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Preface

Advanced computing, a term used in this report to include both com-
pute- and data-intensive capabilities, is used to tackle a rapidly growing 
range of challenging science and engineering problems. The National 
Science Foundation (NSF) requested that the National Academies of Sci-
ences, Engineering, and Medicine carry out a study examining anticipated 
priorities and associated trade-offs for advanced computing in support of 
NSF-sponsored science and engineering research. The study encompasses 
advanced computing activities and programs throughout NSF, including, 
but not limited to, those of its Division of Advanced Cyberinfrastructure. 
The statement of task for the full study is given in Box P.1. In response to 
this request, the Academies established the Committee on Future Direc-
tions for NSF Advanced Computing Infrastructure to Support U.S. Sci-
ence in 2017-2020 (see Appendix C). 

The first phase of the study culminated in an interim report issued 
in 2014, Future Directions for NSF Advanced Computing Infrastructure to 
Support U.S. Science and Engineering in 2017-2020: An Interim Report, that 
identified key issues and discussed potential options. The interim report 
set forth nine major areas where the committee sought input from the 
scientific computing community (Box P.2). The committee received over 
60 comments from individuals, research groups, and organizations (listed 
in Appendix A) in response to its call for comments. It gathered further 
input through additional data-gathering sessions convened by the com-
mittee and listed in Appendix B. This is the committee’s final report. As 
this study was being completed, an executive order was issued estab-
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lishing a National Strategic Computer Initiative (NSCI), a measure that 
underscores the importance of advanced computing for the nation in 
general—and for science in particular. This report briefly discusses NSF’s 
role in the NSCI; see Section 2.7 and Box 2.5.

William D. Gropp and Robert J. Harrison, Co-Chairs
Committee on Future Directions for NSF Advanced Computing 

Infrastructure to Support U.S. Science in 2017-2020

BOX P.1 
 Statement of Task

A study committee will examine anticipated priorities and associated trade-
offs for advanced computing in support of National Science Foundation (NSF)-
sponsored science and engineering research. Advanced computing capabilities 
are used to tackle a rapidly growing range of challenging science and engineering 
problems, many of which are compute-, communications-, and data-intensive as 
well. The committee will consider:

1.	 The contribution of high-end computing to U.S. leadership and compe-
tiveness in basic science and engineering and the role that NSF should play in 
sustaining this leadership; 

2.	 Expected future national-scale computing needs: high-end requirements, 
those arising from the full range of basic science and engineering research sup-
ported by NSF, as well as the computing infrastructure needed to support ad-
vances in modeling and simulation as well as data analysis;

3.	 Complementarities and trade-offs that arise among investments in sup-
porting advanced computing ecosystems; software, data, communications;

4.	 The range of operational models for delivering computational infrastruc-
ture, for basic science and engineering research, and the role of NSF support in 
these various models; and 

5.	 Expected technical challenges to affordably delivering the capabilities 
needed for world-leading scientific and engineering research.

An interim report will identify key issues and discuss potential options. It might 
contain preliminary findings and early recommendations. A final report will include 
a framework for future decision making about NSF’s advanced computing strategy 
and programs. The framework will address such issues as how to prioritize needs 
and investments and how to balance competing demands for cyberinfrastructure 
investments. The report will emphasize identifying issues, explicating options, and 
articulating trade-offs and general recommendations.

The study will not make recommendations concerning the level of federal 
funding for computing infrastructure.
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BOX P.2 
Questions Posed to the Scientific Community 

in the Committee’s Interim Report

The committee explored and sought comments on the following:

•	 How to create advanced computing infrastructure that enables integrated 
discovery involving experiments, observations, analysis, theory, and simulation; 

•	 Technical challenges to building future, more capable advanced comput-
ing systems and how NSF might best respond to them; 

•	 The computing needs of individual research areas; 
•	 How to balance resources and demand for the full spectrum of systems, 

for both compute- and data-intensive applications, and the impacts on the research 
community if NSF can no longer provide state-of-the-art computing for its research 
community; 

•	 The role of private industry and other federal agencies in providing ad-
vanced computing infrastructure; 

•	 The challenges facing researchers in obtaining allocations of advanced 
computing resources and suggestions for improving the allocation and review 
processes; 

•	 Whether wider and more frequent collection of requirements for advanced 
computing could be used to inform strategic planning and resource allocation, how 
these requirements might be used, and how they might best be collected and 
analyzed; 

•	 The tension between the benefits of competition and the need for continu-
ity as well as alternative models that might more clearly delineate the distinction 
between performance review and accountability and organizational continuity and 
service capabilities; and 

•	 How NSF might best set overall strategy for advanced computing-related 
activities and investments as well as the relative merits of both formal, top-down 
coordination and enhanced, bottom-up process.
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Summary

The National Science Foundation (NSF) asked the National Acad-
emies of Sciences, Engineering, and Medicine to provide a framework 
for future decision making about NSF’s advanced computing strategy 
and programs. Advanced computing refers here to the advanced techni-
cal capabilities, including computer systems, software, and expert staff, 
that support a wide range of science and engineering research and that 
are of a large enough scale and cost that they are typically shared among 
multiple researchers, institutions, and applications. Advanced computing 
encompasses support for data-driven research as well as modeling and 
simulation.

The recommendations of the Committee on Future Directions for NSF 
Advanced Computing Infrastructure to Support U.S. Science in 2017-2020 
are aimed at achieving four broad goals: (1) positioning the United States 
for continued leadership in science and engineering, (2) ensuring that 
resources meet community needs, (3) aiding the scientific community 
in keeping up with the revolution in computing, and (4) sustaining the 
infrastructure for advanced computing.

POSITION THE UNITED STATES FOR CONTINUED 
LEADERSHIP IN SCIENCE AND ENGINEERING

Large-scale simulation and the accumulation and analysis of massive 
amounts of data are revolutionizing many areas of science and engineer-
ing research. Increased advanced computing capability has historically 

1
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enabled new science, and many fields today rely on high-throughput 
computing for discovery. Modeling and simulation, the historical focus 
of high-performance computing, is a well-established peer of theory and 
experiment. Data-driven research, a complementary “fourth paradigm” 
for scientific discovery, needs data-intensive computing capabilities 
and resources. To support this research, NSF is a major provider of the 
advanced computing used for U.S. basic science, not only for its own 
grantees but also in support of research sponsored by other agencies, 
such as the National Institutes of Health and the Department of Energy. 

Meeting future needs will require systems that support a wide range 
of advanced computing capabilities, including large-scale parallel sys-
tems and data-intensive systems. Approaches that combine large-scale 
computing and data resources in “converged” systems can play a role; 
more specialized systems may also be needed to meet some requirements. 
Commercial cloud computing offers certain advantages and can play a 
role in NSF’s advanced computing strategy. However, NSF computing 
centers already exploit economies of scale and load sharing, and commer-
cial cloud providers do not currently support very large, tightly coupled 
parallel applications, especially for high-end simulation workloads. For 
other applications, especially data-centric workloads and communities 
that share data sets, cloud computing is positioned today to play a grow-
ing role. 

Recommendation 1. The National Science Foundation (NSF) should 
sustain and seek to grow its investments in advanced computing—to 
include hardware and services, software and algorithms, and exper-
tise—to ensure that the nation’s researchers can continue to work at 
frontiers of science and engineering.

Recommendation 1.1. NSF should ensure that adequate advanced 
computing resources are focused on systems and services that sup-
port scientific research. In the future, these requirements will be 
captured in its roadmaps. 

Recommendation 1.2. Within today’s limited budget envelope, this 
will mean, first and foremost, ensuring that a predominant share 
of advanced computing investments be focused on production 
capabilities and that this focus not be diluted by undertaking too 
many experimental or research activities as part of NSF’s advanced 
computing program. 

Recommendation 1.3. NSF should explore partnerships, both strate-
gic and financial, with federal agencies that also provide advanced 
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computing capabilities, as well as federal agencies that rely on NSF 
facilities to provide computing support for their grantees.

Recommendation 2. As it supports the full range of science require-
ments for advanced computing in the 2017-2020 time frame, the 
National Science Foundation (NSF) should pay particular attention 
to providing support for the revolution in data-driven science along 
with simulation. It should ensure that it can provide unique capa-
bilities to support large-scale simulations and/or data analytics that 
would otherwise be unavailable to researchers and continue to moni-
tor the cost-effectiveness of commercial cloud services.

Recommendation 2.1. NSF should integrate support for the revo-
lution in data-driven science into NSF’s strategy for advanced 
computing by (a) requiring most future systems and services and 
all those that are intended to be general purpose to be more data-
capable in both hardware and software, (b) expanding the portfo-
lio of facilities and services optimized for data-intensive as well 
as numerically intensive computing, and (c) carefully evaluating 
inclusion of facilities and services optimized for data-intensive 
computing in its portfolio of advanced computing services.

Recommendation 2.2. NSF should (a) provide one or more sys-
tems for applications that require a single, large, tightly coupled 
parallel computer and (b) broaden the accessibility and utility of 
these large-scale platforms by allocating high-throughput as well 
as high-performance workflows to them.

Recommendation 2.3. NSF should (a) eliminate barriers to cost-
effective academic use of the commercial cloud and (b) carefully 
evaluate the full cost and other attributes (e.g., productivity and 
match to science workflows) of all services and infrastructure mod-
els to determine whether such services can supply resources that 
meet the science needs of segments of the community in the most 
effective ways.

Maintaining leadership in advanced computing will be challenging. 
The resources available for advanced computing are inherently limited 
by research budgets, even as the demand for computing is growing and 
changing rapidly across the scientific enterprise and as the gap between 
supply and demand grows. If NSF is unable to increase or better leverage 
its resources for advanced computing, it seems inevitable that it will be 
unable to meet future demand for computational resources and will have 
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to reduce the size of the very largest research projects that are supported 
by its advanced computing facilities.

ENSURE THAT RESOURCES MEET COMMUNITY NEEDS

Despite various ongoing efforts to collect and understand require-
ments from some science communities and occasional efforts to chart 
strategic directions, the overall planning process for advanced comput-
ing resources and programs is not systematic or uniform and is not vis-
ibly reflected in NSF’s strategic planning, despite its foundation-wide 
importance. The creation of an ongoing and more regular and structured 
process would make it possible to collect requirements, roll them up, and 
prioritize advanced computing investments based on science and engi-
neering priorities. 

Recommendation 3. To inform decisions about capabilities planned 
for 2020 and beyond, the National Science Foundation (NSF) should 
collect community requirements and construct and publish roadmaps 
to allow it to better set priorities and make more strategic decisions 
about advanced computing.

Recommendation 3.1. NSF should inform its strategy and deci-
sions about investment trade-offs using a requirements analysis 
that draws on community input, information on requirements con-
tained in research proposals, allocation requests, and foundation-
wide information gathering. 

Recommendation 3.2. NSF should construct and periodically 
update roadmaps for advanced computing that reflect these 
requirements and anticipated technology trends to help it set pri-
orities and make more strategic decisions about science and engi-
neering and to enable the researchers that use advanced computing 
to make plans and set priorities.

Recommendation 3.3. NSF should document and publish on a reg-
ular basis the amount and types of advanced computing capabili-
ties that are needed to respond to science and engineering research 
opportunities.

Recommendation 3.4. NSF should employ this requirements anal-
ysis and resulting roadmaps to explore whether there are more 
opportunities to use shared advanced computing facilities to sup-
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port individual science programs such as Major Research Equip-
ment and Facilities Construction projects.

The roadmaps would reflect the visions of the science communities 
supported by NSF, including both large users and those (in the “long-
tail”) with more modest needs. The goal is to develop brief documents 
that set forth the overall strategy and approach rather than high-resolu-
tion details. They would look roughly 5 years ahead and provide a vision 
that extends about 10 years ahead. The roadmaps would help inform 
users about future facilities, guide investment, align future procurements 
and services with requirements, and enable more effective partnerships 
within NSF and with other federal agencies.

The roadmapping and requirements process could be strengthened 
by developing a better understanding of the relationships among require-
ments, the costs of different approaches (roadmap choices), and science 
benefits. Such information would inform program managers about the 
total cost of proposed research, help focus researcher attention on effec-
tive use of these valuable shared resources, and encourage more efficient 
software and research techniques.

Recommendation 4. The National Science Foundation (NSF) should 
adopt approaches that allow investments in advanced computing 
hardware acquisition, computing services, data services, expertise, 
algorithms, and software to be considered in an integrated manner.

Recommendation 4.1. NSF should consider requiring that all pro-
posals contain an estimate of the advanced computing resources 
required to carry out the proposed work and creating a standard-
ized template for collection of the information as one step of poten-
tially many toward more efficient individual and collective use of 
these finite, expensive, shared resources. (This information would 
also inform the requirements process.)

Recommendation 4.2. NSF should inform users and program man-
agers of the cost of advanced computing allocation requests in 
dollars to illuminate the total cost and value of proposed research 
activities.

AID THE SCIENTIFIC COMMUNITY IN KEEPING 
UP WITH THE REVOLUTION IN COMPUTING

Computer architectures are changing rapidly along with program-
ming models to use the hardware, creating challenges for the science 
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community, which depends on and has invested significantly in science 
codes written for yesterday’s systems. The rise of data-intensive science 
brings with it new software and systems. Better software tools, technical 
expertise, and more flexible service models (ways of delivering software 
and computing resources) can improve the productivity of researchers 
both today and in the future. 

Recommendation 5. The National Science Foundation (NSF) should 
support the development and maintenance of expertise, scientific 
software, and software tools that are needed to make efficient use of 
its advanced computing resources.

Recommendation 5.1. NSF should continue to develop, sustain, 
and leverage expertise in all programs that supply or use advanced 
computing to help researchers use today’s advanced computing 
more effectively and prepare for future machine architectures.

Recommendation 5.2. NSF should explore ways to provision 
expertise in more effective and scalable ways to enable researchers 
to make their software more efficient; for instance, by making more 
pervasive the XSEDE (Extreme Science and Engineering Discovery 
Environment) practice that permits researchers to request an allo-
cation of staff time along with computer time.

Recommendation 5.3. NSF should continue to invest in and sup-
port scientific software and update the software to support new 
systems and incorporate new algorithms, recognizing that this 
work is not primarily a research activity but rather is support of 
software infrastructure.

If NSF was to invest solely in production, it would miss some key 
technology shifts and its facilities would quickly become obsolete. By tak-
ing a leadership role in defining future advanced computing capabilities 
and helping researchers use them more effectively, NSF can help ensure 
that its software and systems remain relevant to its science portfolio, that 
researchers are prepared to use the systems, and that investments across 
the foundation are aligned with this future.

Recommendation 6. The National Science Foundation (NSF) should 
also invest modestly to explore next-generation hardware and soft-
ware technologies to explore new ideas for delivering capabilities that 
can be used effectively for scientific research, tested, and transitioned 
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into production where successful. Not all communities will be ready 
to adopt radically new technologies quickly, and NSF should provi-
sion advanced computing resources accordingly. 

SUSTAIN THE INFRASTRUCTURE FOR ADVANCED COMPUTING

Expertise and other long-lived assets, such as the physical infrastruc-
ture for computing centers, are an essential part of a robust and sustain-
able advanced cyberinfrastructure. In recent years, NSF has adopted a 
strategy for acquiring computing facilities and creating centers and pro-
grams to operate and support them that relies on irregularly scheduled 
competition among host institutions roughly every 2 to 5 years and on 
equipment, facility, and operating cost sharing with those institutions. 
Mounting costs and budget pressures suggest that a strategy that relies 
on state, institutional, or vendor cost sharing may no longer be viable. 
Repeated competition can lead to proposals designed to win a competi-
tion rather than maximize scientific returns. Moreover, it is important 
to ensure the development and retention of the talent that is needed to 
effectively manage systems, support users, and evolve software to make 
effective use of today’s and tomorrow’s architectures. 

Recommendation 7. The National Science Foundation (NSF) should 
manage advanced computing investments in a more predictable and 
sustainable way. 

Recommendation 7.1. NSF should consider funding models 
for advanced computing facilities that emphasize continuity of 
support.

Recommendation 7.2. NSF should explore and possibly pilot the 
use of a special account (such as that used for Major Research 
Equipment and Facilities Construction) to support large-scale 
advanced computing facilities.

Recommendation 7.3. NSF should consider longer-term commit-
ments to center-like entities that can provide advanced computing 
resources and the expertise to use them effectively in the scientific 
community. 

Recommendation 7.4. NSF should establish regular processes for 
rigorous review of these center-like entities and not just their indi-
vidual procurements.
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Managing its advanced computing investments in a more predictable 
and sustainable way, as it does for other long-term (10 years or more) 
infrastructure, not only would benefit the researchers currently supported 
by NSF’s advanced computing programs, but also would provide oppor-
tunities to apply the same expertise more broadly within NSF, such as 
the large-scale science projects that have long-term needs for advanced 
computing. It would also create new opportunities for NSF’s advanced 
computing programs to address long-term storage, preservation, and 
curation challenges for data.
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Overview and Recommendations

The National Science Foundation (NSF) requested that the National 
Academies of Sciences, Engineering, and Medicine carry out a study 
examining anticipated priorities and associated trade-offs for advanced 
computing in support of NSF-sponsored science and engineering research. 
In this study, advanced computing is defined as the advanced technical 
capabilities, including both computer systems and expert staff, that sup-
port research across the entire science and engineering spectrum and 
that are of a scale and cost so great that they are typically shared among 
multiple researchers, institutions, and applications.1 As used here, the 
term encompasses support for data-driven research as well as model-
ing and simulation.2 Data have always been an important element of 
advanced computing, but the emergence of “big data” has created new 
opportunities for research and stimulated new demand for data-intensive 
capabilities. The scope of the study encompasses advanced computing 
activities and programs throughout NSF, including, but not limited to, 

1  Also critical to NSF-supported advanced computing activities are wide-area and campus 
networks, which provide access and the infrastructure necessary to bring together data 
sources and computing resources where they cannot practically be colocated. Both types 
of networks have been supported by NSF programs. Understanding future networking 
needs would involve examination of a much wider range of activities across NSF—not just 
advanced computing, including many aspects of cyberinfrastructure, but also planned major 
experimental facilities—and is therefore not addressed in this report.

2  Throughout this report, “computing” should be read broadly as encompassing data 
analytics and other data-intensive applications as well as modeling and simulation and other 
numerically intensive or symbolic computing applications.

9
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those of its Division of Advanced Cyberinfrastructure. The statement of 
task for the Committee on Future Directions for NSF Advanced Comput-
ing Infrastructure to Support U.S. Science in 2017-2020 is given in Box P.1. 
This final report from the study follows the committee’s interim report 
issued in 2014.3

The committee’s recommendations are aimed at achieving four broad 
goals: (1) position the United States for continued leadership in science 
and engineering, (2) ensure that resources meet community needs, (3) aid 
the scientific community in keeping up with the revolution in computing, 
and (4) sustain the infrastructure for advanced computing.

1.1  POSITION THE UNITED STATES FOR CONTINUED 
LEADERSHIP IN SCIENCE AND ENGINEERING

NSF’s investments in advanced computing are critical enablers of the 
nation’s science leadership. Advanced computing at NSF has been used 
to understand the formation of the first galaxies in the early universe 
and to analyze the impacts of cloud-aerosol-radiation on regional climate 
change. Advanced computing has been a key to award-winning science, 
including the 2011 Nobel Prize in physics and the 1998 and 2013 Nobel 
Prizes in chemistry (see Box 3.2). Its use has moved outside of traditional 
areas of science to understanding social phenomenon captured in real-
time video streams and the connection properties of social networks.

Large-scale simulation, the accumulation and analysis of massive 
amounts of data, and other forms of advanced computing are all revolu-
tionizing many areas of science and engineering research. Modeling and 
simulation, the historical focus of high-performance computing systems 
and programs, is a well-established peer of theory and experimentation. 
Increased capability has historically enabled new science, and many fields 
increasingly rely on high-throughput computing. 

Data-driven research has emerged as a complementary “fourth par-
adigm” for scientific discovery4 that needs data-intensive computing 
capabilities and resources configured for the transfer, search, analysis, 
and management of scientific data, often under real-time constraints. 
Even in modeling and simulation applications, data-intensive aspects are 
increasingly important as large data sets are produced by or incorporated 
into the simulations. Both data-driven and computationally driven sci-

3  National Research Council, Future Directions for NSF Advanced Computing Infrastructure to 
Support U.S. Science and Engineering in 2017-2020: An Interim Report, The National Academies 
Press, Washington, D.C., 2014.

4  J. Gray, T. Hey, S. Tansley, and K. Tolle, “Jim Gray on eScience: A Transformed Scientific 
Method,” in The Fourth Paradigm: Data-Intensive Scientific Discovery, Microsoft Research, 
Redmond, Wash., 2009.
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entific processes involve a range of algorithms and workflows that may 
be compute-intensive or bandwidth-intensive, making simple machine 
characterizations difficult, especially given that science and engineering 
discovery frequently integrates all of these. As a result, leadership in 
frontier science also requires that the United States maintain leadership 
in both simulation science and data-driven science.

NSF has been very successful in making advanced computing 
resources, especially in support of modeling and simulation, available to 
an expanding set of disciplines supported by NSF, and has an opportunity 
to assert similar leadership in data-driven science. NSF is a major pro-
vider of computing support for the nation’s science enterprise, not just for 
the research programs it directly supports. For example, about half of the 
computer resources allocated under the Extreme Science and Engineer-
ing Discovery Environment (XSEDE) program are to non-NSF-supported 
researchers, including 14 percent for work supported by the National 
Institutes of Health. Moreover, the science and engineering community 
and other federal agencies that support scientific research look to NSF to 
provide leadership and to play crucial roles in developing and applying 
advanced computing, including advancing the intellectual foundations 
of computation, creating practical tools, and developing the workforce.

An exponential rate of growth in demand is now observed that is 
outpacing the rate of growth in advanced computing resources. At the 
same time, the cost of provisioning facilities has risen because demand 
is rising faster than technology improvements are now able to deliver at 
fixed price. The rise in data-driven science and increasing need for both 
numerically intensive and data-intensive capabilities (Recommendation 
2) create further demand for resources. 

Production support is needed for software (including pre-installed 
popular applications and libraries) as well as hardware, to include com-
munity software as well as frameworks, shared elements, and other 
supporting infrastructure. NSF’s Software Infrastructure for Sustained 
Innovation (SISI) program is a good foundation for such investments. 
However, SISI needs to be grown in partnership with NSF’s science direc-
torates to a scale that matches need, and then be sustained essentially 
indefinitely; the United Kingdom’s Collaborative Computational Proj-
ects (CCPs) provide examples of the impact and successful operation of 
community-led activities that now span nearly four decades. Production 
support is further needed for data management. Curation, preservation, 
archiving, and support for sharing all need ongoing investment.

Recommendation 1. The National Science Foundation (NSF) should 
sustain and seek to grow its investments in advanced computing—to 
include hardware and services, software and algorithms, and exper-
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tise—to ensure that the nation’s researchers can continue to work at 
frontiers of science and engineering. 

An important element of fulfilling its role of maintaining the nation’s 
science leadership and achieving the vision in NSF’s Cyberinfrastructure 
Framework for 21st Century Science is providing the research community 
with access to the needed advanced computing capabilities. This will 
include

•	 Providing access to sufficient computing facilities and services to 
support NSF’s portfolio of science and engineering research, including 
both aggregate capacity and large-scale parallel computers and software 
systems;

•	 Assuming leadership in providing access to general-use hardware 
and software that integrate support for data-driven science as well as 
large hardware and software systems focused on data-driven science; and

•	 Assuming leadership for data-driven science, first by integrating 
support for data-driven science into most or all of the systems it provides 
support for on behalf of the research community and next by deploying 
advanced computing systems focused on data-driven science. 

Recommendation 1.1. NSF should ensure that adequate advanced 
computing resources are focused on systems and services that sup-
port scientific research. In the future, these requirements will be 
captured in its roadmaps. 

Recommendation 1.2. Within today’s limited budget envelope, this 
will mean, first and foremost, ensuring that a predominant share 
of advanced computing investments be focused on production 
capabilities and that this focus not be diluted by undertaking too 
many experimental or research activities as part of NSF’s advanced 
computing program. 

Recommendation 1.3. NSF should explore partnerships, both strate-
gic and financial, with federal agencies that also provide advanced 
computing capabilities, as well as federal agencies that rely on NSF 
facilities to provide computing support for their grantees.

Today’s landscape for advanced computing is far richer in terms 
of an expanding range of needs and in terms of technical opportunities 
for meeting those needs. Key elements of this landscape include the 
following:
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•	 Scientists supported by NSF advanced computing increasingly 
include a “long tail” of users with more modest requirements for advanced 
computing than those with research applications that require parallel 
computers with a large number of tightly coupled processors. The latter 
applications cannot be run (or run with acceptable efficiency) on smaller 
systems or on current commercial cloud systems. 

•	 Increased capability has historically enabled new science (see 
examples in Box 3.1). Without at least some growth in capability, research-
ers pursuing science that requires capability computing will have diffi-
culty making advances.

•	 Many fields increasingly rely on high-throughput computing that 
requires a greater aggregate amount of computing than a typical univer-
sity can be expected to provide. Such applications can be run efficiently on 
both large and medium-size machines. Although a large-scale system can 
run many smaller jobs with good efficiency, systems capable of running 
only smaller jobs cannot run large-scale jobs with acceptable efficiency. It 
is not necessary or more efficient to restrict large, tightly coupled systems 
to run only large, highly scalable applications. Modestly sized jobs may 
still require tight connections, even though at smaller scale, and the utili-
zation of large systems is improved with a mixture of job sizes.

•	 The rise in the volume and diversity of scientific data represents a 
significant disruption and opportunity for science and engineering and 
for advanced computing. Data-intensive advanced computing represents 
a significant opportunity for U.S. science and engineering leadership. 
Some data-intensive applications can be accommodated in more data-
capable general-purpose platforms; other applications will require spe-
cifically configured systems. Supporting data-driven science also places 
additional demands on wide-area networking to share scientific data and 
raises challenges around long-term storage, preservation, and curation. It 
also requires diverse and hard-to-find expertise.

•	 Large systems are more accessible to a larger group of users; both 
cloud technologies and science gateways lower the barriers to access 
applications at scale.

•	 Cloud computing has shown that access can be “democratized”: 
many users can access a large system for small amounts of total time in a 
fashion not supported by current approaches to allocating supercomputer 
time. Moreover, cloud computing users can leverage extensive libraries 
of software tools developed by both commercial providers and indi-
vidual scientists. In many ways, this ability for a far larger community 
to access the power of large-scale systems, whether it is a conventional 
supercomputer or a commercial cloud configured to support some aspects 
of scientific discovery, represents a qualitative change in the computing 
landscape. However, NSF computing centers already exploit economies of 
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scale and load sharing, and commercial cloud providers do not currently 
support very large, tightly coupled parallel applications, especially for 
high-end simulation workloads. However, this area is under rapid devel-
opment, and the price (i.e., cost to NSF) and types of services are likely to 
change. The cost of commercial cloud services could be greatly reduced 
by reducing or eliminating the overhead charged on these services, bulk 
purchase by NSF of cloud resources, and/or partnering with commercial 
cloud providers.

The greater complexity of the landscape means that it will be espe-
cially important, as recommended in Section 1.2, to derive future require-
ments for advanced computing platforms from an analysis of science 
needs, workload characteristics, and priorities. 

To maximize performance, NSF could deploy systems that were opti-
mal for each class of problem. But as a practical matter and for cost-
effectiveness, NSF must secure access to capabilities that will represent 
compromises with respect to individual applications but reasonably sup-
port the overall research portfolio. Put another way, it will require careful 
resource management driven by an understanding of the science and 
engineering returns on investments in advanced computing. Understand-
ing which compromises to make requires a comprehensive understanding 
of science requirements and priorities; see the discussion of requirements 
and roadmapping below.

Recommendation 2. As it supports the full range of science require-
ments for advanced computing in the 2017-2020 time frame, the 
National Science Foundation (NSF) should pay particular attention 
to providing support for the revolution in data-driven science along 
with simulation. It should ensure that it can provide unique capa-
bilities to support large-scale simulations and/or data analytics that 
would otherwise be unavailable to researchers and continue to moni-
tor the cost-effectiveness of commercial cloud services.

Recommendation 2.1. NSF should integrate support for the revo-
lution in data-driven science into NSF’s strategy for advanced 
computing by (a) requiring most future systems and services and 
all those that are intended to be general purpose to be more data-
capable in both hardware and software, (b) expanding the portfo-
lio of facilities and services optimized for data-intensive as well 
as numerically intensive computing, and (c) carefully evaluating 
inclusion of facilities and services optimized for data-intensive 
computing in its portfolio of advanced computing services.
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To support data-driven science, advanced computing hardware and 
software systems will need adequate data capabilities, in most cases more 
than is currently provided. Some research will need large-scale data-
centric systems with data-handling capabilities that are quite different 
from traditional high-performance computing systems. For example, data 
analytics often requires that data reside on disk for extended periods. 
Several factors suggest that meeting these needs will require one or more 
large investments, rather than just multiple small projects, including the 
following: (1) the scale of the largest problems, (2) the opportunities 
for new science when disparate data sets are colocated, and (3) the cost 
efficiencies that come from consolidating facilities. Indeed, the growth in 
data-driven science suggests that investments will ultimately be needed 
on a scale comparable to those that support modeling and simulation 
At the very least, the systems should be better balanced for data (input/
output and perhaps memory size), thereby allowing the same systems to 
be used for different problems without needing to double the size of the 
resources. As data play a growing role in scientific discovery, long-term 
data management will become an important aspect of all planning for 
advanced computing. A partnership with a commercial cloud provider 
could provide access to larger systems than NSF could afford to deploy 
on its own. Of course, even as it moves to provide better support for data-
driven research, NSF cannot neglect simulation and modeling research.

Recommendation 2.2. NSF should (a) provide one or more sys-
tems for applications that require a single, large, tightly coupled 
parallel computer and (b) broaden the accessibility and utility of 
these large-scale platforms by allocating high-throughput as well 
as high-performance workflows to them. 

Simply meeting current levels of demand will require continuing 
to provide at least the capacity currently provided by the XSEDE pro-
gram and the capability currently provided by Blue Waters. Even as NSF 
develops its future requirements (Recommendation 3) that can be used to 
develop long-term plans, the observed growth in demand suggests that 
some growth be included in NSF’s short-term plans.

Recommendation 2.3. NSF should (a) eliminate barriers to cost-
effective academic use of the commercial cloud and (b) carefully 
evaluate the full cost and other attributes (e.g., productivity and 
match to science workflows) of all services and infrastructure mod-
els to determine whether such services can supply resources that 
meet the science needs of segments of the community in the most 
effective ways.
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For 2020 and beyond, many of these recommendations may well still 
hold true, but NSF should rely on the requirements process outlined in 
the next section. 

1.2  ENSURE RESOURCES MEET COMMUNITY NEEDS

At a time when resources are tight and demand for advanced com-
puting resources continues to grow, it is especially important for NSF to 
maximize the return on investment in terms of science and engineering 
outcomes by improving the efficiency of advanced computing facility use. 
One part of this is ensuring that the resources provided match the require-
ments of the science applications, and this aspect is discussed separately 
below; another is to ensure that the resources are effectively used. How 
NSF can help the community use the computing infrastructure effectively 
is discussed in Sections 1.3 and 1.4. 

The resources available for advanced computing are inherently lim-
ited by research budgets as compared to the potentially ever-expanding 
demand for advanced computing. Despite various ongoing efforts to col-
lect and understand requirements from some science communities and 
occasional efforts to chart strategic directions, the overall planning pro-
cess for advanced computing resources and programs is not systematic or 
uniform and is not visibly reflected in NSF’s strategic planning, despite 
its foundation-wide importance. Further, much of what quantification 
there is makes use of measurements related to floating-point performance; 
this is misleading both because the performance of many applications is 
not well modeled using just floating-point performance and because the 
sustained as opposed to peak performance of some processors (especially 
most highly parallel processors) is low on many of those applications.

The creation of an ongoing and more regular and structured pro-
cess would make it possible to collect requirements, roll them up, and 
prioritize advanced computing investments based on science and engi-
neering priorities. It would reflect the visions of science communities 
and support evaluation of potential scientific advances, probability of 
success, advanced computing requirements and their costs, and their 
affordability. Such a process needs to be nimble enough to respond to 
new science opportunities and computing technologies but have a long-
enough time horizon to provide continuity and predictability to both 
users and resource providers. The process also needs to involve the grow-
ing body of researchers from a growing number of disciplines who use 
NSF infrastructure. 

Requirements established for future systems and services must also 
address trade-offs—for example, within a given budget envelope for 
hardware, more memory implies less compute or input/output capacity. 
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The criteria established for future procurements should reflect scientific 
requirements rather than simplistic or unrepresentative benchmarks. 

One way to capture requirements and enable the science community 
to participate in the process is to establish roadmaps. Roadmaps do not 
suggest a single path to a destination but rather multiple routes to a 
variety of goals. Such roadmaps would help make science requirements 
concrete and relate them to future computing capabilities and facilitate 
planning by researchers, program directors, and facility and service oper-
ators at centers and on campuses over a longer time horizon. By capturing 
anticipated technology trends, the roadmaps can also provide guidance to 
those responsible for scientific software projects. The roadmaps can also 
address dependencies between investments by federal agencies through 
consultation with agencies that use NSF advanced computing facilities or 
provide computing to the NSF-supported research community. 

