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Preface 

 
The US Department of Defense (DOD) is faced with an overwhelming task in evaluating 

chemicals that could potentially pose a threat to its deployed personnel. There are over 84,000 
registered chemicals, and testing them with traditional toxicity-testing methods is not feasible in 
terms of time or money. In recent years, there has been a concerted effort to develop new ap-
proaches to toxicity testing that incorporate advances in systems biology, toxicogenomics, bioin-
formatics, and computational toxicology. Given the advances, DOD asked the National Research 
Council (NRC) to determine how DOD could use modern approaches for predicting chemical 
toxicity in its efforts to prevent debilitating, acute exposures to deployed personnel. 

In this report, the Committee on Predictive-Toxicology Approaches for Military Assessments 
of Acute Exposures provides an overall conceptual approach that DOD could use to develop a pre-
dictive-toxicology system. It reviews the current state of computational and high-throughput ap-
proaches for predicting acute toxicity and suggests methods for integrating data and predictions. It 
concludes with lessons learned from current high-throughput screening programs and suggests 
some initial steps for DOD investment. 

This report has been reviewed in draft form by persons chosen for their diverse perspectives 
and technical expertise in accordance with procedures approved by the NRC Report Review Com-
mittee. The purpose of the independent review is to provide candid and critical comments that will 
assist the institution in making its published report as sound as possible and to ensure that the report 
meets institutional standards of objectivity, evidence, and responsiveness to the study charge. The 
review comments and draft manuscript remain confidential to protect the integrity of the delibera-
tive process. We thank the following for their review of this report: Ellen Berg, BioSeek, Inc.; Da-
vid Clapham, Harvard University; Mark Cronin, Liverpool John Moores University; Yvonne Dra-
gan, DuPont; John Jenner, Defence Science and Technology Laboratory; Charles Santerre, Purdue 
University; Rusty Thomas, US Environmental Protection Agency; Ken Turtletaub, Lawrence Liv-
ermore National Laboratory; Daniel Wilson, The Dow Chemical Company; and Menghang Xia, 
National Center for Advancing Translational Sciences.  

Although the reviewers listed above have provided many constructive comments and sug-
gestions, they were not asked to endorse the conclusions or recommendations, nor did they see 
the final draft of the report before its release. The review of the report was overseen by the re-
view coordinator, David Eaton, University of Washington, and the review monitor, Mark Cullen, 
Stanford University. Appointed by the NRC, they were responsible for making certain that an 
independent examination of the report was carried out in accordance with institutional proce-
dures and that all review comments were carefully considered. Responsibility for the final con-
tent of the report rests entirely with the committee and the institution. 

The committee gratefully acknowledges the following for their presentations to the commit-
tee during open sessions: Alison Director-Myska, Defense Threat Reduction Agency, and Keith 
Houck, US Environmental Protection Agency. 

The committee is grateful for the assistance of the National Research Council staff in prepar-
ing this report. Staff members who contributed to the effort are Ellen Mantus, project director; 
Marilee Shelton-Davenport, senior program officer; Keri Stoever, research associate; James Reisa, 
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director of the Board on Environmental Studies and Toxicology; Norman Grossblatt, senior editor; 
Mirsada Karalic-Loncarevic, manager of the Technical Information Center; Radiah Rose-Crawford, 
manager of editorial projects; and Ivory Clarke, senior program assistant. 

I especially thank the members of the committee for their efforts throughout the develop-
ment of this report.  
 

David Dorman, Chair 
Committee on Predictive-Toxicology Approaches  
for Military Assessments of Acute Exposures 
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3 

Summary 

 
As part of its mission to provide military forces, the US Department of Defense (DOD) must 

anticipate, defend, and safeguard its personnel against chemical threats. Many factors can deter-
mine whether a chemical agent could pose a threat, and toxicity clearly is one of them. To assess 
toxicity, DOD has relied primarily on traditional toxicity testing in which adverse biological re-
sponses are measured in laboratory animals that are exposed to high doses of a test agent. The tradi-
tional approaches, however, are expensive and time-intensive, raise questions about the applicabil-
ity of results to human populations, raise concerns about animal welfare, and are impractical for 
evaluating quickly large numbers of chemicals that could be used against deployed forces. In recent 
years, various agencies and organizations have attempted to incorporate advances in systems biolo-
gy, toxicogenomics, bioinformatics, and computational toxicology to develop cost-effective ap-
proaches for predicting chemical toxicity. Given the recent advances and developments in toxicity-
testing methods and approaches, DOD asked the National Research Council (NRC) to determine 
the feasibility of developing a toxicity-testing program that uses modern approaches to identify 
acutely toxic agents rapidly that are relevant to DOD.1 In response to that request, the NRC con-
vened the Committee on Predictive-Toxicology Approaches for Military Assessments of Acute 
Exposure, which prepared the present report. 

 

CONCEPTUAL FRAMEWORK AND STRATEGY 
 

As requested by DOD, the committee developed an overall conceptual approach that uses 
modern approaches for predicting acute, debilitating chemical toxicity. Its approach consisted of 
three components: (1) a conceptual framework that links chemical structure, physicochemical prop-
erties, biochemical properties, and biological activity to acute toxicity; (2) a suite of databases, as-
says, models, and tools that are based on modern in vitro, nonmammalian in vivo, and in silico ap-
proaches that are applicable for prediction of acute toxicity; and (3) a tiered prioritization strategy 
for using databases, assays, models, and tools to predict acute toxicity in a manner that balances the 
need for accuracy and timeliness. The committee based its conceptual framework (Figure S-1) on 
the premise that whole-animal toxicity can be predicted by using information about lower levels of 
complexity, even down to the level of chemical structure. Specifically, it is hypothesized that chem-
ical structure, physicochemical properties, biochemical properties, or biological activity in isolated 
cells and tissues or in nonmammalian organisms can be used to predict acute mammalian toxicity.   

The prioritization strategy was formulated on the basis of DOD’s stated need to understand 
the relative threat of the growing list of registered chemical substances. Although the committee 
cannot prescribe exactly how to manage various policy tradeoffs, such as the tolerance for false 
negatives and the timeframe required for identifying important hazards, it recommends a tiered 
prioritization strategy (Figure S-2) that applies increasingly complex approaches to place chemicals 
into three categories: high confidence of low toxicity, high confidence of high toxicity, and uncer-
tain toxicity because of data inadequacy. The first category allows some chemicals to be deselected 
on the basis of low acute toxicity, and the emphasis on high confidence indicates a low tolerance 
for false negatives. The second category allows chemicals to be “selected” on the basis of high 
acute toxicity, and the emphasis on high confidence indicates the need to focus rapidly on chemi-
                                                           

1The verbatim statement of task is provided in Chapter 1 of this report. 
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cals that might pose a risk. The third category represents chemicals that would move to the next 
tier. Chemicals could be deselected at any stage by considering other factors, such as chemical 
availability and weaponizability, that could eliminate them from further consideration. As illustrat-
ed in the figure and discussed further in the sections that follow, the testing strategy proceeds 
through a number of tiers that are successively more predictive and resource-intensive, from initial 
characterization (Tier 0) to nontesting approaches (Tier 1) to high-throughput and medium-
throughput assays (Tier 2) and ultimately to traditional animal testing (Tier 3). Progression through 
the tiers requires intermediate integration steps that consider the diversity of data both within a tier 
and across tiers. At each tier, DOD will need to develop policies that are relevant to its mission on 
how to assign chemicals to various categories and to determine the extent of end-point coverage 
that is adequate for it to make reliable decisions. The committee notes that an end point could be a 
clinical outcome or a molecular initiating event. If science advances in such a way that adverse 
outcome pathways of interest to DOD are known, the strategy shown in Figure S-2 could rely on 
nontesting and biological assay-based approaches that evaluate molecular initiating events or meas-
urable key events in the pathways. 

 

NONTESTING APPROACHES FOR PREDICTING ACUTE TOXICITY 
 

The committee envisions that nontesting approaches will be an important component of its 
conceptual framework. Nontesting approaches range from grouping chemicals that are structurally 
similar to developing quantitative structure–activity relationship (QSAR) models. The underlying 
assumption of nontesting approaches is that chemical properties that determine how a chemical will 
interact with a defined biological system are inherent in its molecular structure and thus that struc-
turally similar chemicals should have similar biological activity. The starting point in the applica-
tion of any nontesting approach is to search for and evaluate information on the chemical of inter-
est. That step constitutes Tier 0 in the committee’s proposed strategy (Figure S-2).  
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FIGURE S-1 Conceptual framework and examples of databases, assays, models, and tools for predicting 
acute chemical toxicity. 
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FIGURE S-2 Prioritization strategy based on a tiered approach for using predictive-toxicology models and 
tools to evaluate agents for toxicity. 
 
 

As would be expected, information on physical properties, solvation properties, and mo-
lecular attributes (physicochemical data) is critical. Physicochemical data can be used to predict 
a chemical’s physical hazard, its reactivity, and its pharmacokinetics, including absorption by 
different exposure routes, distribution in the body, and likely metabolites. Physicochemical data 
can be obtained from the literature, derived experimentally, or predicted with various in silico 
techniques. However, many tools that can be used to predict physicochemical properties have 
limited chemical applicability; that is, they are most applicable for small organic chemicals.  

Nontesting approaches have been used to predict acute toxicity. Specifically, a few (Q)SAR 
models have been developed for predicting in vivo acute toxicity.2 Most have focused on the pre-
diction of acute rodent oral toxicity, such as estimation of oral LD50 values;3 few attempts have 
been made to derive models for acute toxicity via other exposure routes, such as inhalation and 
dermal exposure. Nontesting approaches also have been used to predict toxicity end points, such as 
neurotoxicity or cytotoxicity. More recent efforts have investigated the integration of in vitro assay 
data with nontesting approaches to strengthen predictions. Key issues with nontesting (and all oth-
er) approaches are their relevance and applicability for the broad array of chemicals of interest to 

                                                           
2The committee uses the shorthand notation (Q)SAR to indicate both SAR and QSAR. 
3An LD50 value is the dose at which 50% of the population dies. 
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DOD and the reliability and validity of the data used to develop the models. Furthermore, the expo-
sure routes of interest to DOD are most likely inhalation and dermal exposure, and few nontesting 
approaches address these exposure routes.   

 
BIOLOGICAL ASSAYS FOR PREDICTING ACUTE TOXICITY 

 
In vitro assays and nonmammalian in vivo assays are important components of the commit-

tee’s conceptual framework. Numerous screening assays have been developed to measure specific 
biological activities. The various assay types are described below with some key limitations noted 
for DOD’s purposes. 
 

 Specific-Protein Assays. Many enzyme and receptor-binding assays have been devel-
oped to examine specific mechanisms of action at the molecular level. Some—such as ones that 
measure chemical-induced inhibition of acetylcholinesterase activity, altered electron transport in 
mitochondria, and modulation of ion-channel activity—might be relevant for predicting acute 
toxicity. Although the protein assays hold some promise, a key limitation is that acute toxicity 
that is not mediated by chemical action on specific enzymes or receptors will go undetected in 
these types of assays. 

 Cell-Based Phenotypic Assays. These assays typically use cultured cells and measure 
some overall phenotypic output relevant to predicting acute toxicity, such as cellular prolifera-
tion, plasma membrane permeability, and adenosine triphosphate content. There is a growing 
literature on their application as toxicity screens, especially in drug development. Cell-based 
assays, particularly ones for evaluating cytotoxicity, have demonstrated success in predictive 
toxicology. A key limitation of cytotoxicity assays is that they do not provide data on some of 
the most important toxic mechanisms, specifically ones that involve organ-specific or cell-type–
specific physiology. Another limitation of many existing cell-based assays is that they rely on 
immortalized cell lines that have little metabolic capability. 

 Organotypic Models. Organotypic models more closely mimic the anatomy of organs 
and have been developed for the skin, eye, lung, liver, and central nervous system. They are es-
pecially attractive given their theoretical potential to model metabolism, biodistribution, and bio-
logical activity of a chemical in an in vitro system. However, the science of modeling human 
organs in a culture dish accurately, especially in formats suitable for high-throughput testing, and 
its application to toxicology are still in their infancy. 

 Nonmammalian in vivo Assays. In addition to in vitro assays, the committee envisions 
nonmammalian animal models as a potentially important component of its conceptual frame-
work. Traditional whole-animal assays have been crucial in understanding how chemicals affect 
metabolism and exhibit pathology at the cell and organ level. However, traditional assays are 
often expensive, require large amounts of chemicals, and cannot be adapted to even a medium-
throughput format. For those and other reasons, alternative animal models have been developed. 
Ones that are potentially valuable for adapting to high-throughput screening rely on the fruit fly 
(Drosophila melanogaster), a nematode (Caenorhabditis elegans), and the zebrafish (Danio re-
rio). One particular advantage of the alternative models is the ability to identify whole-organism 
or organ-level responses. However, as with all animal models, a key limitation is related to spe-
cies differences and use of resulting data to extrapolate to human responses. Furthermore, meas-
uring some end points with alternative animal models has lower throughput than many in vitro 
assays, and little is known about their applicability to the assessment of acute toxicity of chemi-
cals that are relevant to DOD. 
 

In vitro assays, alternative animal models, and other emerging technologies described here 
and in more detail later in the committee’s report hold promise, but some important limitations or 
considerations should be noted. First, in vitro assays for predicting acute toxicity have focused 
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Summary 

primarily on nonmechanistic indicators of toxicity, such as cytotoxicity; they were not developed 
with a quantitative linkage to any phenotype (acute or chronic). Second, existing assays focus on 
oral exposure; there has been little consideration of dermal or inhalation exposure. Third, most 
current in vitro assays do not account for important pharmacokinetic characteristics, such as me-
tabolism, that can influence in vivo toxicity. Fourth, the nominal chemical concentration used in 
the assays is not necessarily representative of the concentration at which chemical bioactivity is 
observed. Fifth, cellular systems commonly use immortalized cancer cell lines, which might fail 
to detect chemical activity or effects that might occur in normal (nontumor) differentiated cells. 
Sixth, cells can have different levels of activity or responsiveness, depending on whether they are 
primary cells, differentiated cells, or immortalized cells and on how many times they have been 
cultured, so assay reproducibility can be a problem. Seventh, interpreting activity or effective 
concentrations that result from a high-throughput screening assay can be difficult because activi-
ty at high concentrations could represent nonspecific effects and offer little information about 
specific bioactivity. Conversely, the absence of activity could mean that the tested concentration 
is below the in vitro effective concentration, that the assay does not represent the biological tar-
get, or that there are problems with assay reliability. Current efforts in high-throughput screening 
support the observations noted here, and the committee emphasizes that DOD should use the 
experience from current high-throughput screening programs to design its screening program to 
predict acute, debilitating toxicity. 

 
INTEGRATION AND DECISION-MAKING FOR PREDICTIVE TOXICOLOGY 

 
A robust integration and decision-making strategy is needed as part of the committee’s 

suggested tiered prioritization strategy (shown in Figure S-2). As noted, the goal of each tier is to 
place a chemical into one of three categories: high confidence of high toxicity, high confidence 
of low toxicity, or inadequate data. That activity will require integrating various data streams and 
predictions that inform a single acute-toxicity end point (“within–end-point” integration and de-
cision-making) and integrating predictions from several acute-toxicity end points (“cross–end-
point” integration and decision-making). The committee’s report discusses various methods for 
integrating data and predictions. Key tasks for DOD will be to define the most informative end 
points for its purpose (for example, neurotoxicity vs seizures), to set boundaries or toxicity 
thresholds for what is considered “high” or “low” toxicity for each end point, and to specify the 
level of confidence needed to make determinations.  

One simple approach for integrating multiple end points is to summarize the categorization 
results for each end point in a “scorecard.” Each end point would be evaluated as to whether the 
chemical exhibited “high toxicity,” “low toxicity,” or “inadequate data.” A chemical would then 
be assigned to a “high toxicity overall” bin if at least one of the end points scored as “high toxici-
ty,” a “low toxicity overall” bin only if all the end points scored as “low toxicity,” and an “inad-
equate data overall” bin if neither of the first two conditions is met. That simple approach has the 
advantage of retaining the end-point–specific information to inform future data generation. It is 
also consistent with a low tolerance for false negatives in that each end point serves as sufficient 
evidence to assign a chemical to a “high toxicity overall” bin.  

It is possible to use more complex recombination approaches that would not depend strict-
ly on a simple decision rule related to the categories for each end point. For example, one ap-
proach would be to provide a summary measure that consisted of a weighted sum of individual 
toxicity end points. Even if each individual end point is rated as “inadequate data,” it is conceiv-
able that the presence of multiple end points close to their corresponding toxicity thresholds 
would permit a chemical to be categorized as “high” or “low” on the basis of the summary meas-
ure. Setting up appropriate decision rules would be a key policy question for DOD if it chose to 
go forward with implementing the committee’s suggested approach for predicting acute, debili-
tating toxicity. 
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LESSONS LEARNED AND NEXT STEPS 
 

Several large-scale initiatives have been evaluating in vitro testing methods for their ability 
to predict human toxicity, and the committee considered them as it debated the feasibility of a 
predictive testing program for DOD. The US Environmental Protection Agency (EPA) ToxCast 
program and the European ACuteTox program demonstrate that in vitro assays have some value 
for predicting acute toxicity and provide evidence that an in vitro screening approach is feasible 
for evaluating the relative threat of a chemical as an acute hazard. However, most of the assays 
developed and validated for high-throughput screening programs were not developed specifically 
for acute-toxicity testing and so might be of little use for identifying chemicals that have the po-
tential to cause acute, debilitating injuries in deployed military personnel. Lessons learned from 
those programs, however, could provide a great deal of guidance to DOD in its designing a sys-
tem that uses high-throughput screening and predictive models to evaluate acute toxicity. 

On the basis of its review, the committee notes several initial steps that DOD could take to 
implement the tiered prioritization strategy. First, an investment by DOD in computational and 
high-throughput screening could yield benefits in characterizing the toxicity of chemicals on 
which there are few or no toxicity data. Computational methods for predicting acute toxicity are 
seeing steady growth, and high-throughput screening might prove useful in excluding chemicals 
that have low toxic potential and in identifying toxic chemicals of greater concern for further 
testing. Second, there are data to suggest that DOD could use simple cytotoxicity assays to iden-
tify chemicals that have low acute-toxicity potential and focus its attention on chemicals that are 
more toxic. Additional investment would be required to determine whether the assays are rele-
vant for identifying highly toxic chemicals that could be used against deployed troops. Third, the 
development of targeted mechanistically based assays could provide DOD with a useful resource 
for understanding and predicting potential toxicity of chemicals; specifically, having explicit 
knowledge of the mechanisms of action that lead to acute systemic toxicity would be valuable in 
the design and validation of integrated prediction methods. Completing the steps described here 
might require DOD to use a variety of reference chemicals, including chemicals of concern, to 
benchmark the results. Moreover, completing these steps will be facilitated by selecting well-
characterized chemicals that can be used to evaluate the predictiveness of DOD’s in vitro assays 
and approaches against in vivo experimental results. 

The committee anticipates that in the next 3–10 years any tiered testing approach will not 
be able to replace fully the need for targeted mammalian in vivo studies to confirm the toxicity of 
a chemical of interest. Indeed, the state of the science suggests that development of a predictive 
acute-toxicity program will require extensive DOD investment in computational modeling ap-
proaches, assay development, methods for extrapolation of in vitro results to in vivo conditions, 
and data-integration methods. To begin the investment, the committee recommends that DOD 
initiate pilot studies that evaluate chemical classes of highest concern with well-characterized 
reference chemicals. The pilot studies would allow DOD to develop the novel assays and tools 
needed to predict acute chemical toxicity efficiently and accurately and to evaluate the rate of 
false negatives and false positives. The pilot studies could also examine how generalizable the 
results of various assays and tools are from one chemical class4 to another. That research would 
allow DOD to begin to address the size of the chemical space needed to make predictions about 
unknown chemicals. The committee emphasizes that DOD could benefit from leveraging its ef-
forts with other federal activities, such as EPA’s ToxCast program. Such collaboration would 
allow DOD to complete pilot studies more rapidly and maximize the return on its investment.  
 

                                                           
4In this context, chemical class is used broadly to include structurally related chemicals, chemicals that 

have different mechanisms of action, and chemicals that have different toxic end points, such as hepatotoxi-
city and neurotoxicity.  
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Introduction 

 
The mission of the Department of Defense (DOD) is “to provide the military forces needed 

to deter war and to protect the security of our country” (DOD 2014). In support of that mission, 
DOD must protect the health and capabilities of its personnel—many of whom are deployed 
overseas—by anticipating and safeguarding against chemical and biological threats. Although 
many factors, such as availability and dissemination potential, need to be considered in evaluat-
ing a potential threat, chemical toxicity is critical in determining whether an agent could pose a 
threat if used by an adversary. Given the numbers of registered chemicals and new chemicals 
registered each year, evaluating chemical toxicity is especially daunting, particularly in terms of 
time and money, if one uses traditional toxicity-testing methods. In light of recent advances in 
toxicity-testing methods and approaches, DOD would like to determine the feasibility of devel-
oping a high-throughput predictive system that could rapidly identify acutely toxic agents and 
threat potentials. Accordingly, DOD asked the National Research Council (NRC) to determine 
how DOD could use modern approaches for predicting chemical toxicity in its efforts to prevent 
debilitating acute exposures of deployed personnel. In response to that request, NRC convened 
the Committee on Predictive-Toxicology Approaches for Military Assessments of Acute Expo-
sures, which prepared this report. 

 
STUDY BACKGROUND 

 
Toxicity testing reached a turning point in 2007 with the release of the NRC report Toxicity 

Testing in the 21st Century: A Vision and a Strategy. The report set forth a vision for transform-
ing traditional toxicity testing by incorporating advances in systems biology, epigenetics, toxi-
cogenomics, bioinformatics, and computational toxicology. The new system that was described 
in the report would be based primarily on in vitro methods that can be used to evaluate changes 
in biological processes with cells, cell lines, or cellular components, preferably of human origin. 
The motivation for the new system was to accomplish four important goals: “(1) to provide broad 
coverage of chemicals, chemical mixtures, outcomes, and life stages, (2) to reduce the cost and 
time of testing, (3) to use fewer animals and cause minimal suffering in the animals used, and (4) 
to develop a more robust scientific basis for assessing health effects of environmental agents” 
(NRC 2007).  

On release of the NRC report, several federal agencies embraced the proposed vision. A 
collaboration that has been informally referred to as Tox21 was formed between the National 
Toxicology Program of the National Institute of Environmental Health Sciences, the National 
Center for Computational Toxicology of the US Environmental Protection Agency (EPA), and 
the Chemical Genomics Center1 of the National Institutes of Health; the US Food and Drug Ad-
ministration joined the collaboration later. The goal of the collaboration has been to advance the 

                                                           
1The Chemical Genomics Center is now part of the National Center for Advancing Translational Sciences. 
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vision proposed in the NRC report. EPA launched ToxCast as a separate activity with the goal of 
developing cost-effective approaches that use high-throughput technologies to predict chemical 
toxicity. The European Registration, Evaluation, Authorization, and Restriction of Chemicals 
(REACH) regulation encourages companies and other organizations to develop alternative meth-
ods that would substitute for traditional methods and has ultimately led to various research initia-
tives. All those programs and efforts have led to development of new methods and assays for 
predicting toxicity. 

To protect the armed forces and their ability to serve, DOD’s Defense Threat Reduction 
Agency conducts and sponsors scientific research to predict which chemicals might be used by 
adversaries as weapons and the toxicity that could occur if such agents were used. To understand 
potential toxicity at various doses, DOD has largely used in vivo toxicity testing in laboratory 
animals. However, that approach is time-consuming and expensive, must consider species differ-
ences in response, and does not enable DOD to keep up with the pace of new chemical registra-
tion. To address the challenge of elucidating the toxicity of more chemicals than can be practical-
ly tested in whole-animal assays and to address concerns raised with animal testing, DOD asked 
the NRC to consider the question of whether the new predictive-toxicology approaches being 
developed could be used to expedite its evaluation of potential chemical hazard. Specifically, are 
the new assays and approaches relevant to DOD’s interest in acute toxicity? If not, is there re-
search that would enable DOD to use predictive-toxicology approaches to identify acute chemi-
cal threats?  

 
THE COMMITTEE AND ITS TASK 

 
The committee that was convened as a result of DOD’s request included experts in toxi-

cology, computational methods, high-throughput approaches, –omics, physiologically based 
pharmacokinetic modeling, statistics, model validation, and emergency preparedness (see Ap-
pendix A for the committee’s biographical information). As noted, the committee was asked to 
consider the new predictive-toxicology approaches that have been developed in other fields and 
to determine whether they could be used to meet DOD’s needs. The committee’s verbatim state-
ment of task is provided in Box 1-1. 

 
THE COMMITTEE’S APPROACH TO ITS TASK 

 
To address its task, the committee held four meetings. In an open session during the first 

meeting, the committee heard presentations from the sponsor on its activities. On the basis of 
those discussions and the statement of task, the committee focused its attention on approaches 
that were considered to be most relevant for predicting acute debilitating2 or life-threatening3 
effects and on the organ systems that were deemed most likely to be affected. The organ systems 
of highest concern to DOD included the cardiovascular, respiratory, hepatic, renal, skeletomus-
cular, immune, and nervous systems, including special senses (vision and hearing). Each organ 
system was considered by the committee in its deliberations (see Chapter 2, Table 2-1 for further 
discussion). During the course of its review, the committee sought representative examples that 
could illustrate nontesting and assay-based approaches to assess acute chemical toxicity; the ex-
amples are provided throughout this report. On the basis of its task, the committee excluded from 
consideration traditional toxicity-testing assays (in vivo rodent assays).  
 

                                                           
2Acute debilitating effects are defined as ones that cause major irreversible morbidity, such as blindness, 

loss of limb function, paralysis, and severe hypoxia. 
3A life-threatening effect is a disease or condition that makes the likelihood of death high unless the expo-

sure is interrupted. 
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BOX 1-1 Statement of Task 
 

An ad hoc committee under the auspices of the National Research Council will consider 
how the Department of Defense (DOD) could use modern approaches for predicting chemical 
toxicity in its efforts to prevent debilitating acute exposures to deployed personnel.  

DOD needs to understand the relative threat of the increasingly long list of registered 
chemical substances, particularly in terms of potential acute hazard. To help DOD achieve its 
goal to protect its deployed personnel, this study will consider modern approaches for predict-
ing toxicity and suggest an overall conceptual approach for using such information to evaluate 
acute hazards. The committee will consider the information provided by predictive-toxicology 
approaches that is increasingly being generated and used in the environmental health and 
pharmaceutical sectors to enhance or replace information from traditional, empirical testing of 
chemical safety in animals. The committee will focus on the assays and approaches that are 
being developed by the United States and European agencies (for example, for the Registra-
tion, Evaluation, Authorization, and Restriction of Chemicals (REACH) program, the EPA Tox-
Cast effort, and the NIH/EPA/FDA Tox21 program); these might include computational model-
ing, structure-activity relationship analysis, analysis of physicochemical characteristics, read-
across techniques, and high-throughput screening and other in vitro assays. Specifically, the 
committee will discuss the ability of these approaches to predict acute toxicity at levels relevant 
to DOD concerns.  

In Phase 1 of this study, the committee will comment on the robustness and the relevance 
of the current approaches to meet DOD's needs. If the approaches being developed by other 
agencies do not address DOD's concerns about acute toxicity, the committee will broadly de-
scribe areas of research that could fill the gaps within the next 5 or 10 years. A second phase 
of the study, undertaken at the sponsor's request, will provide more detailed recommendations 
for a research roadmap. 

 
 

In response to its task to “predict acute toxicity at levels relevant to DOD concerns,” the 
committee focused its approach on hazard identification, specifically identifying target organ 
systems and developing toxicity estimates, such as potency estimates. An approach for predicting 
acute toxicity that involved converting toxicity estimates to human exposure estimates, as has 
been taken with some chemical-warfare agents (Mioduszewski et al. 2002), was considered be-
yond the committee’s charge. Furthermore, the committee interpreted DOD’s stated interest in 
understanding the relative threat of chemicals that could be used by an adversary against de-
ployed US military personnel to mean prioritizing chemicals in terms of their potential to cause 
acute toxicity. Thus, the committee was not focused on predicting human clinical signs or identi-
fying at-risk populations. And, the committee did not set bounds for its proposed strategy be-
cause it recognized the need for DOD to develop policies to set toxicity thresholds relevant to its 
mission.  

During the open session of its first meeting, the committee received a presentation from 
EPA on the ToxCast program. The committee considered the efforts of that program that were 
relevant to predicting acute toxicity and, more broadly, the technical approaches that might in-
form development of a DOD acute-toxicity program. A detailed review of the ToxCast program 
and its associated assays and methods was considered beyond the scope of the present report. 

 
ORGANIZATION OF THIS REPORT 

 
The committee’s report is organized into six chapters and two appendixes. Chapter 2 de-

scribes a conceptual framework and components that would be needed to build an approach 
based on modern predictive-toxicology methods. Chapter 3 describes the use of nontesting 
approaches, including quantitative structure–activity relationships, to predict acute chemical tox-
icity. Chapter 4 provides a brief review of medium-throughput and high-throughput assays that 
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can be used to predict acute mammalian toxicity. Chapter 5 addresses integration of the biologi-
cal and chemical data into toxicity predictions. Chapter 6 presents important lessons learned 
from previous predictive acute-toxicity efforts and the committee’s overall conclusions. The 
committee also identifies several steps that DOD could begin to take toward developing high-
throughput assays and computational approaches to identify chemicals that have the potential to 
induce life-threatening acute toxicity in deployed personnel. Appendix A contains biographical 
information on the committee, and Appendix B discusses available toxicity data or databases that 
one could use to find toxicity data. 

 
REFERENCES 

 
DOD (US Department of Defense). 2014. About the Department of Defense. [online]. Available: http:// 

www.defense.gov/about/[accessed March 12, 2015]. 
Mioduszewski, R., J. Manthei, R. Way, D. Burnett, B. Gaviola, W. Muse, S. Thomson, D. Sommerville, and 

R. Crosier. 2002. Interaction of exposure concentration and duration in determining acute toxic effects 
of sarin vapor in rats. Toxicol. Sci. 66(2):176-184. 

NRC (National Research Council). 2007. Toxicity Testing in the 21st Century: A Vision and a Strategy. 
Washington, DC: National Academies Press. 

 



Copyright © National Academy of Sciences. All rights reserved.

Application of Modern Toxicology Approaches for Predicting Acute Toxicity for Chemical Defense 

13 

2 
 

Conceptual Framework and  
Prioritization Strategy 

 
As discussed in Chapter 1, the committee was asked to consider modern approaches for 

predicting acute, debilitating chemical toxicity and to suggest an overall conceptual approach 
that uses emerging science to evaluate acute hazards to deployed military personnel. This chapter 
first discusses current and future needs for toxicity evaluations of chemical-warfare agents, rec-
ognizing the increasing number and types of chemicals that are potentially available to adver-
saries. It then describes the conceptual framework and strategy developed by the committee for 
systematically applying modern approaches to the prediction of acute toxicity. The overall ap-
proach, which is illustrated in Figures 2-1 and 2-2, consists of three components (relevant terms 
are defined in Box 2-1):  
 

 A conceptual framework that links chemical structure, physicochemical properties, bio-
chemical properties, and biological activity to acute toxicity. 

 A suite of databases, assays, models, and tools that are based on modern in vitro, non-
mammalian in vivo, and in silico approaches applicable to predicting acute toxicity. 

 A tiered prioritization strategy for using databases, assays, models, and tools to predict 
acute toxicity in a manner that balances the need for accuracy and timeliness.  
 
Later chapters in this report provide details of the types of databases, assays, models, and tools 
that are available for evaluating acute toxicity, their integration, and next steps that are needed to 
begin implementing the committee’s framework and strategy.  

 
ACUTE TOXICITY OF CLASSICAL CHEMICAL-WARFARE AGENTS 

 
Historically, most chemical-warfare agents have belonged to the following chemical clas-

ses: nerve agents (such as sarin and soman), blister or vesicant agents (such as phosgene oxime 
and sulfur mustards), blood agents (such as cyanide), and pulmonary agents (such as chlorine 
and phosgene) (DHHS 2014). Those agents have been well studied, and a detailed mechanistic 
understanding that is based on human data is available for some. For example, the organophos-
phorus (OP) nerve agents are potent inhibitors of acetylcholinesterase and result in acute cholin-
ergic effects that occur minutes or hours after exposure. Knowledge of their mechanisms of tox-
icity can be useful in the development of therapeutic countermeasures (Sharma et al. 2015) and 
in the development of in vitro tests. For example, in vitro methods have been developed for the 
evaluation of cholinesterase inhibition by nerve-gas agents (Worek et al. 2007). Data on some 
early, sensitive responses to such agents can support development of acute exposure limits for 
the general public. For example, a number of studies indicate that pupil constriction (miosis) is 
the most sensitive acute response to human exposure to OP nerve agents (such as sarin), and such 
end points have been used as part of the basis of acute exposure limits (NRC 2005).  
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BOX 2-1 Definitions of Relevant Terms 
 

An assay is a laboratory system designed to measure a physical, chemical, or biological end 
point. 
 
