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F O R E W O R D

By	Waseem Dekelbab
Staff Officer
Transportation Research Board

This report provides proposed revisions to Section 1.3—Design Philosophy of the AASHTO 
LRFD Bridge Design Specifications with detailed examples of the application of the proposed 
revisions. The proposed revisions include system factors that can be used during the design 
and safety assessment of bridges subjected to distributed lateral load being evaluated using  
the displacement-based approach specified in the AASHTO Guide Specifications for LRFD 
Seismic Bridge Design or the traditional force-based approach. Also, the report presents 
system factors calibrated for application with bridge systems subjected to vertical vehicular 
loads. The material in this report will be of immediate interest to highway design engineers.

Quantification of redundancy is not fully formulated for bridge engineers. Redundancy can 
be considered during design by using load modifiers (i.e., design factors on the load side of 
the LRFD equation that reflect the ductility, redundancy, and operational importance of 
the structure) from the AASHTO Load and Resistance Factor Design (LRFD) Bridge Design 
Specifications. However, the value of load modifiers is determined by judgment rather than 
through a calibration process. To ensure uniform system performance for different bridge 
configurations, geometrical arrangements, and material and structure types, system fac-
tors were proposed in NCHRP Report 406: Redundancy in Highway Bridge Superstructures 
and NCHRP Report 458: Redundancy in Highway Bridge Substructures. These past efforts 
developed superstructure and substructure redundancy independently. A new approach 
was needed to focus on a combined system including superstructure and substructure 
interaction.

Research was performed under NCHRP Project 12-86 by the City College of the City Uni-
versity of New York to (1) develop a methodology to quantify bridge system reliability for 
redundancy; (2) recommend revisions to the AASHTO LRFD Bridge Design Specifications; 
and (3) provide illustrative applications based on the recommended revisions.

A number of deliverables are provided as appendices. These are not published herein but 
are available on the TRB website by searching for NCHRP Report 776. These appendices are 
titled as follows: 

•	 APPENDIX A.1—Specifications
•	 APPENDIX A.2—Commentary
•	 APPENDIX A.3—Implementation examples
•	 APPENDIX B.1—Redundancy Analysis of Truss Bridge Example
•	 APPENDIX B.2—Redundancy Analysis of Steel Tub Bridge
•	 APPENDIX B.3—Redundancy Analysis of Prestressed Multi-cell Prestressed  

Concrete Bridge
•	 APPENDIX C—Review of the States of the Art and Practice
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•	 APPENDIX D.1—Redundancy Analysis of Composite Spread Box Girder  
Superstructures

•	 APPENDIX D.2—Redundancy Analysis of Prestressed Concrete Box Girder Bridges
•	 APPENDIX D.3—Redundancy Analysis of Steel I-Girder Bridges under Vertical Load
•	 APPENDIX D.4—Analysis of Steel I-Girder Bridges under Lateral Point Load
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S U M M A R Y

Bridge System Safety  
and Redundancy

This report develops a method to calibrate system factors that can be applied during 
the design and load capacity evaluation of highway bridges to account for bridge redun-
dancy and system safety. The proposed system factors can be used during the design and 
safety assessment of bridges subjected to distributed lateral load being evaluated using the 
displacement-based approach specified in the AASHTO Guide Specifications for LRFD 
Seismic Bridge Design or the traditional force-based approach. Also, the report presents 
system factors calibrated for application with bridge systems subjected to vertical vehicular 
loads. The proposed system factor tables are presented for each load case as described below. 
More details are provided in the body of this report.

The proposed system factors are used to modify the design/safety-check equation so that 
the required member capacity is evaluated using the following equation:

∑φ φ = γ (S1)R Qs n
N

i i

where RN
n is the required member capacity accounting for bridge redundancy, fs is the system 

factor specified in this Summary, f is the member resistance factor as specified in the current 
AASHTO LRFD Bridge Design Specifications, gi is the load factor for load i, Qi is the load 
effect of load i. The recommended values for the system factors are provided in the tables 
and equations below.

Bridge Systems under Distributed Lateral Load  
Evaluated Using the Displacement-Based Method

The displacement-based approach was found to explicitly consider the system effects of 
the entire bridge system. Accordingly, there is no measurable reserve system capacity that 
could be used to take advantage of bridge system redundancy. Therefore, the recommended 
system factor should serve to improve the reliability of the system and it takes the form

φ = ( )− ∆βexp (S2)0.60 u target
s

where the 0.60 value in the exponential equation is used to account for the uncertainties 
associated with estimating the system capacity and the seismic demand. Dbu target is the target 
reliability index margin that should be specified by the code writers. Dbu target is the additional 
reliability that a system should provide beyond the reliability index that is used for the design 
of individual members. The AASHTO LRFD Bridge Design Specifications were calibrated 
so that bridge members under vertical gravity load generally produce a reliability index 
bmember = 3.5. However, it is generally expected that bridge systems provide additional reserve 
strengths so that system collapse does not take place should one member reach its limit capacity. 
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A Dbu target provides a reliability measure of that reserve strength. The reliability index for mem-
bers of bridge systems subjected to seismic load or other lateral loads has not been determined. 
Nevertheless, it is herein proposed that a Dbu target on the order of 0.50 be used for bridges evalu-
ated when subjected to lateral load. Because the displacement-based approach does not provide 
any additional system reserve strength, Equation S2 is proposed in order to obtain a reliability 
index for the system similar to that observed when using the traditional force-based method.

Bridge Systems under Distributed Lateral Load  
Evaluated Using the Force-Based Method

When the evaluation of bridge systems under lateral load is undertaken using the force-
based method, the proposed system factor takes the form

φ = + γ ϕ − ϕ
ϕ − ϕ







−ξ×∆β
φ

ϕ
exp (S3)u target F Cs mc

u tunc

tconf tunc

where x in the exponential equation is the dispersion coefficient used to account for the 
uncertainties associated with estimating the system capacity and the hazard demand. Dbu target  
is the target reliability index margin that should be specified by code writers. It is herein pro-
posed that a Dbu target equal to 0.50 be used in order to obtain a reliability index of the bridge 
system similar to that observed in NCHRP Report 458 for unconfined multi-column bridge 
bents when subjected to other than seismic load. Fmc is a multi-column factor, Cj is a curva-
ture factor, ju is the ultimate curvature of the weakest column in the bent, gj is the curvature 
correction factor for cases with weak connecting elements and weak details, jtunc is the aver-
age curvature for a typical unconfined column, jtconf is the average curvature for a typical 
confined column. The values recommended for each of the parameters in Equation S3 are 
provided in Table S1. The value for the ultimate curvature at failure ju is calculated from the 
ultimate plastic analysis of the column’s cross section.

The values for Fmc, Cj, jtunc and jtconf provided in Table S1 were extracted from the analysis 
of a large number of bridges with two-, three-, and four-column piers and bents. The piers 
and bents covered a range of column sizes, vertical reinforcement ratios, and confinement 
ratios. The analyses also considered the effect of different foundation stiffnesses. The values 
for jtunc and jtconf are the average curvatures obtained from the analysis of the column sizes 
used in NCHRP Report 458. The columns analyzed in NCHRP Report 458 represent typical 
column sizes and reinforcement ratios collected from a national survey conducted as part of 
that study. The values for jtunc and jtconf are used in Equation S3 to compare the confinement 
ratio of the column being evaluated to the average confinement ratios observed in typical 
confined and unconfined columns.

A correction factor is applied in Equation S3 to reduce the ultimate column curvature for the 
cases where the shear capacity or the detailing of the columns or the capacity of the cap beams 
and pile caps are not sufficient to allow the columns to reach their full ultimate capacities, but 
the bridge columns do reach their plastic moment capacities. The correction factor is given as

γ = −
−

≥ ≥

γ = ϕ
ϕ

≥ ϕ < ϕ

γ = ≥ ϕ ≥ ϕ

<

ϕ

ϕ

ϕ

if

if and (S4)

1.0 if and

system is non-redundant (see Table S1) if

M M

M M
M M M

M M

M M

M M

available p column

u column p column
u column available p column

u connection

u
available u column u connection u

available u column u connection u

available p column
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3   

where Mavailable = moment capacity of the connecting elements such as cap beams and pile caps 
or the reduced moment that can be supported by the column based on the available shear 
reinforcement, development length, splice, or connection detailing.

Details on how to calculate the available moment capacity for a member with weak detail-
ing are available in the FHWA Seismic Retrofitting Manual for Highway Structures, Part 1, 
Bridges, as Mp column = plastic moment capacity of column, Mu column = ultimate overstrength 
moment capacity of column calculated using nonlinear sectional capacity analysis programs 
or conservatively estimated to be 1.15 Mp column, ju = ultimate curvature of the weakest col-
umn in the bent, and ju connection = minimum ultimate curvature of the connecting elements.

Bridge Systems under Concentrated Lateral Load

The analysis of systems subjected to statically applied concentrated lateral loads to a girder 
or column have demonstrated that they primarily cause local effects with little contribution 
from the remaining members of the system. Therefore, the system factor for evaluating the 
effect of concentrated lateral forces is

φ = ( )− ∆βexp (S5)0.35 u target
s

where the 0.35 value in the exponential equation is used to account for the uncertainties 
associated with estimating the capacity of the member and the force applied.

Variable Applicability 
Recommended 
Value 

u target, target reliability index margin 
 

All systems 0.50 

, dispersion coefficient Seismic loads 0.60 

All other 
lateral loads 

0.35 

s, system factor for 
 One-column bents 
 Longitudinal loading of systems with bearing 

connections between superstructures and 
substructures 

 Systems where failure is controlled by shear or 
where failure is in the connections or where the 
detailing is not sufficient to allow plastic moment 
capacity of the members to be reached 

 Systems evaluated using the displacement-based 
approach  

 targetexp u

s

mcF , multi-column factor based on number of columns in 

each bent when the bridge is loaded laterally for both integral 
and bearing superstructure-substructure connections; also

mcF is a multi-bent factor based on the number of bents 

between expansion joints when a bridge with integral 
column/superstructure connections is loaded longitudinally 

Two-column 
subsystems 

1.10 

Three-column 
subsystems 

1.16 

Multi-column 
subsystems 

1.18 

C , curvature factor All systems 0.24 

tunc , typical unconfined column ultimate curvature All systems 
3.64 x 10-4 
(1/in) 

tconf , typical confined column ultimate curvature All systems 
1.55 x 10-3 
(1/in) 

Table S1.  Recommended values for redundancy parameters for 
straight bridges with one-column and multi-column bents of equal 
height under horizontal load.
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Bridge Systems under Vertical Vehicular Load

System factors for multi-beam I-girder and box-girder bridges are proposed for evaluat-
ing the redundancy of originally intact systems subjected to vehicular overloads and for 
damaged bridges that have been previously exposed to local member damage.

Redundancy of Originally Intact Systems under Overloads

The system factors for I-girder bridges and spread box-girder bridges are provided in 
Tables S2 and S3 in function of the capacity of the bridge to resist first member failure 
represented by the variable, LF1, the dead load to resistance ratio of the members and based 
on the material and geometric properties of the bridge. The proposed systems factors were 
calibrated so that the system provides a reliability index margin Dbu = 0.85 as recommended 
in NCHRP Report 406. This Dbu target value was obtained based on the reliability evaluation 
of bridge systems that have traditionally shown good system performance. The reliability 
index margin Dbu reflects the required reliability of the system beyond the reliability of the 
first member to fail.

D/R is the dead load to resistance ratio for the bridge beams. LF1 is a factor related to 
the capacity of the system to resist the failure of its most critical bridge member calculated 
from a linear structural analysis of the bridge up until the first member fails. LF1 gives the 
number of HS-20 trucks that the bridge member can carry in addition to the dead load. It 
can be expressed as

= = − ≥

= = − <

+
+ +

+

−

+

−
− −

−

−

+

when 1.0

when 1.0
(S6)

1 1
1

1

1

1 1
1

1

1

LF LF
R D

L

LF

LF

LF LF
R D

L

LF

LF

That is, LF1 in Tables S2 and S3 represents the load carrying capacity of the weakest 
section of the beam that can be either the positive bending section or the negative bending 
section depending on the moment capacity in each region (R), the dead load moment in 
each region (D), and the effect of the applied live load moment on the most critical beam 
(L1) where the live load represents two side-by-side HS-20 trucks applied at the middle of 
the span or two trucks in one lane applied in each of two contiguous spans. The positive 
superscript in LF1, R, D, and L1 is for the positive bending region, the negative superscript is 
for the negative bending regions.

Table S2.  System factors for overloads on I-girder bridges.

Bridge Cross-Section Type System Factor 

Simple-span 4 I-beams at 4 ft 0.80 0.16s
D

R

Simple-span 4 I-beams at 6 ft 0.90 0.09s
D

R

Simple-span 6 I-beams at 4 ft 0.95 0.05s
D

R

Continuous span 4 I-beams at 4 ft with compact members 0.93 0.07s
D

R
Continuous steel I-girder bridges with noncompact negative bending 

sections and 1 11.16 0.75LF LF
 

0.80 0.16s
D

R  

All other simple-span and continuous I-beam bridges 
2

2
1

1 1.5 /
1

1s

D R

LF
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The parameter L1 gives the live load applied on the most critical member, which is defined 
as the member that fails first. It can be calculated as

= ×. . (S7)1L D F LL

where D.F. is the load distribution factor and LL is the effect of the HL-93 truck load with no 
impact factor and no lane load.

Redundancy of Damaged Systems under Vertical Loads

The system factors for damaged I-girder and spread box-girder bridges are provided in 

Tables S4 and S5 as a function of the redundancy ratio =
1

R
LF

LF
d

d
 which gives the capacity of 

a damaged bridge system that has previously lost the load carrying capacity of a main member 
given as LFd and the ability of the originally intact bridge to resist first member failure which 

Table S3.  System factors for overloads on spread box-girder 
bridges.

Bridge Cross-Section Type System Factor 

Narrow simple-span box-girder bridges less than 24-ft wide  0.83 0.14s
D

R  

All other simple-span box-girder bridges  
2

2
1

1 1.5 /
1

1s

D R

LF
 

Narrow continuous box-girder bridges less than 24-ft wide 
2

2
1

1 1.5 /
1

1s

D R

LF
 

Continuous steel box-girder bridges with noncompact negative 

bending sections and 1 11.75LF LF  

2

2
1

1 1.5 /
1

1s

D R

LF
 

All other continuous box-girder bridges 
2

2
1

1 1.5 /
1 4

1s

D R

LF
 

Bridge Cross-Section Type Redundancy Ratio 
1

d
d

LF
R

LF
 System Factor 

Simple-span and 
continuous prestressed 
concrete I-girder bridges 
with four beams at 4 ft 

0.56d transverse weightR  

0.47 (0.47 )

d
s

d

R
D

R
R

Simple-span and 
continuous compact steel I-
girder bridges with four 
beams at 4 ft 

0.64d transverse weightR  

All other simple-span I-
girder bridges 

1 0.056d transverse weightR S

Continuous noncompact 
steel I-girder bridges 
with four beams at 4 ft 

0.58d transverseR  

All other continuous 
noncompact steel I-girder 
bridges 

1.00 0.08d transverseR S  

All other continuous 
compact steel and 
prestressed concrete I-
girder bridges 

1.35 0.08d transverseR S  

where S = beam spacing in feet.

Table S4.  System factors for damaged I-girder bridges under 
vertical loads.
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is represented by the variable, LF1, defined in Equation S6. For the spread box-girder bridges, 
three different damage scenarios are considered. In the first scenario, one box is assumed 
to have been exposed to a fatigue-type fracture that sliced through the entire bottom flange 
and two webs. The second scenario assumed major damage to one web while maintaining 
the torsional capacity of the box. The third scenario considered that the failure of the web 
also led to the loss of the torsional rigidity of the box.

Tables S4 and S5 list the expressions for Rd as a function of beam spacing, slab strength, 
and the dead weight applied on the damaged member for the bridge types analyzed in this 
study and the corresponding system factor. The proposed systems factors were calibrated so 
that a damaged system provides a reliability index margin Dbd = -2.70 as recommended in 
NCHRP Report 406. This Dbd target value was obtained based on the reliability evaluation of 
damaged bridge systems that have traditionally shown good system performance. The reli-
ability index margin Dbd reflects the required reliability of the damaged system compared 
to the reliability of the first member to fail in an originally intact system.

The effect of the weight of the damaged beam that must be carried by the remaining sys-
tem is considered using

1.23 0.23 (S8)

total dead weight on the damaged beam in kip
per unit length.

beam

kip ftweight beam ( )γ = − ω

ω =

The effect of the slab, bracings, and diaphragms is considered using

γ = +0.50
13.5 .

0.50 (S9)
M

kip ft ft
transverse

transverse

(S10)M M Mtransverse slab br L= +

where Mtransverse = combined moment capacity for lateral load transverse expressed in kip-ft 
per unit slab width, Mslab = moment capacity of slab per unit width, and Mbr/L = contribution 

Table S5.  System factors for damaged spread box-girder 
bridges under vertical loads.

Bridge Cross-Section Type Redundancy Ratio 
1

d
d

LF
R

LF
 System Factor 

Fractured simple-span steel 
box-girder bridges less than 
24-ft wide 

Non-redundant s=0.80 

Narrow simple-span steel 
box-girder bridges less than 
24 ft with no torsional 
rigidity  

0.46d transverseR

0.47 (0.47 )

d
s

d

R
D

R
R  

All other simple-span box-
girder bridges 0.72d transverseR  

Continuous steel box-girder 
bridges with noncompact 
negative bending sections 
and 1 11.75LF LF  

0.72d transverseR

All other continuous box-
girder bridges 

1

4.50
0.59d transverseR

LF
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of the bracing and diaphragms to transverse moment capacity calculated using Equa-
tions S11 or S12.

The equivalent transverse moment capacity for cross bracing as defined in the FHWA 
Steel Bridge Design Handbook: Bracing System Design (2012) can be obtained as

= (S11)M
F h

L
br L

br b

b

The equivalent transverse moment capacity for diaphragms is given by

= (S12)M
M

L
br L

br

b

where Mbr = moment capacity of diaphragms contributing to lateral transverse distribu-
tion of vertical load between adjacent main bridge girders; Fbr = bracing chord force deter-
mined from the applicable limit state for the bolts (see AISC Steel Construction Manual, 
Part 7), welds (see AISC, Part 8), and connecting elements (see AISC, Part 9); Lb = spacing 
of the cross frames or diaphragms; and hb = distance between the bracing top and bottom  
chords.

The range of applicability of gtransverse has been verified for I-girder bridges and showed an 
upper limit value in the range of gtransverse = 1.10 to 1.20 with 1.10 being a conservative value.

Multi-cell box-girder bridges have been found to be sufficiently redundant for the ulti-
mate system reserve strength condition and the ability of the originally intact system to 
resist collapse if member strength is exceeded with a recommended system factor fs = 1.0.  
Multi-cell box-girder bridges are highly redundant for system strength of damaged bridge 
condition with a recommended system factor fs = 1.2 for systems that may have sustained 
damage to one of the webs. Single-cell box-girder bridges are not redundant and the rec-
ommended system factor for both the ultimate condition and the damaged state condi-
tion is fs = 0.80.

Recommended system factors for typical straight superstructures are specified in Table S6 
for single-cell and multi-cell boxes for resistance to collapse of the originally intact system 
and Table S7 for single-cell and multi-cell boxes in damaged state condition.

Bridge Cross-Section Type System Factor 

Single-cell box-girder bridges  0.80s  

Multi-cell box-girder bridges 1.00s  

Table S6.  System factors for single-cell 
and multi-cell box-girder superstructures 
for resistance to collapse conditions under 
vertical loading.

Bridge Cross-Section Type System Factor 

Single-cell box-girder bridges  0.80s  

Multi-cell box-girder bridges 1.20s  

Table S7.  System factors for single-cell and 
multi-cell box-girder superstructures in 
damaged state condition under vertical loads.
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General Comment

The analyses in NCHRP Report 406 and NCHRP Report 458 concentrated on bridges 
that closely met the member strength design requirements. The analyses performed in this 
study considered the redundancy of deficient bridges as well as overdesigned bridges that 
expand the applicability of the proposed system factors. The proposed system factors are 
expressed in terms of a limited number of parameters related to the relevant geometric 
properties of the system and the strength and material properties of the primary bridge 
members.
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1.1 Background

Structural redundancy is defined as the ability of a struc-
tural system to continue to carry load after the failure of one 
or several structural components. Although this concept is 
well understood, no consensus is currently available on non-
subjective measures engineers should use to quantify struc-
tural redundancy and how to apply such measures to design 
adequately redundant bridges. In an attempt to overcome 
this gap, the AASHTO Load and Resistance Factor Design 
(LRFD) Bridge Design Specifications (2012) propose to con-
sider redundancy during bridge design by using load modi-
fiers that reflect the ductility, redundancy, and operational 
importance of the structure (Frangopol and Nakib, 1991). 
However, the values of the load modifiers provided in the 
AASHTO LRFD were determined by judgment rather than 
through a calibration process. Furthermore, the LRFD spec-
ifications do not provide clear guidance on how to select the 
ductility or the redundancy modifiers.

Following several years of research, NCHRP Report 406: 
Redundancy in Highway Bridge Superstructures by Ghosn 
and Moses (1998) and NCHRP Report 458: Redundancy in 
Highway Bridge Substructures by Liu, Neuenhoffer, Ghosn, 
and Moses (2001) proposed non-subjective and quantifi-
able measures of redundancy after studying the behavior 
of typical bridge superstructure and substructure systems 
beyond the failure of their first components. Accordingly, a 
quantitative measure of redundancy was defined in terms 
of the capacity of the system as compared to the capacity of 
the weakest component. Three different limit states for the 
system were proposed: (1) collapse of overloaded originally 
intact systems, (2) exceeding the functionality limit of over-
loaded intact systems, (3) collapse of damaged bridges. An 
intact system is a bridge that was not damaged prior to the 
initiation of a loading process. Damaged bridges are those 
that may have been exposed to a damaging event that resulted 
in the loss or the reduction in the load carrying capacity of a 

major component. The recent literature often has referred to 
this limit state as structural robustness.

NCHRP Report 406 and NCHRP Report 458 then pro-
ceeded to calibrate sets of system factor tables using reliability 
methods to ensure uniform system performance for different 
typical bridge configurations, geometrical arrangements, and 
material and structure types. In NCHRP Report 406, superstruc-
ture system factors are applied on the resistance side of the LRFD 
equation for slab on girder type bridges based on the girder 
spacing and number of girders in the system. System factor 
charts were provided for simple-span and continuous steel and 
pretensioned I-beam superstructures subjected to traffic loads. 
However, the report did not address box-girder superstructures 
with sufficient detail to make specific recommendations.

