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ABSTRACT

THREE DIMENSIONAL THERMAL MODELLING OF HIGH 

TEMPERATURE PROTON EXCHANGE MEMBRANE FUEL CELLS IN A 

SERPENTINE DESIGN

L. C. Maasdorp

MSc Thesis, Department of Physics, University of the Western Cape

In this thesis, I explore the subjects of fluid dynamics and high temperature proton exchange 

membrane fuel cells, PEMFC. Fuel cells have been found to be at the forefront of providing 

the world with its much needed alternative energy resource. Despite the already existing 

applications, a full scale distribution, as to other alternative energy resources, still faces many 

challenges. Among these challenges is the thermal management of the fuel cell. Unmanaged 

temperature distribution of a fuel cell affects the cells mechanical stability and durability.

 The aim of my work is to model a segment of a unit cell of a fuel cell stack using numerical 

methods which is classified as computational fluid dynamics and implementing the work in a 

commercial computational fluid dynamics package, FLUENT. The focus of my work is to 

study the thermal distribution within this segment. The results of the work aid in a better 

understanding of the fuel cell operation in this temperature range. 

At the time of my investigation experimental results were unavailable for validation and 

therefore my results are compared to previously published results published. The outcome of 

the results corresponds to this, where the current flux density increases with the increasing of 

operating temperature and fixed operating voltage and the temperature variation across the 

fuel cell at varying operating voltages. It is in the anticipation of determining actual and or 

unique material input parameters that this work is done and at which point this studies results 
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would contribute to the understanding high temperature PEM fuel cell thermal behaviour, 

significantly.

November 2010 
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Nomenclature

F Faraday’s constant

 96 485 C/mol

R Ideal gas constant  

8.314 J/mol K

T Temperature

Q Heat

W Work

E Energy

 S Entropy

h Enthalpy

V Volume

P Pressure

m Mass

M Molecular weight

n Number of moles

c p Specific heat

cv Specific volume

q Charge

U Potential difference

e Electron

H 2 Hydrogen

O2 Oxygen

 Activity of species

 Efficiency

j Current Density

i Current

r Resistance

v Voltage

A Area

Acell Active area

vd Drift velocity

dt Change in time

 Conductivity

 Thermal conductivity

 Stefan Boltzmann 

constant

thick Thickness of   

electrolyte

 Mean free time

 Stress Tensor

 Viscosity for 

volumetric 
deformation

me Mass of an electron

ze Charge number 

(valence electrons)

ce Number of moles of 

charge carriers per 
unit volume

C Concentration

k Rate Coefficients

J


Flux

J k Diffusive mass flux

Y k Mass fraction

D k Diffusion coefficient

T ref Reference 

temperature [298.15 
K]

 Over-potential

 Electrical potential
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Re Reynolds Number

 Density

 Fluid viscosity

K Hydraulic 

permeability 

u velocity

ue Mobility of free 

electrons

S Source terms

S Stoichiometric ratio

 Relative humidity

m Mass flow rate

j Transfer current

 Convection heat 

transfer coefficient
1.5

Coefficient to take 

into account 
tortuosity

K Geometric constant

g Topothesy of surface 

profile

 Specific active area

 Porosity

S Shape factor

L Scan length

CFD Computational Fluid 
Dynamics

PEM Proton Exchange 
Membrane

HTPEMFC High 
Temperature PEM 
Fuel Cells

LTPEMFC Low 
Temperature PEM 
Fuel Cells

Pe Peclet Number

 Diffusion 

conductance

H Mass flux per unit 

area

 Water content

s Liquid water volume 

fraction

r s Pore Blockage

d ch Flow channel 

diameter

E Electric field

Subscripts

anode Anode

cat Cathode

mem Membrane

g Gas phase

l Liquid phase

elec Electrical

ionic Ionic

k Species 

act Activation

ohmic Ohmic

irrev Irreversible

rev Reversible

0 Initial

sol Solid 

GDL Gas diffusion layer

GCL Gas catalyst layer

Superscripts

eff Effective

ref Reference

f Forward

B Backwards

Ox Oxidised

Rd Reduced

 Transfer coefficient

 Pressure coefficient
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 Concentration 

dependence
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Chapter 1: Introduction

A fuel cell by definition is an electrochemical device which changes chemical energy into 

electrical energy [9]. If hydrogen is used as the fuel then the by-products are heat and water. 

Dependent on the operating temperature the water produced is either in vaporous or liquid 

form or a combination thereof.  Fuel cells are expected to provide the worlds much needed 

clean  and efficient  practical  form of  power generation.   Applications  of  fuels  cells  have 

already seen  the  transportation,  portable  power  and  stationary arenas  [34,  36].  Its  broad 

application is due to their high energy efficiency [36]. 

The  electricity  supplied  by the  fuel  cell  is  available  continuously as  long  as  the  fuel  is 

provided  [9,  21].  The  proton  exchange  membranes  fuel  cells,  (PEMFC)  respective 

constituents is illustrated in Figure 1.

A hydrogen fuel cell operates as follows, the hydrogen flows with respect to its channels, 

meets the electrode layer where it diffuses in the gas diffusion layer. At the anode end the 

hydrogen is separated into protons and electrons. The electrons travel to the carbon cloth, 

flow field plate, to the contact, and then to the load. The protons travel through the polymer 

exchange membrane to the cathode. At the cathode catalyst layer, oxygen combines with the 

protons to form water and absorbing the electron [21].
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High temperature proton exchange membranes fuel cells, (HTPEMFC) are a subset of proton 

exchange membranes fuel cells, (PEMFC), which operate above 120°C. The advantages of 

operating at a higher temperature are that there is an improvement of cathode kinetics, in the 

catalysts’ tolerance  to  contaminants,  in  water  management,  gas  transportation  and  heat 

rejection due to the difference in temperature between itself  and its  environment [72].  In 

HTPEMFC, since water is  in  its  vapor form an improvement in the overall  stability and 

durability of the fuel cell system exists and there is no longer a need to undertake complex 

shutdown procedures previously required in the low temperature proton exchange membrane 

fuel cells (LTPEMFC) [72].

The  challenges  with  regards  to  operating  PEMFCs  at  high  temperatures  are  membrane 

dehydration and conductivity, degradation of the gas diffusion electrode, relative humidity 

and  humidification  issues,  degradation  of  engineering  material,  mechanical  failure  and 

difficulties in heating strategies. The degradation of material is a result of the exposure to 

water and oxygen at elevated temperatures. These materials that are exposed to oxidation 

processes and include not only the membrane electrode assembly, MEA but also the seals, 

gaskets and bipolar plates [72]. 

For  HTPEM  fuel  cell  systems,  fast  start-up  times  are  problematic  due  to  the  high 

temperatures and the amount of work needed, if these fuel cells are to be used in systems with 

fast start-up requirements [2, 72]. When H2 and O2 combine exothermically on Pt catalyst it 

generates local hot spots that lead to pinholes. It then in turn accelerates gas crossover—

initiating a destructive cycle of increased crossover and membrane degradation. All of which 

contribute to a loss of mechanical stability with increasing temperature in the fuel cell [72]. A 

second contribution of pinhole development is the insufficient cooling of the fuel cell, as this 

leads to the membrane dehydrating in areas. The lack of moisture may cause the membrane to 

contract or even rupture. From a theoretical perspective, temperature influences the kinetics 

of  the electrochemical  reactions  occurring  within the  fuel  cell.  Thermal  management  has 

therefore a vital impact on the durability, reliability and performance of the fuel cell [34, 38].
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The majority of the required experimental investigations of fuel cells are expensive and or 

can  only  be  carried  out  on  a  small  scale,  with  a  few  designs  and  with  difficulties  of 

measurement. A broadly used alternative hereof is numerical modeling [31, 36].  In order to 

model  the  flow  of  gas  within  the  PEMFC  one  needs  to  consider  a  complete  set  of 

conservation equations. The set of conservation equations includes the conservation of mass, 

momentum, energy, species and charge. Over and above the set of conservation equations, 

one would have to take into consideration the electrochemical kinetics involved [46]. The 

equations  contain  non-linearities  which  are  intricately  coupled  [64].  A method  to  solve 

problems  associated  with  non-linearities  and  pressure-  velocities  linkages  is  through  the 

application  of  a  numerical  method.  Two  such  methods  are  the  SIMPLE  and  SIMPLER 

algorithms  which  are  iterative  solution  strategies  [64].  The  SIMPLE  algorithm  is 

implemented in this study.

Thermal modelling of a PEM fuel cell begins with the energy equation that balances heat 

generation and removal.  The major contributions to the heat in the fuel cell is due to the 

irreversibility of the electrochemical reaction, entropic heat of reactions as well as Joule heat. 

Entropic  heat  is  the  difference  between  the  total  chemical  energy  of  reactant  and  the 

maximum usable work according to the second law of thermodynamics [38]. Joule heating is 

caused by the set of resistances contributed by the various components within the fuel cell. 

The irreversible heat results from the irreversibility of the electrochemical reactions [3, 34]. 

Therefore local temperature distribution of the fuel cell directly influences its performance 

and it is exactly the study hereof that this investigation aims to achieve.

The study produces three dimensional numerical simulation of gas transport and distribution 

in  a  HTPEMFC utilizing  a  commercial  Computational  Fluid  Dynamics  (CFD) computer 

package, FLUENT. The objective of this study is to investigate the influence of temperature 

variation within a HTPEMFC channel at varying operating parameters. Material and fuel cell 

properties was still under experimental validation at the time of this study and therefore this 

study aims to reproduce, or as close as possible reproduce work done by Peng et al [46]. 

Exact  duplication  was  limited  as  all  the  parameters  required  for  the  investigation  is  not 
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available in the literature and in those cases default attributes found within FLUENT were 

used. 
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Chapter 2: Fuel Cell Fundamentals

2.1 Introduction

The  flow of  a  fluid  can  be  illustrated  algebraically  and  is  classified  as  fluid  dynamics/ 

mechanics.  The equations are subject to a few main physical phenomena and in order to 

model any scenario one would need to understand the mechanisms behind it. In the following 

investigation where a  fuel cell is modelled, the topics that one takes into account  and the 

conservation laws they encompass are the following:

1. Fuel Cell Thermodynamics 

2. Fuel Cell Heat Transfer – Conservation of Energy

3. Fuel Cell Electrochemistry and Charge Transport - Conservation of Charge

4. Fuel  Cell  Mass  Transfer  –  Conservation  of  Mass,  Conservation  of  Species  and 

Conservation of Momentum

2.2 Fuel Cell Thermodynamics

Thermodynamics is defined as the study of energy changing from one state to another. In 

these processes of changing from one state to another, energy,  E  is transferred as heat, 

Q  and or as work, W  [27]. Heat is defined as a transfer of energy due to a difference in 

temperature, where work is defined as the transfer of energy due to processes other than those 

due to temperature change [69]. Understanding the thermodynamic behaviour of fuel cells is 

essential for modelling the fuel cell performance [52]. The need hereof is due to underlying 

phenomena that fuel cells transform chemical energy into electrical energy [63].
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The first law of thermodynamics, deduced from the conservation of energy, states that the 

change in the internal energy,  E i of a thermal system in going from one state to another is 

the negative of the work, W  that the system does on its surroundings, plus the heat flow, 

Q  into the system [23]. This is given algebraically as:

 E i=Q−W . (2.1)

From the second law of thermodynamics, heat flows naturally from a hot object to a colder 

object and that heat would not spontaneously transfer from a cold to a warmer object [69]. 

The following concepts of entropy, specific heat, absolute enthalpy and Gibbs free energy fall 

under the umbrella of fuel cell analysis. Entropy,  S∆  is known as a function of state of a 

system and  in  some texts  it  is  referred  to  as  the  quantitative  measure  of  disorder  [69]. 

Nonetheless  entropy  is  viewed  as  the  measure  of  the  quantity  of  heat  that  shows  the 

possibility of conversion into work [27, 69]. Entropy for an isothermal scenario is given as:

2 1
QS S S
T

∆ = − =
;                                                                                        (2.2)

In Peng et al [46] a good approximation for the change in entropy for the temperature range 

373K to 1137K is given empirically as:

 S=33.644.52564×10−2T−2.988397×10−5 T 23.40625×10−9T 3−2.60417×10−12 T4
 

(2.3)

The link between heat flow and temperature is heat capacity,  C̃ and the relationship is 

given as  [26, 69]:

dQ=C̃ dT (2.4)
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The value of the heat capacity depends on the particular material and is proportional to the 

amount  of  the  material  [23].  To eliminate  the  material  dependence  of  the  heat  capacity,  

specific  heat  is  defined.  Specific  heat, c is  defined as the heat  capacity of  1g of the 

material. Molar heat capacity , c ' is defined as the heat capacity of 1mol of the material. 

If the mass in grams m of a thermal system consisting of n  moles then the relation to 

heat capacity is given as:

 C̃=mc=nc '                                                                                                 (2.5)  

Heat  capacity  depends  on  how the  temperature  change is  made  and on the  values  of  the 

thermodynamic variables, pressure P , volume V and temperature. The heat capacity can 

therefore be written as C=C (P , T ) or C=C (V , T ) [23]. Generally there are two cases 

of interest and they are when the volume is kept constant and the second is when the pressure 

is kept constant. This is written algebraically as the following:

dQ=C̃V dT  for constant volume and (2.6)

dQ=C̃ P dT for constant pressure (2.7)

 The work done, dW  by a gas at constant pressure is:

dW=PdV                                                                                                (2.8) 

where dV≡ V  symbolises the change in volume

From the ideal gas relation one has:

PV=nRT                                                                                                 (2.9)
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where R is the ideal gas constant. Therefore when the pressure is constant the volume is 

directly proportional to the change in temperature and one arrives at the following equation 

[26, 69]:

dW=PdV=nRdT                                                                                     (2.10)  

From the first law of thermodynamics one has for internal energy:

dE i=dQV=C̃V dT for constant volume                                                               (2.11)

and 

dE i=−dW P+dQP=−PdV+C̃ P dT for constant pressure (2.12)

For an ideal gas, because the energy shift dE i is independent of whether the infinitesimal 

transformation is made at constant volume or pressure, equations (2.11) and (2.12) can be 

equated.

C̃V dT=−nRdT+C̃ P dT  which reduces to (2.13)

C̃ P=C̃ V+nR (2.14)

This relation is known as the  molar heat capacities of an ideal gas [69]. There are several 

alternative specific  heat  equations that  are  available  in  the literature.  One that  is  easy to 

integrate is in the form of a polynomial.        

