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Abstract

Essentially this project report is a discussion of mathematical modelling in pen-

sion funds, presenting sections from Cairns, A.J.D., Blake, D., Dowd, K., Stochastic

lifestyling: Optimal dynamic asset allocation for defined contribution pension plans,

Journal of Economic Dynamics and Control, Volume 30, Issue 2006, Pages 843-877,

with added details and background material in order to demonstrate the mathemati-

cal methods. In the investigation of the management of the investment portfolio, we

only use one risky asset together with a bond and cash as other assets in a contin-

uous time framework. The particular model is very much designed according to the

members’ preference and then the funds are invested by the fund manager in the fi-

nancial market. At the end, we are going to show various simulations of these models.

Our methods include stochastic control for utility maximisation among others. The

optimisation problem entails the optimal investment portfolio to maximise a certain

power utility function. We use MATLAB and MAPLE programming languages to

generate results in the form of graphs and tables.
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List of Symbols

S(t) : Price of a riskless asset at time t;

r : Constant risk free nominal rate of interest;

r(t) : Short-rate interest process at time t;

R(t) : Price of a risky asset at time t;

W (t) : Wealth of the pension fund at time t;

W̃ (t) : Augmented pension wealth at time t;

A : Set of admissible controls;

Y (t) : Plan member salary at time t;

X(t) : Ratio of the final pension wealth to final salary at time t;

π : Proportion of premium paid from plan member salary at time t;

Z(t), : Standard Brownian motion;

Zr(t) : One dimensional Brownian motion;

Z̃(t) : Standard Q-Brownian motion t;

ζ̃ : Market price of the risk;

B(t, T ) : Price of a bond with maturity T at time t;

A(t, T ) : Price of a bond with maturity T at time t;

p(t) : proportion of the wealth invested at time t;

q(t) : proportion of the augmented pension wealth invested at time t;

Y (t) : Plan member salary at time t;

σ : Volatility;

µ : Drift coefficient;

F : Information available for pension funds;

Ω : State of the economy;
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P : Probability space;

Q : Unique risk-neutral measure;

U(t) : Utility function at time t;
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Chapter 1

Introduction

In many countries, pension funds have recently become a popular and more impor-

tant role player in the financial sector. There are two main types of radically different

approaches to pension funds which are; the Defined Contribution (DC) Scheme and

Defined Benefits (DB) Scheme which are clearly explained by Cairns [5].

The former is in effect a savings account which the employer establishes for his em-

ployees. The employer plays a role only in contributing additional funds to the plan

but whatever happens at maturity and afterwards is for the employee to decide for

himself or herself. The employee bears all the risk of the funds investment perfor-

mance. Investment earnings in these retirement plans are not subject to tax until

maturity, i.e, the day funds are withdrawn, see Cairns et al [6].

In Defined Benefit, the fund manager holds an obligation to provide a specific an-

nual retirement benefit. The payments are an obligation of the employer, and the

assets in the pension fund provide collateral security for the promised benefits [5]. If

the investments perform poorly, the pension manager is obliged to make up for the

shortfall by contributing additional assets to the fund, and this can be found in the

paper by Deelstra et al [10]. Investment earnings in these retirement plans are also

not subject to tax until maturity.
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CHAPTER 1. INTRODUCTION 2

Strategic asset allocation for managing equity risk during the accumulation phase,

is the most important task of the fund manager. Usually at the beginning, all the

individual plan member contributions are invested in equities. Before the retirement

age, all the assets are converted to less risky assets at a rate known to be equal to

the inverse of the length of convertable period. The reason for doing this is because

the fund manager will be risk averse, so he wants to waive the risk of stock market

crashes and hedge against such crashes (see the paper [10] of Deelstra et al). On the

date of retirement, all the assets will be held in bonds which are then sold to purchase

a life annuity. This life annuity should then provide the necessary pension. One of

the drawbacks of this strategy is that it has interest rate risk from annuity purchase

decision. When it comes to stochastic lifestyling, it intends to provide to the contrib-

utor an income which is closely related to his salary just before retirement. The main

objective is to aid the contributor in maintaining the same standard of living that he

was in immediately prior to retirement, as explained by Cairns et al [5], and Boulier

et al [4].

The presentation in this project report is as follows. Chapter 2 covers the mathemat-

ical preliminaries that will be used throughout the project. In chapter 3, we present

a general overview of pension funds and the benefits associated with each type. We

also include a survey of relevant literature. An analysis of the simple stochastic model

of Cairns et al. is discussed in chapter 4. In this chapter we outline the concept of

optimal expected utility of the pension funds. A more general stochastic model of

Cairns et al. is discussed in chapter 5 where the interest rate is a function of time.

We simulate the optimal path of risky assets in chapter 6 and show how the wealth

process evolves over time. In chapter 7 we formulate without proving the three fund

theorem of Cairns-Blake-Dowd. We also show in the case of this theorem, how the

wealth process evolves stochastically over time. The main observations are discussed

in the concluding chapter 8.

 

 

 

 



Chapter 2

Preliminaries

2.1 Stochastic processes

In this section we introduce same basic concepts and notation, together with some

standard results that will be used in the project report.

The concept of stochastic process is fundamental in financial modelling. A particularly

basic tool in this regard is the Brownian motion/Wiener Process. We use the symbol

W (t) to denote a Wiener process. We shall avoid a long discussion and refer to the

popular reference book of Øksendal [20]. Also, we refer to the same book for the

definition and notation of a stochastic integral. In particular, we shall be using the

Itô integral. In this project report, the triple (Ω,F , P) will commonly be used to

denote a suitable probability space. We shall normally consider a filtration F(t) of

F .

2.2 Itô formula

An Itô formula is basically the sum of an initial value, a time integral and a stochastic

integral. A time integral has instantaneous increments whose mean vary over time

stochastically. Stochastic integrals also have instantaneous increments whose variance

and covariances may vary stochastically over time, as explained by Etheridge [11].
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CHAPTER 2. PRELIMINARIES 4

Let (Ω,F , P) be a probability space equipped with a filtration, satisfying the usual

conditions, and let W (t) be a Wiener process on Ω. Consider a C2 map, f : [0,∞)×

R → R. Then the Itô formula states that

f(t, W (t)) = f(0, W (0)) +
∫ t

0
∂f

∂x
(s, W (s))dW (s)

+
∫ t

0
∂f

∂s
(s, W (s))ds +

∫ t

0
∂2f

∂x2 (s, W (s))ds. (2.1)

In differential form equation (2.1) is written as

df(t, W (t)) = fx(t, W (t))dW (t) + ft(t, W (t))dt +
1

2
f

′′

(t, W (t))dt.

We assume that the dynamics of the stock prices movement is described by the

following SDE:

dS(t) = µS(t)dt + σS(t)dW (t). (2.2)

Here µ and σ are assumed to be constants. By applying the Itô formula the explicit

solution is

S(t) = S(0) exp{(µ −
σ2

2
)t + σW (t)}.

