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1	

Overview 
any factors contribute to variability in Earth’s climate on a range of timescales, 
from seasons to decades. Natural climate variability arises from two different 
sources: (1) internal variability from interactions among components of the 

climate system, for example, between the ocean and the atmosphere, and (2) natural 
external forcings, such as variations in the amount of radiation from the Sun. External 
forcings on the climate system also arise from some human activities, such as the emission 
of greenhouse gases (GHGs) and aerosols. The climate that we experience is a combination 
of all of these factors.  

Understanding climate variability on the decadal timescale is important to decision-making. 
Planners and policy makers want information about decadal variability in order to make 
decisions in a range of sectors, including for infrastructure, water resources, agriculture, and 
energy.  

In September 2015, the Board on Atmospheric Sciences and Climate and the Ocean 
Studies Board of the National Academies of Sciences, Engineering, and Medicine convened 
a workshop1 (Statement of Task in Appendix A) to examine variability in Earth’s climate on 
decadal timescales, defined as 10 to 30 years. During the workshop, ocean and climate 
scientists reviewed the state of the science of decadal climate variability and its relationship 
to rates of human-caused global warming, and they explored opportunities for 
improvement in modeling and observations and assessing knowledge gaps. This report 
summarizes the workshop presentations and discussions. As such, it is a snapshot of how 
leading U. S. scientists were approaching the topic at the time. This report does not attempt 
to provide a complete overview of this rapidly advancing field or present any work not 
discussed at the workshop or any new work published since the workshop.  

The scientific community broadly agrees that the planet as a whole is warming steadily 
through time (IPCC, 2014). Many workshop participants acknowledged that climate 
variability can cause the rate of warming to shift over periods lasting from years to a few 
decades. Internal climate variability can result from shifts in the absorption and transport of 
heat into the ocean, leading to periods when Earth’s surface warms more slowly or more 
rapidly. Key points from workshop participants for framing the discussions ahead are 
highlighted in Box 1.  

Since 1880, the average temperature at Earth’s surface has increased by about 0.85°C. Most 
of this increase (about 0.72°C) has occurred since 1951 (Hartmann et al., 2013). A number 
of recent studies indicate that the global mean surface warming trend slowed to near zero 
(0.07±0.08°C per decade) in the first to second decades of the 21st century (Easterling and 
Wehner, 2009; Hartmann et al., 2013; Kosaka and Xie, 2013) in relation to the trend during 
the latter half of the 20th century (i. e., 1950-2012). This slowdown in GMST rise has 
spurred much research aimed at examining recent and past climate variability in order to 
understand and better predict decadal climate trends. This period, typically defined as a 
range between 1998 to 2014, is referred to throughout this report as the “slowdown.” The 
scientific community, the media, and some workshop participants have also broadly used  

                                                      
1 This report has been prepared by the workshop rapporteur as a factual summary of what occurred at 
the workshop. The planning committee’s role was limited to planning and convening the workshop. 
The views contained in the report are those of individual workshop participants and do not 
necessarily represent the views of all workshop participants, the planning committee, or the National 
Academies of Sciences, Engineering, and Medicine.  

M 



Copyright © National Academy of Sciences. All rights reserved.

Frontiers in Decadal Climate Variability:  Proceedings of a Workshop

2  Frontiers in Decadal Climate Variability: Proceedings of a Workshop 
 

 
 

BOX 1  

Key Points 

During the workshop, participants identified the following points as a foundation for discussions of decadal climate 
variability: 

 The Earth system (land, atmosphere, and ocean) continues to steadily warm through time in response to 
increasing greenhouse gases (GHGs) in the atmosphere from human activities.  

 Global mean surface temperature (GMST) is increasing as the Earth warms, but the rate of surface warming 
fluctuates because of variability in the internal dynamics of the climate system and in contributions of external 
forcings.  

 Internal climate variability arises from changes in the transport of heat in the climate system (e. g., in the 
ocean, or from the atmosphere into the ocean), leading to periods when the surface warms more slowly or 
more rapidly.  

 A slowdown in the rise of GMST is not equivalent to a slowdown in global warming. Viewed over long time 
periods (50+ years), there is a persistent increase in GMST. However, it remains important to understand the 
decadal variability in GMST that is observed over shorter time periods. 

 

the terms “hiatus” and “warming pause,” but through the discussions, many participants 
agreed that “slowdown” is a more accurate term because it does not suggest that 
something, specifically human-caused climate change, halted during this period (see Box 1, 
bullet 4).  

A major line of inquiry discussed at the workshop is the degree to which natural variability 
modulated human-caused climate change during the recent warming slowdown, as well as 
during past periods of increased or accelerated warming, such as from 1970 to 1998. Also 
discussed was the extent to which previous results are a function of data coverage or 
remaining biases in sea surface temperature (SST) reconstructions. Some research has 
indicated that the early-2000s warming slowdown does not appear to be as pronounced if 
incomplete observed data coverage over the Arctic or errors in calibration of SST 
observations are taken into account (e. g., Cowtan and Way, 2014; Karl et al., 2015).  

Much of the workshop discussion focused on the mechanisms governing decadal 
variability. Several participants presented evidence that the recent slowdown is driven in 
large part by well-documented swings in Pacific SSTs and sea level pressure known as the 
Interdecadal Pacific Oscillation (IPO). Other research has made the case that external 
forcing also played a role; for example, multiple small- to moderate- sized volcanoes have 
produced an accumulation of aerosols in the stratosphere that contribute to cooling (e. g., 
Ridley et al., 2014; Santer et al., 2014).  

The specific mechanisms driving decadal variability, not only in the Pacific but also in all of 
the ocean basins, are subjects of intense scientific inquiry. Workshop participants shared 
research into potential mechanisms driving Pacific temperature swings, including storage of 
excess heat in the deeper ocean, movement of heat to the Indian Ocean, wind-driven 
changes, and teleconnections with the Atlantic Ocean. Proposed mechanisms of Atlantic 
variability include changes induced by the ocean’s major current (the Atlantic Meridional 
Overturning Circulation, or AMOC) and its relationship to the North Atlantic Oscillation 
(NAO). Also discussed was variability in the Indian Ocean and polar regions.  

Because the storage of heat in the ocean has been implicated in the recent warming 
slowdown as measured by GMST, participants discussed the limitations of using GMST as 
the primary metric of global climate change. Many participants supported the notion that, 
because 93 percent of the excess heat from GHGs is stored in the ocean, sea-level rise, or 
sea-level rise together with GMST, may be a more appropriate metric of global climate 
change.  
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Variability at decadal timescales is a well-known feature of the climate system. Climate 
models produce periods of slower and more accelerated warming, although a specific 
slowdown in the GMST warming trend in the early 2000s was not directly projected by 
climate models (the warming trend during this period was near the lower edge of the 5-95 
percent range of projections from the Coupled Model Intercomparison Project Phase 5; 
Schmidt et al., 2014).  Many participants agreed that being able to predict decadal 
variability would be important given its implications, for example, its link to important 
regional phenomenon such as drought.  Much remains to be learned before scientists will 
be able to make skillful predictions of variability on these timescales, however.  

Workshop participants discussed the importance of advancing understanding of how all of 
the physical mechanisms in the ocean and atmosphere work in concert to produce decadal 
variability in the GMST and of improving observations and modeling capabilities in order to 
make predictions. Participants identified the continuation and improvement of ocean and 
atmospheric monitoring as well as more creative ways to use existing data, including 
paleoclimate data and synthesis products from models, as possible opportunities to improve 
predictions.  

The study of Earth’s climate system involves a large and diverse group of experts. 
Participants commented on the great value provided by bringing together a diversity of 
researchers to discuss key challenges and opportunities in the field of decadal climate 
variability.   
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5	

Introduction 
tudies of historic and paleoclimate data (e. g., NRC, 1998), as well as climate model 
simulations (e. g., Easterling and Wehner, 2009), demonstrate that Earth’s climate 
system exhibits natural variability at a wide range of timescales because of both 

internal and external factors (see Box 2).  Decadal climate variability refers to variability of 
regional and global climate on timescales of 10 to 30 years. 1 Longer trends (50 years or 
more) in observed global mean surface temperature (GMST) in the recent century largely 
reflect increases in anthropogenic greenhouse gases (GHGs; e. g., Bindoff et al., 2013). 
Decadal variability can be described as the ups and downs of the climate, which are 
superimposed on that trend (see Figure 1). In this way, decadal variability can accelerate or 
decelerate the rate of warming on shorter timescales, whereas climate change is dominated 
by the steady warming from increasing GHGs over the long term.  

The slowdown in the GMST warming trend during the early 2000s spurred a lot of research 
aimed at identifying variability in observations and models, as well as attributing its 
mechanisms. What physical mechanisms can explain recent as well as past decadal 
variability? How much of the variability in recent trends in surface warming is due to 
internal, natural variability versus external forcing, and how does this attribution vary as a 
function of timescale? Given what is known today about the controls on decadal variability, 
what can be said about the future? Are such accelerations and slowdowns predictable? 
What observations, data synthesis, and improvements in climate models might be needed 
to provide comprehensive answers to such questions? Finally, what is the best way to 
measure the influence of human-emitted GHGs on the global climate? Is GMST the best  

 

BOX 2  

Definitions of Climate Variability and Climate Change 

The following definitions are taken from the Intergovernmental Panel on Climate Change 5th Assessment Report (IPCC, 
2014) and are provided as background to the discussions summarized below.  

Climate change refers to a change in the state of the climate that can be identified (e. g., by using statistical tests) by 
changes in the mean and/or the variability of its properties and that persists for an extended period, typically decades or 
longer. Climate change may be due to natural internal processes or external forcings such as modulations of the solar 
cycles, volcanic eruptions, and persistent anthropogenic changes in the atmosphere’s composition or land use.  

The climate system is the highly complex system consisting of five major components: atmosphere, hydrosphere, 
cryosphere, lithosphere, and biosphere and the interactions among them. The climate system evolves in time in 
response to internal dynamics and external forcings such as volcanic eruptions, solar variations, and anthropogenic 
changes in the atmosphere’s composition or land use.  

External forcing refers to an external agent that causes a change in the climate system. Volcanic eruptions, solar 
variations, and anthropogenic changes in the atmosphere’s composition and land use are external forcings. Orbital 
forcing is also an external forcing because the insolation changes with orbital parameters such as eccentricity, tilt, and 
precession of the equinox.  

Climate variability refers to variations in the mean state and other statistics (e. g., standard deviations, occurrence of 
extremes) of the climate on all spatial and temporal scales beyond that of individual weather events. Variability may be 
due to natural processes internal to the climate system or to natural or anthropogenic external forcing. Variability of the 
climate occurs on a variety of timescales—from seasons to decades to millennia.  

                                                      
1 Participants noted that while the timescale of decadal climate variability is approximately 10-30 
years, the mechanisms and drivers of this variability occur at a variety of timescales, for example, 
ENSO (see Box 3).  

S
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a workshop to examine these questions (see Statement of Task in Appendix A). The 
workshop included a number of panels followed by open discussions, as well as breakout 
groups focused on specific modeling and observational challenges, and concluded with 
reflections on the workshop’s key messages and lessons on communicating these messages 
(see workshop agenda in Appendix B).  
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Challenges in Examining Climate 
Trends 

any participants noted that conversations about climate trends should clearly 
specify which time periods defined the trend, which period served as the baseline 
for determining the trend, and how the trend was quantified. However, not every 

workshop presented provided these specifications when discussing the slowdown. The 
presentations spurred discussion about whether the global mean surface temperature 
(GMST) warming trend did indeed slow down during the early 2000s—the answer to which 
depended on the timescale chosen and the quantification method used.  

The discussion about ways to frame climate trends was motivated in part by a paper 
released by Karl et al. (2015) prior to the workshop, which suggested that the slowdown 
during the early 2000s was an artifact of residual data biases in the calculation of GMST 
from an early version of a global surface temperature dataset.1 Karl et al. based their paper 
on recent updates to the National Oceanic and Atmospheric Administration (NOAA) GMST 
dataset, which revealed that the surface ocean 
has warmed nearly twice as fast in recent years 
as previously thought. When combined with 
updated land surface temperature data, which 
show a slight increase in the rate of land 
surface warming, the GMST data show a small 
but significant positive trend (at the 0.10 level) 
in GMST from 1998 to 2012.  

Huai-Min Zhang, a scientist from the NOAA 
National Centers for Environmental Information 
(NCEI), said that with these corrections the 
trend for 1998-2012 is not statistically 
significantly different from the estimates for the 
trend for 1951-2012. Zhang suggested that the 
years used in the Intergovernmental Panel on 
Climate Change analysis of GMST (IPCC, 2014) 
do not provide a very good picture of decadal 
warming trends, because the analysis period is 
short and started with 1998 (one of the warmest 
years on record because of a large El Niño 
event). With the updated dataset and an 
extended analysis period (1998-2014 or 2000-
2014), recent warming rates are even higher 
and, for the latter period, comparable to 
warming rates of the second half of the 20th 
century.  

Gerald Meehl, chair of the workshop 
organizing committee and senior scientist at the 
National Center for Atmospheric Research,  

                                                      
1 HadSST3 (the Met Office Hadley Centre gridded SST dataset) made the SST adjustments made by 
Karl et al. (2015) several years earlier prior; see Kennedy et al. (2011).  