The goal is to develop fairly brief documents that set forth the over-
all strategy and approach rather than high-resolution details, looking 
roughly 5 years ahead with a vision that extends perhaps for 10 years 
ahead. Roadmaps would help inform users about future facilities, guide 
investment, align future procurements with requirements and services, 
and enable more effective partnerships within NSF and with other federal 
agencies. If researchers are given information about the capabilities they 
can expect, they can make better plans for their future research and the 
software to support it. By describing what types of resources NSF will and 
will not provide, roadmaps would permit other agencies, research insti-
tutions, and individual principal investigators to make complementary 
plans for investments. They would also encourage reflection within indi-
vidual science communities about their future needs and the challenges 
and opportunities that arise from future computing technologies. By 
establishing predictability over longer timescales, roadmaps would help 
those proposing or managing major facilities to rely on shared advanced 
computing resources, helping reduce the overall costs of advanced com-
puting. The provision in 2015 of such a roadmap for the Department of 
Energy (DOE) by its Office of Advanced Scientific Computing Research 
has already enabled the community and science programs to direct their 
investments and software development efforts toward systems that, in 
some detail, they know will appear in 2018-2019 and, in less detail, toward 
a path that extends into the exascale era of around 2023 and beyond. The 
NSF academic community presently lacks this ability to plan.

The roadmapping process would also be an opportunity to address 
data curation and storage requirements and link them to individual pro-
grams developing data capabilities such as the Big Data Regional Innova-
tion Hubs. In essence, it could provide ingredients of an NSF-wide data 
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plan that supports the needs of NSF’s grantees and the science communi-
ties NSF supports.

Requirements-setting and roadmapping efforts could be built or mod-
eled on activities undertaken to define requirements for large scientific 
facilities such as the Academies’ astronomy and astrophysics decadal 
surveys or DOE’s Particle Physics Project Prioritization Panel. However, 
the requirements will need to be aggregated at a higher level given that 
advanced computing facilities generally serve many scientific disciplines. 
In addition, because of the wide use of computing and data at all scales 
of resources, it is critical that any such requirements gathering include 
input from the whole community, including those with more modest 
(midrange) computing and data needs. Sometimes called “the long tail 
of science,” these users have more modest requirements (but still beyond 
that available in a group, departmental, or campus system) and make up 
the majority of researchers.

Recommendation 3. To inform decisions about capabilities planned 
for 2020 and beyond, the National Science Foundation (NSF) should 
collect community requirements and construct and publish roadmaps 
to allow it to better set priorities and make more strategic decisions 
about advanced computing.

Recommendation 3.1. NSF should inform its strategy and deci-
sions about investment trade-offs using a requirements analysis 
that draws on community input, information on requirements con-
tained in research proposals, allocation requests, and foundation-
wide information gathering. 

Recommendation 3.2. NSF should construct and periodically 
update roadmaps for advanced computing that reflect these 
requirements and anticipated technology trends to help it set pri-
orities and make more strategic decisions about science and engi-
neering and to enable the researchers that use advanced computing 
to make plans and set priorities.

Recommendation 3.3. NSF should document and publish on a reg-
ular basis the amount and types of advanced computing capabili-
ties that are needed to respond to science and engineering research 
opportunities.

Recommendation 3.4. NSF should employ this requirements anal-
ysis and resulting roadmaps to explore whether there are more 
opportunities to use shared advanced computing facilities to sup-
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port individual science programs such as Major Research Equip-
ment and Facilities Construction projects.

The roadmapping and requirements process could be strengthened 
by developing a better understanding of the relationship among the cost 
of different approaches (roadmap choices), requirements, and science 
benefits. For example, the information would inform program manag-
ers about the total cost of proposed research and help focus researchers’ 
attention on effective use of these valuable shared resources, encouraging 
more efficient software and research techniques. NSF’s XSEDE program 
has adopted this practice, which could be expanded to cover all aspects of 
NSF-supported advanced computing including campus-level resources. 

Recommendation 4. The National Science Foundation (NSF) should 
adopt approaches that allow investments in advanced computing 
hardware acquisition, computing services, data services, expertise, 
algorithms, and software to be considered in an integrated manner. 

Recommendation 4.1. NSF should consider requiring that all pro-
posals contain an estimate of the advanced computing resources 
required to carry out the proposed work and creating a standard-
ized template for collection of the information as one step of poten-
tially many toward more efficient individual and collective use of 
these finite, expensive, shared resources. (This information would 
also inform the requirements process.)

Recommendation 4.2. NSF should inform users and program man-
agers of the cost of advanced computing allocation requests in 
dollars to illuminate the total cost and value of proposed research 
activities.

1.3  AID THE SCIENTIFIC COMMUNITY IN KEEPING 
UP WITH THE REVOLUTION IN COMPUTING

However, even with a good match to the science requirements, 
getting the most out of modern computing systems is difficult. Better 
software tools and more flexible service models (ways of delivering 
software and computing resources) can improve the productivity of 
researchers. 

Improvements to software and new algorithms can often signifi-
cantly reduce computational and data-processing demands. One class of 
improvements increases performance on current computer architectures; 
another takes better advantage of new architectures. There is considerable 
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uncertainty about future architectural directions for computing in general 
and for advanced computing for science and engineering specifically. 
Architectures are already changing in response to power density issues, 
which have had limited clock speed growth since 2004, even as transis-
tor density continued to grow. As a result, the creation and evolution 
of software for scientific applications have become more difficult, espe-
cially for those problems that do not readily lend themselves to massive 
parallelism. 

The service model, application programming interfaces, and soft-
ware stacks offered by cloud computing complement the existing super-
computing batch models and software stacks. Both the economics and 
applicability across the full range of science applications will need careful 
examination. 

Production support is needed for software as well as hardware, to 
include community software as well as frameworks, shared elements, and 
other supporting infrastructure. NSF’s SISI program is a good founda-
tion for such investments. Production support is further needed for data 
management. Curation, preservation, archiving, and support for sharing 
all need ongoing investment. 

Recommendation 5. The National Science Foundation (NSF) should 
support the development and maintenance of expertise, scientific 
software, and software tools that are needed to make efficient use of 
its advanced computing resources.

Recommendation 5.1. NSF should continue to develop, sustain, 
and leverage expertise in all programs that supply or use advanced 
computing to help researchers use today’s advanced computing 
more effectively and prepare for future machine architectures.

Recommendation 5.2. NSF should explore ways to provision 
expertise in more effective and scalable ways to enable researchers 
to make their software more efficient; for instance, by making more 
pervasive the XSEDE (Extreme Science and Engineering Discovery 
Environment) practice that permits researchers to request an allo-
cation of staff time along with computer time.

Recommendation 5.3. NSF should continue to invest in supporting 
science codes and in continuing to update them to support new 
systems and incorporate new algorithms, recognizing that this 
work is not primarily a research activity but rather is support of 
software infrastructure.
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If NSF was to invest solely in production, it would miss some key 
technology shifts and its facilities would quickly become obsolete. Some 
innovation takes the form of fine-tuning of production systems, yet non-
trivial but small investments in exploratory or experimental facilities and 
services are also needed to create, anticipate, and prepare for technology 
disruptions. NSF needs to play a leadership role in both defining future 
advanced computing capabilities and enabling researchers to effectively 
use those systems. This is especially true in the current hardware envi-
ronment, where architectures are diverging in order to continue growing 
computing performance. Leadership by NSF will help ensure that its soft-
ware and systems remain relevant to its science portfolio, that researchers 
are prepared to use the systems, and that investments across the founda-
tion are aligned with this future. 

It will be especially important for NSF to be not only engaged in but 
helping to lead the national and international activities that define and 
advance future software ecosystems that support simulation and data-
driven science, including converging the presently distinct tools and pro-
gramming paradigms, and the software required for exascale hardware 
technologies. NSF may be especially well positioned to collaborate inter-
nationally compared to the mission science agencies given its long track 
record of open science collaboration. DOE is currently investing heavily 
in new exascale programming tools that, through the scale of investment 
and buy-in from system manufacturers, could plausibly define the future 
of advanced programming even though the design may not reflect the 
needs of all NSF science because the centers and researcher communities 
it supports are not formally engaged in the specification process. It is also 
important for NSF to be engaged with the private sector and academia for 
insights into data analytics.

Recommendation 6. The National Science Foundation (NSF) should 
also invest modestly to explore next-generation hardware and soft-
ware technologies to explore new ideas for delivering capabilities that 
can be used effectively for scientific research, tested, and transitioned 
into production where successful. Not all communities will be ready 
to adopt radically new technologies quickly, and NSF should provi-
sion advanced computing resources accordingly. 

Investments by other federal agencies in new computing technolo-
gies and NSF’s own computing research programs will both be sources 
of advanced hardware and software architectures to consider adopting 
in NSF’s advanced computing programs. Achieving continued growth 
in NSF’s aggregate computing performance on a fixed budget will likely 
require new architectural models that are more energy efficient. The 
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requirements-gathering and roadmapping process can be used to obtain 
long-term predictions of available capabilities and their energy require-
ments. That process will also provide insights into which technology 
advances are suitable for future production services.

1.4  SUSTAIN THE INFRASTRUCTURE 
FOR ADVANCED COMPUTING

A hard but essential part of managing advanced computing in a fixed 
budget envelope will be discontinuing activities in order to start or grow 
other activities. The requirements analysis will provide a rational and 
open basis for these decisions, and the roadmaps will enable communi-
ties to plan and adapt in advance of future investments. Even in a favor-
able budget environment for science and engineering generally and for 
advanced computing specifically, NSF will need to manage exponentially 
growing demand and rising costs (see Section 1.1). 

One response to these challenges is to take advantage of the opportu-
nities described in Sections 1.2 and 1.3 to increase efficiency and produc-
tivity in the use of advanced computing facilities, to use the requirements 
process to inform trade-offs, and to exploit new technologies. In addi-
tion, there are several possibilities for finding more or better leveraging 
resources. These include the following:

•	 Making a case for additional resources based on the require-
ments analysis. For example, the 2003 report A Science-Based Case for 
Large-Scale Simulation5 is widely credited with developing the rationale 
and science case for a major expansion of DOE’s Advanced Scientific 
Computing Research program. It may also be useful to look retrospec-
tively at what computing capabilities were needed to achieve past science 
breakthroughs. 

•	 Seeking funding mechanisms that ensure consistent and stable 
investments in advanced computing. 

•	 Adopting approaches that make it easier to accommodate the costs 
of large facilities within annual budgets, such as leasing to smooth costs 
across budget years.

•	 Exploring partnerships, both strategic and financial, with federal 
agencies that also provide advanced computing capabilities as well as fed-
eral agencies that rely on NSF facilities to provide computing support for 
their grantees. For example, NSF might enter into a financial agreement 
with other federal (or possibly private) providers of advanced computing 

5  Office of Science, U.S. Department of Energy, A Science-Based Case for Large-Scale Simula-
tion, Washington, D.C., 2003. 
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services for access to a fraction of a large system, thus maintaining some 
ability to support research that involves a large system without incurring 
its full acquisition cost.

Chapter 7 of this report provides more details on these options and dis-
cusses several others for NSF to consider.

In recent years, NSF has adopted a strategy for acquiring computing 
facilities and creating centers and programs to operate and support them 
that relies on irregularly scheduled competition among host institutions 
roughly every 2 to 5 years and on equipment, facility, and operating cost 
sharing with those institutions. Mounting costs and budget pressures 
suggest that a strategy that relies on state, institutional, or vendor cost 
sharing may no longer be viable. Moreover, there are reasons to consider 
models that provide a longer funding horizon for service providers that 
operate facilities and the expertise needed for their effective utilization.

In particular, one key reason is to ensure the development and reten-
tion of the advanced computing expertise that is needed to effectively 
manage systems, support their users, address the increasing complexity 
of hardware and software, and manage the needed transition of software 
to make effective use of today’s and tomorrow’s architectures. Doing so 
requires sustained attention to the workforce and more viable career path-
ways for its members. A longer funding horizon would also better match 
the depreciation period for buildings, power, and cooling infrastructure. 

Another reason to consider other models is that repeated competition 
can lead to proposals designed to win a competition rather than maximize 
scientific returns. For example, it can unduly favor unproven technology 
over more proven, production-quality technology. By contrast, a model 
with longer time horizons may be better positioned to deliver systems 
that meet the scientific requirements established by the requirements 
definition and roadmapping activities. Supporting at least two entities 
will provide healthy competition as well as stability. The acquisition of 
individual systems from commercial vendors would remain competitive. 
Such longer-term entities can take the form of distributed organizations; 
XSEDE, for example, has evolved in this direction in providing the scien-
tific research community with expertise and services.

A longer funding horizon would also better match the duration of 
major scientific facilities and the useful lifetime of scientific data, creating 
new opportunities to address long-term challenges of storage, preserva-
tion, and curation. Greater continuity would also foster greater leveraging 
of advanced computing expertise and facilities across NSF. For instance, 
long-lived experimental or observational facilities could better manage 
the risk of standing up their own cyberinfrastructure by partnering with 
centers. 
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Recommendation 7. The National Science Foundation (NSF) should 
manage advanced computing investments in a more predictable and 
sustainable way. 

Recommendation 7.1. NSF should consider funding models for 
advanced computing facilities that emphasize continuity of support.

Recommendation 7.2. NSF should explore and possibly pilot the 
use of a special account (such as that used for Major Research 
Equipment and Facilities Construction) to support large-scale 
advanced computing facilities.

Recommendation 7.3. NSF should consider longer-term commit-
ments to center-like entities that can provide advanced computing 
resources and the expertise to use them effectively in the scientific 
community. 

Recommendation 7.4. NSF should establish regular processes for 
rigorous review of these center-like entities and not just their indi-
vidual procurements.
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Background

2.1  STUDY TASK AND SCOPE

The National Science Foundation (NSF) requested that the National 
Academies of Sciences, Engineering, and Medicine carry out a study 
examining anticipated priorities and associated trade-offs for advanced 
computing in support of NSF-sponsored science and engineering research. 
The scope of the study encompasses advanced computing activities and 
programs throughout NSF, including, but not limited to, those of its Divi-
sion of Advanced Cyberinfrastructure. The statement of task for the study 
is given in Box P.1. This final report from the study follows the commit-
tee’s interim report issued in 2014.1

In this study, advanced computing is defined as the advanced techni-
cal capabilities, including both computer systems and expert staff, that 
support research across the entire science and engineering spectrum and 
that are so large in scale and so expensive that they are typically shared 
among multiple researchers, institutions, and applications. The term also 
encompasses higher-end computing for which there are economies of 
scale in establishing shared facilities rather than having each institution 
acquire, maintain, and support its own systems. At the midscale, the 
demarcation between institutional and NSF responsibility is not well 
established (Box 2.1). For compute-intensive research, it includes not 

1  National Research Council, Future Directions for NSF Advanced Computing Infrastructure to 
Support U.S. Science and Engineering in 2017-2020: An Interim Report, The National Academies 
Press, Washington, D.C., 2014.

25
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BOX 2.1  
Who Is Responsible for Midscale Computing Infrastructure?

One of the consequences of the exponential growth in computing power is 
that today’s smart phones are more powerful than supercomputers of decades 
ago. For many researchers, a laptop or desktop system provides all of the comput-
ing power that they might need. Other researchers may need slightly more, while 
others depend on the capabilities only available in current supercomputer systems. 
Who should be responsible for providing this computing infrastructure?

At the very high end (national scale in terms of cost, operation, and use), the 
computing infrastructure is like other national-scale research facilities and supports 
research that is not possible without it. At the very low end (individual desktops or 
laptops), it can be argued that this should now be the responsibility of individual 
institutions, just like the other basic research support that they provide. What about 
the midrange? How capable of a system should individual institutions or regional 
consortia be expected to provide for their researchers? What about researchers 
who need large amounts of computing in the aggregate, but where each individual 
run could be done on a small machine?

Some institutions are already providing significant computing resources for 
their researchers; this is often viewed as a competitive advantage both in attracting 
and retaining faculty and staff and in winning grants. But many institutions, notably 
public universities, are finding their budgets squeezed. Others are creating ways 
for their researchers to pool funds into a shared computing infrastructure (creat-
ing what in many ways is a private cloud), which may also be partly supported by 
institutional funds. 

As the National Science Foundation (NSF) considers how it supports ad-
vanced computing, it will need to consider how much computing is the responsi-
bility of the institution, how much may be supported at individual institutions and 
regional consortia (in part through grants from NSF or other agencies), and how 
much is provided as a national resource. This is a complex issue, and one that 
will require more study and engagement with stakeholders. Among the issues to 
consider are the following:

•	 How best to take advantage of economies of scale;
•	 How to ensure that all researchers, not just those at the best-funded 

research institutions, have access to the computing resources needed for their 
research;

•	 How to avoid wasted or unused cycles and ensure systems are well-
managed and secure;

•	 How to ensure that the systems match the needs of researcher—that is, 
their configuration provides data and compute capabilities needed by the software 
used by the researchers, and the network connectivity provides sufficient access 
to the system for all collaborators; and

•	 How to encourage and help institutions to provide a basic level of comput-
ing support, taking advantage of ways to share infrastructure and expertise.

The requirements analysis recommended by the committee (see Chapter 4) 
will provide valuable data in addressing these issues.
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only today’s supercomputers, which are able to perform more than 1015 
floating-point operations per second (known as “petascale”), but also 
high-performance computing (HPC) platforms that share the same com-
ponents as supercomputers but may have lower levels of performance. 
As used here, the term encompasses support for data-intensive research 
that involves analyzing terabytes (and increasingly petabytes) of data as 
well as modeling and simulation. 

Historically, and even now, NSF advanced computing centers have 
focused on high-performance computing primarily for simulation. 
Although these applications are essential and growing, the new and very 
rapidly growing demand for more data-capable services still needs to be 
addressed. This chapter looks chiefly at traditional HPC, while the new 
opportunities and challenges of the “data revolution” are emphasized in 
Chapters 4 and 5.

2.2  PAST STUDIES OF ADVANCED COMPUTING FOR SCIENCE

In the early 1980s, the science community developed several reports 
regarding the lack of access to advanced computing resources. The 1982 
report Large-Scale Computing in Science and Engineering, known as the “Lax 
report,”2 was jointly sponsored by the Department of Defense (DOD) 
and NSF, with cooperation from the Department of Energy (DOE) and 
the National Aeronautics and Space Administration. It focused on the 
growing importance of supercomputing in the advancement of science 
and the looming gap in access to and capability of these resources. The 
Lax report noted that the United States was at risk of losing its lead in 
supercomputing and that the development of new systems (especially 
those relying on new architectures such as massively parallel machines) 
would require continued investment by the federal government and that 
the commercial sector could not be expected to provide the necessary 
research and development (R&D) support. The report proposed four 
thrusts for a national program:

1.	 Increased access to supercomputer resources through a nationwide 
network,

2.	 Research in software and algorithms for the expected changes in 
hardware architectures,

3.	 Training of staff and graduate students, and
4.	 R&D for future generations of supercomputers.

2  Panel on Large Scale Computing in Science and Engineering, Report of the Panel on Large-
Scale Computing in Science and Engineering, National Science Foundation, Washington, D.C., 
1982, http://www.pnl.gov/scales/docs/ lax_report1982.pdf.
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The Lax report led to the first round of NSF supercomputer cen-
ters established in 1985-1986. While a subset of these centers continued 
through 1997, the director of NSF commissioned the Task Force on the 
Future of the NSF Supercomputer Centers Program in 1994, chaired by 
Edward Hayes.3 The report of the task force, issued in 1995, put forth 
many of the points from the Lax report, noting that supercomputing 
would enable progress across many areas of science and this progress 
would depend on continuing development of highly trained personnel as 
well new algorithms and software. The Hayes report made many recom-
mendations that focused on both “leading-edge sites” and broader part-
nerships that would include experimental and regional facilities. The net 
result was that the report recognized that there would be fewer leading-
edge sites to accommodate more systems below the apex of the compu-
tational pyramid. This was manifested as the Partnership for Advanced 
Computational Infrastructure (PACI) from 1997 to 2004. PACI was supple-
mented by the terascale initiatives in 2000, which led to the creation of the 
TeraGrid in 2004, which transitioned to the present-day Extreme Science 
and Engineering Discovery Environment program. 

The 2003 Atkins report4 articulated a more ecological, holistic view 
of cyberinfrastructure-enabled research, including computing, data stew-
ardship, sensing, activation, and collaboration, to create a comprehensive 
platform for discovery. It was followed by a series of workshops and 
reports exploring the role of cyberinfrastructure to particular research 
communities.5 

In 2005, NSF’s Office of Cyberinfrastructure released the solicitation 
“High Performance Computing System Acquisition: Towards a Petascale 
Computing Environment for Science and Engineering” (NSF 05-625). This 
was the first in a series of solicitations along different tracks, culminating 
in the Blue Waters petascale facility at the National Center for Supercom-
puting Applications (NCSA) that began operating in 2013.

The past reports present common themes, many of which persist 
today, as this report will show. Today, advanced computing capabilities 
are involved in an even wider range of scientific fields and challenges, and 
the rise of data-driven science requires new approaches. The gap between 

3  Task Force on the Future of the NSF Supercomputer Centers Program, Report of the Task 
Force on the Future of the NSF Supercomputer Centers Program, National Science Foundation, 
Washington, D.C., September 15, 1995, http://www.nsf.gov/pubs/1996/nsf9646/nsf9646.
pdf.

4  National Science Foundation, Revolutionizing Science and Engineering Through Cyberinfra-
structure: Report of the National Science Foundation Blue-Ribbon Advisory Panel on Cyberinfra-
structure, 2003, http://www.nsf.gov/cise/sci/reports/atkins.pdf. 

5  National Science Foundation, “Reports and Workshops Relating to Cyberinfrastructure 
and Its Impacts,” http://www.nsf.gov/cise/aci/reports.jsp, accessed January 27, 2016.
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supply and demand, noted in the Lax report, remains an important issue. 
The need to maintain and grow the workforce, especially in regard to the 
needed skills, remains a persistent issue. The evolution in hardware and 
the subsequent impacts on algorithms and software has been a recurring 
concern. However, changes in architectures have been far more disruptive 
over the past decade, and broad commercial trends influence the HPC 
market more than ever. Finally, increasing use of large-scale computing 
by the commercial sector offers some new opportunities and challenges.

2.3  HIGH-PERFORMANCE COMPUTING TERMINOLOGY

This report refers to a number of concepts from HPC. These terms do 
not have precise definitions but are valuable in referring to qualitative 
properties of different kinds of computing and computing systems.

•	 Capability computing refers to computing that requires the most 
capable systems, typically the most powerful supercomputers.

•	 Capacity computing refers to computing with large numbers of 
applications, none of which require a “capability” platform but in their 
aggregate require large amounts of computing power.

•	 High-throughput computing refers to the use of many computing 
resources over a period of time to attack a particular set of computational 
tasks.

•	 Leadership class is a term for the most powerful computing systems. 
This has typically been based on the floating-point performance of the 
computing system, though a more comprehensive metric can be used. 
See Figure 4.1 (Branscomb pyramid) for one (though dated) ranking of 
computer systems from desktop through leadership class.

•	 High-end computing covers computing from systems larger than 
a system that a single research group might operate through leadership 
class systems. There is no accepted definition for how powerful a sys-
tem must be to be considered a high-end computing system. The terms 
“supercomputer” and “high-performance computer” have similar, impre-
cise meanings. 

•	 Ensemble computing often refers to the use of many runs with dif-
ferent input data or parameters to explore the sensitivity of the problem 
to small changes. 

•	 Tightly coupled computing refers to computations where each com-
puting element must exchange data with some other computing elements 
very frequently, such as once per simulation time step. Such computations 
require a high-performance internode interconnect.

•	 Memory capacity limited refers to applications that have more 
demanding requirements than others. For example, simulations in three 
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dimensions of large domains can require very large amounts of memory; 
a 10,000 × 10,000 × 10,000 cube requires 1012 points or roughly 1 TB of 
storage per variable stored.

•	 Peak and sustained performance. Peak performance refers to the per-
formance of a computing system that is theoretically possible. It usu-
ally refers to floating-point performance and assumes that the maximum 
number of floating-point operations is performed in every clock cycle. No 
applications run at the peak rate. Sustained performance is the perfor-
mance that an application or a collection of applications can sustain over 
the course of the entire application.

This report avoids the terms “capability computing” and “capacity com-
puting” because they are too imprecise and have also historically been too 
focused on floating-point performance.

2.4  STATE OF THE ART

The past several decades have seen remarkable progress in computer 
hardware, algorithms, and software. This section reviews the state of the 
art in hardware, software, and algorithms, with a particular emphasis on 
the challenges created by the disruptive changes in computer architecture 
driven by the need to increase computing power.

2.4.1  Hardware

The past decade has seen an enormous disruption in computer 
hardware throughout the computing industry, as processor clock speed 
increases have stalled and parallel processing has moved on-chip with 
multicore processors.6 The primary drivers have been power density 
and total energy consumption—concerns that are important in portable 
devices and increasingly in large data and compute centers due to funda-
mental cooling limits of packaging and overall facility infrastructure and 
operations costs. The continued growth in transistor density had been 
used primarily to add more processor cores, starting with dual-core chips 
in the mid-2000s to 20-core chips a decade later. But these processors were 
historically designed to maximize performance without a strong con-
straint on energy use; a second trend has been the growth of many-core 
architectures that involve a larger number of smaller and simpler cores, 
each more energy efficient than a traditional processor. In aggregate, a 

6  For more on this challenge and its implications, see National Research Council, The 
Future of Computing Performance: Game Over or Next Level? The National Academies Press, 
Washington, D.C., 2011. 
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processing chip with hundreds of simpler cores can often provide much 
higher computational performance than a smaller number of more pow-
erful cores. The many-core designs include graphical processing units 
(GPUs) and were initially designed as accelerators to a traditional CPU, 
whereby software primarily ran on the CPU but could offload computing-
intensive kernels to the accelerator. More recent many-core designs pro-
vide for stronger integration between the accelerator and CPU, allowing 
for shared memory between the two or stand-alone processors made 
entirely of many-core chips. Box 2.2 contains further discussion of these 
architectural challenges. 

One consequence of the growth in the use of computing by all aspects 
of society and not just for science research is that much of the investment 
by both computer hardware and software vendors is directed at the larger 
commercial market for computing. An example of this is the use of GPUs 
in computational science. These processors have been adapted to support 
computational science, but the initial innovations were made to serve the 
gaming market. As the commercial markets continue to grow and new 
applications are developed, advanced cyberinfrastructure will need to 
continue to figure out how best to exploit innovations and advancements 
in the greater commercial market.

Looming ahead is the end of transistor scaling, which will mean an 
end to the current strategy of improving computing performance by add-
ing more cores per chip. The result is unlikely to be a discrete stopping 

BOX 2.2 
 Computer Architecture and Hardware in Transition

Moore’s law has driven the technology behind high-performance comput-
ing (HPC) systems for decades, by doubling the number of transistors on a die 
at regular intervals, with the speed of these smaller transistors getting faster at 
essentially an equal rate. Although transistor density will continue to increase for 
some time to come, the year 2004 represented a watershed where HPC architec-
tures were forced to change direction dramatically. Getting heat out of chips hit 
a limit, so that increasing the inherent transistor speed no longer translates into 
faster core clocks. The only alternative was to use extra transistors in more, but 
slower, cores and require applications to use that resulting parallelism explicitly. 
This development, combined with a rapid growth in the number of racks for a 
system, permitted benchmark performance for the LINPACK kernel (solution of 
a dense system of linear equations by Gaussian elimination) to continue on its 
near doubling of growth per year. The emergence of “lightweight” processors 
that were even slower than the power-limited, high-end servers paradoxically 

continued
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added to this increase by allowing many more nodes to be physically packaged 
in the same volume. Such architectures took over the bulk of the Top 10 (of the 
TOP500) ranking1 until 2008, when a second architectural transition occurred with 
the introduction of numeric-intensive chips with very large numbers of even simpler 
cores derived from high-end graphics processors. “Hybrid systems” that join such 
chips with conventional cores have yet again changed the complexion of the Top 
10 systems (Figure 2.2.1). It appears, however, that even these changes have hit 
at least a temporary roadblock, with no growth in the top system for dense linear 
algebra since 2013. 

The same phenomena can be seen in benchmarking of HPC systems for 
applications that are decidedly non-numeric and have many of the properties one 
might expect for big data. Figure 2.2.2 is similar to Figure 2.2.1, except that the 
Graph500 benchmark involves a breadth-first search through very large graphs. A 
rapid rise in year-over-year performance hit a wall in 2013, with very little growth 
since then. In addition, unlike LINPACK, this benchmark has proven somewhat 
difficult for hybrid systems.

In between the dense linear algebra of LINPACK (and the “classical” scientific 
computing it represents) and the non-numeric Graph500 is a third benchmark 
where reported data are becoming available and which represents problems that 
lie between these two. The High-Performance Conjugate Gradients (HPCGs), 
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FIGURE 2.2.1  Speed of Top 10 systems from TOP500 ranking. SOURCE: Updated from 
Peter Kogge, “Updating the Energy Model for Future Exascale Systems,” in High Performance 
Computing: 30th International Conference, ISC High Performance 2015, Frankfurt, Germany, 
July 12-16, 2015, Proceedings, using data from http://top500.org.

BOX 2.2  Continued
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benchmark represents the solution of a large matrix equation (as does LINPACK), 
but one that is extremely sparse and is solved using a different and iterative algo-
rithm. The data to be involved in the computations are now embedded in a sparse 
graph-like data structure through which the program must spend significant time 
traversing before a computation can be performed. While there are insufficient 
reports to look at trends, the data that are available can be compared to LINK-
PACK numbers on the same machines. Figure 2.2.3 diagrams the ratio of HPCG 
computation rates to peak computational rates over a variety of systems, with a 
clear indication that solving such problems is far more challenging to today’s ar-
chitectures, especially for the hybrid systems that dominate LINPACK. At best, a 
few percent of the floating-point computational capability of systems is usable for 
HPCG, where efficiencies of as much as 90 percent are common for LINPACK. 
This has been well known in the HPC community, where memory performance is 
often more important for performance on such problems than peak floating-point 
performance.

Efficient use of computational hardware is not the only problem facing to-
day’s architectures. Memory capacity is also becoming a constraint. Figure 2.2.4 
displays the ratio of memory to floating-point performance for LINPACK over the 
past 20 years. Again, until about 2004, ratios of 1 byte per floating-point operation 
(FLOP) were common but went into a precipitous decline after that, especially 
for hybrid systems. The average supercomputer today has between 1/100th and 
1/10th the memory per FLOP of a decade ago.
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The reason for this constraint goes back to architecture and the way com-
mercial memory chips are attached to modern processors. The basic memory cell 
has in fact continued to get smaller, in accordance with Moore’s law, and has not 
suffered the power issue that changed processor chip architectures. Instead, the 
need to keep such chips cheap has meant that vendors have downsized the size 
of memory chips to provide better yield, giving up memory size per chip as a result. 
Also, the way memory is connected to modern processors has hit a wall of its own. 
There are only so many pins available on modern processor chips to connect to 
memory, regardless of the number or speed of cores on the processor. This means 
that the maximum number of memory chips that may be attached to a processor 
chip is relatively limited, and with the slower growth rate of memory chip capacity 
relative to processor performance, the result is exactly what has been observed.

This issue of the path between processor and memory is also most probably 
at the root of the poor performance observed for both Graph500 and HPCG, as 
the rate at which commands can be sent from the processor chip to the memory 
chips has also largely flattened. For problems where the data to be processed next 
must be located by looking up some indices first, all the complex caching designed 
into modern processors becomes largely wasted.

These observations do not doom our capability to advance toward exascale; 
instead they warn us that a major upheaval in architecture is likely, one that will 
end up having as much effect on programming and algorithms as the advent of 
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the single-chip microprocessor in the early 1990s and the rise of multicore in 
the mid-2000s. This change is visible today with the introduction of “3D stacked 
memory” components, where multiple memory die are placed on top of a logic die. 
The path between the two offers both significant increases in memory bandwidth 
and decreases in the energy of such accesses. Today such “stacks” are still tied 
to conventional processor chips, enabling just a “faster” memory path. In the near 
term, however, combinations of lightweight and hybrid architectures will move 
cores onto the logic die along with the network interface controller, resulting in a 
stand-alone compute node. Hundreds of these may be placed in the space of a 
modern compute node, breaking the barriers presented today. 

The upshot of this is that the advanced computing facilities of the near future 
are liable to look significantly different from today. Consideration must be given to 
ensuring that the programs and algorithms being written today that need to scale 
into these new regimes are designed with these differences in mind and that early 
facilities should be available as such machines come online to allow validation of 
the portability of such codes.

1 See the TOP500 website at http://top500.org, accessed January 27, 2016.

FIGURE 2.2.4  Ratio of memory to floating-point performance for LINPACK benchmark over 
the past 20 years. SOURCE: Updated from Peter Kogge, “Updating the Energy Model for 
Future Exascale Systems” in High Performance Computing: 30th International Conference, 
ISC High Performance 2015, Frankfurt, Germany, July 12-16, 2015, Proceedings.
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point in chip density, but rather a continued slowing of improvements 
based on technical and cost challenges, as well as diminishing returns on 
investments if the density improvements do not immediately equate to 
improvements in cost performance of computing devices. 

The problem of declining performance improvements is not limited 
to science and engineering applications, but high-end computing with its 
emphasis on benchmarks and scaling may be the place where slowing the 
rate of performance improvements will be most obvious. One place where 
this slowing of performance improvement can be seen is in the bottom 
of the TOP500 list, which is based on the performance of a simple dense 
linear algebra algorithm. Since the late 2000s, the rate of performance 
improvement for the systems at the bottom of the list (still very fast) has 
fallen considerably.

Memory system design is also undergoing rapid changes, as new 
forms of on-package dynamic random-access memory (DRAM) memory 
provide enormous bandwidth improvements but currently less capacity 
than off-chip DRAM. At the same time, new forms of non-volatile mem-
ory have been developed with much higher bandwidths than disks but 
somewhat different performance characteristics than DRAM. These fea-
tures may be of particular interest to data analysis applications, although 
many simulations are also limited by data sizes and could benefit. These 
new types of memory may be added to the hierarchy in a current system 
design, but they may be under software rather than hardware or operat-
ing system control. In general, data movement between processors or to 
memory is expensive in both time and energy, so hardware mechanisms 
that automatically schedule and move data may be replaced by simpler 
mechanisms that leave data movement under software control. 

