics,
animations or icons. A typical composition editor has at least two panels, a list of
available service types or other elements (e.g. event templates) and an editing canvas
(workspace). Users can drag and drop service icons or other visual elements into the
editing canvas where these icons become links to concrete services in the environment.
The workspace is an area where users arrange, connect and configure services. In
general, interactive application composition approaches assume that the users should
have the freedom to decide on what, how and when to compose applications. This is the
main reason why editors for application composition are flexible and support a wide
range of operations, though at the expense of greater complexity and longer learning
curves. This chapter overviews visual composition tools, and classifies them according

to the metaphor used.

The pipeline metaphor. Composite applications are represented as directed graphs,
where nodes correspond to single services, while links (i.e., pipelines) are directed
communication channels that connect two (or more) services together. Pipelines can
be of a general type or can be assigned as a specific type (e.g. a video stream) which
connects only certain services. Pipelines can be organized in complex structures using
binary logic operators. For example, multiple pipelines can be connected with the AND
operator. Also, pipelines can integrate processing filter elements which can be viewed
of as conditional event generators. These filters trigger an event when data inside the
pipeline matches some specified template such as keywords or numerical values.

The pipeline metaphor is a powerful visual programming paradigm which makes it

47

possible to model complex applications and their behavior, and this may involve networks
of services interconnected by a complex eventing wire. Despite its expressiveness,
editors using this metaphor have steep learning curves, which makes it difficult to apply
this metaphor in user interfaces for inexperienced users. Therefore, it is either used in
tools intended for expert users (e.g. CollaborationBus [53]), or requires a high degree of
automation if the editing tool is meant for non-expert users. The latter is demonstrated
in the Compose Tool prototype [52]. However, a simplified version of the metaphor has
been used in OSCAR [20]. Unlike other approaches providing a work-pane where users
can freely arrange and connect services, OSCAR allows users to operate only with
pipeline templates. A pipeline template is an application consisting of two ‘slots’, a
source and a destination, that have to be assigned with a service or some content. The
editor uses a wizard-like approach to guide users through the steps that are necessary
to populate a template. This means that OSCAR introduces the pipeline metaphor to
non-expert users at the expense of limiting the range of application scenarios that can be
supported.

The jigsaw puzzle metaphor. The principle of this metaphor is centered around a set
of pieces which form a picture if correctly attached to each other. Players interact with
the puzzle by fitting and attaching pieces which visually differ from each other in the
number, shapes and locations of knobs and holes. These visual hints unambiguously
indicate to players which pieces they may attach together. A jigsaw puzzle-based editor
models each available service as piece of a puzzle. However, unlike in a real jigsaw
puzzle where pieces always form the same picture, the composition editor assumes that
composed applications may differ in structure and in the number of puzzle pieces (i.e.,
services) involved.

First, this metaphor promises a natural and an easy to understand interface, as
indicated in [54]. Consequently, non-expert users can easily associate each piece of
a puzzle with the visual service it represents. Moreover, the shapes of the pieces of
the puzzle eliminate much of the mental effort necessary to understand the possible
actions (i.e., which pieces go together). This makes it possible to use this metaphor to
teach the principles and rules of a ‘professional’, and thus much more complex to learn
composition tool, based on some other metaphor, such as, for example the pipeline
metaphor [53]. Second, the puzzle metaphor naturally supports collaborative multi-user
application composition, as two or more users can work on the same application

simultaneously. Third, the puzzle metaphor can support complex structures (e.g.,

48

clusters of pieces of the same type) that act as single entities. Clusters facilitate end-user
application design by decreasing complexity. These clusters may stay attached for a
period of time while the user is composing an application. The downside of the jigsaw
puzzle approach stems from the fact that the metaphor has constrained potential for
expression: the pieces of the puzzle can have a limited number of interfaces (i.e. sides)
thus narrowing the range of possible application scenarios.

One variation of this metaphor is the tile-based approach [55] which can be con-
sidered as a generalization of the jigsaw puzzle metaphor. The tile-based approach
allows users to construct programs by manipulating and combining graphical building
units (called tiles) with the mouse. Applications are assembled using tiles from some
repository. Although each tile can be combined only with certain other tiles, the shapes
of tiles are not physically limited, and can be connected with an arbitrary number of
other tiles. A modification of this approach is presented by Warth et al [56]. Their
system is intended for end-user programming and uses tile-based scripting. Their system
combines a scripting interface (for designing programs textually), and a visual tile-based
interface. The end users can switch freely back and forth between these two interfaces.
Although promising, the tile scripting approach has not been yet used in the application
composition domain.

Due to its simplicity and straightforwardness, the jigsaw puzzle metaphor has often
been used in related work. For example, the Accord prototype [18, 57] includes a
composition editor which is based on a tablet PC. Accord’s editor makes it possible
to interconnect simple sensors, web applications and various multimedia devices and
services. A similar approach is used in the Action Builder editor developed in the
Memodules project [32]. This approach is particularly interesting as their editor supports
the composition of event-based applications. In this case, events are also modeled as
pieces of a puzzle and can be composed together with certain services. Although, the
Action Builder supports only one kind of event, this demonstrates that despite, the
apparent simplicity of the jigsaw puzzle metaphor, it is capable of modeling a composite

application that goes beyond trivial cases.

The join-the-dots metaphor. According to this metaphor, the editing canvas presents a
set of individual devices that are available in the environment. Each device is shown as
the center of a cluster, while the surrounding nodes represent services that a particular
device offers. Users create compositions by drawing lines from one service to the

desired destination device. Active compositions are shown as flows. In particular, this

49

metaphor has been applied in the editor of the Platform Composition prototype [58, 59].
A slightly different version of the same metaphor has been proposed in [31]. Their
model, called the Plug-Synapse model, represents individual devices as circular nodes,
and allows connections to be created by drawing lines between them. However, the
plug-synapse model does not exhibit services offered by individual devices, thus making
visual representation more compact. When drawing a line (i.e., making a composition)
between two devices, users specify the composition on an ‘association matrix’ that
visualizes a selection of concrete capabilities (i.e., services) offered by the devices
chosen.

The advantages of this metaphor are the following. First, the metaphor uses a
simple visual approach, as it shows the services (and devices) that are available only for
composition. Second, the state of the entire environment is shown on the same screen.
Indeed, it also shows the devices and services that are not used in any composition. On
the other hand, this is a disadvantage because this metaphor is suitable for environments
with only a few devices.

The application composition tools discussed in this chapter are closely related to
visual programming languages. These languages rely on visual techniques throughout
the programming process, and enable users to create, debug and execute programs
by manipulating icons or other visual representations [60]. The programs are either
compiled directly from their visual representations, or first translated into an underlying
high-level textual language, and then compiled. Among successful examples of visual
programming languages are the Google App Inventor (currently supported by the MIT
Center for Mobile Learning)!, and xXUML [61]. The Google App Inventor is a visual
programming tool which enables users unfamiliar with application programming to
create applications for the Android mobile platform. xXUML is a profile for Unified
Modelling Language (UML) which allows users to graphically specify programs at a

high level of abstraction independently from implementation-specific concerns.

4.2 Non-visual application composition tools

In addition to visual composition metaphors, some researchers advocate using non-visual
composition tools, such as programming by example [62], and tangible (physical)

interfaces [63]. The idea for the programming by example method can be explained

Uhttp://appinventoredu.mit.edu/. Accessed 2012/04/23.

50

using the Pervasive interactive Programming (PiP) prototype [33, 34] that combines a
visual editor and an AI mechanism, and works as follows. To begin with, users specify
the devices they would like to combine together in the composition editor. Then, the
users inform the editor that they are ready to program (i.e. compose) the application
and they click on the start button. After that, the users interact with the real devices
(e.g. physically, or by sending commands from a control UI) in the way they would
normally use these devices in an application. At the same time, the AI mechanism
observes the interaction and records the commands while trying to detect patterns which
are later transformed into an application. This method has also been used to enable the
construction and configuration of tiles, which play the role of building blocks in the
Active Surfaces prototype [64] (this prototype is a part of the PalpCom project [17]).
Each tile is an autonomous component which can be physically connected with other
tiles. Tiles can communicate, and can recognize where they are placed. In Active
Surfaces, expert users (i.e., therapists) create physical assemblies of tiles which follow
a certain sequence or pattern. Later, tiles have to be placed in the correct pattern by
end users (i.e. by patients) during rehabilitation sessions. The programming of tiles is
performed in two steps. First, a therapist shows the correct pattern of tiles to the system,
and then saves it using a special ‘master tile’ that communicates with all the tiles, and
recognizes their location in relation to each other. A tangible user interface has been
also used in FlowBlocks [65, 66] that enable children to learn abstract concepts related
to counting, probability, looping and branching. FlowBlocks is a toy which consists of a
set of tiles, each with embedded computation and magnetic connectors. Users create
various structures (e.g. linear and circular chains) by connecting tiles together and then
send a moving light signal through the tiles. Unlike Active Surfaces, FlowBlocks is
oriented towards a larger user group, including children learning how to count, as well
as high school or college students. Indeed, FlowBlocks supports the building of complex
physical structures which can involve even elements of calculus and statistics.

The advantage of the programming by example method lies in its ability to hide
most of the details of the underlying mechanisms from users in order to make it suitable
for non-expert users. However, this method cannot be used in all cases of application
composition. As pointed out by Mavrommati et al [67], ‘there are cases when there
cannot be a task example performed - i.e. because the application splits between
different locations, different time periods or in situations that cannot be replicated.” In
conclusion, this method is not recommended for use as a stand-alone tool, although it

can be used as a complimentary mechanism to any composition editor.

51

Non-visual composition tools can also be built using physical interfaces which rely
on physical objects rather than on traditional I/O devices [63]. For example, a physical
interface for application composition based on the jigsaw puzzle metaphor has been used
in the MEDUSA prototype (Publication VIII). This solution represents service types
with carton cards which have visual icons and RFID stickers glued to their surfaces.
Cards can be arranged in various two-dimensional structures (sequences) which form an
application, as needed by users. A mobile phone equipped with an RFID reader is used
to capture (i.e. read) these structures by touching service cards in a certain order. A
similar idea has been used in the CADEAU (Publication VII) and Touch&Compose
prototypes [23], where the physical user interface consists of RFID tags and a mobile
terminal. RFID tags are placed in the environment, and they indicate which services are
available locally. Users compose applications by touching the corresponding tags with a

mobile terminal.

4.3 Tools for runtime application composition control

Application composition approaches can also provide the means for user control at
runtime. Although this phase can be controlled by automated mechanisms, various kinds
of user input are required to deal with non-trivial situations. For example, Vanderhulst
et al [30] and Hardian et al [68] argue that it would be unrealistic to delegate all
decision-making to the system and expect it to figure out by itself what the user wants. In
this case, user input is needed to deal with changes in user goals or context. For example,
users might need to manually specify services (or devices) to be used with the application
while it is being executed. This need is addressed in this thesis (see Publication VII): the
author has proposed a physical interface to manually adapt composed applications by
touching the desired devices in the users’ local environment. In contrast, Vanderhulst et
al [30] proposed a graphical user interface which is generated at runtime, and evolves
with the environment. When a user triggers a reconfiguration of an application, the GUI
loads the interactive wizard which provides access to application-specific features of
the currently active application. However, most application composition approaches
anticipate that users need to manage and service applications at runtime, and they
provide basic support for starting and stopping application compositions. This is indeed
the case in the following prototypes: CollaborationBus [53], PiP [33, 34], OSCAR [20],
eGadgets [31], and ReWire [30]. A few approaches provide the application control
using a physical (i.e. tangible) interface. For example, the Memodules prototype [32]

52

employs a tangible console for controlling multimedia applications. This works as
follows. To begin with, users touch the console with various augmented objects in order
to identify and trigger the corresponding application. After the console retrieves and
starts the application, the users can control (i.e. interact with) the multimedia application
using various touch sensors to play the next audio note, the previous one, to stop, and to
adjust the volume. A similar idea was proposed by Kawsar et al [29] where the authors
used RFID cards to control RFID-enabled augmented objects. In their prototype, each
augmented object is supplied with a set of RFID cards, and an integrated RFID reader.
Each card corresponds to a certain command (install/uninstall a service, start/stop an
application). Users control augmented objects and applications by simply swiping a
card - this action identifies the command (associated with the card) and the augmented
object (associated with the RFID reader).

4.4 Summary

To sum up, non-visual tools are effective for only relatively simple applications and
special cases when, for example, users need to compose applications by choosing
physical devices. For this reason, non-visual tools are rarely used alone, but tend to
be combined with an automated composition mechanism or a visual tool, as has been
demonstrated in related work [20, 31].

In contrast, visual tools for application composition support a much wider range
of applications and user groups. However, the suitability of a concrete visual editor
for an application or a user group depends mainly on the metaphor used. The pipeline
metaphor is a powerful and flexible visual tool which enables the composition of complex
applications, albeit at the expense of steeper learning curves. Thus, this metaphor can be
recommended for complex applications and expert users. The jigsaw puzzle metaphor,
in contrast, offers a natural visual interface, and is thus easy to understand. However,
the supported applications have rather simple structures. This metaphor is therefore
more appropriate for simple applications and inexperienced users. The join-the-dots
approach is a good alternative between the previous two metaphors. It offers an easy to
understand representation, and application structures that go beyond trivial cases. This
metaphor can be recommended for inexperienced users, especially when they need to be
able to see the state of the entire environment.

