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Summary

The axiomatic theory of Zelazko defines a variety of general spectra where specified axioms
are satisfied. However, there arise a number of spectra, usually defined for a single element
of a Banach algebra, that are not covered by the axiomatic theory of Zelazko. V. Kordula and
V. Miiller addressed this issue and created the theory of regularities. Their unique idea was
to describe the underlying set of elements on which the spectrum is defined. The axioms of a
regularity provide important consequences. We prove that the set of Koliha-Drazin invertible
elements, which includes the Drazin invertible elements, forms a regularity. The properties of

the spectrum corresponding to a regularity are also investigated.

Key terms:
Banach algebra; radical; spectrum; resolvent; quasinilpotent; nilpotent; spectral idempotent;
isolated spectral point; accumulation point; regularity; Koliha-Drazin invertible; Drazin in-

vertible; quasipolar; K D-spectrum; D-spectrum; Laurent expansion; poles of the resolvent.
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Introduction

In the recent years the theory of regularities has been a research interest of various authors. In
1996, V. Kordula and V. Miiller created the notion of regularities [12]. A non-empty subset R

of a unital Banach algebra is called a regularity if it satisfies the following two conditions:

l1.ifae Aandn € N, thena € R & a™ € R;

2. if a, b, ¢, d are mutually commuting elements of A satisfying ac + bd = 1, then

ab€e R < a,b e R.

The above axioms of regularities are weak enough so that there are many natural classes of
elements in Banach algebras and operator theory satisfying them. These classes include the
set of all invertible elements, as well as the sets of left and of right invertible elements. On
the other hand the axioms are strong enough to provide important consequences, for example,
the spectrum, or(a) = {\ € C: A\l —a ¢ R}, corresponding to a regularity R satisfies the
Spectral Mapping Theorem, so that cr(f(a)) = f(or(a)) forevery a € A and every function
f analytic on a neighbourhood of o (a) which is non-constant on each component of its domain
of definition.

In 2007 R.A. Lubansky [14] examined regularities in connection with Koliha-Drazin invertible
elements (denoted by KD-invertibles). According to Koliha [11], an element b € A is a

Koliha-Drazin inverse, b = o P, of a € A if

ab = ba,b = ab® a — a’b € QN(A).



Introduction

The Drazin index i(a) of a is the nilpotency index of a —a?b if a—a?b € N(A), and i(a) = oo
otherwise. R.A. Lubansky proved that the set of K D-invertibles in a complex unital Banach
algebra forms a regularity.

The focus of this dissertation is on the fact that the set of K D-invertibles forms a regularity.
The work is organised into five chapters. Throughout this dissertation we used definitions and
notation as set out in Aupetit [1], J.J. Koliha [11], E. Kreyszig [13] and V. Miiller [15]. In the
first chapter some basic definitions and results are dealt with, such as Banach algebras, various
aspects of spectral theory, the Laurent expansion and the Bolzano—Weierstrass Theorem. In
section 1.4, the Holomorphic Functional Calculus is introduced which is used in the study of
Banach algebras. The basic properties of this Functional Calculus are given of which the Spec-
tral Mapping Theorem, o(f(a)) = f(o(a)), is the most important. The spectral idempotent,
as an essential tool, is used throughout this dissertation. Chapter 2 deals with a regularity and
Chapter 3 with Koliha—Drazin and Drazin invertible elements where the definitions and results
come from Koliha [11]. We include Harte’s definition of quasipolar elements to elaborate on
the more general definition of a Koliha—Drazin inverse. The main result of this dissertation
is Theorem 4.1.6, where the concepts explained in Chapter 2 and Chapter 3 are united. It
states that the set of K D-invertible elements forms a regularity as Lubansky pointed out. As
a consequence of this (see Corollary 4.1.8) we see that the set of D—invertible elements forms
a regularity, which is a well known result. In Chapter 5 we conclude our discussion with the
D-spectrum and the K D-spectrum where we prove some interesting and relevant results in

the context of spectral theory.

vi



Chapter 1

Preliminaries

1.1 Banach Algebras

Definition 1.1.1
An algebra A over a field K is a vector space over K such thatforalla, b, c€ Aand o € K:
1. There is a unique product ab € A
2. (ab)e = a(be) (associative under multiplication)
3. a(b+ ¢) = ab + ac (left distributive over addition)
4. (a+ b)c = ac+ be (right distributive over addition)
5. a(ab) = (ca)b = a(abd)
If in addition for all a, b € A:

6. ab = ba,

A is said to be Abelian or commutative.
If there exists an element 14 € A, only called 1 if the context is clear, such that for all

ac A:



Chapter 1  Preliminaries

7. la =al = a,

then A is said to be an algebra with identity/unit and 1 is the identity/unit.

Such an algebra A is called a unital algebra. If A has identity 1, then it is unique, since if 1
and 1’ are both identities, 1’ = 1'1 = 1.

An element a € A is said to be invertible if there exists an element o~ € A, called the inverse

1 1

of a, such thataa™ =a "a=1.

If the inverse exists, then it is unique, since if a~! and b~ are both inverses of a, then:
al=a1=aYab™ )= (ata)b ' =107t =b7 L.

We will denote the subset of A of all elements that are invertible in Aby A~'. A~! is asso-
ciative, contains the identity 1 and is closed under multiplication. Hence A~! is a group.

An element of A which is not invertible in A is said to be singular in A. For K = R or

K = C, Ais called a real or complex algebra respectively.

Definition 1.1.2

A subalgebra B of an algebra A is a subspace of A that is closed under multiplication, which
means that for a,b € B, ab € B.
Note that the unit of .4 does not necessarily belong to the subalgebra B and that B might have

a unit different from the one in A.

Definition 1.1.3

Let A be an algebra. An algebra seminorm in A is a function || - || : A — [0,00),a — ||a|

such that forall a,b € A, € C:
L [leall = |af - [l

2. |la+ o[l < fla]l + o]
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3. [ladl] < la]| - |[bl

4. [ =1

An algebra norm in A is an algebra seminorm satisfying the following:

5. if |ja]| = 0, then a = 0.

Definition 1.1.4

A normed algebra is a pair (A, || - ||), where A is an algebra and || - || is an algebra norm in A.

A Banach algebra is a normed algebra which is complete in the norm defined on it.

Unless otherwise specified, all Banach algebras considered in this dissertation are complex

and unital.

Definition 1.1.5

If A and B are Banach algebras, then a homeomorphism f : A — B is a continuous bijective
mapping whose inverse is continuous. If 4 and B are algebras then a linear mapping

¢ : A — Bis called a homomorphism if ¢(ab) = ¢(a)p(b) forall a,b € A and ¢(14) = 1.
If A and B are normed algebras, then a homomorphism ¢ : A — B is continuous if

9]l = sup{[|p(a)l| : a € A, [la] =1} < oo

An isomorphism is a continuous homomorphism ¢ satisfying the following:

inf{||¢(a)| : a € A, ||a] =1} > 0.

A homomorphism ¢ is called isometrical if ||p(a)|| = ||a|| for all a € A.
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If p : A — Cis anonzero linear functional such that for all a,b € A, p(ab) = p(a)p(b), then
it is called a multiplicative linear function/character. Hence a character is a linear functional

that is a homomorphism.

Definition 1.1.6

Let A be a Banach algebra. A set J C A is called a left(right) ideal in A if J is a subspace of
Aandaj € J(ja € J)forall j € Jand a € A. If J is both a left and right ideal in A, then
it is called a two-sided ideal in A. The ideal J = {0} is called the trivial ideal.

An ideal (left, right or two-sided) is proper if J # A; so J is proper if and only if 14 ¢ J.

A maximal ideal is a proper ideal that is not properly contained in any proper ideal.

Throughout this text we shall refer to a two-sided ideal as an ideal in .A.

Example 1.1.7

1. R and C are both commutative Banach algebras with unit 1.

2. Let J be an ideal of a Banach algebra .A. A/J is an algebra with element a + J where
a € A; A/J is called the quotient algebra of A modulo J. The zero element is J and
the unitis 1+ J.

Let a + J, b+ J be elements of A/.J where a,b € A and let o € C.
We define the following:

Addition: (a+J) + (b+J) = (a+b)+J

Multiplication: (a + J)(b+ J) =ab+ J

Scalar multiplication: a(a + J) = awa + J.
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The mapping ¢ : A — A/J given by ¢ (a) = a + J for a € A, is called the canonical
(quotient) mapping.

¢ is a homomorphism, since ¢(ab) = ab + J = ¢(a) - ¢(b) and (1) =1+ J.

We write [a] = a+ J for the equivalence class and a, b equivalent modula J means a —b € J.
When J is a closed ideal, .4/.J is a Banach algebra with quotient norm

I[a]ll = ulél[g] l|lul| = ]125 |la + 7| < ||la|| . Lastly A/J is commutative whenever A is

commutative.

From Definition 1.1.6 we can say that a left(right) ideal J C A is a maximal left(right) ideal
if J is proper and if the only proper left(right) ideal containing J is .J itself. One can easily
prove that in a Banach algebra A every proper ideal is contained in a maximal ideal of the
same kind by using Zorn’s Lemma. It is also true that a maximal ideal of a Banach algebra

Aisclosedin A . ([15], Theorem 40, p. 16).

Theorem 1.1.8 ([15], Theorem 41, p. 16).

Let A be a Banach algebra.

The following sets are identical:

1. the intersection of all maximal left ideals in A;
2. the intersection of all maximal right ideals in A4;
3. the set of all ¢ € A such that 1 — ac is invertible for every a € A;

4. the set of all ¢ € A such that 1 — ca is invertible for every a € A.



Chapter 1  Preliminaries

Definition 1.1.9

We denote the radical of A by rad.A and it is the set of all ¢ € A with properties (1) — (4)
of Theorem 1.1.8. Note that radA is a closed two-sided ideal of A, since maximal ideals are

closed sets. ([1], Corollary 3.2.2). We call A semisimple if rad A = {0} .

1.2 Spectral Theory
Definition 1.2.1

If A is a Banach algebra with identity 1, then the spectrum of an element a € A, denoted by
o4 (a) , or o () if the algebra is clear form the context, is defined as

ola)={AeC: M —ag¢ A}

Definition 1.2.2

If A is a Banach algebra with identity 1, then the resolvent set of an element a € A, denoted
by p (a): is defined as p(a) = {\ € C: \1 —a € A~'}. The resolvent of an element a € A
is the function A — (A — a) ™" defined in the open set C\¢ (a) and denoted by R (-, a).

From the above definitions we see that the spectrum of an element a € A is the complement

of its resolvent set, and that o (a) U p (a) = C.