Although each of these innovations is designed to increase perfor-
mance while minimizing energy use, they pose significant challenges 
to software. The scientific modeling and simulation community has bil-
lions of dollars invested in software based on message passing between 
serial programs, with only isolated examples of applications that can take 
advantage of accelerators. Shrinking memory size per core is a problem 
for some applications, and explicit data movement may require significant 
code rewriting because it requires careful consideration of which data 
structures should be allocated in each type of memory, keeping track of 
memory size limits, and scheduling data movement between memory 
spaces as needed. 

Further disruptive innovation is on the horizon. For example, proces-
sor-in-memory technology has been advanced as a way to reduce memory 
latency and increase bandwidth, and memristors could potentially be 
used for non-volatile memory with a very high density and fast access 
times.
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The scientific computing community therefore must balance (1) leav-
ing software and programming models unchanged and giving up on 
opportunities for more computing performance that come from these 
hardware changes with (2) developing new codes based on new program-
ming models, such as those being researched within the DOE exascale 
initiative, that can exploit the new hardware. Some type of energy-effi-
cient processing and memory system will be necessary for building an 
aggregate exascale capability that NSF can afford to operate, whether that 
is in a single system, in many systems, or partially based on commercial 
cloud resources. The breadth of NSF’s workload and the number of archi-
tectural options complicate this decision. On the surface, the many-core 
processors may be best suited to compute-intensive simulation problems, 
yet some data analysis workloads, such as image analysis and neural net 
algorithms, run effectively on GPUs, while highly irregular simulation 
problems so far do not. Non-accelerator many-core options such as the 
Intel Phi may provide more familiar programming support and more 
workload flexibility, but may not achieve the same performance benefits. 
Further, they are relatively untested and had yet to demonstrate high 
performance across a wide range of applications at the time this report 
was prepared. 

Data storage has also undergone its own exponential improvement, 
with both data densities (bits per unit area) and bit per unit cost doubling 
every 1 to 2 years. New technologies are providing revolutionary advances 
and blurring the line between “storage” and “memory.” However, while 
the technology continues to improve, the rate of improvement has fallen 
off in recent years. Historically, external storage has primarily meant 
magnetic hard disk drives (HDDs) in which data are encoded on spinning 
platters of magnetic media. The vast majority of the world’s online data 
(some 1-2 zettabytes) are stored on HDD, and this is projected to be the 
case for at least the next 5 years. Over the course of six decades and driven 
in part by advances in fundamental material science, HDDs have gone 
from devices the size of washing machines, storing 3.75 MB, to modern 
2.5-in. disks holding 8 TB and up. This expansion in capacity is projected 
to continue. But capacity is just one of several figures of merit—others 
include bandwidth, latency, and input/output operations per second 
(IOPS), which have all advanced at a much slower pace than capacity—
and none are anticipated to advance significantly over current HDD tech-
nologies that have effective bandwidths of circa 1-200 MB/s, latencies of 
a few milliseconds, and IOPS of 1-200. This is in part due to the physical 
constraints of spinning media, but also because investments are focusing 
on new technologies that are already delivering 1,000-fold advances over 
HDD in some performance metrics. Parallelism to many disks is required 
to provide very high data rates. Latencies have not improved as much; 
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for spinning disks, the latencies are dominated by the disk revolutions per 
minute and head seek time, which have advanced much more slowly than 
the densities and transfer rates (bandwidth). In contrast, solid-state disks 
(SSDs) provide much lower latency and greater data transfer rates. SSDs 
are presently based on various non-volatile (meaning data persists even 
without power) silicon memory technologies that will continue to benefit 
from advances in silicon manufacturing technologies. In the past, SSDs 
were regarded as both small and expensive, but in the past few years, the 
capacity of SSDs has approached that of HDDs, and while presently about 
3 to 10 times more expensive per byte than HDDs, price parity is expected 
within several years. With new standards for connecting SSDs to com-
puter systems (e.g., non-volatile memory express), SSDs are now capable 
of delivering bandwidths of several gigabytes per second, latencies of a 
few microseconds, and 100,000 IOPS. In addition to use in storage, the 
price, performance, persistence, and power characteristics of non-volatile 
memory technologies enable innovations in computer architectures to 
complement regular DRAM, such as in the proposed DOE pre-exascale 
systems. In summary, over the next few years, HDD storage capacity will 
continue to decrease slowly in cost, but various performance metrics will 
see revolutionary change as non-volatile memory technologies become 
even more price competitive, and eventually storage capacity itself will 
fall in cost once silicon technologies dominate.

Advances in storage capacity were critical enablers of the data-inten-
sive Nobel Prize-winning work of Perlmutter (see Box 3.2), as well as 
the discovery of the Higgs boson at the Large Hadron Collider by an 
international collaboration storing and analyzing more than 100 PB of 
data. Diverse other fields of science have been transformed by the ability 
to manipulate massive data sets from genomics, social networks, video 
and images, satellite data, and the results of simulations. Looking for-
ward, continued advances in capacity and revolutionary advances in 
other aspects of data technologies promise new revolutions in science 
across many fields presently constrained by their ability to store, explore, 
or analyze their data at sufficient scale or speed.

Because of these relatively high latencies, as well as the limits in band-
width compared with semiconductor memory, a wide range of memory 
architectures are being developed with intermediate performance. Some 
of these will be used closer to the compute elements and have been men-
tioned above. Others may be used to boost the apparent performance 
of disks, for example, by providing a higher-bandwidth, lower-latency, 
temporary buffer that can absorb bursts of data to write to disk. All 
of these new input/output (I/O) and memory products will need new 
software and, in many cases, new algorithms that fit their performance 
characteristics.
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The last major component of high-end computers is the internode 
interconnect; that is, the network that is used to move data between 
compute elements or between centralized data storage and the com-
pute system. Although the performance of these interconnects has also 
increased significantly, with bandwidths for proprietary networks used 
in HPC systems of 40-80 GB/s per link being typical, the latencies have 
not improved much in recent years, with high-performance interconnects 
having latencies on the order of 1 microsecond. Commodity interconnects 
are one to two orders of magnitude slower, with link speeds of 1 GB/s 
being common, and with 10 GB/s available at the high end of commodity 
interconnects.

The manner in which the links are connected is also important. 
There are three separate but related decisions. One is the topology of 
the connections. High-end supercomputers link nodes directly together 
in an n-dimensional torus. For example, the IBM BlueGene/Q uses a 
five-dimensional (5D) torus; the Cray Gemini network uses a three-
dimensional (3D) torus, with two compute nodes connected to each torus 
node. A second is the switch radix—how many ports each switch has. 
A third is whether the network uses switch notes that are distinct from 
processor nodes. Recently, interconnect design principles from HPC, such 
as more highly connected networks with better bisection bandwidth and 
latencies, have been adopted for commercial applications.7 

Also of importance is wide-area networking, which is critical to the 
success of NSF’s advanced computing, especially in terms of providing 
access and the infrastructure necessary to bring together data sources and 
computing resources. The size of some data sets is forcing some data off-
line or onto remote storage, so storage hierarchies, storage architectures, 
and WAN (wide area network) architectures are increasingly important 
to overall infrastructure design. NSF has made significant investments in 
wide-area networking. The Internet2 network plays an important role in 
connecting researchers. It carries multiple petabytes of research data and 
also connects researchers globally with peering to more than 100 interna-
tional research and education networks. Wide-area networks have a dis-
tinct set of technical, managerial, and social complexities that are beyond 
the scope of this report. 

7  See, for example, A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, 
et al., “Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google’s 
Datacenter Network,” presented at the Association for Computing Machinery Special Inter-
est Group on Data Communication (SIGCOMM), 2015, http://conferences.sigcomm.org/
sigcomm/2015/pdf/papers/p183.pdf.
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2.4.2  Software

Although computer hardware will to continue to improve, the rate of 
improvement has been slowing down and producing increasingly disrup-
tive programming features. Software for scientific simulations for parallel 
systems with more than a handful of processing cores has largely been 
written in a message passing model (e.g., with MPI) using domain decom-
position, where the physical domain or other major data structures are 
divided in pieces assigned to each processor. This works especially well 
for problems that can be decomposed statically and where communication 
between processes is predictable, involving a limited number of neighbors 
along with global operations. The assumptions underlying this model are 
that (1) locality is critical to scaling, so the application programmer needs 
to do the data decomposition, (2) the network and processors are reli-
able, and (3) the performance is roughly uniform across the machine. At 
the same time, many of the data analysis workloads processed on cloud 
computing platforms have used a map-reduce style in which independent 
tasks are spread across nodes and results are aggregated using global 
communication operations at intermediate points. This model allows for 
hardware heterogeneity or variable-speed processors, but does not permit 
point-to-communication between tasks. Both models have proven power-
ful in their own setting. 

The relative stability until recently of the hardware platforms has 
allowed a rich set of libraries and frameworks for simulation to emerge, 
many supported by NSF (Box 2.3). This includes libraries for sparse and 
dense linear algebra, spectral transforms, and application frameworks for 

BOX 2.3 
Volume and Complexity of Scientific Software

The total volume and complexity of scientific software that runs on today’s 
high-performance computing (HPC) systems have grown enormously in the past 
two decades. And while some scientific fields are just beginning to build analysis 
pipelines for their experiments, in fields like high-energy physics and biology these 
have existed for many years. Large community codes for modeling problems in 
materials and climate, for example, have many different models to simulate dif-
ferent conditions, options for algorithm choices, and multiple implementations for 
specific hardware. These applications are written in a variety of languages and 
libraries and, in many cases, involve multiple languages mixed together. They may 
use FORTRAN for numerical kernels, C++ for complex data structures, and Python 
to manage the steps in a software pipeline, and they may call multiple scientific 
libraries that are themselves written in other languages. Parallelism is typically ex-
pressed using message passing, typically MPI, possibly with threading used for on-
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node parallelism. But applications at a large center may take advantage of many 
different languages, libraries, and programming abstractions as well as tools to 
help with debugging, performance analysis, data management, and visualization. 

The diversity of libraries used in scientific computing gives some indication of 
the software investment needed to sustain a broad program of scientific discovery 
using HPC. Tables 2.3.1 and 2.3.2 show the usage of some of the most popular 
scientific libraries and programming models in one center based on a survey of 
users and weighted by the number of hours each project uses. These are based 
on data reported in categories chosen by those responding to the survey. As a 
result, there is some overlap in categories, and some used a general category 
(e.g., PGAS, or partitioned global address space) where others used a specific 
category (e.g., UPC, a PGAS language). These should be used only (1) to see 
the breadth of libraries, languages, and systems and (2) as a very rough guide to 
the amount of use of each item.

TABLE 2.3.2   Programming Systems Used at One Center
Tier Programming System

1st MPI, Fortran, C++, OpenMP, C
2nd Shellscript, Python
3rd Posix Threads, Tcl/TK, Java, Perl, Assembler, Charm++, OpenCL, 

IDL, PGAS, SHMEM
4th GASnet, MATLAB, UPC, Global Arrays, CoArray Fortran, Lua, Ruby, 

UPC++, CUDA, OpenCL

NOTE: Systems are grouped by usage in terms of the number of hours used by the projects 
that listed the programming system. The tiers are subjective but represent rough clusters of 
usage. The first tier are systems used by the majority of applications. The second tier are 
systems that use far fewer compute hours but still have significant use. Programming systems 
in the first two tiers are used by jobs that consume roughly 10 times the number of compute 
hours as those in the third tier (the table does not reflect the fraction of time each job spends 
using each programming system). Acronyms are defined in Appendix D.

TABLE 2.3.1   Scientific Libraries Used at One Center

Tier Library

1st LAPACK, FFTW, ScaLAPACK, PETSc, NCAR, hypre, SuperLU, 
MUMPS, Chombo, Trilinos, Root

2nd METIS, BOOST, CERNLIB, BLAS, SLEPc, BoxLib, PSPLINE, GSL, 
CHROMA, QDP++, MKL, pARPACK, SCOREC, gotoBlas, FFTPACK

NOTE: Libraries are grouped by usage in terms of number of compute hours used by the 
projects that listed the library. The tiers are subjective but represent, roughly, clusters of usage. 
Libraries in each tier are used by roughly 10 times the number of compute hours as those 
in the next tier (measured by the total time used by the project, not necessarily the library). 
Acronyms are defined in Appendix D.
SOURCE: Survey of National Energy Research Scientific Computing Center (NERSC) users, 
Sudip Dosanjh, NERSC director, personal communication.

BOX 2.3  Continued
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climate modeling, astronomy, fluid dynamics, mechanical modeling, and 
many more. To manage the overall power consumption of larger future 
systems, it will not be viable to carry out larger computations simply by 
scheduling threads on more cores. The processors themselves will need to 
become more energy efficient. As a result, scientific software will need to 
be revised to take advantage of power-conserving processor features like 
software-managed memory, wider serial instructions, and multiple data 
architectures. Scientific libraries face these challenges but are also a point 
of leverage, allowing multiple applications to benefit from optimizations 
to new architectures. Looking ahead, substantial investments in soft-
ware will also be required to take advantage of future hardware, as will 
research to address new models of concurrency and correctness concerns.

The virtual machine abstractions in the commercial cloud have 
enabled a different class of applications, with complex workflows for 
data analysis built and distributed as an integrated software stack. These 
are particularly popular in biology and particle physics. 

2.4.3  Algorithms

The situation is even more complicated for algorithms, where 
improvements in algorithmic complexity are harder to predict. Not all of 
the improvements fall into a general category, but some of the common 
approaches include hierarchical algorithms, exploiting sparseness or sym-
metry, and reducing data movement. In simulation problems, both the 
mathematical models of a given physical system and the algorithms to 
solve them may be specialized to a problem domain, allowing for more 
efficient computations. The same is true for data analysis, where some 
pre-existing knowledge of the data may permit faster analysis techniques. 
Machine characteristics may also affect the choice of algorithms, as the rel-
ative costs of computation, data movement, and data storage continue to 
change across generations, along with the types and degrees of hardware 
parallelism. Minimizing the total work performed is generally a desirable 
metric, but on machines with very fast processing and limited bandwidth, 
recomputation or other seemingly expensive computations may pay off if 
data movement is reduced, and memory size limits can make some algo-
rithms impractical. Future algorithmic innovations will still be essential 
for addressing more complex simulation problems—for example, model-
ing problems with enormous ranges of time- or space scale, or problems 
that combine multiple physical models into a single computation. They 
will also be needed for new problems in data-driven science, such as 
enabling multimodal analysis across disparate types of data, interpreting 
data with a low signal-to-noise ratio, and handling enormous data sets 
where only samples of the data may be analyzed. New algorithms will 
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also be needed to take advantage of future hardware with its new forms 
of parallelism and different cost metrics, including algorithms that can 
detect or tolerate various types of errors. Finally, scientific discovery at 
the boundary of simulation and observation will require new algorithms 
to measure uncertainties, adjust models dynamically to fit observed data, 
and interpret data that are incomplete or biased.

Although research into algorithms will continue to have large pay-
offs in some domains, it does not replace the need for increasingly capa-
ble machines. Algorithmic improvements have historically gone hand-
in-hand with hardware improvements, provided that the algorithmic 
advances can be effectively implemented on the advanced hardware. 
Machine learning algorithms based on neural networks, for example, are 
only effective because of the performance of modern hardware, and the 
massive high-throughput computations of the Materials Genome Initia-
tive would not be possible on the hardware available two decades ago. 
So while hardware performance gains will be increasingly difficult in 
the future, substantial algorithmic improvements for some problems are 
probably impossible. For these problems, decades of work on algorithms 
have led to optimal solutions, and further improvements must come from 
hardware and operating system software (Box 2.4). 

BOX 2.4 
Algorithms and Moore’s Law Challenges

The rate of improvement in hardware performance, whether measured by 
clock rate or even by concurrency, has been slowing down. Although the situation 
is much more complicated for algorithms, there are cases where year-to-year 
improvement in algorithms is also becoming more difficult.

One example that is often used to demonstrate the essential contribution of 
algorithms is the solution of the large, linear systems of equations that arise when 
approximating the solution to a three-dimensional partial differential equation on 
a grid of size n-by-n-by-n. Figure 2.4.1 is a typical example. It shows that the 
improvement in performance for this problem is comparable to the improvement 
indicated by Moore’s law.1 In other words, for this particular problem with a size of 
n = 64, using the most modern algorithm on a 35-year-old computer system would 
be as effective (by this simple measure) as running the 35-year-old algorithm on a 
state-of-the-art system. This is true, and it emphasizes the tremendous advance-
ments in numerical algorithms. However, note that the most modern algorithm, Full 
Multigrid, requires only O(1) work per solution value. As this problem is defined, 
there is no longer much room for improvement. Full Multigrid is an optimal algo-
rithm for this problem at any size; a size of n = 1,000 (i.e., a matrix with a billion 

continued
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rows) is easily handled today. Any further improvements in performance can come 
only from faster hardware or by the relatively small reductions in the constant term 
in the time complexity of the algorithm.

This example is not meant to say that all linear systems can now be solved 
in optimal time; it applies only to one well-studied and relatively simple problem. 
Optimal algorithms for solving other types of systems of linear equations have yet 
to be found, and seeking such algorithms remains an active and important area 
of research. And for particular problems, alternative formulations may provide a 
route to a solution without needing to solve this particular linear system of equa-
tions. But this example does point out that there is a limit to the use of better 
algorithms—in some cases, there is no alternative but to run the current optimal 
algorithm on faster hardware.

1  For a more thorough discussion, see Office of Science, U.S. Department of Energy, A 
Science-Based Case for Large-Scale Simulation, Washington, D.C., 2003, p. 32.

FIGURE 2.4.1  Top: A table of the scaling of the memory and processing requirements for the 
solution of the electrostatic potential equation on a uniform cubic grid of n × n × n cells for 
n = 64. Bottom: The relative gains of some solutions algorithms for this problem and Moore’s 
law for the improvement of processing rates over the same period. SOURCE: After Office 
of Science, U.S. Department of Energy, A Science-Based Case for Large-Scale Simulation, 
Volume 1, Washington, D.C., 2003, p. 32.

BOX 2.4  Continued
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2.5  NSF INVESTMENTS IN ADVANCED COMPUTING 

Since the beginning of NSF’s supercomputing centers program in the 
1980s, its Division of Advanced Cyberinfrastructure (ACI) and its prede-
cessor organizations have supported computational research across NSF 
with both supercomputers and other high-performance computers and 
provided services to a user base that spans work sponsored by all federal 
research agencies. Although a large fraction of the leadership-class invest-
ments have been driven by the mission-critical requirements of DOE and 
DOD, NSF has played a pivotal role in moving forward the state of the 
art in HPC software and systems.

ACI supports and coordinates a range of activities to develop, acquire, 
and provision advanced computing and other cyberinfrastructure for 
science and engineering research together with research and education 
programs. A significant fraction of ACI’s investments have been for two 
tiers of advanced computing hardware; a petascale computing system, 
Blue Waters, deployed in 2013 at the University of Illinois, and a distrib-
uted set of systems deployed under the eXtreme Digital program and 
integrated by the Extreme Science and Engineering Discovery Environ-
ment (XSEDE). XSEDE makes eight compute systems located at six sites 
available to researchers along with a distributed Open Science Grid and 
visualization, storage, and management services. Resource allocations for 
both tiers are made through competitive processes managed by the Petas-
cale Computing Resource Allocations Committee (PRAC) and the XSEDE 
Resource Allocation Committee (XRAC), respectively. As things stand 
currently, roughly half of all available computing capacity will shut down 
in 2018 with the anticipated end-of-life decommissioning of Blue Waters. 

 One of the major contributions of NSF to computational science 
has been the development of software: application codes, libraries, and 
tools. NSF’s implementation of the Cyberinfrastructure Framework for 
21st Century Science and Engineering vision8 identifies three classes of 
software investments: software elements (targeting small groups seeking 
to advance one or more areas of science), software frameworks (targeting 
larger, interdisciplinary groups seeking to develop software infrastructure 
to address common research problems), and software institutes (to estab-
lish long-term hubs serving larger or broader research areas). Investments 
at the larger/broader end are supported under the cross-foundation Soft-
ware Infrastructure for Sustained Innovation program, while those at 

8  National Science Foundation, “Implementation of NSF CIF21 Software Vision,” http://
www.nsf.gov/funding/pgm_summ.jsp?pims_id=504817, accessed January 27, 2016.
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the smaller/narrower end are supported by the relevant science and 
engineering divisions.9

Not included in the ACI portfolio are investments in computer sci-
ence research infrastructure, such as the GENI (Global Environment for 
Network Innovations) testbed. Such resources are important research 
resources but belong more properly to the specific research program 
within NSF. Also not included is basic research into algorithms and soft-
ware, which while also vital, is supported by other research programs in 
NSF (both within Computer and Information Science and Engineering 
[CISE] and the other science divisions) and at other federal agencies such 
as DOE.

Trends in the overall investment in advanced computing can be seen 
by looking at the spending amounts reported by federal agencies to the 
Networking and Information Technology Research and Development pro-
gram’s National Coordination Office. Figure 2.1 shows the total federal 
investment in all categories tracked by Networking and Information Tech-
nology Research and Development (NITRD) including high-end comput-
ing infrastructure and applications (HECIA), a category that shows both 
long-term growth over the period 2000-2015 as well as a significant fall-off 
from a mid-2000s investment spike. Note that advanced computing sys-
tems have a relatively short useful lifetime. However, NSF’s investments 
in HECIA have fallen off from nearly 40 percent to less than 20 percent of 
the total (Figure 2.2a-b), even as demand has grown.

2.6  DEMAND FOR AND USE OF NSF 
ADVANCED COMPUTING RESOURCES

The use of advanced computing resources cuts across research funded 
by all the divisions of NSF, as shown in Figure 2.3. Data obtained from 
XSEDE indicate that the number of active users has quintupled over the 
past 8 years, and the use10 grew exponentially through about 2009. Use 
increases less rapidly after that, matching the slower growth in available 
resources (cf. Figure 2.5). The usage patterns over the years indicate sig-
nificant usage by all of the NSF directorates, including Mathematical and 
Physical Sciences, Biological Sciences, Geosciences, Engineering, CISE, 
and Social, Behavioral and Economic Sciences. Notably, use by the Direc-

9  National Science Foundation, “Implementation of NSF CIF21 Software Vision,” http://
www.nsf.gov/funding/pgm_summ.jsp?pims_id=504817, accessed January 27, 2016.

10  XSEDE use is measured in service units (SUs), which are defined locally for each XSEDE 
machine and normalized across machines based on High-Performance Linpack benchmark 
results. SUs do not account for other relevant system parameters such as memory or stor-
age use. Also, a large fraction of available SUs in the current XSEDE resources comes from 
coprocessors that can be used only after significant changes to software and, sometimes, to 
algorithms as well. 
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torate for Social, Behavioral and Economic Sciences is continuing to grow 
exponentially and by 2014 exceeded the use by Mathematics and Physi-
cal Sciences in 2005, showing the broad growth in the use of computing 
across the foundation. 

Further, for such infrastructure as XSEDE, NSF supports a signifi-
cant fraction of non-NSF funded users. With XSEDE, the usage patterns 
indicate that for large allocations (e.g., over 10 million service units) 
approximately 47 percent of the allocations are for non-NSF funded users 
(Figure 2.4). That share includes 14 percent in support of research funded 
by the National Institutes of Health. 

Although it is difficult to know exactly how much advanced com-
puting is required by the nation’s researchers, one available metric is the 
amount of computer time requested on the XSEDE resources. There is a 
growing gap between the amount requested, which continues to grow 
exponentially, and the amount available (Figure 2.5). The implication is 

FIGURE 2.1  Total federal investment ($ millions) in the Networking and In-
formation Technology Research and Development program categories. NOTE: 
CSIA, Cyber Security and Information Assurance; HCIIM, Human Computer 
Interaction and Information Management; HCSS, High Confidence Software and 
Systems; HECIA, High-End Computing Infrastructure and Applications; HECRD, 
High-End Computing Research and Development; LSN, Large Scale Networking; 
SDP, Software Design and Productivity; SEW, Social, Economic, and Workforce 
Implications of IT and IT Workforce Development. SOURCE: Compiled from data 
provided in annual supplements to the president’s budget request, prepared by 
the National Coordination Office for the Networking and Information Technol-
ogy Research and Development program, https://www.nitrd.gov/Publications/
SupplementsAll.aspx. 
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FIGURE 2.2  National Science Foundation investment by Networking and Infor-
mation Technology Research and Development category from 2000 to 2016 as (a) 
a percent of total and (b) in millions of dollars. NOTE: CSIA, Cyber Security and 
Information Assurance; HCIIM, Human Computer Interaction and Information 
Management; HCSS, High Confidence Software and Systems; HECIA, High-End 
Computing Infrastructure and Applications; HECRD, High End Computing Re-
search and Development; LSN, Large Scale Networking; SDP, Software Design 
and Productivity; SEW, Social, Economic, and Workforce Implications of IT and 
IT Workforce Development. SOURCE: Compiled from data provided in annual 
supplements to the president’s budget request, prepared by the National Coordi-
nation Office for the Networking and Information Technology Research and De-
velopment program, https://www.nitrd.gov/Publications/SupplementsAll.aspx. 
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FIGURE 2.4  Estimated use in XSEDE service units of NSF advanced computing 
by grantees of other federal agencies, based on allocations of XSEDE resources 
over calendar year 2014. NOTE: NSF, National Science Foundation; XSEDE, Ex-
treme Science and Engineering Discovery Environment. SOURCE: Derived from 
data obtained by querying Open XDMoD database, University at Buffalo (J.T. 
Palmer, S.M. Gallo, T.R. Furlani, M.D. Jones, R.L. DeLeon, J.P. White, N. Simakov, 
et al., Open XDMoD: A tool for the comprehensive management of high-perfor-
mance computing resources, Computing in Science and Engineering 17.4(2015):52-62, 
2015).
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that insufficient computing resources inhibits the effective execution and 
constrains the scale of accomplishment of already funded NSF science. 

2.7  NATIONAL STRATEGIC COMPUTING INITIATIVE

As this study was being completed, an executive order11 was issued 
establishing a National Strategic Computing Initiative. Section 3a of the 
order designates NSF as one of the three lead agencies for the initiative 
and calls for NSF to “play a central role in scientific discovery advances, 
the broader HPC ecosystem for scientific discovery, and workforce devel-
opment.” Box 2.5 compares items in the executive order with the major 
themes of this report.

11  Executive Office of the President, “Executive Order—Creating a National Strategic Com-
puting Initiative,” July 29, 2015, https://www.whitehouse.gov/the-press-office/2015/07/29/
executive-order-creating-national-strategic-computing-initiative.

FIGURE 2.5  Requested XSEDE resources compared to awarded and available re-
sources, illustrating the gap as well as growing divergence between available and 
requested resources. NOTE: XSEDE, Extreme Science and Engineering Discovery 
Environment. SOURCE: Data from Open XDMoD, University at Buffalo (J.T. 
Palmer, S.M. Gallo, T.R. Furlani, M.D. Jones, R.L. DeLeon, J.P. White, N. Simakov, 
et al., Open XDMoD: A tool for the comprehensive management of high-perfor-
mance computing resources, Computing in Science and Engineering 17.4(2015):52-62, 
2015). Custom query by Robert L. DeLeon. 
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BOX 2.5 
Provisions of the Executive Order Establishing a 
National Strategic Computing Initiative1 and Their 

Relationship to Major Themes of This Report

The following are themes in this report as well as the executive order estab-
lishing a National Strategic Computing Initiative (NSCI):

1.	 High-performance computing (HPC) remains critical for science and in-
dustry; if anything, the need and value continue to grow. (NSCI Section 1)

2.	 “Increasing coherence between the technology base used for modeling 
and simulation and that used for data analytic computing.” (NSCI Section 2.2)

3.	 Building on its successes in cyberinfrastructure, the National Science 
Foundation (NSF) has an important role to play both in providing HPC (including 
data and compute) for basic science and in development of the science needed to 
advance HPC, including the algorithms, software, and hardware for extreme scale 
computing. (NSCI Section 3a)

4.	 NSF must also contribute to the development of an HPC workforce. (NSCI 
Section 3a)

5.	 Public-private partnerships should be explored. (NSCI Section 1.2)
6.	 HPC research must be transitioned into practice. (NSCI Section 1.4) This 

report’s recommendations to NSF echo this need; in particular, NSF needs both 
to perform research in support of HPC and to support bringing that research into 
practice as needed by the NSF user community.

7.	 Embrace an integrated approach to providing effective HPC, combining 
hardware, software, and algorithms, as well as address the development of an 
HPC-capable workforce and the whole of HPC, including the midrange as well as 
the high end. (NSCI Section 2.4)

Several themes in this report are not specifically discussed in the executive 
order:

1.	 Although convergence of data-intensive and compute-intensive systems 
is important and will address many needs, some applications require more special-
ized approaches that may emphasize compute or data. (NSCI Section 2.2 focuses 
on convergence)

2.	 The demand for computing continues to outstrip supply; more needs to 
be done to (a) provide greater resources (especially systems and expertise in 
using them) and (b) make the best use of these resources (NSCI makes no state-
ments on budgets; efficient use of the ecosystem is mentioned but without specific 
coordination). 

3.	 A diversity of platforms and software will be needed to capture the long 
tail of science. NSCI calls for acceleration of the deployment of an exascale class 
system but says nothing about the acceleration needed for future science needs 
at all scales. 

1 Executive Office of the President, “Executive Order—Creating a National Strategic Com-
puting Initiative,” July 29, 2015, https://www.whitehouse.gov/the-press-office/2015/07/29/
executive-order-creating-national-strategic-computing-initiative.
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Maintaining Science Leadership

Advanced computing underpins virtually every discipline of sci-
ence and engineering and is critical to the National Science Founda-
tion’s (NSF’s) mission “to promote the progress of science; to advance the 
national health, prosperity, and welfare; to secure the national defense; 
and for other purposes.”1 The use of advanced computing enables dis-
coveries in fundamental areas of physical sciences; provides new insights 
in biological sciences that have implications for national health; leads 
to improved engineering of devices; enables the development of new 
materials and systems with both commercial and defense implications; 
and aids in our understanding of the environment and society. Advanced 
computing has traditionally been used for modeling and simulation to 
interpret and project the implications of mathematical models of physical 
phenomena and, increasingly, to analyze the large and complex data sets 
from observations and experiments. 

The impacts on science have been both broad and deep. Advanced 
computing supports the education and research of thousands of students 
and scientists across the country, and it has been essential in some of the 
most significant award-winning scientific discoveries. Advanced com-
puting has been used for scientific discoveries across many disciplines, 
from cosmology and astrophysics to biology and medicine. For example, 
advanced computing at NSF has been used to understand the forma-

1  National Science Foundation, “At a Glance,” http://www.nsf.gov/about/glance.jsp, 
accessed March 31, 2016.
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tion of the first galaxies in the early universe, to analyze the impacts of 
cloud-aerosol-radiation on regional climate change, and to understand 
the design and behavior of computing device technology as the end of 
Moore’s law scaling approaches. The use of advanced computing systems, 
including those designed for data-intensive workloads, has expanded 
beyond traditional domains to understanding social phenomena captured 
in real-time video streams, connection properties of social networks, and 
voter redistricting schemes. Other examples of science impacts can be 
found in Box 3.1.

Advanced computing has been a key to multiple Nobel Prizes 
(Box 3.2), including the 2013 Nobel Prize in chemistry awarded jointly 
to Martin Karplus, Michael Levitt, and Arieh Warshel for “the develop-
ment of multiscale models for complex chemical systems.” The team used 
NSF TeraGrid resources for particle simulations to predict the structure 
of proteins and combine molecular dynamics with quantum mechanical 
calculations.

3.1  CRITICAL ROLE OF NSF

NSF plays a critical role in providing the advanced computational 
infrastructure, including advanced computing, necessary to keep the 
United States at the forefront in the areas of science and engineering. 
According to the Networking and Information Technology Research and 
Development (NITRD) reports2 on investments in high-end computing 
infrastructure and applications (HECIA), NSF ranked second, behind 
the Department of Energy (DOE), for 2015 in investments in high-end 
computing facilities. DOE invested more than $350 million, while NSF 
was just over $200 million. With respect to investments in the NITRD 
high-end computing research and development program area, NSF is cur-
rently very close to DOE, with the Department of Defense (DOD)3 lead-
ing with more than $200 million and NSF and DOE in the range of $125 
million.4 However, NSF investment in HECIA has declined significantly 

2  See fiscal year 2000 through fiscal year 2016 editions of Networking and Information 
Technology Research and Development National Coordination Office. The Networking and 
Information Technology Research and Development Program: Supplement to the President’s 
Budget. 

3  DoD includes Office of the Secretary of Defense, National Security Agency, and the DoD 
Service research organizations.