User control in runtime application composition raises a number of open challenges

which, so far, have not been fully addressed in the related work. For example, user

53

control in runtime application adaptation is limited in the solutions surveyed. This is
possibly due to the fact that some composition approaches assume that user activities
and needs are fixed and do not change after an application has been composed. This
assumption is correct in situations where the composed applications have a relatively
short lifespan, and focus only on users’ immediate goals. On the other hand, recent
research tends to promote continuous user interaction in ubiquitous environments
[69], which results in a prolonged lifespan of applications, and gives rise to additional
challenges related to application adaptivity. Hence, users need to have the possibility to
control and adapt applications to accommodate changes in their goals and preferences at
runtime. This requires developing various user interfaces (e.g. tangible, speech and
gesture-based) to be used during the application execution phase in order to provide a

better user experience.

54

5 Research and experiments

This thesis has two research themes: automated and interactive application composition.
This chapter presents these research themes as follows: The first part of the chapter
focuses on automated application composition, and presents the research methodology,
implemented prototypes for automated application composition, and experiments with
these prototypes. The second part of this chapter focuses on interactive application
composition, and presents the research methodology, describes the implemented system
prototypes for interactive application composition, the user experiments and the results
of these evaluations. This structure reflects the research process of this thesis, which
concentrated first on automated composition mechanisms and then shifted to interactive

application composition.

5.1 Prototypes for automated application composition

The first research theme of this thesis focuses on various automated composition
mechanisms for ubiquitous applications, and ways of improving the mechanisms’
qualitative and quantitative characteristics. This theme corresponds to the first research
objective of this thesis, which can be restated as ‘the construction of an application
composition mechanism which has to be evaluated for efficiency, accuracy, robustness
and scalability’. As part of the thesis project, the author developed four prototypes for
automated application composition which were evaluated using synthesized datasets, as
well as a real mobile application and network resources. Table 1 shows the relationships
of the publications and the prototypes for automated application composition, along
with their research goals and most distinguishing characteristics.

The prototypes of composition mechanisms presented in this section are implemented
as standalone tools which are intended to be integrated into the system supporting
automated composition of ubiquitous applications. The architecture of such a system is
outlined in Publication III of this thesis. The core of the system consists of the application
composer, the resource manager and the service discovery components. These core
components realize the generic composition process (presented in Section 2.2) which
governs the lifecycle of applications, monitors the utilization of the network resources

and adapts the composed applications dynamically. The service discovery maintains the

55

Table 1. The algorithm prototypes developed in this thesis.

Prototype (Publication)

Design Goals

Design Description

Experiments

SEA (Publication 1)

MGA (Publication II)

EA&GA (Publication II)

EA (Publication V)

Solving the application
allocation problem

using the evolutionary

computing approach.

Improving the SEA
performance while
preserving the search
quality.

Optimizing the
algorithm according to

the characteristics of
the search space.

EA feasibility studies in
real world settings.

Classical schema with
all genetic operators
implemented in Java.

Micro-Genetic Schema

based on external
memory & population
reshuffling.
Implemented in Java.

The EA uses the
mutation operator only
to mutate one
individual. The GA
uses the standard
genetic schema. Both
algorithms calculate
fitness values using a
three-phase evaluation
schema. Both are
implemented in C++.
Integrated as a
component of the
REACHeS
infrastructure. The EA
is implemented in C++
and integrated using
Java wrappers.

Proprietary graph
generator. The largest
test setup had 11
application
components and 26
networking nodes.
Proprietary graph
generator. The largest
test setup had 16
application
components and 32
networking nodes.
BRITE Software Router
generator. The largest
test setup had 80
application
components and 240
networking nodes.

Tested using a real
networking
environment consisting
of 30 resources and a
media player
application consisting
of 3 components.

registry of network resources and performs a matchmaking functionality, which implies

finding matches between the discovery requests and the service descriptions stored

in the registry. The resource management component is responsible for monitoring

the availability and the utilization of the network resources, as well as leasing them

to application users. The application composer is the key component that uses the

automated composition algorithms to optimally produce a concrete application using the

service instances that match the functionality specified in the description.

The automated composition mechanisms, whose prototypes are presented in Publica-

56

tions I, IT and III of this thesis, solve the so-called application allocation problem. This
problem is based on an application and a platform model that are formally described as
connected graphs. The application model captures the application’s topology. Each
node of this graph represents an application service. Communication between two
services is modeled using graph links. The elements of the application model can have
multiple properties which specify a non-functional service or link requirements, such as
computational resources, up or downlink channel capacity and memory demand. The
platform model represents the application execution environment. That is, the platform
model’s graph topology represents the network topology. It is assumed that each host
is able to communicate with all other hosts in the network, therefore the platform is
represented with a fully connected graph. Each host can allocate a group of application
components, if the hosts’ resource constraints are satisfied. These constraints determine,
for example, the maximum memory, computation resource and other properties.

The number of properties affect the performance characteristics and the efficiency
of the composition mechanism, as a greater number of properties cause the increased
computational load and memory consumption of the mechanism. The prototypes of
automated composition mechanisms (Publications I, II and III) differ in the number
and the types of the supported properties. For example, the SEA and MGA prototypes
(Publications I and IT) supported 5 properties per model. In contrast, the EA & GA
(Publication III) is a generic solution which supports multiple number of properties.
This prototype was evaluated with 6 and 10 properties per model.

A composition mechanism uses the application and platform models as an input
in order to produce a deployment plan. The deployment plan determines the optimal
mapping of the application services onto the resources from the platform model. This
mapping is subject to multiple constraints. The optimality of the plan is determined by
an objective function. The SEA and MGA algorithms (Publications I and II) support the
fixed objective function, while the EA & GA (Publication III) support the objective
function which can accommodate new objectives without redesigning the algorithm’s
code.

The SEA, MGA and EA & GA prototypes (Publications I, II and III) were evaluated
as standalone tools using synthesized datasets produced by the proprietary graph
generator (the SEA and MGA prototypes), while the third-party network emulation
software tool, BRITE, was used to evaluate the EA & GA prototype. In contrast,
Publication IV reports the experiment which evaluated the EA algorithm when it was

integrated into an existing infrastructure for application composition. This experiment

57

was performed in a real network with concrete devices.

Next, the prototypes and experiments are presented and discussed in detail.

5.1.1 The straightforward evolutionary algorithm (SEA)

The first algorithm was designed using the classical evolutionary computing schema
described by Michalewicz and Fogel [70]. This algorithm is based on such evolutionary
operators as tournament selection, one-point crossover and multipoint mutation. The
platform model constraints are enforced using a penalty function and a fixed objective
function is used to evaluate the potential individuals. This algorithm preserves population
diversity by generating random individuals in the initializing phase and also by using a
mutation operator after the population initialization. The algorithm was implemented as
a Java standalone tool.

For benchmarking purposes, the author designed an algorithm that was based on a
greedy allocation schema. This algorithm produced solutions by iteratively choosing an
application component with the highest resource demands and allocating it to the node
with the biggest resource capacity. The greedy algorithm handled the application and
node constraints iteratively, one by one. Both the SEA and the greedy algorithm were
evaluated for their performance and quality of search characteristics using synthesized
datasets. To do so, we designed a proprietary solution for synthesizing application and
platform models randomly.

The algorithms were compared empirically on relatively small datasets; in the largest
case 10 application components were allocated onto 26 nodes. The small sizes of the
experimental datasets were due to the fact that the performance of both the SEA and the
greedy algorithm were poor and, therefore, unfit for runtime application composition
(see Publication I for details). Moreover, the greedy algorithm was highly unstable, and
suffered from frequent failures on larger datasets, in some cases finding solutions in only
5 per cent of the algorithm executions. Although the SEA outperformed the greedy
algorithm in terms of robustness and quality of solutions, its computation times were of
considerable magnitude (tens of minutes). As we established when analyzing the results,
the reason for the time inefficiency lies in the SEA’s diversity preserving mechanism
which requires the algorithm to operate with large populations, usually of 150-200
individuals, to avoid premature convergence. Another drawback was the large number of
algorithm parameters which we had to tune empirically through a series of experiments.

At the time of designing the SEA, we compared this algorithm with the standalone

58

solutions found in related work. The Sekitei [71] and Sekitei 2 [72] algorithms are
Al-based solutions which aim to reduce the computational load of networking hosts,
satisfy various QoS requirements, and improve the throughput using a dynamic service
deployment approach. Although suitable for solving the application allocation problem,
both algorithms focus exclusively on network applications where components produce
or consume data streams. Similarly, CANS [73] focuses on network applications which
can be composed as a direct sequence of components (i.e. sink-source chains). CANS
optimizes various application-related metrics (e.g. overall throughput). AIRES [74] is
an application allocation algorithm that is used to minimize hardware requirements
during software design. However, AIRES computes application allocation statically, i.e.
at the application design time.

Solutions such as DecAp [75], Hadas [76] and [77] introduce distributed algorithms.
DecAp [75] focuses on improving the availability of distributed systems where network
hosts are mobile and hence unreliable. The DecAp solution introduces the notion of
partial visibility, i.e. it assumes that each host can access only a part of the overall
network. DecAp allocates components according to the constraints imposed by partial
visibility. Hadas [76] employs automated agents to negotiate about resource demands and
leases for application composition. What makes Hadas unfit for application composition
is the unpredictability of the negotiation process’ duration, which depends entirely on
agent behavior. A promising solution has been proposed by Andrzejak et al [77] which
focuses on algorithms for automated systems management. However, to date, these
algorithms have not been implemented.

As a conclusion, we found our approach to be promising and suitable for automated
application composition, although, the algorithm designed had to be modified in order to

improve the performance.

5.1.2 The micro-genetic algorithm (MGA)

The aim of this prototype was to address the drawbacks of the SEA, as well as to analyze
the characteristics of the application allocation problem in more detail. In particular, we
focused on improving the performance. This prototype used a micro-genetic schema [9]
which is known for its low computational load. The main difference between this
schema and the SEA algorithm lies in their diversity preserving methods. Unlike the
SEA, which preserves diversity using only the mutation operator, the MGA relies on

external memory and population reshuffling techniques. This simplifies the MGA’s

59

design, and allows smaller populations with less than 10 individuals. The MGA is
structured in two cycles, namely an external and an internal cycle. The external cycle
controls the algorithm’s memory, checks the stopping criteria, and restarts the internal
cycle. The internal cycle resembles a classical evolutionary algorithm in miniature, as
the MGA deals with a few individuals only. In addition, the MGA has two crossover
schemes and two mutation operators to enable a faster convergence of the algorithm.
Both algorithms, the MGA and the SEA, use the same penalty and objective functions.
The MGA was implemented in Java as a standalone tool.

The MGA was compared empirically with the SEA algorithm on synthesized
datasets. The largest dataset contained 16 application components and 32 platform
nodes. Additional constraints were introduced in order to evaluate the performance of
these algorithms. The results demonstrated that the prototype’s goal had been achieved.
The MGA’s computational times were better, and its efficiency was the same as or better
than that of the SEA, which is to say that the MGA found solutions of the same or
higher quality. In terms of robustness, the MGA also demonstrated better results (see
Publication II, Figure 8). The MGA was able to find solutions within a specified time
period and failed less frequently than the SEA.

However, the experiments revealed that the search space in the application allocation
problem does not contain information about the order in which the algorithm should
sample the solutions. Moreover, the values of the objective function varied between
neighboring solutions, and were independent of each other. The MGA’s computational
times were already in the magnitude of a few minutes. However, smaller computational
times were needed for the algorithm to be used in a real-time application scenario.

When analyzing the MGA’s design and performance, it should be mentioned that
although the MGA’s models are similar to those found in related work (e.g. [71, 72, 74]),
additional constraints, called ‘affinity constraints’, were introduced. These constraints
restricted the allocation of certain application components to certain hosts. At a coarse
grain, this resembles the ‘partial visibility’ approach proposed in [75], but the latter
approach uses these constraints in order to model the topography of mobile and adhoc
networks. In the case of MGA, affinity constraints serve the need of application designers
and also application users to adapt the allocation of application components according
to their requirements. Other existing solutions, such as [5, 77, 78], were not capable of

handling these kinds of constraints.

60

5.1.3 Modified evolutionary (EA) and genetic algorithms
(GA)

The aim of this prototype was to achieve additional performance by exploiting features
of the search space which had been discovered earlier. In addition, our goal was to
make our algorithms generic, i.e. remove the need to tailor their models based on
the type of application. Such algorithms can handle any number of properties as
well as support new objectives without redesigning the code. Another goal was to
integrate a third-party network emulation software tool to synthesize the datasets for
experiments. The decision to abandon our proprietary synthesizer was due to the fact
that our synthesizer produced datasets with slightly oscillating characteristics. Although
all the parameters of the datasets were picked randomly, from specified value ranges, the
resulting quality characteristics were oscillating around certain dataset sizes, as shown
in Publication IT (Figure 7). Hence, another tool had to be used.

In this prototype, two algorithms were proposed, the modified evolutionary algorithm
and the genetic algorithm. The evolutionary algorithm had a very simple design, as
no population was used. Indeed, the algorithm relied only on the mutation operator,
and iteratively mutated one individual. However, the modified EA was expected to
demonstrate higher performance at the expense of lower quality solutions. In contrast,
the previously designed MGA and SEA were population-based algorithms. The second
algorithm (modified GA) applied standard genetic operators, and cyclically evolved
a population of individuals. These operators were: tournament selection, uniform
crossover, multipoint mutation and elitism. The GA was expected to yield higher quality
solutions at the expense of increasing computational times.