2.3 Ornstein-Uhlenbeck process

This is a conditional mean reverting one-factor process. The strength of this effect is

governed by the positive number a which is the speed of adjustment. Assuming that

α and σ are constants, then the following process r is an Ornstein-Uhlenbeck process:

dr = (α − ar)dt + σdW.

If a = 0, then dr = αdt + σdW and if a 6= 0 then α = ar − a(b − r) for b = α
a
.

 

 

 

 



CHAPTER 2. PRELIMINARIES 5

2.4 The finite time horizon stochastic control prob-

lem

We follow the approach of Fleming and Soner [12], chapter IV. We consider a time

horizon [s, T ] for fixed s, T . The notion of Markov process is important in this regard.

A process x(t) is said to be a Markov process if for any sequence of time ticks

s0 < s1 < s2 < · · · < sn−1 < sn with s < s1 and sn < T and an sn < t < T

and any B ⊆ R, we have P [x(t) ∈ B|x(s1), x(s2), · · · , x(sn)] = P [x(t) ∈ B|x(sn)] .

We consider an n-dimensional stochastic process of the form:

dx(t) = f(t, x(t), u(t))dt + σ(t, x(t), u(t))dW (t), (2.3)

where u(t) is a control and W (t) is an n dimensional Brownian motion. The values

of u(t) are restricted to a given closed set U , and the functions u are restricted to

belong to a set A. Let Ψ be a function of two real variables. Now let us define the

quantity J as a function of three variables for some functions L and Ψ.

J(s, x, u) = Esx

[∫ T

s

L(t, x(t), u(t))dt + Ψ(T, x(T ))

]
. (2.4)

Here Esx means expectation conditional on the event x(s) = x. Our problem is to

find the maximum of J :

V = max
{u}

J(s, x, u). (2.5)

Now let us define H as follows;

H = sup
{u}

G (2.6)

where

G = −f(t, x, u) · gradV −
1

2

∑

i,j

σij

(∂)2

∂xi∂xj

V + L(t, x, v),

 

 

 

 



CHAPTER 2. PRELIMINARIES 6

the summation being over all the pairs (i, j), a total of n2, and with σij being the

entries of the n × n matrix σ. More precisely, σij is the coefficient of dWj(t) in the

expression for dxi(t) in the equation (2.3). The solution of the problem (2.5) can be

shown (see the book by Fleming and Soner [12] Chapter III.7) to satisfy the so-called

Hamilton -Jacobi-Bellman (HJB) equation:

−
∂V

∂t
+ H = 0. (2.7)

Remark 2.2 In particular, we note that solving the problem (2.5) implies finding

the maximum of G.

 

 

 

 



Chapter 3

General survey of pension funds

In a nutshell, a pension is an arrangement that is meant to provide an income when

a person is no longer earning a salary or wage from regular employment. Pension

schemes may be set up by employers, governments, insurance companies or other

institutions and organisations. Some pension plans will provide for members in the

event that they suffer a disability. This may take the form of early entry into a re-

tirement plan for an affected member below the normal retirement age. A lot can be

covered in this area but our goal is to just give a brief description of how pension

funds work.

3.1 Stochastic versus deterministic lifestyling

According to Cairns et al [5], stochastic lifestyling is when the pension plan manager

aims to achieve a retirement pension plan that is closely related to the salary. By so

doing, the pension manager enables the plan members to maintain their standards of

living after retirement.

Many asset fund managers adopt an asset allocation strategy which invests the entire

wealth of the fund in the risky asset over the first period of the pension plan. Then,

in the other half towards the lapsing of the contract, the risk portion is gradually re-

allocated to the risk free asset. The reason for considering this strategy is to prevent

7

 

 

 

 



CHAPTER 3. GENERAL SURVEY OF PENSION FUNDS 8

the losses in the pension fund’s wealth due to stock market crashes toward the end

of the pension term. The strategy has its own benefits and drawbacks. One of the

disadvantages is that it does not take into account the risk aversion of the individual

plan member according to Cairns et al [5]. They outlined that when we look at its

expected utility, it appears to be outperformed by a suboptimal strategy. In this

suboptimal strategy, the pension plan manager invests over the lifetime at a constant

equity fraction. After a period of time, he will additionally consider hedging demand

which will be caused by the unfavourable changes in the plan member’s salary, as

explained by Mark and Davis [23].

The main difference between stochastic lifestyling and deterministic lifestyling is that

the projected standard of living and the projected salary are deterministic whilst in

stochastic lifestyling, the two are stochastic.

3.2 Attainable benefits

There are various different designs of the benefits and contribution structure but in

this project report we consider three specific ones and for other ways of managing a

pension funds, we refer to other schools of thought such as Wahal [27].

3.2.1 Defined benefits

A traditional form of a defined benefit pension plan is the final salary plan, under

which the pension paid is equal to the number of years worked, multiplied by the

member’s salary at retirement, multiplied by a factor known as the accrual rate.

The final accrued amount is available as a monthly pension or a lump sum. The

retirement and possibly other benefits are calculated according to length of service

or years of membership in the fund, and average salary over the last few years before

retirement. Members of a defined benefit pension fund do not suffer if the fund’s

performance deteriorates. If return on investment declines, the employer has to make

up the difference so that payments to members are maintained at the predetermined

level, and for more see the paper by Black and Perold [3].

 

 

 

 



CHAPTER 3. GENERAL SURVEY OF PENSION FUNDS 9

In an unfunded defined benefit pension, no assets are set aside and the benefits are

paid for by the employer or other pension sponsor as and when funds are available.

Pension arrangements provided by the state in most countries in the world are un-

funded, with benefits paid directly from current workers’ contributions. In a funded

plan, contributions from the employer, and sometimes also from plan members, are

invested in a fund towards meeting the benefits. The future returns on the invest-

ments, and the future benefits to be paid, are not known in advance, so there is no

guarantee that a given level of contributions will be enough to meet the benefits.

Typically, the contributions to be paid are regularly reviewed in a valuation of the

plan’s assets and liabilities carried out by an actuary, to ensure that the pension fund

will meet future payment obligations. This means that in a defined benefit pension,

investment risk and investment rewards are typically assumed by the sponsor or em-

ployer and not by the individual, as well explained by Cairns et al [5] and Deelstra

et al [10].

3.2.2 Defined contribution

A retirement plan in which a certain amount or percentage of money is set aside

each year by a company for the benefit of the employee. The benefits in defined

contribution plans are tied directly to financial market returns. The contributions

are invested, for example in the stock market, and the returns on the investment

(which may be positive or negative) are credited to the individual’s account. On

retirement, the member’s account is used to provide retirement benefits, sometimes

through the purchase of an annuity which then provides a regular income, as explained

by Cairns et al [6].