As presented in NCHRP Report 406, the system factor tables 
are intended for use when analyzing the redundancy of the 
most typical bridge configurations and dimensions. Recogniz-
ing that it will not be possible to develop system factor tables 
to cover all possible bridge configurations or damage scenar-
ios and in order to provide the engineers with a method to 
analyze the redundancy of bridge types and conditions not 
covered in the available tables, NCHRP Report 406 provides a 
direct redundancy analysis procedure to generate the system 
factors using nonlinear analysis and incrementally increasing 
the design load.

In NCHRP Report 458, substructure system factors were 
provided for confined and unconfined 2- and 4-column piers 
founded on spread footings, drilled shafts, or piles in vari-
ous soil types. A direct redundancy analysis procedure also 
was provided to cover other substructure configurations. The 
ability of the superstructure to enhance the substructure’s 
redundancy was recognized as poor for typical systems where 
the interaction between the superstructure and substructure 
relied on support bearings. Specifically, the report did not 
study integral construction systems.

The system factor tables provided in NCHRP Report 406 
were subsequently simplified and included in the Load and 
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Resistance Factor Rating (LRFR) method in the AASHTO 
Manual for Bridge Evaluation (MBE) (2011), which also rec-
ommended the use of the direct redundancy analysis method 
for special cases. Since then, several consulting firms (with the 
cooperation of the Wisconsin Department of Transportation) 
have applied the recommendations of NCHRP Report 406 for 
the safety assessment of existing bridges (Hubbard, Shkurti, 
and Price, 2004; Milwaukee Transportation Partners, 2005). 
More recently, Hunley and Harik (2012) performed detailed 
analyses of box-girder bridges with different configurations 
to study the effect of external bracing on straight and curved 
steel box-girder bridges using the methods and criteria pro-
posed in NCHRP Report 406. These studies and other similar 
investigations have applied variations of the NCHRP Report 
406 method to analyze different bridge damage scenarios. The 
influence of different diaphragm configurations on improving 
the redundancy of box-girder bridges under various bridge 
geometric and damage conditions was analyzed on a case-by-
case basis as was the intent of NCHRP Report 406.

Hunley and Harik (2007) state that “the approach pro-
posed in NCHRP Report 406 has gained acceptance from 
agencies and bridge designers on several projects.” The work 
of NCHRP Report 406 also has been well received in Europe 
where it was included in a set of recommended guidelines for 
evaluating the safety of existing railway bridges (Guideline for 
Load and Resistance Assessment of Existing European Rail-
way Bridges, 2007). The method proposed in NCHRP Report 
406 and NCHRP Report 458 or variations on the method also 
have been adopted by several research studies throughout the 
world to analyze the redundancy of bridge structural systems 
(Hunley and Harik, 2012; Mohammadkhani-Shali, 2007; 
Imhof, 2004; Casas and Wisniewski, 2005).

As part of NCHRP Report 458, the authors presented the 
recommendations of NCHRP Report 406 and NCHRP Report 
458 in a format that would be implementable in the AASHTO 
LRFD and LRFR. The format addressed redundancy in a com-
prehensive compatible set of specifications that covered bridge 
superstructures and substructures independently. However, 
the format has not been implemented in the LRFD specifi-
cations pending more investigation to simplify the format, 
increase the range of applicability of the system factors, and 
further confirm the validity and practicality of the approach.

1.2 Research Objectives

In summary, the framework and methods of NCHRP 
Report 406 have led to the development of non-subjective 
and quantifiable measures of bridge redundancy that have 
been successfully applied to provide system factor tables for 
a range of bridge superstructure and substructure configura-
tions. A variation of the NCHRP Report 406 recommendations 
also has been adopted as part of the AASHTO LRFR for the 

safety evaluation of highway bridges. The direct redundancy 
analysis method proposed in NCHRP Report 406 to analyze 
configurations and damage scenarios not considered in the 
report has been successfully applied by engineering firms, 
bridge agencies, and researchers to analyze the redundancy of 
different types of bridges subjected to various types of damage 
scenarios. However, NCHRP Report 406 and NCHRP Report 
458 did not provide system factors for some bridge system and 
subsystem configurations that have become more popular in 
recent years. Also, the report did not verify the applicability 
of the factors for analyzing the combined system, including 
the interaction between the superstructure and substructure. 
Hence, the objectives of this research study are to

1.	 Review the state of the art as well as the state of practice on 
the subject of structural redundancy to assess the method 
proposed in NCHRP Report 406 and compare it to alterna-
tive approaches for quantifying structural redundancy and 
considering redundancy during the design of new bridges 
and the evaluation of existing bridges.

2.	 Verify the applicability of the NCHRP Report 406 method 
and investigate the validity of the results in NCHRP 
Reports 406 and 458 for analyzing the redundancy of 
complete bridge systems combining superstructure and 
substructure interaction.

3.	 Extend the system factors to cover common bridge config-
urations including those not addressed in NCHRP Report 
406 and NCHRP Report 458.

4.	 Consolidate the recommendations made in NCHRP 
Reports 406 and 458 into a format that can be incorpo-
rated into the AASHTO LRFD and LRFR specifications.

5.	 Illustrate how the recommended approach and system 
factors can be applied in bridge engineering practice.

This report summarizes the findings of the study and verifies 
and complements the results presented in NCHRP Report 406 
and NCHRP Report 458. The summaries serve to develop 
a set of specifications that would be implementable in the 
AASHTO LRFD and LRFR specifications.

1.3 Report Outline

This report presents the findings of the NCHRP Proj-
ect 12-86 research and uses the results of new analyses to 
verify and complement the results presented in NCHRP 
Reports 406 and 458. This report is divided into the follow-
ing six chapters.

•	 Chapter 1 provides the background for this study and sum-
marizes its objectives.

•	 Chapter 2 presents a review of the general concepts of bridge 
redundancy and the method adopted to quantify the redun-
dancy of bridge systems and subsystems.
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•	 Chapter 3 addresses the redundancy of bridge systems sub-
jected to lateral loads when bridge safety is evaluated using 
displacement-based criteria.

•	 Chapter 4 addresses the redundancy of bridge systems 
subjected to lateral loads when bridge safety is evaluated 
using the traditional force-based method.

•	 Chapter 5 addresses the redundancy of bridge systems 
subjected to vertical loads.

•	 Chapter 6 gives the conclusions of this study.
•	 Appendices are not included herein but are available on 

the TRB website and can be found by searching for NCHRP 
Report 776. Appendix A gives a proposed set of specifi-
cations to design bridge members based on the level of 
bridge redundancy. Appendix B provides examples illus-
trating the application of the system factors and the direct 
analysis method for evaluating the redundancy of bridges. 
Appendix C gives a review of the literature and state of 
practice. Appendix D gives the summary of the models 
and the results for the analysis of different types of bridge 
superstructures.
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2.1  Introduction

Redundancy is defined as the capability of a bridge sys-
tem to continue to carry load after the failure of one of its 
members. This means that the system has additional reserve 
strength such that the failure of one member does not result 
in the collapse of the entire structure or a significant portion 
of it. The initial member failure can be either brittle or ductile. 
It can be caused by the application of large overloads, extreme 
loads, or the loss in the load carrying capacity of one element 
due to damaging events such as fatigue, brittle fracture, mem-
ber deterioration, or an accident such as a collision by a truck, 
ship, or debris.

For the case of damaged bridges that may have lost an ini-
tial member, the object of this project is not to perform a 
dynamic progressive collapse analysis to check whether the 
bridge will be able to survive the hazard that causes an ini-
tial sudden failure of the element. Instead, the object of the 
redundancy analysis performed in this study is to investigate 
whether a damaged bridge system that has survived a damag-
ing event will be able to continue to carry some traffic load 
for a limited period of time that would allow the traffic to 
clear the bridge and maintain the bridge’s ability to continue 
to carry some load until the damage is noticed and reported 
to the proper authorities so corrective actions (i.e., bridge 
closure, repair, or replacement) are undertaken.

Traditionally, bridges have been designed on a member-by-
member basis, and the interaction of the members and their 
ability to provide different levels of redundancy following the 
damage to, or the failure of, one or several members have not 
been directly considered. A convenient method to take into 
consideration the redundancy of bridge systems would con-
sist of developing a set of system factors that can be included 
as specifications in bridge design and evaluation manuals. 
The system factors would be applicable for routinely checking 
the safety of typical bridge configurations so that the mem-
bers of bridges with low levels of redundancy are required 

to have higher safety levels than bridges with high levels of 
redundancy. Alternatively, for a more precise evaluation of 
a bridge’s redundancy, a direct analysis approach should be 
used. The direct analysis would consist of using a structural 
model and a finite element analysis program that consider the 
elastic and inelastic behavior of the bridge system. This pro-
gram would be used to evaluate the load carrying capacity of 
an initially intact bridge, as well as the behavior of the bridge 
under different damage scenarios. The program would check 
the structure to verify whether its behavior is acceptable, with 
sufficiently high levels of safety and functionality during the 
application of expected large loads.

Many safety-related decisions must be made in order to 
develop the system factors or to use the direct analysis approach. 
These include (1) the limit states that should be checked, (2) the 
level of loads that must be carried by the structure before the 
limit states are reached, (3) the type of damage conditions that 
must be borne by the structure, and (4) the inclusion of uncer-
tainties in the analysis model.

This report reviews the results of the analyses of bridge sys-
tems including superstructures and substructures, as well as 
combined systems conducted during this current project and 
during NCHRP Report 406 and NCHRP Report 458. The goal 
is to develop a set of system factors that can be included in 
bridge specifications to evaluate the safety of existing bridges 
and to design new bridges taking into consideration their lev-
els of redundancy.

This chapter gives a general overview of the concepts of 
bridge safety and redundancy and describes the procedure 
adopted to develop a set of system factors that can be incor-
porated into the design and safety-check equations in order 
to account for bridge system redundancy during the design 
of new bridges and the evaluation of existing bridges. Specifi-
cally, Section 2.2 of this chapter gives a general overview of 
bridge performance under externally applied actions and the 
general concept of bridge safety. Section 2.3 proposes deter-
ministic measures of redundancy. Section 2.4 gives a review 
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of reliability theory and its application for calibrating bridge 
design and safety assessment codes. Section 2.5 develops the 
reliability model used in this study for the probabilistic eval-
uation of bridge redundancy and the calibration of system 
factors. The concepts presented in this chapter are adapted 
in Chapter 3 for calibrating system factors that account for 
the redundancy of bridge systems subjected to lateral actions 
when bridge system safety is checked using the displacement-
based method. Chapter 4 uses the concepts presented in this 
chapter to develop system factors that account for the redun-
dancy of bridge systems subjected to lateral loads when their 
safety is checked using force-based analysis methods. Chap-
ter 5 uses the concepts presented in this chapter to develop 
system factors that account for the redundancy of bridge sys-
tems subjected to vertical loads.

2.2 Bridge System Behavior

Current bridge design and evaluation techniques deal with 
individual members and use procedures that do not fully 
account for the effect of the complete structural system. As 
currently performed, the safety check verifies that the strength 
of each member is greater than the effects of applied forces 
by a “comfortable” safety margin. Member forces are calcu-
lated using an elastic analysis while member capacity (when 
appropriate) is calculated using inelastic member behavior. 
In current and previous bridge design and evaluation speci-
fications, the safety margin for strength is provided through 
the application of safety factors (load and/or resistance fac-
tors) that are calibrated on the basis of experience and engi-
neering judgment (ASD and LFD) or on a combination of 
experience and structural reliability methods (LRFD).

Although this traditional member-oriented approach has 
been used successfully for years, it does not provide an ade-

quate representation of the safety of the complete bridge sys-
tem. In many instances, the failure of an individual member 
does not lead to the collapse of the complete bridge system. 
Current specifications do not directly differentiate between 
bridges that would collapse when one member fails and those 
that will be able to continue to carry loads after the failure of 
one member. Because of this difference in the consequences 
of a member’s failure, it is reasonable for the specifications to 
require that members of non-redundant bridges be designed 
to higher standards than members of redundant bridges. This 
goal can be achieved by applying system factors in the safety-
check equations or as currently stipulated in the AASHTO 
LRFD Bridge Design Specifications by applying load modi-
fiers. Because the load modifiers specified in the current 
LRFD were based on the judgment of the code writers rather 
than an evaluation of bridge redundancy, the object of this 
NCHRP 12-86 project is to propose an approach to account 
for bridge system redundancy based on measurable criteria.

A first step in the process of evaluating bridge redundancy 
is to have a good understanding of the behavior of bridge 
systems under applied loads. The performance of a bridge 
system can be represented as shown in Figure 2.1, which gives 
a conceptual representation of the response of a structure to 
different levels of applied loads and the different criteria that 
should be considered when evaluating member safety or sys-
tem safety as well as system redundancy. The model is valid 
for representing the behavior of systems under vertical loads 
or for systems under lateral loads.

The green line in Figure 2.1 labeled “Intact system” may 
represent the applied load versus maximum displacement of 
a ductile bridge system when subjected to different levels of 
load. In this case, a load capacity evaluation is performed to 
study the behavior of an intact system that was not previously 
subjected to any damaging load or event.

LFd

LF1

LF

LFu

Ultimate
capacity of
intact system

Load Factor 

Intact system

Damaged
bridge

Assumed linear
behavior 

f

 

First member
    failure

Bridge Response  Ultimate
capacity of
damaged system

Loss of
functionality

 

Figure 2.1.  Representation of typical behavior of bridge systems.
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To perform the load capacity analysis, the bridge is first 
loaded by the dead load and then the transient load is incre-
mentally applied. The first structural member will fail when 
the transient load reaches LF1. LF1 would then be related to 
member safety. LF1 may represent the actual load or the mul-
tiple of a basic load such as the number of design trucks that 
the system can carry before the first member reaches its limit 
capacity. Although LF1 should be evaluated using the actual 
response of the bridge accounting for material nonlinearity, 
it has been common in structural design practice to assume 
linear-elastic response while evaluating the ability of the sys-
tem to resist the failure of the most critical member as indi-
cated using the bilinear brown curve in Figure 2.1.

Generally, the system will be able to carry additional load 
after LF1 is reached and the ultimate capacity of the entire 
bridge is not reached until the transient load reaches LFu. LFu 
would give an evaluation of system safety. Large deforma-
tions rendering the bridge unfit for use are reached when 
the transient load reaches LFf. LFf gives a measure of system 
functionality. A bridge that has been loaded up to this point 
is said to have lost its functionality.

Damage to bridge members leading to the loss in member 
and system capacity is also a concern. Bridge members are often 
subjected to fatigue stresses that may lead to the fracture and 
loss of the load carrying capacity of a main member. In addi-
tion, deterioration and corrosion, fire, or an accident, such as a 
collision by a truck, ship, or debris, could cause the reduction in 
the load carrying capacity of one or several main members. To 
ensure the safety of the public, bridges should be able to sustain 
these damages and still operate at a sufficient level of capacity. 
Although a damaged bridge cannot be expected to have the 
same capacity of an intact system, an adequately redundant  
system should still be able to carry its own weight and some 
level of transient load to allow for clearing the bridge before 
closure and the undertaking of necessary repairs. Therefore, in 
addition to verifying the safety of the intact structure, the evalu-
ation of a bridge’s safety and redundancy should consider the 
consequences of the failure of a critical bridge member.

If the bridge has sustained major damage due to the brittle 
failure of one or more of its members, its behavior can be 
represented by the blue curve labeled “Damaged bridge” in 
Figure 2.1. The ultimate capacity of the damaged bridge is 
reached when the transient load applied after the application 
of the dead load reaches LFd. LFd would give a measure of the 
remaining safety of a damaged system.

In summary, based on the bridge performance curve pre-
sented in Figure 2.1, a bridge can be considered safe if it

•	 Provides a reasonable safety level against first member 
failure,

•	 Provides an adequate level of safety before it reaches its ulti-
mate system capacity under extreme loading conditions,

•	 Does not produce large deformations under expected 
heavy transient loads, and

•	 Is able to carry a sufficient level of traffic load after damage 
to or the loss of a component.

Although the explanations provided in this section are pre-
sented in terms of the loads or load factors, labeled “LF” on the 
vertical axis of the graph, the same criteria can be expressed 
in terms of the response of the bridge or the horizontal axis 
of the graph. Most typically, the response of the bridge is rep-
resented by the maximum displacement at a critical section.

The load factor values that a system can support before 
a limit state is reached represent the system safety of the 
bridge. Redundancy is a measure of the relationship between 
the overall system performance and that of its most critical 
member as will be explained next.

2.3 Measures of Bridge Redundancy

Traditionally, bridge engineers have defined redundancy 
of bridges in terms of the availability of alternate load paths 
that can redistribute the load should one of the main mem-
bers fail. Commonly, the availability of alternate load paths 
has been associated with the number of supporting elements. 
Thus, according to current practice a multi-girder bridge 
superstructure would be considered redundant if it is formed 
by four or more parallel elements (although some engineers 
have defined bridges with three parallel girders as redundant). 
Variations in bridge cross-section configurations including 
the type of girders, beam spacing, and boundary conditions 
are not usually considered. Furthermore, a system is currently 
classified as either redundant or non-redundant and no con-
sideration is given to the degree of redundancy. Accordingly, a 
system formed by two spread box-girders is usually considered 
to be similar to a system formed by two I-girders in terms of 
their redundancies independent of the spacing between the 
I-girders or the webs of the boxes or whether the spans are con-
tinuous or simply supported. The current approach ignores 
the additional torsional rigidity of the boxes that may improve 
the load distribution and would change the redundancy level 
of the system when compared to that of I-girder bridges.

In a first attempt at providing a method to explicitly incor-
porate redundancy criteria during the bridge design pro-
cess, the AASHTO LRFD Bridge Design Specifications apply 
load modifiers in the design-check equations to account for 
redundancy during the design of new bridges. The method 
is based on the recommendation of Frangopol and Nakib 
(1991). Specifically, the AASHTO LRFD recommends using 
a load modifier, hR, depending on the level of bridge redun-
dancy with hR taking values equal to 0.95, 1.0, or 1.05. Two 
other load modifiers hD and hI also are used to account for 
member ductility and the importance of the structure in 
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terms of defense/security considerations. However, the LRFD 
specifications do not explain how to identify which bridges 
have low and high redundancy or how to define low and high 
ductility. As explained in the LRFD Commentary, the recom-
mended values for hR have been subjectively assigned based 
on judgment pending additional research.

The Canadian Code CAN/CSA-S6-06 (2006) directs bridge 
engineers to use different load factors for different target reli-
ability index values that are selected based on the redundancy 
of the bridge system and the ductility of the member being 
evaluated. However, like the LRFD, this approach relies on the 
judgment of the engineer in deciding which bridges are redun-
dant and in judging the consequence of a member’s failure.

Perhaps the most specific approach for evaluating bridge 
redundancy is provided in the Pennsylvania (PennDOT) 
bridge design specifications. According to PennDOT, three-
girder bridges without floorbeams and stringers are consid-
ered as non-redundant and should be avoided if possible. A 
3-D redundancy analysis is required for the evaluation of all 
non-redundant structures to check whether the failure of 
any tension component or other critical component will not 
cause collapse. To that effect, two new Extreme Event Limit 
States labeled as III and IV are added to the LRFD specifica-
tions. Extreme event III is meant to check that the failure of 
one element of a component will not lead to the failure of 
the component. Extreme event IV is meant to check that the 
failure of one component will not lead to the failure of the 
structure. These limit states require the analysis of a dam-
aged bridge with the HL-93 design load along with a reduced 
dead load factor equal to 1.05 and live load factors of 1.30 and 
1.15, for extreme events III and IV respectively, when using 
the HL-93 live load in all of the lanes. When a permit load 
is used in the governing lane and the HL-93 in other lanes, 
the live load factors on the permit load are 1.10 and 1.05 for 
extreme events III and IV, respectively. The analysis of the 
damaged bridge is performed with these load combinations, 
which the structure should be able to carry even if they cause 
large deformations as long as they do not lead to collapse. No 
justification is provided for the selection of the live load fac-
tors for the new Extreme Event Limit States.

From the above three examples and other studies reported in 
the review of the literature undertaken during the course of this 
project and summarized in Appendix C (available on the TRB  
website by searching for NCHRP Report 776), it is clear that 
accounting for bridge redundancy during the safety analysis of 
new or existing bridges is of primary importance. However, the 
mechanisms and the criteria that should be used to quantify 
bridge redundancy and consider it during the evaluation of 
bridge safety still have not been fully established. The aim of this 
project is to develop methods to quantify bridge redundancy 
and propose a set of non-subjective criteria that are imple-
mentable in bridge design and safety analysis processes.

Because redundancy is defined as the capability of a struc-
ture to continue to carry loads after the failure of one main 
member, a comparison between the overall capacity of origi-
nally intact and damaged bridge systems as represented by 
LFu, LFf, LFd, in Figure 2.1, compared to the capacity of the 
most critical member represented by LF1, would provide a 
measure of the level of bridge redundancy. In this context, 
the researchers define a “system reserve ratio” or “redundancy 
ratio” for the ultimate limit state as Ru. For the serviceability 
limit state, the redundancy ratio is defined as Rf. For the dam-
aged bridge condition, the redundancy ratio is defined as Rd, 
where

(2.1)
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The redundancy ratios, Ru, Rf, and Rd, provide non-
subjective deterministic measures of bridge redundancy. For 
example, when the ratio Ru is equal to 1.0 (LFu = LF1), the 
ultimate capacity of the bridge system is equal to the capac-
ity of the bridge to resist failure of its most critical member; 
such a bridge is non-redundant. As Ru increases, the level of 
bridge redundancy increases. Similar observations can be 
made about Rf and Rd.

Although the redundancy ratio Ru cannot fall below 1.0, 
the two ratios Rf and Rd may, under certain circumstances, 
have values less than 1.0. A value of Rf less than 1.0 means 
that the bridge will exhibit large deformations at a load level 
smaller than the load that will cause the first member failure. 
This situation might occur in certain bridges because LF1 is 
calculated with a linear-elastic model, whereas LFf accounts 
for the nonlinear behavior of the bridge. A value for Rd less 
than 1.0 means that a damaged bridge may fail at a lower live 
load than the load that will cause the first member failure 
in the originally intact linear-elastic system. Thus, the mini-
mum value that Ru can take is normally 1.0, indicating that 
some bridge systems may collapse when only one member 
reaches its load carrying capacity. However, Rd can be as low 
as 0.0, indicating that a bridge system may collapse under its 
own dead weight if a certain damage scenario takes place. The 
measures given in Equation 2.1 indicate that structural sys-
tems are associated with different levels of redundancy. This 
is different than current convention that stipulates that a 
system is either redundant or non-redundant.

