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ABSTRACT

MSc Statistics Thesis, Department of Statistics, University of the Western Cape.

Estimation of population distributions, from samples which are contaminated

by measurement errors, is a common problem. This study considers the prob-

lem of estimating the population distribution of independent random variables

Xj, from error-contaminated samples Yj (j = 1, . . . , n) such that Yj = Xj + εj,

where ε is the measurement error, which is assumed independent of X. The

measurement error ε is also assumed to be normally distributed. Since the

observed distribution function is a convolution of the error distribution with

the true underlying distribution, estimation of the latter is often referred to

as a deconvolution problem. A thorough study of the relevant deconvolution

literature in statistics is reported.

We also deal with the specific case when X is assumed to follow a truncated

Pareto form. If observations are subject to Gaussian errors, then the observed

Y is distributed as the convolution of the finite-support Pareto and Gaus-

sian error distributions. The convolved probability density function (PDF)

and cumulative distribution function (CDF) of the finite-support Pareto and

Gaussian distributions are derived.

The intention is to draw more specific connections between certain deconvolu-

tion methods and also to demonstrate the application of the statistical theory

of estimation in the presence of measurement error.

A parametric methodology for deconvolution when the underlying distribution

is of the Pareto form is developed.

Maximum likelihood estimation (MLE) of the parameters of the convolved dis-

tributions is considered. Standard errors of the estimated parameters are cal-

culated from the inverse Fisher’s information matrix and a jackknife method.

Probability-probability (P-P) plots and Kolmogorov-Smirnov (K-S) goodness-

of-fit tests are used to evaluate the fit of the posited distribution. A bootstrap-

ping method is used to calculate the critical values of the K-S test statistic,

which are not available.

 

 

 

 



Simulated data are used to validate the methodology. A real−life application

of the methodology is illustrated by fitting convolved distributions to astro-

nomical data

March 1, 2010
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Chapter 1

General Introduction and

Objectives

1.1 Introduction

A statistical problem which is common in many areas of research such as econo-

metrics, astronomy, public health or biostatistics is the need to derive population

properties from samples which are contaminated by measurement errors. In the

statistical literature, a sample is defined as a subset of a population. Typically,

“population” is the conceptual totality of objects under consideration. Samples are

selected from the population and statistics are calculated from the samples so that

one can make inferences or extrapolations from the sample to the population. In

this study, the sample values are measured, but subject to measurement errors.

The observed contaminated sample values are then used to estimate the underlying

population (i.e., general) properties. An example includes density or distribution

estimation of a variable X given data Y . Estimation of these values is known to

be problematic if the variable X is measured with errors. Previous work with this

problem generally has used the assumption that the measurement errors have a

Gaussian distribution (Eltinge, 1999). Problems of this nature are commonly called

measurement error problems, and statistical models and methods for analysing such

sample data are called measurement error models (Stefanski, 2000).

The first part of this study reviews the literature on nonparametric density/distribution

estimation based on contaminated samples. Some relevant references are Mendel-
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sohn and Rice (1982), Stefanski and Carroll (1990), Masry and Rice (1992), Efro-

movich (1997), Carroll and Hall (2004), Chen et al. (2003), Devroye (1989) amongst

others. The second part is concerned with parametric estimation methods. The ap-

proach is to assume a certain distribution family for the observed contaminated

sample values and estimate the parameters of the specific family member. Chap-

ter 4 contains an extensive discussion of the parametric method. In the statistical

literature, researchers often focus on the theoretical underpinnings whereas here,

the focus is only the methodology and theory of reasonably immediate practical

relevance.

1.2 Measurement error problems

The model for a variable X measured with error ε is

Y = X + ε (1.1)

where

(i) X is the underlying variable of interest

(ii) Y is the observed value

(iii) ε is the difference between the underlying variable X and the observation Y ;

ε is also called measurement error and assumed to be independent of X.

In many areas of application, statistically meaningful models are defined in terms of

variables X that for some reason are not directly observable. In such situations, it

is common for substitute variables Y to be observable instead. The substitution of

the variable Y for X complicates the statistical analysis of the observed data when

the purpose of analysis is inference about a model defined in terms of X (Stefanski,

2000). Problems of this nature are commonly called measurement error problems.

Some examples include, measurements of systolic blood pressure (Stefanski, 2000);

environmental risk factors, case-control studies of disease and serum hormone lev-

els, food intake records, 24-hour recalls and biomarkers (Carroll, 1997). Other more

detailed examples of measurement error problems have been given by Carroll et al.

(1995) and Meister (2009).
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Generally, there are two statistical methods for estimating the underlying population

properties. One is the parametric approach and the other is a nonparametric one.

1.2.1 The nonparametric approach

The nonparametric method does not specify a particular family of distributions.

There is a particularly extensive literature on solving the problem posed by model

(1.1), where one wishes to estimate the distribution function of X.

Suppose the underlying variable X has the probability density function (PDF) fX(·),
and ε has the PDF fε(·). The random variable Y in (1.1) has the PDF fY (·) given

by the convolution integral

fY (y) =

∫ ∞

−∞
fε(y − x)fX(x) dx (1.2)

(Mood et al., 1974). The corresponding cumulative distribution function (CDF) of

Y can be expressed as

FY (y) =

∫ ∞

−∞
fε(y − x)FX(x) dx (1.3)

(Billingsley, 1994 and Gaffey, 1959). The form of fε(·) is usually assumed to be

known.

The problem is to estimate the density fX(·) and/or the CDF FX(·) given obser-

vations {y1, y2, . . . , yn} and the density fε(·). The estimation of fX(·) in (1.2) and

FX(·) in (1.3) is referred to as the deconvolution problem. Measurement error prob-

lems are sometimes called deconvolution problems.

Density deconvolution has been addressed by several authors, including amongst

others Carroll and Hall (1988), Fan (1992), Liu and Taylor (1989), Stefanski and

Carroll (1990), Carroll and Hall (2004) using kernel methods. Turlach and Hazelton

(2008) proposed an approach to density deconvolution, based on the use of weighted

kernel estimators. Masry and Rice (1992) address the problem using estimates of

the derivatives of the convoluted density. Cordy and Thomas (1997), Mendelsohn

and Rice (1982), Chen et al. (2003) treated the settings where distribution function
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can be expressed as a finite sum of known distribution functions. Gaffey (1959) and

Stefanski and Bay (1996) considered estimating the distribution FX in the presence

of normally distributed measurement error.

The methodologies for several nonparametric deconvolution methods used to esti-

mate the density fX(·) and the distribution FX(·) are briefly discussed in Chapter

3.

1.2.2 The parametric approach

The parametric approach is to assume a certain distribution family for the observed

contaminated sample values and estimate the parameters of the specific family mem-

ber. Specifically, the general forms of the densities fX(·) and fε(·) in (1.2) are (as-

sumed) known, but one wants to estimate some parameters in one or both densities.

In Chapter 4, we deal with a specific case where X has a power-law (i.e., Pareto)

form. The parameters of the distribution of X, given data y and assuming Gaussian

errors ε are estimated. The standard method of maximum likelihood for parameter

estimation is indicated, and developed here.

1.3 Assumptions

In order to construct any estimation method to analyse the effect of measurement

error, one needs to make some assumptions about the process which generates the

differences between the underlying variable of interest X and the observed value Y .

The two critical common assumptions that underlie the measurement error model

are as follows:

(i) The independence between the random variables X and ε. This describes that

the targeted random variable X does not have any effect or influence on the

measurement error ε.

(ii) The measurement error ε is known to have a normal distribution with zero

mean and variance σ2. The normal error variance σ2, which may be unknown,

is assumed constant across the observations.

These assumptions have been documented in all studies related to deconvolution

problems. Therefore, except where otherwise stated, these assumptions are made
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throughout this research project.

1.4 Motivation of the Study

The work presented in this project was motivated by an application of statistical

theory to the Astronomy and more precisely to the statistical analysis of masses of

giant molecular clouds. That is, the estimation of the distribution of the masses of

molecular clouds in the galaxy M33 and the Large Magellanic Cloud (LMC), and to

the mass distribution of H I (neutron hydrogen) clouds in the LMC. The analysis

is presented in Chapter 5. Refer to Rosolowsky (2005) for a clear review of the

importance of the mass spectra of giant molecular clouds.

1.5 Objectives

In summary, the work presented in this project aims to:

1. provide a review of the statistical literature on deconvolution of distribution

functions;

2. draw more specific connections between certain techniques;

3. contrast the various methods;

4. develop methodology for deconvolution when the underlying distribution is

known to be of power-law (i.e. Pareto) form;

5. apply the methodology to the estimation of the distribution of the masses of

giant molecular and H I clouds.

1.6 Project Structure

Basic definitions of the methods used here are introduced in Chapter 2.

Chapter 3 consists of a study of the relevant deconvolution literature. The selection

of the methods proposed in the literature is primarily based on three criteria namely

popularity, appealing logic, and simplicity. The various methods are described in

Chapter 3 in summarised form. Parametric estimation based on a sample drawn
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from a population with a truncated Pareto distribution is dealt with in Chapter 4.

An application of the methodology to real data is reported in Chapter 5.

This project will conclude in Chapter 6 with recommendations and outlooks for

possible extensions.

Computer programs, which were used to obtain the results reported, are given in

the Appendices. Coding of the numerical routines is in MATLAB.
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Chapter 2

Basic Definitions

The definitions given below are very useful.

2.1 Empirical distribution function

The CDF of the random variable Y is defined as FY (y) = P (Y ≤ y) and is estimated

from the sample by the empirical distribution function (EDF)

Fn(y) =
1

n
(number of observations ≤ y)

=

∑n
j=1 I(Yj ≤ y)

n

where I(Yj ≤ y) is an indicator function which assumes the value one, when the

inequality is satisfied and zero when it is not. Therefore, in one dimension, the EDF

is a step function with jumps of size 1/n at every point.

2.2 Kernel function

The kernel function K is a weighting function used in nonparametric density es-

timation (Silverman, 1986). The function K is usually, but not always, piecewise

continuous, bounded, symmetric around zero, and for convenience often integrates

to one. Kernel functions can be probability density functions, such as the normal

density.

7

 

 

 

 



2.3 Goodness-of-fit of a statistical model

The goodness-of-fit of a statistical model describes how well the model fits the data.

Probability-Probability (P-P) and Quantile-Quantile (Q-Q) plots are the most com-

monly used informal goodness-of-fit tests. Both P-P and Q-Q plots are used to see

if a given set of data follows some specified distribution. These plots should be

approximately linear if the specified distribution is the correct statistical model.

There are a number of statistical tests which can be performed that are more formal

− the Kolmogorov-Smirnov (K-S), Anderson-Darling, Cramer-von-Mises are prob-

ably the best known. All three of these statistics measure discrepancy between the

theoretical and empirical CDFs, and in that sense are quantitative (rather than vi-

sual) methods. Another well known goodness-of-fit test is the Chi-square (χ2). It

compares the observed and predicted numbers of data elements in selected intervals.

2.3.1 Probability-Probability plot

The probability-probability plot is constructed using the theoretical CDF, FY (y), of

the specified statistical model. FY (y(j)) is plotted against the empirical CDF defined

in Section 2.1, where y(j) is the jth ordered sample observation (j = 1, 2, . . . , n).

Parameters which occur in FY (y) are replaced by estimated values. The same applies

to other procedures discussed below.

2.3.2 Quantile-Quantile plot

For the quantile-quantile plot - y(j) is plotted against the quantile F−1
Y [(j − 0.5)/n].

2.3.3 The Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test is based on the empirical CDF. The K-S test statistic

is the maximum difference between the theoretical CDF and the empirical CDF:

D = sup
y
|FY (y)− Fn(y)|
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2.3.4 The Anderson-Darling test

The Anderson-Darling test is a modification of the K-S test. The test statistic is

A2 = −n− S

where

S =
n∑

j=1

(2j − 1)

n

[
log FY (y(j)) + log

(
1− FY (y(n+1−j))

)]
.

This test is one-sided, like those described in subsections 2.3.3, 2.3.5 and 2.3.6.

2.3.5 The Cramer-von-Mises test

The Cramer-von-Mises test is also based on the empirical CDF. The test statistic is

T = nW 2 =
1

12n
+

n∑
j=1

[
(2j − 1)

2n
− FY (y(j))

]2

where

W 2 =

∫ ∞

−∞
[FY (y)− Fn(y)]2 dFY (y).