A model is a quantitative or qualitative representation of a hypothesis that attempts to explain 
how different observations are related to one another. In the context of this report, the hypoth-
esis typically concerns how physical, chemical, or biological data (“inputs”) can be used to pre-
dict biological outcomes of a given exposure (“outputs”) in a whole animal or human qualita-
tively or quantitatively. 
 
A tool is an application of a model or set of models, such as in a software package, designed 
to be routinely used in an applied setting as opposed to a research or development setting. 
 
In vitro approaches include high-throughput screening, other in vitro assays, and more com-
plex systems, such as organotypic cell cultures. 
 
Nonmammalian in vivo approaches include fish, amphibian, nematode, and insect models. 
 
In silico approaches include computational modeling, structure–activity relationship analysis, 
analysis of physicochemical characteristics, and read-across techniques (see Chapter 3). 

 
 

In vivo testing approaches have been developed and applied to assess the toxicity of chem-
ical-warfare agents. The vast majority of available toxicity information has come from traditional 
toxicity studies in which adverse biological responses were measured in laboratory animals that 
were exposed to high doses of a test agent. The acute-toxicity data are often used to provide es-
timates of the amount of an agent that would be required to kill 50% of a population of test ani-
mals, such as a lethal dose 50% (LD50) or a lethal concentration 50% (LC50). In addition, phar-
macokinetic studies that were designed to identify species differences in chemical absorption, 
distribution, metabolism, and excretion (Tenberken et al. 2010; Benson et al. 2011a,b) and spe-
cialized pharmacokinetic models (such as ones that use a human or porcine skin flap) that were 
developed to evaluate absorption and toxicity of some chemical-warfare agents (Riviere et al. 
1995; Monteiro-Riviere and Inman 1997; Vallet et al. 2008) have been undergoing incremental 
refinement since their inception. A limitation of the in vivo studies, however, is that they tend to 
be low-throughput, require consideration of species differences in response, and often provide 
little insight into a chemical’s mechanism of action. 

 
PREDICTING ACUTE TOXICITY OF  

POTENTIAL CHEMICAL-WARFARE AGENTS 
 

Only a few chemicals have been formally classified as chemical-warfare agents. However, 
the list of chemicals that could potentially be used by an adversary against deployed US person-
nel is large and continues to grow as more chemicals enter the marketplace. Therefore, Depart-
ment of Defense (DOD) efforts to evaluate potential chemical-warfare agents need to consider a 
wide array of chemicals beyond traditional chemical-warfare agents, including toxins of biologi-
cal origin (such as trichothecenes, saxitoxin, and tetrodotoxin), industrial chemicals (such as 
ammonia), pesticides (such as sodium monofluoroacetate), and pharmaceutical agents (such as 
cocaine and amphetamine) (Holstege et al. 2007). The ability of an adversary to use those or oth-
er chemicals will depend on their or their precursors’ availability and weaponizability and on 
other factors that were deemed beyond the scope of the committee’s work but that might be im-
portant in deciding which agents to evaluate for acute toxicity. 
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To determine the best way to assess the growing list of registered chemical substances, the 
committee considered the adverse effects of highly toxic agents, including those of classical 
chemical-warfare agents, and identified the following organ systems to be of greatest importance 
for evaluating acute, debilitating hazards: cardiovascular, respiratory, hepatic, renal, skeletomus-
cular, immune, and nervous systems, including special senses (vision and hearing). Sufficient 
perturbation in those organ systems can lead to a progression in the severity of effects that can 
result in incapacitation or death of the whole organism.  

Given ethical considerations, additional acute human-toxicity data are unlikely to be availa-
ble except in cases of accidental release or deliberate attack for which exposure estimates are typi-
cally highly uncertain or unknown. And, available traditional toxicity-testing data provide little 
information about acute, debilitating toxicity. For example, information about chronic, reproduc-
tive, or developmental hazards—although important for chemical risk assessment in occupational 
or environmental settings—is of secondary concern in a military environment where acute, debili-
tating hazards are of immediate importance. As with other toxicity-testing programs, DOD recog-
nizes that it would be prohibitively expensive and time-consuming to test all potential agents with 
traditional whole-animal toxicity-testing approaches even if such testing were limited to evaluations 
of acute toxicity. Moreover, traditional in vivo testing, particularly for acute toxicity, often does not 
provide information on the cellular or biological mechanisms of toxicity or in some cases even 
identify the target organ system.  

Although some of the more modern, biological assay-based approaches have been used to 
elucidate mechanisms of action of many of the classical chemical-warfare agents described 
above, they have not been used to identify potential chemical-warfare agents. Nonetheless, the 
fact that some high-throughput screening data on chemical-warfare agents already exist suggests 
the feasibility of using such approaches to evaluate agents and provides important “reference” 
data with which results on other agents can be compared. The modern predictive approaches can 
also inform decisions as to whether additional mammalian in vivo testing of an agent is needed 
and might be able to provide information about the cellular and biological mechanistic events 
associated with acute toxicity and indicate whether additional testing should focus on a specific 
organ system or biological target.  

 
A FRAMEWORK AND STRATEGY FOR PREDICTING ACUTE  
TOXICITY OF POTENTIAL CHEMICAL-WARFARE AGENTS 

 
Conceptual Framework 

 
A predictive-toxicology program to assess acute toxicity ideally will build on knowledge 

about the cellular targets and mechanisms of action that are related to acute human toxicity. 
Acute toxicity depends on fewer biological and chemical pathways than those envisioned by 
NRC (2007) for a general toxicity evaluation. It could be more straightforward, although still 
challenging, to predict the potential for acute toxicity than the potential for toxicity in the general 
public in a variety of organ systems, life stages, populations, and exposure timeframes. Specifi-
cally, clinical toxicologists have recognized several cellular or biological targets that are often 
associated with the acute lethal or debilitating effects of chemicals. Table 2-1 provides an over-
view of those cellular targets and relevant examples and lists some chemicals that affect the tar-
gets. It should be noted that there is not necessarily a one-to-one correspondence between mech-
anistic targets and organ-system targets because multiple mechanisms could affect a single organ 
system, a single mechanism could affect multiple organ systems, and debilitation or death could 
occur from multiorgan failure. 
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TABLE 2-1 Biological Processes and Cellular Targets Associated with Acute Toxicity in Humans or Laboratory Animalsa, b 

Biological Process or Cellular Target Example Chemical or Biological Agent 
Example Target  
Organ System Examples of in vitro Assay Approachesc 

Change in neurotransmitter function 

Altered axonal transport Disruption of microtubule function Vinca alkaloids 
β, β'-iminodipropionitrile  

Nervous Tubulin polymerization assessed with flow 
cytometry (Morrison and Hergenrother 2012)  

Altered impulse conduction by  
axonal membrane 

Blocking of Na+ ion channel Tetrodotoxin Nervous Cell-based assays of the membrane potential 
that use fluorescent dye (Hill et al. 2014) 

Reduced precursor availability or 
neurotransmitter synthesis and storage 

Inhibition of acetylcholine uptake into 
synaptic vesicle 

Vesamicol 
Reserpine (dopamine) 

Nervous PC12 cell-based microelectrode assay (Cui et 
al. 2006; Chen et al. 2008) 

Altered neurotransmitter release Blocking of release of acetylcholine at 
neuromuscular junction 
 
Presynaptic release of acetylcholine 
and other neurotransmitters 

Botulinum toxin 
 
 
α-latrotoxin 

Nervous PC12 cell-based system for in vitro 
measurements of neurotransmitter release 
events (Yakushenko et al. 2013) 

Altered neurotransmitter binding at 
receptor sites 

Neurotransmitter agonists 
 
 
Neurotransmitter antagonists 

Opioids, benzodiazepines, nicotine, 
anatoxin-a, kainic acid 
 
Curare, α-bungarotoxin,  
3-quinuclidinyl benzilate 

Nervous Review of selected methods to assess receptor 
binding (Dunlop et al. 2007); use of stably 
transfected HEK cells expressing human D2, 
D3, or D4 dopamine receptors as a screening 
tool (Vangveravong et al. 2006; Xiao et al. 
2014) 

Impaired neurotransmitter inactivation 
mechanisms 

Acetylcholinesterase inhibition 
Altered dopamine transporter 
Altered serotonin reuptake 
Altered dopamine reuptake 

Nerve gas agents 
Cocaine 
Fluoxetine 
Amphetamine 

Nervous Zebrafish-based (Jin et al. 2013) and enzyme-
based (Wille et al. 2010) assays for 
acetylcholinesterase inhibitors 

Altered ion flow 

Altered electrical conduction of heart  
or cardiomyocyte contractility 

Sodium–potassium  
ATPase blockers 

Digoxin Cardiovascular Assessment of altered cardiomyocyte 
contraction (Himmel 2013; Pointon et al. 
2013, 2015; Sirenko et al. 2013; Scott et al. 
2014) and electrophysiology (Lopez-
Izquierdo et al. 2014); organotypic zebrafish 
heart model (Pieperhoff et al. 2014) 

Altered ion pump (Na+, Ca++, K+) activity Inhibit K+ channel function 
Inhibit Na+ channel function 

Dendrodotoxin, 4-aminopyridine 
Tetrodotoxin, saxitoxin 

Cardiovascular Comparison of in vitro potency of saxitoxin  
in cultured neurons with in vivo results 
(Jellett et al. 1992; Vale et al. 2008). 
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Increased permeability of cellular membranes

Pore formation Na+/H+ antiporter Ionophores Cardiovascular Assessment of cell permeability and other end 
points in multiple strains of mouse embryonic 
fibroblasts (Suzuki et al. 2014) 

Ion-channel interactions Transient receptor potential cation 
channel, subfamily A, member 1 
(TRPA1) activation 

Sulfur mustard 
Acrolein 

Respiratory Role of TRPA1 as a chemosensor (Büch et  
al. 2013; Stenger et al. in press) 

Chemical reactivity Acylation of proteins and lipids 
(pulmonary edema) 

Phosgene Respiratory Human epithelial lung cells as a system to 
investigate pulmonary edema (Wijte et al. 
2011) 

Altered bioenergetics 

Mitochondrial dysfunction Multiple mechanisms Various Multiple Various HTS of mitochondrial dysfunction 
(Jensen and Rekling 2010; Sakamuru et al. 
2012; Vongs et al. 2011; Attene-Ramos et  
al. 2013, 2015; Sirenko et al. 2014b; Wills et  
al. 2013) 

Reduced ATP production Inhibition of oxidative 
phosphorylation 

Fluoroacetate, cyanide, chlordecone, 
bromethalin 

Nervous, cardiovascular, 
multiple 

Monitoring of ATP production or cell 
concentrations (Steinhoff et al. 2015) 

Activation of apoptotic pathways Multiple Cisplatin, doxorubicin Multiple Cell-imaging methods for cultured 
cardiomyocytes (Mioulane et al. 2012) 

Altered oxygen transport 

Competitive binding to hemoglobin Carboxyhemoglobin production Carbon monoxide Multiple In vitro assessment of carbon monoxide and 
cyanide binding to hemoglobin using human 
blood (Thoren et al. 2013) 

Irritant or cytotoxic effects Pulmonary edema Phosgene, chlorine, methylisocyanate Respiratory Microfluidic system that mimics alveolar-
capillary interface of human lung (Huh et  
al. 2012) 

Oxidative stress or ROS formation 

Lipid peroxidation Hepatic injury Acetaminophen, carbon tetrachloride Hepatic Lipid peroxidation cell-based and cell-free 
assays (Kelesidis et al. 2014) 

ROS formation Renal injury Aminoglycosides Renal HTS assays to measure ROS formation 
(Adams et al. 2013; Prasad et al. 2013; 
Zielonka et al. 2014) 

Altered prostaglandin synthesis Vascular dysfunction NSAIDs Cardiovascular HTS assay for prostaglandin E synthase  
activity (Andersson et al. 2012) 

(Continued) 17
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TABLE 2-1 Continued 

Biological Process or Cellular Target Example Chemical or Biological Agent 
Example Target  
Organ System Examples of in vitro Assay Approachesc 

Damage to DNA and subcellular systems 

Genetic damage Multiple Multiple Multiple HTS assays to measure genetic damage 
(Gutzkow et al. 2013; Li et al. 2013; 
Wasalathanthri et al. 2013; Watson et al. 2014; 
Bandi et al. 2014; Falk et al. 2014; van der 
Linden et al. 2014) 

DNA or protein adduct formation DNA alkylation Aflatoxins, cisplatinin (kidney), sulfur 
mustard 

Multiple Medium-throughput methods for 
quantification of sulfur mustard adducts to 
proteins (Andacht et al. 2014; Pantazides et  
al. 2015)  

Altered protein synthesis Inactivation of ribosomes Ricin Multiple Assay for the measurement of adenine 
released from ribosomes or small stem-loop 
RNAs by ricin toxin A-chain catalysis  
(Sturm and Schramm 2009) 

Disruption of cytoskeleton Actin or cytoskeleton disassembly Phalloidin, microcystin Multiple Assessment of cytoskeleton integrity in a 
hepatocyte model (Sirenko et al. 2014a) 

Immune-mediated effects 

Immunogenic interactions with cell 
macromolecules 

Alteration of mammalian immune 
system function 

Endotoxin, anthrax exotoxins Immune Reviews of endotoxin and anthrax toxins 
(Thorn 2001; Liu et al. 2013). 

Autoimmunity Autoimmune hepatitis and necrotizing 
myositis 

Statins Multiple Reviews of statins and myositis (Jones et  
al. 2014) and hepatotoxicity (deLemos et  
al. 2014) 

aThe lists of chemicals and biological targets shown here are not intended to be complete; rather, this table shows a variety of plausible biological targets and responses 
that need to be considered in evaluating chemicals for acute toxicity that could debilitate or kill deployed troops. 
bBoldface: Listed in Chemical Weapons Convention or is a suspected chemical agent of concern.  
cThere are relatively few applications of these methods to the prediction of acute toxicity; thus, the information is provided for illustrative purposes only to demonstrate 
the types of approaches used to date (see Chapter 4 for additional information).  
Abbreviations: ATP, adenosine triphosphate; DNA, deoxyribonucleic acid; HTS, high-throughput screening; NSAID, nonsteroidal anti-inflammatory drug; PC, pheo-
chromocytoma; RNA, ribonucleic acid; ROS, reactive oxygen species.  
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The relatively detailed knowledge of the multiple mechanisms by which chemicals can cause 
acute toxicity supports the basic premise of predictive toxicology that whole-animal toxicity can be 
predicted on the basis of information on lower levels of complexity down to the level of chemical 
structure. That premise forms the basis of the conceptual framework developed by the committee, 
illustrated in Figure 2-1. Specifically, it is hypothesized that chemical structure, physicochemical 
properties, biochemical properties, or biological activity in isolated cells and tissues or in non-
mammalian organisms can predict acute mammalian toxicity. The predictions can arise through 
observations of empirical or statistical correlations or through knowledge of the relevant mechanis-
tic pathways, either of which could potentially be coupled with toxicokinetic information. 

 
Databases, Assays, Models, and Tools 

 
Evaluating the potential for acute toxicity by using the conceptual framework of predictive 

toxicology requires a suite of databases, assays, models, and tools to cover the relevant physical, 
chemical, biological, and toxicological space. In general, “input” information on chemical struc-
ture, physicochemical properties, biochemical properties, and biological activity that is used to 
make predictions will be obtained from relevant databases or assays. Chemical-structure data 
might range from chemical-grouping data (for example, reaction chemistry domains, such as 
Michael acceptors) to quantitative descriptors of chemical structure (for example, topological 
descriptors and semiempirical quantum chemical descriptors). Physicochemical-property data 
include quantities measured in physical or chemical assays, such as boiling point, pH, pKa, and 
KOW.1 Biochemical measures are usually measures of specific molecular interactions (such as 
DNA binding and receptor activation) with biological molecules, such as nucleic acids, proteins 
(including enzymes and receptors), and lipids. Finally, biological activity might include both 
specific measures of function (such as acetylcholinesterase inhibition) and nonspecific measures 
of toxicity (such as cytotoxicity from in vitro assays and LC50 estimates obtained from assays 
that use Drosophila). Databases and assays for chemical structures and physicochemical proper-
ties are discussed in Chapter 3 and Appendix B, and assays for biochemical properties and bio-
logical activity in Chapter 4. 

In this same context, the prediction “outputs” consist of estimates of end points related to 
acute toxicity. The end points might be related to particular mechanisms known to cause acute 
toxicity (see, for example, Table 2-1), end points related to specific organ system targets (noted 
above), or nonspecific end points, such as death and cytotoxicity. Data on those end points for 
chemicals of known toxicity (such as classical chemical-warfare agents) can serve as “training” 
and “test” data for building models or tools to predict the same end points for chemicals on 
which such data are lacking. Finally, the specific form of the outputs might be qualitative (such 
as active or inactive), semiquantitative (such as a ranking), or quantitative (such as a numerical 
estimate of dose). However, as discussed further below, quantitative estimates are likely to be of 
greatest use for military applications. 

A variety of models and tools might be used to provide toxicity estimates. Models and 
tools might be qualitative (such as decision trees) or quantitative (such as statistical regression) 
and might include statistically based (or machine-learning–based) models, biologically based 
models, or a mixture of the two. No model or tool is universally applicable, so it is important that 
a model’s or tool’s domain of applicability is characterized in terms of the chemical space in 
which it is predictive and the relevant toxicological end points that are covered. Moreover, toxi-
cokinetic models might need to be integrated into the predictions to address absorption, distribu-
tion, metabolism, and excretion relevant to acute toxicity. Finally, models and tools differ with 
respect to the uncertainty or confidence in their predicted outputs. 

                                                           
1Kow is the octanol-water partition coefficient. 
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FIGURE 2-1 Conceptual framework and examples of databases, assays, models, and tools for predicting 
acute chemical toxicity. 
 
 

As described further in Chapters 3-5, there are many available databases, assays, models, 
and tools that could be used to predict acute toxicity. Because they vary in their required level of 
effort, their relevance to acute toxicity, their domain of applicability, the extent to which they 
address toxicokinetics, and the uncertainty or confidence in their predictions, the committee de-
veloped an overall strategy for using them to evaluate acute toxicity. The committee’s strategy is 
described next. 

 
Prioritization Strategy for Evaluating Acute Toxicity 

 

Effective implementation of predictive models and tools depends on first identifying the ul-
timate (and acceptable) use of the predictive outputs. The committee’s task states that DOD needs 
to understand “the relative threat of the increasingly long list of registered chemical substances, 
particularly in terms of potential acute hazard.” The committee interprets that statement to mean 
that the goal of the predictive-toxicology approach is to prioritize substances in the sense of identi-
fying those of greater and less concern for acute toxicity. Three key issues must be considered in 
developing a strategy for prioritization: the need for quantitative measures of potency and their 
uncertainties, the need to minimize false negatives, and the need to screen a large number of chem-
icals rapidly.  

The first key issue is that prioritization with respect to toxicity inherently requires a quantita-
tive measure of potency and a characterization of uncertainty. Ideally, potency should be defined in 
absolute units, such as an acute oral LD50 in milligrams per kilogram per day. Relative potency 
measures might be informative if they include reference chemicals that have known toxicity and, in 
that case, could be converted to absolute potency measures if toxicokinetic information is also 
available to make any necessary adjustments. Qualitative outputs, such as binary categorizations of 
“active” or “inactive,” might be useful as an additional output to target testing for specific end 
points but are not useful by themselves. Furthermore, in the absence of human data, there will al-
ways be inaccuracies in predicting human toxicity, so it is important to characterize the uncertainty 
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or confidence associated with any predicted potency value. Because a decision-maker might have 
defined tolerance for errors (such as for false negatives and false positives2), the degree of uncer-
tainty or confidence in a prediction can influence the decision that is made about a particular sub-
stance. Therefore, an estimated confidence interval is essential to any prioritization strategy. 

The topic of uncertainty leads to the second key issue: given that this task is meant to pre-
vent death and debilitating injuries of US military personnel, it is expected that there will be a 
low tolerance for false negatives. A likely consequence of reducing the number of false negatives 
is that a higher percentage of chemicals will be retained for assessment with more accurate but 
more resource-intensive approaches. The overall time needed to complete the review for the 
whole chemical space would increase accordingly. However, the timeframe to complete an as-
sessment of thousands of chemicals could be unacceptably long, and a chemical could be suc-
cessfully weaponized in that timeframe before a decision has been made.  

The timeframe raises the third key issue: the prioritization strategy needs to be able to 
screen chemicals in a manner that allows rapid identification of the ones that pose the greatest 
risk. A rapid-screening scenario could be acceptable if follow-up screening is conducted to en-
sure that all potential chemical threats are eventually identified. It is critical that such an ap-
proach incorporate a short timeline that progresses efficiently through a multitiered approach to 
allow timely reconsideration of chemicals that are not originally classified as posing the greatest 
risk. Lessons learned from the first round of screening could then be leveraged effectively in the 
reassessment and enable a more informed review and follow-up validation of the initial approach 
that can also be rapidly implemented. The risk of using this approach lies in a time lag that could 
result in weaponization of a chemical that was originally not deemed to pose a great threat.  

The policy tradeoff of balancing a low tolerance for false negatives with a need to identify 
important hazards rapidly is beyond the scope of the committee’s charge. However, as a general 
approach, the committee found that the policy tradeoff could be managed through a tiered priori-
tization approach as illustrated in Figure 2-2. Specifically, the committee’s proposed prioritiza-
tion strategy proceeds through a number of tiers that apply successively more predictive and re-
source-intensive approaches than the previous ones. At each tier, a chemical is placed into one of 
three general categories: 
 

(a) High confidence of low toxicity. These chemicals would be deselected for further study 
and are considered to have a low relative acute toxicity. The requirement that the determination 
be made with high confidence addresses the low tolerance for false negatives. 

(b) High confidence of high toxicity. These chemicals would be selected and considered to 
have a high relative acute toxicity. The requirement that the determination be made with high 
confidence focuses attention quickly on chemicals that might pose a high risk. 

(c) Uncertain toxicity due to inadequate data. The remaining chemicals would be candi-
dates for moving to the next tier of evaluation for acute toxicity.3 The uncertainties might stem 
from available predictions of high uncertainty or low confidence or from inadequate coverage of 
end points deemed important for evaluating acute toxicity. Depending on resource constraints, it 
might be reasonable to assess the chemicals by using additional factors unrelated to toxicity, such 
as weaponizability. Thus, some chemicals might be further deselected for further study because 
they pose a low threat owing to factors unrelated to toxicity (discussion of such factors is beyond 
the committee’s charge). If additional evaluation of toxicity is determined to be needed, the 
chemical would be moved to the next tier of hazard evaluation to reduce uncertainty concerning 
the potential for acute, debilitating toxicity. Uncertainty might also be reduced through additional 
research into and development of approaches to improve acute-toxicity prediction, that is, by 
                                                           

2In this context, a “false negative” occurs when a chemical is identified as having low toxicity when it 
actually has high toxicity, and “false positive” occurs when a chemical is identified as having high toxicity 
when it actually has low toxicity. 

3Some chemicals in categories (a) and (b) might be carried to a higher tier for validation purposes.  
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decreasing the number of chemicals in category (c) and increasing the ability to discriminate 
between categories (a) and (b).  
 
The categorization can be based on a single end point (possibly based on multiple approaches) or 
on multiple end points. The committee notes that an end point could be a clinical outcome or a 
molecular initiating event (see Figure 3-1). If science advances in such a way that adverse-
outcome pathways of interest to DOD are known, the strategy shown in Figure 2-2 could rely on 
nontesting and biological assay-based approaches that evaluate molecular initiating events or 
measurable key events in the pathways. 

The committee broadly grouped the available approaches to predicting acute toxicity into 
four tiers, beginning with an initial chemical characterization (Tier 0), proceeding to nontesting 
approaches (Tier 1), then to biological assay-based approaches (Tier 2), which includes non-
mammalian animal species, and ultimately to traditional whole-animal toxicity testing (Tier 3). 
The tiers are described further in Box 2-2. 
 
 

Initial 
Character‐
ization

(Chapter 3)

+
Nontesting
approaches
(Chapter 3)

+
Biological 

assay‐based 
approaches
(Chapter 4)

Integration
and Decision‐

Making
(Chapter 5)

Inadequate data

Low toxicity

High toxicity

Mammalian in vivo testing or 
R&D to improve predictions 

Integration
and Decision‐

Making
(Chapter 5)

Inadequate data

Low toxicity

High toxicity

Inadequate data

Low toxicity

High toxicity

Low threat 
due to factors 
unrelated to 

toxicity

Low threat 
due to factors 
unrelated to 

toxicity

Tier 1

Tier 2

Tier 3

Tier 0

Low threat 
due to factors 
unrelated to 

toxicity

 
FIGURE 2-2 Prioritization strategy based on a tiered approach for using predictive-toxicology models and 
tools to evaluate agents for acute toxicity. The strategy can be applied to a single end point (such as lethali-
ty, neurotoxicity, and cytotoxicity) and to multiple end points. 
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BOX 2-2 Tiered Approach to Predicting Toxicity 
 
A tiered approach to predicting toxicity consists of successively more predictive and re-
source-intensive approaches to evaluating toxicity (see Figure 2-2). DOD might deselect a 
chemical at any tier on the basis of factors unrelated to toxicity, such as availability or 
weaponizability. 
 
Tier 0 would be an initial chemical characterization of toxicity and physicochemical properties 
based on existing data. In addition to characterizing acute toxicity, traditional toxicity data can be 
used to build and test predictive-toxicology models in Tiers 1 and 2, and physicochemical data 
might be important for understanding potential exposure routes, bioavailability, target-tissue dis-
tribution, and potential physical hazards or chemical reactivity associated with an agent. Chapter 
3 and Appendix B discuss the availability, accessibility, and sources of acute-toxicity data and 
other data useful for initial chemical characterization. 
 
Tier 1 uses models and tools that make predictions based on chemical structure and physico-
chemical properties. Such models and tools, discussed in Chapter 3, are termed nontesting 
approaches because they do not involve any additional toxicity testing and data generation. 
Such approaches include the use of structure–activity relationships, quantitative structure–
activity relationships, and read-across. As discussed further in Chapter 3, the available ap-
proaches and tools differ in their potential applicability to prediction of acute toxicity, their 
chemical domain of applicability, and their predictive power and degree of uncertainty. There 
are a number of gaps in chemical space, biological space, and predictivity; for many chemicals 
or end points, predictions based on nontesting approaches will often be highly uncertain.  
 
Tier 2 is the conduct of biological assays to generate data to reduce uncertainty in the toxicity 
evaluation. Biological assays in this tier include specific protein assays, cell-based phenotypic 
assays, organotypic models, and nonmammalian in vivo animal models. Toxicity predictions 
based on such data, discussed in Chapter 4, are termed biological assay-based. Ideally, this 
biological testing focuses on specific biological targets that are based on information from previ-
ous tiers. However, it is also likely to include nonspecific toxicity end points, such as cytotoxicity. 
As with nontesting approaches, available biological assay-based approaches and tools differ in 
their potential applicability to prediction of acute toxicity, their chemical domain of applicability, 
and their predictive power and degree of uncertainty. There are a number of gaps in chemical 
space, biological space, and predictivity; for many chemicals or end points (although one hopes 
fewer than in Tier 1), predictions based on biological assay-based approaches will be highly un-
certain.   
 
Tier 3 is the conduct of mammalian in vivo testing. These traditional approaches are not part of 
the committee’s task. However, the committee notes that as in Tier 2, ideally this toxicity testing 
will focus on specific biological targets that are based on information from previous tiers. There 
could also be specific gaps or limitations identified in earlier tiers that could be addressed with 
additional research or development of new models and tools. 

 
 

A key step in each tier is integration and decision-making (described in Chapter 5). Even 
within a tier, such as nontesting approaches (Tier 1), there might be diverse outputs and predictions 
from different models or tools that need to be synthesized. For example, a simple integration ap-
proach could be in the form of a scorecard that counts “positive” and “negative” results from avail-
able nontesting approaches; a more sophisticated integration approach might aggregate different 
predictions. In addition, Tier 2 integration should consider the previous results of nontesting ap-
proaches with the newly generated biological assay data. Absorption, distribution, metabolism, and 
excretion (ADME) considerations can be integrated to provide relevant information, such as chem-
ical bioavailability or distribution to target organs.  
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The committee envisions that a decision as to whether a chemical is categorized as having 
high toxicity, low toxicity, or inadequate data could be made for each end point that is relevant to 
acute toxicity (see examples in Figure 2-1). As discussed previously, such decisions would be 
based on quantitative toxicity estimates for each toxicity end point and associated levels of con-
fidence or confidence intervals. Defining the specific “thresholds” for assigning a chemical to 
each category will require expert judgment on the part of DOD. However, reference chemicals 
with known high and low toxicities could help to inform those boundaries. Overall, chemicals 
would also be assigned to categories for multiple individual end points that reflect different types 
of acute toxicity although, as noted in Chapters 3 and 4, there are many gaps in coverage of end 
points related to acute toxicity at all tiers. Therefore, noting the gaps as part of the prioritization 
strategy provides guidance on how to target testing in later tiers. And, it is up to DOD to deter-
mine the extent of coverage of end points that is adequate for it to make sufficiently reliable de-
cisions at each tier. 

 
FINDINGS AND RECOMMENDATIONS 

 
 Finding: There are multiple mechanisms by which chemicals can elicit acute, debilitating 

toxicity, and these mechanisms provide support for a predictive-toxicology conceptual framework 
that predicts system, tissue, or organism toxicity on the basis of chemical structure, physicochemi-
cal properties, biochemical properties, or biological activity in isolated cells, tissues, and lower 
organisms.  

 Finding: Such a conceptual framework that includes databases, assays, models, and 
tools that are applicable to prediction of acute toxicity could be used to evaluate a large number 
of chemicals for acute-toxicity potential more rapidly than traditional, mammalian in vivo stud-
ies.  

 Finding: In prioritizing chemicals in terms of their potential to cause acute toxicity, 
DOD will need to balance a relatively low tolerance for false negatives with a need to evaluate a 
large number of chemicals rapidly. Regardless of how DOD decides to balance those objectives, 
they can be managed through a tiered prioritization strategy that applies successively more pre-
dictive and resource-intensive approaches as needed.  

 Recommendation: The committee recommends a prioritization strategy that broadly 
groups approaches to prediction of acute toxicity into four tiers, beginning with an initial chemi-
cal characterization (Tier 0), moving to nontesting approaches (Tier 1), then to biological assay-
based approaches (Tier 2), and finally to traditional mammalian in vivo testing (Tier 3). Progres-
sion through the tiers will require intermediate integration steps that consider the diverse data 
within a tier and among tiers. The prioritization strategy can be applied to single or multiple end 
points. 

 Recommendation: As part of the prioritization strategy, the committee recommends 
placing chemicals into one of three general categories at each tier: “high confidence of high tox-
icity,” “high confidence of low toxicity,” and “inadequate data to evaluate toxicity confidently.” 
Chemicals placed in the last category, “inadequate data,” are moved to the next tier for addition-
al, more resource-intensive evaluation. Quantitative estimates of how potent the chemicals might 
be and of the confidence or uncertainty in each estimate will be needed to place chemicals into 
categories. DOD will need to use expert judgment to define specifically how chemicals are to be 
assigned to the different categories.  
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3 
 

Nontesting Approaches Relevant to  
Prediction of Acute Toxicity and Potency 

 
The term nontesting approaches was coined during the development of the European Union 

Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation (EU 
2006; ECHA 2008) to include the search and retrieval of existing data, the identification of struc-
tural alerts1 to indicate activity, the grouping of chemicals for read-across, and the development and 
application of quantitative structure-activity models. In practice, nontesting approaches are used to 
accomplish various tasks. For example, predictions based on structure–activity relationships 
(SARs) and quantitative structure–activity relationships (QSARs) are used to fill specific data gaps 
in lieu of experimental testing, to support findings or conclusions in integrated chemical assess-
ments, and to substantiate predictions of various properties for structurally related chemicals. A key 
assumption that underpins nontesting approaches is that the property of a chemical with respect to 
how it will interact with a defined biological system is inherent in its molecular structure; thus, sim-
ilar chemicals should have similar biological activities (the similarity principle) (Raunio 2011). 
More detailed information about nontesting approaches can be found in Cronin and Madden 
(2010).  

