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Abstract

A MATHEMATICAL MODELING OF OPTIMAL VACCINATION

STRATEGIES IN EPIDEMIOLOGY.

L. Nemaranzhe

M.Sc thesis, Department of Mathematics, University of Western Cape.

We review a number of compartmental models in epidemiology which leads to a
nonlinear system of ordinary differential equations. We focus an SIR, SEIR and
SIS epidemic models with and without vaccination. A threshold parameter R0

is identified which governs the spread of diseases, and this parameter is known
as the basic reproductive number. The models have at least two equilibria, an
endemic equilibrium and the disease-free equilibrium.

We demonstrate that the disease will die out, if the basic reproductive
number R0 < 1. This is the case of a disease-free state, with no infection
in the population. Otherwise the disease may become endemic if the basic
reproductive number R0 is bigger than unity. Furthermore, stability analysis
for both endemic and disease-free steady states are investigated and we also
give some numerical simulations.

The second part of this dissertation deals with optimal vaccination strategy
in epidemiology. We use optimal control technique on vaccination to minimize
the impact of the disease. Hereby we mean minimizing the spread of the disease
in the population, while also minimizing the effort on vaccination roll-out. We
do this optimization for the cases of SIR and SEIR models, and show how
optimal strategies can be obtained which minimize the damage caused by the
infectious disease. Finally, we describe the numerical simulations using the
fourth-order Runge-Kutta method.
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Chapter 1

1. Introduction

1.1 Historical overview

Infectious diseases such as measles, influenza, smallpox, tuberculosis, malaria,
etc., have been having a great influence on human life. Almost every year
millions of people die from different infectious diseases. This motivated the
development of modern epidemiological theory. The most important concerns
about any infectious disease is the ability to invade a population. The goal
of the study of infectious diseases via mathematical population models is to
understand how infections diseases are propagated in terms of numbers of
people affected and also to find the best possible strategies to control the spread
of a disease or to eradicate it. Mathematical modeling approaches therefore
also provide powerful tools for epidemiological policy decision making in many
countries, and among other health authorities. These models are often the only
practical approach for answering questions about which prevention or control
procedure is most effective.

There is on record, in relatively distant history, some interesting mathe-
matical intervention in epidemiological situations. In 1760, Daniel Bernoulli
carried out the first application of mathematical modeling to the spread of in-
fectious disease which was described in the paper of Zhou and Liu [69]. Even
though his work existed before the identification of the agent responsible for
the transmission of smallpox by a century, he formulated and solved a differ-
ential equation which described the dynamics of the infection which is still of
great importance even today. In 1906, Hamer [20] formulated and analyzed
a discrete time model in attempting to understand the recurrence of measles
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epidemics. His model may have been the first to assume that the incidence
depends on the product of the densities of the susceptibles and infectives. Ross
[48] developed differential equation models for malaria as a host-vector disease
in 1911 because he was interested in the incidence and control of malaria.
The serious development of mathematical epidemiology was delayed by lack
of understanding of the mechanism of infectious spread until the beginning of
20th century.

The first stochastic theory was developed in 1926 by McKendrick [38]. The
extremely important threshold theorem was established in 1930 by Kermack
and McKendrick, which showed that the density of susceptible individuals
must exceed a certain critical value in order for an epidemic outbreak to occur,
was described in the textbook of Bailey [5]. Most traditional compartmental
models descend from the classical SIR model of Kermack and McKendrick,
where the population is divided into the classes of susceptible, infected, and
recovered (S, I and R) individuals. For some diseases, such as influenza and
tuberculosis, on sufficient contact with an infectious individual, a susceptible
becomes exposed for a while, that is, infected but not yet infectious. Thus, it
is reasonable to introduce a latent compartment, leading to an SEIR model.
Such models have been widely discussed in the literature. Anderson and May
[2] showed that the well known standard mathematical models of the spread
of infectious diseases have been useful for many different diseases in various
regions all over the world. The models proposed by Kermack and McKendrick
[39], published in 1927, had a great influence on the modeling framework.
Their SIR model tracks the numbers of susceptible, infective and recovered
individuals during an epidemic with the help of ordinary differential equations.

1.2 Models and their analysis

Mathematical modeling can be used for comparing different diseases in the
same population, the same diseases at different times or the same diseases in
different population. Epidemiological models are helpful when comparing the
effects of prevention or control procedures. Hethcote and Yorke [66] used mod-
els for comparing gonorrhea control procedures such as screening, tracing infec-
tors, post translational and general vaccination. In most mathematical biology
literature, various researchers have proposed several mathematical models for
modeling the spread of infectious diseases. The model formulation process
clarifies assumptions, parameters and variables. Furthermore, models provide
conceptual results such as basic reproductive numbers, contact rate and other
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numerical thresholds. Computer simulations and mathematical models are
very useful experimental tools for building and testing theory, assessing quan-
titative conjectures, answering specific questions, determining sensitivities to
changes in parameter values, and estimating key parameters from data.

The most common methods for intervention in the spread of infectious dis-
eases include either the removal of susceptible individuals or the application
of treatments to infected individuals in order to prevent further spread of a
disease. For example, in the case of foot-and-mouth disease, the susceptible
individuals may be selected from the host population to avoid contact with
the infected individuals (Tildesley et al. [58]; Enserink [15]). When it comes
to contagious disease such as severe acute respiratory syndrome, infected indi-
viduals may be quarantined (see Lloyd et al. [35]). Furthermore, susceptibles
individuals may be vaccinated as in case of smallpox or influenza as shown by
Ferguson et al. [17] and Halloran et al. [19].

Each one of the actions above involves a cost. For selection, the cost is
determined by the additional number of deaths. In case of vaccination the
cost may be measured in both monetary units and additional vaccine-induced
infection. For quarantine, the cost is mostly measured in units rather than
deaths, and for medical treatment also the cost is monetary. In addition, each
of these actions associated with costs can be dependent upon the state or in-
tensity of the disease within the host population. From this arose fundamental
questions of epidemiological modeling on how to find optimal epidemiological
interventions in such a way that is adaptively dependent upon a state of the
epidemic. There is also the problem of how to find threshold conditions which
determine whether an infectious disease will spread or will die out in a host
population.

Numerous epidemiological models have a disease-free equilibrium at which
the population remains free of the disease. These models usually have the
threshold parameter which governs the spread of diseases, and is also related
to the long term behaviours and the level of intervention necessary for erad-
ication. This parameter is known as the basic reproductive number R0. We
define R0 as the average number of secondary infectious cases produced by
an infectious individual in a totally susceptible population during the entire
infectious period. If R0 < 1, then the disease eventually dies out from the
population because on average, each infected cannot guarantee transmission
of the infectious agent to one susceptible. Therefore the disease-free equilib-
rium is asymptotically stable and the population cannot be invaded by the
disease. On the other hand if R0 > 1, then each infected individual produces,
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on average, more than one new infection, and the disease can spread in the
population. Therefore the disease-free equilibrium is unstable and invasion is
always possible, see for instance [22] of Hethcote.

Local and global stability analysis of the disease-free and endemic equilibrium
have been carried out using different assumptions and contact rates, this can
be seen in Castillo-Chavez and Feng [9]. Other important references are for
examples Enatsu et al. [14], Korobeinikov et al. [30], Li and Jin [33], Zaman
et al. [67] and [69]. Bailey [5] reported that the number of references to
mathematical epidemiology had quintupled to 500 in a space of 18 years in
1975.

1.3 Scope of this dissertation

In this work we use optimal control strategies on vaccination to control the
number of susceptible and infective individuals and increase the number of
recovered individuals. With the help of an iterative method and the Maximum
principle of Pontryagin as for example in Kamien and Schwartz [28], we shall
develop some new model. The goal of this work is not to consider a special
disease but to present a method of how to treat this class of optimization
problems.

Firstly, we consider a general SIR epidemic model of Zaman et. al. [67],
and apply stability analysis theory to understand the equilibria for the model
(see the paper [7] by Brauer and Castillo-Chavez). After investigating the
equilibria of the model without vaccination, then we present a SIR model
with a vaccination and we show how to optimally control the vaccination.
Furthermore, we also consider the SEIR model proposed by Tessa [57], and
SIS models [69]. Again we analyze stability and study the control of the
vaccination.

We consider vaccination strategies defined by a fraction of the current sus-
ceptible population to be targeted for vaccination. The optimal vaccination
strategy is to control the total number of susceptible, exposed and recovered
individuals and also to minimize the probability that the infected individuals
spread the disease in the population. Then we demonstrate how the optimal
control of the vaccination variable u(t) can be applied to minimize the number
of infected individuals. We shall also briefly refer to an alternate approach to
modeling of vaccination, which is the so-called pulse vaccination strategy.

4

 

 

 

 



Finally we use the fourth-order Runge-Kutta numerical procedure to solve
the optimal system with interactive method. Starting with an initial guess for
the adjoint variables, the state equations are solved by a forward Runge-Kutta
scheme in time. Then those state values are used to solve the adjoint equations
by a backward Runge-Kutta scheme, because of the transversality conditions.

1.4 Description of the chapters

The remainder of the thesis is organized as follows. In chapter 2 we introduce
some mathematical preliminaries and basics that are important prerequisites
to the study epidemiological models. This chapter is arranged to familiarize
the reader with the mathematical definitions, methods and theorems that are
used in epidemiological models.

In chapter 3 we discuss some mathematical models of the epidemiology
used by the researchers over the past years, including some very recent papers.
In addition, we presented some continuous mathematical model for the trans-
mission of infectious diseases, as a higher order system of ordinary differential
equations.

In chapter 4 we describe the SIR model for the transmission of infectious
diseases in the population. The basic reproductive number is identified and
shown to be a threshold parameter. Furthermore, we study and determine the
equilibrium points, and their stability is analyzed.

Chapter 5 extends the results of chapter 4 to cover the control of vaccination
for SIR epidemiological models. The optimal control problem is formulated and
we also provide the main method for solving these highly nonlinear control
problem. The significance of our analytical and numerical simulations are
discussed. The SIR model that we consider is the one used in Hattaf and
Yousfi. The method is similar to that in the paper [67] by Zaman et al.
Therefore we have some marginal novelty in this chapter.

In chapter 6 we demonstrate the stability analysis for both SEIR and SIS mod-
els. Local and global stabilities for the disease-free equilibrium and endemic
equilibrium are described. In this case we present a Lyapunov function in
order to establish global stability of the disease-free equilibrium.