Tables of critical values (CVs) of these tests can be found in several texts. These

CVs are valid when the distribution parameters are known. When the parameters

are estimated from the data, these CVs are only approximate. One solution is to use

a Monte Carlo method, which is based on generating a large number of distribution

functions with the same population parameters and calculating the test statistic for

each of the test cases, from which empirical values for quantiles can be extracted.

This also applies to the tests in subsections 2.3.3, 2.3.4 and 2.3.6.

2.3.6 Chi-square test

The Chi-square goodness-of-fit test is applied to binned (i.e. grouped) data. This

test is very simple to perform but has problems related to the choice of the number of

intervals to use. Another disadvantage of the χ2 test is that it requires a sufficiently

large sample size in order for the χ2 approximation to be valid. The χ2 test is based

9

 

 

 

 



on the following test statistic:

T =
B∑

j=1

(Oj − Ej)
2

Ej

∼ χ2
B−m−1

where Oj and Ej are respectively the observed and expected numbers of data ele-

ments in the j-th of the B bins, and m is the number of estimated parameters. In

the present context the expected frequency is calculated by

Ej = n [FY (yu)− FY (yl)]

where yu is the upper limit for bin j and yl is the lower limit for bin j.
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Chapter 3

Literature Review

This chapter, provides a description of various deconvolution procedures proposed

in the literature. Both density and distribution estimation methods are reviewed in

this chapter. The selection of the methods proposed is primarily based on popularity,

appealing logic, and simplicity.

3.1 Nonparametric density estimation

3.1.1 Deconvolution kernel density estimator

The most popular approach to deconvolution is the use of a kernel estimator of fX ,

obtained by applying the Fourier inversion formula to the empirical characteristic

function of X. Contributions to the methodology have come from Liu and Taylor

(1989), Carroll and Hall (1988), Stefanski and Carroll (1990), Fan (1992) amongst

others. This technique can only be used if the density fε is fully specified and the

characteristic function corresponding to the density fε is non-zero everywhere. The

procedure is explained as follows:

The characteristic function of the random variable X is given by

ϕX(t) = E
(
eitX

)
=

∫ ∞

−∞
eitxfX(x) dx

and the inverse transform is
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fX(x) =
1

2π

∫ ∞

−∞
e−itxϕX(t)dt (3.1)

where E(·) denotes the expected value, i is the imaginary unit (i =
√
−1) and t is a

real number.

Under the assumption that ε and X are independent, the characteristic function of

the density fY is given by

ϕY (t) = E
(
eitX

)
E
(
eitε
)

= ϕX(t) · ϕε(t).

Then the characteristic function of X is

ϕX(t) =
ϕY (t)

ϕε(t)
.

The problem now is to estimate the density fX . Substituting in (3.1) the density

fX becomes

fX(x) =
1

2π

∫ ∞

−∞
e−itx ϕY (t)

ϕε(t)
dt

and its estimator

f̂X(x) =
1

2π

∫ ∞

−∞
e−itx ϕ̂Y (t)

ϕε(t)
dt. (3.2)

The characteristic function ϕY (t) can be estimated by

ϕ̂Y (t) = ϕ̂n(t) · ϕK(bt),

where ϕ̂n(t) = n−1
∑n

j=1 eitYj is the estimated empirical characteristic function cor-

responding to fY , ϕK(t) is the characteristic function corresponding to the kernel

function K and b is a smoothing parameter called the bandwidth: b > 0. The op-

timal selection of b is not obvious. One common way is to choose the bandwidth b

that minimises the asymptotic mean integrated squared error. But the asymptotic

mean integrated squared error also depends on the true underlying density fX . One

can consider alternative ways of selecting the bandwidth b. In the kernel estimator,

the bandwidth b is treated as a function depending on the observations

b = b̂(y1, . . . , yn)
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(Meister, 2009). Therefore, the observations (y1, . . . , yn) are used twice. First, to

select the bandwidth, and, then, to estimate the density fX where the b̂ has been

inserted. The fully data-driven methods, such as, cross validation and bootstrap-

ping, can also be used for bandwidth selection. Cross validation is one of the most

popular data-driven methods of bandwidth selection for the kernel estimator, in

general. Diggle and Hall (1993) considered cross validation in the deconvolution

kernel estimation.

Substituting ϕ̂Y (t) in (3.2) the density estimator

f̂X(x) =
1

2π

∫ ∞

−∞
e−itxϕ̂n(t)

ϕK(bt)

ϕε(t)
dt (3.3)

follows. If the function ϕK(bt)/ϕε(t) is integrable then the density estimator f̂X in

(3.3) can be represented in kernel form as

f̂X(x) =
1

nb

n∑
j=1

K

(
x− Yj

b

)
(3.4)

where

K(z) =
1

2π

∫ ∞

−∞
e−itz ϕK(t)

ϕε(t/b)
dt. (3.5)

The deconvolution kernel density estimator in (3.4) is just an ordinary kernel es-

timator but with specific kernel function (3.5). Furthermore, the kernel K has to

be carefully chosen, to guarantee that the integral exists (Proença, 2003). The

interested reader is referred to Stefanski and Carroll (1990) for details.

Remarks

1. Under the assumption that the measurement error is known to belong to the

normal family with zero mean and variance σ2, the characteristic function

corresponding to the error density fε is

ϕε(t) = E
(
eitε
)

= exp

[
−σ2t2

2

]
.

2. Stefanski and Carroll (1990) used the sinc kernel K(y) = (πy)−1 sin(y) having

the characteristic function ϕK(t) = I(−1, 1)(t) for Gaussian errors to ensure
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the existence of the estimator. I(−1, 1) represents an indicator function (step

function).

3. Delaigle (2008) used a kernel with characteristic function

ϕK(t) = (1− t2)3 · I(−1, 1)(t).

4. In Liu and Taylor (1989) the estimation of the characteristic function ϕY (t)

was also based on a kernel density estimate of fY , but with finite limits of

integration in (3.2).

3.1.2 Simple deconvolving kernel density estimator

A simple deconvolving kernel density estimator (Proença, 2003) avoids the typi-

cal numerical integration, making calculations much easier. The idea behind the

proposed estimator is to replace the kernel function in (3.5) by the approximate

deconvolving kernel equal to

K∗(z) = φ(z)− σ2

2b2
φ′′(z) (3.6)

where φ(z) is the standard normal density function and φ′′(z) is its second derivative.

Consequently, a simple deconvolving kernel density estimator is

f̂ ∗X(x) =
1

nb

n∑
j=1

K∗
(

x− Yj

b

)

where K∗(·) is symmetric and
∫

f̂ ∗X(x)dx = 1.

3.1.3 Low-order approximations in deconvolution

Some recent studies (e.g. by Carroll and Hall, 2004) argue that finding consistent

estimators for the deconvolution problem is a goal that is often unattainable and,

in practice, one may obtain better practical results by constructing a less ambitious

low-order approximation of fX , and accurately estimate that approximation rather

than the density fX . The kernel methods proposed by Carroll and Hall (2004) are

based on the observation that one can express the expected value of a kernel estima-

tor of fX as a series expansion in expectations of kernel estimators of derivatives of
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the density fY and that coefficients in the series depend only on moment derivatives

of the distribution of ε.

The (ordinary) kernel density estimators of fY and fX are given by

f̂Y (y) =
1

nb

n∑
j=1

K

(
y − Yj

b

)

f̂X(x) =
1

nb

n∑
j=1

K

(
x−Xj

b

)

respectively. Note that the Xj are not observable, therefore f̂X cannot be computed

directly from the data. Nonetheless, Carroll and Hall (2004) constructed an approx-

imation to f̂X . The method is explained as follows:

Assume that all central moments µk of the distribution of ε are finite and that the

kernel K is an analytic function. That is, all derivatives of kernel K are defined on

the whole real line. Denoting the k-th derivative of f by f (k), an estimation of the

rth-order approximation to the expected value of f̂
(k)
X , given by

E
{

f̂
(k)
X (x)

}
= E

{
f̂

(k)
Y (x)

}
+

∞∑
v=1

∞∑
d1=1

· · ·
∞∑

dv=1

(−1)d1+...+dv+v

d1! . . . dv!
µ̂d1 . . . µ̂dvE

{
f̂

(d1+...+dv+k)
Y (x)

}
is

f̂
(k)
X,r(x) = f̂

(k)
Y (x) +

∑
v≥1

Srf̂
(d1+...+dv+k)
Y (x) (3.7)

where

Sr =
∑

d1,...,dv≥1:d1+...+dv≤r

(−1)d1+...+dv+v

d1! . . . , dv!
µ̂d1 . . . µ̂dv

and µ̂k is an estimator of (or another type of approximation to) µk.

The assumption that the error ε is symmetric (e.g., normal) leads to µd = 0 for odd

d, and only approximations of even order are relevant. Then (3.7) simplifies to

f̂
(k)
X,2r(x) = f̂

(k)
Y (x) +

∑
v≥1

S(2r)f̂
(2d1+...+2dv+k)
Y (x)
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where

S(2r) =
∑

d1,...,dv≥1:d1+...+dv≤r

(−1)v

(2d1)! . . . , (2dv)!
µ̂(2d1) . . . µ̂(2dv).

The high order approximations can be expressed in terms of standard kernel density

estimators as

f̂
(k)
X,r(x) =

1

nbk+1

n∑
j=1

K(k)
r

(
x− Yj

b

)

based on adjusted kernels

Kr(x) = K(x) +
∑
v≥1

SrK
(d1+...+dv)(x).

The second-, fourth- and sixth-order approximations to E
{

f̂
(k)
X (x)

}
(assuming that

the error density is symmetric), are given by

f̂
(k)
X,2(x) = f̂

(k)
Y (x)− µ̂2

2
f̂

(k+2)
Y (x);

f̂
(k)
X,4(x) = f̂

(k)
X,2(x) +

1

24

(
µ̂2

2 − µ̂4

)
f̂

(k+4)
Y (x);

f̂
(k)
X,6(x) = f̂

(k)
X,4(x)− 1

720

(
90µ̂3

2 − 30µ̂2µ̂4 + µ̂6

)
f̂

(k+6)
Y (x).

The first of these equations is commonly used in kernel density estimation, where it

is usually assumed that r = 2. That is, the finite moment is µ2 = σ2, therefore the

estimator (approximation) proposed becomes

f̂X(x) = f̂Y (x)− 1

2
σ2f̂

(2)
Y (x). (3.8)

Remember that f̂Y is the error-free kernel density estimator of fY , given earlier,

and can be calculated from the observed data. f̂
(2)
Y is its second derivative. The

only unknown in (3.8) is σ2. Delaigle (2008) studied the properties of this low-order

approximation developed by Carroll and Hall (2004) and estimated the unknowns

via the empirical variance of the difference of replicated observations. On the other
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hand, these parameters can be estimated by the method of moments via instrumental

variables; see Delaigle (2008) for more details.

Remarks

1. A low-order approximation in deconvolution does not require any estimation

of the characteristic function, which expresses detailed properties of the error

distribution.

2. The technique enables estimation of the derivative of fX , as well as fX itself.

3.1.4 Density derivative deconvolution

This technique is based on estimating the derivatives of fY and expanding the inverse

characteristic function ϕε(t) in a power series and integrating term by term. From

the inverse transform the 2kth derivative of fY becomes

f
(2k)
Y (y) =

1

2π

∫ ∞

−∞
t2k(−1)ke−ityϕY (t) dt

and for Gaussian errors with zero mean and known variance σ2,

[ϕε(t)]
−1 = exp

[
σ2t2

2

]
=

∞∑
k=0

(σt)2k

2kk!
.

The characteristic function corresponding to fX becomes

ϕX(t) =
∞∑

k=0

(σt)2k

2kk!
ϕY (t)

and the density

fX(x) =
1

2π

∫ ∞

−∞
e−itx

[
∞∑

k=0

(σt)2k

2kk!
ϕY (t)

]
dt

=
∞∑

k=0

σ2k

2kk!
(−1)kf

(2k)
Y (x) (3.9)

follows. In principle, one can use (3.9) to form estimates of fX from estimates of the

derivatives of fY , though in practice the sum must be truncated - see examples with
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illustrations (truncating the sum at k = 1 and k = 2) in Masry and Rice (1992).

Also, in practice, the characteristic function ϕY (t) can be estimated from the kernel

density of fY , specified earlier as ϕ̂Y (t) = ϕ̂n(t)ϕK(bt). Therefore the estimator of

fX becomes

f̂X(x) =
∞∑

k=0

σ2k

2kk!
(−1)kf̂

(2k)
Y (x). (3.10)

Truncating the sum at k = 1 in (3.10), the resulting estimator is equivalent to the

one in (3.8). In this case the error variance σ2 is assumed known.