4  Note that the interpretation of the NITRD budget numbers is difficult and not consis-
tent across agencies, as has been observed in President’s Information Technology Advisory 
Committee reports (2010) and that DOE has been investing in extreme scale research both 
through its application communities with Scientific Discovery through Advanced Comput-
ing (SciDAC) and co-design projects and through research evaluation prototypes, some of 
which may not have been included in the HECRD (High End Computing Research and 
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BOX 3.1 
Examples of the Science Impacts of Advanced Computing

Gaining New Insights About Earthquakes 

The Southern California Earthquake Center (SCEC) and its lead scientist, Thomas 
Jordan, use NSF advanced computing resources to improve our understanding of 
earthquakes and provide more accurate hazard assessments. SCEC’s PressOn proj-
ect is creating more physically realistic, wave-based earthquake simulations using 
an earthquake model that calculates how earthquake waves ripple through a three-
dimensional (3D) model of the ground. Given detailed information about the geological 
material in specific areas, physics-based 3D wave propagation simulations are able 
to calculate how earthquake waves will move through the Earth and how strong the 
ground motions will be when the waves reach the surface. In 2014, the SCEC team 
investigated the earthquake potential of the Los Angeles Basin, where the Pacific and 
North American plates run into each other at the San Andreas Fault. In this study, 
the simulation showed earthquake waves trapped, and reverberating, within the Los 
Angeles Basin, leading to high-shaking ground motions much greater than expected. 
In 2015, SCEC used the NSF-funded Blue Waters supercomputer at the National 
Center for Supercomputing Applications and the Department of Energy-funded Titan 
supercomputers at the Oak Ridge Leadership Computing Facility to carry out a simu-
lation that doubled the maximum simulated frequency of the previous year’s model, 
therefore also doubling the accuracy. Even though the number of calculations required 
increased as the maximum simulated frequency of the earthquake went up, the com-
puting power of Blue Waters and Titan reduced the time needed for these calculations 
from months to weeks. Researchers believe seismic hazard analyses need to simulate 
earthquake frequencies above 10 hertz to realistically capture the full dynamics of a 
potential event. Physics-based 3D earthquake simulations at 10 hertz, once a distant 
dream, are now on the horizon.

SOURCE: Adapted from NSF, “Los Angeles Basin Jiggles Like Big Bowl of Jelly in Cutting-Edge 
Simulations,” August 20, 2015, http://nsf.gov/discoveries/disc_summ.jsp?cntn_id=136013.

Simulating an Atomic-Resolution Model of the Protein 
Shell of the Human Immunodeficiency Virus

The HIV capsid project, headed by Klaus Schulten of the University of Illinois at 
Urbana-Champaign, constructed the first atomic-resolution model of a mature HIV 
capsid and simulated it on Blue Waters, representing steps toward a better under-
standing of the interactions of potential drugs and host cell factors with the capsid. 
The project expanded the frontier of molecular dynamics simulation capabilities from 
simulating just a few proteins to simulating full organelles. It involved simulations of 
about 65 million atoms using thousands of nodes on Blue Waters, and required several 
years to redesign computer codes to make them more scalable to petascale systems. 
Going from simulating organelles to full cells with 100 billion atoms will require much 
faster computers. 

SOURCE: Adapted from National Center for Supercomputing Applications, “The Com-
putational Microscope,” Blue Waters Highlights, https://bluewaters.ncsa.illinois.edu/
documents/10157/5a7f03ba-4a2c-45a2-b7b3-3fa1fa1293c7, accessed March 31, 2016.
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Understanding Avian Lineages by Comparing the  
Genomes of 48 Bird Species

The Avian Phylogenomics Consortium project published eight papers in Science and 
20 papers in other journals on its work reconstructing the evolutionary history of 
birds. The research involved processing hundreds of times more genetic data per 
species than previous studies. The size of the data sets and the complexity of the 
analysis required multiple XSEDE resources: Ranger, Lonestar, and Stampede at 
the Texas Advanced Computing Center (TACC); Nautilus at the National Institute of 
Computational Sciences; and Gordon at the San Diego Supercomputer Center. TACC 
resources as well as a cluster at the University of Texas were used to test and validate 
new computational techniques; Nautilus was used to generate phylogenetic trees at 
the chromosome level for all the bird genomes; and the Gordon cluster was used to 
infer phylogenetic trees at the genome level. The analysis allowed the researchers to 
realize the existence of new inter-avian relationships, redrawing the family “tree” for 
nearly all of the 10,000 species of birds alive today. 

SOURCE: Adapted from Extreme Science and Engineering Discovery Environment (XSEDE), 
“2014-2015 XSEDE Highlights,” 2015, https://www.xsede.org/documents/10157/169907/
XSEDE_Highlights_2015.pdf, p. 14.

Discovering the Dark Side of the Universe and Testing 
General Relativity with Advanced LIGO

NSF’s Advanced Laser Interferometer Gravitational Wave Observatories (aLIGO) have 
begun taking data. Their first direct detection of waves of astrophysical origin is immi-
nent. Frequent observations of coalescing binaries of two neutron stars, a neutron star 
and a black hole, and two stellar-mass black holes are expected once the detectors 
have reached their design sensitivity in 2019.
  The coalescence and merger of two black holes (binary black holes; BBHs) is the 
most extreme of aLIGO’s gravitational wave sources. Because BBHs produce gravi-
tational waves and no other kind of radiation, observation of merging BBHs makes it 
possible to probe the predictions of general relativity.
  Numerical relativity simulations that implement general relativity without approxima-
tion (other than numerical truncation error) are essential for enabling discovery and 
testing of general relativity with aLIGO. Codes with exponential convergence (highly 
efficient via spectral methods) are being deployed on the nation’s (and international) 
supercomputers to generate waveform predictions (“templates”) for aLIGO. The tre-
mendous challenge is that the BBH parameter space is nine-dimensional: mass ratio of 
the two black holes, six components of the holes’ spin vectors, orbital eccentricity, and 
argument of periapsis. Thousands of numerical relativity simulations, each tracking the 
holes over many orbits before merger, are needed. These thousands of waveforms 
will populate carefully chosen discrete nodes that will allow accurate interpolation 
throughout the continuous parameter space.
  Although a single numerical relativity BBH simulation runs on about 48 cores within 3 
months, running thousands is a massive challenge at the interface of high-throughput 
and capability computing. NSF’s Blue Waters is presently enabling the first coarse 
sweep (hundreds of simulations; only about 40 pre-merger orbits) through the BBH 
parameter space with hundreds of simulations. A next-generation machine and im-
proved algorithms will be needed to carry out the thousands of very long coalescence 
simulations that aLIGO needs for discovery and for testing general relativity.

continued
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SOURCE: Adapted from Christian D. Ott, email message to Bill Gropp, September 
11, 2015.

Simulating Glacial Climate in Coastal South Africa: Developing the 
Climate Parameters to Model a Paleoscape During Modern  
Human Origins

There is widespread consensus that the modern human lineage evolved in Africa, 
and it has been hypothesized that the Cape region of South Africa may have been 
the refuge region for the progenitor lineage of all modern humans during harsh global 
glacial phases. During this phase of human origins, the economy was based on hunt-
ing and gathering, and hunter-gatherer adaptations are tied to the way that climate 
and environment shape the food and technological resource base. Curtis Marean, 
Arizona State University, leads a multinational, multidisciplinary team of research-
ers in a pioneering application of high-performance computing to the study of these 
interactions. “Our project began as a straight archaeological dig,” Marean says. “Then 
I realized that we needed much better climate and environmental contextual data to 
understand the archaeological record we were excavating.” Marean began using 
XSEDE resources—both the Pittsburgh Supercomputer Center’s (PSC’s) Blacklight 
and San Diego Computer Center’s Trestles compute systems and assistance from 
XSEDE’s Extended Collaborative Support Service (ECSS)—through the Novel and 
Innovative Projects program. The ECSS team of David O’Neal (PSC), expert in opti-
mizing atmospheric physics codes for HPC systems, and Campus Champion Fellow 
Eric Shook (Kent State University) helped port the variable-resolution global climate 
model CCAM [Commonwealth Center for Advanced Manufacturing] to Blacklight and 
adapt the code to allow very-high-resolution paleoclimate simulations over the Cape 
South Coast region. Referring to the workshop where first results were presented, 
Marean observed that “people were totally blown away, and it was so exciting to see 
something that has never been accomplished before—the production of glacial climate 
from a regional climate model,” providing a foundation for further study of the climate 
experienced by early humans.

 
SOURCE: Adapted from Ralph Roskies, Pittsburgh Supercomputing Center, email message 
to Robert Harrison, October 21, 2015.

BOX 3.1  Continued

as a percentage of its total investments in NITRD research and in total 
dollar amount (Figure 2.2), even as the gap between request and available 
computing resources has grown (Figure 2.5).

NSF has a critical role with advanced computing because of its mis-
sion to initiate and support “basic scientific research and research funda-

Development) category. However, the point here is that the levels of investment are roughly 
comparable. DOE also supports industry research in processor and memory design, inter-
connects, and programming environments through the Research and Evaluation Prototypes 
program.



Copyright © National Academy of Sciences. All rights reserved.

Future Directions for NSF Advanced Computing Infrastructure to Support U.S. Science and Engineering in 2017-2020 

MAINTAINING SCIENCE LEADERSHIP	 57

mental to the engineering process.”5 NSF’s Division of Advanced Cyber-
infrastructure (ACI) and its predecessor organizations have supported 
computational research across NSF and provided services to a user base 
that spans work sponsored by all federal research agencies. While a large 
fraction of the leadership-class investments have been driven by the mis-
sion-critical requirements of DOE and DOD, NSF has played a pivotal role 
in moving forward both the state of the art in HPC software and systems 
and the scale and scope of impacts that are enabled through their use to 
address key scientific challenges. This is in complement to other agencies 
such as DOE, the National Institutes of Health, DOD, and the Defense 
Advanced Research Projects Agency, which are mission driven. 

Currently, NSF-supported advanced computing investment includes 
a diversity of resources. NSF supports several large-scale hardware facili-
ties, together with associated staff expertise (Blue Waters at the Uni-
versity of Illinois, Urbana-Champaign, Stampede at the University of 
Texas, Austin, and Yellowstone at the National Center for Atmospheric 
Research-Wyoming), long-tail and high-throughput resources (Comet at 
the University of California, San Diego), data-intensive resources (Wran-
gler at University of Texas, Austin, and Bridges at the Pittsburgh Super-
computing Center), and cloud resources (Jetstream at Indiana University). 

In February 2012, NSF published Cyberinfrastructure for 21st Century 
Science and Engineering: Advanced Computing Infrastructure Vision and 
Strategic Plan.6 The document addressed broadly the cyberinfrastructure 
needed by science, engineering, and education communities to address 
complex problems and issues. The Cyberinfrastructure Framework for 
21st Century Science and Engineering (CIF21) strategic plan seeks to 
position and support the entire spectrum of NSF-funded communities 
at the cutting edge of advanced computing technologies, hardware, and 
software. The CIF21 vision is to position NSF to “be a leader in creat-
ing and deploying a comprehensive portfolio of advanced computing 
infrastructure, programs, and other resources to facilitate cutting-edge 
foundational research in computational and data-enabled science and 
engineering (CDS&E) and their application to all disciplines.”7 In addi-
tion, the vision calls for NSF to “build on its leadership role to promote 
human capital development and education in CDS&E to benefit all fields 
of science and engineering.”8 After the publication of the strategic plan, 

5  National Science Foundation Act of 1950, as amended, and related legislation, 42 U.S.C. 
1861 et seq.

6  National Science Foundation (NSF), Cyberinfrastructure for 21st Century Science and Engi-
neering: Advanced Computing Infrastructure Vision and Strategic Plan, NSF 12-051, http://www.
nsf.gov/pubs/2012/nsf12051/nsf12051.pdf, February 2012.

7  Ibid., p. 4.
8  Ibid., p. 4.
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BOX 3.2  
Recent Nobel Prizes Recognize Simulation and Data as the  

Third and Fourth Pillars of Scientific Discovery

The 1998 Nobel Prize in chemistry was shared by Walter Kohn (University of 
California, Santa Barbara) for his “development of the density functional theory,” 
and John Pople (Northwestern University) for his “development of computational 
methods in quantum chemistry.” Density functional theory is the workhorse of 
computational chemistry and materials science and is now, perhaps, the cen-
tral predictive computational tool of the multiagency Materials Genome Initiative. 
Through his development and distribution of the popular and efficient Gaussian 
software, Pople put powerful simulation tools into the hands of both theoreticians 
and experimentalists and ushered in the modern era of computational chemistry.

In 2013, the Nobel Prize for chemistry was awarded to Martin Karplus (Uni-
versity of Strasbourg and Harvard University), Michael Levitt (Stanford University), 
and Arieh Warshel (University of Southern California) for “the development of 
multiscale models for complex chemical systems.” Their theoretical innovations 
synthesized classical and quantum models, and by realizing these advances in 
powerful computer programs they enabled the predictive modeling of chemical 
reactions in complex systems relevant to combustion, drug design, and biological 
systems. Levitt remarked,1 “Computational structural biology, the field that I pio-
neered with Martin Karplus and Arieh Warshel, has certainly grown and matured 
through access to NSF-funded programs like XSEDE. . . . Our 2013 Nobel Prize in 
chemistry represents a huge step forward in the perception that high-performance 
computing is now of clear importance in a field of study previously considered as 
being purely experimental. The importance of XSEDE lies in its ability to work 
across many disciplines with a broad spectrum of users extending from novices to 
the most experienced users and all this at no cost of the researcher.”

NSF formed a foundation-wide committee with representatives from all 
directorates to move NSF in the direction of achieving the advanced com-
puting infrastructure vision. 

3.2  GLOBAL ISSUES 

Advanced computing is arguably the most critical ingredient of inter-
national science leadership, affecting leadership in other disciplines, pro-
viding an essential and often unique role in international experiments, 
and literally tying international collaborations together through network-
ing, data, and computing infrastructure. Nearly every developed country 
has some type of national program for computing because of its impor-
tance to economic growth, science, defense, and society. 
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In 2011, Saul Perlmutter (Lawrence Berkeley National Laboratory), Brian 
Schmidt (Australian National University), and Adam Riess (Johns Hopkins Univer-
sity) shared the Nobel Prize in physics for “the discovery of the accelerating expan-
sion of the Universe through observations of distant supernovae,”2 the unknown 
cause of which is termed “dark energy.” Their search for type Ia supernovae by 
an extended survey of thousands of galaxies was enabled by advanced image 
processing techniques and fast computers.3 Reflecting on the role of computation 
in this work, Perlmutter remarked that “we need more supercomputers to narrow 
down the history of expansion because there are subtle differences in the histories 
that you get when using the theory of dark energy or Einstein’s theory of general 
relativity. . . . This is all data intensive. From the very moment that you’re trying to 
find the supernova, you’re hunting for a little, tiny spark of light embedded in col-
lections of thousands of images where each image is many megapixels, or even 
gigapixels collected by the big mosaic cameras. And then, to analyze the data 
and compare your results to different cosmological models also requires large 
computers, as do the Monte Carlo and all the statistical models you need. Finally, 
to compare these many models derived from first principles requires simulations 
of exploding stars—so that’s another large computer job that is part of the story.”4

1 National Science Foundation, “Computational Science Takes the Nobel Stage,” February 
11, 2014, http://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=130427.

2 Royal Swedish Academy of Sciences, “Nobel Prize in Physics 2011,” press release, 
October 4, 2011. 

3 C. Day, “Nobel prizes for computational science,” Computing in Science and Engineering 
14(6):88, 2012. 

4 R. Brueckner, “Interview: Universe has Some Surprises in Store, Says Nobel Laureate 
Saul Perlmutter,” November 26, 2013, http://insidehpc.com/2013/11/universe-surprises-store-
nobel-laureate-saul-perlmutter/.

Leadership is difficult to quantify by a single, good benchmark or by 
analysis of a single system. The TOP500 list9 ranks computers globally 
by their performance on the High-Performance Linpack benchmark. It is 
sometimes criticized for using this measure, which is much more com-
pute-intensive than most modeling and simulation applications and does 
not reflect data-intensive workloads. Moreover, it does not contain all 
advanced computing systems, either because the system is business con-
fidential, classified, or, as in the case of the Blue Waters system, because 
owners did not wish to take time away from normal operations to run the 
benchmark. Nevertheless, the list is an excellent source of historical data, 
and taken in the aggregate gives insights into investments in advanced 
computing internationally. The United States continues to dominate the 

9  See the TOP500 website at http://top500.org, accessed January 27, 2016.
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list, with 45 percent of the aggregate performance across all machines on 
the July 2015 list, but it has dropped substantially from a peak of over 65 
percent in 2008. NSF has had systems either high on the list (e.g., Kraken, 
Stampede) or comparable to the top systems (i.e., Blue Waters), reflect-
ing the importance of computing at this level to NSF-supported science. 
Although there are fluctuations across other countries, the loss in perfor-
mance share across this period is mostly explained by the growth in Asia, 
with China’s share growing from 1 percent to nearly 14 percent today and 
Japan growing from 3 to 9 percent. 

The Association for Computing Machinery’s Gordon Bell Prize may 
be a better metric of scientific talent and usable performance; it is awarded 
annually to teams who demonstrate the best performance on a real appli-
cation. Of the 26 awards to date, 20 were awarded to U.S. teams using 
U.S. systems, some involving participants from other countries. The 
other 6 were from Japanese teams on the Earth Simulator system in the 
early 2000s and the K computer in 2013, both custom-designed systems. 
Although NSF systems and staff were involved in some awards, DOE 
laboratory staff and systems have largely dominated the U.S. awards, 
and the most recent award was to a commercial entity and custom system 
(D.E. Shaw Research’s Anton 2). 

China’s Tianhe-2 supercomputer stands at the top of the TOP500 list. 
Barely visible in high-performance computing 15 years ago,10 China’s 
presence on the list has continued to grow. China had, however, not 
announced at the time this report was being prepared its new 5-year plan 
for high-performance computing, so it is difficult to be precise about its 
future plans. 

Japan has a long history of strong support for advanced computing 
in support of both science and industrial competitiveness. By several 
measures, Japan has often deployed and operated the world’s fastest 
machine for science, most recently with the Earth Simulator (#1 on the 
TOP500 list from 2002-2004) and the K Computer (#1 on the TOP500 list 
in 2011). Japan has plans for both a powerful, leadership-class system, 
called the Flagship 2020 project, and a roadmap for nine powerful sys-
tems at university centers. The Flagship 2020 project is expected to pro-
vide roughly 1 ExaFLOP/s (1018 floating-point operations per second), 
although the focus is on a leadership-class system for science rather than 
a particular peak performance target. This is likely to be one of the most 
powerful systems in the world when it becomes operational and a pow-

10  J. Alspector, A. Brenner, R.F. Leheny, and J.N. Richmann, “China—A New Power in 
Supercomputing Hardware,” Institute for Defense Analysis, March 27, 2013, https://www.
ida.org/~/media/Corporate/Files/Publications/IDA_Documents/ITSD/ida-document-
ns-d-4857.ashx.
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erful advantage for Japanese scientists. Perhaps more importantly, Japan 
has a roadmap for what might be considered its second-tier systems, 
which will deploy, by 2020, nine highly capable systems at its university 
HPC centers, including eight with performance exceeding 10 PetaFLOP/s 
(Figure 3.1). Although what Japan actually acquires is of course subject to 
change, the roadmap illustrates the depth of the Japanese government’s 
commitment to advanced computing.

The situation in Europe is complex. First, although there is a cross-
European Union (EU) consortium, the Partnership for Advanced Comput-
ing in Europe (PRACE), most investment decisions are made by individ-
ual countries. Germany, for example, has made significant investments to 
support both basic research and industrial competitiveness. The Juqueen 
system at the Juelich Research Center, an IBM Blue Gene/Q system, is one 
of the most powerful systems in the world. It is over half the size of the 
Mira system at the Argonne National Laboratory in Illinois, which is one 
of the two leadership-class systems operated by DOE’s Office of Science. 
Germany has three other systems ranked in the top 25. Outside the EU, 
other European countries have their own powerful systems. For example, 
the Swiss National Supercomputing Center operates a system ranked #6 
by the TOP500 list in June 2015.

In terms of data-intensive computing, the United Kingdom’s 
eScience program identified the emergence of data-intensive comput-
ing—as a complement to the tradition simulation and modeling research 
activities—as long ago as the early 2000s. It would later prove influential 
in launching NSF’s cyberinfrastructure program and as an inspiration for 
other national programs, such as the Australian eResearch and the Dutch 
eScience programs.11

Another country that has made significant recent investments is Saudi 
Arabia. Both its Shaheen system, an IBM Blue Gene, and its more recent 
Shaheen II, a Cray XC40, both installed at the King Abdullah University of 
Science and Technology and used for scientific research, have been among 
the world’s fastest systems for science research. The Indian government 
has approved a 7-year supercomputing program worth $730 million (Rs. 
4,500-crore) intended to revitalize its program and raise the nation’s status 
as a world-class computing power.

Leadership means drawing the best talent nationally and internally 
and supporting training of the next generation of scientists in computer 

11  International Panel for the 2009 RCUK Review of the e-Science Programme, Review 
of e-Science 2009: Building a UK Foundation for the Transformative Enhancement of Research 
and Innovation, Research Councils UK and the Royal Society, 2009, https://www.epsrc.
ac.uk/newsevents/pubs/rcuk-review-of-e-science-2009-building-a-uk-foundation-for-
the-transformative-enhancement-of-research-and-innovation/.
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science, data sciences, and scientific computing. This next generation 
includes the designers of future computer architectures, systems software, 
algorithms, and computational tools, as well as the applications. It is dif-
ficult to quantify these future impacts, except to point to the historical 
benefits that the United States has seen from computing and the continual 
demand by industry, government, and academia for experts in the design 
and use of advanced computing, networking, and data systems. 
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Future National-Scale Needs

Forecasting the future national needs for advanced computing is 
difficult. The recent revolution in data-centric computing emphasizes 
both the broad generality of computation and the difficulty in forecast-
ing what future needs will emerge as new methods and opportunities 
arise. In addition, the end of Dennard (frequency) scaling and the move 
to massive parallelism and new computing architectures mean that many 
existing applications will need to be updated or replaced in order to make 
effective use of forthcoming systems. This chapter discusses previous 
approaches for discussing needs that were based primarily on floating-
point performance and makes recommendations for how to think about 
the more complex, multidimensional requirements for computing and 
data systems in the future.

4.1  THE STRUCTURE OF NSF INVESTMENTS 
AND THE BRANSCOMB PYRAMID

For the past 30 years, National Science Foundation (NSF) invest-
ments in advanced computing have focused on the top two levels of the 
Branscomb pyramid (Box 4.1): leadership-class and center-class machines 
(Figure 4.1). Although the Branscomb pyramid has been invoked (and 
revised) for decades, it focuses only on the computational aspects of the 
portfolio. Variations have appeared over the years that include other axes, 
such as storage and bandwidth (see Chapter 5), but the pyramid remains 
as a useful, albeit incomplete, organizing principle. 

64
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The pyramid conveys more than just a portfolio of computational 
capability that spans five (or more) orders of magnitude in performance. 
It implies that there is substantial congruence in the programming mod-
els up and down the pyramid. Moreover, there is an expectation that the 
number of users roughly scales with the horizontal extent of each level. 
If the pyramid is to represent resource consumption, then these last two 
issues must be considered. 

In the area of programming models, Kogge and Resnick1 showed that 
there was a significant discontinuity in 2004 with a sudden growth in 
the diversity in architectures in the TOP500 systems. Kogge and Resnick 
noted that this was the result of barriers to the previous several decades 
of increases in single-core performance, more memory per chip, mem-
ory latency, and interconnect performance. In 2004, there was growth 
in multicore systems relying on simpler cores and slower clock speeds, 
slow growth in memory density, and complex interconnects. Thus, the 
advanced computing portfolio began to be a combination of heavyweight 
architectures (e.g., Cray XE6 nodes for National Center for Supercom-
puting Applications’ Blue Waters),2 lightweight architectures (e.g., IBM 
BlueGene/Q for Argonne National Laboratory’s Mira), hybrid architec-
tures (e.g., Cray XK7 for Oak Ridge National Laboratory’s Titan or the 
Intel Xeon Phi nodes on Texas Advanced Computing Center’s [TACC’s] 
Stampede), and heterogeneous multicore systems on a chip (e.g., ARM 
Cortex). 

The current expectations are that scientists can use the same codes 
across a broad range of systems and that U.S. vendors do not develop 
chips and packages uniquely for the highest-end systems. However, future 
performance improvements to the largest-scale systems may require even 
more exotic technologies to cope with such issues as resilience, power 
management, and energy efficiency. As a result, the high-performance 
community is currently exploring whether those seeking the very high-
est performance will have to adopt new programming models, tools, and 
practices sooner. On the other hand, users of both scientific and com-
mercial systems see considerable value in maintaining a common pro-
gramming model across the spectrum—from the single chip in handheld 
devices to the largest multi-processor systems.

Regarding the number of users at each level of the pyramid, there 
are economic and cultural pressures that sometimes work to increase the 

1  P.M. Kogge and D.R. Resnick, Yearly Update: Exascale Projections for 2013, Sandia Report 
SAND2013-9229, Sandia National Laboratories, October 2013, http://prod.sandia.gov/
techlib/access-control.cgi/2013/139229.pdf.

2  Strictly speaking, Blue Waters is a hybrid machine, but is predominantly lightweight 
because only about 16 percent of the nodes include GPUs.
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BOX 4.1 
The Branscomb Pyramid

What Is the Branscomb Pyramid?

The Branscomb pyramid was developed as part of a panel report to the 
National Science Board in 19931 and was named after the panel chair, Lewis 
Branscomb. It relates three things: computational power (y-axis, more is up), 
number of systems (also y-axis, fewer is up), and number of users (width of figure 
in x direction). It should really be a right triangle (so x-axis represents number of 
user in some possibly log scale). 

Why Was It Defined and How Did It Keep Its Value?

The Branscomb pyramid was defined to graphically show the relationship 
between the three components described above, and in particular the fact that the 
more capable and powerful the system (up), the fewer you can afford (also up) and 
the fewer “people” (or research projects) that can be supported. It was this last 
relationship that was the important insight graphically presented by the Branscomb 
pyramid. Many parts of this picture are still true today, but there are also many 
changes that, if not rendering the Branscomb pyramid obsolete, require a much 
more careful interpretation of the current situation in computing.

In What Ways Does the Branscomb Pyramid 
Misrepresent the State of Computing Today?

There are several, and each is important and addressed in this report:

•	 Compute power is not simply measured. Even in high-performance com-
puting (HPC), it has long been known that aspects such as sustained memory 
bandwidth (itself very different from peak memory bandwidth) are often far more 
indicative of application performance than peak floating-point operations per sec-
ond (FLOP/s). The revolution in data science adds another set of dimensions to 
this, by adding data volume, bandwidth, latency, etc., to the list.

•	 The ability to solve a problem depends on far more than just hardware. As 
has been noted (see Box 2.3) for some applications, using modern algorithms on 
35-year-old hardware will give a faster solution than using a 35-year-old algorithm 
on modern hardware. The Branscomb pyramid does not represent this aspect 
of computing—the combination of software, algorithms, and human expertise in 
solving the problem. Since the y-axis captures, in some sense, both the number 
of systems and the cost of those systems, the cost of this non-hardware expense 
also needs to be captured. 

•	 New access modes make it possible for a much greater pool of users 
to have access to extremely large resources. In the old model, captured in the 
Branscomb pyramid, users of (especially) the peak systems typically used a large 
fraction of the system for a significant length of time. This is still the primary mode 
of operation for leadership-class systems around the world—research projects 



Copyright © National Academy of Sciences. All rights reserved.

Future Directions for NSF Advanced Computing Infrastructure to Support U.S. Science and Engineering in 2017-2020 

FUTURE NATIONAL-SCALE NEEDS	 67

are allocated tens of millions of node-hours (hundreds of millions to billions of 
CPU core hours). Due to the limited nature of the resource, this implies that there 
can be only a relatively small number of such projects. However, some research 
problems may require only a small amount of total time but be infeasible without 
access to the special capabilities of a leadership-class system. An example is an 
application that requires 1 PB of memory to run and has linear complexity in that 
amount of data. On today’s leadership-class systems, this would take only a few 
seconds to minutes to run, assuming the data are already located on the system’s 
high-performance disk. Although today’s HPC systems are not set up to run this 
sort of workload, converged systems would be well suited, as would cloud service 
models, provided that the necessary data are already colocated with the cloud 
computing resources.

Is This a New Observation?

No, the growing gap between the Branscomb pyramid and present-day com-
puting has been recognized in the community. For example, in the 2011 report  
National Science Foundation Advisory Committee for Cyberinfrastructure: Task 
Force on Campus Bridging,2 there is this finding:

The cyberinfrastructure environment in the US is now much more complex and varied 
than the long-useful Branscomb Pyramid. As regards computational facilities, this is 
largely due to continued improvements in processing power per unit of money and 
changes in CPU architecture, continued development of volunteer computing systems, 
and evolution of commercial Infrastructure/Platform/Software as Service (cloud) facili-
ties. Data management and access facilities and user communities are also increas-
ingly complex, and not necessarily well described by a pyramid.

	
If anything, this understates the situation.

So Why Do We Keep Talking About the Pyramid?

The Branscomb pyramid  is a convenient way to represent those three original 
relationships. Even with greater access through new service models or application 
gateways, there will be only enough “leadership-class” computing for a relatively 
small number of users and user groups. While this may still span thousands or 
tens of thousands of users, the computer revolution has put significant computing 
power into the hands of everyone. As long as the many simplifications that go into 
this picture are understood, it remains a valuable way to express this relationship.

1 National Science Foundation Blue Ribbon Panel on High Performance Computing, From 
Desktop to Teraflop: Exploiting the U.S. Lead in High Performance Computing, National Sci-
ence Board, NSB-93-205, 1993. 

2 NSF Advisory Committee for Cyberinfrastructure Task Force on Campus Bridging, Final 
Report, March 2011, http://www.nsf.gov/od/oci/taskforces/TaskForceReport_CampusBridging.
pdf.
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FIGURE 4.1  The Branscomb pyramid that appeared in the National Science 
Foundation Advisory Committee for Cyberinfrastructure Task Force on Cam-
pus Bridging Final Report, March 2011, http://www.nsf.gov/cise/aci/taskforc-
es/TaskForceReport_CampusBridging.pdf. NOTE: GF, gigaflop; TR, teraflop. 
SOURCE: Image by Francine Berman, San Diego Supercomputer Center, “Beyond 
Branscomb,” presentation at Clusters and Computational Grids for Scientific 
Computing, September 10-13, 2006, licensed under the Creative Commons 3.0 un-
ported attribution license (http://creativecommons.org/licenses/by-nc-nd/3.0/
legalcode). 

number of users at the top two levels of the pyramid (leadership class 
and center class). This can be done either through limiting the scope of 
resources allocated to a single job (number of processors, run time, etc.) 
or through explicit programs designed to increase the user base (e.g., the 
MATLAB portal at TACC or specific funding solicitations). Thus, a mod-
ern interpretation of the pyramid needs to clearly distinguish between the 
usage of services and the provisioning of services. 

The modern interpretation also needs to recognize that there are 
significant pressures to build out the resources that are affordable rather 
than those that are needed. While budget realism is essential, it can lead 
to an acquisition process dominated by cost considerations rather than 
one driven by the science requirements. Previous studies of the advanced 
computing portfolio consistently cite similar science needs (computational 
fluid dynamics, astrophysics, cosmology, materials science, etc.) and the 
gap between these needs and the available computational resources. This 
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suggests that there remains a persistent gap between the science require-
ments and the advanced computing components that are eventually 
provided.

Looking forward, the constellation of resources to support science 
needs is much broader and more diverse than in the past, ranging from 
cloud-based systems to high-speed wireless networks to the more tradi-
tional centers and campus-based facilities. The range of usage models has 
also widened (Box 4.2), and the science community is generating a flood 
of new data. Thus, there are more demands from new user communities. 
Moreover, the adoption timescale is much shorter for new technologies 
and capabilities. When these forces are coupled, new workflows emerge 
and evolve much more rapidly. 

In addition, although discussions of computing needs often focus 
on what systems need to be acquired and operated, the effective use of 
computing systems, particularly large-scale systems that address national 
needs, requires much more than just computer hardware. Expert staff are 
needed to operate the systems, diagnose performance problems, and help 
the user community. Software needs to be tuned and updated for each 
generation of system, and community codes, which encourage sharing of 
effort and efficient use of resources, need to be nurtured. New algorithms 
are needed to address new problems and to make better use of the hard-
ware. Data need to be preserved and curated. These needs must not be 
forgotten when provisioning computing resources.

4.2  DATA-INTENSIVE SCIENCE AND THE 
NEEDS FOR ADVANCED COMPUTING

The current generation of advanced computing infrastructure focuses 
largely on meeting the requirements of workflows for simulation sci-
ence that has fueled advances across many disciplines over the past two 
decades. However, the landscape of scientific workflows—the series of 
computational or data manipulation steps required to carry out a scien-
tific analysis—is evolving rapidly to respond to the remarkable poten-
tial that data-driven science (or more colloquially “big data”) holds for 
answering open scientific questions such as “How do we reliably detect a 
potential pandemic early enough to intervene?” or (in combination with 
simulation) “Can we predict new materials with advanced properties 
before these materials have ever been synthesized?”3 

Advances in sensing and measurement from empirical approaches 
have resulted in a wealth of scientific data that can be utilized to develop 

3  National Institute of Standards and Technology, Big Data Program, see http://bigda-
tawg.nist.gov/home.php.



Copyright © National Academy of Sciences. All rights reserved.

Future Directions for NSF Advanced Computing Infrastructure to Support U.S. Science and Engineering in 2017-2020 

70	 FUTURE DIRECTIONS FOR NSF ADVANCED COMPUTING INFRASTRUCTURE

BOX 4.2 
Supporting Different Usage Models of Computing Resources

Computational science needs span a wide spectrum. Some applications 
require a single, large, tightly coupled distributed memory parallel computer (such 
as the earthquake, human immunodeficiency virus, and general relativity examples 
in Box 3.1). Others may require large numbers of runs, each of which may require 
only a few compute nodes but run for hours, days, or even weeks (such as the 
avian lineage example in Box 3.1); the total compute requirement of these appli-
cations can be very large. Other applications may require real-time or continuous 
access to computing resources—for example, if computing is required to process 
data from an active experiment such as a telescope or sensor network.