The measures of redundancy set in Equation 2.1 are nor-
malized, which makes them independent of the bridge spec-
ifications being followed and whether the bridge system is 
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overdesigned or under designed. This makes the proposed 
measures valid for the evaluation of existing bridges as well as 
new designs. The measures also are valid whether the bridge 
is deficient or up to standards.

To check whether a bridge system has adequate levels of 
redundancy, it is sufficient to use a nonlinear structural analy-
sis program to calculate LFu, LFf, LFd, and LF1, and to verify 
that Ru, Rf, and Rd are adequate. If the system configuration 
does not provide sufficient levels of redundancy, the bridge 
configuration may need to be changed. Note that even if the 
levels of redundancy Ru, Rf, and Rd are lower than expected, the 
bridge may still have high overall levels of member and system 
safety with high values for LFu, LFf, LFd, and LF1. Alternatively, 
a redundant system with high Ru, Rf, and Rd values may have 
low overall system safety levels. Thus, a bridge with adequate 
redundancy levels may still be unsafe for certain applications 
if its member safety level LF1 is too low. Therefore, the goal 
of any bridge design specifications should not be limited to 
providing adequate redundancy levels but to assure adequate 
system safety levels. Thus, if a bridge system does not provide 
an adequate level of redundancy, the bridge members could be 
conservatively designed to increase LF1 as well as LFu, LFf, and 
LFd, and reduce the probability of member failures and, more 
importantly, reduce the probability of system collapse.

The evaluation of member and system safety can be per-
formed using a direct nonlinear analysis of the system to 
obtain LF1, LFu, LFf, and LFd and verifying that they are ade-
quate. However, executing a direct analysis of system safety 
and redundancy involves advanced analysis tools and exper-
tise that may not be readily available for day-to-day evalua-
tion of common types of bridges. For this reason, it has been 
proposed that the evaluation of the redundancy of common-
type bridges be simplified by developing system factors that 
can be applied during the design and safety evaluation pro-
cess to strengthen the members of bridges that are not suf-
ficiently redundant.

As part of this and previous NCHRP projects, hundreds of 
bridge superstructure and substructure configurations have 
been evaluated to study the relationship between LFu, LFf, LFd, 
and LF1 and the redundancy ratios Ru, Rf, and Rd defined in 
Equation 2.1. The results of these analyses are used in this study 
to calibrate system factors that account for bridge redundancy 
during the design and safety evaluation of bridge systems. The 
calibration of load and resistance factors in modern structural 
design and evaluation codes and specifications has been 
based on probabilistic methods to ensure that the codes pro-
vide consistent levels of safety considering the uncertainties 
associated with estimating the strength of structural members 
and systems, those associated with predicting the maximum 
loads that the structure will be subjected to within its service 
life, and the response of the bridge structure to these applied 
loads. Therefore, the calibration of system factors that should 

be implemented in the next generation of structural codes to 
account for structural redundancy also should be based on 
the same probabilistic principles. The theory of structural reli-
ability as developed over the past decades provides the basic 
tools necessary for performing such calibrations, as will be 
explained in Section 2.4.

2.4 � Overview of Structural Reliability

Theoretical Background

The aim of structural reliability theory is to account for 
the uncertainties encountered while evaluating the safety of 
structural members and systems or during the calibration of 
load and resistance factors for structural design and evalua-
tion codes. To account for the uncertainties associated with 
predicting the load carrying capacity of a structure, the inten-
sities of the expected loads, the effects of these loads, as well 
as the capacity of structural members may be represented by 
random variables.

The value that a random variable can take is described by a 
probability density function (PDF). That is, a random variable 
may take a specific value with a certain probability and the 
ensemble of these values and their probabilities are described 
by the PDF. The most important statistical characteristics of a 
random variable are its mean value or average, and the stan-
dard deviation that gives a measure of dispersion or a measure 
of the uncertainty in estimating the variable. The standard 
deviation of a random variable R with a mean 

–
R is represented 

by sR. A dimensionless measure of the uncertainty is the coef-
ficient of variation (COV), which is the ratio of the standard 
deviation divided by the mean value. For example, the COV of 
the random variable R is represented by VR such that

(2.2)V
R

R
R= σ

Structural codes and specifications often specify nominal 
or characteristic values for the variables used in design or 
load rating equations. These nominal values are related to 
the means through bias values. The bias is defined as the ratio 
of the mean to the nominal value used during the design or 
evaluation process. For example, if R is the member resis-
tance, the mean of R, namely, 

–
R can be related to the nominal 

or design value, Rn, through a bias factor, br, such that

b R (2.3)r nR =

where br is the resistance bias, and Rn is the nominal value 
as specified by the design code. For example, A50 steel has a 
nominal design yield stress of 50 ksi but coupon tests show 
an actual average value close to 56 ksi. Hence, the bias of the 
yield stress is 56/50 or 1.12.
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In structural analysis, safety may be described as the situa-
tion where capacity (member strength or resistance, the maxi-
mum strain that a structural material can take before rupturing 
or crushing, ductility capacity) exceeds demand (applied load, 
applied moment, applied stresses, applied strains, or ductility 
demand). Probability of limit state exceedance (i.e., probabil-
ity that capacity is less than applied load effects which is often 
referred to as probability of failure) may be formally calcu-
lated; however, its accuracy depends upon detailed data on 
the probability distributions of the variables that represent the 
capacity and the demand. Since such data often are not avail-
able, approximate models are used for calculation.

In the application of structural reliability theory for the 
evaluation of the safety of a structural member or system, 
the reserve margin of safety of a bridge component is often 
defined as, Z, such that

Z R S (2.4)= −

where R is the resistance or member capacity and S is the 
total load effect. Probability of limit state exceedance, Pf, 
is the probability that the resistance R is less than or equal 
to the total applied load effect S or the probability that Z is 
less than or equal to zero. This is symbolized by the following 
equation:

P Pr Z 0 Pr R S (2.5)f [ ] [ ]= ≤ = ≤

where Pr is used to denote the term probability.
The calibration of the AASHTO LRFD and LRFR specifi-

cations was based on evaluating the member resistance and 
the effects of the applied loads on the member. However, the 
same approach can be followed if the safety check consists of 
comparing the capacity of the entire system.

If the strength capacity R and the load demand S follow 
independent normal (Gaussian) distributions, then the prob-
ability of limit state exceedance can be obtained based on the 
mean of Z and its standard deviation, which can be calculated 
from the mean of R and S and their standard deviations as

0
(2.6)

2 2
P

Z R S
f

z R S

= Φ −
σ







= Φ − −
σ + σ







where F is the normal probability function that gives the 
probability that the normalized random variable is below a 
given value, Z

_
 is the mean safety margin, and sZ is the stan-

dard deviation of the safety margin. Thus, Equation 2.6 gives 
the probability that Z is less than 0 (or R less than S). The 
reliability index, b, is defined such that

(2.7)Pf ( )= Φ −β

For example, if the reliability index is b = 3.5, then the 
implied probability of limit state exceedance is obtained from 

the normal distribution tables given in most books on statis-
tics as Pf = 2.326x10-4. If b = 2.5 then Pf = 6.21x10-3. A b = 2.0 
implies that Pf = 2.23x10-2. One should note that these Pf val-
ues are only notional measures of risk that are used to com-
pare different structural design and load capacity evaluation 
methodologies but are not actuarial values related to the col-
lapse of the structure because of the different meaning that 
failure can take. For example, if the strain at one critical point 
of the structure exceeds the ultimate strain for this material, 
the failure is only localized and will not necessarily entail an 
actual failure in the sense that the structure will necessarily  
collapse. Furthermore, because of the many assumptions used 
in assembling the statistics of the applied load effects and in 
the definition of the capacity of a member or system, the cal-
culated probabilities can only be treated as notional proba-
bilistic measures of safety. Therefore, and in order to avoid 
referring to Pf as the probability of failure, it is most common 
to use the reliability index, b, as a measure of safety in struc-
tural applications.

If both the capacity and the demand that are represented 
by the resistance R and the load S can be modeled by normal 
distributions, the reliability index is obtained from

(2.8)
2 2

Z R S

Z R S

β =
σ

= −
σ + σ

where R and S are assumed statistically independent.
Thus, the reliability index, b, which is often used as a 

measure of structural safety, gives in this case the number 
of standard deviations that the mean margin of safety falls 
on the safe side as represented in Figure 2.2. Because it gives 
a measure of safety in terms of a number of standard devia-
tions, it is more practical to use the reliability index b which 
may range between 0.0 to 6.0 to assess the safety of structures 
rather than using probability values which may range from 

Figure 2.2.  Graphical representation of 
reliability index.
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values as high as 50% to values as low as 10-9 or lower without 
giving an intuitive understanding of the corresponding level 
of safety.

The reliability index, b, defined in Equations 2.7 and 2.8 
provides an exact evaluation of the probability of exceedance 
if R and S follow normal distributions. Although b was origi-
nally developed for normal distributions, similar calculations 
can be made if R and S are lognormally distributed (i.e., when 
the logarithms of the basic variables follow normal distribu-
tions). In this case, the reliability index can be calculated as

ln
1

1

ln 1 1
(2.9)
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which, for values of VR and VS on the order of 20% or less can 
be approximated as

ln

(2.10)
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Experience shows that Equation 2.10 provides a good 
approximation to the reliability index in many practical 
applications. For example, when evaluating the reliability 
levels implied in current and proposed load rating proce-
dures during their work on NCHRP Project 20-07 Task 285, 
Ghosn et al. (2012) found that Equation 2.10 gives a very 
good approximation to the reliability index b even when the 
load effect, S, did not exactly follow a lognormal distribution.

Approximate iterative methods have been developed to 
obtain the reliability index for the cases when the basic vari-
ables are neither normal nor lognormal. A commonly used 
approach that has been shown to provide good approxima-
tions for the reliability index, b, for common structural reli-
ability problems is the First Order Reliability Method (FORM). 
FORM uses an iterative calculation to obtain an estimate of 
the probability of limit state exceedance. This is accomplished 
by approximating the failure equation (i.e., when Z = 0) by a 
tangent multi-dimensional plane at the point on the failure 
surface closest to the mean value and mapping non-normal 
probability distribution functions into equivalent normal 
functions. For example, during the calibration of the AASHTO 
LRFD Bridge Design Specifications, Nowak (1999) used the 
FORM algorithm developed by Rackwitz and Fiessler (1978) 
to calculate the reliability index for the case when R is assumed 
to follow a lognormal distribution and S is a normal random 
variable. More advanced techniques including SORM (Sec-
ond Order Reliability Methods) also have been developed.

However, Monte Carlo simulations can be used to provide 
estimates of the probability of exceeding a structure’s limit 

state. Monte Carlo simulations are suitable for any random 
variable distribution type and limit state equation. In essence, 
a Monte Carlo simulation creates a large number of “experi-
ments” through the random generation of sets of resistance 
and load variables. Estimates of the probability of exceedance 
are obtained by comparing the number of experiments where 
the load exceeds the resistance to the total number of gener-
ated experiments. Given values of the probability of exceed-
ance, Pf, the reliability index, b, is calculated from Equation 2.7 
and used as a measure of structural safety even for non-normal 
distributions. Kulicki et al. (2007) used the Monte Carlo simu-
lation while reviewing the code calibration effort reported 
by Nowak (1999) and verified that the results of the FORM 
method with the Rackwitz-Fiessler algorithm, and those of the 
Monte Carlo simulation are essentially similar. More detailed 
explanations of the principles discussed in this section can be 
found in published texts on structural reliability (e.g., Thoft-
Christensen and Baker, 1982; Melchers, 1999).

The member reliability index has been used by many code 
writing groups throughout the world as a measure of struc-
tural safety. Reliability index values in the range of b = 2 to 
4 are usually specified for individual members depending on 
the type of member and the structural application. For exam-
ple, the calibration of the Strength I limit state in the AASHTO 
LRFD Bridge Design Specifications aimed to achieve a uni-
form target reliability index btarget = 3.5 for a range of typical 
bridge span lengths, beam spacing, and materials (Nowak, 
1999). A reliability index btarget = 2.5 was used by Moses (2001) 
for the calibration of the legal load rating in the AASHTO 
LRFR. These values usually correspond to the failure of a 
single component. If there is adequate redundancy, overall 
system reliability indices will be higher.

Although the AASHTO LRFD and LRFR bridge specifica-
tions were calibrated based on satisfying member reliability 
criteria, the same concepts can be used to assess the reliabil-
ity of a complete bridge system. Difficulties arise in system 
reliability evaluations because the system resistance R is a 
function of the resistances of the individual members of the 
system and their interaction. When an explicit closed-form 
formulation of this relationship is not possible, evaluations of 
the system capacity can be performed for specific samples of 
the member resistances using advanced finite element analy-
sis (FEA) programs. The system reliability can then be evalu-
ated using analytically derived margin of safety equations, Z, 
obtained by fitting approximate functions through the results 
of the finite element analysis. Using an iterative approach, 
the approximate function is fitted to the samples that lie very 
close to the actual failure surface. This method is known as 
the Response Surface Method (RSM) (Melchers, 1999).

An important consideration during the reliability analysis 
process is the type of probability density function that each 
random variable follows and the accuracy of the simplified 
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equations in determining the reliability index b. Saydam and 
Frangopol (2013) compared the results that would be obtained 
when Equation 2.10 is used instead of the more exact Equa-
tion 2.9, assuming that R and S follow lognormal distribu-
tions. They also compared the results from both Equations 2.9 
and 2.10 to those of the FORM if the probability distribution 
of the live load in actuality follows an extreme value type I  
Gumbel distribution rather than the assumed lognormal 
distribution. They found that the percent error introduced 
by using the simple expressions in system reliability analysis 
depends not only on the COV of the resistance and load effect 
but also on the ratio between the mean values of resistance 
and load effect. While the percent error is high when the reli-
ability index is small and the ratio of R/S is close to 1.0, the dif-
ferences in the reliability indices remain relatively close when 
the COV is within the 20% to 30% range. However, when the 
reliability index is on the high side, above 4.5, the effect of the 
probability distribution of the load becomes important.

Reliability-Based Code Calibration Approach

The reliability index b is seldom used in practice for mak-
ing decisions related to ensuring structural safety during 
the design of a new bridge or the evaluation of an existing 
structure, but it is mostly used by code writing groups for rec-
ommending appropriate load and resistance factors for use 
during the structural design process or when evaluating speci-
fications. One commonly used calibration approach is based 
on the principle that the members of all types of structures 
should have uniform or consistent reliability levels over the 
full range of applications. For example, load and resistance 
factors should be chosen to produce similar member reliabil-
ity index b values for steel and concrete bridges of different 
span lengths, number of lanes, number of beams and beam 
spacing, simple or continuous spans, and roadway categories. 
Thus, in a traditional code, a single target b must be achieved 
for all applications. More recently, researchers and code 
groups have been suggesting that higher values of b should 
be used for members of more important structures such as 
bridges with longer spans, bridges that carry more traffic, or 
bridges that, according to AASHTO, are classified as critical 
for “social/survival or security/defense requirements” and for 
non-redundant configurations. This is based on concepts that 
structures should provide uniform risk rather than uniform 
member reliabilities where risk takes into consideration the 
consequences of failure should a bridge member exceed its 
limit state. Since higher b levels would require higher con-
struction costs, the justification should be based on a cost-
benefit analysis whereby target b values are chosen to provide 
a balance between cost and risk (Aktas, Moses, and Ghosn, 
2001). This type of reasoning has been informally used to jus-
tify the adoption of a member reliability index b = 2.5 for the 

5-year service life during the load rating of existing bridges as 
compared to a reliability index b = 3.5 for a 75-year design life 
when designing the members of new bridges or to apply a load 
modifier to increase the reliability level of non-ductile mem-
bers and members of non-redundant bridge configurations.

Because it is difficult to estimate the lifecycle costs and assess 
the consequences of failure including the direct, indirect, 
and user costs that ensue when a bridge member exceeds its 
limit, a formal risk analysis or cost-benefit analysis is seldom 
used in practice. Instead, recent codes have adopted informal 
methods based on the perception of risk. This informal risk-
inspired process is currently complementing the approach 
taken by previous codes that generally used the reliability 
index of previous safe designs to decide on the reliability cri-
teria that new codes should achieve. In most cases, appropri-
ate target b values are deduced based on the reliability levels 
of a sample population of satisfactorily performing existing 
designs. That is, if the safety performance of bridges designed 
(or rated) according to current standards has generally been 
found satisfactory, then the average reliability index obtained 
from current designs is used as the target that the new code 
should satisfy. The aim of the calibration procedure is to mini-
mize designs that deviate from the target reliability index.

The calibration based on past performance has been found 
to be robust in the sense that it minimizes the effects of any 
inadequacies in the database as reported by Ghosn and Moses 
(1986). Ghosn and Moses (1986) found that the load and resis-
tance factors obtained following a calibration based on “safe 
existing designs” are relatively insensitive to errors in the sta-
tistical database as long as the same statistical data and criteria 
used to find the target reliability index also are used to calcu-
late the load and resistance factors for the new code. In fact, 
a change in the load and resistance statistical properties (e.g., 
in the COV) would affect the computed b values for all the 
bridges in the selected sample population of existing bridges 
and consequently their average b value. Assuming that the per-
formance history of these bridges is satisfactory, then the target 
reliability index would be changed to the new “average” and the 
calibrated load and resistance factors that would be used for 
new designs would remain approximately the same.

The calibration of resistance and live load factors for a new 
bridge code is usually executed by code writing groups as 
follows:

•	 A representative sample of bridges that have been designed 
to efficiently satisfy existing codes and that have shown 
good safety record is assembled.

•	 Reliability indices are calculated for each bridge of the rep-
resentative sample set. The calculation is based on statisti-
cal information about the randomness of the strength of 
members, the statistics of load intensities, and their effects 
on the structures.
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•	 In general, there will be considerable scatter in such com-
puted reliability indices. A target b is selected to corre-
spond to the average reliability index of the representative 
bridge sample set.

•	 For the development of the new code, load and resistance 
factors as well as nominal loads are selected by an itera-
tive optimization process to satisfy the target b as closely 
as possible for the whole range of applications.

The above approach was followed by Nowak (1999) and 
Moses (2001) to calibrate the appropriate live load factors for 
the AASHTO LRFD and LRFR Legal Load Ratings in order 
to meet a target member reliability index b = 3.50 for the 
75-year service life of new bridge design and a member reli-
ability index b = 2.5 for the 5-year rating period of existing 
bridges. The reliability calibration of the LRFD and LRFR was 
based on maintaining the same reliability level on the indi-
vidual main beam members in shear and bending.

No direct consideration was made during the calibration 
of the AASHTO LRFD and LRFR for system redundancy 
or system reliability. Load modifiers, h, have been included 
in the LRFD design-check equations to account for bridge 
redundancy, member ductility, and importance of the struc-
ture. However, as stated in the commentary, the assigned val-
ues were based on judgment and were not calibrated to meet 
specific reliability index targets. The concept of applying a 
load modifier is based on the perception of risk in terms of 
considering the consequence of the failure of a non-ductile 
member of a non-redundant bridge, or the failure of a mem-
ber of an important structure. However, the specifications do 
not provide clear guidelines to help engineers decide when 
a bridge can be defined to have low levels of redundancy 
requiring the use of a load modifier greater than 1.0. In a 
similar vein, the AASHTO LRFR recommends the applica-
tion of system factors less than 1.0 placed on the resistance 
side of members of bridges that are known to have low lev-
els of redundancy based on the number of beams and beam 
spacing, or for some connection types that are known to have 
low levels of ductility.

Using a more directly risk-inspired approach, the Cana-
dian Code (CAN/CSA-S6-06) recommends different target 
reliability index b values depending on the failure mode, the 
system behavior, as well as the element behavior, and the 
inspectability of bridges. The recommended target reliabili-
ties vary between b = 2.50 and 4.0 as shown in Table 2.1 and 
the member resistance factor is changed based on the target 
reliability level. It is also noted that it is not clear how the 
target reliability levels in Table 2.1 were determined and how 
an engineer can evaluate whether one element failure leads 
to total collapse or will only lead to local failure, and how to 
determine whether the failure will be sudden or gradual if no 
direct nonlinear analysis is performed.

Summary

This section reviewed reliability analysis methods and how 
current codes are calibrated to satisfy target reliability crite-
ria. The review also explains how current recommendations 
for including redundancy in bridge design and evaluation are 
mostly based on the judgment of the code writers and the 
perception of risk rather than on non-subjective, reliability-
based criteria. To meet the objectives of this study, and fol-
lowing the format adopted in the AASHTO LRFD Bridge 
Design Specifications and the Canadian bridge code, it is 
recommended that different design criteria be established 
for bridges based on their levels of redundancy. This project 
proposes that the said objectives be achieved by applying a 
system factor in the safety-check equation such that bridges 
with low levels of redundancy be required to have higher 
member resistances than those of bridges with high levels  
of redundancy. Although requiring a higher capacity for the 
members of non-redundant bridges will not make them 
redundant, it will increase the overall system reliability so 
that non-redundant bridge systems would have similar sys-
tem reliability levels as those of redundant systems. This can 
be done by using a member safety-check equation of the form

( )φ φ = γ + γ +1 (2.11)R D L Is
N

d n l n

where fs is the system factor which is defined as a statisti-
cally based multiplier relating to the safety and redundancy 
of the complete system. The system factor is applied to the 
factored nominal member resistance. The proposed system 
factor replaces the load modifier h used in Section 1.3.2 of 
the LRFD specifications. The system factor is placed on the 
left side of the equation because the system factor is related 

Table 2.1.  Target reliability index for 
normal traffic in Canadian Code.

System 
Behavior  

Element 
Behavior  

Inspection Level 
INSP1 INSP2 INSP3 

S1 E1 4.00 3.75 3.75 
E2 3.75 3.50 3.25 
E3 3.50 3.25 3.00 

S2 E1 3.75 3.50 3.50 
E2 3.50 3.25 3.00 
E3 3.25 3.00 2.75 

S3 E1 3.50 3.25 3.25 
E2 3.25 3.00 2.75 
E3 3.00 2.75 2.50 

Notes: 
  S1 - element failure leads to total collapse; S2 - element

failure does not cause total collapse; S3 - local failure only;
 E1 - sudden loss of capacity with no warning; E2 – sudden 

failure with no warning but with some post-failure 
capacity; E3 – gradual failure;

 INSP1 – component not inspectable; INSP2 – inspection 
records available to the evaluator; INSP3 – inspections of 
the critical and substandard members directed by the 
evaluator. 
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to the capacity of the system and should be placed on the 
resistance side of the equation as is the norm in reliability-
based LRFD codes. f is the member resistance factor, RN is 
the required resistance capacity of the member accounting 
for the redundancy of the system, gd is the dead load factor, 
Dn is the dead load effect, gl is the live load factor, Ln is the 
live load effect on an individual member, and I is the dynamic 
amplification factor.