3.1.5 Deconvolution via differentiation

Deconvolution via differentiation may be based on representing fX in terms of Her-

mite polynomials generated by the error density fε (Masry and Rice, 1992). The

density estimate f̂X has the orthogonal series expansion given by

f̂X(x) =
∞∑

k=0

âkHk(x), (3.11)

where

âk =
1

k!
f̂

(k)
Y (0),

and f̂
(k)
Y (0) is the kth derivative kernel estimates of fY (0). The proposed estimator

is analogous to the orthogonal series method proposed by Carroll and Hall (2004).

3.1.6 Spline estimators

The proposed estimator (Chen, et al., 2003) is a spline (piecewise polynomial) func-

tion that transforms the variable X into a standard normal. The transformation

to normality makes distribution estimation more efficient for a large class of distri-

butions frequently encountered in practice (Chen, et al., 2003). The method uses

two estimators, namely a weighted normal quantile regression estimator and a max-

imum likelihood estimator. A weighted quantile regression estimator is used as the

starting value for the nonlinear optimization procedure of the maximum likelihood

estimator. It is required that the MLE or final estimator be in a neighbourhood of

the initial estimator or weighted quantile regression estimator. The proposed esti-
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mators are transformed semi-parametric spline estimators that have a parametric

form with the number of parameters chosen as a function of the data. The Akaike

Information Criterion (AIC) may be used for order selection. The proposed estima-

tor is constructed as follows:

Let S(·) represent a monotonic spline function, i.e., S(·) is restricted to be a nonde-

creasing function. The spline function (grafted polynomial) can be written as

S(t) = pTw(t) (3.12)

where p is the unknown parameter vector and w(t) is a vector of polynomial com-

ponents. Assume that S(X) has the standard normal distribution, that is, the CDF

of X is

FX(x) = Φ[S(x)]. (3.13)

Under assumption (3.13), the convolution integral of Y given in (1.2) becomes

fY (y) =

∫ ∞

−∞
fε(y − x)Φ′ [S(x)] S ′(x)dx

where Φ is the CDF of the normal distribution, and primes denote first derivatives.

The weighted quantile regression spline estimator of p is obtained in two major

steps:

(i) weight estimation: EDF of X is obtained.

(ii) quantile regression: EDF of X is smoothed by normal transformation with a

cubic spline.

Furthermore, let S0(x) be the grafted polynomial described in (3.12) with parameter

vector p0. Let the weighted quantile regression estimator of fX(x) be

fwqr(x) = Φ′ [p̂T
0 w(x)

]
p̂T

0 w′(x),

where p̂0 is the weighted quantile estimator of p0. A mixture scheme was considered

to locate the joinpoints (knots) of p0. The number of joint points used by p0 was

selected by AIC. See Chen et al. (2003) for further discussion of weighted quantile

regression.
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The maximum likelihood estimator of fX is in the interval

[L(x)fwqr(x), U(x)fwqr(x)]

for 0 < L(x) < 1 and U(x) > 1. Then one can get

L(x)Ŝ ′
0(x) ≤ S ′(x) ≤ U(x)Ŝ ′

0(x).

where Ŝ0 is the estimated spline transformation of the initial estimator with parame-

ter p0. The maximum likelihood spline estimator can be obtained from the following

nonlinear optimization problem with linear constraints (Chen et al., 2003):

max
p

n∑
j=1

log {fY (yj)} subject to L(·)Ŝ ′
0(·) < pTw′(·) < U(·)Ŝ ′

0

where

fY (yj) =

∫ ∞

−∞
fε(yj − x)Φ′[pTw(x)]pTw′(x)dx. (3.14)

3.1.7 Bayesian method

The deconvolution problem can be viewed in the format of an empirical Bayes prob-

lem (Stefanski and Carroll, 1990).

The model requires specifying a likelihood and a prior distribution for the parame-

ters, the latter representing knowledge about the parameters prior to data collection

(Carroll, 1997). The product of the prior and likelihood is the joint density of the

data and the parameters. Using Bayes’s Theorem, one can in principle obtain the

posterior density, i.e., the conditional density of the parameters given the data.

The posterior summarizes all of the information about the values of the parameters

(Carroll, 1997).

3.2 Nonparametric distribution estimation

3.2.1 The CDF based on kernel methods

The distribution function FX may be estimated by integrating the density fX .

Therefore, e.g. the kernel density estimator in (3.4) has the corresponding dis-
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tribution function

F̂X(x) =
1

n

n∑
j=1

W

(
x− Yj

b

)
where

W (u) =

∫ u

−∞
K(t)dt.

3.2.2 Distribution derivative deconvolution

A similar approach to subsection 3.1.4 is based on deriving an inversion formula

for FX (instead of fX) in terms of the derivatives of FY ; the derivatives are then

replaced by the difference quotients of the empirical distribution function Fn. The

analogue of the inverse transform in (3.9) can be expressed as

FX(y) =
n∑

k=0

σ2kt

2kk!
(−1)kF

(2k)
Y (y) (3.15)

(Gaffey, 1959), and from (1.3) the 2k-th convolution integral of FY is

F
(2k)
Y (y) =

1
√

π(
√

2σ)2k+1

∫ ∞

−∞
H2k

(
y − x√

2σ

)
exp

{
−(y − x)2

2σ2

}
FX(x)dx,

where Hk(y) is the kth Hermite polynomial, given as

Hk(y) = (−1)k exp
{
y2
}( d

dy

)k

exp
{
−y2

}
(Pollard, 1953). The estimator of FX is obtained by replacing F

(2k)
Y in (3.15) by the

2k-th difference quotients F
(2k)
n of the empirical distribution . The estimator of FX ,

for a sample of size n, will then be

F̂X(y) ≈
n∑

k=0

σ2tk

2kk!
(−1)kF (2k)

n (y). (3.16)

The sum can be further approximated by truncating at a small value of k such as

k = 1. See Gaffey (1959) for further discussion about the proposed estimator.
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3.2.3 Mixture modelling method

The mixture modelling method concerns modelling a statistical distribution by a

mixture (or weighted sum) of other distributions. The idea is to describe the vari-

able of interest X in terms of flexible distribution functions, which cover a wide

range of possibilities including the normal distribution (Carroll, 1997).

Cordy and Thomas (1997) modelled FX as a mixture of a finite number of known

distributions and estimated the unknown proportions using the EM algorithm. Rep-

resent FX as a mixture

FX =
m∑

k=1

pkFk

where the Fk are known distribution functions (also called component distributions);

pk are unknown nonnegative constants satisfing
∑m

k=1 pk = 1; and m ≥ 2 is the

number of components.

Under the mixture model, the distribution of Y can be expressed as

FY =
m∑

k=1

pk (Fk ∗ fε) (3.17)

where fε is the normal density with mean zero and known variance σ2 and ∗ denotes

convolution. The log-likelihood function for the mixing proportion p = (p1, . . . , pm)T

based on the data y is given by

L(y;p) =
n∑

j=1

log

(
m∑

k=1

pk(fk ∗ fε)(yj)

)
(3.18)

where fk is the corresponding density function of Fk. The EM algorithm is quite

simple to apply for the estimation of mixing proportions (Cordy and Thomas, 1997).

The sufficient statistics for p from the complete data are the counts

Ck = the number of sample values from population k.

Given a prior estimate of p, say pold, an updated estimate is obtained through the

following step:

E step: For k = 1, . . . ,m calculate the conditional expectations
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Ĉk = E(Ck|y,pold)

M step: Calculate the maximum likelihood estimate of p, pnew, from the estimates

Ĉ1, . . . , Ĉm :

pnew
k = Ĉk/n.

Once the final estimate, say p̂ = (p̂1, . . . , p̂m)T , of p is obtained, the corresponding

estimate of FX is given by

F̂X(t) =
m∑

k=1

p̂kFk(t).

Remarks

A simple choice for the component distributions is to take them to be normal with

common variance, σ2
c .

The choice of the number, m, of components and the value of σ2
c can have a large

impact on the performance of the resulting estimator.

It was also noted by Cordy and Thomas (1997) that the variance of F̂X usually

increases as m increases.

On the other hand, when m is too small, the mixture model may provide only a

poor approximation to the true distribution, in which case the bias of F̂X will be

unacceptably large. Refer to Cordy and Thomas (1997) regarding the choice of Fk

and m for this problem.
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Chapter 4

Fitting Pareto distributions to

Data with Errors

4.1 Introduction

In many practical cases, information from a sample is used to draw conclusions

about unknown population parameters. This is one of the most important tasks

of statisticians. Usually researchers draw a random sample from a population and

make some assumptions about the sample observations. For example, the assump-

tion that the sample observations are drawn from one of a known parametric family

of distributions (e.g., the normal density function), is common in statistics. The

density function fY (·) underlying the sample could then be estimated by finding

estimates of its mean µ and variance σ2 from the set of observations {y1, y2, . . . , yn}
and substituting these estimates into the formula for the normal density. This is

called a parametric approach. However, if the sample observations {y1, y2, . . . , yn}
are subject to measurement errors, the estimation of µ and σ2 by fitting a normal

density to contaminated observations yj is not entirely appropriate.

Let the measured values be yj = xj + ej (j = 1, . . . , n), where xj are the true (i.e.,

error-free) values of the quantity of interest, and ej are errors. The distribution of

yj = xj + ej is given by the convolution integral in (1.2). That is, the measurements

yj have now a convolved PDF. Consider the case where X is normal, but is observed

subject to Gaussian measurement errors with mean zero. The convolution of the

normal densities fX(·) and fε(·) with means µX and µε = 0 and variances σ2
X and
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σ2
ε is again a normal density, with mean µ = µX and variance σ2 = σ2

X + σ2
ε .

4.1.1 Pareto distribution

A Pareto distribution is a simple model for positive data with a power-law probabil-

ity tail. Some examples from http://en.wikipedia.org/wiki/Pareto_distribution

include the distribution of income and wealth among individuals, the sizes of human

settlements, file size distribution of internet traffic which uses the TCP protocol, the

values of oil reserves in oil fields, the length distribution in jobs assigned to super-

computers, sizes of sand particles and sizes of meteorites. The examples from the

field of astronomy are the masses of molecular clouds, stellar initial mass functions,

etc. Refer to Koen and Kondlo (2009) for more examples in this field. The trun-

cated version of the Pareto distribution has a wide range of applications in several

fields in data analysis (Zaninetti and Ferraro, 2008). In astronomy and many phys-

ical and social sciences, the parameters of the truncated Pareto are estimated to

draw inference about the processes underlying the phenomena − that is, to test

theoretical models and to scale up the local observations to global patterns (White

et al., 2008). Therefore, it is very important that these parameters be estimated

accurately (White et al., 2008 and Zaninetti and Ferraro, 2008). Often power-law

indices, and other distributional parameters, are estimated by fitting the truncated

Pareto form to a set of observations. This is also not appropriate if the measure-

ments are contaminated by substantial measurement errors. A methodology for

error-contaminated observations is derived and developed in the following sections.

4.2 Convolved Pareto distribution

The PDF of the truncated Pareto distribution is given by

fX(x) =
ax−a−1

L−a − U−a
a > 0, and 0 < L ≤ x ≤ U (4.1)

and the zero mean Gaussian error density as

fε(e) =
1

σ
√

2π
exp

[
− e2

2σ2

]
−∞ < e < ∞;
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where σ2 is not necessarily known. Also of interest is the CDF corresponding to

(4.1):

FX(x) =


0 x < L

1−(L/x)a

1−(L/U)a L ≤ x ≤ U

1 x > U

. (4.2)

Since the values of x are bounded in the interval [L, U ], the probability density

function in (4.1) is known as the truncated Pareto density. The somewhat non-

standard term “finite-support Pareto distribution” (FSPD) will be used in this thesis

to designate a Pareto distribution defined on [L, U ], as opposed to the standard

Pareto form with support [L,∞). In reality, the support does not range from L to

∞ but over a finite range. Accelerated life testing with samples censored is a good

example (Nadarajah and Kotz 2006). For this reason, the focus is on the FSPD

version of the Pareto distribution. The term “truncated Pareto distribution” will be

reserved for data subject to truncation, i.e., subject to physical restrictions which

constrain observations to lie in an interval [l, u]. Truncated distributions arise in

many practical situations.