In addition, we also formulated the optimal control problem for the SEIR
model in chapter 7 as we did in chapter 5 for the SIR model. This is an inde-
pendent piece of work, at least, the author does not know of such a piece of
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work. We use an SEIR model similar to that of Ngwenya [42]. Then, we give
the procedure for solving the nonlinear control problem. We present differ-
ent computer simulations of the dynamic system and discuss their outcomes.
Finally, the conclusion are summarized in chapter 8.
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Chapter 2

Preliminaries and basics

2.1 Modeling

This dissertation entails a study of deterministic compartmental models of
population dynamics in epidemiology. In this introductory chapter, we briefly
review some several definitions, methods, theorems and results that are im-
portant mathematical prerequisites to the study of epidemiology. This chapter
serves only as a short summary and convenient reference. We include some
definitions and results on stability of solutions of ordinary differential equa-
tions which we mainly take from the textbook of Jordan and Smith [26]. Other
useful references in this regard are the books [47] by Rao and [3] of Arrowsmith
and Place. Another important mathematical method we shall be using, is op-
timal control theory. Our basic result is taken from Seierstadt and Sydsaeter
[50]. The books by Kamien and Schwartz [28] and Lenhart and Workman
[31] are also useful references. Technical terminology on epidemiology such as
basic reproductive number, transmission coefficient, endemic equilibrium, etc
will be picked up along the way, mostly in chapter 3 where we look at a variety
of epidemiological models.

2.2 Systems of ordinary differential equations

Our main references for this section are the textbook [26] by Jordan and Smith,
[3] of Arrowsmith and Place and [47] Rao.
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Definition 2.2.1. Given a non-empty subset A of R
n and a point x ∈ R

n, the
distance dist(x,A) from x to A is defined as dist(x,A)=inf {‖x− a‖ : a ∈ A}.

Note that due to the infimum property, for a non-empty set A, the distance
will always exist.

Definition 2.2.2. For a function x : R → R
n, for t0 ∈ R and for b ∈

R
n, the half-path of x(t) starting at b when t = t0, is the set H(x, b, t0) =

{x(t) : t ≥ b} .

In what follows we assume that we have a differential equation ẋ =f(x), with
x being a function x : R → R

n, and f : R
n → R

n.

Definition 2.2.3. (Poincaré or orbital stability). Let H∗ = H(x∗, a∗, t0) be
the half-path for the solution x∗(t) of ẋ = f(x) which starts at a∗ at t = t0.
Suppose that for every ǫ > 0 there exists δ > 0 such that

|a− a∗| < δ⇒ sup
x∈H

dist (x,H∗) < ǫ.

Then x∗ is said to be Poincaré stable.

Definition 2.2.4. (Lyapunov stability). Let x∗(t) be a given real or complex
solution of the system. Then x∗(t) is a Lyapunov stable on t ≥ t0 if, for any
ǫ > 0, there exists δ(ǫ, t0) such that for a solution x(t), we have:

(a). ‖x(t0) − x∗(t0)‖ < δ ⇒ ‖x(t) − x∗(t)‖ < ǫ, for all t ≥ t0.

Otherwise x∗(t) is said to be unstable.

Remark 2.2.5. As remarked in Jordan and Smith [26], if (a) of the defination
(2.2.4) is satisfied for initial conditions at t0, then a similar condition is satisfied
when any t1 > t0 is substituted for t0: that is, if x∗(t) is stable for t ≥ t0, it is
stable for t ≥ t1 > t0.

Definition 2.2.6. (Uniform stability). If a solution is stable for t ≥ t0 and
the δ of Lyapunov stability is independent of t0, then the solution is said to
be uniformly stable on the interval t ∈ [t0,∞) .

Definition 2.2.7. (Asymptotic stability). Let x∗ be a stable (or uniformly
stable) solution for t ≥ t0. If additionally there exists η(t0) > 0 such that
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|x(t0) − x∗(t0)| ≤ η ⇒ lim
t→∞

|x(t) − x∗(t)| = 0,

then the solution is said to be asymptotically stable (or uniformly and asymp-
totically stable).

Some solutions of a system of the form ẋ = f(x) are particularly important
and requires special mention, especially in epidemiology. We now define these
points, the so-called equilibrium solutions, also sometimes referred to as fixed
points or critical points.

Definition 2.2.8. An equilibrium solution of ẋ = f(x) is a function x0(t)
satisfying the condition 0 = f(x0(t)) for all t.
A point which is an equilibrium solution is also called a fixed point.

Consider a fixed point x0 of the system of differential equations

ẋ = f(x), (2.1)

assuming that x(.) : [0,∞) → R
n is differentiable. Let Df(y) be the derivative

of f at the point y, regarding Df(y) as an n× n matrix (aij) with

aij =
∂fi

∂xj

. (2.2)

The special case when the system is of the form ẋ = Ax for some matrix A
with constant coefficients, have received much attention in the literature, e.g.
Jordan and Smith [26]. In particular there is the following theorem.

Theorem 2.2.9. Let A be constant matrix in the system ẋ = Ax, with eigen-
values λi, i = 1, 2, ..., n.

(i) If the system is stable , then Re {λi} ≤ 0, i = 1, 2, ..., n.

(ii) If either Re {λi} < 0, i = 1, 2, ..., n.; or if Re {λi} ≤ 0, i = 1, 2, ..., n. and
there is no zero repeated eigenvalues, then the system is uniformly stable.

(iii) The system is asymptotically stable if and only if Re {λi} < 0, i =
1, 2, ..., n. (and then it is also uniformly stable, by (ii)).

This theorem is reasonably easily generalized, to obtain the so-called lin-
earization theorem. A version of the following theorem can be found in, e.g.
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the book of Lomen and Lovelock [36] or Hirsch and Smale [24]. For the proof
we refer to Hirsch and Smale.

Theorem 2.2.10. Let x̄ be an equilibrium solution of the system ẋ = f(x)
and let t0 ≥ 0. Suppose that for every eigenvalue of Df(x̄), the real part is
negative. Then there exists an open subset U of R

n with x̄ ∈ U , such that for
every solution x of ẋ = f(x) for which x(t0) ∈ U , we have x(t) → x̄ as t→ ∞.

This theorem will be applied in a number of cases to analyze stability. If x̄
is as in the theorem above, then we say that x̄ is locally asymptotically stable.

2.3 Optimization

Our main reference in this section is the book [50] by Seierstadt and Sydsaeter.
other relevant books are [31] by Lenhart and Workman and [28] by Kamien
and Schwartz.

Definition 2.3.1. A function f : D → R is said to be concave over a suitable
subset of the domain D ⊆ R

n if for any a, b ∈ D and any for t ∈ [0, 1] we have
f(a+ t(b− a)) ≥ f(a) + t(f(b) − f(a)).

We consider the problem of finding a piecewise continuous control vector
u(t) = [u1(t), ..., um(t)] and an associated continuous and piecewise differen-
tiable state vector x(t) = [x1(t), ..., xn(t)], defined on the fixed time interval
[t0, t1], that will maximize the functional J(u(t)) (over a suitable set of admis-
sible real-valued functions u(·)),

J(u(t)) =

∫ t1

t0

f(t, x(t), u(t))dt (2.3)

subject to the differential equations,

ẋi(t) = gi(t, x(t), u(t)), i = 1, ..., n, (2.4)

initial conditions,

xi(t0) = xi0, i = 1, ..., n, (xi0, fixed), (2.5)

terminal conditions,

xi(t1) = xi1, i = 1, ..., p,
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xi(t1) ≥ xi1, i = p+ 1, ..., q, (xi1, i = 1, ..., q, fixed),

xi(t1) free i = q + 1, ..., n,

and control variable restriction u(t) ∈ U , for some U ⊂ R
m.

We assume that f, gi, ∂f/∂ xj, and ∂gj/∂xj are continuous functions of all
their arguments, for all i = 1, ..., n and j = 1, ..., n.

The Hamiltonian function H is defined by

H(t, x, u, λ) = λ0f(t, x, u) +
n
∑

i=1

λigi(t, x, u). (2.6)

Theorem 2.3.2. In order that u∗(t) be optimal for the above problem, it
is necessary that there exist a constant λ0 and continuous functions λ(t) =
(λ1(t), ..., λn(t)), where for all t0 < t < tl we have (λ0, λ(t)) 6= (0, 0) such that
for every t0 < t < t1,

H(t, x∗(t), u, λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t)). (2.7)

Except at points of discontinuity of u∗(t), we have

λ̇i(t) = −∂H(t, x∗(t), u∗(t), λ(t))/∂xi, i = 1, ...n. (2.8)

Also

λ0 = 1 or λ0 = 0. (2.9)

Finally, the transversality conditions are satisfied:

λi(t1) no conditions, i = 1, ..., p,

λi(t1) ≥ 0 (= 0 if x∗i (t1) > xi1) i = p+ 1, ...., q,

λi(t1) = 0, i = q + 1, ..., n.

It is also known [28] that if f(t, x(t), u(t)) is a concave function, then in The-
orem 2.2.2 above, we have λ0 = 1.
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Definition 2.3.3. A set S is an invariant set for a dynamic system ẋ = f(x)
if every trajectory x(t) which has a point in S remains in S for all time.
A set S is a positively invariant set for a dynamic system ẋ = f(x) if every
trajectory x(t) which starts from a point x(0) in S remains in S for all time
t > 0.

Theorem 2.3.4. (La Salle’s principle to establish asymptotic stability). Let
V (x) : R

n → R be such that on Ωl = {x ∈ R
n : V (t) ≤ l}, we have V̇ (t) ≤ 0.

Define R =
{

x ∈ R
n : V̇ (t) = 0

}

. Then, if R contains no other trajectories

other than x = 0, then the zero solution is asymptotically stable.
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Chapter 3

Mathematical models in

epidemiology

In this chapter, we briefly review some of the mathematical models of epi-
demiology used by the researchers over the past years. We start off with the
landmark model of Kermack and McKendrick (1927) and work through models
becoming increasingly more sophisticated and accurate.

3.1 The work of Kermack and McKendrick

In 1927, Kermack and McKendrick proposed a model in which they considered
a fixed population with only three compartments: namely susceptible individ-
uals S(t), infective individuals I(t) and recovered individuals R(t). Birth rate,
death rate and migration was not considered in this model, and they assume
that the population is constant such that, N = S(t) + I(t) + R(t). Therefore
they described the model by way of the following differential equations:

dS

dt
= −βSI,

dI

dt
= βSI − γI, (3.1)

dR

dt
= γI.

Here β is the product of contact rate and transmission probability, and γ is the
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recovery rate or removal rate constant. From this model many assumptions
were made in the formulation of these equations. The first assumption was
that the probability within the population amongst individuals is equal to
every other individual of contracting the disease with a rate of β, which is
considered as infection rate of the disease. Therefore, infected individuals I
cause a total number βSI/N of infections per unit time. The final assumption
is that the rate of infection and recovery is much faster than the time scale of
births and deaths and therefore, these factors are ignored in this model.

Remark 3.1.1. It can be easily proved that in this system the total population
is preserved for any time t. Since dS

dt
+ dI

dt
+ dR

dt
= 0, it follows that: S(t) +

I(t) +R(t) = N = constant.

Remark 3.1.2. If the birth rate µ equal to the death rate are included in the
model, we get the following system, which is the same as in, for instance [67]
by Zaman et al.

dS

dt
= µN − µS −

βSI

N
,

dI

dt
=

βSI

N
− (µ+ γ)I, (3.2)

dR

dt
= γI − µR,

with initial conditions:

S(0) = S0, I(0) = I0, R(0) = R0.