C̃ P

R
=ὰ+β̀T+γ̀T 2+δ̀T 3+ϵ̀T 4

(2.15)

The values for   ,  ,  ,  and   are listed in many thermodynamics texts, and can be 

found on the NIST website [52, 31].
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For this particular investigation we look at an isothermal scenario, which implies that the 

temperature, T is  a  constant  therefore  Q=0  and  Δ E=−W [23].  Under  constant 

temperature conditions the work done by an ideal gas is given as [23]:

W=∫
V 1

V 2

PdV =nRT 0 ln(V 2

V 1)  (2.16)

Absolute  enthalpy incorporates  the  enthalpy derived  from chemical  and sensible  thermal 

energy.  Chemical energy, which is also known as the enthalpy of formation is associated 

with the energy of the chemical bonds, and sensible thermal energy is the enthalpy difference 

between the given and reference state [52]. Enthalpy, h  is given by the following equation 

[26]: 

h=E i
P
                                                                                                       (2.17)

where  is the density of the substance. Gibbs free energy represents the amount of useful, 

external work that can be obtained from an isothermal,  isobaric system when the system 

changes from one set of steady-state conditions to another [69]. In a fuel cell the external 

work  involves  moving  electrons  about  an  external  circuit  [9].  When  considering 

electrochemical conversion within the fuel cell, one looks at the conversion of the change in 

free energy associated with a chemical reaction, directly into electrical energy. Gibbs free 

energy  G , by definition is a direct measurement of the maximum electrical work,  elecW  a 

system can perform at a constant temperature and pressure from the reaction [52]. This is 

expressed as:

elecW G= − ∆   .                                                                                                        (2.18)
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The change in free energy or the maximum useful work can be obtained when ideal fuel cell 

operating  irreversibly  is  dependent  upon  temperature  and  therefore,  elecW ,  the  electrical 

power output is [52]:

W elec=−G= h−T  S                                                                                 (2.19)

The  ability  for  a  system  to  do  electrical  work  by  a  charge q (coulombs),  through  an 

electrical potential difference, U  in volts, is [52]:

W elec=Uq  where         (2.20)

q=nF         (2.21) 

 Where F is the Faraday constant. This is when the charge is assumed to be carried out by 

electrons. From the above one arrives at the maximum reversible voltage provided by the cell 

to be given as follows:

ΔG=−nFU rev                                                                                                  (2.22) 

where  U rev  in the equation is the standard reversible potential [52]. When one analyses 

any electrochemical reaction, there will be a change in the Gibbs energy of formation due to 

energy release [9].

For any chemical reaction one has the following:

j Ak B⇒ m C n D                                                            (2.23)
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A  and  B  are  two reactants  which  produce  as  a  result  of  a  chemical  reaction  the 

products  C and  D .  Coefficients  j , k , m and  n are  integers  dependent  on  the 

balancing of the reaction. The change in Gibbs free energy between the product and reactant 

is [22]: 

G= mG CnG D j G A k G B                                                                          (2.24)

In  the  case  of  a  hydrogen-oxygen  fuel  cell,  under  standard  state  conditions  for  low 

temperature  operation  where  the  resultant  product  is  in  liquid  form,  the  enthalpy

Δ h=−285.8 kJ /mol and  the  Gibbs  free  energy  ΔG=237.3kJ /mol [9,  52].  This  is 

represented as:

H 2 g 1/2O 2g ⇒H 2 Ol                                                (2.25)

For  high  temperature  operation  however  one  has  Δ h=−241.8kJ /mol and 

ΔG=228,6 kJ /mol  and the resultant product is in vapour form, the representation hereof 

is [9, 52]:

H 2 g 1/2O 2g ⇒H 2 Og                                                 (2.26)

The  potential  for  each  class  of  operation  is, U H 2 /O2 (l)=1.229V for  low  temperature 

operation   and  U H 2 /O2 (g )=1.185V for high temperature operation. This value is interpreted 

as the theoretical/ ideal electrical potential for a hydrogen/oxygen fuel cell is 1.229V and 

1.185V at standard temperature [9, 52]. To determine the theoretical electrical potential of 

fuels operating at values other than standard conditions one utilises what is better known as 

the Nernst equation. Incorporating the Nernst equation the above takes on two forms:
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U=U rev−
RT
2F

ln 
H 2 O

H 2
O 2

0.5                                                                                   (2.27)

Where  k is the activity of species k [52] and in Shah et al [9] the Nernst equation is 

given in terms of partial pressures and is as follows:

U=U rev−
RT
2F

ln 
PH 2

PO 2

0.5

P H 2 O
                                                                                  (2.28)

Utilising the first Nernst equation in terms of specie activity and at standard temperature and 

pressure,  the  theoretical  potential  of  a  low  temperature  hydrogen-air  fuel  cell  can  be 

calculated and is according to Spiegel [52] 1.219V. The implication hereof is that at standard 

conditions, with no current flowing, the potential between the oxygen cathode, where the 

reduction occurs and the hydrogen anode, where the oxidation occurs will be 1.219V [52].

 The hydrogen fuel cell system has an efficiency much greater than the most complex heat 

engines such a steam engines or internal combustion [52]. The thermal efficiency of a fuel 

conversion device is determined by the Gibbs free energy and the enthalpy of formation. 

Alternatively, said as the amount of useful energy produced relative to the change in enthalpy 

between the product and reactants [65, 21]. The relation is given as [52]:

=
G
 h (2.29)

For low temperature where liquid water is a by product the efficiency is 83% and for in the 

high temperature scenario  the efficiency is  approximately 95%. From U.S department  of 

energy handbook, [22] the efficiency of an actual fuel cell is often expressed in terms of the 

ratio between the operating cell voltage to the ideal cell voltage. As discussed in sections to 

follow,  the  actual  cell  voltage  is  less  than  the  ideal,  due  to  losses  associated  with  cell 

polarization and ohmic losses [52]. Therefore the thermal efficiency for high temperature 

operation written in terms of actual cell voltage is given as follows [22]:
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=
Useful Energy

 h (2.30)

=
Useful POWER
G /0.945 (2.31)

η̃=
Voltsactual×Current

Voltsideal×Current /0.945 (2.32)

η̃=
0.945×Voltsactual

U ideal
(2.33)

Where U ideal ,  as  previously  mentioned,  for  low  temperature  operation

U ideal=U H 2 /O 2(l )=1.229V    and   U ideal=U H 2 /O 2(g )=1.185V for  high  temperature 

operation.  Therefore for a high temperature fuel cell the thermal efficiency of an actual fuel 

cell operating at a voltage of Voltsactual , based on the higher heating value of hydrogen is 

given by

 η̃=0.945
1.185

×Voltsactual=0.794×Voltsactual (2.34)

When a fuel  cell  operates  under thermodynamically reversible  conditions  both maximum 

electrical  energy  output  and  the  potential  difference  between  the  cathode  and  anode,  is 

achieved [52]. The net voltage of a fuel cell at a certain current density j  is the reversible 

cell voltage, which is the potential minus the irreversible voltage.

( ) rev irrevv j v v= −     where                                                                                          (2.35)

v rev=U rev . (2.36) 
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Where this is defined above as the maximum (reversible) voltage of the fuel cell and irrevv  is 

the irreversible voltage loss also known as the over potential. The maximum possible cell 

potential is the reversible cell potential. Deviation from the maximum, reversible voltage is 

due to the irreversible voltages and is illustrated in Figure 2. From this a deduction that the 

actual work done in the fuel cell is less than the maximum useful work. This is due to the  

irreversible processes. The irreversible processes that occur within a fuel cell include those of 

the activation potential vact , ohmic overpotential ,( )ohmicv and concentration overpotential 

( )concv . 

Activation losses are associated with the process of charge transfer [35] and stems from the 

activation energy of the electrochemical reactions at the electrodes [22]. Losses are dependent 

on  the  reactions,  the  electro-catalyst  material  and  microstructure,  reactant  activities  and 

weakly on the current density [22]. The least intricate losses to understand is the voltage drop 

due to the internal resistance found within the cell itself. From Janardhanan [35] the major 

contribution to ohmic overpotential is due to the ionic resistance of the electrolyte material. 

The  losses  that  arise  from  the  concentration  overpotential  is  due  to  the  mass  transport 

limitations  within  the  porous electrode  structure.  The maximum potential  a  fuel  cell  can 

achieve depends on the partial pressures of the electrochemically active reactant species and 

the product of electrochemical charge transfer reaction at the reaction site [35].

To summarise the voltage irreversible processes are given as follows:

irrev act ohmic concv v v v= + +                                                                                     (2.37)
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1.3 Fuel Cell Heat Transfer

Heat transfer is a study that seeks to predict the energy transfer which takes place between 

material bodies as a result of a temperature difference [31].  Thermodynamics however, deals 

with systems in equilibrium. Heat transfer does not only merely seek to explain how energy is 

transferred but also to determine how under specified conditions, the rate at which it is done 

[61].  When a temperature gradient  exists  in a body a transfer of energy occurs  from the 

higher temperature to lower temperature [61].The transfer of energy from more energetic 

particles to less energetic particles due to the interaction between the particles is defined as 

conduction. The process of heat transfer is defined in terms of rate equations and known as 

Fourier’s law. The rate of heat transfer in the x-direction through a finite cross sectional area, 

A  is expressed as [31]:
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dQ
dx
=− ∂T

∂ x                                                                                                         (2.38)

where the rate of heat transfer is 
dQ
dx and 

∂T
∂ x is the temperature gradient which is in the 

direction of the heat flow.  , a positive constant, is the thermal conductivity of a material. 

It is considered to be a transportation property which gives an indication of the rate at which 

energy is  transferred  through  the  diffusion  process  and  is  dependent  on  the  atomic  and 

molecular structure of the substance. The minus sign ensures that the second principle of 

thermodynamics is satisfied [31, 61]. Under linear steady-state condition the heat transfer 

temperature gradient may be expressed as follows:

dQ
dx
=

T 1−T 2

L (2.39)

where L  is considered to be the length along a particular direction.

Within a fuel cell, despite a constant mass flow rate in the channel, temperature distribution is 

not  uniform.  There  are  many  reasons  for  this,  some  of  which  are  for  example,  the  air  

convection  or  heat  produced  by the  catalyst  layer.  To predict  the  temperature-dependent 

parameters the, rate of reactions, rate species transport and the heat distribution throughout 

the fuel cell stack need to be determined accurately [61]. To determine the heat distribution in 

a fuel cell one has to perform energy balances on the system. Energy balance in a fuel cell 

takes into account the power produced, the fuel cell reactions and losses in terms of heat. 

Between the solid surface and the gas streams convective heat transfer occurs and in the solid 

and or the porous structures conductive heat transfer [61].

From Spiegel [61] the general energy balance states that the enthalpy of the reactants entering 

the cell equals the enthalpy of the products leaving the cell plus the sum of the heat generated 

by the power output, and the rate of heat loss to the surroundings. This is given as:

27

 

 

 

 



∑ (hi)into=W elec+∑ (hi)out+Q .                                                                          (2.40)

The enthalpy inputs, (h i )into are those of the fuel, the oxidant and water vapor. The enthalpy 

outputs are those of the products leaving, ( )i out
h  . The additional terms on the right hand side 

are those of the the electric power produced W elec  and the heat leaving the fuel cell  Q  . 

Heat leaving the fuel takes place through the coolant of the fuel cell, conduction, convection, 

or radiation. The heat leaving the fuel cell through conduction and convection is given as 

depicted below and their corresponding thermal resistances are  r conduction and  r convection

respectively. One dimensional flow is illustrated as:

Qconduction=− A dT
dx (2.41)

r conduction=
T 1−T 2

Q conduction
= 1
κ A (2.42)

Qconvection= AT 2−T 1 (2.43)

r convection=
T 2−T 1
Qconvection

= 1
A                                               (2.44)

Where the overall effect of convection is taken from Newton's law of cooling and   is 

called the convective heat transfer coefficient in units of W /m2 K  [31, 61]. The resistance, 

since the conduction and convection resistances are in series, is summed as follows:

r tot=
1
ξ1 A

+ 1
κ A

+ 1
ξ2 A                                                                                         (2.45)
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A fuel cell consists of many layers and the composition of each differs. The temperature drop 

between materials can be significant and is classified as the thermal contact resistance [61]. 

Thermal contact resistance is expressed as:

r tc=
Δ T
Q . (2.46)

The thermal resistance, r thermal  is defined as:

r thermal=
1

1
r convective

+
1
r R

(2.47)

where r convective is the thermal resistance and the heat leaving the fuel cell through radiation 

is known as the radiative thermal resistance r R and is given as:

r R=
1

 s AsT sT 0T s
2T 0

2                                                                               (2.48)

where  is known as the Stefan Boltzmann' constant, s is termed as the shape factor, sA  

is  the  exposed  surface  area, T s and  T 0 refer  to  temperatures  of  the  surrounding and 

initially. The shape factor is dependent on the geometry of body through which heat is being 

conducted [62]. 

The internal heat generation can be described by the Poisson equation [61]:

d 2 T
dx 2 

Q internal


=0                                                                                                 (2.49)

where Qinternal is the rate of heat generation per unit volume. 
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In a nutshell in a  fuel cell, one has the fuel, hydrogen entering at the anode end of the cell at  

a temperature 2( )gHT , pressure 
2( )gHP , mole fraction 2Hx  and mass flow rate ṁ H 2 . Oxygen 

enters the fuel cell at its respective temperature, 2( )gOT , pressure 2( )gOP , mole fraction 2Ox  and 

mass flow rate  ṁ O 2 at the cathode end of the fuel cell. The hydrogen and oxygen react 

completely to produce water which exits the cell  at temperature  2 ( )H O gT ,  pressure  2 ( )H O gP , 

mole  fraction  2H Ox  and  a  mass  flow  rate (ṁ)H 2 O .  Therefore  from  the  generic  energy 

balance, equation (1.41) ,one has the following entering on the left hand side of the equation 

and leaving on the right hand side [61]:

hH 2
+1

2
hO 2
=W elec+Q+hH 2O                                                                             (2.50)

Where the enthalpy for each dry gas or mixture of dry gases is [61]:

h=(ṁ) C̃ T .          (2.51)

If the gas has a high heating value HHV , (combustible) as in the case with water vapour, 

the enthalpy is given as [61]:

h=(ṁ)(C̃ T+hHHV
0 )         (2.52)

Values of the higher heating values are generally reported for values that correspond to 25ºC. 