Theorem 1.2.3 ([13], Theorem 7.7.1)

0 .
Let A be a Banach algebraand o € A. If ||a]| < 1thenl—a € A 'and (1 —a)"' = 3 o/
=0
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Proof.
Assume [|a|| < 1. Then ||a/|| < [|a|/ for j =0, 1, 2, ..., since [|ab|| < ||a|| [|b]| for all

a,b € A. Thus Y |[a’|| < 3 |lal/’. Since [la| < 1, it follows that Y [|a||’ converges,
=0 j=0 j=0

o0 .
therefore by the Comparison Test for Series » Haﬂ H converges. A is complete since it is a
J=0

Banach space. The absolute convergence in the Banach space A implies that io: a’ converges.
Let S denote its sum. Let S, = 14+ a + a? + --- + a™. Then (1 — a) SnJ;OSn 1—a)=
1 — a™"!. We now let n — oo. Then "' — 0 since ||a|| < 1. Hence if n — oo,
S, — Sand @™ — 0. Since (1 — a)S,, = 1—a™"! and since multiplication is continuous

in Banach algebras, we have (1 — a) S = 1. Similarly S (1 —a) = 1. So (1 — a) is invertible

o .
with inverse S. Hence (1—a) ' =S5 =Y a7, [
j=0

We already know that A1, the set of all invertible elements of 4, is a group.

Theorem 1.2.4 ([13], Theorem 7.7.2)

Let A be a complex Banach algebra with identity. Then .4~ is an open subset of A.

Proof.

Letag € A~'. We need to show that every a € A sufficiently close to ag belongs to A~!. Let

lla — aol] < m Letc =ay'aandd =1 — c. Then:

ldl| = l-dll = [c—1]
= Hagla—aalaoH (since ap € A7)

= Jlag” (= ao)|

IN

lag!|| - lla — aoll ~ (by Definition 1.1.3)

< 1
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Thus, ||d| < 1 and by Theorem 1.2.3, 1 — d is invertible. Therefore 1 —d = c € A~!. Since
A~lisagroup and ag, c € A7, a = (apay') a = ag (ag'a) = apc € A7

Since ag € A~! was arbitrary, we have that A~! is open. [

Theorem 1.2.5 ([15], Theorem 16, p. 6)

Let A be a Banach algebra and a € A. Then the resolvent A — (A1 — a)fl is analytic in
C\o (a).

Proof.

For A\, i ¢ o (a) we have

(11-a)' — (A -a)
— (1l-a) (M —a) - (1 —a) A1 —a)”"

= A—ppl-a) ' (AM-a) ',

and so
-1 -1
i WL1—a) — (A1 —q)
A= (A=)
-1 -1
B O S (% R R )
A= (A=)
= (A1-— a)_2
Thus the function A — (A1 — @)~ is analytic in C\o (a). [
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Theorem 1.2.6 ([1], Theorem 3.2.3)

Let A be a Banach algebra,a € Aandc € AL If|ja — ¢|| < ﬁ, thena € A~!. Moreover

! is a homeomorphism from A~! onto A~!.

the mapping a +— a™
Proof.
Wehavea=c+a—c=c(l+c!(a—c)).

Now |lc™' (@ —¢)|| < la—¢| - ||c7!|| < 1 by using Definition 1.1.3 and the assumption
la —c|| < ”Cl—lll By Theorem 1.2.3 1+ ¢! (a — ¢) is invertible.

Consequently, since A~ is a group under multiplication, a € A~!.

Hence

Hail - cilH = Z [cil (a— c)]kc*1 —c!

IN

71 o = el 3 (e -l = el
et fla = el
1— et fla—c]

= 0 since |la—c|| — 0.

1

So a —— a™ " is continuous, and since it is its own inverse, it is a homeomorphism. |
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Note 1.2.7

For a fixed a, the mapping A — A1 — a is continuous, for if (A,) C Cand \,, — A asn — oo,

then ||(Anl — @) — (AL — a)|| = [An = A 1] = [Aa — A = 0 as n — .

Definition 1.2.8

Let a be an element of a Banach algebra A. The spectral radius of a denoted r (a) , is defined

to be the number r (a) = SUpy¢y(q) |Al-

Note 1.2.9
The following is a well known expression for the spectral radius in terms of the norm:
. 1 . 1
r(a) = lim [|a"|» = inf ||a"|™" .
n—oo n

It is called the Beurling—Gelfand formula. For the proof of the spectral radius formula see

([15], Theorem 22, p. 8).

Definition 1.2.10

If a € Asatisfies 7 (a) = 0, that is 0 (a) = {0}, then a is said to be quasinilpotent. This

means that an element a of a Banach algebra .4 is quasinilpotent if

lim |ja"||" = 0.
n—oo

The set of quasinilpotent elements of A is denoted by QN (A) . We thus have that
a € QN (A)if \1 — a € A~! for all complex A # 0. ([9], Definition 2)

10
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Definition 1.2.11

The set of nilpotent elements of Ais N (A) = {a € A:a" =0 for some n € N}

Note that N (A) C QN(A). The converse holds if A is a finite dimensional Banach al-
gebra.

We show that rad A C QN (A): From Theorem 1.1.8 we have that

radAd = {c € A:1—ca € A ! foralla € A}. So for any complex A # 0 and
¢ € radA we have that 1 — £ € A~'. Consequently, since A~! is a group under multi-
plication, A(1 — §) = Al — cis invertible for all A # 0. Thus o(c) = {0} and therefore
ce QN(A).

If A is a commutative Banach algebra, then rad A = QN (A).

Theorem 1.2.12 ([13], Theorem 7.7.3)

If A is a complex Banach algebra with identity, then for every a € A, r (a) < ||al| and o (a)

is compact.

Proof.

Leta € Aand A\ € C. First we show that r (a) < ||a||. Suppose || > ||a||. Then

|A~'al| < 1 and by Theorem 1.2.3 we have that 1 — A~ 'a is invertible. Hence

A (1 —X"ta) = A1 — ais also invertible, and so X € p (a).

Therefore |\| < |la|| forall A € o (a). Thus 7 (a) < ||a|| (Definition 1.2.8). Since r(a) < ||al|
we have that o(a) is bounded. We only need to show that o(a) is closed. To do so we prove
that p(a) = C\o (a) is open. Let Ay € p(a), which means that \g1 — a is invertible. From
Theorem 1.2.4 we have that A~! is open, so there exists an open neighbourhood N C A of
Aol — a consisting only of invertible elements. From Theorem 1.2.6 and Note 1.2.7 we have

A= (A1 — a)_1 is continuous. Consequently there exists an open neighbourhood of \g, say

11
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M, such that for each A € M, A1 — a is invertible, since continuity implies that the inverse of
every open set is open. Thus M C p(a). Now since \g € p (a) was arbitrary, we see that
there exists an open neighbourhood about every point of p (a) , contained in p (a) . So p (a) is

open and o (a) is closed. Therefore o (a) is compact. [

Note 1.2.13 ([18], Theorem 3.3, p. 278)

Suppose A is a Banach algebra, a € A and |\| > 7(a). Then A1 — a is invertible and
oo

M —a)t= > AL
n=1

Note 1.2.14

e Theorem 1.2.12 shows that p (a) # 0, since o (a) = C\p (a) is bounded.
e o (a) # () and compact ([1], Theorem 3.2.8)

e If A is real, then the spectrum of a € A may be empty.

Definition 1.2.15

An accumulation point X of o (a) is a point A € C such that each neighbourhood of A contains
some point of o (a) other than \. In other words \ € acc(o(a)) if for any e—neighbourhood
of \ there exists § € o (a) such that 0 < |\ — | < e. We denote the set of all accumulation

points of o (a) by acc(o (a)) .

12
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Definition 1.2.16

An isolated spectral point A of o (a) is a point A € C such that there exists a neighbourhood
of A containing no other point of the spectrum. In other words A € iso(c(a)) if there exists an
e—neighbourhood of A, such that if 0 < |\ — J| < €, then ¢ ¢ o (a). We denote the set of all

isolated points of o (a) by iso(o(a)).

Note 1.2.17 ([2], Remark 10 and [18], p. 330)

In the discussion to follow we define a pole of the resolvent. First observe that

o (a) =acc(o (a))Uiso(o(a)). If A is a unital Banach algebra and a € A, then the resolvent
function of a, R (-,a) : p(a) — Ais holomorphic and iso(o (a)) coincides with the set of
isolated singularities of R (-, a) .

For Ao € iso(c (a)), we have a Laurent expansion of R (-,a) in terms of (A — A\g) such
that R(\,a) = A —a)"" = 3,500 (A= A0)" + 351 b (A= Xo) ™", where a, and
by, belong to A, using the functional calculus. This representation is valid when

0 < |A — Xo| < 0 for any § such that o (a) \ { Ao} lies on or outside the circle |\ — A\g| = 6.
Then Ay will be called a pole of order k of R(-,a) if and only if there exists & > 1 such that
b # 0and b,,, = 0, for all m > k+ 1. Hence A is a pole of order k if and only if b; # 0 and
brt1 = 0.

The set of poles of R(-,a) will be denoted by [ [ (a) . If \g is an isolated point of o (a) but not
a pole of R(-,a), then we call \g an isolated essential singularity of R(-,a). We denote the
set of isolated essential singularities by IES(a). Soiso(c(a))\[] (a) =1ES(a).

If \g € iso(o (a)) \[] (a) then \g1 — a ¢ A~! and in the Laurent expansion

M —a)" =3 an (A= X0)" + 3 bp (A — Ag) "™ an infinite number of b,,’s are nonzero.
n>0 n>1

13
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Definition 1.2.18 (/9], Definition I and [15], Definition 23, p. 9)

If M is a subset of a Banach algebra A, then the commutant of M is defined by

comm(M) = {be A:bm =mb, m € M} and the double commutant of M is defined by
comm? (M) = {b € A:bm' = m'b, forall m’ € comm (M)} .

In particular we have the following:

If a € A then its commutant is the set
comm(a) = {b€ A:ab=ba}
and its double commutant is the set

comm?(a) = {b € A: bc = cbforall c € comm (a)}.

Lemma 1.2.19 ([15], Lemma 24, p. 9)
Let M, N be subsets of Banach algebra A. Then:

1. comm(M) is a closed subalgebra of A;
2. M C comm?(M);
3. if M C N then comm(N) C comm(M ) and comm?(M) C comm?(N);

4. if M consists of mutually commuting elements, then M C comm?(M) C comm(M)

and comm?( M) is a commutative Banach algebra.

The double commutant is a commutative Banach algebra containing the identity of A.

14
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Lemma 1.2.20

Let A be a Banach algebra. Take a € A. Then acc(o (A1 — a)) = A— acc(o (a)).