M 

Explanation of NOAA’s Improved 
Operational Dataset 

Karl et al. (2015) explains the changes to 
NOAA’s dataset: 

The data used in our long-term global 
temperature analysis primarily involve 
surface air temperature observations 
taken at thousands of weather-observing 
stations over land, and for coverage 
across oceans, the data are sea surface 
temperature (SST) observations taken 
primarily by thousands of commercial 
ships and drifting surface buoys. These 
networks of observations are always 
undergoing change. Changes of particular 
importance include (i) an increasing 
amount of ocean data from buoys, which 
are slightly different than data from ships; 
(ii) an increasing amount of ship data 
from engine intake thermometers, which 
are slightly different than data from 
bucket seawater temperatures; and (iii) a 
large increase in land-station data, which 
enables better analysis of key regions that 
may be warming faster or slower than the 
global average. We address all three of 
these, none of which were included in 
our previous analysis used in the IPCC 
report. (p.1470) 
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Modes and Mechanisms of Internal 
Variability 

combination of internal variability and external forcing causes variability in global 
mean surface temperature (GMST) trends. Much of the workshop focused on 
examining how known modes and patterns of internal variability contribute to 
variability of observed decadal global surface temperature. Broadly speaking, 

internal variability results when interaction of climate components, including the 
atmosphere, ocean and sea ice, cause heat to move within the climate system (IPCC, 2013). 
Often, this transport takes the form of observable patterns, such as sea surface temperature 
anomalies in the Pacific Ocean (Christensen et al., 2013). Box 3 provides a brief overview 
of dominant modes and patterns of internal (interannual to decadal) climate variability.  

Scientists study these modes of climate variability in part by looking for patterns in long-
running observations of air and sea surface temperatures (SSTs), air pressure, and 
precipitation (Christensen et al., 2013). They use a variety of statistical techniques, such as 
empirical orthogonal function (EOF) analysis,1 to identify and define preferred states or 
leading patterns of variability over different time periods. Although often prominent features 
in the climate system, these patterns or modes are not sufficiently understood to enable 
prediction of future conditions. What controls the strength of variability in the patterns, and 
the transition between different phases of such modes, is in many cases far from clear 
(Christensen et al., 2013). Improved knowledge of how these modes interact to produce the 
current climate could lead to improved prediction of decadal climate variability.  

Understanding the various mechanisms involved in the transfer of heat within the climate 
system was a major focus of the workshop. As much as 93 percent of the heat trapped by 
greenhouse gases (GHGs) goes into the ocean; the lower atmosphere—where global surface 
temperature is measured—is a very small heat reservoir in comparison (Rhein et al., 2013). 
Veronica Nieves of the NASA Jet Propulsion Laboratory presented evidence that during the 
recent slowdown in GMST rise (in this case, using 2003 as the period start), excess heat was 
sequestered in the subsurface tropical Pacific waters, which is a “symptom” of decadal 
variability. In the early 2000s, Pacific surface temperatures were cooler, and unusually 
strong winds caused the heat to travel to the subsurface (100-300 m) depth layer in the 
eastern Pacific Ocean to the central/western Pacific Ocean and Indian Ocean. Therefore, as 
Nieves explained, there was no slowdown in terms of depth-integrated temperature, 
because when the Pacific Ocean surface gets cold there can be warming beneath and vice 
versa (global trends shown in Figure 4).   

Because water expands as it warms and contracts when it cools, Nieves suggested that 
global mean sea level may be a more appropriate measure for climate change than GMST 
because it reflects the depth-integrated temperature.   

 

                                                      
1 Empirical Orthogonal Function (EOF) analysis is a method used in statistics and signal processing to 
decompose a signal or data set in terms of orthogonal (or perpendicular) basis functions that are 
determined from the data. The EOF method finds patterns in both space and time, although otherwise 
is the same as performing a principal components analysis on the data. EOF analysis is often used to 
study possible spatial modes (i. e., patterns) of variability and how they change with time. It is not 
based on physical processes; rather a field is partitioned into mathematically orthogonal 
(independent) modes, which sometimes may be interpreted as atmospheric and oceanographic modes 
(“structures”).  

A 
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BOX 3  

Patterns of Internal Variability 

The El Niño–Southern Oscillation (ENSO) is an interannual variability phenomenon that combines the tropical Pacific 
Ocean surface water temperature over the eastern equatorial Pacific Ocean with air pressure difference across the 
tropical western Pacific Ocean basin (the Southern Oscillation). ENSO has two coupled phases: El Niño (warm phase) 
and La Niña (a cool phase). ENSO has a well-understood relationship to the Walker Circulation. When the Walker 
Circulation is weak or reverses, there is very little upwelling of cold water, resulting in an El Niño with warmer than 
average ocean temperatures in the eastern equatorial Pacific Ocean. When the Walker Circulation is very strong, 
upwelling increases, resulting in a La Niña with cooler ocean temperatures there. ENSO “events” (phases) persist for 6 to 
18 months. ENSO variability is mostly interannual (in the 3- to 7-year range), although analyses also suggest decadal-
scale shifts in its variability (NRC, 1995).   

Pacific Decadal Variability (PDV) is dominated by the Pacific Decadal Oscillation (PDO) and Interdecadal Pacific 
Oscillation (IPO), two indices described below. The terms can sometimes be used interchangeably, although PDV is 
preferred—as noted by some workshop participants—because the changes in the PDO and IPO may not be true 
oscillations. Recent work (Newman et al., 2016) suggests that the PDV is not one single mode, as discussed later in this 
section, indicating a need to distinguish the terms.  

 The PDO describes an ENSO-like decadal pattern of variability in sea surface temperature (SST) of the North 
Pacific Ocean (poleward of 20° N). This pattern was identified when contrasting climate variability in the 
North Pacific Ocean with the strong interannual variability in the tropics (i. e., ENSO). During the positive (or 
“warm") phase, the west Pacific Ocean becomes cooler and part of the eastern ocean warms; during the 
negative (or “cool”) phase, the opposite pattern occurs. The PDO is empirically defined as the largest 
amplitude variability of wintertime SSTs in the North Pacific Ocean (i. e., the first leading Empirical 
Orthogonal Function [EOF] on the SSTs; Mantua and Hare [2002] and Mantua et al. [1997]). The PDO phases 
persist for 20 to 30 years.  

 The IPO is a variability pattern of SST fluctuations and sea level pressure changes in the entire Pacific basin; 
the IPO can be thought of as the Pacific-wide expression of the PDO. During the positive (or “warm”) phase of 
the IPO, SSTs in the tropical Pacific Ocean are warmer than average and those in the Northwest and 
Southwest Pacific Ocean are cooler; during the negative (or “cool”) phase, the opposite pattern occurs. The 
IPO can be defined as the second largest amplitude variability component of the Pacific-wide SSTs (i. e., the 
second leading empirical EOF).  

The North Atlantic Oscillation (NAO) is the Atlantic expression of the Northern Annular Mode (NAM) or the Arctic 
Oscillation (AO), which is the dominant mode of atmospheric variability in the extratropical Northern Hemisphere 
(Thompson and Wallace, 2000). The NAO is a phenomenon identified by variations in atmospheric pressure (variations 
of the strength of high and lower pressure systems) that control the strength and direction of east-west winds over the 
North Atlantic Ocean, and is calculated using leading EOF of the sea level pressure anomalies over the Atlantic sector: 
20°-80°N, 90°W-40°E. It has a large impact on storm tracks. NAO phases are related to the strength and positions of a 
persistent low-pressure system over Iceland (the Icelandic Low) and a persistent high-pressure system over the Azores 
(the Azores High). When there is a large difference in the pressure at the two systems, the NAO is positive, producing 
above-normal temperatures in the eastern United States and across northern Europe and below-normal temperatures in 
Greenland and oftentimes across southern Europe and the Middle East. When there is a small difference in the pressure 
of the systems, the NAO is negative (also referred to as “blocked”) and is associated with strong snowstorms in the 
eastern United States and very cold winters and increased storm activity in southern Europe and North Africa. The NAO 
varies on all timescales from days to years.  

The Atlantic Multidecadal Oscillation (AMO) pattern describes variability in SSTs averaged over the entire North 
Atlantic Ocean. The AMO index is usually calculated as the average of north Atlantic SST temperature anomalies after 
removing any linear trend (Enfield et al., 2001). Plotting such an index reveals warmer and cooler periods spanning 
several decades (20-40 years). Although not completely understood, the drivers of these variations may be related to 
changes in the Atlantic Meridional Overturning Circulation (AMOC; Zhang, 2007), or may be largely a result of climate 
change influence on SSTs (Mann et al., 2014). Warmer and cooler phases of the AMO have been linked to changes in 
weather and climate variability throughout the world, including more or less drought periods in North America, and 
changes in Atlantic hurricane activity (Goldenberg et al., 2001).  
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The heat storage of the ocean is much larger than that of the surface layer. Therefore, many 
participants stressed the importance of understanding the various mechanisms that transport 
this heat in order to better understand the current state of Earth’s climate and how it 
changes. This section summarizes the workshop presentations about several of the 
proposed contributors to and patterns of this heat transport.  

 

Processes and Patterns in the Pacific Ocean 

The El Niño–Southern Oscillation (ENSO, see Box 3) is the dominant mode of interannual 
variability in the Pacific Ocean, with well-known connections worldwide, including to U. 
S. climate. For example, El Niño (the warm phase of the ENSO) is associated with strong 
winter effects in the Northern hemisphere that result in more precipitation across the 
southern United States and cooler than normal temperatures in the southeast, as well as 
fewer hurricanes (in June to November; Goldenberg et al., 2001). Although the mechanisms 
surrounding ENSO phases are well studied and understood (see Box 3), the drivers of 
Pacific Decadal Variability (PDV) patterns are less so, although studies have implicated 
ENSO as one driver.  

Gerald Meehl, National Center for Atmospheric Research (NCAR), emphasized that the 
precise mechanisms that control decadal variability in the Pacific Ocean and trade winds, 
including the mechanisms that control phase changes in PDV (i. e., the Pacific Decadal 
Oscillation [PDO] or the Interdecadal Pacific Oscillation [IPO]), are still a topic of debate. 
Such phase changes could involve coupled air-sea tropical-mid-latitude processes (Meehl 
and Hu, 2006) or chaotic (stochastic) amplitude modulation of ENSO (e. g., Jin, 2001), or 
might be triggered by variability in the Atlantic Ocean (e. g. McGregor et al., 2014; Li et al., 
2016).  

 

Importance of the Pacific Ocean to Global Trends 

Several participants noted that decadal variability in the Pacific Ocean is a major driver of 
global variability, which is superimposed on long-term warming trends (Kosaka and Xie, 
2013; England et al., 2014; Nieves et al., 2015; Meehl, 2015; Newman et al., 2016). Meehl 
presented evidence linking phases of the IPO, observed as decadal variability in SSTs 
across the Pacific Ocean, to decadal variability in GMST. Meehl said the slowdown in 
GMST in the early 2000s occurred when the IPO was in its negative phase (2000-2013), 
whereas the IPO was in its positive phase during a previous period of faster warming (late 
1970s to late 1990s; see Figure 5). There is also evidence of the influence of PDV in other 
slowdown periods in the past (e. g., mid-1940s to late 1970s).  

The GMST slowdown and the recent negative IPO phase are likely related to the presence 
of stronger trade winds during the negative phase of the IPO. Stronger trade winds cause a 
La Niña–like pattern of increased upwelling of cooler waters in the eastern tropical Pacific 
Ocean and intensified subtropical cell circulation in the atmosphere, which promotes 
enhanced mixing of warmer water into the subsurface of the ocean. Such enhanced mixing 
could account for about 50 percent of energy represented in the slowdown in GMST rise 
(England et al., 2014; Delworth et al., 2015).   

Shang-Ping Xie from the Scripps Institution of Oceanography also presented evidence that 
the tropical Pacific SST affects timing and magnitude of the warming acceleration and 
slowdown in GMST, including the recent slowdown period. He presented results from a  
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Indian Ocean Variability 

A number of studies reconciled the slowdown in GMST rise and the top of atmosphere 
(TOA)8 radiation imbalance (which would indicate a warming planet) by an anomalous 
heat flux into the ocean (e. g., Meehl et al., 2011; Kosaka and Xie, 2013). Those studies 
indicate a substantial portion of the heat missing from the atmosphere is expected to be 
stored in the subsurface Pacific Ocean. Veronica Nieves introduced observational evidence 
of heat storage in the Indo-Pacific region and, to a lesser extent, in the Southern Ocean 
(Nieves, 2015), as discussed earlier in this chapter. Caroline Ummenhofer from the Woods 
Hole Oceanographic Institution presented complementary evidence that Indian Ocean 
variability plays an important role in global ocean heat content and has several important 
regional climate implications. The Indian Ocean has also been shown to have the strongest 
correlation between SSTs and GMST since 1900 as compared to other ocean basins (Figure 
10, bottom).  