The energy balance of a  fuel cell system is given schematically Figure 3.
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The generic heat balance for a fuel cell stack is then given by:

∑Qinto−∑Qout=W elQdisQ c (2.53)

where Qinto  is the heat of the reactant gases coming into the system, outQ  the heat of the 

unused  reactants,  elW   is  the  electricity  generated,  disQ  is  the  heat  dissipated  to  the 

environment and  cQ  is the heat removed to the active cooling of the fuel cell [61].  In the 

thermodynamics section of this chapter the first law of thermodynamics is derived from the 

conservation of energy and in order to model the fuel cell thermally one considers the energy 

equation which serves as the transport equation for temperature [34, 63].  The energy of a  

system is such that the following principles hold [63]:
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Figure 3: Fuel Cell Energy Balance [60]

 

 

 

 



Where the effects due to potential energy changes are taken into account by the source term 

[63].

The conservation of energy is given as [46]:

∇⋅u EP =∇⋅eff ∇ T−∑ hk J k eff⋅uS h  (2.54)

where for any variable, 

∇⋅=
∂x

∂ x

∂ y

∂ y

∂ z

∂ z  ,                                                                                 (2.55)

u=u , v ,w (2.56) denotes the superficial velocity vector in the porous media and  the 

density of the gas mixture. 

= 1
∑k

Y k /k                                                                                                  (2.57)

Where  Y k is  the  mass  fraction  of  species k and  k the  density  thereof. k is 

determined by the ideal gas relation of:

k=
P M k

RT .         (2.58)

M k refers  to  the  molecular  weight  of  the  gas  and  P , R and  T are  as  previously 

mentioned pressure,  ideal  gas constant  and temperature respectively.  Further  on the right 

hand side of equation (2.54) one has, eff which is defined as the thermal conductivity in a 

porous material consisting of the electrode solid matrix and gas and from Peng et al [46] the 

equation hereof is given below:

κeff=ε̃κ f+(1−ε̃ )κ sol (2.59)
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where ε̃ is the porosity,  f is the thermal conductivity of  the gas and sol the thermal 

conductivity of the electrode solid matrix. ∇ T is defined as:

∇ T=∂T
∂ x

î+∂T
∂ y

ĵ+∂T
∂ z

k̂                                                                              (2.60)

Continuing with equation (2.54) one has hk and J k which are the which is the enthalpy 

and the flux of species k respectively. J k is defined by the following equation:

J k=−∑k=1
ρD k∇ Y k                                                                                     (2.61)

where D k is  the  diffusion  coefficient  of  species k . eff is  the  effective  stress  tensor, 

which based on the assumption that the flow of gases for the fuel cell is laminar, it can be 

ignored. This is primarily due to the low velocity of gas flow [46]. Motivation for the choice 

of flow is  explained in  the sections  to follow.  Sh In equation (2.54) is  the net  rate  of 

increase in energy due to sources which is zero in all areas except in the cathode catalyst and 

membrane where:

Sh=
∣ j cat∣
2F

T∣ S∣∣ jcatcat∣ for the cathode catalyst (2.62)

and in the membrane

 
2

h
mem

iS
κ

=  (2.63)

i is  defined  as  current,  j cat   the  transfer  current  in  the  cathode  and  cat the 

overpotential  in  the  cathode,  all  of  which  is  discussed  in  greater  detail  in  the  following 
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section, “Fuel cell Electrochemistry and Charge transport”.  S is the entropy as defined in 

equation  (2.2) and (2.3) and mem the membrane conductivity. 

In the computational fluid dynamics package FLUENT and PEM fuel cell model Sh  is the 

total source that goes to the thermal energy equation and is given as [3]:

Sh=hreact− janode /cat  anode/ cati 2 rohmichL (2.64)

where  hreact is the net enthalpy due to the electrochemical reactions, r ohmic  the ohmic 

resistance and hL is the enthalpy change due to condensation/ vaporization of water [3].

1.4 Fuel Cell Electrochemistry and Charge Transportation

Electrochemistry is  the study concerned with the transference of electrical  charges across 

interfaces  through a  solution  [17,  48].  Within  the  fuel  cell  it  is  the  transfer  of  electrons 

between the interfaces of the electrode and the chemical species found with in the electrolyte. 

In a fuel cell  there exists two types of charges,  electrons and ions and the transportation 

hereof induces what is called electronic and ionic losses respectively [54, 55]. Collectively 

these losses are known as the Ohmic loss. Where ohmic resistance is given algebraically as:

r ohmic=r ionicrelec (2.65)

Each charge,  electronic or  ionic  experiences  a  resistance unique to  the material.  Each of 

theses resistances in turn contributes to the reduction in voltage. Ohmic polarization is known 

as the materials’ natural resistance to the flow of charge which results in a loss in the cell 

voltage. During this process a change in Gibbs free energy arises [54].
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The relation between the voltage drop and resistance is given as:

vohmic=irohmic (2.66)

 where vohmic refers to the ohmic voltage, i  is the current and r ohmic the ohmic resistance. 

This relation is also known as Ohms law.

According to  Spiegel  [54] ionic transport  is  far  more difficult  to  model  and predict.  The 

region in  which  the  ionic  losses  occur  is  that  of  the  fuel  cell  membrane and where  the 

H '+'
ions travel through the electrolyte [55] .The net flow of charge dq is given as:

dq=qnAvd dt                                                                                                       (2.67)

where  q is  the  charge  of  a  particle,  n the  concentration  of  particles,  v d the  drift 

velocity  and  dt the  duration.  Current,  i is  a  direct  measure  of  the  electrochemical 

reaction rate, which in turn is the rate at which electrons are created or consumed [55] and is  

given by the following equation:

i=dq
dt
=qnAvd                                                                                                       (2.68) 

The current density also referred to as the current per unit cross-section area, j

j= i
A
=qnv d=κelec Ẽ                                                                                        (2.69)

elec is the electrical conductivity of a material and E  is the electric field.
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κelec=
i

rohmic
=nq

v d

Ẽ
=nque                                                                              (2.70)

where ue  is often termed as the mobility [54, 40].

To improve the performance of a fuel cell, the resistance would have to be decreased. To 

reduce the resistance either the conductivity of the electrolyte can be improved and or the 

membrane  thickness  can  be  reduced.  Where  the  relation  between  resistance  and  the 

membrane thickness is given by the following equation [54]:

r ohmic=
 thick

 Acell
                                                                                                  (2.71)

where cellA  is the active area and thickδ  is the thickness of the electrolyte layer and therefore 

equation (2.66) can be rewritten as: 

vohmic=irohmic= jAcell

thick

elec Acell
= j

thick

elec
.                                                         (2.72)

Furthermore, the fuel cells total resistance is the summation of the resistance of each layer, 

therefore ohmicv  is the current multiplied by the total resistance r ohmic .

The mobility of free electrons, ue  in a metal conductor is given as:

ue=
q 
me      (2.73)
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where  q=1.60×10−19C and is the elementary electron charge in Coulombs,   is  the 

mean  free  time  between  scattering  events  and  me=9.11×10−31kg is  the  mass  of  an 

electron [54]. It follows that equation for conductivity becomes:

=
∣z e∣Fce q 

me
                                                                                                 (2.74)

 where ze is the charge number (valence electrons) for the carrier, F is Faraday' constant 

and ce is the number of moles of charge carriers per unit volume. 

The  conductivity  of  ions  follows  a  different  relationship  and  for  the  membrane  its 

conductivity can be accurately described by the Arrhenius equation [46, 38, 3]:

mem=0 e
−E A,

R
 1
T
− 1

303


                                                                                       (2.75)

where  0 is the membranes conductivity at  standard conditions. From Ju et  al [38] the 

effective conductivity of the anode and cathode catalyst layers follows that of the membrane 

however with the Bruggmann correlation and is given as:

sol=cat
eff =anode

eff =mc
1.5mem                                                                               (2.76)

where  κ sol accounts for the constituents of the electrode solid conductive matrix, mc
1.5 is 

the volume fraction of ionomer in the anode and cathode catalyst layers [46].

To continue the discussion on the electrochemistry and charge transport within a fuel cell one 

considers the reactions that occur within it. Along the anode, the hydrogen gas reaches the 
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electrode and the first step it undergoes is absorption and dissociation into H atoms [55]. This 

reaction is given as:

H 2 g H×H                                                                                             (2.77)

A second step follows of further dissociation at the electrode, takes on the following form:

HH ''e                                                                                                       (2.78)

where  H ''  is  referred to as the oxidized form of the chemical species  H  and is  the 

reduced form of the chemical species. e refers to an electron. If one denotes the change in 

concentration of the oxidized form as the forward reaction and change in concentration of the 

reduced form as the backward reaction then the flux, (rate of the reaction) is given as follows 

[55]:

J f=k f COx and                                                                                                  (2.79)

J B=k B CRd                                                                                                         (2.80)   

fk  and  Bk  are  the  rate  coefficients.  OxC  and  RdC  are  the  surface  concentrations  of  the 

reactant  species.  Essentially  these  reactions  either  consume  or  release  electrons  and  net 

current is the difference [55]:

i=nF k f C Ox−k B C Rd  .                                                                                     (2.81)

From the Butler-Volmer model of electrode kinetics, the above equation is further refined to 

give the following for the forward and backward oxidation reaction rate coefficients [55]:

k f =k 0, f e
βRd FU

RT and                                                                                              (2.82)
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k b=k 0,b e
βOx FU

RT                                                                                                      (2.83)

where β is the transfer coefficient, F Faraday's constant and U is the potential.    The 

transfer coefficient is found to be a measure of symmetry of the energy barrier and its value  

in  the  absence  of  actual  measurements  is  usually  approximated  by 0.5  [55].   Backward 

oxidation is alternatively known as reduction. The net current is therefore then given by:

i=nF {k 0, f COx e
βRd FU

RT −k 0,b CRd e
βOx FU

RT }                                                                (2.84)

Further  the transfer  current  at  the  anode and cathode and is  given by the  Butler-Volmer 

equations as [46]:

j 0,anode= janode
ref 

P H 2

P H 2

0 
[e anode F anode

RT 
−e


−cat F  anode

RT ]  and (2.85)

j 0,cat= j cat
ref 

PO2

PO2

0 
1


P H 2 O

P H 2 O
0 

2[e−cat F  cat

RT 
−e


anode F cat

RT ]                                      (2.86)

P k is the partial pressure of species k and P k
0

is reference to standard pressure.  From 

Peng  et  al  [46]  the  values  for  =0.25, 1=0.5  and  2=0.25 and  are  determined 

empirically and are concentration parameters. j anode
ref and j cat

ref are the anodic and cathodic 

reference  exchange  current  densities  dependent  on  the  local  temperature,  given  in  the 

following equation:

j anode
ref = janode , 0

ref e
[
−E A,a

R
 1

T
− 1

353.15
] and                                                                       (2.87)

j cat
ref= jcat , 0

ref e
[
−E A,c

R
 1
T
− 1

353.15
 ] respectively [38].                                                  (2.88)
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Where  EA ,a and  EA ,c are the respective activation energies. The driving force for the 

kinetics is the local surface overpotential [3]. anode And cat are the local overpotentials' 

determined by the following equations:

anode=sol−mem  and                                                                                      (2.89)

cat=sol−mem−V 0                                                                                  (2.90)

where sol and mem refer to the solid and membrane phase potentials respectively and

V 0 is the open-circuit voltage on the cathode side [3]. In Peng et al, [46] it is defined as the 

thermodynamic  equilibrium  potential  which  for  temperatures  greater  than 373.15K is 

defined by the following equation:

V 0=1.17−2.756×10−4T−373.154.308×10−5 ln 
 H 2

O 2
1 /2 

H 2 O
 (2.91) 

where   H 2
,O 2

1 /2 and   H 2 O is  defined as a ratio  between the respective species partial 

pressure to standard pressure [46].

In the FLUENT, the computational fluid dynamics package used to model the fuel cell, the 

Butler-Volmer equation takes on the following form [3]:

j 0,anode=ζanode j anode
ref ( [C ]

[C ]ref
)
ψanode [e (βanode F ηanode

RT )
−e

(
βcat F ηanode

RT )] and                         (2.92)

j 0,cat=ζcat jcat
ref ( [C ]

[C ]ref
)
ψcat[e(−βcat F ηcat

RT )
−e

(
βanodeF ηcat

RT )]                                              (2.93)
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where   is  the  specific  active  area,  [C ]  local  species  concentration, [C ]ref the 

reference species concentration and   is the concentration dependence [3].

From the conservation of charge, the below argument holds:

∇⋅sol ∇ solS sol=0                                                                                      (2.94)

∇⋅mem∇memS mem=0                                                                                 (2.95)

The source terms,  Smem  and  S sol in the above equations are non-zero only inside the 

catalyst layers and are computed as [3, 46, 38]:

• For the solid phase:

• S sol=− janode on the anode side and (2.96) 

• S sol= j cat on the cathode side. (2.97)

• For the membrane phase:

•  Smem= j anode on the anode side and (2.98)

• Smem=− jcat  on the cathode side. (2.99)

2.5 Fuel Cell Mass Transport

Fuel  cell  mass  transport  is  viewed  as  the  transportation  of  the  species.  As  previously 

mentioned, the three factors contributing to voltage losses within a fuel cell are activation 

losses,  ohmic  losses  and  mass  transport  limitations.  The  losses  due  to  mass  transport 
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limitations  can be reduced by optimising mass  transport  in  each of  the  respective layers 

within  a  fuel  cell  [53,  18].  Mass  transfer  is  due  to  density  gradients  or  hydrodynamic 

transport and is termed as convection and is further characterised as laminar, turbulent flow 

or stagnant regions. The criterion which determines whether flow is laminar or turbulent is 

known  as  the  Reynolds  number  [18].   In  Spiegel  [53]  for  small  Reynolds  numbers 

Re2300 flow  is  laminar,  Re4000  flow  is  turbulent  and  between  this  range 

2300Re4000 flow is said to be transitional. Reynolds number is defined as the ratio 

between the inertial forces to viscous forces and is given by the following equation [53]:

Re=
ρum d ch

μ
=

um d ch

ν                                                                 (2.100)

where um is the characteristic velocity of the flow (m/s),   is the fluid density,   is 

the  fluid  viscosity,  ν is  the  kinematic  viscosity  (m2/s)  and  d ch is  the  flow  channel 

diameter  or  characteristic  length  (m).  The  effective  Reynold's  number  for  rectangular 

channels is:

Re rect
=
ρ ūm d rect

μ where (2.101)

d rect=
4 Ac

P̃ (2.102)

Ac is  the  cross-sectional  area  of  channel  with  width  a  and  length  b , P̃ is  the 

perimeter and ūm the mass averaged velocity in the channel.