Proof.
Let o € acc(o (A1 — a)) . By the Spectral Mapping Theorem acc(o (A1 — a)) =acc(A — o (a)) .
Take o = A — 3, § € o (a). Now for all € > 0 there exists an o, € 0 (A1 —a),

ap = A — Bn, Bn € 0(a), such that o, — av.

Hence A — 3,, — A — (3, and therefore 3,, — 0.

This means that 3 € acc(o (a)) .

Consequently o« = A — 5 € A— acc(o (a)).

Conversely, suppose & = A — 3 € A— acc(o (a)). So we assume 3 € acc(o (a)). Then by

the definition of an accumulation point we have
|Bn, — 8| <e= Bn €0 (a) foralln € N.

This means 3, — S foralln € N. So A — 3, — XA — (3 for 3, € o (a), since addition is
continuous in a Banach algebra. Since 3, € 0 (a), A — B, € A — o (a) forall 5,,. So A — (3

must be an element of acc(A — o (a)) = acc(o (A1 —a)) . [

Theorem 1.2.21 ([15], Theorem 26, p. 9)

Let A, B be Banach algebras and a € A. Let ¢ : A — B be a homomorphism. Then
a® (¢ (a)) C o4 (a).

Theorem 1.2.22 ([15], Theorem 27, p. 9)

Let A be a closed subalgebra of a Banach algebra B containing the same unit and let

a € A. Then o (a) C 0% (a).

15
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Theorem 1.2.23 ([15], Theorem 11, p. 20)

Let A be a commutative Banach algebra such that a, b € A and ab = ba. Then
1. o(ab) Co(a)-o(b)ando (a+b) Co(a)+ o (b);
2. r(ab) <r(a)-r(b)andr(a+0b) <r(a)+r(b).

We now use Theorem 1.2.21 to prove very important properties of the radical.

Theorem 1.2.24 ([15], Theorem 43, p. 17)
Let A be a Banach algebra. Then:
1. A/radA is semisimple;
2. anelement ¢ € A is invertible in A if and only if c+rad A is invertible in .4 /rad A.

Proof.

1. Denote by ¢ : A — A/rad A the canonical projection, which means that for ¢ € A,
q:c— ct+radA. If c € A\rad A, then ¢ € A and ¢ ¢rad.4; then there exists a maximal
left ideal J in A with ¢ ¢ J since rad.A is the intersection of all maximal left ideals
in A. Since radA CJ, we now show that J+rad A = ¢ (J) is a maximal left ideal in
A/radA. Take j+radA € J+radA, j € J and a+radA € A/radA, a € A.

e To show J-+rad A is a left ideal in A/rad A, let r1, ro € radA,
(a+711) € AdradA and j + o € J+radA.

Then (a+71) (j+712) = (a+711)j+ (a+71)re € JHradA.

e The mapping J — J+radA is onto so since J is maximal, .J+rad.A is maximal.
Also ¢ (¢) = c+radA ¢ q(J); since ¢ ¢ J, c+rad.A is not a maximal left ideal in
A/radA. Thus ¢ + rad A ¢ rad (A/radA). Since ¢ was an arbitrary element in
A\radA, the algebra A /rad A is semisimple.
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Section 1.3 Some complex analysis

2. Ifce A~!, then ¢ (c) € (A/radA)”", by Theorem 1.2.21.
Conversely, if ¢ (¢) € (A/radA)~", then there exists d € A such that cd € 1+ rad A,
which means ¢d — 1 € radA. Similarly dc — 1 € rad A. By Theorem 1.1.8 (3) and (4),
the elements 1+ 1 (cd — 1) = c¢d and 1 + 1 (dc — 1) = dc are invertible.
Hence c € A~ n

The following Lemma give some conditions for a Banach algebra to be finite dimensional:

Lemma 1.2.25 ([10], Lemma 7 and [19], Lemma p. 4)

Let A be a semisimple Banach algebra in which each element has a finite spectrum. Then A

is finite dimensional.

1.3 Some complex analysis

Cauchy’s integral formula will be given in the following theorem. It shows that if a function
f is analytic within and on a simple closed contour C', then the values of f interior to C' are

completely determined by the values of f on C.

Theorem 1.3.1 ([4], Theorem, Section 39)

Let function f be analytic everywhere within and on a simple closed contour C| taken in the

positive sense. If zg is any point interior to C, then

f(20) = 1 ﬁdz.

2t Jo z — 20
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The theory of Laurent series is very helpful to understand the behaviour of functions around
isolated points. If a function fails to be analytic at a point zg, we use the Laurent series
representation for f (z) involving both positive and negative powers of z — z, as given in the

following theorem.

Theorem 1.3.2 ([4], Theorem, Section 46)

Let function f be analytic throughout an annular domain R; < |z — 29| < Ra, and let
C' denote any positively simple closed contour around zy and lying in that domain. Then,

at each point z in the domain, f (z) has the series representation

f(Z):Zan(Z—ZO)nJFZ(bnO)n (R1 < |2 = 2| < Ra)
n=0

= (2 -z
where
1 f(z)dz
- L =0,1, 2, ...
"2mi Jo (2 — 2)™ T (n=012.)
and

L g@e
bn_QWi/c(z—zo)_”H n=1,2...).

This is called a Laurent series.

We mention another important result:
Theorem 1.3.3 ([4], Exercise 14, Section 57) (Bolzano—Weierstrass Theorem)

An infinite set of points lying in a closed bounded region I? has at least one accumulation point

in R.

18
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Another form of the Bolzano—Weierstrass Theorem states that a bounded sequence (a,,) has
at least one limit point. By definition the sequence has infinitely many terms. A number a is
a limit point of (a,,) if for every given € > 0 we have |a,, — a| < ¢ for infinitely many n.

(See [13], A.7, p. 620.)

1.4 Holomorphic Functional Calculus

The Holomorphic Functional Calculus deals with a broad class of functions in Banach algebras
and is one of the main tools used throughout this dissertation. Let H (a) denote the set of all
complex valued functions f, each defined and analytic in an open neighbourhood of ¢ (a) . If
f(\)=ag+ a1 A+ -+ a,\" is a polynomial with coefficients o; € C, then for a Banach

algebra A and a € A, the Banach algebra version of this polynomial is given by
f(a) =apl +aja+ -+ aya”

which is obviously well-defined in .A. Note that f (a) exists as an element of .4 whenever f
is holomorphic on an open set containing o (a). This means that although f (a) belongs to
A, some of its properties may depend on the behaviour of its complex counterpart f (\) on an

open set containing o (a) .

In the following definition we combine the defintions and notations as found in (//]) and

([17]).

Definition 1.4.1

Suppose K is compact in C and p is a Borel measure on K and that f : K — Aisa
continuous function from K into the Banach algebra .4 such that the scalar functions ¢ (f()))

are integrable with respect to u, for every bounded linear functional ¢ € A’ and )\ € K.
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The element ¢ = [, f (\) dy is the unique element of A which satisfies
¢(c)=0¢ ([, f(N)du= [, ¢(f(N\)dpu for every bounded linear functional ¢ € A'.

For the existence and uniqueness of this integral, see ([17], Theorem 3.27).

The Holomorphic Functional Calculus, defined hereafter, may be viewed as a generalization

of Cauchy’s Theorem for complex functions.

Theorem 1.4.2 ([1], Theorem 3.3.3)

Let .4 be a Banach algebra and let a € A. Suppose €2 is an open set containing o (a) and that
I" is an arbitrary smooth contour in €2, surrounding o (a) . Then for an analytic function f on

Q2 the element
1 _
Fl@) =g [F 010

is a well-defined element of A, because A — (A1 — a)fl is defined and continuous on I'. The
mapping f — f (a) from H (), the algebra of holomorphic functions on €2, into .A has the

following properties:

L (fi+ f2)(a) = fi(a) + fa(a), f1,f2 € H(Q);
2. (fi- f2)(a) = fi(a) - fa(a) = fa(a)- f1(a), f1,f2 € H(Q);

3. 1(a) =1 where 1()\)=1and

I(a)=a where I(\) =M\

4. If (f,) converges to f uniformly on compact subsets of €2, then f (a) = lim f, (a);
n—oo
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Property (5) is known as the Spectral Mapping Theorem. Furthermore properties (1) and (2)
express the fact that the mapping f — f (a) is a homomorphism from the algebra of holo-
morphic functions on €2 into 4. For an alternative formulation of the Holomorphic Functional

Calculus in terms of power series see ([6], 4.7, p. 206).

1.5 Spectral Idempotents in Banach algebras
Definition 1.5.1

If Ais a Banach algebra, then an element p € A is called an idempotent or a projection if
p = p%. We denote the set of all idempotents of Aby A°®. The zero and identity elements of
A are called the trivial idempotents of A. Unless explicitely stated, we assume all idempo-

tents to be non—trivial.

Lemma 1.5.2 ([1], Remark, p. 40)

If A is a Banach algebra and p is an idempotent in A then o (p) = {0, 1}.

Proof.

Since p is an idempotent, p — p> = 0. This implies o (p — p*) = {0}, but, by the Spectral
Mapping Theorem, o (p — p*) = {A — A? : A € o (p)} which implies that A — \? = 0 for all
A € o(p). Hence A € {0,1}. What is left to show, is that {0,1} C o (p) when p # 0 and
p # 1. Since p> = pwe have p(1 —p) = (1 —p)p = 0. This gives1 —p ¢ A~ and
p ¢ A~ !since, if 1 — p is invertible, then p = 0 and we have a contradiction and similarly, if

p is invertible then p = 1, which is also a contradiction. Hence {0,1} C o (p). [
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Definition 1.5.3

Let a € A and let « be an isolated spectral point. The spectral idempotent corresponding to

a and o is defined by p(q, (a)) = ﬁ fra (A1 —a)~! dX where Ty, is a small circle with cen-
tre at o and separating o from the remaining spectrum. We write p, = ﬁ fFa (M — a)_1 d for
the spectral idempotent corresponding to a and o when there is no ambiguity in the context.
We write only p for the spectral idempotent corresponding to a and 0.

We now apply the above mentioned definition to the isolated point 0.
Definition 1.5.4

Let 0 € iso(o (a)). Let Uy be an open ball with centre 0 and U; an open set containing

o (a) \ {0} such that Uy and U; are separated in C. Let I'g be a circle in Uj surrounding 0 and

1, AeU
I’y be a smooth contour in Uy surrounding o (a) \ {0} . Define f(\) = ‘ , which is
0, el

an element of H (a). Then by Holomorphic Functional Calculus we see that

fla) = o [ Ta—a o
_ ﬁ : (AL — )" dA
= DP0,0(a))
.