This chapter discusses nontesting approaches in the context of the conceptual framework 
described in Chapter 2. Box 3-1 provides definitions for some of the terms used in the chapter. 
The chapter discusses the use of available data to characterize chemicals of interest and in silico 
approaches to predict physical hazards, chemical reactivity, pharmacokinetic properties, and 
acute toxicity. It also provides selected examples to demonstrate how computational tools could 
be used in predictive toxicology. 

 
INITIAL CHEMICAL CHARACTERIZATION 

 
The starting point in the application of any nontesting approach for predicting acute toxici-

ty is a preliminary search and evaluation of available data on the chemical of interest. The effort 
often begins with database queries, literature searches, and other approaches for finding infor-
mation about the chemical’s structure, physicochemical properties, and acute toxicity (see Box 3-
2). The committee notes that the forthcoming REACH regulation requires in vivo acute oral tox-
icity information for chemicals manufactured or imported into Europe at greater than 1 metric 
ton per year (ECHA 2012). It is anticipated that a large volume of in vivo oral data will be poten-
tially disseminated publically after the REACH May 2018 deadline. 
 
 

                                                           
1A structural alert is a chemical structure that has been linked to toxicity or a specific toxicity end point. 
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BOX 3-1 Definitions of Selected Nontesting Approaches
 

A structure–activity relationship (SAR) is a qualitative association between a chemical 
(sub)structure (such as a functional group) and the potential of a chemical that contains the 
(sub)structure to exhibit a particular biological effect.  
 
A quantitative structure–activity relationship (QSAR) is “a mathematical relationship between a 
quantifiable aspect of chemical structure and a chemical property or reactivity or a well defined 
biological activity, such as toxicity” (EPA 2012). QSARs can be derived to predict quantitative or 
qualitative end points.  
 
A quantitative structure–property relationship (QSPR) is a special case of QSAR in which a physi-
cochemical property is modelled as the response variable. 
 
An expert system is a software tool that specifically encodes compilations of SARs, QSARs, or 
both to enable rational predictions of toxicity to be made on the basis of structure alone. Expert 
systems are typically categorized as statistical (for example, TOPKAT and Accelrys Inc), 
knowledge-based (for example, such SAR-based approaches as Derek Nexus and LHASA Ltd), 
or hybrid (for example, TIMES-SS). 
 
Category approach, analogue approach, and read-across: Category and analogue approaches 
are techniques for grouping chemicals; read-across is a technique for filling data gaps in cate-
gory and analogue approaches (ECHA 2008; OECD 2014). Read-across can be qualitative or 
quantitative and uses existing “information on the property of a substance (source chemi-
cal)…to make a prediction of the same property for another substance (target chemical) that is 
considered similar” with respect to the end point of interest (Worth 2008). Analogue approach-
es are used for grouping a small number of chemicals when there are no apparent trends in 
properties. 
 
A chemical category is “a group of chemicals whose physicochemical and human health…or 
environmental toxicological properties…or environmental-fate properties are likely to be similar 
or follow a regular pattern as a result of structural similarity” (OECD 2007a, 2014). Chemical 
similarity could be based on a variety of properties, including the presence of a common func-
tional group (such as an aldehyde), common constituents or chemical classes, similar carbon 
range numbers, or common precursors or breakdown products.  
 
In silico approaches include computational modeling, SAR analysis, analysis of physicochemi-
cal characteristics, and read-across techniques. 

 
 

The available information can help in identifying a chemical’s potential for direct physical 
hazards, most relevant routes of exposure, likely bioavailability, and potential for inducing (hu-
man) toxicity (NRC 2014). It should also be considered before designing or initiating new in 
vitro or in vivo experimental studies, in interpreting existing empirical data, or in selecting ap-
propriate (Q)SAR models.2  

As described below, physicochemical properties of interest in predictive toxicology can be 
nominally categorized into three broad types: physical properties, solvation properties, and mo-
lecular attributes (NRC 2014). There are methods for empirically measuring the properties and in 
silico approaches for estimating their values (see Box 3-3). It can be particularly helpful to com-
plement estimated values with experimental measurements, when that is possible. 
 
 

                                                           
2The committee uses the shorthand notation (Q)SAR to indicate both SAR and QSAR.  
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BOX 3-2 Primary Data Considered During a Preliminary  
Characterization of a Chemical of Interest 

 
Chemical structure: Chemical structure is the spatial arrangement of a molecule’s constituent 
atoms. PubChem, DSSTox, and ChemIDplus are examples of searchable chemical-structure 
databases. 
 
Physicochemical properties: Physicochemical properties contribute to the inherent hazards 
posed by a chemical, including its ability to interfere with normal biological processes. Physico-
chemical properties could also define a chemical's physical hazards of interest (such as corro-
sivity). Physical properties include freezing point, boiling point, melting point, infrared spectrum, 
electronic characteristics, viscosity, and density. Other properties of relevance include solva-
tion properties, such as phase partitioning and solubility. One of the more important phase-
partition coefficients is obtained from a system in which one solvent is water or an aqueous 
phase and the second is organic and hydrophobic, such as 1-octanol, that is, the octanol–
water partition coefficient (Kow). An example of a database source of physicochemical-property 
data is the National Institute of Standards and Technology Chemistry WebBook; another is the 
PHYSPROP database, which is integrated into the US Environmental Protection Agency’s 
EPISuite software.  
 
Acute toxicity (for example, rodent LD50 or LC50 values): These data might be available from 
primary sources (such as peer-reviewed literature) and secondary sources (such as the Merck 
Handbook). By far the most convenient sources of data are compiled databases that are readi-
ly searchable by chemical identifiers, such as chemical name, Chemical Abstracts Service 
registry number, or chemical structure. An example is the National Library of Medicine 
TOXNET® database.  
 
See Appendix B for additional information and examples.

 
 

 Physical properties. Physical properties include such characteristics as freezing point, 
melting point, boiling point, vapor pressure, and viscosity. Melting point, boiling point, and vapor 
pressure can be used to predict a chemical’s likely physical state, which is pertinent in determining 
the most relevant route of exposure for any testing or indeed what practical challenges might need 
to be overcome in in vitro testing scenarios or even what issues to consider in interpreting in vivo 
results and associated testing protocols.  

 Solvation properties. Solvation properties describe a chemical’s interaction with different 
phases and its interaction between phases (for example, logKow represents the partitioning between 
octanol and water). Water solubility and logKow are particularly helpful in determining the technical 
feasibility of performing in vitro test protocols given that they typically use aqueous media.  

 Molecular attributes. Molecular attributes capture properties related to molecular shape 
and size. Electronic characteristics of molecules, such as frontier orbital energies and polarizabil-
ity, that are related to reactivity could be considered to constitute a type of molecular attribute. 
They also play a role in predicting likely bioavailability and toxicity. 

 
USE OF PHYSICOCHEMICAL PROPERTIES TO PREDICT PHYSICAL HAZARDS, 

CHEMICAL REACTIVITY, AND PHARMACOKINETICS 
 

Physicochemical data can be used to predict a chemical’s physical hazard, reactivity, and 
pharmacokinetics, including absorption by different exposure routes, distribution in the body, 
and likely metabolites. Approaches that apply knowledge about a chemical’s physicochemical 
properties to predictive toxicology presume that for a chemical to exert a toxic effect, it typically 
must be bioavailable to such an extent that it (or its metabolite) reaches a biochemical target, 
where it can exert its toxic effect (Meek et al. 2013). 
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BOX 3-3 In Silico Approaches for Predicting Physicochemical Properties 
 

In the absence of data on physicochemical properties, reasonable estimates based on 
chemical structure are feasible with the use of QSAR and QSPR models (Dearden and Worth 
2007). A discussion of those methods is beyond the scope of the present activity. However, 
the National Research Council report A Framework to Guide Selection of Chemical Alterna-
tives provides a succinct discussion of published models that can be used to characterize a 
number of physicochemical properties (NRC 2014). That report discusses methods used to 
estimate molecular hydrophobicity (or lipophilicity) and other physicochemical end points, such 
as aqueous solubility, pKa, and the electronic properties of molecules. 

A number of software packages and algorithms are available for predicting physicochemical 
properties, and predictions are often in excellent agreement with experimentally derived values. 
For example, pKa can be estimated by using Taft and Hansch fragment coefficients, and Perrin 
et al. (1981) contains an extensive compilation of the fragment values and relevant equations to 
do so. For convenience, software tools, such as SPARC or those created by ACD Labs, contain 
algorithms for estimating pKa directly from chemical structure. The user of such tools, however, 
must have a basic understanding of the inherent advantages and limitations of the various algo-
rithms as they are related to the accuracy of physicochemical-property prediction. In general, the 
QSAR models available for prediction of the key physicochemical characteristics are best suited 
for small organic chemicals that typically have one functional group. Other chemicals—such as 
pesticides, drug-like chemicals, or other pharmacological actives—typically lack published data to 
derive such QSARs.  

 
 

Use of Physicochemical Properties to Predict Physical  
Hazard and Chemical Stability or Reactivity 

 
Assessing the likely irritant or corrosive effects of a chemical would be a helpful component 

of a tiered evaluation strategy for predicting acute toxicity.3 In the absence of measured irritant or 
corrosive data, a handful of (Q)SAR approaches are useful in identifying potential irritants or cor-
rosives. The German Federal Institute for Risk Assessment (BfR) rule base (Gerner et al. 2004; 
Hulzebos et al. 2005) is one example of an expert system that uses physicochemical exclusion rules 
and structural alert inclusion rules to determine likely skin or eye irritation hazard.4 The BfR rule 
base has been encoded into software tools, including the Organisation for Economic Co-operation 
and Development (OECD) QSAR Toolbox5 and the European Commission Joint Research Centre 
Toxtree (Rorije and Hulzebos 2005; Tsakovska et al. 2007). Some QSARs published for specific 
chemical classes have relied on such properties as pKa, dipole moment, logKow, and molecular 
weight or volume to estimate likely irritation potential and potency (Barratt 1996). Both pKa and 
dipole moment have been found to be useful measures for modeling chemical reactivity depending 
on whether the target substance is an acid, a base, or a neutral organic; and logKow and molecular 
weight have served as useful surrogates for modeling partitioning. QSARs also exist within expert 
                                                           

3Skin irritation or corrosion can be investigated in vitro by virtue of assays, such as Corrositex (OECD 
2006) for corrosion and EpiDerm™ (OECD 2013a) for irritation. For eye irritation or corrosion, various ex 
vivo and in vitro assays are available, including the bovine corneal opacity permeability test (OECD 2013b), 
the isolated chicken-eye test (OECD 2013c), or the EpiOcular™ eye-irritation test method. A tabulation of 
assays for irritation and corrosion that have been validated by ECVAM or ICCVAM or that exist as test guide-
lines under OECD are provided on the AltTox.org Web site (AltTox 2014) and are discussed in Chapter 4.  

4The BfR rule base combines two approaches: exclusion rules that use physicochemical thresholds to 
identify chemicals that are not skin irritants or corrosive and inclusion rules that use structural alerts to iden-
tify chemicals that are potentially irritants or corrosive (Saliner et al. 2007). The rule base assigns a regula-
tory classification for skin or eye irritation or corrosion. 

5The committee refers here to the toolbox by its official name rather than OECD (Q)SAR Toolbox, 
which would be more appropriate because the Toolbox includes both SAR and QSAR approaches. 
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systems, such as TOPKAT and MCASE, for the prediction of irritation or corrosion. Saliner et al. 
(2008) reviewed the status of (Q)SAR approaches for irritation and corrosion.  

Consideration should also be paid to the inherent stability or electrophilic reactivity of the 
chemical. A chemical might exert its effects in its parent form or be transformed abiotically or bi-
otically to a metabolite that is a more relevant target for evaluation. Some substances are rapidly 
hydrolyzed; for example, acid chlorides and acid anhydrides are rapidly hydrolyzed to their corre-
sponding carboxylic acids. Other substances are capable of being oxidized when exposed to air; for 
example, p-hydroquinone is rapidly oxidized to its corresponding benzoquinone, which is highly 
reactive. The OECD Toolbox contains simulators that help in predicting such transformations. 
Consideration of how a chemical might be transformed is important in interpreting experimental 
data, performing new testing, or using the most relevant target for (Q)SAR analyses.  

 
Use of Physicochemical Properties to Predict Chemical Disposition and Metabolism 

 
Pharmacokinetics describes the disposition of a chemical in an organism and considers chem-

ical absorption, distribution, metabolism, and excretion (ADME). Pharmacokinetic properties can 
play an important role in the assessment of a chemical’s effects on or risks to the body. In silico 
approaches have been developed to predict many ADME processes; the sections below focus large-
ly on approaches that are directly relevant for predicting acute toxicity.  

 
Absorption: Oral 
 

Some physicochemical properties—such as molecular weight, the number of hydrogen-
bond donors and acceptors, and logKow—have been shown to be predictive of oral absorption. 
For example, Lipinski’s rule of 5 is considered helpful in evaluating the likely absorption, per-
meability, and toxicity of drug-like substances (Lipinski et al. 2001) and considers the three 
properties noted to make predictions about chemical behavior. Other examples of heuristic rules 
are provided in Table 3-1. 

In addition to heuristic rules, several QSAR models have been developed to determine in-
testinal absorption and oral absorption. Iyer et al. (2007) used a membrane-interaction QSAR 
analysis to build models for human oral intestinal drug absorption. Castillo-Garit et al. (2008) 
developed a mathematical model that used linear indexes to predict the in vitro permeability of 
157 chemicals in a Caco-2 cell model. Their mathematical model had greater than 80% accuracy 
in predicting how well a drug would be absorbed by Caco-2 cells. Guerra et al. (2010) developed 
an artificial neural network by using CODES 2D descriptions to predict oral drug absorption. 
Suenderhauf et al. (2011) used a broad selection of machine learning and statistical methods to 
derive classification and prediction models for human intestinal absorption. Several recent re-
views discuss the status of such QSAR models (Xu and Mager 2011; Silva and Trossini 2014; 
Wang and Hou 2015). 
 
 
TABLE 3-1 Examples of Heuristic Rules to Predict Oral Absorption 
Rule Descriptiona Reference 

GlaxoSmithKline  
rule of 4/400 

Chemicals with cLogP < 4 and MW < 400 Da have superior drug-like 
properties compared with chemicals with cLogP > 4 and MW > 400 Da 

Gleeson 2008 

Pfizer rule of 3/75 Chemicals with cLogP > 3 and total PSA < 75 Å are 2.5 times more likely  
to have in vivo toxicity than ones with cLogP < 3 and total PSA > 75 Å 

Hughes et al. 2008

AstraZeneca Alkalinity and increased cLogP are associated with multiple positive  
responses in various toxicity assays  

Leeson and  
Springthorpe 2007

acLogP is the name of a software program that generates an estimate of logKow. 
Abbreviations: MW, molecular weight; PSA, polar surface area. 
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There are also physiologically based packages that can predict oral absorption rates of 
drugs, such as GastroPlus and SimCyp (Kuentz et al. 2006; Rostami-Hodjegan and Tucker 2007; 
Yang et al. 2007; Simulations Plus 2010; Grbic et al. 2011). However, if the goal is to determine 
likely oral absorption to help to prioritize chemicals, the heuristic rules described above might be 
adequate for that task. 

 

Absorption: Dermal 
 

LogKow, water solubility, and molecular weight are also useful inputs for estimating dermal 
absorption characteristics of a target substance. QSAR models for predicting the dermal permea-
bility coefficient (Kp)—a measure useful for modeling dermal penetration—typically rely on 
LogKow and molecular weight as input variables. Potts and Guy (1992) derived such a model that 
is also encoded in DERMWIN as part of EPA’s EpiSuite software. Over the years, the model 
derived by Potts and Guy has been modified to address limitations, and many variants now exist. 
Mitragotri et al. (2011) reviewed the status of models for the prediction of skin permeability in 
terms of their strengths, limitations, and future prospects. 

Other researchers have incorporated additional information, such as degree of hydrogen 
bonding and melting point, to refine skin penetration estimates (Hostýnek 1997; Magnusson et al. 
2004; ten Berge 2009; Dancik et al. 2013a). Models by ten Berge (2009) and Dancik et al. 
(2013a,b) are helpful in evaluating systemic availability as a result of dermal exposure and thus 
provide a means of extrapolating a dermal acute-toxicity (LD50) value from an oral acute-toxicity 
(LD50) value. Kasting’s model (as discussed in Dancik et al. 2013a,b) explicitly takes into account 
various components of the skin structure, including the stratum corneum, viable epidermis, and 
dermis. The model simulates one-dimensional transient passive transport into a skin slab. Some 
properties are also required as inputs for a simulation, including logKow, vapor pressure, melting 
and boiling points, molecular weight, chemical class (alcohol, hydrocarbon, or other organic), and 
presence of a pharmacophore6 as defined by Yamazaki and Kanaoka (2004). The model is available 
for use from the National Institute for Occupational Safety and Health Web site (NIOSH 2013).  

 

Absorption and Deposition: Inhalation 
 

For nonvolatile chemicals, particle size is an important consideration because it affects 
deposition in the respiratory tract and influences whether a particle poses an inhalation hazard 
(ECETOC 2012; Brown et al. 2013). Brown et al. (2013) predicted that about half of all 10-μm 
particles penetrate into the thorax and that about 20% or less of all 10-μm particles would pene-
trate to the extrathoracic airways and into the lower respiratory tract. 

For volatile substances, physicochemical characteristics—such as vapor pressure, water 
solubility, and reactivity—are also important for predicting acute toxicity by the inhalation route 
(Veith and Wallace 2006; Veith et al. 2009).  

 

Metabolism 
 

Several tissues—including the lung, skin, liver, intestine, and kidney—have enzymes that 
can convert a parent chemical to a metabolite, for example, through oxidation and conjugation 
processes. Whereas parent chemical metabolism typically results in a more hydrophilic chemical 
that is more easily excreted, a reactive toxic metabolite is sometimes formed. Not considering 
that possibility and focusing solely on the parent chemical will therefore be inadequate in charac-
terizing a chemical’s potential to elicit acute toxicity accurately.  
                                                           

6A pharmacophore is the collection of steric and electrostatic features of different chemicals that are neces-
sary to ensure optimal molecular interactions with a specific biological target (Langer and Wolber 2004). 
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Predicting chemical metabolism requires tools that can identify the functional groups or 
structural components of the parent chemical that are vulnerable to metabolism (sites of metabo-
lism) and the structure of possible metabolites. Additional information about enzyme structure 
and function and about the effect of metabolism on the induction or inhibition of metabolizing 
enzymes could also be considered, but for the purposes of predicting the potential of chemicals 
to elicit acute toxicity, this discussion will focus primarily on the first two factors. Determining 
the site of metabolism allows prediction of overall metabolic stability, such as the rate of activity 
(Vmax, Km) or clearance rate (Clint), that is measured either in vivo or in vitro. Predicting metabol-
ic structures involves listing possible metabolites from reactions that the chemical could undergo 
(biotransformation).  

Metabolism-predictive tools are based on large compilations of databases derived from 
metabolism information in the literature, for example, Accelrys Metabolite Database, Metabolite, 
MetaBase, and MetaDrug (Kirchmair et al. 2012). The metabolism information in a database can 
be used to identify likely metabolic sites on the basis of what is known about the target chemical 
structure or a similar chemical structure. The databases can also be used to predict possible me-
tabolites by using information that describes enzyme activity, such as binding pocket sites. Most 
available metabolism-predictive tools consider a single aspect of metabolic reactions—such as 
the reaction energy barrier, geometrical properties, or pharmacokinetic properties—to predict 
sites of metabolism or potential metabolites. ADMET Predictor is an example of a commercial 
product that uses the Accelrys Metabolite Database to predict various metabolic stability values 
for a series of cytochromes (Simulations Plus 2010). Kirchmair et al. (2012) provide a compre-
hensive overview of methods for predicting sites of metabolism. 

Knowledge-driven approaches, such as expert systems, allow extrapolation of structure to 
likely metabolites by using advanced reasoning rules and expert-system metabolite ranking, such 
as MetabolExpert, META, Meteor, and Metaprint2D-React. However, one problem is that they 
can generate a large number of metabolites from which it is difficult to determine which metabo-
lites are the relevant and stable ones that should be considered. Other metabolism-predictive 
tools introduce the expert-system features with more refined computational algorithms to support 
the decision method and therefore limit the number of metabolites that are generated. Indeed, the 
software program Tissue Metabolism Simulator (TIMES) uses a comprehensive library of bio-
transformation information and a heuristic algorithm to generate plausible metabolic maps that 
are relevant to specific end points, such as skin sensitization or genotoxicity (Mekenyan et al. 
2012; Patlewicz et al. 2014). Many of the TIMES metabolism simulators have been made freely 
available in the OECD QSAR Toolbox.  

 
Limitations and Need for Improvement 
 

Many tools for predicting physicochemical properties that are relevant for the evaluation of 
chemical disposition and distribution factors are available, but they are limited by their training 
sets.7 Such tools are generally most applicable for small organic chemicals—chemicals that have 
molecular weights of 500 Da or less (that is, not mixtures or polymers).  

In vitro and in silico predictions of absorption for various routes of exposure are still crude, 
and current models might have little applicability to the Department of Defense (DOD).8 For oral 
absorption, Lipinski’s rule of 5, which is based on experience in the drug-discovery world, might 
                                                           

7Training sets are data that are used to develop predictive models or tools. 
8For example, in vitro assays for absorption (such as Caco-2 monolayer crossing) were developed pri-

marily to predict systemic absorption after deliberate oral dosing (Artursson and Karlsson 1991). Thus, they 
are expected to be much less predictive for exposure routes (dermal and inhalation) that are more relevant to 
acute battlefield exposure. Likewise, crossing the blood–brain barrier is especially relevant for neurotoxici-
ty, and although there are computational approaches for predicting blood–brain barrier penetration (Ger-
ebtzoff and Seelig 2006; Carpenter et al. 2014), no in vitro assay accurately measures this property. 
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provide a convenient set of heuristics for chemicals of interest to DOD but would need to be 
evaluated to determine its applicability. The prediction of dermal permeability at the simplest 
level is illustrated by QSARs that predict logKp or logJmax with such inputs as molecular weight 
and logKow as exemplified by Potts and Guy (1992) or Magnusson et al. (2004) (see also Fitzpat-
rick et al. 2004 and Mitragotri et al. 2011). Although refinements have been made to simulate 
penetration or systemic bioavailability (Dancik et al. 2013a,b), the underlying characteristics are 
still based largely on the heterogeneous dataset first compiled by Flynn (1990), which is limited 
in its coverage of chemicals.  

Current metabolism-predictive approaches have several limitations. First, most of the exist-
ing metabolism-predictive tools were designed primarily to inform drug development. There are 
few examples in which such modeling tools have been used to evaluate volatile or lipophilic 
chemicals (Peyret and Krishnan 2012; Kirman et al. 2015). Thus, the available metabolism train-
ing sets will need to be expanded for the chemicals of interest. Second, although metabolism-
predictive tools adequately predict transformations of various chemicals, they do a poor job of 
distinguishing differences in reactivity of closely related structural analogues. In most cases, the 
tools can only estimate the reactivity of the individual molecular sites. As a result, they have lim-
ited use for prioritizing a broad set of structurally related chemicals (Kirchmair et al. 2012). One 
interim solution that DOD might consider is to evaluate metabolites with known toxic effects and 
incorporate more metabolically competent test systems into its test battery. Chapter 4 describes 
each approach in some detail. 

 
IN SILICO APPROACHES FOR PREDICTING TOXIC EFFECTS 

 
In silico models incorporate a variety of physicochemical features that can be used to pre-

dict receptor binding, toxicity, and other biological outcomes. Many (Q)SAR models developed 
for use in toxicology have been built on a longstanding recognition that the physicochemical 
properties of a chemical, especially lipophilicity, are highly relevant to prediction of acute toxici-
ty. It has been shown that the presence or absence of various physicochemical properties can be 
used to group chemicals into toxicity categories (Greene and Song 2011). That concept is well 
established and used in the pharmaceutical industry to reduce attrition in drug discovery, reduce 
toxicity, and improve the drug-likeness of chemicals (see Table 3-1).9 Indeed, several studies 
have shown how simple measures, such as logKow and total polar surface area (TPSA), provide 
useful indicators of potential toxicity in vivo. Hughes et al. (2008) showed for a dataset of 245 
substances that substances that had low logKow and high TPSA were about 2.5 times more likely 
to be “clean” (nontoxic) than to be toxic. Precisely the reverse was true of chemicals that had 
high logKow and low TPSA, properties that increased the likelihood of chemical binding to mul-
tiple biological targets that could contribute to toxicity.  

Although the chemical domain of concern for DOD goes beyond that of drug-like sub-
stances, an understanding of the type of physicochemical properties that can affect adverse out-
comes and the range of property values for which the effect is likely to be substantial can offer 
useful insights for guiding the assessment of acute toxicity of chemicals of interest to DOD. The 
sections that follow describe in silico approaches that are available or could be developed for 
predicting acute toxicity that is relevant to DOD’s concerns. 

 
Acute Oral Toxicity 

 
There are a few (Q)SAR models and expert systems for prediction of in vivo acute toxicity. 

The predictiveness of the models, however, can be variable. For some chemicals, the models 

                                                           
9Drug-likeness refers to molecules that contain functional groups or have physical properties similar to 

those of known drugs (Walters and Murcko 2002).  
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provide predicted values that deviate by several orders of magnitude from the experimental data. 
Furthermore, efforts have focused largely on the prediction of acute rodent oral toxicity (see Ap-
pendix B for a description of various toxicity data sources). Fewer attempts have been made to 
derive models of acute toxicity via other routes of exposure, such as dermal or inhalation, alt-
hough predictions based on extrapolation from acute oral LD50 values have been attempted.  

Available (Q)SARs for acute systemic toxicity have been reviewed (Cronin and Dearden 
1995; Cronin et al. 2003; Lessigiarska et al. 2005; Tsakovska et al. 2006; Devillers and Devillers 
2009; Lapenna et al. 2010). Several QSAR models have identified hydrophobicity and electronic 
and steric effects as important model parameters. Many literature-based models were developed 
for a single chemical class, such as alcohols, barbiturates, pyrines and their derivatives, and ben-
zene derivatives. Examples are provided in Table 3-2.  

In contrast, models based on heterogeneous datasets have typically been incorporated into 
expert systems. There are, however, examples of models based on heterogeneous data that have 
not been incorporated into expert systems, and there are examples of models that use a hybrid 
approach. Table 3-3 provides several examples of various types of models and tools. There has 
been an evolution in the types of (Q)SAR models developed over the years to predict acute tox-
icity. Expert systems tended to favor large datasets (global models) that use chemistry-based 
descriptors to derive estimates of rodent oral toxicity. Hybrid expert systems consider biological 
activity, such as cytotoxicity information as described in Chapter 4, and chemistry-based de-
scriptors as inputs. More recently, there has been a return to local (Q)SAR models; they are inte-
grated into batteries of (Q)SARs that can predict acute toxicity of diverse chemicals.  

 

Acute Dermal Toxicity 
 

To the committee’s knowledge, there are no notable QSARs for the prediction of rodent 
dermal acute-toxicity values. Dermal LD50 values might be estimated by extrapolating from oral 
LD50 values in some cases by using toxicokinetic information. A case study of three cosmetic 
substances was performed by Gajewska et al. (2014) to evaluate such an extrapolation. 

Moore et al. (2013) found that the toxicity of chemicals was usually greater by the oral 
route than the dermal route. They proposed that data on oral acute systemic toxicity could be 
used in lieu of equivalent dermal testing with little or no concern for underclassification accord-
ing to the Globally Harmonized System of Classification and Labeling of Chemicals (GHS).10 
For example, dermal testing of a substance that has an oral LD50 of greater than 2,000 mg/kg  
 
 

TABLE 3-2 Examples of (Q)SARs for Various Chemical Classes 
Chemical Class Description Reference 

Alcohols Four molecular-structure descriptors and two indicator  
variables formed the basis of a categorical model that  
categorized 95 alcohols into ranges of LD50 values. 

Guilian and Naibin 1998 

Barbiturates The number of valence electrons and logKow were found  
to be predictive of LD50 values of a set of 11 barbiturates. 

Hansch and Kurup 2003 

Pyrines and derivatives The energy of the lowest unoccupied molecular orbital  
and logKow represented the descriptors used in a QSAR  
for pyrines and their derivatives. 

Cronin et al. 2002 

Benzene derivatives Electronegativity, dipole moment, and the presence of nitrogen-
containing groups were most important in predicting the acute  
oral toxicity of benzene derivatives. 

Toropov et al. 2008 

 

                                                           
10The GHS is an internationally agreed-on system created by the UN to replace the various classification 

and labeling standards used in different countries by using consistent criteria for classification and labeling 
(UNECE 2015). 
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TABLE 3-3 Examples of Models and Tools for Predicting Acute Oral Toxicity 
Model Description Outputs Reference 

Models Based on Heterogeneous Datasets That Have Been Incorporated into Expert Systems 

TOxicity Prediction by Komputer-
Assisted Technology (TOPKAT) 

19 QSAR regression models are based on a number of structural, topological,  
and electropological indexes and experimental values for 4,000 chemicals in  
the Registry of Toxic Effects of Chemical Substances (RTECS) database. 

Rat LD50 (oral) 
Rat LC50 (inhalation) 

TOPKAT, Accelrys 
(reviewed in Lapenna  
et al. 2010) 

Toxicity Estimation Software  
Tool (TEST) 

Based on chemicals in the RTECS database. Uses a variety of QSAR models  
(hierarchical method, Food and Drug Administration [FDA] method, single-model  
method, group-contribution method, nearest-neighbor method, and consensus  
method) to yield toxicity estimates. 

Rat LD50 (oral) EPA 2014 

ACD/Labs Tox suite Predictions are based on a combination of expert knowledge of various basal  
and extracellular effects (such as cholinesterase inhibition, ATP synthesis, and  
CNS disruption) and QSAR analysis of more than 10,000 chemicals. Predictions  
are provided with reliability estimations, and chemicals are classified into five  
toxicity categories. 

Rat and mouse LD50  
(routes include oral, 
intraperitoneal,  
subcutaneous, and 
intravenous) 

ACD/Labs 2015 

ProTox Prediction is based on the analysis of the similarity of chemicals that have known  
median LD50 that are taken from a dataset of 38,000 chemicals and incorporates the 
identification of toxic fragments. 

Rodent LD50 (oral) Drwal et al. (2014);  
ProTox (2015) 

Models Based on Heterogeneous Datasets That Have Not Been Incorporated into Expert Systems 

Consensus models Use rodent in vivo acute oral data from the National Library of Medicine databases  
as reported in ChemIDplus. Predictions are based on different QSAR statistical  
techniques, including random forest, FDA MDL-QSAR program’s approach to  
k-nearest neighbor, and hierarchical clustering. 

Rodent LD50 (oral) Zhu et al. (2009a) 

Multiclassification methods Based on a dataset containing 12, 204 diverse chemicals and published acute oral  
rodent LD50s. Model predictions obtained with machine-learning methods, such  
as support vector machine, C4.5 decision tree, random forest, k-nearest neighbor,  
naive Bayes algorithms, and MACCS and FP4 fingerprints. 

Rat LD50 (oral) Li et al. (2014) 

Global Hybrid Approachesa 

Tiered approach All chemicals separated into two groups: one based on the relationship between  
the in vitro half-maximal inhibitory concentration (IC50) and rodent LD50 and the  
other contained the remaining chemicals. A two-step QSAR modeling approach  
was then applied. The derived binary classification QSAR models predicted group 
membership on the basis of the in vitro–in vivo relationships, and a second QSAR  
model estimated the LD50s for the chemical subsets. 

Rodent LD50 (oral) Zhu et al. (2009b) 
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Chemical and biological descriptors Dataset consisted of 67 chemicals obtained from the literature. Used structural 

information and in vitro basal cytotoxicity to predict human acute toxicity.  
Indirect measures of human 
toxicity (e.g., LC50) 

Lee et al. (2010) 

Inclusion of concentration–response 
data derived from high-throughput 
screening 

Used quantitative high-throughput screening concentration–response data to  
complement traditional chemical descriptors in the modeling of acute oral rodent LD50s.  