However, the main difference, compared with the earlier designed algorithms, lies in
the evaluation schema for comparing the individuals. The new schema was designed in
order to treat the application allocation problem treated as a hybrid search problem. That
is, the new schema simultaneously combined the features of both constraint satisfaction
and optimization problems. The schema worked as follows. First, the algorithms had
to satisfy the platform constraints, until a valid solution was found (i.e., a solution
which did not violate any constraint). After that, the algorithms had to optimize the
objective function (subject to the stopping criteria). This approach made it possible for
us to reduce the complexity of the search problem while supporting many optimization
objectives without redesigning the code.

We implemented these two algorithms in C++ (as standalone command-line tools)

61

and used the BRITE network emulation software tool [10] to synthesize larger application
and platform models. BRITE was chosen due to being widely accepted in the scientific
community as a de facto standard tool at the time of these experiments. The two
algorithms were empirically evaluated for performance and other characteristics while
increasing the number of model properties and model sizes. Due to incompatibility
issues, these algorithms were not compared with the earlier designed prototypes. First,
the EA and the GA algorithms were tested while increasing the number of properties.
Unlike the previous prototypes, these two algorithms were designed in C++.

The largest models we experimented with had 80 application components and
240 platform nodes. It should be noted that similar experiments in the related work
operated with models of much smaller sizes (e.g., 20 components in the COCOA
experiments [22]). The algorithms were also tested using models with 6 and 10
properties. The GA demonstrated slower performance in the cases used; however it
produced solutions of higher quality than those found by the EA. In addition, the GA
was more robust, and its failure rate was almost half that of the EA. Despite this fact, the
EA’s main advantage was its exceptionally short computational times (on average 17
times faster than the GA’s). The conclusions of the experiments were the following. The
utilization of the GA is better for finding initial application allocations (as it produces
higher quality solutions), while the EA is more suitable when an application has to be
reallocated (as the EA’s search speed is faster). In addition, both algorithms suffered
similar performance drops when the number of model properties was increased. The
number of properties affected the complexity of the search problem, making it more and
more complex, which consequently led to longer computational times. The design of
these algorithms achieved its main goal: the algorithms’ performance was acceptable
for application allocation in real-time systems as their computation time was in the
magnitude of milliseconds.

The main difference between these two algorithms and contemporary existing
solutions (including our earlier designed prototypes) was mainly in the models used.
Our algorithms operate with models in which additional properties and objectives can be
added without redesigning the code. This means that the platform and the application

models are not associated with a fixed number of properties.

62

5.1.4 Evaluation of the EA with the REACHeS
infrastructure

Although the EA and GA algorithms demonstrated performance and quality characteris-
tics that were acceptable for the application of these algorithms in a real-time system,
this conclusion was based on the evaluation performed only with synthesized datasets,
i.e. no experiments were performed in real world settings. Therefore, the next goal
was to evaluate a chosen composition algorithm when integrated as part of an existing
infrastructure for application composition. The EA was chosen for this evaluation due to
its excellent performance and very low computational load.

The algorithm was integrated as part of the REACHeS infrastructure [11] which
is responsible for managing resources and for supporting communication between
resources, Web Services and mobile clients. REACHeS enables the utilization of a
mobile terminal’s user interface to control a wide range of ubiquitous applications,
which can be composed dynamically of service components. In addition, a multimedia
player application was implemented and integrated with REACHeS. This application
supported various types of multimedia content rendered on wall displays remotely. This
application consisted of three components: a remote control user interface (deployed
onto a mobile terminal), a multimedia player user interface (deployed onto a PC) and a
multimedia container service (deployed onto a Web service).

The application composition was triggered by end-users and was performed in two
phases, as follows. In the first phase, REACHeS searches for the available nodes in the
vicinity of the user (i.e. in the same physical location) and on the Internet. The result
of this phase, the list of discovered nodes, is returned to the EA, which produces the
application configuration during the second phase. This application configuration is the
allocation of application components onto the discovered nodes according to multiple
constraints and optimization criteria. Finally, REACHeS completes this application
configuration by binding the required resources to the application. At this point, the user
can start interacting with the application and REACHeS dispatches the user’s commands,
and other events sent between the application components. Details of how REACHeS
coordinates and manages resources and applications can be found in [11].

The prototype of the application composition system was evaluated for performance
and the latency caused by different services of the prototype. The goal of this evaluation
was to analyze the factors that contributed to latency, while increasing the number of

available resources. Another goal was to identify possible bottlenecks in the design. The

63

EA algorithm, implemented in C++, was integrated into REACHeS using Java wrappers.
The network resources consisted of PCs connected to REACHeS. The latencies and the
performance were measured during the presence of an increasing number of resources.
The maximum number of simultaneously available resources was 30. As the experiment
revealed, the algorithm execution latency dominated the other application composition
processes, such as service discovery and various communication delays. The overall
latency was below 100 ms, and this result was found acceptable according to the
recommended response times for the UI design [79].

It should be noted that, unlike the contemporary frameworks and solutions focusing
on task-based computing [5, 22, 28], this prototype was fully implemented, including
middleware components, the user interface and the multimedia application. Details of

the UI and the application were presented in Publication V of this thesis.

5.2 Prototypes for interactive application composition

The second research theme of this thesis is related to interaction methods for application
composition which allow users to provide their preferences, and control various aspects
of the application composition. This research theme corresponds to the objective of this
thesis that can be restated as ‘the construction of a fully functioning system prototype that
provides appropriate user interfaces to enable user control for application composition,
and the evaluation of this prototype in a series of user evaluation experiments’. As part
of the thesis project, the author developed several system prototypes for interactive
application composition, which were evaluated in a series of user experiments. Table 2
shows the relationships of the publications and the prototypes for interactive application

composition along with their research goals and the most distinguishing characteristics.

64

Table 2. The system prototypes developed in this thesis.

Prototype Design Goals Design Description Experiments
(Publication)

Automated Constructing a The prototype was The user experiment
Composition in fully-implemented implemented in Java with 10 participants
REACHeS prototype which relies and integrated into demonstrated feasibility

(Publication V)

CADEAU

(Publication VI)

iCompose
(Publication VII)

MEDUSA
(Publication VIII)

on a physical user
interface and
automated composition
mechanisms.
Constructing a
prototype which
provides three user
interaction methods for
application
composition.

Constructing a
prototype which utilizes
various user contexts
for application
composition.

Design and evaluation
of the middleware for
end-user application
composition.

REACHeS.

The prototype is
implemented in Java
and C++, uses Web
Services and is
integrated into
REACHeS
Infrastructure.

Implemented in Java
using the Ruby on
Rails Framework, Web
Services and
REACHeS
Infrastructure.

Partially designed
using available
open-source
technologies.

and usability of the
prototype.

The user experiment
with 30 participants
identified the factors
and the contexts which
affect the user’s
decision to rely on a
certain interaction
method.

The user experiment
with 21 participants
analyzed users’
attitudes towards
utilization of context in
application composition.
The iCompose
approach to deal with
context was found
acceptable.

Evaluated in a user
experiment with 3 users
that demonstrated
feasibility of the
end-user application
composition approach
and suggested possible
applications for the
prototype.

The prototypes described in this section rely on a physical user interface to enable

users to control the composition process which governs the life-cycle of applications

(the process is described in detail in Section 2.2). While the automated composition

65

prototype, CADEAU and iCompose (Publications V-VII) focus on providing various
interaction methods for application composition, the MEDUSA prototype (Publication
VIII) implements the middleware for end-user application composition.

The automated composition prototype (Publication V) presents the fully-implemented
system for application composition, and provides the automated interaction method,
which relies on the EA algorithm (described in Section 5.1.3) for computing application
configurations. In this prototype, the user control was limited to triggering the com-
position process with certain preferences. The CADEAU prototype (Publication VII)
extended this interaction method and introduced two additional ones: the manual and
the semi-automated method. The latter relied on the EA algorithm while the former
allowed the users themselves to choose the necessary resources by touching them. These
methods also relied on the physical user interface. However, each of these methods was
advantageous in some situations, and disadvantageous in others. That is, none of the
methods could be used as the universal method.

The iCompose prototype (Publication VII) presented the interaction method which
tackles this issue. This interaction method utilizes multiple contexts and provides users
with greater flexibility in terms of control. However, these advantages come at the price
of longer learning curves and greater complexity for users.

All of the prototypes were evaluated in a series of user experiments in real settings.
The automated composition prototype (Publication V) was evaluated with 10 users,
while CADEAU (Publication VI) and iCompose (Publication VII) were evaluated with
30 and 21 users, respectively. In addition, the latter two prototypes were evaluated using
the focus groups, which represented either experts and novice users (iCompose), or
experts, average and novice users (CADEAU).

The MEDUSA prototype (Publication VIII) differs from the above described
prototypes, as it presents the middleware for end-user application composition. Although
MEDUSA does not directly continue the research on interaction methods started in
Publications V and VII, this prototype is still closely related to interactive application
composition. In particular, MEDUSA targets the issue of involving end-users during
the scenario definition phase of the application composition process. For this purpose,
MEDUSA provides the composition tool based on the physical user interface. This tool
assists users in creating application scenarios which are later materialized during the
composition phase. Users created applications by manipulating a set of service cards,

where each card corresponded to an application service.

66

CHOOSE QUALITY

““Hiddemn
Trime”’

Very Low Low Medium High

Fig 5. The control panel for choosing quality preference. (V, ©2008 Association
for Computing Machinery, Inc. Reprinted by permission).

Next, we present the prototypes and discuss the user experiments and their results in

detail.

5.2.1 The automated composition prototype

The goals of this work were to evaluate feasibility and user acceptance, as well as to
study how user satisfaction and comfort levels are affected by the degree of autonomy of
the system. The design of this prototype and its evaluation were essential in order to to
gain a better understanding of user attitudes towards the autonomy of the application
composition system and the implications of user interaction. Although the research
focused clearly on user-oriented aspects of application composition, this prototype
for application composition was designed in a similar fashion to the prototype for
experiments with the EA algorithm (see Section 5.1.4). The application composition in
this prototype was automated, and relied on the EA algorithm for computing application
configurations. Users triggered the application composition by touching an NFC-tag on
a control panel, where each tag corresponded to a certain quality preference (as shown
in Figure 5).

Then, the prototype performed a service discovery and computed the application
configuration according to the quality level chosen by the user. After that, the application
was composed and started: the system automatically deployed the user interface

components on the mobile terminal and on a certain wall display, so that the user

67

could immediately interact with the application. The prototype also supported runtime
adaptation, i.e. users were able to reselect (and recompose) the application while
watching the video. The prototype relied on three types of resources, wall displays (each
controlled by a separate PC), media servers (which hosted the video content) and mobile
phones (which were used as remote controls).

The prototype was evaluated with 10 users who represented pro-technology individ-
uals. The setup of the experiment was the same as in the experiment reported in Section
5.1.4. The users were given the task of watching a video file while becoming accustomed
with the interaction method and the prototype in general. The main findings of this study
were the following. The prototype was regarded as feasible, and the users suggested
various typical situations where they would need to use such a system. This helped us
to identify two characteristics of the environments where the automated system for
application composition will be useful: first, these environments are characterized by a
large number of available resources, and second, these resources are not familiar to
users, so that users experience problems when choosing suitable resources. The major
finding was that the user’s feeling of being in control was the most important factor. As
most test users reported, the interaction method implemented with this prototype failed
to provide adequate user control and definitely was not the one-size-fits-all solution to
all possible applications. In spite of generally positive opinions about our prototype,
users pointed out multiple drawbacks of limiting the system’s applicability only to a few
scenarios. We needed to design and study additional interaction methods to ensure
wider applicability of our application composition approach.

At the time of this experiment, many system prototypes for automated application
composition were available. However, only a few solutions were complete systems
implementing user interfaces and tools, in addition to system components. Thus, we
considered the following prototypes for comparison with our system: InterPlay [19],
Sousa et al’s prototype [5], the STEER tool [21], and the Compose Tool [52]. Interplay
and Sousa et al’s prototype use a similar approach for application composition, and they
support only pre-programmed applications introduced to the system by application
designers. Both systems support composition by choosing and configuring services
available in a user’s vicinity. However, Interplay uses a pseudo-natural language
approach for composition, while Sousa et al’s work relies on a GUI. Moreover, Sousa’s
approach focuses mainly on capturing application-related QoS preferences. In contrast,
our approach relies on a physical interface to provide application-related preferences to

the users. We consider a physical user interface to be a natural solution for this purpose,

68

as it has only a small learning overhead. Unlike Interplay or Sousa et al’s work, we
validated the feasibility and usability of our solution by organizing a user experiment.
Another two promising existing solutions are the STEER tool [21] and the Compose
Tool [52]. Similarly to our approach, both solutions combine interactive user tools
with automated composition mechanisms. This enables users to choose services for
composition intuitively, while an automated composition mechanism creates intercon-
nections between these services. In addition, the STEER tool features a set of widgets

for introducing semantic versions of digital objects and services to the system.

5.22 CADEAU

The goal of this work was to study the balance between user control and system
autonomy in application composition in various contexts, depending on the users’ needs
and experience with new technologies. To achieve this goal, we designed a prototype
supporting three interaction methods which differed from each other in the degree of
user involvement in the control of the application composition. These methods were
offered in order to let the users choose the most suitable means of interaction according
to their needs. The prototype was evaluated in a user experiment which aimed to address
the question of system autonomy, i.e. the issues that users allow the system to take
decisions on. The ultimate goal behind the design and evaluation of this prototype was
to create an interaction method which can be tailored to the users’ expertise and their
willingness to delegate control to the system. Using such an interaction method, the
users themselves could specify the tasks that they want to delegate to the system, and the
tasks they prefer to control manually.