Despite this correlation, the Indian Ocean, particularly the western Indian Ocean, has 
exhibited significant surface warming especially during the last 10 ten years of the recent 
slowdown (Roxy et al., 2014). This warming is inconsistent with changes in air-sea surface 
heat fluxes (Yu et al., 2007), suggesting that ocean dynamics play a role in redistributing 
heat in this region. For example, there is evidence that the subsurface warming in the 
Indian Ocean has compensated for cooling in the Pacific Ocean via increased heat 
transport from the Pacific Ocean to the Indian Ocean, carried by the Indonesian Through 
Flow (Lee et al., 2015; Nieves et al., 2015). As a result, the heat content of the Indian 
Ocean has increased abruptly (Figure 10, top), which accounts for greater than 70 percent 
of the global ocean heat gain in the upper 700 m during the past decade (Lee et al., 2015). 
Nieves et al. (2015) found that warming in the 100-300 m layer of the Indian and Pacific 
Oceans has compensated for cooling in the top 100 m layer of the Pacific Ocean since 
2003. Ummenhofer explained that these recent trends, and the extensive subsurface 
cooling in the tropical Indian Ocean until the early 2000s, are likely related to multi-
decadal variations in Pacific wind forcing (Ummenhofer et al., 2016).  

Ummenhofer then discussed how decadal to multi-decadal changes in the upper-ocean 
properties in the Indian Ocean affect the frequency of Indian Ocean dipole events in 
different decades. The Indian Ocean dipole is the leading mode of variability in the Indian 
Ocean and influences regional climate (Figure 11), impacting rainfall and flooding in East 
Africa; the Indian monsoon and ENSO-Asian monsoon teleconnection; droughts and 
wildfires in Indonesia; and rainfall, droughts, and bushfires in Southeast Australia.  

 

Decadal Variability in the Atlantic 

Atlantic Multidecadal Variability (AMV, also known as the Atlantic Multidecadal 
Oscillation or AMO, see Box 3) is an index of the swings in the North Atlantic SSTs. The 
AMV is associated with significant climate impacts both regionally and globally, from 
northeast Brazilian and African Sahel rainfall (Folland et al., 1986, 2001; Rowell, 2003) to  

                                                      
8 Together with data derived from ocean heat content increases, radiometers on satellites are used to 
make TOA measurements of the amount of infrared energy leaving Earth’s atmosphere. This amount is 
subtracted from the amount of solar radiation entering Earth’s atmosphere to determine Earth’s energy 
budget—that is, the energy that remains in Earth’s climate system. For Earth’s temperature to be stable 
over long periods of time, incoming and outgoing energy must be equal—a state referred to as 
radiative equilibrium or radiative balance. If more energy is leaving than entering, then Earth’s climate 
will cool. If more energy is entering than leaving, then Earth’s climate will warm. For more 
information, see Farmer and Cook (2013).  
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Relationship of the AMOC and the NAO 

Some modeling studies suggest that AMOC variability itself is driven by surface buoyancy 
fluxes associated with the NAO, which is primarily an atmospheric phenomenon that 
exhibits variability on many timescales, including on decadal timescales (see Box 3). 
Variability in the NAO has a strong influence on surface climate across the Atlantic basin 
and beyond (Thompson and Wallace, 2000). Tom Delworth from the NOAA Geophysical 
Fluid Dynamics Laboratory (GFDL) and Gokhan Danabasoglu from NCAR discussed their 
work investigating AMOC variability and mechanisms, including related decadal and 
longer timescale climate variability in the Atlantic, and the role of decadal variability in the 
NAO.  

Delworth highlighted the potential role of the NAO in driving AMOC variability. He 
presented modeling experiments in which he added heat fluxes to the North Atlantic 
Ocean associated with the positive phase of the NAO and then examined the resulting 
response of AMOC and the rest of the climate system (both regionally and globally). His 
results show that many impacts (e. g., temperature, sea ice extent, and vertical shear of the 
zonal wind) have larger amplitude at longer timescales because of the role of feedbacks 
and the time integral of transports. He then applied NAO forcing based on the observed 
NAO index and concluded that the AMOC response and associated climatic impact 
depend on the model’s internal AMOC characteristics and mean state. Delworth also 
showed that models simulate NAO-induced AMOC changes over the historical record 
consistent with observations of various regions and phenomena: early 20th century 
warming, cooling in the 1960s-1970s, and warming in the 1980s-1990s of the Subpolar 
North Atlantic Ocean (70°W-0°W, 30°N-65°N); Arctic sea ice extent; tropical atmospheric 
circulation; and changes in the Southern Ocean. He concluded that NAO variability drives 
AMOC variability, particularly on multidecadal scales, although what generates NAO 
variability on these longer timescales remains unknown.  

Because there are no long-term and continuous observations of AMOC and related 
variables, models remain essential tools for studies of AMOC variability and mechanisms. 
Danabasoglu presented a systematic assessment of the impacts of several ocean model 
parameter choices on AMOC characteristics in the Community Earth System Model (CESM, 
a fully coupled global climate model), with the primary goal of identifying robust and non-
robust aspects of AMOC variability mechanisms. Danabasoglu changed some loosely 
constrained parameter values used in several ocean model subgrid-scale parameterizations, 
specifically: vertical mixing, submesoscale mixing, mesoscale mixing, and horizontal 
viscosity parameterizations. He also performed additional sensitivity experiments in which 
atmospheric initial conditions were perturbed to provide a baseline ensemble set for the 
parameter sensitivity experiments. He found that both the amplitude and timescale of 
AMOC variability differ considerably among the simulations, with the dominant timescale 
of variability ranging from decadal to centennial. Details of how the density anomalies that 
lead to AMOC changes are derived also differ.  

Despite these differences, he noted several important, robust aspects of AMOC variability: 
(1) the Labrador Sea is the key region with upper-ocean density and boundary layer depth 
anomalies preceding AMOC anomalies; (2) enhanced Nordic Sea overflow transports do 
not lead to increased AMOC maximum transports; (3) after AMOC intensification, 
subsequent weakening is due to advection of positive temperature anomalies into the 
model’s deep water formation region; and (4) persistent positive NAO anomalies play a 
significant role in setting up the density anomalies that lead to AMOC intensification via 
surface buoyancy fluxes.  
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approximately 70 percent of sea ice volume over the past century, and does not seem to be 
associated with any one mode of internal variability.  

The warming trend in the Arctic may have an impact on mid-latitude weather and climate 
variability, but these connections are still controversial (NRC, 2014). The length of the 
available data series is too short and weather is too chaotic to make a definitive link, said 
Overland. However, it is understood that as the Arctic warms more quickly, the 
temperature gradient between the Arctic and the equator is reduced. Overland also said 
that most researchers think that warming overall will dominate weather patterns, but there 
will be specific episodic and regional impacts from Arctic warming. Overland showed, as 
an example of regional impacts, that loss of sea ice in the Kara Sea will weaken winds 
across East Asia, leading to a strong Siberian High, pushing storms into Japan and China. 
For more examples, see NRC (2014).  

Although the Arctic has been warming and sea ice disappearing, the Southern Ocean has 
been (mainly) cooling and sea-ice extent has been growing slightly overall. John Marshall, 
from the Massachusetts Institute of Technology, examined the causes behind such 
geographic variability and argued that inter-hemispheric asymmetries in the mean ocean 
circulation (with sinking in the northern North Atlantic and upwelling around Antarctica) 
strongly influence the SST response to anthropogenic forcing. These asymmetries accelerate 
warming in the Arctic while delaying it in the Antarctic region. Additionally, while the 
amplitude of forcing from GHG emissions has been similar at the poles, significant ozone 
depletion only occurs over Antarctica, he explained.  

The initial response of SSTs around Antarctica to ozone-related changes in surface wind 
trends is cooling, because the Ekman-driven flow in the ocean associated with 
strengthening westerly winds11 drives cold water equatorward, away from Antarctica. This 
has potentially influenced the modest increases in sea-ice extents in the Southern Ocean. 
However, on longer timescales, ozone-induced changes in circulation patterns should 
result in warmer water being drawn up from below, resulting in warming of SSTs and likely 
sea-ice decline, explained Marshall.  

The transition from SST cooling to warming is model dependent. Marshall used models to 
examine the effects of a step change in wind forcing. He explained that initially models all 
show cooling, but they respond in different ways over time (Figure 14). A fast response to a 
wind perturbation (equatorward transport of cooler water) led to cooling, while a slow 
response led to the upwelling of warmer water and overall warming, which would explain 
why some models show warming and some show cooling in the region on longer 
timescales.  

What, then, is the mechanism that sets the crossover timescale from cooling to warming?  
As the wind blows water away from Antarctica, there is a cooling response. However, there 
is still warm water at depth, so by strengthening the wind, this water comes up from depth 
to eventually melt the ice, proposed Marshall. The stratification in the Southern Ocean in 
the seasonal ice zone is set by salinity, being fresh and cold at the surface, warm and salty 
below. Realistic vertical and horizontal temperature and salinity profiles in the region of 
seasonal sea-ice are very difficult to capture in models, which could explain why the 
models display differing behavior. Moreover, the temperature and salinity distributions are 
not well observed, which highlights the importance of sustaining subsurface observations in 
the seasonal ice zone, such as the Southern Ocean under-ice Argo program, Marshall 
concluded.  

 

                                                      
11 Winds from the west toward the east in the mid-latitudes (between 30 and 60 degrees).  
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Volcanic eruptions may have significantly 
contributed to recent variability. Satellite data 
that were not available prior to the early 2000s 
show the influence of a series of eruptions after 
2005 (Solomon et al., 2011; Ridley et al., 
2014). A significant cooling (a few tenths of a 
degree) of tropical SSTs after the Nabro 
volcanic eruption in 2011 suggests a forced 
component to observed tropical sea surface 
temperature (SST) cooling (Santer et al., 2015).  

Solomon highlighted several reasons why the 
forcing from volcanic eruptions might be 
underestimated in models. Her own study of 
the optical depth of aerosols (a measure of the amount of light lost due to the presence of 
aerosols) concluded that the optical depth value post-2000 never reached zero, indicating 
that some aerosols were always present (Solomon et al., 2011). However, volcanic aerosols 
were set too low in Coupled Model Intercomparison Project Phase 5 (CMIP5) models, 
according to Solomon, which amounted to a net positive forcing in the models. Inclusion of 
more realistic forcing from background aerosols in the models has been shown to account 
for up to one-third of the recent GMST slowdown trend, or 0.05 °C (Solomon et al., 2011).  

In addition, recent work by Ridley et al. (2014) showed that satellite data do not measure 
the area between 15 km and the tropopause over the extratropics where a significant 
amount of volcanic material resides—as much as three times as what has been observed 
above that region by satellites. Thus, if LIDAR1 data and weather balloons were used to fill 
in the data in that region, aerosol values would increase significantly (Ridley et al., 2014). 
Promising new methods have been developed to study the tropopause, which has also 
been difficult to observe. However a systematic plan to improve observations there is 
needed, said Solomon.  

Stratospheric water vapor also could be playing a large role in GMST variability, according 
to Solomon.  Limited data before the mid-1990s suggest that stratospheric water vapor 
increased up to 2000, which could be an important factor in the accelerated warming from 
1980 to 2000 (Forster and Shine, 1999). Stratospheric water vapor significantly dropped 
after 2000 and stayed low through much of the 2000s (Figure 16). Average forcing for 
2005-2014 from observed stratospheric water vapor changes has been estimated at -0.04 
W/m2 (Gilford et al., 2015), which might represent as much as 25 percent of the total 
forcing from all factors during that time, according to Solomon.  

Regarding solar forcing, Solomon said that a symmetric cyclic forcing has little or no net 
effect on Earth’s energy budget. However, from 2000 to 2012, solar forcing was not a 
symmetric cycle. Hansen et al. (2011) estimated that there was about -0.1 W/m2 from solar 
forcing over that period. The solar drivers in the CMIP5 simulations were overestimated 
because the last solar-cycle minimum was lower and the present weak solar cycle started 
later than assumed at the time, which may have contributed to the models’ projection of 
warming (Schmidt et al., 2014).  

 

                                                      
1 Light Detection and Ranging (LIDAR) is a surveying technology that measures distance using laser 
light.  

Effects of Volcanic Eruptions on Climate 

Large volcanic eruptions can inject 
columns of sulfur-rich gases into the 
troposphere and stratosphere, and clouds 
of these gases can circle the globe within 
weeks of the volcanic activity. The ash 
particles from the eruptions tend to be 
large enough to fall out quickly, but the 
sulfurous gases form highly reflective 
acidic aerosols that can have an even 
larger and long-lasting cooling effect on 
the surface than the volcanic ash. For 
more, see Robock (2000).  
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Overcoming Data Limitations 
nderstanding of decadal climate variability is limited by the relatively short length 
of many climate records, meaning that only a few decadal cycles may be recorded 
(NRC, 1995). Limited spatial coverage also presents a challenge in that many 

parameters and processes are not fully characterized with available observations. Several 
participants discussed their work filling in observational records that can inform 
understanding of decadal variability.  

 

Gaining Insight from Paleoclimate Data 

The study of natural climate variability, in particular to meet the need to separate out 
human-induced climate effects, requires studying climate variability of the past, before 
humans played a role. Information about past climate conditions is contained in historical 
records and “proxy” indicators, such as polar ice caps, tree rings, and corals.  

