A BELIEF-DESIRE-INTENTION ARCHITECTURE
WITH A LOGIC-BASED PLANNER

FOR AGENTS IN STOCHASTIC DOMAINS

GAVIN B. RENS

submitted in accordance with the requirements for the degree of

MASTER OF SCIENCE

in the subject

COMPUTER SCIENCE

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR : Pror. E. vaN DER POEL
JOINT SUPERVISOR : Dr. A. FERREIN

February 2010

SUMMARY

This dissertation investigates high-level decision making for agents that are both goal and utility
driven. We develop a partially observable Markov decision process (POMDP) planner which
is an extension of an agent programming language called DTGolog, itself an extension of the
Golog language. Golog is based on a logic for reasoning about action—the situation calcu-
lus. A POMDP planner on its own cannot cope well with dynamically changing environments
and complicated goals. This is exactly a strength of the belief-desire-intention (BDI) model:
BDI theory has been developed to design agents that can select goals intelligently, dynamically
abandon and adopt new goals, and yet commit to intentions for achieving goals. The contri-
bution of this research is twofold: (1) developing a relational POMDP planner for cognitive
robotics, (2) specifying a preliminary BDI architecture that can deal with stochasticity in action

and perception, by employing the planner.

Key terms

cognitive robotics, intelligent agents, planning, partial observability, POMDP, belief-desire-

intention paradigm, BDI theory, architecture, high-level control, logic, situation calculus, Golog

Contents

3

Listof Figures e
Listof Algorithms e
Listof Tables e
Acknowledgements L
Introduction
1.1 Automated Decision-making in the Real World
1.2 Motivation for this Dissertation
1.3 Assumptions and Delimitations of this Dissertation
1.4 Goals and Contributions of this Dissertation
1.4.1 Thesis Statement
1.42 ResearchQuestions,
1.5 Outline e e

Formal Background

2.1 DecisionTheory.
2.1.1 Fully Observable Markov Decision Processes
2.1.2 Partially Observable Markov Decision Processes

2.2 Decision Theoretic Golog,
2.2.1 The Situation Calculus
222 TheGolog APL
223 DTGolog e

23 BDITheory e e
2.3.1 Practical Reasoning and Folk Psychology
2.3.2 BDITheory—Informally
2.3.3 AFormal Model of BDI Agency
2.3.4 Existing Implementations of the BDIModel
2.3.5 Discussionand Conclusion Lo L.

Related Work

3.1 Logics for Dynamical Stochastic Domains
311 ICLge . . . v ot

AN L L D W N =

<2

15
20
20
22
23
25
25
27
32
44
48

3.1.2 BHLU’'sapproach.

3.1.3 Bonet and Geftner’sapproach
314 ESP ..
3.1.5 DyMoDeL
3.2 Golog Dialects for Stochastic Domains
32.1 stGolog e
322 pGolog e
323 POGTGolog
324 ReadyLog
3.3 BDI-based Architectures with Generative Planning
33.1 Propice-Plan
3.3.2 Propositional Planning in BDI Agents
333 CanPLaN . . Lo

3.3.4 Augmenting BDI Agents with Deliberative Planning Techniques

3.4 DISCUSSION . . .« v v v v e e e e e e e e

Extending DTGolog to deal with POMDPs

4.1 Semantics of POMDPsinGolog
4.1.1 Basic Definitions and Concepts
4.1.2 The Partially Observable BestDo
42 ASimple Example
4.2.1 Example Domain Specification.
4.2.2 Example Policy Calculation
43 Summary .. o. ... e e e e e e e e e e

The Hybrid BDI/POMDP Architecture
5.1 A Basic BDI Architecture employing a Generative

Planner
5.2 Adding Reconsideration to the Architecture
53 Discussion. e
Ideas for Efficiency
6.1 Culling Situations L

6.1.1 ByProbability

6.1.2 By Probability and Dimensionality
6.2 Condensing Belief States
6.3 Branch Pruning by Reachability,
6.4 Branch Pruningby Utility
6.5 Discussion.

il

63
64
65
67
73
73
76
80

82

82
87
89

7 Experimentation
7.1 Method and Assumptionso
7.2 Optimization Methods with the BestDoPO Planner Alone
7.2.1 Experiment1
7.2.2 Experiments2,3and4 o
7.2.3 Experiment5
7.2.4 Analysis e e e
7.3 The FireEater-world Simulation Environment
7.4 Naive Architectures for Base-lines
7.5 Full Observability vs. Partial Observability
7.5.1 Analysis e
7.6 Comparing Naive-POP, BDI-POP and BDI-POP(R)
7.6.1 Analysis e

TT7 DISCUSSION . .« o v v v v e e e e e e e e e s

8 Conclusion
8.1 Summary e e
8.2 Research Questions Answered,
83 Discussion e e e
84 Future Work e

A Paradigms and Theoretical Implementations for High-level Control of Agents and

Robots

A.1 Definition of Agent and Robot
A2 Intelligence e
A3 Plans. e
A4 LevelsofControl

A.4.2 The Control Dimension
A.5 Named Paradigms and Example Theoretical Implementations
A.5.1 Deliberative e
A.5.2 Hierarchical
A.5.3 Behavior-Based (Reactive)
A.5.4 Hybrid Deliberative/Reactive
A.5.5 The Reference Architecture for Intelligent Systems
A.5.6 One Useful Classification of Architectures

B Source Code

C Paper 1 - Extending DTGolog to Deal with POMDPs

il

117
118
119
122
124
124
125
126
127
129
130
131
135
136

137

162

D Paper 2 — A BDI Agent Architecture for a POMDP Planner 169

Bibliography 176

v

List of Figures

2.1
22
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

4.1
4.2

5.1

7.1

7.2

7.3

7.4

A.l
A2
A3
A4
AS
A6

A state-transition diagram for two actions: L (move left) and R (move right). . . 10
A decision tree for deciding between two nondeterministic actions. 12
A policy tree recommending two actions (horizonof 2). 13
A decision tree showing probabilities of outcomes and expected rewards. 14
One tier of a belief-decision-tree. 18
A conventional belief-decision-tree. L. 19
A generic representation of a policy tree for POMDPs. 20
Schematic diagram of the generic belief-desire-intention model. 28
More detailed schematic diagram of the generic belief-desire-intention model. . 38
PRS system structure. L 44
BestDoPO represented as a belief decisiontree. 64

Four-state world; four states in a row. Initially the agent believes it is in each
state with probabilities [0.04 | 0.95 | 0.00 | 0.01] corresponding to state position. 73

Schematic diagram of a sketch of the BDI architecture with the POMDP planner. 83

A 5 x5 grid world. The goal is to reach the star. The agent is initially possibly
inthree situations. L 100

A 5x5 grid world. The goal is to reach the star. The agent is certain of its initial

SIEUALION. o o o e e e e e e e e e e 101
Behavior-set 1: Performance of Naive-POP, BDI-POP and BDI-POP(R) as Dy-

namism Changes. e e e e 108
Behavior-set 2: Performance of Naive-POP, BDI-POP and BDI-POP(R) as Dy-

namismchanges. e 109
The elementary unit of self-organization. 120
The continuum of properties of deliberative and reactive robot architectures. . . 126
The sense-think-actcycle. 127
The traditional hierarchical architecture. 129
The generic behavior-based architecture. 130
The schema of a stimulus-response diagram. 130

A.7 Typical deliberative/reactive control strategies.

A.8 The paradigm of a three-layer architecture

vi

List of Algorithms

O 0 39 O U B~ W N =

—_— e
W N = O

SE(0, 8, Doig) -« o v o e 16
Basic BDI agentcontrolloop 39
Control loop for a single-minded BDI agent with reactivity 40
Control loop fora cautiousagent. 42
Control loop for an agent with reconsideration 43
BU(o,a,b) e e e 70
normalize(bienp) - - - - . . oo 71
Focus e 84
GetRestProgAuxo e e 87
Reconsider 89
BU(o,a,c,b) e e 92
BU(0,a,X,b) 93
BU(o,ab) e 94

vii

List of Tables

2.1

3.1

7.1

7.2

7.3

A.l

Interactions between meta-level control and deliberation. 41
Features of Golog Languages (Tbl. 4.1 in Ferrein’s PhD dissertation [29]). . . . 58

Results of policy generation using belief state reduction by culling situations
below a cut-off probability. 101
Results of policy generation using belief state reduction by retaining the x most
likely situations. L. e 102
Results of policy generation using belief state condensation by transforming

situations INto States. e e e 102

Pros and cons of architectures at the two extremes of the deliberation/reaction

CONtINUUIML. .« v v v v v o e e e e e e e e e e e e s s s 127

viii

For my wife and parents.

Acknowledgements

Esmarie, my wife, has encouraged and supported me all the way. 1 am sincerely grateful to
her. Tommie Meyer and Arina Britz opened doors for me and provided ongoing general sup-
port once through the doors. Alexander Ferrein and Etienne van der Poel gave guidance and
suggestions concerning theoretical aspects of the work. Etienne, thank you for taking care of
the administrative stuff on the UNISA side. Thanks to Gerhard Lakemeyer, Tommie Meyer and
Alexander Ferrein for arranging for me to visit the Knowledge-Based Systems Group at the
Technical University of Aachen (RWTH) for four months in 2008; I want to especially thank
Alexander for his personal support during my stay in Aachen. Lastly, the completion of this dis-
sertation would have been virtually impossible without the two-year studentship for full-time

study awarded by the Meraka Institute of the CSIR, South Africa.

X

Chapter 1

Introduction

1.1 Automated Decision-making in the Real World

Some systems have a range of options available to them, and depending on the options chosen,
the output changes; some outputs may be more desirable and others less so. A robot (or software
agent) may be viewed as a system with available options. The actions the robot can perform
are the system parameters that can be tuned, and the system’s output is called the behavior in
cognitive robotics and agent systems. Autonomous robots—the kind we are interested in—are
automated systems. For an autonomous robot to behave as expected, at the standard expected
by the robot’s designers, the robot must decide on appropriate actions to achieve the expected

standard and kind of behavior. This is automated decision-making.

As we move into the future, robots will be expected to operate effectively and reliably in the
real world, that is, in the world we humans live in. The world wide web is also becoming ex-
tremely complex and intelligent autonomous agents are being designed and deployed to gather
information or do other tasks (for example, network security) on our behalf. These softbots
‘living’ in cyber space will thus also benefit from methods in “automated decision-making in

the real world”.

For robots and agents to be effective in complex and changing environments with many so-
called ‘grey-areas’, many approaches and methods have and are being developed in cognitive
robotics and intelligent agent systems. With this work, we hope to contribute to making agents

more intelligent, autonomous and robust.

1.2 Motivation for this Dissertation

Broadly speaking, there are two kinds of driving forces or ‘motivation’ for knowledge-based
agents: goals and utility. Goal driven agents have a specific state they want to reach and there
is essentially no value for being in other states. Utility driven agents though, have tasks that
can be achieved continually and incrementally; rewards are scattered over many states and they
must be collected. There is typically no specific goal state to reach in domains where utility

driven agents live.

This dissertation investigates high-level decision making where objectives are formulated as
goals with utility attached to the achievement of the goals. In other words, the agents researched

here are both goal and utility driven.

Traditionally, plan-based agents that include generative planning (as opposed to utilizing pre-
compiled plans) would generate a complete plan to reach a specific fixed goal, then execute the
plan. If plan execution monitoring is available, the agent would replan from scratch when the
plan becomes invalid. Due to the time requirements for generating complete plans, the plan
may be invalid by the time it is executed. This is because the world may change substantially
during plan generation. Therefore, belief-desire-intention (BDI) architectures take a different

approach.

BDI theory is based on the philosophy of practical reasoning [15]. It offers flexibility in plan-
ning beyond traditional planning for agents, by reasoning over different goals. That is, an agent
based on BDI theory can adapt to changing situations by focusing on the pursuit of the most ap-
propriate goal at the time. Typically, an appropriate plan to achieve an adopted goal is selected
from a data base of plans. Although a plan that satisfies certain constraints (for example, does
not conflict with other adopted plans, is executable, etcetera) will be adopted, it may not be the
most appropriate plan in existence. A plan that is generated with the agent’s current knowl-
edge for guidance, may be more appropriate. BDI agents can also make rational decisions as to
when to replan if a plan becomes invalid, reducing the amount of replanning, thus increasing the
agent’s reactivity. Note that the BDI paradigm is, however, not the only approach to replanning

(see for example, Likhachev et al. [65]).

In general, BDI architectures do not make use of plan generation, they rather draw on plan
libraries. While with BDI approaches, an agent can reason over several goals, the agent lacks
some flexibility by not being able to generate suitable plans on demand. Therefore, in this
dissertation, we aim at integrating a partially observable Markov decision process (POMDP)
planner into a BDI architecture to combine benefits of the architecture with the ability to gen-
erate plans. Moreover, we want to supply models that are as realistic as possible; we therefore
decided on employing POMDPs.

We design the POMDP planner as a new dialect of the agent programming language Golog [63].
Golog has its basis in a logic for reasoning about actions, called the situation calculus [66]. An
advantage of using a Golog implementation for the planner is that the integration of beliefs into
the situation calculus has previously been done [2] and this work can be used for formulating
POMDPs. Further, given a background action theory, an initial state and a goal state (or ‘reward
function’ in POMDPs), Golog programs essentially constrain and specify the search space of
available actions. The resulting plan (policy in POMDP terms) is a Golog program which can

be executed directly by an agent.

1.3 Assumptions and Delimitations of this Dissertation

We shall refer to ‘robot” and ‘agent’ interchangeably; both terms refer to autonomous intelligent

embedded systems. See Appendix A for definitions of robot and agent.

The work reported on in this dissertation concerns a certain class of robot: those robots that
consult a database of facts and rules (called a knowledge-base (KB)) and that execute plans.
It is conceivable that a knowledge-based robot needs not be a plan-based robot, for instance,
a robot may react only according to rules stored in a KB, ‘triggered’ due to sensory inputs. It
is also conceivable that a plan-based robot needs not be a knowledge-based robot, in the sense
that the robot executes some plan selected according to its sensory inputs, but the robot does

not have separate rules.

An agent may be both knowledge- and plan-based in at least two senses: (1) The facts and
rules in its KB are used in a reactive manner and/or its facts and rules are used to select plans.
(2) A plan is generated in consultation with its KB and current sensor inputs, and that plan is
executed. The agents we shall be most concerned with in the dissertation are knowledge- and

plan-based in sense 2, however, to establish a context, agents of sense 1 will also be discussed.

In robotics, there is a rough distinction between high-level and low-level computation. High-
level computation may be likened to conscious reasoning, that is planning, decision-making
and judgment, whereas low-level computation may be likened to subconscious processes such
as scene and object identification, posture maintenance and stimulus-response behavior. For
robots in the real world to be useful, they are (arguably) required to perform both high- and
low-level computation. In the present work, we abstract away from low-level computation and
either simulate its presence or simplify the problem enough so as to make low-level computation
a non-issue. In other words, the present work focuses on the high-level reasoning of robots and

agents.

We would like to focus the reader’s attention early on, on an issue of potential confusion. When

creating complex systems such as robots, a robot can be described or represented at several

levels of abstraction, from the physical mechanics and electronics to behaviors, intentions and

knowledge. One can distinguish between three levels of abstraction:
1. a paradigm is an approach, framework or perspective;

2. atheoretical implementation provides detail to a paradigm by producing an algorithm or

a formal specification for a whole architecture or system or part thereof;

3. a practical implementation is a physical, usable system; an end product—it implements
a theoretical implementation such that it has a practical benefit or can be observed in

operation.

In this dissertation, paradigms describe structures at a more abstract level than architectures.

And a practical implementation is more concrete than a theoretical implementation.

Note though, that the relationship of these terms as set out above, are not conventional. For
example, broadly speaking, 3T, PRS, UM-PRS and JAM are all systems for designing and con-
trolling synthetic agents. 3T, an instance of the three-layer paradigm', is called an “architecture”
by its designers [8, 36], while the paradigm itself is also referred to as an architecture. Also,
PRS is referred to by its creators [40] as a “system”, whereas Wooldridge and Jennings [115]
refer to PRS as an “architecture”. Lee et al. [60] implement PRS with the C++ language, re-
sulting in another “system”, called UM-PRS. Huber [44] talks about JAM as an “‘architecture”
which draws upon PRS. In the literature, whether a paradigm or theoretical implementation is
discussed (in terms of our three levels of abstraction), it is usually referred to as an architecture.
In the literature, the term model is frequently used instead of paradigm. This convention will
be adopted here from time to time. But when making a deeper study of agents, from theory to

practice, as is done here, one needs to distinguish between levels of abstraction.

The theoretical aspects of this dissertation support the union of POMDP planning and BDI
deliberation as a hybrid architecture, and the experiment results support the idea as a proof
of concept. However, we shall also argue that there is scope for improvement of the hybrid
architecture. A more formal specification and analysis of the new architecture is still needed.
Optimal POMDP solvers are known to be highly inefficient, thus, some optimizations to the

solver we developed are also investigated. Nevertheless, more work is required in that area too.
Parts of the presented material have already been published [85, 86].

During the preparation of this dissertation, the assumption was made that the readers will have,
at least, a rudimentary knowledge of set theory, basic algebra, and first-order predicate logic.
Alternatively, an under-graduate level qualification in computer science or a similar discipline
is assumed. Readers with this basic background can acquire the further necessary background

specific to this dissertation, by referring to Appendix A and Chapter 2, in any order.

IThe three-layer paradigm is discussed in Appendix A.

Notation: Throughout the document, = and Y denote ‘is defined as’. |x| is the absolute value of
x. Italicized words should be read with emphasis and have special significance. Words in single
quotation marks, for example ‘X’, should be read: so called X, or: X in a manner of speaking.
Words, phrases, etcetera, in double quotation marks, for example “X”, mean that X has been

mentioned before, in this or other documents.

In conclusion of this section and in preparation for the next section, an analysis of the disser-
tation’s title follows: “A Belief-Desire-Intention Architecture with a Logic-based Planner for

Agents in Stochastic Domains”.

o “A Belief-Desire-Intention Architecture”: This is a specific kind of architecture for high-

level reasoning in agent systems;

e “with a Logic-based Planner”: The architecture of interest has a logic-based planner, that

is, a planner based on formal logic;

e “for Agents”: The architecture and planner are for the automated control of a specific

kind of system: an agent system;

e “in Stochastic Domains”: The agents to be controlled inhabit the real world or real-world-

like domains, that is, stochastic domains.

1.4 Goals and Contributions of this Dissertation

Broadly, the goal and contribution of the dissertation is to develop a new logic-based planner
for stochastic domains and to modify the basic belief-desire-intention architecture to employ

this planner for use by agents and robots living in stochastic domains.

1.4.1 Thesis Statement

It is possible to define a belief-desire-intention architecture that employs a logic based planner
that generates control policies for agents inhabiting partially observable stochastic domains,
such that the performance of these agents is reasonable or such that the hybrid architecture

shows clear potential for controlling agents, producing reasonable performance.

1.4.2 Research Questions

1. Can an existing language, DTGolog, be extended to generate policies for partially ob-

servable Markov decision process (POMDP) problems?

2. Can a logic-based POMDP planner be integrated with the belief-desire-intention archi-
tecture? That is, is it possible to specify a ‘reasonable’ hybrid BDI/POMDP-planner

architecture?

3. Is there a performance gain in an agent when the agent is controlled by policies gener-
ated from the logic-based POMDP planner as compared to being controlled by policies

generated from the logic-based planner that assumes full observability?

4. Is there a performance gain in an agent when the agent is controlled by the hybrid
BDI/POMDP-planner architecture as compared to being controlled by a simpler archi-
tecture that employs the new POMDP planner?

1.5 Outline

The next chapter covers some necessary background theory; it covers decision theory and the
theory on which BDI architectures are based. The reader may read this background chapter
before Chapter 3 or consult it in conjunction. Chapter 3 presents a literature survey of related
work. The literature covered is divided into three categories: (i) logics for dynamical stochas-
tic domains, (ii) Golog dialects for stochastic domains and (iii) BDI-based architectures with
generative planning. Chapter 4 describes the new logic-based POMDP planner by way of an
extension to an existing logic-based planner. We suggest a hybrid architecture in Chapter 5
that integrates the logic-based POMDP planner with the BDI architecture. Due to the inherent
intractability of finding solutions to POMDP problems, we need to look at ways to optimize
the new planner. This is addressed in Chapter 6. Then, in Chapter 7, we present results of
experiments to assess the new planner and the new architecture from various angles. The last
chapter gives a summary of this work, conclusions are drawn, some final issues are discussed

and directions for research that could flow from the current research are mentioned.

The first appendix is a useful reference to models for high-level control of agents and robots,
introducing the common concepts and formalisms in the field. The second appendix provides
source code of most of the implementations used for this research. The last two appendices are

published papers relevant to the present work.

Chapter 2
Formal Background

DTGolog is a dialect of the agent programming language Golog that has been extended to deal
with (fully observable) decision theoretic (DT) domains. In this work, we extend DTGolog to
PODTGolog (partially observable decision theoretic Golog). To understand DTGolog and its

extension PODTGolog, it is thus necessary to formally introduce decision theory and Golog.

This chapter is in three parts: The first part (Section 2.1) covers what the reader needs to know
concerning decision theory; the fully observable Markov decision process (FOMDP) is covered
first and then the partially observable Markov decision process (POMDP). The second part
introduces DTGolog systematically, beginning with the introducing of the formal logic called
the situation calculus in Section 2.2.1. Golog, presented in Section 2.2.2, is a programming
language based on the situation calculus. How Golog is extended to DTGolog is explained
in Section 2.2.3. The third part of this chapter (Section 2.3) introduces belief-desire-intention

theory, the foundation theory of the architecture developed in this dissertation.

2.1 Decision Theory

Suppose an agent can decide which state of the world it prefers by looking at certain attributes
of the world, somehow combining the values of these attributes and coming up with a single
real number reflecting its preference for the state the world is in. The agent could then consider
different possible worlds, and decide which of these it prefers being in. In utility theory, the
attribute values are called utilities. Let X4 be the vector of utilities the agent perceives when
in state A. The function that the agent uses to combine the utilities is called the agent’s utility
function U(X), where X is a vector of utilities and U returns a real number. Utility theory says
that an agent can and does attach utilities to attributes of its world, and that the agent has a

preference for one state of the world over another, based on its utilities [88, 20, 93, 107].

Imagine a scenario where U(X4) > U(Xp) for some agent considering states A and B. If the

agent knows that it will be in state A with probability 0.9 and in state B with probability 0.1
after doing the action GOy, and that it will be in state A and B with probability 0.5 each, after
doing the action GO,—then rationally, the agent should choose to GO,. This simple example
illustrates that agents should consider the probability of being in a state in combination with the

utility of the state when making decisions.

“Preferences, as expressed by utilities, are combined with probabilities in the general theory of

rational decisions called decision theory:
Decision theory = probability theory + utility theory,” [88, p. 465].

A person, robot or an agent in general may intend to step forward, that is, perform a ‘forward-
step’ action, but find that it slipped left (on a wet tiled floor, for example). This ‘forward-
step’ action is thus nondeterministic and the ‘slip-left’ action is one outcome of ‘forward-step’.
Let GO represent any one of an agent’s available actions. Suppose GO; is a nondeterministic
outcome of performing GO, with i ranging over all possible outcomes for GO and Pr(GO; | E)
the probability that GO will turn out as GO;, given E, where E summarizes the agent’s evidence
about the world. Decision theory claims that a rational agent should make the decision that will
maximize its expected utility (the MEU assumption) [88, 20], that is, Equation 2.1 is maximized

by choosing the action GO that results in the highest value:

EU(GO | E) = Z Pr(GO; | E) x U(X)), 2.1)

where X; is the utility vector of the state resulting from performing GO; in the current state.

2.1.1 Fully Observable Markov Decision Processes

Most of the theory in this subsection can be found in Russell and Norvig [88], Kaelbling ef al.
[48] and Boutilier et al. [11].

It has become convention to interpret ‘Markov decision process’ (MDP) as referring to the
fully observable Markov decision process (FOMDP). (FO)MDPs assume full observability of
the applicable system or environments. That means, after any action is executed, the resulting
state is deterministically/completely known. Furthermore, a Markov process makes the Markov
assumption: that the next state can be completely determined by knowledge of only the current
state and the action executed. That is, the next state is independent of any states that the system

was in before the current state.

An MDP is a decision process and thus facilitates making decisions as to which actions to take,

given its previous actions. That is, an MDP facilitates choosing actions in a dynamical system.

Lastly, in an MDP, utilities must be calculated additively [88]. This means the utility function

is essentially linear in the attributes.

Given these constraints, the class of Markov decision processes is large. The way in which the
MDP model is defined in the next section excludes otherwise feasible models. In other words,

the definition presented, selects the subclass applicable to the present research.

The Model

An MDP model is a tuple (S, A, 7, R, s°) such that
o S ={s1,5,...,5,} 1s a finite set of states of the world (that the agent can be in);

o A = {ay,a,,...,a;} is a finite set of actions; actions include those that the agent can

choose to execute and those that are the nondeterministic outcomes of the chosen action;

e 7 : SXAxXS — Ilis the state-transition function, a probability distribution IT over all
(world state, agent action, world state) triples (we write 7'(s, a, s”) to mean the probability

of being in s” after performing action a in state s);

e R: S — Ris the reward function, giving the expected immediate reward gained by the
agent, for any world state and agent action (we write R(s) to mean the reward gained for

being in state s)!;
e s is the initial state of the agent.

A state at step ¢ is denoted s’ and is defined by state features. Each feature can have a range of
values and each s; € S is a (unique) ‘snapshot’ of the state features and their assigned values.

Initially, r = 0.

To clarify the kinds of actions that make up A, consider this: at one time, a robot may choose
to execute a;, but the environment causes the action to be realized as a,; to an outsider, it would
seem as though the robot chose to do a,. At another time, the robot may intend to execute a,,
but the environment ‘chooses’ a; as the resulting outcome. Executing, say, a; may of course

have a; as an actual result.

7 represents how the agent’s actions change the world—more accurately, the likelihood that
the world will be in a certain new state, given a certain action is executed while the world is in
a certain current state. 7 is also called the transition model of the domain, because it models
system transitions. This work does not consider how to learn or calculate transition models; the

decision theoretic agents we consider here are supplied with a transition model.

IR : 8 x A — R is another definition for reward functions within the MDP model, however, our definition of
R suits our application better, and it does not affect the problems or their solutions fundamentally [88].

Figure 2.1: A state-transition diagram for two actions: L. (move left) and R (move right).

If state transitions are modeled differently depending on the number of steps taken, the system is
nonstationary. If the agent will have the same transition behavior from state to state, regardless
of the number of actions performed by the agent, then we say the agent is in a stationary system.

Only agents modeled in stationary systems are considered in this work.

The formalism used to represent an agent’s action and possible states is the state-transition dia-
gram [11] (also known as an influence diagram [20]). Figure 2.1 is an example state-transition
diagram with three states (circles) and two possible actions. An arc labeled a/p leaving state s
and entering 5" means that when a is executed in s, it is realized with probability p as the action
outcome that puts the agent in state s’. “A stationary Markov process can also be represented

using a [weighted] state-transition diagram” [11, p. 8].

The reward function R is essentially a kind of utility function.

Determining a Policy

Just as a single action can be chosen to maximize the utility expected in the next state, a se-
quence of actions (of a chosen length V) can be chosen that will maximize the expected utility
after a sequence of N actions. The optimality prescription of utility theory states: Maximize

“the expected sum of rewards that [an agent] gets on the next k steps,” [48].

A policy r is a conditional plan that tells a robot what action to perform when in any state.? For

each s € S, n(s) is the recommended action for an agent in s,

7. S—> A,

>Technically, a plan is executed by an agent from a specific initial state and it may simply be a sequence of
actions that the agent is expected to follow blindly. A plan may or may not be conditioned on observations. A
policy on the other hand, instructs an agent which action to take given any (predefined) state the agent may be in
and given the last observation. As such, a policy describes the behavior of an agent that employs the policy, but
one cannot say that the behavior of an agent is fully determined by the plan it is executing.

10

and because only stationary policies are considered, 7(s) always recommends the same action,
regardless of how the agent got there. A policy is necessary because a robot may never know
for sure in what state it will end up after it executes a (nondeterministic) action: due to nonde-
terminism, action recommendation is conditional on current state, not on action history. Given
the same initial state and policy, a robot’s action history (environment history) may well be dif-
ferent for different runs of N actions, due to the stochasticity in the environment. “The quality
of a policy is therefore measured by the expected utility of the possible environment histories

generated by that policy,” [88, p. 615].

The horizon of a process is the number of steps that will be considered before the total utility
collected by the robot or agent is assessed. For example, a process with horizon 9 will require
9 actions/steps to be taken before the total utility of the system is determined; before 9 steps,
the system cannot be in a desired state. A 9-horizon system will have an optimal policy if the
expected utilities collected is a maximum after exactly 9 steps from the initial state s°. A finite
horizon system is one that is not infinite’>—it considers a constant number of steps. The work
in this dissertation employs only finite horizons. The reason for this will become clear later in

this chapter.

The value V, ,(s) of a state s with respect to a specific policy r is the expected sum of rewards

for h steps* and is defined by Equation 2.2:

h
Vien(s) = E[PRGIE s]. (2.2)
t=0

Clearly Vo(s) = R(s) and Vy 1(s) = R($)+ L yes T (5, 71(5), sHR(S") = R($)+ 2 ges T (5, 7(s), s)V o(s).

In general, the value function is

Van(s) = R(s) + Z T (5,7(5), S)Wrn-1(5"). (2.3)
s'eS

There are various optimality criteria for policies. One criterion is that, on average, for any initial
state in S, the policy will yield the maximum possible expected rewards. In the present work,
we focus on the criterion that the optimal policy (denoted n*) for a finite horizon system (of
horizon h) is the policy that results in the maximum possible value for a specified initial state.

An optimal policy 7* thus satisfies

7°(s') = argmax (R(s') + Z T(s', a5V, (s*)), forall 0 <t < h. (2.4)

s*leS

Vi(s) is the value function that is independent of a policy. Note that ~# implies that 7* must

recommend 4 actions; 0 < ¢ < & ensures this.

3Infinite horizon systems have some advantages over finite horizon systems, but cannot always be used.
“Equation 2.2 can also be read as the value of the policy m—followed for h steps, starting at s.

11

1)
I

H

i‘

decision node

oNeoNe
L

chance node

!

Figure 2.2: A decision tree for deciding between two nondeterministic actions.

For some applications—in particular, the DTGolog planner [13] and its extension developed in
this dissertation—we do not require policies for an infinite horizon. One advantage of calculat-
ing finite horizon policies, is that 7*(s”) need not be defined when the agent knows it can never

reach states s’ given its horizon.

Boutilier et al. [11] showed how to determine an optimal policy by searching a decision tree; the
decision tree rollback procedure®. The procedure is one of the state-based search approaches
[11] to solve MDPs®.

To determine which actions the agent should perform, one expands the state-transition diagram
into a decision tree. If a robot is expected to perform N actions, a decision tree of depth N
is generated. Figure 2.2 is the expansion of Figure 2.1 to horizon 2. In Figure 2.2, squares
represent decision nodes, that is, at these nodes, the agent can ‘choose an action’ or ‘make a
decision’. The numbers in the squares indicate which state the agent will be in if it reaches that
point (via the unique path) in the tree. Circles are chance nodes, that is, certain events occur,
each with a probability, such that any one event at one chance node will definitely happen

(probabilities of branches leaving a chance node, sum to 1).

From the decision tree, a policy tree is generated, that provides the robot with advice on the
best action to take, for any state it may reach, for NV actions in succession. If a policy tree for N

actions is sought, we say a policy tree of horizon 4 is sought, where 7 = N. Figure 2.3 shows a

3Clemen and Reilly [20] explain in detail the method from the perspective of Decision Analysis.
®Value and policy iteration [88, 11] are two traditional, so called ‘dynamic programming’ approaches [11] to
solve MDPs, but these are outside the scope of this dissertation.

12

Figure 2.3: A policy tree recommending two actions (horizon of 2).

policy tree of horizon 2, derived from the decision tree of Figure 2.2.

The numbers ‘1°, 2’ and ‘3’ in the figure identify the state the agent observes. Recall that in
MDPs, full observability is assumed, which means that an agent modeled as an MDP always
assumes that it identifies its current state correctly. Initially the agent is in state 1 and thus there
is a ‘1’ next to the root decision node. The initial action recommended is L. After performing
L, the policy in Figure 2.3 tells the robot to execute R if it observes state 2 or to execute R if it

observes state 3.

For the following example, abbreviate state 1 as s;, state 2 as s, and state 3 as s3. Let the
immediate reward of each state be defined by a reward function as follows: R(s;) = i —for
simplicity. Each state can be reached with a certain probability (depending on the available
actions and their outcomes). Using state rewards and probabilities, each path from the root to a
leaf node determines a utility value (total expected reward) for that path. The path of N actions
resulting in the highest utility value must be chosen. But the path cannot be chosen prior to
execution time, because the outcome of any action is not known before an intended action is

executed.

The decision tree rollback procedure is now presented in detail. To illustrate the procedure, the
policy tree of Figure 2.3 is determined. The squares that are the leaf nodes in Figure 2.2 are
decision nodes, but the agent will already have performed two actions by the time it reached
a leaf node (leaf nodes represent states, not points of decision). So the last place an agent can
actually make a choice is in one of the decision nodes in the second last tier of decision nodes
(one of the four squares in this example). In this example, when at one of these last decision
points, the agent must choose to go left or right; the agent has one more action to perform before
its task is complete. No matter what rewards the agent has collected until this pre-last step, it
must greedily choose the action that will (finally) add the maximum expected reward. Hence,
if the robot first chose to move, say, left from the initial state and it nondeterministically ended
up in state 2 (the outcome was that it moved left), then it will get a reward of value 2 plus what
it expects to get after performing its next chosen action. But what should the robot choose to do
when in its initial state; move left or right? In this example, the robot should move left because

it can expect (probabilistically) to gain the most rewards by doing so:

13

W
w —_
3

: | <
H

,_.
(=)

Y
[

Figure 2.4: A decision tree showing probabilities of outcomes and expected rewards.

Figure 2.4 is the decision tree with information about the policy calculations shown. Crossed out
arcs should not be chosen by the agent. Only one such arc per decision node will not be crossed
out. Values above squares are total rewards expected to be gained after the ‘maximizing’ action
is performed, plus the reward of the current state. Values above circles indicate only future

expected rewards.

To conclude, using the example system behavior represented by Figure 2.1, the decision tree
rollback procedure is as follows: Use the reward function to find the reward of each of the leaf
nodes (squares in the last tier). Calculate the values above each circle in the last tier of the
decision tree. For example, the 1.7—printed large in the figure—equals 0.7 X 2 + 0.3 x 1. For
each square in the preceding tier, pick the action that leads to the circle with the highest value.
Add together this highest value and the reward of the state associated with the applicable square.
Write this sum above the applicable square. Calculate the values above the two circles in the
second-last tier. For example, the 4.7—printed large in the figure—is calculated as follows:
4.7 = 042 + 3) + 0.6(3 + 1.5). Pick left, because 4.7 is more than 3.88. Together with the
reward of 1 for initially being in s;, the agent executing the policy of Figure 2.3 can expect to

have gained a total of 5.7 rewards (after 2 actions).

14

2.1.2 Partially Observable Markov Decision Processes

Again, mainly Russell and Norvig [88], Kaelbling et al. [48] and Boutilier et al. [11] were

referenced for this subsection.

In partially observable Markov decision processes (POMDPs), actions have nondeterministic
results as in (fully observable) MDPs, but observations are uncertain. In other words, the effect
of some chosen action is somewhat unpredictable, yet may be predicted with a probability
of occurrence. However, in POMDPs, the world is not directly observable: some data are
observable and the agent infers how likely it is that the state of the world is in some specific
state. The agent thus believes to some degree—for each possible state—that it is in that state,

but it is never certain exactly which state it is in.

So, whereas in the MDP model, after any action, an agent will always know with complete
certainty what state it ended up in, in the POMDP model, the agent only knows to a degree in
what state it ends up. In fact, the agent maintains a probability distribution over the states to

reflect the conviction it has that it is in a state (for each state).

The Model

Formally, a POMDP is a tuple (S, A, 7,R,Q,0,b°). S, A, T and R are defined as for MDPs.
The other components of the POMDP model are:

o Q = {0p,01,...,0,} 1s a finite set of observations the agent can experience of its world;
the observation at time ¢ is denoted o'; to be clear, an observation is not a sensing action,
it is the information/data the agent has after or provided by each action with a sensory

aspect;

e O : SXA — II(Q) is the observation function, giving for each agent action and the
resulting world state, a probability distribution over observations (we write O(s’, a, 0)
to denote the probability of observing o in state s’ resulting from performing action a
in some other state; Russell and Norvig [88] write O(s, 0), meaning the probability of
observing o in state s); O represents the agent’s trust in its observations, given the context

of each observation;
e b is the initial probability distribution over all world states in S.

Kaelbling et al. [48] note that in the POMDP approach, there is no distinction made between
actions to change the world (for instance, robot actuator activity) and information gathering
actions (for instance, sensor activity of a robot). They mention that both kinds of action may
have both kinds of effect.

15

Actuators (a) with no sensory feedback will have O(s’, a, 0) = 0 for all s” and o, while actuators
like servo motors that provide information about the motors’ state, and sensors like sonars and
IR detectors, could have, for example, O(s’, a,0) = Pr,(o|s’), where Pr, is the error profile of

motor or Sensor a.

Pineau [76] gives the history of the agent’s activities as the sequence (ag, 01, . .., 0;-1, Q;_1, 0;).
Note that for every action there is an observation. Observations are not sensing actions; they are
the data the agent has after an action. This implies that a “pure locomotive’ action will result
in a null observation; only actions with some kind of information gathering component will
result in non-null observations, and actions that are overtly sensory, will result in the greatest
amount of observation. An example of a ‘pure locomotive’ action could be the activity of a
robot’s shoulder-joint actuator—the actuator does not produce feedback information and is thus
a simple motor. A motor that supplies some data about its activity, and these data are captured
by the robot’s high level control system, would not be purely locomotive; such a motor has
some sensing component, and actions produced by this motor would be associated with one
or more non-null observations. An important function is the function that updates the agent’s
belief: Kaelbling et al. [48] call this function the state estimation function SE(b, a,0). b is a
set of pairs (s, p) where each state s is associated with a probability p, that is, b is a probability

distribution over the set S of all states. b can be called a belief state. SE(-) is defined as

O(s',a,0) Y s T (s,a, sHB(s)
Pr(o | a,b) ’

b'(s') = (2.5)

where b'(s”) is the probability of the agent being in state s’ at time-step ¢.

Equation (2.5) is derived from the Baye s Rule. Pr(o | a, b) in the denominator is a normalizer; it
is constant with time. Note that SE(-) requires a belief distribution, an action and an observation
as input; with every action there is an accompanying observation. SE(-) returns a new belief

distribution for every action-observation pair. A procedural view of SE(-) could be as below.

Procedure SE(o, a, b,;;)
1 forall states s € S do
2 L bnew(s) = PI’(S | O’a,buld)

3 return b,,,,

The state estimation function captures the Markov assumption: a new state of belief depends

only on the immediately previous observation, action and state of belief.

Determining a Policy

Again, for any set of sequences of actions, the sequence of actions that results in the highest

expected reward is preferred.

16

When the states an agent can be in are belief states, we need a reward function over belief states.
We derive Rb(b) from the reward function over world states, such that a reward is proportional

to the probability of being in a world state. That is

Rb(b) = Z R(s) X b(s).

seS

Now the aim of using POMDP models is to determine recommendations of ‘good’ actions or
decisions. Formally, a policy 7, in POMDP theory, is a function from a set of belief states B (all

those the agent can be in) to a set of actions:
n:B—-> A (2.6)

That is, actions are conditioned on beliefs. So given b°, the first action a’ is recommended by
n. But what is the next belief state? This depends on the next observation. Therefore, for each
observation associated with a’, we need to consider a different belief state. Hence, the next
action, a”’, actually depends on the observations associated with and immediately after a’. In
this sense, a policy can be represented as a policy tree, with nodes being actions and branches

being observations. Function (2.6) is thus transformed to
7:Q— A (2.7)

In this sense, a policy is independent of agent beliefs.

The value function over belief states is defined as the value Vb, ;(b) of a belief state b with
respect to a specific policy z. It is the expected sum of rewards for 4 steps and is defined by

Equation 2.8:

h
Vban(b) = E[D Rb(b') | 7, b° = b]. (2.8)
t=0

Note that, on the right-hand side of Equation 2.8, the policy n is given. This implies that the

value of function Rb(:) is affected by choices recommended by 7 at each step.

To find the expected probability of observations with respect to the next belief state b’, a sum-
mation is performed over all observations—there is a new belief state for each observation
considered (cf. Figure 2.6). That is, the POMDP value function is

Vb, 1(b) = Rb(b) + [expected future rewards]

= Rb(b) + Z[(utility of belief state reached via 0) X (prob. of being in new belief state)]
0eQ)

= Rb(b) + Z Vbyp1(b)Pr(o | a,b)

0€Q)

17

where b’ = S E(o, a, b) and where the probability of being in the new belief state is Pr(o | a, b),
which is defined as

Pr(o | a,b) = Z O(s',a,0) Z b(s)T (s, a, s'). (2.9)

s'eS SES
Pr(o | a,b) (cf. [19]) is the expected probability of reaching a new belief state s’ taking into
account all possible transitions from states in the old belief state, and the expected likelihood of

observing o in s’.

Now the optimal policy n* for a POMDP with planning horizon £ (from the initial belief state)
is definable:
n* = arg max(Vb, ,(b°)). (2.10)

This is the policy that will advise the agent to perform actions (given any defined observation)

such that the agent gains maximum rewards (after / actions).

new belief state

new belief state
current

belief
state

new belief state
O;

new belief state

Figure 2.5: One tier of a belief-decision-tree.

To implement Equation (2.10), a belief decision tree is used’. An example sub-decision-tree
(one tier) is shown in Figure 2.5. This example is based on an environment / agent model where
the agent can only go left or right as depicted in Figure 2.1. Also, the agent may make two
kinds of observations (O; and O,) if it chose to go left, and another two kinds of observations

(O3 and O,) if it chose to go right.

Belief states (triangles) in the belief-decision tree (simply ‘decision tree’ from now on) are

decision nodes, and circles are again chance nodes.

The chance nodes reached first and the branches leaving them could have been left out of the
diagram; they were included however, to illustrate the sequence of events that occur between
consecutive belief states. The go left, slip right, go right and slip left branches are nature’s
realizations of the agent’s decisions. The two pairs of action outcomes converge again because

each single ‘realization” does not determine a separate belief state. Expressed a different way,

"t is the expansion of a dynamic decision network (DDN) as in Russell and Norvig’s book [88].

18

if the ‘nature’s choice’ branches did split into separate subtrees, for the agent to make use of
the decision tree for decision making purposes, it would need to determine (in the future) which
action nature chose, so that the agent could know which subtree to follow. However, only ob-
servations bring in information. This is why there is a new belief state for each observation: the
agent’s beliefs turn out differently depending on what it observes. No matter what the observa-
tion, given the agent’s intended action, the same whole set of nature’s choices is considered in

the calculation of the new belief state.

The discussion in the previous paragraph is reflected in Equation (2.5), where a new belief state
is calculated for a single observation and for all realizations of the intended action. Notice that
the summation is over all states, which in effect employs the state transition function for each

state, that is, for all nature’s choices.

A more conventional representation of Figure 2.5 is shown in Figure 2.6. It can be thought of as
being modeled on a ‘belief-MDP’. This is because it has the same structure as ‘regular’ MDPs,

howeyver, its states are not world states, but belief states.

new belief state

left new belief state
current

belief
state

new belief state

new belief state

Figure 2.6: A conventional belief-decision-tree.

Employing the rollback procedure [11, 20], we roll back a decision tree to ‘decide’ the action.
In any decision tree, for each action-observation pair, there is a tier of sub-decision-trees (such
as in Figure 2.6). That is, when considering N actions in a row, a decision tree with N tiers
would be required. There is a unique path from the initial decision node to each leaf node, and
at each belief state encountered on a path, a reward is added, until (and including) the leaf belief
state. At this point, the agent knows the total reward it would get for reaching that final state of

belief. Each of the belief states is reachable with some probability.

At each decision node, a choice is committed to. Iteratively roll back—from last decision nodes
to first decision node. The agent can in this way decide at the first decision node, what action
to take. Each subtree rooted at the end of the branches representing the agent’s potential action,
has an associated expected reward. The action rooted at the subtree with the highest expected

reward, should be chosen.

19

®» o6 6o O

Figure 2.7: A generic representation of a policy tree for POMDPs.

An agent can choose only its actions (the best), not what it observes. Therefore, a policy rec-
ommends actions conditioned on observations. See Figure 2.7 for a generic representation of a
POMDP policy tree. Note that a policy for POMDPs is conditioned on observations, not states
as in MDPs. As the decision tree is rolled back, the best decision/action is placed into the policy,
conditioned on the most recent possible observations. Using such a policy tree, the agent can
always choose the appropriate action given its last observation. This is the essence of the theory
on which the POMDP planner presented in Chapter 4 is based. An example policy calculation

for an horizon of 1 can also be found in Chapter 4.

2.2 Decision Theoretic Golog

DTGolog = DT + Golog (DT stands for ‘decision theoretic’ here). The situation calculus is
introduced first, because it is the basis of Golog. Then the Golog language and a decision

theoretic dialect, DTGolog, are introduced.

2.2.1 The Situation Calculus

The situation calculus [66] is a first order logic (FOL) dialect for reasoning about dynamical
systems based on agent actions. Actions and situations are reified to be objects in the language.
The outcomes of a bout of reasoning in the situation calculus is meant to have an effect on the
environment outside the agent. When an agent or robot performs an action, the truth value of

certain predicates may change.

A special function symbol do is defined in the situation calculus. do(a, s) is the name of the
situation that results from doing action « in situation s. Note that do(a,,do(ay, s)) is also a
situation term, where a, and a; are actions. In the situation calculus free variables are implicitly

universally quantified.

For example, if a robot is holding a stone, the predicate HoldingStone(r, s) (robot r is holding a

20

stone in situation s) is true, but when the robot does action drop_stone, HoldingStone(r,
do(drop_stone, s)) should become false. Predicates and functions whose value can change due
to actions are called fluents. Fluents have the situation term (s, do(-, s), etcetera) as the last

argument.

To reason in the situation calculus, one needs to define an initial knowledge base (KB). The
only situation term allowed in the initial KB is the special initial situation S . S is the situation

before any action has been done.
There are two more special formulae:

1. The precondition axioms are formulae of the form Poss(a, s), which means action a is
possible in situation s (—Poss(a, s) means it is not possible). Precondition axioms need to
be defined for each action. For example, if a robot 33 has only one arm and gripper, and
the gripper is already holding a stone (in situation s”), that is, HoldingStone(rs3, s’) is true,
then r33 cannot pick up something else; and then = Poss(pick_up(rs3, other_stone), s’) is

true. The precondition axiom for the action pick_up(r, x) could be defined as follows:

Poss(pick_up(r, x), s) = ~HoldingStone(r, s).

2. Successor-state axioms are formulae that define how fluents’ values change due to actions.
There needs to be a successor-state axiom for each fluent, and each such successor-state
axiom mentions only the actions that have an effect on the particular fluent. Suppose
there is one more action in our language: step_forward(r), meaning that robot r steps one
step forward. Because stepping forward does not (usually) influence whether a robot is
holding something, we could define the following successor-state axiom for the fluent

HoldingStone(r, s):

HoldingStone(r,do(a, s)) = Ax.a = pick_up(r, x) V
HoldingStone(r, s) A a # pick_up(r, x).

Note that step_forward(r) is not mentioned in the above formula because it does not have
an effect on the value of HoldingStone.
For reasoning in the situation calculus to be correct, the following is required:
e X the four fundamental axioms for situations [84, Section 4.2]);
e 9D, all successor-state axioms;
e D,,, all action precondition axioms,

o D,.., the set of unique names axioms for actions;

21

e Dy, the set of formulas specifying the initial situation; and

e a formula that captures the functional fluent consistency property (refer to Reiter [84] for
details).

Let D =X U Dy, U Dy, U Dy U Ds,. Then D together with the functional fluent consistency

property is the basic action theory.

Please refer to Reiter’s book [84] for a detailed explication of his version of the situation calcu-
lus, including a description of the famous frame problem and how the successor-state axiom is a
solution to this problem. Alternatively, refer to [14] for a one-chapter coverage of the situation

calculus.

2.2.2 The Golog APL

Golog is an agent programming language (APL) developed by Levesque et al. [63]. It is based
on the situation calculus. It has most of the constructs of regular procedural programming
languages (iteration, conditionals, etcetera). What makes it different from software application
programming languages is that it is used to specify actions and to control agent behavior via
simple or complex constructs that are intended to be executed in the real world or a simulation
of the real world. That is, Golog programs essentially constrain the search space of available
actions, and provide a powerful means to specify and implement dynamical systems. Given a
background action theory and an initial situation, an agent can directly execute an input program
that specifies its expected behavior, that is, what the programmer expects the agent to do or how

the programmer expects the agent to reach a goal.