The CADEAU prototype supports the composition of applications of resources and
Web Services. Similarly to the other prototypes for interactive application composition
presented in this thesis, CADEAU has been built upon the REACHeS infrastructure [11],
which provides the communication and Web Service remote control facilities, as well as
performing service discovery and allocation of resources. CADEAU extended the basic
composition and decision-making mechanism used in REACHeS and, additionally,
provided three interaction methods for controlling the composition process. These
methods were manual, semi-automated and automated. Figure 6 demonstrates how these
methods are arranged according to the levels of user involvement and system autonomy
that the methods provide. The idea behind providing three interaction methods at the

same time was motivated by the users’ need to switch from one interaction mode to

69

Candidate Services

LN NFC tag
NFC tag \;‘

NFC-based v
Physical Interface NFC tag T |
Physical Selection ‘ C{‘V

=
w
=

Application Composition
Mechanism

m ’
- v
-

Assisted Selection

NFC & i
reader

User Involvement

low System Autonomy high

Fig 6. CADEAU interaction methods. (VI, ©2011 IGI Global. Reprinted by permis-
sion of the publisher).

another, as required by the situation in the environment, the application that is being
composed and the users’ individual requirements.

These interaction methods worked as follows. CADEAU’s manual method addressed
the users’ wish to fully control application composition. This method allowed the
users themselves to choose the required resources by touching the associated NFC tags
with a mobile terminal. The semi-automated method allowed users and the system to
control the application composition together. The method relied on the EA algorithm
to generate dynamically a list of possible application configurations on the user’s
mobile terminal. Users first browsed and previewed these configurations, and then
chose the one they preferred using the mobile terminal’s Ul. CADEAU’s automated
method was suitable for situations where users do not want to control application
composition, and prefer to delegate this task to the system. When this method is used,
the application is composed, configured and started automatically, without involving the
users. For the purpose of demonstrating the capabilities of the CADEAU prototype, we
designed a smart newspaper application which was also used for the user evaluation
study. This application allows users to acquire various multimedia content by touching
tags embedded in a newspaper. Then, users could browse and play the chosen content

on an external display while controlling the playback using the mobile terminal as a

70

remote control.

The design of the prototype was followed by a major user evaluation involving 30
individuals with various backgrounds and previous experience with technologies. The
main goal of this user study was to evaluate the tradeoffs between user control and
the autonomy of the system dictated by the users’ needs, situation and expertise. To
achieve this goal, we compared CADEAU’s interaction methods, and analyzed the
various factors that contribute to the users’ comfort level and feeling of being in control
in different contexts. Each participant in the user study was asked to compose the
CADEAU application using different interaction methods. The main findings of the
study were the following. The manual interaction method was preferred when users
wished to hide their multimedia content in the presence of other individuals. This method
was also preferred when the environment and its resources were well known to the users
(e.g. in one’s office). The manual method also provided higher levels of user control and
confidence. In general, users expressed similar preferences towards the semi-automated
and the automated methods (details are presented in Publication VI). For example, these
methods were preferred in situations where users were new to the environment or when
the system’s behavior was predictable. However, the semi-automated method was given
preference if users wished to hide their intentions (e.g. when they aimed to discretely
use public resources in the environment). As anticipated, the study confirmed that users’
preferences towards these three methods varied, i.e. none of these interaction methods
clearly dominated the others in any situation.

CADEAU’s main research theme, the issue of balancing control between users
and the system, has been addressed in several research prototypes. For example,
Vastenburg et al. [80] developed a prototype to study and analyze a user willingness
to delegate control to a proactive smart-home application. They developed a user
interface for an atmosphere control application which had three modes of interactivity:
manual, semi-automatic and automatic. However, their prototype was created using
the ‘wizard-of-0z’ approach, i.e. the system’s behavior and reactions were remotely
activated by a human observer during their user study. Vanderhulst et al. [81] designed a
meta user interface for runtime control of task-based applications through which users
could manage their task execution, switch between tasks and perform ‘personalized’
service discovery. Hardian et al. [68] also studied the issue of balancing user control
and autonomy. Their work suggested providing the user with control through explicit
exposure of the system’s logic and the context used for application adaptation through a

user interface. However, the approaches presented by Vanderhulst et al and Hardian et al

71

focus exclusively on context-aware systems, whereas our solution allows application

composition.

5.2.3 iCompose

The work on the iCompose prototype aimed at studying the context-aware composition
of multiuser applications. Although the main goal was to develop and evaluate a
user interface for controlling context-aware application composition and the runtime
environment, this work also addressed the various technical feasibility issues of the
approach. Indeed, the iCompose prototype was the most ambitious undertaking among
the earlier prototypes, and its design required resolving multiple technical challenges
such as multiuser interaction, distributed reasoning, context utilization and decision-
making for composing and adapting applications.

Although the iCompose prototype was based on the REACHeS infrastructure [11],
the prototype’s design was a departure towards a generic architecture for context-aware
composable applications. In addition, rather than using allocations algorithms, iCompose
delegated decision-making to a distributed context reasoner. This change served two
purposes. First, it separated context processing and management functionalities from
application logic, and thus simplified the design of applications and the prototype
components utilizing these functionalities. Second, supporting multiple composition
processes simultaneously enabled an independent composition process for each appli-
cation. This prototype featured the iCompose interface, which provided user control
for the application composition process. This process runs in the background and
triggers the composition, and adapts the applications according to context changes. The
iCompose interface relied on a traditional GUI on mobile terminals, and on a physical
user interface. The physical UI allowed users to interact with the environment and the
system. The GUI (shown in Figure 7) visualized the events and the context related
to the application composition, while the physical user interface offered the means to
control the application composition. The iCompose interface incorporated a context
reasoner which supported decision-making processes utilizing various contexts, and,
optionally, implemented the application logic of some applications. This design was
motivated by the following issues. First, the system’s behavior has to be clear and
unambiguous for users. Second, users should be given the authority to control the
choices made (or suggested) by the system. Third, users should also be able to achieve

their goals without the system’s assistance. The prototype was accompanied with the

72

History of Events
— o

PN

You have collected a new
quizl:

.d_l'h My Ea WS

T,_-T My Bonuses

+) My Quizzes
. »

=45 My Game Scores
P o

options ~ Open Fxit options Open Batk

* Collected quiz from Answier Quiz

Quiz Details

Select skip

(a) (b) (© (C))

Fig 7. The Ul of the iCompose prototype: (a) the main menu, (b) event collector, (c)
event collector during a quiz dialog, and (d) the Scorch remote controller screen.
(VII, Reproduced from Central European Journal of Computer Science, 2011, Vol.
1, No. 4, Pages 442-465).

QuizBlasters application, both for demonstration as well as for user evaluation purposes.
The application was a context-aware learning application which combined the elements
of a treasure-hunt and a multiplayer action game called Scorch.

The fully implemented iCompose prototype was evaluated in a user study with
the goal of assessing the usability, control and feasibility issues of the user interface
for context-aware application composition. The user study featured 21 individuals
representing novice and advanced technology users. All users were given the same task,
which was to compose an instance of the QuizBlasters application while becoming
familiar with the composition interface. The participants generally expressed positive
opinions towards the prototype and the composition interface. The behavior of the
system was reported as being ‘as expected’, and thus users raised only a few concerns
related to context-aware features of the prototype. Most reported issues were linked to
privacy and trust, which were within the scope of this prototype’s design.

The existing composition approaches utilizing context and various context-aware
mechanisms to carry out application composition and adaptation can generally be
categorized into advanced context-aware systems and systems with basic support for
context-awareness. The first ones are elaborate solutions utilizing a wide range of
context types, and providing advanced functionalities such as context provisioning,
context monitoring, service discovery and context reasoning. The second group focuses
mainly on formal aspects of context-aware application composition, particularly on
context modeling, context processing algorithms and specification of context-aware

resources.

73

Example solutions with advanced context-aware support are presented in [82—
85]. Bottaro et al [82] developed a system for automated policy-based application
composition and adaptation which targets late-binding and user mobility issues. Late-
binding and self-adaptation are the motivations behind MUSIC [84], a middleware for
planning-based application composition. Focusing on utilizing the context provided
by mobile devices, Hesselman et al [83] presented a composition approach that is
tightly coupled with a service discovery and rule-based inference engine for interpreting
context, and matching discovered devices. In contrast, the approach of Zhou et al [85]
uses the rule-based reasoner to implement application logic and decision-making for
application composition. Their solution targets the composition of pervasive Web
Services. Examples of composition approaches focusing on formal aspects in context-
aware composition are presented in [50, 86—89]. The solutions offered by Ben Mokhtar
et al [86], Preuveneers & Berbers [87] and Zhang et al [S0] address resource-awareness,
late-binding and user mobility and perform dynamic application composition and
adaptation using a semantic-based matching engine. Concentrating exclusively on user
mobility, the PICO middleware [89], supports application composition and adaptation
through semantic and syntactic matching. In contrast, the Diadalos architecture [88]
targets personalization issues in application composition and includes multiple services
for collecting and processing this kind of context.

The iCompose prototype can be categorized into the advanced context-aware systems
group as it supports a wide range of context types, and provides context provisioning,
reasoning and service discovery. Unlike related work solutions, iCompose focuses
exclusively on interactive application composition, and features a context-aware physical

user interface.

5.24 MEDUSA

Although this work continued the interactive composition research, the MEDUSA
prototype represented a move towards end-user application composition. Indeed, the
goal of this work was to enable the users themselves to create and customize simple
applications from the available resources discovered in the users’ vicinity. In contrast,
our previously developed prototypes support only the composition of applications
which were designed by application programmers. With a view to end-user application
composition, the prototype focused on the following two issues: an application composer

which enables end-user composition, and the interoperability of service discovery,

74

=) E

Fig 8. The MEDUSA composition tool: (a) A sticker with NFC tag, (b) an NFC-
enabled mobile phone, and (c) example service cards. (VIil, ©2011 IGI Global.
Reprinted by permission of the publisher).

service descriptions and service communication.

MEDUSA consisted of a composition tool for encoding user intentions into applica-
tions, a set of interfaces for controlling application composition, and the underlying
middleware. The composition tool was based on the puzzle metaphor as follows. Each
ubiquitous environment provides a set of cards which are associated with the service
instances available in the environment. Each service is represented with a paper card
with a graphical icon on one side, and with an NFC tag attached to the other side as
shown in Figure 8. Users arrange these cards into different application structures which
are then read by touching them with an NFC-enabled mobile phone. After specifying
the application structure, users need to create control and data dependencies between
the services using the mobile phone-based assistant. Then, the application has to be
composed or, in other words, completed using concrete service instances. In other
words, the services constituting the application have to be found and matched at runtime
to the service instances available in the environment. This process is controlled through
a set of user interfaces, including manual, semi-automated and automated interfaces.
MEDUSA relies on exactly the same set of control interfaces as those which were
developed for the CADEAU prototype. The last component of the MEDUSA prototype
is the underlying middleware, which provides the necessary functionality for application
composition, and enables interoperability between the basic elements of the environment,
i.e. heterogeneous devices, platforms and networks. The MEDUSA middleware was
designed using various open-source solutions.

We evaluated MEDUSA’s end-user composition tool in a small-scale user experiment.

The purpose of this experiment was to study the feasibility of the approach, and also

75

understand the types of application scenarios that can be created using MEDUSA’s
tangible composition tool. This brief experiment helped to identify the four most promis-
ing application domains (home, office, hospital and learning) where the composition
tool was especially useful. Moreover, the experiment revealed that some sort of user
motivation mechanism has to be designed in order to compensate for the learning
efforts required of the users (see Publication VIII, page 13). Another result was the
confirmation of our assumption that users need to be able to create and develop their
own services, thus expanding their roles from end-users to service developers.

The end-user application composition presented in the MEDUSA prototype is related
to research done in many different fields from composition middleware to graphical
interfaces and editors for application composition. The prominent solutions featuring
editors for end-user composition were proposed by Wisner and Kalofonos [52], Newman
et al [20], Humble et al [18, 57], Mungellini et al [32] which we discussed in Section
4.1. However, none of these solutions offers a user interface for controlling application
composition at runtime. Such support is required to ensure that users have a feeling of
control over the environment, which is the major factor that affects user acceptability of
application composition prototypes [90]. Also, unlike MEDUSA, the aforementioned
solutions do not focus on supporting interoperability for service discovery, service

descriptions and service communication.

5.3 Summary

This chapter discussed eight prototypes which were developed as a part of this thesis
project. The prototypes were presented around two research themes: automated and
interactive application composition. Likewise, we classify the main research results.

The automated application composition prototypes achieved the following results.
These prototypes demonstrated that the performance of the developed composition
mechanisms was acceptable for utilization in a dynamic environment. That is, the
performance of the most recent prototype was in the magnitude of milliseconds. These
results were supported by the evaluation of the final prototype (the EA & GA) using
synthesized datasets, and in a real networking environment. In this sense, Publication [V
produced the most interesting results, as it presented how the composition mechanism
works when integrated with the system for application composition.