Lemma 1.5.5

Let 0 € iso(o (a)). Suppose Uy, Ui, I'g, I'1 and f are as above. Then p is indeed an

idempotent.

Proof.

Since f2 (A\) = f ()\) for all A € Uy U Uy, we have by the Holomorphic Functional Calculus
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that:
1 1
P = </ £ ()\l—a)_ld)\> </ f) (Al—a)‘ldk>
211 ToUly 271 Toul'y
1 -1
= — )AL —a)"tdA
271 ToUl: ( )( )
1 -1
= — FA) (A1 —a) " dX
21 Ul A )
- L o1 tan
27 Jr,
Lemma 1.5.6

Let0 €iso(o (a)). Suppose Uy, Uy, Iy, I'; and f are as before. Then ap = pa foralla € A.

Proof.

Leta € A. Then:

1 / -1
ap = a|=— fFA) (M —a d)\]
EIARCEEE
S a(M —a)"td\
27t Jr,
1
= — [ 01 —a)tadr
27T'L o
1 1
= [/ (M1 —a) d)\]a
27TZ To
= pa.

23



Lemma 1.5.7

Chapter 1  Preliminaries

Let 0 € iso(o (a)). Suppose Uy, Uy, T'g, T'y and f are as before. Then p € comm? (a).

Proof.

If za = az, a, z € A, then

zM—a)=M—-a)z=AN-a)z=2(\—a)"" forall A ¢ o (a)

and so

zp

1 -1
— Py dX
27Ti To & ( a)
1
= — [ (M —a)tzdA
27 Jr,
1
_ [ / (M —a)! dA} 2
27t Jr,
= pz.

This means that p commutes with every element which commutes with a; therefore p is an

element of the bicommutant of a. This lemma is valid for any spectral idempotent p,,. |

We are now going to define a few specific elements of the Banach algebra using the above

criteria. Let 0 € iso(o (a)) and take Uy, Uy, Iy, I'1 and f as above (See Definition 1.5.4).

Definition 1.5.8

Consider the function

el
s )\EUO.
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We then obtain from the Holomorphic Functional Calculus an element

1 _
b=g(a) = -— g(\) (A1 —a)""dA
271 DUl
1 1 1
= — [ —(\1-— .
2 )i T (AL—a)” dA

We also see that we may write

1
g =A+ )T A-fM) = 8’

So

We shall later see that b is indeed the KD-inverse of a.

Definition 1.5.9
Consider the function

h(A) = Af(\) € H(a) with
A, Ae Uy

0, Nely
From the Holomorphic Functional Calculus we have

h(a) = af(a)=ap
1

_ -1
and h(a) = 271 Jooor Af(A) (A1 —a)” dX
1 1
= - ANl —a)”  dA
27t Jr,
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Definition 1.5.10

Consider the function i (A) = A\, A € Uy U Uy, then i is obviously an analytic function on any

neighbourhood of o (a) and we have

1
ifa)=a = — i\ (M —a)"tdA
27T7‘ T'oul'y
S A(M1—a) "t dA.
2772 Toul'y

Definition 1.5.11

Consider the function j (A\) = f (A) + A; j (\) is obviously an element of H (a) and
1+X, AelU

A, AelU,

Then j (a) = f (a) + a = p + a, since

1

jla) = o— [f (A) + A (A1 —a)™dA
T Jroury
1 -1 1 —1
= fAN)M —a dA+./ A) (Al —a) " dA
271 Jeor, (M) ( ) 5 roun( ) ( )
= i (Al—a)*ldwri A(A1—a) tdx
27 Jr, 27 Jryur,
= p+a

Lemma 1.5.12
Let A be a Banach algebra and suppose a € A such that o (a) C {0,1}. We then have that

P(0, o(a)) T P(1, o(a)) = 1, or equivalently that py, 5(a)) + P(0, o(1-a)) = 1-

Proof.

We have three cases:
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Case 1. Suppose o (a) = {0}, so we only need to consider p(g ,(4))- Since o (a) = {0},

r (a) = 0 in which case we have the Laurent expansion for any |A| > r (a), namely
oo

(M1 —a)™' = 3 a”A"""1. (See Note 1.2.13). So if Ty is the circle around 0 with radius
=0

T, we must have that

1

POo@) = 5 (Al—a)‘ldA

= / Za”)\ =gy =1
27TZ )\| T

Case 2. Suppose o (a) = {1}. Then we only consider P(1, o(a))- BY the Spectral Mapping
Theorem we have o (1 — a) = {0} . Again with Iy and 7" as in case 1 we have, for

[A| >7r(1—a), that

P, o(a) = P(0,0(1-a)
1 —1
= 1-(1-
2, (1= (1)

[e.o]

1
= (1—a)" A" dA
27”/,\| an: 2

Case 3. Suppose o (a) = {0,1}. Let Uy be an open ball with centre 0 and U; an open ball
with centre 1, such that Uy and U; are separated in C. Let I'g be a circle in Uy surrounding

0 and I"; be a circle in U; surrounding 1. Then

_ -1
PO, o(@) = 5 FOUFlf(/\)()\l a)” " d\
1 -1
= 1-—
57 ). (A1 —a)"tdr
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1 if AeUy
where f (\) = .

0 if Aely
Also
P(1, o(a)) L () (M —a)""dA
o 27TZ Toul;
1 -1
= — [ (M-a)'adx
211 T ( a)

1 if el
where ¢ (\) = .
0 if AeU

Since f () + £(\) = 1 forall A € Uy U Uy where Uy U U; is a neighbourhood of o (a) , we

have that
1 -
PO.ota) TP o) = 5 [ (A FLA)AL-a)"
0 1
- L (M —a) tdx
271 Ul

= 1L
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Regularities

2.1 Basic properties of regularities
Definition 2.1.1

A regularity R, in a complex unital Banach algebra A, is defined as a non—empty subset R of

A satisfying the following conditions:

1. ifae Aandn € N, thena € R < a" € R;

2. if a, b are relatively prime elements of A, thenab € R < a € Rand b € R. (a,b are
relatively prime if there exists ¢, d € A such that {a, b, ¢, d} is a commuting set and

ac+bd =1.)
Definition 2.1.2
A regularity R C A assigns to each a € A a subset of C . This mapping is called the spectrum

of a corresponding to R, defined by or (a) ={A € C: A\1 —a ¢ R}.
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In general o (a) is neither compact nor non—empty. Furthermore o (a) C o (a) and

or (A1 —a) =X —og(a)foralla € Aand A € C.

Example 2.1.3

Let A be a Banach algebra. The following sets are regularities:
2.1.3.1 Ry = Aj; the spectrum corresponding to Ry is o, (a) = 0.
2.1.3.2 Ry = A~ !;the corresponding spectrumis op, (a) = {A€C:Al—a¢ A1}

= o (a), the ordinary spectrum.

2.1.3.3 R3 = .Azl, the set of all left invertible elements of .4, the spectrum correspond-
ingto Rzisop, (a) ={A€C: M —-ag¢ A '} ={AeC:1¢ A(\—a)} where op,(a)

is the left spectrum. Similarly for Ry = A, 1.

Proposition 2.1.4 ([15], Proposition 2, p. 51)

Let R be a regularity in a Banach algebra . A. Then:
l.1eR
2. A CR

3. Ifa, be A, ab=baanda € A~' thenab € R < b€ R.
In particular, if a € Rand A € C, A # 0, then Aa € R.

Proof.

1. Choose b€ R. Wehavel.l1 +b.0=1and1-b<€ R. Thus1 € R.

2. Letce A7'. By(l)c-c ' =1€ R;alsoc-c '+ ¢ -0 = 1. From Definition 2.1.1

we have that c € R.

Therefore A~ ! C R.
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3.ac A7 ! thusaa™t = 1.
We have that aa =1 +b-0 = 1.

So by Definition 2.1.1 we have thatab € R < b € R. |

In order to verify the axioms of a regularity one can use the following property (P1):

Theorem 2.1.5 ([15], Theorem 4, p. 52)

Let R be a non-empty subset of Banach algebra 4 satisfying the following:
abe R&a€ Randbe R (P1)

for all commuting elements a, b € A. Then R is a regularity.

Every spectrum corresponding to a regularity R satisfies the Spectral Mapping Theorem:

Theorem 2.1.6 ([15], Theorem 7, p. 53)

Let R be a regularity in a Banach algebra A and let o be the corresponding spectrum. Then
or(f(a)) = f(or(a)) for every a € A and every function f analytic on a neighbourhood

of o (a) which is non—constant on each component of its domain of definition.

Proof.

Take o € C. It is only necessary to show that

pé¢or(f(a) e péflor(a)). (1)

We know that (f — p) has only a finite number of zeros Aj,..., A, in o (a). So it can be

written as

FE) —n=(=-2" (2= )" g (2),
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where ¢ is a function analytic on a neighbourhood of ¢ (a) and g (z) # O for z € o (a) . By the
Holomorphic Functional Calculus we have that f (a)—p1 = (a — A1) ... (a — A1) . g (a),
where g (a) is invertible by the Spectral Mapping Theorem for the ordinary spectrum. (See

Theorem 1.4.2 (5).) So (1) is equivalent to
fla)—pleRsa—N1€R (i=1,...,n) 2)

Since g (a) is invertible and by applying Proposition 2.1.4 (3) and Definition 2.1.1 (2) we now

see that it is sufficient to show that
(a—MDM . (a=M\Df"eRe (a— M) eR(i=1,...,n) 3)

We know that for all relatively prime polynomials p, ¢ there exist polynomials p;, g1 such that

pp1 + qq1 = 1. Thus by Holomorphic Functional Calculus

p(a)p1(a) +q(a)q (a) = 1.

Now we may apply Definition 2.1.1 (2) inductively to get (3). This completes the proof. M
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2.2 Continuity of the spectrum corresponding to a regularity

We are now going to give some properties and results of a regularity R and the spectrum cor-

responding to R, namely o (a) .

Properties 2.2.1 ([15], (P2), (P3), (P4), p. 55)

Let R be a regularity in a Banach algebra .4 and o (a) the spectrum corresponding to R.

We consider the following properties of R (or or(a)):

(P2): Upper semicontinuity of or (a): if an, a € A, a, — a, A\, € og(a,) and if
Ap, — A then A € og (a).

(P3): Upper semicontinuity on commuting elements: if a,,, a € A, a, — a, a,a = aay, for
every n, A, € or (ap)and A, — A, then A € o (a).

(P4): Continuity on commuting elements: if a,,, a € A, a, — a and a, and a commute for

every n, then \ € op (a) if and only if there exists a sequence \,, € o (a,) suchthat \,, — .

We observe that either (P2) or (P4) implies (P3).