We demonstrate some numerical simulations of the epidemiological models
for the system 3.2 where birth and death are included in the population. In
Figure 3.1, the parameters are chosen as β = 0.4, γ = 0.02 and µ = 0.008.
Furthermore, the initial population are S0 = 6000, I0 = 3000 and R0 = 1000.
The dynamic of the model is determined by the fluctuating of the number of
individuals in each compartment over time, as implied by the variable function
of t. We observe that the number of susceptible individuals falls rapidly as
more of them are infected during epidemic, and thus enter the infectious and
recovered compartments. The number of infected individuals are more than
susceptible individuals in the host population. Therefore the disease cannot
invade the population until the number of susceptible individuals has built
back up again.
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Figure 3.1: An epidemiological graph for the SIR model.

3.2 Birth, mortality and vaccination

The model of McKendrick and Kermack serves more or less as the basis for
the modern, more sophisticated SIR models. Subsequent models also consider
birth and death. Hattaf and Yousfi [21] introduces the simple model for the
transmission of influenza. They assume that an individual can be infected
only through contacts with the infectious individuals. Therefore the model
parameters are defined by,

• β is the effective contact rate,

• Λ is the recruitment rate,

• r is the recovery rate,

• µ is the natural mortality rate,

• m is the H1N1 induced mortality rate.

Their model is given by the following nonlinear system of differential equations
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dS

dt
= Λ − µS −

βSI

N
,

dI

dt
=

βSI

N
− (µ+m+ r)I, (3.3)

dR

dt
= rI − µR,

where initial conditions are given by S(0) = S0, I(0) = I0, and R(0) = R0.

It is claimed in Hattaf and Yousfi [21] that the set

Ω =

{

(S, I, R) ∈ R
3
+ : 0 ≤ N ≤

Λ

µ

}

is dissipative, i.e., that every solution will eventually have a point in Ω. Fur-
thermore, Ω is positively invariant. Therefore all the solutions will be eventu-
ally in Ω. We give our own proof that Ω is in an absorbing set. Furthermore
it is shown in Hattaf and Yousfi how to compute the equilibria and the basic
reproductive ratio. In a later chapter, we shall study optimal vaccination on
this model.

Proposition 3.2.1. Consider any solution (S(t), I(t), R(t)) of the system
(3.3). Then there exist some t0 > 0 such that (S(t), I(t), R(t)) ∈ Ω for all
t > t0.

Proof. We note that, by adding the differential equations,

dN

dt
= Λ − µN −mI ≤ Λ − µN (since I ≥ 0).

This means that, whenever N > Λ
µ
, then dN

dt
≤ 0. This means that if outside

of Ω, N will decrease until (S, I, R) ∈ Ω and once (S, I, R) has hit the set Ω,
it will never be able to escape again. �

Proposition 3.2.2. The value of the basic reproductive number is R0 =
β

µ+m+γ
.

Proof. The argument uses simply the definition of the different entities.
The rate at which infectives are being removed through recovery or death
is (µ+m+ γ). Therefore the average duration of the infection in a given per-
son is (µ+m+ γ)−1. The transmission rate being β yields the asserted value
for R0. �
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3.3 A model with incubation

The SIR model were modified to capture an incubation or latent compartment,
usually denoted by E, in certain cases. This was necessary for diseases in which
the pathogen undergoes a phase of incubation in the body of a newly infected
host, before the symptoms start to show. Example of such diseases are malaria,
measles and smallpox. Example of the papers discussing such SEIR model are
Li and Jin [33], Li et al. [32], and d’Onofrio [11]. We pay particular intention
to a measles study. Tessa [57] formulated a compartmental mathematical
model to describe the transmission dynamics of measles in the presence of
vaccine within the population. Since measles virus is highly regarded as one
of the most contagious diseases, a vaccination strategy was applied in order to
control the transmission of measles in the population.

We have four different compartments in this model (S,E, I, R), and the
population is assumed to be homogeneous-mixed. Thus the host population
of a size N(t) at a time t is divided into four epidemiological compartments:
Susceptible individuals S(t), exposed individuals E(t) but not yet infectious,
infectious individuals I(t), and recovered individuals R(t). If β is the average
number of the contact rate of a person per unit time, then βI(t)/N(t) is the
average number of contacts with infectives per unit time of one susceptible,
and the number of new cases per unit time due to the S(t) susceptibles is
βS(t)[I(t)/N(t)]. The model parameters are defined as follows:

• β is the contact rate,

• b is the birth rate,

• µ is the mortality rate,

• p is the proportion of those successively vaccinated at birth,

• σ is the differential mortality due to measles,

•
1
γ

is the average infectious period,

•
1
σ

is the average latent period.

The diagram below represent the SEIR model during horizontal transmission,
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Figure 3.2: A flowchart of possible states in an SEIR epidemic model.

The dynamics of measles transmission in the presence of vaccine within the
population is governed by the following differential equations:

dS

dt
= b(1 − p)N −

βSI

N
− µS,

dE

dt
=

βSI

N
− (σ + µ)E,

dI

dt
= σE − (γ + µ+ σ)I, (3.4)

dR

dt
= bpN + γI − µR,

Remark 3.3.1. Notice that the system (3.4) has the reproductive number of

R0 =
bβσ

µ(σ + µ)(γ + µ+ σ)
.

3.4 Multiple pathogen strains

Ackleh and Allen [1] studied SIR and SIS epidemic models with multiple
pathogen strains. In their models they assume total cross immunity, stan-

18

 

 

 

 



dard incidence and density-dependent host mortality. The main aim of this
model is to study and investigate the effect of demography on competitive ex-
clusion and coexistence of multiple pathogen strains. Therefore, they derive
conditions in an SIR epidemic model with n strains. In this model, we define
the parameter as:

• b is the per capita birth rate,

• f(N) is the per capita growth rate,

• βj is the transmission rate for the jth strain,

• γj is the recovery rate from infection with strain j,

• µj is the disease-related death rate for strain j,

• d(N) is the density-dependent death rate.

The SIR model with standard incidence is given by:

Ṡ(t) = S

(

f(N) −
n
∑

k=1

βk

Ik
N

)

+
n
∑

k=1

bIk + bR,

İj(t) = Ij

(

f(N) − b+ βj

S

N
− γj − µj

)

, j = 1, 2, ..., n, (3.5)

Ṙ(t) = R(f(N) − b) +
n
∑

k=1

γkIk,

N = S +R +
n
∑

k=1

Ik.

Then we have f(N) = b − d(N). If we let d(N) to be the density-dependent
death rate, therefore −d(N) = f(N)− b. Subtracting and adding the term bS
in all equations of system (3.5), then we obtain the differential equation for S
as,

Ṡ(t) = S

(

f(N) − b−
n
∑

k=1

βk

Ik
N

)

+ b(N).
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Note that in an SIS model there is no recovery state. Therefore the spreading
of diseases is based only on the cycle of diseases within the host population.
Thus the SIS epidemic model with n strains is of the form,

Ṡ(t) = S

(

f(N) −
n
∑

k=1

βk

Ik
N

)

+
n
∑

k=1

(b+ γk)Ik,

İj(t) = Ij

(

f(N) − b+ βj

S

N
− γj − µj

)

, j = 1, 2, ..., n, (3.6)

Ṙ(t) = R(f(N) − b) +
n
∑

k=1

γkIk,

N = S +
n
∑

k=1

Ik.

Furthermore, subtracting and adding the term bS in equation (3.6), then we
obtain the differential equation for S as,

Ṡ(t) = S

(

f(N) − b−

n
∑

k=1

βk

Ik
N

)

+
n
∑

k=1

(γk)Ik + b(N),

where γj = 0 for j = 1, 2, ..., n.

Note that the basic reproductive number calculated in proposition 3.2.2 is
also valid for this multi-strain SIR. Of course now each strain is considered
separately, and for the kth strains we have Rk as,

Rk =
βk

b+ γk + µk

.

The proof that a necessary condition that must hold in order that the two
strains kth and lth will both be endemic is that Rk = Rl. This “exact” identity
is of course mathematically highly unlikely. Therefore, at most one of the
strains can become endemic. It will necessarily be the strain with the highest
Rk-value that will dominate. In fact it turns out that for the system, the basic
reproductive ratio is
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R = max{Rk : k = 1, 2, ..., n}.

3.5 An age-structured model

Inaba [25] considered a mathematical model for the spreading of a directly
transmitted infectious disease in an age-structured population. In his model,
he assume that infected individuals in a population is recovered with perma-
nent immunity or quarantined by an age-specific times, and infectious disease
can also be transmitted vertically from adult individuals to their newborns,
but not only horizontally. The population is assumed to be demographic sta-
ble. First he consider a closed one-sex age-structured population under the
demographic stable growth. Let P (t, a) denote the age-density at time t of the
host population, where µ(a) is the age-specific natural death rate, and f(a)
the age-specific fertility rate. Then he used McKendrick equation to describe
the host population dynamics, which is thus given by,

(

∂

∂(t)
+

∂

∂(a)

)

P (t, a) = −µ(a)P (t, a), (3.7)

P (t, 0) =

∫ ω

0

f(a)P (t, a)da, (3.8)

P (0, a) = P0(a). (3.9)

Where ω <∞ is the upper bound of age and the initial data is given by P0(a).
Therefore the system has a stable population model in demography.
From the stability of population model in demography, it follows that both
equations (3.7) and (3.8) has a unique lasting age profile as

ψ(a) :=
e−r0aℓ(a)

∫ ω

0
e−r0aℓ(a) da

,

where the survival rate is denoted by ℓ(a), which is defined by

ℓ(a) := exp

(

−

∫ a

0

µ(σ) dσ

)

,
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and r0 denote the intrinsic rate of natural increase, which is given by the dom-
inant real root of the Euler-Lotka characteristic equation

∫ ω

0

e−raf(a)ℓ(a)da = 1. (3.10)

Therefore the age density of the host population is given by

P (t, a) = N(t)ψ(a), where N(t) =
∫ ω

0
P (t, a)da is the total size of the

population.

The host population is divided into three epidemiological classes:
namely

• S(t, a) = Susceptible individuals,

• I(t, a) = Infectious individuals,

• R(t, a) = Recovered individuals.

Then the age-structured SIR epidemic model with vertical transmission is
given by the following nonlinear system of differential equestions:

(

∂

∂(t)
+

∂

∂(a)

)

S(t, a) = − (λ(t, a) + θ(a) + µ(a))S(t, a),

(

∂

∂(t)
+

∂

∂(a)

)

I(t, a) = (λ(t, a)S(t, a) − (γ(a) + µ(a)) I(t, a),

(

∂

∂(t)
+

∂

∂(a)

)

R(t, a) = θ(a)S(t, a) + γ(a)I(t, a) − µ(a)R(t, a), (3.11)

S(t, 0) =

∫ ω

0

f(a)[S(t, a) + (1 − q)I(t, a) +R(t, a)]da,

I(t, 0) = q

∫ ω

0

f(a)I(t, a)da,

R(t, 0) = Ra(t).

The force of infection λ(t, a) is given by
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λ(t, a) =
1

N(t)

∫ ω

0

β(a, σ)I(t, σ)dσ. (3.12)

The above model parameters are defined by,

• β(a, σ) is the transmission rate between the susceptible individuals aged
a,

• σ is the age of infective individuals,

• γ(a) is the rate of recovery at age a,

• θ(a) is the rate of removal at age a.