Each of these types of computing (and there are others) requires a different 
service model. For example, applications requiring a large, tightly coupled system 
need the resources to be made available in a coordinated fashion and may need 
the resources to be allocated to ensure efficient communication between the pro-
cesses in the application. Applications using large numbers of runs may need to 
run without interruption for days or even weeks. It can be difficult to accommodate 
different types of applications on the same system—for example, long-running 
applications using a few nodes can fragment the available nodes, making it impos-
sible to schedule the resources for a tightly coupled application to run efficiently. 

In the short term, providers of computing resources can develop different 
service models that match modern science workflows, possibly by adaptively 
partitioning the computing system into groups of nodes that support develop-
ment and tuning of applications, real-time applications, long-running applications 
requiring only a few nodes, and highly parallel applications (adaptive to support 
requirements that change with time, such as the need to use an entire system to 
run a single tightly coupled parallel application).

In the longer term, enhancements to the applications could help relax some 
of the usage constraints. For example, unless one is analyzing a real-time stream 
from an experiment, there may be no actual requirement that a single code be 
able to run uninterrupted for weeks. This is an artifact of how the program has 
been designed and written and the availability of tools that can provide ways to 
stop and restart an application (e.g., through system-level checkpoint-restart or 
through a user-level software library for checkpoint-restart). In the case of highly 
parallel applications, it is often possible to make the code more flexible both with 
respect to requirements about when and on which compute nodes the programs 
begin running. However, doing so can require significant changes to the programs 
and may require expertise that the computational scientists who have developed 
the applications may not have. More fundamentally, both the algorithms used and 
the implementations of those algorithms need to be examined. In some cases, the 
methods were appropriate for smaller problems but not for the size of problems to 
which they are now being applied.
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new models or refine existing models in order to gain new insights. As 
the costs of sensors continues to decline, experimental and observational 
data are being generated not only by large instruments (assembled from 
many small sensors), but also from large arrays of geographically distrib-
uted sensors. Social media feeds are important new data sources for social 
science research.

More generally, as data accrue from experiments and simulations, and 
as data from multiple experiments and simulations are integrated, scien-
tific discoveries are increasingly being made from the accumulated and 
integrated data using advanced computing. This is sometimes known as 
the “fourth paradigm” of scientific discovery, because it supplements dis-
covery paradigms based on theory, experiment, and simulation.4 Further, 
there are additional opportunities for scientific insights at the interfaces 
of each of these paradigms of discoveries. 

A good example is provided by the aspirations of the genomics 
community. Microarray data sets—in which several hundred to several 
thousand genes were measured under different experimental conditions, 
resulting in data sets that were megabytes in size—have given way to 
data sets in which the expression level of the entire genome is measured, 
resulting in data sets that are gigabytes in size. Similarly, gene chips pro-
duce data sets that are kilobytes in size, while whole genome sequencing 
is producing data sets that are hundreds of gigabytes in size. As a rough 
rule of thumb, genomic and related clinical data for a cancer patient 
(assuming normal tissue is sequenced, a tumor is sequenced, and a tumor 
after relapse is sequenced) are approximately 1 TB in size. A cohort of 
10,000 patients requires 10 petabytes of storage, and a cohort of 1 million 
patients (a goal for the community over the next several years) would 
require 1 EB of storage.

Another example is the Large Synoptic Survey Telescope (LSST), 
which will produce a wide-field astronomical survey of the universe 
using a 8.4-meter telescope and 3-gigapixel camera. LSST will collect 15 
TB of raw image data every night that will be processed in near-real time 
to provide scientists with alerts about new and unexpected astronomical 
events and reprocessed annually. It will yield a 200 PB data archive by the 
end of the decade-long survey.

Today, both scientific researchers and businesses use a wide array of 
data analytics tools. In some areas, large-scale analytics companies such 
as Google and Amazon—rather than the scientific community—are in a 
leadership position. In some other areas, the needs of science may not 

4  T. Hey, S. Tansley, and K. Tolle, eds., The Fourth Paradigm: Data-Intensive Scientific Dis-
covery, Microsoft Research, 2009, http://research.microsoft.com/en-us/collaboration/
fourthparadigm/.
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overlap the needs of industry. For example, the statistical analysis of 
large, in memory data sets (such as the anticipated output from the LSST) 
is more similar to a scientific computation that to the type of analyses 
that have generally interested Google or Amazon. Looking ahead, there 
may be opportunities for researchers to make better use of the tools and 
concepts developed by industry or for the industrial and scientific com-
munities to partner more effectively where their needs overlap.

One challenge with respect to the private sector is that salaries for 
those trained in data analytics can be far higher in the private sector than 
in the academic research community. This makes it difficult for academic 
researchers to stay abreast of emerging technical tools that enable data-
intensive science. For NSF, this creates two challenges. The first challenge 
is to act strategically to develop the needed workforce to support both 
science and business applications. The second is to find ways to keep 
people with these skills in the science community despite lower salaries—
for example, by offering reasonably secure, stable career paths as well as 
exciting work.

From a technical requirements perspective, infrastructure for data-
intensive science needs to consider data acquisition, storage and archiving, 
search and retrieval, analytics, and collaboration (including publish/sub-
scribe services). Recent NSF requirements to submit data management 
plans as part of proposals signal recognition that access to data is increas-
ingly important for interdisciplinary science and for research reproduc-
ibility. Although the focus is sometimes on the hardware infrastructure 
(amount of storage, bandwidth, etc.), the human and software infrastruc-
ture is also important. Understanding the software frameworks that are 
enabled within the various cloud services and then mapping scientific 
workflows onto them requires a high level of both technical and scientific 
insight. Moreover, these new services enable a deeper level of collabora-
tion and software reuse that are critical for data-intensive science.

When considering cyberinfrastructure requirements, the needs of 
data-intensive science are often considered as separate from those of the 
more traditional computationally intensive science problems, such as 
climate modeling. However, as new massive data sets become available 
(e.g., the LSST project), the line separating these two types of research 
becomes blurred. As a specific example, today’s climate models have dra-
matically increased temporal and spatial resolution compared to models 
from 10 years ago. Although this has greatly improved model perfor-
mance, many processes that once could be parameterized simply at coarse 
resolution now must be included explicitly in high-resolution models. 
One example is the representation of cloud processes, where the phys-
ics are poorly understood and critical parameters cannot be measured. 
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The June 2014 issue of Philosophical Transactions of the Royal Society5 was 
devoted to a generation of coupled deterministic/probabilistic models 
that illustrate a possible convergence between compute-intensive models 
and data-intensive models.

4.3  FORECASTING FUTURE REQUIREMENTS

Developing science requirements for any large project takes enor-
mous experience and insight (and creativity). Establishing requirements 
that can be achieved within a cost and schedule framework is even harder. 
By its very nature, science is unbounded. There are always pressures to 
improve our understanding or to make better predictions.

Past NSF efforts have, in general, implicitly constrained requirements, 
either through budget caps or by technical feasibility. Obviously, there 
is some iteration between these elements, although the NSF petascale 
program6 was driven largely by cost and desired sustained computa-
tional performance. There was an implicit assumption that the acquired 
systems would enable a certain class of scientific models and analyses 
to be addressed. With this approach, there was a risk that the science 
requirements could have been only loosely coupled to the systems that 
were acquired, and key areas of science could have been left unserved.

Today, with growing demand for computing and constrained bud-
gets, it has become especially important to understand the relative ben-
efits and risks of different technical approaches for the science portfolio. 
This section describes some of the challenges NSF will face in developing 
science requirements for advanced computing.

•	 Quantifying science benefits. It remains an unsolved (and probably 
unsolvable) problem to accurately quantify the return on investment in 
scientific research, and certainly it is not possible to predict the return. 
But it may be possible to consider the likely costs and risks of different 
approaches, as well as the possible opportunities, and use these to guide 
the setting of objectives and priorities.

•	 Suitable measures of advanced computing performance. It is also impor-
tant to avoid reducing the requirements to a too simplistic measure, such 
as peak floating-point operations per second (FLOP/s). The system with 
the best FLOP/s per dollar may not provide the best value for science 

5  For example, T. Palmer, P. Düben, and H. McNamara, Stochastic modelling and energy-
efficient computing for weather and climate prediction, Philosophical Transactions of the Royal 
Society A 372:20140118, 2014, doi:10.1098/rsta.2014.0118.

6  National Science Foundation, “High Performance Computing System Acquisition: To-
wards a Petascale Computing Environment for Science and Engineering,” Program Solicita-
tion NSF 05-0625.
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applications, where sustained, rather than peak, performance is far more 
important. Key areas of science may have different requirements, such as 
sustained I/O performance for data-centric applications.

•	 Rapidly evolving science needs.   Any science-driven requirements 
process must also confront the issue that the science itself is changing 
rapidly on the timescale associated with large-scale advanced computing 
acquisition and deployment. Past experience has shown that although a 
procurement can be completed in several years, large systems sometimes 
take as long as 10 years from initial concept to full availability to users. A 
rolling decadal roadmapping process could help inform users about plans 
for the upgrade and replacement of existing systems and, more generally, 
the performance characteristics of expected future systems. 

•	 Responding to the rapid evolution of data-driven science. For example, 
new classes of weather forecasting models combine the tools of com-
putational fluid dynamics along with data-driven parameterizations to 
improve forecasts for small-scale (but intense) events. Moreover, these 
data-driven approaches often rely on ensembles of many model runs. 
As the network of real-time sensors connected through high-speed links 
to the Internet grows, these data-driven models will require new capa-
bilities in regard to computation, storage, and bandwidth. Much as with 
business analytics, these data-intensive methods will be based on near 
real-time streaming data. Moreover, new technologies could have pro-
found benefits for data-intensive science. One can envision networks of 
sensors where each sensor node has local compute capabilities that rival 
the supercomputer performance of only a few years ago. The impact on 
adaptive computing and sensing could be significant, realizing one of Jim 
Gray’s admonitions to move computation to the data.7

Such workflows will require autonomous tools to assess data quality 
and model performance; human intervention and control will not scale 
up to these new models. Planning for these changing (and often poorly 
formulated) requirements will require considerable insight. These chang-
ing scientific workflows extend to the human side of scientific computing 
as well. Especially in regards to data-intensive science, reproducibility 
will be challenging. These requirements will often be as important as the 
traditional technical requirements of CPU performance, latency, storage, 
and bandwidth.

•	 Complex and rapidly changing technology landscape. Just a few years 
ago, mainstream high-performance computing was limited to commodity 
x86 processors from Intel and Advanced Micro Devices and IBM Power 

7  A. Szalay and J.A. Blakeley, “Gray’s Laws: Database-centric Computing in Science,” in 
The Fourth Paradigm: Data-Intensive Scientific Discovery (T. Hey, S. Tansley, and K. Tolle, eds.), 
Microsoft Research, Redmond, Wash., 2009.
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processors. Today, high-performance computing is making use of general-
purpose graphical processing units and accelerators, and some designs 
such as Intel’s Xeon Phi are focused on scientific computing. Looking 
ahead, more diversity is likely to come in the form of things like inte-
grated non-volatile random-access memory and processors integrated 
with memory. At the same time, much of the broader commercial industry 
is focused on the needs of mobile devices. 

	 The technical landscape now has a range of new service provid-
ers beyond the hardware/software companies. Much has been made of 
cloud services, although most of the discussion has focused on its elastic 
computation and storage model along with an aggressive pricing strategy. 
However, a key capability of cloud services is the rich software frame-
work that is available for users. Not only can these services and frame-
works be leveraged to support changing science workflows, they can be 
extended to include new components that can then be made available to 
other users. The science community rapidly adopts these new “provid-
ers,” such as Dropbox, until a new and improved service appears on the 
market.

	 Along with the challenges of a changing scientific and techni-
cal landscape, any requirements process must recognize that there will 
always be gaps. For example, one cannot predict with any certainty the 
technical or business directions of the major hardware and software ven-
dors beyond several years. To give another example, the International 
Technology Roadmap for Semiconductors makes evident the major tech-
nical challenges faced by industry in maintaining the pace of performance 
improvements several years out. Widely used proprietary software such 
as CUDA is also subject to rapid change.8 Adoption rates of (or resistance 
to) new technologies is another challenge. The requirements process must 
at least consider the economic forces that are driving the technology mar-
ket as well as the political and cultural forces that either speed or resist 
adoption. Moreover, it must also recognize that the science community 
must be capable of using the advanced computing portfolio, which means 
one cannot follow a “build it and they will come” approach. 

4.4  THINKING ABOUT A NEW APPROACH TO DEVELOP 
REQUIREMENTS FOR ADVANCED COMPUTING

At its heart, there needs to be a rigorous process for development 
and assessment of the science requirements for advanced computing. The 
process needs to ensure that these science requirements have substantive 

8  Language standards such as C++, Fortran, and OpenMP are less subject to unexpected 
changes over the short term.
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feedbacks between the science, the technical approach, and cost. It also 
needs to make explicit what research can and cannot be done within 
a given budget envelope and with a particular set of acquisition deci-
sions. Moreover, a clear and bounded vision for the types of science that 
advanced computing will support is needed. For NSF, this will likely 
mean developing an understanding of how much of the portfolio can be 
supported by a more data-capable general-purpose platform (and what 
specific data capabilities are needed), and what is left over that either 
needs specialized advanced computing supported as cyberinfrastructure, 
or perhaps topical computing supported in part by the science programs. 
A more productive view than just focusing on the hardware that can 
be afforded would be to describe and quantify a set of services that are 
needed to meet a class of science challenges. Such an approach would 
allow a more flexible investment strategy (build a specific center, work 
with cloud service providers, etc.) rather than trying to fit everything into 
a small set of infrastructure assets.

A process that relies on documented science objectives and assess-
ment of the progress made toward achieving these objectives, rather 
than simply statements that greater computational capacity will improve 
understanding of a specific scientific process or phenomenon, can help 
improve future decisions. For example, such an assessment might show 
that the ability to run an ensemble of 1,000 short-term weather forecasting 
models will improve the quality of the forecasts by a specific percentage. 
These science objectives capture the value of the requirement as a func-
tion of benefit and affordability, where benefit is in turn a function of 
importance, quality, utility, and probability of success. This approach to 
cost-benefit analysis would allow science communities to understand the 
linkages between science, technical requirements, and cost, thus allowing 
more rational analysis of the trade space of science capability, technical 
requirements, and cost.

The more granularity that can be provided in terms of costs and ben-
efits, the better the decisions that can be made when the inevitable trades 
need to be made between science, technology, and cost. For example, one 
must consider the full costs of the advanced computing components, 
including both the acquisition as well as operations and maintenance 
costs (including hardware, software, and staff costs). In doing so, one 
must also consider fixed costs (staff, maintenance contracts, etc.) as well 
as marginal costs (elastic costs of cloud services, etc.). This is especially 
important as NSF and the science community are moving toward a model 
of buying services as needed rather than recognizing the true fixed costs. 
For example, a scientific programmer may spend only 1 month on a par-
ticular project, but the employer needs to provide a full year of salary. The 
existing supercomputer centers repeatedly note the difficulty in maintain-
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ing experienced and highly trained staff as the funding agencies move 
into a mode of buying talent by the month rather than providing stable 
support for the expertise the scientific community depends on.

Another component of the requirements analysis is to identify the 
linkages and dependencies across NSF’s advanced computing portfolio. 
Such systems engineering across a diverse portfolio will not be simple, 
but it is essential to developing a resilient portfolio that can support a 
wide range of science areas. Advanced computing requirements should 
also take into account the science needs (because NSF provides advanced 
computing to research communities funded by other federal agencies) 
and contributions of other federal agencies (because some NSF-funded 
researchers make use of advanced computing provided by other federal 
agencies). 

Today, most users of NSF’s advanced computing infrastructure have 
no understanding of the value of the resource that they have been granted. 
While rationed (through the allocation process), advanced computing 
resources are for the most part “free” (there is no charge for them). This 
leads to a mindset that puts little value on making efficient use of these 
resources, particularly because there is no way in the current system to 
trade, for example, computer time for expert help in tuning applications. 
As a first step, building an awareness of the value and cost of comput-
ing resources may lead to a more holistic and comprehensive approach 
to using the advanced computing resources. One possible way to do this 
would be to provide a dollar value of the computational resource granted. 
There are some dangers in this approach; the goal is to build awareness 
of the costs and value, not create a chargeback mechanism. Section 6.3.8 
describes a possible pilot project to explore the benefits, risks, and prob-
lems with such an approach.

This process will yield a much more thorough understanding of the 
complete costs and technical feasibility of the portfolio in the context of 
documented science objectives. This will inform an analysis of trade-offs 
that will modify the approach to fit within economic and political reali-
ties. Balancing its primary science mission with the need to operate infra-
structure will require constant assessment by NSF, as noted in the recent 
decadal survey of the ocean sciences.9 

4.5  ROADMAPPING

The Department of Energy (DOE) has created a roadmap for future 
advanced scientific computing research systems that provides research-

9  National Research Council, Sea Change: 2015-2025 Decadal Survey of Ocean Sciences, The 
National Academies Press, Washington, D.C., 2015.
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ers with a view of what capabilities to expect (Figure 4.2). By describing 
the next 3 to 5 years of leadership computing systems, DOE has given 
the community useful information about the general characteristics and 
organization of the next DOE leadership-class systems. The longer-term 
roadmaps are less concrete but still provide information about the gen-
eral intentions of DOE: continue increasing single machine performance, 
which contrasts with keeping the single machine performance about the 
same but increasing the total number of machines.

NASA and other mission agencies have regularly employed a road-
map process that outlines a small set of science themes that will engage 
the scientific enterprise over the next few decades.10 These themes then 
serve as a framework for a series of notional missions or activities that 
address specific questions in the theme. Some of these questions may 
need to be addressed sequentially (e.g., the approach to one question 
may depend on the knowledge gained from answering another ques-
tion), while others may proceed roughly in parallel. Taken together, the 
notional missions lay out a roadmap that is based on scientific progress at 
each stage. However, unlike a decadal survey, the roadmap also lays out 
options and multiple pathways and identifies the scientific and technical 
challenges.

A fundamental aspect of the roadmapping process is that it is driven 
by the science themes, rather than simply a quest for a certain level of 
technical capability. Also, the process lays out options and challenges. 
Lastly, it links scientific progress to technological capabilities, rather than 
a “build it and they will come” approach. Maintaining a linkage between 
science need and technological capability is an important aspect of effec-
tive roadmapping.

Implementing a roadmapping process that reflects all of the research 
supported by NSF advanced computing will not be easy. For one thing, as 
Dennard scaling has fallen off, there is growing pressure to use domain-
specific hardware to achieve greater computing performance. For another, 
the requirements have become more diverse as the range of science using 
advanced computing has grown. Specialized accelerators, storage facili-
ties, or other capabilities may be needed to enable some research objec-
tives efficiently, and it will in any event be difficult to roll up requirements 
into a sufficiently small set. It may be necessary to develop separate road-

10  For example, the end-to-end challenges in managing massive research data are consid-
ered in NASA Earth Science Technology Office/Advancd Information Systems Technology 
(ESTO/AIST) Big Data Study Roadmap Team, “NASA Earth Science Research in Data and 
Computational Science Technologies,” September 2015, http://ieee-bigdata-earthscience.jpl.
nasa.gov/references/aist-big-data-study-draft-summer-2015.
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maps by science area, and then aggregate similar needs across areas (e.g., 
the use of unstructured grids and iterative linear methods in simulations). 

Another challenge is determining a good configuration for a com-
puting system that requires more than just a measure of the number of 
operations per second (e.g., clock speed) or size of data (e.g., disk space). 
Research has shown that simple benchmarks are, individually, rarely 
predictive of the performance of an application, and even collections of 
benchmarks give only a rough estimate.11 Highly accurate performance 
estimates, while possible, remain a difficult and time-consuming pro-
cess. As a result, the community has relied on a very simple measure of 
computing performance, based on floating-point performance only. For 
example, XSEDE allocates resources in service units (SUs), which are 
related to the performance of High-Performance Linpack. This reflects 
the peak floating-point performance of a system but little else. Allocations 
under the PRAC program for Blue Waters are in node-hours, which is 
more easily related to the specific system but is not easily convertible to 
SUs or node-hours for a different system. A first step would be to gather 
more information about the needs of applications. Relevant measures 
include memory size and bandwidth, data size and bandwidth, intercon-
nect bandwidth and application sensitivity to interconnect latency, integer 
and floating-point performance, and long-term data storage requirements. 
Some of this information could be gathered by tools designed for this 
purpose, applied to an application running on a current system, reducing 
the burden on the computational scientists. An example of what the first 
step in this process might be is presented in Box 4.3.

Despite the challenges and the likely imperfections in the roadmaps 
that are developed, it should be possible to develop roadmaps that pro-
vide enough guidance to the community to be worthwhile. By focusing 
on the overall picture rather than the high-resolution details, roadmaps 
can indicate to the community what the major investments will look like. 
This will allow researchers to make better decisions about future research. 
It will also allow researchers to start preparing their software to be ready 
for future systems—for example, by providing advance notice about sig-
nificant changes in architecture or configuration. 

11  See, for example, L. Carrington, M. Laurenzano, A. Snavely, R. Campbell, and L. Davis, 
How Well Can Simple Metrics Represent the Performance of HPC Applications?, in Proceed-
ings of the ACM/IEEE SC 2005 Conference, 2005, http://ieeexplore.ieee.org/xpl/articleDetails.
jsp?arnumber=1560000.
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BOX 4.3 
Gathering Data About Computational System Needs from 
Proposals for Research Requiring Advanced Computing

As a first step in gathering more information about the computational system 
needs of applications, the National Science Foundation (NSF) could ask that all 
proposals for research that would require advanced computing include relevant 
measures such as memory size and bandwidth, data size and bandwidth, inter-
connect bandwidth and application sensitivity to interconnect latency, integer and 
floating-point performance, and long-term data storage requirements. Some of 
this information could be gathered by tools designed for this purpose, applied to 
an application running on a current system, reducing the burden on the compu-
tational scientists. 

Understanding the computational requirements of applications is a complex 
task. Many studies1 have shown that even for the subset of applications that 
are numerical simulation codes, there is no simple way to predict performance. 
What is well known is that just using floating-point performance, whether the peak 
performance from the processor manufacturer or the rate achieved by the High- 
Performance Linpack benchmark, is often a very poor way to predict performance. 
The situation has been made far worse in the past few years with the advent of 
systems using accelerators, which offer much higher floating-point performance 
but may not even be able to run some applications or may require significant 
code rewrites to make use of the accelerators. Advanced language, compilation, 
and execution systems could have transformative impact on both productivity and 
performance; however, these still largely represent frontiers of research rather than 
ready-to-deploy technologies. The situation is further complicated in the case of 
more data-intensive applications.

Given this complexity, what data ought to be collected from advanced com-
puting proposals to understand the computational requirements of the applica-
tions? This is really an unsolved problem, and one for which the National Science 
Foundation could support research. In addition, for the purposes of requirements 
gathering, the data must be relatively easy for the code developers to provide and 
not require a significant analysis effort. Below are some examples of data that 
would provide more information than is currently collected (the number of service 
units requested), without requiring a detailed analysis by experts of each applica-
tion. These examples have been selected because they are either relatively easy 
to determine, based on the code or algorithm, or they can be measured from a 
typical run of the application using widely available, open source tools. The data 
should apply to a typical execution of the application; if there are either multiple 
applications or widely different execution behaviors, data should be provided for 
each instance. The list below is targeted at parallel high-performance computing 
applications, but the approach can be applied to other areas; some items include 
examples relevant to some data science applications.

1.	 Basic performance characteristics, including floating-point operations, 
memory motion, and internode communication.

continued
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2.	  Application performance characteristics, including code scaling and per-
core efficiency and use of accelerators and vectorization.

3.	 Input/output (I/O) data sizes and number of I/O operations.
4.	 Algorithms used by the application; the Berkeley 13 motifs2 may be a 

starting point for a list.
5.	 Application implementation, including programming languages and major 

libraries used.
6.	 Total application needs, such as the number of runs for an ensemble 

study.

In addition to these examples, it may be useful to collect application workflow 
requirements. Many computational science studies involve a workflow that in-
cludes multiple applications. These may be computationally intensive or they may 
be used to control other codes. For requests to use a known community code, for 
example, the data requested should instead be the name of the code and enough 
information about the running environment, such as the problem size, so that the 
compute needs in point 1 can be computed.

The list above illustrates useful data that could be obtained with relatively 
little effort. Only item 1 requires some code analysis, which can be obtained by 
running the application with tools such as PAPI [precision approach path indicator] 
and Darshan (instructions should be provided on how to use these tools; XSEDE 
[Extreme Science and Engineering Discovery Environment] and Blue Waters could 
provide tools and support to make this easy for applications that are already run-
ning on their systems). The other data are either descriptive or, in the case of 
scalability, ought to be readily available to the application’s users.

This approach provides only the highest-level description of the application 
needs. While this would provide valuable data not currently being tracked, espe-
cially because it includes memory and I/O needs, as well as suitability for accel-
erators, it is not sufficient to predict performance on any system. Such a list could 
certainly be improved over time. However, it must be easy for the researcher to 
provide the information and not require a lengthy analysis of the code. If a shorter 
list was desired, the data in item 2 (application performance characteristics), com-
bined with the number of SUs required, would provide valuable guidance in setting 
requirements for production computing systems.

1 See, for example, L. Carrington, M. Laurenzano, A. Snavely, R. Campbell, and L. Davis, 
How Well Can Simple Metrics Represent the Performance of HPC Applications?, in Proceed-
ings of the ACM/IEEE SC 2005 Conference, 2005, http://ieeexplore.ieee.org/xpl/articleDetails.
jsp?arnumber=1560000.

2 K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer, D.A. Patterson, 
W.L. Plishker, J. Shalf, S.W. Williams, and K.A. Yelick, The Landscape of Parallel Computing 
Research: A View from Berkeley, Technical Report No. UCB/EECS-2006-183, December 18, 
2006, http://www.eecs.berkeley.edu/Pubs/TechRpts/ 2006/EECS-2006-183.pdf.

BOX 4.3  Continued
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Investment Trade-offs in 
Advanced Computing

Owing to the success of computing in advancing all areas of science 
and engineering, advanced computing is now an essential component 
in the conduct of basic and applied research and development. In a per-
fect world, investments in advanced computing hardware and software, 
together with investments in human expertise to support their effective 
use, would reflect the full range and diversity of science and engineering 
research needs. But, as discussed in Chapter 2, the gap between supply 
and demand is significant and continuing to grow. In addition, develop-
ments in data-intensive science are adding to the demand for advanced 
computing. From the smallest-scale system to the largest leadership-scale 
system, one of the challenges of advanced computing today is the capac-
ity requirement along two well-differentiated trajectories—namely, high-
throughput computing for “data volume”-driven workflows and high 
parallel processing for “compute volume”-driven workflows. Although 
converged architectures may readily support requirements at the small 
and medium scales, at the upper end, leadership-scale systems may have 
to emphasize some attributes at the expense of others.

Moreover, within a given budget envelope for hardware, the criteria 
for future procurements should reflect scientific requirements rather than 
simplistic or unrepresentative benchmarks. There is no single metric by 
which advanced computing can be measured. Although peak floating-
point operations per second (FLOP/s) is the most common benchmark, 
even within the simulation community it has long been known that other 

83



Copyright © National Academy of Sciences. All rights reserved.

Future Directions for NSF Advanced Computing Infrastructure to Support U.S. Science and Engineering in 2017-2020 

84	 FUTURE DIRECTIONS FOR NSF ADVANCED COMPUTING INFRASTRUCTURE

aspects of computer performance, including memory bandwidth and 
latency, are often more important. 

Finally, advanced computing is more than hardware. Investments in 
software, algorithms, and tools can help scientists make more effective 
use of resources, effectively increasing the computing power available to 
the community.

The trade-offs to be considered are many, with different impacts on 
advanced computing cost and capability. This chapter starts by consider-
ing trade-offs associated with the volume of compute and data operations, 
applies them to investments in systems designed for simulation and data-
intensive workload, and considers converged solutions (Section 5.1). This 
example was chosen because in the near term, it is perhaps the most criti-
cal trade-off that the National Science Foundation (NSF) must consider, 
as it balances the needs of existing computational users against a rapidly 
emerging data science community. The chapter then turns to another 
critical trade-off, between investments in production and investments to 
prepare for future needs (Section 5.2). Several investment trade-offs faced 
by NSF in simulation science, along with their impact, are discussed in 
Section 5.3. An example portfolio illustrating how NSF might address 
these trade-offs is sketched out in Section 5.4.

5.1  TRADE-OFFS AMONG COMPUTE, 
DATA, AND COMMUNICATIONS

Supporting both simulation and data-driven science requires mak-
ing trade-offs among compute, data, and communications capabilities. 
At a conceptual level, workflows for the simulations of physics-based 
models are typically compute-volume driven in that they require a higher 
number of arithmetic or logical operations per unit of data moved. An 
illustrative example is many-body simulation of the electronic structure 
of molecules or materials, which is dominated by the contraction of dense, 
multidimensional tensors. On the other hand, workflows for developing 
or refining models by utilizing data from experiments or simulations are 
typically data-volume driven in that they require a larger number of units 
of data moved per arithmetic or logical operation. Examples include the 
analysis of genomic data from large studies or the analyses of streaming 
data. Further, in areas where scientific advances may be imminent at the 
confluence of both of these approaches—for example, in Earth systems 
science, where climate and weather models can be coupled to data from 
observatories—workflows will likely exhibit a complex mix of both of 
these aspects.

The communication-volume dimension refers to the speeds at which 
data chunks from very small to very large sizes can be moved efficiently 
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within the system. Such communication is accomplished through net-
works that may connect processors directly or via/across memory and 
storage subsystems; technology trends typically point to one or more 
orders of magnitude differences in the latencies per operation at a proces-
sor, memory, or storage element. Consequently, communication networks 
can be configured to serve efficiently the critical set of latencies at appro-
priate bandwidths. Now, high performance for a particular workflow will 
depend not only on how its data and compute-volume dimensions tap 
into the corresponding dimensions, but perhaps even more crucially on 
how the software implementation and algorithms underlying the work-
flow match the communication dimension. 

A key question to consider is how the different types of workflows 
can inform advanced computing designs and specifications so that they 
can be provisioned appropriately to advance national priorities for dis-
covery and innovation. Here, the major dimensions of advanced comput-
ing, as shown in Figure 5.1, play a critical role. The compute-volume and 
data-volume dimensions of advanced computing architectures are closely 
related to the corresponding compute and data dimensions of scientific 
workflows. However, the correspondence to the communication-volume 
dimension1 is more complex, and it drives the space of trade-offs in regard 
to how desirable levels of performance may be obtained for specific types 
of workflows.

5.2  TRADE-OFFS FOR DATA-INTENSIVE SCIENCE

When making design and investment trade-offs for systems that sup-
port data-intensive science, one needs to consider the entire workflow, 
from instrument to scientific publication, and optimize the entire infra-
structure, not just individual systems. One key trade-off is that invest-
ments in capabilities for data processing and long-term storage need to 
be balanced against each other accordingly. For example, in a project that 
collects data over several years, data are analyzed as they are collected 
and typically continue to be analyzed for several more years. In this 
case, the project is required to store the data, analyze them, and almost 
always to reanalyze them as algorithms improve and as new data arrive. 
As another example, a design that allocates more time to computing 
capabilities may complete its analysis faster but may not be able to store 

1  Communication volume is used here as shorthand for the more accurate and complex 
representation of internode communication, including latency, point-to-point bandwidth, 
bisection bandwidth, network topology and routing, and similar characteristics. Latency 
in particular is critical for many applications; some algorithms require high bisection 
bandwidth. 
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Length of Time Data Held

Batch analysis 
of data sets

Reanalysis

Storage only

Integration of 
multiple data sets

Duration of 
computation

Next project / 
"nearby" projects
next technology

Duration of 
project

Data-intensive 
computing

Digital 
archives

HPC

Data 
archives

Streaming 
analytics

Duration 
of ingestion

Stream 
computing

Type of Analysis

FIGURE 5.1  Length of time data are held for different forms of computing and 
types of analysis. 

sufficient data to carry out the analysis of interest. Consider two designs 
with different allocations between the compute and storage allocated 
to a project. As Figure 5.2 illustrates, some projects may reanalyze all of 
the raw data throughout the project and so must keep the data online. 
Another important aspect of data-intensive science to keep in mind is that 
as different large data sets are integrated and the results analyzed, there 
are usually new types of scientific discoveries that are possible. Data-
intensive projects often provide data to other projects that may use their 
data as part of a broader “integrative analysis.” The trade-offs concern 
balancing how much data can be stored and for how long with how many 
processors can be used to analyze the data and how the communication 
network can be optimized for analysis and for efficient redistribution of 
the data to other interested parties. When instruments, computers, and 
archival sites are geographically distributed, the data they produce may 
be processed and consumed at multiple sites, requiring special attention 
to the wide-area networks needed to transfer the data, how data should 
be staged and consolidated, and so forth. For experiments, deciding how 
much data to save is a trade-off between the cost of saving and the cost 
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FIGURE 5.2  A simplified view of computing, including the three axes of com-
pute performance, input/output (I/O) and file system performance, and inter-
node communication (network) performance. Commodity clusters typically use 
commodity interconnects with performance less than typical high-performance 
computing (HPC) systems. However, they often include large amounts of fast 
file systems and large numbers of nodes, giving high aggregate compute perfor-
mance. The best leadership-class systems (and the most expensive) will have the 
highest performance along all three axes. In reality, leadership-class systems are 
also a compromise, often trading I/O performance for greater floating-point per-
formance. Missing from this view are important characteristics such as the type 
of compute or data architecture. The shapes are meant to capture common trade-
offs in different types of systems and are not meant to be rigorous. For example, 
the shape for the “commodity cluster” describes systems where the I/O capacity 
is roughly proportional to the number of nodes (compute performance), and the 
system uses interconnects that typically have lower performance than is found in 
high-end HPC systems.
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of reproducing, and this is potentially more significant than the trade-off 
between disks and processors.