Rodent LD50 (oral) Sedykh et al. (2011) 

Local Hybrid Approachesb    

OASIS Pipeline Relies on a baseline model for neutral organic substances supplemented with 
mechanistic SARs for different reaction-chemistry domains. The approach is 
underpinned by 3-D QSARs where relevant to predict acute oral-toxicity categories  
by using the same RTECS dataset as used by Zhu et al. (2009a). Complements the 
approach outlined by Koleva et al. (2011). 

 Mekenyan et al.  
(personal communication, 
December 2014) 

Local lazy method Based on a dataset of 9,617 chemicals. Uses local structure–toxicity relationships 
associated with a query substance to develop acute oral LD50 models. 

Rodent LD50 (oral) Lu et al. (2014) 

aGlobal hybrid approaches use models derived on the basis of a large heterogeneous dataset that includes chemical and biological information.  
bLocal hybrid approaches aim to derive models that are specific to chemical class or reaction chemistry but will still be applicable to a broad spectrum of chemicals.  
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would provide no added value for categorizing its hazard. Moore et al. (2013), however, reported 
that a majority of chemicals that they evaluated would be classified more stringently if oral clas-
sifications were applied directly to the dermal route. One approach to address the tendency for 
overclassification would be to consider whether a chemical is absorbed by the skin.  

 

Acute Inhalation Toxicity 
 

There are only a handful of QSARs for acute inhalation toxicity. One example is that for 
volatile substances. Veith et al. (2009) derived a baseline narcosis model that related vapor pres-
sure (as logVP in millimeters of mercury) to the 4-hour molar logLC50 in rodents for neutral or-
ganic substances. Veith and Wallace (2006) also established relationships for reactive (electro-
philic) chemicals in which reactivity, as measured in the glutathione depletion assay (Schultz et 
al. 2005), was related to the molar logLC50. The underlying basis of their strategy mimics the 
Adverse Outcome Pathway (AOP) construct as described by Ankley et al. (2010).  

The expert system TOPKAT incorporates a global model for the prediction of acute inhala-
tion toxicity. The rat inhalation LC50 module contains five models related to different chemical 
classes to cover a reasonable breadth of chemical coverage.  

 
Neurotoxicity 

 

Neurotoxicity is another debilitating effect associated with some acute exposures. A few 
QSARs have been derived for neurotoxicity, but they are quite limited in scope. Cronin (1996) de-
rived a neurotoxicity QSAR for a set of 44 common solvents that depended on logKow and mem-
brane permeability. A number of modeling approaches to derive QSAR models for organophospho-
rus pesticides have also been developed (Devillers 2004; Garcia-Domenech et al. 2007).  

A handful of SARs exist that might identify structural alerts for neurotoxic potential. Chemi-
cal classes associated with neurotoxicity include some organic solvents, organophosphorus chemi-
cals, and carbamates, which can induce chronic toxic encephalopathy, delayed neurotoxicity, and 
cholinergic effects, respectively. For example, Derek Nexus includes the following structural alerts: 
organophosphate (for direct and indirect anticholinesterase activity), N-methyl or N,N-dimethyl 
carbamate (for direct anticholinesterase activity), and gamma-diketones (for neurotoxicity) (ECHA 
2014). 

Neurotoxicity is clearly an effect whose mechanisms need to be better elucidated, and 
models developed accordingly. 

 

Cytotoxicity 
 

Ekwall (1983) suggested that for most chemicals, toxicity was a consequence of nonspecif-
ic alterations in cellular function; thus, evaluating the cytotoxic potential of chemicals with cyto-
toxicity assays could provide an indication of their potential in vivo toxicity. There have been 
many attempts to explore the correlation between in vivo acute toxicity and cytotoxicity data and 
a number of efforts to predict cytotoxicity from chemical structure. For example, as part of the 
Multicenter Evaluation of In Vitro Cytotoxicity program (Ekwall et al. 1998), 50 reference 
chemicals were tested in 61 cytotoxicity assays in the hope of predicting acute oral LD50s. The 
coefficients of determination (r2) were 0.61 for rat LD50s and 0.65 for mouse LD50s. And, Les-
sigiarska et al. (2006) demonstrated how acute toxicity in rats, mice, and humans could be pre-
dicted by using QSAR models that incorporated cytotoxicity data, other biological end points, 
and chemical structural descriptor data.  

A host of QSAR models have been derived to predict cytotoxicity of various chemical 
classes. In many cases, hydrophobicity was a predominant descriptor related to cytotoxicity. For 
example, McKarns et al. (1997) correlated the loss of membrane integrity in rat liver epithelial 
cells with hydrophobicity as modeled by logKow for a series of 11 alcohols. Other QSARs, as 
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summarized by Tsakovska et al. (2006), have been developed for p-substituted benzyl alcohols, 
phenols, anilines, chlorophenols, and polybrominated diphenyl ethers. Papa et al. (2009) devel-
oped QSARs for three toxicological end points: mouse oral LD50 values, inhibition of NADH 
oxidase (EC50), and effect on mitochondrial membrane potential (EC50). Freidig et al. (2007) 
found that nonspecific cytotoxicity could help to identify irritant chemicals.  

As part of the European Union framework program, ACuteTox, many investigations were 
performed to explore in vivo–in vitro relationships. Clothier et al. (2013) used Spearman rank-
correlation analysis and hierarchical-cluster analysis to identify in vitro testing strategies for pre-
dicting acute toxicity. Classification-based and regression-based quantitative structure–toxicity 
relationship (QSTR) and toxicophore models were developed by Kar and Roy (2013). They used 
in vitro cytotoxicity data collected from the ACuteTox database.11 Their QSTR models showed 
that cytotoxicity was influenced by the presence of hydrophobic aliphatic groups, a ring aromatic 
group, and hydrogen-bond donors. The in silico models derived were considered capable of iden-
tifying the essential structural attributes and quantifying the molecular properties that drive in 
vitro basal cytotoxicity. Prieto et al. (2013) proposed a heuristic testing strategy for identifying 
potential neurotoxicants that considered octanol–water partition coefficients, the prediction re-
sults from the neutral red uptake assay performed in 3T3 cells, and in silico predictions of intes-
tinal absorption and blood–brain barrier passage.   

 

Limitations and Need for Improvement 
 

The greatest focus in the literature has been on deriving QSAR models to predict oral ro-
dent LD50s. There are some models for specific chemical classes, but there has been greater in-
terest in exploring the feasibility of deriving global models. Many of the global models have 
been data-driven, although some attempts have included consideration of a chemical mechanistic 
approach akin to that described for acute fish toxicity (Bradbury et al. 1990; Schultz et al. 2006). 
More recently and in part as stimulated by work within the ACuteTox program, predicting in 
vivo acute toxicity has considered the use of (Q)SAR approaches in conjunction with in vitro 
cytotoxicity data. This shift of integrating in vitro and in silico approaches is consistent with the 
framework of AOPs as one means of incorporating more mechanistic information in testing and 
assessment approaches for different purposes.  

A key issue in all approaches is their relevance and applicability to DOD chemicals. The rel-
evance of the (Q)SAR models cited earlier would need to be probed for the types of chemicals un-
der consideration by DOD to determine the extent to which the existing models are appropriate in 
light of the applicability domain and the decision context in question. If the substances of interest 
are entirely or mostly out of the applicability domain, new data might need to be identified or other 
primary sources exploited to collate and compile more relevant information for the derivation of 
new models or refinement of existing models. It will also be critical in such an evaluation to con-
sider the robustness of the training set and associated data that are used to develop the (Q)SAR 
model. The OECD principles for the validation of (Q)SAR provide a convenient framework for 
assessing the validity and applicability of (Q)SAR models (OECD 2007b). 

A second issue is the nonavailability of tools to assess toxicity by nonoral routes of exposure. 
As discussed above, most tools have been developed to evaluate the oral exposure route. 

A third issue is that the existing (Q)SARs are often lacking in mechanistic basis. Future 
(Q)SARs could conceivably be derived to predict key events as reflected in Figure 3-1. (Q)SARs 
would be developed to estimate outcomes of initial or intermediate events within a pathway rather 
than to predict an adverse outcome directly as indicated in Figure 3-1. An example of that approach 
is the early work of the ACuteTox program in which QSARs were derived to estimate in vitro cyto-
toxicity rather than in vivo acute rat toxicity.  

                                                           
11See http://www.acutetox.eu/. 
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FIGURE 3-1 Conceptual framework for the future development of (Q)SARs.   
 
 

Another interesting example of exploiting the framework shown in Figure 3-1 focuses on 
mitochondrial inhibition, a mechanism known to drive acute toxicity of some chemicals. Bhhata-
ri et al. (2014) compared data from high-throughput screening assays of mitochondrial toxicity in 
HepG2 cells (see Attene-Ramos et al. 2015) with in silico data on absorption and first-pass me-
tabolism12 and obtained promising results for predicting acute toxicity in multiple species. They 
found that mitochondrial inhibition predicted the minimum toxicity in fish and daphnia and that 
the lower the assay AC50,

13 the more likely that the toxicity was driven by mitochondrial toxicity. 
However, mitochondrial inhibition did not often predict the toxicity of chemicals in rats because 
of the lack of data on oral bioavailability and first-pass metabolism. However, simulations that 
used in silico models for bioavailability and metabolism did improve toxicity predictions. A sim-
ilar approach has been put forward by LHASA Ltd as a contribution to the OECD AOP work 
program (OECD 2011). A set of SARs has been derived from substances that inhibit complexes 
I, III, IV, and V of the electron transport chain, which characterize molecular initiating events in 
the pathway that leads to mitochondrial toxicity.  

Another route by which models could be derived would involve integrating data from a va-
riety of inputs (such as in vitro IC50s or AC50s and rodent LD50s) to predict acute toxicity. Several 
such examples have been investigated as part of the ACuteTox program as described above. Clo-
thier et al. (2013) used Spearman rank-correlation analysis and hierarchical clustering to help to 
identify a combination of in vitro test systems for predicting in vivo acute toxicity. Kinsner-
Ovaskainen et al. (2013) used classification and regression-tree analysis of in vitro data from the 
ACuteTox program to predict acute oral-toxicity categories. Kopp-Schneider et al. (2013) like-
wise investigated various data-mining approaches with the ACuteTox program data.  

A second alternative route of developing (Q)SARs would consider the biological pathways 
involved in acute debilitating toxicity (such as altered oxygen transport, changes in neurotrans-
mitter function, and disruption of cytoskeleton), which could be elucidated in a construct based 
on mechanistic pathways, and appropriate assays could be mapped to the key biological events. 
This approach would provide a different basis for development of integrated approaches, includ-
ing specific (Q)SAR models that address specific key biological events of the AOP. The chemi-
cal applicability domain of the assays that characterize each key event could be extracted to in-
form new SARs that would facilitate profiling of untested substances. This type of approach has 
been attempted for skin sensitization (Patlewicz et al. 2014). Before such a strategy can be used, 
an approach to assessing the validity of the assays (Chapter 4), of the prediction models (data 
integration models) (Chapter 5), and of the pathways (Chapter 2) needs to be established (see 
Patlewicz et al. 2015).  
                                                           

12First-pass metabolism can occur at the site of chemical absorption (for example, in the gastrointestinal 
tract) or in the liver. In general, first-pass metabolism reduces the amount of a chemical that reaches the 
systemic circulation. 

13AC50 is the concentration required to elicit a 50% response in an in vitro assay.  
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ENSURING SCIENTIFIC CONFIDENCE IN (Q)SAR MODELS 
 

Ensuring scientific confidence in a (Q)SAR model relies on an assessment of model validi-
ty and model applicability. Both are critical for the appropriate interpretation and use of the pre-
dictions derived. The OECD validation principles for (Q)SARs provide a useful construct for 
evaluating and characterizing a given (Q)SAR model to determine its scientific validity. The five 
principles describe the need for a defined end point, an unambiguous algorithm, a defined do-
main of applicability, measures of performance, and a mechanistic interpretation if possible 
(OECD 2004, 2007b). The applicability domain,14 which involves extracting an applicability 
domain on the basis of the training set used to derive the QSAR model, provides a basis for judg-
ing the relevance and reliability of a prediction made for a given target substance. There are 
many ways to extract an applicability domain. Typical approaches include structural, mechanis-
tic, metabolic, and descriptor considerations (Netzeva et al. 2005; Dimitrov et al. 2005). Freely 
available and commercial tools also exist to determine an applicability domain, namely, AMBIT 
Discovery and Domain Manager (Nikolova-Jeliazkova and Jaworska 2005; Patlewicz et al. 
2011). Sazonovas et al. (2010) presented an alternative approach to extracting an applicability 
domain for an LD50 model. Each prediction was associated with a reliability index that depended 
on the target’s similarity to the training set and the consistency of experimental results with re-
gard to the baseline model in the local chemical environment.  

The applicability domain forms only one facet in judging the relevance and reliability of a 
prediction. To ensure the reliability of a prediction, one also needs to evaluate how well the 
models make correct predictions for similar chemicals. Such similar chemicals might be identi-
fied on the basis of the same characteristics or descriptors that were used to derive the original 
QSAR model or on the basis of structural similarity. The predictivity of similar analogues will 
form a second facet of judging the relevance of a model for the chemical of interest. The frame-
work outlined in the REACH guidance (see Figure 3-2) might be helpful in summarizing the key 
considerations for the assessment of a (Q)SAR model and its associated prediction. 

 
FINDINGS AND RECOMMENDATIONS 

 
 Finding: Multiple databases are available for performing an initial chemical characteriza-

tion of molecular structure, physicochemical properties, and available acute toxicity data. In addi-
tion, a number of in silico models are available for predicting physicochemical properties. 

 Finding: Physicochemical and structural properties are critical for chemical characteriza-
tion in that they can help to predict a chemical’s potential to pose a physical hazard, its reactivity, 
and its pharmacokinetic characteristics, such as bioavailability and likely routes of exposure. 

 Finding: Although a number of tools are available to predict the site of metabolism and 
likely metabolic products on the basis of chemical structure and physicochemical properties, they 
are designed largely for pharmaceutical agents. Information about the likely metabolic products 
will be critical for informing experimental design, including assay selection.  

 Finding: Several (Q)SAR models that use structural properties or physicochemical prop-
erties are available for predicting acute oral LD50s. Few models for predicting inhalation LC50s are 
available, and none for predicting dermal LD50s was identified.  

 Finding: A few QSAR models for predicting neurotoxicity and cytotoxicity are available, 
but not for other end points that are relevant for acute, debilitating toxicity. Current research in 
(Q)SAR models is focusing on incorporating more biological information, such as integrating in 
vitro data (for example, on cytotoxicity) and information on specific AOPs. 

                                                           
14The applicability domain is the array of chemicals for which the (Q)SAR can confidently be applied 

for purposes of toxicity prediction (Aptula and Roberts 2006).  
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FIGURE 3-2 Key elements associated with evaluating the adequacy of a (Q)SAR model and its prediction 
as adapted from the REACH technical guidance.    
 
 

 Recommendation: DOD should evaluate the applicability, relevance, and reliability of 
available (Q)SAR models to meet its needs of assessing a chemical’s potential to cause acute, de-
bilitating toxicity. OECD and REACH principles and guidelines for evaluating and characterizing 
(Q)SAR models might provide useful frameworks for conducting such an evaluation. Furthermore, 
DOD should evaluate the applicability, relevance, and reliability of models and tools for predicting 
physicochemical properties and metabolism. 

 Recommendation: To fill remaining gaps in nontesting approaches, DOD should con-
sider a number of options for further research and development, including extrapolation of oral 
LD50 to other exposure routes through pharmacokinetic models; development of new (Q)SAR 
models for acute lethality, focusing particularly on inhalation and dermal exposure; and devel-
opment of (Q)SAR models augmented with biological information, such as in vitro data and in-
formation on targets or mechanisms of acute toxicity. 
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Assays for Predicting Acute Toxicity 

 
The future path of toxicity testing was foreshadowed early in the 2000s with publication of 

frameworks or roadmaps that called for an increased emphasis on the use of in vitro assays that 
evaluate key biological pathways and molecular mechanisms linked to human disease (EPA 
2003; NTP 2004). High-throughput testing would allow less expensive, rapid screening of large 
numbers of chemicals to set testing priorities on the basis of predicted adverse health effects. The 
National Research Council (NRC) report Toxicity Testing in the 21st Century: A Vision and a 
Strategy (NRC 2007) built on the early publications and gave rise to a variety of large-scale initi-
atives to see how in vitro testing methods can be used to predict human toxicity. To implement 
the strategy outlined in the NRC report, a collaboration was formed between the National Toxi-
cology Program (NTP), the US Environmental Protection Agency (EPA) National Center for 
Computational Toxicology, and the National Institutes of Health National Chemical Genomics 
Center (NCGC)1 to identify mechanisms of chemically induced biological activity, to set priori-
ties among chemicals for more extensive toxicological evaluation, and to develop more predic-
tive models of human biological response (MOU 20082; Austin et al. 2008; Kavlock et al. 2009; 
Krewski et al. 2009). The collaboration is now formally referred to as the Tox21 program. 

The EPA-sponsored ToxCast program (Dix et al. 2007; Kavlock et al. 2012), the Tox21 pro-
gram, and the European ACuteTox program (Clemedson et al. 2007; Clemedson 2008) are specific 
examples of large-scale initiatives to evaluate in vitro testing methods for their ability to predict 
human toxicity. Phase I of the ToxCast program evaluated about 300 conventional pesticide active 
ingredients in a battery of cell-free and cell-based assays (Judson et al. 2010). In phase II, the chem-
ical space was broadened to include chemicals used in consumer products and industrial processes 
and unmarketed drugs donated by pharmaceutical companies (Kavlock et al. 2012; Sipes et al. 
2013). The completed first phase of the Tox21 screening program tested about 2,800 chemicals—
including solvents, fire retardants, dyes, preservatives, plasticizers, therapeutic agents, inorganic 
and organic pollutants, drinking water-disinfection byproducts, and natural products—in 50 assays 
(Shukla et al. 2010; Attene-Ramos et al. 2013). The studies laid the groundwork for efforts to char-
acterize the ability of cell-free and cell-based assays and data-modeling approaches to predict activ-
ity and potency in selected biochemical targets. Most of the assays developed and validated for 
high-throughput screening (HTS) applications like the ToxCast program provide information about 
activation of molecular-receptor families or biochemical activities that are of interest to the phar-
maceutical industry. In fact, for most assays, there is not a direct linkage between specific cells or 
tissue and chemical or mechanistic targets associated with acute lethal or debilitating effects out-
lined in Table 2-1. Thus, the assays might be of less use for identifying chemicals that potentially 
can cause acute, debilitating injuries in deployed personnel.  

                                                           
1NCGC is now part of the National Center for Advancing Translational Sciences. 
2High Throughput Screening, Toxicity Pathway Profiling, and Biological Interpretation of Findings, 

Memorandum of Understanding Between NTP, NCGC and EPA, January 2008. Available: http://www. 
niehs.nih.gov/about/highlights/assets/docs/memorandum_of_understanding_508.pdf. 
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This chapter reviews currently available tools and their limitations for immediate imple-
mentation (in the next 3-10 years) by the US Department of Defense (DOD) to screen chemicals 
of interest to DOD for acute toxicity.  

 
IN VITRO ASSAYS 

 
Numerous in vitro screening assays have been developed for measuring specific biological 

activities of chemicals in specific organs or cell types with an eye to elucidating mechanisms of 
action. For the purposes of hazard assessment, biological activity in an in vitro system can identify 
a mechanism of action or response that could be extrapolated to an in vivo end point. This section 
reviews relevant in vitro biochemical assays that could potentially be used to assess acute toxicity.  

 
Specific-Protein Assays 

 
Testing whether a chemical inhibits a particular enzyme or binds to a particular receptor or 

other biomolecule is the most direct way to test a chemical for a specific mechanism of action at 
the molecular level. Enzyme and receptor-binding assays tend to be reliable, to exhibit relatively 
good agreement between different laboratories, and to be well suited for high-throughput for-
mats. The specific protein, protein complex, receptor, or other biomolecule of interest can be 
provided in the assay as a pure molecule, as a partially purified complex, or as a component of 
living cells.3 

Given their high value for predicting specific molecular effects, protein assays are the most 
frequent type of assay in the ToxCast program (Figure 4-1). Some of the ToxCast assays have 
direct relevance to predicting acute toxicity of chemicals that could be used as warfare agents. 
For example, assays of acetylcholinesterase activity are applicable to cholinesterase-inhibiting 
nerve agents, and mitochondrial electron-transport assays are applicable to cyanide. Specific-
protein assays in the ToxCast and ACuteTox studies that were designed to detect nervous system 
effects, such as modulation of ion-channel activity, are also relevant for predicting acute toxicity. 
However, it is important to recognize that, like many of the other assays in ToxCast, most of the 
specific-protein assays included in ToxCast were designed for needs other than predicting acute 
toxicity—for example, to predict endocrine-disrupting activity—and might have little value for 
predicting acute toxicity.  

 
Limitations and Needs for Improvement of Protein Assays 

 
A major limitation is the biological space that is covered by specific-protein assays that are 

designed to assess the actions of a chemical on specific enzymes or receptors. More complicated 
or nonspecific mechanisms might also be involved in acute toxicity. For example, vesicant action 
on the skin is not mediated by the action of a chemical on a specific enzyme or receptor. Toxic 
chemicals that act through nonspecific mechanisms might not be identified in specific-protein 
assays or might be identified in multiple assays but with poor correlation between dose and re-
sponse, which potentially confuses analyses. Another limitation is that assays for particular acute 
toxic mechanisms (such as activity on particular ion channels) might be missing from the suite of 
assays or might be unreliable. A final limitation is that some specific-protein assays involve gen-
eral mechanisms that are common to many cell types and thus might not predict particular organ 
toxicities themselves.    

                                                           
3Assays that use living cells to evaluate the effects of chemicals on specific proteins could have been 

considered in the section that follows, but for simplicity, this section reviews all assays whose purpose is to 
measure effects of a chemical on the biochemical activity of a specific protein or other biomolecule. 
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FIGURE 4-1 Intended target families and subfamilies for the ToxCast program. The number of assays for each intended target is represented by the sizes and font sizes 
of the orange nodes. For each intended target family, the assays are subdivided into assay end points (see EPA 2014a, p.13). 
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To make specific-protein assays more useful for DOD’s needs than they are now, there is a 
need to identify the subset of existing specific-protein assays that are directly mechanistically 
and quantitatively relevant to debilitating injuries, to fill gaps in assay types (for example, to 
develop assays for perturbation of particular ion channels that are not included in current plat-
forms), to develop methods for identifying and classifying chemicals that have potent but non-
specific toxic actions, and to evaluate performance and predictive value of specific-protein as-
says for predicting acute toxicity by using a panel of reference and test chemicals relevant to 
DOD’s interests.  

 
Cell-Based Phenotypic Assays 

 
This section describes high-throughput assays that use cultured cells and measure some over-

all phenotypic output that is relevant to predicting acute toxicity, such as cell proliferation, plasma 
membrane permeability, or adenosine triphosphate (ATP) content. There is a large scientific litera-
ture on the application of cell-based assays to drug development and a growing literature on their 
application to toxicology. The ToxCast program includes more than 100 cell-based assays whose 
purpose is to measure cytotoxicity and other aspects of cellular phenotype. Simple cytotoxicity 
assays have long been used, with partial success, to predict animal and human toxicity and to esti-
mate starting concentrations for animal toxicity studies.  

A key consideration in all in vitro cell-based phenotypic assays is the choice of cell type. The 
general approach is to attempt to mimic specific human cell types; however, few data suggest, for 
example, that hepatocytes best predict liver injury or that renal tubule cells best detect renal injury 
(Lin and Will 2012). Assays are conducted with cells that are grown in a single layer (cell mono-
layer culture), and these conditions inevitably provide only a crude approximation of in vivo tissue 
environments, cell types, and cell–cell interactions. Furthermore, immortalized (often cancer-
derived) and other cell lines have provided the mainstay of cell-based assays for decades because 
they are convenient for obtaining large numbers of cells in a standard state and for enabling cell 
lines to be readily shared between laboratories. However, the cells are often cultured using different 
media conditions, and this can affect cell response to chemicals. For example, high glucose concen-
trations in the growth media might increase the resistance of neural cells to the mitochondrial toxi-
cant 1-methyl-4-phenylpyridinium (Mazzio et al. 2010). Similarly, cytotoxicity results from assays 
that evaluate mitochondrial disruption can be influenced by the Crabtree effect, in which cancer 
cells preferentially use glycolysis instead of oxidative phosphorylation for ATP production (Marro-
quin et al. 2007). Another limitation related to cell type is that many in vitro studies use cell lines 
that do not reflect the variation that is found in the human population. For some chemicals, sensitiv-
ity to cytotoxicity varied by as much as a factor of 100 in a single cell type taken from a broad pop-
ulation sample (Abdo et al. 2015). 

There is an increasing shift away from cell lines toward cell-based assays that use cell 
types that are more physiologically relevant, such as animal or human primary cells, and human 
induced pluripotent stem (iPS) cells that have differentiated into specific cell types (Kraushaar et 
al. 2012; Godoy et al. 2013). However, unless great care is taken to mimic tissue-relevant physi-
cal and chemical environments, those cell types might provide little improvement over cell lines 
in physiological relevance. That consideration has led to an increasing push toward the use of 
organotypic model systems (discussed below).  

Another key technical consideration is the measurement of assay results (readout). 
Readouts can be broadly divided into ones that average the response of a number of cells in a 
tissue culture well and ones that assess individual cell behavior, the latter sometimes called high-
content assays (discussed below in the section “Emerging Technologies”). Whole-well readouts 
are most commonly used and have the advantage of being fast and simple, and it is straightfor-
ward to generate statistical metrics of assay performance and chemical activity. High-content 
readouts have the advantage, in principle, of providing much more information—for example, on 
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cell-to-cell heterogeneity in response and on specific cytotoxic mechanisms—but scoring and 
interpreting the additional information is computationally challenging (Wink et al. 2014).  

Few studies have evaluated a large number (hundreds) of chemicals for their ability to predict 
acute toxicity (O’Brien et al. 2006; Xu et al. 2008; Lin and Will 2012; Porceddu et al. 2012). Most 
studies examine only a handful of chemicals, and studies that evaluate only specific classes of 
chemicals, such as endocrine disruptors or hepatotoxicants, substantially bias estimates of model 
performance (Thomas et al. 2012).  

 
Cytotoxicity Assays 
 

Measurements of cell life or death in culture have a long history in toxicology research (Ekwall 
1983). Methods for measuring cytotoxicity in cell culture usually involve direct measurement of the 
fraction of cells that have intact membranes, for example, with neutral red uptake or fluorescent DNA 
dye uptake; measurement of the metabolism of surviving cells, for example, with reduction of 3-(4,5-
dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), reduction of Alomar blue, or uridine 
uptake; or measurement of ATP content, cell number, total DNA content, total protein content, or cell 
proliferation. Cytotoxicity assays are normally run for a day or more (3 days is common), so viable 
cells will proliferate and increase the live-cell signal in control wells. Thus, the assays usually com-
bine measurements of acute cell lethality, cell proliferation, or cell metabolism and might represent 
the simultaneous occurrence of several mechanisms (Huang et al. 2008). The longer an assay is run, 
the more it tends to factor in effects on cell proliferation unless it is run on nonproliferating cell types. 
Short-term (1-hour) assays are also used but need to include sensitive measures of cell injury, such as 
mitochondrial membrane potential or ATP content. Some assays are based on ultraviolet (UV) or 
fluorescence readouts and warrant caution because some chemicals can artificially interfere with UV- 
or fluorescence-based assays. In the pharmaceutical industry, luminescent readouts have largely re-
placed UV- and fluorescence-based assays.  

In vitro cytotoxicity tests have been recommended as an adjunct to animal tests to improve 
initial dose selection and modestly reduce the number of animals used. The registry of cytotoxi-
city (RC) prediction model has been recommended (NIEHS 2001a,b) for evaluating the predic-
tive accuracy of candidate cytotoxicity assays.4 Many RC prediction models evaluate the correla-
tion between in vivo LD50s and in vitro cytotoxicity IC50s.5 The BALB/c 3T3 and normal human 
keratinocyte (NHK) neutral red uptake (NRU) cytotoxicity assays have been used to predict 
acute toxicity (NIEHS 2001a,b), but a major drawback of those cell-based assays is that they are 
difficult to automate. Recent advances have led to the development of commercially available 
“ready-to-go” cell plates that simply need to be defrosted and fed with media. The plates can 
then be used in the conduct of high-throughput assays. 

Recent systematic studies that evaluated the predictiveness of in vitro assays for acute toxici-
ty included several cell-based cytotoxicity assays partly because of their ease of use, reproducibil-
ity, and proven (albeit limited) predictive value. For example, of the 53 assays in the European Un-
ion (EU) ACuteTox project, seven constitute either a cell lethality assay (for example, NRU) or a 
metabolism assay (for example, MTT reduction or 2-deoxyglucose and uridine uptake) that effec-
tively measures the number of living cells remaining after treatment. Notably, several cytotoxicity 
assays—an MTT assay in primary rat hepatocytes; a cytotoxicity panel that measures intracellular 
Ca2+ levels, mitochondrial membrane potential, and plasma membrane potential in HepG2, SH-
SY5Y and A.704 cells; and a basal cytotoxicity NRU assay in BALB/3T3 cells—generated data of 
sufficient quality to be considered in future acute-toxicity testing strategies (Kinsner-Ovaskainen et 
al. 2013).  

 

                                                           
4Halle (Spielmann et al. 1999; Halle 2003) describes inclusion criteria for data in the RC database. 
5IC50 is the chemical concentration at which 50% inhibition is achieved.  
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Gene-Expression and Protein-Secretion Assays 
 

Gene-expression and protein-secretion assays aim to identify a specific toxic mechanism 
by measuring expression of a specific gene or secretion of a specific protein that has been impli-
cated as a biomarker of a particular toxic mechanism in humans. Gene-expression readouts can 
use engineered reporter genes, whereby an artificial promoter drives expression of an easily as-
sayed reporter gene (such as luciferase) in response to activation of a toxic pathway or endoge-
nous gene circuits. Engineered reporter genes provide easily standardized, reliable readouts, and 
a panel of such assays can be used to cover multiple biological pathways.  

In recent years, several vendors have offered reporter assays for a variety of biological 
pathways involved in toxicity, such as inflammation, apoptosis, and endoplasmic reticulum 
stress. Their main limitation is that an artificial promoter in a generic cell line (such as HEK 
cells) might not indicate pathway activity in the same way as the natural pathway in a specific 
human cell type; that is, the assays could fail to capture biological context dependence. Reporter 
gene assays are of particular value for predicting endocrine disrupters because they work by re-
porting the expression of genes that are naturally regulated by sex hormones. However, endo-
crine disruption does not qualify as a likely mechanism of systemic toxicity that would result in 
an acute, debilitating injury in deployed personnel.  

Expression of many endogenous genes can be simultaneously analyzed at the mRNA or 
protein level to create a “toxicogenomic signature” (discussed below under “Emerging Technol-
ogies”). Assays for induction of endogenous genes can be applied to primary cells that synthesize 
specific proteins in response to chemicals. A major advantage of this approach over artificial 
promoter constructs is that it measures endogenous gene-expression pathways and is thus more 
likely to indicate physiologically relevant pathway perturbation. A major disadvantage is that 
separate readouts must be developed for each protein, and this makes the approach more com-
plex and labor-intensive than measuring the expression of a reporter like luciferase from engi-
neered gene-expression constructs.  

Protein-secretion assays are of particular value for measuring the activity of immunotoxins 
that induce expression and secretion of specific inflammatory cytokines, such as TNF-α, IL1, and 
IL6 from white blood cells. Cytokine measurements are usually made with an immune assay, 
typically a capture ELISA assay that uses two antibodies to provide high specificity and sensitiv-
ity. The relevance of the cytokine assays for evaluating acute toxicity associated with chemicals 
of relevance to DOD is limited.    