Another important result was achieving the flexibility of composition mechanisms, i.e.

the ability to take into account new optimization objectives, and additional application

76

and platform model properties without redesigning the mechanism’s code. This ability is
necessary in order to ensure the applicability of the composition mechanisms in various
application scenarios. However, this feature impacts the performance. As demonstrated
in Publications III and IV, introducing additional constraints and model properties
reduces the performance of the composition mechanism. Designers need to balance this
trade-off when creating application composition systems.

The interactive application composition prototypes achieved the following results.
The prototypes validated and demonstrated the feasibility of application composition.
The user experiments (presented in Publications V-VII) confirmed the feasibility of
the approach, and provided the author with lots of useful application scenarios and
ways of utilizing these prototypes in the real world. However, the author had to spend a
considerable amount of time on building the fully implemented prototypes and demo
applications so that they could be evaluated.

In addition, the prototypes presented in Publications VI and VII studied the balance
between user control and the system’s autonomy in different contexts. These prototypes
proposed several interaction methods which are based on a physical user interface.
These methods were designed to differ in how much the users were involved in the
control of application composition. The CADEAU prototype (Publication VI) presented
the semi-automated and manual interaction methods, in addition to the automated
method developed earlier (Publication V). The iCompose prototype introduced an
interaction method which was capable of adapting itself to user needs and the context.
As demonstrated during the experiments with iCompose prototype, this method showed
a higher degree of user control and a more pleasurable user experience.

Another result was the middleware and the physical end-user composition tool
developed as part of the MEDUSA prototype (Publication VIII). This work demonstrated
that users should be involved also during the scenario definition phase of the application
composition process. This allows the users themselves (rather than application designers
in other prototypes) to outline applications as necessary. The user evaluation of the initial
prototype supported the feasibility of this idea, though more extensive user evaluation is
required to validate the prototype.

77

78

6 Discussion

In this thesis, we addressed the topic of composing ubiquitous applications. Focusing on
the enabling infrastructure, we considered various composition mechanisms and interac-
tion methods for controlling application composition. We presented the background to
this thesis, ubiquitous computing, and an overview of application composition. With
a view to providing a unified view of the thesis’ topic, we considered two categories
of approaches: automated and interactive application composition. We discussed the
advantages and drawbacks of each of these categories. We presented the contribution of
the thesis which is comprised of eight publications (explained in Section 1.3). We then

analyzed them and compared with the related work.

6.1 Revisiting thesis statement and research objectives

Now, we may return to the thesis statement introduced in Section 1.2 and consider
how the research, as presented in this thesis, addresses its objectives. We repeat here
the thesis statement and the objectives for convenience: 'Providing a system which
enables composing ubiquitous applications in a real-world setting’. The first objective
of this research was the construction of an application composition mechanism which
has to be evaluated for efficiency, accuracy, robustness and scalability. The second
objective was the construction of a fully functioning system prototype that provides
appropriate interaction methods to enable user control over application composition, and
an evaluation of this prototype in a series of user experiments.

The first objective was achieved as follows. The author developed, implemented
and evaluated three consecutive prototypes of application composition mechanisms.
These prototypes rely on the theory of evolutionary and generic computing to enable
automated composition mechanisms. These prototypes were evaluated in terms of their
efficiency, accuracy, robustness and scalability using synthesized network topologies
and were also evaluated when working in a real-world network. The evaluation of the
most recent prototype (reported in Publications III and IV) has demonstrated that the
composition mechanism is suitable for runtime application composition and adaptation.

The second objective was achieved as follows. The author designed and implemented

four prototypes which provided various interaction methods for controlling application

79

composition at runtime. In particular, the most recent prototype, iCompose (described in
Publication VII), utilized multiple user interface modalities (a graphical and a physical
user interface), and various contexts to enable user control for application composition.
All of these prototypes were evaluated through a series of user experiments involving
novice and expert users. Notably, the user experiment with the iCompose prototype
confirmed its feasibility, and the usability of the interaction methods, as well as user

acceptance.

6.2 Main contributions

This thesis contributes with 1) algorithms for automated application composition, ii) user
interfaces for interactive application composition, and iii) implementation of concrete
applications and verification of the prototypes in a series of user experiments. Each of
these is discussed in more detail below, followed by a consideration of open issues and
future work.

Algorithms for automated application composition. We have designed and developed
several prototypes of algorithms and models for application composition, which are
reported in Publications I, II, III, and IV of this thesis. These algorithms apply
principles of evolutionary and genetic computation to optimize the composition of
applications using services and resources. The composition is subject to various
constraints (availability and characteristics of resources, application components’
resource demands) and user-specific criteria (such as minimization of communication
overheads and maximization of QoS). The prototypes designed also include the graph-
based models representing applications, their properties and the environment. The
initial design of the algorithms and the models are reported in Publications I and II,
correspondingly. The final prototype is described in Publication III. Unlike existing
solutions at the time of publication, the final prototype has an extensive model which can
be expanded to take into account additional properties, and constraints of applications
and the environment. In addition, the model is generic and is suitable for describing
multiple application domains. The algorithms have customizable optimization criteria,
i.e. can be tailored according to the user’s goals, without modifying the source code of
the algorithms. This feature allows the algorithms and the model to be used in different
application domains, such as entertainment, and home and office automation. The
implementation of these algorithms and their experimental evaluation using synthesized

datasets demonstrated their efficiency, accuracy, robustness and scalability. In particular,

80

Publication IV reports on the successful utilization of these algorithms and models in
two real applications, and this demonstrates both their feasibility and effectiveness.

User interfaces for interactive application composition. Publications V-VIII discuss
the user interfaces that we developed, together with the prototypes of application
composition systems. Publications V-VII present interaction methods for controlling
application composition at runtime, while Publication VIII introduces a design approach
and user interfaces for end-user application composition. We identified the need
to design these interaction methods during the work on the automated composition
prototype (reported in Publication V). Although that prototype performed application
composition automatically, the composition was nonetheless initiated by the users.
Therefore, the automated prototype needed an interface through which users could
trigger the composition and specify their preferences. Our solution was to design
an NFC-based control panel; the action of touching a tag triggered the application
composition with a certain set of preferences. Later, we designed manual, context-aware
and semi-automated interaction methods, as presented in Publications VI-VII. Based
on this work, we argue that there is no one-size-fits-all solution, but rather a set of
methods should be offered, so that users are able to choose the most suitable method
depending on their needs, the application, and the situation in the environment. At the
time of writing this thesis, the author was unaware of any existing interaction methods
for controlling application composition at runtime.

Implementation of concrete applications and verification of the prototypes through
user experiments. The requirement to verify the application composition prototypes in a
real world setting is specified in the thesis statement. In order to meet this requirement,
the system prototypes underwent user evaluation, as presented in Publications V-VIIL.
Each prototype was verified and evaluated in a series of controlled user experiments
which assessed various aspects, including general usability, user acceptance, feasibility,
and user control. We decided which aspects had to be assessed according to the goals
of each prototype. For example, user control was the most prominent feature to be
analyzed for the system prototype which utilized automated mechanisms for application
composition. To date, these two issues, completeness of implementation and user
experience, are rarely addressed in existing prototypes for application composition.
Instead of tackling system-wide issues, researchers prefer to focus on various challenges
related to certain components of their prototypes, including automated decision-making
and modeling application composition.

Recent work on these issues in application composition has produced interesting

81

research results. For example, Mukhtar et al [91] and Lahmar et al [92] have developed
a solution for automated application composition and adaptation. Their composition
mechanism considers various constraints, including user preferences, resource ca-
pabilities and the heterogeneity of communication protocols. Their models utilize
extended CC/PP description profiles [93] and conditional-preference networks for
compact representation of conditional and qualitative user preferences relations and
resource capabilities. Moreover, their composition mechanisms support adaptation to

certain contexts, such as changes in resource supply and user preferences.

6.3 Open issues

There are several issues which we only touched on or did not consider at all in this
doctoral thesis. As such, this work does not directly address the issues of middleware
interoperability for ubiquitous environments. Ben Mokhtar [94] specifies two kinds of
middleware interoperability required for application composition: service discovery,
and service communication protocol interoperability. The first kind of interoperability
is required to overcome the semantic heterogeneity problem which occurs when
several systems are using different description languages for information exchange [95].
Semantic heterogeneity entails incompatibility due to differences in the content, as well
as in the way the same concepts are described. The second kind of interoperability is
needed to overcome heterogeneity among various protocols used for service discovery
and service-to-service communication.

We addressed the first kind of interoperability in the MEDUSA prototype (presented
in Publication VIII) which uses ontologies to solve the semantic heterogeneity problem.
Ontologies make it possible to model applications, services, resources, their properties
and possible relationships using a common explicit specification of concepts (called
‘upper ontology’), thus enabling communicating parties to search and match application
concepts even if these concepts are described in different syntaxes. However, we
resolved the second kind of interoperability only partially. For this purpose, we designed
our prototypes for application composition (reported in Publications V-VII) using
the REACHeS infrastructure [11] as a basis. REACHeS was originally designed as a
solution for universal control in ubiquitous environments. REACHeS connects various
ubiquitous resources and mobile terminals together using Internet browser technology.
One could say that REACHeS enables interoperability for devices equipped with Internet
access that are capable of communicating using some common protocol like HTTP

82

or SOAP. REACHeS connects and manages these devices, thus forming the resource
pool that can be used to compose applications. Although the design and evaluation of
the prototypes (reported in Publications V-VII) have demonstrated that this solution
was sufficient for the needs of this thesis, additional work is required to achieve full
interoperability of communication protocols. In general, this issue can be resolved
by using various auxiliary components injected into communication paths, such as
adapters and translators. Adapters implement the communication functionality of both
senders and receivers, thus creating explicit mappings between various communication
protocols. In contrast, translators implement only the communication functionality of
senders. The former approach is presented, for example, in [96], while the latter is used
in the ANSO architecture [97].

Two other issues that we did not address thoroughly are trust and privacy for
ubiquitous applications. Trust is an essential feature, particularly for user-centric
ubiquitous systems which are capable of making decisions on the users’ behalf. We
first recognized the importance of trust when we evaluated our automated prototype
(Publication V), and later studied trust in the CADEAU prototype (Publication VI). We
found that trust is a complex and multifaceted issue, interwoven with several factors: user
expectations towards system behavior, user familiarity with the ubiquitous environment,
the presence of other people in close proximity, and so on. For example, trust is high if
the automated system behaves as anticipated by the users, otherwise it is low. This
finding is also supported by Vastenburg et al [80], Hardian et al [68] and Dey at al [98].
We also noticed that trust is linked to psychological factors; the presence of other people
(e.g. in a public space) directly influenced user confidence, so that users were afraid to
try the system if it might cause some embarrassing situations (e.g. a break in silence).
This is also related to user familiarity with the ubiquitous environment; the location and
availability of resources, and the premises in general. We found that users were cautious
and uncertain when introduced to a new and unknown place. Finally, trust is related to
user confidence with various technologies, and their social acceptance. The acceptance
of NFC, RFID and related ubiquitous technologies is addressed in [99, 100].

Privacy, like trust, directly affects the feasibility and user acceptance of ubiquitous
products. Privacy in ubiquitous applications requires resolving multiple issues related to
collecting, accessing and disseminating the users’ personal data, as well as dealing
with sensitive content or applications in public environments [101-103]. Although our
prototypes did not focus on privacy, we revealed some issues during the user evaluation

experiments reported in Publications V-VII. For example, our users were concerned

83

about being able to hide their intentions, like preparing to use certain resources with an
application, in public environments or in close proximity to other individuals. Users
voiced a similar concern when they wished to hide sensitive applications or content (e.g.
when browsing a family photo album in a cafeteria). In these two cases, privacy was the
main factor behind the users’ choice of the manual control interface for application
composition. In other words, our prototypes allowed users to enhance their privacy
by choosing the control interface that suited their needs and the situation. This is
also supported by Hardian et al [68], who suggested using explicit manual control for
privacy-critical applications.

Still, the mainstream research dealing with privacy in ubiquitous applications focuses
on the other aspect of privacy, i.e. collecting, accessing and handling the users’ personal
data [104-107]. Various protection strategies can be used to address these issues,
including reducing the amount of private data being disseminated, reducing the amount
of private date being collected and stored, privacy preserving data mining techniques,
and controlling access to private data [108]. The first strategy in particular looks very
promising. Indeed, the iCompose prototype (Publication VII) is based on a distributed
reasoning mechanism which can be used to implement this kind of protection strategy.
This reasoning mechanism allows private data to be processed in the users’ own mobile

terminals, thus reducing the need to disseminate private data to other computing nodes.

6.4 Future work

We have identified several promising research directions which could pave the way
for future work. The first interesting research topic is related to incorporating various
resource management mechanisms for ubiquitous environments. As we noticed when
designing and evaluating the iCompose prototype (Publication VII), interaction flows
involving multiple users simultaneously lead to situations where additional mechanisms
are required to handle: i) concurrent access to resources and conflict resolution, ii) user
mobility and handoffs, iii) control of QoS and degradation of resource properties and,
iv) incorporating various policies for the optimization of resource usage. Tackling these
issues increases the overall quality of service and the availability of resources [109].
These issues can be addressed by a resource management mechanism which is tightly
coupled with a resource and service discovery engine, and processes the requests of
both applications and users to gain access to certain resource instances in the smart

environment. For example, the application composition system presented in this thesis

84

would benefit from incorporating an existing resource management solution, such as
MetaGlue [110] or ScreenSpot [111].