When a system factor fs equal to 1.0 is used, Equation 2.11 
becomes the same as the current design equation. If fs is 
greater than 1.0, this indicates that the system’s configuration 
provides a sufficient level of redundancy and that a redundant 
bridge could have lower member capacities than those of a 
non-redundant bridge and yet have a sufficiently high level of 
system safety. When fs is less than 1.0, then the level of redun-
dancy is not sufficient and the bridge members will have to be 
designed to produce higher member capacities to account for 
the consequence of a member failure on the system’s safety.

The next section describes an approach that builds on the 
method originally proposed in NCHRP Report 406 to cali-
brate system factors for typical bridge configurations based 
on reliability criteria.

2.5 � Reliability Calibration  
of System Factors

This section describes the approach used in this study to 
calibrate the system factors that can be used in the design-
check equation to account for bridge redundancy during the 
design of new bridges and the safety evaluation of existing 
bridges. The calibration is executed using reliability princi-
ples in keeping with modern code calibration practice. The 
general procedure presented in this section is formulated 
for bridges subjected to vertical traffic loads. Chapters 3, 4, 
and 5 extend the procedure and provide specific details that 
are applied to calibrate the system factors for systems under 
lateral, as well as vertical, loads.

As observed in Section 2.4, the reliability analysis of a 
bridge member or system requires as input statistical data 
on the member or system capacity as well as the loads that 
will be applied on the bridge structure and how the effect  
of these loads is distributed throughout the structure. As 
explained in Section 2.3, the evaluation of a bridge’s safety 
should verify that the bridge (1) will provide a reasonable 
safety level against first member failure, (2) will not reach its 
ultimate system capacity under extreme loading conditions, 
(3) will not undergo excessive deformations under expected 
traffic load conditions, and (4) will be able to carry some traf-
fic loads after damage to, or the loss of, a component.

As explained in Section 2.3, a bridge member’s capacity 
can be evaluated using the parameter LF1 while the originally 
intact system capacity can be evaluated using the parameters 

LFu and LFf, which assess the ultimate capacity and the func-
tionality of the originally intact system. A damaged bridge’s 
capacity can be evaluated using the parameter LFd. Although 
NCHRP Report 406 and NCHRP Report 458 considered the 
redundancy analysis for the functionality limit state sepa-
rately, a review of the NCHRP Report 406 data shows that LFf 
and LFu are highly correlated, which leads to similar system 
factors for both limit states. As an example, Figures 2.3 and 
2.4 show the relation between LFf and LFu for simple-span 
steel I-girder and prestressed I-girder bridges where LFf is 
selected to be the load factor at which the bridge under verti-
cal load reaches a maximum vertical displacement equal to 
span length/100. The fact that the trend lines in both figures 
pass through the origin, and the slope is exactly the same, 
indicate that the correlation between the two variables is 
very strong, which implies that there is no need to analyze a 
bridge’s ultimate limit state and its functionality limit state 
separately. For this reason, in this report the evaluation of the 
capacity of intact bridges will be based solely on the ultimate 
limit as represented by LFu.

The criteria for evaluating the safety and redundancy of 
bridge structures as explained in Section 2.3 are based on the 
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Figure 2.3.  LFf versus LFu for steel I-girder bridges.

Figure 2.4.  LFf versus LFu for prestressed I-girder 
bridges.
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deterministic measures defined in Equation 2.1 that do not 
take into consideration the uncertainties in evaluating the sys-
tem capacity and the loading. As explained in Section 2.4, the 
safety of a bridge member, that of the originally intact entire 
system, or that of a damaged system, should be assessed using 
reliability criteria. In addition to the probabilistic models for 
member and system capacities, the reliability analysis requires 
as input information on the expected live loads. The member 
and system capacities of an originally intact system should be 
able to sustain the maximum load expected over the bridge’s 
entire design life. The maximum load is herein defined as the 
extreme loading condition. However, a major damage to a 
bridge is not expected to remain unnoticed for a long period 
after damage given that all bridges are inspected on a 2-year 
cycle. Therefore, it is suggested that the vertical vehicular load 
that a damaged bridge should be able to sustain should corre-
spond to the maximum load over the 2-year inspection cycle. 
This load is herein defined as regular loading. The reliability 
formulation of the problem is presented next.

Safety Margin Equations for Bridges 
under Vertical Loads

The first necessary step for performing the reliability anal-
ysis of a bridge under the effect of vertical vehicular load con-
sists of setting up the safety margin equations that compare 
the resistance of the member or the system to the applied 
loads. These safety margin equations would be used in Equa-
tions 2.5 through 2.8 to find the probability of limit state 
exceedance and the reliability index. Using the results of an 
incremental analysis that traces the performance curve shown 
in Figure 2.1, and ignoring the functionality limit state that, 
as explained earlier, is highly correlated to the ultimate limit 
state, the following safety margin equations are obtained:

For first member failure:

For the

Z LF LL1 1 75= −

ultimate capacity of an
originally intactt system:

For the capacity

Z LF LLu u= − 75
2 12( . )

of a damaged system: Z LF LLd d= − 2

where LL75 gives the maximum load expected in a 75-year 
design life expressed in terms of the number of AASHTO 
HS-20 trucks. The 75-year load is used in Equation 2.12 for 
the member and ultimate limit states because the AASHTO 
LRFD specifies that bridges should be designed for a 75-yr 
design life. LL2 gives the maximum load expected in a 2-year 
inspection cycle expressed in terms of the number of AASHTO 
HS-20 trucks. The 2-year load is used for the damaged bridge 
because the damage should be detected during or before the 
2-year inspection. LF1, LFu, and LFd give the multiples of the 
HS-20 trucks needed to cause the failure of the first member, 

reach the ultimate capacity of the originally intact system, 
and cause the collapse of a damaged system. The HS-20 truck 
is used to express the maximum load in order to keep the 
same basis as that used for finding LF1, LFu, LFf, and LFd. LL75 
and LL2 must include the total live load on the bridge includ-
ing the dynamic amplification factor. Additional discussions 
on these random variables are provided next.

Loading Models

Extreme Live Loading Conditions

In addition to carrying its dead load, a bridge should be able 
to carry the maximum truck load expected to be applied on 
it during its design life without reaching its ultimate capacity. 
This maximum expected live load is a statistical variable that 
depends on the number of trucks that simultaneously cross 
the bridge, the positions of the trucks on the bridge deck, the 
weights of the trucks, the distribution of the weights to the 
individual axles, and the trucks’ axle configurations. In addi-
tion, the load is a function of the dynamic amplification caused 
by the interaction between the moving loads and the structure. 
According to the AASHTO LRFD Bridge Design Specifica-
tions, the design life of a bridge is normally equal to 75 years. 
For longer, expected bridge lifespans, there is a higher prob-
ability of having heavier trucks simultaneously on the bridge. 
The 75-year lifespan, however, seems to provide an asymptotic 
limit beyond which the increase in the maximum expected 
load is practically negligible (Nowak, 1999). The 75-year expo-
sure period was used in the LRFD to calibrate the live load 
factors for the reliability analysis of bridge members and the 
calibration of the resistance and load factors. In this study, the 
same expected live load is used for the ultimate limit state of 
the system as well as the first member failure limit state. In the 
latter case, the 75-year exposure period is consistent with the 
basis for the AASHTO LRFD specifications (Nowak, 1999).

As indicated by Nowak (1999), the maximum expected life-
time load can be expressed in terms of equivalent AASHTO 
HS-20 loads. For example, the maximum live load effect 
in a 75-year period, labeled LL75, is defined as the multiple 
of the HS-20 loads needed to produce the same load effect 
as the maximum expected 75-year load. Table 2.2 gives the 
expected LL75 values for simple-span bridges of different 
span lengths for two-lane loadings as well as one-lane load-
ing as provided by Nowak (1999). In the two-lane case, the 
values are lower than for the one-lane case because they mul-
tiply two HS-20 loads. In this study, the two-lane loading is 
used as the reference load configuration. The LL75 values in 
Table 2.2 are the same values used by Nowak (1999) in the 
calibration of AASHTO’s LRFD Bridge Design Specifications 
and include an average dynamic amplification factor equal 
to 1.10. Table 2.2 also shows the COV of the LL75 values. The 
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COV is the ratio of the standard deviation of LL75 divided by 
the mean value. The COV values in Table 2.2 also are taken 
from Nowak (1999). These COV values are used in this study 
to be consistent with the values used during the calibration 
of the AASHTO LRFD specifications. Specific information 
on the probability distribution of the static live load or the 
dynamic amplification factor was not provided by Nowak 
(1999), who assumed that the combined effect of the dead 
loads plus live load follows a normal probability distribution. 
Ghosn et al. (2012), however, observed that the maximum 
live load may be approximated by a lognormal distribution 
because it is obtained from the product of several random 
variables. The Central Limit Theorem states that the product 
of a large number of random variables should approach a 
lognormal distribution.

Regular Live Load Conditions

A damaged bridge system should still be able to continue to 
carry some load after the occurrence of a damaging event that 
reduces the load carrying capacity of a main member. This would 
allow (1) for clearing the traffic that is on the bridge, (2) the 
safe crossing of regular traffic if the damage goes unnoticed 
for a limited period of time, and (3) the passage of emergency 
vehicles during disaster recovery. It is herein proposed that in 
addition to carrying its dead load, a damaged bridge should 
be able to carry the maximum live loads expected during a 
2-year exposure period. The maximum live load expected over 
the 2-year exposure period is defined as “regular traffic load.” 
The 2-year exposure period is chosen because it corresponds 
to the biennial mandatory bridge inspection cycle. Thus, the 
2-year exposure period is selected based on the premise that 
even if damage such as a fatigue fracture goes unnoticed for a 
short period of time, it is bound to be discovered during inspec-
tion. LL2 is defined as the multiple of the HS-20 loads needed 
to produce the same load effect as that expected under regular 
truck traffic conditions.

Table 2.2 gives the expected 2-year loads expressed as 
multipliers of the effect of two AASHTO HS-20 trucks for 

two-lane loadings and the expected 2-year loads expressed 
as multipliers of the effect of one AASHTO HS-20 for one-
lane loadings. The LL2 values in Table 2.2 are adopted from 
the work of Nowak (1999). They include the mean dynamic 
amplification factor of 1.13. Because no statistical data on the 
COV of LL2 are available, the same COVs are assumed to be 
valid for both LL75 and LL2, although it is generally known 
that the shorter period is normally associated with slightly 
higher COVs. The same COV values are used because a break-
down of the sources of uncertainty in the load model was not 
provided by Nowak (1999). Using the same COV follows the 
approximation made by Moses (2001) who assumed that the 
COV for the 5-year and 75-year live loads are the same. This 
assumption should not alter the final results because the reli-
ability calibration process is known to be a robust process in 
the sense that errors in the database do not influence the final 
results as long as the new design or evaluation procedures 
are calibrated to match current acceptable practice (Ghosn 
and Moses, 1986). Following the same logic discussed for 
the 75-year loading, it may be reasonable to assume that the 
2-year loading approaches a lognormal distribution.

Resistance Model

According to Nowak (1999), the load carrying capacities 
or resistances R of structural members may be modeled as 
lognormal variables. For prestressed concrete members, the 
mean moment capacity is about 1.05 times the nominal value 
obtained from typical code-specified methods with a COV 
of 7.5%. For composite steel members, the bias between 
the mean moment capacity and that obtained using code-
specified methods is estimated at 1.12 with a COV of 10%. 
Nowak (1999) also gives bias and COV values for the dead load 
effect that are on the order of 1.05 and a COV of about 10% 
for cast-in-place members with slightly lower bias and COV 
for factory-made members and higher COV for pavement.

The load factors LF1, LFu, and LFd are related to the bridge 
members’ resistances, dead weights, and the effect of the 
applied live loads. Specifically, the calculation of the load 

Span Length (�) Two Lane Loading One Lane Loading COV Distribu�on Type

LL75 LL2 LL75 LL2 VLL

lognormal

45 1.67 1.53 1.97 1.81 19%
60 1.72 1.6 2.02 1.86 19%
80 1.81 1.67 2.14 1.98 19%
100 1.89 1.75 2.26 2.08 19%
120 1.98 1.84 2.35 2.17 19%
150 2.01 1.87 2.37 2.19 19%

Includes 1.10 Dynamic
Amplifica�on

Includes 1.13 Dynamic
Amplifica�on

Table 2.2.  Mean and COV of applied live loads as function  
of HS-20 trucks.
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factor for first member failure LF1 can be calculated from 
the capacity of the most critical member of the bridge, R, 
the dead load effect on that member, D, and L1, which is the 
load effect on the member calculated due to the HS-20 trucks. 
Specifically, LF1 can be obtained from

. .
(2.13)1

1 20

LF
R D

L

R D

D F LLHS

= − = −
× −

where L1 is expressed in terms of the fraction of the HS-20 
truck that is carried by the most critical member, which is 
obtained by multiplying the load effect of the HS-20 by the 
distribution factor, D.F. Although L1 is calculated in this study 
using a structural model of the entire bridge, an approxima-
tion for L1 can be obtained using an accurate estimation of the 
distribution factors such as those of the LRFD specifications.

Equation 2.13 is identical to the rating factor equation used 
when evaluating the load carrying capacity of existing bridges 
without the load and resistance factors or the impact factor. 
Equation 2.13 serves the same purpose as the rating factor 
in that it provides a measure of the load carrying capacity of 
the system up to first member failure but on the basis of the 
nominal unfactored resistances and loads.

In the analyses performed in this study, the capacity of a 
bridge system also is expressed in terms of the load factors 
LFu and LFd, which represent the differences between the over-
all capacities of the originally intact system and that of the 
damaged system minus the effect of the dead load as demon-
strated in Equation 2.13 for LF1. Using the statistical models 
of resistance and dead load from Nowak (1999) along with the 
resistance and dead loads of the simple-span I-girder bridges 
analyzed in this study and in NCHRP Report 406, the biases 
and COV for the load factor LF1 are obtained as shown in 
Table 2.3. Wang et al. (2011) performed a reliability analysis 
of several bridge systems using a push down analysis similar to 
the one used in this study. They observed that the load capac-
ity evaluation will lead to capacities that approach lognormal 
probability distributions with an overall COV on the same 
order of that provided by Nowak (1999) for individual mem-
bers. Based on this observation, the biases and COVs obtained 
in Table 2.3 will be used for the member capacities expressed 
in terms of LF1 as well as the system capacities of the intact and 
damaged systems expressed in terms of LFu and LFd.

Simplified Reliability Evaluation

As explained in Section 2.3, bridge safety should be assessed 
in terms of the three limit states identified as (1) member fail-
ure, (2) ultimate limit state, and (3) damaged condition limit 
state. These three limit states should be checked to ensure the 
satisfactory and safe performance of any bridge system under 
extreme or regular loading conditions. “Adequate” safety mar-
gins also should be provided to account for the uncertainties 
associated with determining bridge system capacity as well as 
the uncertainties associated with determining the live load lev-
els that will be applied on the bridge. Following current state-
of-the-art practice in bridge code calibration, adequate safety 
margins should be established based on structural reliability 
criteria similar to those used in the development of AASHTO’s 
LRFD and LRFR specifications, as well as the Canadian Codes 
(Nowak, 1999; Moses, 2001; and CAN/CSA-S6-06).

The measure of safety used in the development of struc-
tural design and evaluation codes is the reliability index b 
(Nowak, 1999). The reliability index can be used as a measure 
of the reliability of structural members as well as structural 
systems. The reliability index accounts for both the margin of 
safety implied by the design procedure and the uncertainties 
in estimating member strengths and applied loads. The reli-
ability index can be related to the probability of a limit state 
exceedance as shown in Equations 2.5 and 2.7.

Assuming that the member resistance of a bridge under ver-
tical load represented by the load factor LF1, and the applied 
maximum lifetime live load represented by the factor LL75 are 
random variables that follow lognormal distributions, then the 
reliability index bmember for the failure of the first member can 
be expressed based on the safety margin Equation 2.12 using the 
simplified lognormal format of Equation 2.10, which is reason-
able for the cases when the COVs are less than 20%. Accordingly
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where LF1 is the mean value of the load factor that will cause 
the first member failure in the bridge, assuming elastic analy-
sis. As explained through Equation 2.13, LF1 is related to 
the unfactored live load margin (R-D). Thus, LF1, which is 

Bridge Type
Bias for
Member
Resistance

COV for
Member
Resistance

Bias for
LF

COV for
LF

Distribu�on
Type

Prestressed
concrete

1.05 7.5% 1.05 13.7%

LognormalComposite
steel

1.12 10% 1.14 13%

Table 2.3.  Mean and COV of load capacity as function of HS-20 trucks.
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the mean value of LF1, relates to the strength capacity of the 
member represented by the resistance R and the dead load D. 
LL75 is the mean value of the maximum expected 75-year live 
load, including dynamic load allowance effect. VLF is the COV 
of LF1, while VLL is the COV of the maximum expected live 
load LL75. The denominator in Equation 2.14 gives an overall 
measure of the uncertainty in estimating the resistance, the 
dead load, and the live load including dynamic amplification.

Using equations similar to Equation 2.14 has been common 
during the reliability analysis of bridge members. However, 
the reliability analysis of an entire bridge system involves a 
much more complicated process than the one normally used 
for the analysis of individual members. This is because the 
analysis must take into consideration the interaction of all the 
bridge members throughout the entire loading process from 
the initiation of loading until collapse during which each 
member may undergo different levels of deformations includ-
ing linear-elastic and nonlinear strains. The most effective 
approach to account for all the random factors that control a 
system’s behavior, including the uncertainties in the linear and 
nonlinear material modeling, is through simulations. System 
reliability simulation programs require extensive computa-
tional effort, which cannot be accommodated within the con-
straints of this project. For this reason, a simplified reliability 
formulation is adopted in this study, which uses a lognormal 
model for the system capacity analogous to the model used for 
individual members. A few comparisons have been performed 
as part of this study to verify that the proposed simplified 
approach gives results that fall within a reasonably acceptable 
range as those from advanced simulation techniques. The 
analyses of Wang et al. (2011) also suggest that the simplified 
reliability model should be applicable.

The proposed simplified approach to find the reliability 
index for the ultimate capacity of a bridge system assuming 
that the load factor LFu and the live load factor LL75 follow 
lognormal distributions will lead to a reliability index of the 
system for the ultimate limit state that can be defined as
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where LFu is the mean value of the load factor corresponding 
to the ultimate limit state. LFu relates to the strength capac-
ity of the system and the dead load. LL75 and VLL are the mean 
of the 75-year live load and its COV and are the same val-
ues used to calculate bmember. The limited data on the COV of 
bridge systems suggest that LFu and LFd have COV VLF similar 
to those used for LF1. The theory of reliability of structural 
systems demonstrates that, in general, the COV of a system 
is smaller than the COV of the individual members. How-
ever, this observation is based on the assumption that the 

structural model used during the nonlinear analysis is exact. 
In this study, the COVs of the intact and damaged system 
capacity (LFu and LFd) are assumed to be equal to the COV 
of the member capacity (LF1) to account for the modeling 
uncertainties. As done for the evaluation of the reliability of 
the individual members, Equation 2.15 also assumes that the 
live load (LL75) follows a lognormal distribution.

Following the same logic, the system’s ability to sustain 
loads after damage can be expressed as a system reliability 
index for damaged conditions, bdamaged, defined as

ln ln
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where LFd is the mean load factor to reach the ultimate capac-
ity of the damaged system. LFd is the capacity of the system to 
carry live load after one member is damaged. A 2-year expo-
sure period is used for the damaged condition. The mean 
live load for the 2-year period is expressed as LL2, which is a 
multiplier of the effects of two HS-20 vehicles. Equation 2.16 
assumes that the capacity of the damaged bridge system, as 
well as the load, follow lognormal distributions.

The reliability index formulations of Equations 2.15 and 
2.16 are conservative as they assume that the bridge members’ 
strengths are fully correlated.

Probabilistic Measures  
of Bridge Redundancy

Equations 2.14, 2.15, and 2.16 provide reliability measures 
that evaluate the safety of bridge members and systems. How-
ever, as explained in Section 2.3, bridge redundancy is not a 
direct measure of the overall system capacity or overall sys-
tem safety, but a measure of the additional safety provided 
by the system relative to that of a member. Equation 2.1 pro-
vides a set of redundancy measures based on a deterministic 
evaluation of the additional safety that the system can pro-
vide beyond its capacity to resist the failure of a critical mem-
ber. Alternatively, and in order to take into consideration the 
uncertainties in estimating the system and member capacities 
as well as the applied loads, probabilistic measures of redun-
dancy can be defined. In this context, a probabilistic evalua-
tion of system redundancy would entail an examination of 
the differences between the reliability of the intact and dam-
aged system expressed in terms of bultimate and bdamaged and the 
reliability of the most critical member, bmember, using different 
methods (Frangopol and Curley, 1987; Frangopol and Nakib, 
1991; Hendawi and Frangopol, 1994). Specifically, Ghosn and 
Moses (1998) defined a set of “reliability index margins” Dbu, 
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Dbd that compare the reliability indices for the ultimate and 
damaged limit states to that of the most critical member. The 
reliability index margins Dbu, Dbd are defined as

(2.17)
u ultimate member

d damaged member

∆β = β − β

∆β = β − β

Using the simplified lognormal reliability model of Equa-
tions 2.14 through 2.16 for a superstructure under the effect 
of vertical live loading and assuming that the COV of LFu, 
LFd, and LF1 are all equal to the same value, VLF, the proba-
bilistic and deterministic measures of redundancy are found 
to be directly related to each other as shown in the following:
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The relationships in Equation 2.18 show that for a log
normal model, and assuming that the bias in the load factor is 
the same, the reliability index margins are directly related to the 
redundancy ratios Ru = LFu/LF1 and Rd = LFd/LF1, as defined 
in Equation 2.1. Accordingly, a bridge system will provide 
adequate levels of system redundancy if the reliability index 
margins defined in Equation 2.18 are adequate.