Several recent systematic studies have combined multiple high-throughput assays, includ-
ing assays for the expression of single endogenous genes in primary cells with mRNA or protein 
readouts. For example, the ACuteTox project included four cytokine secretion assays performed 
on primary white blood cells isolated from human blood and four assays that measured synthesis 
of neuronal and glia proteins, at the mRNA level, from aggregates of primary cells derived from 
rat brain (Kinsner-Ovaskainen et al. 2013). A meta-analysis found a variety of problems with all 
the assays, including failure to measure in the correct range for immunoassays and lack of repro-
ducibility of primary cell aggregates. The ToxCast program evaluated the performance of the 
Biologically Multiplexed Activity Profiling (BioMAP) human primary cell disease models with 
the ToxCast phase I library (Houck et al. 2009). The chemicals that were tested generated rela-
tively weak signatures compared with the reference pharmacological probes and drugs, and this 
raised the question of whether the concentrations that were used (up to 40 μM) were adequate. 
Furthermore, a follow-up study demonstrated that some chemicals with known biological activi-
ty, such as pharmaceuticals, gave false-negative results in the assays (Kleinstreuer et al. 2014). 
All the problems highlighted here indicate the difficulty of working with complex primary cells 
in a high-throughput assay format.  
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Limitations and Needs for Improvement of Cell-Based Phenotypic Assays 
 

Cell-based assays are efficient in assessing chemical mechanisms of action. They have also 
been useful for predicting some mechanisms of chronic toxicity, such as endocrine disruption, 
but might have less applicability to acute-toxicity prediction. Furthermore, conventional cell-
based cytotoxicity assays typically lack metabolic competence and often miss chemicals that 
require bioactivation. They also fail to provide data on some of the most important toxic mecha-
nisms, notably ones that involve organ- or cell-type specific physiology. For example, they miss 
chemicals that perturb synaptic transmission and neurotransmitter metabolism.  

Responses seen in cytotoxicity assays can also be influenced by the choice of cell used. In 
the Tox21 cytotoxicity profiling screen, cytotoxic response patterns varied by cell type and indi-
cated differences in sensitivity and kinetics of the response (Xia et al. 2008). Overall, the human 
blood-derived cells (Jurkat), neuron-derived cells (SH-SY5Y), and rodent cells (N2a, H-4-II-E 
and NIH 3T3) were most sensitive to chemical-induced cytotoxicity, and human fibroblastic, 
endothelial, and skin cells (HUV-EC-C, BJ, and MRC-5) were least sensitive. Another finding 
from the study was the lack of similarity in the patterns of chemical activity in cells that were 
derived from the same tissue but from different species, for example, human HepG2 and rat H-4-
II-E hepatoma cells. 

To improve the utility of cell-based assays for predicting acute toxicity, several aspects of 
experimental design need to be considered. First, cell-based assays that express the relevant bio-
logical processes and toxicologic mechanisms under study need to be selected. In some cases, 
that might require using primary cell cultures rather than cultured immortalized cells. Second, 
relevant chemical concentrations and exposure durations need to be used, and appropriate test 
and reference chemicals need to be identified for evaluating the performance and predictive val-
ue of the assays. Ultimately, the readout of a cell-based assay must be mechanistically and quan-
titatively linked to a chemical’s toxicity phenotype in humans if it is to be truly predictive. 

 
Organotypic Models 

 
Many of the limitations of cell-based assays, as noted above, arise from the fact that single 

cells growing on a dish are inevitably poor models for human tissues. That is the case even if the 
cells themselves were derived from human or animal tissue because the artificial in vitro envi-
ronment changes their phenotype in hours. The culture-induced changes affect cells’ responses to 
chemicals and the cells’ (especially liver cells’) ability to biotransform chemicals into more or 
less toxic species. To address the limitation, researchers have been developing approaches for co-
culture of multiple cell types or for cultures of whole organs as slices or cell aggregates. Those 
approaches are collectively referred to as organotypic models.6 The discussion below highlights a 
few organ systems that are relevant to acute toxicity of chemicals. 
 
Skin Organotypic Models 
 

Skin, as the largest human organ, is important for the absorption of many classical chemi-
cal-warfare agents and constitutes the principal barrier to and defense against absorption of toxic 
lipophilic chemicals. In addition, the skin is the primary site of action of acute blistering agents. 
The military’s historical reliance on chemical-protective boots, suits, and gloves emphasizes the 
importance placed on dermal protection against chemical exposure. Furthermore, one of the first 

                                                           
6EPA defines organotypic culture models as “tissue culture models that mimic in vivo tissue architecture 

through interactions of heterotypic cell types (e.g., epithelium-stroma) and extracellular matrices (ECM). 
They can be established from isolated cells or from tissue fragments harvested in vivo, and will bridge the 
gap between conventional monolayer cell cultures and whole-animal systems” (EPA 2013). 
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questions that the “warfighter” asks when told that a potent, toxic chemical can be absorbed 
through intact skin is, How much and how quickly? Although definitive dermal absorption stud-
ies can be conducted on animals by using small numbers of chemicals that are synthesized with 
radiolabels, various in vitro models have been developed by using instrumented flow cells with 
human or porcine skin explants. Those in vitro models are far more amenable to high-throughput 
screening than are dermal absorption studies with radiolabeled chemicals (Basketter et al. 2012). 

Organotypic cultures of skin in formats that are applicable to screening thousands of chem-
icals are relatively advanced. The field has benefited from the relatively simple anatomical or-
ganization of skin, from the fact that proliferating human keratinocytes are relatively easy to 
grow, from the abundant availability of human tissue from minor surgical procedures, from the 
need for artificial skin for treating burn patients, and, not least, from huge investment by the 
cosmetics industry. Especially in the European Union, cosmetics manufacturers have been under 
pressure to increase safety testing while reducing animal use. In an example that is generally 
encouraging for toxicity prediction, scientists at L’Oreal, Inc. in France have used the 
EpiSkinSM model to predict irritant activity (Cotovio et al. 2005, 2008). The model consists of 
primary human keratinocytes that have been induced to self-organize into a multilayered struc-
ture similar to skin by use of bioengineered substrates. MTT reduction and release of the in-
flammatory cytokine IL-1α were measured. The model accurately (> 80%) predicted irritant ac-
tivity of 184 cosmetic ingredients (Cotovio et al. 2008). The study suggests that good—although 
not perfect—predictions can be made for acute skin irritants by using a sophisticated organotypic 
culture model. In contrast, numerous in vitro and in vivo models have been examined in attempts 
to emulate the blistering (vesication) seen in human skin on exposure to sulfur mustard or lewis-
ite, most with little or no success. Chemical-induced skin blistering might be limited to humans, 
or it requires epithelial and fibroblast immune cell functions that are not accounted for in current 
organotypic skin models.  

 
Eye Organotypic Models 
 

Loss of vision would be an incapacitating effect of concern to DOD. Testing for eye irrita-
tion has benefited from investment by the cosmetics industry, although current organotypic cor-
nea models are generally less advanced than skin models. Commercial models are available and 
include the EpiOcular™ OCL-200 tissues from MatTek Corporation (Ashland, MA) and the 
SkinEthic™ Reconstituted Human Corneal Epithelium developed by a consortium of European 
cosmetics companies in response to banning of rabbit testing. Systematic evaluation of the sys-
tems continues but mostly in the chemical space relevant to cosmetics. Both systems achieved 
benchmarks for between-laboratory reproducibility and are undergoing tests of predictive value 
(Alépée et al. 2013; Pfannenbecker et al. 2013). On the basis of the results with skin, a reasona-
ble degree of predictive power is expected.  

 
Lung Epithelium Organotypic Models  
 

The lung is a relevant organ for both chemical absorption and acute toxicity. Multiple 3-D 
organotypic models have been described, including the commercial EpiAirway™ (MatTek Cor-
poration, Ashland, MA) and MucilAir™ (Epithelix Sàrl, Geneva, Switzerland) systems. The 
systems use primary cells cultured at an air–liquid interface, and they model airway function 
better than traditional submerged tissue culture. A recent paper evaluated the models relative to 
each other and to two conventional submerged tissue-culture systems for their ability to predict 
rodent lung toxicity of 19 chemicals (Sauer et al. 2015). None of the systems performed well in  
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predicting lung toxicity in rats, and the 3-D organotypic systems performed no better than con-
ventional tissue-culture models. The findings suggest that organotypic lung epithelium models 
lag behind skin models in predictive value. The poor predictivity probably reflects the greater 
complexity of airway epithelium or perhaps differences in investment.  

There does not appear to be a particularly good in vitro model for lung damage associated 
with chemicals (for example, phosgene) that are known to increase pulmonary permeability that 
results in noncardiogenic pulmonary edema. The development of in vitro assays to evaluate simi-
lar compounds identified as chemicals of interest, for example, on the basis of chemical structure 
or quantitative structure–activity relationships will require further DOD investment to replace 
animal inhalation-toxicity studies. 

 
Liver Organotypic Models  
 

The liver is especially relevant to biotransformation of chemicals into more or less toxic 
metabolites and is an important site of acute toxic action of some chemicals. Hepatocytes are the 
major biochemical engine of the liver and are responsible for metabolism and excretion of many 
xenobiotics. Hepatocytes can be cultured in standard 2-D formats, but their phenotype with re-
spect to xenobiotic metabolism and responses changes rapidly under culture conditions. Immor-
talized cell lines derived from hepatocellular carcinoma (such as HepG2) have often been used as 
a surrogate for hepatocytes, but their biology is even more distant from hepatocytes in situ. Be-
cause of the relevance of liver toxicity to drug development, the pharmaceutical industry has 
made major investments in modeling liver biology in 2-D cell cultures, 2-D co-cultures, 3-D cell 
cultures, and engineered organotypic systems (Godoy et al. 2013). 

Multiple approaches have been taken to build organotypic models of human and rodent 
liver, and substantial improvements over 2-D hepatocyte culture systems in recapitulating normal 
liver biology, drug metabolism, and drug responses have been noted (Khetani and Bhatia 2008; 
Godoy et al. 2013; Messner et al. 2013). Despite improvements, predictive-toxicology studies 
still tend to focus on 2-D cultures of primary hepatocytes of hepatocellular carcinoma-derived 
cell lines. For example, the EU-funded LIINTOP project is evaluating multiple 2-D culture mod-
els for liver and intestine (Gómez-Lechón et al. 2010), and the EU ACuteTox project included 
five assays with HepG2 cells (Kinsner-Ovaskainen et al. 2013).  

The continued reliance on 2-D cultures and hepatoma-derived cell lines is problematic be-
cause testing in more robust in vitro models would probably generate more-predictive data. For 
example, Khetani and Bhatia (2008) showed that a microengineered 2-D culture system in which 
hepatocytes are co-cultured with stromal cells provided better modeling of gene expression, me-
tabolism, and drug action than conventional 2-D cultures. Another promising system involves 
co-culture of hepatocytes with Kupffer cells in small spheroids (Messner et al. 2013). The micro-
engineered systems often have lower throughput and are more expensive than conventional 2-D 
cultures, but given the importance of the liver in toxicology the expense might be worthwhile. 
Although it remains to be seen how their overall predictivity differs from that of simpler models, 
the use of complex liver models should improve the recognition of inflammation and other 
mechanisms of toxicity that are not easily detected in simpler hepatocyte cultures. For example, 
Khetani et al. (2013) demonstrated that using co-cultured hepatocytes better predicted drug-
induced liver injury in a small test set of 45 chemicals. 

Godoy et al. (2013) provides an exceptionally comprehensive overview of hepatic models. 
It is interesting to note, given that the liver is perhaps the most thoroughly characterized of the 
organotypic model systems, that the authors concluded that “one key message is that despite our 
enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although 
hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just 
begun.” 



Copyright © National Academy of Sciences. All rights reserved.

Application of Modern Toxicology Approaches for Predicting Acute Toxicity for Chemical Defense 

60          Application of Modern Toxicology Approaches for Predicting Acute Toxicity for Chemical Defense 

Neural Organotypic Models 
 

The brain has multiple neuronal and glial subtypes, complicated neuronal networks that 
have different types of chemical synapses, important cell–cell interactions, and myelinated ax-
ons. That cellular complexity helps to make it an important site of action for many acute toxi-
cants and makes it difficult to identify neurotoxic effects with conventional cytotoxicity assays or 
other in vitro systems. Brain aggregate cultures replicate some organotypic structural and func-
tional features and have been used as a model system for neurotoxicity testing. For example, the 
EU ACuteTox project included seven assays of cell aggregates derived from rat brain as part of a 
battery of 50 assays that included many involving 2-D cultures of neurons (Forsby et al. 2009). 
The authors concluded that “using aggregate cell cultures prepared from embryonic rat brain and 
a multiparametric endpoint scheme, all chemicals known to be highly toxic in humans also 
showed high toxicity (significant effects in the lower micromolar range) to extreme toxicity (sig-
nificant effects at nanomolar concentrations) in aggregate cultures” (Honneger et al. 2009). They 
also noted that inclusion of data on metabolism and pharmacokinetics of the blood–brain barrier 
would likely improve predictive value.  

 
Limitations and Needs for Improvement of Organotypic Models 

 
Additional organotypic models have been developed for the heart, kidney, and skeletal 

muscle. Organotypic models have high potential for predicting acute toxicity and potentially can 
recapitulate the metabolism and biological activity of a chemical. That said, the science of accu-
rately modeling human organs in a culture dish, especially in formats suitable for high-
throughput testing, is still in its infancy. Progress is being made, but much caution is warranted, 
particularly for acute-toxicity prediction, which has not been the goal of most studies. Organo-
typic assays are much more complex and expensive than pure protein-based and cell-based as-
says and less robust than rodent models because they do not integrate multiple physiological sys-
tems. Their reliability has often been called into question in systematic studies. Their predictivity 
is also far from guaranteed; for example, the lack of success in predicting vesicant activity by 
using organotypic skin cultures is troubling.  

For organotypic cultures to be used in DOD screening for acutely toxic chemicals, there is a 
need to evaluate the potential of organotypic assays for acute-toxicity prediction and to invest fur-
ther in the basic science of organotypic cultures. The potential usefulness is high, even if current 
systems are far from ideal.  

 
NONMAMMALIAN IN VIVO ANIMAL MODELS  

 
The use of an in vivo approach facilitates the crucial understanding of how chemicals af-

fect complex metabolic targets and pathology at the cell and organ level. Mice, rats, rabbits, and 
other laboratory mammals have been used extensively to study chemical toxicity. However, in 
vivo assays with those species are often expensive, use large amounts of toxic test chemicals, and 
are difficult to use in a moderate-throughput to high-throughput manner. Those drawbacks have 
led toxicologists to develop alternative animal models for chemical testing. Many alternative test 
organisms share biological processes with rodents and other mammals, including humans. Three 
test platforms of note that can be adapted to high-throughput screening rely on insect, nematode, 
and zebrafish models (Giacomotto and Ségalat 2010). They can complement other cell-based in 
vitro test systems, and data from assays that use the alternative animals could be used to set pri-
orities among chemical candidates for future traditional animal testing. Development and appli-
cation of the nonmammalian models could help DOD to screen for pathway-specific effects and 
could demonstrate how chemical toxicity varies among species. 
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This review of alternative animal models is not intended to be exhaustive; rather, the 
committee has focused on end points that are relevant to acute toxicity and on selected examples 
that illustrate how these systems could be adapted for high-throughput testing of acute effects.   

 
Fruit Fly Models 

 
The fruit fly (Drosophila melanogaster) has been used as a model organism in studies of ge-

netics and developmental biology for over 100 years (Rubin and Lewis 2000). Fruit flies have a 
fully mapped genome, and many protocols for biochemical and genetic analysis are well estab-
lished. More than 60% of human genes have functional orthologs in D. melanogaster (Bier 2005). 
A variety of molecular tools, including mutagenesis and RNAi, are available for modifying fruit fly 
genetics. A dedicated Web-based database (FlyBase) contains information relative to fruit fly ge-
netics and its molecular biology (Drysdale 2008).  

Fruit flies have the potential to be used for chemical-toxicity screens (Nichols 2006; 
Whitworth et al. 2006; Segalat 2007). In particular, fruit flies and other insect models have im-
proved our understanding of the molecular action of pyrethroids, which act on both mammalian 
and insect sodium channels, and other insecticides (Peterson et al. 2008). Despite their use in 
neurotoxicology research, there are important limitations (Rand 2010). For example, γ-amino-
butyric acid, acetylcholine, and other neurotransmitters often have roles in the insect nervous 
system that are different from their roles in vertebrate nervous systems (Peterson et al. 2008).  

Specialized video-based equipment has been developed to assess flying, chemotaxis, geo-
tactic climbing,7 and other behaviors (Sawin-McCormack et al. 1995; Rand 2010; Sokolowski 
2001; Podratz et al. 2011; Gregory et al. 2012; Podratz et al. 2013). In addition, eclosion8 and 
adult lethality are simple end points that can be assessed without the need of a microscope. How-
ever, the transition from larva to adult fly is complex and occurs by mechanisms distinct from 
those seen in mammals; this draws into question the utility of LD50s obtained for this develop-
mental stage (Rand 2010). There are other limitations of the use of fruit flies. For example, 
chemical administration to the fly embryo must overcome the barriers presented by the hydro-
phobic vitelline membrane (Limbourg and Zalokar 1973; Rand 2010). In addition, fly toxicoki-
netics of xenobiotics can differ substantially from that in mammals, including humans. 

 
Nematode Models 

 
The most widely used nematode model for biomedical research is likely Caenorhabditis 

elegans. C. elegans have a fully mapped genome (C. elegans Sequencing Consortium 1998), and 
more than 50% of human genes have functional orthologs in C. elegans (Harris et al. 2004). Ge-
netic or genomic manipulation—such as knockouts, knockdown via RNAi, and transgenic 
strains—is routinely available. A variety of bioinformatics tools have been developed to support 
high-throughput genomic studies with this organism (Cho et al. 2014). In addition, a dedicated 
Web site (Wormbase) allows investigators access to microarray data and comprehensive data on 
gene structures, mutants, RNAi phenotypes, and protein–protein interactions (Chen et al. 2005). 

Numerous studies have shown that C. elegans and humans share many essential biological 
characteristics. C. elegans has a rudimentary nervous system, exhibits behavior, and is capable of 
rudimentary learning and memory functions. The anatomy of C. elegans is well understood. It 
contains 959 somatic cells, including about 300 neurons that are microscopically visible. The 
developmental cell lineage and the neural wiring diagram of C. elegans have been completely 
mapped. Many vertebrate neurotransmitters are well conserved in this nematode (Villatte et al. 

                                                           
7Drosophila instinctively climb against gravity (geotaxis). 
8Eclosion is the hatching of adults from the pupal stage. 
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1998; McVey et al. 2012). The presence of a functional nervous system has been exploited by 
neurotoxicologists to study the acute neurotoxic effects of pesticides and other chemicals on this 
nematode (Williams and Dusenbery 1990; Ruan et al. 2009; Avila et al. 2012; McVey et al. 
2012; Meyer and Williams 2014). End points evaluated include changes in survival, behavior, 
locomotion, life span, cell death, neurotransmitter concentration, and function. Image-tracking 
systems have also been developed for assessing C. elegans locomotion (Feng et al. 2004). Mel-
strom and Williams (2007) reported a strong correlation between LC50s determined for C. ele-
gans and LD50s identified in rodents after exposure to cholinesterase-inhibiting pesticides. End 
points examined by Melstrom and Williams included depression of acetylcholinesterase activity 
and decreased movement.  

 
Zebrafish Models 

 
As a vertebrate, zebrafish (Danio rerio) have substantial physiological, anatomic, and ge-

netic homology with humans (Barbazuk et al. 2000; Howe et al. 2013; Chakravarthy et al. 2014). 
Zebrafish are amenable to gene manipulation, have a short generation time, and have well-
characterized rapid developmental stages; these characteristics have led to their growing use in 
developmental-toxicity studies (de Esch et al. 2012; Raldúa and Piña 2014). Its application to the 
study of developmental toxicity has garnered the interest of regulatory bodies. For example, the 
Organisation for Economic Co-operation and Development (OECD) has recently formulated 
guidelines for using zebrafish embryos for testing acute toxicity of 119 chemicals and for devel-
opmental toxicology (OECD 2013a,b). Zebrafish can be bred in large numbers with minimal 
maintenance cost (Raldúa and Piña 2014). They are a cost-effective in vivo model for screening 
drugs and other chemicals and meet many objectives of a high-throughput screening assay (Tay-
lor et al. 2010; Tsang 2010; Lessman 2011). High-throughput zebrafish assays have also been 
used for microarray and proteomic studies (Love et al. 2004). Because zebrafish larvae are trans-
parent, they are ideal for in vivo imaging without the use of invasive techniques (Knudsen et al. 
2011; Raldúa and Piña 2014). Another advantage of the zebrafish larva model is that up to 4 days 
after fertilization they are not treated as vertebrates by US Institutional Animal Care and Use 
Committees because they retain a yolk and higher-order neuronal functions are generally absent. 

Zebrafish are used in safety pharmacology studies to screen for arrhythmogenicity 
(Langheinrich et al. 2003; Milan et al. 2003; Burns et al. 2005), nephrotoxicity (Hentschel et al. 
2005; Wu et al. 2012), hepatotoxicity (Vliegenthart et al. 2014), and neurotoxicity (de Esch et al. 
2012; Legradi et al. in press). Some drugs that affect human cardiac function and structure are 
known to have similar effects in zebrafish (Milan et al. 2003). Heart-specific expression of the 
green fluorescent protein in zebrafish has been accomplished by using the cardiac myosin light 
chain 2 promoter (Huang et al. 2003). Specialized equipment exists to monitor changes in 
zebrafish heart rate after chemical exposure (Burns et al. 2005; Simoneschi et al. 2014). Behav-
ioral assays of swimming behaviors have been developed for zebrafish (Ali et al. 2012; Bichara 
et al. 2014). Driessen and co-workers (2013) have shown good concordance in histopathological 
responses and gene expression profiles between zebrafish embryos and mice exposed to known 
hepatotoxic chemicals. Yen et al. (2011) evaluated changes in zebrafish larva survival, acetyl-
cholinesterase activity, and behavior after exposure to three organophosphorus pesticides. That 
type of study might be useful for nerve agents and other chemicals that have a similar mecha-
nism of action. In vivo zebrafish assays with reverse dosimetry have also been used to develop 
human oral-dose hazard values (Perkins et al. 2013). 

 
Limitations and Needs for Improvement of Nonmammalian In Vivo Animal Models 

 
Nonrodent animal models have the potential to assist in characterizing the acute toxicity of 

chemicals. One advantage of such systems is their ability to identify whole-animal and organ-
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level responses. The exploration of nontraditional in vivo models for assessing acute-toxicity 
potential, however, will need to consider species differences in metabolism and cellular targets 
and other issues related to interspecies and in vitro–to–in vivo extrapolations. Other factors to 
consider include differences in organ composition (multiple cell types), cell organization or 
structure, and gradual enzyme expression in different tissue regions. Another challenge is related 
to the extrapolation of aqueous (as in the case of zebrafish) or medium (as in the case of C. ele-
gans) concentrations to exposure concentrations that are relevant to humans. Alternative animal 
model in vivo assays have considerably lower throughput than other assay systems considered by 
the committee and are likely to be used in the later stages of the assessment process. Little work 
has been performed regarding the applicability of such models to assess the acute toxicity of 
chemicals relevant to DOD, and they have been incompletely analyzed for their predictive validi-
ty with respect to acute toxic effects or identification of affected organ systems.  

 
EMERGING TECHNOLOGIES 

 
The drive to develop nonanimal methods for toxicity testing is still in its infancy, and new 

technologies are continually being developed. Most are aimed at commercial applications, par-
ticularly for safety assessment in the pharmaceutical and cosmetics industries, but a subset of the 
new technologies will also be useful for predicting acute toxicity. In this section, emerging tech-
nologies are broadly divided into ones that generate large amounts of information per sample by 
multiplexed or image-based measurements and ones, such as organ-on-a-chip and induced plu-
ripotent stem (iPS) cell technologies, that aim to model human tissues more accurately. 

 
Multiplexed Assays 

 
Multiplexed assays allow the measurement of dozens, hundreds, or even thousands of end 

points simultaneously on a single sample. In general, they seek to provide more biological data 
per sample than traditional assays that measure a single end point. Conceptually, obtaining data 
on many end points is expected to help in deciphering chemical mechanisms and identifying new 
biological targets for development of more specific assays (Larson et al. 2011). The most used, 
and best understood, multiplexed readout is a gene-expression profile, in which the amounts of 
hundreds or thousands of mRNAs in a sample are measured in parallel (Fabian et al. 2011; Kla-
per et al. 2014). Microarrays have been popular for measuring gene expression, but the decreas-
ing cost of DNA sequencing is leading to a gradual replacement of microarray and related tech-
nologies with RNAseq approaches. There is increasing interest in multiplexed measurement of 
micro-RNAs, whose expression also reflects the state of a cell or tissue.  

Protein and metabolite measurements can also be multiplexed. For example, multiplexed 
immunoassays can be used to measure the concentration of tens or hundreds of cytokines or oth-
er proteins in a single sample. The main limitation of such assays is in developing high-quality 
antibody pairs to capture and quantify a given protein with high sensitivity and specificity. Given 
recent developments in proteomics technology, it is possible that mass-spectrometry–based 
measurements will gradually replace immunoassays for multiplexed protein measurements (Fu et 
al. 2010; Potts et al. 2011). Modern multiplexed proteomics methods allow quantification of 
thousands of proteins in tens of samples in a single spectrometry run (McAlister et al. 2014). 
However, protein measurements are inevitably more difficult and less sensitive than nucleic acid 
measurements because proteins cannot be amplified by replication and have different physical 
properties and abundances. Metabolites can also be profiled by using a coupled chromatography–
mass spectrometry technique.    

Questions remain regarding how useful multiplexed measurements will be for predicting 
acute toxicity, whether they are at the level of RNA, proteins, or metabolites. Most relevant in-
formation is currently available for mRNA profiling because it has the longest history, but de-
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pending on the toxic mechanism, profiling at the protein or metabolite level might be equally or 
more informative. Published examples show that comparison of mRNA profiles allows identifi-
cation of chemicals that have common actions on cells in culture, including mechanisms that 
could cause acute toxicity (Lamb et al. 2006; Ravindranath et al. 2015). Those examples are en-
couraging, but it is important to recognize that they highlight specific success stories, not sys-
tematic toxicity prediction. 

Another relevant literature is on toxicogenomic approaches to predicting toxicity of chemi-
cals in liver and other organs. Those studies typically involve treating rodents with chemicals, 
harvesting organs, and using microarrays combined with pathology reports to classify effects on 
the liver and other organs. Pharmaceutical companies and governments have invested a great 
deal of resources in this approach, and major databases have recently been released to the public. 
The results have been mixed: considerable improvement in understanding toxic actions and iden-
tifying biomarkers but far from a complete solution to the problem of predicting liver toxicity 
(Chen et al. 2012). A recently created database includes expression signatures for 1,000 genes, 
using the L1000 assays, for treatment of tens of cell lines with thousands of chemicals (Duan et 
al. 2014). Analysis of that dataset should help to clarify the potential value of highly multiplexed 
gene-expression signatures in predictive toxicology.  

In principle, multiplexed measurements at the protein or metabolite level might be ex-
pected to reveal a chemical’s mechanisms of action more effectively, and with more predictive 
value, than gene-level measurements. More ambitiously, a combination of multiplexed meas-
urements of mRNA, protein, and metabolite levels in parallel would in principle cover the most 
ground with respect to producing mechanistic information relevant to prediction of acute toxici-
ty. That kind of integrated –omics approach has been shown to improve understanding of specif-
ic toxic mechanisms (Wilmes et al. 2013, in press) but is expensive and unproven in its useful-
ness for systematic testing of acute-toxicity potential. However, the data can be used to design 
new high-throughput assays that are mechanistically relevant to critical processes or pathways 
targeted by chemical-warfare agents. 

 

High-Content Screening Assays 
 

High-content screening (HCS) assays make multiple measurements of cell biology at the lev-
el of single cells by using microscopy or other imaging technologies. Typically, cells grown on 
multiwell plates are treated with a chemical, stained with several fluorescent markers that report on 
various aspects of metabolism and organelle health, imaged, and detected with some type of auto-
mated algorithm. HCS technology can provide much information that is relevant to specific path-
ways or organelles in a single assay, and it is faster and less expensive than multiplexed assays of 
gene or protein expression. It has been used in drug development for some time but only recently 
applied to toxicology. Recent studies show high potential (O’Brien 2014; Persson et al. 2014). In 
particular, some mechanisms of acute toxicity that might be poorly detected in gene-expression 
assays, such as damage to cellular membranes or organelles, can be directly assessed with HCS 
assays. So far, too few studies have been published to evaluate this promising technology, and key 
questions, such as reproducibility between laboratories, need to be addressed. 

Imaging is a useful way to screen for numerous mechanistic end points at the same time, 
such as cell death, apoptosis, oxidative stress, mitochondrial membrane potential, DNA damage, 
and cell-cycle inhibition. Algorithms have been developed, for example, to predict human liver 
injury. Predictivity is achieved by testing enough positive and negative chemicals in the system 
to know the specificity and sensitivity of the platform or any particular assay. In general, these 
assays have high specificity but low sensitivity. In fact, in the absence of consideration of expo-
sure, predictivity of drug-induced liver injury rarely gets above 50% (Xu et al. 2008). In addition, 
because these mechanistic end points are common end points of cell injury and death, it is diffi-
cult to predict particular organ toxicities. For example, the liver toxicant troglitazone and the 
cardiac toxicant doxorubicin both cause oxidative stress and mitochondrial dysfunction in vitro. 
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Other factors that contribute to toxicity in humans—such as inflammation, use of multiple drugs, 
and genetics—are difficult to model in simple cell systems.  

 

Organ-on-a-Chip, Microphysiological Systems, and Advanced Organotypic Assays 
 

The field of tissue engineering has advanced rapidly in recent years, having been stimulat-
ed especially by advances in microfabrication technology, such as micropatterning and microflu-
idics. The traditional goal of the tissue-engineering field is to develop replacement organs, but a 
shorter-term goal of generating tissue models for drug and toxicity testing has emerged (Alepee 
et al. 2014; Jennings 2015). Increasingly, proponents of this kind of technology are promoting 
“organ-on-a-chip” models as the ultimate systems for determining toxicity mechanisms in organ 
systems (Huh et al. 2010, 2012; Esch et al. 2011; Godoy et al. 2013; NAS 2014; Pamies et al. 
2014; Sung et al. 2014). Recently, Maschmeyer et al. (in press) reported creation of long-term 
microphysiological systems that more closely mimic the human liver, intestinal barrier, and skin 
in vivo. Those systems might have broader applications in toxicology.  

The considerations in evaluating the potential of these technologies are similar to those al-
ready discussed for organotypic models given that they are a modern extension of the organotypic 
models. Typically, organ-on-a-chip models are much more complex and expensive than simple 
cell-culture models. In theory, and in some studies, their predictive value is higher than that of sim-
ple cell culture, but their reliability needs to be evaluated, and their cost per data point might exceed 
that of animal models, especially if human primary cells are needed. 

 

Induced Pluripotent Stem Cell–Derived Primary Cells 
 

An iPS cell is a type of human pluripotent stem cell that can be differentiated into multiple 
types of tissue cells in cell culture. iPS cells are derived from adult tissues by forced expression 
of stem-cell transcription factors—an approach pioneered by Shinya Yamanaka (Takahashi and 
Yamanaka 2006) that avoids use of cells derived from human embryos. iPS cells can in principle 
provide a renewable source of almost any human primary cell type without requiring an embryo 
donor. iPS cells should work well with organotypic cultures, organ-on-a-chip technologies, and 
other biomimetic approaches that provide more realistic cell-culture models (Mathur et al. 2013). 
Another advantage to using iPS cells, in principle, is that they can be derived from donors who 
have different genotypes and might respond differently to toxicants, for example, different cyto-
chrome p450 alleles that cause differences in drug metabolism. Thus, the long-term potential for 
application of iPS cells to toxicity testing is high. Nevertheless, many hurdles must be overcome, 
including development of methods for reliable differentiation of iPS cells into cell types that are 
relevant to acute toxicity. The field is promising but unlikely to be useful for chemical testing in 
the next 5 years. One cell type that is relevant to acute toxicity and is relatively easy to generate 
from iPS cells is human cardiomyocytes (Kraushaar et al. 2012); cardiotoxicity testing will there-
fore be a field to monitor for application of iPS technology to toxicology. 

 

METABOLIC CONSIDERATIONS 
 

Chemical metabolism is an important in vivo biological process that should be considered 
during the interpretation of in vitro testing data. There is a large capacity for metabolism in the 
body; metabolizing enzymes are present in the liver, lung, nasal region, and other tissues. Me-
tabolism can convert parent chemicals into toxic metabolites (metabolic activation), into nontox-
ic metabolites (metabolic inactivation), or into metabolites that are rapidly removed from circula-
tion (detoxification). Some in vitro systems are metabolically competent and thus provide at least 
some metabolism in an assay. Others are less metabolically competent and should use parent 
chemicals and metabolites as test agents to ensure that the appropriate chemicals are assessed. 
The use of structural identification tools described in Chapter 3 can help to predict toxic metabo-
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lites. However, it can be difficult to identify a biologically active molecule without knowing the 
metabolic pathway in advance. This section summarizes metabolic assays and considerations that 
can complement in vitro testing strategies that focus on activity of a parent chemical. Although 
the most effective classical chemical-warfare agents do not require metabolic activation, a clear 
understanding of the role of chemical metabolism in toxicity has the potential to refine acute-
toxicity assessments when incorporated with other testing strategies.  