If or has property (P3) and we consider a constant sequence a,, = a, then the spectrum

or (a) is closed for every a € A.

Proposition 2.2.2 ([15] Proposition 9, p. 55)

Let A be a Banach algebra and R a regularity in A. Let o (a) be the spectrum corresponding

to the regularity R. Then the following conditions are equivalent:

1. og (a) is upper semicontinuous;
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2. or(a)is closed for every a € A and the mapping a — o r (a) is upper semicontinuous;

3. Ris an open subset of A.
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The Koliha-Drazin inverse and the

Drazin inverse

3.1 The representation of the Koliha-Drazin inverse and the Drazin

inverse

Following notation in [11] and [15] we have the following definitions:

Definition 3.1.1

Let A be a complex Banach algebra. An element a € A is called regular (or relatively regu-

lar) if there is a generalized inverse b € A such that aba = a and bab = b.

A reflexivity property exists between a relatively regular element and its generalized inverse
in the sense that if b is a generalized inverse of a, then a is a generalized inverse of b. This set of
regular elements includes the set of invertible elements, A~ = {a cA:aa ' =ata= 1} ,as

well as the set of idempotents, A°* = {a € A: a =a?}.
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Definition 3.1.2

We call an element a € A group invertible if there exists a group inverse b € A such that

a = aba, b = bab and ab = ba. We denote the set of group invertible elements by G (A) .

A reflexivity property exists between a group inverse in the sense that if b is a group inverse
of a, then a is a group inverse of b. The term group indicates that {a, b} generates an Abelian

group with identity ab.

We are now going to introduce a generalized inverse which does not have the reflexivity prop-

erty, but commutes with the element:

Definition 3.1.3

An element a € A is called Drazin invertible (or D—invertible) if there is an element

b € A such that:
1. ab = ba;
2. bab = b;

3. a*ba = aF for some k € ZF.

Since 1 — ab € A® we see that the condition a*ba = a” of this definition is equivalent
to [a (1 —ab)]* = a* (1 —ab) = 0 which means that a (1 — ab) is nilpotent of order k.
If a € Ais Drazin invertible, then the least nonnegative integer k for which there exists
b € A satisfying these equations is called the Drazin index i (a) of a. The element b = a® is
called the Drazin inverse (or D-inverse) of a. We denote the set of Drazin invertible elements

by AP and the subset of AP consisting of elements with index k by DF (A). It is clear that
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the sets D* (A) are mutually disjoint.

With the convention that a® = 1 we have D° (A) = A~ and then also by definition
D! (A) = G (A) \A~L. We can extend the definition of Drazin invertibility to the case where

a (1 —ab) € QN (A), called the Koliha-Drazin invertible element:

Definition 3.1.4

An element a € A is called Koliha—Drazin invertible (or K D—invertible) if there is an element

b € A such that:
1. ab = ba;
2. bab = b;
3. a(l—ab) € QN (A)

KD

The element b = a is called the Koliha—Drazin inverse (or KD-inverse) of a. We denote

the set of Koliha—Drazin invertible elements by AP . We have the following inclusion
AL CG(A) C AP C AKP,

We also mention that the Drazin inverse is generally speaking not continuous except of course

on the subset DY (A) = A~L.

The following lemma gives another characterisation of K D—invertibility:
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Lemma 3.1.5 ([11], Lemma 2.4)

Let A be a Banach algebra. An element a € A has a K D—inverse, a™*” | if and only if there
exists an idempotent p € A*N comm(a) such that ap € QN (A) and a +p € A~1. The

KD is unique and given by aP = (a —1—10)_1 1-p).

KD-inverse, a
Proof.
Suppose p € A*N comm(a) such that ap € QN (A) anda +p € A~L.
Setb = (a+p) ' (1—p). We have ab = ba and also that
ab=a(a+p) (1-p)=(a+p)(atp) " (1-p) =1-p,
sothatab? = (1 —p)b=b(1—p)=0b  (since bp = 0).
Finally, a — a?b = a (1 — ab) = ap € QN (A).
Conversely, suppose a has a K D—inverse b satisfying ab = ba, b = bab and
a(1—ab) € QN (A). Set p = 1 — ab. Since (ab)® = a (ab®) = ab, i.e. ab € A* we have
that
PP =1 —ab)? =1—2ab+ (ab)’> =1—ab = p,
that is p € A®. Obviously p € comm(a) and ap € QN (A) . Furthermore, since
ap € QN (A),a(ap) =0, so that 1 + ap € A~L. Thus

(a+p)(b+p) = ab+ap+pb+p
= ab+ap+p(b+1)
= ab+ap+(1—ab)(b+1)
= 14apec At
Thus a + p € A~!, since A~ is a group under multiplication.

From (a + p)b = 1 — p it follows that b = (a + p) (1 — p), which proves the uniqueness of

b=akP. u
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The characterization of isolated spectral points of an element of .A will provide the main tool
for the development of another property of the inverse.

In the following theorem we use Definition 1.5.4 and all the notation specified there.

Theorem 3.1.6 ([11], Theorem 3.1)

Let A be a complex unital Banach algebra. Leta € A.

Then 0 ¢ acc(o (a)) if and only if there is an idempotent p € A®MN comm(a) such that
ap € QN (A)andp +a c AL (3.1.6.1)
Moreover, 0 € iso(o (a)) if and only if p # 0 in which case p is the spectral idempotent cor-

responding to a and 0.

Proof.
Clearly a € A is invertible if and only if 3.1.6.1 holds with p = 0.
Suppose now 0 € iso(o (a)). We define the spectral idempotent associated with a and 0 as

in Definition 1.5.4. Then, using the notation of Lemma 1.5.6, we have that ap = pa and we
A, A el

0, el ‘
the Spectral Mapping Theorem we have that o (ap) = o (h(a)) = h (o (a)) = {0}. Thus

also see from Definition 1.5.9 that ap = h(a) where h (\) = Af (\) =

M —ap € AL forall A\ # 0 and therefore ap € QN (A) . By Definition 1.5.11, the function
j(A)=f(\)+Aisin H (a), so that j (a) = p+ a. Since j (A) # 0 for all A in a neighbour-
hood of & (a) and so on o (a) , we have that j (a) =p+a € AL

Conversely, suppose there exists a p € A*N comm(a) with ap € QN (A) and a + p €
A=l Forany \, \1 —a = (Al —ap)p + (A1 — (p+a)) (1 —p). However, from Theo-
rem 1.2.6, there is an r > 0, say r = ||(p+7}1)‘1||’ such that if | A |< r, then (A1 — (a + p)) €
A~L. Alsosince ap € QN (A) we have \1 —ap € A~ forall A # 0. Soif 0 < |\| < r we

have that (A1 — a) ™" exists and
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Chapter 3 The Koliha-Drazin inverse and the Drazin inverse

M —a) ' =\ —ap)'p+ (A —(p+a) ' (1-p).

Since p # 0, 0 € iso(o (a)). We now show that this p is indeed the spectral idempotent of a
corresponding to 0. We take a function f € H (a) with f = 1 in a neighbourhood of 0 and
f = 0in a neighbourhood of o (@) \ {0} . If we take the circle I'y in the neighbourhood of 0

small enough such that 0 < |A| < r, then

1 -1
- MM — d\
f(a) 57 FD( a)
1 . 1 .
- MM — )+ — MM — 1—p)d)
57 FO( ap)” p + o FO( (p+a) (1-p)

Concerning the first part of this equation we know that if |\| > r (ap) = 0, (see Note 1.2.13),

-1 _ § (ap)” f a"p

and then the coef-

the Laurent expansion is given by (A1 — ap)

A+l )\n—i-l
ficient of A~! ensures that 5= fFo (M —ap) ! pdX = o fl“o ;nfl d\ = p.

For the second part of the equation we observe that r = W S | @+ p || (since

1< a+p Il (a+p)" [}) and then

M~ (pt )]
= [o+a) (Aot 1))

= —pta) [lfA<p+a>*1}”

= —(p+a)” Zx\" (p+a) ™.

Therefore
L M- pta)Ta-par
2mi Jr, pra p
l—p -1 e _
S A" PN
st Jo, e N )
- 0
So f(a) = 55 Jr, (A “ldh=p. u
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Section 3.1 The representation of the Koliha-Drazin inverse and the Drazin inverse

Note 3.1.7 ([11], Note 3.4)

In view of the Laurent expansion for the resolvent (A1 — a)_1 (see Note 1.2.17), we can also
say that 0 is a pole of (A1 — a)f1 if and only if there is an idempotent p # 0 commuting with

asuchthatap € N (A), a+pe AL

Definition 3.1.8 (/8], p. 257)

An element a € A is called quasipolar if there exists b € A such that ab = ba = p = p? with
[a"™ (1 - p) H% — 0. The set of quasipolar elements is denoted by QP (A) . One may easily
verify that QP (A) = {a € A:0 ¢ acc(o(a))} ([11], Theorem 3.2). According to Harte
([8], p- 257) an element a of a Banach algebra A is quasipolar if there is an idempotent

q € A commuting with a such thata (1 — ¢q) € QN (A), ¢ € (Aa) N (aA).

From Lemma 3.1.5, Theorem 3.1.6 and Definition 3.1.8 we thus have the following equiv-

alence:

Theorem 3.1.9 ([11], Theorem 4.2)

The following conditions on an element a € A are equivalent
1. a € AKD;
2. 0 ¢acc(o(a)),thusa € QP (A);

3. there exists p € A*N comm(a) such that ap € QN (A) and a + p € A~!. In this
case the KD-inverse is unique and given by a®? = (a + 10)71 (1 — p), where p is
the spectral idempotent of a corresponding to 0. From Definition 1.5.8 we see that the
integral representation of a’” is P = 2%” fFl % (M — a)_1 dA, where U an open

set containing o (a) \ {0} and I'y is the smooth contour in U; surrounding o (a) \ {0}.
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Chapter 3 The Koliha-Drazin inverse and the Drazin inverse

3.2 The resolvent expansion and some characterizations of the in-

verses

We now give a version of the Laurent series for the resolvent of ¢ € A in a neighbourhood of

an isolated spectral point 0.