3.6 Discrete model with delay

Enatsu et al. [14] proposed the class of discrete SIR epidemic epidemic models
with distributed delays using backward Euler method. They used a discrete
mathematical model to elaborate the following continuous SIR model with
distributed delays,

ds(t)

dt
= b− βs(t)

∫ h

0

f(τ)i(t− τ) dτ − µ1s(t),

di(t)

dt
= βs(t)

∫ h

0

f(τ)i(t− τ) dτ − (µ2 + λ)i(t), (3.13)

dr(t)

dt
= λi(t) − µ3r(t),

where s(t), i(t) and r(t) are the proportions of the population which belong
to the classes S, I and R respectively to time t. In this model, they assume
that the parameters of the model are positive and constant, which are defined
by,

• b is the constant rate,
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• β is the mass action coefficient rate,

• µ1, µ2 and µ3 are the death rates of susceptible, infectious and recovered
individuals,

• h is the duration rate,

• τ is the infection rate,

• f(τ) is the fraction of vector population.

They also assume that
∫ h

0
f(τ) dτ = 1, such that the function is positive and

continuous on [0, h]. Furthermore, from the above information, we propose
the discrete SIR epidemic model derived from system (3.13) by employing a
variation of the backward Euler method.

s(p+ 1) − s(p) = b− βs(p+ 1)
m
∑

j=0

f(j)i(p− j) − µ1s(p+ 1),

i(p+ 1) − i(p) = βs(p+ 1)
m
∑

j=0

f(j)i(p− j) − (µ2 + λ)i(p+ 1),

r(p+ 1) − r(p) = λi(p+ 1) − µ3r(p+ 1). (3.14)

The initial conditions of the system (3.14) are,

s(p) = φ(p) ≥ 0, i(p) = ψ(p) ≥ 0, r(p) = σ(p) ≥ 0,

p = −m, −(m− 1), . . . , −1,

and s(0) > 0, i(0) > 0, r(0) > 0.

Here b, β, µi for all (i = 1, 2, 3), λ and m are positive constants, and f(j) ≥ 0
for some j = 0, 1, . . . m. Therefore we have that,

m
∑

j=0

f(j) = 1.

Thus there exist nonnegative integer such that 0 ≤ j ≤ m.
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3.7 Age model with delay

Wu and Röst [64] derived a new SEIR model with distributed infinite de-
lay whereby infectivity depends on the age of infection in the population.
They distinguish the basic reproductive number R0, which is considered as the
threshold quantity of the equilibria for the stability analysis. Furthermore,
they also mention that if R0 < 1, then the disease-free equilibrium is globally
asymptotically stable and if R0 > 1, then an endemic equilibrium is locally
asymptotically stable.

We take i(t, a) to represent the density of infected individuals with respect
to the age of infection a at the given time t. Then I(t) =

∫

∞

0
i(t, a)da and we

also introduce the kernel function 0 ≤ k(a) ≤ 1 in order to show the infectivity
of infection according to the age a. The parameters of this model are defined
by,

• β is the baseline transmission rate,

• a is the age of infection,

•
1
µ

is the average latency period,

•
1
r

is the average infectivity period,

• δ is the disease-induced death rate,

• Λ is the constant recruitment rate,

• d is the natural death rate.

The SEIR model with distributed infinite infectivity is given by the following
differential equations:

dS(t)

dt
= Λ − βS(t)

∫

∞

0

k(a)i(t, a)da− ds(t),

dE(t)

dt
= βS(t)

∫

∞

0

k(a)i(t, a)da− (µ+ d)E(t),

dI(t)

dt
= µE(t) − (γ + µ+ δ)I(t), (3.15)

dR(t)

dt
= rI(t) − dR.
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Therefore the development of the density is given by the following equation,

(

∂

∂(t)
+

∂

∂(a)

)

i(t, a) = (d+ δ + r)i(t, a), (3.16)

which is subjected to the following boundary condition i(t, 0) = µE(t).

Solving equation (3.16) results to

i(t, a) = i(t− a, 0)e−(d+δ+r)a = µE(t− a)e−(d+δ+r)a, for t ≥ a.

Thus, we obtain the deterministic model of delay differential equations as
follows

dS(t)

dt
= Λ − βS(t)

∫

∞

0

k(a)µE(t− a)e−(d+δ+r)ada− ds(t),

dE(t)

dt
= βS(t)

∫

∞

0

k(a)µE(t− a)e−(d+δ+r)ada− (µ+ d)E(t),

dI(t)

dt
= µE(t) − (γ + µ+ δ)I(t), (3.17)

dR(t)

dt
= rI(t) − dR.

An interesting problem following on this work of Wu and Röst would be to
introduce vaccination into this age structured model, and search for optimal
vaccination strategies.

3.8 Polynomial solutions

The general practice for solving differential equations in epidemiology is to
resort to numerical solutions. The textbook of Lenhart and Workman [31] gives
procedures of solving such systems. Otherwise, there are sporadic attempts
at finding closed form solutions. We present one case here. Makinde [37]
developed an SIR model which controls the temporal dynamics of a childhood
disease in the presence of preventive vaccine.

This covers diseases such as chicken pox, influenza, mumps, polio, rubella,
measles, etc. This types of disease can be spread quickly because young chil-
dren have maturing immune systems and are often in close proximity to one
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another, such as in day-care centers, homes, classrooms, and at school. This
makes the transmission of contagious diseases particularly easy.

Therefore the development of vaccines against infectious childhood diseases
is a blessing to mankind and children, because vaccines have proven among the
most cost-effective strategies for preventing infectious diseases. In his model,
he employed the Adomian decomposition method to compute an estimation
to the solution of the non-linear system of differential equations ruling the
problem. The SIR model is a standard compartmental model that has been
used to describe many epidemiological disease. Then we have the following,

• S is the susceptible group,

• I is the infected group,

• R is the removed group.

He also assume that the efficacy of the vaccine is 100 percent, and the pro-
portion of those newborn infants who are vaccinated successfully each year is
given by P ( with 0 < P < 1). We define the model parameters as follows,

• β is the average contact rate,

• γ is the recovery rate,

• µ is the natural death rate,

• π is the constant birth rate.

Now the system of integral equations for the SIR model are,

s(t) = s(0) + (1 − P )πt− β

∫ t

0

si dt− π

∫ t

0

s dt,

i(t) = i(0) + β

∫ t

0

si dt− (γ + π)

∫ t

0

i dt, (3.18)

r(t) = r(0) + Pπt+ γ

∫ t

0

i dt− π

∫ t

0

r dt.

We consider the Adomian decomposition method of the system (3.18) as the
sum the following series,
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s =
∞
∑

n=0

sn, i =
∞
∑

n=0

in, r =
∞
∑

n=0

rn. (3.19)

Then we estimate the non-linear terms in the system as follows,

si =
∞
∑

k=0

Fn(s0, ..., s0, i0, ..., in), (3.20)

where,

Fn =
1

n!

[

dn(
∑

∞

k=0 skλ
k)(
∑

∞

k=0 ikλ
k)

dλn

]

λ=0

. (3.21)

The function Fn is a non-linear and is called Adomian’s polynomials. Now
substituting equations (3.19), (3.20) and (3.21) into system (3.18) we obtain

∞
∑

n=0

sn = s(0) + (1 − P )πt− β

∫ t

0

∞
∑

n=0

Fn dt− π

∫ t

0

∞
∑

n=0

sn dt,

∞
∑

n=0

in = i(0) + β

∫ t

0

∞
∑

n=0

Fn dt− (γ + π)

∫ t

0

∞
∑

n=0

in dt, (3.22)

∞
∑

n=0

rn = r(0) + Pπt+ γ

∫ t

0

∞
∑

n=0

in dt− π

∫ t

0

∞
∑

n=0

rn dt.

Hence, we define the system (3.22) as follows,

sn+1 = −β

∫ t

0

Fn dt− π

∫ t

0

sn dt (for n ≥ 0),

in+1 = β

∫ t

0

Fn dt− (γ + π)

∫ t

0

in dt (for n ≥ 0), (3.23)

rn+1 = γ

∫ t

0

in dt− π

∫ t

0

rn dt (for n ≥ 0),
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where,

s0 = s(0) + (1 − P )πt, i0 = i(0), r0 = r(0) + Pπt.

Thus Makinde [37] has obtained a closed form approximate solution to an SIR
model.
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Chapter 4

Stability of epidemiological

models

We first consider the general SIR epidemic model. As seen up to now, there are
different versions of SIR-model. We consider the model of Hattaf and Yousfi,
which we treated in chapter 3 and which gives other models such as that of
Zaman et al. [67], as special cases. We assume that there is an equality of
interaction of individual within the population. In standard formulations of
disease dynamics, the time evolution of the different classes of hosts is de-
scribed by a simple set of ordinary differential equations, and stability criteria
for first-order systems or for higher-order difference equations depend on the
behavior of the system. Upon this assumption, the population is assumed to
be homogeneous and sufficiently large such that stochastic events are negligi-
ble. As in an SIR model, we assume that the host population is divided into
three compartments. For convenience we recall the model of Hattaf and Yousfi
[21] from chapter 3:

dS

dt
= Λ − µS −

βSI

N
,

dI

dt
=

βSI

N
− (µ+m+ r)I, (4.1)

dR

dt
= rI − µR.

We assume that birth and death rates are not necessarily equal. This
implies that the population size N is not constant, i.e., N = N(t) is a function
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of time,
S(t) + I(t) +R(t) = N(t).

A susceptible host can get infected at rate β when in contact with infected
individuals. By γ we denote the rate of recovery from the infection and β
is a transmission coefficient, the meaning of which is as follows. Susceptible
individuals acquire the infection at a per capita rate βI(t) and therefore, the
migration from the S-class to the I-class takes place at a rate βSI/N . The
symbol Λ corresponds to the birth rate, ν corresponds to the natural mortality
rate in the classes S, I and R. The transfer diagram and the equations were
given in chapter 3 and will not be repeated here.

Remark 4.0.1. In Proposition 3.2.2 we proved that the system (3.3) has basic
reproductive ratio

R0 =
β

µ+ r +m
.

In this chapter the basic reproductive number R0 will be used to describe
stability of the an equilibrium point.

4.1 The disease-free equilibrium

In this section, we study and analyze the stability status of the equilibrium
solutions. We show that there exist a disease-free equilibrium point and an
endemic equilibrium.

Proposition 4.1.1. The disease-free equilibrium is the point F with S-value
SF = Λ

µ
and the unique endemic equilibrium solution is the point D =

(SD(t), ID(t), RD(t)), given by

SD = 1
K
N∗,

ID = µ(K−1)
K(µ+γ+m)

N∗

RD = γ(K−1)
K(µ+γ+m)

N∗,

ND = ΛK(µ−γ)
µ[(K−1)+K(µ+γ+m)]

.
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Sketch of proof. To this end, we set dS(t)/dt = 0 and dI(t)/dt = 0. We
obtain the said value of SF by setting I(t) = 0. Next we take ID(t) 6= 0 and
we obtain the value of (SD, ID, RD) as declared in the proposition. �

For stability analysis we shall use the linearization theorem and we shall com-
pute the Jacobian matrix.