 

Assessing Reactive-Metabolite Formation 
 

Many structural alerts9 that indicate the formation of reactive metabolites have been identi-
fied. Reactive metabolite formation, however, is not necessarily sufficient for toxicity to occur; 
in fact, many marketed drugs, which are considered safe at therapeutic dosages, contain such 
alerts (Kalgutkar and Dalvie 2014). Thus, it is difficult to assign toxicity to metabolites in the 
absence of in vitro experimentation. An initial strategy that could be used in the assessment of 
metabolite toxicity could be to identify potential metabolites by nontesting approaches (such as 
the use of quantitative structure–activity relationships) and then to confirm the presence of pre-
dicted chemical moieties experimentally. Formation of human metabolites can be assessed with 
in vitro systems (such as incubations with liver microsomes or hepatocytes) coupled with mass-
spectrometric detection and measurement of metabolite formation. Thus, screening for toxicity 
can be based directly on a known metabolite or determined analytically by measuring metabo-
lites formed during an assay. 

Some chemical moieties (such as quinones and epoxides) are known to elicit toxicity. 
Highly electrophilic metabolites are known to be reactive with reduced glutathione (GSH), an 
endogenous nucleophile that plays a key role in xenobiotic metabolism and detoxification. De-
tection of GSH conjugates in in vitro assays that incorporate hepatocytes or liver microsomes 
provide indirect evidence that a reactive metabolite was formed.  

 
In Vitro Systems to Study the Role of Metabolism in Toxicity Potential 

 
A variety of in vitro model systems have been developed to study metabolism and include 

“precision-cut tissue slices, subcellular fractions such as the microsomal fraction, primary cells 
in suspension, primary monolayers of cells in culture, continuous cell lines, immortalized prima-
ry cells, liver-derived cell lines re-expressing biotransformation enzymes and genetically-
engineered cell lines expressing biotransformation enzymes” (Combes et al. 2006). Tissue frac-
tions that contain metabolic enzymes, such as microsomes or S9 fractions, can also be introduced 
into an assay system to increase its metabolic competence (Glatt et al. 1989). Encapsulation of 
S9 in hydrogel microbeads has been recently introduced into cytotoxicity assays as one method 
of reducing leakage of potentially toxic microsomal lipid peroxides (Yamamoto et al. 2011). 

Despite the availability of in vivo rodent acute-toxicity data on some chemicals, the studies 
will not identify toxic metabolites and resulting toxicity that are elicited via human-specific meta-
bolic pathways not present in laboratory animal species. One approach to evaluating species differ-
ences in metabolism is to use primary human hepatocytes or other human-origin in vitro systems. 
Another approach to elucidating metabolic pathways relies on evaluating cell responses in the pres-
ence and absence of a P450 inhibitor, such as 1-aminobenzotriazole (ABT). If the formation of 
metabolites is inhibited by ABT, isoform-specific inhibitors can be used to identify specific 
isoforms involved. An individual cDNA-expressed human P450 isoforms system can be used to 
confirm the results of P450 isoform-specific inhibitors. 

                                                           
9As noted in Chapter 3, a structural alert is a chemical structure that has been linked to toxicity or a spe-

cific toxicity end point. 
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Current State of Metabolic Competence in in Vitro Testing Approaches 
 

Because of their robust proliferative potential and sensitivity to toxic effects, immortalized 
cell lines have been identified as the system of choice for high-throughput assays. However, most 
of the cell lines have little or no metabolic enzyme content (that is, they are metabolically incompe-
tent) and respond differently from tissue slices, primary cells, or tissue that is exposed to the same 
stimuli in vivo. For example, breast-cancer cell lines, such as MCF-7, are more prone to toxic  
effects than normal breast cells. Furthermore, although the hepatoma-derived HepG2 cells have 
many liver-specific functions and express conjugating enzymes, they lack functional expression of 
almost all the relevant human xenobiotic metabolizing enzymes in the cytochrome P450 family 
(Donato et al. 2008). Primary cells that are derived directly from animal or human tissues are more 
metabolically competent than immortalized cell lines but have much shorter half-lives and require 
much more care to be sustained for toxicity screening. More recent advances in cell-culture tech-
nology have improved metabolic capability in in vitro systems. HepaRG cells cultured in 3-D spin-
ner-bioreactors are an attractive tool for toxicological studies and show an expression of CYP450 
enzymes and phase II metabolism that more closely mimics in vivo conditions (Leite et al. 2012). 
Multicellular 3-D human primary liver cell cultures that contain hepatocytes, fibroblasts, stellate 
cells, and Kupffer cells have also demonstrated increased metabolic activity in the presence of fluid 
flow (Esch et al. 2015). In summary, cell systems have their own advantages and drawbacks, and 
understanding their enzymatic content will be important for estimating the effect of metabolism on 
in vitro screening data.  

In the absence of metabolic activity, in vitro assays might still be used effectively in 
screening for biological activity of the parent chemical. However, in vitro assays designed to 
assess chemical metabolism or enzyme involvement might not translate directly to in vivo effects 
in that they might not recapitulate the endogenous concentrations or physiological distribution of 
enzymes in vivo. Although high-throughput screening focuses on targeted assay systems, phar-
macokinetic information can be integrated independently, as further discussed in Chapter 5. 

 
ASSAY CONSIDERATIONS FOR IMPROVING PREDICTION OF ACUTE TOXICITY 

 
The limitations of specific in vitro assays have been discussed above, and here the focus is 

on broad steps that could be taken to improve the ability of screening assays to predict acute tox-
icity. The largest improvement needed is the demonstration of a linkage of assay measurements 
to relevant mechanisms of toxicity that quantitatively reflect an in vivo toxicity phenotype in 
target cell types. Prediction of acute toxicity would also be improved if the route of exposure 
were considered in assay design. The committee assumes that the relevant exposure routes are 
dermal and inhalation, and most assays have been designed to model oral and intravenous expo-
sures. The issues surrounding exposure route increase as assays become higher throughput and 
less metabolically competent. As mentioned earlier, future assays should also take chemical me-
tabolism into account. Those and other considerations are discussed in more detail below. 

 
Quantitative Linkage of Assay Measurements to in Vivo Phenotype  

 
Validated alternative test methods are needed for evaluating the safety of chemicals, cos-

metics, and drugs. To address that need, the EU ACuteTox program assessed the ability of in 
vitro and in silico tools and assays to predict specific organ and system toxicity (such as hemato-
toxicity, neurotoxicity, nephrotoxicity, and hepatotoxicity) and intestinal absorption, distribution, 
and metabolism. The first “prevalidation” phase of the ACuteTox project tested a set of 57 chem-
icals in 50 in vitro and in silico assays or approaches and used published toxicity data as the phe-
notypic anchor for statistical analyses. That phase identified eight assays that showed some value 
in predicting acute toxicity (Clemedson et al. 2006); Box 4-1 provides more detailed information. 
The ACuteTox project identified several broad kinds of improvement that would need to be con-
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sidered in the design of future in vitro screening systems, namely, improved consideration of 
mechanistic data and increased use of pharmacokinetic data to enhance toxicity estimates 
(ACuteTox 2010).  

One example of mechanistically informed assay design comes from the field of testing of 
mitochondrial toxicity. Mitochondrial toxicity is a major contributor to organ toxicity, such as 
toxicity in liver, kidney, heart, muscle, and the central nervous system (Dykins and Will 2008). 
Acute effects can be measured rapidly in 96-well formats by using isolated mitochondrial and 
soluble-oxygen sensor technology (Luxcel Biosciences, Cork, Ireland) or cell-based assays that 
evaluate mitochondrial respiration and glycolysis (Seahorse Biosciences, Bellerica, MA) (Will 
and Dykens 2014). Those assays potentially can be multiplexed with readouts of mitochondrial 
membrane potential dissipation or cytotoxicity (ATP content), and incubation times can be tai-
lored to be from 1–24 hours after drug exposure (Porceddu et al. 2012). In the absence of phar-
macokinetic data, most biochemical and cell-based assays remain primarily ranking tools for 
hazard identification, not predictors of true risk.  

Some in vitro assays have been sufficiently validated that they can largely replace animal 
testing. For example, the European Centre for the Validation of Alternative Methods (ECVAM) 
Scientific Advisory Committee endorsed the EPISKIN test and the EpiDerm method as scientifical-
ly valid replacements in a tiered testing strategy for the rabbit skin irritation method and for identi-
fying skin irritants, respectively (Spielmann et al. 2007). In addition, the use of the Cultex® Radial 
Flow System to assess acute pulmonary toxicity of fine dusts and nanoparticles could possibly be 
adapted to test for chemicals that might be relevant to DOD (Steinritz et al. 2013). In vivo–in vitro 
comparison of acute respiratory tract toxicity using human 3-D airway epithelial models and human 
A549 and murine 3T3 monolayer cell systems has also been reported (Sauer et al. 2013). 
 
 

BOX 4-1 ACuteTox Testing Strategy 
 

The goal of the EU ACuteTox project was to evaluate whether regulatory animal tests for acute 
systemic toxicity could be replaced with a combination of in vitro assays. The ACuteTox pro-
gram assessed the correlation of concentrations for in vitro activity with effective doses derived 
from whole-animal studies and evaluated a series of assays and physicochemical properties to 
determine how well they predicted in vivo acute systemic toxicity. On the basis of statistical 
analysis, eight test methods were found to be promising for inclusion in the testing strategy 
and, therefore, selected for participation in the pre-validation study:  
 

 The neutral red uptake assay that uses the 3T3 fibroblast cell line (3T3/NRU). 
 The cytokine release assay that uses human whole blood (IL-1, IL-6, and TNF-α).  
 Inhibition of colony-forming-unit efficiency in human cord blood–derived cells stimulated 

with CFU-GM (CBC/CFU-GM). 
 Gene expression (GFAP, HSP-32, MBP, and NF-H) and uridine incorporation measuring 

total mRNA synthesis in primary rat brain aggregate cultures.  
 A panel that measures oxidative stress (intracellular peroxidative activity, intracellular con-

centrations of superoxide anion, and oxidized DNA base 8-oxoguanine) and cytotoxicity 
screening (intracellular Ca2+ concentrations, mitochondrial membrane potential, and plas-
ma membrane potential) in HepG2, SH-SY5Y, and A.704 cells.  

 The MTT assay that uses primary rat hepatocytes.  
 Kinetic parameters (volume of distribution, protein binding, clearance, and oral absorption 

using Caco-2 cells and neuronal networks) for estimating the oral dose on the basis of the 
effective concentration observed in vitro.  

 Estimation of chemical passage through the blood–brain barrier using neuronal networks 
(for neurotoxicity assays).  

 
Sources: ACuteTox (2010); Combes et al. (2006). 
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In summary, evaluations of in vitro assays for predicting acute toxicity have focused on 
nonmechanistic indicators of toxicity, such as cytotoxicity assays, or low-throughput measure-
ments. Few in vitro assays have been developed with quantitative linkage to any phenotype (acute 
or chronic). Screening for acute toxicity by using mechanisms that are likely to cause debilitating 
injury (Table 2-1) will require assays that are purposefully selected for their biochemical targets 
and characterized for their potential value in predicting human toxicity. 

 
Assay Considerations: Lessons Learned from High-Throughput Screening Programs 

 
The recent investment in EPA’s ToxCast program and the broader Tox21 Initiative has al-

lowed important progress in the development and use of HTS platforms to assess biological ac-
tivity and potential mechanisms of action for industrial and environmental chemicals. Such pro-
grams provide rapid screening of hundreds of chemicals for dozens of cellular targets and 
relevant pathways. However, some chemical, cellular, and assay conditions need to be consid-
ered if one is to use and interpret the data appropriately.  

First, for various reasons, the nominal chemical concentration added to the assay well is not 
necessarily representative of the concentration at which chemical bioactivity is observed (Groothuis 
et al. 2015). Chemical purity must be confirmed and solubility in the assay medium checked to 
determine that the initial applied concentration is accurately known. Chemical stability also needs 
to be monitored over the course of the assay so that chemical stability and availability can be 
tracked. Labile chemicals can degrade rapidly on exposure to light, aqueous conditions, or other 
constituents of the media or in vitro system. In fact, MacArthur et al. (2009) conducted chemical 
stability studies with cytochrome P450 assays at NCGC and found decreased chemical potency 
over time and lower efficacy of older samples stored in dimethyl sulfoxide (DMSO). For that rea-
son, test chemicals at NCGC are used for no longer than 4–6 months. If degradation does occur, 
assay bioactivity (or lack thereof) might be inaccurately attributed to the parent chemical. Alterna-
tively, the chemical might bind to plastics, cellular constituents, or proteins in the in vitro system 
and render it unavailable to elicit any effect in the test system (Blaauboer 2010).  

Second, there are limitations of current cellular systems. The cells used in HTS assays typ-
ically are selected for their proliferative capacity, adherent properties, and ease of growth in 
high-throughput plates and systems (Shukla et al. 2010). Immortalized cancer cell lines—such as 
MCF-7 (breast cancer), A549 (lung cancer), and HepG2 (liver cancer)—are commonly used. It is 
possible—or perhaps likely—that assessments in the limited cellular space might fail to detect 
chemical activities or effects that might occur in normal (nontumor) differentiated cells. In addi-
tion, proliferative cell lines have a reduced ability to metabolize parent chemicals. To address 
those issues, new hepatic cell lines are being developed to be more metabolically competent and 
are discussed further in the next paragraph.  

Third, assay reproducibility can be an issue. Chemical autofluorescence and cytotoxicity are 
common causes of assay interference that can lead to false positives or false negatives (Huang et al. 
2011). Furthermore, cells can have different levels of activity or responsiveness, depending on 
whether they are primary cells, differentiated cells, or immortalized cells and on how many times 
they have been passaged.10 Variability in metabolic capabilities among various sources of isolated 
primary hepatocytes is well documented and is due to numerous factors, including isolation issues 
and donor variability. Recently, the HepaRG cell line has been introduced as a hepatic cell line that 
has a degree of metabolic competence and is amenable to use in a 96-well high-throughput system 
(Guillouzo et al. 2007). However, maintenance of the HepaRG cells in a differentiated state re-
quires the use of high concentrations of DMSO, which has substantial cellular effects, including 
inhibition of metabolizing enzymes of the cytochrome P450 family and alteration of membrane 

                                                           
10Cultured cells are routinely transferred and replated (subcultured) to avoid the senescence associated 

with high cell density. Passage number refers to the number of times that the cells have been subcultured.  
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permeability and antioxidant status. Whereas the HepaRG cells are recognized as metabolically 
competent, the competence is on a much lower scale than that of fresh or cryopreserved primary 
hepatocytes (Kanebratt and Andersson 2008; Lubberstedt et al. 2011).  

Fourth, interpretation of activity or effective concentrations from HTS assays should be 
carefully considered. The concentration at which bioactivity is observed should be considered in 
the context of the complete activity profile among all assays tested and the range of the dose-
response relationships. Review of the ToxCast data has revealed that a burst of activity in many 
assays might result at concentrations close to or approaching cytotoxicity (EPA 2014b). Activity 
measurements at high concentrations probably represent nonspecific effects and offer little in-
formation about specific bioactivity. Likewise, a lack of response can be due to tested concentra-
tions below bioactivity, lack of representation of the biological target, or assay unreliability. The 
finding that cytotoxicity of some chemicals varies with the cell type emphasizes the need to 
characterize biological activity over a broad concentration range (Xia et al. 2008). 

Fifth, assays should always include positive-control reference chemicals, whose activity 
can be used to determine assay variability, sensitivity, and specificity. Some of those considera-
tions were discussed by Judson et al. (2013) and Patlewicz et al. (2013). Indeed, efforts to char-
acterize and document nonguideline in vitro assays, including high-throughput and high-content 
assays, have been made under the auspices of OECD, which has recently published a guidance 
document (OECD 2014).   

 
FINDINGS AND RECOMMENDATIONS 

 
 Finding: On the basis of the results of HTS programs, in vitro assays have demonstrat-

ed some predictive value for acute toxicity; therefore, an in vitro screening approach for predict-
ing the potential for chemicals to cause acute, debilitating injuries is theoretically feasible.  

 Finding: Current assays were not developed for predictions of acute toxicity (particu-
larly lethality) and have generally not dealt with chemicals that are acutely toxic or debilitating. 
The few evaluations of in vitro assays to predict acute toxicity have focused primarily on non-
mechanistic indicators of toxicity, such as cytotoxicity assays, or on low-throughput measure-
ments. 

 Finding: There is little evidence that results of in vitro assays are predictive of in vivo 
outcomes of concern to DOD. A screening program for acute toxicity will require the develop-
ment of new in vitro assays that are mechanistically relevant to critical processes or pathways 
that are related to acute, debilitating toxicity. 

 Finding: Evaluations of in vitro assays have focused on oral and intravenous exposure. 
The evaluation and development of in vitro assays that address dermal and inhalation exposures 
and contact toxicity will require additional research to understand absorption and permeability in 
the skin and lung. 

 Finding: Most in vitro assays do not account for important pharmacokinetic character-
istics, such as metabolism, that can influence in vivo toxicity. Although in vitro assays lacking 
metabolic capacity can effectively screen for biological activity of the parent chemical, the 
pharmacokinetic relationship between exposure and concentration at a target site needs to be 
addressed.  

 Finding: In vitro testing and screening programs (Tox21, ToxCast, and ACuteTox) of-
fer a number of useful lessons regarding assay reliability, chemical solubility or purity, standard-
ized reference chemicals, dose–response experimental designs, and standardized data processing.  

 Recommendation: The experience of HTS programs should be considered in the design 
of an in vitro screening program to predict acute, debilitating toxicity. Because of the potential need 
to include highly toxic agents, if only as reference chemicals, such a screening program will need to 
consider health, safety, and environmental issues associated with handling highly toxic and threat 
agents. 
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5 
 

Integration and Decision-Making  
for Predictive Toxicology 

 
As described in Chapter 2, a robust integration and decision-making strategy is needed as 

part of the overall approach developed by the committee to predict acute, debilitating toxicity. 
Specifically, this chapter will describe general approaches and considerations for integrating data 
to make the categorization decisions outlined in the tiered prioritization strategy described in 
Chapter 2. Discussions of these topics are related to the task of evaluating chemicals for their 
potential to elicit acute toxicity. The committee has also noted a number of topics beyond its 
charge on which the Department of Defense (DOD) will need to make policy decisions in light 
of specific needs.  

 
GENERAL APPROACH TO INTEGRATION AND DECISION-MAKING 

 
Integration and decision-making to support prediction of the potential of chemicals to cause 

acute toxicity are needed at many levels. As described in Chapter 2, the goal at each tier of the 
prioritization strategy is to place chemicals in three categories: “high confidence of high toxicity,” 
“high confidence of low toxicity,” and “inadequate data.” Box 5-1 presents a simplified illustration 
of the process to base decisions on the results of a single model for a single end point. As illustrated 
in this simple case, categorization depends on defining clear benchmarks that set the boundaries for 
“high” and “low” toxicity and on taking uncertainty or confidence in each individual prediction into 
account. Key tasks for DOD will be determining the appropriate benchmarks for each end point 
that is relevant to the evaluation of acute toxicity and specifying the level of confidence appropriate 
to its needs. 

In the more general case in which there are several predictions for multiple end points, the 
committee divided the integration and decision-making process into two parts, as illustrated in 
Figure 5-1:  
 

 “Within–end point” integration and decision-making, which is based on integrating 
various data streams and predictions that inform a single acute-toxicity end point.  

 “Cross–end point” integration and decision-making, which is based on integrating 
predictions from several acute-toxicity end points. 

 
Within–End Point Integration and Decision-making 

 
As discussed in Chapter 2, concern about potential acute toxicity spans a wide range of 

chemicals in terms of structures and physicochemical properties. Moreover, as shown in 
Chapters 3 and 4 and by others (Bauer-Mehren et al. 2012), no single prediction approach, 
whether a nontesting approach or an assay-based approach, is sufficient to capture the entire 
chemical domain. For some end points, such as a rat LD50, multiple models and tools that have 
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various degrees of accuracy are available (see, for example, review by Diaza et al. 2015), and it 
might be of interest to integrate their predictions into a single summary prediction. Furthermore, 
a chemical’s pharmacokinetics—absorption, distribution, metabolism, and excretion (ADME)—
might contribute to its potency and toxicity. Therefore, even within an “end point” domain, there 
might be a need to integrate multiple databases, assays, models, and tools to develop an 
“integrated” prediction for that end point. The committee notes that using various integrative 
approaches might also help to identify biological responses that can explain chemical-induced 
adverse reactions (Bauer-Mehren et al. 2012). 
 
 

BOX 5-1 Simplified Illustration of Integration and Decision-making 
 

Models and End Points: At Tier 1, a single quantitative structure–activity relationship (QSAR) 
model is being used to predict rat LD50 values from chemical structure and physicochemical 
properties. No other models or end points are being considered. To illustrate a simplified ap-
proach, chemicals outside a specified applicability domain are placed in the “inadequate data” 
category for this example. For chemicals inside the applicability domain, the output of the 
model is an LD50 estimate with a confidence interval that reflects uncertainty.  
 
Integration: Because only a single model and a sin-
gle end point are being considered, there is no inte-
gration of different predictions. 
 
Category Benchmarks: A set of reference chemi-
cals based on DOD interests that have known (possibly more than one) LD50 values are selected 
to represent the “high toxicity” and “low toxicity” categories from which category benchmarks are 
derived. For example, the “high toxicity” benchmark could be defined as the highest LD50 of the 
least toxic “high toxicity” reference chemical. For some end points, generic toxicity benchmarks 
are available, such as the European Union and Global Harmonized System categories for acute 
toxicity. 
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Decision-making: Decisions as to how to place chemicals into categories are based on the 
confidence bounds for each prediction:  
 

 A chemical is categorized as “high confidence of high toxicity” if the upper confidence 
bound on the predicted LD50 is less than or equal to the “high toxicity” benchmark.  

 A chemical is categorized as “high confidence of low toxicity” if the lower confidence 
bound on the predicted LD50 is greater than or equal to the “low toxicity” benchmark. 

 
The remaining chemicals are categorized as having “inadequate data.” 
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FIGURE 5-1 Illustration of a general approach to integration and decision-making for applying predictive 
approaches to acute, debilitating toxicity. “Within–end point” integration and decision-making has three 
basic steps: (1) developing an integrated prediction from potentially multiple databases, assays, models, and 
tools; (2) specifying toxicity benchmarks; and (3) placing chemicals into the appropriate category for the 
end point under consideration. “Cross–end point” integration and decision-making could consist of (1) a 
simple “scorecard” for a chemical in which each individual end point–specific decision is recorded or (2) 
more integrative approaches, such as ToxPi, that include the underlying toxicity end point predictions from 
which categories were assigned. The example presented here illustrates how information must be able to 
translate between within–end point and cross–end point integration.  
 
 

A key task for DOD will be defining the most informative “end point domains” for its 
application, for example, whether to define an end point at a more general level, such as neuro-
toxicity, or at a more specific level, such as seizure or cholinesterase inhibition.  

There are three steps in reaching a decision about a particular toxicity end point (the last 
two are the same as in the simple case described previously):  
 

(1) Integrating potentially multiple databases, assays, models, and tools into an “integrated 
prediction,” with its confidence interval, as to a chemical’s toxicity potential for that end point.  

(2) Specifying toxicity benchmarks that define the thresholds for what is considered “high” 
or “low” toxicity for that end point. 

(3) Placing chemicals into categories on the basis of the specified toxicity benchmarks, 
taking into account the confidence interval of the integrated prediction. 
 
Some of the available methods for each step are described in greater detail below. 



Copyright © National Academy of Sciences. All rights reserved.

Application of Modern Toxicology Approaches for Predicting Acute Toxicity for Chemical Defense 

83 Integration and Decision-Making for Predictive Toxicology 

Cross–End Point Integration and Decision-Making 
 

As described in Chapter 2, the concern about potential acute toxicity spans a wide array of 
toxic end points and biological mechanisms. From a military perspective, any acute toxicity that is 
severe enough to cause debilitation or death is enough to warrant concern. Thus, a simple approach 
to cross–end point integration would be simply to summarize the categorization results for each end 
point in a single scorecard, as shown in the upper right of Figure 5-1. Each end point would be 
evaluated as described above as to whether for a given type of acute toxicity (such as neurotoxicity) 
the chemical exhibited “high toxicity,” “low toxicity,” or “inadequate data.” Then, in integrating 
into an overall evaluation, a chemical will be sorted into the “high toxicity” bin if at least one of the 
end points is “high toxicity,” the “low toxicity” bin if all the end points are “low toxicity,” and the 
“inadequate data” bin if neither of the first two conditions applies. That approach also has the 
advantage of retaining the end point–specific information, so that future data generation can be 
targeted better. The approach is also consistent with a low tolerance for false negatives in that each 
end point identified as predictive of an acute toxic (debilitating or lethal) response serves as 
sufficient evidence to place a chemical into a “high toxicity” bin.  

Cross–end point integration can also be visualized in a recombination approach (such as 
ToxPi, discussed in more detail below) and perhaps even augmented with information on toxicity 
benchmarks as illustrated in Figure 5-1. The recombination approach, however, suggests an 
alternative integration that would not depend strictly on a simple decision rule related to the 
categories for each end point. For example, the ToxPi approach (see lower right of Figure 5-1) 
could also provide a summary measure that consists of a weighted sum of individual toxicity end 
points. Thus, even if each individual end point is rated as “inadequate,” it is conceivable that the 
presence of multiple end points close to their benchmark thresholds would allow the chemical to 
be categorized as “high” or “low” on the basis of the summary measure even if no individual end 
point were so rated. Setting up appropriate decision rules would be a key policy question for 
DOD if it chose to implement the committee’s suggested approach for predicting acute, 
debilitating toxicity. 

 
APPROACHES TO INTEGRATION 

 
The general approaches for integrating databases, assays, models, and tools are illustrated 

in Figure 5-2 with LD50 as an example end point. Broadly, they can be divided into approaches 
that combine individual predictions into an integrated prediction (upper panel, A) and approaches 
that first combine the underlying data from databases and assays before building an integrated 
model or tool (lower panel, B). Specific approaches are described in more detail below, particu-
larly in relation to predicting acute toxicity; examples of applications to nontesting approaches 
(Chapter 3), biological assay-based approaches (Chapter 4), and combinations of the two are 
provided if possible. 

 
Meta-Analytic Approaches 

 
From a formal statistical perspective, the rich literature on meta-analysis offers guidance 

on how to aggregate information from multiple independent sources (Borenstein et al. 2009). It is 
expected that appropriate meta-analysis will help to improve the results from individual studies 
that might have been underpowered or have suffered from noise, bias, and absence of data. Meta-
analysis can also help to reveal interesting patterns or relationships among studies and generate 
results that are statistically robust. The committee did not locate any examples of published me-
ta-analyses of acute-toxicity predictions built from the types of data described in Chapters 3 and 
4. However, for such an end point as LD50, for which multiple tools and models are available in 
the same chemical domain (for example, the five models reviewed by Diaza et al. 2015), a meta-
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analytic approach might be considered to combine results. In addition to combining individual 
predictions, meta-analytic approaches could be applied to individual categorization decisions (for 
example, see Box 5-2).  

Three key issues should be considered in conducting any meta-analyses, including those 
applied to acute-toxicity end points. First, individual results should be investigated to determine 
whether the data can be combined reliably (Crowther et al. 2010). For example, results that are to 
be combined should be associated with a common predicted acute-toxicity end point. Often, de-
cisions on which statistical techniques to use for meta-analysis are not as important as decisions 
on which studies are to be combined because later analysis will not be able to correct for an in-
appropriate combination of studies. Second, an effective meta-analysis should ensure that “bet-
ter” results receive more weight during information aggregation (Crowther et al. 2010). For ex-
ample, it is reasonable for predictions that have less variance or that are based on a larger sample 
size to contribute more heavily to the overall summary statistic in a meta-analysis. Other factors, 
such as biases and methodological strengths and weaknesses of individual approaches, can also 
be included, either qualitatively or quantitatively. Third, several statistical methods can be used 
to combine results. They include methods that are based on results of significance testing, such 
as p values or z scores, and fixed and random effect models that use summary statistics, such as 
the mean and standard error derived from individual results (Hedges and Olkin 1985; Borenstein 
et al. 2009). For all three issues, sensitivity analysis can be performed to assess the effects of 
various choices on the results of a meta-analysis (Higgins and Green 2011).  
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FIGURE 5-2 Approaches for integrating disparate datasets with LD50 as an example. A: approaches that 
keep datasets separate (such as physicochemical data and assay-based biological-activity data) and integrate 
predictions from models developed for each dataset independently. B: approaches that combine datasets 
before modeling and develop a new “integrated” model that makes a prediction from the combined dataset. 
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Recombination-Based Approaches 
 

Several approaches for data integration have recently been developed to handle new 
problems presented by high-dimensional toxicity data, such as information from different 
biological assays. Because the results from different data streams are not strictly comparable, 
formal meta-analytic approaches are not immediately applicable. There are a variety of methods 
for weighting multiple streams of evidence differently, from largely qualitative, expert-judgment 
approaches (for example, Hill criteria) to quantitative statistical frameworks that formalize 
weighting schemes (Linkov et al. 2015). Given the need to categorize chemicals, intermediate 
approaches that are quantitative and incorporate expert judgment are likely to be most useful in 
predicting acute toxicity. The Toxicological Prioritization Index (ToxPi) developed by Reif et al. 
(2010) provides a useful illustration of how to combine multiple data streams (discussed at 
length in NRC 2014). 
 
 

BOX 5-2 Example of Meta-Analytic Approach That Uses  
Irreproducible Discovery Rates to Integrate Categorization Decisions 

 
Meta-analytic approaches, such as the irreproducible discovery rate (IDR) (Li et al. 2011), 

can be used to measure the reproducibility of results from two independent studies and to filter 
noise in the results. In the example below, two studies (Study I and Study II) have made toxici-
ty predictions, and the results are categorized into “low toxicity,” “inadequate data”, or “high 
toxicity,” on the basis of simulated category benchmarks with thresholds at values of [0–10], 
(10–60), and [60–100], respectively. However, many chemicals show inconsistent categoriza-
tions between the two studies. To integrate the two results, IDR considers the reproducibility 
between studies to assign a chemical-specific reproducibility measure. The far-right column 
presents the reproducibility measure as 1 – local IDR, where the chemicals that have the high-
est values are highlighted in red. Note that taking reproducibility among studies into account 
can change the categorization of “high toxicity.”  
 

 

Chemicals   Initial Toxicity Prediction Scores 1 – local IDR

1  99 100 0.99
2 72 45 0.53
3 70 58 0.91
4 66 0 0.00
5 65 38 0.19
6 62 49 0.59
7 56 15 0.00
8 51 60 0.62
9 51 72 0.79
10 47 59 0.45
11 40 53 0.17
12 37 42 0.06
13 36 31 0.03
14 30 20 0.01
15 30 20 0.01
16 29 35 0.02
17 24 28 0.01
18 15 28 0.00
19 14 43 0.00
20 8 41 0.00

Category Benchmarks by initial
toxicity prediction scores: 
‐ High toxicity: 
[60–100]

‐ Inadequate data: 
(10–60)

‐ Low toxicity: 
[0–10]

The ones categorized as “high 
toxicity” by initial prediction scores
are highlighted in Blue 

The ones with top 6 (1‐local IDR) 
scores (or the 6 most reproducible 
results) are highlighted in Red

Study I Study II
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The ToxPi combines data streams (physicochemical data, biological assays, or both) into a 
relative index to facilitate prioritization or categorization. At its most basic, a summary ranking is 
derived for each chemical on the basis of a weighted sum of rankings for different data sources. 
Although advanced statistical approaches could be used to group and weight individual pieces of 
evidence empirically, published applications have used substantial expert judgment and taken into 
account the specific sources of data being integrated and the context of integration. For example, 
binding assays for several cytochrome P450 (CYP) isoforms might be run to assess “xenobiotic 
metabolism,” but isoforms expressed in a target tissue of interest might warrant more weight. Thus, 
using the ToxPi approach and reference chemicals can provide an overall, integrated ranking that 
can be used for categorization decisions (see Figure 5-3). In addition, the ToxPi provides a 
visualization of the individual component ranks and so can be used to support a “multicriteria” 
decision-making scenario (Pavan and Worth 2008) in which categorization decisions involve 
integration of multiple, possibly conflicting criteria. For example, placing chemicals in the “high 
confidence of high toxicity” bin could necessitate synthesizing results when individual pieces of 
evidence serve as flags of high alert (such as solid evidence from a single assay that is deemed 
highly predictive of acute toxicity). The use of ToxPi for cross–end point integration is illustrated in 
the lower right of Figure 5-1, where axes are flagged if activity surpasses a benchmark threshold. 
ToxPi can also be applied to within–end point integration.  