Establishing Reliability-Based 
Redundancy Criteria

Modern-day structural design codes are calibrated to pro-
vide uniform levels of member reliability indices. The AASHTO 
LRFD specifications were calibrated to provide a member reli-
ability index, b = 3.5, assuming that the system provides suf-
ficient levels of redundancy. Bridges that are not sufficiently 
redundant are “penalized” by requiring that their members be 
more “conservatively designed” so that their member reliability 
indices are higher than b = 3.5. This is effectively executed by 
applying the load modifiers h specified in the AASHTO LRFD 
Bridge Design Specifications. Mertz (2008) explains that apply-
ing a load modifier h = 1.10 will effectively raise the member 
reliability index to a value b = 4.0. This is essentially done to 

compensate for the lower system reliability level that a non-
redundant bridge with bmember = 3.5 has compared to the system 
reliability level of a redundant bridge with the same member reli-
ability index. However, the member reliability index is reduced 
to a value b = 3.0 for bridges that are redundant when they are 
assigned the load modifier h = 0.95. This essentially “rewards” 
the members of redundant bridges by allowing a lower mem-
ber reliability index. This is essentially done because redundant 
bridges with b = 3.0 will provide sufficiently high system reli-
ability levels comparable to those of non-redundant bridges 
with bmember = 4.0. One can observe from this interpretation, 
that although not explicitly stated in the AASHTO LRFD, the 
rationale behind the application of the load modifiers is con-
sistent with the concept of providing adequate spread between 
the reliability indices of the system and that of the members. 
Systems where the spread is large can be allowed lower values 
of member reliability levels; those where the spread is small will 
have to be assigned higher member reliability levels.

By using target reliability indices ranging between b = 2.5 
and 4.0 as shown in Table 2.1, the Canadian CAN/CSA-S6-06 
code achieves the same goals by explicitly changing the target 
member reliability index rather than using the preset load 
modifier values of the AASHTO LRFD.

The rationale behind the AASHTO LRFD and the Cana-
dian CAN/CSA-S6-06 code methods for accounting for bridge 
redundancy is consistent with the concept proposed in this 
project to evaluate the system redundancy based on the reliabil-
ity index margins of Equation 2.18. However, the final decision 
on what values should be assigned to the AASHTO load modi-
fiers or what member reliability indices should be used in the 
Canadian Code, are left up to the bridge engineer who should 
use his/her judgment to decide how to classify a bridge in terms 
of its level of redundancy and to assess the consequences of a 
member’s failure. Furthermore, the proposed AASHTO LRFD  
load modifier values were arbitrarily assigned by the code 
writers and the target reliability values in CAN/CSA-S6-06 
were selected arbitrarily in a manner that is not consistent with 
modern-day code calibration methods.

Following the procedures proposed in the AASHTO LRFD 
and the Canadian bridge code, it is recommended that differ-
ent design criteria be established for bridges based on their 
levels of redundancy. This can be achieved by applying a sys-
tem factor in the safety-check equation such that bridges with 
low levels of redundancy be required to have higher member 
resistances than those of bridges with high levels of redun-
dancy. For bridges under vertical live loads, this goal can be 
achieved by using a member safety-check equation of the 
form provided in Equation 2.11, which is repeated below.

( )φ φ = γ + γ +1 (2.11)R D L Is
N

d n l n

The system factors to be applied in conjunction with Equa-
tion 2.11 should be calibrated using a reliability model such 
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that a system factor equal to 1.0 indicates that the bridge is 
sufficiently redundant and that the reliability index of the sys-
tem is higher than that of the member by an amount equal 
to a target value. Following common reliability-based code 
calibration processes, the target values can be established by 
studying the reliability of bridge systems that have histori-
cally shown adequate levels of redundancy in the sense that 
one of their critical members has failed, and the system did 
not undergo collapse.

Determination of Reliability-Based 
Redundancy Criteria

Equation 2.18 provides non-subjective reliability-based 
measures to evaluate the redundancy of bridge systems. Bridges 
whose reliability index margins are adequate should be con-
sidered to be redundant. In Section 2.4, it was explained that 
the determination of the reliability criteria that bridge mem-
bers should satisfy was established based on matching a tar-
get reliability index equal to the average reliability index of 
bridges that have historically been known to have performed  
well. To remain consistent with modern code calibration 
methods, it is herein proposed that bridges that have reliabil-
ity index margins Dbu and Dbd equal to or above target values 
be classified as redundant. The determination of the mini-
mum target Dbu target and Dbd target values that a bridge should 
satisfy must be established based on a review of the perfor-
mance of existing redundant designs. This section describes 
how this selection process is performed for a system under 
vertical loads.

To establish the target reliabilities, a large number of 
common-type simple-span prestressed I-girder and steel 
I-girder bridges having span lengths varying between 45 ft 
and 150 ft were analyzed in NCHRP Report 406. The bridges 
have 4 to 10 beams with spacing varying between 4 ft and 12 ft. 
The results of these analyses are given in Appendixes B and C 
of NCHRP Report 406. For each bridge configuration, the load 
multipliers, LF1, LFu, and LFd, were calculated using a nonlinear 
incremental bridge analysis program. A grillage model is used 
for the incremental analysis of the superstructure assuming 
two side-by-side HS-20 trucks as the base live load model. The 
validity of the grillage model for this type of analysis was 
extensively tested as part of NCHRP Report 406 and further 
verified during the course of this current project.

Given the load factors LF1, LFu, and LFd, the reliability 
indices bmember, bultimate, and bdamaged were calculated for each 
bridge configuration using Equations 2.14, 2.15, and 2.16. 
Several comparisons were performed with results of FORM 
algorithms to verify that the application of the simplified 
lognormal equations gives reasonably accurate results for 
the purposes of this study. The results of the reliability index 
calculations are then used to establish the reliability-based 

redundancy criteria and the target reliability index margins 
necessary for calibrating the system factors.

Ultimate Limit State Criteria

In current practice, all two-girder bridges, and according 
to several opinions, even three-girder bridges, are defined as 
non-redundant. On the other hand, all bridges with four or 
more beams are always classified as redundant and experi-
mental investigations have demonstrated that when one 
girder of four-girder bridges has been overloaded, the bridge 
has been able to sustain considerable traffic load without 
collapsing. Therefore, it is recommended to use the average 
Dbu value obtained from four-girder bridges as the target 
reliability index margin that all bridges should satisfy to be 
considered as adequately redundant. The calculations per-
formed in NCHRP Report 406 show that typical two-lane, 
simple-span, steel and prestressed concrete I-beam bridges 
with four beams at spacings equal to or greater than 4 ft have 
Dbu average value of 0.85. The range of Dbu is between 0.04 
and 1.23 for steel bridges and between 0.02 and 1.53 for pre-
stressed concrete bridges. Generally, it is observed that for 
the same span length and beam spacing, the prestressed con-
crete bridges have higher dead weight, which results in lower 
values of LF1, leading to slightly higher Ru = LFu/LF1 ratios 
and Dbu values. To account for all possible differences in the 
four-beam bridges, NCHRP Report 406 proposed to use a  
Dbu target = 0.85 as the target reliability index margin that 
bridges deemed to be adequately redundant should satisfy 
for the ultimate limit state.

Damaged Condition

Damaged bridges are assumed to have lost the load carrying 
capacity of an external girder. NCHRP Report 406 also ana-
lyzed the large set of simple-span steel and prestressed concrete 
I-girder bridge configurations that it assembled assuming that 
the external girder is no longer capable of carrying any load 
while its dead load as well as the total live load must be carried 
by the remaining members. Damaged two-lane bridges with 
four beams analyzed in NCHRP Report 406 gave an average 
value for Dbd equal to -2.70. Based on these results, it is rec-
ommended to use a target Dbd target = -2.70 as the target rela-
tive reliability index for the damaged condition.

Calibration of System Factors

The calibration of the system factor fs that should be 
applied in Equation 2.11 can be executed using the reliability 
formulation presented above so that the reliability index of 
the members and of the systems for bridges that are not suf-
ficiently redundant is increased. That is, when the available 
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reliability index margins Dbu and Dbd are lower than the tar-
get values Dbu target = 0.85 and Dbd target = -2.70, a system factor 
fs < 1.0 should be used in Equation 2.11. However, fs should 
serve to lower the reliability index for the member and the 
system when the available Dbu and Dbd are higher than the 
target values.

The amount by which the reliability indexes of the systems 
bultimate and bdamage should be increased should be equal to the 
deficit in the available Dbu and Dbd when compared to the 
target values. The goal is to ensure that non-redundant bridge 
configurations will still provide bultimate and bdamage values sim-
ilar to those of redundant bridges. Because the design process 
controls the member capacities, achieving higher bultimate and 
bdamage values can be done by imposing higher bmember through 
the application of a system factor fs into the design and safety 
evaluation Equation 2.11.

The formulation can be summarized as described in this 
section for the ultimate limit state for bridges under vertical 
loads. The same exact procedure is also valid for finding the 
system factor for the damaged condition limit state and for 
calibrating system factors for systems under lateral loads, as 
will be explained in Chapters 3, 4, and 5. Some of the equa-
tions presented in earlier sections of this chapter are repeated 
for consolidating the derivation.

The reliability index for a bridge member is calculated 
using the equation

ln

(2.19)
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where LF1 is the mean value of LF1, which is calculated from 
the linear structural analysis of the bridge up until the first 
member fails. LF1 gives the number of HS-20 trucks that the 
bridge member can carry in addition to the dead load. It can 
be expressed as

(2.20)1
1

LF
R D

L
= −

where R is the bridge member capacity, D is the dead load 
effect and L1 is the load effect on that member due to the 
application of one set of HS-20 trucks on the bridge.

If LF1 is found based on the nominal values of R and D, 
then the mean LF1 is related to the nominal value of LF1 
through a bias bLF such that

(2.21)
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b
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LF =

The results of the nonlinear analysis of the entire system 
will serve to find the load factor LFu, which also is used to find 
the reliability index for the ultimate limit state.
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The reliability index margin is found from

(2.23)u ultimate member∆β = β − β

The calculated reliability index margin is compared to the 
target value and the deficit is found as

(2.24)u deficit u target u u target ultimate member( )∆β = ∆β − ∆β = ∆β − β − β

A negative Dbu deficit indicates that the redundancy level of 
the system is more than adequate, while a positive Dbu deficit 
indicates that the redundancy of the system is not sufficient. 
The system factor should serve to change the resistances of the 
bridge members so that a system that is adequately redundant 
could be allowed to have lower member resistances while the 
member resistances of a system that is not adequately redun-
dant should be increased. The change in the member resis-
tance should be sufficient to offset the deficit in the reliability 
index margin defined as Dbu deficit, so that the modified bridge 
will produce a modified system reliability index bN

ultimate higher 
than the current reliability index for non-redundant systems 
or lower for redundant systems such that

(2.25)
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ultimate u target ultimate member
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β = ∆β + β

Thus, the new ultimate system capacity is related to the 
reliability index by

ln

(2.26)
75

2 2

LF

LL

V V
ultimate
N

u
N

LF LL

β =







+

where LFu
N is the mean value that the new system ultimate 

capacity should reach. Also,
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and the nominal system capacity is obtained from
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The required member capacity can be inferred from the 
relationship established between LFu and LF1 for the typi-
cal bridge configurations analyzed in this study. For exam-
ple, in NCHRP Report 406 it was observed that the ratio 
Ru = LFu/LF1 is approximately constant for I-girder bridges 
designed to exactly satisfy the AASHTO design specifications. 
Further analysis of the NCHRP Report 406 data and addi-
tional analyses performed as part of this project show that a 
better approximation for the relationship between LFu and 
LF1 for deficient and overdesigned I-girder and box bridges is 
obtained from an equation of the form

1.16 0.75 (2.30)1LF LFu = × +

Therefore, the required load factor for first member failure 
can be obtained from

0.75

1.16
(2.31)1LF

LF
N u

N

= −

If the load factor for first member is related to the member 

resistance as shown in Equation 2.20 by ,1
1

LF
R D

L
N

N

= −
the 

required member resistance is

(2.32)1 1R LF L DN N= × +

and the system factor associated with this bridge system con-
figuration is obtained as

(2.33)
R

R
s

N
φ =

so that if the original design equation based on the member 
reliability is given as

1 (2.34)R D L Id n l N ( )φ = γ + γ +

then
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leading to Equation 2.11 given as

1 (2.36)R D L Is
N

d n l N ( )φ φ = γ + γ +

2.6 Summary

This chapter presents a method to consider redundancy 
during the design and load capacity evaluation of bridge 
systems. In keeping with the concept of NCHRP Report 406, 
which also is consistent with the AASHTO LRFD, AASHTO 
LRFR, and the Canadian Code, the method developed in this 

study consists of penalizing less redundant designs by requir-
ing more conservative member capacities than required by 
current member-oriented specifications. However, bridges 
with redundant configurations can be rewarded by allow-
ing a lower level of safety factors on their member strength 
capacities. This is achieved by applying a system factor in the 
design-check equation where a system factor fS > 1.0 applied 
in combination with the resistance factor indicate that the 
bridge is redundant while a system factor fS < 1.0 is used for 
less redundant configurations.

The chapter describes the reliability-based calibration pro-
cedure that should be followed to determine the appropri-
ate system factors. The procedure is explained using bridges 
under vertical loads, but the same approach can be followed 
for bridges under lateral loads as will be explained in Chap-
ters 3 and 4. The implementation of the procedure to calibrate 
systems factors for systems subjected to lateral or vertical loads 
is described in Chapters 3, 4, and 5.
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3.1 � Behavior of Bridge Systems 
under Distributed Lateral Load

When a bridge system is subjected to an increasing distrib-
uted lateral load, its response is often represented in terms 
of the maximum lateral displacement at a critical point as a 
function of the applied lateral load’s intensity. A typical bridge 
behavior can be represented using the green plot shown in 
Figure 3.1. This behavior is usually simulated using a pushover 
analysis whereby a load is applied laterally on the bridge sys-
tem and an incremental load analysis is performed taking into 
consideration the nonlinear behavior of each bridge member. 
The load is continuously incremented until the bridge fails. 
The load that causes the bridge to fail is designated as Pu in Fig-
ure 3.1. This load defines the maximum load carrying capacity 
of the system. The displacement at bridge failure is designated 
as duc, which represents the ultimate displacement capacity of 
the system.

Traditionally, to simplify the analysis process, especially in 
previous decades when computational tools to perform non-
linear incremental pushover analyses were not widely avail-
able, bridge engineers used the results of linear-elastic analyses 
to check the safety of bridge systems subjected to lateral loads. 
During the bridge design process, bridge members are pro-
portioned based on their plastic member capacities even when 
a linear-elastic analysis is performed to find the load effects. 
This method, known as the force-based approach, has been 
the standard approach for checking the safety of bridges 
under all types of lateral loading conditions. The forced-based 
approach can be represented by the brown curve in Figure 3.1 
where a linear-elastic analysis behavior is assumed until one 
member reaches its plastic capacity. The load that causes the 
one member to reach its plastic capacity is designated as Pp1 
in Figure 3.1. This load defines the “nominal” load carrying 
capacity of the system.

Because earthquakes impose displacements on structural 
systems rather than forces, the traditional force-based approach, 

which is sufficiently valid for other types of loadings, had to be 
modified in order to take into consideration the effect of mem-
ber ductility on the seismic response of bridges. Accordingly, the 
results of a linear-elastic seismic analysis are adjusted by apply-
ing a response modification factor on the linear-elastic response 
of bridge members to reduce the calculated elastic forces and 
moments to “equivalent plastic” load effects. Bridge members 
are designed and detailed to meet these “equivalent plastic” load 
effects. In principle, the response modification factor would 
account for the plastic deformation that may be sustained until 
a theoretical failure point marked by “x” on the brown curve of 
Figure 3.1 is reached. The ratio of the plastic deformation limit 
to the linear-elastic limit represents the ductility of the member. 
The ductility of the system also is assumed to be represented by 
the maximum response of the most critical member.

Although this traditional force-based approach has been 
the standard method for years, it does not provide an adequate 
representation of the safety of the entire bridge system. This 
is because a linear-elastic analysis does not properly model the 
redistribution of the loads to the members of the bridge as the 
members undergo nonlinear deformations and because neither 
the bridge members and certainly nor the system exhibit pure 
elasto-plastic (bilinear) behaviors. For this reason, in recent 
years, the seismic assessment of bridge systems has shifted from 
the force-based approach to a response-based approach. Spe-
cifically, the recently implemented AASHTO Guide Specifica-
tions for LRFD Seismic Bridge Design (2011) are based on a 
displacement-based approach whereby the system capacity is 
defined in terms of the maximum displacement that can be sus-
tained by the system before system collapse. This is represented 
by duc in Figure 3.1. By ensuring that the displacement capacity 
is higher than the imposed seismic displacement demand, dd, 
the bridge system will be safe.

According to the AASHTO LRFD seismic guide provisions, 
the ultimate displacement capacity of a bridge system can 
be directly obtained using a pushover analysis of the entire 
bridge system. This will directly define the ultimate system 

C H A P T E R  3
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response capacity duc. Alternatively, for bridges in low seis-
mic regions, the AASHTO seismic guide provides equations 
that give the maximum displacement capacity of bridge col-
umns in function of the column height, cross-section size, 
end constraints, and lateral confinement reinforcement ratio. 
These equations were presumably derived to provide a con-
servative estimate of the maximum displacement that indi-
vidual bridge columns can sustain, which also is assumed to 
be equivalent to the maximum displacement that the system 
can sustain. The response of an individual column can be 
modeled as shown by the purple curve in Figure 3.1 and the 
column response capacity is represented by d1c.

3.2 � Redundancy of Bridge Systems 
under Lateral Load

Measures of Redundancy

Traditionally, structural design codes define a structure’s 
capacity in terms of the ability of its individual members to 
sustain the applied loads using a linear-elastic analysis. Given 
that the failures of individual members do not necessarily 
lead to the collapse of the system, structural redundancy is 
defined as the ability of a structural system to continue to 
carry load after one critical member reaches its load carry
ing capacity. Based on the system behavior explained in Sec-
tion 3.1 as described in Figure 3.1, and to remain consistent 
with the definition of bridge redundancy established for sys-
tems under vertical loads as explained in NCHRP Report 406 
and Chapter 2, quantifiable measures of system redundancy 

for bridges subjected to a distributed lateral load are proposed 
as follows:

For force-based designs: (3.1)
1

R
P

P
fu

u

p

=

For displacement-based designs: (3.2)
1

Rdu
uc

c

= δ
δ

Analysis of Typical Bridge Configurations

To obtain estimates of the force-based and displacement-
based redundancy of typical bridge system configurations, 
this study performed the pushover analysis of several bridges 
and compared their system response capacities, duc, to their 
individual column response capacities, d1c. Also, the study 
compared the systems’ ultimate load capacities, Pu, to the first 
member plastic capacities, Pp1. The analyses were performed 
on continuous three-span I-girder steel bridges with two bents 
supported by three columns each, three-span bridges carrying 
a multi-cell prestressed concrete bridge superstructure where 
each bent consisted of two columns and three-span bridges 
carrying two prestressed concrete girder boxes where each 
bent consisted of two columns. The load transfer mechanism 
between the I-girder superstructure and the substructure was 
through bearings on a cap beam, although the possibility of 
having an integral connection between cap beam, I-girders, 
and columns was also analyzed. For the box-girder bridges, 
the response of bridges with integral connections between the 

Figure 3.1.  Representation of typical behavior of bridge systems 
under distributed lateral load.
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columns and the superstructure is compared to the effects of 
pinned connections. For all bridge configurations, the effect 
of changes in column height and size, lateral confinement 
and longitudinal reinforcement ratios, reduction in member 
curvatures due to deficiencies in column/connection detailing 
and changes in foundation stiffness are investigated.

Evaluation of Displacement-Based 
Redundancy

The results of the pushover analyses performed on the 
entire bridge system are compared to the results performed 
on one column for each of the bridge configurations and 
variations on the base case configurations analyzed in this 
study. The ultimate system response capacity, duc, is compared 
to the column response capacity, d1c, for the I-girder bridges 
and the box-girder bridges.

The results for the I-girder bridges are presented in Fig-
ure 3.2, which plots duc versus d1c for each column detailing 
and size analyzed. The values of the plotted displacements are 
provided in the last two columns of Table 4.7. The analysis 
included 27.5-ft, 32.5-ft, and 37.5-ft columns designed with 
lateral confinement reinforcement ratios rs = 0.24%, 0.3% 
(detail category B) and 0.5% (detail category C) in addition to 
cases where the maximum curvature is reduced by 50% and 
75% to account for deficiencies in design. Different foundation 
stiffnesses are used to represent pile foundations and spread 
footing foundations as well as rigid foundations and pinned 

foundations. The possibility of integral girder/cap-beam/
column connections is compared to girder-bearings on cap 
beam designs. Figure 3.2 shows the plot of the displacement 
capacity of the system versus the displacement obtained when 
one isolated column is analyzed. The data points are clearly 
aligned along the equal displacement line indicating that duc is 
very close to d1c or Rdu = 1.0 for all of the cases analyzed. This 
demonstrates that the displacement capacity of one column 
reflects the displacement capacity of the entire bridge struc-
tural system very accurately and the redundancy of the system 
is directly accounted for when using the displacement-based 
approach for evaluating bridges under lateral loads. These 
results are expected due to the large stiffness of the deck under 
the effect of lateral load, which will ensure the compatibility  
of the displacements of all of the columns at the deck level.

The results for the multi-cell box-girder bridge are presented 
in Figure 3.3. The values of the displacements are provided on 
the last two columns of Table 4.6. The analysis included 20-ft, 
25-ft, and 30-ft columns designed with lateral confinement 
reinforcement ratios rs = 1%, 0.3% (detail category B) and 
0.5% (detail category C) in addition to cases where the maxi-
mum curvature is reduced by 50% and 75% to account for 
deficiencies in design. The columns’ diameters were varied 
between 6-ft, 7-ft and 8-ft. Different foundation stiffnesses 
are used to represent pile and spread footing foundations as 
well as rigid foundations. The possibility of integral column/
superstructure connections is compared to the cases where 
the load is transferred between the superstructure and the 
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Figure 3.2.  System displacement versus one-column 
displacement for I-girder bridge.
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columns through bearing supports. Changes in the abutment 
bearing stiffnesses also are considered, including the case 
where the bearings have negligible stiffness. Figure 3.3 shows 
the plot of the displacement capacity of the system versus the 
displacement obtained when one isolated column is analyzed. 
Here again, the data points are clearly aligned along the equal 
displacement line indicating that duc is very close to d1c or 
Rdu = 1.0 for all the cases analyzed. This also demonstrates 
that the displacement capacity of one column reflects the 
displacement capacity of the entire bridge structural system 

very accurately and the redundancy of the system is directly 
accounted for when using the displacement-based approach 
for evaluating bridges under lateral loads.