3.2.3 Targeted money purchase

These are money purchase schemes targeted on the individual needs of scheme mem-

bers. They aim to target as closely as possible the pension that a member of a

final salary scheme would get on his or her chosen retirement date. This objective is

 

 

 

 



CHAPTER 3. GENERAL SURVEY OF PENSION FUNDS 10

achieved by a planned strategy of increasing contribution rates and changing the asset

allocation of the fund away from equities towards fixed income securities throughout

the life of the scheme.

A targeted money purchase scheme might have an initial contribution rate of, say

7% of salary and be invested entirely in equities. Over time the contribution rate

increases reaching, say 19% of salary in the year before retirement. In addition,

the accumulating assets in the scheme are gradually transferred into fixed income

securities. The aim is to benefit from higher expected return on shares in the early

life of the scheme but to reduce the potential volatility in the value of the fund as

retirement approaches by re-allocating into less risky bonds.

This targeting strategy however remains approximate and might have difficulty in

dealing with sudden and unexpected falls in asset values just prior to retirement or

with unexpected early retirement, see Sundaresan et al [26].

 

 

 

 



Chapter 4

The simple stochastic model of

Cairns et al.

Our main goal in this section is to determine the optimal asset allocation method

under the simple pension fund model of Cairns et al [5], with a deterministic nom-

inal interest rate. Assets are exposed to different types of risk. In order to avoid

losses, hedging comes into play hence some assets will be hedged while others being

non-hedgeable. We assume that the financial market is fully hedgeable and com-

plete. Furthermore we also consider one risky asset instead of many. We present the

structure of the model and the utility function to the optimised, and then solve the

optimisation problem.

4.1 The risky assets

Pension fund managers face the difficulty on how to diversify a portfolio of assets

in the financial market in order to maximise the expected returns. One can choose

to invest in a best portfolio of assets chosen in such a way that the risk must be

at minimum but with high returns. In this section, we consider only two underlying

assets, the risk-free asset R0(t) and one risky asset R(t). The risk-free asset represents

the cash fund and the risky asset represents an equity fund. At any given time t, the

11

 

 

 

 



CHAPTER 4. THE SIMPLE STOCHASTIC MODEL OF CAIRNS ET AL. 12

cash fund is

R0(t) = R0 exp{rt}.

Clearly, the riskless asset increases at an exponential rate exp{rt}, where r is the

constant interest rate.

The risky asset has a price R1(t) at time t and the remainder in R2(t).

Proposition 4.1 The price R1(t) of the risky asset at a given time t, is assumed to

satisfy the SDE

dR1(t) = R1(t)[(r + ζ̃1σ1)dt + σ1dZ1(t)] (4.1)

where Z1(t) is a Standard Brownian Motion and ζ̃1 and σ1 are constants. �

Proposition 4.2 The explicit solution of the equation (4.1) is

R1(t) = R1(0) exp

{
(r + ζ̃1σ1 −

1

2
σ2

1)t + σ1Z1(t)

}
.

Proof. If we let f(t, R1(t)) = log R1(t), then

d log(R1(t)) =
1

R1(t)
dR1(t) +

1

2

[
−

1

(R1(t))2
(dR1(t))

2

]
.

From the equation (4.1) above, (dR1(t))
2 = (R1(t))

2 (σ2
1dt). Therefore

d(log(R1(t))) =
[
(r + ζ̃1σ1)dt + σ1dZ1(t)

]
−

1

2
σ2

1dt.

The proof is concluded as follows:

∫ t

0

d(log(R1(s))) =

∫ t

0

[
(r + ζ̃1σ1) −

1

2
σ2

1

]
ds +

∫ t

0

σ1dZ1(s)

log

(
R1(t)

R1(0)

)
=

[
(r + ζ̃1σ1) −

1

2
σ2

1

]
t + σ1Z1(t)

R1(t) = R1(0) exp

{
(r + ζ̃1σ1 −

1

2
σ2

1)t + σ1Z1(t)

}

. (4.2)

 

 

 

 



CHAPTER 4. THE SIMPLE STOCHASTIC MODEL OF CAIRNS ET AL. 13

4.2 The plan member’s salary

At any given time t, we denote the pension plan member’s salary by Y (t). A certain

portion of his/her salary is invested in the pension fund. The contributions will then

be made continuously up to the date of retirement. In defined contribution pension

funds, the idea of considering a fixed interest rate is difficult to accept because the

contribution period is very long, generally from 20 to 40 years. It is crucial to allow

stochastic term structure for the plan member salary, which is based on the argument

by Deelstra et al [10]. The pension fund manager will invest on the basis of the

contribution of the plan member. At any given time t, the dynamics of Y (t) is

governed by the following SDE,

dY (t) = Y (t) [(r + µY )dt + σY1
dZ1(t)] , (4.3)

where µY is a constant and Z1(t) is the same standard Brownian motion, as in section

4.1.

Proposition 4.3 The explicit solution of equation (4.3) is

Y (t) = Y (0) exp{(r + µY −
1

2
σY1

)t + σY 1Z1(t)}.

Proof. The proof is similar as for Proposition 4.2.

4.3 Asset allocation

Let p(t) be the proportion of the assets invested in the risky asset. At any given

time, the pension manager will be concerned about maximising the expected termi-

nal utility of the investment. It becomes a question of optimising the dynamic asset

allocation strategy, p(t). We need to find a process which after retirement will give

the plan member an equivalent income in order to meet the standard of living, and

that will be the main objective of a pension scheme. This was clearly explained in

 

 

 

 



CHAPTER 4. THE SIMPLE STOCHASTIC MODEL OF CAIRNS ET AL. 14

the papers of Cairns et al [6], and Deelstra et al [9], [10].

Stating without proving, the SDE of the wealth process as explained by Cairns et al

[5] is

dW (t) = W (t)[(r(t) + p(t)
′

Cζ̃)dt + p(t)
′

CdZ(t)] + πY (t)dt.

Usually utility is given by a certain real-valued function. Let us define a new state

of variable, X(t) = W (t)
Y (t)

, which is the ratio of the wealth to salary. In this case the

utility associated with a given value of X(t) will be calculated as u(X(t)) = γ−1X(t)γ .

The final salary Y (T ) at retirement age is directly related to the utility or the level

of consumption, given exogenously as (1 − π)Y (T ), where π is the proportion of the

salary contributed towards the pension fund.

Proposition 4.4 The dynamics of X(t) is given by the SDE:

dX(t) =
[
π + X(t)(−µY + p(t)σ1(ζ̃1 − σY1

) + σ2
Y1

]
dt)

+ X(t)(p(t)σ1 − σY1
)dZ(t).

(4.4)

Proof. On the defined state variable, X(t) = W (t)
Y (t)

we apply the stochastic product

rule:

dX(t) = d

(
W (t)

Y (t)

)
=

1

Y (t)
dW (t) + W (t)d

1

Y (t)
+ d

〈
W (t),

1

Y (t)

〉
.