 
Pooled Data-Based Approaches 

 
The basic idea behind pooled data-based approaches is the use of the same types of non-

testing approaches (such as read-across and QSAR) to make chemical-based or biologically 
based predictions. Thus, the biological assay results are simply treated as additional “biological 
descriptors” that can be used with physicochemical descriptors in building quantitative models. 
Several examples of this approach applied to acute toxicity are described in Chapter 3 (Lee et al. 
2010; Sedykh et al. 2011); they retrospectively apply statistical methods, such as k-nearest 
neighbor, random forest, or multiple linear regression to a combined dataset of chemical-
structure data and literature-derived cytotoxicity data. The same approach could be used more 
prospectively, in which new biological activity data generated in Tier 2 are combined with chem-
ical-structure information used previously in Tier 1 to develop an integrated prediction based on 
pooling of both datasets.  

 
Hierarchical Modeling Approaches 

 
Hierarchical approaches can build-in information on chemical structure or global perfor-

mance to inform modeling decisions (Wilson et al. 2014). For example, as noted in Chapter 3, 
several groups have used biological data to stratify chemicals into clusters; more localized mod-
eling, such as the use of QSARs, was then applied to each (Zhu et al. 2009; Zhang 2011; Loun-
kine et al. 2012). Zhu et al. (2009) applied such an approach to acute toxicity. Specifically, they 
grouped chemicals into those with and without good correlation between in vitro cytotoxicity 
IC50s and in vivo rodent LD50s. They then built one QSAR model to assign chemicals to each 
group and two additional QSAR models to predict LD50s for each group. They also compared 
their approach with the commercial TOPKAT software, using a set of chemicals that was outside 
the training set of both approaches. They found that their two-step hierarchy of QSAR models 
had a greater correlation coefficient and smaller mean absolute error. That type of stratification 
of QSAR models with biological information might be a fruitful integration approach that can be 
tried with other acute-toxicity end points. 
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FIGURE 5-3 ToxPi model for integration of acute-toxicity potential. In this simulated example, data from 
nontesting approaches (Chapter 3) and assays (Chapter 4) have been integrated into a cross–end point ToxPi 
model for pulmonary toxicity, neurotoxicity, and death. The key (lower panel, inset) shows that evidence for 
the two “Death” slices have been given extra weight in determining the overall integrated ranking for acute 
toxicity. For each chemical profile, the distance of a slice from the origin indicates the relative potency. The 
“longer” slices indicate chemicals that are more potent than chemicals that have “shorter” slices or those 
deemed inactive (indicated by absence of a given slice). The upper panel shows all profiles in rank order. The 
lower panel translates the profiles into a plot of the integrated ranks vs scores, with 95% confidence intervals 
extending from the red square representing each chemical. The black-framed profile is the chemical that has 
the highest overall acute-toxicity potential (that is, rank = 1). The red-framed profile is the reference chemical 
for “high confidence of high toxicity,” and the green-framed profile is the reference chemical for “high confi-
dence of low toxicity.” Note that the confidence intervals extending from each reference chemical define the 
category thresholds (vertical dashed red and green lines). 
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Sequential Modeling Approaches 
 

Another approach to model-based integration is to connect models sequentially, that is, by 
using outputs from one model as part of the inputs into another model. Such an approach can be 
developed when there is a hypothesized chain of events that leads to acute toxicity. Specifically, 
as described in Chapter 3, nontesting approaches could be developed for initial or intermediate 
events along a mechanistic pathway. The predictions could then be inputs into models that pre-
dict acute toxicity on the basis of biological assay data on the intermediate events. As a result, 
predictions of acute toxicity that incorporate biological data could be made for chemicals for 
which biological assays have not yet been conducted.  

For example, Chapter 3 discussed how chemical toxicity often results from nonspecific al-
terations in cell function; thus, in vitro cytotoxicity is likely to be a strong indicator of in vivo 
toxicity. Conceivably, a sequential model could be developed that combines a model that uses 
physicochemical data to predict cytotoxicity (reviewed in Chapter 3) with a model that uses cyto-
toxicity data to predict LD50s (reviewed in Chapter 4). In the future, one might envision using 
physicochemical information to predict bioactivity in more specific biological assays and then 
using existing models that use bioactivity measurements to predict in vivo acute toxicity.  

Another area in which sequential modeling is common is in vitro–in vivo extrapolation 
(IVIVE). In particular, the results of in vitro assays constitute inputs into a reverse-dosimetry or 
reverse-toxicokinetic approach to derive the external dose that will result in the internal serum 
concentration equivalent to the bioactive concentration in the in vitro assay (Rotroff et al. 2010; 
Wetmore et al. 2012). Integration of ADME specifically is discussed further below. 

Sequential modeling is not restricted to single assay results. The US Environmental Protec-
tion Agency (EPA) ToxCast program has generated in vitro high-throughput screening data on 
several assay technologies that assess multiple pathways, genes, and responses over hundreds of 
end points (Judson et al. 2010; Kavlock et al. 2012). The built-in redundancy in end points al-
lows assays to be aggregated into a pathway context, so that multiple assay results are combined 
into a summary measure of pathway activity before a reverse toxicokinetic model is applied 
(Judson et al. 2011). Other researchers have attempted to integrate assays anchored to pathways 
to arrive at a summary outcome, specifically for skin sensitization (see, for example, Jaworska et 
al. 2013; Patlewicz et al. 2014; van der Veen et al. 2014). 

 

Integrating Toxicokinetics to Determine Acute-Toxicity Potential 
 

The recent investment in in vitro and high-throughput screening (HTS) strategies to inform 
chemical toxicity testing has led to increased debate about relating the resulting data (potency 
values derived on the basis of the nominal testing concentration ranges used in the wells of assay 
plates) to values that would be informative in predicting in vivo human health hazard. Some as-
say designs do not consider in vivo toxicokinetic processes, which ultimately dictate the extent of 
chemical toxicity or potency in animals or humans. No matter how active or potent a chemical 
might be in some in vitro assays, if it is not absorbed into the human body on exposure it will not 
be bioavailable to elicit any effect. Similarly, a chemical that is cleared rapidly might not be pre-
sent in the body long enough to elicit an effect. Chapters 3 and 4 describe how modeling of bio-
logical (toxicokinetic) processes can reduce the gaps observed between results of in vitro assay 
and toxic response in humans or animals. Consideration of the potential effect of in vivo toxico-
kinetic processes improves interpretation of the results of in vitro testing and the overall predic-
tive-toxicology approach. 

Development of toxicokinetic and dosimetric tools to inform extrapolations—among spe-
cies, dose ranges, and experimental systems (for example, in vitro to in vivo)—has been wide-
spread over the last 30 years. Forward dosimetry with physiologically based pharmacokinetic 
modeling originally introduced in the assessment of volatile organic chemicals (Andersen et al. 
1987) provides a strategy that relies on pharmacokinetic knowledge to relate a known external 
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exposure to an internal blood or target-tissue dose. Alternatively, reverse dosimetry is often used 
to relate a known internal dose (either from blood biomonitoring data or from an in vitro assay 
bioactivity concentration) to an external chemical dose (Tan et al. 2007; Lyons et al. 2008; 
Wetmore et al. 2012). The focus of much of the reverse-dosimetry work has been on exposure 
scenarios (chronic, low-level, repeat exposures) of concern to EPA or other regulatory bodies 
that have similar public-health protection mandates (Basketter et al. 2012; Wetmore 2015). 
Whereas it is useful to understand the dosimetric strategies described, it should be noted that not 
all tools are directly applicable for DOD’s purpose in which the exposure will be acute (probably 
at one time) and that acutely toxic chemicals might not require consideration of ADME to predict 
elicitation of debilitating effects. The following discussion provides a brief summary of the dif-
ferent components of ADME, tools available to predict the components, and probable effect of 
ADME on future attempts by DOD to predict acute toxicity.  
 

Absorption or Bioavailability. Absorption via relevant routes of exposure (oral, dermal, 
and inhalation) and resulting bioavailability are important parameters for which there are predic-
tive testing and nontesting tools (see Chapters 3 and 4). A conservative assumption of 100% ab-
sorption would be the most protective and should be assumed for chemicals for which available 
methods do not apply or do not provide sufficient predictivity. Computer models that describe 
the biochemical behavior of uptake by skin or gastrointestinal cells (McKone 1990; Jamei et al. 
2009a; Rauma et al. 2013) can be applied in a sequential approach. However, the uptake models 
have been developed mostly for single-chemical exposure and rarely for acute conditions. If 
100% absorption was initially assumed for a chemical and predictive tools indicate an adjustment 
away from that conservative default, the chemical might need to be downgraded or reassessed 
because lower absorption would indicate a lower potency or lower likelihood of acute toxicity. 
Chemicals that have other toxicity alerts that place them in the “high confidence of high toxicity” 
bin and identify them as readily absorbed should be noted because confirmation of high bioavail-
ability will influence their ranking in that bin.  

Distribution. Rapid accumulation throughout the body or in target tissues (such as skin, 
brain, and lungs) could lead to a substantial shift in acute-toxicity potential of a chemical. Some 
organophosphates, for example, are highly lipophilic and are readily distributed into fat and other 
tissues. Presence in the fat and slow release from the site will delay or prolong acetylcholinester-
ase inhibition (Karalliedde et al. 2003) and could lead to greater toxicity than that of chemicals 
that have lower distribution but a similar effect in an in vitro assay. Similarly, a chemical that is 
demonstrably neurotoxic in an in vitro assay and is identified as crossing the blood–brain barrier 
rapidly will likely be a more potent neurotoxicant than one that has similar in vitro toxicity and 
does not cross the blood–brain barrier. Blood transporters or lipoproteins can also shift the ability 
of a chemical to reach a toxicity target. Chemicals that bind to transporter proteins might reach 
target sites more easily than chemicals that are distributed solely by diffusion. Tools for predict-
ing or assessing tissue partitioning and partition coefficients are available and can aid in predict-
ing ADME behavior (Poulin and Haddad 2012, 2013). Distribution and metabolism (see below) 
are probably the two most important components to explore in modulating acute-toxicity poten-
tial. Distribution will indicate the amount of a chemical that is available to reach an in vivo tar-
geted site. Modeling tools and simple in vitro experiments can estimate tissue or cell partitioning 
and thus provide a more accurate estimate of assay concentration that will generate a response.  

Metabolism. Metabolism can lead to formation of a substantially more toxic metabolite, 
formation of an equally toxic metabolite, or detoxification of the parent chemical. Examples of 
chemicals that can be bioactivated into more toxic metabolites are the neurotoxic organophos-
phate insecticides, such as fenthion, parathion, diazinon, malathion, and chlorpyrifos, which are 
metabolized to potent oxon metabolites (Eisler 2007). Thus, metabolism is one ADME property 
that could substantially shift the potency of a chemical. Nontesting approaches for predicting 
metabolism are in various stages of development (see Chapter 3) and might be used to elucidate 
metabolites that could contribute to a parent chemical’s acute-toxicity potential. The best way to 
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incorporate the potential effect of toxic metabolite formation will depend largely on the chemical 
mechanism in relation to others that have similar acute-toxicity potencies and will need to be 
considered in relation to other toxicity information.  

Excretion. The liver and kidney are the major organs responsible for excretion of chemicals 
from the body (via bile and urine). Physicochemical properties can be used to predict chemical ex-
cretion rates (Ghibellini et al. 2006; Shitara et al. 2006; Sharifi and Ghafourian 2014). Hydrophilic 
chemicals are more rapidly excreted from the body than lipophilic chemicals. The other ADME 
properties are more likely than excretion to have an important effect on chemical acute-toxicity 
potential. Reductions in excretion are likely to be secondary to renal toxicity, an end point that is 
likely to be specifically assessed with other testing and nontesting approaches.  

 
In Vitro to In Vivo Extrapolation Modeling to Inform  

Tissue Dosimetry and Dosimetric Potential 
 

Modeling approaches developed to inform dosimetry assessments use IVIVE. Measurements 
from in vitro assays and predictions from nontesting approaches can provide various model inputs 
(such as rate of absorption, metabolic activity, and tissue partitioning), which can be combined in a 
bottom-up approach to estimate an in vivo dose (Jamei et al. 2009b). The extrapolation of in vitro 
data typically assumes that metabolism of a parent chemical implies loss of potential for toxicity, 
which is not necessarily the case, but it is valuable in providing an understanding of the dosimetrics 
or bioaccumulative potential of a chemical. 

Recently, a simplified IVIVE approach amenable to incorporation with HTS data was pre-
sented; it predicted external doses that are required to achieve steady-state blood concentrations 
similar to ones that elicit activity in in vitro HTS assays (Rotroff et al. 2010; Wetmore et al. 
2012). The approach incorporated plasma-protein binding and hepatic metabolic and renal non-
metabolic clearance (key determinants of chemical steady-state toxicokinetics) to estimate chem-
ical steady-state behavior. The toxicokinetic measurements showed not only significant cross-
species correlation but strong correlation between in vivo and in vitro values for several chemi-
cals (Wetmore et al. 2013, Wetmore 2015). Steady-state concentrations are known to be more 
relevant for chronic and repeated exposure. Recent assessments by EPA demonstrated that in 
some cases steady-state concentration (Css) estimates were consistent with peak concentrations 
(Cmax); this relationship was not observed for a subset of chemicals that are rapidly or slowly 
cleared (Wambaugh et al. in press). A steady-state toxicokinetic assumption, however, can be 
valid for acute-toxicity assessment.  

Many of the tools developed to predict ADME or pharmacokinetic properties were devel-
oped by using pharmaceutical chemicals, which represent a smaller chemical space than the 
chemical domain of concern to DOD. Tools to predict absorption, tissue partitioning, protein 
binding, and hepatic clearance might perform well only in a narrowly defined logKow space. 
Chemicals of concern to DOD will span multiple domains, and attempts to categorize their 
pharmacokinetic behavior might be severely limited. 

Ultimately, one should recognize that the most reactive acutely toxic chemicals that are of 
top concern to DOD are likely to be rapidly lethal well before some metabolic or excretory pro-
cesses are initiated. However, for a large percentage of the chemical space of concern to DOD, 
application of some of the physicochemical and assay tools to predict chemical toxicokinetics 
can probably be incorporated into the decision-making process reasonably efficiently. Overall, 
integration of the tools in a tiered testing framework will aid in refining estimates of the toxicity 
of chemicals and enable an appropriate and streamlined decision-making process. 

 
APPROACHES TO CATEGORIZATION 

 
As discussed in Chapter 2, the committee’s suggested prioritization strategy consists of a 

tiered approach to placing chemicals into three categories: “high confidence of high toxicity,” 
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“high confidence of low toxicity,” and “inadequate data.” As described earlier in this chapter, the 
process includes two key steps: setting benchmarks that define the thresholds for what would be 
considered high and low toxicity and assigning chemicals to categories, taking into account the 
confidence in the prediction. 

 
Setting Benchmarks 

 
The thresholds for high and low toxicity for a given toxicity end point can be defined in 

multiple ways, including the following: 
 

 Using reference chemicals of high and low toxicity when the toxicity end point of inter-
est has been measured or predicted. This approach was illustrated in the simplified example in 
Box 5-1 and in Figure 5-1 with LD50 as the toxicity end point.  

 Using reference chemicals of high and low toxicity via clustering approaches. For ex-
ample, the “nearest neighbors” to the high toxicity reference chemicals would also be considered 
to have high toxicity. 

 Using pre-existing exposure-based thresholds if they exist for the toxicity end point of 
interest. For example, the European Union (EU) and the Globally Harmonized System of Classi-
fication and Labeling of Chemicals (GHS) each have pre-existing categories for acute oral toxici-
ty in terms of milligrams per kilogram. 
 
All the approaches require that the toxicity end point be a numerical value, such as an LD50 in 
milligrams per kilogram, and they do not work for qualitative or binary outputs, such as “active” 
and “inactive.”  

 

Categorization Decisions under Uncertainty 
 

With respect to assigning chemicals to categories and taking into account confidence, by 
definition, the assignments to the high and low toxicity categories need to have high confidence. 
It is therefore of paramount importance for the categorization process to characterize uncertainty 
in the prediction of the toxicity end point.  

Uncertainty is an unavoidable aspect of knowledge discovery from large-scale heterogene-
ous data, such as those discussed in Chapters 3 and 4. It has two main sources: the data them-
selves and the modeling of those data. With respect to data, even physicochemical properties 
cannot be measured with perfect precision. Moreover, such data are usually obtained from data-
bases, which can contain errors that are due to data entry or other processes related to creating 
and populating the databases (Fourches et al. 2010). For biological assays, uncertainties will vary 
considerably with the type of assay. Although automation of some assays has greatly improved 
their reproducibility, there is still variation among batches from a given assay and possibly even 
among chemicals in a given batch. Uncertainty arising from the modeling or analysis approach 
(different aspects of data handling and data analysis) varies with the model and among parameter 
values in a given model.  

There is a rich literature on characterizing uncertainty in experimental and computational 
sciences that need not be recapitulated here. Suffice it to say that the existing approaches span a 
wide range that is based on both “frequentist” and “Bayesian” statistical principles and use ana-
lytical methods (for example, classical confidence intervals) and sampling or simulation-based 
methods (such as bootstrap and Monte Carlo). In some cases, specific guidance is available on 
characterizing uncertainty for a particular application, such as QSAR modeling, gene-expression 
analyses, and pharmacokinetic modeling (IPCS 2008).  

For example, Chapter 3 discussed the availability of Organisation for Economic Co-operation 
and Development (OECD) and Registration, Evaluation, Authorization and Restriction of Chemi-
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cals (REACH) guidance on evaluating the confidence in (Q)SAR models. Although internal and 
external cross-validation make up the current standard approach to characterizing uncertainty in 
QSAR predictions, alternative approaches are being pursued. For example, Gramacy and Pantaleo 
(2010) used a Markov Chain Monte Carlo sampling for the Bayesian Lasso model to assess predic-
tion uncertainties in QSAR analyses. More discussion of other aspects of uncertainty in QSAR pre-
dictions can be found in Sahlin (2013). Parametric methods can also be used sometimes, but these 
might be less appealing for complex data from multiple sources because distributional assumptions 
are likely to be violated. 
 

An additional useful tool for assessing confidence is sensitivity analysis, which can tell 
how the uncertainty in the toxicity prediction of a model or system can be apportioned to differ-
ent sources of uncertainty in its inputs or, equivalently, how much each input is contributing to 
the uncertainty. For example, sensitivity analyses might be performed for several purposes: 
 

 To test the robustness of results by random data perturbation. 
 To decompose the prediction error by relating input and output variables in a model, 

which can help to understand the sources of variation in the model. Such analyses can identify 
inputs that are key contributors to uncertainty and thereby focus research or data generation on 
aspects that could improve or refine the model. 

 To perform model selection through internal cross-validation or external validation. In-
ternal cross-validation can also be used to quantify the degree of fitting or overfitting of a model. 
External validation (meta-analysis and related data streams) is preferred as an independent as-
sessment of a model’s predictive ability.  
 

Finally, it should be noted that these approaches to assessment of uncertainty and sensitivi-
ty might be applied not only to toxicity end point predictions but to the categorization decisions 
themselves. Application to the categorization decision is illustrated in Box 5-2, where uncertain-
ty is analyzed by using the irreproducible discovery rate.  

 
FINDINGS  

 
 Finding: The committee’s recommended prioritization strategy will require integration 

at various stages, and there are many approaches to integration, including formal statistical 
methods (such as meta-analysis), less formal “recombination” methods (such as ToxPi), methods 
that pool datasets, methods that use datasets hierarchically, and methods that link models sequen-
tially. 

 Finding: There are several possible approaches to placing chemicals in categories of 
“high toxicity,” “low toxicity,” and “inadequate data,” including quantitative thresholds based on 
reference chemicals (such as sarin), generic thresholds based on external criteria (such as those 
of the EU and the GHS), and clustering based on reference chemicals. The stability of and confi-
dence in the results of any categorization will be enhanced if the uncertainties are properly quan-
tified.  

 Finding: Multiple levels of complexity require integration, and the committee has dis-
tinguished between integration of predictions among end points (cross–end point integration) and 
integration of different model predictions or data streams that inform a single end point (within–
end point integration). 

 Finding: Given the many types of end points that are relevant to acute, debilitating tox-
icity and the need to place chemicals into categories of “high toxicity,” “low toxicity,” and “in-
adequate data,” the simplest approach to cross–end point integration would be to summarize the 
categorization results for each end point in a scorecard. 
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 Finding: Some of the key policy decisions that DOD will need to make to use the 
committee’s recommended prioritization strategy are (1) the kinds of responses that would be 
considered appropriate end points (for example, neurotoxicity, seizures, or cholinesterase inhibi-
tion), (2) determination of high and low toxicity thresholds for each end point of interest, (3) the 
degree of confidence required to conclude high confidence, and (4) decision rules related to a 
determination of a summary conclusion of high or low toxicity on the basis of multiple end 
points. 

 Finding: Toxicokinetic and ADME behavior can influence the prediction of a chemi-
cal’s acute toxicity potential and resulting categorization, and this emphasizes the need to include 
such considerations into the tiered prioritization strategy.  
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Lessons Learned and Next Steps 

 
The objective of the committee’s conceptual framework as presented in Chapter 2 is to 

predict the potential of a chemical to cause acute toxicity to organ systems that could result in 
debilitating or lethal effects.1 In developing its framework, the committee considered how to 
characterize the inherent toxicity of a chemical, evaluate metabolic and pharmacokinetic attrib-
utes that can modify chemical toxicity, and integrate information over different domains. As dis-
cussed in Chapter 3, the conceptual framework includes models that use physicochemical and 
biological data to make predictions about potential acute toxicity. The predictive models can be 
qualitative (such as structural alerts) or quantitative (such as quantitative structure–activity rela-
tionship [QSAR] models), and the resulting outputs themselves might be qualitative (for exam-
ple, a toxic or nontoxic determination) or quantitative (for example, a potency estimate). Medi-
um-throughput and high-throughput assays will also be needed to predict acute mammalian 
toxicity as reviewed in Chapter 4. The toxicity predictions ultimately will depend on the collec-
tion and integration of the physicochemical and biological data that might be indicators of poten-
tial acute toxicity as discussed in Chapter 5.  

One primary goal of the committee’s conceptual framework is to develop data sufficient to 
categorize chemicals on the basis of their predicted acute toxicity. The committee considered 
existing toxicity-based chemical classification schemes developed for industrial chemicals, agro-
chemicals, biocides, and pharmaceuticals that often use lethality data to estimate toxicity, such as 
the dose required to kill 50% of a population of test animals (LD50) (Seidle et al. 2010). Develop-
ing LD50s was considered a useful benchmarking approach for predicting acute toxicity of chem-
icals of interest to the Department of Defense (DOD) because it allows DOD to exclude low-
toxicity chemicals and to focus its resources on more toxic chemicals of concern. The committee 
considered the need to develop mechanistically based assays and to use well-characterized chem-
icals as positive controls to improve the predictive validity of LD50s and to identify potential 
organ toxicities.  

In the present chapter, the committee briefly discusses some current programs that are 
evaluating or developing modern testing strategies, reviews its suggested tiered testing strategy, 
and highlights important lessons learned from current testing programs that should be considered 
by DOD in developing its future testing strategy. The chapter also provides the committee’s 
overall conclusions and identifies several steps that DOD could take in the short term to medium 
term (3–10 years) to implement a program that uses modern approaches to identify chemicals 
that have the potential to induce life-threatening acute toxicity in deployed personnel. 2 
 

                                                           
1As defined in Chapters 1 and 2, organ systems included the cardiovascular, respiratory, hepatic, renal, 

skeletomuscular, immune, and nervous systems, including special senses (vision and hearing).  
2The committee recognizes that a more detailed research plan is needed and that development of such a 

plan is noted in the statement of task as a potential Phase 2 of this project.  
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MODERN APPROACHES FOR THE ASSESSMENT  
OF ACUTE CHEMICAL TOXICITY 

 
The committee explored whether DOD could adopt a modern testing strategy for the predic-

tion of acute toxicity.3 In particular, the committee’s statement of task required a focus on the as-
sessment of existing high-throughput screening (HTS) methods to identify acutely (and likely high-
ly) toxic chemicals with greater predictivity. The committee considered whether several projects 
were relevant for DOD’s purposes. For example, it examined the European Centre for the Valida-
tion of Alternative Methods (ECVAM) ACuteTox project4 whose stated aim is to develop a strate-
gy to replace all in vivo tests of acute oral toxicity. The ACuteTox effort considers in vitro methods 
that address specific mechanisms of action relevant to acute systemic toxicity (such as assays for 
neurotoxicity) and includes such computational methods as QSAR modeling and physiologically 
based biokinetic modeling.  

Initially, the ACuteTox project selected and tested 97 reference chemicals with six basal cy-
totoxicity assays and compared the results with published human and animal in vivo data (Clothier 
et al. 2008; Sjöström et al. 2008). Later, 57 reference chemicals were tested in a number of func-
tional tests that covered absorption, distribution, metabolism, excretion, and specific organ and 
system toxicity, such as hematotoxicity, neurotoxicity, nephrotoxicity, and hepatotoxicity (Kinsner-
Ovaskainen et al. 2009). Standardized experimental design and data acquisition were used in the 
second phase of ACuteTox program (Kopp-Schneider et al. 2013). Concentration–response data 
were routinely collected (for example, IC20, IC50, EC20, or EC50 values) and served as the statistical 
basis of the development of testing strategies (Kinsner-Ovaskainen et al. 2013; Prieto et al. 2013b). 
The oral acute-toxicity category was predicted using a chemical’s physicochemical properties, in 
silico modeling results, and values (such as IC50) obtained from the in vitro studies (Kopp-
Schneider et al. 2013). In general, the predictive validity seen in the efforts has been moderate to 
low. In addition, there has been little effort to assess the predictive validity for highly toxic chemi-
cals that would be of concern to DOD.  

Examples of large-scale US projects include the Toxicology Testing in the 21st Century 
(Tox21) partnership and the US Environmental Protection Agency (EPA) ToxCast program. The 
ToxCast program uses a large suite of in vitro biochemical (cell-free) and cell-based assays to eval-
uate chemicals and to analyze their bioactivity profiles computationally (Kavlock et al. 2012; Jud-
son et al. 2014; Kleinstreuer et al. 2014). Phase I of the ToxCast program included about 300 con-
ventional pesticide active ingredients that were tested in a battery of cell-free and cell-based assays 
to evaluate the ability of the assays to predict potential human toxicity (Judson et al. 2010). In 
Phase II, the chemical space was broadened to include chemicals that are used in consumer prod-
ucts and industrial processes and unmarketed drugs that were donated by pharmaceutical compa-
nies (Sipes et al. 2013). However, few ToxCast assays were designed specifically to assess acute 
toxicity. Furthermore, there have been few efforts to use HTS approaches to evaluate acute toxicity. 
Regardless, the ToxCast program has identified a number of important technical issues that could 
be considered in the design of a program relevant for DOD (Tice et al. 2013). 

                                                           
3Modern approaches are ones that do not rely primarily on traditional toxicology testing and include 

computational and in vitro or nontraditional in vivo assays.  
4See http://www.acutetox.eu/. The ACuteTox consortium was initially funded with €8 million by the Eu-

ropean Commission’s 6th Framework Programme and included 35 academic, industrial, and government 
research institutes in 13 European countries (Clemedson 2008). The project was divided into 10 work pack-
ages that included selection of reference chemicals, generation of animal and human in vivo databases, 
development of an Internet-based database for central management of all project data, adaptation of promis-
ing in vitro methods to robotic screening platforms, statistical analysis (identification of outliers and design 
of the preliminary algorithm or prediction model), development of in vitro assays for neurotoxicity, and 
construction and optimization of the in vitro testing strategy.  



Copyright © National Academy of Sciences. All rights reserved.

Application of Modern Toxicology Approaches for Predicting Acute Toxicity for Chemical Defense 

98          Application of Modern Toxicology Approaches for Predicting Acute Toxicity for Chemical Defense 

The committee also explored modern toxicity-testing strategies that are under development 
in the pharmaceutical industry. For example, the pharmaceutical industry is exploring ways to 
predict drug-induced liver injury (DILI). DILI is a low-incidence but important idiosyncratic 
cause of drug toxicity and a major reason for attrition during drug development or withdrawal 
from the market (Stephens et al. 2014). Traditional toxicity-testing strategies do not predict DILI 
reliably in patients: fewer than 55% and 25% of DILI drugs are predicted on the basis of the reg-
ulatory animal-toxicity studies and simple in vitro tests, respectively (Olson et al. 2000; Xu et al. 
2004). Box 6-1 describes the recent development of predictive models that can be used in pre-
clinical studies to detect DILI risk in humans. 

The committee was unable to find a robust modern testing program that DOD could readily 
adopt for its purposes. Lessons learned from the ToxCast, ACuteTox, and industry programs do, 
however, provide a great deal of guidance for DOD in designing a system that uses HTS ap-
proaches and predictive models to interpret the performance of cell-free and cell-based assays in 
predicting acute toxicity.  

 

IMPLEMENTATION OF THE COMMITTEE’S CONCEPTUAL MODEL  
FOR ASSESSMENT OF ACUTE CHEMICAL TOXICITY 

 
As discussed in Chapter 2, the committee developed a conceptual framework that links 

chemical structure, physicochemical properties, biochemical properties, and biological activity to 
acute toxicity. Implementation of the conceptual framework will require DOD to support develop-
ment of a suite of databases, assays, models, and tools that are based on in vitro, nonmammalian in 
vivo, and in silico approaches for predicting acute toxicity. As presented in Chapter 2, these data-
bases, assays, models, and tools would be used as part of a tiered prioritization strategy to predict 
acute toxicity (see Figure 6-1). Relatively easily obtained nontesting data (such as existing toxicity 
data or physicochemical properties; see Chapter 3 for more details) could allow initial evaluation of  
 
 

BOX 6-1 An Example of an Integrated Testing Strategy for Predicting Drug-Induced Liver Injury 
 

To facilitate identification of DILI drugs early in the drug-development process, Chen et al. 
(2014a) developed a tool that combines exposure and physicochemical data and a panel of in 
vitro high-content screening (HCS) assays to predict DILI. Implementation of the “rule-of-two” 
model (RO2) that combines high exposure (≥100 mg/day) and high lipophilicity (logP ≥ 3) re-
sulted in high specificity (95%) but low sensitivity (27%); that equates to a high false-negative 
rate. The HCS panel alone, which measured eight cellular end points (including apoptosis, cell 
loss, DNA damage, DNA fragmentation, and mitochondrial potential), was marginally more 
sensitive (39%). Integration of the RO2 model with the HCS assay panel increased the sensi-
tivity to 55% (specificity remained at 95%). 

Thoughtful consideration of the data sources or models to be integrated and of the compati-
bility of the data streams from these sources is required to increase the likelihood of success of 
the prediction strategy. Reported successes (Rusyn et al. 2012; Chen et al. 2014a) typically re-
sulted from integration of models that were based on different data sources that captured a 
greater diversity of information. In Chen et al. (2014a), only six of the 27 positives were predicted 
in both the RO2 and HCS strategies; this indicates the complementarity of the two approaches. 
Incorporation of mechanistic information into DILI predictions can improve the model perfor-
mance (Chen et al. 2014b). 

Published hybrid approaches to integrating chemical descriptors with in vitro data have had 
little success in improving predictions obtained on the basis of in vitro data alone (Low et al. 
2011; Zhu et al. 2014). Those approaches directly pool data from disparate sources for modeling 
purposes. Incorporation of different modeling strategies that retain more information from hetero-
geneous data structures in hybrid integrations would likely maximize the data available for as-
sessment and result in improved predictivity. Similarly, use of adapters might facilitate data avail-
ability and integrity (Chen et al. 2014b).  
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a large number of chemicals in the initial tiers. Higher testing tiers incorporate a variety of assays 
(in vitro or nontraditional in vivo) whose biological complexity increases as a chemical moves from 
one tier to the next. At each tier, a decision is made as to whether further assessment of toxicity is 
needed. The ultimate goal of the effort is to sort chemicals into categories that would indicate the 
predicted acute-toxicity hazard (for example, low toxicity, high toxicity, or uncertain toxicity be-
cause of inadequate data) and help to prioritize chemicals for follow-up evaluation. DOD can also 
apply its expertise to use other factors that were not considered by the committee (such as chemical 
availability, ease of chemical synthesis, and weaponizability) to exclude chemicals from further 
testing. One goal of the overall approach is to reduce the number of chemicals that progress through 
each tier in an efficient and cost-effective manner.  