In the fuel cell flow channels the flow is convective and in the fuel cell gas diffusion layers 

and catalyst regions one finds tiny pores and therefore it is considered to be governed by 
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diffusion.  The  flow along  the  walls  of  the  fuel  cell  is  generally  slower  and  aids  in  the 

transition of flow from convective to diffusive [53].

The rate at which mass flows into and out of the fuel cell subsystem, stack, or fuel cell layer,  

needs to be accounted for and from the continuity equation one has that the sum of all of the  

mass inputs is equal to the mass outputs. The continuity equation is given as [46]:

∇⋅u=Sm                                                                                             (2.103)

In  a  porous  medium  u denotes  the  superficial  velocity  vector  and  Sm an  additional 

source term and is defined as follows: 

Sm=
−M H 2

2F
janode for the anode side and (2.104)

Sm=
−M O 2

2F
j cat

M H 2 O

2F
j cat cathode side. (2.105)

M k is the molecular weight for species k , F Faraday' constant, j cat  and j anode

is as defined in equation (2.85) and (2.86) the transfer currents. The mass balance of a system 

and can be expressed as [53]:

∑ mk into=∑ m out                                                                                 (2.106)

Where m k is the mass of specie k going in and out of the fuel cell. From Spiegel [53] 

the flow rates at the inlet are proportional to the current and number of cells. The power 

output for the cell:

W elec=ncell V cell i                                                                                         (2.107)
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where  ncell is the number of cells and  V cell is the cell voltage.  All flows,  i ncell are 

proportional to the power output and proportional to the cell voltages [53]:

i ncell=
W elec

V cell
                                                                                                (2.108)

In table 1 and summarised from Spiegel [53], the mass flow rates, ṁ k at the inlet and outlet 

for each respective specie found within a PEM fuel cell. Where the mass flow rate is defined 

as:

ṁ k=
dm
dt

    (2.109)  

and is the rate at which mass of a specific specie passes through a specified area.
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Table 1: Mass Flow rates (g/s) of species within a PEM fuel cell [53]

Specie  Hydrogen (H2)

Inlet d mH 2, into

dt
= SH 2

M H 2

2F
i ncell                                                                                               (2.110)

Outlet d mH 2,out

dt
= S H 2

−1 
M H 2

2F
i ncell                                                                                       (2.111)

Specie Oxygen (O2)

Inlet d mO 2, into

dt
= SO 2

M O2

4F
i ncell                                                                                               (2.112)

Outlet d mO 2, into

dt
= SO2

−1
M O2

4F
i ncell                                                                                       (2.113)

Specie Air

Inlet d mair into

dt
=

S O 2

rO 2

M O 2

4F
i ncell                                                                                              (2.114)

Outlet d mairout

dt
=[ SO2

−1M O 2
 SO2

1−rO2

rO2

M N2
]
i ncell

4F                                                           (2.115)

Specie Nitrogen (N2)

Inlet d mN 2 , into

dt
= SO2

M N 2

4F
1−rO 2, into

rO 2 , into
i ncell                                                                             (2.116)

Outlet d mN 2 , out

dt
=

d m N2 , into

dt
= SO 2

M N2

4F
1−rO2 , into

rO2 , into
i ncell                                                            (2.117)

Specie Water Vapour in hydrogen, H2O(g) in  H2

Inlet d mH 2O , intoH 2 , into

dt
= SH 2

M H 2O

2F
 anode Pvs T anode ,into

P anode− anode PvsT anode , into
i ncell                                         (2.118)
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Table 1: Mass Flow rates (g/s) of species within a PEM fuel cell [53]

Outlet d mH 2O , intoH 2 , out

dt
=min[ S H 2

−1
M H 2O

2F
 anode PvsT anode , out

Panode− anode Pvs T anode , out 
i ncell

d mH 2 O into, H 2O out

dt
] (2.119)

Specie Water Vapour in Oxygen, H2O(g) in  O2

Inlet d mH 2O , intoO2 , into

dt
= SO2

M H 2 O

4F
 cat P vsT anode ,into

Pcat− cat Pvs Tanode , into
i ncell                                               (2.120)

Outlet d m H 2 O into, H 2 out , g

dt
=min [

SO 2
−r O 2 into

rO 2 into


M H 2 O

4F
×

P vsT out , anode

Pcat− P cat−Pvs T out , anode
i ncell ,

d m H 2 Ointo , Airout

dt
]

       (2.121)

Specie Water Vapour in Air, H2O(g) in Air

Inlet d mH 2O , inAir , into

dt
=

SO 2

rO 2

M H 2O

4F
 cat Pvs T anode , into

Pcat− cat PvsT anode , into 
i ncell                                               (2.122)

Outlet d m H 2 O into, H 2 out , g

dt
=min [

SO 2
−r O 2 into

rO 2 into


M H 2 O

4F
×

P vsT out , anode

Pcat− P cat−Pvs T out , anode

i ncell ,
d m H 2 Ointo , Airout

dt
]

       (2.123)

S is defined as the stoichiometric ratio, M  the molecular weight, vsP  saturation pressure, 

  the relative humidity, n  is the number of moles,  Panode is the pressure drop on the 

anode side, r O2 ,into and  r O2 ,out refers to the volume fraction of a species at the inlet and 

outlet respectively.

To be able to deduce the above equations for the outlet, Spiegel [53], from which the above 

was deduced, makes the following assumptions:

1. To deduce the flow rate of oxygen at the outlet one considers the oxygen supplied at 

the inlet less the oxygen consumed in the fuel electrochemical reaction.
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2. Nitrogen does not participate in the fuel cell reaction therefore the nitrogen flow rate 

at the exit is the same as the inlet.

3. The depleted air flow rate is a sum of the oxygen and nitrogen flow rates.

4. The water  content in the cathode outlet  is  the summation of the amount  of water 

brought into the cell, the water generated in the cell and the water transported across 

the  membrane  [53].  Which  is  written  algebraically  as:

mH 2 Ointo , Airout
=mH 2 Ointo , Air into

mH 2 OgenmH 2 O EDmH 2OOBD  (2.124)

Convective  flow exists  in  the  reactant  flow channel  and  diffusive  flow through  the  gas 

diffusion and catalyst layers. The reactant is supplied to the flow channel at a concentration 

C0 ,  and  it  is  transported  from the  flow channel  to  the  concentration  at  the  electrode 

surface,  C s , through convection. From Fick's law, the mass transfer by diffusion of the 

reactants to the catalyst layer can be calculated as follows [18]:

dm
dt
=−D dC

dx                                                                                                    (2.125)

Further studies conclude that the one-dimensional mass transfer along the x-axis, also known 

as the Nernst-Planck equation is given as [18, 53]:

dmk

dt
= J k (x)=−Dk

∂C k

∂ x
⏞
diffusion

−
z k F
RT

Dk C k
∂Φ( x)
∂ x

⏞
migration

+C k u (x )⏞
convection

                                  (2.126)

where  J k  x  is  the flux of species  k at a  distance x form the surface,  D k is  the 

diffusion coefficient,  
∂C k x 
∂ x is the concentration gradient at distance  x ,

∂Φ(x )
∂ x is 
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the potential gradient,  z k the charges, and  u x  is the velocity with which a volume 

element in solution moves along the axis [18, 53]. From Peng et al [46] and for the purpose of 

this study, J k the diffusive mass flux vector takes on the form:

J k=−∑ j=1

N−1
Dk ∇ Y k                                                                                     (2.127)

where Y k is the mass fraction of species  k . The diffusion coefficient in the anode and 

cathode gas channels is calculated as a function of temperature and pressure. For the porous 

regions,  i.e.  the  catalyst  and diffusion  layers  the  expression  for  the  diffusion  coefficient, 

D k  is modified into the effective species diffusivity, Dk
eff

using Bruggmann correlation.

D k=D 0
T
T 0


3/2


P0

P
     for gas channels (2.128)

D k
eff =1.5 D k  for porous regions                                             (2.129)

where 1.5 is used to model and take into account the effect of tortuosity [3]. Tortuosity is 

defined  as  the  quality  or  condition  of  being  tortuous  which  refers  to  the  materials 

disjointedness or crookedness [33]. 

 

To further the discussion one has from the conservation of species: 

∇⋅uY k =∇⋅J kS k                                                                                     (2.130)

The source term  Sk=0 for all regions other than the catalyst layers [46] where in these 

regions taken from [3]
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S H 2
=
−M w , H 2

2F
j anode                                                           (2.131)

SO 2
=
−M w ,O 2

2F
j cat (2.132)

S H 2 O=
−M w , H 2 O

2F
jcat (2.133)

where j anode and j cat is defined in equation (2.85) and (2.86), M k for species k is 

the molecular weight and F Faraday' constant. The final conservation law that needs to be 

taken into account is that of momentum which is as follows:

   
1
 2

∇⋅u u=−∇ P∇⋅Su (2.134)

where  takes into account the porosity of a material.

2.6 Overview of Governing Equations

In Summary the main equations governing the fluid flow within a fuel cell are [46, 38]:

1. Mass or Continuity: ∇⋅u=S m                                                         

2. Momentum: 
1
 2

∇⋅u u=−∇ P∇⋅Su                                    

3. Species: ∇⋅u C k =∇⋅Dk
eff ∇C k S k                                                 

4. Charge: ∇⋅eff ∇eS=0                                                              
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5. Energy: ∇⋅u  EP =∇⋅eff ∇ T−∑ hk J k eff⋅uS h  

The sources terms for each region of the fuel cell is given in the  table below

Table 2: Source terms for continuity, momentum and energy for the conservation equations 
governing the various regions found PEM fuel cell given by Peng et al [46]

Gas 
flow 
channels

Gas 
diffusion 
layer

Catalyst layer Membrane

Anode Cathode

Continu
ity

0mS = 0mS =
Sm=

−M H 2

2F
janode Sm=

M O 2

4F
j cat

M H 2 O

2F
j cat

-

Momen
tum

0uS =
u

GDL

S
K

µ= − u
GDL

S
K

µ= −
-

Energy 0hS = 0hS = 0hS = Sh=
∣ j cat∣
2F

T ∣ s∣∣ jcat cat∣
2

h
mem

iS
κ

=

Species 0kS = 0kS =
Sk=

−M H 2

2F
janode For H2

Sk=
−M O 2

4F
j cat for O2

Sk=
−M H 2 O

2F
j anode for H2O

Charge 0
0

sol

mem

S
S

=
=

0
0

sol

mem

S
S

=
=

S sol=− janode

Smem= j cat

S sol= j cat

Smem=− jcat

0
0

sol

mem

S
S

=
=
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Chapter 3: Fuel Cell Components

3.1 Introduction

The fuel cell components consist of the bipolar plates,  anode and cathode flow channels, 

anode and cathode gas diffusion layers (GDL), anode and  cathode catalyst layers (CL) and a 

membrane. Numerous unit cells forms a fuel cell stack. Illustration hereof is given in Figure 

4.

The  performance  of  a  fuel  cell  is  dependent  on  two  types  of  parameters,  physical  and 

operating. The physical parameters embarks on the actual characteristics of a particular fuel 

cell including membrane ion conductivity, catalyst distribution and its reaction rate in the 

catalyst layer, the rate of gas diffusion and the rate of water removal in the GDL [67]. The 

operating  parameters  are  of  the  likes  of  fuel  and  air  fluxes,  temperatures,  pressures, 

humidities, cell size and flow channel configuration [67].
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As mentioned in the introduction, a hydrogen fuel cell operates as follows, the hydrogen 

flows with respect  to its  channels,  meets the electrode layer where it  diffuses in the gas 

diffusion layer. At the anode end the hydrogen is separated into protons and electrons. The 

electrons travel to the carbon cloth, flow field plate, to the contact, and then to the load. The 

protons  travel  through  the  polymer  exchange  membrane  to  the  cathode.  At  the  cathode 

catalyst layer, oxygen combines with the protons to form water and absorbing the electron 

[21]. The fuel cell operation is illustrated in Figure 5.

To follow is the exploration of the composition of each layer of the fuel cell.

 

3.2 Bipolar plates/ Gas Flow Channels

A fuel cell stack consists of numerous cells and separating the cells from one another is what 

is called the bipolar or flow plates [7]. The bipolar plates separate reactant gases and serve to 

connect the cells electrically and as a support structure. The flow plates are created in such a 

manner that on either side, channels exist which direct fluid flow, forming the anode and 
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cathode compartments of the unit cell. The geometry of these channels affects reactant flow 

velocities and mass transfer which further ultimately affects the fuel cell performance. The 

choice  of  material  for  a  flow plate  is  based  on  its  chemical  compatibility,  resistance  to 

corrosion,  cost  effectiveness,  density,  electronic conductivity,   ease of manufacturing,  the 

stack  volume/kW,  material  strength  and  thermal  conductivity  and  the  gas 

diffusivity/impermeability [60].

In Jeon et al [37] its concluded that for a fuel cell and in particular for a PEMFC, an ideal 

flow plate would be able to distribute the uniform gas mole fractions evenly over the entire 

surface area of the cell. When the gas mole fractions are evenly distributed over the cell it  

leads  to  the  uniform distribution  of  current  density,  temperature  and  in  the  case  of  low 

temperature  PEMFCs,  liquid  water  production.  The  uniform  distribution  of  the  before 

mentioned parameters, reduce the mechanical stress experienced by the membrane electrode 

assembly (MEA), which in turn influences the lifetime of the fuel cell positively [37].

 

When the distribution of reactant along a channel is not uniform and reactants are consumed, 

the concentration of reactants near the catalyst layer decreases, while the concentration of 

reaction products increases. Consequently reactants with low concentration near the end of 

the flow field move slowly to the catalyst surface, which in turn reduces the performance of 

fuel cells operating at high current density [71]. A factor to take under consideration is that 

the  concentration  of  products  near  the  catalyst  surface  can  quickly  reach  saturation. 

According to  Zhang  et  al [72],  the  mixing of  fluids  in  channels  and increasing  reactant 

concentrations  near  the  catalyst  layers  is  helpful  to  improve  the  performance  of  high 

temperature fuel cells. 
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As illustrated in Figure 6 designs for flow channels vary and some of the most commonly 

used on are straight, serpentine (d) and (e), parallel (b), interdigitated (c), or pin-type (a) flow 

fields [72].

In the current study a selection of channels from the serpentine design is investigated. In 

previous studies it has been found that in cells with interdigitated and serpentine flow fields a 

forced  convection  stream is  created  which  improves  reactant  transport  and  liquid  water 

removal [65]. In studies similar to that of Wang et al [65], the performances of cells with 

interdigitated and serpentine flow designs have been found to be superior to that of parallel 

flows.