W =













∂X
∂S

∂X
∂I

∂X
∂R

∂Y
∂S

∂Y
∂I

∂Y
∂R

∂Z
∂S

∂Z
∂I

∂Z
∂R













.

This matrix comes up as follows,

W =













−µ− βI

N
−βS

N
0

βI

N

βS

N
− γ − µ−m 0

0 γ −µ













.

The characteristic equation of this matrix is given below, and here I3 denotes
the 3 × 3 identity matrix :

Det(λI3 −W ) = 0.

Proposition 4.1.2. For the number K = βΛ
µ(w+γ+m)N

we have:

(i) If K < 1, then the disease-free equilibrium F is locally asymptotically
stable.

(ii) If K > 1, then the disease-free equilibrium F is unstable.

Proof. At the disease-free equilibrium point, we take SF = Λ
µ

and ID = 0 and
then the characteristic equation reduces to

(λ+ µ)2 (β − µ− γ −m− λ) = 0. (4.2)

Therefore the eigenvalues are λ1 = −µ, λ2 = −µ, and λ3 = β − µ− γ −m.
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Note that λ3 < 0 if and only if β < µ+ γ +m, i.e., if

β

(µ+ γ +m)
< 1.

Clearly λ1 and λ2 are negative. Thus, if K < 1, then all the eigenvalues are
negative when K < 1 and so F is locally asymptotically stable. This proves
(i). The proof of (ii) is simple. �

Next we turn to equilibrium point.

Proposition 4.1.3. (i) If K < 1, then the point D does not exist.

(ii) If K > 1, then D is locally asymptotically stable.

Proof. If K < 1, it is easy to show that D does not exist. We now turn to
proving (ii). We assume that K > 1. Then matrix W can be computed and
the characteristic equations comes up as follows

(µ+ λ)(λ2 + a1λ+ a2) = 0, (4.3)

with,

a1 = µ+
µβ(K − 1)

K(µ+ γ +m)
and a2 =

µβ(K − 1)

K2
[µ+ β(K − 1)].

Therefore the characteristic roots are λ1, λ2, λ3. Where λ1 = −µ, while λ2 and
λ3 are the solutions of the quadratic equation

λ2 + a1λ+ a2. (4.4)

It is clear that when K > 1, then both a1 and a2 are positive, so that all
the roots of equation (4.3) have negative real parts. Therefore, D is locally
asymptotically stable whenever K > 1. �

4.2 The endemic equilibrium

We now simulate the SIR model using Euler methods to demonstrate the
dynamics of the system. The numerical simulation was done using Maple. The
table below shows the parameters used in the simulations and the parameters
are chosen arbitrarily.
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Table 4.1: The parameter values for SIR model
Position Parameter Values
1. Λ 0.21
2. β [0.36, 0.95]
3. µ 0.21
4. γ [0.32, 0.43]
5. S 0.26
6. I 0.6
7. R 0.14
8. N 600

Firstly, we set the parameter values used in Figure 4.1 as follows: µ = 0.21
β = 0.36, γ = 0.32 and Λ = 0.21. On the vertical axis y represent the number
of individuals in the population. In our simulation, we assume that population
size is constant with natural mortality rate of individuals µ being equal to the
birth rate Λ (µ = Λ = 0.21).

Figure 4.1: The plot shows the global stability of the SIR epidemic model,
when R0 = 0.7. [Programmed in Maple (2010)].
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From Figure 4.1 above, we can easily see that when R0 < 1, the number of
susceptible individuals and recovered individuals starts to increase from the
first day while the number of infected individuals decreases from the first day
to zero. When recovered individuals approaches day 10 it also decreases until
it reaches day 20, where it becomes constant. In this case the disease seems to
disappears from the population after 18 days, and there will be no infection in
the host population. Thus disease-free equilibrium is globally stable.

In Figure 4.2 below, we also simulate the dynamic model for SIR when R0 > 1.
We obtain R0 = 1.5 if µ = 0.21, β = 0.95, γ = 0.43, and Λ = 0.21. There-
fore figure 4.2 shows that the number susceptible and recovered individuals
increase in their very first days, while on the other side the number of infected
individuals sharply decreases during the first 10 days. From day 11 infected
individuals started to increase until it approaches day 21, and it reaches its
steady state. This shows that there is a unique positive epidemic equilibrium
in the host population.

Figure 4.2: The plot shows unstable SIR epidemic model, when R0 = 1.5.
[Programmed in Maple (2010)].
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Chapter 5

Control of vaccination in SIR

model

5.1 The SIR model

We continue with the general SIR model of an epidemic, impose vaccination
on it, and determine an optimal strategy for rolling out the vaccination. The
model in this form has been used by Hattaf and Yousfi [21] for instance, and
a similar control problem was studied for a simpler model in [67] by Zaman et
al. The textbook [31] of Lenhart and Workman is a very useful reference for
this kind of problem.

We solve a control problem similar to that done in [67]. We identify some
properties that were not observed by Zaman et al. Essentially we observed
that one of the Lagrange multipliers become identical to zero. This simplifies,
in particular, the description of the optimal control. Our presentation is in
detail.

We have shown in chapter 3 that all the viable solutions of the system (3.3)
enters the region

Ω =
{

(S, I, R) ∈ R
3
+ : 0 ≤ N ≤ Λ

µ

}

.

It is sufficient to consider solutions in Ω. It has been shown that all the so-
lutions of system (3.3) beginning in Ω remains in Ω for all t ≥ 0, i.e., Ω is
positively invariant. The derivatives of the system (3.3) of the right hand side
implies that there exist a unique solution on the maximal interval. In this
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case, the solutions are eventually bounded and exist for t ≥ 0 when they enter
and approaches Ω. Hence the model is mathematically and epidemiology well
posed. We calculate the basic reproductive number R0. Also in chapter 3, we
have noted that the value of the basic reproductive number is R0 = β

γ+µ+m
.

In the next section we introduce vaccination into the model.

5.2 The model with vaccination

At this point we assume further that the model has constant population size,
i.e., there is no extra disease-induced mortality (m = 0), as in [67] of Zaman
et al. We modify our basic model by imposing vaccination. We assume that
at any point in time, susceptibles are being vaccinated at a rate of u(t) × 100
% of the S(t). Hereby we mean that the number of susceptibles that are being
vaccinated during a short time period dt is u(t)S(t)dt. Then it follows that
the population will satisfy the following system of equations:

dS(t)

dt
= Λ − (µ+ u(t))S(t) −

βI(t)S(t)

N
, S(0) = S0 ≥ 0,

dI(t)

dt
=

βI(t)S(t)

N
− (γ + µ)I(t), I(0) = I0 ≥ 0, (5.1)

dR(t)

dt
= γI(t) − µR(t) + u(t)S(t), R(0) = R0 ≥ 0.

The idea is now to find some optimal way of rolling out the vaccination. To
this end we shall consider the objective functional J = J(u) below, in which
τ is a constant parameter. We intend to choose a vaccination strategy u∗(t)
in such a way as to minimize the value of J . Note that this is modeled on the
functional in Zaman et al. Our analysis follows also as in [67], with some new
observations, essentially that a certain co-state variable vanishes.

J(u) =

∫ tend

0

[I(t) +
1

2
τu2(t)] dt. (5.2)

Thus we have the problem, present in the next section.
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5.3 The Optimal vaccination problem

We consider an optimal control problem to minimize the objective function
J(u) with respect to u and subject to the conditions above. Let us further
assume that 0 < u(t) < A for some fixed constant A.

Now we continue towards the solution of the optimization problem. We note
that the Hamiltonian of the problem is

H(S, I, R, u, λ1, λ2, λ3, t) = I(t) + 1
2
τu2(t) + λ1(t)

dS
dt

+ λ2(t)
dI
dt

+ λ3(t)
dR
dt
.

Theorem 5.3.1. Let S∗(t), I∗(t), R∗(t) and u∗(t) be optimal for the optimal
control problem. Then the adjoint variables satisfy the following equations:

λ1(t) =
(

u+ µ− βI∗(t)
N

)

λ1(t) + I∗(t)λ2(t),

λ2(t) = 1 −
(

βS∗(t)
N

)

λ1(t) +
(

βS∗(t)
N

− γ − µ
)

λ2(t),

λ3(t) ≡ 0,

with transversality conditions (or boundary conditions),

λ1(tend) = 0, λ2(tend) = 0.

Furthermore, the optimal control u∗(t) is given by,

u∗(t) = max{min{λ1(t)S(t)
τ

, A}, 0}.

Proof. We apply the Pontryagin maximum principle, Theorem 2.2.2. We
calculate the partial derivatives of H with respect to S, I and R in order to
obtain the time derivatives λ̇i of the costate variables. In particular, since
S(tend), I(tend), and R(tend) are free, the following terminal conditions hold:

λ1(tend) = 0, λ2(tend) = 0, λ3(tend) = 0.
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We start noting that,

λ̇3(t) =
dH

dR
= −µλ3(t),

which means that λ3(t) is an exponential function of time. This together with
the condition λ3(tend) = 0 means that,

λ3(t) ≡ 0.

Hereafter we can calculate,

λ̇1(t) =
dH

dS
and λ̇2(t) =

dH

dI
.

and obtain the values as asserted.

The function u∗ must optimize H. So, we calculate,

dH

du
= τu∗ − λ1S(t).

When τu∗ − λ1S(t) = 0, then of course we choose u∗ = λ1(t)S(t)
τ

.

When τu∗ − λ1S(t) ≥ 0, then H is an increasing function of u and so we must
choose u∗ at its least possible value. A similar argument holds for the case
τu∗ − λ1S(t) ≤ 0. Thus u∗ is as given. �

We characterized u∗(t) for the optimal control by substituting the value of
u∗(t) into the control system (5.1), and we obtain the following differential
equations,

dS∗(t)

dt
= Λ −

(

µ+ max

{

min

{

S∗(t)λ1(t)

τ
, A

}

, 0

})

S∗(t) −
βS∗(t)I∗(t)

N
,

dI∗(t)

dt
=

βS∗(t)I∗(t)

N
− (γ + µ)I∗, (5.3)

dR∗(t)

dt
= γI∗(t) − µR∗(t) +

(

max

{

min

{

S∗(t)λ1(t)

τ
, A

}

, 0

})

S∗(t).

N the Hamiltonian H∗ at (S∗, I∗, R∗, u∗, λ1, λ2, λ3, t) csn be expressed as:
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H∗ = I∗(t) +
1

2

[

τ

(

max

{

min

{

S∗(t)λ1(t)

τ
, A

}

, 0

})2
]

+ λ1(t)

[

Λ −

(

µ+ max

{

min

{

S∗(t)λ1(t)

τ
, A

}

, 0

})

S∗(t) −
βS∗(t)I∗(t)

N

]

+ λ2(t)

(

βS∗(t)I∗(t)

N
− (γ + µ)I∗(t)

)

.