Theorem 3.2.1 ([11], Theorem 5.1)

Let 0 € iso(o (a)) and let b be the Koliha-Drazin inverse of a. Then, on some punctured disc
0< A<,

(A —a) = % =, (3.2.1.1)
n=0 n=0

Proof.
Let 0 € iso(o (a)). Let p =1 — ab be the spectral idempotent of a corresponding to
A = 0; then by Theorem 3.1.9 the KD-inverse of a is b = (a +p) ' (1 — p). In some disc

Al < r, withr = > 0, A\1—(a + p) is invertible (by Theorem 1.2.6). Also ap is

|-+
quasinilpotent (by Lemma 3.1.5), which means that A1 — ap € A~ for \ # 0. Therefore
(M —a)™ !
= (Al—ap) ' p+(AL—(a+p)~ (1-p)

= WD)t [t (12 )] a-p)

)7 [1-Ae-p)Y] (1-p)

0o Can
- S S e
n=0
0o
— )\n+1 Z)\nbn-‘rl
n=0
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Section 3.2 The resolvent expansion and some characterizations of the inverses

Remark.
In the case when p € iso(o (a)) , Theorem 3.2.1 can be generalized as follows:

Let i € iso(o (a)) . Then on some punctured disc 0 < |\ — pu| < 7,

M-a) =3 m S W (g (3.2.1.2)
n=0 n=0

where g = (a — p1 4 p,) "' (1 — p,,) is the KD-inverse of (a — u1).

We show that the KD-inverse belongs to the second commutant of a.

Theorem 3.2.2

Let A be a unital Banach algebra. The K D—inverse of a € A belongs to the second commu-

tant of a.

Proof.
Suppose za = az, a, z € A. Then z (A1 — a) = (A — a) z implies
(M —a)'z=2(\—a) " forall A ¢ o(a). By the Holomorphic Functional Calculus,

1
(see 3.1.9) the KD-inverse of a is given by a®P = oy J g\ (A1 - a) "t d\, where
™ Toul’y

and U is an open ball about 0, U; is an open set containing o (a) \ {0}, Uy and U; are
separated in C, T’y is a circle in Uy surrounding 0 an I'; is a smooth contour in U; surrounding

o (a)\{0}. Then
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Chapter 3 The Koliha-Drazin inverse and the Drazin inverse

1
zafP = — zg(\) (A1 —a)"tdA
271 Ionly
1 1 .
= — — (A1 — dA
omi Jr A @)
1 1 .
- — [ - X
27'['i ry )\ ( a) &
1 1 .
= |— [ (1 -a)tdr
[27rz' /F1 Z M) ] ‘
1 / .
= |— g(A) (M —a) d)\}z
|:27TZ IR ( )
= offPz. |

We now state that the Drazin inverse is unique and belongs to the second commutant of a.

Theorem 3.2.3 ([7], Theorem 1)

An element a € A has at most one Drazin inverse. If it exists, the Drazin inverse belongs to

the second commutant of a.

Proof.

Suppose by and bo are Drazin inverses of a with corresponding integers k1 and ks as in Defi-
nition 3.1.3. So a®t1b; = aF' and a¥2 by = a*2, Ky, ke € Z7.

Let k = max (k1, k2) . Then obviously bja**! = a* = a*+1by and b; = 1? = a,

be = ab3. By induction we prove that for k = 1,2, ... we have b; = b’f‘“am and

by = ambg”‘“. In particular b; = blfHak and by = akbgﬂ. Hence

by = b ak = b8 1by = byaby and similarly by = beab; so that by = bs.

We now show that a” = b € comm? (a). Suppose ac = ca, a, c € A.

Then if b denotes the unique Drazin inverse, we have

ba™c = bea™ = bea™ b = ba™ b = a™eb.
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Section 3.2 The resolvent expansion and some characterizations of the inverses

Hence b™tla™e = a™eb™ L. But b = b Ha™ so that

be = b ame = g™t = bt g™ = cb. [ |

Theorem 3.2.4

If a, b € AXP with ab = ba, then a, b, P, b5 all commute.

Proof.
From the integral definition of the KD-inverse given in Theorem 3.1.9,

= fl“l (A1 —a)""d\ and bKP = L Jr, x (A1 =0)” Y d)\, we see that since

2ri
(A1 —a) b = b(A1 — a) we must have that (\1 —a)" ' b= b (A1 — a) " and so
1 1 1 1
KD _ -1 _ oKD
ba = %b frl X (Al — a) d\ = % fFl X ( ) d\| b = b. The other
elements commute similarly. |

Theorem 3.2.5 ([11], Theorem 5.5)

If a, b € AXP with ab = ba, then (ab)*? = oK PpKD,

Proof.
By Theorem 3.2.4 a, b, a®? and b P all commute, therefore ab (aKDbKD) = afPpEDgp.
Also ab (aKPpEDP)? — ¢ (aKD)? b (pKD)? = oKDpKD,

Furthermore,

ab—(ab)? ¥ PpKD = (a —a?a®P) (b — b?b5P)+a?a®P (b — b2XP)+b%05P (a — a®aP)
and since the spectral radius is subadditive and submultiplicative in commutative subalgebras
of A (Theorem 1.2.23) we must have, since r (a — a?a™”) = 0and r (b — b*b%P) = 0, that

r (ab — (ab)? aKDbKD> =0, and 50 ab — (ab)? a®Pb5P € QN (A). We have proven that
oKDpKD

is the Koliha—Drazin inverse of ab, so (ab)*? = aPpKP, [ |
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Chapter 3 The Koliha-Drazin inverse and the Drazin inverse

Theorem 3.2.6 ([11], Theorem 5.7)

If a, b € AXP with ab = ba = 0 then also (a + b)*? exists and (a + b)*P = aXP 4 pKP,

Proof.

We know that a, b, a®?, b5P all commute, and therefore ab®? = ab (bKD)2 = 0 and
a®Pb = ab (aKD)2 =0.

Hence (a + b) (a®P + b5P) = (P 4+ b5P) (a + b)

and (a + b) (X0 + bEP)? = a (aKP)? 1 b (b5P)? = oKD 4 pKD,

Also (a +b) — (a+b)* (a%P +b5P) = (a —a2a®P) + (b beKD) € QN (A). This
shows that (a®? + bXP) is the K D-inverse of a + b, so (a + b)EP = oKD 4 bKD. [ |

Theorem 3.2.7 ([11], Theorem 5.4)

Suppose that a € A has the Koliha-Drazin inverse a*” and that p is the spectral idempotent
of a corresponding to 0. Then (a")*P = (aKD)n foralln=1, 2, ....

We get a similar result for a € AP.

Proof.

KD

It is given that a is the Koliha—Drazin inverse of element a € A, which means that

aa®P = afPq, okP = a(aKD)2 = a®fPaa®P and a — a?a®P € QN (A). We also
have p = 1 — aa®? where ap € QN (A) and a +p € A~!. Then:

o " (aKD)” —

"(a+p) " (1-p)"
ala+p) ") (1-p)
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Section 3.2 The resolvent expansion and some characterizations of the inverses

@) (@0)") = (@R0)" @) ()" = (Pl P)" = ()"

. a” — (a")? (afP)"
= a"(1-(a" (a"P)"))
— 1 @)
= a"(1-(1-p)")
= (ap)" € QN (A) since ap € QN (A)

Thus (a™)5P = (aKD)n. [

We close this chapter with an interesting characterization of Drazin invertibility.

First we need the following Lemma.

Lemma 3.2.8

If o (a) = {0} and a € AP with index k, then a* = 0.

Proof.

D D D D D

Since a € AP with index k, there exists an a” such that aa® = aPa, a” = aPaa®” and
ab = a*1aP. Now a* — a"1aP = 0, so a¥ (1 — aa?) = 0. Since o (a) = {0} we have

that 1 — aa” = 1 (See Theorem 1.5.12 Case 1) Therefore a* = 0. |
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Chapter 3 The Koliha-Drazin inverse and the Drazin inverse

Theorem 3.2.9 ([3], Lemma 2)

If A is a Banach algebra and a € A, with a ¢ A~! then a € D* (A) if and only if
1

0 € iso(o (a)) and k is the least integer such that 5 [ AR (A1 - a) 1 d\ = 0 where Ty is a
i,

small circle surrounding 0 and separating 0 from o (a) \ {0} .

Proof.

Leta ¢ A' and a € D* (A). Then it follows from Theorem 3.1.9 and from the fact that
DF(A) ¢ AKP that 0 ¢ acc(o (a)) and therefore 0 € iso(o (a)) .

Case 1: If o (a) = {0}, then since a € D* (A) we have k is the least positive integer such
that * = 0 (by Lemma 3.2.8). By the Holomorphic Functional Calculus,

ak = ﬁ fFo PLIPY = a)_1 d)\, where Ty is a circle surrounding 0, (Theorem 1.4.2).

1
Therefore — [ A¥ (A1 —a)~'d\ = 0.
2mip

Case 2: Let o (a) # 0. From Definition 1.5.8 and Theorem 3.1.9 the Drazin inverse of a is

given by
=L / g\ (AN —a) tdx
27 ’
Toul'y
where
%, A E U,
g(A) =
0, AelUy

Uy is an open ball about 0, U; is an open set containing o (a) \ {0}, Up and U, are sepa-
rated in C, I'g is a circle in Uy surrounding 0 and I'; is a smooth contour in U; surrounding

o (a)\ {0}. k is also the least positive integer such that a**'a” = a*. If we consider the
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equation a*t1a” = a*, we have:
a" P = 1/ Ay (L (M —a) "t dx
271 Iy )\ ’
1
= — [ X(A\1—a)'d)\ and
211 I
1
= — MO —a)td);
2mi Toul'y

so k is the least positive integer satisfying
1 . . . .
5 Je, AP OAL—a) 7 dx = a"tlaP = db = Jrour, ¥ (A1 —a)”" d\. This means k is
the least positive integer such that
-1
%fl—‘o M (A1 —a)"td\ = 0.
Conversely, assume 0 € iso(o (a)) and assume k is the least positive integer such that

= Jr, AP (A1 = a)” ' d\ = 0. We now want to show that a € D (A).

Case 1: If 0 (a) = {0} . Then Fk is the least positive integer such that a* = 0.

Hence a € D" (A) and

1
al = g\ (M —a) tdr=0.

2w Jp,

Case 2: If o (a) # {0} then, since 0 € iso(o (a)) we may find Uy, Uy, Ty, I'; as in the first

part of the proof. If we define

1
a? = — g(A\) (M —a)"tdx
271 IR
. 3 AEU . N .
with g (\) = , then it follows by the assumption (% is the least integer such
0, AE Uo
that 51 fl“o M (A1 — @)~ dX = 0), that a € D* (A) with Drazin inverse a®. [ |
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Chapter 4

Koliha-Drazin invertibles and Drazin

invertibles form regularities

4.1 AXP and AP form regularities

In this chapter it is sometimes necessary to write the spectral idempotent corresponding to a

and 0, p(o, 5(a)), ONly as pq.
Lemma 4.1.1

Let A be a complex unital Banach algebra and let a, b € A be relatively prime. Letz, y € A,

abe AKP andu =10 (ab)KD . Then a,b, z,y (ab)KD, Pap and u all commute.