When  working  with  HTPEMFC  the  designs  are  simplified  in  comparison  to  that  of 

LTPEMFC as  there  is  little  or  no liquid  water  present  in  the  fuel  cell  above 100°C and 

therefore  flow fields  may  be  designed  without  having  to  consider  two-phase  flow  [72]. 

Increasing the width of the channels allow for an increase in the contact of the fuel to the 
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catalyst layer, the implication hereof is that the pressure drop is less and would allow for a 

more efficient water removal. However, if the channels are too wide, there will not be enough 

support for the MEA layer [60].

The advantage of the serpentine flow field is that it is able to force the reactant flow to move 

and cover the entire active area of electrode. However, this design results in a relatively long 

reactant  flow  path,  which  results  in  a  substantial  pressure  drop  and  creates  a  large 

concentration gradient from the gas inlet to outlet. In the case of low temperature fuel cells 

one needs to take into account the increase in the complexity of water removal on the cathode 

side [60]. 

In low temperature design one requires a high internal pressure drop to exist to improve the 

liquid water removal. In high temperature fuel cells however, water is found in vapor form 

and therefore  flow field  designs  should  be  focused on decreasing  the  pressure  drop and 

improving mass transfer by increasing the reactant concentration near MEAs [72]. 

A flow plate with multiple, continuous flow channels, as illustrated in Figure 6 (e), can be 

used to limit the pressure drop, and reduce the amount of power used for pressurizing the air  

through a single serpentine channel. Over and above the before mentioned, a design of a flow 

plate should ensure that it is able to endure tolerances, warping, and the skinning effect. The 

skinning effect is the accumulation of polymer at the surface of the plate as a result of the  

molding process [7]. When a multiple serpentine design is implemented the stagnant area 

formation  is  alleviated  and  there  is  a  reduction  in  the  reactant  pressure  drop,  however, 

according to  Zhang et  al  [72],  the  reactant  pressure drop through each of  the  serpentine 

remains relatively high due to the relatively long path of each channel. The implication hereof 

is that the reactant concentration changes significantly from the flow inlet region to the exit 

region [72].
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When  investigating  the  electrical  conductivity  of  the  fuel  cell  stack  one  considers  the 

resistance from interfacial contacts between the flow plate and the gas diffusion layer. Testing 

the losses due to interfacial contact resistance is determined, according to Spiegel [60], by 

putting a bipolar plate between two gas diffusion layers, and then passing an electrical current 

through the sandwich and measuring voltage drop. The finding hereof is that the total voltage 

drop is a strong function of clamping pressure and the bulk resistance for both the bipolar 

plate and the gas diffusion media is a strong function of the clamping force. The interfacial 

contact resistance however does not only depend on the clamping pressure, but also on the 

surface characteristics of the bipolar plate and gas diffusion layer (GDL). From Spiegel, [60], 

the relationship between the contact resistance and the clamping pressure between the GDL 

and a bipolar plate is as follows:

r c=
Aa

K  g 
d −1

elec
eff Ld [ d

2−d P '∗' ]
d /2

(3.1)

r c is the contact resistance, Aa is the apparent contact area at the interface,  K is the 

geometric constant, g is the topothesy of a surface profile, d is the fractal dimension of a 

surface profile,  L and  is the scan length, P '∗' is the dimensionless clamping pressure 

constant which is a ratio of actual clamping pressure and comprehensive modulus of gas 

diffusion  layer  and  elec
eff

is  the  effective  electrical  conductivity  of  two  surfaces  [60]. 

Topothesy is formally defined as the  distance along the profile for which the expected angle 

between two points is one radian [48]. The effective electrical conductivity of two surfaces is 

as follows:

1
 elec

eff =
1
2  1
1
 1
 2             (3.2)

where  1 and  2 refer to the conductivities of the two surfaces involved. Most flow 

channels are designed in such a manner that laminar flow in both anode and cathode gas 
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flows are maintained. As discussed  in previous sections, laminar flow conforms to a low 

Reynolds number, which is defined for a flow channel as:

Re=
Inertial force

Viscosity
=
ρ ūm d rect

μ
(3.3)

where   is the density,  d rect is the hydraulic diameter of the rectangular channel,   

the viscosity of the gas in the flow channel and  ūm is the mass averaged velocity in the 

channel. Where uM is given as [42]:

ūm=
ṁ
ρ Ac

(3.4)

where ṁ is the mass flow rate in the channel and d rect is defined as:

d rect=
4Ac

P (3.5)

where Ac is the cross-sectional area of channel with width a  and length b .  P̃ is 

defined as the wetted perimeter and given algebraically as:

P̃=2(a+b) (3.6)

For laminar flow, Li et al [42] utilizes an accepted correlation for the hydrodynamic entrance 

length, which is given as:

Le

d
≈0.06ℜ (3.7)

From Spiegel, [60] the channel length is given as:

Lchan=
Acell

N chwcwL  (3.8)
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where Acell is the cell active area,  N ch is the number of parallel channels,  w c  is the 

channel width and w L is the space between channels. 

Further one notes that the flow in a channel is driven by a pressure difference between the 

inlet and outlet and the gas moves with a certain mean velocity. Spiegel [60] states that the 

pressure can be approximated using the equations for incompressible flow in pipes and is 

given as follows:

Δ P= f
Lchan

d ch
ρ (ū)

2

2
+∑ r Lρ

( ū)2

2  (3.9)

where is the  f friction factor,  d ch is the hydraulic diameter,   is the fluid density, 

ū is the average velocity and r L is the local resistance. The friction factor can be defined 

as [60]:

f =56
Re  (3.10)

The velocity at the fuel cell entrance is:

u=
(ṁ)stck

N cell N ch Ach
(3.11)

where  u is the velocity in the channel (m / s) , ṁ stck is the air flow rate at the stack 

entrance,  (m3/ s) ,  N cell is  the number of  cells  in  the stack,  N ch is  the number of 

parallel channels in each cell,  Ach and is the cross-sectional area of the channel, (m2) . 

When determining the pressure drop however,  for a porous flow field one utilizes Darcy's 

law which is given by the following:
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Δ P=μ
(ṁ)cell

K Ac
Lchan (3.12)

where  μ is  the  viscosity  of  the  fluid  , ṁcell  is  defined  as  the  geometric  flow rate 

through the cell and K the permeability [60].  

 

3.3 Gas Diffusion Layers

The  gas  diffusion  layer  (GDL)  is  found  between  the  flow  field  and  catalyst  layer,  as 

illustrated in Figure 7. It allows species to diffuse through it in order to reach the catalyst  

layer. The GDL is generally found to be lower in thermal conductivity and therefore partially 

insulates the heat generating catalyst [56]. When studying the GDL one needs to incorporate 

the physics of a porous matrix, the analysis of its equilibrium with the electrolyte and the gas, 

the thermodynamics  and kinetics  of the transport  process  [20].  The porosity of the GDL 

effects how reactants diffuse to the catalyst layer. A GDL is commercially available and are 

generally found to be made of carbon paper, or carbon cloth and a thickness ranging from 

100−400m [43]  .  The  function  of  the  carbon  paper  is  that  it  serves  as  a  structural 

support for the electrocatalyst [43].
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A GDL assists with the water management within the cell as it ensures that the membrane 

remains hydrated. The water formed should however not choke the pores of the paper or 

cloth.  It  is  for  this  primary  reason  they  are,  during  preparation  stages  coated  with 

polytetrafluoroethylene (PTFE) commonly known as Teflon [20]. Teflon provides the GDL 

with  a  certain  degree  of  hydrophobicity.  The  Gas  diffusion  layer  serves  as  a  electrical 

conductor between the carbon supported catalyst and the bipolar plates [9].

The conductivity of the GDL can be determined using Ohm's law [56]:

j 1=−01
1.5∇1 (3.13)

where j 1 is the electronic phase current density, 0 the electrical conductivity, 1
1.5 the 

volume fraction of ionomer and 1 the electronic phase potential. Further in Spiegel [56] 

there are four main modes of transportation within a porous media and are dependent on the 

molecule acceleration and environment, namely:

1. The Free Molecule also known as the Knudsen Flow: Where the mean free path of 

the molecule is considered to be very large compared to the pore diameter or the 

specie density is low. The collisions between molecules are considered negligible in 

comparison to that of molecules and walls.
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2. Viscous Flow:  Where the gas is  considered to be a continuum and the collisions 

between molecules are considered to dominate over those between the molecules and 

walls.

3. Ordinary Diffusion:  Movement is  driven by the gradients  found in temperature, 

concentrations  or  any other  external  forces.  Collision  between  the  molecules  are 

considered to dominate.

4. Surface Flow: From Spiegel [56] this is defined to be when the molecules move 

along a solid surface in an adsorbed layer.

Between the Knudsen and ordinary diffusion the choice of model is dependent on the relation 

between the molecules mean-free-path and its pore radius. If the mean free path is less than 

0.01 the pore radius ordinary diffusion dominates, 10 times greater than pore radius, Knudsen 

diffusion dominates [56].  

For gas phase transport in the GDL the Stefan-Maxwell equations can used and is given as 

the following [56]:

∇ xk=
∑k̄≠k

xk N k̄−x k̄ N k

CTot D k ,k̄
eff (3.14)

where  CTot is the total concentration or the total molar density of all of the gas species,

xk  and xk refer to the molar fractions,  N k and N k the superficial flux density of 

species k and k respectively. The interactions between gas species are denoted using a 

Stefan-Maxwell binary interaction parameter, however to consider the interaction between 

the solid one incorporates Knudsen diffusion [66]. 
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The  Knudsen diffusion coefficient, D k  for flow in a cylindrical, long straight pores with 

diffusive scattering is determined as follows:

D k=( 2
3

r̃)√ 8RT
πM k

(3.15)

where r̃ is the radius, R the ideal gas constant, T temperature and M the molecular 

weight  of  the  gas  species  k .  When  geometries  other  than  cylindrical  are  used,  the 

geometrical parameters can be incorporated into equation (3.15) [57].

 

The Knudsen and Stefan-Maxwell diffusion can be treated as mass-transport resistances in 

series yielding the following [56]:

∇ xk=
−N k

CTot DKk

eff +
∑k̄≠k

xk N k̄−x k̄ N k

CTot Dk ,k̄
eff (3.16)

where DK i

eff is the effective Knudsen diffusion coefficient [62, 66].

3.4 Catalyst Layers

     The catalyst layer found in PEMFCs' are situated on either side side of the membrane and are 

made of platinum, Pt or platinum alloys and carbon, see Figure 7. The noble metals, Pt and 

Pt- alloys are used as electrocatalysts.  The platinum particles found within this layer are 

nanometer in size and is often supported on high surface area carbon substrate. The carbon 

supports  provide a  relatively large surface area for the electrocatalyst  and provides  good 

electronic conductivity [72]. 

The primary function of the catalyst is to be very effective in breaking molecules into protons 

and electrons and as a requirement to do so one has to have a large enough surface area. The 
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catalyst  region is where the half-cell reactions occur [20]. The challenge in the choice in 

catalyst is to find one that is effective in breaking the hydrogen into protons and low in cost 

[58]. 

    

      Electrochemical energy conversion relies on a high catalytic reactivity [20]. The structure and 

composition of the surface of the catalyst strongly influences its electrocatalytic reactivity. 

From Basu et al,  [20] the relation between the reactivity and the structure is stated to be  

obscured  by  a  variety  of  parameters  such  as  the  properties  of  the  carbon  support,  the 

preconditioning of the catalyst and the structure of the interface between the electrolyte and 

the active area. 

    In the  investigation done by Spiegel  [58],  it  was concluded that  experimental  evidence 

supports that the electrocatalyst is supported on a carbon agglomerate and covered by a thin 

layer of membrane. For the  catalysis of a reaction the catalytic particles has to be in contact 

with both protonic and electronic conductors . Pathway for reactants to reach the catalyst sites 

and for reaction products to leave needs to exist.

      The point of contact or boundary between the reactants, catalyst and electrolyte is also known 

as the three-phase interface. It is further found that to be able to achieve reaction rates that are 

acceptable one requires that the active sites within the catalyst layer to be of several orders 

greater in magnitude than that of the geometric area of the electrode. It is for this reason that 

one finds the electrode to be made of a porous medium. 

   

     Spiegel [58] found that the fuel cell performance remained unchanged as the Pt/C ratio varied 

from 10%-40% with Pt loading of 0.4mg/cm2. Further to this it was concluded that when the 

ratio  was increased beyond 40% the fuels performance actually decreased.  From this the 

deduction  that  its  not  the  increased  Pt  loading  but  Pt  utilization  that  improved  the 

performance of the fuel cell [58].
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3.5 Proton Exchange Membrane

The  proton  exchange  membrane  is  the  layer  that  separates  the  anode  and  cathode 

compartments. High temperature fuel cell operate at temperatures greater than 120ºC and a 

the membrane most commonly used for this temperature range is a polybenzimidazole (PBI) 

membrane [15, 70]. The advantages of using PBI is that its light weight and is stable in the 

temperature range (150 – 200ºC) . In comparison to the Nafion membrane, used in most low 

temperature fuel cells, the PBI membrane is less dependent on water content, has a higher 

mechanical  strength,  lower  in  permeability  to  hydrogen  and  methanol  resulting  in  less 

crossover of fuel at elevated temperatures [15].

 

The PBI membrane conducts  protons  through a  solid  matrix  and its  conductivity can be 

improved through doping [70]. In the PBI membrane the H '+'  ions are transferred from 

one  another  via  hydrogen  bonds,  also  known  as  proton  hopping  [15].    In  the  Nafion 

membrane protons diffuse through the medium that is known as the solvable hydrogen ion 

species, H3O+  [15]. Therefore, the conductivity for the Nafion membrane is observed  to be 

directly related to the rate of carrier diffusion [15]. 

Further in Cheddie et al [15] an extensive comparison is done between the two membranes. 

The disadvantage of the PBI based membrane is that its conductivity is significantly lower 

than  the  Nafion  membrane.  Although  the  proton  conductivity  of  pure  PBI  is  very  low, 

literature by Tang et al [70] speak of remarkable increases in proton conductivity through 

methods of doping with phosphoric acid or sulfuric acid. Cheddie et al [15] reports the range 

for the conductivity of doped PBI to be 1−9 Sm−1 . A significant amount work would need 

to be done on the doped PBI membrane for it to even match the Nafion membrane where its 

conductivity is in the region of 17 Sm−1  [15]. 
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From Bouchet et al [10] PBI is considered to be made of linear chains whose monomer unit is 

displayed in Figure 8.
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Figure 8: Polybenzimidazol (PBI)  monomer unit [10]

 

 

 

 



Chapter 4: Computational Procedures

The physical aspects of fluid flow are governed by the fundamental principles discussed in 

chapter 1. These fundamental principles are for the  most part governed by partial differential 

equations. Computational fluid dynamics aids in replacing the partial differential equations 

with  values  and advancing  these  values  in  space  and or  time  [68].  In  theory  numerical 

solutions  to  problems  can  be  indistinguishable  from  the  exact  solution.  In  many  fields 

modelling has been found to cut costs and the manipulation of the scenario is advantageous. 