5.4 Numerical simulation and discussion for

the SIR model

In this section, we demonstrate some numerical simulations of the epidemiolog-
ical models which illustrates the theoretical results and predict the evolution of
infectious diseases in the population at host and we also studied the dynamical
behavior of the models. We were very general when setting up these simula-
tions thinking of an infectious disease in the human population, for example
infectious disease such as H1N1(influenza), chickenpox, measles, mumps, etc.

The dynamics behavior of the epidemic model cannot only be studied by
using analytical methods or normal forms. Therefore we have performed the
simulations by computer. Thus we use the optimal vaccination strategy to
control the total number of susceptible and recovered individuals and also to
minimize the probability that the infected individuals spread the disease in the
host population. Vaccination is regarded as one of the most primary strategies
used by public health authorities to control human infectious diseases, and
these strategy can also provide with some several clear benefits. In real life
this strategy can be useful for epidemics such as malaria, rubella, chickenpox,
ebola, measles, mumps, influenza, etc.

We use the Runge-Kutta procedure to solve the optimal system with interactive
method. Firstly, we solve for the state variable of the system of equations with
an initial guess forward Runge-Kutta procedure in time and then we also use
the backward Runge-Kutta procedure to solve the adjoint equations in time
because of the transversality conditions. The table below shows the parameters
used in the simulations and the parameters are chosen arbitrarily.
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Table 5.1: The parameters values for SIR model
Position Parameters Value
1. Λ 0.002
2. β 0.9
3. µ 0.002
4. m 0
5. γ 0.07
6. S 0.5
7. I 0.3
8. R 0.2
9. N 1
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Figure 5.1: The plot represent the population of susceptible individuals (S)
with optimal control vaccination. [Programmed in MATLAB (2010)].

Note that we display the quantities S, I and R as fractions rather than the
numbers themselves.

In Figure. 5.1, we plot the susceptible individuals using system (5.1). In
our graph, note that the solid line represent the population of susceptible
individuals with control. We observe that the number of susceptible individuals
sharply decreases in the first 13 days, while the number of recovered individuals
increases from the first day after vaccination. The population of susceptible
become stable at day 22 until it reaches day 120, this is the case of a disease-free
state.
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Figure 5.2: The plot represent the population of infected individuals (I) with
optimal control vaccination. [Programmed in MATLAB (2010)].

The plot in Figure.5.2, shows that the population of infected individuals with
control and without vaccination control increases from the first day until they
reach day 20. Furthermore, the number of infected individuals decreases to
zero, this shows that the disease dies out and only the susceptible remain in
the population. This is a case of a disease-free state, with no infection in the
population.

In Figure. 5.3, we plot the recovered individuals using system 5.1. The pop-
ulation number of infected individuals decreases after 20 days of vaccination.
We observe that when vaccination control was introduced in the population,
the number of recovered individuals increases. This also show the impact the
vaccination have brought in the population.

Now we consider Figure 5.4 and Figure 5.5. The graphs represent the adjoint
variables λ1, λ2 and λ3 in the optimal system. Firstly, we solve the state of
the system equations with an initial guess forward Runge-Kutta procedure in
time and then we also use the backward Runge-Kutta procedure to solve the
adjoint equations in reverse time because of the transversality conditions.

Figure 5.6 shows the control variable u(t) plotted as a function of S and
λ1 for the weight factor τ = 6 in the population. We observe that the control
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Figure 5.3: The plot represent the population of recovered individuals (R) with
optimal control vaccination. [Programmed in MATLAB (2010)].

variable u at a time t play a significant role in minimizing the probability that
the infected individuals spread the disease in the host population.
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Figure 5.4: The plot represent the adjont variables λ1 and λ2 . [Programmed
in MATLAB (2010)].
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Figure 5.5: The plot represent the population of susceptible individuals (S)
with optimal control vaccination. [Programmed in MATLAB (2010)].
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Chapter 6

Stability analysis for SEIR

model

The SIR model we discussed in earlier chapters considers only the diseases
which can cause an individual to infect others immediately upon their infec-
tion. In many infectious diseases there is an exposed period, during which the
individual is said to be infected but not infectious. In this chapter we use an
SEIR model to describe the spread of infectious diseases from susceptibles to
potentially infective members in the population.

The compartment denoting the exposed phase is denoted by E. This phase
is also known as the incubation period for the pathogen in the body of the host,
or the latent period. Diseases for which there is such an incubation period of
the pathogen includes HIV/AIDS, tuberculosis, malaria and others. In some
cases, such as malaria, a so-called vector facilitates the transmission between
an infected human and a susceptible, and then the latter becomes infected.
In the case of malaria the vector is the Anopheles mosquito, see for instance
the paper [43] of Okosun et al. In this dissertation we avoid working with
vector-borne diseases.

Therefore we add an exposed class E in the SIR model, and now SEIR
is our new model. We assume that the population size N is constant over
time with no new entries from births, as we did in the SIR model, such that
N = S+E+I+R. The accompanying transfer diagram shows the propagation
of the disease through the various compartments, and the definitions of model
parameters are listed in Table 6.1. The specific model we use in our analysis
is the one featuring in [42] by Ngwenya.

45

 

 

 

 



Figure 6.1: A flowchart of possible states in an SEIR epidemic model

Table 6.1: The parameter definitions for SEIR model
Position Parameters Definition
1. Λ Recruitment rate
2. β Transmission coefficient/ Effective contact rate
3. ν Natural mortality rate
4. σ Disease outcome rate
5. γ Recovery rate
6. t The total population at time t

One of the most important concerns in infectious disease modeling is to es-
timate the transition rates (σ, ν and γ) between the corresponding compart-
ments. The rate of infection β can be expressed in terms of the probability of
effective contact and the number of infectious at time t. The number of newly
infected or exposed individuals at each time step depends on the contact be-
tween infectious and susceptible individuals. Therefore the new infections is
given by βSI

N
.

The transfer diagram together with the assumptions lead to the following
system of differential equations,
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dS(t)

dt
= Λ − νS −

βSI

N
,

dE(t)

dt
=

βSI

N
− (σ + ν)E,

dI(t)

dt
= σE − (γ + ν)I, (6.1)

dR(t)

dt
= γI − νR,

with initial conditions:

S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0.

The basic reproductive number R0 is considered as the threshold quantity that
determines when an infection can invade and persist in a new population. If
R0 < 1, then the infection in the population dies out, while if R0 > 1, then
there is a unique positive epidemic equilibrium.

If each individual effectively contacts c individuals per unit time, then we
have β = c

N
in a population of size N . We also assume that individuals mix at

random within the population, there is no stratification of individuals accord-
ing to age group and sex. Then the average number of individuals effectively
contacted by each person per unit time is given by
c = R/(average duration of infectiousness σ). Substituting this expression into
that for β above, we obtain β = R

N∗σ
.

Given a steady process over a time period, the rate at which the process
occurs is determined by the inverse of the waiting time attached to the process
(duration). The transition rate σ by which exposed become infectious can
be derived from the average latent period, and the recovery rate γ can be
obtained from the average duration of the infectivity period as follows: 1/σ can
be regarded as the mean latent period latent period, 1/γ the mean infectious
period and 1/ν the mean immune period.

Since N = S+E+I+R is constant, therefore an equation of R is a surplus
in this model. Furthermore we assume that all the parameters and variables
of the model in system (6.1) are positive, since we are dealing with a human
population.

Theorem 6.0.1. For the SEIR-model above we have the following:
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(i) The equilibrium value of N is N = Λ
ν
,

(ii) The general solution for N is,

N =
Λ

ν
−

(Λ −N(t0)ν)e
−ν(t−t0)

ν
,

(iii) If N(t0) <
Λ
ν
, then N < Λ

ν
for all time t.

Proof. By adding the equations of system 6.1, we obtain

dN
dt

= Λ − νS − βSI

N
+ βSI

N
− σE − νE + σE − γI − νI + νI + νR,

= Λ − νS − νE − νI − νR,

= Λ − ν(S + E + I +R),

= Λ − νN.

This yields,

dN

dt
= Λ − νN. (6.2)

Therefore the equilibrium value of N is N = Λ
ν

and so (i) is proved.

When N(t0) ≥ 0, we get the general solution of the same equation (6.2) as,
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∫ N

N(t0)

1

(Λ − νN)
dN =

∫ t

t0

dt,

−
1

ν
ln(Λ − νN)|NN(t0)

= t− t0,

−
1

ν
ln(Λ − νN) +

1

ν
ln(Λ − νN(t0)) = t− t0,

−
1

ν
ln [(Λ − νN) − (Λ − νN(t0))] = t− t0,

ln

[

(Λ − νN)

(Λ − νN(t0))

]

= −ν(t− t0), (6.3)

[

(Λ − νN)

(Λ − νN(t0))

]

= e−ν(t−t0),

(Λ − νN) = (Λ −N(t0))e
−ν(t−t0),

N =
Λ

ν
−

(Λ −N(t0))e
−ν(t−t0)

ν
.

Thus we have proved (ii). The assertion (iii) easily follows from (ii). �

Therefore all the feasible solutions of system (6.1) enters the region,

Ω =

{

(S,E, I, R) ∈ R
4
+ : 0 ≤ N ≤

Λ

ν

}

,

and stays inside it. In particular, Ω is a positively invariant set for the model.

6.1 Local stability for the disease-free

equilibrium F

Let us assume henceforth that the population size N of our model is constant,
N = Λ

ν
. The system (6.1) always has a disease-free equilibrium of the form

F = (Λ
ν
, 0, 0), corresponding to the disappearance of the disease. We show the

stability for the disease-free equilibrium F. Since the first three equations of
system (6.1) are all independent of the variable R, thus the equation of R can
be omitted. Therefore we consider the following reduced model:
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Ṡ = Λ − νS −
βSI

N
,

Ė =
βSI

N
− (σ + ν)E, (6.4)

İ = σE − (γ + ν)I.

We note the following.

Proposition 6.1.1. The disease-free equilibrium is the point F = (Λ
ν
, 0, 0)

with disease-free total population NF = Λ
ν
.

Proof. This is clear. �

The Jacobian of the system (6.4) at the equilibrium point (S,E, I) is,

J =













−ν − βI

N
0 −βS

N

βI

N
−(σ + ν) βS

N

0 σ −(γ + ν)













.

In absence of infection, İ = 0, and then the Jacobian of system (6.4) at the
disease-free equilibrium F = (Λ

ν
, 0, 0) is,

J =













−ν 0 −β

0 −(σ + ν) β

0 σ −(γ + ν)













.

Thus, −ν is one of the eigenvalues, and the other two are the roots of,

x2 + (σ + γ + 2ν)x+ (ν + σ)(ν + γ) − βσ = 0. (6.5)
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If all eigenvalues are negative, then

βσ

(ν + σ)(ν + γ)
< 1,

and the disease-free equilibrium is locally asymptotically stable. Since the
basic reproductive number is given by,

R0 =
βσ

(ν + σ)(ν + γ)
.

Then we have the following result.

Theorem 6.1.2. The disease-free equilibrium F is asymptotically locally sta-
ble if R0 < 1, and unstable if R0 > 1.