Decadal variations in zonal wind strength can play a role in internal climate variability and 
consequently the rate of global temperature rise.  However, past observations of wind 
strength and direction for the Pacific Ocean are very sparse, said Diane Thompson from 
Boston University, who studies coral records to help fill in the gaps in information. Her 
studies have focused on the period 1910-1939, when  about one-third of the 20th century 
GMST warming occurred despite weak external forcing, suggesting that an important role 
by internal variability.  However, there are very few wind observations for this early 20th-
century warming period with which to test the role of tropical Pacific winds in this 
warming.  

Thompson studies corals that grew just outside of a westerly facing lagoon on Tarawa, an 
atoll in the central Pacific Ocean. Because the lagoon is shielded from the prevailing 
easterly trade winds, trace metals, particularly manganese, accumulate there gradually over 
time. Westerly winds associated with the onset of El Niño events produce wave action that 
releases manganese from the enriched lagoonal sediments, which is then incorporated into 
coral skeletons. The coral skeletons also record the warming and freshening (due to 
increased rainfall) that the resulting El Niño event brings to the island.  

Thompson presented a new coral record from 1890 to 2010 showing that ENSO-related 
westerly winds are associated with spikes in manganese (Figure 17; Thompson et al., 2015). 
These spikes of manganese in the coral skeleton (and thus bursts of winds from the west) 
were more frequent during the early 20th-century period of rapid warming and less 
frequent when warming leveled off in the mid-20th century. Thompson said that this wind 
reconstruction corroborates and extends the idea that periods of strong Pacific (easterly) 
trade winds (and less frequent pulses of westerly winds) are associated with cooler 
equatorial Pacific surface temperature and a slower rate of global warming. Conversely, 
periods of weaker trade winds (and more frequent pulses of westerly winds) are associated 
with warmer equatorial Pacific surface temperature and a faster rate of global warming. 
Thompson is conducting the same study in other equatorial atolls with westerly facing 
lagoons to replicate and extend this record and reconstruct past trade wind variability 
across the western tropical Pacific.  

Kim Cobb from Georgia Tech presented work using oxygen isotopes in corals to reconstruct 
tropical Pacific SST, precipitation, and salinity over the past 1,000 years. Cobb compared 
the coral records to the evolution of 20th-century Pacific Decadal Variability (PDV) to help 
separate natural variability from potential human-caused trends in Pacific climate. Cobb  

U 
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Toward Predictability 
he degree to which climate is predictable on decadal timescales has enormous 
societal relevance: For example, what if decision makers knew they had 30 years 
versus 10 years to prepare for the large shifts in drought frequency and intensity 

expected in western North America as a consequence of global warming? Many workshop 
participants agreed that better understanding of the mechanisms of decadal variability 
extends beyond diagnosing the causes of recent variability in global mean surface 
temperature (GMST) to providing the basis for predicting the evolution of climate over 
decadal timescales. Many participants pointed out that the ability to predict climate on 
decadal timescales, if possible, would help to direct investments in climate adaptation and 
more generally to guide longer-range planning.  

Although much progress has been made, predictive power is still generally lacking. For 
example, the Interdecadal Pacific Oscillation (IPO) phase could explain much of the 
slowdown in GMST rise, but it is not yet understood what triggers changes in IPO phases. 
Without a deeper understanding of the mechanisms that cause patterns such as the Pacific 
Decadal Oscillation (PDO), IPO, and Atlantic Multidecadal Oscillation (AMO), it will be 
difficult to predict how and when slowdown-like features will occur, and how these 
features will manifest regionally.  

Several workshop participants presented work that more directly addresses and tests our 
current predictive capabilities, specifically regarding how well current models could have 
predicted the most recent GMST slowdown trend, forecasting how long the current 
slowdown might last, and prospects for predictability given current observational networks.  

 

Predicting the Current GMST Trend 

Michael Mann from Pennsylvania State University presented recent work indicating that the 
answer to whether or not internal decadal variations are predictable can depend on the 
method used to separate internal variability from the forced trend (Frankcombe et al., 
2015). Linear de-trending1 of the observed record and other simplified differencing 
techniques are often used to perform this separation. In many experiments, residual time 
series that result from de-trending are assumed to represent internal variability. However, 
Mann found that such methodologies inflate the assessment of how predictable natural 
internal variability may be, because they incompletely remove the forced signal, which is 
more predictable.  

To reach this conclusion, Mann compared a series of Coupled Model Intercomparison 
Project Phase 5 (CMIP5) model runs to observations of the GMST. He and his co-authors 
first estimated the forced (external) component of recent decadal variability using historical 
runs from CMIP5. Such models exhibit internal decadal variability, but because the model 
runs are not initialized with observations, the decadal variability in each model run is just 
one possible manifestation of internal decadal variability in the Earth system. This model-
specific and uninitialized decadal variability is thus largely canceled out when the average 
of all such model runs is calculated, leaving the imprint of the forced climate response. 
Mann regressed the actual observations of GMST variability onto this model-estimated 

                                                      
1 De-trending is a statistical means of removing a trend from a model time series, usually used to 
remove a feature thought to distort or obscure the relationships of interest.  
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forced component of the recent evolution of GMST. The residual, or leftover, variability in 
the observations can be considered the fingerprint of natural, internal variability. The forced 
signal can then be scaled to match the historical time series of each individual ensemble 
member. This “scaling” method also provides estimates of model sensitivities to different 
types of external forcing (Frankcombe et al., 2015).  

When testing the predictive capabilities of this estimate of internal variability, Mann found 
results consistent with the recent slowdown period. However, this prediction performed 
better at long leads than the lower bound error attached to the external forcing component. 
This result suggests an issue with this method because the prediction cannot perform with a 
lower error than the lowest error of one of its components (Mann et al., 2016). Prediction 
depends critically on how estimates of the forced signal are made. His team’s prediction 
used a linear trend, which did not account for two large volcanic eruptions (El Chichon and 
Pinatubo) between 1982 and 2000. Thus, the underestimation of the forced signal masked 
itself as skill in the forecast.  

The application of this approach to actual observations indicates that the AMO signal is 
currently at shallow maximum, while the PDO signal is now recovering after trending 
sharply downward through 2012 (Steinman et al., 2015). Further work with hindcast 
experiments suggests that the AMO signal exhibits skillful decadal predictability; results are 
less promising for the PDO and Northern Hemisphere mean temperature variability series. 
Mann’s current forecast indicates an approach toward neutral conditions for the AMO over 
the next decade as the PDO continues toward positive values, suggesting a reversal of the 
GMST slowdown where internal variability will add to anthropogenic warming in the 
coming decades.   

 

How Long Will the Slowdown Period Last? 

Tom Knutson of the National Oceanic and Atmospheric Administration’s (NOAA’s) 
Geophysical Fluid Dynamics Laboratory (GFDL) estimated an upper bound for how long 
the current slowdown may last. To do so, he examined an ensemble of models within the 
CMIP5 experiment, used a method similar to that of Mann to extract the internal variability 
of the model, and chose the model (GFDL Coupled Physical Model [CM3]) that exhibited 
the strongest global mean internal decadal variability. Knutson chose to examine this model 
because it would have the greatest opportunity for long cool events.  

Knutson then created a number of synthetic global mean surface temperature time series. 
For each, he used the observations from 1900 to 2000. He then appended a simulated 
temperature time series for 2000-2050 created by combining the average CMIP5 (RCP8.5) 
projections for the forced component with strong internal variability from cooling events 
simulated in the CM3 model. Using the average transient climate response (TCR) from the 
CMIP5 models, the synthetic time series can produce a slowdown period like that 
experienced to date, but which typically lasts no longer than the current slowdown. 
Knutson then adjusted the TCR from 1.8°C (CMIP5 unadjusted rate), to 1.3°C (estimate from 
Otto et al., 2013), and finally to 0.9°C (the low-end sensitivity from Otto et al., 2013). With 
a lower TCR, models can produce slowdown periods that match observations to date and 
can extend to about 2030. Given the specific choices made—that is, a model more likely to 
produce cooling events and low-end sensitivity TCR—this would represent an estimated 
upper bound for the potential length of the current GMST slowdown period, while 
assuming no strong volcanic eruptions or strong declines of solar forcing.   

John Fyfe, Canadian Centre for Climate Modelling and Analysis (CCCma), presented some 
preliminary work by his group that suggests the slowdown has already ended. Unlike 
Knutson’s work with CMIP5 model runs, Fyfe’s unpublished estimates are based on the  



Copyright © National Academy of Sciences. All rights reserved.

Frontiers in Decadal Climate Variability:  Proceedings of a Workshop

Toward Pre

FIGURE 25
hand box), 
2015 (right
period). NO
average for
values. SO
represented

 

probability
interannua
reasonably
system’s a
about 0.4°
it is likely 
recent slow

Fyfe then 
change in
probabilit
in 2015 (a
that the cu
response i
are consis
end very s

 

Baylor Fox
observatio
predicting
affect how

edictability 

5 Observed (bla
and a 12-mont

t hand box—no
OTES: Anomalie
recast value ove
URCE: John Fyf
d by the Ministe

y of a shift in 
al climate fore
y well with th

ability to forec
C degrees wa
to be substan
wdown period

used a very la
 2015 (after a
ies were low: 
at the time of t
urrent negativ
in analogs fro
stent with an I
soon.  

x-Kemper of B
ons, and mode
g decadal clim
w much heat is

ack, data from H
th forecast from

ote that the x-ax
es are relative t
er the given 12
fe presentation,
er of Environme

the phase of t
ecast system (

he observed re
cast the IPO (F
armer over the
ntially warmer
d). 

arge ensemble
n 18-year slow
10 percent an

the workshop
e IPO phase e
m the large en
PO shift. Thus

Th

Brown Univer
eling of air-sea

mate variability
s stored in the

 

HadCRUT4.3) a
m Canadian sea
xis scale for the 
to 1921-2011 c
-month period,
, September 3, 
ent, 2016. 

the IPO gener
CanSIPS). Hin

ecord of the IP
Figure 25). Suc
e next year tha
r in the next ye

e of model run
wdown) and i
nd 3 percent, 
) and the fore
ended in 2015
nsemble and f
s, Fyfe conclu

e Role of Unc

rsity discussed
a exchange, a
y. Air-sea exc
e ocean; the e

and hindcast (g
sonal-to-interan
forecast period

climatology and
 and the error b
2015. © Her M

rated using the
ndcasts from t
PO, lending so
ch forecasts su
an conditions
ear than it has

ns to assess th
in 2020 (after 
respectively. 
cast for a very
5. He then loo
found that the

uded that the s

certainty 

d the uncertain
and what that 
hange proces

errors associate

gray) for GMST 
nnual predictio
d is months, wh
d shown as mon
bar shows the 5

Majesty the Que

e Canadian se
the forecast sy
ome confiden
uggest that GM
s over the past
s been on ave

he probability 
a 23-year slo
Given averag

y warm 2016,
oked at the te
e recent and fo
slowdown ha

nty in our und
uncertainty im

sses at a variet
ed with this te

anomaly from 
on system (red) 
hereas it is year
nthly averages.
5-95 percent ra
een in Right of C

easonal-to-
ystem match 
nce to the 
MST will be 
t 15 years (e. 
erage during t

of an IPO sig
owdown). Bot
ge temperatur
, Fyfe suggeste
mperature 
orecast trends
s ended or wi

derstanding, 
mplies for 
ty of scales 
erm are of a 

 
1979 to 2015 (
initialized July 

rs for the hindca
 The red dot is 

ange of forecast 
Canada, as 

g., 
he 

n 
h 
es 
ed 

s 
ill 

45 
 

(left 
31, 
ast 
the 

t 



Copyright © National Academy of Sciences. All rights reserved.

Frontiers in Decadal Climate Variability:  Proceedings of a Workshop

46  Frontiers in Decadal Climate Variability: Proceedings of a Workshop 
 

 
 

magnitude similar to or greater than 
the observed slowdown. Fox-
Kemper concluded that these 
uncertainties in the air-sea exchange 
rates, and consequently the global 
heat budget, should be reduced if 
we are to make robust predictions of 
decadal variability into the future.  

The Argo array of ocean 
measurements provides the best 
available estimates of ocean heat 
content today. Even with these 
measurements, the error in the 
ocean heat content is very large and 
currently hinders any possibility of 
balancing global energy budgets on 
interannual to decadal timescales, 
according to Fox-Kemper. Given the 
huge extent and spatial variability of 
conditions in the ocean, many more observations are needed to decrease this uncertainty 
and allow for true predictability. Denser measurements, or more clever ways of 
interpolating the data (see also Overcoming Data Limitations), are needed, said Fox-
Kemper, in order to estimate the ocean heat budget within an acceptable range of 
uncertainty. Similar uncertainties exist in current estimates of air-sea energy fluxes and top 
of the atmosphere (TOA) fluxes, and will also require more extensive observations (e. g., 
satellite measurements) in order to detect anomalies on these short timescales.  