The convolved PDF of the FSPD and Gaussian error distributions is

fY (y) =

∫ ∞

−∞
fX(x)fε(y − x) dx

=
a

L−a − U−a

1

σ
√

2π

∫ U

L

x−a−1 exp

[
−1

2

(
y − x

σ

)2
]

dx (4.3)

and the corresponding convolved CDF is

FY (y) =

∫ y

−∞
fY (t) dt

=
a

L−a − U−a

∫ U

L

x−a−1

[
Φ

(
y − x

σ

)]
dx (4.4)

where Φ(·) is the CDF of the standard normal distribution. Alternatively, the con-

volved CDF can be derived from (1.3), i.e.

FY (y) =

∫ ∞

−∞
FX(x)fε(y − x) dx

=
1

1− (L/U)a

1

σ
√

2π

∫ U

L

[1− (L/x)a] exp

[
−1

2

(
y − x

σ

)2
]

dx + Φ

(
y − U

σ

)
.
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Also of interest is the standard Pareto distribution, i.e., x is in the interval [L,∞)

and its PDF is given by

fX(x) = aLax−a−1 a > 0, and L > 0 (4.5)

and the corresponding CDF by

FX(x) = 1− Lax−a x ≥ L.

The convolved PDF and CDF of a standard Pareto and Gaussian error distributions

are

fY (y) =
aLa

σ
√

2π

∫ ∞

L

x−a−1 exp

[
−1

2

(
y − x

σ

)2
]

dx

FY (y) = Φ

(
y − L

σ

)
− La

σ
√

2π

∫ ∞

L

x−a exp

[
−1

2

(
y − x

σ

)2
]

dx. (4.6)

For computational purposes, Φ(·) can be calculated by a special function called the

error function:

Φ

(
y − x

σ

)
=

1

2

[
1 + erf

(
y − x

σ
√

2

)]
which is convenient for numerical work.

4.3 Unknown parameters

In practical application, the unknowns are the specific parameter values. These are

the lower limit L, upper limit U , power-law index a (also known as the exponent)

and the Gaussian error variance σ2.

There are several parameter estimation techniques. However, some of the techniques

could lead to bias and inaccurate estimates. From a statistical point of view, the

method of maximum likelihood is more robust and yields estimators with good sta-

tistical properties. Recent relevant references are Goldstein et al. (2004), Zaninetti

and Ferraro (2008), White, et al. (2008). The standard errors for the estimated

parameters are derived from both the inverse Fisher information matrix and the

jackknife methods.
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The fit of the derived distributions is then assessed using different methods: graph-

ical assessment (probability-probability plot) and goodness-of-fit tests (Chi-squared

and Kolmogorov-Smirnov). A bootstrapping method is used to calculate the criti-

cal values of the Kolmogorov-Smirnov test statistic, which are not available for real

data.

4.4 Estimation method

4.4.1 Maximum likelihood estimation

Maximum likelihood estimation (MLE) is one of the preferred methods for esti-

mating parameter values. MLE can only be used if the form of the underlying

distribution is known. The method is based on maximising the likelihood of the

observed sample given the statistical model. Specifically, MLE finds the parameter

values that maximise the product of the PDFs at each of the observed values (as-

suming the observations are independent). The method was pioneered by Sir R. A.

Fisher between the years 1912 and 1922.

Let θ = [L, U, a, σ]′ represent the vector of parameters and θ̂ = [L̂, Û , â, σ̂]′ the vector

of estimates. Then, for independent observations {y1, y2, . . . , yn}, the likelihood for

the density fY (y; θ) is of the form

`(y1, y2, · · · , yn; θ) =
n∏

j=1

fY (yj; θ). (4.7)

The likelihood function of the PDF given in (4.3) is

`(yj; θ) =

[
a

L−a − U−a

1√
2πσ2

]n n∏
j=1

∫ U

L

x−a−1 exp

[
−1

2

(
yj − x

σ

)2
]

dx. (4.8)

It is equivalent but often mathematically easier to maximise the log-likelihood func-

tion instead of the likelihood function itself. The log-likelihood function correspond-
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ing to (4.8) is given by

L = log(`) = n

[
log(a)− log(L−a − U−a)− log(σ)− 1

2
log(2π)

]
+

n∑
j=1

log

∫ U

L

x−a−1 exp

[
−1

2

(
yj − x

σ

)2
]

dx. (4.9)

According to the method of maximum likelihood the estimates of L, U, a and σ are

chosen so as to maximize the observed likelihood function in (4.8), or equivalently,

the log-likelihood function in (4.9). The maximum likelihood estimators of θ are the

simultaneous solutions of the m equations:

∂L
∂θk

= 0, k = 1, 2, . . . ,m. (4.10)

The derivatives are given in Appendix A. Solving for L, U , a and σ from the first

partial derivatives in Appendix A is difficult. Alternatively, the best values of the

parameters can be obtained by direct numerical maximisation of the log-likelihood

function in (4.9). This is relatively easy using a mathematical and engineering cal-

culation computer language such as MATLAB, MAPLE or MATHEMATICA. The

procedure was implemented in MATLAB. The program is in Appendix C.

The maximum likelihood estimates of the parameters for the standard Pareto dis-

tribution in (4.5) and the FSPD in (4.1) are given by:

L̂ = min(x1, x2, . . . , xn)

â = n

[
n∑

j=1

(
log x(j) − log L̂

)]−1

for U ↔∞ and

L̂ = min(x1, x2, . . . , xn)

Û = max(x1, x2, . . . , xn) and â solves

n

â
+

nrâ log r

1− râ
=

n∑
j=1

[
log x(j) − log L̂

]
(4.11)

29

 

 

 

 



where r = L̂/Û , for finite U . The last part of equation (4.11), for â, is implicit

(Aban, et al. 2006). The maximum likelihood estimates of the parameters of con-

volved standard Pareto and Gaussian error distributions are not provided in this

study. The interested reader is referred to Koen and Kondlo (2009) for the latter.

We note in a passing that estimates for L and U of form (4.10) do not apply to

the standard Pareto distribution since derivatives with respect to L and U are not

defined in that case.

4.5 Measures of statistical accuracy

Standard errors may be used to provide an indication of the size of the uncertainty

and to provide approximate confidence intervals. The standard errors of the param-

eter estimates are calculated by two different methods: from the Fisher information

matrix and by a jackknife procedure. The bootstrap method can also be used to

calculate the standard errors of the parameter estimates.

4.5.1 Fisher information matrix

The Fisher information matrix of the estimates has elements

Fij = −E

[
∂2L
∂θiθj

]
i, j = 1, . . . ,m, (4.12)

where m is the dimension of the parameter vector θ. Evaluating the expectations in

(4.12) is tedious. Alternatively, an approximation in the form of the empirical infor-

mation follows by substituting directly the observed data into the second derivatives.

Then the Fisher information matrix has elements

Fij = −
[

∂2L
∂ϑiϑj

]
i, j = 1, . . . ,m.

The standard errors are the square roots of the diagonal elements of [Fij]
−1. The

second derivatives for this Fisher information matrix are in Appendix A. The pro-

cedure was implemented in MATLAB - see the program in Appendix C.
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4.5.2 The jackknife method

The jackknife and bootstrap are nonparametric computer-intensive techniques for

estimating (e.g.) standard errors of the estimated parameters. The jackknife pro-

cedure consists of taking subsamples of the original sample of n independent obser-

vations by omitting a single observation at a time. Thus, each subsample consists

of n - 1 observations formed by deleting a different observation from the sample.

Parameter estimates are then calculated from these subsamples. Standard errors are

determined from the variability across the n sets of parameter estimates. A more

detailed description of the jackknife method proceeds as follows:

Let θ̂ be the vector of parameter estimates obtained by MLE from the sample

observations {y1, . . . , yn}. Divide the sample into g subgroups (at random if g < n)

of size k. Then from each subgroup, re-estimate θ from the remaining (g − 1)k

observations. This provides the g partial estimates θ̂(−j), j = 1, . . . , g. Form the

pseudo-values (the jackknife replications)

θ∗j = gθ̂ − (g − 1)θ̂(−j).

The jackknife estimate of θ is the average of the jackknife replications θ∗j, that is

θ(J) =
1

g

g∑
j=1

θ∗j = gθ̂ − (g − 1)
¯̂
θ;

where
¯̂
θ =

1

g

g∑
j=1

θ̂(−j).

The corresponding estimated covariance matrix is

ĈJ(θ) =
g − 1

g

g∑
j=1

(
θ∗j − θ(J)

) (
θ∗j − θ(J)

)′
. (4.13)

The procedure was implemented in MATLAB with k = 1; i.e. g = n. See the

MATLAB program in Appendix C.
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4.5.3 The bootstrap method

In case of bootstrapping, pseudo-samples of size n are produced by drawing with

replacement from the original n data elements. The number of pseudo-samples

would typically be of the order of a thousand or more, hence computing time would

be exorbitant for the problem under discussion. The procedure is as follows:

Draw B independent bootstrap samples y∗b of size n from the sample observations

{y1, . . . , yn}. Estimate the parameters θ for each y∗b . This provides B bootstrap

replicates of θ̂ i.e., θ̂∗b for b = 1, . . . , B. For each component θi of the vector θ, order

the bootstrap replicates such that θ̂∗i(1) ≤ · · · ≤ θ̂∗i(B). The lower and upper confidence

bounds are B ·α and B · (1−α) ordered elements. The estimated confidence interval

of θ̂i is [
θ̂∗i(B·α); θ̂∗i(B·(1−α))

]
.

The estimated covariance matrix is

ĈB(θ) =
1

B − 1

B∑
b=1

(
θ̂∗b −

¯̂
θ∗
)(

θ̂∗b −
¯̂
θ∗
)′

(4.14)

where
¯̂
θ
∗

= B−1
∑B

b=1 θ̂∗b . Efron and Tibshirani (1993) is a readable introduction to

both the bootstrap and jackknife methods.

4.6 Simulation study

A simple experiment is used to validate the proposed methodology. Datasets of sizes

n = 50 and n = 300 are drawn from a FSPD and normal deviates of fixed dispersion

are added. Assumed parameter values L = 3, U = 6, a = 1.5 and σ = 0.4 are used.

4.6.1 The effects of measurement errors

Histograms in Figure 4.1 show some of the pitfalls caused by the presence of mea-

surement errors. The top panel shows a histogram of a sample from a FSPD. A

histogram of the same data, with added measurement errors, is given in the bottom

panel. Two effects are clearly visible: the contaminated data extend beyond the

interval [L, U ] over which the pure data occur, and the shape of the distribution is

changed. The first effect will clearly bias estimates of the lower and upper limits,
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Figure 4.1: The top histogram is for 300 simulated data elements from a FSPD
with L = 3, U = 6 and a = 1.5. Zero mean Gaussian measurement
errors with σ = 0.4 were added to give the convolved distribution in
the bottom panel. The error-contaminated data “spill” out of the
interval [L,U ].

while the second will lead to biased estimates of the power law exponent: in partic-

ular, since the data are spread over a wider interval, the value of index a estimated

from contaminated data may generally be too small.

The convolved PDF in (4.3) could differ substantially from the FSPD in (4.1). The

probability-probability plots based on these forms can be compared to distinguish

the difference between the distributions (4.3) and (4.1).

4.6.2 Assessing quality of fit of the model

Without some assessment of goodness-of-fit of the model the parameter estimates

have very limited meaning. We illustrate the importance of verifying that the sta-

tistical model fitted to the data is appropriate − making use of the goodness-of-fit

tests described in section 2.3 of Chapter 2.
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An informal goodness-of-fit test, the P-P plot, is used to demonstrate the impor-

tance of verifying that the statistical model fitted to the data is appropriate. The

theoretical distribution values are obtained by first estimating the parameters oc-

curing in the theoretical CDFs (i.e., L, U , a and σ); FY (·) can then be explicity

evaluated in each observation value yj. See Chapter 2 for extensive discussion. The

data used in the histrogram above were used to create Figure 4.2. The nonlinear

form in the top panel, corresponding to the FSPD, i.e., assuming zero measurement

errors, convincingly demonstrates that the distribution (4.2) does not describe the

data. On the other hand, the bottom panel shows that (4.4) is a good model for the

data. Note that for plots values of the parameters estimated from (4.11) and (4.9)

have been substituted in order to calculate the CDFs in (4.2) and (4.4).

MLEs and the corresponding 95% confidence intervals for L, U , a and σ from the

data with measurement errors are given in Table 4.1. Note that the convolved PDF

in (4.3) fitted to the data gives favourable results with true parameter values L = 3,

U = 6, a = 1.5, and σ = 0.4, in particular for larger n.