6.2 Global stability for the disease-free

equilibrium F

We consider the Lyapunov function,

L = σE + (σ + ν)I,

for establishing the global stability of the disease-free equilibrium F.

Proposition 6.2.1. The disease-free equilibrium F is global asymptotically
stable if R0 < 1.

Proof. Now the derivative of this Lyapunov function is as follows.

L̇ = σĖ + (σ + ν)İ,

= σ
(

βSI

N
− (σ + ν)E + (σ + ν)(σE − (γ + ν)I

)

,

=
(

βσSI

N
− (σ + ν)σE

)

+ (σ + ν)σE − (σ + ν)(γ + ν)I,
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= βσSI

N
− (σ + ν)σE + (σ + ν)σE − (σ + ν)(γ + ν)I,

= βσSI

N
− (σ + ν)(γ + ν)I,

= I
(

βσS

N
− (σ + ν)(γ + ν)

)

,

≤ I (σβ − (σ + ν)(γ + ν)) , since S ≤ Λ
ν

in Ω,

≤ I
(

σβ

(σ+ν)(γ+ν)
− 1
)

(σ + ν)(γ + ν),

≤ I (R0 − 1) (σ + ν)(γ + ν).

When R0 ≤ 1, then L̇ ≤ 0; and equality itself holds only for,

(i) R0 = 1 and E = I = R = 0 or (ii) I = 0.

The one-point set (E, I,R) = (0, 0, 0) is the largest positively invariant subset
of the set defined by (i) and (ii) above, where L̇ = 0.

Hence, by the Lyapunov-LaSalle theorem, the disease-free equilibrium is
globally asymptotically stable. �

6.3 Endemic equilibrium D

We set the endemic equilibrium D = (S,E, I) as follows,

Λ − νS −
βSI

N
= 0,

βSI

N
− (σ + ν)E = 0, (6.6)

σE − (γ + ν)I = 0.
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We have E = (γ+ν)I
σ

. Substituting E into the second equation of the system
(6.6), we obtain

βSI

N
− (σ+ν)(γ+ν)I

σ
= 0,

I
(

βS

N
− (σ+ν)(γ+ν)

σ

)

= 0.

This implies that,

I = 0 or βS

N
= (σ+ν)(γ+ν)

σ
.

Now, S = N(σ+ν)(γ+ν)
σβ

= N
R0

= Λ
νR0

.

Substituting S into the first equation of the system (6.6), we obtain

Λ = S
(

βI

N
+ ν
)

,

Λ = Λ
νR0

(

βI

N
+ ν
)

,

ΛνR0 = ΛβI

N
+ Λν,

Λν(R0 − 1) = ΛβI

N
,

Λν(R0 − 1) = ΛβI
Λ

ν

,

Λν(R − 1) = βIν,

I = Λ
β

(R0 − 1).

Therefore we have the following result,

Theorem 6.3.1. Endemic equilibrium D exists if and only if R0 > 1. �
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6.4 Local stability for endemic equilibrium D

The Jacobian matrix at D is given by,

J(D) =













−ν − βI

N
0 −βS

N

βI

N
−(σ + ν) βS

N

0 σ −(γ + ν)













.

Substituting S and I into the Jacobian matrix at D, we get

J(D) =













−νR0 0 − β

R0

ν(R0 − 1) −(σ + ν) β

R0

0 σ −(γ + ν)













.

The characteristic equation for this matrix is,

−(νR0+x)

[

(σ + ν)(γ + ν) + ((σ + ν) + (γ + ν))x+ x2 −
σβ

R0

]

+(ν−νR0)
σβ

R0

= 0,

and is of the form x3 + a0x
2 + a1x+ a2 = 0. The coefficients are as below.

a0 = (σ + ν) + (γ + ν) + νR0 > 0,

a1 = (σ + ν)(γ + ν) + [(σ + ν) + (γ + ν)] νR0 −
σβ

R0
,

= (σ + ν)(γ + ν) + [(σ + ν) + (γ + ν)] νR0 − σβ
(

(σ+ν)(γ+ν)
σβ

)

,

= (σ + ν)(γ + ν) + [(σ + ν) + (γ + ν)] νR0 − (σ + ν)(γ + ν),
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= [(σ + ν) + (γ + ν)] νR0 > 0,

a2 = νR0(σ + ν)(γ + ν) − σβν

R0
,

= νR0(σ + ν)(γ + ν) − σβν
(

(σ+ν)(γ+ν)
σβ

)

,

= νR0(σ + ν)(γ + ν) − ν(σ + ν)(γ + ν),

= ν(σ + ν)(γ + ν)[R0 − 1],

which implies that,

a2 =

{

> 0 if R0 > 1,

< 0 if R0 < 1.
(6.7)

Now evaluating a0a1 − a2, we have:

a0a1 − a2 = ((σ + ν) + (γ + ν) + νR0) ([(σ + ν) + (γ + ν)] νR0)
− ν((σ + ν)(γ + ν)) > 0.

This implies that,

a0a1 − a2 = 2ν3R2
0 + γν2R2

0 + σν2R2
0 + 4ν3R0 + 4γν2R0 + 4σν2R0 + γ2νR0 +

2σγνR0 + σ2νR0 − ν3 − γν2 − σν2 − σγν > 0.

According to the Routh-Hurwitz criterion, the eigenvalues of the matrix have
negative real parts if and only if the following inequalities hold,

a0, a1, a2 > 0,

a0a1 − a2 > 0.

For R0 > 1, we have a0, a1, a2 > 0 and a0a1 − a2 > 0, and this shows that the
endemic equilibrium D is locally asymptotically stable.
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Hence, we have proved the following result.

Theorem 6.4.1. The unique endemic equilibrium is locally asymptotically
stable. �

6.5 Numerical solutions for SEIR

We simulate the SEIR model using Euler methods to illustrate the dynamics
of the system. The numerical simulation was carried out using Maple. The
table below shows the parameters used in the simulations and the parameters
are chosen arbitrarily.

Table 6.2: The parameters values for SEIR model
Position Parameter Value
1. Λ 0.08
2. β [0.09, 0.3]
3. ν 0.08
4. σ [0.76, 0.90]
5. γ [0.048, 0.062]
6. S 0.073
7. E 0.25
8. I 0.53
9. R 0.15
10. N 700

We firstly consider the numerical simulation of the SEIR model when R0 < 1.
Therefore we obtain R0 = 0.64, when ν = 0.08, β = 0.09, σ = 0.76, γ = 0.048,
and Λ = 0.08. In our simulation, we also assume that population size is
constant with natural mortality rate of individuals ν is equal to the birth rate
Λ (ν = Λ

N
= 0.08).

Now in Figure 6.2 above, we observe that the number of susceptible individ-
uals and recovery individuals increases during the first 10 days. This graph
also shows that the number of infected individuals and exposed individuals
sharply decreases to zero. After 50 days the disease seems to disappears form
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Figure 6.2: The plot shows the global stability of the SEIR epidemic model,
when R0 = 0.64. [Programmed in Maple (2010)].

the host population. Our numerical simulations indicate that the disease-free
equilibrium in these model is globally stable.

Furthermore, we simulate the SEIR model using different parameters, we get
R = 1.9. where, ν = 0.08, β = 0.3, σ = 0.90, γ = 0.062, and Λ = 0.08. Fig-
ure 6.3 below shows that the number of susceptible individuals and recovered
individuals also increase from the first 10 days of the model, while exposed
individuals and infected individuals decreasing. The exposed and infected in-
dividuals still exist in the host population, this shows that there is an endemic
disease within the population. therefore the disease-free equilibrium seems to
be in an unstable state as the time increases.
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Figure 6.3: The plot shows unstable SEIR epidemic model, when R0 = 1.9.
[Programmed in Maple (2010)].

6.6 The SIS model

In this subsection, we introduce the simple SIS epidemic model for the trans-
mission of various infectious diseases through a population. Disease for which
there is no immunity after recovery are modeled as SIS, and include diseases
such as influenza, pneumonia, meningitis and streptococcal sore throat etc.
Some infections diseases , for example diseases of those responsible for the
common cold, do not grant any long lasting immunity. Such infections, indi-
viduals become susceptible again after infection. Therefore in this model there
is no recovered state, thus an SIS model for the spread of a diseases is only
based on the cycle of disease in a host population.

A number of papers have contributed to our understanding of the SIS-disease.
Examples see papers by [69] Zhou and Liu, [56] Tassier and [61] Van den
Driessche and Watmough. The particular model that we study is the one
featuring in [8] of Brauer and Van den Driessche. Let S be the number of
susceptible individuals, and let I be the number of infected individuals with a
constant population size N . The diagram below shows the SIS model during
horizontal transmission:

58

 

 

 

 



Figure 6.4: A flowchart of possible states in an SIS epidemic model

The simplest SIS model is given by the following differential equations,

dS

dt
= ΛN − νS −

βSI

N
+ γI,

dI

dt
=

βSI

N
− (γ + ν)I, (6.8)

with initial conditions, S(0) = S0 > 0, I(0) = I0 > 0.

We also assume that the birth rate Λ is equal to the death rate ν, an average
infected individual in the host population makes contact sufficient to infect
βN others per unit time. Now we have S/N as the probability that a given
individual that each infected individual comes in contact with a susceptible.
Therefore, each infected individual causes (SN)(β/N) = βS infections per
unit time. Thus the total number of infections per unit time of βSI is caused
by infected individuals I. The parameter γ is the recovery rate from infection.
This is the rate at which individuals who recover per unit time and re-enter
the susceptible class. We have that,

d

dt
(S + I) = 0, (6.9)
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since S(t)+ I(t) = N = 1 is constant. Substituting S = N − I into the second
equation of the system (6.8), we get,

dI

dt
= βI(1 −

I

N
) − (γ + ν)I, (6.10)

Then solving the dI/dt = 0, we can easily see that there are two possible
equilibria for this SIS model. The first one is I = 0 and the other is

I =
[

1 − (γ+ν)
β

]

N .

Proposition 6.6.1. The basic reproductive number is given by, R0 = β

γ+ν
.

Proof. The proof follows very much along the same lines as in the case of SIR
model, which was done in section 3.2. �

In [8] it is shown that the disease-free equilibrium Fis globally asymptoti-
cally stable if R0 < 1, and on the other hand, the disease-free equilibrium F

is unstable and the endemic equilibrium D is globally asymptotically stable if
R0 > 1.
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Chapter 7

Control of vaccination in SEIR

model

Optimal control theory has been used successfully in making decisions relating
to biological models. The aim of this optimal vaccination strategy is to reduce
the number of infected individuals, while keeping the vaccination effort suffi-
ciently low. We use the method of Lenhart and Workman [31] to analyze the
optimal control including vaccination for the SEIR model. This method had
been used by other such as [67] Zaman et al., [27] Joshi, [50] Seierstadt and
Sydsaeter. The epidemiological model itself is the one of Ngwenya [42]. We
try to find an optimal control u∗(t), such that,

J(u∗(t)) = min J(u), (7.1)

where J is an objective functional to be defined.