Complex actions can be specified by combining atomic actions. The following are all complex

actions (where a subscripted is an atomic action and ¢ is a formula):

e while ¢ do a; (iteration of actions);

¢ ?: a; (test action);

if ¢ then a, else a, (conditional actions);

ai; ay; . ..;a; (sequence of actions);

a; | a; (nondeterministic choice of actions);

9x.(a;) (nondeterministic finite choice of arguments—of x in a;).

Let A be a complex action (also called a program) in the Golog language. Levesque et al. [63]
defined the Do(-) macro procedure to interpret programs: Do(A, s, s”) holds if and only if the

complex action A can terminate legally in s when started in situation s.

22

Imagine a robot (robot5) that must collect stones one by one and deposit them on a predefined
‘heap’ location. But if the robot notices that its battery is running low, it must rather recharge its
battery at the recharge station. Then robot5 must either look for a stone or get a new instruction

from ‘Control Center’. A program (P) to control robot5 might look like this:

[if —BatteryLow(s)
then (HoldingStone(robot5, s)? : [while (As")-AtHeap(s") do gotoHeap; dropStone])
else (gotoRechargeStation; while (3s”)BatteryLow(s"") do charge)];

[lookForStone | getNewlInstruction).

Suppose S 13 represents robotS’s current situation and s’ is a situation variable, then Do(-) can
be used to find out what situation the robot will be in after executing program P from S 3:

D E Do(P,S 13, s") where D is the basic action theory for robot5. (|= means logically entails.)

To illustrate how Golog can be employed for planning, suppose program P’ is an uninstantiated
variable. And suppose S 3 and D are as before, and that S, represents the situation in which the
heap has ten stones on it: HeapHas(10, S tones, S ;). Thenif O | Do(P’, S 13,5 ,), P’ represents

a plan for robot5 to get from S 3 to S .

2.2.3 DTGolog

Decision-theoretic Golog (DTGolog) [13] is an extension of Golog to reason with probabilistic
models of uncertain actions. The formal underlying model is that of fully observable Markov
decision processes (MDPs)—a useful model in robotics, as most robots operate in environments

where actions have uncertain outcomes.

The DTGolog interpreter however, does not simply ‘perform’ the program that it is given, but
calculates an optimal policy based on an optimization theory: the decision tree rollback proce-
dure for fully observable MDPs (cf. Sections 2.1.1 and 2.1.2).

In DTGolog, one captures the nondeterministic aspect of MDPs with the stochastic predicate
and the prob predicate. stochastic(a, s, n) determines the actual action performed in some sit-
uation s given action a was decided on by the agent; stochastic chooses from a finite set of
deterministic actions. Thus DTGolog interprets the nondeterminism in a deterministic fashion.

prob(n, p, s) determines the probability p with which 7 is the outcome in s.

Further, to stay within the (fully observable) MDP framework, Soutchanski [100] specifies the
senseEffect(a) procedure that the agent uses to identify which action nature chose to perform
for the robot instead of the robot’s choice. senseEffect(a) is defined by the system axiomatizer,

and “these domain specific axioms define procedures that consist of one or a sequence of pre-

23

specified sensing actions that will be executed after a stochastic action,” [100, p. 152]. This
means that a DTGolog-agent is omniscient but not divining. The world is fully observable to
an omniscient agent, but they cannot predict the outcome of their actions. Soutchanski [100]
defines choice’(a) = {ny,...,n); ny ..., n; are the k actions® that nature could ‘choose’ for the

agent’s intended action a.

BestDo takes on the role of Golog’s Do, but BestDo supplies an optimal conditional plan (pol-

icy). For stochastic actions,

BestDo(a; rest, s, h,m, v, pr) =
An’,v'.BestDoAux(choice’(a), a, rest, s, h,n’,v', pr)A

= a; SenseEffect(a),n’ A v = reward(s) +V'.

e q;rest is the input program, with a the first action in the program and rest the rest of the

program.

e s is the situation term. When BestDo is initiated, s will be S, the initial situation.
e h s an input; the horizon of the policy that should be sought.

e 7 returns the policy.

e v is the accumulated value of rewards, used to choose the optimal conditional sequence

of actions.

e pr returns the probability with which the input program will be executed as specified,

given the policy and the effects of the environment.

BestDoAux takes care of nature’s choices of actions deterministically (see below).

BestDoAux({n,,...,n},a,rest, s, h,m,v, pr) =

—Poss(ny, s) A BestDoAux({n,, ...,n},a,rest, s, h,m,v, pr)v

Poss(ny, s) A dn’ V', pr’ .BestDoAux({n,, . ..,n}, a, rest, s, h, 7', v, pr')A
dny, vy, pri.BestDo(rest,do(ny, s),h — 1,7, vy, pri)A

SenseCond(ny, p1) A m = if ¢; then 7, else 7’ endif A

v =V +v - prob(ny,a,s) A\ pr=pr + pry - prob(ny,a, s).

For any action n, SenseCond(n, ¢) supplies a sentence ¢ that is placed in the policy being gen-
erated. ¢ holds if and only if the information supplied by the sensors due to SenseEffect(a) can

verify that action n was performed. In other words, ¢ is the ‘conditional’ part of the policy:

8Note that no situation term is involved in choice’: Soutchanski [100] also defines choice(a, a;, s) to hold in
situation s if @; is an outcome in nature of intended action a in s. In the sequel, only the simpler choice’(a) is used.

24

after an action execution, an agent selects the next action conditioned on the truth of ¢ .

When either of two actions ¢; and ¢, can be performed, the policy associated with the action
that produces the greater value (current sum of rewards) is preferred and that action is included
in the determination of the final policy 7. This formula captures the idea that is at the heart of

the expected value maximization of decision theory:

BestDo([01|0,]; rest, s, h,mt,v, pr) =
Any, vy, pri.BestDo(61; rest, s, h, my, vy, pri) A
An,, vy, pry.BestDo(6,; rest, s, h, ma, va, pry) A
((v1,61) 2 (v, 0) Am=my Av =V A pr=pr)V

((vi,01) < (v, 02) AT =71 AV =Vy A pr = pra)).

2.3 BDI Theory

The main components of the model for belief-desire-intention (BDI) agent architectures are:
a set of beliefs, a set of desires, some intentions, plans that are more or less complex, and
procedures for commitment to and reconsideration of intentions. Intentions are based on beliefs
and desires, and plans are recipes of behavior to reach a goal or complete a task. Intentions are
plans that have been committed to. Furthermore, future beliefs are influenced by past intentions,

completing the circle.

It must be understood from the preceding paragraph that the components of the BDI model are
not easily described one after another in a modular manner. Instead, the component concepts
are co-dependent. This co-dependence means that the BDI model is better described in two
passes, starting in general, somewhat informal terms, then in the second pass, defining the
components formally—as far as is sufficient and necessary for this dissertation. In this section,
due to the co-dependence of concepts and due to the two passes being made, some repetition
is inevitable. Sections 2.3.1 and 2.3.2 constitute the first pass. Section 2.3.3 is the second
pass, however, before heading straight into the formal body, the reader should first become
familiar with key terms that will be referred to in later sections. The key terms are defined in
Section 2.3.3. In Section 2.3.4, the reader will find some examples of existing implementations

of BDI architectures.

2.3.1 Practical Reasoning and Folk Psychology

In folk psychology, we explain our actions with terms such as know, think, believe, want, need,

prefer, goal, desire, should, able to, impossible, intend, plan and act or action. We infer our

25

mental state or mental attitude by observing our behavior and labeling the attitude with such a

term. And we communicate our mental states using these terms.

We place much importance in the mind-set of a person when studying his/her actions. That is,
we deem their intentions as important (that is, the person’s focus of attention and commitments
are deemed important). For example, when one hurts somebody on purpose—with the aim of

inflicting pain—one acts with the present intention of hurting; ‘acting with intent’.

We also talk about having intentions to do something in the future. This is a different kind
of intention from present intention. Future directed intention concerns fixing on a goal to be

achieved in the future.

In everyday language, we—folk psychologists—regularly use the concepts (mental states/

attitudes) of belief, desire and intention to talk about and explain our behavior. In the philosophy
of practical reasoning’, these three concepts are also used, amongst others. Each of belief,
desire and intention (as mental states) is given much attention in practical reasoning. In fact,
Bratman [15] put forward a theory of practical reasoning whose main elements are the belief,
desire, intention and plan, to explain some aspects of human behavior. Bratman, in his theory,

places much emphasis on especially intentions as related to plans.

Another philosopher, Dennett [25], expounds on the convention people have of viewing a com-
plex system as having intentions. He proposes that we take such a view or ‘stance’ to facilitate
our understanding of and reasoning about systems that are so complex that we cannot hold a
correct, clear model of their internal processes. We might be able to take the design stance
with relatively simple devices such as a kettle, a clutch-pencil or even a 1980s-type automo-
bile. The design stance is to explain to ourselves how things behave by considering how they
are designed. But when one thinks about a 2020s-type automobile, it may be so complex and
seemingly with a degree of intelligence, that the design stance would fail one if one were to try
explain the vehicle’s behavior. The view that would most assist us in thinking about (explain-
ing) the behavior of such an ‘intelligent’ vehicle, would be to subjectively assign intentions to
it. That is, we could think of it as having intention. This is the intentional stance. Conceiving
of complex systems in terms of intentions allows people to hide the confusing complexities of
the system and allows people to reason about the systems in a quite efficient, compact manner.
Software agents and autonomous robots can be some of the most complex systems in existence,

and are thus prime candidates for us to take the intentional stance towards.

Mentioned here is the philosophical and psychological seeds of a theory of practical reasoning
for agents. Bratman’s theory [15] asserts the importance of intentions for planning of behavior
and Dennett’s intentional stance theory [25] adds veracity to designing and reasoning about

agents with intentions. The next section introduces and informally discusses the BDI theory of

?Practical reasoning is reasoning about people’s physical actions, whereas theoretical reasoning is reasoning
about people’s knowledge [114].

26

practical reasoning.

2.3.2 BDI Theory—Informally

Bratman [15] has developed a theory of practical reasoning that includes intention as a distinct
mental state; distinct from the mental states of belief and desire. He argues for the necessity
of intentions to influence and constrain plans and planning in intelligent but limited agents.
Bratman accounts for present-directed and future-directed intentions, that is, acting with inten-
tion and intending to act in the future. In particular, he shows that future-directed intentions
cannot be reduced to “clusters of beliefs and desires”, and he says that a person’s intentions
involve a special commitment to action that ordinary desires do not. He says that desires and
intentions are pro-attitudes—they inspire a volition to act, however, “intentions are, whereas
ordinary desires are not, conduct-controlling pro-attitudes. Ordinary desires, in contrast, are

merely potential influencers of action,” [15, p. 16].

Rao and Georgeff [82] give another justification and explanation for the need for intentions.
They say that beliefs are needed as the ‘informative’ component of a system state. Desires
provide objectives for the system to accomplish; the ‘motivational’ state of the system. To
control the balance between always replanning and never replanning (until the whole plan has
been executed), the system must represent the “currently chosen course of action” called the

system’s intention: the ‘deliberative’ component of the system state.

Computational systems such as BDI agents “provide the essential components necessary to
cope with the real world,” [38, p. 2]—a world that is changing, where access to information is
partial and where uncertainty prevails. Georgeff [38] explains why these components are es-
sential: Belief is necessary for the usual reasons of the necessity for representation—the ability
to keep information that is not directly perceivable and to use this information to make more
effective decisions. A desire is thought of as a goal. Georgefl sets off goal-orientated com-
putation against task-oriented computation. Task-oriented computation “is executed without
any memory of what is being executed,” [38, p. 4]. This means that such computation cannot
easily recover from failure and cannot take advantage of opportunities. Decision theory is goal-
oriented and when failure occurs; traditional decision theory will replan as soon as the failure
occurs. The other extreme—as seen in task-oriented computation—is never to replan, but to

continue attempting to execute the plan.

Practical reasoning can be divided into deciding what to do and determining how to do it [15].
Wooldridge [114] calls these two processes deliberation'® and means-ends reasoning respec-

tively. In the context of practical reasoning, deliberation means deciding on goals to pursue

10“Deliberation’ in robot architectures and ‘deliberation’ in BDI agent models mean different things. Delibera-
tion in BDI models does not include planning, general problem solving nor meta-level control.

27

sensor

-

input "<

. action

\~

_ _ _, information flow

, control flow > output

Figure 2.8: Schematic diagram of the generic belief-desire-intention model.

and means-ends reasoning means determining plans to achieve those goals (for now, consider
means-ends reasoning and planning as synonyms). These two processes are computational, and
as such, they require computer power, time and memory [113]. Any agent has a limit on the
amount of computing power and memory, and because this work’s focus is on agents living in
the real world, they have real-time constraints. The agent thus has a limit on the time available
to it before action must be taken. Agents with these limits are called resource-bounded agents
[16].

A plan-based agent could reconsider its goals and plans after every update of its beliefs to
keep its plans relevant. This may however lead to always thinking and never acting. On the
other extreme, an agent could always act out its plans and never rethink its planned actions.
This leads to the agent executing a plan that will be invalid with increasing likelihood as time
passes. If intentions were to be fanatically followed, this would reduce to the case of never
rethinking/reconsidering its intentions. On the other hand, an intention that is not committed
to, that is, if it does not persist, it was not really an intention in the first place [113]. This is
where commitment and reconsideration strategies come into play—they tell the agent when to
consider new goals and plans for goals, that is, when to reconsider its intentions [15, 113]. But
without intentions, there is nothing to reconsider. Intentions as commitments to some courses

of action are thus essential for an agent to even attempt balancing its thinking and acting.

28

Figure 2.8 shows the model of an abstract BDI agent (adapted from Wooldridge [111]). update
updates the agent’s beliefs, wish creates a ‘wish-list’ of desires to pursue and focus decides on
a subset of desires to seriously pursue as goals. More detailed models shall be seen in later

sections.

To reiterate and clarify, practical reasoning is the decision-making or thinking of rational agents.
The two main components of practical reasoning are reasoning about goals (goal selection) and
reasoning about plans (goal pursuit). The real world changes, so replanning in cases of plans
becoming invalid is essential. However, we would like to control when to replan, that is, we
would like a mechanism to decide the level of commitment to plans. Intentions are plans that
have been committed to. With the concept of an infention available to an agent, it can more
easily reason about intentions, periodically dropping invalid intentions and instantiating new
intentions as necessary in the current dynamic situation, with the situation’s particular rate of
change [38]. A system designed with beliefs, desires and intentions, together with plans “as a

special kind of Belief” is what is known as a BDI agent [38].

Intentions can be formed, maintained and modified [81, 24]. Intentions are maintained by
means of a commitment strategy. Intention maintenance concerns the commitment to single
intentions that have already been adopted; whether an intention should be abandoned or main-
tained. Intention modification happens “in the light of changing circumstances,” [81] through
re-deliberation. An intention is scrutinized as to its applicability in light of new information.

Maintenance and modification of intentions will be covered in Section 2.3.3.

Next is a more detailed discussion of plans in the light of BDI theory. Then, in Section 2.3.2,
intention formation is introduced and further motivation is provided for why intentions are a

central concept in the BDI model, and the roles that intentions play in the model are mentioned.

Partial Plans

Any intelligent agent will utilize plans. Plans have at least two uses, to reason whether a goal
is achievable and as a recipe for achieving a goal. One way to view a plan for BDI agents
is as a (pre-written) recipe. Such a plan to achieve an intention has a post-condition that
matches/unifies with the intention, that is, with the goal/objective of the intention, and a pre-
condition that is satisfied by the agent’s current beliefs. An intention is often represented as a

ground atom of first-order logic [113].

A partial plan is a coordinated set of abstract or vague activities. Such activities need to be
‘filled in’ with detailed plans—structured primitive actions. According to Bratman, we are
not frictionless deliberators [15]: An agent with limited capabilities cannot, without inordinate
cost, constantly redetermine “what would be the best thing to do in the present, given an updated

assessment of the likelihood of” [15, p. 28] its own and other agents’ future actions. If we create

29

concrete plans about the future, in many cases such plans become inapplicable. We rather settle
on partial plans in advance and only reconsider them when we run into problems. So doing, we
save our planning and deliberation resources for dealing with specific situations reactively and

for attending to goals. Thus people use partial plans extensively.

There are two important demands on partial plans, (1) plans in general must be consistent, both
internally and with the agent’s beliefs, and (2) partial plans must be means-ends coherent, that
is, relevant parts of the plan must be sufficiently filled in in time for the plan to be executed
successfully. The abstract subplans can be filled in only when they are needed and thus when
they can make use of current knowledge (knowledge that will be current in the future, and
applicable to the subplan being filled in). Because intentions are similar to plans, intentions

must also adhere to these two demands.

In BDI models, an agent must be capable of doing reasoning over existent partial plans, besides
means-ends reasoning for plan generation. This entails knowing when and how to add details

to partial plans. Pollack says

[...] agents must be capable of committing to partial plans. If they were required always to
form complete plans, they would over-commit, and filter out too many subsequent options
as incompatible. But this then entails that [...] agents must have a way of deciding when to
add detail to their existing plans—when to commit to particular expansions of their partial
plans. [38, p. 7]

In the cognitive processes of a human, the distinction between what is an end (objective) and
what is a means to the end (plan) is not clear. For instance, a means for achieving some end may
be a sequence of lower-level or finer grained ends. And these lower-level ends could possibly
be refined into sequences of ends that are at even lower levels. Now, one can see that an end
represents a means, or viewed differently, there are no means, only hierarchies of ends. So when
Bratman says that an intention is a commitment to a course of action, he is not committing to
whether the intention is a means or an end: we “frequently reason from [...] a prior intention
to further intentions [....] from more general to more specific intentions,” [15, p. 17]. Ignoring
whether an intention is a commitment to means or ends is troublesome in practice. Hence, in

Section 2.3.3, this aspect of commitment will be formalized.

Desires and Intentions

Intentions are plans or goals that have been committed to.

Intention formation is deliberation proper, that is, it is intention selection. Intention mainte-
nance and modification do not concern selection. The formation of intentions is the job of
deliberation. Deliberation can be divided into two processes: option generation and filtering of

goals [113]. It will be argued later that this definition is not adequate in general.

30

Desires need not be mutually consistent nor consistent with the agent’s beliefs. Also, desiring a

goal puts no demand on the agent to “settle on some means” to achieve the goal [15].

Bratman [15] distinguishes between a plan as an abstract structure, and a plan as a mental
state. The former can be thought of as a procedure in memory that may be called upon when
needed; the latter kind involves “an appropriate sort of commitment to actions,” [15, p. 29] as
in ‘Don’t worry, I have a plan.” Plans understood as mental states are “intentions writ large,”
according to Bratman. Intentions naturally apply to the coordination of partial plans, because
partial plans have to include reasoning about the future, and (future directed) intentions concern

future reasoning.

“Intentions are the building blocks of larger plans,” [15, p. 32]. This does not mean though,
that all intentions are formed through the process of planning—an intention may be formed by
a separate psychological process, for example, coming across a picture in a book that reminds

one of (awakens a) desire.

Prior intentions and plans provide reasons for actions in a different way to how beliefs and
desires do [15]: intentions provide a framework for the choice of options via “demands for co-
herence and consistency”, they do not provide input to the decisions for weighing alternatives—
such weights are provided by beliefs and desires. A rational person will attempt to make her
‘later’/‘derived’ intentions consistent with her ‘prior’ intentions, consistent with one another

and consistent with her beliefs [15].

Intentions provide control in the BDI model in that they allow the agent to be reasonable or
effective by balancing deliberation and action: An agent should commit to a course of action at
some point, and then devote resources to achieving the course of action. Such a commitment to

a course of action is what we call an intention.

According to Pollack “Bratman’s Claim” is that “rational agents will tend to focus their practical
reasoning on the intentions they have already adopted, and will tend to bypass full consideration
of options that conflict with those intentions,” [38, p. 6]. As support for Bratman’s Claim, it
explains one way how agents can act reasonably with bounded resources: a reasonable resource-
bounded agent will “avoid getting lost in the morass of options for actions available to it” [38,

p. 6] by some strategy for committing to plans.

Pollack [38, p. 6] distinguishes between models that employ the folk-psychology concepts of
belief, desire, and intention: those that do and those that do not incorporate Bratman’s Claim.
In this dissertation, when talking about BDI models, we shall mean those that incorporate the

claim.

In combination, future-directed intentions and partial plans help support coordination and ex-
tend the influence of practical reasoning over time [15]. Further, Bratman argues that the idea

of future-directed intentions implies an element of commitment, but that they are not irrevoca-

31

ble. If an intention to act were irrevocable, it could just as well be decided at the moment of
the act, making intention (about the future) a waste of time. But then comes the question, if
all intentions are revocable, are they worth anything? And more, if they are worth something,

when should a rational agent reconsider its commitment to plans and intentions?
Wooldridge [113, 114] summarizes the roles of intentions as follows.

e Intentions drive means-ends reasoning. They are pro-attitudes: if I have an intention, I
will formulate plans to achieve it. “They tend to lead to action,” [114, p. 67]. And in
this sense, they are stronger than the pro-attitude of desire, because desires are “merely

potential influencers,” [114].

e Intentions persist. Intending implies committing for an extended period. However, an
intention should be dropped by a rational agent if it is believed already achieved, believed
unachievable or believed that its post-condition is no longer required. An agent will keep
on trying to achieve an intention for as long as it is reasonable, even after failure to achieve
it.

e Intentions constrain future deliberation. An agent should not entertain options (desires)
that are inconsistent with current intentions. In other words, a reasonable agent should
not adopt a new intention if it conflicts with existing intentions. And existing intentions

have preference because they are persistent.

¢ Intentions influence beliefs upon which future practical reasoning is based. Intentions
must be consistent with beliefs. Therefore, if the situation changes such that some inten-
tion could become inconsistent with some belief, the agent may decide not to update its
beliefs in such a way, instead of abandoning the conflicting intention. If an agent believes
that a situation may occur in which an intention will be satisfied and at the same time the
agent believes there is another situation in which the intention cannot be satisfied, it is
called belief-intention incompleteness. If an agent believes that no situation may occur
in which the intention will be satisfied, yet adopts or maintains the intention, it is called

belief-intention inconsistency.

2.3.3 A Formal Model of BDI Agency
Sorting-out Terms

To clarify concepts, the following terms are now formally defined motivation, desire, goal, o-
intention, p-intention, recipe, policy and plan. Terms planning, deliberation and achievement

are also clarified.

A motivation is a (pre-programmed) specification of one element of an agent’s innate drive.

32

Together, all an agent’s motivations determine all the states (ends) the agent would ideally like
to be in over its lifetime. Motivations may not be directly accessible by the agent, and are
typically regarded as part of the agent’s background knowledge base. In this work, an agent’s

motivations are assumed not to change—they remain fixed during its lifetime.

As discussed before, there are ends/objectives/goals and means/procedures/recipes for achiev-
ing them. We shall call the former objectives and the latter plans. Hence, an objective is a
reference to a desired state and a plan is a structure of actions and rules for how/when to exe-

cute the actions.

Desires are a subset of objectives—as specified by motivations—that an agent would ideally
like to pursue/achieve, according to its current beliefs. Desires need not be mutually consistent
nor consistent with the agent’s beliefs. Also, desiring a state puts no demand on the agent to

“settle on some means” to achieve the state [15].

“Although, in the general case, desires can be inconsistent with one another, we require that
goals be consistent. In other words, goals are chosen desires of the agent that are consistent.
Moreover, the agent should believe that the goal is achievable. This prevents the agent from
adopting goals that she believes are unachievable and is one of the distinguishing properties of
goals as opposed to desires. Cohen and Levesque [Cohen and Levesque, 1987] call this the
property of realism,” [81, pp. 2-3].

An agent will deliberate to choose a subset of desires, which are then its set of goals. While it
deliberates, it knows that it will select a subset of these goals to seriously pursue. An o-intention
(objective-intention) is a goal that has been selected—committed to, according to some policy,
strategy or value judgment. Desires, goals and o-intentions are all objectives. Their plans must

be determined, calculated or selected separately.

Recipes are pre-compiled or pre-assembled plans, usually stored in a ‘plan library’. We fol-
low De Silva and Padgham in that the term recipe shall be used to refer to a pre-compiled
plan; “pieces of code the programmer writes,” [24]. A policy is a plan produced by a planning
program, that is, a policy is a generated plan. The term plan shall be left to refer to plans in
general, including recipes and policies or any (conditional) sequence of actions. Plans are be-
havioral recipes or policies that an agent has or is capable of generating. Every plan achieves

one or more of the agent’s desires. More than one plan may achieve the same desire.

There can be commitment to plans (means) and to objectives (ends) [113]. This is evident in
human cognition. People commit to (achieving) a desire and they commit to some way (plan)
of achieving what they have decided they really want. A plan to achieve a committed-to desire
is a p-intention (plan-intention). The presence of a p-intention implies the presence of an o-
intention, but not necessarily vice versa. For example, I may have the o-intention of obtaining

my Masters degree and I may have two options for achieving this goal: full-time study for

33

two years, or part-time study for five years. Once I have committed to either the full-time or
part-time option (p-intentions), I have—by logical reason—committed to obtaining my Masters
(o-intention). However, committing to obtaining my Masters degree (o-intention) does not force
me to immediately commit to an associated plan of action (p-intentions). An infention is an o-

or p-intention.

Planning is the process of determining (selecting from a library or generating with a planner) a
single p-intention for a single o-intention. As soon as a plan is selected to achieve an o-intention,
the plan becomes a p-intention by definition. In the BDI model each objective may have several
plans for achieving it. So while an agent can keep an o-intention in mind, it can choose the most

effective p-intention to gain its vision.

Deliberation 1s the process of determining a set of o-intentions (what to achieve) according
to some rules or value judgments. We could say, if a process seeks a recipe or policy for
achieving an objective (that is, if planning is involved), it is not part of deliberation, however,
see the discussion in Section 2.3.3. Wooldridge [113] divides deliberation into two processes:

(1) generation of a set of desires, and (ii) filtering (selecting) o-intentions from the set of desires.

Achievement of an o-intention means that the specification of the o-intention is satisfied in the
agent’s current state, whether its associated p-intention has been completed or not. Achievement
of a p-intention means that the sequence of actions or the conditional plan that makes up the p-
intention has been executed to completion. When a p-intention has been achieved, its associated

o-intention has been achieved.

Summarizing, we defined motivations (innate driving force), objectives (references to preferred
states), plans (either pre-compiled or generated), desires (all current objectives), goals (a subset
of consistent and possible desires), o-intentions (desires committed to), recipes (pre-compiled,
hand-written plans), policies (generated plans) and p-intentions (plans committed to). The terms

planning, deliberation and achievement were also defined.

Discussion

BDI architectures have traditionally employed partial plans. A partial plan is a plan that is
an aggregation of references to more detailed recipes of actions. These ‘subplans’ may also
contain references to even more detailed subplans, and so on. An o-intention may thus be part
of another o-intention. We insist that an o-intention is always a reference to a desired state of

affairs, nothing more.

Let ‘A = B’ be a procedure, with A the input and B the output. Suppose some architecture

follows this process: motivations = desires = goals = o-intentions = p-intentions.

A different approach may be to select the subset of options from the desires, instead of gen-

34

erating the goals from the desires. Options may not satisfy the requirement of being a goal
set: perhaps options are selected according to a value judgment, and then consistency is sought
when selecting intentions from the options. The process will then be: motivations = desires
= options (= o-intentions) = p-intentions. “(= o-intentions)” indicates that the architec-
ture does not explicitly select o-intentions during deliberation, but rather more obviously selects

p-intentions (as in, for example, PRS [47]).

The option or desire generation procedure plays several roles. Wooldridge [111] writes

First, it must be responsible for the agent’s means-ends reasoning—the process of deliber-
ating how to achieve intentions. Thus, once an agent has formed an intention to x, it must
subsequently consider options to achieve x. These options will be more concrete—Iess
abstract—than x. As some of these options then become intentions themselves, they will
also feed back into option generation, resulting in yet more concrete options being gener-
ated. We can thus think of a BDI agent’s option generation process as one of recursively
elaborating a hierarchical plan structure, considering and committing to progressively more
specific intentions, until finally it reaches the intentions that correspond to immediately ex-

ecutable actions. [p. 59]

Options are not plans to achieve intentions, but are a set of objectives that the agent can choose
from to achieve. Selected options become o-intentions. A plan function separate from option

generation then does planning to determine how to achieve o-intentions.

The reader’s attention is drawn to two caveats: (1) the fact that a BDI architecture does not
always follow the process ...desires = goals = o-intentions... and that (2) considering the
process ...options = p-intentions... one would suspect that means-ends reasoning (planning)
must have taken place during the procedure (=) to determine the set of plans committed to

(the p-intentions).

Hendriks et al. [43] make the point: APLs (for implementing agents) like Agent-0, AgentSpeak,
3APL and ConGolog do not have goals as declarative concepts. Their goals and intentions are
plans (“structures built from actions”). Georgeff and Lansky say about their Procedural Reason-
ing System, “Unlike most Al planning systems, PRS goals represent desired behaviors of the
system, rather than static world states that are to be [eventually] achieved,” [40, p. 679]. This is
in contrast to the logical systems for specifying and reasoning about agents (not implementing
them). BDI architectures that have intentions as declared goals are: an extension to 3APL [22]
and the Can [110] and EAGLE [56] programming languages. How, if at all, is serendipity taken
advantage of without declared (declarative) goals? One must know what state one is aiming for
to know if one fortuitously achieved it before one’s plan is completed. The question is outside

the scope of this dissertation.

In conclusion, a formal definition of deliberation within the BDI model is highly dependent on

35

the architectural realization of the model and cannot be properly defined for the model in gen-

eral. The definitions of terms given in Section 2.3.3 must thus be taken as ‘working’ definitions.

Initially the agent’s o-intention set is empty and it may happen that the set again becomes
empty after some time. Whenever the agent has no intentions, it needs to adopt one or more

new intentions.

If the agent is instantiated with an empty o-intention set, the agent designer (or the agent archi-
tecture) determines how many o-intentions to place in the set. Theoretically, one o-intention is
enough for an agent to become active. The agent can always keep one o-intention by deliber-
ating as soon as the old one is dropped for some reason. At the other extreme, the agent could
adopt all its goals as o-intentions. A set of two or more o-intentions could be ordered in a stack
according to a metric of value or urgency, or if the implementation system allows, the agent
could pursue some or all of its intentions concurrently. The number of o-intentions selected

during deliberation may also vary according to the agents beliefs and available resources.

But why should an agent re-deliberate to refill an empty intention set? After all, when the
intention set has become empty, does it not mean that the agent has satisfied and achieved all
its intentions? The reason is that normal reasonable agents, including reasonable people, have
desires that are never satisfied. Some kinds of desires are satisfied, but a human being will
always have a few ‘fundamental’ desires from which all other desires are derived, and which
give the person his/her fundamental/initial/innate/original motivation and drive. Once a person
decides what desires to pursue (via goals), the desires become o-intentions and the o- and p-
intentions together can be achieved. However, a fundamental desire can never be achieved, by

definition. For example, we never have enough wealth, knowledge, love or peace.

We adopt plans consisting of sub-plans (sub-intentions; lower level o- or p-intentions, depend-
ing on your view) to temporarily satisfy our desires. Once we have achieved all the sub-plans
of a particular plan, we will only shift our focus to satisty a different desire for a period. When
we have satisfied this new desire by achieving some sub-intentions, we re-deliberate and choose
the next important desire to satisfy. Hence only top-level o-intentions are ever derived from /
filtered out of the desire set; lower-level o-intentions are never derived from desires—they be-
come active only because they are part of a (sub)plan that has been committed to. Therefore,

deliberation involves finding only top-level o-intentions.

For completeness, we define two depths of deliberation, goal-deep and intention-deep. Goal-
deep deliberation generates goals from innate desires, then selects some o-intention(s) from
the new goal set. Intention-deep deliberation does not generate new goals; it selects some o-

intention(s) from the old goal set.

36

The Formal Model

Since Bratman’s book [15], scientists and philosophers (including Bratman) have ‘distilled’ the
original BDI theories. This process has involved experimentation and has been guided by the
framework of computer science to the point where a BDI agent is defined in computational and
formal terms, and hence does not match the original theory exactly. Indeed, the original theory
is based on a philosophy of human practical reasoning, whereas computational BDI agents are
artificial and could not hope to be a simulation of human behavior at this time. Moreover,
the BDI model of agency and, in fact, all agent theories are still relatively new; no standard
definition or categorization of agents has yet been agreed upon. In this and the next subsections,

the BDI theory presented earlier is formalized.
Formally, a BDI agent has at least these seven components [111] (cf. Figure 2.9):
e B, a knowledge base of beliefs;

e An option generation function, generating the objectives the agent would ideally like to

pursue (its desires). Call the function wish;
e D, aset of desires returned by the wish function;

o A function that filters out incompatible, impossible and less valuable desires, and that

focuses on a subset of the desire set. Call the function focus;

e [, a structure of intentions; the most desirable options/desires returned by the focus func-

tion;

e A belief change function: given the agent’s current beliefs and the latest percept sensed,

the belief change function—call it update—returns the updated beliefs of the agent;

o A function that selects some action(s) from the currently active plan and executes it. Call

the function execute.

wish : BxX I — D generates a set of desires, given the agent’s beliefs, current intentions and
possibly its innate motives. It is usually impractical for an agent to pursue the achievement
of all its desires. It must thus filter out the most valuable desires and desires that are believed
possible to achieve. This is the function of focus : B X D X I — I, taking beliefs, desires and
current intentions as parameters. Together, the processes performed by wish and focus may be

called deliberation, formally encapsulated by the deliberate procedure.

Algorithm 2 (adapted from Wooldridge [113, Fig. 2.3]) is less abstract than Figure 2.8 (Sec-
tion 2.3.2). The functions getPercept and plan appear in Algorithm 2, but are hidden in Fig-
ure 2.8. getPercept() senses the environment and returns a percept (processed sensor data)
which is an input to update(-); given the agent’s intention structure and its beliefs, plan(-) se-

lects an intention from the intention structure and returns a plan to achieve it.

37

Sensor

-

input "~
N

- — - information flow N)
__, control flow .. action

-

>
output

Figure 2.9: More detailed schematic diagram of the generic belief-desire-intention model.

Note that in Algorithm 2, the generation of desires is constrained by 7, the selection of intentions
is constrained by D and /, and finding a plan is constrained by /. This is in accordance with
BDI theory: future reasoning (deliberation and planning) is constrained by past commitments

(intentions).
Figure 2.9 reflects Algorithm 2 graphically.
Assume that an agent’s planning capability is represented by a plan function. According to

Wooldridge [113, p. 30]

[...] there is nothing in the definition of the plan(...) function which requires an agent to
engage in plan generation—constructing a plan from scratch [...] In most BDI systems, the

plan(. ..) function is implemented by giving the agent a plan library. [p. 30]

Intentions can be formed, modified and maintained [81, 24]. Intention formation was covered
in detail in Sections 2.3.3. In the following two sections, the latter two processes are discussed

in detail.

38

Algorithm 2: Basic BDI agent control loop
Input: By: initial beliefs
Input: /y: initial intentions

1 B « By;

2 [« Iy;

3« null;

4 while alive do

5 p < getPercept();

6

7

8

9

B < update(B, p);
D «— wish(B,I);

I « focus(B, D, I);
< plan(B, I);

10 execute(m);

Intention Maintenance

A commitment strategy says when an individual o-intention or an individual p-intention should
be maintained or abandoned; whether commitment should be continued or discontinued. A
commitment strategy does not, directly involve a decision whether to deliberate, that is, whether
to find a new set of o-intentions. It involved the decision whether to keep or drop an intention

or part thereof.

As the agent has no direct control over its beliefs and desires, there is no way that it can
adopt or effectively realize a commitment strategy over these attitudes [beliefs and desires].

However, an agent can choose what to do with its intentions. [82, pp. 315-316]

Rao and Georgeff define three commitment strategies [81, 82, 103]:

e a blindly committed agent keeps an intention until believed achieved. The agent is over
committed. It keeps on trying to achieve its intentions, whether they are believed possible
or not. This is irrational. Also, changes to a blindly committed agent’s desires (from

which its intentions are derived) have no influence on its intentions;

e a single-minded agent keeps an intention until believed achieved or until believed im-
possible, acceding to any beliefs that would indicate the impossibility of achieving the
commitments, that is, allowing changes in beliefs to cause it to drop some commitments,

but remaining unaffected by changes in desires; and

e an open-minded agent keeps an intention until believed achieved or impossible or until
it is no longer a desire. The agent is under committed because its intentions might be
dropped due to changes in its beliefs and its desires. Hence, such an agent is influenced
by its desires, and does not strongly commit to an intention once it has decided to commit

to it. The agent is ‘weak’.

39

The choice of commitment strategy is up to the agent designer and is informed by the application

environment.

Algorithm 3: Control loop for a single-minded BDI agent with reactivity
Input: Bj: initial beliefs

Input: /y: initial intentions

B < By ;

I<1;

T — null;

p <« getPercept() ;

B «— update(B, p) ;

D «— wish(B, 1) ;

I « focus(B, D, 1) ;

while alive do

if not empty(r) then

10 if not sound(r, I, B) then m <« plan(B, 1) ;
11 a <« head(n) ;

12 execute(@) ;

13 T« tail(n) ;

o X N AN R W N =

14 p <« getPercept() ;
15 B <« update(B, p) ;
16 I « drop—succeeded(l, B) ;
17 I « drop—impossible(l, B) ;

Algorithm 3 is an agent controller for a single-minded agent (adapted from Wooldridge [113,
Fig. 2.5] and Rao and Georgeff [82, p. 318]); we add one test that will enforce a single-minded
commitment strategy. That is, the agent tests at every iteration through the main loop whether
the currently pursued intention is still possibly achievable, using impossible(-). In the algorithm,
serendipity is also taken advantage of by periodically testing—using succeeded(-)—whether the
intention has been achieved, without the plan being fully executed. We call this agent ‘reactive’
because the agent executes one action per loop iteration; this allows for deliberation between

executions.

Lastly, the soundness of the plan to achieve the current intention is checked at every iteration
of the loop. Informally, soundness of a plan is different from the achievability of an intention
in that achievability concerns action executability and the existence of the goal state, whereas
a sound plan must in principle recommend the correct actions, that is, a ‘legal’ sequence of
actions, to achieve the goal state. Refer to Lifshitz [64] and Pollock [78] for articles on the

subject of soundness of plans. Algorithm 3 includes sound(-) at line 10.

A plan will be abandoned when it is not sound. Intentions impossible to achieve or that have
been achieved, will be dropped. Note that after the intention set is determined from the initial
desire set D (before the loop), D no longer has an influence on the maintenance of intentions;

D does not occur inside the loop.

40

Intention Modification

Whereas a commitment strategy says when an individual intention should be kept or dropped, a

reconsideration strategy says when to deliberate. Reconsideration is equivalent to re-deliberation!

A reconsideration strategy is not a commitment strategy: Reconsideration does not merely in-
volve the entertainment of a possible change in an intention; it seriously reopens “[...] the
question of whether to A, so that this is now a matter that needs to be settled anew,” [15, p. 62].
That is, when an agent decides to reconsider, it activates its deliberation process. The agent
considers its reasons for forming an intention, it does not merely consider some intention(s) on
the surface, as is the case when an agent employs its commitment strategy. Reconsideration
is also described by, for example, Wooldridge [113] and “was examined by David Kinny and

Michael Georgeft, in a number of experiments,” [111, p. 57].

Intentions resist change, but there are conditions under which a rational agent must consider
whether its intentions are still worth committing to. That is, an agent should reconsider its

intentions when it is reasonable to do so.

Possible interactions between deliberation and meta-level control (whether to deliberate again)
are summarized in Table 2.1 (copied from Wooldridge [113, p. 39]). The analysis elucidates

when reconsideration is optimal. In situation 1, the agent does not deliberate, but if it did, it

Situation | Chose to Changed | Would’ve changed | reconsider(-)
number | deliberate? | intentions? intentions? optimal?
1 No - No Yes
2 No - Yes No
3 Yes No - No
4 Yes Yes - Yes

Table 2.1: Interactions between meta-level control and deliberation.

would not have changed its intentions anyway. This situation is desirable. In situation 2, the
agent does not deliberate, but if it did, it would have changed its intentions. Here the agent gets
bad advice from reconsider(-). The agent chooses to deliberate in situations 3 and 4. When
it does not change its intentions in situation 3, the agent is wasting time deliberating. The
reconsider function is not behaving optimally. The agent does change intentions in situation 4,

which means it was a good idea to deliberate, and reconsider(-) has done well.

“Notice that there is an impotent assumption implicit in this discussion: that the cost of execut-
ing the reconsider function is much less than the cost of the deliberation process itself,” [113,
p- 39]. If the cost of reconsider(-) were more than that of deliberation, the long term cost of
employing reconsider(-) would be more than if it were not employed, given that reconsider(-)
is run once every iteration of the control loop when employed, and wish(-) and focus(-) (delib-

eration) are run once every iteration of the control loop when meta-control is not employed.

41

Please refer to Wooldridge and Parsons [112] for an in-depth formal analysis of intention re-

consideration in the spirit of the above discussion.

Algorithm 4: Control loop for a cautious agent
Input: By: initial beliefs
Input: /y: initial intentions

1 B« By;

2 [« Iy;

3 1« null;

4 while alive do

5 p < getPercept() ;
6 B < update(B, p) ;
7 D «— wish(B,I) ;

8 I « focus(B,D,]I) ;
9 if not empty(m) then
10 if not sound(n, I, B) then m < plan(B, 1) ;
11 a < head(n) ;

12 execute(@) ;

13 T« tail(n) ;

14 I « drop—succeeded(l, B) ;
15 | I « drop—impossible(l, B) ;

Algorithm 4 (adapted from Wooldridge [113, Fig. 2.6] and Rao and Georgeft [82, p. 318]) is
for a cautious agent whose reconsideration strategy is to always re-deliberate; it reconsiders its

intentions before every action it performs.

To control when the agent would consider whether to re-deliberate, the reconsider function is
placed just before deliberation would take place (that is, before option generation and filtering;
lines 7 and 8 in Algorithm 4), resulting in the agent defined by Algorithm 5 (adapted from Schut
and Wooldridge [97]) and still has the single minded commitment strategy.

Realize that the presence of reconsider(-) at line 7 in Algorithm 5 does not mean that the agent
reconsiders every time line 7 is reached; reconsider(.) is a Boolean function that tells the agent

whether to reconsider its intentions.

There are various mechanisms that an agent might use to decide when to reconsider its inten-
tions. We shall call such a mechanism a reconsideration strategy. Four classes of reconsidera-
tion strategies are proposed in this dissertation: periodical, conditional, knowledge-based and

value-based:

e The periodical strategy is to reconsider at fixed intervals. A cautious agent is defined by
Algorithm 4 and it uses a periodical reconsideration strategy. A trivial periodical strategy
is to never reconsider; if the reconsider function in Algorithm 5 were to always evaluate
to false, it would define a bold agent. Pollack and Ringuette [77] first defined bold and

cautious agents. Kinny and Georgeff [52, 53] did a series of experiments showing the

42

Algorithm 5: Control loop for an agent with reconsideration

Input: By: initial beliefs
Input: /y: initial intentions
B « By ;

I<1;

m — null ;

while alive do

p <« getPercept() ;

B < update(B, p) ;

if reconsider(B,I) then

D «— wish(B, 1) ;

I « focus(B,D,1I) ;

if not sound(n, I, B) then m < plan(B, 1) ;

if not empty(mr) then
a « head(n) ;
execute(@) ;
T« tail(n) ;

I « drop—succeeded(l, B) ;
| 1 < drop—impossible(l, B) ;

effects of following bold and cautious strategies in different environments. Schut and
Wooldridge define the degree of boldness as “the maximum number of plan steps the

agent executes before reconsidering its intentions,” [95, p. 210].

The conditional strategy is to reconsider when some o-intention takes ‘too long’ to be

achieved or when the o-intention set becomes empty.

The knowledge-based strategy is to reconsider when some logical rule says to do so. For
example, there may be a rule that says to reconsider whenever a percentage of o-intentions
has become unachievable (impossible), or there may be a rule that says to reconsider
whenever some p-intention has become unsound and there is no other (sound) p-intention

that achieves its o-intention.

The value-based strategy is to reconsider whenever a reconsideration policy recommends
it. A reconsideration policy is either determined during run-time or before, and the policy
is found via a computational method that makes use of value judgments, that is, costs of
plans and rewards for objectives. Refer to Schut and Wooldridge [96] for a paper and
to Schut, Wooldridge and Parsons [98] for an article concerning algorithms that may be

employed to control meta-level reasoning.

Bratman [15] explains that there are three kinds of decisions about whether or not to recon-

sider an intention. (1) “nonreflective” (non-) reconsideration is when no thought (reflection)

goes into whether to reconsider; the decision is based on “underlying habits, skills, and disposi-

tions,” (2) “deliberative” (non-) reconsideration is when some thought does go into whether to

43

reconsider, but this happens rarely, says Bratman, and (3) “policy-based” (non-) reconsideration
is when the agent, through previous reasoning, has formed a policy about when to reconsider
certain intentions, however, this policy may be overridden. Our classification does not match

Bratman’s.

Lastly, reconsideration can be more or less extensive, affecting plans shallowly or more deeply
[15]. For instance, one can either rethink a sub-intention but not the larger intention of which
the former is a part, or one may have to rethink the sub-intention because of rethinking the

original, larger intention.

2.3.4 Existing Implementations of the BDI Model

First, Section 2.3.4 is a discussion of PRS, the most successful system that can be regarded
as a BDI system. Next, Section 2.3.4 shortly mentions a programming language for agent
design, consciously built upon the BDI model. Lastly, Section 2.3.4 gives a brief overview of

six architectures with some or other component implemented on the BDI framework.

PRS

The Procedural Reasoning System (PRS) was formally introduced by Georgeff and Lansky in
1987 [40]. PRS is presented rather as a system for controlling mobile robots than a language for
reasoning about their behavior. Subsequent work has extended the original PRS [39, 47, 46].

Amongst others, PRS has been implemented for malfunction handling for the Reaction Control

|

MONITOR
i \\\
DATABASE KA LIBRARY
(BELIEFS) PLANS SENSORS
INTERPRETER
ENVIRONMENT
(REASONER) °
GOALS INTENTION
(DESIRES) STRUCTURE EFFECTORS

a

COMMAND
* GENERATOR

Figure 2.10: PRS system structure.

44

System of NASA’s space shuttle [39]. 1 shall describe only the basic PRS as presented in
[40, 39].

Figure 2.10 represents PRS’s system structure [40, 39]. PRS is endowed with the attitudes of
belief, desire and intention. It also has a library of plans; procedures, including tests, to deal
with various situations. Because the robot or system that PRS is meant to control must operate
in uncertain and changing conditions, PRS must be sufficiently reactive and goal-driven, able to

interrupt and abandon the execution of a plan and the process of planning.

Knowledge about how to accomplish given goals or react to certain situations is represented
in PRS by declarative procedure specifications called Knowledge Areas (KAs). Each KA
consists of a body, which describes the steps of the procedure, and an invocation condition

that specifies under what situations the KA is useful. [40, p. 679]

KAs have (uninstantiated) subgoals and are thus both partial plans and hierarchical. In other
words, PRS plans are schematic in that they contain subgoals naming other (sub)plans. Some
plans consist of primitive actions so that execution of a plan scheme eventually bottoms out in
execution of (primitive) actions. Only near-term portions of a plan are executed. Plan selec-
tion, formation and execution are interleaved, with beliefs being updated—in the fashion of a
production system—whenever an event occurs that may warrant an update. As beliefs change,

new intentions may be adopted, which are not due to ‘regular’ means-ends reasoning.

Goals appear both on the desire/goal stack and as part of the KAs currently in the intention
structure. As mentioned earlier, goals in PRS represent desired behaviors (KA procedures)
rather than states to be achieved. A goal is the name of a skill, that is, if a goal matches the
invocation condition of a KA, the KA’s body is a skill that realizes the goal. For example
walk(a, b) (‘walk from location a to location »’) may be a goal predicate, and some KA should

be a hierarchical, partial plan to get an agent from location a to location b.

The intention structure maintains priority over plans (some plans must be executed before oth-
ers), and some intended plans have conditions of execution (they await certain conditions before

being allowed to execute).

The PRS interpreter runs the entire system, manipulating the four components (beliefs, desires,
intentions, plans). The interpreter cycles as follows: perceive = update beliefs = update
active goals = update intention structure = select an action to execute = perceive ... A
new intention may become active—if it becomes the KA with highest priority in the structure—

else, the KA previously active, remains active.

“The result is focused, goal-directed reasoning in which KAs are expanded in a manner analo-

gous to the execution of subroutines in procedural programming systems,” [39, p. 975].

The authors [39] also discuss the importance of commitment, and they discuss commitment to

45

(1) plans and to (ii) goals.

They distinguish between ‘weak’ Al planning: selection of a pre-written plan to accomplish a
goal, and ‘strong’” Al planning: generating a sequence of actions by simulating their effects, to
achieve a given goal. With a rich set of object-level KAs, ‘weak’ planning can be effective, and

this is the approach that PRS takes.

PRS can be used as a “conditional sequencing system” to implement the sequencing layer of
a three-layer architecture [36]. In Gat’s words, a “sequencer’s job is to select which primitive
Behavior (small unit of control [54]) the low-level controller should use at a given time, and to
supply parameters to the Behavior,” [36, p. 201]. Conditional sequencing is a complex model
of plan execution motivated by “human instruction following.” It is more complex than the
“universal plan” approach, which is a precomputed plan that gives the correct primitive for a

robot to use—for a particular task—in each possible state it can be in [36].