The Kolmogorov-Smirnov and other goodness-of-fit tests discussed in Chapter 2 are

not distribution-free in this context, therefore percentage points need to be found

either by a Monte-Carlo method or bootstrapping. The Kolmogorov-Smirnov test

is selected because it is widely used in practice. The percentage points for the

Kolmogorov-Smirnov test statistic are obtained by bootstrapping.

MLE L̂ Û â σ̂ K-S p-values
n = 50 3.0919 6.4370 1.6971 0.4455 0.980
CI [2.67; 3.38] [5.73; 7.25] [1.3E-7; 3.99] [4.6E-8; 0.59]
n = 300 3.0258 5.9989 1.6048 0.3967 1.00
CI [2.85; 3.19] [5.79; 6.22] [0.60; 2.78] [0.29; 0.48]

Table 4.1: MLEs for two different sample sizes (n = 50 and n = 300) are pro-
vided. Confidence intervals at 95% level calculated from B = 1000
bootstrap samples. Percentage points of the K-S statistic (obtained
from bootstrapping) are given in the last column.

P-values of the K-S statistic given in Table 4.1 indicate lack of statistical significance.

They are larger than expected: for n = 50 and n = 300, the p-values are respectively
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Figure 4.2: Probability-probability plots for a simulated dataset, consisting of
300 values distributed according to (4.3). The plot in the top panel
is based on the (incorrect) assumption that there is no measurement
error; the plot in the bottom panel incorporates Gaussian measure-
ment errors.

0.98 and 1.00. This means that 98% or 100% of the percentage points calculated

from B = 1000 bootstrap samples are larger than the actual K-S test statistic.

4.6.3 Bootstrapping - sample size

Figure 4.3 shows the histrogram of the bootstrap estimates for n = 50. The results

have been confirmed by 200 Monte Carlo simulations. Figure 4.4 shows the his-

togram of the bootstrap replications for n = 300.

An excessive amount of computer time is needed for large sample sizes (n a few

hundred or more) - primarily required for the maximisation of the log-likelihood

function in (4.9).
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Figure 4.3: Distributions of the estimated parameters for the n = 50 sample,
from 1000 bootstrap samples.

4.6.4 Comparison of covariance matrices

We also compare the covariance matrix results calculated from the inverse Fisher

information matrix, bootstrapping and the jackknife method for the n = 50 sample.

For the parameter vector [L̂ Û â σ̂], the respective covariance matrices are

CF =


0.0419 0.0084 0.1974 0.0150

0.0084 0.2319 0.3020 −0.0201

0.1974 0.3020 1.8221 0.0490

0.0150 −0.0201 0.0490 0.0181



CB =


0.0495 0.1127 0.2982 0.0372

0.1127 0.2712 0.6806 0.0845

0.2982 0.6806 1.9091 0.2202

0.0372 0.0845 0.2202 0.0297


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Figure 4.4: As for Figure 4.3 , but for a sample size n = 300. The distributions
are much closer to normal than for n = 50.

CJ =


0.0684 0.0945 0.3910 0.0351

0.0945 0.3293 0.8853 0.0417

0.3910 0.8853 3.3338 0.1824

0.0351 0.0417 0.1824 0.0338


The agreement is reasonable, especially between the matrices calculated from the

nonparametric computer-intensive techniques (Jackknife and Bootstrap). The stan-

dard errors from the matrices are compared in Table 4.2.

L U a σ
ŝ.e(Fish) 0.205 0.482 1.350 0.135
ŝ.e(Boot) 0.223 0.521 1.382 0.172
ŝ.e(Jack) 0.262 0.574 1.826 0.184

Table 4.2: The standard errors calculated from the Fisher information, the boot-
strap and jackknife matrices
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4.6.5 Deconvolving density functions

The aim in deconvolution is to recover the unknown density functions from con-

taminated observations. An example when X is a normal random variable can be

seen in Figure 4.5. The estimated density is not far from the true density of X.

The method used is the nonparametric penalised contrast estimator for adaptive

density deconvolution proposed by Comte, et al. (2006). The method is based on

model selection, more precisely by minimisation of a penalised contrast function.

The method requires the error variance σ to be chosen. The error density, which

was taken to be N(0, 1), is assumed to be fully known.

Figure 4.5: A simulated example with X (the true density) a standard normal
random variable. The Gaussian error distribution is taken to have
mean zero and variance equal to one. The sample size is n = 500.
A nonparametric penalised adaptive method is used.

Consider the case when X is of Pareto form. Unlike the case when X is normal, the

resulting estimator could differ very significantly from the FSPD. As an illustration,

the nonparametric deconvolution and parametric methods were applied to simulated

data of the same form as discussed above (FSPD plus noise), with sample size
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n = 300. The results are shown in Figure 4.6.

Figure 4.6: The nonparametrically deconvolved distribution is compared to the
true underlying FSPD and the parametrically deconvolved distribu-
tions. The true parameter values are L = 3, U = 6, a = 1.5 and
σ = 0.4.

Notes

The shape of the nonparametric density estimate in Figure 4.6 is not appropriate.

Neither is the method designed to estimate the finite interval over which the FSPD

is defined. Note also that a small difference in the specified error variance values

could lead to completely different deconvolved density estimates. Therefore, the

choice of the error variance is very critical in this problem.

Application of nonparametric methods is much less restricted than parametric meth-

ods, due to fewer assumptions made. However, if the assumptions made in para-

metric methods are correct, parametric methods can produce more accurate and

precise estimates as they did in the above examples. They are said to have more

statistical power. But, if those assumptions are incorrect, parametric methods can
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be very misleading.

The power of a statistical test is the probability that the test will reject a false null

hypothesis (that is will not make a Type II error). As power increases, the chances

of a Type II error decreases.

4.7 Testing for specific power-law distributional

forms

Some specific distributional forms of (4.3) are often of interest. Several types of null

hypotheses could also be of interest. Some are

(i) There may be theoretical models, or other datasets, which suggest particular

parameter values, and one may be interested in testing for conformity with

these. A common example is to test whether the power-law exponent a = c,

for specified c.

(ii) The other type of null hypothesis involves whether a simplified distributional

form, such as an unrestricted Pareto or FSPD in (4.5) or (4.1), rather than

the distributional form of (4.3), provides an adequate description of the data.

Three example are: U →∞, for which (4.3) reduces to (4.6); σ = 0 for which

(4.3) reduces to FSPD in (4.1); and U → ∞ , σ = 0 which provides the

standard power-law distributional form in (4.5).

Hypotheses can often be tested by likelihood ratio test statistics

2 [maxL (H1)−maxL (H0)] ∼ χ2
d

where H0 and H1 denote the null and alternative hypotheses respectively. The max-

ima of the log-likelihood are determined under both hypotheses. The statistic has

an asymptotic χ2
d distribution, with degrees of freedom d equal to the number of

constraints imposed by H0. Hypotheses of the form (i) can be tested by this proce-

dure.

The same procedure cannot be used for hypotheses like those in (ii), since required

regularity conditions are not satisfied (Koen and Kondlo, 2009). Model selection is
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a simple way of viewing the problem for these hypotheses. In that case information

criteria such as Akaike and Bayes for the competing models can be compared. The

Akaike and Bayes Information Criterion are

AIC = −2L+ 2K +
2K(K + 1)

n−K − 1
BIC = −2L+ K log n

where K is the number of model parameters. The likelihood term in these criteria

measures how well the model fits the data; since it appears as the negative of the

likelihood, the term is small for good fit. The remaining terms are a measure of

the model complexity − simple models (i.e., small values of K) are preferred. It is

therefore desirable to have both terms as small as possible, i.e. the “best” model is

that which minimises the information criterion.

In practice, the AIC is usually best when increased model complexity leads to incre-

mentally better fits, while the BIC performs best for data which can be modelled

very well with simple models. The model probabilities are

pi =
∆i∑
∆i

where

∆i = exp

[
−1

2
(ICi − ICmin)

]
and i indexes the model, and ICmin is the minimum value of the information criterion

(either AIC or BIC). The model with the largest probability is then selected. For

extensive discussion and application to the problem under consideration consult

Koen and Kondlo (2009).

4.8 Truncation of the Pareto distribution

Restriction of the distributional form of (4.3) to the interval [u, l] where −∞ < l ≤
L < U ≤ u < ∞ may arise. The PDF of the truncated density fY is given as

tr(y) =
fY (y)

FY (u)− FY (l)
l < y ≤ u (4.15)
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and its corresponding CDF by

Tr(y) =
FY (y)− Fy(l)

FY (u)− FY (l)

Truncated distributions can also be seen as conditional distributions.

The likelihood for the truncated convolved density tr(y; θ) in (4.15) is of the form:

`r(y1, y2, · · · , yn; θ) =

[
1

FY (u)− FY (l)

]n n∏
j=1

fY (yj; θ)

and the log-likelihood

Lr =
n∑

j=1

log fY (yj; θ)− n log [FY (u)− FY (l)] (4.16)

where

n∑
j=1

log [fY (yj; θ)] = n

[
log(β)− log(σ)− 1

2
log(2π)

]

+
n∑

j=1

log

∫ U

L

x−a−1 exp

{
−(yj − x)2

2σ2

}
dx

and

log [FY (u)− FY (l)] = log(β) + log

∫ U

L

x−a−1

{
Φ

(
u− x

σ

)
− Φ

(
l − x

σ

)}
dx

where β = a/ (L−a − U−a). Therefore the log-likelihood becomes

Lr = −n log(σ)− n

2
log(2π)

− n log

∫ U

L

x−a−1

{
Φ

(
u− x

σ

)
− Φ

(
l − x

σ

)}
dx

+
n∑

j=1

log

∫ U

L

x−a−1 exp

{
−(yj − x)2

2σ2

}
dx (4.17)

The first and second partial derivatives of the log-likelihood in (4.17) are given in

appendix B.
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4.9 A computational detail

Evaluation of the log-likelihood is computationally expensive, since n convolution

integrals need to be calculated. A problem arises when integrating a concentrated

function such as exp [−0.5(y − x)2] with respect to x over a wide interval. The

Matlab built-in functions “quad” or “quadl” do not subdivide the integration inter-

val finely enough and misses where the integrand is non-zero. This can easily be

seen by integrating the function above over the interval [−50, 50] (assume y = 0).

The answer should of course be
√

2π, but “quad” gives 7.9E-19 and “quadl” gives

2.3E-22. The solution is to identify the sub-interval over which the integrand is

non-negligible, and to restrict the integration to this sub-interval only.

Limiting the integration domain is particularly pertinent in the case of the unre-

stricted Pareto distribution, for which the upper limit U → ∞. Fortunately, nu-

merical determination of the interval over which the integrand is non-negligible is

straightforward.
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Chapter 5

Analysis of real data

5.1 Introduction

The developed methodology is applied to the estimation of the distribution of the

masses of giant molecular clouds (GMCs) in the galaxy M33 and in the Large Mag-

ellanic Cloud (LMC), and to the mass distribution of H I clouds in the LMC. GMCs

and H I clouds are massive clouds of interstellar gas and dust observable by radio

telescope. The mass of the cloud is determined from the intensity of its radio radia-

tion at a wavelength of 21-cm. The method used to measure cloud masses is subject

to measurement errors (Rosolowsky, 2005).

The intention is to demonstrate the application of the theory, rather than to derive

definitive results. Therefore, for example, questions regarding the quality of pub-

lished data are not addressed (Koen and Kondlo, 2009).

Satisfactory results of fitting convolved distributions to GMC masses in the two

galaxies are demonstrated below.

5.2 GMCs in M33

The data analysed in this section were drawn from Engargiola et al. (2003). There

are 148 GMCs in their catalogue. The results of fitting the convolved distributions

to the masses of GMCs in the galaxy M33 are shown in Table 5.1.
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The estimated exponent â = 1.33 is in good agreement with the Engargiola et al.

(2003) estimate of 1.6±0.3, but their lower mass limit L = 4 is rather different from

the value L̂ = 6.9382 obtained here. The estimated measurement error σ̂ = 3.48

is bound to be a severe underestimate of the errors in the largest clouds. Since

there are many more small clouds than large, it seems safe to assume that σ̂ will be

determined primarily by masses close to L.

The probability-probability plot in Figure 5.1 is approximately linear, indicating

that the data come from the convolved distribution.