In summary, for data-intensive science projects, one must balance the 
amount of data that can be stored with the capability and capacity of the 
workflows for analyzing the stored data. Second, trade-offs in the work-
flows themselves must be optimized. For data-volume-driven workflows, 
scientific outcomes are best achieved when the advanced computing is 
configured for efficient, high-throughput processing at scale with com-
munication attributes directed toward efficiencies at the processing and 
storage layers for continuous updating and reanalysis of petabyte-sized 
data sets. Consequently, achieving U.S. leadership in this space requires 
achieving such capabilities at scale through an appropriate balance of 
advanced computing attributes in the networked storage elements in 
regard to the data-volume and communication-volume dimensions and 
in the processing elements in regard to the compute-volume dimension 
to achieve high throughput of data analyses workflows.

5.3  TRADE-OFFS FOR SIMULATION SCIENCE 

Looking to the future, a variety of trade-offs will need to be examined 
with regard to the investments that NSF can make and their potential for 
enabling high-impact outcomes in simulation science. These trade-offs 
concern the scale of high-performance computing (HPC) systems and 
the fact that scale itself can become a tipping point for enabling new and 
unprecedented discoveries. The pivotal role of NSF in advancing simula-
tion science and engineering through its HPC investments at different 
scales is readily demonstrated by using the NCSA Blue Waters project 
and the XSEDE program as illustrative examples. The Blue Waters project 
has enabled breakthrough scientific results in a range of areas, includ-
ing an enhanced understanding of early galaxy formation, accelerating 
nanoscale device design, and characterizing Alzheimer’s complex genetic 
networks.2 NSF also supports the development and integration of mid-
scale HPC resources through its XSEDE program, which provides HPC 
capacities to the broader scientific community along with resources for 
training, outreach, and visualization and supporting research in such 
areas as earthquake modeling and the simulation of black hole mergers.3 
Further trade-offs concern the maturation of simulation science from 
one-off simulations of a select few critical points of a high-dimensional 
modeling space to ensemble calculations that can manage uncertainties 

2  See Blue Waters, “Impact,” https://bluewaters.ncsa.illinois.edu/impact-overview, ac-
cessed January 29, 2016.

3  XSEDE, “Impact,” https://www.xsede.org/impact, accessed January 29, 2016.
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for increases in prediction accuracies4 or enable high-fidelity modeling, 
simulation, and analyses for cost-efficient and innovative digital engineer-
ing and manufacturing.5

The scientific workloads supported by NSF through the Blue Waters 
and XSEDE programs are largely compute-volume and communication-
volume driven, although aggregate memory capacity can be a key enabler 
for some frontier science applications. A notable point is that Blue Waters 
provides leadership capabilities in regard to all these dimensions, as 
shown in Figure 5.2, while some other NSF XSEDE investments provide 
capacities for such workflows at the midrange. For example, Stampede 
enables high throughput of low to midscale computations. 

Historically, scientific workloads that are compute-volume driven have 
largely driven the balance of trade-offs in regard to the compute, commu-
nication, and storage components of such HPC advanced computing. Fur-
ther, as described earlier, the trend toward multicore nodes with increas-
ing core counts and very high degrees of thread and core-level parallelism 
require the use of high-bandwidth and low-latency networks to enable 
data exchange at the right scale. Additionally, the underlying algorithms 
and software implementations of the associated scientific workloads have 
been refined to define a more intricate relationship between how the ele-
ments of the advanced computing have to be tuned to provide the right 
balance along the compute-volume and communication-volume dimen-
sions. Even within a single workflow, different algorithms with different 
trade-offs between compute and communication may be preferable on a 
given platform. This makes it difficult to evaluate which platforms are 
best suited for which applications. 

As a consequence of trends in both hardware and software, includ-
ing multicore nodes with high degrees of parallelism and sophisticated 
algorithms that require higher levels of data sharing while reducing the 
number of operations per unit data, the communication-volume dimen-
sion is a key differentiator in how trade-offs need to be managed. The 
advanced systems for simulation science often require that significant 
fractions of the cost budget are invested in the form of low-latency and 
high-bandwidth communication networks to couple multicore processor 
nodes. For example, much of the budget for a system to support simula-
tion science workloads would be allocated to multicore processor nodes 

4  National Weather Service, “NMME: North American Multi-Model Ensemble,” http://
www.cpc.ncep.noaa.gov/products/NMME/, accessed January 29, 2016.

5  National Digital Engineering and Manufacturing Consortium, Modeling, Simulation and 
Analysis, and High Performance Computing: Force Multiplier for American Innovation, Final Re-
port to the U.S. Department of Commerce Economic Development Administration on the 
National Digital Engineering Manufacturing Consortium (NDEMC), 2015, http://www.
compete.org/storage/documents/NDEMC_Final_Report_030915.pdf.
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and the network that connects them to enable fast data exchange as the 
simulations proceed. In contrast, if the same budget was to be directed to 
serve streaming data science workloads, the bulk of it would go toward 
the storage network to enable high levels of data ingestion from storage 
by the multicore processor nodes. Both the Wrangler and Gordon systems 
funded by NSF are targeted in this manner toward data-intensive com-
putation. This illustrates the contrasts between how trade-offs need to be 
balanced for serving different workflows.

In summary, for compute-volume-driven workflows, scientific out-
comes are best achieved when the advanced computing is configured for 
efficient parallel processing at scale for a single analysis or simulation. The 
elements along the communication-volume dimension of the advanced 
computing (i.e., the interconnects) should be configured toward efficien-
cies at the processing and storage layers for continuous data exchange 
and the high-throughput output of data that are the results or outcomes 
of the processing. It is natural therefore to interpret performance in these 
HPC systems as they are traditionally known, to represent high levels 
of coupled parallel processing for compute-volume-driven applications. 

5.4  DATA-FOCUSED, SIMULATION-FOCUSED, 
AND CONVERGED ARCHITECTURES

One of the features of the current era in computing is that there are 
several distinct architectures for the largest high-performance computers. 
At the same time, large systems for handling data, especially commercial 
data systems, are as large or larger in size—and even raw aggregate com-
puting power—as the HPC leadership-class systems. Today, this suggests 
that there are two types of systems: HPC systems focused on simulation 
and systems focused on data. The true situation is almost certainly more 
complex. An issue complicating the discussion is that leadership-class 
systems for simulation science are operated mainly by research organiza-
tions and the government, while leadership-class systems for data science 
today are operated mainly by industry. Advances in HPC system archi-
tectures have generally been shared. In the case of data-intensive systems, 
some tools have been made open source while others have remained pro-
prietary. Stronger ties between the computer science and computational 
science communities focused on new data analysis tools, techniques, and 
algorithms would help bridge this gap. 

Some demands can be met by what is sometimes called convergence 
computing, in which high-performance systems are designed to meet 
the needs of both high-end simulation science and data science work-
flows. Indeed, high-performance systems for data-intensive computing 
in industry are almost always coupled with large-scale storage systems 
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(Figure 5.1). This coupling is still relatively infrequent in NSF-sponsored 
projects, and no NSF-supported project has data storage at the scale of a 
large Internet-scale company. As a simple example, the total online data 
storage for Blue Waters and XSEDE systems is in aggregate on the order 
of 100 PB, while online data storage systems at Google can be estimated 
at over tens of exabytes,6 two orders of magnitude larger. In addition, 
the architectures at Internet-scale commercial companies are designed 
for the continuous updating and reanalysis of data sets that can be tens to 
hundreds of petabytes in size, something that is again rare in the research 
environment.7 Presently costing several hundred million dollars, an exa-
byte of storage will become affordable for science applications within a 
few years because both disk and tape storage are still following an expo-
nential increase in density and reduction in cost. However, bandwidth 
to the data will likely remain expensive, and it must be borne in mind 
that any significant analysis of an exabyte data set implies exascale com-
putation. Over time, it seems reasonable to expect researchers to adopt 
industry use patterns as the necessary software is written. For example, 
researchers might analyze aggregated video streams to understand social 
behavior, with much of the large volumes of data not being retained for 
long.

5.5  TRADE-OFFS BETWEEN SUPPORT FOR 
PRODUCTION ADVANCED COMPUTING AND 

PREPARING FOR FUTURE NEEDS

Given the high demand for advanced computing, it will be essential 
for NSF to focus on and devote the majority of investments to provide 
production capabilities in support of its advanced computing roadmap. 
Production support is needed for software as well as hardware, to include 
community software as well as frameworks, shared elements, and other 
supporting infrastructure. NSF’s Software Infrastructure for Sustained 
Innovation (SISI) program is a good foundation for such investments. 
However, SISI needs to be grown in partnership with NSF’s science direc-
torates to a scale that matches need, where it can then be sustained essen-
tially indefinitely. The United Kingdom’s Collaborative Computational 
Projects (CCPs) provide examples of the impact and successful operation 
of community-led activities that now span nearly four decades. Produc-

6  Precise figures are not available, but a plausible estimate can be found in What If?, 
“Google’s Datacenters on Punch Cards,” https://what-if.xkcd.com/63/, accessed January 
29, 2016.

7  In high-energy physics analyses, enormous data sets are frequently reanalyzed in their 
entirety, but typically written only once. 
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tion support is further needed for data management; curation, preserva-
tion, archiving, and support for sharing all need ongoing investment. This 
balance is reflected in the example in Section 5.7. 

However, if NSF invested solely in production, it would miss some 
key technology shifts, and its facilities would become obsolete quickly. 
Some innovation takes the form of fine-tuning of production systems, but 
modest, directed investments in exploratory or experimental facilities and 
services are also needed to create, anticipate, and prepare for technology 
disruptions. 

NSF needs to play a leadership role in both defining future advanced 
computing capabilities and enabling researchers to effectively use those 
systems. This is especially true in the current hardware environment, 
where architectures are diverging in order to continue growing com-
puting performance. Such investments would include (1) research into 
how to use and program novel architectures and (2) research into how 
applications might effectively use future production systems. In the first 
category, longer-term, curiosity-driven research likely belongs as part 
of the Computer and Information Science and Engineering directorate’s 
research portfolio rather than NSF’s advanced computing program, which 
would be focused on roadmap-driven experimentation. Leadership by 
NSF will help ensure that its software and systems remain relevant to its 
science portfolio, that researchers are prepared to use the systems, and 
that investments across the foundation are aligned with this future. 

The range of possible options for advanced computing is growing 
as new architectures for analyzing data, increasing computing perfor-
mance, or managing parallelism are introduced. One associated risk is 
that investments end up spread across too many emerging technologies, 
fragmenting the investment portfolio and reducing the ability to make 
investments at the scale needed for production capabilities. Another risk 
is that the criteria used to select among the technologies do not adequately 
reflect realistic science requirements, as can happen when overly simplis-
tic benchmarks are used, leading to acquisition of systems that fall short 
in serving the research community. 

As new technologies offering greater performance or other new capa-
bilities begin to mature, decisions must be made about when to shift 
investments in the new direction. Many applications will benefit from 
higher performance, some applications may not need more performance, 
and one also expects new applications to emerge when higher perfor-
mance thresholds are reached. It may be worthwhile to push aggressively 
into higher performance to enable some new applications, even if other 
applications take a long time to exploit the new architectures, or never 
do so.

Today, accelerators, including general-purpose GPUs and other tech-
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nologies that are FLOP/s-rich but memory-poor and, possibly, hard-to-
program can provide very high performance at reduced cost for a sub-
set of applications. This can create tension between, on the one hand, 
moving forward aggressively with these technologies to obtain higher 
performance, thereby putting pressure on researchers to transition their 
software and algorithms to use the technologies more quickly, and, on 
the other hand, allowing sufficient time (and resources) for researchers to 
undertake such transitions. One possible indicator would be the level of 
active research on how to use a new architecture effectively. A high level 
might indicate that it is premature to consider the architecture ready for 
production systems. This indicator is not perfect; for example, there is still 
active research on how to use cache effectively. 

More generally, the requirements expressed in the advanced com-
puting roadmaps can serve as a guide to when technologies are ripe for 
transition from exploratory to production status. A requirements analysis 
is necessary to reveal the trade-offs implicit behind any such investment 
in NSF-wide infrastructure.

A 10-year roadmap would extend well into the exascale era. By focus-
ing on its advanced computing roadmap rather than the first exascale 
system, NSF will ensure its investments have long-term benefit and will 
also assist the wider community in understanding and navigating the 
associated technology transitions. Although exascale systems may seem 
remote or even irrelevant to the majority of (but certainly not all) NSF 
users, technology advances in areas like energy efficiency needed for 
exascale capability will change the hardware and software landscape 
and have bearing on the purchase and operational costs of the aggregate 
capability NSF will need in the future. It will thus be important for NSF 
and the research users it supports to be involved in the national discus-
sion around exascale and other future-generation computing, including 
through the recently announced National Strategic Computing Initiative, 
for which NSF has been designated as a lead agency.

At the same time, it will be especially important that NSF not only 
is engaged, but is actually helping to lead the national and international 
activities that define and advance future software ecosystems that support 
simulation and data-driven science. This includes active participation in 
and coordination of the development of tools and programming para-
digms and the software required for exascale hardware technologies. The 
Department of Energy (DOE) is currently investing heavily in new exas-
cale programming tools that, through the scale of investment and buy-in 
from system manufacturers, could plausibly define the future of advanced 
programming even though the design may not reflect the needs of all NSF 
science because the centers and researcher communities it supports are 
not formally engaged in the specification process. 
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5.6  CONFIGURATION CHOICES AND TRADE-OFFS

There are many choices and trade-offs to consider in allocating 
resources to computing infrastructure. This chapter has discussed several 
key trade-offs in detail, but there are many others. Whenever considering 
trade-offs, it is important to keep in mind that designing for a broader 
overall workflow almost certainly means configuring a system that is 
not perfect for all individual workflows; rather, it is able to run the entire 
workflow more effectively than other configurations. Thus, simply maxi-
mizing the performance or capability of one aspect, such as floating-point 
performance or data handling capacity, will not provide useful guidance. 

5.6.1  Capability Can Be Used for Capacity but Not Vice Versa

Perhaps one of the most important items to consider is that not all 
computing resources are interchangeable. This may seem obvious, but it 
is often forgotten when computation is described in term of peak FLOP/s, 
cores, or memory size. In addition, some computations (again, both 
compute-centric and data-centric computations) are infeasible on systems 
smaller than a certain size. For example, many simulations require large 
amounts of memory (in the hundreds of terabytes to 1 petabyte [1 TB = 
1012 bytes; 1 PB = 1015 bytes]), frequent exchanges of data, and terabytes 
to petabytes of data storage for both input and output data. Today, such 
simulations can only be run on leadership-class systems, such as NSF’s 
Blue Waters or DOE’s Mira and Titan systems. A simulation attempting to 
run on a system with a slower network will spend most of its time waiting 
on data to arrive (while still occupying most of the system memory); on 
a smaller system, there will not be enough memory to start the applica-
tion.8 Thus, without a system with these characteristics, such simulations 
cannot be performed.

On the other hand, large, capable systems can be used effectively for 
applications with smaller requirements. One argument that is sometimes 
made is that leadership-class systems ought to be used only for applica-
tions that require or can make good use of their unique capabilities. This 
is overly simplistic and is not looking at the overall objective, which, in 
essence, is to accomplish the greatest amount and most valuable science 
within the available budget (or with a minimum of cost and risk). Note 
that while it might be possible to run smaller jobs at slightly lower cost 
on a less capable system, the cost advantage is likely to be small given the 

8  In principle, out-of-core techniques, or even virtual memory approaches, could be used 
to address the lack of sufficient fast memory. But in practice this has the same problem as 
a too-slow network—the application might run, but it would run so inefficiently as to be 
impractical (and costly, since it would tie up the system for a very long time).
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significant economies of scale that can be realized in large systems. The 
goal is to be cost-effective over the entire portfolio of applications, not to 
optimize for each individual application. Moreover, if a large system is 
running only large jobs, then there are likely to be many unutilized nodes, 
because a few large numbers of nodes are unlikely to sum up to the total 
system size. Small jobs can improve utilization and, thus, have a small 
marginal cost.

Although this report avoids the terms capability (instead referring to 
leadership-class systems) and capacity (systems that can run large num-
bers of jobs, none of which require a leadership-class system), this point 
can be most concisely expressed as “capability can be used for capacity 
but not vice versa.” This critical point, reflected in Recommendation 2.2, 
calls for NSF to operate at least one leadership-class system so that the 
science that requires such systems can continue to be conducted.

As discussed above, a system that is optimized for data-driven sci-
ence that requires processing (and reprocessing) large numbers of mostly 
independent data records needs capabilities not required on systems opti-
mized for simulation. In particular, there is a greater need for a large 
amount of persistent storage; it may also be important to prefer higher 
bandwidth to independent storage devices—for example, having large 
numbers of compute nodes, each with several disks, over a unified sys-
tem that provides access of all data to all nodes, as is common on “clas-
sic” supercomputers. In a perfect world, NSF could deploy several such 
systems, each optimized for a different workload. Unfortunately, in a 
budget-constrained environment, NSF will need to make some trade-offs 
and, in particular, consider alternative approaches to provisioning the 
necessary resources.

Although there are clearly applications that are dominated either 
by floating-point-intensive work or by data-intensive work, there are 
many problems that require a combination of capabilities. For example, 
some forms of graph analytics require the same sort of low-latency, high-
bandwidth interconnect used in leadership-class HPC systems. In fact, 
the systems that dominate the Graph500 benchmark9 are all large HPC 
systems, even though this benchmark involves no floating-point com-
putation. Similarly, there are other features, such as large memory size, 
high memory bandwidth, and low memory latency, that are desirable 
in leadership-class systems for a wide range of problems, be they data-
centric or simulation/compute-centric. Thus, it is best, as illustrated in 
Figure 5.2, to consider leadership-class systems as a spectrum of systems 
with different emphases. With enough funds, several large-scale systems 
could be deployed, each making different trade-offs in this space of con-

9  See the GRAPH500 website at http://www.graph500.org, accessed January 29, 2016.
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figuration parameters. One can have several large-scale systems making 
different trade-offs, or different subsystems of a coupled system that 
make different trade-offs. If simulations increasingly ingest experimental 
data and increasingly require in situ analysis, then the latter solution may 
work better.

Arguments like these suggest that an economy of scale implies that all 
resources should be centralized to gain maximum efficiency from the sys-
tem. However, this is not correct, because it takes more than just hardware 
to provide effective advanced computing. Instead, a balance needs to be 
struck that provides resources large enough to tackle the critical science 
problems that the nation’s researchers face while also providing systems 
tuned for different workloads and the expertise to ensure that these scarce 
and valuable resources are effectively used. It is also important to have 
several centers of expertise to ensure that the community has access to 
several different perspectives. An example of a possible set of trade-offs 
is given at the end of this chapter.

Deploying a flexible hardware platform capable of addressing a wide 
range of data-centric, high-performance, and high-throughput workflows 
is just the first step. Also essential are deploying and supporting the asso-
ciated software stacks and addressing the challenges and barriers faced 
by researchers and their communities who will use the systems for their 
research and education.

5.6.2  Trading FLOP/s for Data Handling and 
Memory Size per Requirements Analysis

In the short run, even as it develops a more systematic requirements 
process, NSF needs to ensure continued access to advanced computing 
resources (which include both data and compute and the expertise to 
support the users), informed by feedback from the research communities 
it supports. In the longer run, it is essential that NSF use a robust require-
ments-gathering process to guide the selection of system configurations 
needed to ensure continued access. This will necessarily involve trade-offs 
of different capabilities, as each choice will have a significant cost. While 
this must be driven by the requirements analysis, one likely trade-off will 
be to improve data handling and memory size at the expense of peak 
FLOP/s. Some NSF systems have already done this; Blue Waters, with 
large amounts of memory, high input/output (I/O) performance, and a 
large number of conventional CPUs to support existing applications, is 
a good example. Wrangler is another good example of this trade-off in 
practice, although at a much smaller scale than Blue Waters. Note that 
the configuration of Blue Waters was guided by a process that required 
demonstrated performance on full applications, including reading input 
data and writing results to files, rather than just benchmarks and that this 
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significantly influenced the configuration of the system. The roadmapping 
process recommended in this report would ensure that future systems 
would be similarly aligned with the needs of the community.

5.6.3  Trade-offs Associated with Rewriting 
Code for New Architectures

When considering these trade-offs, it is important to consider the 
tension between maintaining compatibility with legacy applications and 
providing the highest performance for new applications. Note that there 
is a huge investment in scientific software that is not only written but 
also tested and (perhaps) understood. This code base cannot be rewritten 
without a significant investment in time and money. The financial cost is 
real and must be considered when evaluating the cost advantage of a new 
architecture. At the same time, if a new architecture is likely to persist, 
then that cost will only need to be paid once. An example of a new archi-
tecture that required many applications to be rewritten is the successful 
adoption of distributed memory parallel computers, along with message-
passing programming, more than 20 years ago, which enabled an entire 
class of science applications.

A related issue is the one of scientist productivity versus achieved 
application performance balanced with efficient use of expensive, shared 
computational resources. As this report stresses, the goal is to maximize 
the science that is enabled and supported by advanced computing. An 
individual scientist may rightfully be focused on the fastest path to dis-
covery and not be concerned about computational performance unless it 
is essential to completing the computations with available resources or 
time, such as is the case for the massively parallel applications running 
on Blue Waters. However, efficient utilization and maximum scientific 
productivity of a fully allocated, shared facility requires that the majority 
of cycles are consumed by well-optimized software. As systems become 
increasingly complicated and hard to use effectively, a burden has been 
put on the science teams as well as the computing facilities to create and 
maintain application codes that run efficiently on a range of systems. 
Many users are concerned about the difficulty in moving their codes to 
new architectures. In the short run, this means that production systems 
cannot be predicated on users needing to rewrite their applications to 
use new architectures. They also cannot depend on unproven software 
technologies to make existing or new applications run efficiently on new 
architectures. This concern with productivity also applies to new applica-
tions. Not all architectures are easy to use efficiently, and some algorithms 
remain very challenging to parallelize—for example, parallelization in 
time.

These observations relate to the relatively short run. However, NSF 
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also needs to be planning well into the future for a post-CMOS [comple-
mentary metal-oxide semiconductor] era. Here, the divisions of the Com-
puter and Information Science and Engineering directorate other than 
the Division of Advanced Cyberinfrastructure (ACI) can play a role by 
ensuring that the requirements of the science community are included in 
computer science and engineering research on future device technologies 
and architectures. 

5.6.4  Trade-offs Between Investments in 
Hardware and in Software and Expertise

Following on the theme of maximizing the science, today’s hardware 
is challenging to use efficiently and, despite many attempts and interest-
ing ideas, this is unlikely to change. NSF has already established several 
services that support application developers in making better use of the 
systems, both for XSEDE and for the PRAC teams on Blue Waters. The 
initial investments in the SISI program are a good start. They have the 
potential for broad impact if the investments reach sufficient scale, are 
sufficiently focused on the nitty-gritty of improving the engineering of 
codes, and are sustained over a sufficient period, if not indefinitely, with 
both external review and community-based requirements analysis being 
essential ingredients. Recent NSF-sponsored work10 points to plausible 
mechanisms that could be adopted to assess the science impact of soft-
ware as well as establish directions and locations for future investments. 
Investments in future hardware must continue to be considered together 
with support for using those systems, and that support must be organized 
for effective delivery.

5.6.5  Optimizing the Entire Science Workflow, 
Not the Individual Parts

Furthering the topic of getting the most science from the system, it 
is important to optimize for the entire scientific workflow, not just each 
part separately. This is for two reasons: first, as is well known, the global 
optimum is often not made up of a number of local optima. Second, it 
may not be possible to afford an optimal solution for each part of the 
problem. An example of a common yet incorrect trade-off is to design a 
system to meet the floating-point performance needs of a benchmark that 
is thought to represent an application. Yet in practice, the full application 
may require file I/O, memory bandwidth, or other characteristics. In 

10  J. Howison, E. Deelman, M.J. McLennan, R. Ferreira da Silva, and J.D. Herbsleb, Under-
standing the Scientific Software Ecosystem and Its Impact: Current and Future Measures, 
Research Evaluation, 2015, doi:10.1093/reseval/rvv014.
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addition, the science may require running pre- and post-processing tools, 
visualization systems, or data analysis tools. It is critical that the entire 
workflow be considered. Note that the Blue Waters procurement was one 
of the few for leadership-class systems that required overall application 
performance, including I/O, as part of the evaluation criteria; as a result, 
this system has more I/O capability than most systems with the same 
level of floating-point performance and is, in fact, as powerful for I/O 
operations as the leadership-class systems planned by DOE for 2016-2017.

5.6.6  General-Purpose Versus Special-Purpose Systems

There are some applications that on their own use a significant fac-
tion of NSF’s advanced computing resources. It may make sense, based 
on an assessment of the science impacts, to dedicate a system optimized 
for those applications (either together or singly) and provide a general-
purpose system that can handle (most/many) of the remaining applica-
tion areas that require a leadership-class system. For example, such sys-
tems may have smaller per-node memory requirements or per-node I/O 
performance; they may require simpler communication topologies but 
place a premium on the lowest possible internode communication latency. 
Similarly, as discussed above, an architecture focused on data volume 
will devote a much higher part of its cost to I/O than a system focused 
on compute or communication. While it may still be more cost effective 
to have a single machine that is good at all aspects of advanced comput-
ing (the convergence approach), it is essential that options that consider 
a small portfolio containing either specialized machines or access to time 
on specialized systems be considered.

5.6.7  Midscale Versus High-End Systems

Important scientific discoveries are made not just at the high end of 
the compute- and data-intensive scales, but also in the midscale and low 
end. Because of the improvement in software applications and tools and 
accessible training, there is a growing demand for the use of midscale 
advanced computing infrastructure. Work at the midrange produces a 
large number of scientific publications and supports a large scientific 
community. The requirements for midscale computing will only grow as 
improvements in software make it easier and easier to take advantage of 
these resources. 

The Hadoop software ecosystem provides an interesting example 
of what is needed for midscale systems to become widely usable. Tradi-
tional HPC clusters, around since the mid-1990s, were challenging to use 
until the message passing interface (MPI, a standardized message-passing 
system that runs on a wide variety of parallel computers) matured, soft-
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ware was developed that could leverage it, and students were trained to 
use it. Similarly, it was not until Hadoop emerged and began to mature 
that the same clusters could be easily used for data-intensive computing 
(especially of unstructured data). A Hadoop software ecosystem had to 
be developed and students trained to use it. Demand is just beginning to 
rise as this data-intensive ecosystem matures and researchers are trained 
to use it. 

As advanced computing technology advances, midscale users will 
benefit from work to develop easily used software and standardized 
configurations that can be scaled to different sizes and thus readily repro-
duced to serve larger communities through foundation, university, and 
industry partnerships.

5.7  EXAMPLE PORTFOLIO

NSF needs to act now in acquiring the next generation of computing 
systems in order to continue supporting science. The following is just an 
example of the sort of portfolio for hardware, together with supporting 
expertise, that NSF could consider, along with some explanations for the 
choices. This is not a recommendation; rather, it is an illustration of some 
of the options with the rationale behind them.

1.	 One or two leadership-class systems, configured to support data science, 
traditional simulation, and emerging uses of large-scale computation. Such sys-
tems are needed to support current NSF science; by ensuring that there is 
adequate I/O support, as well as interconnect performance and memory, 
such a system can also address many data science applications. These sys-
tems must include support for experts to ensure that the science teams can 
make efficient use of these systems. Continuity of support for advanced 
computing expertise is essential because people with these skills are hard 
to find, train, and retain. Note also that these systems may not be optimal 
for any one workload, but can be configured to run the required appli-
cations more efficiently than other choices. Also, these systems should 
not be limited to running only applications that can run nowhere else; 
to ensure the most effective use of these resources, they should be used 
for a mixture of what might be called capability and capacity jobs, with 
priority given to the jobs that cannot be run on any other resources. In 
the case where funding is extremely tight and only one system is pos-
sible, that system must complement other systems that are available to 
the nation’s scientists, such as those operated by DOE, and memoranda of 
understanding among agencies may help ensure that the aggregate needs 
of the research community are met. 

2.	 A cooperative arrangement with one or more operators of large-scale 
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clouds. These are likely to be commercial clouds that can provide some 
access to a system at a different point in the configuration space for 
a leadership-class data system. This addresses the need for access to 
extremely large systems optimized for this class of data-intensive research. 
Conversely, because the commercial sector is rapidly evolving and scaling 
out these large-scale clouds, it makes sense to lease the service rather than 
attempt to build one at this time.11 Note also that the commercial sector is 
investing heavily in applied research for these platforms, which suggest 
that NSF emphasize support for basic research.

3.	 A number of smaller systems, optimized for different workloads, including 
support for the expertise to use them effectively. It is important to have enough 
providers to provide distributed expertise as well as two types of work-
force development: training for staff and training for students. Currently, 
XSEDE effectively provides this access to smaller systems optimized for 
different workloads. This capability is essential in supporting the breadth 
of use of advanced computing in NSF.

4.	 A program to evaluate experimental computer architectures. This effort 
would acquire small systems (or acquire access to the systems without 
necessarily taking possession of them) and work with the research com-
munity to evaluate the systems in the context of the applications that 
NSF supports.12 This program will help inform the future acquisitions 
of the systems in the above three points, as well as inform basic research 
problems in computer and computational science, such as programming 
models, developer productivity, and algorithms. This approach differs 
from research testbeds for basic computer science; while important, those 
testbeds should be defined by the particular research divisions that need 
them.

5.	 A sustained SISI program. Continue to learn from the SISI program 
and apply lessons learned to long-term investments in software.

11  Once NSF is using a large amount of time on a cloud, the cost of contracting with a 
service provider will need to be compared to the cost of operating its own cloud system. 
Many of the economies of scale that work for the cloud providers are applicable to NSF; the 
decision should be made based on data about the total costs.

12  Some centers are already evaluating systems with NSF and external funding. TACC 
supports Hikari (funded by Hewlett Packard and NTT) for exploration of the effectiveness 
of direct high-voltage DC in data centers supplied by solar power, and Catapult (Microsoft-
funded) evaluates the effectiveness of a specific field-programmable gate array-based infra-
structure for science. Other centers are conducting similar activities. The Beacon system at 
the National Institute for Computational Sciences, partly funded by NSF, provided access 
to Intel Xeon Phi processes before they were deployed in production systems by TACC. The 
team that proposed Beacon included researchers from several scientific disciplines, includ-
ing chemistry and high-energy physics. 
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Range of Operational Models

The National Science Foundation’s (NSF’s) current model of cyber-
infrastructure, including advanced computing, is based on a mix of cen-
tralized and distributed funding, anchored by the Division of Advanced 
Cyberinfrastructure (ACI) within the Directorate of Computer and Infor-
mation Science and Engineering (CISE). Previously, ACI was the Office of 
Cyberinfrastructure (OCI), reporting to the director. This central structure 
currently supports the Blue Waters facility (a leading-edge facility) and 
a set of smaller computing and storage resources via the Extreme Sci-
ence and Engineering Discovery Environment (XSEDE). In addition to 
these centrally funded resources, the Geosciences Directorate operates 
advanced computing facilities at the National Center for Atmospheric 
Research (NCAR), and it and other NSF directorates fund cyberinfrastruc-
ture via a variety of programs.

Advanced computing shares many elements of other NSF infrastruc-
ture investments, but it also differs in some profound ways. First, unlike 
advanced telescopes or particle accelerators, where there is no competing 
commercial market, a vibrant computing industry develops new tech-
nologies and products and responds to market needs and opportunities 
that dwarf computing expenditures in academia and by federal research 
sponsors. Second, computing market shifts and the well-documented, 
rapid evolution of computing technology mean that researcher expecta-
tions and economically viable computing technologies change every few 
years. Consequently, advanced computing capital assets have a very short 
operational lifetime, in marked contrast to many other scientific instru-
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ments. These shifts, however, do not mean that long-term planning is 
unnecessary or impossible. Businesses and academia regularly develop 
strategic information technology (IT) plans that accommodate technol-
ogy shifts.

Third, advanced computing is distinguished by its universality; it 
is applicable to all scientific and engineering domains, spanning data 
capture and analysis, simulation and modeling, and communication and 
collaboration. Fourth, and consequently, demand for advanced comput-
ing continues to grow rapidly, placing increasing stress on the financial 
models and social processes used to support research cyberinfrastructure. 
Although states, universities, and companies have long subsidized the 
capital and operating costs of NSF’s leading-edge advanced computing, 
those costs have now reached tens to hundreds of millions of dollars. 
Consequently, the willingness of these parties to engage in “pay to play” 
(i.e., accept losses in exchange for publicity or collateral institutional 
advantage) has declined accordingly. 

6.1  GOALS AND OPPORTUNITIES

The unique attributes of advanced computing create both opportuni-
ties and challenges for any NSF strategy, requiring both nimbleness in the 
face of changing technologies and economics and stability to ensure sus-
tained capabilities and research continuity. The following basic principles 
will help ensure the sustainability of NSF’s advanced computing strategy:

•	 Realistic business assessment that exposes the true costs and sub-
sidies of cyberinfrastructure deployment and operation at all scales; 

•	 Identification and tracking of technology trends and economics, 
along with the research opportunities they create;

•	 Long-term planning and articulated strategy (a roadmap) that 
allows the broad research community and service providers to plan 
accordingly;

•	 Balanced support for computing hardware, storage systems, and 
networks, along with professional staff, software and tools, and operating 
budgets; and

•	 NSF-wide commitment to cyberinfrastructure investment, strategic 
directions, and operational processes.