Another promising research direction concerns supporting application designers.
So far, our research has mainly emphasized support for end-users, and particularly
for run-time composition, adaptation and control. However, providing application
designers with adequate tools and design methodology for fast-prototyping ubiquitous
applications is essential for wide-scale adoption of the application composition concept.
Such support can be offered in the form of a set of libraries or even as a complete
application framework. Such a framework would provide tools for specifying a
composite application, creating and editing rules that define the conditions for triggering
composition and adaptation. Moreover, such a framework would simplify the utilization
of new types of context and additional interaction modalities in composite applications.
This framework could be based on existing solutions for context management and
multimodal interface design, such as the Perception Framework [13], the solution
introduced by Cadenas et al [112], or the Openlnterface Framework [113]. At a higher
level, Sousa et al [114] present a design methodology which focuses on creating

ubiquitous applications using application composition.

85

86

7 Conclusions

This thesis shows that ubiquitous applications can be created by using Web Services
and different resources as building blocks. This approach is referred to as application
composition. It is argued that this approach is better suited for ubiquitous applications
than the traditional design approach. Indeed, application composition emphasizes 1)
combining resources and Web Services in many different ways to meet the requirements
imposed by application designers, users and the environment, ii) reusing resources and
Web Services as much as possible, and iii) reducing the complexity and the cost of
application design and maintenance. However, the main motivation behind the research
presented in this thesis is the requirement to support the user’s needs and everyday
activities. Application composition promises to support this vision by choosing the
appropriate set of resources and Web Services and their configuration as dictated by the
users themselves, together with their needs and other contexts.

The application composition approaches studied in this thesis are classified into
automated and interactive composition. Although these approaches focus on the same
goal, i.e. supporting the user’s needs and activities, they differ in how this goal is
achieved. Automated application composition adheres to the ‘minimum user distraction
principle’, so that users can concentrate only on interacting with the application.
Application configuration, management and provisioning tasks are performed by the
system without involving the users. This is achieved by using automated mechanisms
which make decisions based on the information available about the users’ activities
and needs. Application developers create applications by specifying a template which
describes how the application can be materialized. The system automatically discovers
and chooses the appropriate services and other resources whose functionality matches
the specified application template. The application can be executed after the services
and resources have been allocated.

In contrast, interactive application composition enables the users themselves to
specify their needs and achieve their goals. For this purpose, the system offers appropriate
user tools for composing and controlling application execution at runtime. State of the
art user tools are visual editors and graphical user interfaces, as well as solutions relying
on physical interfaces and programming-by-example methods.

The automated application composition proposed in this thesis is based on four

87

prototypes (Publications I-IV). These prototypes range from those that rely on SEA
and MGA (Publications I and II) to prototypes with a more sophisticated design which
rely on the EA and GA schemas (Publications III and IV). The prototypes optimize
the composed applications (the structure and the set of services) which are subject to
multiple constraints and user-specific criteria. The prototypes designed also include
the graph-based models representing ubiquitous applications, their properties and the
environment. The most recent prototype (presented in Publications III and IV) has an
extensive model which can be expanded to accommodate additional properties and
constraints of applications and the environment. In addition, the optimization criteria
can be tailored according to the user’s goals without modifying the source code. These
automated application composition prototypes were evaluated for performance and other
characteristics using synthesized network topologies and also when integrated into the
application composition system. The thesis reports on the successful utilization of the
developed prototypes also with real applications.

Interactive application composition is studied in this thesis using four prototypes
(Publications V-VIII). These prototypes are fully implemented systems with applications.
The prototypes enable user tools for interactive application composition which rely on
GUIs and physical user interfaces and utilize various contexts. These user tools comprise
interaction methods for controlling application composition at runtime, namely manual,
context-aware and semi-automated interaction methods (presented in Publications
V-VII). In addition, this thesis studies a design approach and Uls for end-user application
composition, as presented in Publication VIIIL. It is argued in this thesis, that a set
of methods is preferred to a single one-size-fits-all method, so that users are able to
choose the most suitable method according to their needs, the application and various
contexts. This finding is supported through evaluation in a series of user experiments
which analyzed different aspects of feasibility and usability of the interactive application
composition prototypes.

The contributions of this thesis form important steps towards implementing the
vision of ubiquitous computing and ubiquitous applications. Particularly application
composition studied in this thesis offers concrete solutions which tackle issues related
to user acceptance and feasibility of user interfaces and algorithms for application

composition.

88

References

11.

12.

13.

14.

15.

. Mcllroy D (1969) Mass-Produced Software Components. In: Naur P & Randell B (eds)

Proceedings of Software Engineering Concepts and Techniques. NATO Science Committee,
Scientific Affairs Division, Garmisch, Germany: 138—155.

Weiser M (1991) The Computer for the 21st Century. Scientific American 265(3): 94-104.
Schuster M, Domene A, Vaidya R, Arbanowski S, Kim M, Lee W & Lim H (2007) Virtual
Device Composition. In: Werner B (ed) Proceedings of the 8th International Symposium on
Autonomous Decentralized Systems (ISADS’07), IEEE Computer Society: 270-278.
Mugellini E, Abou Khaled O, Pierroz S, Carrino S & Chabbi Drissi H (2009) Generic
Framework for Transforming Everyday Objects into Interactive Surfaces. In: Jacko JA (ed)
Proceedings of the 13th International Conference on Human-Computer Interaction, Part I1I
(HCT’'09). LNCS 5612: 473-482.

Sousa J, Poladian V, Garlan D, Schmerl B & Shaw M (2006) Task-based Adaptation for
Ubiquitous Computing. IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews 36(3): 328-340.

. Paluska JM, Pham H, Saif U, Chau G, Terman C & Ward S (2008) Structured Decomposition

of Adaptive Applications. Pervasive and Mobile Computing 4(6): 791-806.

. Abowd G, Dey A, Brown P, Davies N, Smith M & Steggles P (1999) Towards a Better

Understanding of Context and Context-Awareness. In: Gellersen H (ed) Proceedings of the
1st International Symposium on Handheld and Ubiquitous Computing (HUC’99). LNCS
1707: 304-307.

. Davidyuk O, Riekki J, Rautio VM & Sun J (2004) Context-Aware Middleware for Mobile

Multimedia Applications. In: Doermann D & Duraiswami R (eds) Proceedings of the 3rd
International Conference on Mobile and Ubiquitous Multimedia (MUM’04): 213-220.

. Coello Coello CA & Toscano Pulido G (2001) A Micro-Genetic Algorithm for Multiobjective

Optimization. In: Coello Coello CA, Hernandez Aguirre A & Zitzler E (eds) Proceedings of
the 1st International Conference on Evolutionary Multi-Criterion Optimization (EMO’01).
LNCS 3410: 126-140.

. Medina A, Matta I & Byers J (2000) On the Origin of Power Laws in Internet Topologies.

ACM SIGCOMM Computer Communication Review 30(2): 18-28.

Riekki J, Sdnchez I & Pyykkonen M (2010) Remote Control for Pervasive Services.
International Journal of Autonomous and Adaptive Communications Systems 3(1): 39-58.
Davidyuk O, Sénchez I, Duran JI & Riekki J (2009) CADEAU: Collecting and Delivering
Multimedia Information in Ubiquitous Environments, video. In: Adjunct Proceedings of
the 7th International Conference on Pervasive Computing (Pervasive’09), Nara, Japan:
283-286.

Gilman E, Su X, Davidyuk O, Zhou J & Riekki J (2011) Perception Framework for
Supporting Development of Context-Aware Web Services. International Journal of
Pervasive Computing and Communications 7(4): 339-364.

Goddard W & Melville S (2004) Research Methodology: An Introduction. 2nd edition. Juta
Academic.

Wohlin C, Runeson P & Host M (2000) Experimentation in Software Engineering: An
Introduction. International Series in Software Engineering. Kluwer Academic Publishers.

89

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

90

Auer K & Miller R (2001) Extreme Programming Applied: Playing to Win. Addison-Wesley
Professional.

Pollini A, Gronvall E, Marti P & Rullo A (2006) Constructing Assemblies in the Health
Care Domain: Two Case Studies. In: Chittaro L et al. (eds) Proceedings of the Italian
‘Workshop of Mobile Guide (as part of Virtuality Conference 2006). Torino, Italy.

Rodden T, Crabtree A, Hemmings T, Koleva B, Humble J, Akesson KP & Hansson P (2004)
Between the Dazzle of a New Building and Its Eventual Corpse: Assembling the Ubiquitous
Home. In: Proceedings of the Sth Conference on Designing Interactive Systems (DIS’04):
71-80.

Messer A, Kunjithapatham A, Sheshagiri M, Song H, Kumar P, Nguyen P & Yi KH (2006)
InterPlay: a Middleware for Seamless Device Integration and Task Orchestration in a
Networked Home. In: Proceedings of the 4th Annual IEEE Conference on Pervasive
Computing and Communications (PERCOM’06): 296-307.

Newman M, Elliott A & Smith T (2008) Providing an Integrated User Experience of
Networked Media, Devices, and Services through End-User Composition. In: Indulska
J et al. (eds) Proceedings of the 6th International Conference on Pervasive Computing
(Pervasive’08), LNCS 5013: 213-227.

Masuoka R, Parsia B & Labrou Y (2003) Task Computing - the Semantic Web meets
Pervasive Computing. In: Sycara K & Mylopoulos J (eds) Proceedings of the 2nd
International Semantic Web Conference (ISWC’03). LNCS 2870: 866-881.

Ben Mokhtar S, Georgantas N & Issarny V (2007) COCOA: COnversation-based Service
Composition in PervAsive Computing Environments with QoS Support. Journal of Systems
and Software 80(12): 1941-1955.

Sanchez I, Riekki J & Pyykkonen M (2009) Touch&Compose: Physical User Interface for
Application Composition in Smart Environments. In: Langer J (ed.) Proceedings of the
International Workshop on Near Field Communication: 61-66.

Buford J, Kumar R & Perkins G (2006) Composition Trust Bindings in Pervasive Computing
Service Composition. In: Proceedings of the 4th Annual IEEE International Conference on
Pervasive Computing and Communications Workshops (PERCOMW’06): 261-266.
Lagesse B, Kumar M & Wright M (2010) ReSCo: A Middleware Component for Re-
liable Service Composition in Pervasive Systems. In: Proceedings of the 8th Annual
IEEE International Conference on Pervasive Computing and Communications Workshops
(PERCOMW’10): 486-491.

Lee J, Kim S, Lim H, Schuster M & Domene A (2007) A Software Architecture for Virtual
Device Composition and Its Applications. In: Ichikawa H, Cho WD, Satoh I & Youn H
(eds) Proceedings of the 4th International Symposium on Ubiquitous Computing Systems
(UCS’07). LNCS 4836: 150-157.

Ben Mabrouk N, Beauche S, Kuznetsova E, Georgantas N & Issarny V (2009) QoS-Aware
Service Composition in Dynamic Service Oriented Environments. In: Bacon J & Cooper
BF (eds) Proceedings of the 10th ACM/IFIP/USENIX, 10th International Middleware
Conference (Middleware’09). LNCS 5896: 123-142.

Sousa JP, Schmerl B, Steenkiste P & Garlan D (2009) Activity-Oriented Computing.
Software Applications: Concepts, Methodologies, Tools, and Applications. Hershey, IGI
Global, chapter 186: 3215-3241.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Kawsar F, Nakajima T & Fujinami K (2008) Deploy Spontaneously: Supporting End-Users
in Building and Enhancing a Smart Home. In: Youn HY & Cho WD (eds) Proceedings of
the 10th International Conference on Ubiquitous Computing (UbiComp’08): 282-291.
Vanderhulst G, Luyten K & Coninx K (2008) ReWiRe: Designing Reactive Systems
for Pervasive Environments. In: Graham N & Palanque P (eds) Proceedings of the 15th
International Workshop on Interactive Systems, Design, Specification, and Verification
(DSV-IS’08). LNCS 5136: 155-160.

Mavrommati I, Kameas A & Markopoulos P (2004) An Editing Tool that Manages Device
Associations in an In-Home Environment. Personal Ubiquitous Computing 8(3-4): 255-263.
Mugellini E, Rubegni E, Gerardi S & Khaled OA (2007) Using Personal Objects as
Tangible Interfaces for Memory Recollection and Sharing. In: Ullmer B & Schmidt A (eds)
Proceedings of the 1st International Conference on Tangible and Embedded Interaction
(TEI’07): 231-238.

Chin J, Callaghan V & Clarke G (2006) An End-User Tool for Customising Personal
Spaces in Ubiquitous Computing Environments. In: Jin H, Laurence T T & Jeffrey JP (eds)
Proceedings of the 3rd International Conference on Ubiquitous Intelligence and Computing
(UIC’06). LNCS 4159: 1080-1089.

Chin J, Callaghan V & Clarke G (2006) An End-User Programming Paradigm for Pervasive
Computing Applications. In: Proceedings of the ACS/IEEE International Conference on
Pervasive Services (ICPS’06): 325-328.

Mavrommati I & Kameas A (2003) End-User Programming Tools in Ubiquitous Computing
Applications. In: Stephanidis C (ed) Proceedings of the 10th International Conference on
Human-Computer Interaction (HCI'03): 172-177.

Rantapuska O & Lahteenmaki M (2008) Task-based User Experience for Home Networks
and Smart Spaces. In: Zaslavsky A & Truong K (eds) Proceedings of the International
Workshop on Pervasive Mobile Interaction Devices, Sydney, Australia: 188—191.
Newman M & Ackerman M (2008) Pervasive Help @ Home: Connecting People Who
Connect Devices. In: Proceedings of the International Workshop on Pervasive Computing
at Home (PC@Home), Sydney, Australia: 28-36.