Proof.

Since a, b are relatively prime, there exists x,y € A such that a, b, x, y all commute. From
Theorem 3.2.2 we have that (ab)*” € comm? (ab) . From Lemma 1.5.7 we have that

pap € comm? (ab) . Since (ab) a = a (ba) = a (ab) we thus have a(ab)XP = (ab)*Pqa and

apab = papa. Furthermore au = ab (ab)*P = ba (ab)*? = b (ab)* " a = ua. Also by
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Section4.1 AXP and AP form regularities

Theorem 3.1.9 (ab)™® pay = pap (ab)™* P . To show that (ab)™*” and p,, commute with u, we
note that b (ab) = (ba) b = (ab) b and since (ab)*” € comm? (ab) that

b(ab)*P = (ab)® P b. So

(ab)*Pu = (ab)*P (b (ab)KD)
- ((ab)KD b) (ab)XD
b(ab)™ P (ab)*P

= u(ab)®P.

Trivially we can also show pgpu = upgp. |

Theorem 4.1.2 ([14], Lemma 1.1)

Let A be a complex unital Banach algebra and let a, b € A be relatively prime. If

ab € AKD thena € AKD,

Proof.

We know the following:

4.1.2.1 a,b € A are relatively prime, so there exist x,y € A such that a, b, z, y all com-
mute and ax + by =1,s0by =1 — ax.

4.1.2.2 We also have that ab € AXP which means that (ab) (ab)*? = (ab)*? (ab),
(ab)*P = (ab)*? (ab) (ab)™ P and (ab) — (ab)? (ab)*P € QN (A). So the spectral idem-
potent py; of ab exists and pgy = 1— (ab) (ab)™? | (ab) pay € QN (A) and (ab)+pa, € AL
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Chapter 4 Koliha-Drazin invertibles and Drazin invertibles form regularities

We first show that u = b (ab)*? is the K D inverse of a (1 — pap) and that v = zpap (axpes)™ " is
the K D—inverse of ap,p. Then since a (1 — pap) apap = 0 = apgpa (1 — pay) we apply
Theorem 3.2.6 to a = a(1 — pap) + (apgp) and obtain

KD

a = (CL (1 - pab) + (apab))KD

= (a(X—pa)"*" + (apay)™"

I) We show that u = b (ab)? is the K D—inverse of a (1 — p,3) , that is

(a(1—pap))*P = b(ab)"P.

o ua (1 —pw) = wua (1 - (1 — (ab) (ab)KD)>
= b(ab)* aab (ab)*P
= aab(ab)*P b (ab)"*P

= a’(l _pab) u.

(@) pay = ()" (1-ab(ab)”)

= (ab)*P — (ab)"* ab (ab)*P =0,

so we have
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Further

ua=au = ab(ab)®?
= 1- <1 —ab (ab)KD>
= 1—pab-

Thus ua (1 - pab) u = (1 - pab) (1 _pab> U= (1 _pab) U= u.

1)

CL(]_ —pab) - [CL (1 _pab)]2u € QN (A)
a(]- _p(zb) - a(]- _p(zb) ua (1 _pab)
= a (1 - pab) —a (1 - pab) (1 _pab) (1 - pab)
)

))KD

Therefore (a (1 — pap =u.

Now we show that v = xpgp (axpab)KD is the K D inverse of ap,;. To do so we need

to show that axpy, € AXP. Since abpy, € QN (A), we have

ATPab — (awpab)2 = (aac) (1 - (ILL‘) Pab = aTbYpay = (abpab) ry € QN (*A) (4.1.2.3)

(abpgy and xy commute, so we can apply Theorem1.2.23(2)). By the Spectral Mapping
Theorem for the ordinary spectrum (Theorem 1.4.2(5)) with f () = A — A? we have

that f (0 (azpa)) = o (f (axpe)) = o (axpab - (axpab)2> = {0}
and so o (axpge) C {0,1};

SO axPgp, 1 — axpyy € AKP.

From Lemma 1.5.12 we thus have that

p(o,o'((lfﬂpab)) + p(l,o’((l(ﬂpab))
=  DPazpgp + P(1—azpas)
=1
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Chapter 4 Koliha-Drazin invertibles and Drazin invertibles form regularities

We now continue to show that v = xp,p (axpab)K D'is the K D—inverse of APab-

e v commutes with apyp :

)KD

axpg € AKP | so (azxpap) (axpap = (axpab)KD (axpap) ,

and then (axpab)2 (axpab)KD = (axpab)KD (a:cpab)Q,

)KD

KD
thus APabTPab (axpab = TPab (a'rpab) APap-

o KD KD
L4 v (apab) v = TPab (axpab) APabTPab (axpab)

_ KD KD
=  ZPab (axpab) ATPab (axpab)

=  ZPab (G$pab) KD

= v

® apuy — (apab)2 veEQRN(A):
KD

Since p1—qap,, = 1—(1 — axpgp) (1 — axpab)KD and pagp,, = 1—axpap (axpes)” =,

aPab — APabVaAPgb
KD
=  QPab (]— — ZPab (al‘pab) GPab)
KD
=  QPab (]— — ATPab (CL.Tpab) >
=  APabPaxp,p

= QPab [1 - plfazpab]

= QPab (1 - a-xpab) (1 - axpab)KD

= apg (1 —ax) (1 — axpab)KD

= apawby (1 — azpay)™ "
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We know that ap,pb = abpgy, is quasinilpotent and trivially ap,,b commutes with y (1 — azpap)

Hence apgpby (1 — a:rpab)KD = apgp — (a,pal,)2 vEQRN (A).

Therefore (apay)*? = v.
We have shown that a = a(1 — pa) + (apas) € AKP.

Remark 4.1.3 ([14], Lemma 1.1)

In fact, we have a (1 — pgp) is Drazin invertible as

Pa(1—pap) — 1—-wua (1 - pab)
= 1- (1 *pab) (1 *pab)
=  Dab;

and so

a (1= pab) (Pa(1—pay))
= a(l —pab) Pab
= a(pw— ()’
= 0.

Therefore a(1 — pap)(Pa(1—p,,)) is nilpotent.

Remark 4.1.4 ([14], p. 139)

It is interesting to note that from Theorem 4.1.2 we get a*” = b (ab)KD + TPab (a:z:pab)K b

and then aa®P = ab (ab)KD + axpap (axpab)KD :
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We need the following Lemma to prove that AX” forms a regularity.

Lemma 4.1.5

Let A be a unital Banach algebra and a € AXP. We have 0 ¢ acc(o (a)) if and only if
0 ¢ acc(o (a™)).

Proof.

If 0 ¢ acc(o (a)), then either 0 € p (a) or 0 € iso(o (a)) .

Now 0 € p(a) if and only if 0 € p(a™) (since A~! is a group under multiplication). Also
from the Spectral Mapping Theorem we have o(a™) = {\"|\ € o(a)} and therefore

0 € iso(o(a)) if and only if 0 € iso(c(a™)). [

Theorem 4.1.6 ([14], Theorem 1.2)

The set AXP of all K D—invertible elements in a complex unital Banach algebra A forms a

regularity.

Proof.
We refer to Definition 2.1.1(1) and (2) of a regularity.

1. Leta € Aand n € N. Suppose a € AXD then by Theorem 3.1.9 0 ¢ acc(o (a)) . By
Lemma 4.1.5 0 ¢ acc(o (a™)) and so a™ € AKD.
Conversely, let a” € AKD - This holds for n = 1, 2, ..., so also for n = 1, thus
ac AKP,

Hence a € AKP = g7 ¢ AKD,
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2. Let a, b be relatively prime. Then a, b commute. Suppose a,b € AXP then by Theo-
rem 3.2.5 ab is K D—invertible.
Conversely, let a, b be relatively prime and suppose ab € AXP then by Theorem 4.1.2

a € AKP and b € AXP. This completes the proof. |

According to Definition 3.1.3 an element a € A is Drazin invertible if there is a b € A such
that ab = ba, bab = b, a* = a**1b, for some nonnegative integer k. The following Lemma

gives an equivalent definition:

Lemma 4.1.7 ([11], Lemma 2.1.)

In a complex Banach algebra .A with unit 1, Definition 3.1.3 is equivalent to ab = ba, bab = b,

a—a*he N(A).

Proof.

Suppose ab = ba and bab = b. Then p = 1—ab is an idempotent as (ab)® = a (ab?) = ab. So
a* — a1 = dfp = (ap)* = (a(1—ab))F = (a— aQb)k = 0forany £ > 1. So
a —a*b € N (A). This completes the proof. [

Corollary 4.1.8 ([14], Corollary 1.3)

The set AP of all Drazin invertible elements of a complex unital Banach algebra A forms a

regularity.

Proof.
We refer to Definition 2.1.1(1) and (2) of a regularity.

1. Leta € Aand n € N. Suppose a € A”. Then by Lemma 4.1.7 aa” = a"a,

aPaa” = aP and a — a®a” € N (A) . From Theorem 3.2.7, we know that
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(a)P = (aP)" foralln = 1, 2, .... Soitis easy to see that (a)(a")P = (a")Pa"
and (a™)Pa"(a™)P = (a™)P, for all n. Since w = a — a®a” € N (A), it can be shown
using induction that a™ — (a")?(a?)" = a" w.

Therefore a™ — (a™)?(a”)" € N(A).

Thus a" € AP.

Conversely, assume a” € AP | n =1, 2, .... Thisholds forn = 1, therefore a € AP.

. Assume a,b € AP where a, b are relatively prime.

By Theorem 3.2.5 we have that if a,b € A are commuting K D—invertible elements,
then ab is K D-invertible with (ab)*? = a®Pb%P_ To prove that if a, b € A are Drazin
invertible with ab = ba, then ab is Drazin invertible, we still have to show that if

vt = (a— a2aD)t = 0and w? = (b—b?al)” =0, then {ab — (ab)? (ab)” T — 0, for

some p,q,t € N.

So assume v* = 0 and w? = 0 and take ¢ = p + t. Then
[(ab) - (ab)* (ab)"]"

= [(a) (b— b2bD) + 2P (a— azaD)]p—i_lt

p+t

+t y .
o ((a) (b= B2BP))"H (6%P (0 — a2aP))’
i=0 i
=0
since we have p+¢ —i > pfori =0, 1, ..., tsothat (b— beD)pH*i — 0 for these
tandi >tfore =t+1, ..., t 4+ psothat (a—aQaD)i:Oforthesei. Soab e AP.

Conversely, assume ab € A”. Suppose that az + by = 1 with a, b, x, y commuting.
From Theorem 4.1.2, a,b € AXP and a%P = (ab)KD + TPab (axpab)KD (see Re-
mark 4.1.4).