To model any scenario, certain assumptions pertaining to it are made. When implementing a 

model one should note that any simulation is only as accurate as its assumptions allow it to be 

[70, 36]. For this particular investigation the assumptions made are as follows:

• The  fuel  cell  is  assumed to  operate  under  steady state  and under  constant  load 

conditions. 

• The gas streams in the flow channel are at low velocities which implies the flows 

conforms to a low Reynolds number and therefore one can conclude that the flow is 

laminar. 

• The gases utilised by the system are considered to behave as ideal [7, 46].

• From the FLUENT Fuel Cell and Electrolysis Model Theory [3] it is noted that the 

water  activity is defined on the basis of the total water or super-saturated water vapor.

• Pure hydrogen is fed in at the anode and air is paralleled in the cathode gas channel 

[46].

• All water formed by the electrochemical reaction is assumed to be vaporous phase. 

This  is  due  to  the  high  operating  temperature  and  therefore  single  phase  flow is 

assumed [14, 46].
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• Water  transportation  across  the  membrane  is  ignored  because  the  water  drag 

coefficient  for  high temperature membrane is  low and therefore is  assumed to be 

negligible and equated to zero [7, 46].

• Dilute solution theory is used to determine the species diffusion [31]

• The membrane is considered to be impermeable to gases. The crossover of reactant 

gases and product water is neglected [46].

To model  the  fuel  cell  thermally one  considers  the  energy equation  which  serves  as  the 

transport equation for temperature [34, 64].  The energy of a system is such that the following 

principles hold [64];

 

Algebraically denoted as the following;

 dE
dt
=∇⋅k ∇ T −∇⋅Pu 

[
∂ u xx

∂ x

∂ u yx

∂ y

∂u  zx

∂ z

∂ v xy

∂ x

∂ v yy

∂ y

∂ v  zy

∂ z

∂w  xz

∂ x

∂w yz

∂ y

∂w zz

∂ z
]

S E

 

(4.1)

Energy is denoted by E , density ρ and temperature T. The term 
dE
dt is known as the 

substantive derivative and defined as follows:

dE
dt
=∂E
∂ t
∂E
∂ x

∂ x
∂ t
∂E
∂ y

∂ y
∂ t
∂ E
∂ z

∂ z
∂ t
=∂E
∂ t
u⋅∇E                            (4.2)
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On the left hand side of one has ∇⋅k ∇ T  which denotes the net rate of heat added to the 

fluid particle. The work done on a fluid particle for x component alone is given as:

[ ∂[u −P xx]
∂ x


∂u yx
∂ y


∂u  zx
∂ z ] x y  z  where (4.3)

u=u , v ,w (4.4) 

which denotes the superficial velocity vector in the porous media and  , as mentioned in 

the sections preceding, the density of the gas mixture. 

= 1
∑k

Y k /k                                                                                      (4.5)

where  Y k is  the  mass  fraction  of  species  k and  k the  density  thereof.  k is 

determined by the ideal gas relation of:

k=
P M k

RT                                                                                          (4.6)

where P is the gas pressure and  M k is the molecular weight and  R is the universal 

gas constant [45]. 

For a Newtonian fluid the rates of deformation are proportional to the viscous stresses [26]. 

The  stresses  due  to  viscosity  for  compressible  flows  involves  two  constants  of 

proportionality:  the first  relates  stresses to linear  deformations  and the notation hereof  is 

dynamic  viscosity,  μ  and  the  second  viscosity,  λ,  relates  stresses  to  the  volumetric 

deformation. The nine viscous stress components are as follows [64]:
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 xx=2 ∂u
∂ x

∇⋅u    (4.7) 

 yy=2 ∂v
∂ y

∇⋅u                                                                                             (4.8)

 zz=2 ∂w
∂ z

∇⋅u                                                                                    (4.9)

 xy= yx= ∂ u
∂ y

∂ v
∂ x                                                                             (4.10)

 xz= zx=∂ u
∂ z
∂w
∂ x                                                                                      (4.11)

 yz= zy= ∂ v
∂ z
∂w
∂ y                                                                                     (4.12)

Energy in the above mentioned equation is the sum of the internal (thermal) energy E i  and 

the kinetic energy 
1
2
u2v 2w2 , E=E i

1
2
u2v 2w2 . (4.13)

The part  of  the  energy equation  attributable  to  the  kinetic  energy can  be determined by 

multiplying the above mentioned equation for kinetic energy by the momentum of the fluid 

particle.  The momentum for  a  system,  from Newton's  second law states  that  the  rate  of 

change of momentum for a fluid particle is equal to the sum of the forces acting on the 

particle. From Versteeg et al [64] each momentum component, x, y and z direction is given 

algebraically and respectively as:

ρ du
dt
=
∂ (−P+τ xx )

∂ x
+
∂ ( τyx )
∂ y

+
∂ (τzx )
∂ z

+S M x (4.14)
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ρ dv
dt
=
∂ (τxy )
∂ x

+
∂ (−P τ yy )

∂ y
+
∂ ( τzy)
∂ z

+S M y (4.15)

ρ dw
dt
=
∂ (τ xz)
∂ x

+
∂ (τ yz)
∂ y

+
∂ (−P+τzz )

∂ z
+S M z (4.16)

where  SM is  rate  of  increase  in  momentum due  to  sources  with  respect  to  a  specific 

direction. Therefore for the conservation of kinetic energy one has the following equation 

[64]:


d [ 1

2
u2v2w2]

dt =−u⋅∇ Pu 
∂ xx
∂ x 

∂ yx 
∂ y 

∂ zx
∂ z 

v 
∂ xy
∂ x


∂ yy
∂ y


∂ zy
∂ z

w
∂ xz
∂ x


∂ yz
∂ y


∂ zz
∂ z

u⋅S M

             (4.17)

Therefore the resultant equation for internal energy is given as [63]:


dE i

dt
=−P∇⋅u∇⋅k ∇ T  xx

∂u
∂ x

 xy
∂u
∂ y

zx
∂ u
∂ z



 xy
∂v
∂ x

 yy
∂ v
∂ y

 zy
∂v
∂ z

 xz
∂w
∂ x

 yz
∂w
∂ y

 zz
∂w
∂ z

S Ei

 (4.18)

where S Ei
=S E=u⋅S M                                (4.19)

For compressible flows enthalpy is often incorporated and the specific enthalpy, h  , and total 

enthalpy 0h  of a fluid is defined as [64]:

h=E i
P
  and (4.20)

h0=h1
2
u2v2w2  or (4.21)
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h0 can be written as:

 h0=
P
ρ
+E . (4.22)

 A further deduction can be made to give the total enthalpy of a fluid to be [64]:

∂h0

∂ t
=−∇⋅h0u∇⋅k ∇T ∂ P

∂ t
∂u xx 

∂ x

∂u yx 
∂ y


∂u  zx
∂ z 

 ∂v xy 
∂ x


∂v yy 
∂ y


∂v  zy
∂ z  ∂w xz

∂ x

∂w yz
∂ y


∂w zz
∂ z S h

. (4.23)

Reviewing the equations for momentum and through substitution one derives the Navier-

Stokes equations.

 du
dt
=−∂ P

∂ x
 ∂
∂ x [2 ∂ u

∂ x
∇⋅u] ∂

∂ y [ ∂ u
∂ y

∂ v
∂ x]

∂
∂ z [ ∂u

∂ z

∂w
∂ y ]S x

(4.24)

 dv
dt
=− ∂P

∂ y
 ∂
∂ x [ ∂ u

∂ y
∂ v
∂ x ] ∂

∂ y [2 ∂ v
∂ y

∇⋅u]
∂
∂ z [ ∂ v

∂ z

∂w
∂ y ]S y

 (4.25)

 dw
dt
=−∂ P

∂ z
 ∂
∂ x [∂ u

∂ z
∂w
∂ x ] ∂

∂ y [∂ v
∂ z

∂w
∂ y ]

∂
∂ z [2 ∂w

∂ z
∇⋅u]S z

(4.26)

Looking at the x-component and by equation manipulation, one arrives at the following:
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 du
dt
=−∂ P

∂ x
 ∂
∂ x  ∂ u

∂ x  ∂
∂ y  ∂ u

∂ y  ∂
∂ z  ∂ u

∂ z 
[ ∂∂ x  ∂ u

∂ x  ∂
∂ y  ∂ v

∂ x  ∂
∂ z  ∂w

∂ x ] ∂
∂ x ∇⋅u S x

(4.27)

which  leads  to  a  very  useful  form  of  the  Navier-Stokes  equations  fundamental  to  the 

development of the finite volume method [64].

 du
dt
=−∂ P

∂ x
∇⋅ ∇ uS M x                                          (4.28)

For the purpose of this study, the stress tensor  can be ignored due to the low velocity of 

laminar flow [46]. To summarise the above in terms of a general variable ϕ, which gives the 

conservative form of all fluid flow equations, including scalar quantities such as temperature 

one has [64]:

∂
∂ t


Rate of increase of of fluid element

 ∇⋅u 
Net rate of flow of out of fluid element

= ∇⋅Dk ∇
Rate of increase of  duediffusion

S
Rate of increaseof due sources        

(4.29)

where D k  is the diffusion coefficient. As per  the assumption that one first looks at the 

behaviour when the system operates under steady state conditions, it implies:

∂ϕ
∂ t
=0 . (4.30)

In order to gain an understanding of the problem one could, as is to follow, consider the one 

dimensional scenario where the velocity field is known. As illustrated in Figure 9, the first  

step  in  the  implementation  of  the  finite  volume  method  is  to  divide  the  domain  under 
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investigation into discrete control volumes. The second step is the discretisation of the above 

continuous equations, which leads to the following [64]:

d
dx

D k
d
dx

= d
dx

 uS                                           (4.31)

Figure 9: One dimensional flow along the x-axis of domain length ab [13]

Looking at the particular example, a one dimensional length ab subdivided as per Figure 

9, one has the formal integration over a control volume as:   

∫V  d
dx D k

d 
dx dV=∫ V  d

dx u dV∫V
SdV           (4.32)

The method of discretisation is deduced from the Taylor series which gives:

x x =x ∂∂ x  x
 x∂2

∂ x2 
 x

 x2

2
...           (4.33)

which gives the change of  in the x direction. Following this form, one has the value of

 at the point east , E of point P  to be the following:

73

 

 

 

 



E= P∂∂ x P x∂2
∂ x2 

P

 x2

2
...           (4.34)

For the point west W of point P one utilises the following Taylor series:

x− x =x −∂∂ x  x
 x∂2

∂ x2 
 x

 x2

2
−...  which gives           (4.35)

W= P− ∂∂ x  P  x∂2
∂ x2 

P

 x2

2
−...           (4.36)

therefore one has for the above equation

(∂ϕ∂ x )P̃
=
ϕE+ϕP̃

Δ x
+O (Δ x) and                       (4.37)

∂∂ x  P= P−W

 x O  x            (4.38)

where  O(Δ x ) stands  for  the  truncated  terms  which  in  general  for  a  finite  difference 

scheme contains factors of Δ xn . Where the power n determines the rate at which the 

error tends to zero [64]. 

Therefore both of these equations are first order accurate. Subtracting the equations from 

each other allows one to evaluate the gradient at the mid-point  P which is second order 

accurate . This method is known as the central difference scheme and for point  P this is 

given as: 
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∂∂ x P=E−W

2 x O  x2 .           (4.39)

Applying this principle to the integrals above one arrives at the following:

(DK A d ϕ
dx )e

−(DK A d ϕ
dx )w

=(ρ Aϕu)e−(ρ Aϕu)w+ S̄ .           (4.40)

Flow should satisfy the continuity equation which states that with no external sources:

d u 
dx

=0           (4.41)

which when discretised is:

 A ue− Au w=0           (4.42)

From equation (4.39) one has the following:

(DK A d ϕ
dx )e

=DK e
Ae( ϕE−ϕ P̃

2 (Δ x /2)) and (4.43)

(DK A d ϕ
dx )w

=DKw
Aw( ϕP̃−ϕW

2 (Δ x / 2)) (4.44)

For simplification we define two variables H  and  , which represent the mass flux per 

unit area and diffusion conductance at cell faces.

H=u and          (4.45) 

Γ=
DK

Δ x .          (4.46)

The area A  is constant and therefore 
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Ae=Aw .    (4.47)

Substituting these equations into equations (4.43) and (4.44)  the results are as follows:

H ee−H ww=e E− P −w  P−W S .                (4.48) 

 From equation (4.42) one arrives at:       

H e−H w=0 .                                                                                               (4.49)

The central-differencing scheme uses linear interpolation for e and w such that

e=
 PE

2 and               (4.50)

w=
W P

2 and therefore               (4.51)

H e

2
 PE−

H w

2
W P= e E− P − w  P−W 

     (4.52)

By rearranging the above where one solves for the variable   at point P ,  P  as:

[e
H e

2 w−
H w

2 ] P=e−
H e

2 Ew
H w

2 W       (4.53)

If we let a E= e−
H e

2 and        (4.54) 

aW=w
H w

2  one has:        (4.55)
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a P P=a EEaWWS ,  where        (4.56) 

a P=aEaWH e−H wS P        (4.57)

 and where S P in this instance is equal to zero [64].

Another numerical scheme following a similar format is that of the upwind differencing. The 

point of difference however is that instead of the linear interpolation the central differencing 

scheme uses it makes the following conclusions:

• When fluid flow is in the positive direction uw0, ue0 which implies that H w

and H e is greater than zero the scheme sets w=W and e= P .

• When  flow  is  in  the  negative  direction  i.e.  uw0,ue0 which  implies  H w

H e be less than zero the scheme sets w= P and e=E [6, 64].