The results for the two-box-girder bridge are presented in 
Figure 3.4. The displacements are provided on the last two col-
umns of Table 4.5. The analysis included columns designed 
with lateral confinement reinforcement ratios rs = 1%, 0.3% 
(detail category B) and 0.5% (detail category C). The columns’ 
height was varied between 4.6-ft, 8.3-ft, 15-ft, 20-ft, 26.7-ft, and 
33.3-ft. Although some of the low column heights may not be 
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Figure 3.3.  System displacement versus one-column 
displacement for multi-cell box-girder bridge.
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Figure 3.4.  System displacement versus one-column 
displacement for two-box-girder bridge.
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typical, they are used in order to study the effect of large changes 
in bridge configurations. Different longitudinal reinforcement 
ratios for the 6-ft diameter columns varying between 1.66% 
(original design with steel area As = 67.5 in2), 1.44%, 1.22%, 
0.99%, and 0.83% also are investigated. Here again, the data 
points are clearly aligned along the equal displacement line indi-
cating that duc is very close to d1c or Rdu = 1.0 for all the cases 
analyzed. This confirms that the displacement capacity of one 
column reflects the displacement capacity of the entire bridge 
structural system very accurately and the redundancy of the sys-
tem is directly accounted for when using the displacement-based 
approach for evaluating bridges under lateral loads. These 
results are due to the large stiffness of the superstructure, which 
ensures the compatibility of the lateral displacement of the top 
of the bridge columns of symmetric bridge configurations.

Comments on Displacement-Based 
Redundancy

The results shown in Section 3.2 demonstrate very clearly 
that the displacement capacity of a bridge system is equal to 
the displacement capacity of its most critical column. This fact 
has been recognized in the AASHTO Guide Specifications for 
LRFD Seismic Bridge Design, which provides empirical equa-
tions to calculate the displacement capacity of bridge columns 
with structural detailing categories SDC B and SDC C. The 
equations are given as

: 0.12 1.27 ln 0.32

0.12 (3.3)

1 0
0

0

0

i i
i

δ∗ = × − Λ



 −





≥ ×

For category B H
H

H

B
c

: 0.12 2.32 ln 1.22

0.12 (3.4)

1 0
0

0

0

For category C H
H

H

B
c i i

i
δ∗ = × − Λ



 −





≥ ×

where d
1c is the code-specified displacement capacity of the 

column in inches, L = 2 for columns fixed at the top and the 
bottom, L = 1 for fixed-pinned columns, B0 is the width of 
the column in feet, and H0 is the height in feet.

According to the AASHTO LRFD Seismic Design Specifica-
tions, column-based Equations 3.3 and 3.4 should be used to 
determine the seismic displacement capacity of a bridge sys-
tem. Tables 3.1 and 3.2 compare the displacement capacities 
obtained from Equations 3.3 and 3.4 to those obtained from 
the nonlinear analysis of the systems for the I-girder bridges 
and the multi-cell box-girder bridges analyzed.

The results in Tables 3.1 and 3.2 show the large differences 
between the displacements obtained from the pushover analy-
sis and those of Equation 3.3 and 3.4. The ratio between the two 
displacements ranges from 1.01 up to 2.75, demonstrating an 
inconsistent level of conservatism in the AASHTO equations.

The sources of the AASHTO empirical equations are not 
known, and it is clear from the sensitivity analysis performed 
in this study that they generally provide a safe lower bound 
estimate of the displacement capacity of bridge columns under 
lateral load. However, the level of safety was found to be incon-
sistent as the AASHTO equations ignore important parameters 
that affect the displacement capacity of bridge columns. The 
most notable omission is that of the longitudinal reinforce-
ment ratio and the material properties. Therefore, it may be 
worthwhile to direct future research to developing improved 
models for evaluating the displacement capacity of bridge 

System 
Analysis 

System 
Analysis 

Column 
Height 

Load Capacity Displacement 
Capacity 

Code 
Displacement 

Ratio of Actual 
Displacement to 

Code 
Detail Category B H (inch) Pult. (kip) uc (in) *1c (in) 

Base Case 331 1077 7.99 5.35 1.49 

Height = 32.6 ft 391 1070 10.24 7.15 1.43 

Height = 37.6 ft 451 1065 11.99 9.07 1.32 

Base Pinned 331 871 11.38 8.27 1.38 

Integral Top – Fixed Base 331 1080 7.97 5.35 1.49 

Integral Top – Pinned Base 331 839 10.58 8.27 1.28 

Pinned Top – Fixed Base  331 870 11.29 8.27 1.37 

Detail Category C H Pult. (kip) uc (in) *1c (in)

δ δ

δ δ
Base Case 331 1212 10.44 7.68 1.36 

Height = 32.6 ft 391 1219 13.12 10.58 1.24 

Height = 37.6 ft 451 1246 15.62 13.70 1.14 

Base Pinned 331 970 13.33 13.00 1.03 

Integral Top – Fixed Base 331 1214 10.40 7.68 1.35 

Integral Top – Pinned Base 331 966 13.16 13.00 1.01 

Pinned Top – Fixed Base  331 967 13.15 13.00 1.01 

Table 3.1.  Comparison of code displacement to analysis results for I-girder bridge.
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columns that take into consideration the columns’ structural 
properties in addition to their dimensions.

3.3 � Calibration of System Factors for 
Displacement-Based Approach

Procedure

The evaluation of the safety of a bridge under lateral load 
can be expressed in terms of the probability of failure, which 
for the displacement-based approach can be presented in 
terms of the probability that the ultimate system displacement 
capacity, duc, is smaller than the displacement demand dd:

Pr 1 (3.5)Pf
uc

d

= δ
δ

≤





It is common in probabilistic seismic hazard analysis (Hazus, 
2003) to describe both the seismic demand and capacity by log-
normal probability distributions. Accordingly, the probability 
of failure can be expanded as

ln ln ln
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where d
uc is the median of the displacement capacity duc, 

__
duc is  

its mean value, xc is the dispersion of the lognormal distribu-

tion of the capacity and Vc is the COV of the capacity. The 
variables with the subscript “d” are the statistics for the dis-
placement demand. F is the cumulative normal distribution 
function.

Using the lognormal model, the reliability index for the 
system defined as, bsystem, can be calculated as

ln ln
1

1

ln 1 1
(3.7)
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The reliability index for one column defined as, bcolumn, can 
be calculated as

ln ln
1

1

ln 1 1
(3.8)
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In the program Hazus (2003) developed by FEMA for eval-
uating the seismic risk of structures, the combined dispersion 
for capacity and demand for typical bridge structures and 
structural members is set at 2 2

c dξ + ξ  = 0.60 for all damage 
types and all bridge members.

If the demand on the system is set in terms of the basic 
seismic input, which could be related to the peak ground 
acceleration and the overall properties of the entire system 
such as its natural period and soil conditions, and given that 
as shown in Figures 3.2, 3.3, and 3.4, the system displacement 
and the one-column displacement capacities are equal, then 
all the variables in bsystem and bcolumn have the same values.

System 
Analysis 

System 
Analysis 

Column 
Height 

Load Capacity Displacement 
Capacity 

Code 
Displacement 

Ratio of Actual 
Displacement to 

Code 
Detail Category B H (inch) Pult. (kip) uc (in) *1c (in)

Base Case 240 5527 4.49 2.40 1.87 

Spring on Top 240 2704 5.40 2.90 1.86 

Height =25 ft 300 4584 5.62 3.00 1.87 

Height =30 ft 360 4004 6.78 3.60 1.88 

Diameter =7ft 240 8287 4.62 2.40 1.93 

Diameter = 8ft 240 11925 5.02 2.40 2.09 

Detail Category C H (inch) Pult. (kip) uc (in)

δ

δ

δ

δ*1c (in)   

Base Case 240 5865 5.97 2.40 2.49 

Spring on Top  240 2942 7.17 3.78 1.90 

Height =25 ft 300 4977 7.43 3.00 2.48 

Height =30 ft 360 4332 9.00 3.60 2.50 

Diameter =7ft 240 8837 6.33 2.40 2.64 

Diameter = 8ft 240 12650 6.61 2.40 2.75 

Table 3.2.  Comparison of code displacement to analysis results for multi-cell  
box-girder bridge.
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As explained in Chapter 2, a probabilistic measure of sys-
tem redundancy can be expressed in terms of the additional 
reliability provided by the system compared to that of the 
member defined by the reliability index margin as

(3.9)u system column∆β = β − β

Substituting Equations 3.7 and 3.8 into Equation 3.9, the 
reliability index margin is

ln ln ln
(3.10)
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As demonstrated in Figures 3.2, 3.3, and 3.4, the one column 
displacement capacity is essentially equal to the system dis-
placement capacity such as d1c = duc leading to Dbu = 0. Since the 
system does not provide any additional reliability compared to 
that of the most critical member, then bridge systems designed 
to meet the displacement-based requirements of the AASHTO 
Guide Specifications for LRFD Seismic Bridge Design are 
not redundant. Therefore, they must be designed to higher 
reliability index levels than equivalent redundant systems.

As explained in Chapter 2 and in NCHRP Report 406, redun-
dant superstructure systems subjected to vertical loads have 
been defined as those that meet a target system reliability mar-
gin Dbu target = 0.85. This target margin was selected to match 
the average reliability margin of all four-girder bridges assum-
ing that the overall COV for the safety margin is approximately 
equal to 0.25, which reflects the uncertainties in estimating the 
superstructure capacity and live load. Bridge systems that do 
not meet this minimum target reliability margin should be 
designed to higher standards by applying a system factor fs. 
The system factor should be calibrated to offset the difference 
between the target reliability margin and the reliability mar-
gin that the system provides. In NCHRP Report 458, the target 
reliability margin was set at Dbu target = 0.50 based on a COV 
for the safety margin equal to 0.35 reflecting the uncertainty 
in estimating the substructure capacity and lateral wind load.

For example, assume that the same target margin Dbu target =  
0.85 set for superstructures under vertical loads also is used 
for systems subjected to lateral load being evaluated using the 
displacement-based approach. As shown in this report, the 
displacement-based approach shows that the provided reli-
ability margin is Dbu = 0. Therefore, following the same calibra-
tion process outlined in Section 2.5, all bridges designed using 
the displacement-based approach should include a system 
factor fs such that

ln

(3.11)
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where bcolumn is the reliability index that has been specified based 
on the member reliability criteria as shown in Equation 3.5, 
b

column is the reliability index for the column after applying the 
system factor, and Dbu deficit = (Dbu target - Dbu) is the deficit 
in the reliability index margin that the new columns’ design 
should offset. Substituting Equation 3.8 into Equation 3.11 
and expanding, provides
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Equation 3.13 can be used for any dispersion value and any 
target reliability index margin. For example, if (Dbu target - Dbu) =  
(0.85 - 0) = 0.85 and 2 2

c dξ + ξ  = 0.60 Equation 3.13 can 
be solved for the system factor fs = 0.60. This means that 
the calculated capacity should be reduced by a factor of 
0.60 to meet the new target reliability level. Alternatively, 
this indicates that the calculated capacity can only sustain 
0.60 times the required demand with a sufficient level of 
reliability.

This system factor fs = 0.60 would be applied to reflect the 
lack of system redundancy when evaluating the safety of bridges 
using the displacement-based approach to give an additional 
reliability index equal to 0.85 on top of the reliability index 
and safety factors already embedded in the displacement-based 
design methodologies. Such embedded reliability is included 
by using the 1,000-year design earthquake, which has about 
5% probability of exceedance within 50 years or 7.2% prob-
ability of exceedance within 75 years, which is the design life 
stipulated in the AASHTO LRFD. If no other safety factors are 
applied, Equation 2.7 shows that a 7.2% probability would lead 
to a reliability index b = 1.45.

In actuality, for detail categories B and C, the use of Equa-
tions 3.3 and 3.4 proposed in the AASHTO LRFD seismic 
provisions include some additional safety. As demonstrated 
in Tables 3.1 and 3.2, the safety factor seems to be in the range 
of 1.0 to 2.75 for different column dimensions, end conditions, 
and confinement detailing for bridges in categories C and B. 
For detail category D, the AASHTO LRFD seismic provisions 
recommend that the displacement capacity be evaluated using 
a pushover analysis that would give very good approximations 
of the member as well as the system capacity. Since no rigorous 
evaluation of the safety factors implied in the AASHTO LRFD 
seismic provisions was performed, the reliability index implied 
in the AASHTO seismic provisions is not exactly known but 
is higher than b = 1.45. Applying an additional system factor of 
1/0.60 will lead to a lower bound reliability index of b = 2.30.
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Sensitivity Analysis and Recommendation

A sensitivity analysis is presented to study the effect of the 
dispersion coefficient and the target reliability index margin 
on the system factor for the displacement-based approach 
as calculated from Equation 3.13. The results are presented 
in Table 3.3 and in Figure 3.5, which show that the system 
factor is sensitive to the target reliability index margin and the 
dispersion coefficient.

Although the target margin for superstructures under 
vehicular live loads can be established based on configura-
tions known to provide sufficient levels of redundancy, it is 
much more difficult to decide on the appropriate target reli-
ability margin that a system subjected to seismic displace-
ment demand should be able to achieve. It is suggested that 
the target reliability index margin should at a minimum be 
set at Dbu target = 0.50. This recommendation is based on the 
fact that the 1,000-year design earthquake may be providing 
a system reliability level on the order of b = 1.45. Providing 
an additional reliability equal to 0.50 would raise that avail-
able system reliability to a value close to 2.0, which is slightly 
lower than the target reliability set for bridge members being 
evaluated under vertical load for operating rating. According 
to Table 3.3, a target reliability margin Dbu target = 0.50 when the 
dispersion coefficient is equal to 0.60 will require a system fac-
tor fs = 0.74 or an additional safety factor = 1.35 (=1/ fs). This 
value is approximately equal to the overstrength factor tradi-
tionally used when detailing bridge columns whose capacity 
was set based on ultimate bending moment criteria.
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Dispersion Coefficient
22
dc

System Factor
s 

0.30 

 

0.2 0.94 
0.3 0.91 
0.4 0.89 
0.5 0.86 
0.6 0.84 

0.40 

 

0.2 0.92 
0.3 0.89 
0.4 0.85 
0.5 0.82 
0.6 0.79 

0.50 

 

0.2 0.90 
0.3 0.86 
0.4 0.82 
0.5 0.78 
0.6 0.74 

0.60 

 

0.2 0.89 
0.3 0.84 
0.4 0.79 
0.5 0.74 
0.6 0.70 

0.70 

 

0.2 0.87 
0.3 0.81 
0.4 0.76 
0.5 0.70 
0.6 0.66 

0.80 

 

0.2 0.85 
0.3 0.79 
0.4 0.73 
0.5 0.67 
0.6 0.62 

0.90 

 

0.2 0.84 
0.3 0.76 
0.4 0.70 
0.5 0.64 
0.6 0.58 

1.00 

0.2 0.82 
0.3 0.74 
0.4 0.67 
0.5 0.61 
0.6 0.55 

targetu

Table 3.3.  Variation of system factor with target 
margin and dispersion.
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Figure 3.5.  System factor for different target 
reliability and dispersion coefficient.
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4.1 � Redundancy of Bridge Systems 
under Lateral Load

Traditionally, structural design codes have defined a 
structure’s capacity in terms of the ability of its individual 
members to sustain the applied loads using a linear-elastic 
analysis. Given that the failures of individual members do 
not necessarily lead to the collapse of the system, structural 
redundancy is defined as the ability of a structural system 
to continue to carry load after one critical member reaches 
its load carrying capacity. Based on the system behavior 
explained in Section 3.1 of this report as described in Fig- 
ure 3.1 and to remain consistent with the definition of 
bridge redundancy established for systems under vertical 
loads as explained in NCHRP Report 406 and Chapter 2, 
quantifiable measures of system redundancy for bridges 
subjected to a distributed lateral load are proposed as fol-
lows for force-based designs:

(4.1)
1

R
P

P
fu

u

p

=

where Rfu gives the redundancy ratio or the system reserve 
ratio expressed in terms of the forces, Pp1 gives the force 
capacity of a bridge system under lateral load assuming 
linear-elastic behavior and assuming that failure takes place 
when the most critical member reaches its plastic limit as 
typically done when using a force-based analysis, and Pu gives 
the ultimate capacity of the system accounting for the entire 
system’s nonlinear behavior.

The analyses of the results of hundreds of bridge systems 
and substructure bents have demonstrated that a simple 
empirical model can be used to describe the relationship 
between the ultimate capacity of a multi-column bridge 
substructure system represented by Pu and the lateral load 
carrying capacity of one column represented by Pp1 as func-
tions of the number of columns in the bent and the ultimate 

curvature capacity of the bent columns. This relationship is 
expressed by an equation of the form

(4.2)1P P F Cu p mc
u tunc

tconf tunc

= + ϕ − ϕ
ϕ − ϕ







ϕ

where Pp1 gives the capacity of a bridge system under lateral 
load assuming that the analysis is performed using linear-
elastic behavior and failure is defined when one column 
reaches its maximum load carrying capacity as typically done 
when using a force-based analysis, Fmc is a multi-column fac-
tor, Cj is a curvature factor, ju is the ultimate curvature of the 
weakest column in the bent, jtunc is the average curvature for a 
typical unconfined column, jtconf is the average curvature for 
a typical confined column. The typical curvature values for 
the confined and unconfined columns are extracted from the 
results of the survey conducted in NCHRP Report 458.

For a particular bridge system, Pp1 is calculated using a lin-
ear structural analysis of the system under the effect of the 
applied lateral load. To find Pp1, failure is defined as the load 
at which one column reaches its ultimate capacity. The value 
for the ultimate curvature at failure ju is calculated from the 
ultimate plastic analysis of the column’s cross section.

Values for Fmc, Cj, jtunc, and jtconf have been extracted from 
the analysis of a large number of bridges with two-column, 
three-column, and four-column bents. The bents analyzed 
included a range of column sizes, vertical reinforcement ratios, 
and confinement ratios. The analyses also considered the 
effect of different foundation stiffnesses. The recommended 
values for these parameters are provided in Table 4.1. The 
values for jtunc and jtconf are the average curvatures obtained 
from the analysis of the column sizes used in NCHRP Report 
458. The columns analyzed in NCHRP Report 458 represent 
typical column sizes and reinforcement ratios collected from 
a national survey conducted as part of the study. The val-
ues for jtunc and jtconf are used in Equation 4.2 to compare 
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the confinement ratio of the column being evaluated to the 
average confinement ratios observed in typical confined and 
unconfined columns.

This chapter summarizes the results of the analyses con-
ducted during this project and those extracted from NCHRP 
Report 458. The results of the analyses of typical bridge sys-
tem configurations considered different bridge and column 
dimensions, confinement and reinforcement ratios, founda-
tion stiffnesses, and deficiencies in the columns and their 
connecting elements. The results are used to calibrate a sys-
tem factor equation for use during the force-based design 
and safety evaluation of columns of bridges subjected to dis-
tributed lateral load. Specifically, this chapter consists of the 
following:

•	 Section 4.2 summarizes the results obtained in this study 
and in NCHRP Report 458 from all the analyses of bridge 
systems subjected to lateral load at the superstructure level. 
Tables listing all the results are provided for bridges con-
sisting of two-column, three-column, and four-column 
bents with various column heights and cross-section 
dimensions, vertical and transverse reinforcement ratios, 
foundation stiffnesses, as well as different connections 
between columns and superstructures.

•	 Section 4.3 summarizes the validation of the proposed 
model for the cases previously analyzed.

•	 Section 4.4 contains a few additional analyses to study if 
the proposed model remains essentially valid when con-
sidering P-delta effects. Also, additional analyses are per-
formed to consider different foundation stiffnesses for 
bridge systems having three-column bents. Additionally, 
this section describes how the model can be adjusted to 
account for the effect of inadequate cap beams on sub-
structure redundancy and how to account for columns 
weak in shear. Examples describing how an engineer can 
use the proposed model along with the necessary adjust-
ments are also provided.

•	 Section 4.5 gives the conclusions.

4.2 � Summary of Bridge Analyses  
and Results

This summarizes the bridge models analyzed during the 
course of this study along with a summary of the results 
obtained during the course of this study and in NCHRP 
Report 458. The bridges analyzed in this study consist of a 
continuous three-span I-girder steel bridge with two bents 
supported by three columns each, a three-span bridge  
carrying a multi-cell prestressed concrete bridge superstruc-
ture where each bent is formed by two columns, and a three-
span bridge carrying two prestressed concrete girder boxes 
where each bent has two columns. The results of the analyses 
performed in this study are supplemented by the results of 
the two-column and four-column bents analyzed in NCHRP 
Report 458.

Two-Column Bents Supporting a Prestressed 
Concrete Twin Box-Girder Bridge

Bridge Description

A three-span (80-ft, 120-ft, 80-ft) continuous bridge with 
two precast prestressed concrete box sections is selected for 
analysis. Figure 4.1 gives the frame element model used in 
this set of analyses.

Prestressed Concrete Box

Figure 4.2 shows the dimensions of the box cross sec
tion. The material properties of concrete and steel are 
listed in Tables 4.2 and 4.3, respectively. The correspond-
ing stress-strain curves for steel and concrete are obtained 
from the library of the program xtract, which are based 
on the Mander model for concrete, parabolic strain hard-
ening steel model for reinforcing steel and low-relaxation 
strands model in Collins and Mitchell’s book for prestressed 
strands.

 

Variable 
 

 

Applicability 

 

Recommended 
Value 

 

mcF , multi-column factor 

Two-column bents 1.10 
Three-column bents 1.16 
All other multi-column bents  1.18 

C , curvature factor All systems 0.24 

tunc , typical unconfined column ultimate 

curvature 
All systems 3.64 x 10-4 (1/in) 

tconf , typical confined column ultimate 

curvature 
All systems 1.55 x 10-3 (1/in) 

Table 4.1.  Recommended values for redundancy parameters.
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Figure 4.1.  The 3-D, profile, and elevation views of the twin box-girder bridge.

(a) Configuration of prestressing steel

(b) Dimensions of one box

(c) Spacing of two boxes

(d) Grillage model for box-girder bridge

Figure 4.2.  Detailed dimensions of cross section of the twin 
box bridge.
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Bridge Columns

The bridge columns are the most important contributors 
for the resistance of the bridge to lateral load. The lateral 
load is applied on the top of the bents, in particular on the 
middle point of the cap beams. The cross section of the 
four typical columns used for the substructure is shown 
in Figure 4.3. The column height used in the base case is 
20 feet.