In stochastic modeling2 of decadal variability, predictability can arise if there are 
connections between regions, that is, if one region responds with a lag to well-observed 
conditions in another region (e. g., if the poles lead the tropics or the tropics lead the poles). 
Fox-Kemper said that this type of predictability likely explains why linear inverse models 
can exhibit some skill. Although available and useful in some contexts, stochastic modeling 
offers little support for the ability to make dynamical predictions in novel regimes. In order 
to make progress on dynamical decadal prediction, parameters must be better known than 
at present (or better data-assimilation techniques must be applied) and currently un-
parameterized processes, particularly those affecting air-sea fluxes, must be represented. 
Fox-Kemper also noted that moving toward really useful decadal climate prediction would 
require a change of culture and orientation in the research community from exploration to 
operational forecasting (including the designation of forecast skill scores, validation, etc. ).  

Veronica Nieves explained that predicting GMST over the next two decades will require 
determination of the fate of heat that has been stored in the Pacific and Indian Oceans as a 
result of planetary warming. Some of this heat is already emerging toward the surface, 
which will drive GMST rise. One important question is whether some of the trapped heat 
will be absorbed into the deeper layers of the ocean and how that might affect global 
temperatures in the future. So far, there is not yet any observational evidence of large 
amounts of heat below 300 m, according to Nieves.  

                                                      
2 Stochastic modeling is used to estimate probability distributions of potential outcomes by allowing 
for random variation in one or more model input over time.  

About the Argo Array 

The Argoa array was initiated in the early 2000s and 
currently consists of 3,918 free-drifting instrumented 
profiling floats deployed to measure temperature and 
salinity profiles and velocity measurements of the 
upper 2,000 meters of the world’s oceans. Every 10-
12 hours, each float descends to a depth of about 
2,000m before ascending to the surface again. During 
the time it takes to return, the floats takes around 200 
measurements. Certain locations currently are 
supporting high densities of floats such as the 
Mediterranean Sea and Arabian Sea. Areas that are 
currently underrepresented are marginal seas, high-
latitude regions, and boundary current regions. To 
maintain the array, about 800 floats must be deployed 
every year (Roemmich et al., 2009).  

 

a See http://www. jcommops. org/board? =t=Argo.  
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Frontiers and Research 
Opportunities 

he last session of the workshop included a presentation of key messages developed 
over the course of the 2 days. Many of the messages have been discussed in depth 
previously in the report (see Box 1), and therefore are not repeated here. This section 

focuses on the discussions related to challenges and opportunities in observing and 
modeling decadal variability, as well as key knowledge gaps.  

 

Metrics of Decadal Climate Variability 

 Many participants discussed ways to measure and detect decadal variability. In particular, 
they questioned whether global mean surface temperature (GMST) should continue to be 
used as the prominent metric for change. There are large uncertainties in calculating GMST, 
largely because of the lack of station data coverage in the Arctic, Antarctic, and African 
regions, according to some participants. Although remote sensing can help to address these 
data gaps, ground-truthing would be necessary to verify these measurements. Another 
concern is that GMST only measures part of the global energy budget, and a relatively small 
component at that. As such, variations in GMST do not fully reflect the effects of human-
caused emissions on the climate system.  

Despite these shortcomings, most workshop participants agreed that it is important to 
monitor and understand surface temperature, given that people live on Earth’s surface and 
there are long records of this metric relative to others. Shang-Ping Xie also pointed out that 
regional affects and impacts are much more important than a global average for informing 
decision makers. Xie argued that use of GMST as a metric causes information loss. He said 
that “unpacking the data” reveals seasonal and regional information that may hold the key 
to identifying important mechanisms.  

In response to these limitations of GMST, some participants suggested alternative metrics 
that might be more accurate measures for global change. One possible metric is ocean heat 
content, particularly if expanded observations can help reduce current uncertainties. New 
observations would be most useful if the focus is on regions where heat uptake is thought to 
be the largest, including deep water formation regions in the high latitudes and the upper 
ocean. These observations would need to be more uniform, according to some participants, 
because Argo does not evenly sample the global ocean and thus is subject to sampling 
errors in large-scale averages or balances. Some participants noted that it would also be 
important to focus on where the change in heat uptake is thought to be largest (e. g., the top 
300 m) and to include deep Argo measurements for multi-decadal timescales. Other 
participants noted that available ocean observational data (ocean temperature and heat 
content estimates) are within acceptable uncertainty, particularly after 2005 (Nieves et al., 
2015).  

Other possible metrics include the top of atmosphere (TOA) radiative balance, where there 
are still considerable inaccuracies; sea ice extent, which is well constrained by satellites but 
thickness and ice volume have only been possible to observe recently (via ICESAT and 
CRYOSAT); and global mean sea level (and sea level pressure), which would integrate the 
ocean and cryosphere response. Participants noted that adequate monitoring of climate 
change for studying decadal variability would truly require a combination of metrics, for 
example, the use of global sea level rise coupled with GMST.  

T
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Confronting Models with Observations 

Regardless of the metric (or metrics) chosen to monitor global climate, the community’s 
understanding of drivers and mechanisms of decadal change is limited by the existing data 
record. Participants agreed that sustaining and enhancing observing networks to better 
monitor the global climate system is important, but synthesis of existing observations to 
better understand past variability and associated processes is generally lacking. 
Observations are required for the verification and testing of decadal predictions, but data 
coverage is inadequate and the length of records is short relative to what is needed to 
validate variability and dominant processes in existing models. Much of the workshop 
involved proposing potential mechanisms and drivers of change, which were analyzed in 
the context of a given time period. However, given the relative brevity of the instrumental 
era, very few samples exist to consider.  

Many workshop participants also recognized the need to continuously confront models 
with observations. Verification of model performance from observations is an important 
step toward developing prediction capability. Confronting models with observations is also 
important to distinguish forced and internal change through fingerprinting (e. g., Coupled 
Model Intercomparison Project Phase 6 [CMIP6] pacemaker experiments). Providing real-
time forcing datasets for better synthesis of the current state would also be beneficial in 
improving this capacity, according to some participants.  

 

Observational Challenges, Needs, and Opportunities 

Some individual participants identified additional observational challenges, needs, and 
opportunities: 

 The challenges in combining local measurements over ocean or land are worsened 
by differences in platforms and temporal integrity of local observations. Therefore, 
in addition to making new observations, maintenance of current observational 
systems is required at a minimum.  

 Paleo proxies offer many opportunities, although synthesis of existing records is 
currently under resourced and underutilized.  

 Sources of observations other than temperature could be used to improve 
understanding of decadal climate variability. Paleo records would provide isotopes 
(to compare to rainfall on land). Argo would provide not only temperature but also 
salinity and gradients of salinity.  

 Other specific areas that would benefit from improved observations include 
o geographical distribution of aerosols below 15 km to determine 

contribution of external forcing, and  
o ocean isotope geochemistry in the equatorial Pacific to determine El 

Niño/La Niña occurrences during the past 1,000 years.  

 
Modeling Challenges, Needs, and Opportunities 

Some individual participants identified additional modeling challenges, needs, and 
opportunities:  

 Regional patterns and cross-timescale interactions are important, but not all models 
can capture the full collection of processes and phenomena that have been 
deemed relevant to regional (or basin-scale) variability, which limits understanding.  

 It is important to focus efforts on improving model representation of the modes of 
variability that have the potential for predictability, although the questions may still 
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remain: why are some modes more or less predictable? What are the mechanisms 
leading to this predictability?  

 It is also important to employ a hierarchy of models—process-based, linear inverse 
models, and global climate models—to better explore the limits of predictability.  

 Models could be used to inform observational needs.  
 Other general areas for improvement identified include 

o model initialization (e. g., coupled assimilation),  
o reduced model uncertainties and bias (i. e., we do not yet know which 

biases affect variability on decadal timescales), and  
o better incorporation of known forcing and known uncertainties in forcing.  

 

Knowledge Gaps 

Although much progress is being made toward understanding decadal variability, as 
presented at the workshop, important questions remain, in particular in separating the 
contributions of each proposed driver. Many of the mechanisms examined might be driving 
decadal variability, but what is driving the mechanisms themselves? For example,  

 If Pacific Decadal Variability (PDV) is a combination of different modes, how can 
they be parsed out? What role does each play? What is the mechanism for each 
mode?  

 Although the North Atlantic Oscillation (NAO) seems to drive Atlantic 
Multidecadal Variability (AMV), what drives NAO multi-decadal variability? 

Other knowledge gaps include the following: 

 The connection between Arctic sea ice loss and mid-latitude weather, and the 
consequential regional effects;  

 The role of and quantitative data on stratification of the deep Southern Ocean; 
 The relative importance of atmospheric vs. oceanic bridges in linking stochastic 

processes at mid-to-high latitudes (how does local atmospheric forcing produce 
remote response(s) on decadal timescales?); and 

 How heat trapped in the ocean will be transported into the deeper layers in the one 
or two decades and how that might affect global temperatures in the future.  

 

Communication 

Some participants highlighted the importance of the community reaching agreement on 
how to quantify and communicate the concept of uncertainty to reduce confusion among 
the public, as well as among those studying climate variability. The participants 
emphasized the need for scientists to be clear and careful about their definitions and 
derivations of uncertainty, because differences can be easily misconstrued by the public as 
disagreement.  

Many participants believe it is important to not associate “variability” with “oscillation,” 
and in discussions of variability to provide quantitative clarity. In addition, the scientific 
community should define a minimum time interval over which to label a GMST trend, and 
potentially define trends associated with the adjectives “small,” “moderate,” “strong,” and 
“extreme.”  
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Way Forward 

Many participants suggested that the way forward includes improvement of the mechanistic 
understanding of the processes and drivers (both internal and external) that contribute to 
decadal climate variability, assessment of this understanding, followed by development of 
prediction and attribution capabilities.  

The emphasis on the recent slowdown period has stimulated a very useful area of research 
in decadal variability and predictability more broadly. Examination of the questions related 
to recent GMST trends can offer many scientific insights about the physical climate system. 
A key focus moving forward should be to use these insights to predict these longer time-
scale variations in Earth’s climate. Enhanced understanding of the dynamics and underlying 
physics of variability in the climate system would lead to higher quality information that 
could inform model development and validation, which the community can then use to 
make and verify predictions.  

Some participants reiterated the importance of developing predictive capability for decadal 
variability of seasonal-to-interannual coupled ocean-atmosphere phenomena, including 
weather, for selected geographical areas for specific phenomena: 

 El Niño/La Niña 
 Tropical Atlantic 
 Arctic sea ice 
 Southern Ocean/Antarctic sea ice (surface winds, ocean stratification) 
 Bottom- and intermediate-water formation  

They noted, however, that some studies of predictability of this most recent, as well as other 
slowdown periods, have met with some success (see Toward Predictability).  

In addition to improving prediction capabilities, addressing the gaps in knowledge of 
decadal climate variability could lead to better-informed climate change attribution studies, 
that is, the ability to detect the signals of anthropogenic climate change and internal 
variability distinctively for certain events with much greater accuracy. Both the prediction 
of decadal climate variability and attribution of specific climatic events and trends can be 
used to better inform decision makers.  
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Appendix A 
Statement of Task 

n ad hoc committee of the National Academies of Sciences, Engineering, and 
Medicine will plan a workshop to bring together atmospheric and ocean climate 
experts to review the current science for decadal climate variability. Workshop 

participants will be asked to:  

1. examine our understanding of the processes governing decadal-scale 
variability in key climate parameters, observational evidence of decadal 
variability and potential forcings, and model-based experiments to explore 
possible factors affecting decadal variations; 

2. identify key science, observing, and modeling gaps;  
3. consider the utility and accuracy of various observations for tracking long-term 

climate variability, anticipating the onset and end of hiatus regimes, and 
closing the long-term heat budget;  

4. consider the utility of hiatus regimes as a metric for evaluating performance of 
long-term climate models; and 

5. consider how best to communicate current understanding of climate 
variability, including potential causes and consequences, to non-expert 
audiences. 

A
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Appendix B 
Planning Committee Biographical 
Sketches 
Gerald A. Meehl (Chair) is a Senior Scientist at the National Center for Atmospheric 
Research. He received his PhD in climate dynamics from the University of Colorado. His 
research interests include studying the interactions between naturally occurring internal 
climate variability and changing anthropogenic and natural forcings, particularly in the 
Indo-Pacific region, and quantifying possible future changes of weather and climate 
extremes in a warmer climate. He has been an author on all five of the Intergovernmental 
Panel on Climate Change (IPCC) climate change assessment reports, serving as contributing 
author (1990), lead author (1995), coordinating lead author (2001, 2007), and most 
recently lead author on the near-term climate change chapter for the IPCC AR5 that was 
completed in 2013. He was a recipient of the Jule G. Charney Award of the American 
Meteorological Society in 2009 and was chair of the National Research Council Climate 
Research Committee. Meehl is a Fellow of both the American Meteorological Society and 
the American Geophysical Union and a Visiting Senior Fellow at the University of Hawaii 
Joint Institute for Marine and Atmospheric Research. He serves as co-chair of the 
Community Earth System Model Climate Variability and Change Working Group, has been 
a member and co-chair of the World Climate Research Programme (WCRP) Working Group 
on Coupled Models (WGCM), which coordinates the Coupled Model Intercomparison 
Project (CMIP) international global climate model experiments addressing anthropogenic 
climate change, and is currently co-chair of the WCRP Modelling Advisory Council.  