Now using (4.3)

d

(
1

Y (t)

)
= −

1

Y 2(t)
dY (t) +

1

Y 3(t)
(dY (t))2

and then computing (dY (t))2 we obtain Y 2(t)σ2
Y dt. This will yield

d

(
1

Y (t)

)
= −

1

Y (t)
[(r + µY )dt + σY1

dZ(t)] −
σ2

Y

Y (t)
dt

=
1

Y (t)

[
−(r + µY + σ2

Y )dt − σY1
dZ(t)

]
. (4.5)
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Using the above equation,

dX(t) =
W (t)

X(t)

{
(r + p(t)ζ̃1σ1)dt + p(t)σ1dZ1(t)

}
+

πY (t)

Y (t)
dt

+
W (t)

Y (t)

{
(σ2

Y − (r + µY )dt − σY1
dZ1(t)

}
− σ1σY1

p(t)dt

= X(t)
[
(r + p(t)ζ̃1σ1)dt + p(t)σ1dZ1(t)

]
+ π

+ X(t)
[
σ2

Y1
− (r + µ)

]
dt − X(t)σY1

dZ1 − X(t)σ1σY 1p(t)dt

=
[
π + X(t)(−µY + p(t)σ1(ζ̃1 − σY1

) + σ2
Y1

]
dt

+ X(t)(p(t)σ1 − σY1
)dZ(t).

4.4 Market price premiums

Considering that we have our contribution rate, π > 0, this shows that the stream of

payments of premiums is regular. Due to the properties of completeness of a market,

we are able to completely hedge the future premiums.

Remark 4.1 The market price at time t for the premiums payable between time

[t, T ], (i.e. their discounted value) can be written as explained by these two papers

of Cairns et al [5] and Deelstra et al [10]

R = EQ

[∫ T

t

exp (−r(s − t)) πY (s)ds|Ft

]
. (4.6)

Proposition 4.5 For R as given in equation (4.6), the value is

R = πY (t)f(t) (4.7)

where

f(t) =
exp((µY − ζ̃1σY1

)(s − t)) − 1

µ − ζ̃1σY1

.

Proof. Consider the quantity ẼQ to be the expectation under risk-neutral probability

measure Q which happens to be equivalent to the real world probability measure.
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Under Q,

dR1(t) = R1(t)
[
(r + ζ̃1σ1)dt + σ1dZ1(t)

]

= R1(t)
[
rdt + σ1(ζ̃1dt + dZ1(t))

]

= R1(t)
[
rdt + σ1dZ̃1(t)

]
. (4.8)

This is obtained by using the Girsanov theorem found in the book by Etheridge [11],

and hence Z̃1 = ζ̃1 + Z1(t), eventually dQ

dP
= Z̃1(t) = exp{−1/2(ζ̃1(t)) − ζ̃1Z1(t)}.

Under the same probability measure,

dY (t) = Y (t)
[
(r + µY − ζ̃1σY1

)dt + σY1
dZ̃1(t)

]

= Y (0) exp{(r + µY − ζ̃1σY1
−

1

2
σ2

Y1
)t − ζ̃1Z1(t)}, (4.9)

where Z̃1(t) is a Standard Q -Brownian Motion.

R = ẼQ

[ ∫ T

t

exp{−r(s − t)}πY (s) ds

∣∣∣∣Ft

]

= ẼQ

[ ∫ T

t

exp{−r(s − t)}πY (t) exp{(r + µY − ζ̃1σY1
−

1

2
σ2

Y )s + σY1
Z̃1(s)}ds

∣∣∣∣Ft

]

= πY (t)

∫ T

t

exp{−r(s − t)} exp{(r + µY − ζ̃1σY1
−

1

2
σ2

Y )(s − t)}

· ẼQ(exp{σY1
Z̃1(s − t)}

∣∣∣∣Ft)ds

= πY (t)

∫ T

t

exp{−r(s − t)} exp{(r + µY − ζ̃1σY1
−

1

2
σ2

Y )(s − t)}

· ẼQ(exp{σY1
Z̃1(s − t)})ds

= πY (t)

∫ T

t

exp{−r(s − t)} exp{(r + µY − ζ̃1σY1
−

1

2
σ2

Y )(s − t)}

· exp{
1

2
σ2

Y1
(s − t)}ds

= πY (t)

∫ T

t

exp{(µY − ζ̃1σY1
)(s − t)}ds

= πY (t)
1

(µY − ζ̃1σY1
)

exp{(µY − ζ̃1σY1
)(s − t)}

∣∣∣∣
T

t

= πY (t)

[
exp((µY − ζ̃1σY1

)(s − t)) − 1

µ − ζ̃1σY1

]

= πY (t)f(t).
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This market price will give us an access to work with the future premiums as if they

were part of the current assets of the pension plan. With this, it then leads us to

what we call the augmented pension wealth, which is well explained in the paper by

Boulier et al [4].

4.5 Augmented pension wealth

The idea behind this augmented pension wealth rests on the neoclassical theory. From

this, we can say that the current value of the asset should be equal to the present value

of the salary inflows. The total net of the pension wealth is viewed as the capitalised

value of future benefits. The net value is used here in order to be consistent with the

neoclassical notion of wealth. For our augmented pension wealth, which we denote

by W̃ (t), we have, as found in theory of constant proportion portfolio insurance by

Black and Perold [3],

W̃ (t) = W (t) + πY (t)f(t),

where W̃ (t) is the augmented pension wealth.

Solving W̃ (t), using stochastic product rule we are going to yield

dW̃ (t) = dW (t) + πf(t)dY (t) + πY (t)df(t) + π < Y (t), f(t) >

= dW (t) + πf(t) [Y (t) ((r + µY )dt + σY1
dZ1(t))]

+ πY (t)
[
− exp

(
(µY − ζ̃1σY1

)(T − t)
)]

= W (t)[(r + p(t)ζ̃1σ1)dt + p(t)σ1dZ1(t)] + πY (t)dt + πf(t)[Y (t)(r + µY )dt

+ σY1
dZ1(t))] + πY (t){− exp

[(
µY − ζ̃1σY1

)
(T − t)

]
dt}

= [W (t)(r + p(t)ζ̃1σ1) + πY (t) + πY (t)f(t)(r + µY )

+ πY (t){− exp(µY − ζ̃1σY1
)(T − t)}]dt + [W (t)p(t)σ1

+ πY (t)f(t)σY1]dZ1(t).

 

 

 

 



CHAPTER 4. THE SIMPLE STOCHASTIC MODEL OF CAIRNS ET AL. 18

Synthetic asset

We use the concept of complete market to construct a self financing strategy of

synthetic asset, R2(t). Its dynamics is then given by the following SDE

dR2(t)

R2(t)
= (r + ζ̃1σY1

)dt + σY1
dZ1(t),

where r is the riskless rate, σY1
is the volatility and Z1(t) is the Brownian motion.

There is a perfect correlation between salary risk and the synthetic asset and hence

it can be fully used to hedge the stream of contributions.