Several extensions or dialects of PRS have been developed, for example UM-PRS [60] and
PRS-Lite [72].

AgentSpeak

Rao designed an agent programming language called AgentSpeak(L) based on logic program-
ming and BDI theory [83]. The motivation for the development of AgentSpeak(L) was as an
abstract language to facilitate the understanding of the relationship between practical implemen-
tations of the BDI architecture such as Procedural Reasoning System (PRS) and the formaliz-
ing and reasoning proving claims about the behavior of abstract BDI agents. “Sophisticated,
multi-modal, temporal, action, and dynamic logics have been used to formalize some of these

notions,” [83, p. 42]

Since Rao’s publication in 1996 there has been much work on extending and further formalizing
the language [45] and it has also been implemented as several practical systems [109]. This
is probably due to its apparent ‘simplicity and elegance’ [45] and because of the confidence
researchers and programmers might have in the language because of its formal connection with
BDI logics.

The various extensions and dialects of the original language have become generally known as

AgentSpeak.

Agent Architectures with a BDI Component

There are several agent architectures without a BDI component that employ real-time generative

planners. Such architectures are mentioned in Appendix A. In this section, we discuss only

46

agent architectures that have been developed with a BDI component. In Chapter 3, some BDI

architectures with a generative planning component are reviewed.

INTERRAP is a “pragmatic BDI architecture” for agents in multi-agent systems, “where the
agent’s mental state is distributed over a set of layers,” [32]. INTERRAP aims to combine the
advantages of layered architectures for intelligent agents, with the advantages of the BDI model.
The layers are: a behavior-based layer, a local planning layer and a cooperative planning layer

for multi-agent tasks.

JAM is a hybrid intelligent agent architecture that draws upon the theories and ideas of the
Procedural Reasoning System (PRS), Structured Circuit Semantics (SCS), and “Act plan inter-
lingua”, [44].

Furthermore, JAM draws upon the implementation pragmatics of the University of Michi-
gan’s and SRI International’s implementation of PRS (UMPRS and PRS-CL, respectively).
JAM provides rich and extensive plan and procedural representations, metalevel and utility-
based reasoning over multiple simultaneous goals, and goal-driven and event-driven behav-

ior that are an amalgam of all of the sources listed above. [44, p. 236 (abstract)]

“RETSINA is an open multi-agent system that provides infrastructure for different types of
deliberative, goal directed agents. In this sense, the architecture of RETSINA agents exhibits
some of the ideas of BDI agents,” [75, p. 148].

Saphira is a behavior-based architecture [54]. At the level of control, the problem is decom-
posed into small units of control called basic behaviors, like obstacle avoidance or corridor

following. Behaviors are written and combined using fuzzy-logic techniques.

Behaviors provide low-level situated control for the physical actions affected by the system.
Above that level, there is a need to relate behaviors to specific goals and objectives that the
robot should undertake. This management process involves determining when to activate
or deactivate behaviors as part of the execution of a task, as well as coordinating them with

other activities in the system. [54, p. 229]

PRS-Lite [72], a BDI based system, fills this role of high-level management of goals and be-

haviors in Saphira.

Burkhard et al. [18] discuss their Double Pass architecture. The architecture has options,
from which “persistent states for the future”, that is, desires and intentions, are derived. It
implements goal-directed behavior inspired by the BDI-approach. Their architecture does not
employ an extant BDI system in a modular manner; but the architecture has identifiably ‘BDI’
elements: There is a deliberator and an executor. The deliberator is not tightly bound by
time; it is responsible for more complex, time consuming decision making, and delivers partial

hierarchical plans to the executor. New intentions (plans) are being prepared while current

47

intentions are being executed by the executor. The executor makes just-in-time decisions that
are restricted to a minimum and need the most recent sensory information. Intentions are thus
involved at both the planning (deliberator) and reactive (executor) levels of the Double Pass

architecture.

Kim, Shin and Choi [51] present a plan-based control architecture for intelligent robotic agents
with three layers: deliberative, sequencing and reactive layers. The deliberative layer is imple-
mented with UM-PRS [60] as a kind of plan executive employing BDI theory: it is composed
of five primary components: a world model, a goal set, a plan library, an interpreter, and an

intention structure.

For completeness, the BDI architectures with generative planning that were reviewed in Chap-
ter 3 are repeated here: Propice-Plan [26], the architecture with Propositional Planning [67],

CanPLAN [91] and the architecture ‘augmented with deliberative planning techniques’ [108].

2.3.5 Discussion and Conclusion

In this chapter, the basic background theory required for an understanding of the main contri-
bution of this dissertation have been covered. Only the necessary theory of the respective larger

bodies of work in decision theory, logic programming and BDI theory have been covered.

Tambe [38] mentions some short-comings of BDI models that may be addressed by SOAR,
such as chunking and a truth maintenance system. And Georgeff mentions the importance of

plan caching of generic plans, instead of creating “every new plan from first principals,” [38,
p. 4].

An advantage that a language like ReadyLog has over BDI models is that ReadyLog has a very
tight integration between its planning processes and its ‘meta’ control. This integration should
promote efficiency in performance of Readylog systems and easier proofs about the systems.
The logic theorem proving approach—of for instance, ReadyLog—is not necessarily at odds
with the BDI approach, though. The work in this dissertation hints at the possibility of their
marriage, and Sardina and Lespérance have done work to bring Golog and BDI theory together
[92].

Something may be said to clarify our understanding of the levels of control in BDI agents:
Object-level reasoning is reasoning or organizing the ‘objects’ of practical reasoning—these
objects are (mainly) intentions and actions—organizing intentions is deliberation and organiz-
ing actions is planning. Hence, object-level reasoning is practical reasoning. Note though,
that deliberation is a higher level of reasoning than that of planning. Meta-level reasoning (or
meta-reasoning or meta-level control) is reasoning about reasoning, that is, thinking about deci-

sions. Reconsideration is thus meta-level reasoning. Also notice that employing a commitment

48

strategy is meta-level reasoning—but one may feel uneasy saying that a commitment strategy
is meta-level control: Whereas a reconsideration strategy directly influences whether an agent
will deliberate or not, a commitment strategy does not ‘control’ reasoning as directly. There-
fore, we can list the kinds of reasoning under discussion, ordered in ascending levels of control,

as: planning, deliberation, commitment-consideration then re-consideration.

The next chapter will set out the development of a logic based POMDP planner. Viewed as a
programming language, it is called PODTGolog. This is the planner that is used by the BDI

architecture that forms the main contribution of the present work.

49

Chapter 3

Related Work

In this chapter, we shall review some of the approaches mentioned in the literature for specifying
and achieving agent/robot control. We have grouped the related literature into three categories.
Section 3.1 deals with logics that allow reasoning over stochastic actions, Section 3.2 deals
with Golog dialects that allow reasoning over stochastic actions and Section 3.3 deals with
BDI-based architectures and languages with generative planning. IndiGolog is an important
language with respect to this work that does not fit into any of the three categories. It will be

reviewed in the Discussion section at the end.

Within the categories, the related works are organized chronologically, from earliest to latest.
In Section 3.1, BHL’s approach will be given more attention, because it is most relevant to the

present work.

3.1 Logics for Dynamical Stochastic Domains

As discussed in Section 2.1, one may include models of probabilistic uncertainty into an agent
or system, and to that, one may add notions of utility. Agents modeled with both probabilistic
uncertainty and utility, are called decision-theoretic agents. Only few logics take decision theory
into account, that is, few logics cater for decision-theoretic agents explicitly. Agents whose
stochastic component only are modeled (utility not considered), will be called stochastic agents
in this chapter. This section covers formal languages for both decision-theoretic and stochastic

kinds of agents.

3.1.1 ICLgc

Poole [80] presents a language to combine decision theory and logical representations of ac-

tions (based on situation calculus), called the “Independent Choice Logic employing Situation

50

Calculus to represent change” (ICLgc). He states that ICLg¢ is for representing MDPs and
POMDPs!, in other words, stochastic action and sensor models can be represented by the lan-
guage, and utility can also be represented. ICLg agents are thus decision-theoretic agents. He
defines conditional decision theoretic plans in the language, however, he does not provide an
algorithm for automatic plan generation. Poole says that ICLgc does not capture the agent’s

beliefs, but an agent’s state is represented sufficiently to program it to do the ‘right’ thing.

Poole takes a Bayesian decision theoretic approach to agent modeling and planning. He says,
“It [ICLg¢] 1s closely related to structured representations of POMDP problems. The hope is
that we can form a bridge between work in Al planning and in POMDPs, and use the best
features of both,” [80, p. 27].

3.1.2 BHL’s approach

Bacchus, Halpern and Levesque [2] (BHL) supply a sound theory and specification for rea-
soning with noisy sensors and graded belief. They provide a way to ‘carry along’ the graded
knowledge of sensor data—making it possible to change it and reason with it at any time in the
future. Their whole approach is not formulated as a logic: they use the situation calculus to

specify their approach but some elements fall outside the logical language.

Intuitively, their aim is to represent an agent’s uncertainty by having a notion of which config-
uration of situations are currently possible; the possible-worlds framework. Then further, each
possible world is given a likelihood weight. With these notions in place, they show how an
agent can have a belief (a probability) about any sentence in any defined situation. They show
that the way beliefs are updated in their approach is equivalent to the standard Bayesian belief

update formula. Their work does not, however, cover planning.

K(s’, s) is the accessibility relation used in BHL’s interpretation of the possible-worlds frame-
work. It is true when situation s’ is accessible from situation s. When a situation s’ is accessible,
it means that, according to the robot’s current knowledge, it could possibly be in situation s’
without contradicting its own beliefs. Hence, the robot may believe that it is possibly in one of

several situations, but due to its incomplete knowledge, the robot does not know which.

Oi(a,a’, s) is the observation-indistinguishability predicate. It specifies which actions a’ are

indistinguishable from an action «a in situation s. (It is similar to the choice(a, n, s) of DTGolog

[13].)

K(s'*,do(a, s)) =

Ad’, 5. K(s', s) A Oi(a,a’,s) A s =do(d’,s") A Poss(d’, s").

!“Markov decision process’ is abbreviated MDP and ‘partially observable Markov decision process’ is abbre-
viated POMDP.

51

This axiom states that all situations do(a’, s") are in the agents knowledge set if and only if it
believes it might also be in situation s” (accessible from s) and action a’ is indistinguishable

from a in s and a’ is executable in s’ (Poss(a’,s’)).

p(s’, s) is the relative weight of the robot’s belief that it is in s” and s; that is, when s specifies
an action history, s also specifies a set of other states s’ that the robot might be in, however,
there is a different likelihood of being in any one of s’—the likelihoods are captured by p(s’,).
Whereas K tracks what situations are possible, BHL define p to track how possible a situation

is. They introduce a successor-state axiom? for p:

p(s”,do(a, s)) =
if (Ad’, s, s).0i(a,d’,s) A s’ =do(d’,s") A\ Poss(a’,s")
then p(s’, s) x l(d’, s")

else O.

Some important things to note about p are
e p(s’,s) is not a probability; it only needs to be greater than zero;

e comparing two accessible situations for likelihood is done by comparing their relative

p(s’, s) weights; that is, p specifies only an ordering of likelihood;

e cach time an action a is done, p’s successor-state axiom updates the likelihoods (relative
weights) of possible worlds using some probability distribution I(a, s), the likelihood of

action a in situation s;

e the antecedent of the conditional is similar to the definition of the K successor-state
axiom, however, K(s’, s) is left out because this constraint is captured by the fact that
p(s’, s) = 0 whenever K(s’, s) does not hold; and this effect is propagated by the else part
of the conditional statement; in other words, p(s'*,do(a, s)) = 0 when K(s’, s) does not

hold, because then p(s’, s) = 0.

An MDP deals with stochastic decision making but does not facilitate general reasoning about
stochastic beliefs. BHL go beyond the MDP model by providing BeL(¢, 5), the agent’s (proba-
bilistic) degree of belief in the formula ¢. It is calculated as the ratio of the sum of those p(s’, s)
where p(s’, s) A ¢[s] is true (while K(s’, s) holds), to: the sum of all the p(s’, s) (while K(s’, 5)

holds). (¢[s’] is the formula ¢ with the situation term s introduced.):

BeL(@lsuon],)=) p(s's9)]) p(ss9).

{8":¢Lsnow/s'T}

2In the axiom, if-then-else is a macro/abbreviation for a logical sentence.

52

So BEeL is defined in terms of p(s’, s). Therefore beliefs are updated whenever p(s’, s) is updated,
which is whenever an action is performed and p’s successor-state axioms is called. Hence, the

robot’s beliefs change whenever it moves or senses.

Furthermore, “A logical consequence [...] is that BEL(¢, s) is a probability distribution over the
situations K-related to s,” [2, p. 15]. Keep in mind though that the probability distribution is
with respect to ¢, so it should not be confused with probability distributions of action outcomes
captured by /(a, s). BEL is based on p, and p is the likelihood of being in some situation. These
relative weights get their initial values from the robot designer; in the initial situation S, all

situations K-related to S, must be given a weight.

Their approach does not address plans or planning in any way. The present work, in a sense,
extends their work with plan generation. A key feature to accomplish plan generation for agents
with noisy sensing, will be an update mechanism for probabilities similar to BHL’s successor-

state axiom for p.

3.1.3 Bonet and Geffner’s approach

Bonet and Geffner [10] present a problem solving framework and not purely a logic. In their
work, planners are meant to produce “controllers” for dynamical systems (agents). They do not
fix on any one planner in their approach. This is possible because they do not specify planning
on the semantic level. They investigate mainly dynamic programming planning algorithms, in-
cluding the “real time dynamic programming” approach to solve POMDP and nondeterministic

problems. Their framework can be used to design stochastic and decision-theoretic agents.

Bonet and Geffner [10] use a “logical representation language” [37] to represent mathematical
models of the problem domains. The language is an extension of the class of STRIPS-style
languages for representing planning problems. It can specify fluent predicates, action precondi-
tions, action effects, state transitions, probabilities of stochastic outcomes, observability, sensor
feedback and probabilistic models of sensors. In general, the language can represent state mod-
els and action/sensor dynamics (for POMDPs, for example) and it incorporates various features
for facilitating probabilistic planning with incomplete information (for example, temporal ex-

tensions of Bayesian networks).

What makes Bonet and Geffner’s approach different from ours, is firstly, that they intend their
framework to be able to solve a variety of Al planning problems, whereas this dissertation
concerns plan generation for autonomous agents specifically, and secondly, we fix on a POMDP

solver specifically.

53

3.14 &SP

A new logic for reasoning about stochastic action and noisy sensing is ESP [35] (“ESP = ES
+ uncertainty”). That is, it facilitates stochastic agent design. It supersedes ES [61] and AOL
[59]. Gabaldon and Lakemeyer [35] derive some of their inspiration from Bacchus, Halpern

and Levesque [2].

ESP provides a knowledge operator K, and belief operator HasP(a, p) meaning: statement «
has probability p (similar to BHL’s BEL(¢, 5)). ESP is a ‘situation’ based logic, but does not
include situation terms. Also, unlike BHL’s BEL(¢, 5), HasP(a, p) has a syntax and semantics

defined in the language and logic. Generative planning is not dealt with in ESP.

Just as in all the literature mentioned so far in this section, in ESP too, one can model the

dynamics (including sensing) of agents in stochastic domains.

3.1.5 DyMoDeL

Finally (for this section) DyMoDeL? [87] is a logic in development which has the same appli-
cations as ESP.

Whereas ESP has a modal ‘flavor’, DyMoDeL is explicitly a modal logic. In DyMoDeL, a
formula like {ola}B_-ys¢ means ‘After observing o given a was executed, the belief in ¢ will be
50%’.

With the current version, agents modeled as POMDPs can be designed, but DyMoDeL does not

provide a procedure for automated policy generation.

3.2 Golog Dialects for Stochastic Domains

Although the DTGolog language is a Golog dialect for stochastic domains, it is discussed in

Chapter 2. The reader may want to consult Section 2.1 before or while reading this section.

3.2.1 stGolog

In his monograph, Reiter [84] describes how to implement an MDP and a POMDP system. He
defines the language stGolog, standing for stochastic Golog. Although, in a different chapter,
Reiter fully covers the accessibility relation to accommodate the representation of an agent’s
knowledge, in his chapter on representing (PO)MDPs, he opts not to use the accessibility rela-

tion. Also, he does not define an explicit belief state; he captures the agent’s belief only via the

3The developers of DyMoDeL have considered changing the name of the logic to POMDL.

54

probabilities involved with stochastic actions and stochastic observations. Lastly, Reiter does
not provide a method to automatically generate (optimal) policies, given a decision domain
theory; he only provides the tools for the designer to program policies for partially observable

decision domains by hand.

As far as sensing in stGolog is concerned, Reiter [84] associates a sense action with each (nor-
mal) stochastic action. Hence, in a policy, after the agent performs an action, the action’s sensor
is activated, which returns an observation. Non-sensing actions and sensing actions are thus dif-
ferentiated. In our semantics of a POMDP, we do not make this distinction; actions can be for
sensing or not. We associate each action directly with a set of observations for that action. That
is, each action in our semantics has a sensing component. This is similar to Bacchus, Halpern

and Levesque [2] and to Kaelbling, Littman and Cassandra [48].

However, we take a hint from Reiter [84] in specifying sense outcome conditions: he has a
fluent outcomels(o, s) where s is a situation term and o is “the outcome chosen by nature for
the immediately preceding stochastic sense action,” [84, p. 367]. Hence, conditional plans can
branch on whether outcomels(o, s) holds for various outcomes o of some sensing action. In our
semantics there is an Observationls(o) predicate, where o is an observation term, a kind of term
stGolog does not have. However, Observationls(o) serves the same purpose as outcomels(o, s);
they both mark decision points in a conditional plan. A definition of Observationls(-) will be

given and discussed in detail in Chapter 4.

3.2.2 pGolog

In Chapter 6 of Grosskreutz’s Ph.D. dissertation [42], he shows how the Golog framework “can
be extended to allow the projection of high-level plans interacting with noisy low-level pro-
cesses, based on a probabilistic characterization of the robot’s beliefs,” [p. 95]. Low-level pro-
cesses with uncertain outcomes are modeled with probabilistic programs. He calls the extension
to Golog pGolog. According to Grosskreutz, the intuition behind pGolog is that a program’s
execution can be simulated, and the probabilities of the various possible outcomes of the pro-
gram noted. “As a result of this probabilistic setting, projection now yields the probability of a

plan to achieve a goal, which leads us to the notion of probabilistic projection,” [42, p. 95].

Grosskreutz follows BHL [2] in the representation of an agent’s uncertainty about the state of
the world. That is, he characterizes the agent’s beliefs by a distribution over possible situations

considered possible.

In his dissertation, Grosskreutz defines prob(p, o, 0), the probabilistic branching instruction,
where o and o, are pGolog programs and p is a probability which lies between 0 and 1,
exclusive. “The intended meaning of prob(p, o, 07,) is to execute program o-; with probability

p, and o, with probability 1 — p,” [42, p. 97].

55

Later in his Chapter 6, he shows how probabilistic projection in pGolog can be applied to

expected utility, which leads to decision theory.

Whereas Chapter 6 of his dissertation deals with a robot’s projections with probabilistic uncer-
tainty, his Chapter 7 is about belief update of the robot’s epistemic state. Grosskreutz explains
the difference between probabilistic projection and belief update as (in the former case) assert-
ing the probability of a situation according to how the world might evolve, and (in the latter
case) changing the agent’s beliefs (probability of current situation) according to actual actions
(recently) performed. He makes clear the distinction between the tasks of probabilistic projec-
tion and belief update, saying that the former does not involve any actual execution or sensing
information, while the latter deals with actual execution and sensing information. pGolog con-
cerns high-level programs “that appeal to the agent’s real-valued beliefs at execution time.” In
addition, belief update in pGolog does not only update beliefs, but also the state of the progress

of the current program.

Grosskreutz does not employ (PO)MDPs in pGolog. Instead, he does probabilistic projection
of specific programs. He does however make use of expected utility to decide between which of
several programs to execute (after simulated scenarios). He does not make use of an epistemic
accessibility fluent like BHL [2] or ESP [35]. In order to capture the idea of accessibility, he
sets the probability of program transitions to 0 if s’ is not accessible from s,,,,, and p otherwise.

(See [42, p. 139] concerning transition semantics).

As with stGolog, pGolog does not allow for plan generation, but it does allow for plan specifi-

cation.

3.2.3 POGTGolog

Finzi and Lukasiewicz [30] present a game-theoretic version of DTGolog to operate in partially
observable domains. They call this extension POGTGolog. This is the only Golog dialect that
can take partially observable problems as input, that is, that has some kind of POMDP solver

for agent action planning.

Developers who prefer a Golog dialect for agent programming but desire their robots or agents
to operate with POMDP information cannot easily modify POGTGolog to work with single
robots. The present work is not merely a simplification of Finzi and Lukasiewicz’s; rather, it

extends DTGolog and uses several elements in POGTGolog—either directly or for inspiration.

One major adaptation that Finzi and Lukasiewicz [30] make to DTGolog is their replacing of
the situation term in the argument list of the BestDo formula with a belief state term b. b is
a set of pairs (s’, p) where s’ is a situation believed possible with probability p. This change

influences all other semantics that would have taken the situation term as argument, having the

56

effect of POGTGolog operating over belief states instead of situations.

Our approach is to clearly divide specifying probabilities for actions probNat(-) and for obser-
vations probObs(-) (see details in Section 4.1), whereas Finzi and Lukasiewicz [30] combine
these probabilities by defining prob(a, n, s, 0) to be the probability of observing o in situation
s, given action a and one of its realization n in the environment. In fact, prob(a,n, s,o) =

probNat(n,a, s) X probObs(o, a, s).

Much of their work concerns the details of specifying the semantics and syntax for a (multia-
gent) game theoretic situation calculus [30]. We sought only the elements useful for a single

agent specification.

3.2.4 ReadyLog

Ferrein and Lakemeyer [28] present an agent programming language (APL) called ReadyLog.
Approximately ten years after Golog’s birth, ReadyLLog combines many of the disparate useful

features of various dialects into one package. Some of the capabilities of ReadyLog are:

e to reason about and manipulate programs in the language of ReadylLog; the programs are

turned into objects, that is, they are reified;

e sensing is incorporated: reasoning about actions that are not meant to have an effect on

the world, but only for information gathering;
e decision-theoretic (probabilistic) planning is catered for;

e plans can be incrementally executed, that is, the interleaving of acting and planning, re-

sulting in online planning;
e probabilistic projections can be done;
e continuous passive sensing can be done (versus sensing only as planned actions);
e monitoring execution of policies to check their validity and the need for re-planning; and
o significantly faster planning due to enhancements in domain modelling.

Table 3.1 shows which features various Golog languages have (‘+’) and do not have (‘-). Note
that only DTGolog and ReadyLog incorporate decision theory; this decision theory is however

for fully observable Markov decisions only.

Because ReadyLog is a Golog dialect, plan specification is possible. Moreover, ReadylLog is

capable of plan generation due to it subsuming DTGolog.

57

Online | Sensing| Exog. | Conc. | Projec- | Prob. | Cont. | Decision

Actions| Exec. | tion Actions| Change | Theory
Golog - - - - - - - -
ConGolog | - - - + - - - -
IndiGolog | + + + + + - - -
ccGolog + + + + + - + -
pGolog + -+ + - + + - -
DTGolog - - - - + + - +
ReadyLog | + + + + + + + +

Table 3.1: Features of Golog Languages (Tbl. 4.1 in Ferrein’s PhD dissertation [29]).

Note in particular, from Table 3.1, that ReadyLog incorporated (the capabilities of) pGolog [42]
and (offline) DTGolog [13]. ReadyLog thus provides the capability to write formulas involving
belief, via the BEL function provided by pGolog [42] and BHL [2]. And ReadyLog can also

solve MDP problems, generating conditional policies.

Ferrein and Lakemeyer mention in their article [28], how software agents programmed in
ReadyLog perform. These agents fare reasonably against opponents in a particular software
environment. The authors also mention ReadyLog-controlled robots in the service/personal
robotics domain and in teams of soccer robots. The robots also fare competently in last men-

tioned domains.

3.3 BDI-based Architectures with Generative Planning

This section reviews the literature that reports specifically on extending the belief-desire-intention
(BDI) model of agency with a form of generative planning. In a sense, this is exactly what the
research in this dissertation is about. The differences in the different research products of this
section is in the details of how the extension is accomplished, its motivation, and its application.

The reader may want to consult Section 2.3 before or while reading this section.

3.3.1 Propice-Plan

Propice-Plan [26] is a language for implementing the control of dynamic systems in real-world
situations. Despouys and Ingrand [26] present a unified approach for planning and execution,
combining plan synthesis and anticipation planning and a BDI-based language called Propice

for supervision and execution control.

The authors alternate between calling their approach a language and a framework®.

“When it comes to (sophisticated) programming languages for agents, the distinction between the specification
of the language and an architecture (framework) seems to be less clear.

58

They “use the term OP (operational plan) as the result of a planning activity, but also an opera-
tional procedure defined by a domain expert,” [26, p. 279]. When a goal needs to be achieved
and none of the available OPs is applicable to achieve the goal, a planner is called to synthesize
information in the available OPs to produce a new OP. They also introduce a novel approach
to anticipate the best OP to execute at some future point: They highlight that the Propice com-
ponent of the framework does not generate plans, it only selects and supervises plans. “Our
goal is to take advantage of the large number of OPs available and of the spare time left while
performing control execution and supervision. The whole idea of anticipation planning is thus

based on the simulation of OPs executive information,” [26, p. 286].

Propice-Plan is a much more sophisticated framework for management of goals than the archi-
tecture presented in this dissertation (cf. BDI-POP, Chapter 5). Nevertheless, plans (OPs) in

Propice-Plan cannot take advantage of stochastic models of a system’s description.

3.3.2 Propositional Planning in BDI Agents

Meneguzzi, Zorzo and Da Costa Mora [67] note the inefficiency of traditional plan generation
in real-time, compared to the use of (efficient) pre-compiled plans. But they also note the
disadvantage of the inflexibility of pre-compiled plans compared to the relevance of real-time
generated plans, and the need for the agent designer to build the plans before the deployment
of the agent. Hence, they describe “the relationship between propositional planning algorithms
and means-end reasoning in BDI agents,” [67, 63] and define a mapping “between the structural
components of a BDI agent and propositional planning problems,” [67, 63]. This mapping then
allows state of the art planners that conform to the mapping to be utilized in their approach,
while retaining the advantages of BDI-style practical reasoning. The authors state that the main
contribution of their work consists in the definition of a mapping from BDI means-end reasoning

to fast planning algorithms.

They [67] take a relatively sophisticated BDI model (X-BDI) and modify it for their purposes.
To verify their approach, Meneguzzi, Zorzo and Da Costa Méra implement the propositional
planning algorithm GrAPHPLAN in their prototype. The implemented planner acts as the means-

end reasoner in the BDI model. GrapapLAN does not deal with stochastic domain models.

3.3.3 CanPLAN

Sardina, De Silva and Padgham [91] present CanPran, a BDI language based on Can and
AGENTSPEAK. CANPLAN includes actions with preconditions and effects, multiple variable bind-

ings, and an account of declarative goals.

“A central distinguishing feature of Can is its Goal(¢y, P, ¢) goal construct, which provides

59

a mechanism for representing both declarative and procedural aspects of goals. Intuitively, a
goal-program Goal(¢y, P, ¢5) states that we should achieve the (declarative) goal ¢, by using
(procedural) program P; failing if ¢, becomes true,” [91, p. 1003].

“By building on the underlying similarities between BDI systems and Hierarchical Task Net-
work (HTN) planners, we present a formal semantics for a BDI agent programming language
which cleanly incorporates HTN-style planning as a built-in feature,” [91, p. 1001 (abstract)].

Through their semantics, they are implicitly also specifying an architecture.

The authors specify both the HTN planner and the BDI interpreter in a consistent semantics,
thus integrating the formal operational semantics of their BDI system and HTN planner. They
purport that no other language integrates generative planning with a BDI model with a formal

semantics.

CanPrLaN also includes the Plan(P) construct: Plan instantiates HTN planning. It searches of-
fline for a complete hierarchical decomposition (partially ordered sequence of primitive actions)
of program P using HTN-style reduction of a compound task into actions. Plan forms part of
BDI style programs as specified by the program designer / domain expert at specific points in
the program. It provides programmer control over when to plan. Note that HTN planning and

POMDP planning are quite different, and have different pros and cons.

Sardina, De Silva and Padgham mention that their work [91] is possibly most related to the

IndiGolog language of De Giacomo and Levesque [23], which is reviewed later in this section.

3.3.4 Augmenting BDI Agents with Deliberative Planning Techniques
Walczak, et al. state

Due to advances in planning techniques and understanding of planning problems, it seems
reasonable and interesting to combine the strength of flexible means-end reasoning given
by deliberative [generative] planners with the timely reactivity and goal deliberation capa-
bilities carried [out] by BDI systems. [108, pp. 113-114]

In their work, “augment the BDI system with a relatively simple planner that is invoked from
the BDI controller and used for the purpose of creating short-term plans that need a proof of
correctness,” [108, p. 114]. This sounds similar to the work of this dissertation, however, in this
work, plans do not “need a proof of correctness” because they are logically sound by definition
(cf. Chapter 4).

Their planner employs a state-based search algorithm working on an agenda of states. States
are objects including components such as: sets of objects with value-assigned attributes, ac-

tions, a stack of goals weighted with utility measures and a transition function. The utility

60

functions that occur in the planner are interpreted as agent desires. So their work is similar to
this dissertation’s in that their agents interpret utilities as desires. The planner developed here,
has a different solving algorithm to theirs though; the new planner solves specifically POMDP
problems (cf. Section 2.1 and Section 4.1).

3.4 Discussion

The agent architecture developed in this dissertation will allow for plans to be generated for
decision-theoretic agents. That is why the literature in Section 3.1 is relevant. Further, the
POMDP planner/solver we develop will turn out to be a new Golog dialect, and this planner
will be called into action in a BDI framework to fulfill means-end reasoning. That is why the

literature in Sections 3.2 and 3.3 respectively, is relevant.

IndiGolog [23, 90] is not concerned with stochastic domain models and thus does not fit into
Sections 3.2. Because IndiGolog is a Golog dialect, it also employs programs to guide, inform
and constrain actions towards a goal. The contribution of the IndiGolog dialect, however, is that
the programs it allows may include parts that are executed online. The programs of all previous

Golog dialects are executed offline.

De Giacomo and Levesque [23] explain that offline execution of a program means that a (log-
ically) legal execution of a sequence of actions is sought according to the constraints and tests
of the program, for the whole program, before even one action is executed. This is clearly
detrimental to the reactivity of the agent being controlled. Furthermore, when tests later in a
program depend on information meant to be collected by sensing actions earlier in the program,
the sensing actions need to be executed in the world before the test point in the program is
reached. In online execution of a program, as choice points are reached (between two or more
actions) one action must be chosen and executed immediately in the world; and there is no
backtracking in the real world (assuming executions cannot be undone). In offline execution,

backtracking is possible when a certain choice of actions leads to failure.

There may be circumstances when the agent programmer prefers portions of a program to be
online and other portions offline. IndiGolog allows both kinds of programming to be mixed,
by providing the X operator to indicate that search is required. For example, given that 6;, o,
and 05 are ‘regular’ Golog programs, d;; X0,; 93 is a program in IndiGolog that will execute ¢,
online, then search for a “globally successful termination” of 9,, then continue “boldly” with

the 93 portion of the program.

“The technical machinery [they] use to define on-line program execution in the presence of
sensing is essentially that of (De Giacomo, Lespérance, & Levesque 1997 [ConGolog]),” [23,

p. 29] through the use of the predicates Trans and Final to define a single-step semantics for

61

programs. However some adaptation to ConGolog was necessary.

“One of the main advantages of a high-level agent language containing nondeterminism is that
it allows limited versions of (runtime) planning to be included within a program. Indeed, a

simple planner can be written directly:
while —¢ do na. (Acceptable(a)? ; a) endWhile.

[...] this program says to repeatedly perform some nondeterministically selected action [a] until
condition ¢ holds>,” [23, p. 33-34]. In IndiGolog this “planner” loop would be the operand of

the X operator.

IndiGolog and CanPLaN [91] are both similar to the work of this dissertation in that they supply
agent designers with the tools to interleave planning and execution. Besides these languages
not dealing with stochastic models, there are two main differences between their work and the
proposed architecture: (1) They provide formal semantics for their languages, whereas some
parts of the proposed architecture are not as rigorously formalized. (2) Their languages allow
for planning points to be specified by the programmer, whereas the architecture developed in
this dissertation prescribes planning at (conditionally) fixed intervals. This may be a drawback
because it takes control away from the programmer, but it could be a benefit when one considers
that the programmer need not be concerned with when to plan; the decision of when to plan can

be handled intelligently and autonomously.

Not one of the references in this chapter is a combination of a BDI architecture employing a

generative planner for partially observable stochastic domains.

SAcceptable(a)? is a sort of filter with benefits in this context; refer to De Giacomo and Levesque [23].

62

Chapter 4

Extending DTGolog to deal with POMDPs

If a robot or agent can perceive every necessary detail of its environment, its model is said
to be fully observable. In many practical applications this assumption is good enough for the
agent to fulfill its tasks; it is nevertheless unrealistic. A more accurate model is a partially
observable model. The agent takes into account that its sensors are imperfect, and that it does
not know every detail of the world. That is, the agent can incorporate the probabilities of errors
associated with its sensors, and other uncertainties inherent in perception in the real world, for
example, obscured objects. If an agent or robot cannot represent the uncertainties inherent in
perception, it has to assume perfect perception; this assumption either might lead to spurious
conclusions or the necessity for additional methods that keep the agent’s reasoning reasonable.
For sophisticated robots or agents, it may be best to accept and reason with noisy sensor data.
One model for reasoning under uncertainty with partial observability is the partially observable
Markov decision process (POMDP).

This chapter describes the extension of Rens, Ferrein and Van der Poel [85] to DTGolog. They
[85] extend the approach of DTGolog [13] in such a way that it can also deal with partially
observable domains. An advantage of using a dialect of Golog for the implementation for the
planner, is that the integration of beliefs into the situation calculus has previously been done
[2, 30] and that work can be used for formulating POMDPs. Further, given a background action
theory, an initial state and a goal state (or ‘reward function’ in POMDPs), Golog programs
essentially constrain and specify the search space of available actions. The resulting plan (policy

in POMDP terms) is a Golog program which can be executed directly by an agent.

We shall call the new dialect PODTGolog for ease of reference. For decision theoretic planning,
the Do formula becomes BestDo of DTGolog, employing the decision tree rollback procedure
described in Section 2.1. In particular, instead of using BestDo, Rens, Ferrein and Van der Poel
introduce a predicate BestDoPO to operate on a belief state (cf. Section 2.1.2) rather than on
a world state. Whereas DTGolog models MDPs, PODTGolog models belief-MDPs. A belief-

MDP is one perspective of POMDPs, where the states that are being reasoned over are belief

63

states and not world states.

4.1 Semantics of POMDPs in Golog

The signature of the BestDoPO formula is

BestDoPO(
program : 9,
belief—state : b,
horizon : A,
policy : m,

policy—value : v,

program—probability : pr

initial
belief
state

BestDoPO BestDoPO BestDoPO
BestDoObserve BestDoObserve

Figure 4.1: BestDoPO represented as a belief decision tree.

BestDo solves completely observable Markov decision processes (completely observable MDPs),
whereas BestDoPO solves ‘belief-MDPs’, that is, POMDPs. BestDoPO makes use of one aux-
iliary procedure: BestDoObserve: it processes the step where nature determines which obser-
vations are possible, given the agent’s preferred action. The relation of BestDoPO to a belief
decision tree can be seen in Figure 4.1. Each node (triangle or circle) is a call to one procedure
(BestDoPO or BestDoObserve).

BestDoPO is called with a program (complex action) ¢ that specifies the basic behavior ex-

64

pected of the agent, including the actions it may choose from. Initially a belief state b is pro-
vided; subsequently, recursive calls are supplied with a ‘current’ belief state, given a particular
action-observation history. The user must provide a planning horizon /; the number of actions
for which a policy is required. If the call to BestDoPO succeeds, r is instantiated with a policy
(conditional plan), v is instantiated with the total expected reward the agent will get if it follows

the policy, and the probability that the program will be executed successfully instantiates pr.

An example of how BestDoPO may be called initially—with a program that allows the agent to
choose between three actions a;, a», a3 (without constraints), with the initial belief state b, and

with the user or agent requiring advice for a sequence of seven actions—is

BestDoPO(while true do [a; | a> | a3], by, 7, 7, v, pr).

4.1.1 Basic Definitions and Concepts

A belief state b contains the elements (s, p)—a possible (situation calculus) situation s together
with probability p (as in Finzi and Lukasiewicz [30]). Note that the belief state b replaces the

situation term s in the argument list of BestDoPO.

We do not provide a semantics for deterministic actions; such actions can be specified in the
domain description by defining a single outcome (nature’s choice) with probability 1 for the
deterministic action. Also, be aware that locomotive actions are only implicitly distinguished
from informational actions by how the designer specifies their realizations by nature (in the
environment) and the probability of such a realization occurring. For example, a ‘pure’ lo-
comotive action has only the null or empty observation which will occur with probability 1,
and a pure sensing action can be performed in only one way (with possibly multiple resulting
observations)—the intended sensing action occurring with probability 1. In other words, each

and every action has a sensing component.

We use the idea of Finzi and Lukasiewicz [30] and assume that an action is possible in a belief
state when it is possible in any situation which is part of the belief state, that is, Poss(a, b) iff

ds.Poss(a, s) where (s, p) € b.

The semantics will treat action terms and observation terms as different sorts. In the definition
of BestDoPO (all the formulae to follow), when an action is mentioned, it is written without
arguments; arguments are being suppressed for simplicity and because they are not required for

the definition to be correct. Observation terms are never arguments to action terms.

The predicate PossObs(o, a, b) is added to the action theory, which specifies when an observa-
tion o s possible (perceivable) in belief state b, given an action a. The meaning of PossObs(o, b)
is unclear—can one ask whether it is possible to have an observation? One should rather

ask whether it is possible to make an observation—and making an observation involves the

65

act of sensing. To clearly distinguish between preconditions for observations and for actions,

Poss(a, s) will be referred to as PossAct(a, s).

It is important to note that the b in PossObs(o, a, b) is the belief state reached affer action a was
executed. That is, if @ was executed in " and b is the new state reached, then PossObs(o, a, b)

says whether it is possible to observe o after a has been executed.

Boutilier et al. [13] defined a predicate prob(n, p, s); we define a term and call it probNat.
probNat(n,a, s) has the same purpose as prob(n, p, s), but probNat(-) is defined differently.
They [13] relate the outcome n implicitly to some intended action a, whereas in PODTGolog,
the relation needs to be made explicit by giving a as an argument. The definition for PODT-
Golog is a function (term) which ‘returns’ a probability, whereas Boutilier et al. have their
term p unify with the applicable probability. The state transition function 7~ of Section 2.1 is

equivalent to probNat in the following way:
T (s,a,s’) = p = p = probNat(n,a, s),
when all ‘resulting’ states s’ result from executing outcomes n of a, where s is the state in which

the agent performs a.

Next, the function probObs(o, a, s) is introduced; it is the probability that o will be observed
in s after a was executed in some other situation to reach s. That is, probObs(o,a,s) =
probObs(o,a,do(a, s™)), where s = do(a, s”). And

probObs(o, a, s) = O(s, a, 0);

O is the observation function of Section 2.1.

ChoiceNat(n, a, s) holds when #n is an outcome associated with a in s.

ChoiceObs(o, a, s) holds when o is an observation associated with ¢ when executed in s.
We define probNebs, which is similar to Equation 2.9 in Section 2.1.2; the probability of being

in the new belief state b’. The definition is as follows:

probNebs(o, a, b) = Z p Z probNat(n,a, s) - probObs(o,a,do(n, s)).

(s,p)eb ChoiceNat(n,a,s),PossAct(n,s)
r(-) is the reward function over belief states:

r(b) = Z reward(s) - p,

(s,p)eb
where reward(-) is the reward function over situations.

Like Finzi and Lukasiewicz [30] and Grosskreutz [42], we too do not use an accessibility re-

66

lation to reason with beliefs. Although certain properties of the agent’s belief system can be
guaranteed by the use of an accessibility relation, its use does complicate matters and we have

opted to leave it out of our semantics.

4.1.2 The Partially Observable BestDo
The semantics of PODTGolog is the definition of BestDoPO (partially observable BestDo) via
several clauses. BestDoPO implements Equation 2.10 of Section 2.1.2: n* = arg max_(Vb, ;(by)).
1. Zero horizon
When no more actions have to be planned for, the planning horizon has reached zero, that

is & = 0. There will be no further recursive calls.

BestDoPO(0, b, h,m,v, pr) =
h=0Anmn=S8top ANv=r(b)Apr=1.

2. Null program

When all actions have been ‘performed’, there are no remaining actions in the input pro-
gram, that is, BestDoPO is called on the empty program. There will be no further recur-

sive calls.

BestDoPO(nil, b, h,rt,v, pr) =
m=38top ANv=rb)Apr=1.

3. Empty belief state

It may happen that the agent’s belief state becomes empty. Although the agent designer
should make specifications that avoid the agent becoming ‘unconscious’ (that is, having

no beliefs), BestDoPO still caters for this case.

BestDoPO(0, b, h,m,v, pr) =
b={}An=StopANv=0Apr=1.

There will be no further recursive calls.

67

4. Test action

Our definition for the test action is adapted from that of Finzi and Lukasiewicz [30]:

BestDoPO(¢?; rest,b, h,xt,v, pr) =
Apr’.¢[b] A BestDoPO(rest,b, h,m,v, pr') A pr = pr’ - prob(¢[b]) V
—¢[b] A= Stop ANv=0A pr=0.

Probabilities involved in this formula are influenced in proportion to the agent’s degree
of belief [2]. In the following sentence, ¢[s] is true if and only if ¢ holds in situation s.
@[b], as it appears in this clause, is true if and only if ¢[s] is true for some (s, p) € b, and
it is associated with the probability prob(¢[b]) = (X pjep-s P)» Which affects the overall

program success probability.

5. Conditional statement

BestDoPO([if ¢ then p; else p, endif]; rest, b, h,m,v, pr) =
BestDoPO([[¢?; pi] | [=¢?; pa11; rest, b, h, 7, v, pr).

The “nondeterministic choice of actions™ version of BestDoPO (see below) is called;
however, both ‘branches’ cannot survive; exactly one must survive: If ¢ holds, the ‘then’
branch will execute and the ‘else’ branch will not because —¢ will not hold. If ¢ does
not hold, the situation is reversed. The meaning of the conditional statement is thus

maintained.

Observe that each ‘branch’ will call the ‘test action” formula, and probabilities will be

dealt with according to that formula.
6. Conditional iteration

For completeness, we provide a procedural definition (based on the implementation) of a
while loop. A formal definition is not provided by Soutchanski [100], and adapting the

one by, for example Brachman and Levesque [14], is beyond the scope of this work.

BestDoPO([while ¢ do p]; rest,b, h,m,v, pr) =
—@[b] A BestDoPO(rest, b, h,n,v, pr)v
Apr’.p[b] A BestDoPO(p; [while ¢ do p]l; rest, b, h,nt,v, pr')A

pr = pr’ - prob(¢[b]).

Note that horizon has precedence over iferation, that is, even if the iteration condition (¢)

is satisfied, if 4 is zero, then planning stops.

68

7. Sequential composition

This definition decomposes (complex) sequential actions, processes the first action in a

composed sequence, and then the rest.

BestDoPO([6:;6,];63,b, h, 7, v, pr) =
BestDoPO(61;[02; 03], b, h,m, v, pr).

8. Nondeterministic choice of actions

Out of two possible actions d; and d,, the policy associated with the action that produces
the greater value (current sum of rewards) is preferred and thus included in the determi-
nation of the final policy 7. This formula is the heart of the expected value maximization

of decision theory.

BestDoPO([6,10,]; rest, b, h,m,v, pr) =
dny, vy, pri.BestDoPO(dy; rest, b, h,my, vy, pri) A
Ay, vo, pry.BestDoPO(d,; rest, b, h, 5, vy, pry) A
((v1,61) = (v2,62) AT =71 AV =V A pr=pr))V

((v1,01) < (n2,02) AT =1y AV = Vo A pr = pr)).

9. Nondeterministic finite choice of arguments

DTGolog defines a clause of BestDo for the nondeterministic finite choice of arguments
defined for Golog: ¢x.(a;) (nondeterministically choose a value for x in a; from a finite,
non-empty range of values). PODTGolog’s definition is exactly the same as that of DT-
Golog, except that in PODTGolog, the belief state term b is substituted for the situation

term s:

BestDoPO([p[x : 716];6", b, h,m,v, pr) =
BestDoPO([4];, ...9I" 1; &' ,b,h,m,v, pr).

This clause of BestDoPO allows for choices over action arguments: In the program ¢, all
free variables x are substituted by an element from 7. The domain of 7 = {cy, ..., ¢,} must
be finite. Note that the construct [p[x : 7]6] is an abbreviation for [6[}, ... d[;], where o[}

means ‘substitute ¢ for all free occurrences of x in §° [100].
10. Probabilistic observation

Here we branch on all possible observations, given the robot’s intended action a. choiceObs’(a)

is defined similarly to choice’(a) in the discussion of DTGolog in Section 2.2.3. choiceObs’(a)

69

11.

‘returns’ the set of observations that the robot may perceive:

choiceObs’(a) = {o | ChoiceObs(o, a, s) for all situations s}.

BestDoPO(a;rest,b,h,n,v, pr) =
—PossAct(a,b) N\m=Stop A\v=0Apr=0V
PossAct(a, b)A
An’,v'.BestDoObserve(choiceObs'(a), a, rest,b, h,n’,V', pr) A

r=a,7 Av=rb)+V.

In asense, BestDoObserve has the role of BestDoAux of DTGolog, except BestDoObserve
processes possible observations, not nondeterministic actions. In PODTGolog, nondeter-

ministic actions are processed in the belief update function:
Observations possible (last)

After a certain action a and a certain observation oy, the next belief state is reached. (Here
we look at the processing of the last observation associated with the applicable action.)
At the time when BestDoObserve is called, a specific action, the set of nature’s choices
for that action and a specific observation associated with the action are under consider-
ation. These elements are sufficient and necessary to update the agent’s current beliefs.
Inside BestDoObserve, the belief state (given a certain action and observation history) is
updated via a belief state transition function, similar in vein to the state estimation func-
tion (Equation 2.5 of Section 2.1, and also similar to the successor-state axiom for p, the
likelihood weight of Bacchus, Halpern and Levesque [2] (cf. Chapter 3)). PODTGolog’s

belief update function is now defined.

Function BU(0,a,b)

1 foreach (s, p) € bdo

2
3
4

dn, s, pT.(sT,p7) € biemp : 5T = do(n, s) A
ChoiceNat(n,a, s) A PossAct(n, s) A
p* = p- probObs(o,a, s*) - probNat(n,a, s) A p* # 0

5 byew = normalize(byep))
6 return b,,,,

A major difference between the POMDP model as defined in Section 2.1 and the POMDP
model we define here for the situation calculus, is that here the belief state is not a prob-
ability distribution over a fixed set of states. If a situation was part of the belief state to
be updated, it is removed from the new belief state, and situations that are ‘accessible’
from the removed situation via ChoiceNat(n,a, s) and are executable via PossAct(n, s)

are added to the new belief state. Observe that if a potential new situation s* has zero

70

probability, it will not be represented in b,,,,: all situations accessible from s* would have
zero probability and thus be of no use. To prevent generating, maintaining and reasoning

with such impossible situations, we exclude them from belief states.

Because non-executable actions result in situations being discarded, the ‘probability’ dis-
tribution over all the situations in the new belief state may not sum to 1; the distribution

thus needs to be normalized:

Function normalize(b;ep)

1 foreach unique situation s, mentioned in by, do

2 denom = 3, ocbum Pt N\
3 Duew = {(sn, pn) | sy, pt) € btemp, Sp = St Pn = Pr/denOm
4 return b,,,,

Note that SenseCond (of DTGolog) is not mentioned in the definition of BestDoObserve
(below). As mentioned in Section 2.2.3, for any action n, SenseCond(n, ¢) supplies a
sentence ¢ that is placed in the policy being generated. ¢ holds if and only if ¢ verifies

that action n was the outcome.

PODTGolog takes a different tack: Suppose sv is the value returned by the sensor ac-
tivated when a is the action performed and that GetPercept(a, sv) is the interface for
supplying the value. And suppose Perceive(a, sv, o) verifies whether the sensed value sv
can be perceived as the observation o, given a was performed. That is, Perceive(a, sv, 0)
categorizes the sensor input signal as one of the observations the agent knows about; one
can imagine, on encountering Perceive(a, sv, 0), the agent says ‘Given I performed a and
I got percept sv, I think I have perceived observation o’. The need for Perceive(-) is due
to sensors possibly returning real valued signals or finely grained discrete signals, but an
agent typically does not consider an observation (as an object for reasoning) for each and

every gradation of sensor signal.