In this study, three cases with different column confine-
ment ratios, rs, are investigated. The original confinement 
ratio is 0.01. Two other cases are analyzed where the con-
finement ratios meet the LRFD seismic criteria for bridges 

of category B and C. In summary, the three confinement 
ratios are

•	 rs = 0.01 (base case),
•	 rs = 0.003 (category B), and
•	 rs = 0.005 (category C).

The pushover analysis of the frame element model is per-
formed using SAP2000. Moment-curvature relationships are 
used to model the nonlinear behavior of the columns. This 
nonlinear behavior is related to the axial load acting on it. In 
fact, different axial loads lead to different moment-curvature 
curves. Therefore, an important input for the pushover analy-
sis is the axial force versus moment interaction (P-M) curve. As 
an example, Figure 4.4 shows the moment interaction diagram 
for the column in the base case (rs = 0.01) that is valid for all 
bending axes because the section is axisymmetric.

In the base case, the axial load value due to dead load is 
about P = 512 kip and the axial load value due to dead load plus  
live load is about P = 523 kip assuming a load combination 
factor of 0.20. Figure 4.5 gives the different moment- 

Parameters Box Slab
Column

Unconfined Confined

28 Day Strength (ksi) 7.250 4.350 4.000 4.000

Crushing Strain 4.000E 3 4.000E 3 4.000E 3 18.740E 3

Elas�c Modulus (ksi) 4853 3759 3605 3605

Table 4.2.  Concrete properties.

Table 4.3.  Steel properties.

Parameters Rebar Strand

Yield stress (ksi) 60

Fracture stress (ksi) 90 270

Failure strain 90.00E 3 4.20E 2

Figure 4.3.  Column cross section 
for base cases.

Figure 4.4.  Column P-M interaction curve for base case.
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Figure 4.5.  Column M-phi curve for different values of axial load.

curvature (M-phi) curves constructed using the software 
XTRACT to illustrate the differences due to the axial load. 
SAP2000 updates the M-phi curve based on the axial load 
calculated at each step of the pushover analysis by updating 
the ultimate moment and curvature capacities using the P-M 
curve and the equivalent energy principle.

Figure 4.5 also shows that the difference in the M-phi curve 
between the two cases when P = 512 kips and P = 523 kips is 
negligible where the blue line practically coincides with the 
purple line with a maximum difference smaller than 0.13%. 
It is observed that even a doubling of the axial load will result 
in a relatively small change in the M-phi curve. In this par-
ticular case, because the loading on the column lies below 

the balanced point of the P-M interaction curve, the moment 
capacity of the section increases by about 4% when the axial 
load is increased to 1000 kips.

Cap Beam

The dimensions of the cap beam are provided in Figure 4.6.

Bearings

The bearings are assumed to be placed at the abutments 
below each box’s web. The bearings at the abutments are 
modeled as linear-elastic springs. In the base case model, the 

Figure 4.6.  Dimensions of cap beam.
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bearings are assumed to allow for longitudinal expansion 
and for transverse displacement. The same stiffness values 
are assumed for the bearings in the longitudinal and lateral 
directions. The displacement in the perpendicular direction 
to the slab is assumed to be locked. Table 4.4 summarizes the 
spring values assumed for the base case.

Summary of Results

The three-span box-girder bridge system analyzed in the 
base case consists of two prestressed concrete boxes sup-
ported on two columns at each bent. The columns have 
integral connections to the cap beam. A sensitivity analy-
sis is performed to study how variations in column dimen-
sions and other parameters affect the results of the pushover 
analysis. Specifically, the Nonlinear Static Pushover Analy-
sis (NSPA) is used to study the sensitivity of the results to 
the following parameters: (1) column height, (2) column 
confinement ratio, and (3) column reinforcement ratio. 
The numerical results from the analyses are summarized in  
Table 4.5, which gives the diameter of the column, its height, 
the longitudinal reinforcement ratio in percent, the force 
Pp1 which gives the failure load of the first column assuming 
elasto-plastic behavior and using the force-based approach, 
the force Pu, which gives the ultimate curvature for the entire 
system assuming nonlinear behavior, the ultimate curvature 
for the columns, the lateral displacement of the system at 
failure du, and the maximum displacement when one col-
umn fails d1.

The analysis included columns designed with lateral con-
finement reinforcement ratios rs = 1%, 0.3% (detail cate
gory B) and 0.5% (detail category C). The columns’ height 
was varied between 4.6-ft, 8.3-ft, 15-ft, 20-ft, 26.7-ft, and 
33.3-ft. Although some of the low column heights may not 
be typical, they are used in order to study the effect of large 
changes in bridge configurations. Different longitudinal 
reinforcement ratios for the 6-ft diameter columns varying 
between 1.66% (original design with steel area As = 67.5 in2), 
1.44%, 1.22%, 0.99%, and 0.83% are also investigated.

The validation of Equation 4.2 for the ultimate capacity 
of the system is verified in Figure 4.7, which plots Pu from 
Equation 4.2 versus that obtained from the SAP2000 analy-
sis. Figure 4.7 shows that the data points are clearly aligned 
along the equal force line indicating that Equation 4.2 is rea-

sonably accurate with a regression coefficient R2 = 0.99. The 
COV of the ratio between the value from Equation 4.2 and 
the SAP2000 is less than 4%. The worst cases are those for 
which the bearing stiffness is assumed to be over 10 times 
the actual stiffness, which is extremely high for this type of 
bridge.

Two-Column Bents Supporting a Multi-Cell 
P/S Concrete Box Bridge

Bridge Description

A multi-cell prestressed concrete bridge system is inves-
tigated to understand the behavior of such systems when 
subjected to lateral loads applied on top of the bents. The 
configuration of the multi-cell prestressed concrete box-
girder bridge system analyzed is a variation on an actual 
bridge configuration that had been designed to sustain high 
levels of seismic motions. The superstructure is a three-span 
continuous prestressed multi-cellular box girder with dia-
phragms located over the abutments and over the bents. The 
bridge is assumed to have three spans with a middle span of 
150 feet and two end spans 110 feet in length each, as shown 
in Figure 4.8. Each bent is formed by two columns connected 
integrally to the diaphragms. For the base case, all the col-
umns are 20 feet high and their diameters are 72 inches. The 
superstructure is supported on elastomeric bearings at the 
abutments. Figure 4.9 shows detailed dimensions of the box 
cross section. The rigid connections of the columns to the dia-
phragms would allow for the transfer of forces and moments 
between the two subsystems. This design should provide a 
higher capacity to sustain lateral loads as compared to tradi-
tional bearing on bent bridges. The basic bridge configura-
tion assumes that the foundation is very stiff, approaching 
fixed conditions.

Summary of Results

The three-span box-girder bridge system analyzed in the 
base case consists of a multi-cell prestressed concrete box 
supported on two columns at each bent. Following the 
analysis of the base case bridge, NSPA is used to study the 
sensitivity of the structure to (1) different bearing stiffness 
values at the abutments, (2) different column diameters and 
reinforcement ratios, (3) changes in the rigidity of the con-
nections between the columns and diaphragm elements, 
and (4) different foundation stiffness. Numerical results are 
summarized in Table 4.6, which gives the column diameter 
and height, with the longitudinal reinforcement ratio and 
the ultimate bending moment curvature along with the 
force, Pp1, that causes the failure of the first column assum-
ing elastic behavior and the ultimate capacity of the non-

Table 4.4.  Bearing stiffness values.

Left Abutment (kip/in.) Right Abutment (kip/in.) 

kx 4 4 

ky 4 4 

kz   
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linear system represented by the force Pu and the maximum 
displacement at failure du. The displacement d1 is the maxi-
mum displacement if the pushover analysis is performed on 
a single column.

The sensitivity analysis assumed column heights equal to 
20-ft, 25-ft, and 30-ft with lateral confinement reinforcement 
ratios rs = 1%, 0.3% (detail category B) and 0.5% (detail cat-
egory C), in addition to cases where the maximum curva-
ture is reduced by 50% and 75% to account for deficiencies 

in design. The columns’ diameters were varied between 6-ft, 
7-ft, and 8-ft. Different foundation stiffnesses are used to 
represent pile and spread footing foundation as well as rigid 
foundation. The possibility of integral column/superstructure 
connections is compared to the cases where the load is trans-
ferred between the superstructure and the columns through 
bearing supports. Changes in the abutment bearing stiffness 
also are considered, including the case where the bearings 
have negligible stiffness.

Original case (column lateral confinement ratio=1.0%) 

 
Diameter 
(in.) 

Height 
 (in.) 

Long. rebar 
ratio 

 (%) 

Pp1 
(kips) 

Pu 
(kips) 

u 
(in-1) 

u of 
system 
(in.) 

1 
for column 
(in.) 

50% rebar 72 240 0.83 2364 3624 0.00168 13.94 14.10 
60% rebar 72 240 0.99 2708 4072 0.00166 13.39 13.72 
73% rebar 72 240 1.22 3126 4552 0.00154 12.14 12.53 
87% rebar 72 240 1.44 3526 5052 0.00140 11.26 11.53 
100% rebar 72 240 1.66 4150 5535 0.00132 10.55 10.86 
H=55 in. 72 55 1.66 14969 22662 0.00132 2.20 2.21 
H=100 in. 72 100 1.66 9028 12618 0.00132 4.42 4.53 
H=180 in. 72 180 1.66 5386 7188 0.00132 7.93 7.98 
H=280 in. 72 280 1.66 3602 4854 0.00132 10.55 10.86 
H=320 in. 72 320 1.66 3184 4334 0.00132 14.05 14.15 
H=400 in. 72 400 1.66 2585 3679 0.00132 17.63 17.93 
H=450 in. 72 450 1.66 2315 3408 0.00132 -- -- 
H=500 in. 72 500 1.66 2097 3189 0.00132 -- -- 
 
Category B (column lateral confinement ratio=0.3%) 

 Diameter 
(in.) 

Height (in.) 
Long. rebar 
ratio 

 (%) 

Pp1 
(kips) 

Pu 
(kips) 

u 
(in-1) 

u of 
system 
(in.) 

1 
for column 
(in.) 

50% rebar 72 240 0.83 2351 2989 0.000847 6.88 6.96  
60% rebar 72 240 0.99 2676 3341 0.000783 6.41 6.41  
73% rebar 72 240 1.22 3039 3808 0.000735 5.73 5.99  
87% rebar 72 240 1.44 3437 4250 0.000688 5.49 5.58  
100% rebar 72 240 1.66 3808 4692 0.000652 5.23 5.27  
H=55 in. 72 55 1.66 13768 19758 0.000652 1.22 1.21  
H=100 in. 72 100 1.66 8297 10939 0.000652 2.18 2.19  
H=180 in. 72 180 1.66 4949 6158 0.000652 3.93 3.95  
H=280 in. 72 280 1.66 3304 4068 0.000652 5.23 5.27  
H=320 in. 72 320 1.66 2920 3602 0.000652 7.00 7.04  
H=400 in. 72 400 1.66 2370 2982 0.000652 8.75 8.81  
H=450 in. 72 450 1.66 2122 2700 0.000652 -- -- 
H=500 in. 72 500 1.66 1922 2497 0.000652 -- -- 
 
Category C (column lateral confinement ratio=0.5%) 

 Diameter 
(in.) 

Height (in.) 
Long. rebar 
ratio 

 (%) 

Pp1 
(kips) 

Pu 
(kips) 

u 
(in-1) 

u of 
system 
(in.) 

1 
for column 
(in.) 

50% rebar 72 240 0.83 2430 3218 0.00113 8.65 9.30 
60% rebar 72 240 0.99 2764 3576 0.00104 7.87 8.61 
73% rebar 72 240 1.22 3160 4064 0.000936 7.80 8.12 
87% rebar 72 240 1.44 3536 4500 0.000864 7.14 7.50 
100% rebar 72 240 1.66 3906 4986 0.000857 6.98 7.04 
H=55 in. 72 55 1.66 14088 20811 0.000857 1.62 1.61 
H=100 in. 72 100 1.66 8496 11542 0.000857 2.89 2.93 
H=180 in. 72 180 1.66 5069 6524 0.000857 5.13 5.27 
H=280 in. 72 280 1.66 3390 4338 0.000857 6.98 7.04 
H=320 in. 72 320 1.66 2996 3854 0.000857 8.84 9.39 
H=400 in. 72 400 1.66 2433 3214 0.000857 10.88 11.76 
H=450 in.  72 450 1.66 2179 2928 0.000857 -- -- 
H=500 in. 72 500 1.66 1973 2730 0.000857 -- -- 

Table 4.5.  Results summary of two box-girder bridge with two-column bent.
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Figure 4.7.  Lateral capacity by Equation 4.2 vs. lateral 
capacity from SAP2000 for two box-girder bridges.
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Figure 4.8.  The 3-D isometric view and span dimensions.

Figure 4.9.  Typical cross section of bridge system.

(a)

(b)
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Table 4.6.  Results summary of multi-cell box-girder bridge with  
two-column bent.

Category B (column lateral confinement ratio=0.3%) 

 
Diameter 
(in.) 

Height 
 (in.) 

Long. rebar 
ratio 

 (%) 

Pp1 
(kips) 

Pu 
(kips) 

u 
(in-1) 

u of 
system 
(in.) 

1 
for column 
(in.) 

Base Case 72 240 1.66 4907 5527 0.00061 4.48 4.49 

50% Phi 72 240 1.66 4907 5018 0.00031 2.16 2.10 

75% Phi 72 240 1.66 4907 5312 0.00046 3.32 3.30 

Spring Top Column 72 240 1.66 2460 2704 0.00061 5.39 5.40 

25 ft 72 300 1.66 4011 4584 0.00061 5.67 5.62 

30 ft 72 360 1.66 3406 4004 0.00061 6.89 6.78 

Pile Foundation 72 240 1.66 3649 5448 0.00061 6.98 7.01 

Spread Foundation 72 240 1.66 5451 5823 0.00061 7.51 8.33 

No bearing 72 240 1.66 4561 5152 0.00061 4.45 4.58 

2X bearing 72 240 1.66 4940 5844 0.00061 4.47 4.48 

4X bearing 72 240 1.66 4982 6317 0.00061 4.47 4.46 

10X bearing 72 240 1.66 5053 7160 0.00061 4.45 4.48 

Diameter–7 ft 84 240 1.66 7582 8287 0.00053 4.75 4.62 

Diameter–8 ft 96 240 1.66 10984 11925 0.00046 4.88 5.02 

 

Category C (column lateral confinement ratio=0.5%) 

 
Diameter 
(in.) 

Height 
 (in.) 

Long. rebar 
ratio 

 (%) 

Pp1 
(kips) 

Pu 
(kips) 

u 
(in-1) 

u of 
system 
(in.) 

1 
for column 
(in.) 

Base Case 72 240 1.66 5047 5865 0.00082 6.03 5.97 

50% Phi 72 240 1.66 5047 5300 0.00041 2.94 3.01 

75% Phi 72 240 1.66 4907 5592 0.00061 4.49 4.52 

Spring Top Column 72 240 1.66 2530 2942 0.00082 7.16 7.16 

25 ft 72 300 1.66 4125 4977 0.00082 7.61 7.43 

30 ft 72 360 1.66 3503 4332 0.00082 9.23 9.00 

Pile Foundation 72 240 1.66 3753 5858 0.00082 8.65 8.80 

Spread Foundation 72 240 1.66 5604 6128 0.00082 9.19 9.98 

No bearing 72 240 1.66 4693 5385 0.00082 6.02 6.10 

2X bearing 72 240 1.66 5081 6286 0.00082 6.02 5.95 

4X bearing 72 240 1.66 5124 6905 0.00082 6.02 5.97 

10X bearing 72 240 1.66 5197 7984 0.00082 6.02 5.98 

Diameter–7 ft 84 240 1.66 7806 8837 0.00071 6.29 6.32 

Diameter–8 ft 96 240 1.66 11334 12650 0.00062 6.54 6.61 

 

 (continued on next page)
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The validation of Equation 4.2 for the ultimate capacity 
of the system is verified in Figure 4.10, which plots Pu from 
Equation 4.2 versus the one obtained from the SAP2000 
analysis. Figure 4.10 shows that the data points are almost 
aligned along the equal force line, indicating that Equa-
tion 4.2 is reasonably accurate with a regression coefficient  
R2 = 0.86. The COV of the ratio between the value from 
Equation 4.2 and the SAP2000 is less than 10%. The maxi-
mum differences are those corresponding to soft foun-
dations and for the cases where the bearing stiffness is 
extremely high.

Three-Column Bents Supporting  
an I-Girder Bridge

Bridge Description

A combined 3-D space frame model is used to analyze 
the behavior of a combined superstructure-substructure 
multi-girder bridge system under lateral loads. Figure 4.11 
gives the profile and elevation views of the frame element 
model used in this set of analyses. The bridge has three 
spans with a middle span that is 80-ft long and two end 
spans of 50-ft length each. Each bent is formed by three 
27.58-ft columns connected by a cap beam. The six girders 
are connected to the cap beams through bearing supports. 
The analysis accounts for material nonlinearity of the col-
umns, cap beams, and superstructure under the effect of 
lateral loads while a reduced level of traffic load is applied 
on the bridge.

Figure 4.12 illustrates the 3-D space frame model of the 
combined superstructure-substructure system. The longitu-
dinal members labeled “A” represent the contribution of the 
composite I-girders to the longitudinal bending. The trans-
verse elements labeled “B” model the bending of the slabs in 
the transverse direction. The vertical elements labeled “C” 
represent the columns. The elements labeled “D” represent 
the cap beams. The elements labeled E are link elements rep-
resenting the connection between the superstructure and 
substructure provided by the bearings. The elements labeled 
F are rigid links used to connect the centers of the longi-

Original Design (column lateral confinement ratio=1.0%) 

 
Diameter 
(in.) 

Height 
 (in.) 

Long. rebar 
ratio 

 (%) 

Pp1 
(kips) 

Pu 
(kips) 

u 
(in-1) 

u of 
system 
(in.) 

1 
for column 
(in.) 

Base Case 72 240 1.66 5326 6643 0.00123 9.15 8.99 

50% Phi 72 240 1.66 5326 5723 0.00061 4.49 4.39 

75% Phi 72 240 1.66 5326 6210 0.00092 6.82 6.77 

Spring Top Column 72 240 1.66 2669 3474 0.00123 10.71 10.72 

25 ft 72 300 1.66 4353 5702 0.00123 11.51 11.66 

30 ft 72 360 1.66 3697 5108 0.00123 13.93 13.94 

Pile Foundation 72 240 1.66 3961 6603 0.00123 12.00 12.00 

Spread Foundation 72 240 1.66 5912 6947 0.00123 12.60 13.72 

No bearing 72 240 1.66 4956 5848 0.00123 9.09 9.10 

2X bearing 72 240 1.66 5362 7277 0.00123 9.09 8.97 

4X bearing 72 240 1.66 5407 8231 0.00123 9.09 8.98 

10X bearing 72 240 1.66 5485 9933 0.00123 9.09 8.98 

Table 4.6.  (Continued).

Figure 4.10.  Lateral capacity by Equation 4.2  
vs. lateral capacity from SAP2000 for multi-cell  
box bridges.
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tudinal girders to the center of the cap beams through the 
bearings.

Figure 4.13 shows cross sections of the column, cap beam, 
and girder. The 20 rebars in the column have 1.25-in. diam-
eters. The 28 rebars in the cap beam have 5⁄8 in. (0.625-in.) 
diameters. The reinforcement is assumed to have a yielding 
stress Fy = 60 ksi. The girders are assumed to be Grade 36. 

The unconfined concrete strength is assumed to be 4 ksi. A 
confinement ratio of 2.4 × 10-3 is assumed in the columns.

Summary of Results

An extensive sensitivity analysis is performed to study 
how variations in the loading condition and the structure’s 

Figure 4.11. Profile and elevation view of the bridge.

Figure 4.12. The 3-D space frame model of three-span I-girder bridge.
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properties affect the response of the bridge system. Specifically, 
the sensitivity analysis performed in this section describes 
the effect of changes in the following parameters: (1) load-
ing condition, (2) column height, (3) foundation flexibility, 
(4) concrete confinement, and (5) superstructure-substructure 
connection type. Numerical results of the nonlinear analyses 
are summarized in Table 4.7.

The analysis included 27.5-ft, 32.5-ft, and 37.5-ft columns 
designed with lateral confinement reinforcement ratios rs = 
0.24%, 0.3% (detail category B) and 0.5% (detail category C) 
in addition to cases where the maximum curvature is reduced 
by 50% and 75% to account for deficiencies in design. Differ-
ent foundation stiffnesses are used to represent pile founda-

tions and spread footing foundation as well as rigid and pinned 
foundations. The possibility of integral girder/cap-beam/ 
column connections is compared to girder bearings on cap 
beam designs and to cases where the top of the column is pinned 
to the cap beam. Also, the analysis compares the behavior when 
a lateral load is applied to the case when the load is in the lon-
gitudinal direction. Table 4.7 gives the results for the ultimate 
load capacity and the ultimate displacements in comparison to 
the load at which the first column reaches its capacity, assuming 
linear analysis and the maximum displacement of one column.

The validation of Equation 4.2 for the ultimate capacity 
of the system is verified in Figure 4.14, which plots Pu from 
Equation 4.2 versus that obtained from the SAP2000 analysis. 

(a) Cross section of bridge columns
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(b) Cross section of cap beam
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Figure 4.13.  Cross sections of bridge members.

Table 4.7.  Results summary of three-column bent supporting an I-girder bridge.

 Category B (column lateral confinement ratio=0.3%) 

 
Diameter 
(in.) 

Height 
 (in.) 

Long. 
rebar 
ratio 

 (%) 

Pp1 
(kips) 

Pu 
(kips) 

u 
(in-1) 

u of 
system 
(in.) 

1 
for 
column 
(in.) 