The augmented wealth W̃ (t) is going to be divided into proportions. Let q(t) be

the proportion invested in the asset with the price R1(t) and the remainder be the

proportion invested in the asset with the price R2(t).

4.6 Optimal expected utility

The utility function that we consider on wealth is u(W̃ (T )) = γ−1W̃ (T )γ. We seek

to maximise the expected terminal utility. Let us write

J(t, x, r, p) = E [u (W (T )) | X(t) = x] .

We seek to

maximizepJ(t, x, r; p) (4.10)

with

dr = µrdt + σr1
dZ1 + σr2

dZ2 (4.11)

dx = βdt + α1dZ1 + α1dZ2 (4.12)

where β = X(−µY + p
′

C(ζ̃ − σY ) + σ
′

Y σY ) + π

and α = (p
′

C − σ
′

Y ).

Here p is the portfolio, the optimal one of which will be denoted by p∗. Let V (t) be

the value function corresponding to the problem (4.10). The following proposition

describes p∗.
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Proposition 4.6 The optimal path p∗ solving the problem (4.10) satisfies the equation

p∗(t, x, r; V ) = C
′−1

(
σY − (ζ̃ − σY )

Vx

xVxx

− σr(r)
Vrx

xVxx

)
. (4.13)

Proof. The HJB equation (see (2.7)) for this problem is −∂V
∂t

+H = 0 . G(V ) is given

by

G(V ) = µrVr + µxVx +
1

2
vrrVrr + vrxVrx +

1

2
vxxVxx. (4.14)

In order to maximise G, we differentiate µp
x, µ

p
r, v

p
rr, v

p
rx, v

p
xx with respect to p1 and p2

and equate to zero to obtain the vector expression.

Thus

µ
′p
x = xC(ζ̃ − σY ) (4.15)

vrx
′p = Cσr(r)x (4.16)

v
′p
xx = 2CC

′

p − CσY , (4.17)

and we obtain the vector equation

G
′

(V ) = µrVr + Vx(xC(ζ̃ − σY )) + xCσr(r)Vrx +
1

2
x2(2CC

′

p − 2CσY )Vxx. (4.18)

Equating to zero and making p the subject, it then becomes

x2CC
′

pVxx = x2CσY Vxx − µrVr + Vx(xC(ζ̃ − σY )) − xCσr(r)Vrx

p∗(t, x, r; V ) = C
′−1

(
σY − (ζ̃ − σY )

Vx

xVxx

− σr(r)
Vrx

xVxx

)
. (4.19)

The strategy with respect to augmented wealth

Let q(t) denote the proportion of the augmented wealth invested in the risky asset. We

start off with the assumption that the value function associated with maximisation

of u, takes the form:

V (t, X(t)) = h(t)( ˜X(t))γ, (4.20)

V (T, X(T )) =

[
1

γ
( ˜X(T ))γ

]
= E

[
u(W̃ (T ), Y (T )

]
.
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V = maxq∗E

[
1

γ
(X̃)γ

]
.

Using the HJB-equation,

∂V

∂t
= maxq∗

{
V

′

µ +
1

2
σ2V

′′

}
,

thus we need,
∂

∂q∗

(
V

′

+
1

2
σ2V

′′

)
= 0.

Solving for the above, V
′

= (X̃)(γ−1) and V
′′

= (γ − 1)X̃(γ−2) and eventually we will

obtain

0 = V
′

X̃(ζ̃1 − σY1
)(σ1 − σY1

) +
1

2
V

′′

(2q∗X̃2(σ1 − σY1
)2).

This is done in such a manner that a bigger portion is in R1 and the remainder of it

invested in R2, see Cairns et al [5]. Now the value of q∗(t) is then given by

q∗(t, X̃(t)) = −

(
V

′

X̃(ζ̃ − σY1
)(σ1 − σY1

)

V ′X̃2(σ1 − σY1
)2

)

=

[
X̃

1 − γ
·
X̃(ζ̃1 − σY1

)(σ1 − σY1
)

X̃2(σ1 − σY1
)2

]

=
(ζ̃1 − σY1

)(σ1 − σY1
)

(1 − γ)(σ1 − σY1
)2

=
(ζ̃1 − σY1

)

(1 − γ)(σ1 − σY1
)
.

This is then the partitioning into two different amounts invested in different portions.

The function q(t, X̃(t)) is basically dependent on two variables, time t and W (t)
Y (t)

.

Eventually, we can simply determine the amount of pension wealth which is to be

invested in proportions but being expressed in the form of Y (t). This is because the

plan member’s salary appears to be the back bone of the wealth investments.

To illustrate this, we consider the following set of parameters,

µy = 0, ζ̃1 = 0.2, σ1 = 0.2, σY 1 = 0.05, π = 0.1, T = 20.
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Figure 4.1: Optimal equity proportions

Considering long term-term average salary increase, our value for µy = 0, is rea-

sonable good enough. This is beacause the average long-run interest rates is almost

similar to long term-term average salary increase. r = 0.06 is the nominal interest

rate. Since we are assuming power utility, setting π = 0.1 wont be of any loss of

generality.

Using Matlab, the simulated path converges to a very small value 0.375, which shows

merely a stochastic lifestyling. The value of the equity proportion will be higher

when t is low and this is because X(t) will also be lower, almost 0.375. From the fact

that the value is lower at the beginning causes a greater volatility which shows an

operation of stochastic lifestyling. On that note, the optimal equity proportion varies

stochastically on each time interval.

 

 

 

 



Chapter 5

The more general stochastic model

of Cairns et al.

In this chapter, we focus on the discussion of the more general stochastic model of

Cairns et al [5]. As compared to what we had in the previous chapter, in this case

introduce a stochastic risk-free nominal rate of interest r(t). Instead of working with

n risky assets as proposed in the original paper, we work with only 2 risky assets

which are a stock and a bond.

5.1 Risk free interest rates

Decomposing the risk-free rate of interest with only 2 risk-assets, the time homoge-

neous SDE is

dr(t)

r(t)
= µrdt + [σr1

dZ1(t) + σr2
dZ2(t)] , (5.1)

with Z1(t) and Z2(t) being two independent Brownian motions so that r is now a

function of t.

Proposition 5.1 The explicit formula for r(t) is the following

r(t) = r(0) exp

{[
µ −

1

2
(σ2

r1
+ σ2

r2
)

]
t + σr1

Z1(t) + σr2
Z2(t)

}
.

22
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Proof. We apply the multifactor Itô formula, see for instance [11], section 7.2, on the

function r(t) stated in the proposition.

Then:

dr(t) = r(t)

[
µ −

1

2
(σ2

r1
+ σ2

r2
)

]
+ σr1

r(t)dZ1 + σr2
r(t)dZ2

+
1

2
σ2

r1
r(t)dt +

1

2
σ2

r2
r(t)dt

= r(t)

[
µ −

1

2
(σ2

r1
+ σ2

r2
)

]
+ σr1

r(t)dZ1 + σr2
r(t)dZ2

+
1

2
r(t)

[
σ2

r1
+ σ2

r2

]
dt.