To  further  illustrate  the  finite  volume  method  the  numerical  method  called  the  hybrid 

differencing scheme is illustrated below. Spalding introduced the scheme in 1972 and it is 

based on a combination of the two numerical methods namely the central differencing and the 

upwind  differencing  schemes  mentioned  above.  As  mentioned  the  central  differencing 

scheme is accurate to the second order and is utilised by the hybrid differencing scheme for 

small Peclet numbers Pe2  it then in turn utilises the upwind differencing scheme for 

larger Peclet numbers. The Peclet number is a non-dimensional cell number which measures 

the relative strengths of convection and diffusion [64, 70]:

Pe=H
Γ
=

ρu
D k /Δ x                                                                           (4.58)
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The shorting coming of the central  differencing scheme is its  inability to determine flow 

direction, where in the event of the upwind differencing this is taken into account. The hybrid 

differencing scheme uses piecewise formulae based on the local Peclet number to evaluate 

the net flux through each control volume face. The Peclet number is evaluated at the face of 

the control volume [64]. Therefore in order to determine which numerical scheme to utilise, 

one has to firstly determine the Peclet number. Secondly, to make an informed decision on 

which numerical  scheme to use one should take into account  your  assumptions and then 

thirdly, in order to produce physically realistic results a numerical scheme should have the 

following three fundamental properties [64]:

•  Conservativeness – this is to ensure conservation of the property ϕ for the 

entire solution domain i.e. the flux of ϕ leaving a control volume across a certain 

face is equal to the flux of ϕ entering the adjacent control volume through the same 

face. 

•  Boundedness – Essentially this says that in the absence of sources the internal 

nodal values of property ϕ should be bounded by its boundary conditions. 

• “Transportiveness” as defined in Versteeg [64] – illustrates  the relationship 

between the magnitude of the Peclet number and the directionality of the flow.

The  five  most  popular  discretisation  schemes  are  the  Central  Differencing,  Upwind 

Differencing,  Hybrid  Differencing,  Power  Law  and  the  QUICK  scheme.  The  Central 

Differencing is not suitable for general purpose convection-diffusion problems as it  lacks 

transportiveness  and  gives  unrealistic  solutions  at  large  Peclet  numbers  [64].  Central-

differencing schemes are known to produce unbounded solutions which can lead to stability 

problems for the numerical procedure [6, 68]. From Versteeg et al [64], the Upwind, Hybrid 

and Power law possess conservativeness, boundedness and transportiveness and are highly 

stable however suffer from false diffusion in multi-dimensional flows if the velocity vector is 

not parallel to one of the co-ordinates directions. Higher order schemes such as the QUICK 
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can minimise the false diffusion problem that occurs in the Upwind, Hybrid and Power law 

schemes; however it is less computationally stable [64]. 

To  further  our  investigation  one  would  have  to  incorporate  the  understanding  of  the 

convection of a scalar variable such as temperature, pollutant concentration etc. that depends 

on the magnitude and direction of the local velocity field. For this we revisit the momentum 

equations. For the three dimensional laminar steady flow we have [64]:

x-momentum equation:

∂
∂ x

u u ∂
∂ y

v u ∂
∂ z

w u= ∂
∂ x  ∂u

∂ x  ∂
∂ y  ∂ u

∂ y  ∂
∂ z  ∂u

∂ z −∂ p
∂ x

S u  

(4.59)

y-momentum equation:

∂
∂ x

u v ∂
∂ y

v v  ∂
∂ z

w v = ∂
∂ x  ∂ v

∂ x  ∂
∂ y  ∂ v

∂ y  ∂
∂ z  ∂ v

∂ z −∂ p
∂ y

S v

                                                                                                                                (4.60)

z-momentum equation:

∂
∂ x

u w ∂
∂ y

v w ∂
∂ z

w w = ∂
∂ x  ∂w

∂ x  ∂
∂ y  ∂w

∂ y  ∂
∂ z  ∂w

∂ z −∂ p
∂ z

S w

 

(4.61)

This can be rewritten and is illustrated in [46], where a factor   is incorporated to consider 

the porosity of the electrodes and   as previously mentioned is the viscous stress tensor 

[64, 46].

1
2 ∇⋅uu =−∇ P∇⋅Su                                                                           (4.62)
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The velocity field  would then have to  satisfy the continuity equation,  which  is  given as 

follows:

∂
∂ x

u  ∂
∂ y

 v ∂
∂w

 z =0 .                                                                        (4.63)

For high temperature PEM fuel cells equation is stated as [45]:

∇⋅u =S m                                                                                                           (4.64)

Sm takes into account the influence external sources .

As with the before-mentioned equations, the momentum equations contains non-linearities 

each  of  which  are  intricately  coupled.  The  most  complex  matter  at  hand  is  solving  the 

pressure  gradient.  For  compressible  flow,  the  continuity  equation  can  be  considered  as 

transport equation for density and through the equation of state the pressure may be obtained 

[64]. The equation of state claims for a perfect gas that the following holds:

P= R T and   (4.65)

E i=C̃V T   (4.66)

For compressible fluids the equations of state provide the link between the energy equation 

and the mass and momentum conservations. The relation arises from the possibility of density 

variations as a result of pressure and temperature variations in the flow field [64]. 

A method to solve problems associated with non-linearities and pressure- velocities linkages 

is  through  the  application  of  a  numerical  method  specifically  catering  for  the  pressure-

velocity coupling.  Two such methods are  the SIMPLE,  SIMPLER algorithms,  which are 

iterative solution strategies. 
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SIMPLE  is  an  acronym  for  Semi-Implicit  Method  for  Pressure-Linked  Equations  and 

SIMPLER is  the  revised  version  thereof.  These  algorithms  use  the  relationship  between 

velocity and pressure corrections to enforce mass conservation and to obtain the pressure 

field [5]. Secondly, an approximate pressure field is used to derive the momentum equations. 

A pressure  correction equation,  deduced from the  continuity equation  is  solved and then 

incorporated into amending the approximated velocity and pressure fields [64, 5].

As the algorithm iterates the initial approximated pressure and velocity field parameters are 

improved until convergence is obtained. By implementing a staggered grid [64], pressure and 

velocities are determined at different nodal points. In Figure 10 one notes that the velocity is 

determined  at  nodal  points  referred  to  as  subdivisions w and e  whereas  pressure  is 

determined at nodal points referred to in the diagram as W  and E . This is primarily due 

to the fact that if velocities and pressures are both defined at the nodes of an ordinary control  

volumes a highly non-uniform pressure field can act as a uniform field in the discretised 

momentum equations [64]. The staggering of the velocity avoids the unrealistic behaviour of 

the  discretised  momentum  equation  for  spatially  oscillating  pressures.  Secondly,  this 

arrangement determines velocities at exactly the locations where required for scalar transport 

– convection and diffusion – computations.

In  the  staggered  grid  arrangement  the  pressure  gradient  at  point  P  is  given  by  the 

following [64]:

∂P
∂ x

=
P P−PW

 xu
                                                                                            (4.67)
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It then follows that the discretised u-momentum equation is given as follows:

a i , J u i , J=∑ anb unb−
P I , J−P I−1, J

 xu
 V uS V u                                       (4.68)

where   V u is the volume of the cell and  S V u is the momentum source term. The 

pressure gradient is found by linear interpolation between the pressure nodes located at the 

boundaries of the cell u . ∑ anbunb is the notation used to specify the neighbouring cells, 

east of point P  is i1, J  , west of point P  is i−1, J  , south by i , J−1

and north by i , J1 [64]. The coefficients a i , J and anb can be calculated using any 

of the previously mentioned differencing schemes. 
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The values for the mass diffusive flux, H and diffusion conductance  can be obtained 

at each of the subdivision points north, n , south, s , east e or west, w as specified 

below [64]:

H w=uw=
H i , JH i−1, J

2
=1

2 [ I , J I−1, J

2 u i , J I−1, JI−2, J

2 ui−1, J ] (4.69)

H e=ue=
H i1, JH i , J

2
= 1

2 [ I1, J I , J

2 ui1, J I , J I−1, J

2 ui , J] (4.70)

H s=v s=
H I , jH I−1, j

2
=1

2 [ I , J I , J−1

2 v I , j I−1, J I−1,J−1

2 v I−1, j] (4.71)

H n=v n=
H I , j1H I−1, j1

2
= 1

2 [ I , J1 I , J

2 v I , j1  I−1, J1 I−1, J

2 v I−1, j1]
(4.72)

w=
D k I−1, J

xi−x i−1
(4.73)

e=
D k I ,J

xi1− xi
(4.74)

 s=
Dk I−1, J

Dk I , J
Dk I−1, J−1

D k I , J −1

4 y J− y J−1 (4.75)

n=
Dk I−1, J 1

D k I ,J 1
Dk I−1, J

Dk I , J

4 y J1− yJ  (4.76)
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To start the implementation of the SIMPLE algorithm a pressure field and velocity fields is 

approximated,  P '∗' , unb
'∗'  and  v nb

'∗' .  These  values  are  incorporated  into  the  following 

equation to solve u i , J
'∗'  and v I , j

'∗' the velocity components [64, 5]. 

a i , J u i , J
'∗' =∑ anb unb

'∗'P I−1, J
'∗' −P I , J

'∗'  Ai , Jb i , J (4.77)

where bi , J=S V  is the momentum source term and for v I , j
'∗' (4.78)

a I , j v I , j
'∗' =∑ anb vnb

'∗'P I , J−1
'∗' −P I , J

'∗'  AI , jb I , j  (4.79)

From Versteeg et al [64] one has that  Ai , J is the the respective face area of the control 

volume  dependent  on  which  combination i , j , I , J is  specified.  Further  the  pressure 

gradient can be determined through linear interpolation between the pressure nodes found at 

the control volume boundaries. The values  found for u i , J
'∗' and v I , j

'∗'  is then used to solve 

the following equation to determine the pressure correction, P :

a I , J  P I , J=a I−1, J  P I−1, Ja I1, J  P I1, Ja I , J−1 P I , J−1a I , J1 P I , J1b I , J

(4.80)

The pressure correction is then used to determine the correct pressure and velocities [13, 72]:

P I , J=P I , J
'∗'  P I , J (4.81)

u i , J=ui , J
'∗'d i , J  P I−1,J− P I , J  and (4.82)

v I , j=v I , j
'∗' d I , j  P I , J−1− P I , J  (4.83)
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where d i , J=
Ai , J

a i , J and (4.84)

d I , j=
A I , j

a I , j (4.85)

In determining the correct values for the pressure and velocities the respective ∑ anbunb

terms have been dropped which is  the main approximation of the SIMPLE method [64]. 

These correct values and the initial guessed values for all other transported variables,   is 

solved using the following equation:

a I , JI , J=a I−1, JI−1, JaI1, JI1, JaI , J−1I , J−1a I , J1I , J1bI , J (4.86)

The  SIMPLE  algorithm  is  an  iterative  process  whereby  the  process  continues  until 

convergence is reached.

To model the fuel cell a commercial computational fluid dynamics (CFD) package called 

FLUENT is used. FLUENT is a parallel code which uses the above mentioned algorithms for 

the finite volume method and is iterative segregated implicit solver [46]. As an application, 

FLUENT already has a pre-existing PEM fuel cell package. In the PEM fuel cell model the 

transfer of current at the anode and cathode is by default the Tafel equation and as an option 

the Butler Volmer [3]. To ensure the model caters for the specific problem at hand, certain 

user defined functions (UDFs) needed to be changed. UDFs allow the user to customise the 

program to cater their problem specific [3]. The UDF functions are written in C code and 

found in an accompanying FLUENT file named pem_user.c [3, 25]. 

In  order  to  model  the  PEM fuel  cell  thermally,  as  mentioned  earlier  in  the  chapter,  the 

transport  equation one evaluates  is  that  of energy.  As discussed prior to this  chapter,  the 
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conservation of energy for a high temperature PEM fuel according to Peng et al [46] and is 

given as:

∇⋅u EP =∇⋅eff ∇ T−∑ hk J k eff⋅uS h  (4.87)

where J k is the flux of species k and defined by the following equation:  

J k=−∑k=1
ρD k∇ Y k                                                                                  (4.88)

D k is the diffusion coefficient and Y k is the mass fraction of species k . eff is the 

effective stress tensor, which from the assumption that the flow for the fuel cell is laminar can 

be ignored. eff
is defined as the thermal conductivity in a porous material consisting of the 

electrode solid matrix and gas. In FLUENT however, the gas diffusivity can be determined 

either by using what is known as the Dilute approximation or the Multicomponent method. 

With the dilute approximation method and the method undertaken we have:

D k=
1.51−s rs Dk

0P0

P 
p

 T
T 0

 t

                                                                         (4.89)

where  D k
0 is  the mass  diffusivity of  species  k at  reference temperature and pressure 

P0 , T 0 . s  is defined as the volume fraction of liquid water or the water saturation. 

This,  as part  of the high temperature investigation is  equated to zero.  The values for the 

exponents  p , t  and the pore blockage exponent r s is given as [3]:

P0=101325 N /m2

T 0=300K
 p=1
 t=1.5
rs=2.5
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The full  multicomponent diffusion method contains corrections that take into account the 

porous media tortuosity [4]. 

Deff
ij =1.5 Dij

                                                                                                            (4.90)

where  Deff
ij is  the  effective  gas  species  diffusivity,   is  the  porosity  of  the  porous 

medium, and Dij
is the gas species mass diffusivity computed by the full multicomponent 

diffusion method and is given as:

Dij=[D ]=[A]−1[B]                                                                                                 (4.91)

Aii=− X i

Di.N

M w

M w , N

∑ j=1, j≠i

N
X j

Dij

M w

M w , i
                                                                (4.92)

Aij=X i 1
Dij

M w

M w , j
 1

Di.N

M w

M w , N                                                                              (4.93)

Bii=−X i

M w

M w , N
1−X i

M w

M w ,i                                                                            (4.94)

Bij=X i M w

M w , j


M w

M w , N                                                                                           (4.95)

where [A] , [B] and  [D ]  are  N−1×N−1 matrices,  X is the mole fraction 

and M refers to the respective molecular weights [4]. 

The second, very significant change to the model that needs to be implemented is that of the 

ionic conductivity of the membrane. The membrane in the model by default is one that caters 
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for a low temperature PEM fuel cell  which has a dependency on the water content.  The 

equation hereof is given as:

mem= 0.514 −0.326 e
1268 1

303
− 1

T                                                                      (4.96)

where   is the water content and   and   are model constants. For the following 

investigation the membrane conductivity equation modelled is [46]:

mem=0 e
[−E A,

R  1
T−

1
T 0]                                                                                              (4.97)

where from Peng et al [46],

0=12.99 Sm−1  and     (4.98) 

E A,  is defined as the activation energy. 