Chang SC, Liao CF, Liu YC & Fu LC (2009) A Spontaneous Preference Aware Service
Composition Framework for Message-Oriented Pervasive Systems. In: Chang F & Wang
Y (eds) Proceedings of the IEEE Joint Conference on Pervasive Computing (JCPC’09):
441-446.

Lindenberg J, Pasman W, Kranenborg K, Stegeman J & Neerincx MA (2006) Improving
Service Matching and Selection in Ubiquitous Computing Environments: a User Study.
Personal Ubiquitous Computing 11(1): 59-68.

Rich C, Sidner C, Lesh N, Garland A, Booth S & Chimani M (2006) DiamondHelp: a New
Interaction Design for Networked Home Appliances. Personal and Ubiquitous Computing
10(2-3): 187-190.

The OASIS Consortium. Web Services Business Process Execution Language (WSBPEL)
Version 2.0. URI: http://docs.oasis-open.org/wsbpel/2.0/0OS/wsbpel-v2.0-OS.html. Cited
2012/04/23.

The World Wide Web Consortium (W3C). Web Service Conversation Language (WSCL).
URLI: http://www.w3.org/TR/wscl10/. Cited 2012/04/23.

The World Wide Web Consortium (W3C). Web Services Description Language (WSDL)
Version 2.0. URI: http://www.w3.org/TR/wsdl20/. Cited 2012/04/23.

91

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

92

Paolucci M, Kawamura T, Payne TR & Sycara KP (2002) Semantic Matching of Web
Services Capabilities. In: Horrocks I & Hendler J (eds) Proceedings of the 1st International
Semantic Web Conference on The Semantic Web (ISWC’02). LNCS 2342: 333-347.
Maedche A & Staab S (2001) Ontology Learning for the Semantic Web. IEEE Transactions
on Intelligent Systems 16(2): 72-79.

The World Wide Web Consortium (W3C). OWL-S Web Ontology Language: Semantic
Markup for Web Services. URI: http://www.w3.org/Submission/OWL-S/. Cited 2012/04/23.
Stevenson D, Dutta R, Rouskas GN, Reeves D & Baldine I (2007) On the Suitability of
Composable Services for a Next General Assurable Network. In: Proceedings of the 26th
IEEE Military Communication Conference 2007, (MILCOM’07): 1-7.

Gu T, Pung HK & Zhang DQ (2005) A Service-Oriented Middleware for Building Context-
Aware Services. Journal of Network and Computer Applications 28(1): 1-18.

Keeney J, Carey K, Lewis D, O‘Sullivan D & Wade V (2005) Ontology-Based Semantics for
Composable Autonomic Elements. In: Sterritt R, Dobson S & Smirnov M (eds) Proceedings
of the Workshop on Artificial Intelligence in Autonomic Communications (as part of the
19th International Joint Conference on Artificial Intelligence, (IJCAI’05)): 1-8.

Zhang B, Shi Y & Xiao X (2007) A Policy-Driven Service Composition Method for
Adaptation in Pervasive Computing Environment. The Computer Journal 53(2): 152-165.
Lupu E & Sloman M (1997) Conflict Analysis for Management Policies. In: Lazar A,
Saracco R & Stadler R (eds) Proceedings of the Sth IFIP/IEEE International Symposium on
Integrated Network Management V: Integrated Management in a Virtual World: 430-443.
Wisner P & Kalofonos D (2007) A Framework for End-User Programming of Smart
Homes Using Mobile Devices. In: Jiang Y (ed) Proceedings of the 4th IEEE Consumer
Communications and Networking Conference (CCNC’07): 716-721.

Gross T & Marquardt N (2010) Creating, Editing and Sharing Complex Ubiqui-
tous Computing Environment Configurations with CollaborationBus. Scientific In-
ternational Journal for Parallel and Distributed Computing 11(3): 289-303. URI:
http://www.scpe.org/index.php/scpe/article/view/661/. Cited 2012/04/23.

Kandogan E (2001) JigsawTree: Design of a Task Composition Interface for Complex
Applications. In: Proceedings of the 8th IFIP International Conference on Human-Computer
Interaction (INTERACT’01): 561-568.

Cavallaro L, Nitto ED, Furia CA & Pradella M (2010) A Tile-Based Approach for Self-
Assembling Service Compositions. In: Calinescu R (ed) Proceedings of the 15th IEEE
International Conference on Engineering of Complex Computer Systems (ICECCS’10):
43-52.

Warth A, Yamamiya T, Ohshima Y & Wallace S (2008) Toward A More Scalable End-User
Scripting Language. In: Proceedings of the 6th International Conference on Creating,
Connecting and Collaborating Through Computing (C5°08): 172-178.

Humble J, Crabtree A, Hemmings T, Akesson KP, Koleva B, Rodden T & Hansson P (2003)
Playing With Your Bits: User Composition of Ubiquitous Domestic Environments. In:
Dey A, Schmidt A & McCarthy J (eds) Proceedings of the 5th International Conference on
Ubiquitous Computing (UbiComp’03). LNCS 2864: 256-263.

Want R, Pering T, Sud S & Rosario B (2008) Dynamic Composable Computing. In:
Spasojevic M & Corner M (eds) Proceedings of the 9th Workshop on Mobile Computing
Systems and Applications (HotMobile’08): 17-21.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.
71.

72.

73.

74.

Pering T, Want R, Rosario B, Sud S & Lyons K (2009) Enabling Pervasive Collaboration
with Platform Composition. In: Tokuda H ef al. (eds) Proceedings of the 7th International
Conference on Pervasive Computing (Pervasive’09). LNCS 5538: 184-201.

Boshernitsan M & Downes M (2004) Visual Programming Languages: A Survey. Technical
Report UCB/CSD-04-1368. Berkeley CA, University of California. URI: http://nma.
berkeley.edu/ark:/28722/bk0005s5d5t. Cited 2012/04/23.

Mellor SJ & Balcer M (2002) Executable UML: A Foundation for Model-Driven Architec-
tures. Boston MA, Addison-Wesley.

Dey A (2005) End-User Programming: Empowering Individuals to Take Control of their
Environments. In: Olsen D & Klemmer S (eds) Proceedings of the CHI 2005 Workshop on
the Future of User Interface Design Tools. Portland, Oregon, USA.

Riekki J (2007) RFID and Smart Spaces. International Journal of Internet Protocol
Technology 2(3-4): 143-152.

Gronvall E, Marti P, Pollini A & Rullo A (2006) Active Surfaces: a Novel Concept for
End-User Composition. In: Mgrch A et al. (eds) Proceedings of the 4th Nordic Conference
on Human-Computer Interaction (NordiCHI’06): 96—104.

Zuckerman O, Arida S & Resnick M (2005) Extending Tangible Interfaces for Education:
Digital Montessori-Inspired Manipulatives. In: van der Veer G & Gale C (eds) Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI’05): 859—-868.

Zuckerman O, Grotzer T & Leahy K (2006) Flow Blocks as a Conceptual Bridge Between
Understanding The Structure and Behavior of a Complex Causal System. In: Proceedings of
the 7th International Conference on Learning Sciences (ICLS’06): 880-886.

Mavrommati I & Darzentas J (2007) End-User Development in AmI: a User Centered Design
Overview of Issues and Concepts. e-Minds: International Journal on Human-Computer
Interaction 1(3): 87-104.

Hardian B, Indulska J & Henricksen K (2008) Exposing Contextual Information for
Balancing Software Autonomy and User Control in Context-Aware Systems. In: Zaslavsky
A & Truong K (eds) Proceedings of the Workshop on Context-Aware Pervasive Communities:
Infrastructures, Services and Applications: 253-260.

Balandin S & Waris H (2009) Key Properties in the Development of Smart Spaces. In:
Stephanidis C (ed) Proceedings of the 5th International Conference on Universal Access in
Human-Computer Interaction (as part of HCI’09). LNCS 5615: 3-12.

Michalewicz Z & Fogel D (2004) How to Solve It: Modern Heuristics. 2nd edition. Springer.
Kichkaylo T & Karamcheti V (2004) Optimal Resource-Aware Deployment Planning for
Component-Based Distributed Applications. In: Proceedings of the 13th IEEE International
Symposium on High performance Distributed Computing: 150-159.

Kichkaylo T, Ivan A & Karamcheti V (2003) Constrained Component Deployment in Wide-
Area Networks Using Al Planning Techniques. In: Proceedings of the 2003 International
Parallel and Distributed Processing Symposium (IPDPS *03): 1-10.

Fu X, Shi W, Akkerman A & Karamcheti V (2001) CANS: Composable, Adaptive Network
Services Infrastructure. In: Anderson T (ed.) Proceedings of the USENIX Symposium on
Internet Technologies and Systems (USITS’01): 1-12.

Wang S, Merrick J & Shin K (2004) Component Allocation with Multiple Resource
Constraints for Large Embedded Real-Time Software Design. In: Proceedings of the 10th
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04):
219-226.

93

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

94

Malek S, Mikic-Rakic M & Medvidovic N (2004) A Decentralized Redeployment Algorithm
for Improving the Availability of Distributed Systems. In: Dearle A & Eisenbach S (eds)
Proceedings of the 3rd International Working Conference on Component Deployment
(CD’05). LNCS 3798: 99-114.

Ben-Shaul I, Holder O & Lavva B (2001) Dynamic Adaptation and Deployment of
Distributed Components in HADAS. IEEE Transactions on Software Engineering 27(9):
769-787.

Andrzejak A, Graupner S, Kotov V & Trinks H (2002) Algorithms for Self-Organization
and Adaptive Service Placement in Dynamic Distributed Systems. Technical Report
HPL-2002-259. Palo Alto, Hewlett-Packard Laboratories.

Dionisio DN & Raj R (2006) Partitioning Bin-Packing Algorithms for Distributed Real-Time
Systems. International Journal of Embedded Systems 2(3-4): 196-208.

Card SK, Newell A & Moran TP (1983) The Psychology of Human-Computer Interaction.
Hillsdale NJ, Lawrence Erlbaum Associates.

Vastenburg M, Keyson D & Ridder H (2007) Measuring User Experiences of Prototypical
Autonomous Products in a Simulated Home Environment. In: Stephanidis C et al.
(eds) Proceedings of the 12th International Conference on Human-Computer Interaction:
Interaction Platforms and Techniques (HCI’07). LNCS 4550: 998-1007.

Vanderhulst G, Luyten K & Coninx K (2008) Put the User in Control: Ontology-Driven
Meta-level Interaction for Pervasive Environments. In: Bouamrane M, Luz S & Masoodian
M (eds) Proceedings of the 1st International Workshop on Ontologies in Interactive Systems
(ONTORACT’08): 51-56.

Bottaro A, Bourcier J, Escoffier C & Lalanda P (2007) Context-Aware Service Composition
in a Home Control Gateway. In: Taiani F & Cerqueira R (eds) Proceedings of the IEEE
International Conference on Pervasive Services (ICPS’07): 223-231.

Hesselman C, Tokmakoff A, Pawar P & Iacob S (2006) Discovery and Composition of
Services for Context-Aware Systems. In: Havinga P, Lijding M, Meratnia N & Wegdam
M (eds) Proceedings on the 1st European Conference on Smart Sensing and Context
(EuroSSC’06). LNCS 4272: 67-81.

Rouvoy R, Barone P, Ding Y, Eliassen F, Hallsteinsen SO, Lorenzo J, Mamelli A & Scholz U
(2009) MUSIC: Middleware Support for Self-Adaptation in Ubiquitous and Service-Oriented
Environments. Software Engineering for Self-Adaptive Systems. LNCS 5525: 164—182.
Zhou J, Gilman E, Palola J, Riekki J, Ylianttila M & Sun J (2011) Context-Aware Pervasive
Service Composition and Its Implementation. Personal Ubiquitous Computing 15: 291-303.
Mokhtar SB, Fournier D, Georgantas N & Issarny V (2005) Context-Aware Service
Composition in Pervasive Computing Environments. In: Guelfi N & Savidis A (eds)
2nd International Workshop on Rapid Integration of Software Engineering Techniques
(RISE’05). LNCS 3943: 129-144.

Preuveneers D & Berbers Y (2005) Automated Context-Driven Composition of Pervasive
Services to Alleviate Non-Functional Concerns. International Journal of Computing and
Information Sciences 3(2): 19-28.

Yang Y, Mahon F, Williams M & Pfeifer T (2006) Context-Aware Dynamic Personalised
Service Re-composition in a Pervasive Service Environment. In: Jin H, Yang L & Tsai
J (eds) Proceedings of the 3rd International Conference on Ubiquitous Intelligence and
Computing (UIC’06). LNCS 4159: 724-735.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

Kalasapur S, Kumar M & Shirazi B (2007) Dynamic Service Composition in Pervasive
Computing. IEEE Transactions on Parallel Distributed Systems 18(7): 907-918.
Davidyuk O, Sanchez I & Riekki J (2011) CADEAU: Supporting Autonomic and User-
Controlled Application Composition in Ubiquitous Environments. Pervasive Computing
and Communications Design and Deployment: Technologies, Trends, and Applications, IGI
Global, Chapter 4: 74-103.

Mukhtar H, Belaid D & Bernard G (2011) Dynamic User Task Composition Based on User
Preferences. ACM Transactions on Autonomous Adaptive Systems 6(1): 4:1-4:17.