Thus equation (5.1) follows from the given r(t).

Our cash is the risk-free asset and is to be subjected to the risk-free nominal rate of

interest defined by r(t). To illustrate this, we are going to make use of the simula-

tions, figure 5.1 below, based on the Euler method as in Cyganowski et al [7]. This

time (t)
0 2 4 6 8 10

r(t)

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Figure 5.1: Interest rate

shows that the interest rate is affected by the change in time, with time in years,
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and its movement is stochastic. Figure 5.1 illustrates a simulation of r(t), where the

parameters are assigned values as σr1
= 0.02, σr2

= 0.05, µr = 0.1, r0 = 0.08.

Proposition 5.2 The value of the riskless asset, R0 satisfies the equation

R0(t)

R0(0)
= exp

∫ t

0

r(s)ds.

Proof. This is because dR0(t) = r(t)R0(t)dt.

5.2 Risky assets

Different assets are invested in the market and each one of them having a different

return. Let Ri be the total investment into the ith asset. With only two risky assets,

the two assets evolves according to the SDE given by

dRi(t)

Ri(t)
=
(
r(t) + σi1 ζ̃1 + σi2 ζ̃2

)
dt + σi1dZ1(t) + σi2dZ2(t).

Proposition 5.3 The explicit formula for Ri(t) is the following

Ri(t) = Ri(0) exp

{(
r(t) + σi1 ζ̃1 + σi2 ζ̃2 −

1

2
(σ2

i1
+ σ2

i2
)

)
t + σi1Z1(t) + σi2Z2(t)

}
.

Proof. Again this is as Proposition 5.1 and we skip the detail.

5.3 Plan member salary

The plan member’s salary is denoted by Y (t) is going to evolve in accordance to a

given SDE. Doing the computations, we use the SDE

dY (t)

Y (t)
= [(r(t) + µ(t)dt + σY1

dZ1(t) + σY2
dZ2(t)] . (5.2)

Proposition 5.4 The explicit formula for Y (t) is the following

Y (t) = Y (0) exp

{
(r(t) + µ(t) −

1

2
(σ2

Y1
+ σ2

Y2
)

}
dt + σY1

dZ1(t) + σY2
dZ2(t).

Proof. Again this is as for Proposition 5.1 and we skip the detail.
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Figure 5.2: Plan member salary

To illustrate this, we are going to make use of the figure 5.2 above.

From figure 5.2 the plan member salary therefore evolve stochastically and in this

case our parameters are assigned values as σY 1 = 0.002, σY 2 = 0.05, σr1
= 0.05,

σr2
= 0.01, µY = 0.005, µr = 0.005, r0 = 0.01.

 

 

 

 



Chapter 6

Simulating the optimal path of

risky assets

In this chapter, we are going to perform simulations of the paths to show how our

risky assets stochastically behave in a market. We will get into more detail on the

simulations of stochastic lifestyling process and show the randomness of the assets.

6.1 Optimal equity proportion

This is the proportion amount invested in optimal investment in equities and the

value of X(0) will never attain the value of zero. From this, we can say X(0) = 0 is

the asymptote for the horizontal axis. This implies that since X(0) is indomitable by

the salary of the plan member and the wealth at time T , there is no way it can ever be

nothing. The value of this proportion will start at a high level, provided that σ1−σY 1q∗

σ1

is above zero. The dynamics will ultimately show that there will be lower drift as f(t)

dwindles and X(t) increases. As X(0) tends to infinity, the value of p∗(0, X(0)) tend

to σ1−σY 1q∗

σ1

, which shows is stochastic otherwise it is deterministic. Now if we express

the relative risk aversion with parameters µY = 0, ζ̃1 = 0.2, σY 1 = 0.05, π = 0.1

and T = 20. Since for our asymptotic value, as X(0) tends to infinity, the value of

p∗(0, X(0)) is then 0.375. This will then give all the support to depict the optimal

26
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asset-allocation as in stochastic lifestyling.

6.2 Optimal asset allocation

The optimal asset allocation of the more general stochastic model is derived step by

step from the HJB equation. It is then going to take the form given by

p∗(t, x, r; V ) = C
′−1

(
σY − (ζ̃ − σY )

Vx

xVxx

− σr(r)
Vxr

xVxx

)
, (6.1)

where Vx

xVxx
= x+f(t)

γ−1
and Vxr

xVxx
= B(γ, (T − t)) = γde−αr(T−t).

Simplifying this, we obtain:

p∗(t, x, r; V ) = ∆ ·







 σY 1

σY 2



−







 ζ̃1

ζ̃2



−



 σY 1

σY 2









·

(
x + f(t)

γ − 1

)
−


 σrr1

σrr2


 ·

(
γd1e

−αr(T−t)
)



= ∆ ·




 σY 1 −

(
x+f(t)
γ−1

)(
ζ̃1 − σY 1

)

σY 2 −
(

x+f(t)
γ−1

)(
ζ̃2 + σY 2

)




−




(
γd1e

−αr(T−t)
)
σrr1

(
γd1e

−αr(T−t)
)
σrr2









= ∆ ·



 σY 1 −
(

x+f(t)
γ−1

)(
ζ̃1 − σY 1

)
−
(
γd1e

−αr(T−t)
)
σrr1

σY 2 −
(

x+f(t)
γ−1

)(
ζ̃2 + σY 2

)
−
(
γd1e

−αr(T−t)
)
σrr2





=



 k1

k2



 ,

where

k1 =
1

c1c4 − c2c3

[
c4

(
σY 1 −

(
x + f(t)

γ − 1

)(
ζ̃1 − σY 1

)
−
(
γd1e

−αr(T−t)
)
σrr1

)

−c3

(
σY 2 −

(
x + f(t)

γ − 1

)(
ζ̃2 + σY 2

)
−
(
γd1e

−αr(T−t)
)
σrr2

)]
,
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k2 =
1

c1c4 − c2c3

[
−c2

(
σY 1 −

(
x + f(t)

γ − 1

)(
ζ̃1 − σY 1

)
−
(
γd1e

−αr(T−t)
)
σrr1

)

+c1

(
σY 2 −

(
x + f(t)

γ − 1

)(
ζ̃2 + σY 2

)
−
(
γd1e

−αr(T−t)
)
σrr2

)]

and

∆ =
1

c1c4 − c2c3


 c4 −c3

−c2 c1


 .

6.3 Wealth process of Cairns et al.

We consider the wealth process given in the paper of Cairns et al [5] which thereof is

given by

dW (t) = W (t)[(r(t) + p(t)
′

Cζ̃)dt + p(t)
′

CdZ(t)] + πY (t)dt. (6.2)

The optimal process p(t) which is a vector is now being substituted by p∗(t, x, r, V ).