Kevin Arrigo is Donald & Donald M. Steel Professor in Earth Sciences, Victoria and Roger 
Sant Co-Directorship of the Earth Systems Program, at Stanford University where he has 
been on the faculty since 2005. He conducts laboratory and field studies, remote sensing, 
and computer modeling techniques to understand phytoplankton dynamics in regions 
ranging from the Southern Ocean to the Red Sea. In particular, he is interested in the role 
these organisms play in regulating the uptake of atmospheric carbon dioxide by the ocean, 
as well as in how they help structure marine ecosystems. He received his Ph. D. from the 
University of Southern California in 1992 and served as a member of the NRC Committee 
on a Science Plan for the North Pacific Research Board.  

Shuyi S. Chen is a Professor of Meteorology and Physical Oceanography at the Rosenthal 
School of Marine and Atmospheric Science (RSMAS) of the University of Miami. Her 
research interest focuses on air-sea interactions and tropical meteorology, including 
hurricanes and coastal hazards. She leads a research group that developed the University of 
Miami Coupled Model (UMCM), a new-generation, high-resolution, coupled atmosphere-
wave-ocean model for weather research and prediction. She has been a lead scientist of 
major observational field campaigns including the Hurricane Rainbands and Intensity 
Change Experiment (RAINEX) and the Coupled Boundary Layer Air-Sea Transfer (CBLAST)-
Hurricane in the Atlantic, the Impact of Typhoon on the Ocean in the Pacific (ITOP), and 
the Dynamics of the Madden-Julian Oscillation (DYNAMO) over the Indian Oceans. She 
served as an editor for Weather and Forecasting and on panels of experts that testified in the 
U. S. Congressional Hearings on weather and climate in 2008 and 2013. She is a Fellow of 
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the American Meteorological Society. Chen received her PhD from the Pennsylvania State 
University in 1990.  

Lisa Goddard is the Director of the International Research Institute for Climate and Society 
and an adjunct associate professor within the Department of Earth and Environmental 
Sciences of Columbia University. She has been involved in El Niño and climate forecasting 
research and operations since the mid-1990s. She has extensive experience in forecasting 
methodology and has published papers on El Niño, seasonal climate forecasting and 
verification, and probabilistic climate change projections. Currently leading the IRI’s effort 
on near-term climate change, Goddard oversees research and product development aimed 
at providing climate information at the 10-to 20-year horizon and how that low-frequency 
variability and change interacts with the probabilistic risks and benefits of seasonal-to-
interannual variability. Most of Goddard’s research focuses on diagnosing and extracting 
meaningful information from climate models and available observations. She also 
developed and oversees a new national postdoctoral program, the Post-docs Applying 
Climate Expertise Program (PACE), which explicitly links recent climate PhDs with 
decision-making institutions. Goddard holds a PhD in atmospheric and oceanic sciences 
from Princeton University and a BA in physics from the University of California at Berkeley.  

Robert Hallberg is an oceanographer and the Head of the Oceans and Ice-sheet Processes 
and Climate Group at NOAA’s Geophysical Fluid Dynamics Laboratory, and a lecturer on 
the faculty of Princeton University.  He has a PhD in oceanography from the University of 
Washington and a BA in physics from the University of Chicago. He has spent many years 
developing isopycnal (density) coordinate ocean models to the point where they are now 
valuable tools for coupled climate studies, including extensive work on the robustness of 
the models’ numerical techniques, and on the development or incorporation of 
parameterizations of a wide range of physical processes. The isopycnal coordinate ocean 
model that Dr. Hallberg developed provides the physical ocean component of the 
Geophysical Fluid Dynamics Laboratory’s comprehensive Earth System Model (ESM2G), 
which was used in the Intergovernmental Panel on Climate Change’s 5th Assessment 
Report, and its dynamic core is the basis for version 6 of the Modular Ocean Model 
(MOM6. Hallberg has used global-scale numerical ocean simulations to study topics as 
varied as the dynamics of Southern Ocean eddies and their role in the ocean’s response to 
climate, sources of steric sea level rise, and the fate of the deep plumes of methane and oil 
from the Deepwater Horizon oil spill. Hallberg has been actively involved in three ocean 
Climate Process Teams, studying Gravity Current Entrainment, Eddy-Mixed Layer 
Interactions, and Internal Wave Driven Mixing.  These teams aim to improve the 
representation of these processes in climate-scale models, based on the best understanding 
obtained from observations, process studies, and theory. He is currently working on 
coupling a dynamic ice-sheet and ice-shelf model with high-resolution versions of GFDL’s 
coupled climate models for improved prediction of sea-level rise.  

David Halpern is a Senior Research Scientist at the National Aeronautics and Space 
Administration/California Institute of Technology Jet Propulsion Laboratory. He analyses 
satellite and in-situ observations to improve understanding of coupled ocean-atmosphere 
interaction and climate phenomena, such as El Niño and La Niña, intertropical 
convergence zone, monsoon, and wind-driven ocean upwelling.  He developed techniques 
to record in-situ observations of near-surface meteorological and upper-ocean circulation 
variables in both shallow and deep-sea environments.  He is experienced in ocean 
circulation and ocean-atmosphere interaction research (more than 300 publications with 
50 single- or first-author peer-review papers); has managed national and international 
programs; has taught graduate and undergraduate courses at the California Institute of 
Technology, the University of California Los Angeles, and the University of Washington, 
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and has participated in numerous committees (20 as chair or co-chair, 9 as member of 
executive board, and 45 as member.  Halpern had the privilege to serve in the White 
House Office of Science and Technology Policy and NASA’s Earth Science Division.  At 
OSTP, he co-founded the National Science and Technology Council Joint Subcommittee on 
Ocean Science and Technology and Task Group on Global Earth Observations. One of his 
major interests is enhanced integrated global ocean and atmosphere observations and 
large-scale process-oriented experiments to improve the accuracy of predictions of the 
global integrated Earth system.  Halpern was co-chair of the Group on Earth Observations 
Science and Technology Committee and currently serves as co-chair of the GEO Data 
Sharing Working Group.  He served two terms on the National Research Council’s Advisory 
Panel for the Tropical Ocean and Global Atmosphere.  He was editor of Geophysical 
Research Letters and is editor of Eos. Currently, he represents the Intergovernmental 
Oceanographic Commission to the Coordination Group for Meteorological Satellites, serves 
on the Joint Technical Commission for Oceanography and Marine Meteorology Task Team 
for Satellites, is chair of the Committee on Space Research (COSPAR) Task Group on the 
Group on Earth Observations (GEO), and represents the United States in the United Nations 
Bureau for the World Ocean Assessment. He is a Fellow of the American Association for 
the Advancement of Science, American Geophysical Union, American Meteorological 
Society, California Academy of Sciences, and International Academy of Astronautics. 
Halpern received a BSc. honors degree in geology and physics from McGill University and 
a PhD in physical oceanography from MIT.  
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Appendix C 
Workshop Agenda 

 
FRONTIERS IN DECADAL CLIMATE VARIABILITY: A WORKSHOP 

September 3-4, 2015 
Jonsson Conference Center Carriage House 

314 Quisset Ave., Woods Hole, MA 
 

THURSDAY, SEPTEMBER 3, 2015 
 
7:30 A. M.  Shuttle pick up at Inn on the Square/Holiday Inn 
8:00 A. M.  Breakfast at Jonsson Center  
8:30 A. M.  Welcome, Introduction, Purpose of Workshop  Jerry Meehl      
9:00 A. M.  Communication and framing of panel talks Susan Hassol and Brian Kahn 
 

PANEL 1: PACIFIC DECADAL CLIMATE VARIABILITY 
Moderator: Jerry Meehl 

 
9:10 A. M.  Presentations   

 Tropical Pacific decadal variability and the global warming hiatus  
 Shang-Ping Xie, Scripps 

 Comparing simulated and observed and decadal trends  John Fyfe, CCCma 
 Tropical Pacific decadal variability: Oceanic processes and the possible important role of 

climate noise  Antonietta Capotondi, CIRES/NOAA 
 Pacific decadal climate variability: Phenomenon, evidence, and impacts  

 Yochanan Kushnir, LDEO  
10:10 A. M.  Discussion   
10:40 A. M.  Break  
 

PANEL 2: ATLANTIC DECADAL CLIMATE VARIABILITY 
Moderator: Robert Hallberg 

 
11:00 A. M.  Presentations 

 Robust and non-robust aspects of AMOC intrinsic variability and mechanisms in the 
Community Earth System Model (CESM)  Gokhan Danabasoglu, NCAR 

 Understanding tropical Atlantic decadal variability: The role of tropical Pacific versus 
subpolar Atlantic  Mingfang Ting, LDEO 

 The impact of the North Atlantic Oscillation on climate through its influence on the Atlantic 
Meridional Overturning Circulation  Tom Delworth, GFDL 

 Predictability of the recent slowdown and subsequent recovery of large-scale surface 
warming using statistical methods Michael Mann, Penn State 

12:00 P. M.  Discussion   
12:30 P. M.  Lunch           
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PANEL 3: ASPECTS OF DECADAL VARIABILITY—PALEO EVIDENCE AND EXTERNAL FORCING 
Moderator: David Halpern 

 
1:30 P. M.  Presentations  

 Decadal variability in Pacific trade winds inferred from coral Mn/Ca: Implications for the 
rate of global warming Diane Thompson, Boston University 

 Paleo-constraints on decadal climate variability in the tropical Pacific 
 Kim Cobb, Georgia Tech 

 Radiative forcing contributions to changes in recent rates of global warming  
 Susan Solomon, MIT 

 How long could the current hiatus in global warming last? Tom Knutson, GFDL 
2:30 P. M.  Discussion  
3:00 P. M.  Break 
 

 PANEL 4: OBSERVATIONS, OCEAN MIXING, AND DECADAL CLIMATE VARIABILITY 
Moderator: Kevin Arrigo 

 
3:30 P. M.  Presentations 

 Impact of data coverage and quality control on global surface temperature trends: Part 1—
Overview and sea surface temperature aspects 
 Huai-min Zhang, NOAA 

 Impact of data coverage and quality control on global surface temperature trends: Part 2—
Land surface air temperature aspects Matthew Menne, NOAA  

 Pacific temporarily hid heat below surface  Veronica Nieves, JPL 
 Understanding decadal climate variability using formal model-data synthesis  

 Patrick Heimbach, UT Austin 
4:30 P. M.  Discussion  
5:00 P. M.      Adjourn 
5:30 P. M.      Working dinner/Lobster boil 
 

Friday, September 4, 2015 
 
8:00 A. M.  Breakfast  
8:30 A. M.  Convene and plan for day Jerry Meehl  
 

PANEL 5: AIR-SEA INTERACTION AND OCEAN PROCESSES CONTRIBUTING TO DECADAL CLIMATE 
VARIABILITY 

Moderator: Shuyi Chen 
 
8:30 A. M.  Presentations  

 Consequences of uncertainty in air-sea exchange  Baylor Fox-Kemper, Brown 
 The ocean’s role in polar climate change: asymmetric Arctic and Antarctic 

responses to greenhouse gas and ozone forcing John Marshall, MIT 
 Arctic changes and mid-latitude weather linkages in the coming decades 
 James Overland, PMEL 
 Indian Ocean variability and its impact on regional climate 

  Caroline Ummenhofer, WHOI 
9:30 A. M.  Discussion  
10:00 A. M.  Break  
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BREAKOUT GROUPS 
 

10:30 A. M.  Instruction for breakouts  Jerry Meehl 
1. Observations of decadal climate variability  

a. Co-leads: Patrick Heimbach, Caroline Ummenhofer 
b. Tasks: 

i. Identify observational gaps  
ii. Consider the utility and accuracy of various observations for tracking long-term 

climate variability, anticipating the onset and end of hiatus regimes, and closing 
the long-term heat budget 

 
2. Modeling decadal climate variability   

a. Co-leads: Gokhan Danabagoslu, Shang-Ping Xie 
b. Tasks: 

i. Identify modeling gaps  
ii. Consider the utility of hiatus regimes as a metric for evaluating performance of 

long-term climate models 
 
12:00 P. M.  Lunch 
1:00 P. M.  Breakout groups report back  Jerry Meehl 

 15 minutes per breakout group; 45 minutes discussion 
   

PANEL 6: SYNTHESIS AND COMMUNICATING DECADAL CLIMATE VARIABILITY 
Moderator: Lisa Goddard 

 
2:15 P. M.  Key workshop messages   Lisa Goddard and David Halpern 
2:30 P. M.  Communicating climate science  

 Susan Hassol, Climate Communication 
 Brian Kahn, Climate Central 

 Discussion  
 
3:30 P. M.   Discussion of products  Jerry Meehl, Amanda Purcell, and committee members 
4:00 P. M.  Workshop adjourns 
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Appendix D 
Workshop Participants 
Kevin Arrigo, Stanford University  
Antonietta Capotondi, Cooperative Institute for Research in Environmental Sciences 

(CIRES)/National Oceanic and Atmospheric Administration (NOAA) 
Shuyi S. Chen, University of Miami 
Kim Cobb, Georgia Institute of Technology 
Gokhan Danabasoglu, National Center for Atmospheric Research (NCAR) 
Tom Delworth, Geophysical Fluid Dynamics Laboratory (GFDL) 
Baylor Fox-Kemper, Brown University  
John Fyfe, Canadian Centre for Climate Modelling and Analysis 
Lisa Goddard, International Research Institute for Climate and Society (IRI) 
Robert Hallberg, NOAA 
David Halpern, National Aeronautics and Space Administration Jet Propulsion Laboratory 

(NASA JPL) 
Susan Hassol, Climate Communication 
Patrick Heimbach, University of Texas at Austin 
Brian Kahn, Climate Central 
Tom Knutson, GFDL 
Yochanan Kushnir, Lamont Doherty Earth Observatory (LDEO) 
James Overland, NOAA Pacific Marine Environmental Laboratory (PMEL) 
Michael Mann, Pennsylvania State University 
John Marshall, Massachusetts Institute of Technology (MIT) 
Gerald A. Meehl, NCAR 
Matthew Menne, NOAA  
Veronica Nieves, NASA JPL 
Susan Solomon, MIT 
Diane Thompson, Boston University 
Mingfang Ting, LDEO 
Jim Todd, NOAA 
Caroline Ummenhofer, Woods Hole Oceanographic Institution 
Shang-Ping Xie, Scripps Institution of Oceanography 
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Appendix E 
Panel Presentation Abstracts 
Tropical Pacific decadal variability and the global warming hiatus: 
Shang-Ping Xie, Scripps Institution of Oceanography, UC San Diego 

Global mean surface temperature (GMST) is known to rise following a major El Niño event. 
The tropical Pacific cooling that began in the late 1990s emerged as the leading 
mechanism for the slowdown of the GMST increase for the recent 15 years. An important 
question is how we can test this hypothesis among other mechanisms for the global 
warming hiatus. Much attention has been given to the annual mean GMST, but it is too 
narrow a focus to quantify the relative importance of the zoo of mechanisms.  