Ben Lahmar I, Belaid D, Mukhtar H & Chaudhary S (2011) Automatic Task Resolution
and Adaptation in Pervasive Environments. In: Bouchachia A (ed.) Proceedings the 2011
International Conference on Adaptive and Intelligent Systems (ICAIS’11). LNCS 6943:
131-144.

The World Wide Web Consortium (W3C). Composite Capabilities / Preference Profiles
(CC/PP): Structure and Vocabularies. URI: http://www.w3.0rg/TR/2007/WD-CCPP-struct-
vocab2-20070430/. Cited 2012/04/23.

Ben Mokhtar S (2007) Semantic Middleware for Service-Oriented Pervasive Computing.
Ph.D. thesis, University of Pierre and Marie Curie (Paris VI), Paris, France.

Halevy A (2005) Why Your Data Won’t Mix: Semantic Heterogeneity. ACM Queue: Semi
Structured Data 3(8): 50-58.

Raverdy PG, Issarny V, Chibout R & La Chapelle A (2006) A Multi-Protocol Approach
to Service Discovery and Access in Pervasive environments. In: Proceedings of the 3rd
International Conference on Mobile and Ubiquitous Systems: Networking and Services
(MobiQuitous’06): 1-9.

Bottaro A, Gerodolle A & Lalanda P (2007) Pervasive Service Composition in the Home
Network. In: Yang L. & Ma J (eds) Proceedings of the 21st International Conference on
Advanced Information Networking and Applications (AINA’07): 596-603.

Dey A & Newberger A (2009) Support for Context-Aware Intelligibility and Control. In:
Olsen D & Arthur R (eds) Proceedings of the 27th International Conference on Human
Factors in Computing Systems (CHI’09): 859-868.

David W, William S & Mordechai GO (2010) Facilitating Consumer Acceptance of RFID
and Related Ubiquitous Technologies. International Journal of Applied Logistics (IJAL)
1(1): 16-27.

Muhammad H & Victor P (2008) Consumer Acceptance of RFID Technology: An
Exploratory Study. IEEE Transactions on Engineering Management 55(2): 316-328.
Bellotti V & Sellen A (1993) Design for Privacy in Ubiquitous Computing Environments. In:
de Michelis G, Simone C & Schmidt K (eds) Proceedings of the 3rd European Conference
on Computer-Supported Cooperative Work: 77-92.

Langheinrich M (2001) Privacy by Design: Principles of Privacy-Aware Ubiquitous Systems.
In: Abowd G, Brumitt B & Shafer S (eds) Proceedings the International Conference on
Ubiquitous Computing (UBICOMP’01). LNCS 2201: 273-291.

Hong JI & Landay JA (2004) An Architecture for Privacy-Sensitive Ubiquitous Computing.
In: Proceedings of the 2nd International Conference on Mobile Systems, Applications, and
Services (MobiSys’04): 177-189.

Beresford A & Stajano F (2003) Location Privacy in Pervasive Computing. IEEE Transac-
tions on Pervasive Computing 2(1): 46-55.

95

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

96

Campbell R, Al-Muhtadi J, Naldurg P, Sampemane G & Dennis Mickunas M (2003) Towards
Security and Privacy for Pervasive Computing. In: Okada M et al. (eds) Proceedings of the
International Symposium on Software Security - Theories and Systems (ISSS’03). LNCS
2609: 77-82.

Meyer S & Rakotonirainy A (2003) A Survey of Research on Context-Aware Homes. In:
Johnson C, Montague P & Steketee C (eds) Proceedings of the Australasian Information
Security Workshop (as part of the 2003 Conference on ACSW Frontiers - Volume 21):
159-168.

Cardoso RS & Issarny V (2007) Architecting Pervasive Computing Systems for Privacy: A
Survey. In: Proceedings of the 6th Working IEEE/IFIP Conference on Software Architecture
(WICSA’07): 26-30.

Riva O (2007) Middleware for Mobile Sensing Applications in Urban Environments. Ph.D.
thesis, University of Helsinki. URI: http://urn.fi/URN:ISBN:978-952-10-4288-1. Cited
2012/04/23.

Jurmu M (2008) Managing User-Centric, Opportunistic Device Ensembles in Smart Spaces.
In: Adjunct Proceedings of the 10th International Conference on Ubiquitous Computing
(UbiComp’08): 98-102.

Gajos K, Weisman L & Shrobe H (2001) Design Principles for Resource Management
Systems for Intelligent Spaces. In: Laddaga R, Robertson P & Shrobe H (eds) Proceedings
of the 2nd International Workshop on Self-Adaptive Software: Applications (IWSAS’01).
LNCS 2614: 198-215.

Jurmu M, Kukka H, Hosio S, Riekki J & Tarkoma S (2011) Leasing Service for Networks
of Interactive Public Displays in Urban Spaces. In: Riekki J, Ylianttila M & Guo M
(eds) Proceedings of the 6th International Conference on Advances in Grid and Pervasive
Computing (GPC’11). LNCS 6646: 198-208.

Cadenas A, Ruiz C, Larizgoitia I, Garcia-Castro R, Lamsfus C, Vazquez I, Gonzdlez M,
Martin D & Poveda M (2009) Context Management in Mobile Environments: A Semantic
Approach. In: Proceedings of the 1st Workshop on Context, Information and Ontologies
(CIAO’09): 2:1-2:8.

Serrano M, Nigay L, Lawson JYL, Ramsay A, Murray-Smith R & Denef S (2008) The
Openlnterface Framework: a Tool for Multimodal Interaction. In: Czerwinski M, Lund A &
Tan D (eds) Extended Abstracts Proceedings of the 2008 Conference on Human Factors in
Computing Systems (CHI’08): 3501-3506.

Sousa JP, Schmerl B, Poladian V & Brodsky A (2008) uDesign: End-User Design Applied to
Monitoring and Control Applications for Smart Spaces. In: Kruchten P, Garlan D & Woods
E (eds) Proceedings of the 7th Working IEEE/IFIP Conference on Software Architecture
(WICSA’08): 71-80.

Original articles

I

II

I

v

VI

VIl

VIII

Davidyuk O, Ceberio J & Riekki J (2007) An Algorithm for Task-based Application
Composition. In the 11th IASTED International Conference on Software Engineering
and Applications (SEA’07), Cambridge, MA, USA, November 2007: 465-472. URI:
http://www.actapress.com/Abstract.aspx?paperId=32100.

Davidyuk O, Selek I, Ceberio J & Riekki J (2007) Application of Micro-Genetic Algorithm
for Task Based Computing. In the 1st International Conference on Intelligent Pervasive Com-
puting (IPC’07), Jeju Island, Korea, October 2007: 140-145. DOI: 10.1109/1PC.2007.23.
Davidyuk O, Selek I, Duran JI & Riekki J (2008) Algorithms for Composing Pervasive
Applications. International Journal of Software Engineering and Its Applications 2(2):
71-94. URL: http://www.sersc.org/journals/IJSEIA/vol2_no2_2008/7.pdf.
Sénchez I, Davidyuk O & Riekki J (2009) Towards User-Oriented Application Composition.
In the IEEE International Workshop on Pervasive Service Computing and Applications
(PSCA’09), As part of the 4th International Conference on Frontier of Computer Sci-
ence and Technology (FCST’09), Shanghai, China, December 2009: 698-704. DOI:
10.1109/FCST.2009.76.

Davidyuk O, Sanchez I, Duran 1IJ & Riekki J (2008) Autonomic Composition of Ubiquitous
Multimedia Applications in REACHES. In the 7th International ACM Conference on Mobile
and Ubiquitous Multimedia (MUM’08), Umea, Sweden, December 2008: 105-108. DOI:
10.1145/1543137.1543159.

Davidyuk O, Sinchez I & Riekki J (2011) CADEAU: Supporting Autonomic and User-
Controlled Application Composition in Ubiquitous Environments. In Malatras A (ed)
Pervasive Computing and Communications Design and Deployment: Technologies, Trends,
and Applications, IGI Global, Chapter 4: 74-103. DOI: 10.4018/978-1-60960-611-4.ch004.
Davidyuk O, Gilman K, Sanchez I, Mikipelto J, Pyykkonen M & Riekki J (2011) iCompose:
Context-Aware Physical User Interface for Application Composition. Central European
Journal of Computer Science 1(4): 442-465. DOI: 10.2478/s13537-011-0031-z.
Davidyuk O, Georgantas N, Issarny V & Riekki J (2011) MEDUSA: A Middleware for
End-User Composition of Ubiquitous Applications. In Mastrogiovanni F & Chong N-Y
(eds) Handbook of Research on Ambient Intelligence and Smart Environments: Trends and
Perspectives, IGI Global, Chapter 11: 197-219. DOI: 10.4018/978-1-61692-857-5.ch011.

Reprinted with permission from ACTA Press (I), IEEE (I and 1V), SERSC (III), ACM (V), IGI
Global (VI and VIII) and Versita (VII).

Original publications are not included in the electronic version of the dissertation.

97

98

403.

404.
405.

406.

407.

408.

409.

410.

411.

412.

413.

414,

415.

416.

417.

418.

ACTA UNIVERSITATIS OULUENSIS
SERIES C TECHNICA

Rasanen, Teemu (2011) Intelligent information services in environmental
applications

Janhunen, Janne (201 1) Programmable MIMO detectors

Skoglind-Ohman, Ingegerd (2011) Participatory methods and empowerment for
health and safety work : Case studies in Norrbotten, Sweden

Kellokumpu, Vili-Petteri (2011) Vision-based human motion description and
recognition

Rahko, Matti (2011) A qualification tool for component package feasibility in
infrastructure products

Rajala, Hanna-Kaisa (2011) Enhancing innovative activities and tools for the
manufacturing industry: illustrative and participative trials within work system
cases

Sinisammal, Janne (2011) Tyohyvinvoinnin ja tyoympariston kokonaisvaltainen
kehittaminen — tuloksia osallistuvista tutkimus- ja kehittamisprojekteista seka
asiantuntijahaastatteluista

Berg, Markus (2011) Methods for antenna frequency control and user effect
compensation in mobile terminals

Arvola, Jouko (2011) Reducing industrial use of fossil raw materials : Techno-
economic assessment of relevant cases in Northern Finland

Okkonen, Jarkko (201 1) Groundwater and its response to climate variability and
change in cold snow dominated regions in Finland: methods and estimations

Anttonen, Antti (2011) Estimation of energy detection thresholds and error
probability for amplitude-modulated short-range communication radios

Neitola, Marko (2012) Characterizing and minimizing spurious responses in
Delta-Sigma modulators

Huttunen, Paavo (2012) Spontaneous movements of hands in gradients of weak
VHF electromagnetic fields

Isoherranen, Ville (2012) Strategy analysis frameworks for strategy orientation
and focus

Ruuska, Jari (2012) Special measurements and control models for a basic oxygen
furnace (BOF)

Kropsu-Vehkapera, Hanna (2012) Enhancing understanding of company-wide
product data management in ICT companies

Book orders:
Granum: Virtual book store
http://granum.uta.fi/granum/

UNIVERSITY OF OULU P.O.B. 7500 FI-90014 UNIVERSITY OF OULU FINLAND

ACTA UNIVERSITATIS OULUENSIS

S ER I ES EDITORS

SCIENTIAE RERUM NATURALIUM

Senior Assistant Jorma Arhippainen

HUMANIORA

Lecturer Santeri Palviainen

TECHNICA

Professor Hannu Heusala

MEDICA

Professor Olli Vuolteenaho

SCIENTIAE RERUM SOCIALIUM

Senior Researcher Eila Estola

SCRIPTA ACADEMICA

Director Sinikka Eskelinen

OECONOMICA

Professor Jari Juga

EDITOR IN CHIEF

Professor Olli Vuolteenaho
PUBLICATIONS EDITOR

Publications Editor Kirsti Nurkkala

ISBN 978-951-42-9837-0 (Paperback)
ISBN 978-951-42-9838-7 (PDF) UNIVERSITY of OULU

ISSN 0355-3213 (Print) OULUN YLIOPISTO
ISSN 1796-2226 (Online)

	Abstract
	Tiivistelmä
	Acknowledgements
	Abbreviations
	Glossary of terms
	List of original publications
	Contents
	1 Introduction
	1.1 Background
	1.2 Research scope, thesis statement and researchobjectives
	1.3 Scientific contributions and the author’s role
	1.4 Research history
	1.5 Research methodology
	1.6 Structure of thesis

	2 Composition of ubiquitous applications
	2.1 Automated vs. interactive composition
	2.2 The generic composition process

	3 Techniques for automated applicationcomposition
	3.1 Syntactic composition
	3.2 Semantic composition
	3.3 Policy-based composition
	3.4 Summary

	4 Techniques for interactive applicationcomposition
	4.1 Visual application composition tools
	4.2 Non-visual application composition tools
	4.3 Tools for runtime application composition control
	4.4 Summary

	5 Research and experiments
	5.1 Prototypes for automated application composition
	5.1.1 The straightforward evolutionary algorithm (SEA)
	5.1.2 The micro-genetic algorithm (MGA)
	5.1.3 Modified evolutionary (EA) and genetic algorithms(GA)
	5.1.4 Evaluation of the EA with the REACHeSinfrastructure

	5.2 Prototypes for interactive application composition
	5.2.1 The automated composition prototype
	5.2.2 CADEAU
	5.2.3 iCompose
	5.2.4 MEDUSA

	5.3 Summary

	6 Discussion
	6.1 Revisiting thesis statement and research objectives
	6.2 Main contributions
	6.3 Open issues
	6.4 Future work

	7 Conclusions
	References
	Original articles