 
DEVELOPMENT OF A MODERN TIERED APPROACH FOR  

PREDICTING ACUTE TOXICITY: INITIAL STEPS  
 

There are some initial steps that DOD could take to implement the committee’s tiered test-
ing strategy. This section describes in greater detail some approaches that might be useful for 
DOD to pursue in implementing modern testing approaches for predicting acute toxicity.  
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FIGURE 6-1 Prioritization strategy based on a tiered approach for using predictive-toxicology models and 
tools to evaluate agents for acute toxicity. 
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Computational Approaches 
 

Chapter 3 discusses a variety of nontesting approaches that can be used to predict acute 
toxicity. Physicochemical data can be used to predict physical hazards or reactivity, such phar-
macokinetic characteristics as metabolism and distribution, and likely routes of exposure. Those 
data can help to group chemicals by using chemical descriptors of various physicochemical or 
topological properties and to identify the biologically relevant chemical space (Lipinski and 
Hopkins 2004). Physicochemical data can also help to fill data gaps and support read-across ap-
proaches that apply data on a particular property or effect of a tested chemical to a similar untest-
ed chemical. A variety of in silico methods have been developed to predict the molecular sites 
where metabolism could occur and the types of metabolites that could be formed.5 Several avail-
able QSAR models use structural properties or physicochemical properties to predict acute oral 
LD50s. Few such models are available for predicting inhalation LC50s, and the committee was 
unable to identify models for predicting dermal LD50s.  

A few QSAR models predict neurotoxicity and cytotoxicity but not other end points that are 
relevant for acute, debilitating toxicity. Box 6-2 describes a QSAR model for the prediction of ace-
tylcholinesterase (AChE) inhibition. Quantitative structure–toxicity relationship models have also 
been developed to evaluate the role of lipophilicity, polarity, molecular geometry, and quantum 
chemical descriptors for molecular orbital energy in the toxicity of organophosphate insecticides 
(Can 2014). Inhibition of AChE and other cholinesterases is an important step in the toxicity of 
nerve-gas agents (such as VX and soman) that are highly potent organophosphates; thus, the com-
putational models that have been developed could be useful in a DOD testing strategy.  

A large number of chemicals have reported LD50 data, which cover a large portion of chemi-
cal space. Although LD50 data are available on many chemicals, they are not informative about a 
chemical’s mechanism of action. Such knowledge is important because acute toxicity might in-
volve multiple biochemical mechanisms; this highlights the need for improved mechanistic insights 
about structure–toxicity relationships. Efforts to derive acute-toxicity QSAR models that have high 
predictive accuracy have fallen short because of mechanistic complexities. 

 

High-Throughput Screens 
 

How the Tox21 and ToxCast data have been used to predict mammalian toxicity was demon-
strated recently by the National Toxicology Program Interagency Center for the Evaluation of Al-
ternative Toxicological Methods (NICEATM), which evaluated whether HTS data could predict 
the results of an in vivo uterotrophic assay that screens for estrogen activity in rodents (see Box 6-
3). The project is part of a larger NICEATM and EPA effort to develop a robust in vitro screen for 
chemicals with estrogenic or androgenic activity. The committee recognizes that estrogenic and 
androgenic end points are not relevant for the assessment of acute toxicities of concern to DOD, but 
the NICEATM and EPA efforts provide important insights. The committee found the targeted tox-
icity-prediction effort to be relatively successful (see Box 6-3); this finding is promising for the 
DOD goal of acute-toxicity prediction. However, estrogenic activity is, in principle, an easier tar-
get for prediction because it depends on specific gene-expression patterns for which sensitive and 
specific HTS assays can be designed. Nevertheless, the effort identified several needed features 
that can help to inform future DOD efforts, including the following:  
 

 Performance standards for new assays that consider validated test methods, reference 
chemicals, and standards for assay accuracy and reliability (Wind and Stokes 2010; Stokes et  
al. 2012).   

                                                           
5Metabolites could also be identified through additional experimentation, for example, by using chemi-

cal analyses of biological test systems or by comparing results obtained from cell systems that use different 
levels of metabolic competence. 
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BOX 6-2 The Use of Computational Approaches for Evaluating  
Chemical-Induced Inhibition of Acetylcholinesterase 

 
Receptor-specific scoring functions have been developed for predicting binding affinities of 
human acetylcholinesterase (AChE) inhibitors. A study performed by Guo et al. (2004) illus-
trates the general approach used to develop predictive (Q)SAR models. In this case, 69 chem-
icals with IC50 data measured with a human AChE assay were selected for training and testing 
of the scoring function. The IC50 of the 69 chemicals ranged from 0.33 to 30,000 nM. Docking 
calculations were carried out with published software (the Gold program). A weighted sum of 
electrostatic and van der Waals interactions between ligands and the receptor residues was 
calculated. Guo et al. examined the correlation of a calculated activity (pIC50) with experimen-
tally derived IC50 data. The left figure shows the correlation for a 53-ligand training set (R2 = 
0.89). The right figure shows the results of using a novel 16-chemical test set (R2 = 0.69).  
 

 

 
 

 Suitable in vivo end points and study results that can be used to assess HTS assay perfor-
mance (Rotroff et al. 2013); that is, there is a need for phenotypic anchoring of the in vitro results.  

 Reference chemicals that have known biological activity (such as ERα in the cited 
NICEATM project) for evaluating the sensitivity, specificity, and predictivity of assays to identi-
fy agonists and antagonists for a biological target of interest (Huang et al. 2014). 

 Appropriate data-integration models that can pool information from multiple assays 
(Rotroff et al. 2013); model performance can be evaluated by calculating sensitivity, specificity, 
and balanced accuracy for a specific set of criteria across chemical space (Rotroff et al. 2013; 
Cox et al. 2014).  

 Recognition that misclassification of chemicals might occur (Rotroff et al. 2013; Cox et 
al. 2014). Possible explanations for misclassification of a chemical include a failure to test it at a 
high enough concentration to exhibit a response in ToxCast assays, inadequate metabolic compe-
tence of the test system, and species, tissue, or cell-type differences in response between the 
ToxCast assay and in vivo models that are used to assess HTS assay performance (Rotroff et al. 
2013). Although not addressed directly by the ToxCast program, an additional source of misclas-
sification of a chemical could be the variability in the in vivo data that are used to assess the abil-
ity of an assay to predict acute toxicity. 
 

The example shown in Box 6-3 illustrates a current trend in the application of HTS testing 
as a replacement for some animal-based assays. In particular, the use of HTS assay data as part 
of an endocrine screening program has received some traction in the scientific community (Dix 
et al. 2007; Thomas et al. 2012; Rotroff et al. 2013; Thomas et al. 2013; Cox et al. 2014; Becker 
et al. 2015). In some cases (such as chemical interactions with the estrogen or androgen receptor 
system), adoption of HTS assays in the context of a tiered testing approach as a replacement for 
in vivo assays appears likely (van der Burg et al. 2015).  
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BOX 6-3 The Use of HTS Assays for Identifying Endocrine Disrupting Potential (Casey 2014) 
 
In vivo phenotype: Estrogenic bioactivity was assessed with the EPA and Organisation for Eco-
nomic Co-operation and Development (OECD) rodent uterotrophic assay in the ovariectomized 
rat, immature rat, or ovariectomized mouse. Duration of dosing (oral, subcutaneous, or intraperi-
toneal) was a minimum of 3 days. Suitable in vivo data on more than 100 chemicals were identi-
fied.  
 

In vitro data: Results were obtained from 18 in vitro assays that measure estrogen receptor (ER)–
mediated bioactivity. The in vitro assays (chosen from the EPA ToxCast or Tox21 program) 
probe perturbations of the ER pathway at multiple points (ER binding, receptor dimerization, DNA 
binding, RNA transcription, protein production, and cell proliferation) (Rotroff et al. 2014). Chemi-
cals used in the evaluation included several reference chemicals of known activity against the ER 
(such as estradiol). 
 

Outputs: A computational model was developed to calculate area-under-the-curve (AUC) scores 
for ER agonist (R1) and antagonist (R2) bioactivity. The scores were compared with the results of 
the uterotrophic assay results. 
 

 
 

Conclusion: Data analyses showed good correlation between the calculated AUC scores (R1) 
and results of the uterotrophic assay. The study demonstrated that ToxCast in vitro assays per-
form adequately for prioritizing chemicals for further evaluation of ER activity, and the HTS as-
says are predictive of the likelihood of a positive or negative finding in more resource-intensive 
assays.  

 
 

The predictiveness of many HTS assays, however, remains low (< 50%) (Thomas et al. 
2012; Cox et al. 2014; Patlewicz et al. 2015). Many in vivo end points cannot be predicted any 
better by using HTS assay data than by using chemical descriptor information and QSAR mod-
els. Thomas et al. (2012) identified several factors that could account for the relatively poor abil-
ity of in vitro assays to predict in vitro responses, including (1) the failure of current in vitro as-
says to capture biochemical and cellular processes or properties in the in vivo tissues with 
adequate fidelity; (2) the possibility that in vitro assays do not capture biological context-specific 
outcomes reliably; (3) inadequate coverage of pathways, protein targets, and cell types; (4) sub-
stantial species differences between the in vitro assays and in vivo end points that are being pre-
dicted; and (5) the inadequate number of positive chemicals for each end point to capture the 
broad array of mechanisms that lead to in vivo toxicity. 

 
Cytotoxicity Assays as General Indicators of Acute Toxicity 

 
As discussed in Chapter 4, one approach to predicting acute toxicity relies on in vitro cyto-



Copyright © National Academy of Sciences. All rights reserved.

Application of Modern Toxicology Approaches for Predicting Acute Toxicity for Chemical Defense 

103 Lessons Learned and Next Steps 

toxicity assays that use human cells in culture (Seibert et al. 1996; Ekwall et al. 1998; Halle 
2003; NICEATM 2006; Xia et al. 2008; Halwachs et al. 2013; Prieto et al. 2013a). That ap-
proach uses relatively simple assays and presumes that in vivo toxicity does not result primarily 
from impairment of specific functions of differentiated cells (Prieto et al. 2013a). In many cases, 
validation of the assays rests on an examination of the regression equation from the correlation of 
experimental IC50

6 cytotoxicity values with published LD50s,7 an approach that can be used to 
estimate unknown LD50 values from IC50 cytotoxicity values measured in vitro (Seibert et al. 
1996). The committee examined the NICEATM and ECVAM validation study that assessed the 
predictive capacity of the BALB/3T3 neutral-red uptake cytotoxicity assay (see Box 6-4); that 
assay has been evaluated for its ability to identify chemicals that would be labeled as toxic or 
hazardous (LD50 < 2,000 mg/kg) (NTP 2014). The overall results of the studies have shown that 
there is a relatively good correlation of around 60–70% between in vitro cytotoxic concentrations 
(IC50s) and rat oral LD50s (JRC 2013).  

Although cytotoxicity assays hold some promise for the prediction of acute toxicity, sever-
al important caveats and assay limitations need to be considered, including the following: 
 

 Little evidence of assay performance exists for highly toxic chemicals. DOD is faced with 
identifying agents that have extremely low LD50s or LC50s. For example, acute oral LD50 values 
reported in mice for some agents of current concern to DOD are well below 1 mg/kg: botulinum 
toxin (0.001 μg/kg), ricin (3 μg/kg), VX (15 μg/kg), anatoxin–a(s) (50 μg/kg), soman (64 μg/kg), 
and sarin (100 μg/kg).8 In addition, those examples of highly toxic chemicals have different mech-
anisms of action, including inhibition of cholinesterase activity (for example, anatoxin-a(s), VX, 
soman, and sarin), ribosome inactivation (ricin), and blockade of acetylcholine secretion (botuli-
num toxin). Applying the BALB/3T3 NRU cytotoxicity assay to a set of 67 chemicals and using 
the rat LD50 data from the Registry of Cytotoxicity showed that predictions for highly toxic chemi-
cals were generally poor—0/6 for chemicals with an LD50 below 5 mg/kg and 1/11 chemicals with 
an LD50 of 5–50 mg/kg (NICEATM 2006). Substances with LD50s of 300–2,000 mg/kg were pre-
dicted better by this assay—about 81% accuracy (NICEATM 2006). 

 Prediction of acute toxicity with cytotoxicity assays remains highly variable. There are 
several possible reasons why acute systemic toxicity of some chemicals is poorly predicted by 
basal cytotoxicity assays. First, toxicity might be due to tissue- or organ-specific effects caused 
by the chemical of interest. For example, substances with a mechanism of action on molecular 
targets (receptors, channels, and enzymes) are not modeled in most cell lines that are used for 
cytotoxicity assays, and this probably accounts for poor prediction of the toxicity of anatoxin, 
botulinum toxin, soman, and sarin, which perturb neuronal synapses. Second, even though a gen-
erally toxic mechanism is modeled by a cell line, the cell line could be much less sensitive to this 
mechanism than is some sensitive cell type in the human body. For example, ricin targets protein 
synthesis, which is needed by all cells, but in the human body, only specific organs are highly 
sensitive. Third, chemicals have restricted accessibility to target cells or tissues. Fourth, chemical 
toxicity might depend on bioactivation pathways that are absent in the test system. Fifth, a chem-
ical might be quickly eliminated or detoxified through metabolism; thus, in vitro results might 
overpredict toxicity seen in vivo. 

 Assay limitations can also contribute to reduced predictive power of in vitro cytotoxici-
ty assays. For example, actual concentrations available to cells or to intracellular targets in in 
vitro tests might be much lower than the nominal concentrations.  
 

                                                           
6IC50 is the concentration of a substance that causes 50% inhibition in vitro. 
7In some cases, LD50 values are available from the Registry of Cytotoxicity (Halle 2003). 
8LD50 data available from Franz (1997). 
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BOX 6-4 The Use of the BALB/3T3 Neutral-Red Uptake  
Cytotoxicity Assay to Predict Acute Toxicity 

 
Assay: The 3T3 neutral-red uptake (NRU) cytotoxicity assay uses the BALB/c3T3 mouse fibro-
blast cell line and is based on the ability of viable cells to incorporate and bind the dye neutral red 
(NR). The assay is usually performed as a 96-well cytotoxicity-based assay that spectrophoto-
metrically measures (Stokes et al. 2008) the concentration-dependent reduction in NRU by cells 
after exposure to a test material. The basic concept of basal cytotoxicity assays is that chemicals 
exert their toxic effects by disrupting structures and functions universal to all cells, such as cell 
membranes (Gennari et al. 2004). With the basal cytotoxicity assays, it is possible to quantify the 
cytotoxicity of a chemical by its IC50 value, that is, the concentration of the tested substance that 
decreases cell viability by 50% in the cell culture. 
 
Chemicals: Chemicals tested in this assay included pharmaceuticals, pesticides, industrial chem-
icals, and food additives. The number of chemicals varied between test phases and ranged from 
about 70 to 300. 
 
Predictive approach: The study assessed the predictive capacity of the assay in conjunction with 
a dichotomous prediction model that yielded only two categorical predictions: potential negative 
(predicted LD50 > 2,000 mg/kg) and potential positive (predicted LD50 < 2,000 mg/kg).  
 
The figure below (from NICEATM 2006, p. 6-19) shows the regressions that used the Registry of 
Cytotoxicity (RC; Halle 2003) rat acute oral LD50 data on millimolar (LEFT) or weight (RIGHT) 
units for 282 test substances. 
 

 
 
Overall assay performance: The 3T3 NRU method was shown to have a high sensitivity (92–
96%) and a low false-negative rate (4–8%) (Prieto et al. 2013a). The assay also had a high false-
positive rate or low specificity, which limited the usefulness of positive test results and led to a 
comparably low rate of identification of true negatives as such (40–44%). However, negative test 
results of the 3T3 NRU were largely accurate, that is, substances identified as negatives had low 
toxicity (low false-negative rate). 
 
Assay limitations: The 3T3 NRU assay addresses specifically the toxicity mechanism of basal 
cytotoxicity; fibroblast cells cannot be used to evaluate interactions of chemicals with neuronal or 
cardiac receptors and ion channels and other tissue-specific molecular targets (NIEHS 2009). 
Furthermore, the cell line lacks metabolic competence associated with Phase I and Phase II bio-
transformation and so is sensitive to cytotoxicity induced by the parent chemical and not its me-
tabolites. 

 
 

The ACuteTox project identified several important technical considerations in the design 
of an in vitro testing strategy (Kopp-Schneider et al. 2013). Some of the more important consid-
erations were the following: 
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 Select chemicals to span a wide range of outcomes of interest.  
 Perform all assays with all chemicals.  
 Be aware that chemical solubility might limit the concentrations that can be used in the 

test system. 
 Design experiments carefully to guarantee reliable and meaningful estimates. 
 Avoid overfitting of the prediction model, which occurs when a model is fitted exactly 

to the training data; this hinders performance in future screening efforts or applications. 
 Use cross-validation and bootstrapping to estimate error rates. 

 
A QSAR model based on in vitro cytotoxicity data and oral LD50 values from the Registry 

of Cytotoxicity has been developed for use in predicting acute toxicity in rodents (Freidig et al. 
2007). The predictions from that model tend to overestimate toxicity; thus, substances that were 
predicted to have no or low toxicity with that model could be eliminated from additional in vivo 
testing.   
 

Mechanistically Based Assays 
 

Another approach that has been used to predict acute chemical toxicity is based on the de-
velopment of assays that evaluate a mechanism of action known to be critical for a chemical’s 
toxic response. One mechanism-based example explored by the committee uses HTS assays and 
computational approaches to predict chemical-induced inhibition of AChE activity. Inhibition of 
AChE results in an accumulation of acetylcholine (ACh) at cholinergic synapses and associated 
clinical signs. A variety of agents, including nerve agents (such as VX and soman) and other 
toxic organophosphorus (OP) chemicals and some carbamates, inhibit AChE activity. Several 
molecular models have been developed that use reference chemicals to describe inhibitor binding 
with human (and other) AChE (Barril et al. 2001; Kua et al. 2002; Guo et al. 2004; Akula et al. 
2006; Sopkova de Oliveira Santos et al. 2010; Gupta and Mohan 2011; Deb et al. 2012). The 
models evaluate inhibitor interactions at the two principal binding sites—catalytic anionic site 
(CAS) and a peripheral anionic site (PAS)—in the AChE enzyme. The nerve gases and other 
classical AChE inhibitors bind a phosphoryl group on a serine residue in the CAS (Deb et al. 
2012). Another approach for assessing chemical–AChE interactions is to evaluate how the 
chemical of interest docks with the active site and other portions of the protein. Several 
structure–activity relationships (SARs) based on pose9 predictions for the interactions have been 
developed (Huang et al. 2010; Samadi et al. 2010). Results obtained with those computational 
approaches often depend on the type of ligand, the protein conformation, and the presence of 
water (Berg et al. 2011). Box 6-5 illustrates several examples of how an HTS approach can be 
used to screen chemicals as AChE inhibitors.  

Similar mechanism-based screening efforts have been developed by the pharmaceutical 
industry and others to develop in vitro models that can predict in vivo biology in support of drug-
safety assessment or drug discovery. For example, some investigators have examined the 
relationship between cytotoxicity data, basal gene-expression measurements, and a chemical’s 
structure to identify putative molecular targets and the role of gene expression in cytotoxicity 
(Covell et al. 2005). Another example involves screening chemicals for their ability to inhibit 
mitochondrial complex I of the electron transport chain (Glover et al. 2007). Berg et al. (2006) 
successfully grouped chemicals by mechanism of action (for example, modulators of NFkB 
signaling or the phosphatidylinositol 3-kinase/Akt signal-transduction pathway) by using data from 
human cell-based HTS assays. Such approaches are consistent with the development of an adverse-
outcome pathway (AOP), which is a linear conceptual model that links a molecular initiating event, 
key events, and an adverse outcome (Figure 3-1) (Ankley et al. 2010; Garcia-Reyero 2015).  

                                                           
9The term pose refers to the conformation and alignment of a molecule (Coats 2002). 
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BOX 6-5 The Use of HTS Assays to Evaluate Inhibition of Acetylcholinesterase 
 
Berg et al. (2011) screened a chemical library consisting of 17,500 substances by using the 
colorimetric Ellman assay adapted to a 96-well format and a recombinant human AChE. The 
hydrolysis of acetylthiocholine iodide was monitored, and the average slope of the positive 
controls was set to 100% activity. At an assay concentration of 50 µM, 124 chemicals reduced 
the enzymatic activity of AChE by at least 70% in the single-replicate assays. The chemicals 
had a full dose–response curve determined to verify chemical inhibitory activity and identify 
potential false-positive results. A second set of chemicals that had no activity in the HTS but 
structural and physicochemical features similar to those of the positive hits was used to identify 
false negatives. The AChE inhibitors discovered in the screening campaign are chemically 
diverse, with molecular weights ranging from 234 to 596 Da, logP(o/w) from −1.16 to 8.14, and 
0–12 rotatable bonds. Five principal components (PCs) proved significant: they were related 
mainly to size, hydrophobicity, flexibility, charge (positive, neutral or negative), and electronic 
properties associated with halogens and aromatic elements (Berg et al. 2011). The figure be-
low illustrates the chemical space as established by PC analysis of the physicochemical prop-
erties of the 124 hits (gray dots) that were identified in the HTS performed by Berg et al. 
(2011). 
 

 

 
 

An AOP begins with a well-defined molecular initiating event and then describes the key 
events along a biological pathway that ultimately lead to an adverse outcome associated with 
chemical exposure. One has been developed for lethality associated with AChE-inhibiting or-
ganophosphate and carbamate pesticides (Russom et al. 2014). That AOP considers the role of 
metabolism (such as metabolic activation by cytochrome P450s to form oxon metabolites of 
some organophosphate pesticides) and links the main initiating event (cholinesterase inhibition) 
with various physiological cholinergic responses. Whether that or other AOPs in development 
(such as the ones for nonpolar narcosis and mitochondrial toxicity10) will be relevant for the 
highly toxic chemicals of concern to DOD is unknown but deserves further study. 

 

OTHER CONSIDERATIONS 
 

The committee has identified several broad technical considerations that are important, 
such as the use of reference chemicals and development of appropriate data-integration models. 

                                                           
10OECD provides additional information about developing AOPs at http://www.oecd.org/chemicalsafe 

ty/testing/listsofprojectsontheaopdevelopmentprogrammeworkplan.htm. 
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DOD is faced with several additional challenges that will need to be considered as it develops a 
tiered testing program. They include technical challenges associated with the assessment of 
chemicals for direct debilitating portal-of-entry effects (such as skin blistering and pulmonary 
edema) because there are few in vitro systems for assessing the acute toxicity of inhaled chemi-
cals or agents that produce skin blistering. Likewise, it is unknown whether toxicity screens de-
veloped to predict oral toxicity could also predict dermal LD50s or inhalation LC50s. Another 
important challenge that DOD faces is related to the broad array of chemicals (or chemical clas-
ses) that could require assessment. That issue might require DOD to develop distinct tiered ap-
proaches for different chemical classes, such as metals. DOD will also need to support the devel-
opment of HTS assays for mechanisms of actions that are known or suspected to be involved in 
acute chemical toxicity. In the future, AOPs and QSARs could be developed to strengthen 
DOD’s ability to predict acute chemical toxicity (Tollefsen et al. 2014). Finally, DOD will need 
to develop methods for integrating data across physicochemical and biological domains. 

DOD has a history of using alternative test methods for the assessment of chemical-warfare 
agents. For example, the US Army’s Medical Chemical Defense Research Program used a variety 
of assays to elucidate mechanisms of action and identify countermeasures for many of the classical 
chemical-warfare agents, such as sulfur mustard, lewisite, nerve agents, and hydrogen cyanide (see 
Siddell et al. 1997; Somani and Romano 2001). Considerable DOD effort went into being able to 
conduct the assays safely when working with agents, such as soman and VX, which have human 
dermal LD50 estimates of 0.14 and 5 μg /kg of body weight, respectively. If the overt toxicity of a 
new or novel chemical is totally unknown and within an order of magnitude or so of a classical 
chemical-warfare agent’s potency, serious consideration of the engineering controls necessary to 
conduct the assays will be required. Because few research facilities are equipped to work with 
known highly toxic chemical-warfare agents as reference chemicals, DOD might be required ini-
tially to use surrogate chemicals that have a shared chemical mechanism or clinical effect of more 
militarily relevant agents.  

The committee expects that in the next 3–10 years any tiered testing approach will not be 
able to replace completely the need for follow-up targeted in vivo studies to confirm the toxicity 
of a chemical of interest. Indeed, the state of the science suggests that development of a predic-
tive acute-toxicity program will require extensive DOD investment in development of fit-for-
purpose assays, (Q)SAR and other computational modeling approaches, and in vitro–in vivo ex-
trapolation and data-integration methods for the prediction of acute toxicity. To begin the in-
vestment, the committee recommends that DOD initiate pilot studies that evaluate chemical clas-
ses of highest concern with well-characterized reference chemicals. The pilot studies will allow it 
to develop the assays and tools that are needed to predict acute chemical toxicity efficiently and 
accurately and to evaluate the rate of false negatives and false positives. The pilot studies could 
also examine how generalizable the results of various assays and tools are from one chemical 
class11 to another. That research would allow DOD to begin to address the size of the chemical 
space needed to make predictions about unknown chemicals. DOD could benefit from leveraging 
its efforts with existing federal activities, such as the ToxCast program. Collaboration would 
allow DOD to complete pilot studies more rapidly.  

 
FINDINGS AND RECOMMENDATIONS 

 
 Finding: On the basis of its review of the current state of the science, the committee 

concludes that development of a screening program to predict acute toxicity that incorporates 
such information as existing toxicity data, physicochemical properties, and results from in silico 

                                                           
11In this context, chemical class is defined broadly to include structurally related chemicals, chemicals 

that have different mechanisms of action, and chemicals that have different toxic end points, such as hepa-
totoxicity and neurotoxicity.  
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modeling and in vitro testing is consistent with and supported by other testing frameworks that 
use modern toxicology data. 

 Finding: The current state of the science for prediction of acute toxicity with computa-
tional approaches is seeing steady growth. An investment by DOD in computational approaches 
could yield benefits in characterizing the toxicity of chemicals on which toxicity data are sparse 
or lacking.  

 Finding: Prediction of acute toxicity with HTS assays is in its infancy, and DOD will 
need to evaluate what assays or approaches might be applicable for evaluating acute toxicity for 
its system and consider the lessons learned from current large-scale HTS programs. Regardless, 
an investment by DOD in HTS approaches could yield benefits in characterizing the toxicity of 
chemicals on which few or no toxicity data are available. HTS approaches might prove useful in 
excluding chemicals that have low toxic potential (for example, rodent LD50 greater than 1,000 
mg/kg) from further testing and might also help to identify more toxic chemicals of concern for 
further testing.  

 Finding: There are sufficient data to suggest that DOD could use simple cytotoxicity 
assays to identify chemicals that have low acute-toxicity potential; this would allow it to focus its 
attention on more toxic chemicals. Additional effort is needed to determine whether the assays 
are relevant for the identification of highly toxic chemicals that could be used against deployed 
troops. Furthermore, because simple cytotoxicity assays fail to predict toxicity of highly toxic 
chemicals that act on specific molecular targets, such as neuronal synapses, they would need to 
be supplemented with assays designed specifically to detect such effects.  

 Finding: On the basis of scientific advances, the committtee concludes that the 
development of appropriate cellular models and targeted mechanistically based assays could 
provide DOD with a useful resource for understanding and predicting potential toxicity of 
chemicals. In particular, having more explicit knowledge available on the numerous mechanisms 
of action that lead to acute systemic toxicity would be valuable in the design and validation of 
integrated prediction methods. 

 Recommendation: DOD should initiate pilot studies that evaluate chemical classes of 
highest concern with well-characterized reference chemicals. The pilot studies will allow it to de-
velop the assays and tools that are needed to predict acute chemical toxicity efficiently and accu-
rately and to evaluate the rate of false negatives and false positives.  
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ences of North Carolina State University. The primary objective of his research is to provide a 
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clude neurotoxicology, nasal toxicology, pharmacokinetics, and cognition and olfaction in ani-
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Committee on Design and Evaluation of Safer Chemical Substitutions: A Framework to Inform 
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of Environmental and Molecular Toxicology at Oregon State University. Dr. Waters received a 
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Barbara Wetmore is a senior research investigator at The Hamner Institutes for Health Scienc-
es. Her research focuses on integration of predictive modeling tools with high-throughput screen-
ing and other in vitro strategies to address issues of importance in chemical safety and risk as-
sessment. Other research interests have been the application of genomic and proteomic tools to 
inform chemical mode-of-action assessments and biomarker discovery. She is vice-president-
elect of the Society of Toxicology’s In Vitro and Alternative Methods Specialty Section, and she 
has served as a study-section reviewer for the US Environmental Protection Agency and as an 
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Yvonne Will is a senior director and the global science and technology lead for drug safety at 
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Available Data or Databases 

 
There are many sources of acute-toxicity data. They include peer-reviewed literature and 

secondary sources, such as The Merck Index (O’Neil 2013). Several acute-toxicity databases can 
be easily searched by using chemical name, CAS Registry number, chemical structure, and other 
identifiers, and some can also be searched on the basis of the type of study, toxic effect, species, 
sex, dose, exposure duration, and route of exposure. Some databases will tabulate the results of a 
search. Comprehensive overviews of major acute-toxicity databases are available (Tsakovska et 
al. 2006; Lapenna et al. 2010). Brief overviews of a few are described here. 

Several US federal agencies maintain databases of toxicity data. The public version of the 
US Environmental Protection Agency (EPA) Toxicity Reference Database (ToxRefDB) contains 
data from chronic, subchronic, developmental, and reproductive studies. It is also linked to the 
agency’s ToxCast program. The EPA Aggregated Computational Toxicology Resource (AC-
ToR) includes acute-toxicity data that are compiled from the Integrated Risk Information System 
(IRIS), Organisation for Economic Co-operation and Development (OECD) Summary reports, 
and Agency for Toxic Substances and Disease Registry documents. Unlike ToxRefDB, the AC-
ToR database is not directly linked to acute-toxicity information on ToxCast or Tox21 chemi-
cals. EPA also maintains the Toxic Substances Control Act Inventory and the SUPERLIST set of 
regulatory resources. 

The National Library of Medicine (NLM) manages a network of databases called 
TOXNET®, which makes it possible to search for acute-toxicity information that is available in 
the Hazardous Substances Data Bank (HSDB). The most convenient means of accessing acute-
toxicity information is through a chemical search that uses ChemIDplus, which has direct links to 
resources in NLM, other federal agencies, states, and scientific sites. The NLM databases contain 
records for more than 400,000 chemicals. NLM also maintains Web-site links at http://sis.nlm. 
nih.gov/chem/alllocators.html to other databases, such as the Canadian Domestic Substances 
List, the European Inventory of Existing Commercial Substances, the FDA Drugs@FDA system, 
and databases of the International Agency for Research on Cancer. 

Several commercially available databases are also available. For example, Leadscope, Inc. 
markets a toxicity database that contains nearly 180,000 chemical structures and over 400,000 
toxicity-study results derived from the US Food and Drug Administration Priority-based As-
sessment of Food Additives (PAFA) Database, the National Toxicology Program Chronic Data-
base, the Registry of Toxic Effects of Chemical Substances (RTECS), and the DSSTox Carcino-
genicity Potency Database (CPDB) (Leadscope 2012). Acute-toxicity data related to multiple 
exposure routes are available in the PAFA database and RTECS.  

Several international databases are available. A multinational OECD database, eChemPor-
tal1, is a no-cost publicly available acute-toxicity database that can be searched by using a variety 
of chemical identifiers. One of its strengths is that it includes classification results based on the 
Globally Harmonized System of Classification and Labelling of Chemicals (GHS). The Europe-

                                                           
1See http://www.echemportal.org/echemportal/substancesearch/substancesearchlink.action. 
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an Chemicals Agency also manages an electronic database derived from Registration, Evalua-
tion, Authorisation, and Restriction of Chemicals (REACH) registration dossiers for chemical 
substances manufactured or imported in Europe. The OECD QSAR Toolbox is a software tool 
that facilitates the development, evaluation, justification, and documentation of chemical catego-
ries for read-across. It contains regulatory inventories, toxicity data, and chemical-structure in-
formation that encode structure–activity relationship information.  
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