We need to go beyond the annual mean GMST by unpacking it into seasonal and spatial 
dimensions and develop distinctive fingerprints of these various mechanisms. The 
pacemaker experiments with a GFDL climate model reveal the following fingerprints of the 
tropical Pacific cooling on the recent hiatus:  

• The seasonal contrast between the GMST decrease in boreal winter and increase in 
summer;  

• The decadal droughts over the Southwest U. S. (including California and Texas) for 
the past 15 years.  

We show that the seasonal fingerprint is present in all the GMST datasets including the one 
recently released from NOAA.  

We also need to develop metrics that distinguish forced change and internal variability. For 
example, planetary/ocean heat uptake is an important aspect of the transient climate 
response to anthropogenic radiative forcing, but is it also an essential element of internal 
decadal variability as is widely assumed in hiatus studies? Modeling studies suggest that the 
answer is probably no. This has important implications for observations.   

Comparing simulated and observed and decadal trends: 
John Fyfe, CCCma 

Should it be done, and if so how do we separate, quantify and communicate the influences of 
uncertainty (model, forcing and observational) and internal variability? This question will be 
considered in the context of decadal trends in Pacific SST, GMST and Arctic sea ice extent. I'll 
touch on the Karl et al. result, and finish with a forecast for the end of the current GMST hiatus.  

Tropical Pacific decadal variability: Oceanic processes and the possible important role of 
climate noise: 
Antonietta Capotondi, University of Colorado/CIRES and NOAA/ESRL/Physical Sciences 
Division 

In this talk I will start by reviewing some of the mechanisms proposed for tropical Pacific 
decadal variability, with emphasis on oceanic processes. Focus will be on the 1976/77 
climate shift, as an example. I will then discuss the possible influence of the slowly varying 
mean tropical climate state upon ENSO characteristics, and discuss some of the proposed 
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theories for the resulting decadal ENSO modulation. Finally, using a Linear Inverse 
Modeling (LIM) approach I will show that apparent changes in ENSO characteristics over 
decadal periods are within the expected range of noise-driven variations. Thus, we cannot 
reject the null hypothesis that decadal ENSO modulation may merely result from sampling 
variability, with important implications for predictability.  

Pacific decadal climate variability: Phenomenon, evidence, and impacts 
Yochanan Kushnir, Lamont-Doherty Earth Observatory, Columbia University 

The concept of Pacific Decadal Climate Variability (PDV) was introduced in a series of 
high-visibility articles during 1990s (though J. Namias already discussed evidence for the 
existence of such low-frequency behavior in 1978. The phenomenon (initially referred to as 
the Pacific Decadal Oscillation—PDO) was identified when studying climate variability in 
the North Pacific and contrasting it with the strong interannual variability (ENSO) in the 
tropics. The PDV was found connected with important environmental impacts in the 
countries surrounding the Pacific Basin and with changes in ocean circulation patterns and 
ocean biology. The PDV however also affects the tropics as a slow and relatively small 
(compared to ENSO) fluctuation in the tropical Pacific east�west SST gradient (referred to as 
the Inter-Decadal Pacific Oscillation, IPO), consistent variations in the strength of the trade 
winds, and consequently changes in convection and precipitation patterns. These changes 
in surface variables and tropical diabatic heating gradients make PDV an important forcing 
agent of a global climate dynamical response. Broadly speaking, the PDV is considered as 
an internally driven natural mode of variability though it may also be invoked by slow 
changes in external forcing. It is not fully understood whether there is a single unique form 
of PDV. Also, because of the relatively short instrumental record it’s not clear what the time 
scale of PDV is, if there is a distinct one, and what controls this time scale. Moreover, 
already early after it was defined, the PDV was identified as associated with what appeared 
to be a perplexing, distinct rapid shift (around 1976) in North Pacific sea level pressure, 
winds, ocean temperatures and ocean currents. Paleoclimate proxies provide useful 
information in better characterizing the time scale and spatial pattern of PDV.  

Robust and non-robust aspects of AMOC intrinsic variability and mechanisms in the 
Community Earth System Model (CESM) 
Gokhan Danabasoglu, National Center for Atmospheric Research 

Atlantic Meridional Overturning Circulation (AMOC) is presumed to play a major role in 
decadal and longer time scale climate variability and in prediction of the earth’s future 
climate on these time scales. The primary support for such a prominent role for AMOC 
comes from coupled model simulations. They show rich AMOC variability, but time scales 
of variability and mechanisms differ substantially among models. A topic that remains 
largely unexplored is the role that an ocean model’s subgrid scale parameterizations play in 
AMOC intrinsic variability. Here, we present an assessment of the impacts of several, 
loosely-constrained ocean model parameter choices on AMOC characteristics in CESM 
with the primary goal of identifying both robust and non-robust elements of AMOC 
variability and mechanisms. Specifically, we change parameter values in mesoscale, sub-
mesoscale, vertical mixing, and lateral viscosity parameterizations in the ocean model. The 
characteristics of AMOC from these simulations are then compared with a three-member 
ensemble of experiments in which the initial atmospheric temperature field is slightly 
perturbed. We find that both the amplitude and time scale of AMOC variability differ 
considerably among all these experiments with dominant time scales of variability ranging 
from decadal to centennial. There are also substantial differences in the relative 
contributions of temperature and salinity anomalies to the positive density anomalies 
created in the model’s deep-water formation (DWF) region prior to AMOC intensifications. 
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Nevertheless, we identify some robust elements of AMOC variability mechanisms. These 
include: i) The Labrador Sea is the key region with upper-ocean density and boundary layer 
anomalies preceding AMOC anomalies; ii) Enhanced Nordic Sea overflow transports do not 
lead to an increase in AMOC maximum transports; iii) Persistent positive phase of the North 
Atlantic Oscillation plays a significant role in setting up the density anomalies that lead to 
AMOC intensification via surface buoyancy fluxes; and iv) After AMOC intensification, 
subsequent weakening is due to advection of positive temperature anomalies into the 
model’s DWF region.  

Understanding tropical Atlantic decadal variability: The role of tropical Pacific versus 
subpolar Atlantic: 
Mingfang Ting, Lamont-Doherty Earth Observatory, Columbia University 

The Atlantic Multidecadal Variability (AMV) has been shown to affect precipitation 
globally.  In particular, the frequency and severity of droughts across North America has 
been modulated by the phase of the Atlantic Multidecadal Variability (AMV) over the 
historical period. The decadal oscillations in U. S. West hydroclimate (associated with 
ENSO) reach extreme severity during the warm and neutral phases of AMV, such as in the 
1930s and the 1950s when the U. S. Great Plains and the Southwest experienced the 
extremely dry conditions of the Dust Bowl and the persistent Texas drought, respectively. 
When AMV was in its cold phase in the early 1900s and from 1965 to 1995 droughts were 
less frequent or severe. The hydroclimate impacts of AMV are believed to be dominated by 
its tropical component through changes in tropical convection and related circulation 
changes.  

This study explores the inter-connection between the tropical Pacific and North Atlantic 
using both available historical observations and the Climate Model Intercomparison Project 
Phase 5 (CMIP5) climate models. The interconnection between the tropical Pacific and the 
tropical Atlantic on decadal time scale is found to be crucial in realistically representing the 
hydroclimate impacts of the AMV on North America. We found that decadal ENSO 
variability plays a more dominant role in CMIP5 models compared to observations in 
causing the decadal tropical Atlantic SST anomalies. Depending on how decadal tropical 
Atlantic SST anomalies are generated in CMIP5 models, whether it is dominated by ENSO 
conditions in the tropical Pacific or subpolar SST anomalies, the warm AMV-dry North 
America relationship as observed can be severely underestimated in models. By examining 
how the tropical component of the AMV is generated, it provides a useful metric for 
evaluating the realism of the model AMV as well as understanding its physical mechanisms.  

The impact of the North Atlantic Oscillation on climate through its influence on the 
Atlantic Meridional Overturning Circulation: 
Tom Delworth, GFDL 

Prominent multidecadal climate variations have been observed over the Atlantic and Arctic 
oceans and surrounding continents over the last 130+ years. Here we use climate model 
simulations to explore the possible role of multidecadal variations of the North Atlantic 
Oscillation (NAO) for this observed variability through its effect on the Atlantic Meridional 
Overturning Circulation (AMOC. Perturbation experiments are conducted in which patterns 
of anomalous fluxes corresponding to the NAO are added to the model ocean; in 
companion experiments no such fluxes are added. Differences between the experiments 
illustrate how the model ocean and climate system respond to the NAO. A positive phase 
of the NAO tends to strengthen the AMOC by extracting heat from the subpolar gyre, 
thereby increasing deepwater formation, horizontal density gradients, and the AMOC.  
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The flux forcings have the spatial structure of the observed NAO, but the amplitude of the 
forcing varies in time. The temporal variation of the imposed fluxes is one of the following 
types: (a) sudden switch on of the flux forcing, (b) vary the amplitude of the flux forcing 
sinusoidally in time with distinct periods varying from 2 to 200 years, (c) vary the flux 
forcing to match the observed time sequence of the NAO over the 20th and early 21st 
centuries. In the idealized experiments we show that the response of the AMOC to NAO 
variations is small at short time scales, but increases up to the dominant time scale of 
internal AMOC variability (20-30 years for the models used. The amplitude of the response 
of the AMOC, and associated oceanic heat transport, is approximately constant as the time 
scale of the forcing is increased further. In contrast, the response of other properties, such as 
hemispheric surface air temperature or Arctic sea ice, continues to increase as the time 
scale of the forcing becomes progressively longer. The larger response of temperature and 
sea ice is associated with an increased impact of radiative feedback processes at 
progressively longer time scales. The impact of the NAO on the AMOC and climate is a 
function of the dominant time scale of internal AMOC variability, as well as the 
background mean state. In the experiments using the observed sequence of the NAO we 
estimate the contribution of NAO-induced AMOC anomalies to climate variations in the 
20th and early 21st centuries. We show that NAO-induced AMOC variations may have 
contributed substantially to multidecadal warming and cooling of the Northern 
Hemisphere, including cooling from the 1960s through the 1980s, and warming from the 
1980s through the 2000s. We further show that such NAO-induced AMOC variations could 
have contributed to the observed reduction of sea ice in the 1990s and 2000s, as well as a 
possible remote influence on the Southern Ocean, including sea ice.  

Predictability of the recent slowdown and subsequent recovery of large-scale surface 
warming using statistical methods 
Michael E. Mann, Pennsylvania State University 

The recent, temporary slowdown in large-scale surface warming has been attributed to both 
external and internal sources of climate variability. Using semi-empirical estimates of the 
internal low-frequency variability component in Atlantic, Pacific, and Northern Hemisphere 
surface temperature in concert with statistical hindcast experiments, we investigate whether 
the slowdown and its recent recovery were predictable in advance, and conclude that they 
likely were not. The internal variability of the North Pacific, which played a critical role in 
the slowdown, does not appear to be predictable in advance using statistical forecast 
methods. An additional minor contribution from the North Atlantic, by contrast, appears to 
exhibit some predictability.  While our analyses focus on combining semi-empirical 
estimates of internal climatic variability with statistical hindcast experiments, some possible 
implications for initialized predictions are also discussed.  