Substituting this we are going to obtain

dW (t) = W (t)[(r(t) + p∗(t, x, r, V )Cζ̃)dt + p∗(t, x, r, V )CdZ(t)] + πY (t)dt

= [(r(t) + C
′−1(σY − (ζ̃ − σY )

Vx

xVxx

− σr(r)
Vxr

xVxx

Cζ̃)dt

+ C
′−1(σY − (ζ̃ − σY )

Vx

xVxx

− σr(r)
Vxr

xVxx

CdZ(t)] + πY (t)dt, (6.3)
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where V (t, x, r) is in the form γ−1g(t, r)1−γ ·(x+πf(t))γ . In this regards, our V (t, x, r)

is going to take the form γeγg(t,x,r) · (x + πf(t))γ.

dW (t) = W (t)




r(t) +

(
p∗1 p∗2

)
·


 c1 c2

c3 c4


 ·


 ζ̃1

ζ̃2




 dt +

(
p∗1 p∗2

)
·

·


 c1 c2

c3 c4




 dZ(t1)

dZ(t2)




+ πY (t)dt

= W (t)







r(t) +
(

k1 k2

)
·



 c1ζ̃1 + c2ζ̃2

c3ζ̃1 + c4ζ̃2







 dt +
(

k1 k2

)
·



 c1 c2

c3 c4



 ·


 dZ(t1)

dZ(t2)




+ πY (t)dt

= W (t)
[(

r(t) +
(
k1

(
c1ζ̃1 + c2ζ̃2

)
+ k2

(
c3ζ̃1 + c4ζ̃2

)))
dt+

(
k1c1 + k2c3 k1c2 + k2c4

)
·



 dZ(t1)

dZ(t2)







+ πY (t)dt

= W (t)
[(

r(t) +
(
k1

(
c1ζ̃1 + c2ζ̃2

)
+ k2

(
c3ζ̃1 + c4ζ̃2

)))
dt

+ (k1c1 + k2c3) dZ(t1) + (k1c2 + k2c3) dZ(t2)] + πY (t)dt.

(6.4)

At this juncture, we are going to quote the theorem in Cairns et al [5] and use it to

evaluate the value of the function (6.3). Evaluating V (t, x, r) which is now given by

V (t, x, r) =
1

γ
eA(γ,T−t)+γϕ(γ)(T−t) · eB(γ,T−t)(x + πf(t))γ, (6.5)

then

g(t, x, r)1−γ = e[A(γ,T−t)+B(γ,T−t)r(t)+γϕ(γ)(T−t)] . (6.6)

Using (6.5) and (6.6) we are going to yield the value of V (t, x, r) in the form given

by Cyganowski et al [7]

V (t, x, r) = γeγ(t,x,r) · (x + f(t))γ . (6.7)
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The function f(t) is given by

f(t) =

∫ T

t

e−σ
′

Y
ζ̃(s−t)ds

= eσ
′

Y
ζ̃t

∫ T

t

e−σ
′

Y
ζ̃sds

=
1

σ
′

Y ζ̃
[1 − e−σ

′

Y
ζ̃t(T−t)].

(6.8)

The detail of γ is for our purpose unimportant, except that,

∂

∂r
V (t, x, r) = B(γ, T − ε). (6.9)

In this regards, the value of B is the same as in (6.5), we say it is unimportant

because there will be much cancellation in simplifying the expression for the optimal

proportion p∗.

Using the equation (6.5), its first derivative with respect to x is given by

Vx = γeγ(x + f(t))γ−1. (6.10)

Furthermore, the second derivative with respect to x is

Vxx = γ(γ − 1)eγ(x + f(t))γ−2. (6.11)

Lastly, the partial derivative with respect to x and then r will be

Vxr = γeγ ∂

∂r
((x + f(t))γ−1). (6.12)

Considering (6.10) and (6.11), we are going to obtain

Vx

Vxx

=
γeγ(x + f(t))γ−1

γ(γ − 1)eγ(x + f(t))γ−2

=
x + f(t)

γ − 1

=
1

γ − 1
(x + f(t)),

(6.13)
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and (6.12) and (6.11), we are going to obtain

Vxr

Vxx

=
γeγ ∂γ

∂r
(x + f(t))γ−1

γ(γ − 1)eγ(x + f(t))γ−2

=
∂

∂r

(
(x + f(t))

γ − 1

)

= B(γ, T − t).

(6.14)

The wealth ratio to salary is given by X(t) = W (t)
X(t)

. After computing the equation by

straight forward application of the product formula, we obtain the SDE:

dX(t) = X(t)
[(

−µY (t) + p(t)
′

C(ζ̃ − σY ) + σ
′

Y σY

)
dt + (p(t)

′

C − σ
′

Y )dZ(t)
]

+ πdt.

(6.15)

Furthermore, we are going to substitute p(t) with p∗(t, x, r; V ) and obtain:

dX(t) = X(t)




−µY (t) +

(
k1 k2

)

 c1 c2

c3 c4




 ζ̃1 − σY 1

ζ̃2 − σY 2


+

(
σY 1 σY 2

)



 σY 1

σY 2







 dt +




(

k1 k2

)


 c1 c2

c3 c4



−
(

σY 1 σY 2

)






 dZ(t1)

dZ(t2)









+ πdt

= X(t)




−µY (t) +

(
c1k1 + c3k2 c2k1 + c4k2

)

 ζ̃1 − σY 1

ζ̃2 − σY 2




+(σ2
Y 1 + σ2

Y 2)dt +
(

c1k1 + c3k2 c2k1 + c4k2

)
−
(

σY 1 σY 2

)


 dZ(t1)

dZ(t2)






+ πdt

= X(t)
[(

−µY (t) + (c1k1 + c3k2)(ζ̃1 − σY 1) + (c2k1 + c4k2)(ζ̃2 − σY 2)

+(σ2
Y 1 + σ2

Y 2)
)
dt + (c1k1 + c3k2 − σY 1)dZ(t1) + (c2k1 + c4k2 − σY 2)dZ(t2)

]

+ πdt.

To illustrate this, we are going to make use of the figure 6.1 above and time is in

years. From figure 6.1 the wealth process therefore evolve stochastically and in this

case our paremeter are assigned values as α = 0.0025, σY 1 = 0.02, σY 2 = 0.02, σr1 =
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Member Salary Wealthy process
Risk asset

Time, t
0.00 0.05 0.10 0.15 0.20

Value of fund

1.000

1.002

1.004

1.006

1.008

1.010

1.012

1.014

1.016

1.018

Figure 6.1: Different stochastic processes

−0.02, σr2 = 0.5, µY = 0.5, µr = 0.5, γ = −5, ζ̃1 = 0.002, ζ̃2 = 0.003. This implies that

the wealth process is stochastically modelled with change in time variable.