The estimated covariance matrices obtained from Fisher information and the jack-

knife are

CF =


0.4200 0.4655 0.1343 0.2259

0.4655 24.7046 0.2617 0.3783

0.1343 0.2617 0.0687 0.0803

0.2259 0.3783 0.0803 0.3197


and

CJ =


0.5480 0.0638 0.1670 0.3181

0.0638 6.3346 −0.0332 0.0625

0.1670 −0.0332 0.0749 0.1030

0.3181 0.0625 0.1030 0.3133


There appears to be reasonable agreement, except for covariances involving Û . We

speculate that this is due to the structure of the Pareto fitting problem: much more

data are required for accurate estimation of U , since only the largest (and there-

fore most scanty) data determine the value of Û . This means that large sample

approximations (such as Fisher information) of covariances of Û will be poorer than

L̂ Û â σ̂
MLE 6.9382 77.7202 1.3336 3.4755
ŝ.e(Fish) 0.6480 4.9704 0.2622 0.5654
ŝ.e(Jack) 0.7403 2.5169 0.2737 0.5598

Table 5.1: The results of fitting the convolved distribution to the masses of
GMCs in the galaxy M33. The estimated parameters with associ-
ated standard errors are provided. The unit of mass is 104 solar
masses.
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Figure 5.1: Probability-probability plot for the galaxy M33 data.

covariances involving other parameters. If this is correct, then the jackknife covari-

ance matrix is preferred for datasets of this order.

The significance levels of χ2 goodness-of-fit statistics for various numbers of binning

intervals are given in Table 5.2.

number of bins χ2 statistic p-values
B = 10 0.50
B = 15 0.66
B = 20 0.28

Table 5.2: The significance levels of χ2 goodness-of-fit statistics for various bin-
ning intervals - Engargiola et al. (2003) data.

5.3 H I clouds in the LMC

There are 195 H I cloud masses in the catalogue of Kim et al. (2007). The modelling

results are presented in Table 5.3.
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L̂ Û â σ̂
MLE 3.47 2915.9 0.56 0.82
ŝ.e(Fish) 0.195 14.846 0.054 0.178
ŝ.e(Jack) 0.183 1409.4 0.051 0.169

Table 5.3: The results of fitting the convolved distribution to the masses of H I
clouds in the LMC. The estimated parameters with associated stan-
dard errors are provided. The unit of mass is 103 solar masses.

M(191) M(192) M(193) M(194) M(195)

866.9 1019.6 1167.5 1495.9 2913.0

Table 5.4: Five largest masses of the LMC H I clouds. The unit of mass is 103

solar masses.

Interestingly, there is a larger difference between the asymptotic and the jackknife

standard error estimates than we saw in Table 5.1, despite the dataset being larger.

A contributory factor is the extent of the high mass tail of the LMC H I cloud dis-

tribution (see Table 5.4): the 190 lowest masses are in the interval 2.2− 550.4× 103

solar masses.

This isolation of the large mass value (the second largest mass is 1496 × 103 solar

masses) accounts for the very large standard errors of Û in Table 5.3. Removing the

largest mass, M(195), does not affect the estimates for L̂ and â by much (L̂ = 3.66

and â = 0.60), but the estimated measurement error is increased to σ̂ = 0.98, and

Û is dramatically reduced to 1501.

The estimated exponent â = 0.56 is in reasonable agreement with the value 0.68

found by Kim et al. (2007) for the same dataset. The linear form of the probability-

probability plot in Figure 5.2 indicates that the estimated distribution fits the data

very well.

The significance levels of χ2 goodness-of-fit statistics are given in Table 5.5.
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Figure 5.2: Probability-probability plot for the LMC data.

5.4 GMCs in the LMC

A feature of the catalogue of GMC masses in the LMC (Fukui et al., 2008) is that

values are only given to one significant digit. There are only 21 distinct values

among the 230 masses in the catalogue, ranging from 0.1 to 100 ×105 solar masses.

It is therefore not possible to compare the theoretical and the empirical distributions

using statistics such as goodness-of-fit tests. The MLEs are presented in Table 5.6.

Figure 5.3 contains a P-P plot for these data.

number of bins χ2 statistic p-values
B = 10 0.30
B = 15 0.60
B = 20 0.63

Table 5.5: The significance levels of χ2 goodness-of-fit statistics for various bin-
ning intervals - Kim et al. (2007) data.
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Figure 5.3: Probability-probability plot for the LMC data.

L̂ Û â σ̂
MLE 0.4491 100.4950 0.8196 0.1616

Table 5.6: The results of fitting the convolved distribution to the masses of
GMCs in the LMC. The estimated parameters are provided. The
unit of mass is 105 solar masses.
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Chapter 6

Conclusion

Deconvolution is a useful statistical method for estimating an unknown distribu-

tion in the presence of measurement error. The most widely used nonparametric

deconvolution estimator in the literature is the deconvoluting kernel density estima-

tor. The assumption that the measurement errors have a Gaussian distribution is

common. Few studies deal with the case of unknown measurement errors properties.

Researchers from other fields of study, such as astronomy, econometrics, etc. have

not always fully realised the usefulness of deconvolution methods. Astronomers of-

ten rely on work by Lucy (1974), performed more than 30 years ago to tackle this

problem.

The assumption of power-law probability distributions is common in the astronomi-

cal literature. The methodology for deconvolution when the underlying distribution

is known to be of power-law form is developed in this thesis. Satisfactory results

were found by MLE.

The model for the measurement errors is obviously very restrictive. It seems very

likely that in most settings measurement errors will depend on the true values of

the variable. For example, in the case of GMCs a model such as σ = a + bx with a

and b constant, seems reasonable (Rosolowsky, 2005). This complicates the analysis,

since σ can no longer be treated as a constant − it must be included in the inte-

grand. Also, measurement errors cause the data to “spill” from the interval [L, U ],

particularly near the lower limit L where the probability density fX(·) is largest.
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This cause the tailing off of data with decreasing x(x < L), giving the impression of

data incompleteness. The point is illustrated in Figure 4.1, which shows histograms

for simulated data with and without, measurement errors. The data in the bottom

panel appears to be complete over [3,6.5], and incomplete for smaller y. In actual

fact there is no incompleteness. Determination of completeness limits is therefore

not entirely straightforward. A brute force way of dealing with this is to select a

conservative completeness interval, and to ignore all data outside the interval. In

this regard, the likelihood function given in section 4.8 (and appendix B) would be

useful. The price paid is that the analysis is more complicated − furthermore, if

the completeness interval is too small, it may no longer be possible to determine a

lower limit L and an upper limit U .

Comparison of the computation times of the covariance matrices CF and CJ is also

of interest. The time taken to compute the covariance matrices CF and CJ for the

Engargiola et al. (2003) dataset with n = 148 were, respectively, 4.7 seconds and

6.2 hours (Acer 3273 WXMi, clock speed 1.66 GHz, 80 GB HDD). The computation

time of CJ could be speeded up considerably by relaxing the convergence criteria in-

voked when maximising likelihoods, but it would still be orders of magnitude larger

than the time required to calculate CF . For larger n, the computational time of

CF rises slowly (most of it expended on the calculation of integrals in Appendix

A), while the computation of CJ becomes prohibitive for datasets of the order of a

few hundreds. Therefore, the Fisher information matrix (constituted of the second

partial derivatives in Appendix A) would be very useful in such instances.

A simulation based method of inference for parametric measurement error mod-

els called Simulation-Extrapolation (SIMEX) first proposed by Cook and Stefanski

(1994) and elaborated upon by Stefanski and Bay (1996), could also be useful.

SIMEX estimates are obtained by adding additional measurement error to the data

in a resampling stage, establishing a trend of measurement error induced bias versus

the variance of the added measurement error, and extrapolating this trend back to

the case of no measurement error. This methodology has not been exploited for

parametric density deconvolution.

Other possible extensions will be to look at (i) other distributions; (ii) truncated

samples and (iii) the case where σ is no longer treated as constant, that is, where it
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depends on the true values of x.
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Appendix A: The derivatives of the log-likelihood

function in (4.9).

The following defnitions are useful in both Appendices A and B below:

E(yj, x) = exp

{
−(yj − x)2

2σ2

}

K(x) = Φ

(
u− x

σ

)
− Φ

(
l − x

σ

)
I0(yj) =

∫ U

L

x−a−1E(yj, x) dx

I1(yj) =

∫ U

L

x−a−1 (log x) E(yj, x) dx

I2(yj) =

∫ U

L

x−a−1 (log x)2 E(yj, x) dx

I3(yj) =

∫ U

L

x−a−1 (yj − x)2 E(yj, x) dx

I4(yj) =

∫ U

L

x−a−1 (yj − x)2 (log x) E(yj, x) dx

I5(yj) =

∫ U

L

x−a−1 (yj − x)4 E(yj, x) dx

I6 =

∫ U

L

x−a−1K(x) dx

The first partial derivatives of the log-likelihood function L in (4.9) are:

∂L
∂L

= n

(
aL−a−1

L−a − U−a

)
− L−a−1

n∑
j=1

E(yj, L)

I0(yi)

∂L
∂U

= U−a−1

n∑
j=1

E(yj, U)

I0(yj)
− n

(
aU−a−1

L−a − U−a

)
∂L
∂a

=
n

a
− n

L−a − U−a

[
U−a(log U)− L−a(log L)

]
−

n∑
j=1

I1(yi)

I0(yj)

∂L
∂σ

= −n

σ
+

1

σ3

n∑
j=1

I3(yj)

I0(yj)
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The second partial derivatives are

F11 =
∂2L
∂L2

= n

[
(a2 + a) L−a−2U−a

(L−a − U−a)2

]
− n

[
aL−2a−2

(L−a − U−a)2

]
+ (a + 1) L−a−2

n∑
j=1

E(yj, L)

I0(yj)
− L−a−1

σ2

n∑
j=1

(yj − L) E(yj, L)

I0(yj)

− L−2a−2

n∑
j=1

[
E(yj, L)

I0(yj)

]2

F22 =
∂2L
∂U2

= n

[
(a2 + a) U−a−2L−a

(L−a − U−a)2

]
− n

[
aU−2a−2

(L−a − U−a)2

]
− (a + 1) U−a−2

n∑
j=1

E(yj, U)

I0(yj)
+

U−a−1

σ2

n∑
j=1

(yj − U) E(yj, U)

I0(yj)

− U−2a−2

n∑
j=1

[
E(yj, U)

I0(yj)

]2

F33 =
∂2L
∂a2

= − n

a2
+

nL−aU−a

(L−a − U−a)2 (log L− log U)2

+
n∑

j=1

{
I2(yj)

I0(yj)
−
[
I1(yj)

I0(yj)

]2
}

F44 =
∂2L
∂σ2

=
n

σ2
− 3

σ4

n∑
j=1

I3(yj)

I0(yj)
+

1

σ6

n∑
j=1

{
I5(yj)

I0(yj)
−
[
I3(yj)

I0(yj)

]2
}

F12 =
∂2L

∂L∂U
= −n

[
a2L−a−1U−a−1

(L−a − U−a)2

]
+ L−a−1U−a−1

n∑
j=1

E(yj, L)E(yj, U)

[I0(yj)]
2

F14 =
∂2L

∂L∂σ
= −L−a−1

σ3

n∑
j=1

[
E(yj, L) (yj − L)2

I0(yj

− E(yj, L)I3(yj)

[I0(yj)]
2

]

F24 =
∂2L

∂U∂σ
=

U−a−1

σ3

n∑
j=1

{
E(yj, U) (yj − U)2

I0(yj)
− E(yj, U) · I3(yi)

[I0(yj)]
2

}

F34 =
∂2L
∂a∂σ

=
1

σ3

n∑
j=1

{
I1(yj)I3(yi)

[I0(yj)]
2 − I4(yi)

I0(yj)

}
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F31 =
∂2L
∂a∂L

=
nL−a−1 (1− a log L)

L−a − U−a
− naL−a−1 (U−a log U − L−a log L)

[L−a − U−a]2

− L−a−1

{
n∑

j=1

E(yj, L)I1(yj)

[I0(yj)]
2 −

n∑
j=1

log L
E(yj, L)

I0(yj)

}

F32 =
∂2L

∂a∂U
= U−a−1

{
n∑

j=1

E(yj, U)I3(yj)

[I0(yj)]
2 − log U

n∑
j=1

E(yj, U)

I0(yj)

}

+
nU−a−1 (1− a log U)

L−a − U−a
+

naU−a−1 (U−a log U − L−a log L)

[L−a − U−a]2

Note that the second partial derivatives are used in the following information matrix
F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44


−1

and F12 = F21; F13 = F31; F14 = F41; F42 = F24; F32 = F23; F34 = F43.