It remains to show a,b € AP.
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e First assume that (ab) pp, = 0. From (4.1.2.3) we have that

(cwcpab)2 = axpa, — abpepry, and hence that (aacpab)D = axTPgp-

Then
Pe = 1-— aa®
= 1—ab(ab)? — (axpa) (axpey)”  (see Remark 4.1.4)
= 1—ab(ab)? — (azpw) (axpe)
Sl e
= (1 — a2x2) Dab
= (1+ax)byps (since 1 —ax = by)
and ap, = (14 azx)abpyy =0 (from our assumption that (ab)pg = 0).

Thus a € AP. By symmetry bp, = 0 and b € AP.

e For the general case, assume that (abpgy)” = a™b"pey = 0 for n € N. There
exist elements x,,, y, € A such that a"x,, + by, = 1. (This is seen from the
expansion of (ax + by)?"~ 1))

Applying the first part of the proof to a™ and b" we get that

a"p, = a"p? = (ap,)" = 0. Thus a € A”. By symmetry, (bpy)" = 0.

Thus b € AP. [ |
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Properties of the K D-spectrum and
the D-spectrum

5.1 The K D-spectrum and the D-spectrum
Definition 5.1.1

We define the K D—spectrum and the D—spectrum of an element a € A as follows:
oxp(a)={A€C: A\l —a¢ AKDP};

op(a)={AeC:A\1—a¢ A };

we may also define opr (4 (a) = {AeC:A1—-a¢DF(A)}.

AKD

From Theorem 4.1.6 and Corollary 4.1.8 we know that and AP form regularities. Then

by Theorem 2.1.6 the Spectral Mapping Theorem holds for ok p (a) and for op (a) :
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Theorem 5.1.2 ([14], Theorem 1.4)

Let a € A, where A is a complex unital Banach algebra. If f is any function holomorphic in

an open neighbourhood of the ordinary spectrum, o (a) , of a and non—constant on any com-

ponent of ¢ (a) , then f (oxp (a)) = oxp (f (a)) and f (op (a)) = op (f (a)).

In Theorem 5.1.4 and Theorem 5.1.5 we are going to prove some of the properties of the

K D—-spectrum and the D—spectrum.

To do so we give a short discussion on the elements of the spectrum.

By acc(o (a)) and iso(o (a)) we denote the set of all accumulation points and isolated points
of o (a) respectively. We know o (a) = acc(o (a)) U iso(o (a)). Recall that [] (a) denotes
the set of all poles of the resolvent (A1 — )" and IES(a) denotes the set of essential
singularities of (A1 —a)™' (see p 13).

First we consider p € acc(o (a)) :

w € acc (o (a)) 0€ p—acc(o(a))
0 € acc(o (1 —a)) By Lemma 1.2.20

pl —a ¢ AKP By Theorem 3.1.9

r ¢ ¢ 0

weE okp(a) By Definition 5.1.1

Next we take p € iso (0 (a)) :

In this case 0 € iso (o (ul — a)) .
By Theorem 3.1.9 p1 — a has a Koliha—Drazin inverse. It is now possible that

pl —a € DF(A) ¢ AP. By Definition 3.1.3 [(u1 — a)p]® = 0 which means that y is a
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pole of order k of (A1 — a)f1 where k is a non—negative integer (See Note 3.1.7). It is also
possible that u1 — a € AXP\ AP, This means that (u1 — a) p € QN (A) and so from the
Laurent expansion (3.2.1.2) y is an essential singularity of (A1 — a)~!.

So iso (o (a)) therefore consists of the poles of order & > 1 and those that are essential singu-

larities. Thus IES (a) = iso(o (a))\ [] (a).

Theorem 5.1.3 (/14], Proposition 1.5)
Let a € A where A is a complex unital Banach algebra. Then:

1. okp (a) = acc(o (a));
2. op (a) = acc(o (a) U (iso (o (@) \ ([T (a))) ;
3. oxp(a) Cop(a) Cola).
Proof.
1. Clear from the preceding discussion.

2. p € acc(o(a))
& € ogp(a) (By Property 5.1.3(1))
< pl—a¢ AXP (By Definition 5.1.1)
=pul—a¢ AP (Since AP c AKD)

S ueop(a) (By Definition 5.1.1)
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w € iso(o(a)):
There are two possibilities:

First possibility:

1 is a pole of order k of (A1 —a) ™"

& pl —a € DF(A) c AKD

s pul—ae AP (since AP c AKD)
< ¢ op(a) (By Definition 5.1.1)
(So i € [](a) implies p ¢ op(a)).
Second possibility:

1 1s an essential singularity

& pl —a € AKP\ AP

& p¢okp(a) and p € opla)

(So p € IES(a) implies i € op(a)).

3. The inclusion is clear.
Theorem 5.1.4 ([15], Proposition 1.5)

Leta € A where A is a complex Banach algebra with unit. Then:
1. ok p (a) is closed;
2. op (a) is closed;

Proof.

1. ok p (a)is closed since o p (a) = acc(o (a)) and the set acc(o (a)) is closed.
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2. Since op (a) = acc(o (a)) U (iso (o (a)) \ ][ (a)), we have to consider the following

conditions to see if it is closed:

2.1 Suppose op (a) is finite or (), then since both of them are closed we must have op (a)

is closed.

2.2 Suppose there are finitely many elements in iso(o (a)) \ [ ] (@), then since acc(o (a)) is

closed and the union of a finite number of closed sets is closed, op (a) must be closed.

2.3 Suppose op (a) = acc(o (a))U(iso (o (a)) \ [ (a)) has infinitely many elements. Sup-

pose () is a sequence in op (a) and let o, — «.

e If (o) has an infinite number of elements in acc(o (a)) , say o, C acc(o (a)),
then since acc(o (a)) is closed we must have klljgo ap, = a € acc(o(a)) C
op (a).

e If () has an infinite number of elements in iso(c (a)) \ [] (a) , say
an, Ciso(o(a))\[](a), then also a,, C iso(o(a)). So ay, is an infinite
sequence in o (a) with klirrolo oy, = « (since the subsequences go to the same

limit). Thus a € acc(o (a)) .
Therefore op (a) is closed, since it contains all its accumulation points. |
Theorem 5.1.5 ([/14], Proposition 1.5)
Let a € A where A is a complex Banach algebra with unit. Then:
1. oxp (a) = 0 if and only if o (a) is a finite set;

2. op (a) = 0 if and only if o (a) consists of a finite number of points which are poles of

the resolvent of a.
Proof.

1. Assume o (a) is finite. Then every point is isolated and acc(o (a)) = oxp (a) = 0.
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Conversely, we assume o (a) is infinite and o p (a) = acc(o (a)) = (). Soiso(o (a)) is
infinite and since o (a) is compact we have by Theorem 1.3.3 that o (a) has an accumu-

lation point p. Thus o p (a) # 0.

2. First we assume op (a) = (). Then acc(o (a)) U (iso (o (a)) \[] (a)) = 0, by The-
orem 5.1.3(2). Consequently, by Theorem 5.1.3(1), oxp (a) = acc(o (a)) = 0 and
also IES(a) = (. Since o (a) # (), it must consist of isolated points which are poles
of the resolvent. Again using Theorem 1.3.3, we have that this set of isolated points,

consisting only of poles of the resolvent, must be finite.

Conversely, assume o (a) consists of a finite number of points which are poles of the

resolvent. Since, from Theorem 5.1.3(2),

op(a) = acc(o(a))U(iso(o(a))\]](a))
= acc(o(a))U IES(a),

we must have that op (a) = 0. [ |

5.2 Regularity related properties of the K D-spectrum and the D-
spectrum

We mentioned property (P1) in Theorem 2.1.5 which states that a regularity R is said to have

property (P1)ifab € R < a € Rand b € R whenever, a,b € A commute. However, neither

AED por AP possess property (P1) as demonstrated by the following example.
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Example 5.2.1 ([14], Example 1.6)

Consider A = ¢*° with pointwise addition and multiplication.
Ifa= (3,040 %0 %0,...) and b=(0, 4,0, 1,0, 1, ...),
then ab = ba = 0 € AP c AKP Now

o@) = {MA-ag A"}

1 1 .
{M (A—Q, A A= 2N > ¢ A }

Obviously A € {0,1, £, 1, ...} implies A € o(a). We thus have 0 € acc (o (a)) . Similarly

0 € acc (o (b)). Thus neither a nor bis in AXP or AP,

However, AXD satisfies (P1), mentioned in Theorem 2.1.5, only in a very special case.

Theorem 5.2.2 ([14], Theorem 1.7)

Let A be a complex Banach algebra with unit Then the following conditions are equivalent:
1. AKP has property (P1);
2. AKD = A:
3. oxp(a) =0 foralla € A;
4. each element of A has finite spectrum;

5. the quotient algebra .4 /rad A is finite dimensional.
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Proof.

1=2:

2=3:

3=4:

4=1:

4<5:

Suppose AXP has property (P1). As 0 € AXP and 0 commutes with all elements
a € A, we have that for any a € A, 0.a € AXP. By (P1), a € AXP for all
ac A So AKP = A,

Since AKP = A, oxp(a)={A: Ml —a¢ A}. But \1 —a € Aforalla € A. Thus

okp (a) =0.
Follows from Theorem 5.1.5(1).

If each element of .4 has finite spectrum, then all elements of the spectrum are isolated

and each element of the algebra is K D—-invertible. Then trivially, A% satisfies (P1) .

From Theorem 1.2.24(2) we have that o(a) is finite if and only if o(a + radA) is fi-
nite. So if o(a) is finite, it means o(a + rad.A) is also finite, then since .A/rad A is
semisimple (see Theorem 1.2.24(1)) we have from Theorem 1.2.25 that .4 /rad A is fi-
nite dimensional.

Obviously, .4 /rad A finite dimensional, implies o (a + rad.A) and thus o(a) is finite. W

Finally, the spectral continuity properties (P2), (P3) and (P4) defined in Properties 2.2.1, hold

for o p (a) and op (a) under a specific condition.
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Theorem 5.2.3 ([14], Theorem 1.8)

For a complex unital Banach algebra A, the set of K D—invertible elements satisfies properties

(P2), (P3) and (P4) if and only if AXP = A.

Proof.

If AKP = A then it is trivial to show that these properties are satisfied.

Conversely, if AXP £ A, then there exists an element a € A\ AXP | thatis, 0 € acc (o (a)),
(see Theorem 3.1.9). Let a, = 2. Then 0 € lacc (o (a)) so that 0 € acc (o (a,)) and
a, — 0asn — co. However 0 ¢ acc (o (0)). This means that property (P3) does not hold.

Hence, neither do properties (P2) or (P4). |
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