Three crosscutting aspects of sustainability are particularly crucial: 
continuity, coverage, and skills. 
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6.1.1  Service Continuity and Adaptability

Service continuity encompasses long-term strategic planning and 
sustainability on a decadal or longer timescale. NSF’s Major Research 
Equipment and Facilities Construction (MREFC) projects for scientific 
infrastructure typically involve years of planning. Today, NSF’s cyberin-
frastructure facilities are rarely used to support computational modeling 
and data analysis for MREFC projects. The former have lifetimes of just 
a few years, making it impractical for MREFC project leaders to reduce 
overall costs of advanced computing by including NSF’s own cyberin-
frastructure facilities on the MREFC operational plan. This must change 
if common cyberinfrastructure is to support MREFC projects and other 
long-term community research.

Historically, most research data has been produced by carefully 
planned experiments, and it has been both expensive to capture and 
highly guarded by the researchers who produced it. Ubiquitous, inexpen-
sive sensors and a new generation of large-scale scientific instruments, 
including MREFC infrastructure, have changed the economics of data 
capture and are shifting scientific expectations about data retention and 
community sharing. 

Although NSF’s recent requirement that all NSF-funded research 
projects have a data management and accessibility plan is an explicit 
policy recognition of data’s importance, there is no NSF-wide cyberinfra-
structure strategy or program to support disciplinary or cross-disciplinary 
data sharing and preservation. Hence, much of the data preservation 
responsibility and financial burden rests on individual investigators and 
their home institutions. Today, when the cognizant investigators no lon-
ger perceive value in retaining the data, those data are often lost. This is 
increasingly problematic as the longer-term research value of data often 
accrues to those in other disciplines. 

6.1.2  Service Coverage: Breadth and Depth

In its earliest form, cyberinfrastructure was synonymous with high-
performance computing and computational science. Today it encom-
passes not only high-performance computing but also large-scale data 
archiving and analytics, software codes and tools, and human expertise 
and computing-mediated research and discovery. Orthogonally, cyberin-
frastructure spans the capabilities and needs of individual investigator 
laboratories, campus sites, regional and national research facilities, and 
commercial cloud service providers. 

Any comprehensive cyberinfrastructure strategy must include the 
entire spectrum of services and span the entire range of organizational 
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scales. It cannot be simply about leading-edge supercomputing platforms 
or just about big data analytics; it must integrate both at multiple scales. 
Nor can it focus on hardware infrastructure while neglecting both soft-
ware development and maintenance and training and support of technical 
expertise. It must balance sustainability against adaptation, recognizing 
that community needs evolve and technology shifts drive new solutions. 

The rise of “big data” as a cyberinfrastructure challenge that rivals 
the scale and complexity of advanced scientific computing is indicative 
of this need for community adaptation. To respond appropriately to this 
technology shift and opportunity, NSF must adapt its investments and 
infrastructure. Big data will require big infrastructure, just as leading-
edge computational science does, and will likely involve a mix of both 
centralized facilities and decentralized repositories at universities. The 
Australian eResearch initiative and its Australian National Data Service 
is a relevant example. 

In this context, the NSF community would benefit from a coherent, 
big data retention and preservation strategy and capability, one that bal-
ances investigator and disciplinary differences against communal ben-
efit and research collaborations. Unfunded mandates for retention and 
preservation will not be workable. A balanced model is likely to require 
greater total funding, a better balance of capital and operating budgets, 
more focus on business practices and return on research investment, and 
greater coordination across NSF directorates. 

6.1.3  Skills and Workforce

Sustainable and effective cyberinfrastructure depends critically on 
the skills and expertise of domain scientists and of committed and well-
trained advanced computing professionals. Even if they are not directly 
responsible for code development and workflow management, scientists 
using advanced computing need to be generally knowledgeable about 
these matters. For their part, technical staff members not only deploy and 
operate facilities, but also support community toolkits and codes, serve as 
keepers of institutional knowledge and expertise, and manage and ensure 
data security and provenance. Unlike hardware, with a lifetime of a few 
years, the human infrastructure of people’s experiences in operating such 
systems has a lifetime of decades. Despite their importance, these staff 
often lack clear academic career paths and are dependent on an uncertain 
stream of funding for support. 

Given the global competition of computing and computational sci-
ence talent, any cyberinfrastructure plan must include mechanisms that 
recognize and reward professional staff and ensure they have career 
opportunities that retain their talent within the academic community. One 
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important contribution to retaining and rewarding this skilled workforce 
is stability in funding for centers, recognizing that developing an expert 
staff is a long-term process that can be wasted with even a short-term gap 
in staff funding. 

Programs are also needed to train future computational science and 
data analytics experts. The report of the NSF Task Force on Cyberlearning 
and Workforce Development1 addressed this issue in depth and includes, 
more broadly, the use of computer-based approaches in learning and rec-
ognizes the need to train both the workforce that supports advanced com-
puting and the practicing scientists who make use of advanced comput-
ing. Note that the effective use of advanced computing systems requires 
specialized and advanced training. NSF computing centers and other cen-
ters of advanced computing expertise (academic departments involved 
in advanced computing, national laboratories, and private industry) 
have leveraged their in-house expertise to offer such training. Examples 
include training programs for users offered by XSEDE and Blue Waters 
and the Argonne Training Program in Extreme Scale Computing. Such 
programs could benefit from a more formal approach and, in particular, 
long-term support for training materials and resources.

The pervasive NSF-wide and nationwide nature of advanced com-
puting presents a perhaps unique opportunity, and responsibility, to 
pursue NSF’s diversity and inclusion goals.2 This includes ensuring the 
broadest possible benefit from and access to NSF’s cyberinfrastructure, 
as well as translating this participation into creating and sustaining a 
computationally skilled workforce that reflects our nation. XSEDE has 
made significant progress in increasing the number of underrepresented 
minority and women users and, more notably, principal investigators 
(PIs) with allocations. The successful XSEDE campus champions pro-
gram is a human network, which, while pursuing its primary mission of 
“empowering campus researchers, educators, and students to advance 
scientific discovery,”3 also serves other missions including advancing 
diversity through increased awareness, training, and education. Increased 
access to statistics and metrics, concerning not just PIs and users but also 
those accessing online materials or participating in events or using other 
services, could better inform and guide actions by NSF, XSEDE, and 

1  National Science Foundation, Advisory Committee for Cyberinfrastructure, Task Force 
on Cyberlearning and Workforce Development Final Report, March 2011, https://www.nsf.gov/
cise/aci/taskforces/FrontCyberLearning.pdf.

2  National Science Foundation, Diversity and Inclusion Strategic Plan 2012-2016, http://
www.nsf.gov/od/odi/reports/StrategicPlan.pdf, accessed January 29, 2016.

3  XSEDE, “Campus Champions—Overview,” https://www.xsede.org/campus-champions, 
accessed January 29, 2016.
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the community, and XSEDE is already working toward increased public 
access to data. 

6.2  ORGANIZATIONAL CHALLENGES 
AND COMMUNITY NEEDS

Although NSF’s current mix of centralized and distributed cyberin-
frastructure has had many notable successes, it is not without problems, 
both for infrastructure providers and for the research community. Some 
of these problems are rooted in history, some are embedded in the NSF 
culture, and some are consequences of NSF’s organizational structure.

6.2.1  Competitive Challenges

From its origins, NSF’s advanced computing programs—the orig-
inal 1980s supercomputer centers program, the 1990s Partnership for 
Advanced Computational Infrastructure (PACI) program, the 2000s Dis-
tributed and Extensible Terascale Facilities, and now XSEDE—have all 
been based on a repeated cycle of competitions to host and operate large-
scale cyberinfrastructure. This cycle continues to pit putative operators—
universities and national laboratories—against one another in irregularly 
scheduled “winner take all” competitive battles. In each case, competitors 
build ad hoc hardware and software vendor alliances to mount propos-
als. To compete, they also leverage institutional funds to cover facility, 
hardware, and operations costs (which are capped in the competitions as 
a percentage of hardware costs). Much of this difficulty is rooted in the 
lack of distinction between research and infrastructure funding. Each has 
widely differing timescales and success metrics. 

Not only does repeated infrastructure competition on 2- to 5-year 
cycles create strong disincentives for national collaboration, it convolves 
performance review, recompetition, and strategic planning in ways that 
are challenging for all. In addition, it leads to proposals designed to win 
a competition rather than maximize community scientific returns. For 
example, it places a premium on sometimes unproven, next-generation 
technology that can serve as a vendor-marketing showpiece, rather than 
on proven, production-quality infrastructure, and researchers have little 
input into vendor selection, configuration options, or service models. 
(There is a role for facilities to test novel and risky computing technolo-
gies, but it is not in production systems.)

Researchers whose work depends on access to shared facilities also 
face a form of “double jeopardy.” The scientific merit of their proposed 
work is assessed via the standard peer review process. However, if funded, 
they are still not assured of access to the computing and storage resources 
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they need to conduct their research. A separate proposal for shared cyber-
infrastructure access is conducted by either the XSEDE Resource Alloca-
tion Committee (XRAC) or the Petascale Computing Resource Allocations 
Committee (PRAC) to assess the competence of the researcher and his/
her team to use the cyberinfrastructure resources efficiently. However, 
there is little operational follow-up to ensure the resources are in fact used 
wisely and efficiently. This is especially problematic because the monetary 
value of computing resource awards continues to increase.

Finally, as discussed earlier, the current model is structured largely 
in support of individual investigator and small team projects, with a 
nominal 3-year lifetime. Larger disciplinary projects and major scientific 
instruments (e.g., NSF MREFC projects or cross-agency partnerships) 
with longer production cycles have no mechanism to plan for and request 
cyberinfrastructure for a 10- or 20-year horizon, because there is no guar-
antee that any of the extant cyberinfrastructure facilities will still be opera-
tional. This adversely affects data preservation activities in particular, 
because, by definition, they target long-term access.

6.2.2  Structural Challenges

Since the beginning of the NSF supercomputing centers program in 
the 1980s, NSF ACI and its predecessor organizations have supported 
computational science research across NSF and provided services to a 
user base that spans all federal research agencies. Despite the clear recog-
nition that computational science and data analytics are true peers with 
theory and experiment in the scientific process, NSF-wide coordination 
and support remain somewhat informal and ad hoc, with directorate par-
ticipation often a secondary responsibility of the designees.

Although researchers in all NSF directorates are critically dependent 
on cyberinfrastructure, at present there are no formal mechanisms for 
coordinated strategic planning, nor are there ready ways to pool and 
disburse shared resources. Concretely, there are no shared negotiations 
for discounted infrastructure or services, nor an accepted strategy for 
prioritizing the balance of individual investigator, campus, and shared 
infrastructure. NSF would benefit from a formal roadmapping committee 
for cyberinfrastructure with representatives drawn from all directorates 
and shared responsibility for cross-directorate resource investment and 
strategy. In addition, it is crucial that advanced computing be treated 
as an NSF asset and funded accordingly, regardless of its organizational 
location. The need is too great and current resources are too limited for 
loosely coordinated action and reactive processes.

One corollary to the need for strategic coordination is scaling and 
scoping to match available resources. As a decentralized organization, 
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with frequent rotation of program officers, NSF regularly launches new 
programs and initiatives. For research, this is the distinguishing charac-
teristic of NSF; it is community driven and adaptive. For infrastructure, 
this is often debilitating, because it leads to a proliferation of small efforts 
and projects that consume critical resources. When building and operat-
ing infrastructure, it is critical to do a small number of things extremely 
well. Successful infrastructure is derived from a sustained strategy and 
driven by relentless focus. The implication for NSF is clear. Given limited 
cyberinfrastructure resources, it must do a very small number of things 
extremely well, avoiding mission creep and resource dilution at all costs. 

A second and equally important corollary is an integrated strategy 
for high-performance computing and big data analytics and a concomi-
tant rebalancing of investments. Big data requires strongly coordinated 
big infrastructure, just as leading-edge computational science requires 
advanced computing systems. The lessons of commercial cloud comput-
ing are clear; centralization and scale create unprecedented opportunities 
for innovation and discovery. Clear and unambiguous requirements for 
data deposit and access are also needed. Only via such a mechanism, 
developed in broad community consultation, can the true benefits of data 
analytics be realized.

6.3  POTENTIAL SUSTAINABILITY APPROACHES

As the scale and scope of advanced computing demands and associ-
ated facilities and services have grown, the irregular, winner-take-all pro-
cess described above has become more problematic. First, the scale and 
cost of high-end or leadership-class facilities needed to meet researcher 
demands is a large fraction of the total currently available in the NSF 
budget, whether within the ACI division budget or the budgets of other 
directorates. (Whether NSF needs a leadership-class or high-end system 
should be determined by the analysis of science requirements.) NSF could 
afford to purchase a significantly larger system than it is currently acquir-
ing, but only by focusing on that investment rather than a larger number 
of much smaller investments. 

Second, uncertainty regarding the timing and capability of infrastruc-
ture upgrades makes community planning difficult, and the timing is 
often not well matched to vendor hardware and software upgrade cycles. 
Third, the timescales are incompatible with the planning and life cycle of 
other scientific infrastructure, making use of centrally funded cyberinfra-
structure difficult at best and often impossible.

Current models of funding for advanced computing (based on peri-
odic recompetition) and service block allocations (via committee) create 
substantial uncertainty regarding service continuity and research access. 
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There are several ways to address these shortcomings while retaining the 
best elements of the current approach. These include approaches as var-
ied as public-private partnerships for access to cloud services, federally 
funded research and development centers (FFRDCs) for organizational 
sustainability, and MREFC projects for facility construction. Many of these 
are not mutually exclusive and could be combined to address limitations 
of the current model.

6.3.1  A Regular Cadence of Infrastructure Investments 

The cost of leading-edge advanced computing facilities and user sup-
port, whether for computational modeling or data analytics, is no longer 
measured in tens of millions of dollars. Rather, the costs are now denomi-
nated in hundreds of millions of dollars. Indeed, large-scale commercial 
data centers operated by cloud providers now cost over $1 billion each. 
The MREFC process may be a useful point of departure. Although there 
are some aspects of MREFC projects that match the needs of advanced 
computing infrastructure, the current MREFC mechanisms may need to 
be modified and adapted to the unique needs of advanced computing 
infrastructure, including the general nature of computing and the need 
for regular refresh of computing equipment.

To establish a regular cadence of infrastructure investments, NSF 
would plan and budget an upgrade every 3 to 5 years, with planning and 
construction of each generation overlapping the operation of the previous 
generation. This would clarify and systematize the technology upgrade 
and refresh process, provide a community mechanism to plan and shape 
infrastructure transitions, elevate budget planning and prioritization to 
NSF-wide discussion and approval, and provide the level of funding 
needed to maintain leading-edge capability. 

As with MREFC projects, NSF would be able to request new funds 
as a line item in its annual budget request, explicitly acknowledging that 
that current, internal funding is inadequate to meet burgeoning need and 
scientific priorities. Finally, it would provide an operational instantiation 
for an NSF-wide advanced computing roadmap.

6.3.2  Leased Infrastructure 

Historically, NSF cyberinfrastructure facilities have been operated by 
academic institutions on NSF’s behalf, typically via cooperative agree-
ments. In turn, the academic institutions have purchased computing, 
storage, and networking hardware from computing vendors at the start 
of the cooperative agreement to deliver the committed services. This 
hardware then depreciates over its nominal 3- to 5-year lifetime until its 
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residual economic value is minimal and its performance and capability 
are no longer competitive. At that point, only another infusion of capital 
will ensure service continuity.

Rather than purchasing hardware at the time of an award, NSF or its 
awardees might choose to lease the desired hardware from a vendor or a 
system integrator. In the simplest variation of this model, the hardware 
remains the property of the vendor but is located at the operator’s facility. 
From an operational perspective, a simple leasing model is indistinguish-
able from outright purchase. Alternatively, the hardware could be hosted 
and maintained at a vendor facility, with a division of hardware service 
and user support between the partners.

Annual lease payments would smooth the punctuated budget shock 
of capital acquisitions, allowing amortization across multiple budget 
years. Lease terms at a higher level might also include periodic hardware 
upgrades to maintain leading-edge capability (e.g., equipment could be 
upgraded during the life of a cooperative agreement without competition 
to meet a series of performance targets) as well as quality of service and/
or performance guarantees. Leases could also include exit clauses for 
termination, either with or without cause.

This is not a new idea. For example, the Department of Energy (DOE) 
has used this strategy successfully for its leading-edge computing deploy-
ments. University supercomputing centers in Japan also use leasing, 
which permits a regular and stable annual funding for each center.

6.3.3  Commercial Cloud Service Purchases

The explosive growth of commercial cloud services and their wide-
spread adoption by both large corporations and small start-ups offers 
another alternative for provisioning advanced computing but is not a 
panacea (Boxes 6.1 and 6.2). Cloud computing now allows large orga-
nizations to outsource the provisioning, maintenance, and operation of 
computing infrastructure and commodity services, allowing them to focus 
resources and expertise on their core competence and differential value 
proposition. For smaller companies, the ability to offer services on a pay-
as-you-go basis has reduced capital start-up requirements and lowered 
the barrier to market entry. The same could be true of individual labora-
tory users where computing use is highly episodic, with periods of low 
and high utilization.

The ability to scale services rapidly and dynamically across a wide 
range of demand is a consequence of the massive scale of cloud service 
deployment. All of the major cloud service vendors are investing bil-
lions of dollars annually to offer advanced computing and data analytics 
services. In addition, market competition is driving rapid declines in 
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BOX 6.1 
The Role of Commercial Cloud Computing

Cloud computing has recently emerged as an effective way to provide com-
puting to diverse communities. By taking advantage of economies of scale and 
easy network access, clouds can provide large amounts of computing power as 
well as convenient access to shared data. A natural question is whether cloud 
computing can meet the advanced computing needs of segments of the science 
community. This box considers some of the advantages and disadvantages of 
commercial cloud services today. The role of clouds for the National Science 
Foundation (NSF) will need to be re-evaluated frequently because the technology 
and ecosystem around clouds continues to change rapidly. 

What Is Cloud Computing?

The term “cloud computing” has many parts and multiple definitions. The fol-
lowing aspects of cloud computing are relevant to the discussion here:

•	 Clouds are typically large clusters of computers that exploit economies of 
scale, providing both computing and data capabilities. 

•	 The cloud is a shared resource. Many users can make use of it; the 
amount of resource is flexible (e.g., not a specific number of cores or nodes). The 
resource is not just hardware; it includes software and, often, data. It is easy to 
access cloud services, typically over the Internet. 

•	 The resources available to a single job can vary from a single virtual 
CPU to a substantial faction of the entire cloud. This characteristic is sometimes 
described as “elastic.” From the user’s perspective, the cloud allows an application 
to use as much computing power as desired.

•	 Clouds may provide access to shared data, permitting a diverse user 
community to share the data and data products.

•	 Clouds provide a very flexible service model, permitting rapid access to 
resources with (usually) no long-term commitment.

Advantages of Cloud Computing

Cloud computing provides a number of advantages, particularly for single in-
vestigators or small research groups. Perhaps the most obvious advantage is that 
a cloud provides quick and easy access to computing power, and it is just as easy 
to get 10,000 cores as 1 core. For many users, the fact that access is available 
on demand within minutes of making the initial request is a major advantage. For 
others, the availability, if only for a short time, of more resources than they could 
otherwise afford is the key advantage. 

For many users, the cost of cloud computing is much lower than the cost of 
buying and operating a system that is capable of meeting peak needs. The fixed 
costs, including the often-neglected cost of maintaining cybersecurity as well as 
data backups against both user errors (e.g., recovering a deleted file) and facil-
ity disaster (e.g., fire in the computer room), can be high. If there is no existing 
software base, then software must also be developed, sometimes at high cost.
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Another advantage is the ability to share non-compute resources, such as 
data or networking. The easy-access model for clouds makes it simple to share 
data between users and communities at different institutions, and even different 
countries. Cloud computing also allows researchers to leverage rapid develop-
ments in data analytics that are being driven by the private sector and offered by 
commercial cloud computing providers. For those whose needs are not met by 
this software, it will be necessary, as with traditional high-performance computing 
(HPC), for communities to develop custom software. 

Similar services can be offered by NSF centers, although the different al-
location and resource model imposes some constraints. In particular, for very 
large data repositories, it may be impractical for each user to have a copy of the 
data, and also impractical to move the data to the user’s site, even with high-
performance, wide-area networking.

Note, however, that some of these advantages are or could be provided 
by NSF-operated advanced computing resources, which are already elastic. For 
example, an allocation on the Blue Waters system can be used for any number of 
nodes, permitting the use of as little as 32 cores (1 node) and as many as nearly 
800,000 cores.

Clouds and Time and Space Sharing

The idea of sharing a computing resource to exploit economies of scale is 
not new. Computing centers of all types, including the supercomputing centers 
operated by NSF, the Department of Energy, and the Department of Defense, have 
done this almost from the beginning of computing. 

However, there are important differences between cloud computing and con-
ventional time- and space-sharing systems, although some of these are a matter of 
degree rather than being qualitatively different. First, clouds are accessed through 
a convenient network interface. This network connectivity makes it much easier 
to provide the resource to anyone on the planet, rather than those with access to 
the facility. NSF’s advanced computing facilities are also conveniently accessible 
but less so than commercial cloud services, which require only a credit card for 
access. (For example, NSF’s Blue Waters system requires two-factor authentica-
tion for access.) Second, virtualization support has made it much easier to securely 
run the customer’s software environment, including the operating system. Third, 
standardized APIs for web access make it easy to provide interactive access to a 
computing resource on demand, including access to data repositories. 

Cloud Cost Realities

Clouds provide many advantages, but it is important to separate cloud myths 
from realities. Clouds are not free. Some researchers have been given free cloud 
resources for small or high-profile research projects, and that initiative is to be 
applauded, but it is not realistic to expect 5 billion CPU-core hours as a gift from 
a commercial cloud provider (that is a small fraction of just the CPU time NSF 
consumes in a year and does not include data or network costs). 

Commercial clouds, such as those operated by Amazon, Google, or Micro-
soft, are often very large in scale, with aggregate compute capacity larger than 

continued
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leadership-class systems. The very size of these systems gives these vendors 
substantial economies of scale as well as the ability to influence the hardware 
and software that goes into these systems. While this gives them some cost ad-
vantage, it does not necessarily mean they are cheaper than federally supported 
HPC centers.

Costs also include more than a charge for CPU time; in any cost comparison, 
it is important to include all costs. Costs for data handling, such as to/from disk, 
and for network access, are often a significant additional charge and might exceed 
the cost of CPU time. To further complicate the issue, commercial clouds rarely 
give enough details to make cost comparisons; for example, a cloud vendor may 
charge for a virtual CPU, but the specifics of the hardware (including details of 
cache size and speeds, specific processor model, and input/output [I/O] charac-
teristics) are not provided. 

Some analyses of the use of clouds for scientific computing found that com-
mercial clouds are more expensive than a traditional supercomputing center,1 
although direct comparisons are difficult. Sustained system-performance bench-
marking would help inform an understanding of true costs. To provide an updated 
rough-cost comparison, the committee estimated the cost of providing a leader-
ship-class system using the Amazon Elastic Cloud (Box 6.2).

Convenience is not free. Demand for NSF’s advanced computing services 
exceeds supply (see Figure 2.5); whenever that is the case, the supply must be 
rationed by some mechanism. NSF currently does this through the allocations 
process (which introduces various delays). The commercial market does this by 
adjusting price (not cost). There is no free lunch: on-demand access is, on aver-
age, more expensive than scheduled bulk access (although spot markets also 
offer an opportunity to get lower costs on occasions when demand is lower than 
supply). Cloud availability and cost savings depend, in large part, on uncorrelated 
use by the different customers. In the end, the only way to address the long queue 
times is to provide enough capacity. Using external clouds, at a higher unit cost, 
will decrease the available capacity, not increase it, given a fixed expenditure on 
computing. 

Cloud service providers were not the first to seek to greatly improve their cost 
per unit of performance by exploiting commodity computing and the declining cost/
performance ratio of its technologies. HPC has a long tradition of doing this. The 
best known is the Beowulf cluster. Although not the first effort to exploit commodity 
processors and networking, beginning in 1994, many groups built effective HPC 
systems from commodity parts. Many believe that this led to broader use of HPC by 
making systems more widely available. Today, many HPC systems are 100 percent 
commodity hardware, making use of high-end, but still commodity, interconnects 
such as InfiniBand, along with high-end (“server”) processors and I/O systems. 
Today, commercial cloud systems employ a mix of commodity and custom hard-
ware. For example, servers used by leading vendors include custom accelerators. 

Both commercial cloud operators and government-funded HPC centers ex-

BOX 6.1  Continued
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ploit significant economies of scale. Commercial cloud systems are very large, 
but not larger than other large HPC systems. For example, currently AWS has 
two systems on TOP500, but the highest is ranked only 180th on the November 
2015 TOP500 list. Windows Azure reached number 165 on the 2012 list (but is 
not currently on the list).

Clouds also may not match the computing needs of large-scale, tightly cou-
pled parallel science applications. Most clouds are designed to provide single 
“CPUs,” possibly in large numbers, to the user. High-end HPC applications can 
use tens of thousands of nodes and require frequent and efficient communication 
among the nodes (e.g., communication every 100 microseconds with a commu-
nication overhead of 1-2 microseconds). This requires (1) a fast interconnect, (2) 
co-scheduling of all (not just most) of the processes in the program, and (3) efficient 
mapping of the program’s processes onto the specific compute nodes to avoid 
communication interference with other jobs. (Clouds may in fact be distributed 
across the entire planet, adding significant speed-of-light latencies.) Clouds can 
be built to provide these capabilities, but only at additional cost. 

In short, as a past study2 has shown and as the discussion above further 
suggests, supercomputing centers already exploit many of the cost advantages 
of clouds and can be significantly cheaper than commercial cloud providers for 
some science applications. 

Software and Expertise

Researchers will need more than access to the cloud services themselves 
if they are to make effective and efficient use of cloud services. Although some 
research communities have developed cloud-based applications and software 
stacks for certain applications, many disciplines lack common tools that reduce 
the development and management burden on researchers. Researchers will also 
need assistance selecting the appropriate services from a growing range of com-
mercially offered options, including among multiple hardware configurations. 

Some communities have been looking into taking advantage of clouds and 
seeing how to take advantage of improving software stacks. A few communities 
have developed “point-and-click” solutions, but these do not exist for the vast ma-
jority of scientific workflows. Just as NSF has invested in expertise to accompany 
its hardware acquisition programs, it seems natural to extend the model by help-
ing support researchers who want to further explore using cloud services. Indeed, 
given that cloud services may be of the greatest immediate value in serving the 
long tail of users, who are less likely to have expertise and experience than larger 
users, provisioning expertise may be especially important.

1 Department of Energy (DOE), The Magellan Report on Cloud Computing for Science, 
2011, http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Magellan_Final_
Report.pdf.

2 See, for example, DOE, The Magellan Report on Cloud Computing for Science, 2011, 
page ii, or Finding 7, p. iv.
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BOX 6.2 
The Price for a Leadership-Class Machine 
Implemented Using Amazon Elastic Cloud

It is natural to ask whether one could replace a large high-performance com-
puting system with cloud services, especially given that clouds are often viewed as 
providing very-low-cost computing. The 2011 Magellan Report on Cloud Comput-
ing for Science,1 prepared for the Department of Energy (DOE), asked just this 
question. Chapter 12 of the report contains an analysis of the cost of using a cloud 
to provide the compute and storage capability roughly in line with that at two DOE 
supercomputing centers, National Energy Research Scientific Computing Center 
and Argonne Leadership Computing Facility. The report’s analysis considers the 
different costs, both on the cloud and at a center. Center costs include staffing for 
operation, building, and power, as well as the computing equipment. This analysis 
found that Amazon’s commercial cloud offering was roughly three to seven times 
more expensive at providing compute cores and file storage than the two DOE 
centers. Section 12.6, “Late Update,” noted a significant drop in price for the 
Amazon cloud as well as the introduction of more types of nodes, optimized for 
different types of computational needs. The authors are also careful to note that 
the analysis does not take into account the sustained performance on the sort of 
parallel science application that is common for DOE (and the National Science 
Foundation [NSF]) supercomputers, nor does it include the performance of the 
input/output (I/O) system and the cost of I/O operations. In addition, these analyses 
look solely at the cost of the computing resource and do not take into account the 
expertise in using these systems and working with computational scientists. The 
intent was to estimate a lower bound for the cost of a cloud; it is likely that the 
true cost will be higher.

However, 2011 was a long time ago, and cloud technologies and businesses 
have advanced. Are these conclusions still relevant? A check of Amazon Web 
Services pricing for computing and storage2 suggests that they are. There are now 
many different tiers of nodes and I/O services, including nodes that provide GPUs 

service costs and frequent service expansions (e.g., in software tools and 
packages).

NSF could make cloud services available to its researchers in one of 
several ways. All would likely involve NSF negotiating a bulk purchase 
agreement for data analytics and computing services.

•	 Individual investigators could request cloud services as part of 
a standard NSF proposal. The PIs of funded proposals could spend 
awarded funds with the cloud service provider of their choice. This is 
possible today, although cloud services incur indirect costs that may be 
more than 50 percent at many institutions, making them significantly 
less attractive than they otherwise would be compared to the purchase 
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and large memory nodes. In addition, substantial discounts are available by pur-
chasing longer term (1- and 3-year) reserved instances. The committee compared 
the cost of simply providing the cores and the file storage for a large supercomputer 
to an estimate of the cost to NSF of the Blue Waters supercomputer, using data 
on January 12, 2016. Note that this cost only includes the processors, memory, 
and file space and does not include I/O operations (charged for separately by 
Amazon); the Blue Waters high-performance, low-latency interconnect; the Blue 
Waters tape library that can hold 320 PB of data; or an HPC-optimized software 
stack. Using 3-year reserved instances (which provide the greatest discount) and 
assuming 100 percent utilization of the Amazon resource and an estimate of about 
75 percent utilization for Blue Waters, the cloud was still two to three times more 
expensive, depending on the exact choice of node type. Using 1-year reserved 
instances increases the cloud cost by about 50 percent.

This analysis does not mean that clouds must be more expensive; for exam-
ple, NSF could negotiate a better (lower price) deal with a cloud provider. Rather, 
the point of this analysis is twofold. First, clouds are not necessarily cheaper than 
public supercomputing centers. Second, the costs must be very carefully analyzed 
to include all costs (which the committee did not do here) and to reflect the sustain-
able rather than peak performance available to the applications on the respective 
systems. For this reason, it will be important for NSF and the science community 
to continue to monitor the opportunities in cloud computing and to take advantage 
of them where it makes sense, but to also be aware that clouds are not necessarily 
cheaper than supercomputing centers and to be very careful in comparing costs.

1 Department of Energy, The Magellan Report on Cloud Computing for Science, 2011, http://
science.energy.gov/~/media/ascr/pdf/program-documents/docs/Magellan_Final_Report.pdf.

2 K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer, D.A. Patterson, 
W.L. Plishker, J. Shalf, S.W. Williams, and K.A. Yelick, The Landscape of Parallel Computing 
Research: A View from Berkeley, Technical Report No. UCB/EECS-2006-183, December 18, 
2006, http://www.eecs.berkeley.edu/Pubs/TechRpts/ 2006/EECS-2006-183.pdf.

of computing hardware, which presently seems inequitable because the 
cost to an institution for purchasing cloud services is more akin to that 
of a recurring credit card charge or a subcontract. By bulk purchasing, 
NSF could eliminate this additional cost as well, potentially receiving 
more favorable rates than single investigators could obtain. Alternatively, 
mechanisms to reduce the indirect cost rate charged on cloud services can 
be explored.

•	 The current computing allocation review process could be 
expanded to include award of cloud services. Approved users would 
receive a budget to be spent with their chosen cloud provider. This would 
ensure centralized assessment of the appropriateness and likely efficiency 
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of the request, albeit with the double jeopardy of separate research and 
computing reviews. 

•	 NSF could negotiate an agreement with one or more commercial 
cloud service providers (e.g., Amazon, Google, or Microsoft) and then 
operate a virtual facility on behalf of its users. In this model, user and 
application support would still rest with a noncommercial entity (e.g., 
via a cooperative agreement with an academic institution), and the cloud 
vendor would provide computing and storage services. NSF could lever-
age the Internet2 organization’s NET+ initiative, which has selected com-
mercial cloud services for its members and negotiated pricing and other 
terms. 

All of these approaches would help take advantage of the rapid evo-
lution of cloud services, the vibrant software ecosystem for cloud data 
analytics, the ability to use resources at massive scale, and the presence 
of large, shared data sets. 

To address the structural disparity in the cost of cloud services com-
pared to hardware acquisition, NSF would need to address the facili-
ties and administrative (F&A) costs now charged for purchase of cloud 
services. Today, researchers can include cloud services as direct costs in 
research proposals, but these services are not excluded from the modi-
fied total direct cost (MTDC) on which F&A is computed. In contrast, 
capital equipment costs (e.g., computing equipment exceeding $5,000) are 
excluded from MTDC. The result is that $1 of cloud service costs $1.XX, 
where XX is the F&A rate at the researcher’s institution. In contrast, the 
equivalent service on computing equipment purchased by an investigator 
on a research award costs only $1. In addition, power, cooling, and space 
for equipment are included in F&A, further skewing the incentive toward 
equipment purchase rather than service purchase. Removing this inequity 
would allow a more direct comparison and researcher selection based on 
perceived research value.

6.3.4  Cooperative Agreement Extension

Any funding and organizational structure must balance organiza-
tional stability and sustainability against responsiveness to technological 
change and customer needs. As noted earlier, NSF has long supported 
leading-edge cyberinfrastructure via a series of solicitations and open 
competitions. Although this has stimulated intellectual competition and 
increased NSF’s financial leverage, it has also made deep and sustainable 
collaboration difficult among frequent competitors. Individual awardees 
quite rationally often focus more on maximizing their long-term prob-



Copyright © National Academy of Sciences. All rights reserved.