Appendix B: The derivatives of the log-likelihood

function Lr in (4.17)

The first partial derivatives of the log-likelihood function Lr are

∂Lr

∂L
= L−a−1

[
nK(L)

I6

−
n∑

i=1

E(yj, L)

I0(yj)

]
∂Lr

∂U
= U−a−1

[
n∑

j=1

E(yj, U)

I0(yi)
− nK(U)

I6

]
∂Lr

∂a
=

n
∫ U

L
x−a−1 (log x) K(x) dx

I6

−
n∑

j=1

I1(yj)

I0(yj)

∂Lr

∂σ
= −n

σ
+

1

σ3

n∑
j=1

I3(yj)

I0(yj)
−

n
∫ U

L
x−a−1Kσ(x) dx

I6
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The second partial derivatives are

∂2Lr

∂L2
= (−a− 1)L−a−2

[
nK(L)

I6

−
n∑

j=1

E(yj, L)

I0(yj)

]

+ nL−a−1

[
KL(L)

I6

+
L−a−1 [K(L)]2

[I6]
2

]

− L−a−1

n∑
j=1

{
σ−2E(yj, L)(yj − L)

I0(yj)
+

L−a−1 [E(yj, L)]2

[I0(yj)]
2

}
∂2Lr

∂U2
= (−a− 1)U−a−2

[
n∑

j=1

E(yj, U)

I0(yj)
− nK(U)

I6

]

− nU−a−1

[
KU(U)

I6

− U−a−1 [K(U)]2

[I6]
2

]

+ U−a−1

n∑
j=1

{
σ−2E(yj, U)(yj − U)

I0(yj)
− U−a−1 [E(yj, U)]2

[I6]
2

}
∂2Lr

∂a2
=

n∑
j=1

{
I2(yj)

I0(yj)
+

[I1(yj)]
2

[I0(yj)]
2

}

− n


∫ U

L
x−a−1 (log x)2 K(x) dx

I6

+

[∫ U

L
x−a−1 (log x) K(x) dx

]2
[I6]

2


∂2Lr

∂σ2
=

n

σ2
− 3

σ4

n∑
j=1

I3(yj)

I0(yj)
+

1

σ6

n∑
j=1

{
I5(yj)

I0(yj)
− [I3(yj)]

2

[I0(yj)]
2

}

−

n
∫ U

L
x−a−1Kσ2(x) dx

I6

+
n
[∫ U

L
x−a−1Kσ(x) dx

]2
[I6]

2


∂2Lr

∂L∂U
= L−a−1U−a−1

{
n∑

j=1

E(yj, L)E(yj, U)

[I0(yj)]
2 − nK(L)K(U)

[I6]
2

}
∂2Lr

∂a∂U
= U−a−1 (log U)

[
n∑

j=1

E(yj, U)

I0(yj)
− nK(U)

I6

]
+ U−a−1

{
n∑

j=1

E(yj, U)I1(yj)

[I0(yj)]
2 −

nK(U)
∫ U

L
x−a−1 (log x)2 K(x) dx

[I6]
2

}
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∂2Lr

∂U∂σ
= −U−a−1

{
nKσ(U)

I6

−
nK(U)

∫ U

L
x−a−1Kσ(x) dx

[I6]
2

}
+

U−a−1

σ3

n∑
j=1

{
(yj − U)2 E(yj, U)

I0(yj)
− I3(yj)E(yj, U)

[I0(yj)]
2

}
∂2Lr

∂a∂L
= L−a−1 (log L)

[
nK(L)

I6

−
n∑

j=1

E(yj, L)

I0(yj)

]
+

L−a−1

{
nK(L)

∫ U

L
x−a−1 (log x)2 K(x) dx

[I6]
2 −

n∑
j=1

E(yj, L)I1(yj)

[I0(yj)]
2

}
∂2Lr

∂L∂σ
= L−a−1

{
nKσ(L)

I6

−
nK(L)

∫ U

L
x−a−1Kσ(x) dx

[I6]
2

}
−

L−a−1

σ3

n∑
j=1

{
(yj − L)2 E(yj, L)

I0(yj)
− I3(i)E(yj, L)

[I0(yj)]
2

}

∂2Lr

∂σ∂a
=

n
∫ U

L
x−a−1 (log x)2 K(x) dx

I6

−
n
[∫ U

L
x−a−1K(x) dx

]2
[I6]

2 +

1

σ3

n∑
j=1

{
I4(yj)

I0(yj)
− I3(yj)I1(yj)

[I0(yj)]
2

}

where the derivatives of K(x) with respect to the parameters: σ, L and U are:

Kσ(x) =
1

σ4
√

2π

{∫ u

−∞
E(t, x) (t− x)2 dt−

∫ l

−∞
E(t, x) (t− x)2 dt

}
− 1

σ
K(x)

KL(L) =
1

σ3
√

2π

{∫ u

−∞
E(t, L) (t− L) dt−

∫ l

−∞
E(t, L) (t− L) dt

}
KU(U) =

1

σ3
√

2π

{∫ u

−∞
E(t, U) (t− U) dt−

∫ l

−∞
E(t, U) (t− U) dt

}
Kσ2(x) =

2

σ
K(x) +

1

σ7
√

2π

{∫ u

−∞
E(t, x) (t− x)4 dt−

∫ l

−∞
E(t, x) (t− x)4 dt

}
− 5

σ5
√

2π

{∫ u

−∞
E(t, x) (t− x)2 dt−

∫ l

−∞
E(t, x) (t− x)2 dt

}
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Appendix C: MATLAB programs

Algorithm 1: Simulations

1. For a given model Y = X + ε, where the variable X follows a Pareto PDF given

in (4.1) and ε ∼ N(0, σ2).

2. Let z = FX(x), then x = (L−a − z(L−a − U−a))
−1/a

, refer to (4.2). Given the

parameter vector values [L, U, a], desired sample size n and z ∼ U(0, 1); x in (2)

above returns the un-contaminated simulated data.

3. Adding the Gaussian error with mean zero and variance σ2 to x. The error-

contaminated data Y = x + ε is produced.

—————————— The Matlab code of Algorithm 1——————————

function [Y] = SimuPareto(n,params)

%**************************************************************************

% inputs: desired sample size n and the parameter vector values [L, U, asigma]

L = params(1); % lower limit

U = params(2); % upper limit

a = params(3); % exponent or power indices

sigma = params(4); % error standard deviation

%**************************************************************************

z = rand(n,1); % vector of uniformly distributed pseudo-random numbers.

x =((L.̂ (-a) - z.*(L.ˆ(-a) - U.ˆ(-a))). ˆ(-1./a));

e = sigma*randn(n,1);

Y = x + e;

%**************************************************************************

% The histograms

subplot(2,1,1),hist(x)

title(’UN-CONTAMINATED DATA’)

subplot(2,1,2),hist(Y)

title(’ERROR-CONTAMINATED DATA’)

return
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Algorithm 2: MLEs of the log-likelihood function given in (4.9)

The Matlab codes below minimises the negative log-likelihood function with respect

to unknown parameters of the convolved PDF. It accepts initial estimates (params)

and returns the estimated parameter vector (paramsEst) obtained by optimization

(minimization or maximization) procedure.

—————————— The Matlab code of Algorithm 2————————-

function [paramsEst,Funval,exitflag,output] = MAXlikelihood(data,params)

%**************************************************************************

% fminserach = minimize the scalar function loglikfnct, starting at initial (params).

% Funval is the value of the function loglikfnct at the solution paramsEst.

% exitflag = describe the exit condition of fminsearch:

% 1 fminsearch converge to a solution paramsEst

% 0 Maximum number of function evaluations or iterations was reached

% -1 Algorithm was terminated by the output function

% output = returns structure output that contains information about the optimiza-

tion

%**************************************************************************

[paramsEst,Funval,exitflag,output] = fminsearch(@loglikfnct,params,[ ],data);

return

%**************************************************************************

function [loglikhod] = loglikfnct(params,data)

% loglikfnct(params,data) function returns the negative log-likelihood value

%**************************************************************************

z = sort(data); % assigning data to variable z

n = length(z); % sample size

%**************************************************************************

% initial estimates

L = params(1); % Lower limit
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U = params(2); % Upper limit

a = params(3); % exponent

sigma = params(4); % error standard deviation

%**************************************************************************

% Terminate if the conditions are not met

if (a < 0||L < 0||U < L|| sigma < 0)

loglikhod = 1.0e+20;

return

end

%**************************************************************************

% First find the limits of the function only where the integrand is non zero.

re = 1.e-8; % relative error

tol = 1.e-8;

for i = 1: n

x = z(i);

y = integrand2(x,z(i),a,sigma);

while y > re

x = x - 0.5*sigma;

y = integrand2(x,z(i),a,sigma);

end

L1 = x; % lower limits

%*************************************************************************

% Note that lower and upper limits must be in the interval [L, U ].

%*************************************************************************

if (L1 < L)

Llim = L;

else

Llim = L1;
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end

%*************************************************************************

x = z(i);

y = integrand2(x,z(i),a,sigma);

while y > re

x = x + 0.5*sigma;

y = integrand2(x, z(i), a,sigma);

end

U1 = x; % upper limits

%**********************************************************************

if (U1 > U)

Ulim = U;

else

Ulim = U1; end

%**************************************************************************

D(i) = quadl(@integrand2,Llim,Ulim,tol,[],z(i),a,sigma);

end

%**************************************************************************

% function body

B = n*log(a) - n*log(Lˆ(-a) - Uˆ(-a));

A = -n*log(sigma) - (n/2)*log(2*pi);

C = sum(log(D));

loglike = (A + B) + C;

loglikhod = -loglike; % negative log-likelihood

return

%**************************************************************************

function y = integrand2(x,z,a,sigma)

% integral part of the log-likelihood function.

y = (x.̂(−a− 1)).*exp((-1/2).*((z - x)./sigma). 2̂);

return
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Algorithm 3: Information matrix and standard errors of the estimates

The Matlab codes below calculates information matrix and standard errors of the

estimated parameter vector [L, U, a, sigma] obtained by algorithm 2.

—————————— The Matlab code of Algorithm 3a———————–

function [covmatrix,stderrors] = infomatrix(data,paramsEst)

% function [covmatrix,stderrors] = infomatrix(data,paramsEst)

% input: data and estimated parameters

% output: Covariance matrix and standard errors of the parameter estimates

%**************************************************************************

L = paramsEst(1);

U = paramsEst(2);

a = paramsEst(3);

sigma = paramsEst(4);

z = sort(data);

n = length(data);

%**************************************************************************

for i = 1:n

alpf(i) = quad(@integrand2,L,U, [],[],z(i),a,sigma);

pbl = (a. ˆ2*Lˆ(-a-2)*Uˆ(-a) - a*L.ˆ(-2*a-2) + a*L.ˆ(-a-2)*U.ˆ(-a));

bc = L.ˆ(-a) - U.ˆ(-a);

pL = n*(pbl/bc. ˆ2);

palpL(i) = -L.ˆ(-a-2).*(-a-1).*exp(-1/2*(z(i)-L).ˆ2 ./sigma. ˆ2) - . . .

L.ˆ(-a-1).*((z(i)-L)./sigma. ˆ2).*exp(-1/2*(z(i)-L).ˆ2./sigma. ˆ2);

alpL(i) = (-L.ˆ(-a-1).*exp(-1/2*(z(i)-L).ˆ2./sigma. ˆ2)). ˆ2;

pL2 = (palpL.*alpf - alpL)./(alpf. ˆ2);

%**************************************************************************

pbu = (aˆ2*Uˆ(-a-2)*Lˆ(-a) - a*Uˆ(-2*a-2) + a*Uˆ(-a-2)*Lˆ(-a));
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pU = n*(pbu/bcˆ2);

palpU(i) = Uˆ(-a-2).*(-a-1).*exp(-1/2*(z(i)-U).ˆ2./sigma. ˆ2) + . . .