Decadal variability in Pacific trade winds inferred from coral Mn/Ca: Implications for the 
rate of global warming 
Diane M. Thompson 

Decadal variations in zonal wind strength and direction may play an important role in 
modulating the El Niño-Southern Oscillation (ENSO) and the rate of global temperature 
rise. However, historical observations of tropical Pacific winds are limited, and existing 
datasets disagree on long-term trends, emphasizing the need for independent data to assess 
zonal wind variability.  Earlier work suggested that the ratio of manganese to calcium in 
corals from islands with westerly facing lagoons may record westerly winds associated with 
the onset and maintenance of El Niño events. These westerly wind anomalies trigger strong 
physical mixing and release of Mn from the Mn-enriched lagoonal sediments, which is 
incorporated into the coral skeleton. Here I present a new ~90 year Mn/Ca record from 
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Tarawa that provides further support for the link between the frequency of westerly winds 
and coral Mn/Ca.  This new Mn/Ca record provides a means to assess westerly wind 
anomalies before the mid-20th century, when instrumental data from the tropical Pacific 
are scarce. Along with a Sr/Ca-SST reconstruction from the eastern tropical Pacific, this 
wind reconstruction corroborates and extends the idea, developed from models and 
analyses of the well-observed late 20th century, that periods of strong Pacific trade winds 
are associated with cooler equatorial Pacific SSTs and a slower rate of global warming, and 
vice versa. By adding Mn/Ca to the suite of coral tracers measured for paleoclimate 
reconstructions from appropriate sites, we can expand our view of past climate variability 
to include westerly winds, along with the more commonly reconstructed variables of SST 
and salinity. Development of additional Mn/Ca records from other equatorial atolls with 
westerly facing lagoons will be used to obtain a broader multivariate perspective on the 
dynamics of recent decadal climate variability.  

Paleo-constraints on decadal climate variability in the tropical Pacific 
Kim Cobb, Georgia Tech 

The tropical Pacific is a prominent source of decadal-scale global climate variability, with a 
variety of coupled ocean-atmosphere dynamical processes giving rise to the Pacific 
Decadal Oscillation (PDO; Mantua et al., 1997) and the North Pacific Gyre Oscillation 
(NPGO; Di Lorenzo et al., 2008. Indeed, Pacific decadal variability has been implicated in 
the observed slow-down of global surface temperature over the last decade (Kosaka and 
Xie, 2013; England et al., 2014; Nieves et al., 2015), which is turn may be linked to the 
magnitude and spatial footprint of recent ENSO extremes (e. g. McPhaden and McClurg, 
2011. Here we assess the characteristics of Pacific decadal variability over the last 
millennium using coral paleoclimate records of SST and hydrology, and compare these 
records to the evolution of 20th century Pacific decadal variability, with an eye towards 
isolating potential anthropogenic trends in Pacific climate.  

Radiative forcing contributions to changes in recent rates of global warming: 
Susan Solomon, Massachusetts Institute of Technology 

This talk will briefly survey what is known and what is not known about radiative forcing 
changes during the period from 2000-2014, and will summarize how these can contribute 
to the decadal rates of global warming. In addition to greenhouse gases, changes in 
volcanic aerosol impacts, solar forcing, stratospheric water vapor and tropospheric aerosols 
will be discussed. Implications for future observational needs will be briefly described.  

How long could the current hiatus in global warming last? 
Thomas R. Knutson, NOAA GFDL 

Global mean temperature did not rise steadily since the late 1800s but rose primarily during 
two rapid warming periods (early 20th century and late 20th century) which were separated 
by a pause in warming from about 1940-1970. Could another such multidecadal pause 
occur at the beginning of the 21st century, and if so by what processes could this occur? At 
one extreme, the current global warming “hiatus” could end shortly (or may have already 
ended. However, at the other extreme we ask: How long could the current hiatus in global 
warming potentially last? To explore this issue, we analyze the internal multidecadal 
variability of global mean temperature in the GFDL CM3 model control run and test the 
potential influence of such internal variability on 21st century global mean temperature 
evolution, including current projections of future warming from anthropogenic forcings (e. 
g., CMIP5 models. We also explore the plausibility of CM3’s multidecadal variability based 
on comparisons with historical trends.  
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Impact of data coverage and quality control on global surface temperature trends: Part 1—
Overview and sea surface temperature aspects 
Huai-Min Zhang, NOAA National Centers for Environmental Information (NCEI) 

The recent paper by Karl et al. (2015) highlighted the importance of data homogenization 
and bias correction in resolving the so-called global “Warming Hiatus” from observational 
analyses. In this talk we present the details of these impacts on the global and regional 
surface temperature trends in various time scales. The impacts are studied using the data 
quality control and bias correction processes used in the NOAA’s centennial time scale sea 
surface temperature (SST) products, as well as the data gaps in the majorly available 
international datasets. Additional analysis of subsurface observations, mainly obtained by 
the Argo floats in recent decades, also shows continued warming over previous decades. 
Lastly, we analyze the consistency and discrepancy of satellite and in-situ based SSTs since 
the early 1980s when satellite data became available, and clarify their utilization limitations 
in determining the trends and other variabilities such as El Niño signals.  

Impact of data coverage and quality control on global surface temperature trends: Part 2—
Land surface air temperature aspects 
Matt Menne, NOAA National Centers for Environmental Information (NCEI) 

Land surface temperature air temperature (LSAT) records have been compiled from a 
variety of sources over the past few decades. Here we discuss the recent effort to improve 
land surface station temperature data holdings known as the International Surface 
Temperature Initiative (ISTI) and how these holdings are being used to produce a new 
NOAA analysis of land surface air temperature since the late 19th Century. A comparison 
of this latest analysis to other datasets will be discussed as well as efforts to extend global 
surface air temperature analysis over the Arctic Ocean.   

Pacific temporarily hid heat below surface 
Veronica Nieves, JPL 

The recent hiatus in global warming was caused by a sequestration of heat in the 
subsurface tropical Pacific waters and was symptomatic of decadal variability. This natural 
variability is superimposed on the long-term human-caused warming trend, and dominates 
on a decadal time scale with large regional societal impacts. Heat traveled west in the 
subsurface 100-300 m depth layer (from the eastern Pacific to the central/western Pacific 
and Indian Ocean) due to unusually strong trade winds during the early 21st century. The 
important question is whether the trapped heat will move up to the surface when the 
Pacific changes to a warm phase or will it be absorbed into the deeper layers of the ocean 
in the next decade or two. If it mixes down, the significant unknown is how rapidly it will 
be vertically mixed into the ocean and how it will moderate global temperatures.   

Understanding decadal climate variability using formal model-data synthesis 
Patrick Heimbach, UT Austin 

Formal model-data synthesis (loosely termed data assimilation) seeks to optimally combine 
information contained in observations from heterogeneous (and sparse) data streams and 
models that obey known conservation laws exactly. Different techniques lead to different 
pitfalls in the use of these products. In particular, so-called ocean reanalyses, like 
atmospheric reanalyses do not conserve properties over time, in particular heat and 
freshwater, thus rendering their use for assessing decadal changes in properties 
problematic. After illustrating the issue, we present results from a global bidecadal (1992-
2011) dynamically consistent ocean state estimate, with an emphasis on global heat 
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content changes and vertical redistribution of heat. Both show large lateral and vertical 
variations. Net vertical cooling at depth may be an expression of long term oceanic 
memory processes. We discuss challenges for designing an observing system suitable for 
understanding decadal climate variability and future requirements for estimation systems.  

Consequences of uncertainty in air-sea exchange 
Baylor Fox-Kemper, Brown University 

The heat capacity of the ocean greatly exceeds that of the atmosphere, which leads to 
significant exchanges and variability of the coupled system on seasonal and longer 
timescales. I will describe some of the key processes in the air-sea exchange, emphasizing 
in particular those processes which are poorly observed and modeled—due to their 
intermittency and small scale—and insufficiently understood to be parameterized. I will 
then estimate their cumulative effect on the global heat budget and surface temperature, 
emphasizing the decadal and longer timescales.  

The ocean’s role in polar climate change: asymmetric Arctic and Antarctic responses to 
greenhouse gas and ozone forcing.  
John Marshall, Massachusetts Institute of Technology 

In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the 
Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. 
We argue here that inter-hemispheric asymmetries in the mean ocean circulation, with 
sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence 
the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) 
forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, 
while the amplitude of GHG forcing has been similar at the poles, significant ozone 
depletion only occurs over Antarctica. We suggest that the initial response of SST around 
Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced 
warming trend as upwelling of sub-surface warm water associated with stronger surface 
westerlies impacts surface properties.  

Arctic changes and mid-latitude weather linkages in the coming decades: 
James Overland, NOAA/Pacific Marine Environmental Laboratory, Seattle, WA 

Ongoing temperature changes in the Arctic are large relative to lower latitudes; a process 
known as Arctic Amplification. Arctic temperatures have increased 2-3 times the rate of 
mid-latitude temperatures relative to the late 20th century, due to multiple interacting 
feedbacks driven by modest global change. Even if global temperature increases are 
contained to +2° C by 2040, Arctic (North of 60° N) monthly mean temperatures in fall will 
increase by +5° C. The Arctic is very likely to be sea ice free during summer before 2040 
and snow cover will be absent in May and June on most land masses. Thus for the next few 
decades out to 2040, continuing rapid environmental changes in the Arctic are very likely, 
despite mitigation activities, and the appropriate response is to plan for adaptation to meet 
mean and extreme event changes. Mitigation is essential to forestall further disasters in the 
second half of the century. Whether these changes impact mid-latitude extreme weather 
events is complex and controversial, as the time period for observing such linkages is short 
[<10 years] and involves understanding direct forcing by Arctic changes on a chaotic 
climatic system. There is general agreement that there will be no net mid-latitude cooling, 
only a potential for impacting severe events. Linkages will be regional, episodic, and based 
on amplification of existing weather patterns such as Greenland atmospheric blocking and 
the Siberian High. It is important to note such future rapid Arctic amplification and the 
potential for environmental surprises.  
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Indian Ocean variability and its impact on regional climate 
Caroline C. Ummenhofer, Woods Hole Oceanographic Institution 

The Indian Ocean has sustained robust surface warming in recent decades, with warming 
rates exceeding those of other tropical ocean basins. However, it remains unclear how 
multi-decadal variability in upper-ocean thermal characteristics has contributed to these 
Indian Ocean trends. Temperatures and heat content exhibit extensive subsurface cooling 
for much of the tropical Indian Ocean since the 1950s, likely due to remote Pacific wind 
changes associated with the Interdecadal Pacific Oscillation/Pacific Decadal Oscillation. As 
such, multi-decadal wind forcing has masked increases in Indian Ocean heat content due 
to thermal forcing since the 1960s. However, wind and thermal forcing both contribute 
positively to Indian Ocean heat content since the turn of the century. Drastic increases in 
the heat content in coming decades are therefore likely; in fact, they have been implicated 
to play a role in the recent warming hiatus.  

Multi-decadal variability in Indian Ocean characteristics has implications for regional 
climate: strength of the Austral-Asian monsoon system, regional hydroclimate, sea-level 
variations, and marine ecosystems are modulated by Indian Ocean variability. Better 
decadal predictions of Indian Ocean properties are therefore likely of considerable benefit 
to vulnerable societies in Indian Ocean rim-countries.  

Science is not finished until it is communicated 
Susan Hassol, Climate Communication 

The enormous societal implications of climate science make effective communication 
essential. Deeply ingrained misconceptions and decades of disinformation make this more 
challenging, particularly when communicating about the complex topic of decadal climate 
variability. Providing context for this topic by reiterating what is known about recent 
climate change can help avoid people becoming confused or misled by details and 
uncertainties. This discussion will focus on ways to provide the needed context and 
communicate what is known about both human-induced climate change and natural 
decadal climate variability in simple, clear terms. Coming at the end of the workshop, it 
will be informed by the presentations and discussions of the latest science.  
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Appendix F 
Song Lyrics1 
To the tune of “Let’s Call the Whole Thing Off” by George and Ira Gershwin: 
 
Things have come to a slight impasse, 
Global warming has been flat, 
Some blame it on sampling 
Others say “no, it’s not that. ” 
Goodness knows what the truth will be  
But it’s only temporary 
Meanwhile the skeptics global warming shun 
Something must be done, 
 
Don’t say hiatus and don’t say hi-ah-tus! 
That’s what we called it, and look what it got us, 
Hiatus, hi-ah-tus, the skeptics, they got us, 
Let’s call the whole thing off.  
 
He says Pacific and she says Atlantic 
Where did the heat go, it’s making us frantic 
Atlantic, Pacific, the heat stores terrific 
Let’s call the whole thing off.  
But oh, even where the data’s sparse, we’ll find a little hint 
We’ll use stats and modeling to parse a fingerprint 
 
IPO, AMV, or PDV do you favor? 
Could be the ENSO, in one or more flavor, 
The AMOC, the tropics, there’s so many topics, 
Let’s call the whole thing off.  
But Oh, if we call the whole thing off, then we must part 
And oh! If we have to part, 
Then that might break my heart.  
So you take the paleo, you take the poles 
You look at forcings to fill in the holes 
For we know we need each other, 
So we better call the calling off off! 
Let’s call the whole thing off! 

                                                      
1 These lyrics were written by rapporteur Nancy Huddleston and performed at the working dinner on 
September 3, 2015. Lyrics do not represent the views of all workshop participants, the planning 
committee, or the National Academies of Sciences, Engineering, and Medicine.  
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