Observationls(oy) simply marks the decision points with the applicable observation. If
GetPercept(-) and Perceive(-) supply the test that ¢ supplies in BestDoAux, then we

could have defined BestDoObserve as (* indicates incorrect definition),

BestDoObserve*({o}, a, rest,b, h, nt,v, pr) =
—PossObs(oy,a,b) N\m=Stop A\v=0Apr=0V
PossObs(oy,a,b) ANb" = BU(oy, a,b) A
A’ V', pr'.BestDoPO(rest,b’,h — 1,7’ V', pr') A
GetPercept(a, sv) A Perceive(a, sv,0,) A © = Observationls(o;)?; 7’ A

v =V - probNebs(oy, a,b) A pr = pr’ - probNebs(oy, a, b).

71

12.

However, we opt to perform the tests outside the policy. That is, we intend deciding
which branch to take at observation choice points outside the policy; the test performed by
GetPercept(-) and Perceive(-) is placed outside the policy, in the ‘meta-controller’. DT-
Golog’s BestDo supplies policies that are self-contained controllers—no meta-controller
is employed. PODTGolog’s BestDoPO on the other hand, requires a meta-controller to
‘interpret’ its policies. For our purposes, this is acceptable, because our intent from the
start was to embed BestDoPO in a larger architecture (meta-controller). Thus, we have

the following definition.

BestDoObserve({oi}, a, rest, b, h,m,v, pr) =
—PossObs(oy,a,b) N\m=Stop A\v=0Apr=0V
PossObs(og,a,b) ANb" = BU(og,a,b) A
A’ V', pr'.BestDoPO(rest,b’,h — 1,7’ V', pr') A
7 = Observationls(oy)?; 7w’ A

v =V - probNebs(oy,a,b) A pr = pr’ - probNebs(oy, a, b).

With this definition, for each possible observation o; € choiceObs’(a) (given an action),
Perceive(a, sv, 0;) should be defined by the designer such that it evaluates to true for
no more than one of the observations o;. The policy thus becomes a conditional plan,
conditioned on observations. Rens, Ferrein and Van der Poel [85] define this clause of
BestDoPO with SenseCond.

BestDoPO is recursively called with the remaining program and with the horizon 4 decre-
mented by 1. Also note that the recursive BestDoPO will now operate with the updated
belief b’. In the definition, {o;} is a single (remaining) observation in the set returned by
choiceObs’.

Observations possible (> 2)

The following clause defines how the planner processes two or more (remaining) obser-
vations in the set returned by choiceObs’. The first branch of possible observations is

processed, and the other branches in the remainder of the set are processed recursively.

72

BestDoObserve({oy, . ..,o0},a,rest,b,h,m,v, pr) =
=PossObs(oy,a,b) N
BestDoObserve({oy, .. .,o0i},a,rest,b,h,m,v, pr) V
PossObs(oy,a,b) A by = BU(0y,a,b) A
A’ V', pr'.BestDoObserve({0,, .. .,o0i},a,rest,b,h,n’)V, pr’) A
dry, vy, pri.BestDoPO(rest,by,h — 1,1y, vy, pri) A
7 = if Observationls(o;) then 7, else 7’ endif A

v =V +v; - probNebs(o,,a,b) A pr = pr’ - probNebs(o1, a, b).

For a full definition of BestDoPO as an implementation in Prolog, please consult Appendix B.

4.2 A Simple Example

4.2.1 Example Domain Specification

The example is based on a simple four-state world used in an example in Kaelbling, Littman
and Cassandra [48] (see Figure 4.2).

1 2 3 ; 4

Figure 4.2: Four-state world; four states in a row. Initially the agent believes it is in each state
with probabilities [0.04 | 0.95 | 0.00 | 0.01] corresponding to state position.

The star marks the goal location. The formal description follows.
Fluents

e At(lo, s) is true when the agent is at location /o in situation s, false otherwise;

ChoiceNat(n, a, s) captures whether n is nature’s choice for action a in situation s;

ChoiceObs(o, a, s) captures whether o is a possible observation given a in s;

probNat(n, a, s) denotes the probability with which a will be realized as »n in situation s;

probObs(o, a, s) denotes the probability with which a will result in observation o in situ-

ation s.

73

Although ChoiceNat(n, a, s), ChoiceObs(o, a, s), probNat(n, a, s) and probObs(o, a, s) are tech-
nically fluents, they will be treated as rigid predicates, because, in this example, they are situa-

tion independent.

States

The four locations are the states that the agent could be in:

S = {loc(1), loc(2), loc(3), loc(4)}.

Actions

The agent could go left or go right or it could sense its location:
A = {left, right, sensloc}.

Observations

When the agent tries to sense its location, it could observe one of the four locations; it can also
observe nothing (obsnil) when executing left or right:
Q = {obsloc(1), obsloc(2), obsloc(3), obsloc(4), obsnil}.

Precondition axioms

PossAct(a, s) = a = left vV a = right V a = sensloc.

That is, it is always possible to go left or right or to sense any location.
PossObs(obsnil,a, s) = a = left V a = right.

PossObs(obsloc(z),a,s) =a = sensloc N\(z=1Vz=2Vz=3Vz=4).
That is, Ya, s.PossAct(a, s) = TRUE and Ya, s.PossObs(a, s) = TRUE.

Nondeterminism

e Nature’s choice for realizing the agent’s intention to move left, is to move the agent left
or to move the agent right:
ChoiceNat(n, left, s) = n = left V n = right.

e Similarly for when the agent intends to go right:

ChoiceNat(n, right,s) = n = left V n = right.

o [f the agent intends to sense its location, nature will always allow it to do so:
ChoiceNat(sensloc, sensloc, s) = TRUE.

e When the agent intends to go left or to go right, the agent will not be able to observe
anything; nature chooses the null observation for these actions:

ChoiceObs(obsnil,a, s) = a = left V a = right.

e When the agent wants to sense its location, it may observe being in any one of the four

74

locations:

ChoiceObs(o, sensloc, s) = 0 = obsloc(x) AN(x=1Vx=2Vx=3Vx=4).

State transition function

These fluents capture probabilities as explained earlier. The probabilities are situation indepen-

dent in this example:
e probNat(left, left, s) = 0.9;
e probNat(right,left, s) = 0.1;
e probNat(left, right, s) = 0.1;
e probNat(right,right,s) = 0.9;
e probNat(sensloc, sensloc, s) = 1.

Observation function

e probObs(o,a,s) = p =(a = left Va=right) N\o=obsnil A p =1,

e probObs(o,a,s) = p = a = sensloc A o = obsloc(x) A [(At(loc(x),s) A p = 0.7) Vv
(—At(loc(x), s) A p = 0.1)].

There are always three locations that the agent cannot be in (for which —A#(loc(x), s) holds) and
one location that it can be in (for which At(loc(x), s) holds). The probability that the agent will
perceive that it is in a location that it is actually not in is 0.1; the probability that the agent’s

perception is correct is 0.7. Therefore, (3 X 0.1) + 0.7 = 1.

Successor-state axioms

At(loc(x),do(a, s)) =
a = left A (At(loc(x + 1),) A x # 1) V (At(loc(x), s) A x = 1)V
a = right A (At(loc(x — 1), s) A x #4) V (At(loc(x), s) A x = 4)V
At(loc(x), s) A (a # left N\ a # right).

When the robot moves left (right), the robot is in new location x if it was in x + 1 (x — 1). If the
robot is in location 1 and moves left, it will remain in location 1. Similarly if it is in location 4
and wants to move right. Whenever the robot executes an action that is not left or right (that is,

it executes sensloc), it remains in the same location.

75

Reward function

goal = loc(3).
reward(s) = 5 if At(goal, s), else 1; hence, the agent’s goal should be location 3.

Sensing conditions

Perceive(a, sv,0) =
(a = left vV a=right) A o = obsnil v
a = sensloc A dx.0 = obsloc(x) A
x = 1 if sv is within 0.123 of 3, else
x = 2 if sv is within 0.123 of 6, else
x = 3 if sv is within 0.123 of 9, else
x =4 if sv is within 0.123 of 12.

Imagine a sensor that outputs a measurement value (for example, milli-volts) of 3, 6, 9 or 12
when the robot is respectively in location 1, 2, 3 or 4. The sensor is known to have an error
range of 0.123 measurement units above and below the correct measurement. Note that when
a = left or a = right, it is definitely the case that o = obsnil; sv (that is, the sensor) is not

consulted for these two actions.

Initial data base

Ds,, = {At, by}.
Aty = {At(loc(1), S 1), At(loc(2), S »), At(loc(3), S 3), At(loc(4), S 4)}.
by ={(51,0.04),(S5,,0.95),(53,0.0),(S4,0.01)}.

Aty denotes that initially the agent can be ‘at’ any of the four possible locations. Each possibility
is a situation: S, 5,, 53 and S4. by denotes the initial belief state; the probability of each initial

situation.

4.2.2 Example Policy Calculation

A simple example follows to illustrate how BestDoPO calculates an optimal policy. The same

four-state world as depicted in Figure 4.2 is used. All definitions are as above.

76

Assume, the agent is equipped with the following program; an initial input for BestDoPO:

BestDoPO(while true do [left | right | sensloc],
{(§1,0.04),(52,0.95),(S3,0.0),(S4,0.0D}, 1,7, v, pr);

the algorithm must compute a one-step optimal policy, that is, for a horizon of 1.

After the iterative component of the program is processed, the following call is made, as per the

definition of BestDoPO for the nondeterministic choice of actions:

BestDoPO([left | right | sensloc]; rest, by, 1,7, v, pr) =
dny, vy, pri.BestDoPO(left; rest, by, 1, m, vy, pri) A
dn,, vy, pry.BestDoPO([right | sensloc); rest, by, 1,1, v,, pry) A
((vy, left) = (v, [right | sensloc]) A\m=my Av=v| A pr=pry)V

(v1, left) < (vp, [right | sensloc]) Am=my, AV =Vv, A pr = prp)),

and BestDoPO([right | sensloc]; rest, by, 1, m,,v,, pry) above, becomes

dns, v, pr3.BestDoPO(right; rest, by, 1, 3, v3, pr3) A
Any, v34pry.BestDoPO(sensloc; rest, by, 1, w4, va, pra) A
((v3, right) > (v3, sensloc) N my = 3 A vy =v3 A prp = pr3) V

(vg, right) < (v4, sensloc) N my = 4 A vy = V4 A pry = pry)),

where rest is while (true do [left | right | sensloc]). Then the recursive BestDoPOs make use of
the “Probabilistic observation” definition of the formula. Because-by the action precondition
axioms for this example—left, right and sensloc are always executable, the following portion

(times three) of the formula is applicable:

An’,v'.BestDoObserve(choiceObs’ (left), left, rest, by, 1,7’ ,V', pr) A 4.1)
= left;n’ Av=r(by)+V 4.2)

and
An’,v'.BestDoObserve(choiceObs'(right), right, rest, by, 1, 7', V', pr) A 4.3)
m=right;n’ Av=r(by)+V. 4.4)

77

and

An’,v'.BestDoObserve(choiceObs’ (sensloc), sensloc, rest, by, 1, 7', V', pr) A 4.5)

= sensloc,;n’ ANv =r(by) + V. (4.6)

From the above, one can see that the action resulting in the largest value v of lines (4.2), (4.4)

or (4.6), respectively, will be the ‘best’ action; the first action recommended by the policy.

For line (4.1) (processing action left) the following portion of the “Observations possible” defi-

nition is applicable:

b" = BU(obsnil, left, by) A

An’, v", pr’ .BestDoPO(rest,b’,1 — 1,7",v", pr') A
' = Observationls(obsnil)?, "' A

v =v" - probNebs(obsnil, left, by) A

pr = pr’ - probNebs(obsnil, left, by).

In this formula (portion), because the recursive call to BestDoPO has a zero horizon, 1"’ =
Stop, and thus ' = Observationls(obsnil)?; Stop. Also, v’ = r(b") because of the definition of
BestDoPO when h = 0. Therefore, the expected value of left is v = r(by) + V' = r(by) + V" -
probNebs(obsnil, left, by) = r(by) + r(b") - probNebs(obsnil, left, by).

The updated belief b = BU (obsnil, left, by) is an input to v/ = r(b"). We work out only the first

new element of b’ in detail (see the definition of BU(-) in Section 4.1.2):

(s*,p") € byemp = 5" =do(left, s;) A p* =0.04x1x0.9.

Because all actions are possible, the only effect that normalization (in the update function) has,
is to remove (do(left, s3),0.0) and (do(right, s3), 0.0) from the new belief state, because of their
zero probabilities. BU(obsnil, left, by) results in

b" = {(do(left,S1),0.036), (do(right, S), 0.004),
(do(left, S »),0.855), (do(right, S ,),0.095),
(do(left, S 4),0.009), (do(right, S 4),0.001)}.

r(bp) =(1-0.04)+(1-0.95)+(5-0.0) +(1-0.01) =1,

r(b") = (1-0.036) + (1-0.004) + (1-0.885) + (5-0.095) + (5 - 0.009) + (1 - 0.001) = 0.561 and
probNebs(obsnil, left, by) = (0.04-09-1) +(0.04-0.1-1) +(0.95-09-1)+(0.95-0.1-1) +
(0.01-09-1)+(0.01-0.1-1)=1.

78

Therefore, v = 1 + 0.561 - 1 = 1.561 and pr = 1.0. (Note that probNebs(obsnil, left, by) = 1—
the probability of reaching b’'—is expected given action left, because there is only one possible

successor belief state from by in this case, due to only one possible observation: obsnil.)

Now we can instantiate the policy in line (4.2) as:

n = left; (Observationls(obsnil)?; Stop) A v =1+ (0.561). Similarly, we can instantiate the
policy in line (4.4) as:

1 = right; (Observationls(obsnil)?; Stop) A v = 1 + (4.424).

The expected value of going left is thus 1.561 and of going right is 5.424. More rewards can be
expected by the agent if it goes right than if it goes left: (1.561, left) < (5.424, right). But the
expected value for choosing sensloc is not yet known; we shall now see how PODTGolog finds

this value:

For line (4.5) the following portion of the “Observations possible” definition is applicable:

by = BU(obsloc(1), sensloc, by) A

Ax"” V", pr’'.BestDoObserve({obsloc(2), obsloc(3), obsloc(4)}, sensloc, rest, by, 1,7, v, pr') A
dry, vy, pri.BestDoPO(rest, by, 1 — 1,1y, vy, pri) A

7’ = if Observationls(obsloc(1)) then r; else 7' endif A

v =v" + v - probNebs(obsloc(1), sensloc, by) A pr = pr’ + pry - probNebs(obsloc(1), sensloc, by).

In this formula (portion), because the recursive call to BestDoPO has a zero horizon, m; = Stop,
and thus n’ = if Observationls(obsloc(1)) then Stop else n’” endif . Also, v = r(b,) because
of the definition of BestDoPO when h = 0. Therefore, the expected value of sensloc is v =
r(bg) + V' = r(by) + V"’ + r(by) - probNebs(obsloc(1), sensloc, by).

Let b, = BU(obsloc(2), sensloc, by), bs = BU(obsloc(3), sensloc, by) and by = BU(obsloc(4),

sensloc, by). Then it is not too hard to see that v’ = Vv'”’ + v, - probNebs(obsloc(2), sensloc, by),

77

V" =" +v3-probNebs(obsloc(3), sensloc, by) and v'""" = v,-probNebs(obsloc(4), sensloc, by).

But v, = r(by), v3 = r(b3), v4 = r(bs). Therefore,

v =r(by) +V
= r(by) + V"' + r(by) - probNebs(obsloc(1), sensloc, by)
= r(by) + v4 - probNebs(obsloc(4), sensloc, by) + v3 - probNebs(obsloc(3), sensloc, by)
+ v, - probNebs(obsloc(2), sensloc, by) + r(by) - probNebs(obsloc(1), sensloc, by)
= r(by) + r(by) - probNebs(obsloc(4), sensloc, by) + r(b3) - probNebs(obsloc(3), sensloc, by)
+ r(b,) - probNebs(obsloc(2), sensloc, by) + r(by) - probNebs(obsloc(1), sensloc, by).

Only the calculation of b; is shown: b; = BU(obsloc(1), sensloc, by) =

79

{(do(sensloc, s1),0.028), (do(sensloc, s2),0.095), (do(sensloc, s3),0.0),

(do(sensloc, s4),0.01)}. After normalizing, this becomes

by = {(do(sensloc, s1),0.226), (do(sensloc, s2),0.766), (do(sensloc, s4),0.008)}.

After calculating r(b;) and probNebs(obsloc(i), sensloc, by) fori = 1,2,3,4, we get v = r(by) +
Z?:l r(b;) - probNebs(obsloc(i), sensloc,by) = 1+ (1-0.124) + (1 -0.67) + (1 -0.1) + (1 - 0.106)
= 1. Note that (5.424, right) > (1, sensloc) meaning that right is the action the agent should
perform, according to BestDoPO.

Finally, the following sentence holds:

BestDoPO(while true do [left | right | sensloc],
{(s1,0.04), (s2,0.95), (53, 0.0), (s4,0.01)},
L,
right; Observationls(obsnil)?; Stop,
5.424,
1),

with right; Observationls(obsnil)?; Stop being the policy .

Considering that the agent believed to a relatively high degree that it was initially just left of
the ‘high-reward’ location (3) and its actions are not extremely erroneous, we would expect the
agent’s first move to be rightwards. Indeed, the policy recommends a rightwards move. Keep
in mind that there may be circumstances in which it is more rewarding to sense (for example,

to execute sensloc) than to move (for example, left or right).

4.3 Summary

This chapter presented the PODTGolog programming language. It is an extension of DTGolog
but for models of the environment that take partial observability into account. An example
showed how a domain needs to be specified for PODTGolog, and how BestDoPO determines

the first action according to the domain specification was shown.

The major disadvantage of using a POMDP planner is its computational complexity. What
is gained by dealing with the real world ‘head on’ by modeling stochastic actions and noisy
observations, may be lost by the time it takes for a robot to calculate its next move. Some sug-
gestions for optimizing BestDoPO are made in Chapter 6. There is a body of work concerned

with optimization of POMDPs, however, this is not the focus of the present research.

80

A robot programming language like ReadylLog, that employs DTGolog’s BestDo MDP plan-
ner, has been implemented in two robots and one agent simulation environment with relative
success [28]. It would be interesting to replace BestDo with BestDoPO on those platforms and
compare their performances to the performances with the ReadyLog implementations. Such

field experiments must be left for future research.

In the next chapter we shall see how a BDI architecture can take BestDoPO to generate policies
for stochastic domains. We shall also see how the generic BDI model is instantiated specifically
to accommodate BestDoPQO); vice versa, BestDoPO will be slightly modified to be usable by a
BDI architecture.

81

Chapter 5

The Hybrid BDI/POMDP Architecture

In this chapter, an approach is described for combining BDI theory with a POMDP planner
(cf. Rens, Ferrein and Van der Poel [86]). Combining the two formalisms can be viewed from
two perspectives. One, to enhance an existing planner for use in real-time dynamic domains
by incorporating the planner into a BDI agent architecture so that the management of goal
selection, planning and replanning is handled in a principled way. Two, to enhance the classical
BDI agent architecture by incorporating a POMDP planner into the BDI architecture so that the
agent can reason (plan) with knowledge about the uncertainty of the results of its actions, and
about the uncertainty of the accuracy of its perceptions. Rens, Ferrein and Van der Poel employ
the POMDP planner described in their previous work [85]. In this dissertation, the planner
employed is the one defined in the previous chapter, which is almost identical to the one Rens,
Ferrein and Van der Poel [86] used. The papers [85, 86] are attached as appendices C and D

respectively.

The rest of the chapter has three sections. Section 5.1 shows the basic BDI architecture as pre-
viously also presented in [86]. It describes the basic components and processes of the proposed
hybrid architecture. Section 5.2 extends the basic architecture to include a notion of meta-
reasoning, that is, a notion of controlling the amount and kind of reasoning. Generally, in BDI
theory, this notion falls under the term reconsideration. The last section discusses some issues

concerning the architecture described in this chapter.

5.1 A Basic BDI Architecture employing a Generative

Planner

In this section we see how an agent controller in the BDI model can incorporate the BestDoPO
POMDP planner into its practical reasoning processes. The prototypical control loop of the BDI

model was taken as a reference, then it was modified to accommodate planning with POMDP

82

policies. The proposed architecture is called BDI-POP (BDI with POmdp Planner).

_ _ » information flow

, control flow

restof -
program(
\ A
e m - *—>| plan (BestDoPO)
|
. |
action !
|
v
output >~ _|
IS < a
I —————
! -I exe
|
|
| -
to_-"" -
.47
sensor - |
L]
input

Figure 5.1: Schematic diagram of a sketch of the BDI architecture with the POMDP planner.

First, with the aid of Figure 5.1, some terms and their relationships are introduced. Implic-
itly included in the “BELIEFS” data store, is the agent’s current belief state B, a fixed set of
behaviors B and a fixed set of reward functions R (R is considered globally accessible). The
“DESIRES” data store contains the fixed set of desires D; the agent’s primitive goals; its innate
drive. The idea is that each desire refers to a unique goal that the agent is designed to achieve.
The wish function is omitted from our architecture because the options the agent would pursue

at any time are fixed—as D.

Each behavior b € 8 is a quadruple (nom, 6, ach, v): nom is a reference to the Golog program 9,
ach € D refers to the desire that ¢ can potentially achieve and v is the value of 6. The reward
functions r € R take as argument a reference nom that refers to the program that r is associated
with. The following holds: (Vd).[d € D — (3b).b = (nom,6,ach,v) A ach = d]: for each
desire, there exists at least one program to achieve it. Each desire is characterized by the set of

programs and reward functions that can achieve the desire.

83

To understand the controller, we also need to consider the agent’s deliberation process.

Deliberate(-) is the procedure that calls and controls the Focus predicate and that operates on an
intention stack: We write Focus(B, D, I’, 8, h™) to be the predicate that selects one b € B for each
d € D, placing these behaviors in a stack, in ascending order, ordered by the behaviors’ values.
The behavior selected for a desire is the one that can achieve the desire (ach = d) and that has
the highest value (cf. Algorithm 8). A behavior’s value is estimated as the value v of the policy
found, generated to a depth 4~ : BestDoPO is called with B, h~ and the applicable program
0 as arguments; v is used and the policy is discarded. We keep A~ < h to save on time spent
deliberating. In the definition just below, ~~ = h — 1, but in general, 4~ is constrained by 0 <
h™ < h. Focus(-) ‘returns’ the stack I’ of selected behaviors. In Deliberate(B, D, I, B, h,i,,1"),

i, is the active intention; the intention/behavior popped from the top of the stack 7, leaving I":

Deliberate(B, D, 1, 8B, h,i,, I") =

@h).k =h-1 A

(IsEmpty(I) A (AI').Focus(B,D,I' ,B,h™) V
=IsEmpty() A @AI).I' = 1) A

(i, I'").PopIntentionStack(l', i,, I'").

In terms of Section 2.3.3, when the intention stack is empty, goal-deep deliberation occurs, else

intention-deep deliberation occurs.

Algorithm 8: Focus
Input: B,D, B, h~
Output: /’: stack of behaviors; initially empty
foreach d € D do

1
2 Vbest €= =

3 foreach (nom, 6,ach,v) € B s.t. ach =d do
4 BestDoPO(6, nom, B,h™, v, pr) ;

5 if v > v, then

6

7

Vipest €<~ V5
bbest —b 5
8 | (bbest’ Vbest) € temp 5

Stack(temp, 1) ;

-]

Algorithm 8 is a top-level pseudocode definition of Focus(-). Stack(temp, I") uses temp to order

the behaviors in descending values, from top to bottom.

Note that in Algorithm 8, nom is a new argument to BestDoPO. 1t is required because each
program has its own reward function—BestDoPO selects the correct reward function for the

current input ¢, using nom as reference to o to select the applicable reward function.

BDI-POP tests whether a usable policy could be generated, that is, whether the planner returns

84

the Stop policy: When every outcome of an intended action (according to the input program) is
illegal (according to the background action theory), BestDoPO returns Stop, and we say that the
input program is impossible. An intention (nom, 6, ach,v) € I with ¢ being impossible is thus

defined as an impossible intention.

The strategy used in Deliberate(-) to deal with an impossible intention is extremely simple: it
is dropped and the next intention on the stack is popped. This is a reasonable strategy because
the next intention on the stack has the highest value, and should thus be pursued next. Other
strategies are possible, for example, replacing the impossible intention with another intention
that achieves the same behavior, if one exists. Calling Focus(-) to refill the intention stack at this

time would defeat the principle of commitment to intentions.
A logical high-level specification of BDI-POP follows—in three clauses.
1. Process the program of the active intention

If the active intention i, is (nom, 9, ach, v), then the ‘program’ of the active intention is o.

Agent(B,D, 1,8, h,i,,n) Y
(dnom, 6, ach,v).(nom, 6, ach,v) = i, A
(Anm).r # Stop A & # nil A
3r’,a).m = a; 7’ A\ Execute(a) A
(Asv).GetPercept(a, sv) A (o).Perceive(a, sv,0) A
(An"").GetSubPolicy(n’, 0,7"") A
(AB).B’ = BU(0,a, B)) A
Agent(B',D, 1, 8B, h,i,n").

After the action recommended by the policy is executed, GetPercept(-) returns a sensor
value, given the action executed / sensor activated. The agent processes the sensor data
and decides what it observed—the agent recognizes the sensor reading via the Perceive
predicate, which ‘outputs’ an observation. With this observation, the correct subpolicy is
extracted from the current policy, and this (possibly empty) subpolicy becomes the new

current policy.

Then the agent’s beliefs must be updated according to what it ‘knows’ about the effects of
its actions. The same belief update function used during planning by BestDoPO is used to
update the agent’s beliefs. The current belief state of the agent will be the ‘initial’ belief

state required as argument to BestDoPO the next time the planner is called.
2. Empty program, empty policy

The agent follows the intention with the highest value—the behavior popped from the in-

85

tention stack; the active intention. Initially, the intention stack is empty—that is, Agent(-)
is called initially with i, = (nil, nil, nil, nil), hence Deliberate(-) is called and the active

intention is instantiated. Initially, 7 = Stop.
If there is no ‘rest of program’, that is, if the program is empty, Deliberate(-) is called.

Agent(B,D, 1,8, h,i,,n) E]

(dnom, 6, ach, v).(nom, 0, ach,v) = i, A
(Am).t = Stop A 6 = nil A

(3¢, I').Deliberate(B, D, I, B, h,i,,1") A
Agent(B,D,I', B, h,i,,n).

3. Empty policy, program not empty

Whenever the controller needs a new plan to execute, BestDoPO is called to generate
a policy with horizon A using the program specified by the active intention. The agent
executes the policy until the end of the policy is reached, then BestDoPO is called again

for the rest of the program.

If the program has become impossible, Deliberate(-) is called.

Agent(B,D, 1,8, h,i,,m) <
(dnom, 8, ach, v).(nom, 6, ach,v) =i, A
(Am).r = Stop A 6 # nil A
(35").GetRestProg(6,h,6') A
(3r’, pr).BestDoPO(S, nom, B, h,n’, v, pr) A
(3i).i;, = (nom, 8", ach,v) A
(7" = Stop A
(3¢, I').Deliberate(B, D, 1, B, h, i/, I') A
Agent(B,D,I', B, h,i//,n") Vv
n’ # Stop A
3r"”,a).n’ = a;n”" A Execute(a) A
(Asv).GetPercept(a, sv) A do.Perceive(a, sv,0) A
@n"").GetSubPolicy(n”,0,7"") A
(3B').B' = BU(0,a, B)) A
Agent(B',D, 1,8, h,i,,n'")).

GetRestProg(o, h,d") assumes that all ‘while’ conditions in ¢ are ‘true’ and not contingent. Thus,

86

Algorithm 9: GetRestProgAux
Input: 6, h, Depth
Output: ¢': rest of program, after & actions
1 if 6 = [(while true do A); B] then
2 L GetRestProgAux([A; (while true do A); B, h, Depth,?’) ;

3elseif 6 = [E1l; E2] and E1 # [E11; E12] then
4 if Depth = h then

5 L o «— E2;

6 else

L GetRestProgAux(E2, h, Depth + 1,0") ;

2

8 elseif § = [E1;E2] and E1 = [E11; E12] then
9 L GetRestProgAux([E11;[E12; E2]], h, Depth,d’) ;

10 else
11 L o =nil;

BDI-POP architectures only allow input programs with ‘true’ ‘while’ conditions.
GetRestProg(o, h, ') is defined by

GetRestProg(6,h,8') Y GetRestProgAux(6,h, 1,5

and GetRestProgAux(-) is defined in Algorithm 9.

Given our present definition of Deliberate(-), to guarantee that the agent deliberates at regular
intervals, the designer must allow only finite programs for achieving intentions, Hence, fixing
the interval period—to the degree that intentions become impossible. Adding a Reconsider
predicate that tells the agent once every control cycle whether to deliberate is a more sophis-
ticated method. One possible definition of the Reconsider predicate is discussed in the next

section, and also shown, is how BDI-POP is modified to accommodate Reconsider.

It can be seen that BDI-POP employs a single-minded commitment (intention maintenance)

strategy.

5.2 Adding Reconsideration to the Architecture

Reconsideration was discussed in detail in Section 2.3 and we saw the important role it plays
in BDI theory. Therefore, adding reconsideration to the basic architecture developed in the

previous section is investigated here. The resulting architecture will be called BDI-POP(R).

In Algorithm 5 in Chapter 2, the reconsider function is placed just after the belief update

function in the agent control loop. It is placed in the same relative position of the BDI-POP

87

control loop. To be precise, clauses 1 and 3 of the definition of Agent presented in the previous

section, change as follows (clause 2 remains unchanged):
1.

Agent(B,D, 1,8, h, i, 1) <

(AB').B’ = BU(0,a, B)) A
(Reconsider(B', 1,i,, h, Fy, F;) A

Deliberate(B', D, 1,8, h,i,I') N Agent(B',D,I', B, h,i,,7n”") Vv
—Reconsider(B’,1,i,, h,Fy, F;) A

Agent(B',D, 1,8, h,i,,n")).

Agent(B,D, 1,8, h,i,,) e

(3B).B' = BU(0,a, B)) A
(Reconsider(B', 1,1, h, Fy, Fi) A

Deliberate(B’, D, 1, B, h,i/,I') N Agent(B', D, I', B, h,i;,n"") v
=Reconsider(B’, 1,1, h, Fy, Fi) A

Agent(B',D,1, B, h,i,,n'")).

Algorithm 10 is a high-level definition of Reconsider(-). Observe that I’ is the original stack of

intentions, without the active intention; then 7, (line 1) is the complete intention stack.

In the algorithm, IntnStack_CurrentValues(B', I,, h™) (line 4) returns a stack of intentions /. such
that, for each (nom, 6, ach,v,) € 1,, (nom, 6, ach,v.) € I., such that, BestDoPO(6,nom, B’ ,h™, r,
ve, pr). Let I. (line 6) be the intentions (including the active intention) with values as found

through BestDoPO with the updated belief state B'.

Furthermore, Reconsider(-) takes the designer supplied arguments Fy and F;—Ilet 0 < Fy, F; <
1. Fy is a factor for lowering the value of the average value of I, so that re-deliberation is
considered only if the average value of 1, (with i,) is less than the average value of I, times the
factor Fy (lines 7-9). This is to prevent the agent from reconsidering, when there are relatively

small variations in the average value of its intentions, according to its current beliefs.

Notice that /, and I, may have almost equal average values, even though the order of the two

stacks may be rather different. An agent should not want to keep I, as its intentions when

88

Algorithm 10: Reconsider

Input: B, I,i,, h, Fy, F;

Output: true or false
1 1, & Push(i,, 1)) ;
2 (nom,d,ach,v,) =i, ;
3h «—h-1;
4 I « IntnStack_CurrentValues(B',1,,h™) ;
5 BestDoPO(6,nom,B’',h™,m,v., pr);
6
7
8
9

1. « Push((nom,d,ach,v.), 1) ;
Aorig «— AverageValue(l,) ;
Ay < AverageValue(l,) ;
A::urr — Acurr X FV ;

10 N < NuofInversions(I., 1,) ;

11 M <« MaxPossInversions(l,) ;

2 M —MXF;;

13 if A, <AL, or N> M then

14 | return true

15 else

16 L return false

the order of these intentions is irrational. That is, if the agent had to reorder the intentions in
stack I, according to its current updated beliefs to get /., then the agent may want to consider
re-deliberating if the order of the intentions has changed ‘sufficiently’. Define “sufficiently”
as: when the number of inversions of /. with respect to I, is greater than/equal to the maximum
number of inversions possible of the intentions in /,,, times the designer supplied factor F; (lines
10-12).

The Reconsider function thus considers both a sufficient drop in the average value of intentions
(a value-based reconsideration strategy) and a sufficient amount of difference in the order of the
intentions with respect to the current belief state (a knowledge-based reconsideration strategy)'
(at line 13 of Algorithm 10).

5.3 Discussion

A somewhat significant difference of our hybrid architecture from the perspective of control
via POMDP policy generation, is that—as stand-alone controller—the POMDP planner takes
a single plan with a single associated reward function, to generate a policy. The new hybrid
architecture, on the other hand, takes several programs, each with an associated reward function.
This aspect of the agent being able to reason over multiple behaviors has the advantage that the
agent designer can separately specify behaviors that should—at least intuitively—be considered

separately.

'Reconsideration strategies were defined in Section 2.3.3.

&9

BestDoPO expands Golog programs into hierarchically structured plans (policies), and only
programs that have been selected as intentions are expanded into policies. Each program can
generate a policy—or several policies if the program is expanded piece-wise. Viewing a policy
tree as an intention structure in the sense of traditional BDI architectures, each program in the
intention stack represents at least one intention structure. BDI-POP, therefore, maintains several

unexpanded intention structures, only expanded when popped from the intention stack.

In BDI-POP, intentions and intention structures are not partial and hierarchical—as they tra-
ditionally are in BDI architectures—in the sense that intentions are plans that may be com-
posed of more abstract intentions referring to more concrete plans. The program ¢ in the inten-
tion/behavior (nom, 6, ach, v) mentions only (primitive) actions, not other intentions/behaviors.

Allowing for partial/hierarchical intentions in BDI-POP is left for future work.

More sophisticated reconsideration strategies (reconsider functions) are possible, but investi-

gation in this direction are beyond the scope of this dissertation.

90

Chapter 6
Ideas for Efficiency

Optimal POMDP solvers are known to be highly inefficient. Four different ideas are explored
here, to make the BDI-POP POMDP-planner more efficient in terms of time and memory usage.
The methods are divided into two categories: (i) those that reduce belief state dimensionality,

and (i1) those that reduce decision tree branching factor. In the former category we discuss

1. Culling situations (represented in any belief state) with associated probability less than

some value;

2. Condensing belief states: transforming (and maintaining) belief states representing situa-

tions, to belief states with situations representing a fixed set of world states.
In the latter category we discuss

3. Constraining the number of belief states to a fixed amount at any tier of the decision tree,

using the probability of reaching a state;

4. Constraining the number of belief states to a fixed amount at any tier of the decision tree,

using state utility.

Either of the two items from category (i) can be combined with either of the items from category
(i1), yielding four combinations. In other words, one could apply one of the four individual

methods, or one could apply four mixtures of methods.

Results of experiments run on implementations of category (i) methods are presented in Chap-

ter 7.

91

6.1 Culling Situations

6.1.1 By Probability

The approach taken here is very simple. In the belief update function, remove any situation
represented in a belief state that has a probability less than some predefined probability value.
The reasoning is that an agent should not further consider, as part of its beliefs, situations that
are very unlikely. Then normalize the remaining situations so that they sum to 1. If a predefined

probability value is ¢ (c could be set to 0.01 for example), the belief update function becomes

Function BU(o0,a,c,b)

1 foreach (s, p) e bdo

2 dn, s*,p*.(s*, ") € byepp-1 1 8T =do(n, s) A

3 ChoiceNat(n,a, s) A PossAct(n, s)\

4 p" = p- probObs(o,a, s*) - probNat(n,a, s) A p* # 0

(9]

biemp-2 = normalize(Diemp-1)
foreach (s*, p*) € bymp—2 do

L (S+, P+) € btemp—3 : p+ >c
byew = normalize(byepp-3)
return b,,,,, .

N &

e ®

At first glance, the reader may wonder why the line p* = p-probObs(o, a, s*)- probNat(n, a, s) A
p* # 0 is not simply changed to p* = p - probObs(o,a, s") - probNat(n,a,s) A p* > ¢
and then let b,., = normalize(bimp1) be the last line defining the function. Suppose b =
{(do(ay, $),0.005), (do(ay, s),0.995)}, and suppose n; and n, are outcomes of a*, and PossAct(n;, s)
is true, but PossAct(n,, s) is false. Then with the naive approach, if ¢ = 0.01, then BU(o,a", ¢, b) =
bnew = {}, whereas using a two step process—culling and normalizing twice—

biemp-1 = {(do(a”,do(ay, s)),0.005)}, biemp-> = {(do(a™, do(a, s)), 1.0)} and

bpew = {(do(a*,do(ay, 5)), 1.0)}. Using the two-step process thus reduces the chance of an agent
becoming ‘unconscious’ (having an empty belief state), especially when the belief state has

only few situations in it.

For later reference, we call this (two-step) method belief state reduction by probability cut-off.

6.1.2 By Probability and Dimensionality

In any belief state, consider only the x most likely situations. The idea here is very similar to the
idea of the method above; here though, the size (number of situations represented) of a belief

state is limited to x. (Belief state dimensionality is unlimited in the previous method.)

92

Intuitively, it seems reasonable to consider the most likely situations only; this is the thinking
of both methods in category (i). The present method considers computation as well, by limiting
state size. The advantage of the present method is that no ‘cut-off” probability (c¢) needs to be
chosen or determined: Agents in different domains may perform differently for the same value
of c. However, the disadvantage of the present method is that the choice of x’s value must be

justified.

There is another problem to applying the idea naively: Suppose a belief state » mentions 100
situations, 10 situations have probability 0.02, 20 have probability 0.01 and the other 70 sit-
uations make up for the remaining probability mass, but all with probabilities less than 0.01.
Now if x is 20, the 10 situations with probability 0.02 will be retained. But which of the 20
with probability 0.01 must be retained? In this work, this complication is ignored. For later
reference, we call this simple method belief state reduction by x most likely. The method is
defined below.

Function BU(o0,a,x,b)

1 foreach (s, p) e bdo

2 dn, 57, p*.(s*, p*) € byepp-1 : T =do(n, s) A
3 ChoiceNat(n, a, s) A PossAct(n, s)\

4 p" = p - probObs(o,a, s*) - probNat(n,a, s) A p* # 0
s if SmallEnough(biepmp-1, x) then

6 L btemp—3 = btemp—l

7 else

8 biemp— = sortDescending(biemp-1)

9 btemp—S = POPFi’”St(x, btemp—Z)

10 by, = normalize(biemp-3)

11 return b,,,,.

SmallEnough(byep,-1, x) 1s true if and only if the number of situations in by, 1s less than/equal
to x. sortDescending(byey,-1) sorts the situations in by,,,—; in order of descending probability.

popFirst(x, biem,—>) returns the first x situations (with the highest probability).

6.2 Condensing Belief States

Suppose an agent lives in a world with 25 states. The agent’s initial belief state may contain any
number of situations less than or equal to 25 to describe in which states it thinks it is in initially.
For example, it may believe it is in states 1,2,3,4 and 5, each with probability 0.2. Say all
the agent’s stochastic actions have three (always executable) outcomes, then its next belief state

will contain 5 X 3 = 15 situations, and the next belief state 15 X 3 = 45 situations, and so on.

93

Several situations may possibly describe the same state, the states are simply reached via dif-
ferent action histories. Refer to this as the situation equivalence problem in situation calculus.
If one could combine such similar situations, one could constrain the agent’s beliefs to be a
probability distribution over a maximum of—in this example—25 situations (states), each such
situation having a probability equal to the sum of the probabilities of the situations that were
combined. Each new combined situation represents one state and the situation has the whole
probability of the agent being in that state. There is then a one-to-one correspondence between

situations and states. The new belief update function would thus look like this:

Function BU(0,a,b)

1 foreach (s, p) e bdo

2 dn, s*, p*.(s*, ") € byepp-1 : 8T =do(n, s) A
3 ChoiceNat(n,a, s) A PossAct(n, s)\

4 p* = p- probObs(o,a, s*) - probNat(n,a, s)

5 Diemp—2 = normalize(byemp-1)

¢ foreach state € Q do

7 s, pu-(Sn, Pu) € bpey : NewSituation(s,)A\

8 V'si, Pi-(St, Pi) € bremp— A Similar(s,, state) ANF.F(s,) = F(s)A
9 Pn = ZVS,,p,.(S,,p,)Eb,gmp,z D1

10 return b,,,,.

We call this the belief state condensation by transformation method of belief update.

The agent designer must be careful to specify actions and states such that states are closed
under actions. In the function above, each time the agent’s belief state is updated, a new unique
situation term s, is created, such that NewSituation(s,) holds; one for each state in Q. F is a
fluent. In Similar(s,, state), s, is universally quantified, (Vs,)[Similar(s,, state)] iff (VF)[F(s,)
& predicate F holds in state]. The second order formula (VF)F(s,) = F(s;) ensures that all
the fluents that held in all the similar situations s; hold in the new situation s, representing

state—and the fluents hold only then.

With this modification, belief states are progressed. The idea is similar to the progression of
a KB (cf. [84], Chapter 9), but here—for each belief state—we are progressing several KBs.
Also, we maintain the progressed belief states, which leads to loss of memory. Memory is
not necessary while planning though: the belief states will be discarded once a policy has
been generated. Nevertheless, the agent can still retain the memory of the actions it actually

performed.

94

6.3 Branch Pruning by Reachability

The branching factor in a decision tree is normally a X o, where a is the number of actions
the robot can choose from and o is the average number of observations per action. The search
space for generating a policy thus grows exponentially by a factor of a - o in the depth of the
policy (the planning horizon /). During an agent’s activity in the world, certain belief states
may never be reached or entertained because the observations involved in reaching some state
may occur with tiny probabilities. It may therefore be wasted effort during planning to consider

sub-decision-trees rooted at belief states that occur with such low probability.

We could thus decide to entertain only the m most likely belief states per decision tree tier
while searching for a policy. The decision tree size—in the number of belief states—will be
approximately m X h when its generation is complete. The size of such decision trees is thus

constant.

To determine the probability of any belief state b, one needs to consider the probabilities of all
the actions and observations on the path to . Suppose we are looking for a policy of depth 3.
Consider some leaf belief state b”’; let the path to b”’ have the sequence (a’,0’,a”,0”,a"’,0"")
of actions and observations on it. Then the a priory probability of the robot being in "’ is
Pr(a’) - Pr(o’) - Pr(a”’) - Pr(o”) - Pr(a’’) - Pr(0o”"). Let Pr(o) = probObs(o,a,b), where b is
the appropriate belief state for the observation in the tier of the decision tree. For example,
Pr(o") = probObs(o’,d’, by), where by is the initial belief state. Because one does not know
beforehand what action the robot will choose, we assume equal likelihood for all actions being
considered at that time. For example, if at some belief state the agent can choose between four

actions, then Pr(a) = 0.25 for each action.

We only consider actions and observations that are possible. Therefore, out of all actions the
robot can entertain, say {a, ..., a,}, if PossAct(a,, b) is false, let the probability of each remain-

ing action being chosen be equal to 1/(n — 1).

To implement this idea, one needs all belief states in a tier of the decision tree to be available,
so that a set m of ‘most likely’ belief states can be determined—there is one set m for each
tier. That is, there is one set m that is updated/maintained during the generation of a decision
tree. To accomplish this, change the search method of the planner from depth first to breadth
first. Theoretically this should not cause memory problems, because the tree generated, grows

linearly; linear growth is the aim of this modification.

Changing from a depth first to a breadth first semantics with the incorporation of the m most

likely set of belief states, is not straight forward, and is left for future work.

95

6.4 Branch Pruning by Utility

A method similar to that in Section 6.3—choosing the ‘best’ m belief states per tier to expand—
is now presented. The only difference is the definition of ‘best’; here ‘goodness’ of a state is

proportional to its utility.

Suppose the planning horizon is 4 = H. Hence a decision tree of depth H (H tiers) must
be generated for the required number of actions. Determining the belief state utilities (total
expected rewards) optimally, would require the whole decision tree to be expanded to the depth

H. But expanding the whole decision tree is exactly what we are trying to avoid!

One solution would be to expand the decision tree to depth 1 (assuming 4 > 1), then deter-
mining the x most valuable belief states. Then expand only these m belief states by one tier,
and select the x most valuable belief states again, and so on. This solution provides most lin-
earity/tractability in the generation of a decision tree. But it is least accurate/optimal, because
expected values are being estimated—optimal paths in the tree might be pruned due to selection

with incomplete information.

An ad-hoc approach might be to select depth 4’ = [H/3] for expanding belief states. For
example, if 4 = 9, then 4’ = 3, and after generating the decision tree for three action tiers, select
the x belief states with highest utilities. Expand only these x states for a further three action
tiers, and again select the m belief states with highest utilities, till depth 6. Finally, expand these
m belief states till depth 9. From the pruned decision tree generated in this fashion, determine

the policy.

Suppose there are 10 actions and, on average 5 observations associated with each action, and all
actions and observations are always possible. Then a complete belief decision tree of horizon 9
(without pruning) has 1+(10x5)+((10x5)x(10x5))+(10x5)3+50*+. . .+50° = 37, 50/—O(50°)
belief states. With the pruning method, using 4’ = 3, the number of belief states generated will
be 1+(10x5)+(10x5)?+(10x5)3+50x+50(50x) +50(50(50x)) + 50x+50(50x) +50(50(50x)) =
1 + 50 + 50% + 50° + 2(50 + 50 + 50°)x—O(50°). This is an improvement by an exponential

factor of 3 in this example.

Again, implementing and testing this method is not pursued now.

6.5 Discussion

The belief state reduction by probability cut-off method is very simple to implement, and it
will be seen in the next chapter to yield improved results. It is however, to some degree, ad
hoc. The method of belief state reduction by x most likely seems to be no better as far as

principled motivation goes. Its implementation is also, relatively speaking, computationally

96

more intensive, but nevertheless also delivers improved results. The method of belief state
condensation by transformation has a good formal basis, however, much more computation is
required than the other category (i) methods to implement the method. See the next chapter for

the efficacy of the method.

Although the ‘branch pruning by utility’ method has higher computational complexity than the
other category (ii) method, pruning by utility instead of reachability may result in more effective
policies being generated. A comparison of the effectiveness of the two category (ii) methods,
by observing the behavior of agents employing the respective methods, may yield insights into

these optimization approaches.

All the methods cause policies to be sub-optimal. Sub-optimal policies imply sub-optimal agent
behavior in terms of the value of policies, per policy. However, for agents that repeatedly
generate and execute policies, if policy generation can be sped up, their reactivity increases and

they may perform better in the long-run, even with sub-optimal policies.

Be aware that there is potential for explosion of memory requirement for decision trees both in
the requirements for representing belief states and in the number of belief states that need to be
stored. Therefore, to curb exponential growth of the size of decision trees, with respect to 4,

optimization must be applied to both size of and number of belief states.

97

Chapter 7
Experimentation

This chapter assesses the performance of BestDoPO and various architectures employing
BestDoPO under various conditions. The first section justifies the method of assessment and
mentions the assumptions made with respect to the experimental framework. The next section
focuses on the performance of the planner alone. Section 7.3 introduces the simulation world
that will be used in Sections 7.5 and 7.6. A ‘base-line’ architecture is described in Section 7.4
to help gauge the performance of BDI-POP and BDI-POP(R) in Section 7.6. The results are
discussed in the final section. For a discussion of the results in a broader context, please refer
to the concluding chapter. (In the rest of the dissertation, BDI-POP((R)) means BDI-POP and
BDI-POP(R).)

7.1 Method and Assumptions

There seems to be only three ways in which one can assess the performance of BestDoPO and
BDI-POP((R)): (1) analytically/mathematically, (2) empirically through simulation, and (3) em-
pirically through real-world implementation. Although an analytical assessment of BestDoPO
is conceivable, it is beyond the scope of this dissertation. An analytical assessment of BDI-
POP((R)) would not be conceivable to most researchers, and definitely not within the scope of

the current work.

Although empirical assessment “through real-world implementation” is preferred above empir-
ical assessment “through simulation”, much resources are required for the former approach.
Experimentation using a simulator was thus the option chosen. It was decided to create a sim-
ulator in the Prolog programming language. Moreover, creating the simulator from scratch
allowed for the flexibility of creating a world suited to the current work. We acknowledge that
creating a simulator from scratch imposes constraints, including great difficulty in simulating

detailed physical conditions and of complex, detailed scenarios. Nevertheless, the FireEater-

98

world simulator was created and implemented in Prolog as described in Section 7.3.

7.2 Optimization Methods with the BestDoPO Planner Alone

We look here at experimental results of three optimization methods defined in Chapter 6. Instead
of FireEater-world, a simpler experimental environment is first used to notice effects of time on

policy generation and on the quality of policies.

In this section we only investigate the BestDoPO planner’s performance (relative to the agent’s
action and world models) independent of the agent’s performance on some task in an actual
(virtual) domain. Actually, there is no agent as such under consideration here, because there is

no architecture for the planner to be embedded in.

In the experimental environment of this section, there is no random element; only one run is

thus necessary per setting of a parameter.