At the time of the investigation however, all required material parameters were unavailable 

and therefore a decision was made to incorporate,  unless specified in Peng et al,  use the 

default material parameters available in FLUENT. This would also aid in doing somewhat of 

a  comparative  study.  Therefore  for  the  membrane conductivity  the  following equation  is 

modelled:

mem=0 e
[1268 1

303
−1

T ] .  (4.99)

The  water  drag  coefficient  for  high  temperature  membrane  is  low  it  is  assumed  to  be 

negligible [3, 46]. The implication hereof is that one no longer needs to take into account the 

electro-osmotic water flux through the membrane [41]. 
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The  FLUENT  module  used  in  the  computional  section  of  this  work  caters  for  a  low 

temperature fuel cell  and therefore amendments to the module had to be incorporated. In 

order to do so, one implements these changes in a user defined function and for this particular 

application it is called pem_user_c. Here the osmotic drag coefficient for low temperature 

fuel cells is given as:

nd=2.5 
22                                                                                                           (4.100)

Where in place of equation (4.100) the below equation was implemented

nd=0 . (4.101)

 The water content,  is defined is the FLUENT UDF as:

=0.04317.18a−39.85a236 a3a1                                                   (4.102) 

=141.4a−1a1 (4.103)

where a is the water activity and is given as:

a=
PWV

P sat
2s                                                                                                          (4.104)

and as previously mentioned s is the volume fraction of liquid water or the water saturation 

therefore a is reduced to:

 a=
PWV

P sat
                                                                                                            (4.105)

PWV is  the  water  vapor  pressure  and is  given  as  product  of  the  vapor  molar  fraction, 

x H 2 O  and the local pressure, P [4].
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PWV=x H 2 O P .                                                                                                 (4.106)

P sat the saturation pressure is found by the following equation:

log10 P sat=−2.17940.02953T−273.17−9.1837×10−5T−273.172

1.4454×10−7T−273.173      (4.107)

Therefore the procedure to model the channel flow of a high temperature PEM fuel cell in 

FLUENT is [3]:

1. Creating  and  defining  the  geometry  of  the  fuel  cell  channels  in  the  package 

available from ANSYS.

2. Creating an appropriate mesh for the above mentioned geometry.

3. Importing the mesh file into FLUENT.

4. Defining  fuel  cell  parameters,  incorporating  assumptions,  setting  up  of  the 

operating and boundary conditions and then to start calculations.

5. On successful completion, close all applications, incorporate the above mentioned 

changes into pem_user.c and rerun the calculations with the changes.

6. Process results.
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Chapter 5: Results and Discussion

The first part of our investigation requires that the respective geometry be generated and be 

defined, which can be viewed in Figure 11.

The physical and geometric parameters is given in table 3.

Table 3: Geometrical Parameters [46]

Parameters Value Unit

Cell Width 3.4 mm

Channel Length 235 mm

Channel Height 0.7 mm
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Figure 11: Geometry of PEM Fuel Cell modelled
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Table 3: Geometrical Parameters [46]

Anode Channel Width 0.7 mm

Cathode Channel Width 1 mm

Anode GDL Thickness 0.34 mm

Cathode GDL Thickness 0.34 mm

Anode Catalyst Thickness 0.04 mm

Cathode Catalyst Thickness 0.11 mm

Membrane Thickness 0.07 mm

Electrode Height 2 mm

The second step is creating the mesh/ grid on the geometry such that the can be calculated as 

specified in chapter 3. The mesh of the above geometry is given in Figure 12 and the quality 

of the mesh is given in table 4.
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Table 4: Mesh Quality

Number of Grid Points 227 103

Number of Elements 216 000

Maximum Cell Squish 0.82

By comparison to the number of mesh points as indicated in Peng et al [46] whose work is on 

the same geometrical parameters, 180 000 grid points was found to provide sufficient spatial 

resolution. Once the geometry and mesh has been created one exports it into FLUENT. On 

launching the  FLUENT double  precision  and four  processes  was  selected  for  processing 

options. 
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Figure 12: Mesh for PEM fuel cell channels Modelled

 

 

 

 



Within the Fuel Cell and Electrolysis Model, the model options selected was joule heating, 

reaction  heating,  electrochemistry  sources  and  the  Butler-Volmer  rate.  The  joule  heating 

option takes into account ohmic heating. In the study done by Peng et al [46] the ohmic 

heating is assumed to negligible in all areas other than the membrane. Motivation for this 

assumption is due to the high electric conductivity of these materials. Reaction heating takes 

into  account  heat  generated  from  the  electrochemical  reactions.  Including  the 

electrochemistry  sources  ensures  that  the  model  takes  into  account  the  effects  from the 

electrochemistry. For the calculation of the transfer currents the Butler-Volmer was selected.

In specifying the model parameters the values in table 5 was incorporated. The Open-Circuit 

Voltage is taken as 1.2V. The mass flow rates are values calculated using equations specified 

in  the  mass  transfer  section  of  chapter  1,  where the  current  density  incorporated  in  the 

calculations are those specified by Peng et al [46]. Values, unless referenced differently are 

taken as the parameter values available in FLUENT. As per Peng et al [46] the solutions are 

considered to have converged when the relative error in each field between two consecutive 

iterations was less than 1×10−6 .

Table 5: Electrochemical properties

Anode Cathode

Reference  exchange current  density 

Am−3

1×108
 [22] 170  [22]

Reference Concentration (kmol/m3) 1 1

Concentration Exponent 0.5 1

Exchange Coefficient 2 2

Porosity of GDL 0.8 [22] 0.8 [22]

Porosity of GCL 0.6 [22] 0.6 [22]
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Table 5: Electrochemical properties

GDL  and  GCL  Hydraulic 

permeability

1.0×10−15 1.0×10−15

The value membrane ionic conductivity, 0  as mentioned in chapter 3 is 12.99 S /m .The 

material properties for the current investigation are taken to be default properties available in 

FLUENT and this is due to, as previously mentioned, that an entire set of parameter values 

was  not  available  at  the  time  of  the  investigation.  The  boundary  conditions  used  in  the 

investigation is given in table 6. The semi-colon separating values are with respect to the 

electric potentials, 0.4V, 0.6V and 0.8V.

Table 6: Boundary Conditions

Value Unit

Anode Inlet

Mass flow rate 3.21×10−7 ; 1.52×10−7
; 2.35×10−8

 using 

equation (1.107)

kg/s

Temperature 433 [46] K

Direction  specification 

method

Normal to Boundary -

Mass fractions H2;H2O 1;0 [46] -

Water Saturation 0 [3]

Cathode Inlet

Mass flow rate 1.39×10−5 ; 6.59×10−6 ; 1.02×10−6 using 

equation (1.109)

kg/s
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Table 6: Boundary Conditions

Temperature 433 [46] K

Direction  specification 

method

Normal to Boundary -

Mass fractions O2:H2O 0.22;0 [46] -

Water Saturation 0 [3]

Anode  and  Cathode 

Outlets 

Pressure 1.1 [46] atm

Temperature 433 [46] K

Terminal Anode

Temperature 433 [46] K

Electric Potential 0 [46] V

Terminal Cathode

Temperature 433 [46] K

Electric Potential ( V cell ) 0.4, 0.6,0.8 [46] V

From  the  ANSYS  PEM  fuel  cell  tutorial  for  modelling  a  single  channel  [25],  the 

recommendations  for  solution  controls  were  kept.  These  include  the  multi-grid  settings 

recommended,  which  are  to  change  all  parameters'  multi-grid  cycle   to  F-cycle  with 

BCGSTAB, which stands for bi-conjugate gradient stabilized method, which is a stabilization 

method for the species and the two potential equations [3].  

96

 

 

 

 



In  Figure  13  the  magnitude  of  average current  density  distribution  in  the  membrane  is 

displayed. Where the local current density I is determined by the following equation [46]:

I=−κmem∇Φmem  (5.1)

where  κmem and  Φmem are  as  previously  mentioned,  the  membranes'  electrical 

conductivity and electronic phase potential respectively. The average current density, I avg

is the average of the local current density over the membrane and is determined as follows 

[46]:

I avg=
1

Amem
∫
Amem

I⋅dA  (5.2)

where Amem is the membrane area. In Figure 14 the molar concentration of oxygen in the 

cathode catalyst is displayed and in Figures 15 and 16 the local overpotential distribution at 

the anode catalyst, a  and at the cathode catalyst,  c respectively.  For each of these 

scenarios V cell=0.6V .
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Figure 13: Magnitude of average current flux density (A/m2) through Membrane y=1.185mm
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Figure 14: Contours of Molar concentration of 0 2 (kmol/m3) in Cathode Catalyst layer y=1.095mm

Figure 15: Contours of Over-potential (V) in Cathode Catalyst layer y=1.095mm
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Figure 16: Contours of Over-potential (V) in Anode Catalyst layer y=1.240mm

From Figure 14 one deduces that the concentration of oxygen is least in the areas where the 

anode and cathode gas channels coexist due to consumption and more specifically that the 

concentration of oxygen becomes less with the flow direction. The concentration decreases 

along the gas flow direction which is to be expected, for it decreases as the electrochemical 

reaction proceeds. This corresponds to the results in Peng et al [46] and therefore the average 

current density decreases along the flow direction. The local overpotential in Figures 15 and 

16, illustrates that the plot for c corresponds with the results of Peng et al, as it decreases 

with flow direction and is of the same order of magnitude. From Peng et al [46] this results 

from the ohmic loss along the flow direction where a decrease in average current density also 

exists. For a the decrease along the flow direction, is not as apparent as that of the cathode 

overpotential  but does exist,  which coincides with distribution of average current density, 

however in comparison with the results of Peng et al, the values in this study are orders of  

magnitude lower.  
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concentration of oxygen becomes less with the flow direction. The concentration decreases 

along the gas flow direction which is to be expected, for it decreases as the electrochemical 

reaction proceeds. This corresponds to the results in Peng et al [46] and therefore the average 

current density decreases along the flow direction. The local overpotential in Figures 15 and 

16, illustrates that the plot for c corresponds with the results of Peng et al, as it decreases 

with flow direction and is of the same order of magnitude. From Peng et al [46] this results 

from the ohmic loss along the flow direction where a decrease in average current density also 

exists. For a the decrease along the flow direction, is not as apparent as that of the cathode 

overpotential  but does exist,  which coincides with distribution of average current density, 

however in comparison with the results of Peng et al, the values in this study are orders of  

magnitude lower.  

Figure 17  illustrates the membrane phase potential.  From Peng et al [46] the reason for  

gradients in y directions is due to the non-uniform local current production in the adjacent 

catalyst layers. In Figures 18 and 19 the contours of electric potential for the cathode and 

anode regions are illustrated respectively.
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Figure 17: Contours of Protonic Potential (V) in Membrane 
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The results  in Figure 18 corresponds to that of Peng, where the maxima occurs near the 

cathode catalyst and above the gas flow channels. In Figure 19, for anode side one has that 

the local minima occurs near the region of the catalyst  and where the gas flow channels 

coexist. From Peng [46], this results in slower electrochemical reactions, with the implication 

of lower average current density.
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Figure 18: Contours of Electric Potential (V) in Cathode Current 
Collector and GDL
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For  the  next  part  of  the  investigation  and  the  aim of  the  investigation,  we  look  at  the 

temperature  distribution  in  the  channel.   Figures  20,  21  and  22  shows  the  temperature 

distribution within the membrane at V cell values of 0.4V  and high average current density 

I=1.025 A cm−2 , V cell value of 0.6V  and average current density  I=0.485 A cm−2

and a V cell value of 0.8V and low average current density I=0.075 Acm−2 respectively.
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Figure 19: Contours of Electric Potential (V) in Anode Current Collector and GDL
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For the high average current density, Figure 20 one find that the temperature maxima occurs 

where the gas channels coincide.
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Figure 20: Contours of Static Temperature (K) in Membrane for Vcell = 0.4 V and high average 
Current Density I = 1.025 A cm-2,  y=1.185mm
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Figure 21: Contours of Static Temperature (K) in Membrane for Vcell = 0.6 V and  average 
Current Density I = 0.485 A cm-2 , y=1.185mm
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In  the  case  of  V cell=0.6 it  is  apparent  that  the  temperature  increases  along  the  flow 

direction. For the low average current density state, V cell=0.8  Figure 22, the temperature 

difference between the inlet and outlet is small in comparison to when V cell=0.6 , Figure 

21. The temperature maximum occurs, in all cases, in the centre, where the gas channels 

coincide. In the following Figures, for each of the of the cases V cell values of 0.4 and 0.8, 

the temperature distribution of the mid-way section of the fuel cell is displayed.
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Figure 22: Contours of Static Temperature (K) in Membrane for Vcell = 0.8 V and low average 
Current Density I = 0.075 A cm-2 , y=1.185mm
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As with the membrane cross-section it is evident when comparing Figures 23 and 24 that the 

temperature variation increases with increasing average current density. 
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Figure 23: Contours of static Temperature (K) in the midway section, z=117.5 of the 
fuel cell Vcell = 0.4 V and high average Current Density I = 1.025 A cm-2

Figure 24: Contours of Static Temperature (K) in the midway section, z=117.5mm, of 
the fuel cell for Vcell = 0.8 V and low average Current Density I = 0.075 A cm-2

 

 

 

 



Chapter 6: Conclusion and Future Prospects

In this investigation a single-phase, high temperature PEM fuel cell model was studied and 

implemented  in  the  framework  of  a  CFD  package,  FLUENT.  The  complete  set  of 

conservation equations, mass, momentum, energy, species and charge are taken into account 

and solved numerically with a proper account of electrochemical kinetics. In modelling the 

fuel cell, all water produced was considered to be in vaporous form, given the temperature 

and  pressure  range  in  which  the  fuel  operates.  The  transportation  of  water  across  the 

membrane is therefore ignored due to the low water electro-osmotic drag force [46]. 

The  material  properties  of  each  layer  of  the  fuel  cell  model  is  a  combination  of  those 

presented in the work of Peng et al [46] , where high temperature PEM fuel cell operation is 

presented  and  pre-existing  properties  in  FLUENT.  In  chapter  2,  the  challenges  and 

advantages of high temperature operation is discussed and it is the hope to in future take 

better account hereof. The numerical method taken in account, discussed in chapter 3, is the 

SIMPLE algorithm. 

In  this  investigation,  straight-channels  of  a  PEM  fuel  cell  at  an  operating  temperature 

T=433K was  studied  numerically,  evaluating  the  temperature  distribution  and  cell 

performance and comparative study to the work of Peng et al [46] was done. From the results, 

two deductions are made corresponding to the work done by Peng et al [46],  the current flux 

density decreases with flow direction whereas the of operating temperature increases, Figures 

13 and 21, and the temperature variation across the fuel cell increases with the increasing of 

average current density.
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