7.1 The optimal control problem

The problem is to minimize the objective functional,

J(u) =

∫ T

0

[CI(t) +
1

2
τu2(t)] dt, (7.2)

subject to the following,
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dS(t)

dt
= Λ − (ν + u(t))S −

βS(t)I(t)

N
,

dE(t)

dt
=

βS(t)I(t)

N
− (σ + ν)E(t),

dI(t)

dt
= σE(t) − (γ + ν)I(t), (7.3)

dR(t)

dt
= γI(t) − νR(t) + uS(t),

and with the given initial conditions,

S(0) = S0 ≥ 0, E(0) = I0 ≥ 0, I(0) = E0 ≥ 0, R(0) = Z ≥ 0. (7.4)

We shall assume that u is bounded above by some constant α, such that for
all t, we have 0 ≤ u(t) ≤ α < 1. The Pontryagin’s maximum principle gives
us essential conditions for an optimal control problem, and converts system
(7.1), (7.2) and (7.3) into a problem of minimizing a Hamiltonian, with respect
to u. The Hamiltonian is,

H(S,E, I, R, u, λ1, λ2, λ3, λ4, t) = [CI(t) +
1

2
τu2(t)]

+λ1(t)
dS

dt
+ λ2(t)

dE

dt
+ λ3(t)

dI

dt
+ λ4(t)

dR

dt
. (7.5)

Thus, by applying the Pontryagin maximum principle and the existence result
for the optimal control u∗(t), we obtain the following theorem.

Theorem 7.1.1. There exists an optimal control u∗(t) and corresponding
solution, S∗(t), E∗(t), I∗(t), R∗(t) and J∗, that minimizes J(u). Then there
exist adjoint functions, λ1(t), λ2(t), λ3(t) and λ4(t), such that

λ
′

1(t) = βI(t)
N

(λ1(t) − λ2(t)) + uλ1,

λ
′

2(t) = λ2(t) (σ + ν) − σλ3(t),

λ
′

3(t) = −C + βS(t)
N

(λ1(t) − λ2(t)) + λ3(t) (γ + ν) ,

λ
′

4(t) ≡ 0,
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with transversality conditions (or boundary conditions)

λ1(T ) = λ2(T ) = λ3(T ) = 0.

Furthermore, the explicit formula for u∗(t) is given by,

u∗(t) = max
{

min
{

λ1S(t)
τ

, α
}

, 0
}

.

Proof. We apply the Pontryagin maximum principle as in [31] or [28]. We
calculate the partial derivatives of H with respect to S, E, I and R in order
to obtain the time derivatives λ̇i of the costate variables. In particular, since
S(T ), E(T ), I(T ), and R(T ) are free, the following terminal conditions hold:

λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0 and λ4(T ) = 0.

We start noting that,

λ̇4(t) =
dH

dR
= −νλ4(t),

which means that λ4(t) is an exponential function of time. This together with
the condition λ4(T ) = 0 means that,

λ4(t) ≡ 0.

Hereafter we can calculate,

λ̇1(t) =
dH

dS
, λ̇2(t) =

dH

dE
and λ̇3(t) =

dH

dI
,

and obtain the values as asserted.

The function u∗(t) must optimize H. So, we calculate

dH

du
= τu∗(t) − λ1S(t),

= τu∗(t) − λ1S(t).
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Therefore when τu∗(t) − λ1S(t) = 0, then of course we choose,

u∗(t) =
λ1S(t)

τ
,

When τu∗(t) − λ1S(t) ≥ 0, then H is an increasing function of u, and so we
must choose u∗(t) at its least possible value. A similar argument holds for the
case τu∗(t) − λ1S(t) ≤ 0.

Thus u∗(t) = max
{

min
{

λ1S(t)
τ

, α
}

, 0
}

. �

Furthermore, note that the second derivative of the Hamiltonian with respect
to u is non-negative. This implies that the optimal problem is minimum at
control u∗(t). Therefore we substitute the value of u∗(t) in the control system
(7.3), and we have the new system:

dS∗(t)

dt
= Λ −

(

ν + max

{

min

{

λ1S
∗(t)

τ
, α

}

, 0

})

S∗(t) −
βS∗(t)I∗(t)

N
,

dE∗(t)

dt
=

βS∗(t)I∗(t)

N
− (σ + ν)E∗(t),

dI∗(t)

dt
= σE∗(t) − (ν + γ)I∗(t),

dR∗(t)

dt
= γI∗(t) − νR∗(t) +

(

max

{

min

{

λ1S
∗(t)

τ
, α

}

, 0

})

, (7.6)

where the Hamiltonian H∗ at (S∗, E∗, I∗, R∗, u∗, λ1, λ2, λ3, λ4, t) is given by,

H∗ = I∗(t) +
1

2

[

τ

(

max

{

min

{

λ1S
∗(t)

τ
, α

}

, 0

})2
]

+ λ1(t)

[

Λ −

(

ν + max

{

min

{

λ1S
∗(t)

τ
, α

}

, 0

})

S∗(t) −
βS∗(t)I∗(t)

N

]

+ λ2(t)

(

βS∗(t)I∗(t)

N
− (σ + ν)E∗(t)

)

+ λ3(t)[σE
∗(t) − (ν + γ)I∗(t)]

+ λ4(t)

[

γI∗(t) − νR∗(t) +

(

max

{

min

{

λ1S
∗(t)

τ
, α

}}

, 0

)

S∗(t)

]

.(7.7)

64

 

 

 

 



7.2 Numerical simulations of the SEIR model

In this section, we give the numerical simulation which demonstrate the the-
oretical results for the SEIR model. We also use the Runge-Kutta procedure
to solve the optimal problem for the SEIR model, as we did for the SIR model
in chapter 5. Note that the individuals with control are marked by the solid
line. The table below shows the parameters used in the simulations and the
parameters are chosen arbitrarily.

Table 7.1: The parameters values for SEIR model
Position Parameter Value
1. Λ 0.0002
2. β 0.08
3. ν 0.0002
4. σ 0.4
5. γ 0.2
6. S 0.5
7. E 0.20
8. I 0.2
9. R 0.1
10. N 1

Figure 7.1: The plot represent the population of susceptible individuals (S)
with optimal control vaccination. [Programmed in MATLAB (2010)].

In Figure. 7.1, we use system (7.3) to plot the graph of susceptible individu-
als. We observe that the population of susceptible individuals in system (7.3)
decreases from the first days of the disease outbreak, while the population
number of recovered individuals increases from the first day after vaccination.
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From day 60 the the population of susceptible become stable. At day 120 the
disease dies out and only susceptible remains in the population.
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Figure 7.2: The plot represent the population of exposed individuals (E) with
optimal control vaccination. [Programmed in MATLAB (2010)].

In figure.7.2, we plot the exposed individuals using system (7.3). We can
easily see that the population of exposed individuals with vaccination control
decreases to zero. The disease dies out at day 120, and thus the vaccination
ends. Therefore this shows the impact of vaccination in the host population.

We consider Figure.7.3 below, we observe that the population of infected in-
dividuals with vaccination control increases from the first day of vaccination.
Infected individuals become stable from day 18 to day 25. In system (7.3)
the population of infected individuals decrease to zero. This implies that the
disease dies out and only the susceptible individuals remain. Therefore there
is no infection in the population.

Figure.7.4, the population number of recovered individuals in the system of
equations (7.3) is very large with vaccination control, this implies that there
are few infected individuals in the population. We observe that when vaccina-
tion control was implemented or introduced in the population, the number of
recovered individuals increases. This also show the impact which the vaccina-
tion brought in the population.
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Figure 7.3: The plot represent the population of infected individuals (I) with
optimal vaccination. [Programmed in MATLAB (2010)].

In Figure. 7.5, Figure. 7.6 and Figure. 7.7. The graphs represent the adjoint
variables λ1, λ2 and λ3 of the optimal system. Firstly, we solve the state of
the system equations with an initial guess forward Runge-Kutta procedure in
time and then we also use the backward Runge-Kutta procedure to solve the
adjoint equations in time because of the transversality conditions.
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Figure 7.4: The plot represent the population of recovered individuals (R) with
optimal vaccination. [Programmed in MATLAB (2010)].
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Figure 7.5: The plot represent the four adjoint variable λ1, λ2, and λ3 in the
population, and we solve these adjoint by a backward fourth-order Runge-
Kutta procedure. [Programmed in MATLAB (2010)].
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Figure 7.6: The plot represent the four adjoint variable λ1, λ2, and λ3 in the
population, and we solve these adjoint by a backward fourth-order Runge-
Kutta procedure. [Programmed in MATLAB (2010)].
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Figure 7.7: The plot represent the four adjoint variable λ1, λ2, and λ3 in the
population, and we solve these adjoint by a backward fourth-order Runge-
Kutta procedure. [Programmed in MATLAB (2010)].
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Figure 7.8, represent the control variable u(t) plotted as a function of S, λ1 for
the weight factor τ = 500 in the population. the present of the τ = 500 plays
an important role in keeping the population size in balanced. Furthermore,
we observe that the control variable u at a time t play a significant role in
minimizing the probability that the infected individuals spread the disease in
the host population.
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Figure 7.8: The plot represent the control variable u(t) plotted as a function
of S, λ1 and λ4 for the weight factor τ = 58 in the population. [Programmed
in MATLAB (2010)].
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Chapter 8

Conclusion

There is no doubt that mathematical modeling is essential in planning and
formulation of policy on contagious diseases. As is the case with modeling
in general, there will always be the quest for more appropriate and accurate
models. The kind of models we have been studying in this dissertation can be
refined in many different ways. Many such improvements already exists in the
literature, and we might have even briefly touched on such. Delay differential
equations is sometimes used and they can, for instance, accommodate the
phenomenon of an incubation period in a different manner as in the usual
SEIR model. Such models can be found for instance in [68] of Zaman et al.
See also section 3.

Pulse vaccination is a strategy that is also incorporated into modeling.
Shulgin et al. [51] conducted a study about the way a disease, such as measles
can be efficiently controlled by looking at and analyzing a simple SIR model.
They proposed pulse vaccination method which vaccinates the susceptible pop-
ulation of people in a series of pulses in order to stop the spread of the virus
in the network. Other useful references in this regard are [34], [10], [11] and
[40].

Up to now we have only studied models which assumes that population
sizes are so large and the process associated with the relevant diseases and so
uniform that it is not necessary to allow for uncertainty or randomness. There
are however models that do take such stochasticity into account. Interesting
reading in this regard can be found in the paper [41] of Merl et al. or the
textbook [8] of Brauer and Van den Driessche.

In this dissertation we have briefly reviewed a number of epidemiological
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models. We focused on SIR models, but also featured the SEIR and briefly
also SIS models. In particular we studied their stability properties, paying
particular attention to basic reproductive number. We also studied vaccination
and determined optimal vaccination strategies for SIR and SEIR models. We
were able to expand on the existing literature by way of supplying missing
detail and making sharper observation especially in chapter 4.

We can remark at this point that the objective functional used in the optimiza-
tion can be interpreted or adapted to reflect the actual cost associated with the
public health endeavor of fighting a contagious disease. An exciting follow-up
on the optimization work done here, would be to pursue such problem in a
stochastic setting.
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