Plans must be generated for an agent inhabiting a 5 X 5 grid world, where the agent’s task is
to move towards the cell that contains the (only) star. In this toy world, there are no obstacles
or anything to distract an agent. The domain specification is very similar to the specification in
Section 4.2.1.

We call
BestDoPO(while —ArGoal do [left | right | up | down | sensloc), by, h, w, v, pr),

where / will be set according to the experiment design.

The reward function used in this section is essentially designed such that the agent gets rewards

proportional to the inverse of the Manhattan distance from the star.

99

7.2.1 Experiment 1

First, to show that BestDoPO can deal with the case where an agent is initially uncertain where
it is, a policy of depth 4 (that is, & = 4) is sought, using the ‘vanilla’ belief update function. The
initial belief state is by = {(s9,0.9), (513, 0.05), (s17,0.05)} and the following are in the agent’s
knowledge base: At(loc(2,4), s9), At(loc(3,3), s13) and At(loc(4,2), sy7). See Figure 7.1. The
star is at grid location (1,1) (loc(1, 1)).

The policy was (essentially) ¢; d; d; d—Ieft is abbreviated as ¢ and down as d. Note that this is
a policy one would expect if the agent believes strongly (90%) that it is in cell (2,4).

5

o | %
Second 3
coordinate

2

1 }

1 2 3 4 5
First coordinate

Figure 7.1: A 5 x 5 grid world. The goal is to reach the star. The agent is initially possibly in
three situations.

100

7.2.2 Experiments 2, 3 and 4

Figure 7.2 indicates that the agent’s initial belief state is by = {(s19, 1.0)}, where At(loc(4,4), s19)
is in the agent’s knowledge base. Because the agent has absolute certainty about its initial
state (that is, situation sy9), it is simple to classify a policy as “optimal” or “non-optimal” by

inspection.

5

: X
Second 3
coordinate

2

1 E

1 2 3 4 5
First coordinate

Figure 7.2: A 5 x 5 grid world. The goal is to reach the star. The agent is certain of its initial
situation.

For the following three batches of experiments, a policy m for six actions (that is, & = 6) is

sought.

Using the ‘vanilla’ belief update function, the running time was 13346 seconds and the policy
was (essentially) d;d;d;(; ;€. Note that this is an optimal policy. Now the following two

optimization methods can be assessed against this base-line result.

Cut-off probability | Running time (sec.) | Policy found | Optimal?
c=0.1 916 d;d;d;€; €, € | Yes
c =0.01 4764 d;d;d;C;€;,€ | Yes
c = 0.001 5648 d;d;d;{;€;€ | Yes

Table 7.1: Results of policy generation using belief state reduction by culling situations below
a cut-off probability.

Table 7.1 gives the results of using the belief state reduction by probability cut-off method,
where the probability cut-off parameter c is varied between 0.001 and 0.1. This seems to be a
reasonable range. Culling all situations reachable with a probability less than or equal to 0.5

or 0.00001, for example, seems unreasonable. Showing for what values of ¢ this optimization

101

method has the most and least effect, is not the aim of this study. We only show that the method

has significance.

Situations retained | Running time (sec.) | Policy found | Optimal?
x=1 885 d;d;d;€;¢,€ | Yes
x=11 7704 d;d;d;{; ;€ | Yes
x =21 10374 d;d;d; ;€ ¢ | Yes

Table 7.2: Results of policy generation using belief state reduction by retaining the x most likely
situations.

Table 7.2 gives the results of using the belief state reduction by x most likely method, where x

is varied between 1 and 21.

Similar to the experiment about the previous optimization method, here, only three settings are
chosen to best illustrate the potential of this method. x = 1 is the smallest possible setting. And
setting x > 21 would not shed much light on the subject: 13346 seconds running time is the

worst case and 10374 for x = 21 is close to that.

7.2.3 Experiment 5

A fifth batch of experiments compares the ‘vanilla’ belief update function and the belief state
condensation by transformation method, for h = 1,2, 3,4, 5 and 6 (cf. Tbl. 7.3). The belief state

condensation by transformation method yields an optimal policy when h = 6.

Horizon | Running time (sec.) | Running time (sec.)
‘vanilla’ method modified method

h=1 0 0

h=2 0 0

h=3 1 2

h=4 20 32

h=>5 515 502

h=6 13346 7755

Table 7.3: Results of policy generation using belief state condensation by transforming situa-
tions into states.

With this method, there is no parameter to set, unlike the previous two methods. In pilot trials,

it was found that this method only starts producing significant results for relatively far horizons;

in this case, for 4 > 6. Table 7.3 makes this clear.

102

7.2.4 Analysis

Experiment 1 verifies that the basic or ‘vanilla” POMDP planner works as expected in a simple

problem, given an uncertain initial situation.

Experiments 2,3, and 4 tested the ‘vanilla’ planner, the planner with belief state reduction by
probability cut-off, and respectively, the planner with belief state reduction by x most likely. For
the two experiments where optimization is employed, in the best cases, the improvement over

the non-optimized planner is by a factor of fifteen.

The significance of the improvement seen in experiments 3 and 4 should encourage an agent
designer to always employ a planner with one of the optimization methods—if programming in
PODTGolog.

The result that policies were always optimal, is surprising, especially in the case where the belief
state reduction by x most likely method was used, and x = 1. x = 1 means that only one situation
is maintained in the agent’s belief states. It might be, that an optimal policy is achieved, even

under this most strict constraint, because of the simplicity of the simulation world.

In the experiment with belief state reduction by probability cut-off, less than half the running
time used by the ‘vanilla’ planner is used, even though only situations with probability less
than 0.001 are culled. This result indicates that there is potential that much information can
be retained in the agent’s belief states, while still improving planning running time—if this

optimization method is employed.

Use of the belief state condensation by transformation method achieves a halving of running
time when 4 = 6. The results in Table table:vanil-vs-cond, however, suggest that significant
improvement only occurs from /4 > 6 in this experimental case. Thus, if shorter policies are
periodically sought—as in Section 7.4—this optimization method may not have the impact that
the other two methods may have. Moreover, the other two methods allow for a desired level in
trade-off between policy accuracy and planner running time, due to the fact that these methods

have parameters that can be set.

More is said in the next chapter about BestDoPO in practice. In the rest of this chapter, the

performance of the planner together with a ‘meta-controller’ are evaluated.

7.3 The FireEater-world Simulation Environment

To validate the BDI-POP architecture and to gain a sense for its performance potential, we
observe the behavior of an agent based on the architecture, in a simulation. The simulation en-

vironment is inspired by Tileworld [77], a testbed for agents. FireEater world was designed and

103

implemented. It is a dynamically changing grid world in which an agent is situated. There are

obstacles that change position, fires that can be ‘eaten’ and ‘power packs’ that can be collected.

The agent gets one ‘point’ for eating one fire and three ‘points’ for collecting a power pack. It
can only eat a fire or collect a power pack if it is in the same cell as the fire/power pack. The
agent can go left, right, up or down—Ilocomotive actions which are stochastically nondeter-
ministic; it can also sense its location (probabilistically) and do nothing (deterministically). To
summarize, the agent has eight actions available to it: up, down, left, right, noop (do nothing),

eat (fire), grab (power pack) and sensloc (sense location).

Once a fire is consumed or a power pack collected, it does not re-appear, however, their initial
locations are random. There is initially always 36 fires and power packs in sum, the ratio of

which—the fire:pack ratio—may be chosen as a simulation parameter: 9:27, 18:18 or 27:9.

There are always 24 obstacles (throughout the simulation) and their location changes during a
simulation run. The rate at which they change is a simulation parameter; the simulator asks for
the number of obstacles whose position must change per simulation cycle. Call this parameter

the rate of change (RC). An agent cannot move into/through a cell that has an obstacle in it.

Similarly, the simulator expects as input a parameter for the number of agent actions allowed

per simulation cycle. Call it agent speed (AS). Dynamism is defined as RC/AS .

Let ¢ be a trial (simulation run) and b a batch of trials. Let p, be the number of points col-
lected in some trial z. Effectiveness is the average points collected per trial for a batch of trials
(Zep Pi/1D]). Let r; be the running time of trial ¢ in seconds. Efficiency is the number of points
collected per minute for a batch of trials ((3,e, p: X 60)/ X,ep 1:)- As the major performance

measure, we define P = Effectiveness + Efficiency.

A last parameter for the simulator still needs defining: simulation time (ST). When the local
counter (LC) of the simulator reflects that more time has passed than represented by S 7, the
simulator halts. For all trials (for all experiments), ST = 20. Note however, that if LC < ST in
some cycle, in the next cycle, it may be that LC’ > ST such that LC” is much greater that S T';
LC is often in the 100s in practice.

Agent speed is fixed at 2 (AS = 2). Rate of change of obstacles will be varied amongst 0, 2, 4,
6, 8 and 10 (RC € {0, 2,4,6, 8, 10}). Therefore, Dynamism € {0, 1,2, 3,4,5}. The exact choice

for RC (and thus for Dynamism) and the fire:pack ratio will be mentioned when applicable.

7.4 Naive Architectures for Base-lines

In order to have a base-line against which the performance of the new hybrid architecture can

be compared, a simple or ‘naive’ architecture (called Naive-POP) was implemented. It has

104

no explicit intentions or desires as defined for the BDI model. The agent is provided with
a single Golog controlling program and associated reward function. In this implementation,
the program loops continuously over a nondeterministic action—nondeterministic between all

available actions:

while true do [sensloc | grab | eat | left | right | up | down | noop].

Policies will always be sought with 4 = 3 and ¢ = 0.01.!. Hence, after every three actions the
agent performs, a new policy is generated with BestDoPO to depth 3, using the current belief

state as input to BestDoPO.

The reward function is defined such that the agent gets a unit of reward for each cell directly
next to or diagonally next to it containing a fire or power pack, a 100 units for eating a fire and
103 units for grabbing a pack. The idea is that the agent should move towards areas where there

are more fires and power packs, but eating fire is a priority and grabbing packs even more so.

7.5 Full Observability vs. Partial Observability

Due to the obvious advantage of using the belief update function with the reduction by probabil-
ity cut-off modification, this modified function will be used in all architectures and experiments

in this and the next section.

In this section, we shall see the effects on agent performance when the agent has access to
models of the world that assume (1) full or (ii) partial observability. Naive-POP is used for these

experiments.

Two experiments will be conducted, one with an agent that is more accurate in its actions and
observations, and one where the agent is less accurate. In both cases, when the agent intends

performing eat, grab, sensloc or noop, the intended action is the outcome with 100% certainty.

Our agent that assumes partial observation has accurate models for actions and observations.
Our agent that assumes full observation has an accurate model for actions, but it models obser-
vation as follows. The probability that the agent is in the location it thinks it is in, is 1.0, and

zero for any other location.

For the experiments in this section, we chose to fix RC = 2, that is, Dynamism = 1. And for
both experiments, 14 trials were performed with the fire:pack ratio being 9:27, 14 trials with

18:18, and 14 trials with 27:9; that is, 42 trials in an experiment batch.

' As a matter of interest, for the domain used in Section 7.2, the running time for generating a policy to depth
3 with ¢ = 0.01 is on average, close to one second. Also note that although ¢ = 0.5 resulted in an optimal policy
(cf. Table 7.1) for the 5 x 5 world, ¢ = 0.01 yielded good results for FireEater world in pre-experiment trials.

105

In the first experiment, the domain is less stochastic: When an agent’s intended action is
left, right,up or down, the probability that the outcome is the intended action, is 0.95, else
it is 0.025 that it will move sideways—the agent never moves in the opposite direction to its

intended direction.

When the agent observes its location (via sensloc), nature will let it perceive the location it actu-
ally is in with probability 0.96, else the agent perceives that it is in one of the eight neighboring
cells with probability 0.005.

With this setup, the agent assuming full observation had $ = 3.146, and the agent assuming
partial observation had = 3.84.

In the second experiment, the domain is more stochastic: When an agent’s intended action is
left, right,up or down, the probability that the outcome is the intended action, is 0.75, else it is

0.125 that it will move sideways.

When the agent observes its location (via sensloc), nature will let it perceive the location it actu-
ally is in with probability 0.76, else the agent perceives that it is in one of the eight neighboring
cells with probability 0.03.

With this setup, the agent assuming full observation had = 2.91, and the agent assuming
partial observation had # = 1.502.

7.5.1 Analysis

In this environment and with this architecture, the agent assuming full observation fares worse
in the less stochastic domain than the agent assuming partial observation. In contrast, the agent
assuming full observation fares better in the more stochastic domain than the agent assuming

partial observation.

These results go against intuition: in domains where observation is extremely noisy, one expects
the performance of a planner that includes models of partial observability to be better than the
performance of a planner that includes only models assuming full observability. Although the
agent assuming partial observation outperforms the agent assuming full observation in the less
stochastic domain, the opposite is true in the more stochastic domain. In the present case,
the counter-intuitive results may be due to some detail in the implementation of the simulator

(FireEater world) or in the naiveté of Naive-POP. To reverse these results is work for the future.

106

7.6 Comparing Naive-POP, BDI-POP and BDI-POP(R)

The three agents as implemented by the three architectures have identical knowledge bases, ex-
cept for their programs and reward functions. That is, they believe the same actions are possible,
with the same effects and associated probabilities. They both employ the exact same planner:
BestDoPO. The models they have of their environment—with respect to actions outcomes and

observational noise—are accurate:

The simulator will cause actions left, right,up and down to be nondeterministic; the agent’s
intended action will be the outcome 95% of the time. The other actions will be deterministic.
Observation will also be imperfect: the agent perceives its actual location with probability 0.96,

else it perceives one of the eight neighboring cells with probability 0.005—as in Section 7.5.

In BDI-POP, we set i~ = h — 1—the search horizon that Focus(-) uses to determine program
values. In BDI-POP(R), A~ is the search horizon that Focus(-) and Reconsider(-) use to deter-
mine program values. For BDI-POP(R) we also set A~ = h— 1.2 Arguments Fy and F; required
by Reconsider(-) (cf. Section 5.2) are set as follows. Fy = 0.5, F; = 0.5.

We shall investigate two agent specifications when considering the two BDI architectures. I
shall identify two specifications: behavior-set 1 and behavior-set 2. The only difference in the

two specifications is in the desires, behaviors and reward functions of the agents.

Behavior-set 1 has the following specifications: There are four agent desires: D = {findFire,
eating, findPowpac, grabbing}. findFire may be realized by two available behaviors,
eating by one behavior, findPowpac by two, and grabbing by one. All behaviors have pro-
grams that are each a sequence of three actions. All behaviors include lef, right, up and down
as action options. The ‘findFire behaviors’ tell the agent to move towards regions where there
are fires; one behavior includes sensing, the other not. The ‘findPowpac behaviors’ are sim-
ilar to the ‘findFire behaviors’. The behaviors that achieve eating and grabbing include
the actions eat and respectively grab as options. There are six reward functions, one function

tailored for each behavior.
The set of behaviors consists of:

e (findFirel,[sensloc; sensloc | left | right | up | down | noop; sensloc | left | right |

up | down | noopl, findFire, nil)

o (findFire2,[left | right | up | down | noop;left| right | up | down | noop;left | right |

up | down | noop], findFire, nil)

o (eatl,leat | left | right | up | down | noop;eat | left | right | up | down | noop; eat |
left | right | up | down | noop), eating, nil)

2In pre-experiments, it was established that, in general, A~ = h — 1 dominates 4/~ = h — 2 in terms of the
performance measure .

107

e (findPowpacl, [sensloc; sensloc | left | right | up | down | noop; sensloc | left | right |

up | down | noop], findPowpac, nil)

e (findPowpac2,[left | right | up | down | noop;left | right | up | down | noop;left |
right | up | down | noop), findPowpac, nil)

e (grabl,[grab | left | right | up | down | noop;grab | left | right | up | down |
noop; grab | left | right | up | down | noop], grabbing, nil).

a0
4.5 4
404) —+ ELOLFOF
P = EDI-POF(F)
397 Haive POF
3.0 1
:25 T T T T
1] 1 2 3 4 3

Drmiarnd s

Figure 7.3: Behavior-set 1: Performance of Naive-POP, BDI-POP and BDI-POP(R) as Dy-
namism changes.

Behavior-set 2 has the following specifications:
Desires: D = {findFire, findPowpac}.

Behaviors: B = {(findFireProg,while true do [eat | left | right | up | down | noop |
sensloc], findFire, nil), (findPowpacProg, while true do [grab | left | right | up | down |

noop | sensloc], findPowpac, nil)}.

Reward functions: As required, there are two functions. They are both similar to the function

described in Section 7.4 (cf. Appendix B).

The parameter for the number of obstacle changes per simulation cycle (RC) and the fire:pack
ratio are the only parameters varied during experiments. Sixty trials per setting of RC were
performed; (20 trials were performed with the fire:pack ratio being 9:27, 20 trials with 18:18,
and 20 trials with 27:9).

The graphs in Figures 7.3 and 7.4 compare Naive-POP, BDI-POP and BDI-POP(R) for, respec-
tively, behavior-set 1 and behavior-set 2 with respect to the performance measure ¥ for varying
dynamism of the world. (The result curve for the experiment on Naive-POP is the same in both

figures—in Figure 7.3 till Dynamism = 5 and in Figure 7.4 till Dynamism = 4.)

108

5.0

4.5 1
407 —~BDI-POP
> _W
P ——BDI-POF(R)
3.0 1 _
55 4 M aive-FOP
2.0 7
15 T T T
] 1 2 E 4

Diymatmi sim

Figure 7.4: Behavior-set 2: Performance of Naive-POP, BDI-POP and BDI-POP(R) as Dy-
namism changes.

7.6.1 Analysis

In Figure 7.3 involving behavior-set 1, until level 4 Dynamism, the three architectures perform
similarly, except for BDI-POP which has relatively bad performance at Dynamism = 2. When
dynamism increases to level 5, the performance of BDI-POP(R) diverges dramatically for the
worse. BDI-POP performs slightly better than Naive-POP at Dynamism = 5. Although recon-
sideration is supposed to enhance an agent’s performance in more dynamic environments, it
would seem that the current definition of the Reconsider function does not suit the FireEater
testbed. Recall that the only difference between BDI-POP and BDI-POP(R) is the employment
of reconsideration in BDI-POP(R); Reconsider(-) is thus most likely to blame for the weaker
performance of BDI-POP(R).

Figure 7.4 clearly shows that Naive-POP dominates BDI-POP and BDI-POP(R) when behavior-
set 2 is used. Moreover, BDI-POP dominates BDI-POP(R) in this case. What these results

show, is how the definition of the behavior (Golog programs) can influence the performance of
the BDI-POP((R)) architectures.

In general, it is interesting that no matter the behavior set used, neither BDI-POP nor BDI-
POP(R) dominates the Naive-POP architecture. It must be kept in mind though, that the com-

parison of the three architectures says nothing about the effectiveness of BestDoPO.

7.7 Discussion

In this chapter one sees that BestDoPO does work and it works for various scenarios.

Experiment 1 (cf. Section 7.2.1) illustrates nicely the value of having a planner that can generate

policies for agents who maintain belief states (although the agent was unsure of where it was, it

109

could devise an optimal policy to get to the goal). Moreover, agents who model noisy sensors

or partial observations, typically maintain belief states.

Also, we have seen that three of the optimizing methods applicable to BestDoPO make a sig-
nificant positive difference, albeit for the simple domain setups of these experiments. What the
results of Section 7.2 clearly illustrate, is that planning a long sequence of actions directly with
a POMDP based planner is extremely inefficient. If an agent designer were interested in using
BestDoPO, BDI-POP, BDI-POP(R), or even Naive-POP, he/she would be advised to select one
of the optimization methods (and set its parameter, where applicable) such that it has the best

performance for the task and environment being considered.

BDI-POP((R)) was developed and tested on FireEater world. The architecture was tested with
various settings within the limits of FireEater world, however, tests should be conducted on

other simulators or with physical robots to assess BDI-POP((R)) properly.

The following broad conclusion can be made: BDI-POP((R)) is approximately as effective as
the Naive-POP architecture, in the framework of the FireEater world. More comments are
made in the next chapter, about the results in this chapter, but there, an attempt is made to
contextualize the results as related to the wider field of intelligent agents and robotics. Some

specific issues are also discussed in the next chapter.

110

Chapter 8

Conclusion

8.1 Summary

We developed a Golog dialect called PODTGolog based on the situation calculus. PODTGolog
is an extension of DTGolog, allowing for reasoning and planning in partially observable and
nondeterministic domains, while providing the means to specify problems in a quantified pred-

icate logic.

The PODTGolog ‘interpreter’ BestDoPO and the generic BDI architecture model were com-
bined to take advantage of the benefits of each of the two frameworks. The resulting hybrid ar-
chitecture is called BDI-POP, or BDI-POP(R) when it includes reconsideration (BDI-POP((R))
denotes BDI-POP and BDI-POP(R)).

In Chapter 7, we saw evidence for the potential of BDI-POP((R)). It did not perform as well as
one might have expected, given the benefits that BDI theory is supposed to bring to an agent in
complex and dynamical environments (given the performance measure £). However, there is

still much scope for improvement of BDI-POP((R)); see the Discussion section below.

What has been shown is that the proposed hybrid architecture is implementable; there is no
obvious fundamental conflict in synthesizing our POMDP planner and the BDI model for agent
control. The groundwork has thus been laid for the development of more sophisticated planning
processes in the BDI-POP framework. Furthermore, PODTGolog is a powerful POMDP solver
in itself; it comes with the expressive power of Golog programs, including the ability to express
relations, complex world models, and executability, which can drastically reduce search space.
We have also investigated several methods for optimizing BestDoPO. Some of the methods

produced significant improvement in running time without affecting policy quality.

111

8.2 Research Questions Answered

Recall the thesis statement: It is possible to define a belief-desire-intention architecture that
employs a logic based planner that generates control policies for agents inhabiting partially
observable stochastic domains, such that the performance of the agents is reasonable or such
that the hybrid architecture shows clear potential for controlling agents with reasonable perfor-

mance.
The associated research questions are now answered:

1. Q: Can an existing language, DTGolog, be extended to generate policies for partially
observable Markov decision process (POMDP) problems?
A: Yes.

2. Q: Can a logic-based POMDP planner be integrated with the belief-desire-intention ar-
chitecture? That is, is it possible to specify a ‘reasonable’ hybrid BDI/POMDP-planner
architecture?

A: Yes.

3. Q: Is there a performance gain in an agent when the agent is controlled by policies gen-
erated from the logic-based POMDP planner as compared to being controlled by policies
generated from the logic-based planner assuming full observability?

A: No, not with the particular domain problem and microworld used to answer the ques-

tion.

4. Q: Is there a performance gain in an agent when the agent is controlled by the hybrid
BDI/POMDP-planner architecture as compared to being controlled by a simpler architec-
ture employing the new POMDP planner?

A: No, with qualification: depending on the design of available behaviors (programs),
BDI-POP and Naive-POP fare similarly or, Naive-POP dominates the others. This only

holds for the particular experimental design.

8.3 Discussion

What remains unclear is how practical any architecture employing BestDoPO might be in re-
alistically complex domains. With probabilistic outcomes and events in the world, the policy
searches blow up very quickly with depth. For complete and optimal policies, POMDP solvers
can deal with just a modest number of easily enumerated states. Policy trees of a fixed depth
(as generated by BestDoPO) are not complete policies and thus less costly to generate. Realisti-
cally though, due to belief states being extremely numerous, the dimensionality of belief states

due to the situation equivalence problem (cf. Section 6.2) in the situation-based representation

112

or simply due to the large numbers of conceivable states, BestDoPO makes POMDP planning
intractable. Furthermore, the situation calculus, in principle, provides a good deal of expres-
sivity (including quantified reasoning), which brings its own computational complexity issues

(undecidability).

The methods and ideas discussed in Chapter 6 goes some way to alleviate intractability, but
more is required. To further constrain this explosion in planning, especially in the domain of
intelligent agents, it would be advisable to employ decision trees for policy search (instead of
dynamic programming approaches) and keeping the horizon close, say & = 3 or & = 4. Although
policy generation is required more frequently when smaller policies are sought, one gains very
much in generation time. Such smaller, more frequently generated policies are then also more
relevant at the moment of use. Planning then becomes more tractable and promotes reactivity

in an autonomous system.

For a hybrid BDI/POMDP architecture to scale up to a domain more meaningful than a mi-
crodomain, the integration of more ‘common sense’ reasoning techniques into the architecture
may have benefits. And the latest advances in POMDP solvers (for example, [105]) should be

investigated for further ideas to improve the efficiency of BestDoPO.

A major concern for BDI-POP and even more so for BDI-POP(R), is that there are several
parameters that can and must be set. Finding the best settings for these parameters is time

consuming, and potentially, may consume other resources.

Where does BDI-POP((R)) fit in in the field of high-level control of agents and robots? Without
empirical tests being performed with the architecture in real-world implementations, it is hard
to answer this question. However, as discussed in the introduction, the architecture is meant for
agents categorized as knowledge- and plan-based, especially those agents and robots operating

in noisy and highly dynamical environments.

BDI-POP((R)) agents are neither purely decision-theoretic nor BDI-theoretic, but are combi-
nation decision/BDI-theoretic. BDI-POP((R)) would not form part of behavior-based or purely
reactive architectures and most likely not of hierarchical architectures either. High-level control
via BDI-POP((R)) may fit well into hybrid deliberative/reactive architectures. (Section A.5 in
the appendix discusses the best known robot architectures.) The reader is invited to scan the
contents of Chapter 3 for the company that BDI-POP((R)) would keep, especially ICLg¢ [80],
Bonet and Geffner’s approach [10], ReadyLog [28] and all the BDI-based Architectures with

Generative Planning.

The remarks at the end of the previous chapter (Section 7.7) are also relevant here.

113

8.4 Future Work

The relative sophistication of BDI-POP((R)) may not be applicable in very simple worlds such
as FireEater. We would thus like to deploy our agents in larger, more complex worlds, with
more complicated tasks for the agent to perform. This will also give more scope for the variety

of programs that would be applicable, and the real power of the BDI model could come into

play.

Because PODTGolog is based on the situation calculus, it is prone to the situation equivalence
problem and the concomitant explosion of belief state dimension. Replacing PODTGolog in
BDI-POP((R)) with a state-based language (for example, DyMoDeL [87]) would allow one to
take advantage of methods for reducing this dimensionality problem. In particular, we have

started research in this direction:

Consider an agent who maintains a belief state—a set of worlds that it believes it can possibly
be in. Agents operating in partially observable domains must reason over belief states. If the
agent’s actions and observations are nondeterministic, the possible worlds in its belief state may

keep increasing as it updates its beliefs.

The reasoning of an agent with belief states involves processes that consult the belief state. This
may overtax the agent’s mental capacity if the belief state representations are very large. In
computational terms, the time and memory requirements of these processes is greatly influenced
by the size (dimension) of belief state and the greater the opportunity for further explosion in
the number of possible worlds as the belief state is updated. This has the consequence that the

agent becomes less reactive in dynamic environments.

A method to heuristically limit the dimension of an agent’s belief state is being considered. The
method, at all times, limits the number of worlds in an agent’s belief state to a designer supplied
value (for example, 10). The challenge is to design the heuristics of the belief reduction method
so as to lose a minimum of information during application of the method, by carefully selecting

which worlds to discard.

Some work has been done that indicates experimentally and analytically that the belief reduction
method we have in mind has potential benefits for agents who maintain and plan over belief

states.

Fritz and Mcllraith [34] have investigated combining non-Markovian qualitative (personal)
preferences with qualitative decision theoretic programs. “The resultant DT-Golog program,
maximizes the user’s expected utility within the most qualitatively preferred plans,” [34, p. 46].
It may be worthwhile to investigate how programs that incorporate personal preferences might

restrict the deliberation process, perhaps making deliberation more efficient and agent behavior

114

more accurate.

More recent work by Khan and Lespérance investigates a more sophisticated approach to goal

commitment. From their abstract:

Most previous logical accounts of goals do not deal with prioritized goals and goal dynam-
ics properly. Many are restricted to achievement goals. In this paper, we develop a logical
account of goal change that addresses these deficiencies. In our account, we do not drop
lower priority goals permanently when they become inconsistent with other goals and the
agent’s knowledge; rather, we make such goals inactive. We ensure that the agent’s chosen
goals/intentions are consistent with each other and the agent’s knowledge. When the world
changes, the agent recomputes her chosen goals and some inactive goals may become active

again. [50]

Intentions may be represented as a structure of more and less abstract plans. Sohrabi, Baier and
Mcllraith have looked at HTNs to

[...] address the problem of generating preferred plans by combining the procedural control
knowledge specified by Hierarchical Task Networks (HTNs) with rich user preferences. ...
To compute preferred HTN plans, we propose a branch-and-bound algorithm, together with
a set of heuristics that, leveraging HTN structure, measure progress towards satisfaction of

preferences. [99]

It may be worthwhile investigating the benefits of combining the work of Khan and Lespérance
and of Sohrabi, Baier and Mcllraith into a united framework. An idea is to supply the required
preference information as POMDP utility information. The new framework would consist of
HTN-like plans with values attached, combined with goal dynamics and priorities. Reasoning
about goals within structured plans (networks) is already the approach of BDI theory. Combin-
ing the advances in separate works on HTNs and goal dynamics as reflected by the two papers

mentioned just now [50, 99] may yield interesting (improved) agent reasoning.

There are plenty of opportunities for adding adaptation (learning) capabilities to agent reasoning
systems. There are several elements of the agent architecture to apply adaptation techniques to.

Consider the following.
One possibility would be to integrate Ivan Varzinczak’s approach [106] to revising agents’ ac-

tion theories. From his abstract:

Logical theories in reasoning about actions may also evolve, and knowledge engineers need
revision tools to incorporate new incoming laws about the dynamic environment. We here

fill this gap by providing an algorithmic approach for action theory revision. [106]

115

Another aspect of agent cognition that could benefit from adaptation, is in the trade-off between
exploration and exploitation using reinforcement learning techniques [102]. In most domains of
autonomous agents, the agents’ main task is not only to learn, but to complete a task. However,
it is usually desirable for an agent to learn something about its environments so as to complete
its future tasks more efficiently. There is an inescapable trade-off in the resources for learning
and adaptation (exploration) and task completion (exploitation). For example, a robot may have
two routes it can take from the dining room to the kitchen while clearing the dinner table. It has
only ever taken the one route and knows that this route is safe, but it may turn out that the other
route is faster. But is the second route safe? The robot may waste time investigating the second
route, but save time in the long-run if it finds that the second route is safe and faster than the
first.

One aspect of agent cognition that would require learning is for the agent to learn the expected
time it takes to perform an action, and with this knowledge, predict how long it has for doing
deliberation before a new policy is required. For this last aspect, inspiration could be gleaned
from work on anytime algorithms [89, 7, 74]. A robot may be willing to accept ‘good enough’
policies instead of only optimal policies, especially when action is more important than perfect
plans. An example scenario is when a robot’s master has ordered it to clear the dinner table in
three or fewer minutes (because unexpected guests have arrived). The robot must just get all the
dirty dishes to the kitchen, but does not have to pack the dishes perfectly neatly. In this scenario
the robot must do some planning, but it is more important for it to do the job (more action) than

to do the job precisely (suboptimal dish packing).

Lastly, there may be an opportunity to improve or extend work done which uses reinforcement
learning—*“applied to the first-order MDP representations induced by the program” [3]—to let
an agent choose the optimal action when presented with a set of actions it may nondeterministi-
cally choose from. Finzi and Lukasiewicz [30] first applied reinforcement learning to first-order
MDPs [12], and their work was extended by Daniel Beck and Gerhard Lakemeyer [3].

116

Appendix A

Paradigms and Theoretical
Implementations for High-level Control of
Agents and Robots

Consider the components that make up practical intelligence—the components in the mind of
any person who can get things done effectively. As will be seen in this appendix, psychologists
and roboticists have identified or named several more or less separate components of practi-
cal intelligence. There are hundreds if not thousands of ways to configure these components
to form reasonable ‘architectures’ to intelligently control an artificial agent. In order to find
good architectures for robots, roboticists have to keep matters relatively simple. Yet, striving
to create intelligence, naturally makes matters complicated: for a machine to approach a sem-
blance of real intelligence, its cognitive system must include certain fundamental components

of intelligence, and these components must interact to form a synergetic system.

We shall look at the most prominent paradigms and architectures that have emerged from the
robotics and agent community in their attempts to make robots and agents intelligent enough to

perform tasks effectively and autonomously. The contents of this appendix are

e Section A.1: Definition of Agent and Robot.

Section A.2: Intelligence.

Section A.3: Plans.

Section A.4: Levels of Control.

Section A.5: Named Paradigms and Example Theoretical Implementations.

117

A.1 Definition of Agent and Robot

What makes an agent not ‘merely’ a sophisticated piece of software (for example, the newest
interactive operating system)? What makes a robot not ‘merely’ a machine (for example, the
newest PC or newest vehicle)? We begin with the definition of a robot and then use this defini-

tion to define an agent. The definition of what a robot is, is not standard. Here is one definition:
Robot

A robot is a physically embodied system with sensors and effectors, and a robot is autonomous,

intelligent and motivated by intention. (See, for example, [6, 1]).

Even if this definition is agreed upon by a group, they may not agree on the meaning of the

definition’s individual sub-concepts.

Although the concept robot may be defined differently by different people, the definition given

here will be used when referring to a robot in this dissertation.
The elements of the definition are now expanded on:

e physically embodied system: A machine with a function that is situated in the real world,
affected by the forces in the environment, and exerting forces on objects in the environ-

ment.

e sensor: A device affected by some aspect(s) of the environment, this affect causing a
measurement representing the affect made available to the rest of the system (of which
the sensor is a part) for processing. The measurement is an electrical signal that the
sensor transformed from some physical phenomenon (for example, pressure, heat, light,
distance, sound). A sensor may perform an amount of preprocessing of the measurement

data into a signal that is (more readily) usable by the higher-level processing systems.

o cffector: A device that is designed to have an effect on the environment, or rather, objects
in the environment. Because a robot is situated in its environment, it is an object in the
environment, and therefore—if it simply moves a limb, for example—the robot thereby
has an effect on the environment. The thing that caused the movement is thus an effector.
A device that releases any kind of energy (into the environment) on receipt of a command
signal (as designed) to do so, is an actuator. For example, a light that is mounted on a
robot that can possibly be turned on by the robot’s internal processes, is an effector. A
motor is the classic effector, known technically as an actuator. A device attached to the
robot but not controlled by the robot is not an effector for that robot. For example, a wrist
watch is not an organ of the human body; the watch’s modes are not directly controlled

by the nervous system.

e autonomous: ‘“Autonomy refers to systems capable of operating in the real-world envi-

118

ronment without any form of external control for extended periods of time,” [6, p. 1]. Re-
searchers of software agents (‘bots’) will disagree with this definition because it implies
that autonomy is impossible for (intelligent) systems realized as software. According to
Wooldridge, an autonomous agent has the locus of decision making concerning its ac-
tions; the locus is not outside of itself (possessed by another agent), and it has “its own
beliefs, desires, and intentions, which are not subservient to those of other agents,” [113,
p. 34].

o intelligent: Intelligence in an environment is the ability to operate effectively on average
(relative to the circumstances) in that environment to achieve an objective. The specifica-
tion of ‘effective operation’ is expected to be supplied by the designer of the robot or agent
to which the definition is being applied. For a more detailed exposition of intelligence,

see the next section.

e motivated: Effection (activation of an effector) in order to perform some function or task,

or to achieve some objective.

e intention: A signal or set of signals, or symbol or set of symbols representing signals, that
are commands ready to trigger effection. “Motivated intention” could be called proactive-
ness, which Wooldridge [113] defines as exhibiting goal-directed behavior, moreover, a

proactive agent with a goal or intention will try to achieve this goal or intention.

According to Bekey [6], a robot can sense, can act and can think (where “think” means: has

subsystems that perform processes that may be thought of as cognition).
Agent

An agent may be a software ‘bot’, that is, an agent may have the same qualities of a robot,
excepting that it is not embodied in hardware. Its sensors and effectors are virtual, for example,
in object-oriented terms, sensors and effectors are actually inputs and outputs of the ‘agent

object’.

In this dissertation, the meaning of agent is (loosely) defined as in the preceding paragraph.
Because robots and agents as just defined can both benefit from advances in cognitive robotics,
no harm is done in referring to one and not the other when talking about concepts in cognitive

robotics.

A.2 Intelligence
Intelligence is not easily defined and has not a generally accepted definition. However, (intel-

ligent) people know intelligence when they see it, thus people usually simply refer to it when

necessary, with the idea that their audience is intelligent. The definition of intelligence given

119

in the previous section is composed from my intuition and background knowledge. Meystel
and Albus [69] mention that intelligence means different things to people in different fields of

research; they do however give a definition of intelligence for the purpose of their book:

Intelligence is the ability of a system to act appropriately in an uncertain environment,
where an appropriate action is that which increases the probability of success, and success

is the achievement of behavioral subgoals that support the system’s ultimate goal. [69, p. 3]

To become intelligent, a human has to learn; in this sense, intelligence includes the ability to
learn ‘well’: “The origin and function of intelligence is treated [in this book] from the stand-
point of biological evolution, which is shown to be similar to the general process of learning,”
[69, p. 2]. Robots are constructed and all their initial intelligence is due to their (human) con-
structors. Therefore, initially—in the scope of the life of a robot—a robot’s intelligence need
not be judged on its ability to learn. However, for robots (and humans) operating in some en-
vironment for an extended period, if the robot continually operates ineffectively, we would say
it is not learning well and is thus not intelligent. Hence, for agents operating in environments
where adaptability is necessary for the ‘effective’ achievement of their objectives, the ability
to learn (adapt) should be included in the definition of intelligence. On the other hand, if one
judges an agent’s intelligence over a short period, the inclusion of learning in the definition of

intelligence is unnecessary.

If ‘intelligence’ is equated with the concept ‘mind’, then the following statement by Franklin
[33, p. 412] is useful in our present exposition: “The overriding task of Mind is to produce the
next action,” where “produce” in this statement means to manage or create through a process.

And this ‘production’ implicitly implies the effective achievement of an objective.

Meystel and Albus [69] depict “the elementary unit of self-organization,” as in Figure A.1 which
is a crucial component of intelligence, with three processes: combinatorial search, focusing

attention and grouping.

COMBINATORIAL
SEARCH

FOCUSING GROUPING
ATTENTION

Figure A.1: The elementary unit of self-organization.

This unit of self-organization applies to data, information or knowledge at different levels of

cognition.

120

An assertion that Meystel and Albus [69] make is that there are degrees of intelligence, and
similarly, a major theme in Franklin’s book [33] is that there are “degrees of mind”. This is an
important assertion, because it focuses our attention on the fact that the definition of intelligence
is not dichotomous. That is, any definition of intelligence will (should) not be applicable as
a decision process, that is, produce a definite positive or negative answer to the question of

whether something is intelligent.

Franklin [33] mentions the “cognitive functions™ as: recognizing, categorizing, recalling, in-
ferring and planning. Other cognitive functions found in robotics are map building (environ-
ment/world modeling), performance monitoring, failure handling, projection (simulating events
and action sequences), solving of unforeseen specific problems and learning. “In order to dif-
ferentiate [...] more cognitive oriented functions from path planning, the term deliberative was
coined,” [71, p. 258].

To know which elements (cognitive functions) a truly intelligent robot should have, one might
look at what psychologists say are the elements of intelligence in human beings. The topics
(chapters) applicable to robotics covered in two text books on cognitive psychology [41, 101]

are
e Perception
e Attention and Self-awareness
e Memory Processes
e Knowledge Representation, Retrieval, and Organization
e Visual Imagery
e Language/Communication
e Problem Solving and Creativity
e Reasoning and Decision Making

It is noteworthy that these two books hardly mention ‘planning’ as a topic in cognitive psy-
chology (as an element of cognition). Ironically, in robotics, we think of planning almost syn-
onymously with deliberation/cognition. Is this an indication that roboticists should consider

changing their focus in robot deliberation away from planning?

A section is dedicated to planning nonetheless, because it is a central mechanism used by roboti-

cists for the intelligent control of robots.

121

A.3 Plans

When we talk about planning in this section, we mean the reasoning done to find the most
appropriate (effective or optimal) sequence of actions to perform to achieve an objective or

sub-objective.

Planning may be part of decision-making, but it need not be. An example of when planning is
combined with decision-making is when Markov decision process (MDP) techniques are em-
ployed for plan generation (for uncertain domains). Planning is always considered as one kind
of deliberation. Plans could in a sense also fall under non-deliberative (even reactive) compo-
nents of a robotic system, but we do not consider such ‘low-level plans’ in this dissertation. An
atomic act generated in less than a few milliseconds or plans composed of atomic acts already

existing as procedural knowledge, are examples of plans in low-level components.

Planning is either progressive (from the current situation to the goal) or regressive (from the goal
to the current situation). Planning is either search-based (in a search space) or via constructive
theorem proving (construction of the proof that the goal (statement) is achievable, results in a

plan for achieving the goal) [88].

“In the plan-based approach, robots generate control actions by maintaining and executing a
plan that is effective and has a high expected utility with respect to the robots’ current goals
and beliefs,” [4, p. v]. Because plans in plan-based robots are the core element of control of a
robot, these robots are as flexible as the plans they maintain; reasoning about, manipulating and
adapting plans in these robots is thus equivalent to reasoning about, manipulating and adapting

the robots’ behavior.

Plan-based controllers need not generate plans, only utilize plans. Of course, they can also

generate plans.

Beetz and Hofhauser [5] mention three advantages of plan-based control: (1) plans can contain
the intentions of other agents, (2) experience can be compiled into plans and (3) plans can cap-
ture strategic considerations, that is, considerations involved in wider time horizons as opposed

to situated (instantaneous) action selection.

One dimension of plans that most likely will influence an agent architecture, is whether plans
are precompiled (written by hand and stored for retrieval as necessary), or generated online
(automatically generated by a ‘planning module’ while the agent is performing its task). When
plans are precompiled, there is an obvious lack in flexibility in the choice of plans; many situ-
ations may arise that the human plan-writer could not foresee and the agent would not have a
plan for such situations. The benefit of having a library of ready-made plans is that the agent

will not waste any time generating a plan. This is useful in time critical situations.

On the other hand, an agent that generates its own plans can theoretically always have a plan for

122

any situation. For this to be true in practice, the agent would need many and various sensors,
and a complex planner. Even if the agent did have such a planner and all necessary sensors,
complex planners take long to generate a plan. This introduces us to the classic dilemma in
plan-based robotics: Good plans take long to generate, and while they are being generated,
the world situation for which the plan is applicable will likely have changed (the real-world
continually and continuously changes). There are three approaches to remedy the dilemma,
with no one approach alone being sufficient (for real-world robotic applications): (1) Make
the planner more sophisticated by applying clever approximations, heuristics and theoretical
insights. (2) Have lower level control systems in the architecture to monitor plan validity, and
replan only when necessary and only as much as necessary. (3) Let low level control systems
recommend/cause appropriate actions when a plan is not appropriate (for example, If a brick is

flying towards your head, Then duck).

A combination of both precompiled and generated plans may turn out to produce better perfor-

mance of an agent in certain (most?) domains than either alone.

When a control architecture involves plans (is plan-based) the kind of plans used and the type
of architecture are usually mutually influential. Some well known kinds of plans are linear,
partial-order, conditional and hierarchical task network plans [88]. So, for example, an archi-
tecture using linear plans would typically have to periodically confirm the validity of the plan.
Partial-order plans would be applicable to a robot that can perform some behaviors or actions
simultaneously. An architecture employing conditional plans needs to make observations at cer-
tain points in the plan execution to correctly decide which subtree of the plan to execute next.
In the case of hierarchical task network plans, the architecture of the robot will need knowl-
edge about tasks that is organized hierarchically before planning (if plans are generated and not

precompiled) and the system need to be able to execute hierarchical plans.

Another dimension is whether experience is applied to plans. In terms of precompiled plans,
new plans—whole or partial—can be learned. In terms of generated plans, new features, rules,
etcetera, may be learned or old ones modified through experience, which influences the plans

generated in future.

Planning in the light of control for robots in an uncertain world has not yet been discussed.
Especially in this dissertation, we need to cover planning for plans applicable to uncertainty in
the effects of actions and uncertainty in the accuracy of readings of sensors. There are various
models of uncertainty and algorithms for finding plans within those models. Value-iteration
is a popular and well-understood technique for generating a control policy (universal plan) for
(intelligent) systems operating in domains where acting and sensing involve uncertainty [104].
Other algorithms for planning in uncertain domains include “the A* algorithm, which uses a
heuristic in the computation of the value function, or direct search techniques that identify a

locally optimal policy through gradient descent,” [104, pp. 508-509]. The planner developed

123

in this dissertation (Chapter 4) uses the latter technique, here called the decision tree roll-back

procedure.

To end this section, approaches to the use of plans from four articles in the collection titled
“Advances in Plan-Based Control of Robotic Agents” [4] are mentioned. The details are not

important; it is only to give more concrete examples of the application of plans in robotics.

e Beetz and Hofhauser [5] use RPLplan, for precompiled plans and the learning of sub-

plans;

e Burkhard er al. [18] use partial hierarchical plans—plans are “set up” or “prepared”
(“built from options™) in an option tree; this is closer to precompilation than generation

of plans, and no learning is involved;

e Karlsson and Schiavinotto [49] use PTLplans, which generate conditional plans and can

handle degrees of uncertainty, and no learning is used;

e Zilberstein et al. [116] use an MDP planner—two variations: (1) with choice between

subplans with associated utilities, (2) with hierarchical reinforcement learning.

A.4 Levels of Control

A.4.1 Definitions of Architecture

This section begins with definitions of what a robot architecture is. “An architecture is a frame-
work consisting of functional modules, interfaces, and data structures. A reference model archi-
tecture defines how the functional modules and data structures are integrated into subsystems
and systems,” [21, Section 17.3.1, p. 658]. For Bonasso, robot architecture means “the arrange-
ment of control software for the robot,” [9, p. 193]. For Gat [36], architecture in robotics means
“a set of constraints on the structure of a software system,” [36, p. 210]. Bekey [6, p. 98] defines
architecture as “the practical structure of a robot’s software [...] its goal is to define the way in
which sensing, reasoning, and action are represented, organized, and interconnected.” Lastly,
Arkin [1, p. 125] defines robot architecture as “the discipline devoted to the design of highly

specific and individual robots from a collection of common software building blocks.”

In terms of the three levels of abstraction defined in the introductory chapter, an architecture is

a theoretical implementation, but it is more generic that a robot architecture.

124

A.4.2 The Control Dimension

Bekey [6] points out that there are two levels of control in a robot. He clarifies the difference
between the two levels with the example of the design of the control of a missile: there is
control of a trajectory and control about a trajectory, corresponding to high-level control in
robotics and respectively low-level control. “Control of the trajectory is more commonly known
as guidance,’ [6, p. 98]. Control about the trajectory concerns issues of stability and oscillation.

This two-level view of control thus excludes decision-making (of which trajectory to follow).

As an aside, an interesting connection between control and architecture is mentioned by Bekey
[6] who quotes Meteric (1992a):

An architecture provides a principled way of organizing a control system. However, in
addition to providing structure, it imposes constraints on the way the control problem can
be solved. [p. 99]

Ultimately, a robot must decide which of its available actions to take and when to take it.
Decision-making in robotics refers to high-level reasoning or high-level deliberation [68, Sec-
tion 12.2.4]; [88, Section 25.7]; [1, Ch. 6]). It is “high-level” because low-level control of
actions concerns atomic acts and is representationless. Decision-making/deliberation is a pro-
cess concerning abstract (symbolic) events and concepts, including complex actions, that is,
actions composed of several atomic actions. An example of an atomic act would be “bend knee
five degrees”; a complex action would be “move one meter towards right” which—for a legged

robot—presumably includes several knee-bending atomic acts and some other actions too.

There are many different forms of decision making that exist in the current literature. Popu-
lar techniques include computation-based closed loop control, cost-based search strategies,

finite state machines (FSM), and rule-based systems. [68, p. 475]

In this dissertation, control includes decision-making, but decision-making does not include
low-level control. The lower the level of control of a robot, the less complex the actions being
controlled, that is, the less abstract and symbolic the actions being controlled. There is not a

clear line to distinguish high-level control and low-level control.

One important dimension with which to analyze an architecture or part thereof is how reactive
or deliberative the architecture is. When there is little processing of stored information for
control, we say the system is (more) reactive. When information processing frequently takes
place before an action can be performed, we say the system is (more) deliberative. Figure A.2,

adapted from Arkin [1], shows the spectrum of robot control systems.

Arkin [1] points out that deliberative architectures rely on world models. All parts of a de-

liberative architecture depend on plans (and replanning). He mentions that representing world

125

DELIBERATIVE REACTIVE

REFLEXIVE
CONTINUOUS
REPRESENTATION FREE
REAL-TIME RESPONSE
LOWER INTELLIGENCE
BEHAVIORAL/REACTIVE
SIMPLE COMPUTATION

PURELY SYMBOLIC
DISCRETE
REPRESENTATION-DEPENDENT
SLOWER RESPONSE
HIGHER INTELLIGENCE
COGNITIVE/FUNCTIONAL
VARIABLE LATENCY

SPEED OFERESPONSE

; >

]
PREDICTIVEECAPABILITIES

(L]

DEPENDENCE ONEWORLD MODELS

< :

Figure A.2: The continuum of properties of deliberative and reactive robot architectures.

knowledge and having plans has its advantages, but constant (re)planning due to unforeseen
circumstances or “gross assumptions about the world” can cause problems. This is the classic

dilemma for plan-based robotics mentioned in Section A.3.