Uˆ(-a-1).*((z(i)-U)./sigma. ˆ2).*exp(-1/2*(z(i)-U).ˆ2./sigma. ˆ2);

alpU(i) = (Uˆ(-a-1).*exp(-1/2*(z(i)-U).ˆ2./sigma. ˆ2)). ˆ2;

pU2 = (palpU.*alpf - alpU)./(alpf. ˆ2);

%**************************************************************************

pba = (Lˆ(-a)*Uˆ(-a))*(log(L) - log(U))ˆ2;

pA = n*(-aˆ(-2) + pba/(bcˆ2));

alpa2(i) = quad(@apart21,L,U, [],[],z(i),a,sigma);

alpa1(i) = (quad(@apart1,L,U, [],[],z(i),a,sigma)). ˆ2;

pA2 = (alpa2.*alpf - alpa1)./(alpf. ˆ2);

%**************************************************************************

pS = n*sigmaˆ(-2);

alps1(i) = quad(@sigpart11,L,U, [],[],z(i),a,sigma);

alps2(i) = quad(@sigpart21,L,U, [],[],z(i),a,sigma);

alps3(i) = (quad(@sigpart31,L,U, [],[],z(i),a,sigma)). ˆ2;

pS2 = ((alps1 + alps2).*alpf - alps3)./(alpf. ˆ2);

%**************************************************************************

pblu = -aˆ2*Lˆ(-a-1)*Uˆ(-a-1);

pLU = n*(pblu/bcˆ2);

palpLU(i) = Lˆ(-a-1).*Uˆ(-a-1).*exp(-1/2.*((z(i)-L).ˆ2./sigma. ˆ2 + . . .

(z(i)- U).ˆ2./sigma. ˆ2));

69

 

 

 

 



pLU2 = palpLU./(alpf. ˆ2);

%**************************************************************************

pbla = Lˆ(-2*a-1) + (Lˆ(-a-1)*Uˆ(-a))*((a*log(L) - a*log(U)) - 1);

pLA = n*(pbla/bcˆ2);

palpLA1(i) = Lˆ(-a-1).*log(L).*exp(-1/2.*(z(i)-L).ˆ2./sigma. ˆ2);

alpLA2(i) = -Lˆ(-a-1).*exp(-1/2*(z(i)-L).ˆ2./sigma. ˆ2);

alpLA3(i) = quad(@apart1,L,U, [],[],z(i),a,sigma);

pLA2 = ((palpLA1.*alpf) - (alpLA2.*alpLA3))./(alpf. ˆ2);

%**************************************************************************

palpLS1(i) = -Lˆ(-a-1).*((z(i) -L).ˆ2./sigmaˆ3).*exp(-1/2.*(z(i)-L).ˆ2./sigma. ˆ2);

alpLS2(i) = -L (̂-a-1).*exp(-1/2*(z(i)-L).ˆ2./sigma. ˆ2);

alpLS3(i) = quad(@sigpart31,L,U, [],[],z(i),a,sigma);

pLS2 = ((palpLS1.*alpf) - (alpLS2.*alpLS3))./(alpf. ˆ2);

%**************************************************************************

pbua = Uˆ(-2*a-1) + (Uˆ(-a-1)*Lˆ(-a))*(a*log(U) - a*log(L) - 1);

pUA = n*(pbua/bcˆ2);

palpUA1(i) = -Uˆ(-a-1).*log(U).*exp(-1/2.*(z(i)-U).ˆ2./sigma. ˆ2);

alpUA2(i) = Uˆ(-a-1).*exp(-1/2*(z(i)-U).ˆ2./sigma. ˆ2);

alpUA3(i) = quad(@apart1,L,U, [],[],z(i),a,sigma);

pUA2 = ((palpUA1.*alpf) - (alpUA2.*alpUA3))./(alpf. ˆ2);

%**************************************************************************

palpUS1(i) = Uˆ(-a-1).*((z(i) -U).ˆ2./sigmaˆ3).*exp(-1/2.*(z(i)-U).ˆ2./sigma. ˆ2);

alpUS2(i) = Uˆ(-a-1).*exp(-1/2*(z(i)-U).ˆ2./sigma. ˆ2);
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alpUS3(i) = quad(@sigpart31,L,U, [],[],z(i),a,sigma);

pUS2 = ((palpUS1.*alpf) - (alpUS2.*alpUS3))./(alpf. ˆ2);

%**************************************************************************

alpAS1(i) = quad(@sigpart41,L,U, [],[],z(i),a,sigma);

alpAS2(i) = quad(@sigpart31,L,U, [],[],z(i),a,sigma);

alpAS3(i) = quad(@apart1,L,U, [],[],z(i),a,sigma);

pAS2 = ((alpAS1.*alpf) - (alpAS2.*alpAS3))./(alpf. ˆ2);

%**************************************************************************

end

xL = (-1).*(pL + sum(pL2));

xU = (-1).*(pU + sum(pU2));

xA = (-1).*(pA + sum(pA2));

xS = (-1).*(pS + sum(pS2));

xLU = (-1).*(pLU + sum(pLU2));

xLA = (-1).*(pLA + sum(pLA2));

xLS = (-1).*sum(pLS2);

xUa = (-1).*(pUA + sum(pUA2));

xUs = (-1).*sum(pUS2);

xAS = (-1).*sum(pAS2);

covmatrix = inv([xL xLU xLA xLS;xLU xU xUa xUs;xLA xUa xA xAS;xLS xUs

xAS xS]);

stderrors = sqrt(diag(invmatrix));

return

%**************************************************************************

function y = integrand2(x,z,a,sigma)

y = (x. ˆ(-a - 1)).*exp((-1/2).*((z - x)./sigma). ˆ2);

return
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%**************************************************************************

function y1 = apart1(x,z,a,sigma)

y1 = (-x. ˆ(-a - 1)).*(log(x)).*exp((-1/2).*((z -x)./sigma). ˆ2);

return

%**************************************************************************

function y3 = apart21(x,z,a,sigma)

y3 = (x. ˆ(-a - 1)).*((log(x)). ˆ2).*exp((-1/2).*((z - x)./sigma). ˆ2);

return

%**************************************************************************

function y4 = sigpart11(x,z,a,sigma)

y4 = (-3.*x. ˆ(-a - 1).*(((z-x). ˆ2)./sigma. ˆ4). . .

.*exp((-1/2).*((z - x)./sigma). ˆ2));

return

%**************************************************************************

function y5 = sigpart21(x,z,a,sigma)

y5 = x. ˆ(-a - 1).*((z-x). ˆ4)./(sigma. ˆ6).*(exp((-1/2).*((z -x)./sigma). ˆ2));

return

%**************************************************************************

function y6 = sigpart31(x,z,a,sigma)

y6 = (x. ˆ(-a - 1)).*(((z-x). ˆ2)./(sigma). ˆ3).*exp((-1/2).*((z -x)./sigma). ˆ2);

return

%**************************************************************************

function y7 = sigpart41(x,z,a,sigma)

y7 = (-x. ˆ(-a - 1)).*(log(x)).*(((z-x). ˆ2)./(sigma). ˆ3).*exp((-1/2).*((z -x)./sigma).

ˆ2);

return

—————————— The Matlab code of Algorithm 3b————————

function [sehatJack] = jackfnct(data,paramsEst)
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%**************************************************************************

% function [sehat] = jack(data,paramsEst) estimates the standard errors

% of the paramsEst [L,U,a,sigma]

% using jackknife method

% input - data and estimated parameter vector of [L,U,a,sigma]

% Outputs: Standard errros of the estimates

% Created by Lwando Kondlo

% March 2008

%

% References:

% Efron, B. Bootstrap Methods. Another Look at the Jackknife.

% The Annals of Statistics, Vol. 7, pp. 1-26, 1979.

%**************************************************************************

z = sort(data);

n = length(z);

reps = zeros(n,1); % initialize jackknife replications

reps2 = zeros(n,1);

reps3 = zeros(n,1);

reps4 = zeros(n,1);

%**************************************************************************

for i = 1 : n

zt = z; % store temporary vector

zt(i) = []; % leave i-th point out (jackknife sample)

Ls = MAXlikelihood(zt,paramsEst);

reps(i) = Ls(1,1); %jackknife replicates of paramsEst

reps2(i) = Ls(1,2);

reps3(i) = Ls(1,3);

reps4(i) = Ls(1,4);

end

%**************************************************************************

% jackknife estimate
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mureps = mean(reps);

mureps2 = mean(reps2);

mureps3 = mean(reps3);

mureps4 = mean(reps4);

%**************************************************************************

% get the estimate of the standard error

sehat1 = sqrt((n-1)/n *sum((reps - mureps). ˆ2));

sehat2 = sqrt((n-1)/n *sum((reps2 - mureps2). ˆ2));

sehat3 = sqrt((n-1)/n *sum((reps3 - mureps3). ˆ2));

sehat4 = sqrt((n-1)/n *sum((reps4 - mureps4). ˆ2));

%**************************************************************************

sehatJack = [sehat1 sehat2 sehat3 sehat4];

return

Algorithm 4: Probability-probability plots

The Matlab code below plots the Probability-probability plots of the convolved CDF

given the estimated parameter vector [L, U, a, sigma] obtained by algorithm 2 and

dataset.

—————————— The Matlab code of Algorithm 4————————

function ppplots(paramsEst,data)

% ppplots(paramsEst,data) returns the Probability-probability plots

z = sort(data);

n = length(z);

L = paramsEst(1);

U = paramsEst(2);

a = paramsEst(3);
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sigma = paramsEst(4);

%**************************************************************************

for i = 1 : n

intepart(i) = quad(@CDFfuntrail,L,U,[],[],z(i),a,sigma);

constant = a/(Lˆ(-a)- U (̂-a));

emp(i) = (i./n);

end

%**************************************************************************

k = 0:0.5:1;

G2 = emp’;

G1 = (constant.*intepart)’;

plot(G2,G1,’+’,k,k,’r’,’LineWidth’,2)

legend(’probabilities’,’straight line’);

xlabel(’Empirical CDFs’)

ylabel(’Theoretical CDFs’)

return

%**************************************************************************

function y = CDFfuntrail(P,z,a,sigma)

% integral part of the CDF function

%**************************************************************************

N = length(P);

for j = 1:N;

x = P(j);

k = (z - x)./(sqrt(2).*sigma);

CDFnorm = 0.5.*(1 + erf(k));

v = (x. ˆ(-a-1)).*CDFnorm;

u(j) = x;

y(j) = v;

end

return
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Algorithm 5: convolved CDF graph and K-S test statistic

The Matlab code below calculates the K-S test statistic and plots the graph of the

convolved CDF, given the estimated parameter vector [L, U, a, sigma] obtained by

algorithm 2 and dataset.

—————————— The Matlab code of Algorithm 5————————-

function [F1] = CDFParetoNorm(paramsEst,data);

%**************************************************************************

z = sort(data(:));

n = length(z);

%**************************************************************************

% estimates

L = paramsEst(1);

U = paramsEst(2);

a = paramsEst(3);

sigma = paramsEst(4);

%**************************************************************************

% Tolerance parameter for quadrature algorithm (quad or lobbato-quadl)

tolr = 1.e-6;

%**************************************************************************

% for loop

for i = 1 : n

D(i) =(quad(@CDFfuntrail,L,U,tolr,[],z(i),a,sigma));

jj = find(z <= z(i));

empir2(i) = length (jj)./n;

end

%**************************************************************************

constant = a/(Lˆ(-a)- Uˆ(-a));

G = (constant.*D);

%**************************************************************************

F = G’;

emp2 = empir2’;

%**************************************************************************

plot(z,F,’b-’,z,emp2,’-r’,’LineWidth’,2)
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legend(’Theoretical CDF’,’Empirical CDF’);

xlabel(’observe random variables’)

ylabel(’Probabilities’)

%**************************************************************************

F1 = [F emp2];

kol = max(abs(emp2 - F)) % kolmogorov-smirnov value

return

Algorithm 6: Bootstrapping critical values of the K-S test statistic

The Matlab code below returns the critical values of the K-S test statistic given the

estimated parameter vector [L, U, a, sigma] obtained by algorithm 2, dataset and

number of bootstrap replicates, nboot.

—————————— The Matlab code of Algorithm 6————————-

function [KSvaleus paramsEst1] = KSbootscriticalV(data,nboot,paramsEst)

z = sort(data)’; % input data

n = length(z);

%**************************************************************************

for i=1:nboot,

a = ceil(n*rand(n,1));

zt = z(a);

paramsEst0 = Maxlikelihood(zt,paramsEst);

ztt = CDFParetoNorm(paramsEst0,zt);

D = max(abs(ztt(:,2) - ztt(:,1)));

Dx = abs(ztt(:,2) - ztt(:,1));

jj = find(Dx == D);

xx = length(jj);

%**************************************************************************

parL(i) = paramsEst0(:,1);
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parU(i) = paramsEst0(:,2);

para(i) = paramsEst0(:,3);

pars(i) = paramsEst0(:,4);

end;

%**************************************************************************

KSvaleus = sort(mx11)’;

paramsEstL = sort(parL)’;

paramsEstU = sort(parU)’;

paramsEsta = sort(para)’;

paramsEsts = sort(pars)’;

paramsEst1 = [paramsEstL paramsEstU paramsEsta paramsEsts];

return
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