 

 

 

 



Chapter 7

The three fund theorem of

Cairns-Blake-Dowd

The theorem of Cairns et al that we consider in this section, is a special case, be-

cause in general there are other influencing variables such as inflation and wage in-

come which are stochastic and the pension fund manager wants to hedge against

unfavourable outcomes by purchasing securities correlated to these variables. Never-

theless, the three fund theorem is quite informative. In every financial sector, it is

important to follow the optimal asset allocation so as to maximise returns on invest-

ments. In the three fund theorem, the final wealth is portioned and invested in three

different sectors with unique risk measurements. For this purpose, we consider three

funds in which to invest, which are cash, bond and equity.

Investors hold a portfolio comprising of three funds; the risk free asset, the market

portfolio and a third portfolio, chosen in such a way that its return is perfectly

correlated with the return on the risk free asset.

Before we go into more detail in the three fund assets, we need to explore on how the

dynamics are derived. To do this, we are going to make use of the Hamilton-Jacobi-

Bellman equation, fully explained in [13]. Eventually we obtain

p∗(t, x, r, V ) = C
′−1

(
σY − (ζ̃ − σY )

Vx

xVxx

− σr(r)
Vxr

xVxx

)
. (7.1)
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Simplifying (7.1), we eventually obtain the PDE in the simplest form given by,

Vt + µr(r)Vr + (π − µ̃Y (t)x + σ
′

Y (ζ̃ − σY )x)Vx +
1

2
σr(r)

′

σr(r)Vrr

−
1

2
(ζ̃ − σY )

′

(ζ̃ − σY )
V 2

x

Vxx

− (ζ̃ − σY )
′

σr(r)
VxVxr

Vxx

−
1

2
σr(r)

′

σr(r)
V 2

xr

Vxx

= 0. (7.2)

7.1 Optimal asset mix

We now formulate informally state without proving it, the so-called Three fund theo-

rem of Cairns-Blake-Dowd, where at any given time the investment consists of three

efficient mutual funds as follows:

p∗(t, x, r, V ) = θApA + θBpB + θCpC , (7.3)

where

Cash fund, θA(t, x, r) = 1 − Vxr−da(r)Vx

da(r)xVxx

Bond fund, θB(t, x, r) = Vx

da(r)xVxx

Stock fund, θC(t, x, r) = 1 − θA − θB = Vx

xVxx

with

PA = C
′−1σY

PB = C
′−1 (σY da(r)σr(r))

PC = C
′−1ζ .

7.1.1 Cash fund

At any given time, the fund manager is absolute sure that the plan member will

receive a salary Y (t). Cash fund, as compared to other portfolios, it is the minimum

risk portfolio being measured relative to the salary numeraire. Since there might be

risk in salary, this fund is reserved to hedge the salary risk. If there is not be any

other source of cash besides salary, then this fund contains only cash growth. In other

words, if there is a correlation between asset returns and cash growth, then the cash
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fund contains other asset apart from cash only. This mutual fund undergoes steady

growth and by the evolution of (7.1), it is dependent on t, X(t) and r(t).

7.1.2 Bond fund

In the case of an annuity, the major risk to the insurance company is that the person

may live a very long life requiring more payments than the insurance company ex-

pected. Another risk is that the company may not be able to earn as great a return

on its investments as planned, and so it may have less money to make payments

when they are due. This fund is mainly dominated by bonds and the returns tend

to be highly correlated with annuity yields. Bond fund is the minimum risk portfolio

measured relatively to Y (t)
a(t,r(t))

. Since there is a high correlation of annuity yields, it is

used to hedge against annuity risks. These mutual funds also contain constant growth

but varying over time and it only respond to changes in r(t). It is also dependent on

t, X(t) and r(t).

7.1.3 Stock fund

These are mutual funds and the objective is for long-term growth through capital

appreciation, although dividends and interest are also sources of revenue. In some

cases, specific equity funds may focus on a certain sector of the market or may be

geared toward a certain level of risk. This is a risk portfolio and tend to be efficient

when measured relative to both Y (t) and Y (t)
a(t,r(t))

. Both bond and cash are in coop-

erated here and then the stock fund is there so as to satisfy the risk appetite of the

plan member. This mutual fund maintains a constant proportion of assets but then

it also depends on t, X(t) and r(t).

To illustrate this, we are going to make use of the figure 7.1 below. From figure 7.1,

the wealth process therefore evolve stochastically and in this case our paremeter are
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Bonds Cash Risky Assets
Time (in years)

1 2 3 4 5 6 7 8 9 10

Proportion
of the 
wealth

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 7.1: The three fund theorem

assigned values as α = 0.0025, σY 1 = 0.02, σY 2 = 0.02, σr1
= −0.02, σr2

= 0.5, µY =

0.5, µr = 0.5, γ = −5, ζ̃1 = 0.002, ζ̃2 = 0.003. This implies that the wealth process is

stochastically modelled with change in time variable.

Concerning the global management of the funds, figure 7.1 shows the evolution of

the funds from time t = 0 to time T = 10, assuming that the plan member will

retire after 10 years. Since the plan member is going to have a salary, the cash asset

will start at a value above zero and will increase more towards the retirement age

because all the assets will be converted in cash.Bonds are purchased at time t = 0.

The maturity of the bonds in this case is taken to be the retirement age hence they

must be paid up at time T = 10. Less funds are invested in the risky assets at the

beginning as compared to other assets and the proportion will continue to reduce as

the plan member approaches retirement age. This is also because all the asset will be

converted in cash [10].
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Conclusion

The level of volatility when it comes to deterministic is lower and the value of

p∗(t, X(t)) is even lower. During the interval before assets are converted to bonds,

the value of p∗(t, X(t)) can be slightly higher than that of stochastic. Towards the

retirement age, all assets are converted to bonds, which is more risky as compared

to stochastic lifestyling. In general, we can say the equity proportion dwindles to as

much as zero level irrespective of the plan member’s degree of risk aversion or salary

dynamics.

On the contrary, we can now make a simple comparison of our general model of chap-

ter 5 and chapter 6, by mainly looking at how they behave from time t = 0 to time

t = T . The optimal equity proportion for stochastic lifestyling will be having high

volatility during first few years and low value of X(t). As X(t) increases, the value

of p∗(t, X(t)) tend to σ1−σY 1q∗

σ1

but will never be zero. The level of its non-zero nature

depends on how risk averse is the plan member and the correlation with the plan

member’s salary.

Using the three mutual funds, we noticed that there is the high risk one and low risk

ones, all serving different but important purposes. The high risk asset, equity fund,

have been used to satisfy the risk appetite of the plan member. The low risk assets

were cash and bond funds. The bond funds, have been the default low risk investment

37
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while the cash fund as a hedger against annuity rate risk. As with deterministic,

there is a gradual change from high risk to low risk assets as the retirement date

approaches. In the optimal stochastic lifestyle, during the early stages of the plan,

cash fund dominate more in low risk component but as retirement date get near it

then switches from cash into bonds. Basically, stochastic lifestyle involves switching

between different assets of low risk.

A weakness of the model is that the variable risk free interest rate is modeled as a

geometric Browian motion, which may potentially grow out of bounds. A revision of

the model, with interest rate taken as mean reverting seems a better alternative.
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