Reactive architectures have tightly coupled sensing and reacting. There is always an action
‘recommended’ for an environmental situation. Processing of plans and knowledge becomes
unnecessary, and responsiveness to the environment thus becomes locally flexible and responses
are in real-time [1]. On the down side of reactive systems, “the issues of action and perception
are addressed, but cognition is ignored, often limiting these robots to mimicking low-level life
forms,” [1, p. 211-212].

The pros and cons of architectures at each of the two ends of the spectrum are listed in Table A.1.

Burkhard and colleagues [18] mention the possibility of classifying type of control via persis-
tence of state: whether the agent (its architecture) maintains environment information about
the past to inform future computations and whether the agent maintains information about past

goals and plans to inform future commitment to goals and plans.

A.5 Named Paradigms and Example Theoretical Implemen-

tations

In this section we discuss the major paradigms for the high-level control of robots that have

emerged over the past four or five decades, and some of their theoretical implementations.

126

and dynamics) is use-
ful

- through deliberation,
actions can be better
chosen

- future effects of ac-
tions can be consid-
ered

plans become incor-
rect and invalid

- deliberation takes

long

- architecture needs to
be completed before
testing can commence

useful, especially in
highly dynamic envi-
ronments

- less chance for error
because response is di-
rectly due to environ-
ment

- incremental/modular
development is possi-
ble

Deliberative Reactive
Advantages Disadvantages Advantages Disadvantages
- world model (state | - information and | - quick response is | - reasoning (delibera-

tion) not possible: low
intelligence systems

- learning based on
declarative memory is
not possible

- incremental design
can cause overly com-
plex systems

Table A.1: Pros and cons of architectures at the two extremes of the deliberation/reaction con-
tinuum.

A.5.1 Deliberative

Sense-Think-Act

One of the first paradigms for robot control, during the 60s and 70s, was based on Artificial
Intelligence: the Sense-Think-Act (STA) or Sense-Model-Plan-Act cycle. Figure A.3 represents
this approach. We shall refer to it as the STA architecture henceforth. It was the first struc-
tured method designed specifically for robotics. For example, refer to the work done at SRI

International from the mid 60s to mid 70s [73].

THINK

SENSE ACT

A4

\ 4

A 4

Figure A.3: The sense-think-act cycle.

Modeling and planning take much too long for robots with an architecture based on this paradigm
to be useful [55, 36, 1]: the STA architecture lies far to the “Deliberative” end of the delibera-

tive/reactive spectrum shown in Figure A.2 (Section A.4.2); as such, this architecture has all the

disadvantages of a deliberative architecture to the worst degree: information and plans become

incorrect and invalid by the time they are applied due to the latency between sensing and acting

caused by thinking (see Table. A.1, Section A.4.2).

Arkin [1] equates traditional deliberative control with hierarchical control systems and Murphy
[71] explicitly calls the STA architecture hierarchical. We believe it is more appropriate to label
this traditional architecture based on STA completely cyclic rather than hierarchical. This is
justified by the fact that it is the only architecture in which control flows through the whole
system in cycles with a strict order of operation. (Hybrid architectures—covered later—may

have cycles, but any cyclic operation is isolated to a layer, module or component. Also, as will

127

be seen in the next section on hierarchical systems, the characteristics of the STA architecture

are different from those of hierarchical systems.)
Belief-Desire-Intention

Although the belief-desire-intention paradigm is not as abstract as the STA paradigm, in its
general form it is a paradigm and not an architecture. There are many ‘BDI architectures’

which are instances of the BDI paradigm. IRMA is one such architecture [16].

The BDI paradigm is more complex than STA. As the name of the paradigm suggests, its pri-
mary components are beliefs, a set of desires, and a set of intentions. In this paradigm intentions
are plans or goals that have been committed to. Desires are an agent’s motivations, that is, what
it wants to achieve. Intentions are a subset of its desires, the desires it has committed resources

to.
The BDI paradigm and some derived architectures are discussed at length in Section 2.3.
Cognitive Psychology

Some agents are based directly on the psychological processes observed and theorized to occur
in the human mind. Soar is one such architecture “useful for creating knowledge-rich agents that
could generate diverse, intelligent behavior in complex, dynamic environments,” [57, p. 224].
It is an architecture in pursuit of developing a system capable of general intelligence, not for

solving specific problems with tailored algorithms [58].

Another architecture that falls in this category is OSCAR, “a fully implemented architecture
for cognitive agents, based largely on the author’s work in philosophy concerning epistemology

and practical cognition,” [79, p. 275 (abstract)].
Cognitive Robotics

Cognitive robotics is more concerned with high-level robotic control than with artificial intel-
ligence for general problem solving. “In its most general form, we take cognitive robotics to
be the study of the knowledge representation and reasoning problems faced by an autonomous
robot (or agent) in a dynamic and incompletely known world,” [62]. ReadyLog [28] is one

programming language for cognitive robotics.
Discussion

Although the latter three deliberative paradigms are classified as deliberative, they are not purely
deliberative in the sense that STA is. Because of their relative sophistication, taking the best
elements of agent reasoning and control techniques from various sources, they are approaching
being hybrid paradigms (cf. Section A.5.4). In fact, practical efficacy of implemented instance
architectures of the latter three paradigm are comparable to other contemporary architectures’

implementations. At the present time though, belief-desire-intention and cognitive psychology

128

paradigms are designed more for implementations of softbots, and cognitive robotics paradigms

more for robotic agents.

A.5.2 Hierarchical

The traditional hierarchical robot architecture has three or more layers organized as hierarchies
of control. Higher layers in the hierarchy produce or use plans that are more global and abstract
in nature than at lower levels. Lower levels work at higher frequencies, that is, take care of
finer-grained events that thus occur at more rapid frequencies. Communication and control
flow strictly vertically to adjacent layers. Control may be data-driven, that is, driven by reactive
requirements, or control may be goal-driven, that is, driven by reasoning about goal achievement

[1,71,69]. In Figure A.4 the reader can see graphically the design of a hierarchical architecture.

LAYER1 | <] LAYERT A
A 4
\ 4
HIGHER LAYER2 | «»| LAYER2 MORE
FREQUENCY I I DELIBERATION

SR

v LAYERN |e—p --- <«=| LAYERN

Figure A.4: The traditional hierarchical architecture.

The hierarchical architecture has its roots in the intelligent control community, and has “delib-
erative reasoning methods as its principle paradigm,” [1, p. 21]. This architecture precedes the
reactive, behavior-based architecture and was first applied to robotics (as opposed to non-robotic
autonomous systems) from the 80s onward. “Hierarchical systems have largely fallen out of fa-
vor except for the NIST Realtime Control Architecture [RCS],” [71]. (See Section A.5.5; also
see James Albus’ curriculum vitae at http://www.isd.mel.nist.gov/personnel/albus/vitae.htm (re-
trieved: 12-11-2008).

There do still exist some advocates of hierarchical systems for robot control: Zilberstein et al.
[116] describe the K9 rover software architecture, a four-layer hierarchical architecture with a

decision-theoretic controller (planner) at the top of the hierarchy, which is the locus of control.

129

P __| BEHAVIOR 1 > g
E A (6]
R \ 4 R
C __,| BEHAVIOR?2 > D
|

E

I N 3 FINAL RESPONSE

P
. Ll . A
T : T
[I |
o) o)
N —3| BEHAVIORN | N

Figure A.5: The generic behavior-based architecture.
A.5.3 Behavior-Based (Reactive)

In the early 80s there was a paradigm shift towards reactive, behavior-based robotics, moving
away from planning and the problems accompanying planning [55]. Robots started to move
faster and then they actually became useful. Figure A.5 shows the basic scheme of a behavior-

based robotic system.

STIMULUS __,] BEHAVIOR |, RESPONSE

Figure A.6: The schema of a stimulus-response diagram.

We can understand a ‘behavior’ as a computational construct by looking at a stimulus-response
diagram [1] (Figure A.6):

A behavior as a construct in robotics is also called a ‘skill’ to differentiate it from a psycholog-

ical behavior.

From this perspective a ‘behavior’ is a construct that transforms a stimulus into a response,
or that modulates some response according to some stimulus. Given a set of possible stimuli
and a set of possible responses, a set of behaviors could be applied to link them. A behavior-
based-robot designer would then choose a method to combine all the behaviors. That is, all
the responses of the behaviors need to be coordinated. Arkin [1] discusses two approaches to
behavior coordination: (1) competitive, where one out of two or more conflicting behaviors
will ‘win’ according to some arbitration rules; the ‘losing” behaviors being suppressed, and (2)
cooperative, where the responses of ‘conflicting’ behaviors are fused or mixed to form a new

amalgamated response.

A behavior-based architecture can be purely reactive or not purely reactive, nevertheless re-
active. In other words, knowledge may be added to a reactive system such that the system is

no longer purely reactive, yet is still behavior-based. Although behavior-based methods “pro-

130

vide excellent responsiveness in dynamic environments,” [1, p. 173], many roboticists feel that

adding an amount of representational knowledge has its place in such robotics.

Furthermore, Arkin [1] mentions that some roboticists believe that behavior-based robotics is
limitless with respect to the design of intelligent systems, while others are concerned that it
cannot scale up to human-level intelligence. Currently though, the robotics community has
more perspective on the debate about the efficacy of the behavioral approach: we are beginning
to agree that the behavior-based approach will not scale up and that it need not, because it has

its application in lower levels of a larger architecture.

One architecture that is based on behavior is the subsumption architecture. The most impor-
tant problem found by Arkin [36] and that may occur for other behavior-based architectures
“is that it is not sufficiently modular [...] Because upper layers interfere with the internal func-
tions of lower-layer behaviors, they cannot be designed independently and become increasingly
complex,” [36, p. 196].

Most robot designers using only reactive behaviors found that it was more an art than a science
to get the robot to behave correctly overall. Some designers were asking whether the arrange-
ment of the set of skills could be structured dynamically—structured to tackle one task, and
then restructured to tackle another task [71]. Such real-time structuring would require plans!

Enter the hybrid deliberative/reactive approach (covered next).

A.5.4 Hybrid Deliberative/Reactive

From around the late 80s and early 90s there was a return to planning:

We might call this approach P-SA [T-SA in our terms]; that is, the robot plans based on
initial conditions and common knowledge (P) and then executes this plan using sense-act
(SA) behaviors, replanning only when the reactive behaviors run out of routine solutions.
[55, p. 12]

The P-SA (T-SA) approach is the hybrid deliberative/reactive architecture.

Because each of the two paradigms is understood best while operating on its own as an indepen-

dent system, most hybrid systems provide a clear demarcation between them [27, p. 164—-165].

A hybrid deliberative/reactive architecture (HDRA) according to Arkin [1], attempts to combine
the deliberative aspects of the completely cyclic and hierarchical architectures with the reac-
tiveness of behavior-based architectures. The HDRA keeps the best features of both paradigms,
letting features of one paradigm compensate for lacking beneficial features of the other. Dudek

and Jenkin [27] say that neither a completely behavioral nor completely deliberative control

131

More Deliberative

LAYER 1
PLANNER
A
1 Jv Deliberation > Projection
LAYER 2
Behavioral Advice
l T Configurations PLANNER » REACTOR
: Parameters <
T l \4
REACTOR
LAYER N
More Reactive
(A) (B) (C)

Figure A.7: Typical deliberative/reactive control strategies.

paradigm is appropriate for most robotic tasks. Figure A.7 represents three HDRAs [1], that is,

three typical designs in which deliberation and reaction can be tied.
The three designs are

e Hierarchical integration (A), with higher levels being more deliberative and lower levels
more reactive. This differs from the traditional hierarchical architecture in that in the
hybrid version, different levels are more isolated, each level a functional unit using distinct

types of knowledge representation and reasoning [1].

e Planning to guide reaction (B), that is, plans are used for advice; the reactive system

could control the robot without the deliberative component.

o Coupled planning-reacting (C), where planning and reaction are concurrent activities,

each affecting the other.
Murphy [71] also categorizes hybrid architectures into three categories:

e Managerial, with the manager at the top level and subordinates lower down (authority
decreasing with lower levels). One level can only direct or modify the level directly
below it. A property of this architecture is that the agent fails upwards, that is, if an
operation at some level fails, the level directly above the failing level must attempt to
rectify the problem, else pass the problem on upwards. This architecture is comparable

to hierarchical integration.

e State-hierarchy organizes activity by “scope of time knowledge”, that is, levels or layers
are grouped and organized by the time-scope associated with the concepts that a level

operates over. This architecture is comparable to planning to guide reaction.

132

e Model-oriented is more top-down in flavor than the other two, and the central element in
the architecture is the model of the environment: “This global world model also serves to
supply percepts to the behaviors (or behavior equivalents). In this case, the global world
model serves as a virtual sensor,” [71, p. 278]. This architecture is comparable to coupled

planning-reacting.

From a comment made by Arkin [36] about the three-layer architecture—to be described in the
next section—we may glean a further dimension of hybrid architectures: the Deliberator can
respond to requests for plans from the Executor or it can supply the Executive with plans that

the robot must execute.

From the preceding discussions, one might categorize hybrid architectures in another way, by
these two dimensions: the number of layers and whether deliberation or reaction dominates
control. For example, planning to guide reaction is a two or three layer architecture where
the reactive or deliberative component may dominate control. The same is true for coupled
planning-reacting. And in hierarchical integration, deliberation would typically dominate (but
reaction could too), and the number of layers is three or more; a hierarchical design with two

layers is simply a planning-to-guide-reaction design (not a coupled-planning-reacting design).

Arkin [1] points out that the inferface between the deliberative component and the reactive

component of an HDRA is the most important and complex aspect of the HDRA.
Three-Layer Hybrid Architectures

“[...] the three-layer architecture [...] has now become the de facto standard,” [36, p. 198].
“By far the most popular hybrid architecture is the three-layer architecture, which consists of a

reactive layer, an executive layer, and a deliberate layer,” [88, p. 933].

DELIBERATOR

\4

EXECUTIVE (INTERFACE)

A

REACTOR

ACTING SENSING

v

OUTSIDE ENVIRONMENT

Figure A.8: The paradigm of a three-layer architecture.

133

This architecture has three distinct components, a deliberative component, a reactive component
and an interfacing or executive component that links the other two. The three components have
been named variously in different three-layer architectures. In this dissertation we shall refer
to the top/deliberative layer as the Deliberator, the middle/interfacing/executive layer as the

Executive and the bottom/reactive layer as the Reactor (Figure A.8).

The planning-to-guide-reaction and the coupled-planning-reacting designs may each be a three
layer architecture if they include an interface component. The hierarchical-integration architec-
ture cannot be a three layer architecture, because even if it is a three layer hierarchy, the middle

layer is not strictly an interfacing or executive component.

According to Gat [36], the three-layer architecture is not due to theoretical considerations,
but rather to empirical observations of the behavior of robotic systems in their environment.
Nonetheless, a theoretical explanation for the emergence of the three-layer architecture as one
of the dominating architectures for robots, is that each of the layers can be associated with the
status of the use of representation (or state): In idealized terms, the Deliberator has state con-
cerning future events, the Executive has state concerning past events, and the Reactor has no

state.

In a three-layer architecture, Gat points out, plans are not executed in the traditional way: “An
approach called conditional sequencing [...] 1s a more complex model of plan execution moti-
vated by human instruction following,” [36, p. 202]. Because a conditional sequencing system
has control constructs more complex than provided by traditional programming languages, the
system is constructed with “a special-purpose language like RAPs (Firby 1989), PRS (Georgeft
1987), the Behavior Language (Brooks 1989), REX/GAPPS (Kaelbling 1987, Kaelbling 1989,
Bonasso 1992), or ESL (g98 1997),” [36, p. 202].

Bonasso and colleagues [8] describe the 3T architecture and compare it to the architectures and
languages ATLANTIS, Cypress, INTERRAP and SIM_AGENT.

Kim, Shin and Choi [51] present a “plan-based control architecture for intelligent robotic
agents” with three layers: deliberative, sequencing and reactive layers. The deliberative layer is
implemented with UM-PRS [60] as a kind of plan executive employing BDI theory: it is “com-
posed of five primary components: a world model, a goal set, a plan library, an interpreter, and

an intention structure,’ [S1, p. 562].
Other Hybrid Architectures

Phoenix [17, p. 332] is a three level hybrid architecture that has the hierarchical integration or
managerial design. It was developed for student research in shallow-water sensing and control
for an autonomous underwater vehicle. Phoenix has a ‘Strategic Level” at the top, a ‘Tactical
Level’ below that, and an ‘Executive Level’ at the bottom. The ‘middle’ (tactical) level is not

explicitly an interface nor an executive component.

134

Burkhard et al. [18] developed the Double Pass Architecture, which uses case-based reasoning
and which can switch high-level behavior—which goal to seek—in real-time. They point out
that the hybrid deliberative/reactive architecture (HDRA) is not appropriate for domains with
“total dynamics” (changing high-level goals) as opposed to “local dynamics” (high-level goals
remain fixed). The deliberative component of a HDRA may run into reasoning bounds; the

double pass architecture implements concepts of bounded reasoning to deal with said bounds.

The Animate Agent architecture is a two-layer HDRA [31]. One layer is the “Skill Level”, the
other is the “Task Execution Level”. It is behavior-based at the skill level and has “sketchy
plans” at the task execution level where the plans are broken down into steps that the skills can

achieve.

Another two-layer architecture is that of Schonherr and Hertzberg [94]. Their architecture is
called DD&P. It comprises “a deliberative and a behavior-based part as two peer modules with
no hierarchy among these two parts,” [94, p. 249]. Interaction between the two modules is
regulated by flow of information similar to that of the STA architecture. They highlight two
aspects of their architecture: their implementation of the ‘plans-as-advice’ approach, and how

the symbols in the plans are grounded via “chronicle recognition”.

Saphira [54] is a HDRA. It is behavior-based at lower levels of cognition (at reactive levels).
A plan library and other (more sophisticated) modules make up the deliberative ‘layer’. There
is a control and coordination system present (PRS-Lite) (cf. Section 2.3.4), but it is not clearly
an interfacing/executive layer. Saphira is thus not a three-layer architecture. “The organization
is partly vertical and partly horizontal,” [54, p. 219]. Murphy [71] categorizes Saphira as a

model-oriented architecture.

A.5.5 The Reference Architecture for Intelligent Systems

The Reference Architecture, due to Albus and Meystel [69, 21], deserves some attention as a
potentially important architecture for autonomous intelligent robots. The organization of the
architecture is both hierarchical and multiresolutional, becoming finer grained at lower levels.
Each level contains a number of ‘subagents’, ‘computational nodes’ or “elementary functioning
loops” (ELFs) consisting of four modules (“elements of intelligence”): modules for sensory
processing, world modeling (including a knowledge base), behavior generation and value judg-

ment. There may be several or several hundred of these ELFs in a level.

The longest-term planning (for example, planning for twenty-four hours) happens at the highest
level. Reflexiveness (via ‘reflexive arcs’) is accounted for as part of ‘instinct’ in general. “Innate
reflexes can and should be built-in within the intelligent system such as autonomous mobile

robots just at the stage of design,” [69, p. 189].

135

One figure “illustrates the temporal flow of activity in the task decomposition of sensory-
processing systems” [69, Figure 4.5, p. 169] and has at the bottom level, a three millisecond
time interval “chosen as the shortest servo update rate because that is adequate to reproduce the
highest bandwidth reflex arc in the human body,” [69, p. 166]. The reference architecture thus

has a definite reactive/behavioral element to it.

The 4D/RCS architecture is one realization of the reference architecture, that has been suc-
cessfully implemented on several robotic platforms [69, 21]. (4D denotes a particular machine
vision system used within the realization, and RCS stands for Real-time Control System devel-

oped at the National Institute of Standards and Technology, USA)

A.5.6 One Useful Classification of Architectures

Although quite outdated by now, Miiller [70] provides a classification and taxonomy of archi-
tectures based on their class of application. He also discusses a set of guidelines for choosing an
agent architecture for an application. As a matter of interest, Miiller classifies the following as
deliberative agents: IRMA, PRS, dMARS, SOAR, Cypress and Agent0 / PLACA, and the fol-
lowing as layered approaches: RAPs, ATLANTIS, 3T, Lyons & Hendriks, TouringMachines,
INTERRAP, SIM_AGENT and NMRA. Please consult Miiller [70] for details.

136

Appendix B
Source Code

The source code for BDI-POP (not BDI-POP(R)) is given here, including the definition of
BestDOPO. 1t is written in ECL'PS¢ (Prolog) (an open-source software system available from
http://87.230.22.228/) The implementation of the BDI controller and the simulator are not mod-
ular, that is, they do not form separate modules but are intermixed. BestDOPO is seperately
specified though. Some predicates are not given here (to save space), but they are mentioned
(‘... indicates that the details of a predicate are omitted). The problem description is provided

as only one example of how to implement a POMDP-based agent (for FireEater world).

;- dynamic(simAtt/1).

;- dynamic(agAtt/2).

;- dynamic(obstacleList/1).

;- dynamic(FiresList/1).

;- dynamic(futureFiresList/2).
;- dynamic(powpacList/1).

:- dynamic(futurePowPacList/2).
;- dynamic(initAgentPos/1).

:- set_flag(print_depth,500).

:- pragma(debug) .

:- lib(cio).

- 1lib(icQ).

:- op(800, xfy, [&]). * Conjunction */
:- op(850, xfy, [vD). * Disjunction */
:- op(870, xfy, [=>1). /* Implication */

:- op(880, xfy, [<=>]).
:- op(950, xfy, [:D).
- op(960, xfy, [#]).

* Equivalence */

* Action sequence */

S~ 3y

* Nondeterministic action choice */

137

/* ---- BDI-POP: ---- */

/* ---- An integration of POMDP theory into a Belief-Desire-Intention agent model

This implementation in ECLiPSe Prolog by Gavin B. Rens, November, 2009

Meraka Institute, South Africa, & University of South Africa -——= %/
/¥ ---- PODTGolog: ---- */
/% ---- A POMDP planner developed by Gavin B. Rens ---- */
/* ---- PODTGolog is an extension of DTGolog (an MDP planner)

Retrieved 4 September, 2008 from
http://www.cs.ryerson.ca/ " mes/publications/appendix/
(appendix to M. Soutchanski’s PhD dissertation) —-——— %/

/% ---- PODTGolog Interpreter ---- */

/* Null action

¥ /

bestDoPo(nil : E,R,B,H,Pol,V,Prob) :- H > 0,
bestDoPo(E,R,B,H,Pol,V,Prob).

/% Stop action
*/
bestDoPo(stop : _,R,B,_,Pol,V,Prob) :-
Pol=stop, rewardBelief(R,V,B), (Prob is 0.0).

/% Zero horizon

*/

bestDoPo(P,R,B,H,Pol,V,Prob) :- H =:= 0,
Pol=stop, rewardBelief(R,V,B), (Prob is 1.0).

/* Test action
*/
bestDoPo(?(C) : E,R,B,H,Pol,V,Prob) :- H > 0,
(holdsBelief(C,Degree,B) ->
bestDoPo(E,R,B,H,Pol,V,Probl)),
Prob is Probl*Degree, !

(Pol = stop, V is 0, Prob is 0.0).

138

/* Nondeterministic choice of actions

*/

bestDoPo((E1 # E2) : E,Rn,B,H,Pol,V,Prob) :- H > 0,
bestDoPo(El1 : E,Rn,B,H,Poll,V1,Probl),
bestDoPo(E2 : E,Rn,B,H,P0l2,V2,Prob2),
(lesseq(V1,Probl1,V2,Prob2), Pol=Pol2, Prob=Prob2, V=V2 ;
greatereq(V1,Probl,V2,Prob2), Pol=Poll, Prob=Probl, V=V1).

/* Conditional statement
*/
bestDoPo(if(C,E1,E2) : E,R,B,H,Pol,V,Prob) :- H > O,
holdsBelief(C,Degree,B) ->
(bestDoPo(El : E,R,B,H,Pol,V,Probl),Prob is Probl*Degree)

bestDoPo(E2 : E,R,B,H,Pol,V,Prob).

/* Conditional iteration

(Note that horizon has presendence over iteration, i.e.,
even if the stopping criterion (C) is still satisfied,
if H is zero, planning stops.)
*/
bestDoPo(while(C,E1) : E,R,B,H,Pol,V,Prob) :- H > 0,
(holdsBelief(-C,Degree,B) ->
bestDoPo(E,R,B,H,Pol,V,Prob)
holdsBelief(C,Degree,B),
bestDoPo(El1 : while(C,El1) : E,R,B,H,Pol,V,Probl),
Prob is Probl*Degree).

/% Sequencial composition

*/

bestDoPo((E1 : E2) : E,R,B,H,Pol,V,Prob) :- H > 0,
bestDoPo(El1 : (E2 : E),R,B,H,Pol,V,Prob).

/* Probabilistic observation
*/
bestDoPo(A : E,Rn,B,H,Pol,V,Prob) :- H > 0, agentAction(A),
(not believedPossAct(A,B), !,
Pol = stop, V is 0, Prob is 0.0

choiceObs(A,ChoiceObsList), !,

139

bestDoObs (ChoiceObsList,A,E,Rn,B,H,RestPol,VF,Prob),
rewardBelief(Rn,R,B),

V is R + VF,
Pol = (A : RestPol)
).

/* Observations possible (last (0k))

*/

bestDoObs([0Ok],A,E,R,B,H,Pol,V,Prob) :- H > 0,

(not believedPossObs(0Ok,A,B), !,

Pol = stop, V is ®, Prob is 0.0
beliefUpdate(0Ok,A,B1,B),
Hor is H - 1,
bestDoPo(E,R,B1,Hor,Pol1,V1,Probl), !,
Pol = (?(observationIs(0k),Poll)),
probNebs (0k,A,B,Pbs),
V is V1*Pbs,
Prob is Probl*Pbs
).

/* Observations possible (>=2)
*/
bestDoObs([01 | OtherOutcomes],A,E,R,B,H,Pol,V,Prob) :- H > 0,
OtherOutcomes = [_|_], % there is at least one other outcome
(not believedPossObs(01,A,B), !,
bestDoObs (0therQutcomes,A,E,R,B,H,Pol,V,Prob)
bestDoObs (OtherOutcomes,A,E,R,B,H,PolT,VT,ProbT), !,
beliefUpdate(01,A,B1,B),

Hor is H - 1,
bestDoPo(E,R,B1,Hor,Pol1,V1,Probl), !,
Pol = (

if(observationIs(01), % then
Poll, % else
PolT)

),

probNebs(01,A,B,Pbs),

V is VT + V1*Pbs,

Prob is ProbT + Probl*Pbs

).

140

/% ---- Some important predicates mentioned in the interpreter ---- */

/* For each possible observation, we specify when that observation is
possible (perceivable), given the agent’s belief.
*/
believedPossObs(0,A,[(S,_)]) :-
possObs(0,A,S).
believedPossObs(0,A, [Head | Tail]) :-
Head = (S,_.),
possObs(0,A,S)

believedPossObs(0,A,Tail).

/* For each possible action, we specify when that action is
possible (executable), given the agent’s belief.
*/
believedPossAct(A,[(S,.)]) :-
possAct(A,S).
believedPossAct(A, [Head | Taill) :-
Head = (S,.),
possAct(A,S)

believedPossAct(A,Tail).

/* Reward function over belief states
*/
rewardBelief(RewardFuncName,Rb,B) :-
rewardBeliefAux (RewardFuncName,Rb,B).
rewardBeliefAux(_,0,[]).
rewardBeliefAux (RewardFuncName,Rb, [(S,P)]) :-
reward (RewardFuncName,Rs,S),
Rb is P*Rs.
rewardBeliefAux (RewardFuncName,Rb,B) :-
B = [(S,P)]T],
reward (RewardFuncName,Rs,S),
Product is P*Rs,
rewardBelief(RewardFuncName,Carry,T),

Rb is Carry+Product.

141

/% Belief update function (state estimation function)

beliefUpdate(Observation,Action,NewBelief,0ldBelief).

Using the ‘belief state reduction by probability cut-off’ method.
*/
beliefUpdate(0,A,B_out,B_in) :-
beliefUpdateAux(0,A,B_templ,B_in),
findall((S1,P1), (member((S1,P1),B_templ),P1 =\= 0.0), B_temp2),
normalize(B_temp2,B_temp3),
findall((S2,P2), (member((S2,P2),B_temp3),P2 > 0.01), B_temp4),

normalize(B_temp4,B_out). %%% P2 > ??? must be empirically chosen

beliefUpdateAux(0,A,B_temp, [(S,P)]) :-
findall((Sp,Pp),
(Sp = doo(N,S),choiceNat(N,A,S),possAct(N,S),
probObs (0, A, ProbObs,Sp), probNat(N,A,ProbNat,S),
Pp is P*ProbObs*ProbNat),
B_temp).
beliefUpdateAux(0,A,B_temp, [(S,P)|T]) :-
findall((Sp,Pp),
(Sp = doo(N,S),choiceNat(N,A,S),possAct(N,S),
probObs (0,A,ProbObs,Sp), probNat(N,A,ProbNat,S),
Pp is P*ProbObs*ProbNat),
B2),
beliefUpdateAux(0,A,B3,T),
concat_list(B2,B3,B_temp).

normalize(B_temp,B_norm) :-
sum_probabilities(B_temp, Denominator),
findall((Sn,Pn),
(member ((St,Pt),B_temp), Sn = St, Pn is Pt/Denominator),
B_norm).

/* The probability ProbNebs of reaching the new belief state,
given the old belief state B, via O and A.

*/

probNebs(0,A,[],0.0).

probNebs(0,A,B,ProbNebs) :-

beliefUpdateAux(0,A,B,B_temp),

sum_probabilities(B_temp,ProbNebs).

142

/% ---- Some useful predicates mentioned in the interpreter ---- */

belief(_,0.0,[]1).
belief(Q,Degree, [(S,P)]) :-
holds(Q,S), !, Degree is P
Degree is 0.0.
belief(Q,Degree, [(S,P)|T]) :-
belief(Q,DegreeSoFar,T),
(holds(Q,S), !, Degree is P + DegreeSoFar

Degree is DegreeSoFar).

lesseq(V1,Probl,V2,Prob2) :-

Prl is float(Probl), (Prl = 0.0),

Pr2 is float(Prob2),

((Pr2 \= 0.0)

(Pr2 = 0.0) , V1 =< V2).
lesseq(V1,Probl,V2,Prob2) :-

(Probl \= 0.0) , (Prob2 \= 0.0) , V1 =< V2.

greatereq(V1,Probl,V2,Prob2) :-

(Probl \= 0.0) , (Prob2 = 0.0).
greatereq(V1,Probl,V2,Prob2) :-

(Probl \= 0.0) , (Prob2 \= 0.0) , V2 =< V1.

/* sub(Name,New,Terml,Term2): Term2 is Terml with Name replaced by New.

*/

sub(X1,X2,T1,T2) :- var(Tl1l), T2 = T1.

sub(X1,X2,T1,T2) :- not var(T1l), T1 = X1, T2 = X2.

sub(X1,X2,T1,T2) :- not Tl = X1, T1 =..[F|L1], sub_list(X1,X2,L1,L2), T2 =

sub_list(X1,X2,[1,[D).

.. [FIL2].

sub_list(X1,X2,[T1|L1],[T2|L2]) :- sub(X1,X2,T1,T2), sub_list(X1,X2,L1,L2).

/* The holds predicate implements the revised Lloyd-Topor
transformations on test conditions.

*/

holds(P & Q,S) :- holds(P,S), holds(Q,S).

holds(P v Q,S) :- holds(P,S); holds(Q,S).

holds(P => Q,S) :- holds(-P v Q,S).

holds(P <=> Q,S) :- holds((P => Q) & (Q => P),S).

143

holds(-(-P),S) :- holds(P,S).

holds(-(P & Q),S) :- holds(-P v -Q,S).

holds(-(P v Q),S) :- holds(-P & -Q,S).

holds(-(P => Q),S) :- holds(-(-P v Q),S).

holds(-(P <=> Q),S) :- holds(-((P == Q) & (Q => P)),S).
holds(-all(V,P),S) :- holds(some(V,-P),S).

holds(-some(V,P),S) :- not holds(some(V,P),S). /* Negation */
holds(-P,S) :- isatom(P), not holds(P,S). /* by failure */
holds(all(V,P),S) :- holds(-some(V,-P),S).

holds(some(V,P),S) :- sub(V,_,P,P1), holds(P1,S).

/* The following clause treats the holds predicate for all atoms,
including Prolog system predicates. For this to work properly,
the GOLOG programmer must provide, for all atoms taking a
situation argument, a clause giving the result of restoring
its suppressed situation argument, for example:
restoreSitArg(ontable(X),S,ontable(X,S)).

*/

holds(true,_).

holds(A,S) :-
restoreSitArg(A,S,F), F

not restoreSitArg(A,S,F), isatom(A), A.

isatom(A) :- not (A= -W; A= (W1 &W2) ; A= W1 = W2) ;
A= (1 <=>W2) ; A= (W1 vWwW2) ; A=some@ W ; A=allX,).

/* holdsBelief/2

Defining when a proposition holds to a degree
(see holdsBelief/3 next)
*/
holdsBelief(-(true),_) :- !, false.
holdsBelief(true,_).
holdsBelief(Q, [(S,_)]1) :-
holds(Q,S).
holdsBelief(Q, [Head | Tail]) :-
Head = (S,_),
holds(qQ,S),!
holdsBelief(Q,Tail).
holdsBelief(-Q,B) :- not holdsBelief(Q,B).

144

/* holdsBelief/3

holdsBelief(Sentence,Degree,BeliefState), takes as input a Sentence
and the agent’s current belief state, and returns the Degree to
which the agent believes the sentence.

*/

holdsBelief(P,Degree,B) :- holdsBelief(P,B),!, belief(P,Degree,B).

holdsBelief(-P,Degree,B) :- holdsBelief(-P,S),!, belief(-P,Degree,B).

/* ---- BDI Controller (BDI-POP) and Simulation environ. (FireEater world): ---- */

/* Call

startSimulation(SimTime, RateOfChange, AgentSpeed, Points):
Inputs:
SimTime: minimum simulation time in seconds (e.g., 20)
RateOfChange: # obstacle changes per cycle (e.g., 3)
AgentSpeed: # agent moves allowed per cycle (e.g., 2)

Outputs:
Points
*/
startSimulation(SimTime, RateOfChange, AgentSpeed, Points) :-
worldInfo(WorldInfo),
WorldInfo = (NuofObstacles, NuofFires, NuofPowPacs, WorldDimension),

initializeWorld(NuofObstacles, NuofFires, NuofPowPacs, WorldDimension,
InitAgentPos),

makeAssertions(InitAgentPos),

agentInfo(AgentInfo),

AgentInfo = (Beh, Progs, Init_Beliefs, Hor),

NewAgentInfo = (Beh, Progs, Hor),

get_flag(unix_time, StartTime),

doloop_simulation(WorldDimension, NewAgentInfo, Init_Beliefs, [],
SimTime, StartTime,
RateOfChange, AgentSpeed, Points, 0,
intn(_,nil,_,_), stop, go).

doloop_simulation(WD, AI, Bels, Ints, SimTime, StartTime,
ROC, AS, Points, Points_SF, ActiveInt, Pol, Stop_Go) :-
(get_flag(unix_time, CurrentTime),
TimeElapsed is CurrentTime - StartTime,
TimeElapsed >= SimTime

Stop_Go == stop), !,

145

Points = Points_SF
doloop_evolve(WD, AI, Bels, Ints, SimTime, StartTime,
ROC, ®, AS, Points, Points_SF, Activelnt, Pol).

doloop_evolve(WD, AI, Bels, Ints, SimTime, StartTime,
ROC, ChangesSoFar, AS, Points, Points_SF, ActiveInt, Pol) :-
ChangesSoFar =:= ROC, !,
doloop_agent (WD, AI, Bels, Ints, SimTime, StartTime,
ROC, AS, 0, Points, Points_SF, ActivelInt, Pol)
NewChangesSoFar is ChangesSoFar + 1,
write("evv: "), writeln(NewChangesSoFar),
evolveSimWorld (WD),
doloop_evolve(WD, AI, Bels, Ints, SimTime, StartTime,
ROC, NewChangesSoFar, AS, F_FL, FL_SF, ActivelInt, Pol).

doloop_agent (WD, AI, Bels, Ints, SimTime, StartTime,
ROC, AS, AS_SF, Points, Points_SF, ActiveInt, Pol) :-
(
get_flag(unix_time, CurrentTime),
TimeElapsed is CurrentTime - StartTime,
TimeElapsed >= SimTime
AS_SF =:= AS
), !,
doloop_simulation(WD, AI, Bels, Ints, SimTime, StartTime,
ROC, AS, Points, Points_SF, ActiveInt, Pol, go)

’

AI = (_, _, Hor),
ActiveInt = intn(Name, Prog, Achieves, Value),
(Pol == stop, !, % reached end of policy
(Prog == nil, !, % if prog is finished, simply get next intention:

deliberate(WD, AI, Bels, Ints, SimTime, StartTime,
ROC, AS, AS_SF, Points, Points_SF)

getRestProg(Prog, Hor, RestProg),

bestDoPo(Prog, Name, Bels, Hor, Pol2, _,), !,
NewActiveInt = intn(Name, RestProg, Achieves, Value),
(Pol2 == stop, !, % the planner could not gen. a usable policy

deliberate(WD, AI, Bels, Ints, SimTime, StartTime,

ROC, AS, AS_SF, Points, Points_SF)
getFirstAction(Pol2, Action, Rest_Pol),
getNaturesChoice(Action, NaturesChoice),
executeInSimWorld(NaturesChoice, Points_SF, NewPoints_SF),
NewAS_SF is AS_SF + 1,

146

write("agt: "), writeln(NewAS_SF),
% acquire the observation from simworld, given the action outcome
getPercept(NaturesChoice, SensedValue),
perceive(Action, SensedValue, Observation),
getSubPolicy(Rest_Pol, Observation, NewPol),
beliefUpdate(Observation, Action, NewBels, Bels),
% beliefUpdate is wrt. prev. fires list, so bel. up.
% must be done before updating Fires list
(NaturesChoice == eat,

simPossAct(eat), !,

initAgentPos(Pos),

agAtt(Pos,InitSit),

FiresList(NewFiresList),

retract (futureFiresList(_,_)),

assert(futureFiresList(NewFiresList, InitSit))
NaturesChoice == grab,

simPossAct(grab), !,

initAgentPos(Pos),

agAtt(Pos,InitSit),

powpacList(NewPowPacList),

retract (futurePowPacList(_,_)),

assert (futurePowPacList (NewPowPacList, InitSit))
true
),
(NewBels == [], !,

writeln("NewBels == []1™"),

doloop_simulation(_, _, _, _, SimTime, SimTime,

Points, NewPoints_SF, _, _, stop)

doloop_agent (WD, AI, NewBels, Ints, SimTime, StartTime,
ROC, AS, NewAS_SF,
Points, NewPoints_SF, NewActiveInt, NewPol)
)% end NewBels == ...
)% end Pol2 == ...
)% end Prog == ...

; % Pol =\= stop

getFirstAction(Pol, Action, Rest_Pol),

getNaturesChoice(Action, NaturesChoice),
executeInSimWorld(NaturesChoice, Points_SF, NewPoints_SF),
NewAS_SF is AS_SF + 1,

write("agt: "), writeln(NewAS_SF),

% acquire the observation from simworld, given the action outcome

getPercept(NaturesChoice, SensedValue),

147

perceive(Action, SensedValue, Observation),
getSubPolicy(Rest_Pol, Observation, NewPol),
beliefUpdate(Observation, Action, NewBels, Bels),
(NaturesChoice == eat,
simPossAct(eat), !,
initAgentPos(Pos),
agAtt(Pos,InitSit),
FiresList(NewFiresList),
retract(futureFiresList(_,_)),
assert(futureFiresList(NewFiresList, InitSit))
NaturesChoice == grab,
simPossAct(grab), !,
initAgentPos(Pos),
agAtt(Pos,InitSit),
powpacList(NewPowPacList),
retract (futurePowPacList(_,_)),
assert(futurePowPacList (NewPowPacList, InitSit))
true
s
(NewBels == [], !,
writeln("NewBels == []"),
doloop_simulation(_, _, _, _, SimTime, SimTime,
_, _, Points, NewPoints_SF, _, _, stop)
doloop_agent (WD, AI, NewBels, Ints, SimTime, StartTime,
ROC, AS, NewAS_SF,
Points, NewPoints_SF, ActiveInt, NewPol)
)% end NewBels == ...
).% end Pol == ...

deliberate(WD, AI, Bels, Ints, SimTime, StartTime, ROC, AS, AS_SF, F_FL, FL_SF) :-

AI = (Behs, Dess, Hor),
(Ints == [], !,

focus(Bels, Behs, Dess, NewInts, Hor) % output: NewlInts

NewInts = Ints
),
popIntentionStack(ActiveInt, NewInts, PoppedInts),
doloop_agent (WD, AI, Bels, PoppedInts, SimTime, StartTime,

ROC, AS, AS_SF, F_FL, FL_SF, ActiveInt, stop).

148

%---- Definitions of some important clauses ----%

initializeWorld(NuofObstacles, NuofFires, NuofPowPacs, WorldDimension, AgentPos)

placeObstacles(NuofObstacles, 0, [], WorldDimension),
placeFires(NuofFires, 0, [], WorldDimension),
placePowPacs(NuofPowPacs, 0, [], WorldDimension),

placeAgent (WorldDimension, AgentPos).

makeAssertions(InitAgentPos) :-
(retract(initAgentPos(_)) ; true),
assert(initAgentPos(InitAgentPos)),
FiresList(FiresList),
powpacList (PowPacList),
(retract_all(futureFiresList(_,_)) ; true),
(retract_all (futurePowPacList(_,_)) ; true),
agAtt(InitAgentPos, S),
assert(futureFiresList(FiresList, S)),
assert(
(futureFiresList (NewFiresList, doo(A, Ss)) :-
futureFiresList(0ldFiresList, Ss),
(A = eat, !,
(possAct(eat, Ss), !,
agAtt(loc(X,Y), Ss),
removeFromList ((X,Y),0ldFiresList,NewFiresList)
NewFiresList = OldFiresList

)

NewFiresList = OldFiresList

)
),

assert(futurePowPacList (PowPacList, S)),
assert(
(futurePowPacList (NewPowPacList, doo(A, Ss)) :-
futurePowPacList(0ldPowPacList, Ss),
(A = grab, !,
(possAct(grab, Ss), !,
agAtt(loc(X,Y), Ss),
removeFromList ((X,Y),0ldPowPacList,NewPowPacList)
NewPowPacList = OldPowPacList
)

NewPowPacList = OldPowPacList

149

focus(Bels, Behs, Dess, Ints3, Hor) :-
% get best progs
focusAux(Bels, Behs, Dess, [], Ints2, Hor),
% order progs

sort(4,>=,Ints2,Ints3).

focusAux(_, [], _, IntsSoFar, IntsSoFar, _).

focusAux(Bels, Behs, Dess, IntsSoFar, Ints3, Hor) :-
Behs = [Beh|Rest],
% find all desires that achieve same behavior
findall (X, (member (X,Dess),X=intn(_,_,achieves(Beh),_)),Bag),
findMostValuedProg(Bels,Bag,MostValuedProg,Hor),
NewIntsSoFar = [MostValuedProg|IntsSoFar],

focusAux(Bels, Rest, Dess, NewIntsSoFar, Ints3, Hor).

findMostValuedProg(Bels,CandidateInts,BestInt,Hor) :-
CandidateInts = [First|Rest],
mostValuedAux(Bels,Rest,First,intn(_,_,_,-1000) ,Hor,BestInt).

mostValuedAux(Bels, [],Last,BestIntSoFar,Hor,BestInt) :-

Last = intn(Name,Prog,_,_),

ShallowHor is Hor - 1,

bestDoPo(Prog,Name,Bels,ShallowHor,_,LastValue,_),

Last = intn(_,_,_,LastValue),

BestIntSoFar = intn(_,_,_,BestValueSoFar),

(LastValue > BestValueSoFar, !,

BestInt = Last
BestInt = BestIntSoFar

).

mostValuedAux(Bels,CandidateInts,NextInt,BestIntSoFar,Hor,BestInt) :-

NextInt = intn(Name,Prog,_,_),

ShallowHor is Hor - 1,!,
bestDoPo(Prog,Name,Bels,ShallowHor,_,NextValue,_),
NextInt = intn(_,_,_,NextValue),

BestIntSoFar = intn(_,_,_,BestValueSoFar),
(NextValue > BestValueSoFar, !,
NewBestIntSoFar = NextInt
NewBestIntSoFar = BestIntSoFar
),
CandidateInts = [NewNext|Rest],
mostValuedAux(Bels,Rest,NewNext,NewBestIntSoFar,Hor,BestInt).

150

placeObstacles(NuofObstacles, NOO_SF, ObstacleList_SF, WorldDimension)

NOO_SF == NuofObstacles, !,
(retract_all(obstacleList(_)) ; true),
assert(obstacleList(ObstaclelList_SF))
%write("Obstacles: "), writeln(ObstacleList_SF)

random(N1), random(N2),

mod(N1,WorldDimension,M1), mod(N2,WorldDimension,M2),
Mml is M1 + 1, Mm2 is M2 + 1,

(member ((Mm1,Mm2) ,0bstacleList_SF), !,
placeObstacles(NuofObstacles, NOO_SF,

ObstacleList_SF, WorldDimension)

NewNOO_SF is NOO_SF + 1,
NewObstacleList_SF = [(Mml,Mm2) |ObstacleList_SF],
placeObstacles(NuofObstacles, NewNOO_SF,

NewObstacleList_SF, WorldDimension)

placeFires(NuofFires, NOF_SF, FiresList_SF, WorldDimension)

placePowPacs(NuofPowPacs, NOP_SF, PowPacList_SF, WorldDimension)
NOP_SF == NuofPowPacs, !,

NOF_SF == NuofFires, !,

(retract_all(FiresList(_)) ; true),
assert(FiresList(FiresList_SF))

random(N1), random(N2),

mod(N1,WorldDimension,M1), mod(N2,WorldDimension,M2),
Mml is M1 + 1, Mm2 is M2 + 1,
obstacleList(ObstaclelList),

((member ((Mm1,Mm2) ,0bstaclelList) ; member((Mml,Mm2),FiresList_SF)),
placeFires(NuofFires, NOF_SF, FiresList_SF, WorldDimension)

NewNOF_SF is NOF_SF + 1,
NewFiresList_SF = [(Mml,Mm2) |FiresList_SF],

placeFires(NuofFires, NewNOF_SF, NewFiresList_SF, WorldDimension)

(retract_all(powpacList(_)) ; true),
assert(powpacList(PowPacList_SF))
random(N1), random(N2),
mod(N1,WorldDimension,M1), mod(N2,WorldDimension,M2),
Mml is M1 + 1, Mm2 is M2 + 1,
obstacleList(ObstaclelList), FiresList(FiresList),
((member ((Mm1,Mm2) ,0bstaclelList)

; member ((Mml1,Mm2) ,PowPacList_SF)

151

; member ((Mml,Mm2),FiresList)), !,
placePowPacs(NuofPowPacs, NOP_SF, PowPacList_SF, WorldDimension)
NewNOP_SF is NOP_SF + 1,
NewPowPacList_SF = [(Mml,Mm2) |PowPacList_SF],
placePowPacs(NuofPowPacs, NewNOP_SF, NewPowPacList_SF, WorldDimension)

placeAgent (WorldDimension, AgentPos) :-
random(N1), random(N2),
mod(N1,WorldDimension,M1), mod(N2,WorldDimension,M2),
Mml is M1 + 1, Mm2 is M2 + 1,
obstacleList(ObstacleList), powpacList(PowPacList), FiresList(FiresList),
((member ((Mm1,Mm2) ,0bstaclelList)
; member ((Mml,Mm2) ,PowPacList)
; member ((Mml,Mm2),FiresList)), !,
placeAgent (WorldDimension, AgentPos)
AgentPos = loc(Mml,Mm2),
(retract(simAtt(_)) ; true),
assert(simAtt(AgentPos))

evolveSimWorld(WorldDimension) :-
WD = WorldDimension,
obstacleList(OL),
FiresList(FL),
powpacList (PL),
shiftObstacle(OL, FL, PL, NewObstacleList, WD),
retract(obstacleList()),
assert(obstacleList(NewObstaclelList)).

shiftObstacle(ObstaclelLt, FirelLt, PowPacLt, NewObstacleLt, WorldDimension) :-
random(N1), random(N2),
mod(N1,WorldDimension,M1), mod(N2,WorldDimension,M2),
Mml is M1 + 1, Mm2 is M2 + 1,
member ((Mm1,Mm2),0bstaclelLt), !,
removeFromList ((Mm1,Mm2),0bstaclelLt,NewObstacleLtl),
placeOneObject (NewObstacleLtl,FireLt,PowPacLt,
NewObstaclelLt,WorldDimension)
shiftObstacle(ObstaclelLt, FireLt, PowPacLt,

NewObstaclelLt, WorldDimension).

removeFromList((X,Y),List,NewList) :-
bagof((Xx,Yy), (member((Xx,Yy),List), (Xx,Yy) \= (X,Y)),NewList).