Future Directions for NSF Advanced Computing Infrastructure to Support U.S. Science and Engineering in 2017-2020 

RANGE OF OPERATIONAL MODELS	 119

ability of continued funding, rather than adapting and responding to 
community needs.

Frequent competitions have also made it more difficult for NSF-
funded service providers to recruit and retain talented staff when the 
horizon for funding is only 2 to 5 years. This is especially true when the 
competition for IT and computational science expertise with industry is 
so great. Periodic review and rigorous performance assessment need not 
be coupled with “life or death” proposal competition and cooperative 
agreement funding. 

Other federal agencies regularly review the performance of their ser-
vice facilities, providing strategic and tactical guidance, without coupling 
those reviews to a facility termination decision. For example, DOE oper-
ates its National Energy Research Scientific Computing Center (NERSC) 
in this model. Hardware acquisition decisions, management reviews, and 
service priorities are subject to stringent reviews, but NERSC itself is not 
subject to termination review each time a new system is acquired. This 
also allows more honest and forthright discussion of problems, without 
existential fears.

NSF could consider designating one or more cyberinfrastructure cen-
ters as a core facility with a nominal lifetime of a decade—for example, as 
part of an extended cooperative agreement. Working with NSF and under 
regular review, the center would deploy and operate cyberinfrastructure 
on NSF’s behalf. This would ensure organizational lifetime and planning 
horizons more similar to those of other NSF MREFC projects, which often 
last 10 to 20 years. In addition, longer horizons would also let NSF and 
its service providers evolve services and staffing in response to changing 
community needs and business partnerships. As extant examples, NSF’s 
National Radio Astronomy Observatory and National Optical Astronomy 
Observatory play these roles in the astronomy community.

6.3.5  Federally Funded Research and Development Centers

As noted above, continuity is crucial to strategic planning, staff reten-
tion, and cross-domain partnerships. Cooperative agreements, whether 
for MREFC projects or other initiatives, provide one mechanism for col-
laborative planning and management. Implicit in all such approaches 
is a presumption that the project has a bounded lifetime. In turn, that 
presumption profoundly and adversely affects strategic planning and a 
commitment to sustainability within NSF and the community.

The centrality of advanced computing to research suggests that NSF 
treat it as a long-term, indefinite commitment that more clearly delin-
eates the distinction between performance review and accountability 
and organizational continuity and service capabilities. Such separation 
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would allow service providers to work more collaboratively with NSF on 
responses to community needs and would encourage interorganizational 
collaboration. 

An FFRDC is an excellent example of this balance. FFRDCs are inde-
pendent nonprofit entities sponsored and funded by the U.S. government 
to meet specific long-term technical needs in areas of national interest. 
They operate as long-term strategic partners with their sponsoring gov-
ernment agencies. Many FFRDCs, such as DOE laboratories, include mul-
tiple programs spanning many areas of science and engineering research. 
NSF already uses an FFRDC, NCAR, as an integral part of NSF’s cyberin-
frastructure service strategy for the geoscience community; it can budget 
and plan new equipment acquisitions, and it offers staff career paths and 
continuity. 

NSF could consider establishing one or more FFRDCs to support 
national cyberinfrastructure for research. Working with NSF, industry, 
and academia, such cyberinfrastructure FFRDCs could develop a strategic 
plan for cyberinfrastructure that meets evolving community needs, tracks 
technology developments, and provides a roadmap for NSF’s director-
ates. The FFRDCs would also deploy and operate general or domain-
specific cyberinfrastructure for the national community.

6.3.6  Partnerships with Other Agencies 

NSF could explore partnerships with other federal agencies. For 
example, NSF could coordinate complementary leadership-class system 
configurations with DOE, especially with DOE systems that are used to 
support the DOE Innovative and Novel Computational Impact on Theory 
and Experiment program. The purpose of this partnership is not to shift 
the responsibility for providing cycles from NSF to DOE; rather, it is in 
recognition of the fact that there is not a simple one-dimensional configu-
ration space for advanced cyberinfrastructure. Such a partnership would 
develop a way to fairly serve special needs from the population sup-
ported by each agency. For example, today NSF operates a system with 
more memory than any DOE system; conversely, DOE operates a system 
with more GPUs and peak floating-point operations per second (FLOP/s) 
than any NSF system. Currently, computational scientists request time on 
a variety of resources, taking advantage of DOE, NSF, and other provid-
ers of advanced computing infrastructure to the science community. But 
there is no formal coordination between agencies of the systems that they 
acquire, and trade-offs are made independently. Partnerships with other 
agencies could help ensure that the full spectrum of advanced cyberinfra-
structure is available to the science community.
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6.3.7  Strategic Public-Private Partnerships

As the demand for cyberinfrastructure continues to rise, the costs 
for deployment and operation rise commensurately. This is true for 
both aggregate demand—laboratory and institutional capabilities—and 
leading-edge computing and data storage systems. Superficially, this may 
seem paradoxical, given the dramatic increases in computing capability 
and storage capability regularly delivered by the computing industry. 
However, those same computing advances have birthed new sensors and 
scientific instruments and a torrent of new digital data, as well as new 
simulation models and expectations for ever-larger computing capability.4 

Rising demands for computing and storage (end-to-end capabilities, 
not just hardware) now challenge the finances and social processes of both 
NSF and its academic grantees. Simply put, the rising cost of leading-edge 
facilities (NSF Track 1 and Track 2 systems) is not sustainable under the 
current partnership model and may not be sustainable under any govern-
ment-funded model. Put another way, the perceived return on investment 
for a facility costing hundreds of millions of dollars must be substantial, 
particularly when the equipment has a useful lifetime of only 3 to 5 years.

NSF might consider alternative public-private partnership models 
that create financial incentives for private-sector partners to operate large-
scale cyberinfrastructure facilities on the research community’s behalf. 
These necessarily require more flexible approaches than traditional fee-
for-service models and might include such options as access to univer-
sity intellectual property in exchange for cyberinfrastructure services. 
Precisely how such arrangements might work would depend on the will-
ingness of the academic community to agree on, for example, vendor 
exclusivity and intellectual property sharing.

6.3.8  User-Driven Acquisition and Allocation

All of the operational strategies described above are based on some 
variant of central planning and resource management. Alternatively, NSF 
could decentralize cyberinfrastructure acquisition and support and rely 
on social and economic forces to define and optimize community cyber-
infrastructure. One first step in this process would be denominating all 
services in dollars, rather than the abstract, normalized service units 
(SUs) or storage allocations used today. SUs play an important role by 
attempting to enable the comparison of allocations on computers that 
may differ widely in both architecture (e.g., conventional processors or 

4  The end of Dennard scaling and limits of future microprocessor performance increases 
mean the “free lunch” of performance doubling will bring new and sobering economic 
constraints. Larger capability will require larger capital infusions.
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graphical processing units) and time of deployment. For instance, the use 
of SUs makes more quantitative the assessment in Figure 2.5 of resources 
over the past decade. However, despite their merit, SUs obscure from 
users the actual costs associated with requests and allocations, and the 
use of SUs also distances the NSF programs and the user community 
from the prioritization processes about how the underlying funding is 
allocated. Moreover, the conversion factor between actual wall time on 
a computational resource and SUs is established by each site based on 
High-Performance Linpack benchmark results, which is just a single and 
outdated metric that does not capture the diversity of factors controlling 
the capability (which is more than just performance) of individual appli-
cations mapped to different architectures. Recently, XSEDE has started 
notifying both users and associated NSF program managers of the actual 
dollar value associated with an allocation, and there seem to be multiple 
significant potential benefits in making users even more cognizant of and 
ultimately responsible for the actual costs and effective use of resources.

Realizing these benefits can certainly start with increasing user aware-
ness of costs and engaging users in resource planning and acquisition. In 
a more extensive realization of this model, however, individual research-
ers or research teams would be allowed to spend awarded cyberinfra-
structure dollars at their discretion. This cyberinfrastructure marketplace 
might include the following options:

•	 Purchasing local computing infrastructure, services, or staff sup-
port for use within the individual researcher’s laboratory;

•	 Contributing dollars to a university pool that operates a campus 
facility under a “campus condominium” model;5

•	 Pooling research dollars to purchase and operate shared regional 
or national facilities; and

•	 Purchasing commercial cloud services, exploiting the properties of 
elasticity and on-demand access.

All of these variants allow individual researchers and research teams 
to make separate decisions on how best to advance their research. They 
also remove researchers from double jeopardy, where they must compete 
separately for research funding and for computing resources. In addition, 
the options expose the costs of each option in a common currency. How-

5  Under a condominium model, a university purchases a baseline computing and storage 
infrastructure and allows individual researchers to purchase and contribute nodes and stor-
age to the shared pool. Researchers receive access priority in proportion to their financial 
contribution.
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ever, the risk is that the sum of the local research optimizations may not 
be globally optimal for the national community. 

Moreover, some form of such a model may provide an effective 
mechanism to encourage and formalize investments and responsibili-
ties of researchers, institutions, and regions in private and shared local 
or national infrastructure. NSF already recognizes that there are signifi-
cant computing resources “at the edges” (meaning within campuses and 
states) and that there is a clear need to coordinate and leverage invest-
ments. Programs such as Campus Cyberinfrastructure—Data, Network-
ing, and Innovation Program (CC*DNI) and Major Research Instrumen-
tation help develop this infrastructure, and elements of XSEDE, such as 
campus champions, are directed toward tying both communities and 
cyberinfrastructure together. However, the same economic and techno-
logical forces driving the decisions on national computing infrastructure 
are eroding the abilities of campuses to purchase and operate their own 
cyberinfrastructure, and especially challenging are the cost and complex-
ity of managing research data. Thus, smaller institutions are now choos-
ing to invest in infrastructure operated by larger neighbors or at national 
centers, which can provide both cost and other advantages compared 
to attempting to use the commercial cloud. However, in the absence of 
a scalable national model, such partnerships are presently ad hoc. The 
NSF Big Data Regional Innovation Hubs (BD Hubs) program is poten-
tially a powerful catalyst to drive regional synergy, but this still needs 
to be tied to a national narrative that includes all aspects of advanced 
cyberinfrastructure. 

Variations of this economic model have been explored in the past. 
Then called the “green stamps” model of resource allocation, it was ana-
lyzed in the 1995 Report of the Task Force on the Future of the NSF Supercom-
puter Centers Program.6 The report noted

The key concept in a green stamp mechanism is the use of the stamps to 
represent both the total allocation of dollars to the Centers and the allo-
cation of those resources to individual PI’s. NSF could decide a funding 
level for the Centers, which based on the ability of the Centers to provide 
resources, would lead to a certain number of stamps, representing those 
resources, being available. Individual directorates could disperse the 
stamps to their PI’s, which could then be used by the researchers to pur-
chase cycles. Multiple stamp colors could be used to represent different 
sorts of resources that could be allocated. 
  The major advantages raised for this proposal are the ability of the di-

6  National Science Foundation, Report of the Task Force on the Future of the NSF Supercom-
puter Centers Program, NSF9646, September 15, 1995, https://www.nsf.gov/publications/
pub_summ.jsp?ods_key=nsf9646.
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rectorates to have some control over the size of the program by express-
ing interest in a certain number of stamps, improvement in efficiency 
gained by having the Centers compete for stamps, and improvements 
in the allocation process, which could be made by program managers 
making normal awards that included a stamp allocation.
  Other than the mechanics of overall management, most of the disad-
vantages of such a scheme have been raised in the previous sections. In 
particular, such a mechanism (especially when reduced to cash rather 
than stamps) makes it very difficult to have a centralized high-end com-
puting infrastructure that aggregates resources and can make long-term 
investments in large-scale resources.

NSF could conduct a pilot project to evaluate the power of market 
forces in allocating limited cyberinfrastructure support. Among the issues 
to evaluate is whether such an approach would exacerbate the problem 
of buying resources by the hour (see Section 5.5) without recognizing the 
fixed costs, such as the cost of retaining staff and supporting the use of 
new architectures. 

Independently of any pilot projects, NSF will benefit by expressing in 
dollars the true cost of large cyberinfrastructure resource allocations (i.e., 
those now made by the XSEDE Resource Allocation Committee [XRAC] 
and Petascale Computing Resource Allocation Committees [PRAC]). First, 
it would allow researchers to identify the value of cyberinfrastructure 
awards to their institutions. Second, and equally important, it would 
make clear that such large allocations have true costs, encouraging wise 
and efficient use.
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of Polymer Science and Engineering
Tony Hey, University of Washington eScience Institute
Alvin Kennedy, Morgan State University
Rubin H. Landau, Oregon State University
Randall LeVeque, University of Washington
Zachary H. Levine, National Institute of Standards and Technology 
David A. Lifka, Cornell University
Yangzheng Lin, Carnegie Institution
Glenn K. Lockwood, 10X Genomics
Paul B. Mackenzie, Fermi National Accelerator Laboratory, on behalf of 

the U.S. Lattice Quantum Chromodynamics Collaboration
Jan Mandel, University of Colorado, Denver
Thomas A. Manz, New Mexico State University
J. Andrew McCammon, University of California, San Diego
Jonathan C. McKinney, University of Maryland
Charles Meneveau, Johns Hopkins University
Blake Mertz, West Virginia University
Rajat Mittal, Johns Hopkins University
Colin Morningstar, Carnegie Mellon University
Lawrence Murakami, University of Alaska
Annick Pouquet, University of Colorado, Boulder
Jeff F. Pummel, University of Arkansas
Ralph Roskies, Pittsburgh Supercomputing Center, University of 

Pittsburgh
Barry I. Schneider, National Institute of Standards and Technology
Bill Schultz, University of Michigan
Jerome Soller, CogniTech Corporation
James M. Stone, Princeton University
Alexander Tchekhovskoy, University of California, Berkeley
Greg van Anders, University of Michigan
Chris Van de Walle, University of California, Santa Barbara 
Nancy Wilkins-Diehr, University of California, San Diego
Walt Wright, Check Twelve Leadership
P.K. Yeung, Georgia Institute of Technology
Peijun Zhang, Carnegie Institution
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Information-Gathering Meetings

April 15, 2014, by telephone

Briefings from Irene Qualters, National Science Foundation (NSF), and 
Peter Arzberger, NSF

May 16, 2014, Washington, D.C.

Briefings from Michael Norman, San Diego Supercomputer Center; 
Michael Vogelius, NSF; Bogdan Mihaila, NSF; Jeryl Mumpower, NSF; 
and Eva Zanzerkia, NSF

November 19, 2014, Birds-of-a-feather session at SC-14, New Orleans, 
Louisiana

December 16-17, 2014, Workshop in Mountain View, California

Participants: Christian Ott, Caltech; Thomas Cheatham, University of 
Utah; Tom Jordan, University of Southern California; Steven Gottlieb, 
Indiana University; Tony Hey, Microsoft, by telephone; Ilkay Altintas, 
San Diego Supercomputer Center; Jacek Becla, SLAC National Accelerator 
Laboratory; Victoria Stodden, University of Illinois, Urbana-Champaign; 
and Ed Lazowska, University of Washington
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February 19, 2015

Briefings from Jim Kurose, NSF; Irene Qualters, NSF; Rudi Eigenmann, 
NSF; and Steven Binkley, Department of Energy Office of Science
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Biosketches of Committee Members

WILLIAM D. GROPP, Co-Chair, is the Thomas M. Siebel Chair in Com-
puter Science at the University of Illinois, Urbana-Champaign, where he 
is also founding director of the Parallel Computing Institute. He held the 
positions of assistant (1982-1988) and associate (1988-1990) professor in 
the Computer Science Department at Yale University. In 1990, he joined 
the Numerical Analysis group at Argonne National Laboratory (ANL), 
where he was a senior computer scientist in the Mathematics and Com-
puter Science Division, a senior scientist in the Department of Computer 
Science at the University of Chicago, and a senior fellow in the Argonne-
Chicago Computation Institute. From 2000 through 2006, he was deputy 
director of the Mathematics and Computer Science Division at ANL. In 
2007, he joined the University of Illinois, Urbana-Champaign, as the Paul 
and Cynthia Saylor Professor in the Department of Computer Science. In 
2008, he was appointed deputy director for research for the Institute of 
Advanced Computing Applications and Technologies at the University 
of Illinois. His research interests are in parallel computing, software for 
scientific computing, and numerical methods for partial differential equa-
tions. He has played a major role in the development of the MPI message-
passing standard, is one of the designers of the PETSc parallel numerical 
library, and has developed efficient and scalable parallel algorithms for 
the solution of linear and non-linear equations. Dr. Gropp is a fellow of 
the Association for Computing Machinery (ACM), the Institute of Electri-
cal and Electronics Engineers (IEEE), and the Society for Industrial and 
Applied Mathematics (SIAM) and a member of the National Academy 
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of Engineering. He received the Sidney Fernbach Award from the IEEE 
Computer Society in 2008 and the Technical Committee on Scalable Com-
puting Award for Excellence in Scalable Computing in 2010. Dr. Gropp 
received his B.S. in mathematics from Case Western Reserve University, 
an M.S. in physics from the University of Washington, and a Ph.D. in 
computer science from Stanford University.

ROBERT J. HARRISON, Co-Chair, is director, Institute of Advanced Sci-
entific Computing, Stony Brook University, and director, Computational 
Science Center, Brookhaven National Laboratory. The core mission of the 
new Stony Brook institute is to advance the science of computing and its 
applications to solving complex problems in the physical sciences, the life 
sciences, medicine, sociology, industry, and finance. The institute works 
closely with the Brookhaven center, which specializes in data-intensive 
computing. Dr. Harrison’s research interests are focused on scientific 
computing and the development of computational chemistry methods for 
the world’s most technologically advanced supercomputers. From 2002 to 
2012, he was director of the Joint Institute of Computational Science and 
professor of chemistry and corporate fellow at the University of Tennes-
see and Oak Ridge National Laboratory. Prior positions were at the Envi-
ronmental Molecular Sciences Laboratory, Pacific Northwest Laboratory, 
and ANL. He has a prolific career in high-performance computing, with 
more than 100 publications on the subject, as well as extensive service on 
national advisory committees. He received his B.A. from Churchill Col-
lege, University of Cambridge, and his Ph.D. in organic and theoretical 
chemistry from the University of Cambridge.

MARK R. ABBOTT is president and director of the Woods Hole Oceano-
graphic Institution. He was previously dean of the College of Earth, 
Ocean, and Atmospheric Sciences at Oregon State University (OSU). Prior 
to his appointment at OSU, he served as a member of the technical staff 
at the Jet Propulsion Laboratory (JPL) and as a research oceanographer at 
Scripps Institution of Oceanography. Dr. Abbott’s research focuses on the 
interaction of biological and physical processes in the upper ocean and 
relies on both remote sensing and field observations. He is a pioneer in 
the use of satellite ocean color data to study coupled physical/biological 
processes. As part of a NASA Earth Observing System interdisciplinary 
science team, Dr. Abbott led an effort to link remotely sensed data of the 
Southern Ocean with coupled ocean circulation/ecosystem models. His 
field research included the first deployment of an array of bio-optical 
moorings in the Southern Ocean as part of the U.S. Joint Global Ocean 
Flux Study. Dr. Abbott was a member of the National Science Board from 
2006 to 2012 and served as a consultant to the board until 2013. He is the 
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vice chair of the Oregon Global Warming Commission. He is currently a 
member of the board of trustees for the Consortium for Ocean Leadership 
and the board of trustees of NEON, Inc. His past advisory posts include 
chairing the Coastal Ocean Applications and Science Team for NOAA and 
chairing the U.S. Joint Global Flux Study Science Steering Committee. He 
has also been a member of the Director’s Advisory Council for JPL and 
NASA’s MODIS and SeaWiFS science teams and the Earth Observing 
System Investigators Working Group. He was the 2011 recipient of the 
Jim Gray eScience Award, presented by Microsoft Research. Dr. Abbott 
is a national associate member of the National Academies of Sciences, 
Engineering, and Medicine and is currently a member of the Space Stud-
ies Board, chair of the Committee on Earth Science and Applications from 
Space, a member of the Committee to Advise the U.S. Global Change 
Research Program, and a member of the Panel on the Review of the Draft 
2013 National Climate Assessment (NCA) Report. As part of his prolific 
service to the Academies, Dr. Abbott served on the Committee on Evalu-
ating NASA’s Strategic Direction, the Committee on the Assessment of 
NASA’s Earth Science Programs, the Committee on the Role and Scope 
of Mission-Enabling Activities in NASA’s Space and Earth Science Mis-
sions, and the Panel on Land-Use Change, Ecosystem Dynamics and Bio-
diversity for the 2007 Earth science and applications from space decadal 
survey. Dr. Abbott received his B.S. in conservation of natural resources 
from the University of California, Berkeley, and his Ph.D. in ecology from 
the University of California.

ROBERT L. GROSSMAN is a faculty member at the University of Chicago. 
He is the director of the Center for Data Intensive Science, a senior fellow 
and core faculty in the Computation Institute and the Institute for Genom-
ics and Systems Biology, and a professor of medicine in the Section of 
Genetic Medicine. He also serves as the chief research informatics officer 
for the Biological Sciences Division. His research group focuses on data- 
intensive computing, data science, and bioinformatics. He is the founder 
and a partner of Open Data Group, which provides analytic services to 
help companies build predictive models over big data, and is the director 
of the not-for-profit Open Cloud Consortium, which provides cloud com-
puting infrastructure to support the research community. He was elected 
a fellow of the American Association for the Advancement of Science in 
2013. Dr. Grossman earned his Ph.D. in applied mathematics at Princeton 
University and an A.B. in mathematics from Harvard University.

PETER M. KOGGE is a professor of computer science and engineering 
and concurrent professor of electrical engineering at the University of 
Notre Dame. Dr. Kogge was with IBM, Federal Systems Division, from 
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1968 until 1994, and was appointed an IEEE fellow in 1990 and an IBM 
fellow in 1993. In 1977, he was a visiting professor in the ECE Department 
at the University of Massachusetts, Amherst. From 1977 through 1994, he 
was also an adjunct professor in the Computer Science Department of the 
State University of New York at Binghamton. In 1994, he joined the Uni-
versity of Notre Dame as first holder of the endowed McCourtney Chair in 
Computer Science and Engineering (CSE). Starting in the summer of 1997, 
he has been a distinguished visiting scientist at the Center for Integrated 
Space Microsystems at JPL. He is also the research thrust leader for archi-
tecture in Notre Dame’s Center for Nano Science and Technology. For the 
2000-2001 academic year, he was the Interim Schubmehl-Prein Chairman 
of the CSE Department at Notre Dame. From August 2001 until December 
2008, he was the associate dean for research, College of Engineering; since 
fall 2003, he has been a concurrent professor of electrical engineering. His 
current research areas include massively parallel processing architectures, 
advanced VLSI and nanotechnologies and their relationship to comput-
ing systems architectures, non von Neumann models of programming 
and execution, parallel algorithms and applications, and their impact 
on computer architecture. While at IBM, one of his groups designed the 
first multi-processor PIM device with significant DRAM memory that 
may also be the world’s first multicore chip. A paper on its architecture 
received the Daniel Slotnick Award at the 1994 International Conference 
on Parallel Processing. Dr. Kogge also designed and built the RTAIS paral-
lel processor. Prior parallel machines included the IBM 3838 Array Proces-
sor and the space shuttle input/output processor (IOP), which probably 
represents the first true parallel processor to fly in space and is one of the 
earliest examples of multi-threaded architectures. Dr. Kogge received the 
IEEE Seymour Cray Award in 2012 and the IEEE Charles Babbage Award 
in 2014. He received his B.S. in electrical engineering from the University 
of Notre Dame, his M.S. in systems and engineering from Syracuse Uni-
versity, and his Ph.D. in electrical engineering from Stanford University.

PADMA RAGHAVAN is the associate vice president for research and 
director of strategic initiatives at the Pennsylvania State University, where 
she is also a distinguished professor of computer science and engineer-
ing. Dr. Raghavan is the founding director of the Penn State Institute for 
CyberScience, the coordinating unit on campus for developing interdis-
ciplinary computation and data-enabled science and engineering. Prior 
to joining Penn State in 2000, she served as an associate professor in 
the Department of Computer Science at the University of Tennessee. 
Her research is in the area of high-performance computing and compu-
tational science and engineering. She has more than 95 peer-reviewed 
publications in three major areas, including scalable parallel computing; 
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energy-aware supercomputing (i.e., performance and power scalability of 
advanced computer systems); and computational modeling, simulation, 
and knowledge extraction. Dr. Raghavan currently serves on the edito-
rial boards of the SIAM book series Computational Science and Engineering 
and Software, Environments and Tools, the Journal of Parallel and Distributed 
Computing, the Journal of Computational Science, and IEEE Transactions on 
Parallel and Distributed Systems. She serves on the program committees 
of major conferences sponsored by ACM, IEEE, and SIAM, and she co-
chaired Technical Papers for Supercomputing 2012 and the 2011 SIAM 
Conference on Computational Science and Engineering. Dr. Raghavan 
also serves on various advisory and review boards, including the Acad-
emies’ Panel on Digitization and Communication Science, the Network 
for Earthquake Engineering Simulation, and the Computer Research 
Association’s (CRA’s) Committee on the Status of Women in Computing 
Research. She is a fellow of the IEEE, and she received an NSF CAREER 
Award and the Maria Goeppert-Mayer Distinguished Scholar Award from 
the University of Chicago and ANL for her research on parallel sparse 
matrix computations. Dr. Raghavan received her Ph.D. in computer sci-
ence from Penn State.

DANIEL A. REED is currently vice president for research and economic 
development, as well as a professor of computer science, electrical and 
computer engineering, and medicine at the University of Iowa. He also 
holds the University Computational Science and Bioinformatics Chair 
at Iowa. Dr. Reed was a corporate vice president at Microsoft from 2009 
to 2012, responsible for global technology policy and extreme comput-
ing, and director of scalable and multicore computing at Microsoft from 
2007 until 2009. Prior to Microsoft, he was the founding director of the 
Renaissance Computing Institute at the University of North Carolina, 
Chapel Hill, where he also served as Chancellor’s Eminent Professor and 
vice chancellor for information technology. Before joining the University 
of North Carolina, Chapel Hill, in 2003, Dr. Reed was director of the 
National Center for Supercomputing Applications (NCSA), and Gutgsell 
Professor and head of the Department of Computer Science at the Univer-
sity of Illinois, Urbana-Champaign. He was appointed to the President’s 
Council of Advisors on Science and Technology (PCAST) by President 
Bush in 2006 and served on the President’s Information Technology Advi-
sory Committee (PITAC) from 2003 to 2005. As chair of PITAC’s compu-
tational science subcommittee, he was lead author of the report Computa-
tional Science: Ensuring America’s Competitiveness. On PCAST, he co-chaired 
the Networking and Information Technology subcommittee (with George 
Scalise of the Semiconductor Industry Association) and coauthored a 
report on the Networking and Information Technology Research and 
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Development (NITRD) program called Leadership Under Challenge: Infor-
mation Technology R&D in Competitive World. He is past chair of the board 
of directors of CRA and currently serves on its Government Affairs Com-
mittee. CRA represents the research interests of the university, national 
laboratory, and industrial research laboratory communities in computing 
across North America. Dr. Reed received his B.S. from the University of 
Missouri, Rolla, and his M.S. and Ph.D. degrees from Purdue University, 
all in computer science.

VALERIE TAYLOR is the senior associate dean of academic affairs in 
the Dwight Look College of Engineering and the Regents Professor and 
Royce E. Wisenbaker Professor in the Department of Computer Science 
and Engineering at Texas A&M University. In 2003, she joined Texas 
A&M as the department head of Computer Science and Engineering, 
where she remained in that position until 2011. Prior to joining Texas 
A&M, Dr. Taylor was a member of the faculty in the Electrical Engineer-
ing and Computer Sciences Department at Northwestern University for 
11 years. She has authored or coauthored more than 100 papers in the 
area of high-performance computing. She is also the executive director 
of the Center for Minorities and People with Disabilities in IT. Dr. Taylor 
is an IEEE fellow and has received numerous awards for distinguished 
research and leadership, including the 2001 IEEE Harriet B. Rigas Award 
for a woman with significant contributions in engineering education, the 
2002 Outstanding Young Engineering Alumni Award from the University 
of California, Berkeley, the 2002 CRA Nico Habermann Award for increas-
ing the diversity in computing, and the 2005 Tapia Achievement Award 
for Scientific Scholarship, Civic Science, and Diversifying Computing. 
Dr. Taylor is a member of ACM. She earned her B.S. in electrical and 
computer engineering and M.S. in computer engineering from Purdue 
University and a Ph.D. in electrical engineering and computer sciences 
from the University of California, Berkeley.

KATHERINE A. YELICK is a professor of electrical engineering and com-
puter sciences at the University of California, Berkeley, and the associate 
laboratory director for computing sciences at Lawrence Berkeley National 
Laboratory. Dr. Yelick is known for her research in parallel languages, 
compilers, algorithms, and libraries. She coinvented the UPC and Tita-
nium languages and developed analyses, optimizations, and runtime 
systems for their implementation. She has also done research on mem-
ory hierarchy optimizations, communication-avoiding algorithms, and 
automatic performance tuning, including developing the first autotuned 
sparse matrix library. In her current role as associate laboratory director, 
she manages an organization that includes the National Energy Research 
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Scientific Computing Center (NERSC), the Energy Science Network 
(ESNet), and the Computational Research Division. She was the director 
of NERSC from 2008 to 2012. Dr. Yelick has received multiple research 
and teaching awards, including the Athena award, and she is an ACM 
fellow and an IEEE senior member. She is a member of the California 
Council on Science and Technology, the Academies’ Computer Science 
and Telecommunications Board, and the Science and Technology Commit-
tee overseeing research at Los Alamos and Lawrence Livermore National 
Laboratories. She earned her Ph.D. in electrical engineering and computer 
science from the Massachusetts Institute of Technology.
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Acronyms and Abbreviations

3D	 three-dimensional 
	
ACI	 Division of Advanced Cyberinfrastructure (NSF)
aLIGO	 Advanced Laser Interferometer Gravitational Wave 

Observatories
	
BBH	 binary black hole
BD Hub	 Big Data Regional Innovation Hub
BLAS	 Basic Linear Algebra Subprograms
	
CC*DNI	 Campus Cyberinfrastructure—Data, Networking, and 

Innovation Program 
CCAM	 Commonwealth Center for Advanced Manufacturing
CCP	 Collaborative Computational Project
CIF21	 Cyberinfrastructure Framework for 21st Century Science 

and Engineering
CISE	 Directorate for Computer and Information Science and 

Engineering
CMOS	 complementary metal-oxide semiconductor
CPU	 central processing unit
CSIA	 Cyber Security and Information Assurance
	
DOD	 Department of Defense
DOE	 Department of Energy
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DRAM	 dynamic random-access memory
	
EB	 exabyte
ECSS	 Extended Collaborative Support Service
EU	 European Union
	
F&A	 facilities and administrative
FFRDC	 federally funded research and development center
FFTPACK	 Fastest Fourier Transform in the West Package
FFTW	 Fastest Fourier Transform in the West
FLOP/s	 floating-point operations per second
FPGA	 field-programmable gate array
	
GB	 gigabyte
GENI	 Global Environment for Network Innovations
GPU	 graphical processing unit
GSL	 GNU Scientific Library 
GTEPS	 giga-traversed edges per second
	
HCSS	 High Confidence Software and Systems
HDD	 hard disk drive
HECIA	 high-end computing infrastructure and applications
HECRD	 High-End Computing Research and Development
HPC	 high-performance computing
HPCG	 High-Performance Conjugate Gradient
	
I/O	 input/output
IOPS	 input/output operations per second
IT	 information technology
	
LAPACK	 Linear Algebra Package
LSN	 Large Scale Networking
LSST	 Large Synoptic Survey Telescope
	
MB	 megabyte
MKL	 Math Kernel Library
MPI	 message passing interface
MREFC	 Major Research Equipment and Facilities Construction
MTDC	 modified total direct cost
MUMPS	 Massachusetts General Hospital Utility Multi-Programing 

Systems
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NASA	 National Aeronautics and Space Administration
NCAR	 National Center for Atmospheric Research
NCSA	 National Center for Supercomputing Applications
NERSC	 National Energy Research Scientific Computing Center
NITRD	 Networking and Information Technology Research and 

Development
NSCI	 National Strategic Computing Initiative
NSF	 National Science Foundation
NTT	 Nippon Telegraph and Telephone
	
OCI	 Office of Cyberinfrastructure
	
PACI	 Partnership for Advanced Computational Infrastructure
PAPI	 precision approach path indicator
pARPACK	 Parallel Arnoldi Package
PB	 petabyte
PETSc	 Portable, Extensible Toolkit for Scientific Computation
PGAS	 partitioned global address space
PITAC	 President’s Information Technology Advisory Committee
PRAC	 Petascale Computing Resource Allocations Committee
PRACE	 Partnership for Advanced Computing in Europe
PSC	 Pittsburgh Supercomputing Center
PSPLINE	 Princeton Spline and Hermite Cubic Interpolation 

Routines
	
R&D	 research and development
	
ScaLAPACK	 Scalable Linear Algebra PACKage
SCEC	 Southern California Earthquake Center
SciDAC	 Scientific Discovery through Advanced Computing
SCOREC	 Scientific Computation Research Center
SDP	 Software Design and Productivity
SEW	 Social, Economic, and Workforce Implications of IT and 

IT Workforce Development
SISI	 Software Infrastructure for Sustained Innovation program
SLEPc	 Scalable Library for Eigenvalue Problem Computations
SSD	 solid-state disk
SU	 service unit
	
TACC	 Texas Advanced Computing Center
TB	 terabyte 
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UPC	 Universal Product Code
	
WAN	 wide area network
	
XDMoD	 XD Metrics on Demand
XRAC	 XSEDE Resource Allocation Committee
XSEDE	 Extreme Science and Engineering Discovery Environment
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