152

placeOneObject(ObjectLtl, ObjectLt2, ObjectLt3, NewObjectLt, WorldDimension) :-
random(N1), random(N2),
mod(N1,WorldDimension,M1), mod(N2,WorldDimension,M2),
Mml is M1 + 1, Mm2 is M2 + 1,
(
not member((Mml,Mm2),0bjectLtl),
not member((Mml,Mm2),0bjectLt2),
not member ((Mml,Mm2),0bjectLt3),
not simAtt(loc(Mml,Mm2)), !,
NewObjectLt = [(Mml,Mm2) |ObjectLtl]

placeOneObject(ObjectLtl, ObjectLt2, ObjectLt3, NewObjectLt, WorldDimension)

% This procedure assumes that all while conditions are ‘true’ and not contingent.
% Thus, all BDI-POP((R)) architectures only allow
input programs with ‘true’ while conditions.

getRestProg(Prog, Hor, RestProg) :- getRestProgAux(Prog, Hor, 1, RestProg).

getRestProgAux(Prog, Hor, Depth, RestProg) :-
Prog = (while(true,A) : B), !,
getRestProgAux(A:while(true,A):B, Hor, Depth, RestProg)
(
Prog = (E1 : E2), E1 \= (El1 : E12), !,
(Depth == Hor, !,
RestProg = E2
NewDepth is Depth + 1,
getRestProgAux(E2, Hor, NewDepth, RestProg)
)
Prog = (E1 : E2), !,
El1 = (E11 : E12),
getRestProgAux(E11: (E12:E2), Hor, Depth, RestProg)

RestProg = nil

getSubPolicy(stop, _, stop).
getSubPolicy(Pol, Observation, SubPol) :-

(Pol = (?(observationIs(Observation),SubPol)), !

)

(Pol = (if(observationIs(Observation_PH), SubPoll, SubPol2)),
(

Observation_PH == Observation, !

153

SubPol = SubPoll

getSubPolicy(SubPol2, Observation, SubPol)
)

).

getFirstAction(Pol, Action, Rest_Pol) :-

getNaturesChoice(Action, NaturesChoice) :-

executeInSimWorld(NaturesChoice, FirePoints, NewFirePoints) :-

simPossAct(...) :-

simProbNat(...) :-

simProbObs(Observation,Action,Probability) :-

getPercept(Action, SensedValue) :-

perceive(Action, SensedValue, Observation) :-

/% ---- Problem description ---- */
/* FireEater world: a 10 by 10 grid world, with obstacles, fire and power packs.
/* Successor-state axiom;
agAtt(loc(X,Y), S) denotes whether the agent is at loc(X,Y) in situation S)
senseloc and eat are implicitly handled at the last line.
* /

agAtt(loc(1,1),sl).

agAtt(loc(10,10),s100).

154

agAtt(loc(X,Y), doo(A, S)) :-
possAct(A, S), !,

(
A == left, !, agAtt(loc(Xpl,Y), S), X is Xpl - 1
; == right, !, agAtt(loc(Xml,Y), S), X is Xml + 1
; == up, !, agAtt(loc(X,Yml), S), Y is Yml + 1
; == down, !, agAtt(loc(X,Ypl), S), Y is Ypl -1

agAtt(loc(X,V), S)
)

agAtt(loc(X,Y), S).

/¥ ---- Initial Database ---- */

/* Initial world state

The real initial position of the agent is determined randomly.
The agent initially believes it is at (only) the real initial position.
-,'c/

% See startSimulation().

/* Initial belief state:
The probabiity that the agent is in some situation,
for each of the initial situations

-.':/

% See startSimulation().

/% Agent actions available:
*/

agentAction(up).
agentAction(down) .
agentAction(left).
agentAction(right).
agentAction(noop) .
agentAction(eat).
agentAction(grab).

agentAction(senseloc).

155

/% Agent desires:
Primitive motivations; the things the agent wants to achieve
7':/

desires(Desires) :- Desires = [findFire, eating, findPowpac, grabing].

/* Agent behaviors:

Various programs that the agent can choose from to achieve behaviors

*/
behaviors(Behaviors) :- Behaviors = [
intn(findFirel, (senseloc :
(senseloc # left # right # up # down # noop)
(senseloc # left # right # up # down # noop)
nil
),
achieves(findFire), _),
intn(findFire2, ((left # right # up # down # noop)
(left # right # up # down # noop)
(left # right # up # down # noop)
nil
),
achieves(findFire), _),
intn(eatl, ((eat # left # right # up # down # noop)
(eat # left # right # up # down # noop)
(eat # left # right # up # down # noop)
nil
),
achieves(eating), _),
intn(findPowpacl, (senseloc :
(senseloc # left # right # up # down # noop)
(senseloc # left # right # up # down # noop)
nil
)
achieves(findPowpac), _),
intn(findPowpac2, ((left # right # up # down # noop)
(left # right # up # down # noop)
(left # right # up # down # noop)
nil
),
achieves(findPowpac), _),
intn(grabl, ((grab # left # right # up # down # noop)
(grab # left # right # up # down # noop)
(grab # left # right # up # down # noop)
nil
),
achieves(grabing), _)
1.

156

/* Reward functions:

* /

% To find fires, the agent moves towards areas where it is surrounded by fires.

Each program has an associated reward function

reward(findFirel,R,S) :-
agAtt(loc(X,V),S),
futureFiresList(FiresList, S),

(Xx is X-1, member((Xx,Y),FiresList), !,

(Xx is X+1, member((Xx,Y),FiresList), !,

R1 =1
R1 =0
)!
R2 =1
R2 =0
),
R4 =1
R4 =0
),
(Yy is Y+1,
R5 =1
R5 =0
),
Xx is X-1,
R6 =1
R6 = 0
),
Xx is X-1,
R7 =1
R7 =0
)!
(Xx is X+1,
R8 =1
R8 =0
),
(Xx is X+1,
R9 =1

(Yy is Y-1, member((X,Yy),FiresList), !,

member ((X,Yy) ,FiresList), !,

Yy

is Y-1,

is Y+1,

is Y-1,

is Y+1,

member ((Xx,Yy) ,FiresList),

member ((Xx,Yy) ,FiresList),

member ((Xx,Yy) ,FiresList),

member ((Xx,Yy) ,FiresList),

157

RO =0
),
R is R1 + R2 + R4 + R5 + R6 + R7 + R8 + R9.
reward(findFire2,R,S) :-

reward(eatl,R,S) :-
(S = doo(A,_), A = eat, !,

R = 100
R=20
).

% To find power pacs, the agent moves towards areas
where it is surrounded by power pacs.

reward(findPowpacl,R,S) :-

reward(findPowpac2,R,S) :-

reward(grabl,R,S) :-
(S = doo(A,_), A = grab, !,
R = 103

R=20

/* Stochastic actions have a finite number of outcomes; we list all of them:
choiceNat(N,A,S)
Changes here requires changes to probNat(.) and to getNaturesChoice(.).
*/
choiceNat(left,left,).
choiceNat(up,left,_).
choiceNat(down,left,_).

choiceNat(right,right,_).
choiceNat(up,right,_).
choiceNat(down,right,_).

choiceNat (up,up,_).
choiceNat(right,up,_).
choiceNat(left,up,_).

choiceNat (down,down,_).
choiceNat(left,down,_).

choiceNat(right,down,_).

choiceNat(eat,eat,_).
choiceNat(grab,grab,_).

158

choiceNat (noop,noop,_).

choiceNat(senseloc,senseloc,_).

/* Each action is associated with some (one or more; finite) observations;
we list all of them:
choiceObs(A, ListOfObservations)

*/

choiceObs(left, [obsnil]).

choiceObs(right, [obsnil]).

choiceObs(up, [obsnil]).

choiceObs(down, [obsnil]).
choiceObs(eat, [obsnil]).
choiceObs(grab, [obsnil]).
choiceObs(noop, [obsnil]).

% For 10 by 10 grid world
choiceObs(senseloc, ObsList) :-
List = [1,2,3,4,5,6,7,8,9,10],
findall(obsloc(X,Y), (member(X,List), member(Y,List)),ObsList).

/% The state transition function is defined by several predicates;
(probNat(N,A,P,S):
the probability P that nature will choose action N, given action A in S)
*/
probNat(left,left,0.95,_).
probNat(up,left,0.025,).
probNat(down,left,0.025,_).

probNat(right,right,0.95,_).
probNat (up,right,0.025,_).
probNat (down,right,0.025,_).

probNat (up,up,0.95,_).
probNat(right,up,0.025,_).
probNat(left,up,0.025,).

probNat (down,down,®.95,_).
probNat(left,down,®.025,_).
probNat(right,down,0.025,_).

probNat(eat,eat,1,_).
probNat(grab,grab,1,_).
probNat (noop,noop,1,_).

probNat(senseloc,senseloc,1,_).

159

/* The observation function is defined by several predicates;
(probObs(0,A,P,S):
the probability P that the agent will observe O in S, given action A)
*/
probObs(obsnil,A,1.0,_) :-
(A == left ; A ==right ; A==up ; A ==down ; A == eat ; A == grab ; A == noop).
probObs (obsloc(X,Y),senseloc,P,S) :-
agAtt(loc(Xx,Yy),S),

(

X =:= Xx,Y =:= Yy,P is 0.96;

X =:= Xx-1, Y =:= Yy-1, P is 0.005;
X =:= Xx-1, Y =:= Yy+1, P is 0.005;
X =:= Xx-1, Y =:= Yy, P is 0.005;
X =:= Xx+1, Y =:= Yy-1, P is 0.005;
X =:= Xx+1, Y =:= Yy+1, P is 0.005;
X =:= Xx+1, Y =:= Yy, P is 0.005;
X =:= Xx, Y =:= Yy-1, P is 0.005;
X =:= Xx, Y =:= Yy+1, P is 0.005
), !

P is 0.

/% We formulate precondition axioms using the predicate
possAct(Action, Situation) for actions, and
possObs(Observation, Sense-action, Situation) for observations.
The right-hand side of precondition axioms provides conditions
under which Action or Observation is possible in Situation

*/

possAct(left,S) :-
agAtt(loc(X,V),S), !,

(X =\=1 ; Xx is X-1, obstacleList(ObstaclelList), !,
not member ((Xx,Y),0ObstaclelList)).

possAct(right,S) :-
agAtt(loc(X,V),S), !,

(X =\= 10 ; Xx is X+1, obstacleList(ObstacleList), !,
not member ((Xx,Y),0ObstacleList)).

possAct(up,S) :-
agAtt(loc(X,V),S), !,

(Y =\= 10 ; Yy is Y+1, obstacleList(ObstacleList), !,
not member((X,Yy),ObstacleList)).

possAct(down,S) :-
agAtt(loc(X,V),S), !,

(Y =\=1; Yy is Y-1, obstacleList(ObstacleList), !,
not member((X,Yy),ObstacleList)).

160

possAct(eat,S) :-

agAtt(loc(X,Y),S), !,

futureFiresList(FiresList, S), !, member((X,Y),FiresList).
possAct(grab,S) :-

agAtt(loc(X,V),S), !,

futurePowPacList (PowPacList, S), !, member((X,Y),PowPacList).
possAct(noop,_).

possAct(senseloc,_).

possObs(obsnil,A,) :-

A == left ; A == right ; A ==up ; A == down ; A == eat ; A == grab ; A == noop.
possObs (obsloc(X,Y),senseloc,S) :-

agAtt(loc(Xx,Yy),S), !,

X1 is X-Xx, abs(X1,XAbs), XAbs =< 1,

Y1 is Y-Yy, abs(Y1l,YAbs), YAbs =< 1,

X>1, X=<10, Y >=1, Y =< 10,

obstacleList(ObstaclelList), !, not member((X,Y),ObstaclelList).
%---- Some world parameters ----%
worldInfo(WorldInfo) :-

NuofObstacles = 24,

NuofFires = 18,

NuofPowPacs = 18,

36 is NuofFires + NuofPowPacs,
WorldDimension = 10,

WorldInfo = (NuofObstacles, NuofFires, NuofPowPacs, WorldDimension).

%---- Some agent parameters ----%

agentInfo(AgentInfo) :-
behaviors(Behaviors),
desires(Desires),
initAgentPos(Pos),

agAtt (Pos,S),
Init_Beliefs=[(S5,1.0)],
Hor = 3,

AgentInfo = (Desires, Behaviors, Init_Beliefs, Hor).

161

Appendix C

Paper 1 — Extending DTGolog to Deal with
POMDPs

Conference paper [85] resulting from work in this dissertation.
G. Rens, A. Ferrein, and E. van der Poel. Extending DTGolog to deal with POMDPs. In F.
Nicolls, editor, Proc. of 19th Annual Symposium of the Pattern Recognition Association of

South Africa (PRASA-08), pages 49-54, Cape Town, South Africa, 2008. UCT Press. url:
http://hdl.handle.net/10204/2972.

The paper starts on the next page.

162

Extending DTGolog to Deal with POMDPs

Gavin Rens!?, Alexander Ferrein®, Etienne van der Poel®

! School of Computing, Unisa, Pretoria, South Africa
2 Knowledge Systems Group, Meraka Institute, CSIR, Pretoria, South Africa
3 Knowledge-Based Systems Group, RWTH Aachen University, Aachen, Germany

grens@csir.co.za

ferrein@cs.rwth-aachen.de

evdpoel@unisa.ac.za

Abstract

For sophisticated robots, it may be best to accept and reason
with noisy sensor data, instead of assuming complete observa-
tion and then dealing with the effects of making the assump-
tion. We shall model uncertainties with a formalism called the
partially observable Markov decision process (POMDP). The
planner developed in this paper will be implemented in Golog;
a theoretically and practically ‘proven’ agent programming lan-
guage. There exists a working implementation of our POMDP-
planner.

1. Introduction

If a robot or agent can perceive every necessary detail of its en-
vironment, its model is said to be fully observable. In many
practical application this assumption is good enough for the
agent to fulfill its tasks; it is nevertheless unrealistic. A more
accurate model is a partially observable model. The agent takes
into account that its sensors are imperfect, and that it does not
know every detail of the world. That is, the agent can incorpo-
rate the probabilities of errors associated with its sensors, and
other uncertainties inherent in perception in the real world, for
example, obscured objects. If an agent or robot cannot repre-
sent the uncertainties inherent in perception, it has to assume
perfect perception; this assumption either might leads to spu-
rious conclusions or the necessity for additional methods that
keep the agent’s reasoning reasonable. For sophisticated robots
or agents, it may be best to accept and reason with noisy sensor
data.

One model for reasoning under uncertainty with partial ob-
servability is the partially observable Markov decision process
(POMDP). In this paper we present POMDP models based on
the robot programming and planning language Golog [1]. In
particular, we extend DTGolog [2], a Golog dialect. DTGolog
employs a notion of perfect perception; we extent it with a no-
tion of graded belief.

The rest of the paper is organised as follow. In the next
section we briefly introduce the situation calculus and present
the robot programming and planning language DTGolog, be-
fore we formally define POMDPs in Section 3. In Section 4
we present some related work. Section 5 introduces the pred-
icate BestDoPO which defines the semantics of the POMDP
planner in Golog. Section 6 presents an simple example of how
planning under partial observability is conducted. We conclude
with Section 7.

2. The Situation Calculus and DTGolog

The situation calculus is a first order logic dialect for reasoning
about dynamical systems based on agent actions. The outcomes
of a bout of reasoning in the situation calculus are meant to have
effects on the environment outside the agent. When an agent or
robot performs an action, the truth value of certain predicates
may change. Predicates whose value can change due to actions
are called fluents. Fluents have the situation term s as the last
argument.

A special function symbol do is defined in the situation
calculus. do(a, s) is the name of the situation (that the agent
is in) given the agent does action a in situation s. Note that
do(az,do(ax, s)) is also a situation term, where a2 and a, are
actions.

To reason in the situation calculus, one needs to define an
initial knowledge base (KB). The only situation term allowed
in the initial KB is the special initial situation So. Sp is the
situation before any action has been done.

There are two more formulas that need our attention:

1. The precondition axioms are formulas of the form
Poss(a, s), which means action a is possible in situation
s (mPoss(a, s) means it is not possible). Precondition
axioms need to be defined for each action.

2. Successor-state axioms are formulas that define how flu-
ents’ values change due to actions. There needs to be
a successor-state axiom for each fluent, and each such
successor-state axiom mentions only the actions that
have an effect on the particular fluent.

Please refer to [3] for a detailed explication of the situation cal-
culus, including a description of the famous frame problem and
how the basic action theory is a solution to this problem. Alter-
natively, refer to [4] for a one-chapter coverage of the situation
calculus.

Decision-theoretic Golog (DTGolog) [2] is an extension to
Golog to reason with probabilistic models of uncertain actions.
The formal underlying model is that of fully observable Markov
decision processes (MDPs).

Golog is an agent programming language (APL) developed
by [1]. It is based on the situation calculus. It has most of the
constructs of regular procedural programming languages (iter-
ation, conditionals, etc.). What makes it different from other
programming languages is that it is used to specify and control
actions that are intended to be executed in the real world or a
simulation of the real world. That is, Golog’s main variable type
is the action (not the number).

Complex actions can be specified by combining atomic ac-
tions. The following are all complex actions (where a sub-
scripted is an atomic action and ¢ is a sentence):
while ¢ do a; (iteration of actions);

7 ¢ 1 a1 (test action);

if ¢ then a, else a2 (conditional actions);
ai;az2;. .. ;ar (sequence of actions);

a1 | a2 (nondeterministic choice of actions);

px.(a1) (nondeterministic finite choice of arguments—
of zin ay);

Do(A, s, s") holds if and only if the complex action A can ter-
minate legally in s’ when started in situation s.

The DTGolog algorithm is defined with BestDo predi-
cates, taking on the role of Golog’s Do. The DTGolog inter-
preter however, does not simply ‘perform’ the program (com-
plex action) given it, but calculates an optimal policy based
on an optimization theory: the forward search value iteration
algorithm for fully observable MDPs. [1] capture the nonde-
terministic aspect of MDPs with predicates stochastic, and
prob. prob(n,p, s) determines the probability p with which
n is the outcome in some situation s. (In this section we
define prob as a function that returns the probability.) Let
choice’(a) = {nu,...,nx} (derived from stochastic) be the
k actions that nature could ’choose’ (the actual action per-
formed) for the agent’s intended action a. For stochastic action
a,

BestDo(a;rest, s, h,m,v,pr) =
In’,v' . BestDoAux(choice' (a), a,rest, s, h, 7', v, pr)A

7 = a; senseEffect(a), 7’ A v = reward(s) + v'.

a;r is the input program, with a the first action in the pro-
gram and 7 the rest of the program; s is the situation term; the
agent designer needs to set the number of steps (actions) h for
which a policy is sought—the planning horizon; 7 returns the
policy; v is the expected reward for executing 7; pr returns
the probability with which the input program will be executed
as specified, given the policy and given the effects of the en-
vironment. senseEffect(a) is a pseudo-action included in the
formalism to ensure that the formalism stays in the fully observ-
able MDP model. BestDoAux deals with each of the possible
realizations of a stochastic action:

BestDoAuz({n1,...,ng},a,r, 8, h,mv,pr) =
—Poss(ni, s) A BestDoAux({nz,...,nk},
a,r, 8, h, m,v,pr)V Poss(ni, s)A

3n’, v’ pr'.BestDoAux({na,...,nx},a,r, s, h, 7 v, pr')A

I, v1, pr1.BestDo(r, do(ni, s), h — 1,71, v1, pri)A

senseCond(ni, 1) A m = if ¢1 then 7, else 7’ endif A

v="10"+wv1-prob(ni,a,s) Apr=pr +pri-prob(ni,a,s).

For any action n, senseCond(n, ¢) supplies a sentence ¢
that is placed in the policy being generated. holds if and only
if the value returned by the sensor can verify that action n was
performed.

When either of two actions J; and d2 can be performed, the
policy associated with the action that produces the greater value
(current sum of rewards) is preferred and that action is included
in the determination of the final policy 7. This formula captures

the idea that is at the heart of the expected value maximization
of decision theory:

BestDo([01]92]); rest, s, h, mw, v, pr) =
Im1, v1, pr1.BestDo(61; rest, s, h, w1, v1,pr1) A
7o, v2, pro.BestDo(d2; rest, s, h, w2, v2, pra) A
((v1,01) > (v2,02) AT =T Av=wv1 Apr=pri) V
((v1,01) < (v2,02) AT =m2 Av=v2 Apr = pra)).

3. POMDP defined
3.1. The model

In partially observable Markov decision processes (POMDPs)
actions have nondeterministic results and observations are un-
certain. In other words, the effect of some chosen action is
somewhat unpredictable, yet may be predicted with a proba-
bility of occurrence. And the world is not directly observable;
some data are observable, and the agent infers how likely it is
that the state of the world is in some specific state. The agent
thus believes to some degree—for each possible state—that it
is in that state, but it is never certain exactly which state it is
in. Furthermore, a POMDP is a decision process and thus fa-
cilitates making decisions as to which actions to take, given its
previous observations and actions.

Formally, a POMDP is a tuple (S, A, 7, R, Q, O, by) with
the following seven components (see e.g., [5, 6]): (1) § =
{s0, $1, ..., Sn} is a finite set of states of the world; the state at
time ¢ is denoted s%; (2) A = {a1,az,...,ax} is a finite set of
actions; (3) 7 : S x A — II(S) is the state-transition function,
giving for each world state and agent action, a probability dis-
tribution over world states; (4) R : S x A — R is the reward
function, giving the immediate reward that the agent can gain
for any world state and agent action; (5) Q@ = {00,01,...,0m}
is a finite set of observations the agent can experience of its
world; (6) O : S x A — I1(Q) is the observation function, giv-
ing for each agent action and the resulting world state, a prob-
ability distribution over observations; and (7) bo is the initial
probability distribution over all world states in S.

An important function is the function that updates the
agent’s belief: [5] call this function the state estimation func-
tion SE(b, a,0). bis a set of pairs (s, p) where each state s is
associated with a probability p, that is, b is a probability distri-
bution over the set S of all states. b can be called a belief state.
SFE is define as

tr I\ __ O(S,,CL,O) ZseST(Saavsl)btil(s)
b (S) - }37,(0‘0/7 b)) (1)

where b’(s’) is the probability of the agent being in state s’
at time-step . (Action and observation subscripts have been ig-
nored.) Equation (1) is derived from the Bayes Rule. Pr(o|a, b)
in the denominator is a normalizer; it is constant with time. SE
returns a new belief distribution for every action-observation
pair. SE captures the Markov assumption: a new state of belief
depends only on the immediately previous observation, action
and state of belief.

3.2. Determining a policy

For any set of sequences of actions, the sequence of actions that
results in the highest expected reward is preferred. The optimal-
ity prescription of utility theory states: Maximize “the expected
sum of rewards that [an agent] gets on the next k steps,” [5].

new
belief state

slip right new

current belief state
belief

state
new

belief state

go right

slip left new

belief state

Figure 1: One tier of a POMDP-decision-tree.

That is, an agent should maximize F [Zf;ol m] where r; is

the reward received on time-step ¢.

When the states an agent can be in are belief states, we
need a reward function over belief states. We derive Rb(a, b)
from the reward function over world states, such that a reward
is proportional to the probability of being in a world state:

Rb(a,b) = > R(a,s) x b(s). 2)

seS

Now the aim of using POMDP models is to determine rec-
ommendations of ‘good’ actions or decisions. Such recommen-
dations are called a policy. Formally, a policy () is a function
from a set of belief states (all those the agent can be in) to a
set of actions: w : B — A. That is, actions are conditioned
on beliefs. So given By, the first action a’ is recommended by
7. But what is the next belief state? This depends on the next
observation. Therefore, for each observation associated with a’,
we need to consider a different belief state. Hence, the next ac-
tion, a”, actually depends on the observations associated with
(immediately after) a’. In this sense, a policy can be repre-
sented as a policy tree, with nodes being actions and branches
being observations. The above equation is thus transformed to
m: O — A. Now once we have a policy, it is independent of
the agent’s beliefs.

Let Vi ¢(s)—the value function—be the expected sum of
rewards gained from starting in world state s and executing pol-
icy 7 for ¢ steps. If we define a value function over belief states
as Vbr 1 (b) = >, cg Var,e(s) X b(s), we can define the optimal
policy 7 with planning horizon h (set t = h) as

mx = argmaz . (Vbz n(bo)) (3)

(from the initial belief state)—the policy that will advise the
agent to perform actions (given any defined observation) such
that the agent gains maximum rewards (after h actions).

To implement Equation (3), the authors make use of a deci-
sion tree (there are other methods). DTGolog uses a similar
approach: forward search value iteration. An example sub-
decision-tree (one tier) is shown in Figure 1. This example is
based on an environment and agent model where the agent can
only go left or right and each of its two actions has two possible
realizations in the environment; also, the agent may make two
kinds of observations (O and Oy) if it chose to go left, and an-
other two kinds of observations (O3 and Oy) if it chose to go
right.

Belief states (triangles) in the decision tree are decision
nodes, that is, at these nodes, the agent can choose an action
(make a decision). Circles are chance nodes, that is, certain
events occur, each with a probability (chance) such that any one

event at one chance node will definely happen (probabilities of
branches leaving a chance node, sum to 1).

In Decision Analysis (see e.g., [7]), we roll back a decision
tree to ‘decide’ the action. In any decision tree, for each action-
observation pair, there is a tier of sub-decision-trees. That is,
when considering n actions in a row, a decision tree with n tiers
would be required. There is a unique path from the initial deci-
sion node to each leaf node, and at each belief state encountered
on a path, a reward is added, until (and including) the leaf be-
lief state. At this point, the agent knows the total reward the
agent would get for reaching that final state of belief. Each of
the belief states is reachable with some probability.

At each decision node, a choice is committed to. We itera-
tively roll back—from last decision nodes to first decision node.
The agent can in this way decide at the first decision node, what
action to take. Each subtree rooted at the end of the branches
representing the agent’s potential action, has an associated ex-
pected reward. The action rooted at the subtree with the highest
expected reward, should be chosen.

As the decision tree is rolled back, the best decision/action
is placed into the policy, conditioned on the most recent pos-
sible observations. Using such a policy tree (generated from a
decision tree), the agent can always choose the appropriate ac-
tion given its last observation. This is the essence of the theory
on which our POMDP planner is based.

4. Related work

In the following, we present some related work dealing with
reasoning under uncertainty. As there exists a large body of
work in this field, we concentrate in particular on approaches for
reasoning under uncertainty in the situation calculus and Golog.

[8]’s idea of representing beliefs is simple yet important.
Intuitively, their aim is to represent an agent’s uncertainty by
having a notion of which configuration of situations are cur-
rently possible; the possible worlds framework. Then further,
each possible world is given a likelihood weight. With these
notions in place, they show how an agent can have a belief (a
probability) about any sentence in any defined situation. Their
work does not, however, cover planning.

Reiter [3] describes how to implement MDPs as well as
POMDPs in the situation calculus. He defines the language
stGolog, which stands for ‘stochastic Golog’. Nevertheless, Re-
iter does not provide a method to automatically generate (opti-
mal) policies, given a domain and optimization theory; he only
provides the tools for the designer to program policies for par-
tially observable decision domains by hand.

Grosskreutz shows how the Golog framework “can be ex-
tended to allow the projection of high-level plans interacting
with noisy low-level processes, based on a probabilistic charac-
terization of the robot’s beliefs,” [9]. He calls his extension to
Golog pGolog. The belief update of a robot’s epistemic state is
also covered by [9]. (PO)MDPs are not employed in pGolog.
Instead, he does probabilistic projection of specific programs.
He does however make use of expected utility to decide be-
tween which of two or three or so programs to execute (after
simulated scenarios).

In [11], Ferrein and Lakemeyer present the agent pro-
gramming language ReadyLog. Approximately ten years af-
ter Golog’s birth, ReadyLog combines many of the disparate
useful features of the various dialects of Golog into one pack-
age. ReadyLog has been implemented and successfully used in
robotic soccer competitions and a prototype domestic robot.

Whereas DTGolog [2] models MDPs—a useful model in

initial
belief
state
BestDoPo BestDoPo BestDoPo
BestDoObserve BestDoObserve

Figure 2: BestDoPO represented as a POMDP-decision-tree.

robotics, as most robots operate in environments where ac-
tions have uncertain outcomes—our new dialect models belief-
MDPs. A belief-MDP is one perspective of POMDPs, where
the states that are being reasoned over are belief states and not
the world states of MDPs. More detail concerning the semantics
of DTGolog is given in Section 2.

Very related to our approach is the approach of [10]. Finzi
and Lukasiewicz present a game-theoretic version of DTGolog
to operate in partially observable domains. They call this exten-
sion POGTGolog. As far as we know, this is the only Golog di-
alect that can take partially observable problems as input, that is,
that has some kind of POMDP solver for agent action planning.
POGTGolog deals with multiple agents. Our work is different
from theirs, as we concentrate on the single agent case and our
agent is not restricted to game theory. For developers who prefer
a Golog dialect for agent programming, but desire their robots
or agents to operate with POMDP information, these developers
cannot easily modify POGTGolog to work with single robots.
Our work is not only a simplification of [10]; rather, we extend
DTGolog, and use several elements in POGTGolog—either di-
rectly or for inspiration.

5. Semantics of POMDPs in Golog

In this section we describe our extension to the original for-
ward search value iteration algorithm as proposed in [2]. In
the following, we extend the approach of DTGolog in such a
way that it can also deal with partially observable domains. In
particular, instead of using BestDo, we introduce a predicate
BestDoPO to operate on a belief state rather than on a world
state. BestDoPO(p, b, h, w, v, pr) takes as arguments a Golog
program p, a belief state b and a horizon h, which determines
the solution depths of the algorithm. The policy 7 as well as
its value v and the success probability are returned by the algo-
rithm.

The relation of Best DoPO to a POMDP-decision-tree can
be seen in Figure 2. The stochastic outcomes of actions has been
suppressed for ease of presentation.

An example of how BestDoPO may be called initially—
with a program that allows the agent to choose be-
tween three actions ai,a2,as (without constraints), with
bo the initial belief state and with the user or agent
requiring advice for a sequence of seven actions—is
BestDoPO(while true do [a1 | a2 | as], bo, 7,7, v).

5.1. Basic definitions and concepts

A belief state b contains the elements (s, p); each element/pair
is a possible (situation calculus) situation s together with prob-
ability p (as in [10]).

We use the idea of [10] and assume that an action is possible
in a belief state, when it it possible in the situation which is part
of the belief state, that is, Poss(a, b) iff Poss(a, s). We add the
predicate PossObs(o, a, b) to the action theory, which specifies
when an observation o is possible (perceivable) in belief state b,
given an action a. We shall call Poss(a,b), PossAct(a,b), so
that we can clearly distinguish between preconditions for ob-
servations and for actions. It is important to note that the b’ in
PossObs(o, a,b’) is the belief state reached after action a was
executed. That is, if @ was executed in b and b’ is the new state
reached, then PossObs(o, a,b’) says whether it is possible to
observe o after a has been executed.

Next, we define a function symbol called probNat(n, a, s)
that is similar in meaning to the state transition function 7' of
a Markov process. Our definition ‘returns’ a probability. It ap-
plies to all of nature’s choices n, where s is the state in which
the agent performs action a. Similarly, we introduce the func-
tion probObs(o, a, s); the probability that o will be observed in
s after a was executed in the previous situation.

Finally, we define belObs, which is the probability that
the agent will observe some specified observation given its
current beliefs and the sensor it activated: belObs(o,a,b) =
(st pyep P - probObs(o, a, s').

In the next section we briefly sketch our solution algorithm
which calculates optimal policies under partial observability.

5.2. The partially observable BestDo

This subsection presents the key formulas in the definition of
BestDoPO.

Considering possible observations after an action, we
branch on all possible observations, given the robot’s intended
action a. choiceObs’(a) ‘returns’ the set of observations that
the robot may perceive: {o|choiceObs(o, a, s) for all s € S}.
The reward function R is defined by (Eq. 2).

Probabilistic observation

BestDoPO(a;rest, b, h,m,v,pr) =
—PossAct(a,b) A\m= StopAv=0Apr=0 Vv
PossAct(a,b) A
3’ v'. Best DoObserve(choiceObs' (a),
a,rest,b,h, 7 v, pr) A
7=a;m Av=R(b)+v.

After a certain action @ and a certain observation o, the
next belief state is reached. At the time when the auxiliary pro-
cedure Best DoObserve is called, a specific action, the set of
nature’s choices for that action and a specific observation asso-
ciated with the action are under consideration. These elements
are sufficient and necessary to update the agent’s current beliefs.
Inside BestDoObserwve, the belief state (given a certain action
and observation history) is updated via a belief state transition
function (similar in vein to the state estimation function of Sec-
tion 3, and the successor-state axiom for likelihood weights as
given in [8]).

Belief update function
bnew = BU(0,a,b) =
for each (s,p) € b
In, st pt.(sT,p) € bremp : 5T = do(n, s)A
choiceNat(n,a, s) A PossAct(n, s)A
pT = p-probObs(o,a,s) - probNat(n,a, s)
end for each

bnew = normalize(biemp)-

A major difference between the POMDP model as defined
in Section 3 and the POMDP model we define here for the sit-
uation calculus, is that here the belief state is not a probability
distribution over a fixed set of states. If a situation (state) was
part of the belief state to be updated, it is removed from the new
belief state, and situations (states) that are ‘accessible’ from the
removed situation via choiceNat(n,a, s) and are executable
via PossAct(n, s) are added to the new belief state. Because
non-executable actions result in situations being discarded, the
‘probability’ distribution over all the situations in the new be-
lief state may not sum to 1; the distribution thus needs to be
normalized.

senseCond is mentioned in the definition of
BestDoObserve: It is similar to the the definition in
Section 2, only, here it is defined for observations instead of
actions.

BestDoPO is recursively called with the remaining pro-
gram and with the horizon h decremented by 1. Also note that
the recursive BestDoPO will now operate with the updated
belief b". In the following definition, {0} is a single (remain-
ing) observation in the set returned by choiceObs’.

Observations possible
BestDoObserve({ox}, a,rest,b, h,m,v,pr) =
—PossObs(ok,a,b) A\m= StopAv=0Apr=0V
PossObs(ox,a,b) Ab" = BU(ox, a,b)A
Jn’ v’ pr’.BestDoPO(rest,b',h — 1,7, v, pr')A
senseCond(or,) AT = @75 T A
v =1"-belObs(ok,a,b) Apr = pr’ - belObs(oy,a,b).

When the set of observations has more than one observa-
tion in it, the formula definition is slightly different, but similar
to the one above: the first branch of possible observations is
processed, and the other branches in the remainder of the set
are processed recursively.

When the planning horizon has reached zero or when all ac-
tions have been ‘performed’ (no remaining actions in the input
program), there will be no further recursive calls.

Conditional statement and test action formulas are similar
to those of Golog, except that the ‘condition’ or ‘test statement’
respectively, are with respect to the agent’s current belief state,
and probabilities involved in these formulas are influenced in
proportion to the agent’s degree of belief [8] in the respective
statements (see [10] for details). Sequential composition and
conditional iteration are defined as one would expect according
to complex actions in Golog.

6. A Simple Example

A very simple example follows to illustrate how BestDoPO
calculates an optimal policy. We use a four-state world as de-
picted in Figure 3. The agent’s initial belief state is By =

1 2 3 I 4

Figure 3: Four-state world; four states in a row. Ini-
tially the agent believes it is in each state with probabilities
[0.04]0.95|0.00/0.01] corresponding to state position.

{(s1,0.04), (s2,0.95), (s3,0.0), (s4,0.01)}. The only actions
available to the agent are le ft and right. We define the actions’
stochasticity with Vn,a, s.choiceNat(n,a,s) = TRUE,
with associated probabilities:
probNat(left,left,s) = probNat(right,right,s) = 0.9
probNat(right,left,s) = probNat(left,right,s) = 0.1

The probability that any of the actions will cause an obser-
vation of nothing (obsnil) is 1: probObs(obsnil,a,s) = p =
(a =leftVa = right) Ap = 1. The corresponding definition
for choice of observations is choiceObs(obsnil, a, s) = (a =
left V a = right).

Let the fluent At(loc(x),s) denote the location of the
agent. It’s successor-state axiom is defined by

At(loc(x), do(a, s)) =
a =left A (At(loc(z +1),s) Nz # 1)
V (At(loc(x),s) Nx = 1)V
a = right A (At(loc(x — 1),8) ANz # 4)
V (At(loc(z),s) Nz = 4)V
At(loc(z), s) A (a # left A a # right).

For simplicity, we allow all actions and observations all
of the time, that is, Va,s.PossAct(a,s) = TRUE and
Va, s.PossObs(a,s) = TRUE.

Finally, we specify the sensing condition predi-
cate and the reward function. senseCond(obsnil, 1)
= ¢ = Outcomels(nil, sensor_value)) with
Outcomels(obsnil, sensor_value) = TRUE and
reward(s) = if At(loc(3),s) then 1 else —1; hence,
the agent’s goal should be location 3.

Assume, the agent is equipped with the following program;
an initial input for Best DoPO:

BestDoPO(while (true do [left | right]),

{(s1,0.04), (s2,0.95), (s3,0.0), (s4,0.01)},1, 7, v, pr);
the algorithm must computing a one-step optimal policy.

After the iterative component of the program is processed,
the following call is made, as per the definition of Best DoPO
for the nondeterministic choice of actions:

BestDoPO([left | right];rest, Bo, 1,7, v, pr)
31, v1, pr1.BestDoPO(left;rest,b, 1,71, v1,pri)A
7o, va, pra.BestDoPO(right; rest, b, 1, wa, va, pra)A
((v1,left) > (vo,might) ANm=m1 Av="v1 Apr=pri)V
(v1,left) < (vo,right) Am™ = ma Av =v2 A pr = pra)),
where rest is while (true do [left | right]). Then the
recursive BestDoPQOs make use of the “Probabilistic obser-
vation” definition of the formula. Because-by the action pre-
condition axioms for this example—le ft and right are always
executable, the following portion (times two) of the formula are
applicable:

In’, v’ . BestDoObserve(choiceObs’ (left), 4)
left,rest, Bo, 1, v, pr) A 5)
7 =left;m Av=R(Bo)+v 6)

and
Jn’, v’ . Best DoObserve(choiceObs' (right), @)
right,rest, Bo, 1,7, v, pr) A (8)
7 =right; 7 Av = R(Bo) +v'.)

For Lines (4) and (5) the following portion of the “Obser-
vations possible” definition is applicable:

b’ = BU (obsnil, left, Bo)A

In’ v, pr’.BestDoPO(rest,b',1 — 1, 7" v, pr')A

senseCond(obsnil, §) A = ¢z; 7' A

v =" - belObs(obsnil, left, Bo)A

pr = pr’ - belObs(obsnil, left, Bo).

In this formula (portion), ¢ unifies with
Outcomels(obsnil,sensor_value) and because the re-
cursive call to BestDoPO has a zero horizon, 7’ = nil, and
thus m = (Outcomel s(obsnil,sensor_value))?;nil.

The updated belief is an input to a ‘zero horizon’ call and
will therefore be used to determine v’; we calculate the new
belief state, ¥’ = BU (obsnil, left, By), now. We work out
only the first new element of b in detail:

(sT,p") € bremp : 8T = do(left,s1)A p™ = 0.04x1x0.9.

Because all actions are possible, the only effect
that normalization (in the update function) has, is to
remove (do(left,s3),0.0) and (do(right,s3),0.0) from
the new belief state, because of their zero probabilities.
BU (obsnil, left, By) results in

b = {(do(left,s1),0.036), (do(right, s1),0.004),
(do(left, s2),0.855), (do(right, s2),0.095),
(do(left, s4),0.009), (do(right, s4),0.001)}.

belObs(obsnil,left,Bo) = (0.04)(1) + (0.95)(1) +
(0.0)(1) + (0.01)(1) = 1 and hence v = v’ x 1, and
pr = pr’ x 1. Due to the ‘zero horizon’ call, v =

R(b') = (—1)(.036)+(—1)(.004)+(—1)(.885)+(1)(.095)+
(1)(.009) + (—1)(.001) = —0.822 and pr’ = 1.0. Therefore,
v = —0.822, and pr = 1.0.

Now we can instantiate Line (6) as follows: 7« =

left; Outcomels(obsnil, sensor_value))?;nil Av = —1+
(—0.822). Similarly, we can instantiate Line (9) as 7 =
right; Outcomel s(obsnil, sensor_value))?; nil A\v = —1+
(0.712).

Then finally, we find that ((—0.822,left) <
(0.712,right) and return the policy =
right; Outcomel s(obsnil, sensor_value))?; nil, with
total expected reward v = —0.288 and program success
probability pr = 1.

Note that for the sake of clarity, we assumed noise-free per-
ceptions. It should be clear though, that our algorithm can deal
with noisy perceptions as well.

Considering that the agent believed to a relatively high de-
gree that it was initially just left of the ‘high-reward’ location,
and given that its observations are complete and its actions are
not extremely erroneous, we would expect the agent’s first move
to be rightwards, as indeed, the policy recommends.

7. Discussion and Conclusion

In this paper we have given a formal semantics for an action
planner that can generate control policies for agents in partially

observable domains. The language we used for the specifica-
tion is the agent programming language DTGolog. Much of the
semantics is similar to [10]. Their approach is however not for
a single-agent domain.

An example was presented that showed in detail the pro-
cesses involved in generating a policy for an agent with proba-
bilistic beliefs in a partially observable and stochastic domain.

We implemented the POMDP planner in EC L' PS® Pro-
log. The implementation was set up for two toy worlds: a four-
state world where the states are all in a row, and a five-by-five
grid world. In both cases, an agent must find a ‘star’. Prelimi-
nary experiments with the implementation showed the potential
for practical application of the planner presented in this paper:
the results of the experiments showed that the policies generated
are reasonable, and overall, the planner seems to work correctly.
However, benchmarking and comparison to other similar plan-
ners (for problems in similarly stochastic and noisy domains)
still needs to be conducted.

8. References

[1] Levesque, H., Reiter, R., Lespérance, Y., Lin, F.,, and
Scherl, R., “GOLOG: A Logic programming language for
dynamic domain”, Journal of Logic Programming, 31:59—
84, 1997.

[2] Boutilier, C., Reiter, R., Soutchanski, M., and Thrun, S.,
“Decision-theoretic, high-level agent programming in the
situation calculus”, in Proceedings AAAI-2000, 2000, pp.
355-362.

[3] Reiter, R., Knowledge in action: logical foundations for
specifying and implementing dynamical systems, Mas-
sachusetts/England: MIT Press, 2001.

[4] Brachman, R. J. and Levesque, H. J., Knowledge repre-
sentation and reasoning, California: Morgan Kaufmann,
2004.

[5] Kaelbling, L. P., Littman, M. L., and Cassandra, A. R.,
“Planning and acting in partially observable stochastic do-
mains”, Artificial Intelligence, 101(1-2):99-134, 1998.

[6] Pineau, J., Tractable planning under uncertainty: exploit-
ing structure, Robotics Institute, Carnegie Mellon Univer-
sity, 2004. Unpublished doctoral dissertation.

[7] Clemen, R. T., and Reilly, T., Making hard decisions, Cal-
ifornia: Duxbury, 2001.

[8] Bacchus, F,, Halpern, J. Y., and Levesque, H. J., “Reason-
ing about noisy sensors and effectors in the situation cal-
culus”, Artificial Intelligence, 111(1-2):171-208, 1999.

[9] Grosskreutz, H., Towards more realistic logic-based robot
controllers in the Golog framework, Knowledge-Based
Systems Group, Rheinisch-Westfilischen Technischen
Hochschule, 2002.

[10] Finzi, A, and Lukasiewicz, T., “Game-theoretic agent pro-
gramming in Golog under partial observability”, in KI
2006: Advances in Artificial Intelligence, 2007, pp. 113—
127.

[11] Ferrein, A. and Lakemeyer G. “Logic-based robot control
in highly dynamic domains.”, Journal of Robotics and Au-
tonomous Systems, Special Issue on Semantic Knowledge
in Robotics 2008. to appear.

Appendix D

Paper 2 — A BDI Agent Architecture for a
POMDP Planner

Conference paper [86] resulting from work in this dissertation.

G. Rens, A. Ferrein, and E. van der Poel. A BDI agent architecture for a POMDP planner.
In G. Lakemeyer, L. Morgenstern, and M-A. Williams, editors, Proc. of 9th Intl. Symposium
on Logical Formalizations of Commonsense Reasoning (Commonsense 2009), pages 109-114,

University of Technology, Sydney, 2009. UTSe Press.

The paper starts on the next page.

169

A BDI Agent Architecture for a POMDP Planner

Gavin Rens'?

Alexander Ferrein

3

Etienne van der Poel®
1 School of Computing, Unisa, Pretoria, South Africa
2 Knowledge Systems Group, Meraka Institute, CSIR, Pretoria, South Africa
3 Robotics and Agents Research Laboratory, University of Cape Town, South Africa
grens@csir.co.za, alexander.ferrein@uct.ac.za, evdpoel@Qunisa.ac.za

Abstract

Traditionally, agent architectures based on the Belief-
Desire-Intention (BDI) model make use of pre-
compiled plans, or if they do generate plans, the plans
do not involve stochastic actions nor probabilistic ob-
servations. Plans that do involve these kinds of actions
and observations are generated by partially observable
Markov decision process (POMDP) planners. In partic-
ular for POMDP planning, we make use of a POMDP
planner which is implemented in the robot program-
ming and plan language Golog. Golog is very suit-
able for integrating beliefs, as it is based on the situa-
tion calculus and we can draw upon previous research
on this. However, a POMDP planner on its own cannot
cope well with dynamically changing environments and
complicated goals. This is exactly a strength of the BDI
model; the model is for reasoning over goals dynami-
cally. Therefore, in this paper, we propose an architec-
ture that will lay the groundwork for architectures that
combine the advantages of a POMDP planner written in
the situation calculus, and the BDI model of agency. We
show preliminary results which can be seen as a proof
of concept for integrating a POMDP into a BDI archi-
tecture.

Introduction

Traditionally, plan-based agents that include generative
planning (as opposed to utilizing pre-compiled plans) would
generate a complete plan to reach a specific fixed goal, then
execute the plan. If plan execution monitoring is available,
the agent would replan from scratch when the plan becomes
invalid. Due to the time requirements for generating com-
plete plans, the plan may be invalid by the time it is exe-
cuted. This is because the world may change substantially
during plan generation.

Therefore, Belief-Desire-Intention (BDI) architectures
take a different approach. BDI theory is based on the philos-
ophy of practical reasoning (Bratman 1987). It offers flexi-
bility in planning beyond traditional planning for agents, by
reasoning over different goals. That is, an agent based on
BDI theory can adapt to changing situations by focusing on
the pursuit of the most appropriate goal at the time. Typi-
cally, an appropriate plan to achieve an adopted goal is then
selected from a data base of plans. Although a plan that sat-
isfies certain constraints (e.g., does not conflict with other

adopted plans, is executable, etc.) will be adopted, it may
not be the most appropriate plan in existence. A plan that is
generated with the agent’s current knowledge for guidance,
may be more appropriate. BDI agents can also make rational
decisions as to when to replan if a plan becomes invalid, re-
ducing the amount of replanning, thus increasing the agent’s
reactivity. Note that the BDI model is, however, not the only
approach to replanning (cf. (Likhachev et al. 2005)).

In general, BDI architectures do not make use of plan gen-
eration, they rather draw on plan libraries. While with BDI
approaches, an agent can reason over several goals, the agent
lacks some flexibility by not being able to generate suitable
plans on demand. Therefore, in this paper, we aim at inte-
grating a POMDP planner into a BDI architecture to com-
bine its benefits with the ability to generate plans. More-
over, we want to supply models that are as realistic as possi-
ble. We therefore decided on employing partially observable
Markov Decision Processes (POMDPs).

In this paper we describe our approach for combining
BDI theory with a POMDP planner. Combining the two
formalisms can be viewed from two perspectives. One,
to enhance an existing planner for use in real-time dy-
namic domains by incorporating the planner into a BDI
agent architecture so that the management of goal selec-
tion, planning and replanning is handled in a principled
way. Two, to enhance the classical BDI agent architec-
ture by incorporating a POMDP planner into the BDI ar-
chitecture so that the agent can reason (plan) with knowl-
edge about the uncertainty of the results of its actions, and
about the uncertainty of the accuracy of its perceptions.
We employ the POMDP planner described in our previous
work (Rens, Ferrein, and Van der Poel 2008). This plan-
ner is implemented in Golog (Levesque et al. 1997), which
in turn is based on the situation calculus (McCarthy 1963;
Reiter 2001). An advantage of using a Golog implementa-
tion for the planner is that the integration of beliefs into the
situation calculus has previously been done (e.g., (Bacchus,
Halpern, and Levesque 1999)) and this work can be used for
formulating POMDPs. Further, given a background action
theory, an initial state and a goal state (or reward function in
POMDPs), Golog programs essentially constrain and spec-
ify the search space (the space of available actions).

The resulting plan (or policy in POMDPs) is a Golog pro-
gram which can be executed directly by the agent. To the

best of our knowledge, till present, no BDI-based agent ar-
chitecture has implemented its planning function so as to
generate plans that take stochastic action and partial obser-
vation into account. Therefore, this work can be seen as a
first proof of this concept.

The rest of the paper is organized as follows. In the next
section we introduce the plan generator used in this study.
Then, we briefly introduce the BDI theory, after which we
explain our hybrid BDI/POMDP-planner architecture in de-
tail. Before we conclude, we show some preliminary results
from an implementation of our architecture, which gives a
first proof of our approach.

The Planning Module
The POMDP Model

In partially observable Markov decision processes
(POMDPs) actions have nondeterministic results, yet
may be predicted with a probability of occurrence. And
observations are uncertain: the world is not directly ob-
servable, therefore the agent infers how likely it is that the
world is in some specific state. The agent thus believes
to some degree—for each possible state—that it is in that
state. Furthermore, a POMDP is a decision process and
thus facilitates making decisions as to which actions to
take, given its previous observations and actions. Formally,
a POMDP is a tuple (S, A, T,R,Q,0O,by) with: S, a
finite set of states of the world; A, a finite set of actions;
T : S x A — II(S) is the state-transition function, where
IT is a probability distribution; R : & x A — R, the
reward function; (), a finite set of observations the agent
can experience; O : § x A — II(Q), the observation
function; and by, the initial probability distribution over
all world states in S (see e.g., (Kaelbling, Littman, and
Cassandra 1998)). In the model, b is a belief state, i.e. a
set of pairs (s, p) where each state s € S is associated with
a probability p. The state estimation function SE (b, a,0)
updates the agent’s beliefs. Now the aim of the agent
deploying a POMDP model is to determine a policy, that
is, the actions or decisions that will maximize its rewards.
Formally, a policy 7 is a function from a set of belief states
B to the set of actions: m : B — A. That is, actions are
conditioned on beliefs. This means that the agent takes its
next decision not only based on a stochastic action model,
but also on a stochastic observation model. In this sense, a
policy can be represented as a policy tree, with nodes being
actions and branches being observations.

Planning over Degrees of Belief

In this section we describe our POMDP planner, an exten-
sion to the decision-theoretic language, DTGolog (Boutilier
et al. 2000).

DTGolog is based on Reiter’s variant of the situation cal-
culus (McCarthy 1963; Reiter 2001), a second-order lan-
guage for reasoning about actions and their effects. Accord-
ing to this calculus, changes in the world are due only to
actions, so that a situation is completely described by the
history of actions starting in some initial situation—do(a, s)

is the term denoting the situation resulting from doing ac-
tion a in situation s. Properties of the world are described by
fluents, which are situation-dependent predicates and func-
tions. For each fluent the user defines a successor state ax-
iom specifying precisely which value the fluent takes on af-
ter performing an action. These, together with precondition
axioms for each action, axioms for the initial situation, and
foundational and unique names axioms, form a so-called ba-
sic action theory (Reiter 2001).

Decision-theoretic planning in DTGolog works roughly
as follows. Given an input program that leaves open sev-
eral action alternatives for the agent, the DTGolog inter-
preter generates an optimal policy. Formally, the interpreter
solves a Markov Decision Process (MDP, cf. e.g., (Puterman
1994)) using the forward search value iteration method—
searching (to a specified horizon) for the actions that will
maximize the total expected reward. Programs are inter-
preted as follows: All possible outcomes of the intended
nondeterministic, stochastic action are expanded. For each
choice point, the action resulting in the optimal value at the
particular point in the MDP, is determined. These values
are calculated relative to the world situation associated with
the point in the MDP. The policy is calculated with an opti-
mization theory consisting of a reward and a transition func-
tion (cf. also (Boutilier et al. 2000)). The transition func-
tion describing transition probabilities between states of the
Markov chain is given by Reiter’s variant of the basic action
theory formalized in the underlying situation calculus (Mc-
Carthy 1963; Reiter 2001). Formally, the BestDo macro
defines the process described above: it evaluates an input
program and recursively builds an optimal policy.

The POMDP planner we use here is BestDoPO (Rens,
Ferrein, and Van der Poel 2008); an extension of BestDo
(BestDo Partially Observable), which calculates an op-
timal policy for the partially observable case (Rens, Fer-
rein, and Van der Poel 2008). The main difference is that
BestDoPO operates on a belief state rather than on a world
state. BestDoPO(p,b, h, 7, v, pr) takes as arguments a
Golog program p, a belief state b and a horizon h, which
determines the solution depth sought by the interpreter. The
policy 7 as well as its value v and the success probability pr
are returned. After a certain action a is performed and the
associated observation o is perceived, the next belief state is
determined via a belief state transition function (similar in
vein to the state estimation function of the previous subsec-
tion, and the successor-state axiom for likelihood weights as
given in (Bacchus, Halpern, and Levesque 1999)):

bpew = BU(0,a,b) =
btemp = {(5+>p+) | (Eln,s+,p+).(8+7p+) € btemp :
st =do(n, s) A choiceNat(n,a, s) A PossAct(n, s)A
pT =p-probObs(o,a,s) - probNat(n,a,s)}
brew = normalize(biemp).
choiceNat(n, a, s) specifies the possible outcomes n of the
agent’s intention to perform action a. PossAct(n,s) de-

notes the possibility of performing action n in situation s.
probObs(o,a, s) and probNat(n,a, s) are functions that

return the probability of observing o in the situation s™—
the situation resulting from doing action a, and respectively,
the probability of action n being the outcome of the intention
to execute action a in situation s.

For BestDoPO to be integrated as required for the
present work, two arguments are added to the list:
BestDoPO as defined in (Rens, Ferrein, and Van der Poel
2008) is modified to return § and to take nom. The input
program may provide information for a sequence of actions
of length greater than the policy horizon. Call the remaining
program §—the portion of the program that was not used for
policy generation. J becomes the new program from which
future policies will be generated. nom—the name of the
input program—is used to select the reward function associ-
ated with the input program. Two clauses that are part of the
definition of the modified BestDoPO appear below.

BestDoPO(p, 0, nom, b, h, m,v,pr) =
h=0Ad=pA
7 = stop A Jv.believedReward(nom,v,b) A pr = 1.
BestDoPO(a : p,d,nom, b, h,m,v,pr) =
—actionBelievedPossible(a, b) A
d=pAm=stopAv=0Apr=0V
actionBelievedPossible(a, b) A
3 obs.setofAssocObservations(a, obs) A
I’ v pr.Aux(obs, a, p, §, nom, b, h, ', v’ pr) A
believedReward(nom,r,b) AT = a;7’ ANv=r+7v.

Please refer to (Rens, Ferrein, and Van der Poel 2008) for
more detail.

BDI Theory

A desire is understood as what an agent ideally wants to
achieve, that is, what motivates it. In reality, agents are
resource-bounded, and hence should rationally choose the
desires to pursue whose achievement are most valuable to
the agent and that are achievable according to the agent’s
current situation and capabilities. The desires that have been
committed to pursuing through a rational process of reason-
ing may be called intentions. The Belief-Desire-Intention
(BDI) model of agency takes intentions—in addition to be-
liefs and desires—as first-class mental states. Traditional
agent architectures either simply do not consider intentions,
or do not consider them as explicit operands within the pro-
cesses of an agent’s reasoning system.

The value of taking intentions seriously is that they man-
age the agent’s resources in a rational way. Intentions induce
the agent to act and intentions persist. As such, they fo-
cus the agent’s activity to commit resources and thus pursue
a desire more effectively. Also, because intentions persist,
new intentions are not constantly being adopted: new inten-
tions are constrained by current intentions, and hence, future
deliberation is constrained (Wooldridge 2000).

It is useful to distinguish between deliberation: to decide
on what ends (e.g., reward functions; goal states) to pursue
and means-ends reasoning: how to achieve the ends. Delib-
eration may be further divided into (i) reasoning to generate

options from beliefs, i.e., ‘wishing’ to decide on current de-
sires; (ii) reasoning to select intentions, i.e., ‘focusing’ on
a subset of those desires and committing to achieve them.
Committed-to goals, or plans for achieving them, are inten-
tions.

A BDI agent has at least these seven components
(Wooldridge 1999):

e A knowledge base of beliefs.

e An option generation function (wish), generating the op-
tions the agent would ideally like to pursue (its desires).

e A set of desires Dess returned by the wish function.

e A function (focus) that filters out incompatible, impossi-
ble and less valuable desires, and that focuses on a subset
of the desire set.

e A structure of intentions Ints—the most desireable op-
tions/desires returned by the focus function.

e A belief change function (update): given the agent’s cur-
rent beliefs and the latest percept sensed, the belief change
function returns the updated beliefs of the agent.

e A function (execute) that selects some action(s) from the
plan the agent is currently executing, and executes the ac-
tion(s).

In most of the well known implementations of agents
based on the BDI model (e.g., PRS (Georgeft and In-
grand 1989), IRMA (Bratman, Israel, and Pollack 1988)
and dMARS (Rao and Georgeff 1995)), the plan function
returns plans from a plan library; a set of pre-compiled
plans. An intention structure then structures various plans
into larger hierarchies of plans. An intention in the inten-
tion structure in the classical BDI theory is a partial plan
structured as a hierarchy of subplans. Furthermore, sub-
plans may at some point be abstract, waiting to be ‘filled
in’ (Bratman, Israel, and Pollack 1988). Some BDI archi-
tectures are designed to let the plan function generate plans
from atomic actions (Sardina, De Silva, and Padgham 2006;
Walczak et al. 2007) (or it may possibly use a combination
of pre-compiled and generated plans). However, none of
the architectures that have a generative component employ a
planner that produces plans for a POMDP model.

Combining POMDP Planning with the BDI
Model

In this section we see how an agent controller in the BDI
model can incorporate the BestDoPO POMDP planner into
its practical reasoning processes. We took the prototypical
control loop of the BDI model as a reference and modi-
fied it to accommodate planning with POMDP policies. The
proposed architecture is called BDI-POP (BDI with POmdp
Planner).

First we introduce some terms and their relationships with
the aid of Figure 1 (next page). Implicitly included in the
”BELIEF” data store, is a fixed set of behaviors behs and
a fixed set of reward functions rwds (rwds is considered
globally accessible). behs is the agent’s primitive goals;
its innate drive. The idea is that each behavior refers to a
unique goal that the agent is designed to achieve. Each be-
havior is defined by the set of programs and reward func-
tions that can achieve the behavior. The wish function is

omitted from our architecture (for now) because the op-
tions the agent would pursue at any time are its behaviors
behs. The agent also has a fixed set of desires d. Each
des € d is a triple (nom, prog, ach): nom is a reference
to the Golog program prog, and ach is a reference to the
behavior beh € behs that prog can potentially achieve, thus
ach € behs. The reward functions rf € rwds take as ar-
gument a nom that refers to the program that rf is asso-
ciated with. The following holds: Vbeh.[beh € behs —
(3des).des = (nom,prog,ach) A ach = beh]: for each
behavior, there exists at least one program to achieve it.

To understand the controller, we also need to consider the
agent’s deliberation process. deliberate is the procedure
that calls and controls the focus predicate and that operates
on the intention stack. We write focus(b, d, i, behs, h™) to
be the predicate that selects one des € d for each beh €
behs, placing these desires in a stack, in ascending order,
ordered by the desires’ values. The desire selected for a be-
havior is the one that can achieve the behavior (ach = beh)
and that has the highest value. A desire’s value is estimated
as the value v of the policy found, generated to a depth A ™:
BestDoPO is called with b, b~ and the applicable prog as
arguments; v is used and the policy is discarded. We keep
h™ < h to save on time spent deliberating. focus ’returns’
the stack ¢ of selected desires.

deliberate(b,d, i, behs, ai,i’,h™) =
(isEmpty (i) A 3i’.focus (b, d, i, behs, h™) V
—isEmpty(i) A 3i'.i" =1i) A
Jai, 1" .popIntentionStack (i, ai,i").

BDI-POP tests whether a usable policy could be gener-
ated, that is, whether the planner returns the stop policy:
When every outcome of an intended action (according to the
input program) is illegal (according to the background action
theory), BestDoPO returns stop, and we say that the input
program is impossible. An intention ¢ = (nom, prog, ach)
with prog being impossible is thus defined as an impossible
intention.

The strategy used in deliberate to deal with an impossi-
ble intention is extremely simple: it is dropped and the next
intention on the stack is popped. This is a reasonable strat-
egy because the next intention on the stack has the highest
value, and should thus be pursued next. Calling focus to re-
fill the intention stack at this time would defeat the principle
of commitment to intentions. Other strategies are possible,
for example, replacing the impossible intention with another
intention that achieves the same behavior, if one exists.

A logical high-level specification of BDI-POP follows, af-
ter which, it is explained in words.

Agent(b,d, i, behs, ai, 7w, h,h™) def
(nom,p, ach) = ai A
™ # stop A p # nil A
"7 = a; 7" A execute(a) A
Jsv.getPercep(a, sv) A Jo.recognize(a, o) A
In" getSubPolicy (", 0, ") A
'Y = BU(0,a,b)) A
Agent(b',d, i, behs, ai, " h,h™).

- - > information flow
—— control flow

restof -
program’,
Fmmmmm== ~~> plan (BestDoPO)
I
I
| o
1
1
I
. .
1
, output
' sensor
[-—— update
! mput
1
' eS|
e ——

Figure 1: Schematic diagram of a sketch of the BDI archi-
tecture with the POMDP planner.

Agent(b,d, i, behs, ai, m, h,h™) def
(nom,p, ach) = ai A
m = stop Ap = nil A\
deliberate(b,d, i, behs, ai’,i' ,h ™) A
Agent(b,d,q’, behs, ai’, 7, h, h 7).
Agent(b,d, i, behs, ai, 7w, h,h™) def
(nom,p, ach) = ai A
m = stop A\ p # nil A
36, 7', v, pr.BestDoPO(p, §,nom, b, h, 7', v, pr) A
ai’ = (nom, 8, ach) A
(n" = stop A
Jai”, i’ .deliberate(b, d, i, behs, ai” i’ ,h™) A
Agent(b,d,i’, behs, ai” ;7' h,h™) V
' # stop A
In" .7’ = a; 7" A execute(a) A
Jsv.getPercep(a, sv) A Jo.recognize(a, o) A
I getSubPolicy(r" 0, 7"") A
'Y = BU(0,a,b)) A
Agent(V',d, i, behs, ai’, 7" h,h7)).
The agent follows the intention with the highest value—
the intention popped from the stack. Call this the active in-
tention. Initially, the intention stack is empty, so deliberate

is called and the active intention is instantiated. Whenever
the controller needs a new plan to execute, BestDoPO is

called to generate a policy with horizon h using the program
specified by the active intention. The agent executes the pol-
icy until the end of the policy is reached, then BestDoPO is
called again for the rest of the program. If there is no rest of
program (the program is empty), deliberate is called. If the
program has become impossible, deliberate is called.

getPercept returns a sensor value, given the action exe-
cuted / sensor activated. The agent processes the sensor data
and decides what it observed—the agent recognizes the sen-
sor reading via the recognize predicate, which outputs an
observation. With this observation, the correct subpolicy is
extracted from the current policy, and this (possibly empty)
subpolicy becomes the new current policy.

After the action recommended by the policy is executed,
the agent’s beliefs must be updated according to what it
‘knows’ about the effects of its actions. The same belief
update function used during planning by BestDoPO is used
to update the agent’s beliefs. The current belief state of the
agent will be the ‘initial’ belief state required as argument to
BestDoPO the next time the planner is called.

Given our present definition of deliberate and given that
we shall allow only finite programs for achieving intentions,
the agent is guaranteed to deliberate at regular intervals.
However, this interval period is fixed (to the degree that in-
tentions become impossible). Adding a reconsider predi-
cate that tells the agent once every control cycle whether to
deliberate, is a more sophisticated method. reconsider is
described by, for example, Wooldridge (2000) and “was ex-
amined by David Kinny and Michael Georgeff, in a number
of experiments,” (Wooldridge 1999, p. 57). Because we are
investigating the feasibility of the basic idea of the hybrid
architecture in this paper, we have left out the reconsider
predicate from the present investigation.

A somewhat significant difference of our hybrid archi-
tecture from the perspective of control via POMDP policy
generation, is that—as stand-alone controlle—the POMDP
planner takes a single plan with a single associated reward
function, to generate a policy. The new hybrid architec-
ture takes several programs, each with an associated reward
function. This aspect of the agent being able to reason
over multiple behaviors has the advantage that the agent de-
signer can separately specify behaviors that should—at least
intuitively—be considered separately.

BestDoPO expands Golog programs into hierarchically
structured plans (policies), and only programs that have been
selected as intentions are expanded into policies. Each pro-
gram can generate a policy—or several policies if the pro-
gram is expanded piece-wise. Viewing a policy tree as an
intention structure in the sense of traditional BDI architec-
tures, each program in the intention stack represents (at least
one) intention structure. BDI-POP, therefore, maintains sev-
eral unexpanded intention structures, only expanded when
popped from the intention stack.

Implementation and First Experiments
To validate the BDI-POP architecture and to gain a sense
for its performance potential, we observe one agent based
on the architecture, in a simulation. The simulation en-
vironment is inspired by Tileworld (Pollack and Ringuette

1990), a testbed for agents. We designed and implemented
the FireEater world, a dynamically changing grid world (a
5 x 5, two dimensional grid of cells) in which our agent is
situated. There are obstacles that change position and fires
that can be ‘eaten’. Space prohibits a detailed explanation of
FireEater world.

The agent gets one ‘fire-point’ for eating one fire. It can
only eat a fire if it is in the same cell as the fire. There are two
agent behaviors: findFood,eat € behs. findFood
may be realized by two available programs, and eat is
forced to be achieved by one (other) program. The agent
can go left, right, up or down—locomotive actions which
are stochastically nondeterministic; it can sense its location
(probabilistically) and it can eat fire (deterministically).

In order to have a base-line against which the performance
of the new hybrid architecture can be compared, a simple or
‘naive’ architecture (called Naive-POP) was implemented.
It has no explicit intentions or desires as defined for the
BDI model. The agent is provided with a single Golog pro-
gram and associated reward function. In this implementa-
tion, the program loops continuously over a nondeterminis-
tic action—nondeterministic between all available actions.
If there is no rest of program, that is, the agent has executed
the whole program, the agent will stop its activity.

BDI-POP, in contrast, does not employ programs that loop
infinitely (in the experiments): programs were designed so
that they become empty as soon as a policy is generated
from the program. Hence an intention will be regarded as
‘achieved’ as soon as its policy becomes empty. Then the
next intention will be popped from the stack. Because the
size of the stack equals |behs| and because all programs are
finite, it is guaranteed that periodically all intentions will be
achieved, that is, the stack is empty, and the agent is forced
to deliberate to fill the intention stack with a fresh set of in-
tentions.

The two agents as implemented by the two architectures,
have identical knowledge bases, except for their programs
and reward functions. That is, they believe the same actions
are possible, with the same effects and associated probabili-
ties. They both employ the exact same planner: BestDoPO.

The graph in Figure 2 compares the performance of the two

31
29
27
25
23

21
19 - Naive-POP

17 ~-BDLPOP
15
0

effectiveness

1 2 3
dynamism

Figure 2: Performance of the two architectures.

architectures. Given the restrictions inherent in their respec-
tive architectures, each agent was roughly optimized to give
them equal advantage.

Both architectures generate policies of horizon depth 3
(h = 3). In BDI-POP, we set h— = 1—the search hori-

zon that focus uses to determine program values. Through-
out the experiments, the strategy for the time allowed to the
agent was the same. There are 6 obstacles and initially 9 fires
in each trial. We allow the agent to perform 3 actions each
time before the obstacle positions change. The parameter for
the number of obstacle changes per simulation cycle is the
only parameter varied during experiments. Fourty trials per
setting of this parameter were performed. Effectiveness is
the total fire-points collected for the 40 trials. Dynamism is
defined as ‘number of obstacle changes per number of agent
actions.

Conclusion

Compared to Naive-POP, the performance of BDI-POP in
our experiments is not that impressive. This does not show
that a BDI agent architecture should not be imbued with a
POMDP planner; several enhancements to the simple BDI
architecture used here are still possible: In particular, to
build on this groundwork, we want to add the reconsider
predicate to deal with cases where intentions have become
inappropriate to some degree, and utilizing partial/abstract
plan structures.

Moreover, the relative sophistication of BDI-POP may not
be applicable in very simple worlds such as FireEater. We
would thus like to deploy our agents in a larger world, per-
haps with more complicated tasks for the agent to perform.
This will also give more scope for the variety of programs
that would be applicable, and the real power of the BDI
model could come into play.

What has been shown is that the proposed architecture is
implementable; there is no obvious fundamental conflict in
synthesizing our POMDP planner and the BDI model for
agent control. The groundwork has thus been laid for the
development of more sophisticated planning processes in the
BDI-POP framework.

What remains unclear is how practical this approach
might be in realistically complex domains. With probabilis-
tic outcomes and events in the world, the policy searches
blow up very quickly with depth. For complete and op-
timal policies, POMDP solvers can deal with just a mod-
est number of easily enumerated states. Policy trees of
a fixed depth (as generated by BestDoP(Q) are not com-
plete policies and thus less costly to generate. Realisti-
cally though, due to belief states being extremely numer-
ous and the equivalence problem for states in the situation
calculus, BestDoPO seems to be intractable if not unde-
cidable. Furthermore, the situation calculus, in principle,
provides a good deal of expressivity (including quantified
reasoning), which brings its own computational complexity
issues. For a hybrid BDI/POMDP architecture to scale up
to a domain more meaningful than a microdomain, the inte-
gration of more ‘common sense’ reasoning techniques into
the architecture may have benefits. And the latest advances
in POMDP solvers (e.g., (Toussaint, Charlin, and Poupart
2008)) should be investigated for ideas to improve the effi-
ciency of BestDoPO.

References

Bacchus, F.; Halpern, J.; and Levesque, H. 1999. Rea-
soning about noisy sensors and effectors in the situation

calculus. Artificial Intelligence 1-2(111):171-208.

Boutilier, C.; Reiter, R.; Soutchanski, M.; and Thrun, S.
2000. Decision-theoretic, high-level agent programming
in the situation calculus. In Proc. AAAI-00. AAAI Press.
355-362.

Bratman, M.; Israel, D.; and Pollack, M. 1988. Plans and
resource-bounded practical reasoning. Computational In-
telligence 4:349-355.

Bratman, M. 1987. Intention, Plans, and Practical Reason.
Massachusetts/England: Harvard University Press.

Georgeff, M., and Ingrand, F. 1989. Decision-making in
an embedded reasoning systems. In Proc. IJCAI-89. San
Fransisco, CA: Morgan Kaufmann. 972-978.

Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and acting in partially observable stochastic domains.
Artificial Intelligence 1-2(101):99-134.

Levesque, H. J.; Reiter, R.; Lesperance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. J. of Log. Progr. 31(1-3).

Likhachev, M.; Ferguson, D.; Gordon, G.; Stentz, A.; and
Thrun, S. 2005. Anytime dynamic A*: An anytime, replan-
ning algorithm. In Proc. Intl. Conf. on Automated Planning
and Scheduling (ICAPS).

McCarthy, J. 1963. Situations, actions and causal laws.
Technical report, Stanford University.

Pollack, M., and Ringuette, M. 1990. Introducing the Tile-
world: Experimentally evaluating agent architectures. In
Proc. AAAI-90. AAAI Press. 183-189.

Puterman, M. 1994. Markov Decision Processes: Discrete
Dynamic Programming. New York, USA: Wiley.

Rao, A., and Georgeff, M. 1995. BDI agents: From theory
to practice. In Proc. ICMAS-95. AAAI Press. 312-319.

Reiter, R. 2001. Knowledge in Action. MIT Press.

Rens, G.; Ferrein, A.; and Van der Poel, E. 2008. Extend-
ing DTGolog to deal with POMDPs. In Proc. PRASA-0S.
PRASA. 49-54.

Sardina, S.; De Silva, L.; and Padgham, L. 2006. Hierar-
chical planning in BDI agent programming languages: A
formal approach. In Proc. AAMAS-06. ACM Press. 1001—
1008.

Toussaint, M.; Charlin, L.; and Poupart, P. 2008. Hi-
erarchical POMDP controller optimization by likelihood
maximization. In Workshop on Advancements in POMDP
Solvers, Tech. Report WS-08-01, AAAI-08. AAAI Press.
url:http://www.aaai.org/Library/Workshops/ws08-01.php.
Walczak, A.; Braubach, L.; Pokahr, A.; and Lambersdorf.,
W. 2007. Augmenting BDI agents with deliberative plan-
ning techniques. In Proc. ProMAS-06. Springer. 113-127.
Wooldridge, M. 1999. Intelligent agents. In Weiss, G., ed.,
Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. Massachusetts/England: MIT Press.
chapter 1.

Wooldridge, M. 2000. Reasoning About Rational Agents.
Massachusetts/England: MIT Press.

Bibliography

(1]
(2]

(3]

(4]

[5]

[6]

(7]

(8]

[9]

[10]

R. C. Arkin. Behavior-Based Robotics. MIT Press, Massachusetts/England, 1998.

F. Bacchus, J. Y. Halpern, and H. J. Levesque. Reasoning about noisy sensors and effec-
tors in the situation calculus. Artificial Intelligence, 111(1-2):171-208, 1999.

D. Beck and G. Lakemeyer. Reinforcement learning for golog programs. In Relational
Approaches to Knowledge Representation and Learning, Workshop at the 32nd Annual
Conference on Artificial Intelligence (KI-2009), 2009.

M. Beetz, J. Hertzberg, M. Ghallab, and M. E. Pollack. Advances in Plan-Based Control
of Robotic Agents. Springer Verlag, Berlin/Heidelberg, 2002.

M. Beetz and A. Hofhauser. Plan-based control for autonomous soccer robots — pre-
liminary report. In M. Beetz, J. Hertzberg, M. Ghallab, and M. E. Pollack, editors,
Advances in Plan-Based Control of Robotic Agents, pages 21-35. Springer Verlag,
Berlin/Heidelberg, 2002.

G. A. Bekey. Autonomous Robots: From Biological Inspiration to Implementation and
Control. MIT Press, Massachusetts/England, 2005.

M. Boddy and T. Dean. Solving time-dependent planning problems. Technical report,
Brown University, Providence, RI, 1989.

R. Bonasso, R. Firby, E. Gat, D. Kortenkamp, D. Miller, and M. Slack. Experiences with
an architecture for intelligent, reactive agents. Journal of Experimental and Theoretical
Artifical Intelligence, 9(2-3):237-256, 1997.

R. P. Bonasso. Introduction to part three. In D. Kortenkamp, R. P. Bonasso, and
R. Murphy, editors, Artificial Intelligence and Mobile Robots: Case Studies of Success-
ful Robot Systems, pages 193-194. AAAI Press / MIT Press, Menlo Park, CA / Mas-
sachusetts/England, 1998.

B. Bonet and H. Geffner. Planning and control in artificial intelligence: A unifying
perspective. Applied Intelligence, 14(3):237-252, 2001.

176

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: Structural assumptions

and computational leverage. Journal of Artificial Intelligence Research, 11:1-94, 1999.

C. Boutilier, R. Reiter, and B Price. Symbolic dynamic programming for first-order

MDPs. In Proceedings of the Seventeenth International. Joint Conference on Artificial
Intelligence, IJCAI 2001, pages 690-700, 2001.

C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-theoretic, high-level
agent programming in the situation calculus. In Proceedings of the 7th Conference on
Artificial Intelligence (AAAI-00) and of the 12th Conference on Innovative Applications
of Artificial Intelligence (IAAI-00), pages 355-362. AAAI Press, Menlo Park, CA, 2000.

R.J. Brachman and H. J. Levesque. Knowledge representation and reasoning. Morgan
Kaufmann, San Fransisco, CA, 2nd edition, 2004.

M. Bratman. [Intention, Plans, and Practical Reason. Harvard University Press, Mas-

sachusetts/England, 1987.

M. Bratman, D. Israel, and M. Pollack. Plans and resource-bounded practical reasoning.
Computational Intelligence, 4:349-355, 1988.

D. Brutzman, T. Healey, D. Marco, and B. McGhee. The Phoenix autonomous underwa-
ter vehicle. In D. Kortenkamp, R. P. Bonasso, and R. Murphy, editors, Artificial Intel-
ligence and Mobile Robots: Case Studies of Successful Robot Systems, pages 323-360.
AAALI Press / MIT Press, Menlo Park, CA / Massachusetts/England, 1998.

H. Burkhard, J. Bach, R. Berger, B. Brunswieck, and M Gollin. Mental models for robot
control. In M. Beetz, J. Hertzberg, M. Ghallab, and M. E. Pollack, editors, Advances in

Plan-Based Control of Robotic Agents, pages 71-88. Springer Verlag, Berlin/Heidelberg,
2002.

A. Cassandra, L. Kaelbling, and M. Littman. Acting optimally in partially observable
stochastic domains, CS-94-20. Technical report, Brown Universiteit Leuven, Department

of Computer Science, Providence, Rhode Island, 1994.
R. T. Clemen and T. Reilly. Making hard decisions. Duxbury, California, 2001.

S. Commuri, J. S. Albus, and A. Barbera. Intelligent systems. In S. S. Ge and F. L.
Lewis, editors, Autonomous Mobile Robots: Sensing, Control, Decision Making and
Applications, pages 655-696. CRS Press, Boca Raton, FL, 2006.

M. Dastani, B. van Riemsdijk, F. Dignum, and J.-J. Meyer. A programming language
for cognitive agents: Goal directed 3APL. In Proc. of Ist Workshop on Programming
Multiagent Systems: Languages, frameworks, techniques, and tools (ProMAS03), 2003.

177

[23] G.de Giacomo and H. Levesque. An incremental interpreter for high-level programs with
sensing. In Logical Foundations for Cognitive Agents, pages 86—102. Springer Verlag,
1998.

[24] L. de Silva and L. Padgham. Planning on demand in BDI systems. In Proc. Intl. Conf.
on Automated Planning and Scheduling (ICAPS-05). AAAI Press, 2005. Poster.

[25] D. Dennett. The Intentional Stance. MIT Press, Massachusetts/England, 1987.

[26] O. Despouys and F. F. Ingrand. Propice-plan: Toward a unified framework for planning
and execution. In ECP ’99: Proceedings of the 5th European Conference on Planning,
pages 278-293, London, UK, 2000. Springer Verlag.

[27] G. Dudek and M. Jenkin. Computational Principles of Mobile Robotics. Cambridge
University Press, New York, NY, 2000.

[28] A. Ferrein and G. Lakemeyer. Logic-based robot control in highly dynamic domains.

Journal of Robotics and Autonomous Systems, Special Issue on Semantic Knowledge in
Robotics, 2008.

[29] A. A. Ferrein. Robot controllers for highly dynamic environments with real-time con-
straints. PhD thesis, Knowledge-Based Systems Group, Rheinisch-Westfilischen Tech-
nischen Hochschule, Aachen, NW, 2007.

[30] A. Finzi and T. Lukasiewicz. Game-theoretic agent programming in Golog under partial
observability. In K1 2006: Advances in Artificial Intelligence, volume 4314/2007, pages
113-127. Springer Verlag, Berlin / Heidelberg, 2007.

[31] R. J. Firby, P. N. Prokopowicz, and M. J. Swain. The animate agent architecture. In
D. Kortenkamp, R. P. Bonasso, and R. Murphy, editors, Artificial Intelligence and Mobile
Robots: Case Studies of Successful Robot Systems, pages 243-276. AAAI Press / MIT
Press, Menlo Park, CA / Massachusetts/England, 1998.

[32] K. Fischer, J. P. Miiller, and M. Pischel. A pragmatic BDI architecture. In M. Wooldridge,
J. Miiller, and M. Tambe, editors, Intelligent Agents II: Agent Theories, Architectures,
and Languages. Proc. of 2nd ATAL Workshop, pages 203-218. Springer Verlag, Heidel-
berg/Berlin, 1996.

[33] S. P. Franklin. Artificial Minds. MIT Press, Massachusetts/England, 1995.

[34] C. Fritz and S. Mcllraith. Compiling qualitative preferences into decision-theoretic
GOLOG. In L. Morgenstern and M. Pagnucco, editors, Proc. of IJCAI-05 Workshop on
Nonmonotonic Reasoning, Action, and Change (NRAC-05), pages 45-52. AAAI Press,
2005.

178

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

A. Gabaldon and G. Lakemeyer. ESP: A logic of only-knowing, noisy sensing and
acting. In Proc. of 22nd Natl. Conf. on Artificial Intelligence (AAAI-07), pages 974-979.
AAALI Press, 2007.

E. Gat. Three-layer architectures. In D. Kortenkamp, R. P. Bonasso, and R. Mur-
phy, editors, Artificial Intelligence and Mobile Robots: Case Studies of Successful
Robot Systems, pages 195-210. AAAI Press / MIT Press, Menlo Park, CA / Mas-
sachusetts/England, 1998.

H. Geffner and J. Wainer. Modeling action, knowledge and control. In Proc. of European
Conference on Artificial Intelligence (ECAI-98), pages 532-536, 1998.

M. Georgeft, B. Pell, M. Pollack, M. Tambe, and M. Wooldridge. The belief-desire-
intention model of agency. In J. P. Miiller, M. P. Singh, and A. S. Rao, editors, Intelligent
Agents V: Agent Theories, Architectures, and Languages. Proc. of 5th ATAL Workshop,
pages 1-10. Springer Verlag, Heidelberg/Berlin, 1999.

M. P. Georgeff and F. F. Ingrand. Decision-making in an embedded reasoning systems.
In Proc. of 6th Intl. Joint Conf. on Artificial Intelligence (IJCAI-89), pages 972-978.
Morgan Kaufmann, San Fransisco, CA, 1989.

M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In Proc. of 6th Natl.
Conf. on Al (AAAI-87), pages 677-682, Seattle, WA, 1987. AAAI Press.

E. B. Goldstein. Cognitive Psychology: Connecting Minds, Research, and Everyday
Experience. Thomson Wadsworth, Belmont, CA, 2005.

H. Grosskreutz. Towards more realistic logic-based robot controllers in the Golog frame-
work. PhD thesis, Knowledge-Based Systems Group, Rheinisch-Westfélischen Technis-
chen Hochschule, 2002.

K. V. Hendriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent program-
ming with declarative goals. In Intelligent Agents VII: Agent Theories, Architectures,
and Languages. Proc. of 7th ATAL Workshop, pages 228-243. Springer Verlag, Heidel-
berg/Berlin, 2001.

M. J. Huber. JAM: a BDI-theoretic mobile agent architecture. In AGENTS-99: Proc. of
3rd Annual Conf. on Autonomous Agents, pages 236243, New York, NY, 1999. ACM

Press.

J. F. Hiibner, R. H. Bordini, and M. Wooldridge. Programming declarative goals using
plan patterns. In Declarative Agent Languages and Technologies IV (DALT-06), LNAI,
Vol. 4327, pages 123—-140. Springer Verlag, Berlin / Heidelberg, 2006.

179

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

F. Ingrand, R. Chatila, R. Alami, and F. Rober. PRS: A high level supervision and control
language for autonomous mobile robots. In Proc. of IEEE International Conference on
Robotics and Automation (ICRA-96), 1996.

F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An architecture for real-time reasoning
and system control. IEEE Expert, Knowledge-Based Diagnosis in Process Engineering,
7(6):34-44, 1992.

L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101(1-2):99-134, 1998.

L. Karlsson and T. Schiavinotto. Progressive planning for mobile robots — a progress re-
port. In M. Beetz, J. Hertzberg, M. Ghallab, and M. E. Pollack, editors, Advances in Plan-
Based Control of Robotic Agents, pages 106—122. Springer Verlag, Berlin/Heidelberg,
2002.

S. M. Khan and Y. Lespérance. A logical account of prioritized goals and their dynamics.
In G. Lakemeyer, L. Morgenstern, and M-A. Williams, editors, Proc. of 9th Intl. Sym-
posium on Logical Formalizations of Commonsense Reasoning (Commonsense 2009),

pages 85-90, University of Technology, Sydney, 2009. UTSe Press.

I. Kim, H. Shin, and J. Choi. A plan-based control architecture for intelligent robotic
agents. In Proc. of Ist KES Symposium (KES-AMSTA-07), pages 559-567, Heidel-
berg/Berlin, 2007. Springer Verlag.

D. Kinny and M. Georgeff. Commitment and effectiveness of situated agents. In Proc.
of 12th Intl. Joint Conf. on Artificial Intelligence (IJCAI-91), pages 82—88, 1991.

D. Kinny and M. Georgeff. Experiments in optimal sensing for situated agents. In Proc.
of the 2nd Pacific Rim Intl. Conf. on Artificial Intelligence (PRICAI-92), 1992.

K. Kolonige and K. Myers. The Saphira architecture for autonomous mobile robots. In
D. Kortenkamp, R. P. Bonasso, and R. Murphy, editors, Artificial Intelligence and Mobile
Robots: Case Studies of Successful Robot Systems, pages 211-242. AAAI Press / MIT
Press, Menlo Park, CA / Massachusetts/England, 1998.

D. Kortenkamp, R. P. Bonasso, and R. Murphy. Introduction: Mobile robots—a proving
ground for Al. In D. Kortenkamp, R. P. Bonasso, and R. Murphy, editors, Artificial
Intelligence and Mobile Robots: Case Studies of Successful Robot Systems, pages 3—18.
AAALI Press / MIT Press, Menlo Park, CA / Massachusetts/England, 1998.

U. Dal Lago, M. Pistore, and P. Traverso. Planning with a language for extended goals.
In Proc. of AAAI-02, pages 447-454. AAAI Press/The MIT Press, 2002.

180

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

J. E. Laird. Extending the Soar cognitive architecture. In Artificial General Intelligence
2008, pages 224-235. 10S Press, Amsterdam, The Netherlands, 2008.

J. E. Laird, A. Newell, and P. S. Rosenbloom. SOAR: An architecture for general intel-
ligence. Artificial Intelligence, 33:1-64, 1987.

G. Lakemeyer and H. J. Levesque. AOL: A logic of acting, sensing, knowing, and only
knowing. In Proc. Principles of Knowledge Representation and Reasoning (KR-98),
pages 316-327, 1998.

J. Lee, M. J. Huber, E. H. Durfee, and P. G. Kenny. UM-PRS: An implementation of the
procedural reasoning system for multirobot applications. In Proc. Conf. on Intelligent
Robotics in Field, Factory, Service, and Space (CIRFFSS-94), pages 842849, 1994.

H. J. Levesque and G. Lakemeyer. Situations, si! Situation terms no! In Proc. Princi-
ples of Knowledge Representation and Reasoning (KR-04), pages 516-526. AAAI Press,
2004.

H. J. Levesque and G. Lakemeyer. Cognitive Robotics. In B. Porter F. van Harmelen,
V. Lifshitz, editor, The Handbook of Knowledge Representation, pages 869—-886. Elsevier
Science, 2007.

H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. GOLOG: A logic
programming language for dynamic domains. Journal of Logic Programming, 31(1-
3):59-84, 1997.

V. Lifschitz. On the semantics of Strips. In In Reasoning about Actions and Plans: Pro-
ceedings of the 1986 Workshop, pages 1-9, San Mateo, CA, 1987. Morgan Kaufmann.

M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun. Anytime dynamic
A*: An anytime, replanning algorithm. In Proc. Intl. Conf. on Automated Planning and
Scheduling (ICAPS), 2005.

J. McCarthy. Situations, actions and causal laws. Technical report, Stanford University,
1963.

F. R. Meneguzzi, A. F. Zorzo, and M. da Costa Méra. Propositional planning in BDI
agents. In SAC ’04: Proceedings of the 2004 ACM symposium on Applied computing,
pages 58—63, New York, NY, USA, 2004. ACM.

E. Messina and S. Balakirsky. Knowledge representation and decision making for mo-
bile robots. In S. S. Ge and F. L. Lewis, editors, Autonomous Mobile Robots: Sensing,
Control, Decision Making and Applications, pages 465-500. CRS Press, Boca Raton,
FL, 2006.

181

[69] A. M. Meystel and J. S. Albus. Intelligent Systems: Architectures, Design, and Control.
John Wiley & Sons, Inc., New York, 2002.

[70] J. P. Miiller. The right agent (architecture) to do the right thing. In J. P. Miiller,
M. P. Singh, and A. S. Rao, editors, Intelligent Agents V: Agent Theories, Architec-
tures, and Languages. Proc. of 5th ATAL Workshop, pages 211-225. Springer Verlag,
Heidelberg/Berlin, 1999.

[71] R. R. Murphy. Introduction to AI Robotics. MIT Press, Massachusetts/England, 2000.

[72] K. L. Myers. A procedural knowledge approach to task-level control. In B. Drabble,
editor, Proc. of 3rd Al Planning Systems Conf., pages 158—165. AAAI Press, 1996.

[73] N.J. Nilsson. A mobile automaton: An application of artificial intelligence techniques.

Technical report, Stanford Research Institute, Menlo Park, CA, 1969.

[74] N. Oliver and E. Horvitz. Selective perception policies for guiding sensing and com-
putation in multimodal systems: A comparative analysis. In Proceedings of the Fifth

International Conference on Multimodal Interaction. ACM Press, Vancouver, 2003.

[75] M. Paolucci, O. Shehory, K. P. Sycara, D. Kalp, and A. Pannu. A planning component for
retsina agents. In Intelligent Agents VI: Agent Theories, Architectures, and Languages.
Proc. of 6th ATAL Workshop, pages 147-161, London, UK, 2000. Springer Verlag.

[76] J. Pineau. Tractable Planning Under Uncertainty: Exploiting Structure. PhD thesis,
Robotics Institute, Carnegie Mellon University, 2004.

[771 M. Pollack and M. Ringuette. Introducing the Tileworld: Experimentally evaluating
agent architectures. In Proc. of AAAI-90, pages 183—-189. AAAI Press, 1990.

[78] J. L. Pollock. The logical foundations of goal-regression planning in autonomous agents.
Artificial Intelligence, 106:267-335, 1998.

[79] J. L. Pollock. OSCAR: An architecture for generally intelligent agents. In Artificial
General Intelligence 2008, pages 275-286. I0S Press, Amsterdam, The Netherlands,
2008.

[80] D. Poole. Decision theory, the situation calculus and conditional plans. Linkoping Elec-

tronic Articles in Computer and Information Science, 8(3), 1998.

[81] A.Rao and M. Georgeff. Modeling rational agents within a BDI-architecture. In R. Fikes
and E. Sandewall, editors, Proc. Principles of Knowledge Representation and Reasoning
(KR-91), pages 473—484, San Mateo, CA, 1991. Morgan Kaufmann.

[82] A. Rao and M. Georgeff. BDI agents: From theory to practice. In Proc. of ICMAS-95,
pages 312-319. AAAI Press, 1995.

182

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In Proc. of 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent
World (MAAMAW-96), pages 42-55, Berlin/Heidelberg, 1996. Springer Verlaag.

R. Reiter. Knowledge in action: logical foundations for specifying and implementing

dynamical systems. MIT Press, Massachusetts/England, 2001.

G. Rens, A. Ferrein, and E. van der Poel. Extending DTGolog to deal with POMDPs. In
F. Nicolls, editor, Proc. of 19th Annual Symposium of the Pattern Recognition Association
of South Africa (PRASA-08), pages 49-54, Cape Town, South Africa, 2008. UCT Press.
url: http://hdl.handle.net/10204/2972.

G. Rens, A. Ferrein, and E. van der Poel. A BDI agent architecture for a POMDP planner.
In G. Lakemeyer, L. Morgenstern, and M-A. Williams, editors, Proc. of 9th Intl. Sym-
posium on Logical Formalizations of Commonsense Reasoning (Commonsense 2009),

pages 109—114, University of Technology, Sydney, 2009. UTSe Press.

G. B. Rens and I. J. Varzinczak. Introducing a logic for real-world agents with degrees of
belief. In F. Nicolls, editor, Proc. of 20th Annual Symposium of the Pattern Recognition
Association of South Africa (PRASA-09), page 146, 2009. Poster abstract.

S. J. Russell and P. Norvig. Artificial intelligence: A modern approach. Prentice Hall,
New Jersey, 2nd edition, 2003.

S. Russell S. Zilberstein. Optimal composition of real-time systems. Artificial Intelli-
gence, 82(1-2):181-213, 1996.

S. Sardina, G. de Giacomo, Y. Lespérance, and H. J. Levesque. On the semantics of
deliberation in IndiGolog: from theory to implementation. Annals of Mathematics and
Artificial Intelligence, 41:259-299, 2004.

S. Sardina, L. de Silva, and L. Padgham. Hierarchical planning in BDI agent program-
ming languages: A formal approach. In Proc. of AAMAS-06, pages 1001-1008. ACM
Press, 2006.

S. Sardina and Y. Lesprance. Golog speaks the BDI language (to appear). In
Programming Multi-Agent Systems, 7th International Workshop (ProMAS-09). Re-
vised Invited and Selected Papers, LNCS, Vol. 5919. Springer Verlag, 2009. url:
http://www.cse.yorku.ca/ lesperan/papers/PROMASOILNCS.pdf.

L. J. Savage. The Foundations of Statistics. Dover Publications, Dover, NY, 2nd edition,
1972.

183

[94] F. Schonherr and J. Hertzberg. The DD&P robot control architecture. In M. Beetz,
J. Hertzberg, M. Ghallab, and M. E. Pollack, editors, Advances in Plan-Based Control of
Robotic Agents, pages 249-269. Springer Verlag, 2002.

[95] M. Schut and M. Wooldridge. Intention reconsideration in complex environments. In
Proc. of the 4th Intl. Conf. on Autonomous Agents (AGENTS-00), pages 209-216, New
York, NY, USA, 2000. ACM.

[96] M. Schut and M. Wooldridge. The control of reasoning in resource-bounded agents. The
Knowledge Engineering Review, 16(3):215-240, 2001.

[97] M. Schut and M. Wooldridge. Principles of intention reconsideration. In Agents 2001:
Proc. of 5th Intl. Conf. on Autonomous Agents, pages 340-347, New York, NY, 2001.
ACM Press.

[98] M. Schut, M. Wooldridge, and S. Parsons. The theory and practice of intention reconsid-
eration. Experimental and Theoretical Artificial Intelligence, 16(4):261-293, 2004.

[99] S. Sohrabi, J. A. Baier, and S. A. Mcllraith. Htn planning with preferences. In G. Lake-
meyer, L. Morgenstern, and M-A. Williams, editors, Proc. of 9th Intl. Symposium on

Logical Formalizations of Commonsense Reasoning (Commonsense 2009), pages 115—
122, University of Technology, Sydney, 2009. UTSe Press.

[100] M. Soutchanski. High-Level Robot Programming in Dynamic and Incompletely Known
Environments. PhD thesis, Graduate Department of Computer Science, University of
Toronto, 2003.

[101] R.J. Sternberg. Cognitive Psychology. Thomson Wadsworth, Belmont, CA, 3rd edition,
2003.

[102] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

[103] C. Thorne. The BDI model of agency and BDI logics. Technical report, L.O.A. - C.N.R.,
Trento, May 2005.

[104] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. ~MIT Press, Mas-
sachusetts/England, 2005.

[105] M. Toussaint, L. Charlin, and P. Poupart. Hierarchical POMDP controller
optimization by likelihood maximization. In Workshop on Advancements in
POMDP Solvers, Tech. Report WS-08-01, AAAI-08. AAAI Press, 2008. url:
http://www.aaai.org/Library/Workshops/ws08-01.php.

[106] I.J. Varzinczak. How do I revise my agent’s action theory? In G. Lakemeyer, L. Mor-

genstern, and M-A. Williams, editors, Proc. of 9th Intl. Symposium on Logical Formal-

184

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

izations of Commonsense Reasoning (Commonsense 2009), pages 129—134, University
of Technology, Sydney, 2009. UTSe Press.

J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Prince-

ton University Press, Princeton, NJ, 3rd edition, 1953.

A. Walczak, L. Braubach, A. Pokahr, and W. Lamersdorf. Augmenting BDI agents
with deliberative planning techniques. In R. H. Bordini, M. Dastani, J. Dix, and

A. Seghrouchni, editors, Proc. of 4th Intl. Workshop of Programming Multi-Agent Sys-
tems (ProMAS-06), pages 113—-127, Heidelberg/Berlin, 2007. Springer Verlag.

M. Winikoff. An AgentSpeak meta-interpreter and its applications. In Programming
Multi-Agent Systems (ProMAS-05), LNAI Vol. 3862, pages 123-138. Springer Verlag,
Berlin / Heidelberg, 2006.

M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative & procedural
goals in intelligent agent systems. In Proc. of KR-02, pages 407481, 2002.

M. Wooldridge. Intelligent agents. In G. Weiss, editor, Multiagent Systems: A
Modern Approach to Distributed Artificial Intelligence, chapter 1. MIT Press, Mas-
sachusetts/England, 1999.

M. Wooldridge and S. Parsons. Intention reconsideration reconsidered. In J. P. Miiller,
M. P. Singh, and A. S. Rao, editors, Intelligent Agents V: Agent Theories, Architectures,
and Languages. Proc. of 5th ATAL Workshop, pages 63-80. Springer Verlag, Heidel-
berg/Berlin, 1999.

M. J. Wooldridge. Reasoning about Rational Agents. MIT Press, Massachusetts/England,
2000.

M. J. Wooldridge. An introduction to multiagent systems. John Wiley & Sons, Chichester,
England, 2002.

M. J. Wooldridge and N. R. Jennings. Agent theories, architectures, and languages:
A survey. In Intelligent Agents, LNCS, Vol. 890, pages 1-39. Springer Verlag,
Berlin/Heidelberg, 1995.

S. Zilberstein, R. Washington, D. S. Bernstein, and A. Mouaddib. Decision-theoretic
control of planetary rovers. In M. Beetz, J. Hertzberg, M. Ghallab, and M. E. Pollack,
editors, Advances in Plan-Based Control of Robotic Agents, pages 270-289. Springer
Verlag, Berlin/Heidelberg, 2002.

185