Base Case 36 331 2.41 765 1077 0.00106 8.0 8.3 

32.5-ft 36 391 2.41 723 1070 0.00106 10.2 10.4 

37.5-ft 36 451 2.41 709 1065 0.00106 12.0 12.7 

Pile Foundation 36 331 2.41 788 1125 0.00106 9.0 8.6 

Spread Foundation 36 331 2.41 798 1113 0.00106 8.7 8.7 

Base Pinned 36 331 2.41 572 871 0.00106 11.4 11.0 

Longitudinal Load 36 331 2.41 622 962 0.00106 13.5 8.3 

Integral Top/Fixed Base 36 331 2.41 772 1080 0.00106 8.0 8.3 

Integral Top/Pinned Base 36 331 2.41 567 839 0.00106 10.6 11.0 

Integral Longitudinal 36 331 2.41 756 1131 0.00106 8.6 8.3 

Column Top Pinned 36 331 2.41 582 870 0.00106 11.3 11.0 

50% Phi 36 331 2.41 765 943 0.00053 5.3 5.1 

75% Phi 36 331 2.41 765 1032 0.00079 7.0 6.8 
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Base Case 36 331 2.41 761 1060 0.00096 7.5 7.8 

32.5-ft 36 391 2.41 719 1044 0.00096 9.6 9.8 

37.5-ft 36 451 2.41 706 1047 0.00096 11.5 11.9 

Pile Foundation 36 331 2.41 784 1095 0.00096 8.3 8.1 

Spread Foundation 36 331 2.41 794 1071 0.00096 7.7 8.1 

Base Pinned 36 331 2.41 569 839 0.00096 10.6 10.5 

Longitudinal Load 36 331 2.41 619 922 0.00096 12.6 7.8 

Integral Top/Fixed Base 36 331 2.41 768 1063 0.00096 7.5 7.8 

Integral Top/Pinned Base 36 331 2.41 564 834 0.00096 10.4 10.4 

Integral Longitudinal 36 331 2.41 752 1096 0.00096 7.8 7.8 

Column Top Pinned 36 331 2.41 579 831 0.00096 10.4 10.4 

50% Phi 36 331 2.41 761 929 0.00048 5.0 5.1 

75% Phi 36 331 2.41 761 1011 0.00072 6.4 6.4 

 

Category B (column lateral confinement ratio=0.3%) 
New data using M-phi curve from multi-girder bridge in Category B, Category B below is different from the 
above one 

Category B 
Diameter 
(in.) 

Height 
 (in.) 

Long. 
rebar 
ratio 

 (%) 

Pp1 
(kips) 

Pu 
(kips) 

u 
(in-1) 

Diameter–20 ft 72 240 1.66 3512.1 3767 0.000717 

Diameter–32.5 ft 72 391 1.66 2359.9 2676.3 0.000717 

Diameter–37.5 ft 72 451 1.66 2252.8 2480.7 0.000717 

Diameter–7 ft 84 391 1.66 5365.9 5865.9 0.000574 

Diameter–7 ft 84 240 1.66 8079.5 9116.3 0.000574 

Diameter–8 ft 96 391 1.66 7733.2 8541.4 0.000516 

Diameter–8 ft 96 240 1.66 11603.3 13508.8 0.000516 

Pile Foundation 96 240 1.66 8870.5 11528.4 0.000516 

Spread Foundation 96 240 1.66 11881.2 13016.1 0.000516 

Category C (column lateral confinement ratio=0.5%) 

 
Diameter 
(in.) 

Height 
 (in.) 

Long. 
rebar 
ratio 

 (%) 

Pp1 
(kips) 

Pu 
(kips) 

u 
(in-1) 

u of 
system 
(in.) 

1 
for 
column 
(in.) 

Base Case 36 331 2.41 773 1212 0.00138 10.4 10.3 

32.5-ft 36 391 2.41 730 1219 0.00138 13.1 12.9 

37.5-ft 36 451 2.41 717 1246 0.00138 15.6 15.5 

Pile Foundation 36 331 2.41 796 1232 0.00138 10.9 10.7 

Spread Foundation 36 331 2.41 806 1226 0.00138 10.8 10.8 

Base Pinned 36 331 2.41 578 970 0.00138 13.3 13.1 

Longitudinal Load 36 331 2.41 628 1080 0.00138 15.7 10.3 

Integral Top/Fixed Base 36 331 2.41 780 1214 0.00138 10.4 10.4 

Integral Top/Pinned Base 36 331 2.41 573 966 0.00138 13.2 13.1 

Integral Longitudinal 36 331 2.41 764 1237 0.00138 10.5 10.4 

Column Top Pinned 36 331 2.41 588 967 0.00138 13.2 13.1 

50% Phi 36 331 2.41 773 989 0.00069 6.3 6.1 

75% Phi 36 331 2.41 773 1107 0.00104 8.5 8.2 

 
Original Design (column lateral confinement ratio=0.24%) 

Diameter 
(in.) 

Height 
 (in.) 

Long. 
rebar 
ratio 

 (%) 

Pp1 
(kips) 

Pu 
(kips) 

u 
(in-1) 

u of 
system 
(in.) 

1 
for 
column 
(in.) 

Table 4.7.  (Continued).
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Figure 4.14 shows that the data points are clearly aligned 
along the equal force line indicating that Equation 4.2 is rea-
sonably accurate with a regression coefficient R2 = 0.99. The 
COV of the ratio between the value from Equation 4.2 and 
the SAP2000 is less than 9%. The maximum differences are 
those corresponding to a soft foundation.

Two-Column and Four-Column Bents  
in NCHRP Report 458

Bridge Description

NCHRP Report 458 also analyzed many bridge bents sub-
jected to lateral load, and analyzed individual bents rather than 
entire bridge systems. However, an overview of the results of 
analyses performed in this study has shown that the results 
from single bents are very similar to those of entire bridge 
systems. Accordingly, the results from NCHRP Report 458 can 
be used to supplement the database assembled in this study.

In NCHRP Report 458, the gravity loads applied on the 
substructure include both the dead load and the entire 
AASHTO HL-93 vehicular live load. The analysis process 
incremented the lateral load until system failure occurred. 
In the NCHRP Report 458 analyses it was assumed that the 
vertical loads (dead load and vehicular live load) are set at 
their maximum design values. This approach is conservative 
as it is generally unlikely that the vehicular live load will be 
at its expected maximum value when the maximum lateral 
(wind, seismic, etc.) load is applied on the structure. The pier 
configurations used in the NCHRP Report 458 analysis are 
illustrated in Figures 4.15 and 4.16 for the two-column and 
four-column bents, respectively.

The material properties (concrete strength, yielding stress 
of steel) and geometric properties (section size and amount 
and location of reinforcement) combine to produce the 
moment curvature and the capacity of the column section. For 

Figure 4.14.  Lateral capacity by Equation 4.2 vs. lateral 
capacity from SAP2000 for I-girder bridges.
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Figure 4.15.  Configuration of two-
column bent in NCHRP Report 458.
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Figure 4.16.  Configuration of four-column 
bent in NCHRP Report 458.
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Table 4.8.  Parameters for two-column bent.

Variation # Variation Low Average High 
1 Height [m] 4 11 18 
2 Width [m] 0.8 1.2 1.6 
3 Concrete Strength [MN/m2] 22 27  32 
4 Steel Strength [MN/m2] 400 450 500 
5   long [%] 1.10 2.30 3.50 
6   trans [%] 0.18 0.32 0.45 

Table 4.9.  Parameters for four-column bent.

Variation # Variation Low Average High 
1 Height [m] 3.5 6.5 9.5 
2 Width [m] 0.5 1.0 1.5 
3 Concrete Strength [MN/m2] 22 27  32 
4 Steel Strength [MN/m2] 400 450 500 
5   long [%] 0.60 1.85 3.10 
6   trans [%] 0.18 0.32 0.45 

the corresponding concrete crushing strain is eu = 0.004. The 
second value is for the confined columns, which are assumed 
to crush when the concrete strain reaches the value ec = 0.015. 
NCHRP Report 458 used an in-house program to perform the 
nonlinear pushover analysis. The model used for the analysis 
accounts for the P-delta effect produced when large values of 
lateral displacement interact with gravity loads to increase the 
moments in the columns.

Foundation stiffness coefficients for the eight categories are 
summarized in Table 4.10 for the two-column bents and in 
Table 4.11 for four-column bents. These foundation stiffness 
coefficients are obtained using the standard procedure devel-
oped in a FHWA funded study (Lam and Martin, 1986). Also, 
different column heights and column dimensions are assumed 
as listed in the second and third columns of Table 4.12. The lon-
gitudinal reinforcement ratio for each column configuration  
is provided in the fourth column of Table 4.12.

Summary of Results

The numerical results for all the two-column and four-
column bents analyzed in NCHRP Report 458 are summa-
rized in Tables 4.12 and Table 4.13, respectively. For each 

a. Four-Column Bent—Average Column Width 
 Kvertical (kN/m) Ktransverse (kN/m) Krotation (kNm) 

1 spread\normal\ 77800 58300 1870000 
2 spread\stiff\ 118000 88300 2830000 
3 extension\soft\ 369000 8030 54195 
4 extension\normal\ 923100 36500 109932 
5 extension\stiff\ 1661000 127200 188483 
6 pile\soft\ 450000 12580 94170 
7 pile\normal\ 1126000 57200 235000 
8 pile\stiff\ 2026000 199000 424000 

 
b. Four-Column Bent—Low Column Width 

 Kvertical (kN/m) Ktransverse (kN/m) Krotation (kNm) 
1 spread\normal\ 38900 29200 234000 
2 spread\stiff\ 58900 44200 354000 
3 extension\soft\ 184615 2647 7339 
4 extension\normal\ 461500 12050 14000 
5 extension\stiff\ 830700 42000 23000 
6 pile\soft\ 450300 12580 94170 
7 pile\normal\ 1126000 57240 235400 
8 pile\stiff\ 2026000 199300 423800 

 
c. Four-Column Bent—High Column Width 

 Kvertical (kN/m) Ktransverse (kN/m) Krotation (kNm) 
1 spread\normal\ 117000 87500 6310000 
2 spread\stiff\ 177000 133000 9560000 
3 extension\soft\ 553900 15350 168600 
4 extension\normal\ 1380000 69900 356000 
5 extension\stiff\ 2490000 243300 628600 
6 pile\soft\ 1013000 28300 565000 
7 pile\normal\ 2533000 128800 1413000 
8 pile\stiff\ 4560000 448500 2543000 

Table 4.11.  Four-column bent, foundation stiffness.

the two-column bent and four-column bent cases, material 
parameters and column details are summarized in Tables 4.8 
and 4.9, respectively. Two limiting values for the strain that 
produce concrete crushing are given in NCHRP Report 458. 
The first value assumes that the columns are unconfined and 

Table 4.10.  Two-column bent, foundation stiffness.

a. Two-Column Bent—Average Column Width 
 Kvertical (kN/m) Ktransverse (kN/m) Krotation (kNm) 

1 spread\normal\ 97200 72900 3650000 
2 spread\stiff\ 147000 110000 5530000 

3 extension\soft\ 443077 5226 113726 
4 extension\normal\ 1107000 17784 220882 

5 extension\stiff\ 1994000 46628 367348 
6 pile\soft\ 675400 18870 376700 

7 pile\normal\ 1689000 85870 941700 
8 pile\stiff\ 3039000 299000 1695000 

 
b. Two-Column Bent—Low Column Width 

 Kvertical (kN/m) Ktransverse (kN/m) Krotation (kNm) 
1 spread\normal\ 61500 46100 999000 

2 spread\stiff\ 93100 69800 1510000 
3 extension\soft\ 295358 2283 34614 

4 extension\normal\ 738462 7474 65038 
5 extension\stiff\ 1329231 19067 105915 

6 pile\soft\ 450300 12580 94170 
7 pile\normal\ 1126000 57240 235400 

8 pile\stiff\ 2026000 199300 423800 

 
c. Two-Column Bent—High Column Width 

 Kvertical (kN/m) Ktransverse (kN/m) Krotation (kNm) 
1 spread\normal\ 120000 89900 7120000 

2 spread\stiff\ 182000 136000 10800000 
3 extension\soft\ 590769 9259 260623 

4 extension\normal\ 1476923 32421 519329 
5 extension\stiff\ 2658462 86849 879287 

6 pile\soft\ 1351000 37730 1413000 
7 pile\normal\ 3377000 171700 3531000 

8 pile\stiff\ 6079000 598000 6357000 
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Table 4.12.  Results summary of two-column bent in NCHRP Report 458.

(Column lateral confinement ratio=0.6%) 
Confined core concrete ultimate strain is 0.015

    First Member Unconfined Confined Unconfined Confined 

Foundation Type 
b×d Height 

(in.) 

Long. 
rebar 
ratio (%) 

Pp1 
(kips) 

Pu 
(kips) 

Pu 
(kips) 

u 
 (in-1) 

u 
 (in-1) 

Spread_Normal 
47.2 
×47.2 

433 2.3 2481 2821 2973 3.01E-04 1.217E-03 

Spread_Stiff 
47.2 
×47.2 

433 2.3 2479 2857 2986 3.01E-04 1.217E-03 

Extension_Soft 
47.2 
×47.2 

433 2.3 1606 1754 1893 3.01E-04 1.217E-03 

Extension_Normal 
47.2 
×47.2 

433 2.3 1692 1956 2298 3.01E-04 1.217E-03 

Extension_Stiff 
47.2 
×47.2 

433 2.3 1825 2181 2727 3.01E-04 1.217E-03 

Piles_Soft 
47.2 
×47.2 

433 2.3 1902 2228 2772 3.01E-04 1.217E-03 

Piles_Normal 
47.2 
×47.2 

433 2.3 2215 2728 2987 3.01E-04 1.217E-03 

Piles_Stiff 
47.2 
×47.2 

433 2.3 2427 2967 3011 3.01E-04 1.217E-03 

Spread_Normal 
47.2 
×47.2 

157.5 2.3 5072 5877 7595 3.01E-04 1.217E-03 

Spread_Stiff 
47.2 
×47.2 

157.5 2.3 5258 6237 7960 3.01E-04 1.217E-03 

Extension_Soft 
47.2 
×47.2 

157.5 2.3 4667 4745 4966 3.01E-04 1.217E-03 

Extension_Normal 
47.2 
×47.2 

157.5 2.3 4714 4924 5448 3.01E-04 1.217E-03 

Extension_Stiff 
47.2 
×47.2 

157.5 2.3 4834 5186 6077 3.01E-04 1.217E-03 

Piles_Soft 
47.2 
×47.2 

157.5 2.3 5142 5451 6270 3.01E-04 1.217E-03 

Piles_Normal 
47.2 
×47.2 

157.5 2.3 5883 6510 8160 3.01E-04 1.217E-03 

Piles_Stiff 
47.2 
×47.2 

157.5 2.3 6673 7505 8382 3.01E-04 1.217E-03 

Spread_Normal 
47.2 
×47.2 

708.7 2.3 1557 1739 1758 3.01E-04 1.217E-03 

Spread_Stiff 
47.2 
×47.2 

708.7
 

2.3 1573 1761 1771 3.01E-04 1.217E-03 

Extension_Soft 
47.2 
×47.2 

708.7
 

2.3 956 1062 1110 3.01E-04 1.217E-03 

Extension_Normal 
47.2 
×47.2 

708.7
 

2.3 1071 1248 1446 3.01E-04 1.217E-03 

Extension_Stiff 
47.2 
×47.2 

708.7
 

2.3 1187 1424 1641 3.01E-04 1.217E-03 

Piles_Soft 
47.2 
×47.2 

708.7
 

2.3 1210 1439 1647 3.01E-04 1.217E-03 

Piles_Normal 
47.2 
×47.2 

708.7
 

2.3 1423 1752 1768 3.01E-04 1.217E-03 

Piles_Stiff 
47.2 
×47.2 

708.7
 

2.3 1528 1796 1796 3.01E-04 1.217E-03 

Spread_Normal 
31.5 
×31.5 

433 2.3 753 849 849 3.50E-04 1.543E-03 

Spread_Stiff 
31.5 
×31.5 

433 2.3 747 856 856 3.50E-04 1.543E-03 

Extension_Soft 
31.5 
×31.5 

433 2.3 447 486 481 3.50E-04 1.543E-03 

Extension_Normal 
31.5 
×31.5 

433 2.3 480 560 638 3.50E-04 1.543E-03 

Extension_Stiff 
31.5 
×31.5 

433 2.3 516 630 746 3.50E-04 1.543E-03 

Piles_Soft 
31.5 
×31.5 

433 2.3 511 614 728 3.50E-04 1.543E-03 

Piles_Normal 
31.5 
×31.5 

433 2.3 593 755 824 3.50E-04 1.543E-03 

(in.) 
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bent, the results show the ultimate capacity Pu assuming that 
the columns are confined and also assuming that the columns 
are unconfined. These results are compared to those obtained 
when the first column reaches its limiting capacity, assuming 
linear behavior.

The validity of Equation 4.2 for the ultimate capacity of the 
unconfined and confined two-column bent systems analyzed 

in NCHRP Report 458 is verified in Figure 4.17 (a) and Figure 
4.17 (b), respectively. The figures plot Pu from Equation 4.2 
versus that obtained from the NCHRP Report 458 analysis and 
show that the data points are clearly aligned along the equal 
force line, indicating that Equation 4.2 is reasonably accurate 
with a regression coefficient R2 = 0.99 and R2 = 0.97 for the 
unconfined and confined two-column bents. The COV of 

Table 4.12.  (Continued).

Piles_Stiff 
31.5 
×31.5 

433 2.3 638 835 852 3.50E-04 1.543E-03 

Spread_Normal 
63 
×63 

433 2.3 4984 5649 7085 2.55E-04 1.013E-03 

Spread_Stiff 
63 
×63 

433 2.3 5135 5826 7116 2.55E-04 1.013E-03 

Extension_Soft 
63 
×63 

433 2.3 4099 4358 4849 2.55E-04 1.013E-03 

Extension_Normal 
63 
×63 

433 2.3 4516 4963 6074 2.55E-04 1.013E-03 

Extension_Stiff 
63 
×63 

433 2.3 5084 5700 7030 2.55E-04 1.013E-03 

Piles_Soft 
63 
×63 

433 2.3 5948 6697 7136 2.55E-04 1.013E-03 

Piles_Normal 
63 
×63 

433 2.3 6279 7020 7176 2.55E-04 1.013E-03 

Piles_Stiff 
63 
×63 

433 2.3 6007 6874 7175 2.55E-04 1.013E-03 

Spread_Normal 
47.2 
×47.2 

433 1.1 1519 1821 1851 3.56E-04 1.585E-03 

Spread_Stiff 
47.2 
×47.2 

433 1.1 1510 1852 1860 3.56E-04 1.585E-03 

Extension_Soft 
47.2 
×47.2 

433 1.1 963 1127 1267 3.56E-04 1.585E-03 

Extension_Normal 
47.2 
×47.2 

433 1.1 966 1293 1625 3.56E-04 1.585E-03 

Extension_Stiff 
47.2 
×47.2 

433 1.1 1018 1469 1789 3.56E-04 1.585E-03 

Piles_Soft 
47.2 
×47.2 

433 1.1 1087 1497 1791 3.56E-04 1.585E-03 

Piles_Normal 
47.2 
×47.2 

433 1.1 1226 1849 1868 3.56E-04 1.585E-03 

Piles_Stiff 
47.2 
×47.2 

433 1.1 1324 1877 1877 3.56E-04 1.585E-03 

Spread_Normal 
47.2 
×47.2 

433 3.5 3420 3756 4075 2.66E-04 1.107E-03 

Spread_Stiff 
47.2 
×47.2 

433 3.5 3422 3823 4092 2.66E-04 1.107E-03 

Extension_Soft 
47.2 
×47.2 

433 3.5 2223 2339 2507 2.66E-04 1.107E-03 

Extension_Normal 
47.2 
×47.2 

433 3.5 2389 2604 2964 2.66E-04 1.107E-03 

Extension_Stiff 
47.2 
×47.2 

433 3.5 2604 2889 3448 2.66E-04 1.107E-03 

Piles_Soft 
47.2 
×47.2 

433 3.5 2678 2944 3496 2.66E-04 1.107E-03 

Piles_Normal 
47.2 
×47.2 

433 3.5 3176 3591 4088 2.66E-04 1.107E-03 

Piles_Stiff 
47.2 
×47.2 

433 3.5 3481 3990 4124 2.66E-04 1.107E-03 

(Column lateral confinement ratio=0.6%) 
Confined core concrete ultimate strain is 0.015

    First Member Unconfined Confined Unconfined Confined 

Foundation Type 
b×d 

 
Height 
(in.) 

Long. 
rebar 
ratio (%) 

Pp1 
(kips) 

Pu 
(kips) 

Pu 
(kips) 

u 
 (in-1) 

u 
 (in-1) (in.) 
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Table 4.13.  Results summary of four-column bent in NCHRP Report 458.

(Column lateral confinement ratio=0.6%) 
Confined core concrete ultimate strain is 0.015 

    First 
Member Unconfined Confined Unconfined Confined 

Foundation 
Type 

b×d 
(in.) 

Height
(in.) 

 

Long. 
rebar ratio 
(%) 

Pp1 
(kips) 

Pu 
(kips) 

Pu 
(kips) 

u 
 (in-1) 

u 
 (in-1) 

Spread_Normal 
39.4 
×39.4 

255.9 1.85 3787 4651 4857 3.68E-04 1.494E-03 

Spread_Stiff 
39.4 
×39.4 255.9 1.85 3923 4707 4876 3.68E-04 1.494E-03 

Extension_Soft 
39.4 
×39.4 255.9 1.85 2468 2692 3011 3.68E-04 1.494E-03 

Extension_Normal 
39.4 
×39.4 255.9 1.85 2570 3016 3622 3.68E-04 1.494E-03 

Extension_Stiff 
39.4 
×39.4 255.9 1.85 2749 3377 4346 3.68E-04 1.494E-03 

Piles_Soft 
39.4 
×39.4 255.9 1.85 2581 2915 3466 3.68E-04 1.494E-03 

Piles_Normal 
39.4 
×39.4 255.9 1.85 2884 3550 4679 3.68E-04 1.494E-03 

Piles_Stiff 
39.4 
×39.4 255.9 1.85 3175 4080 4848 3.68E-04 1.494E-03 

Spread_Normal 
39.4 
×39.4 137.8 1.85 6388 7520 8841 3.68E-04 1.494E-03 

Spread_Stiff 
39.4 
×39.4 137.8 1.85 6587 7992 8984 3.68E-04 1.494E-03 

Extension_Soft 
39.4 
×39.4 137.8 1.85 4494 4731 5210 3.68E-04 1.494E-03 

Extension_Normal 
39.4 
×39.4 137.8 1.85 4695 5079 5949 3.68E-04 1.494E-03 

Extension_Stiff 
39.4 
×39.4 137.8 1.85 4775 5457 6802 3.68E-04 1.494E-03 

Piles_Soft 
39.4 
×39.4 137.8 1.85 4747 5040 5757 3.68E-04 1.494E-03 

Piles_Normal 
39.4 
×39.4 137.8 1.85 5102 5744 7306 3.68E-04 1.494E-03 

Piles_Stiff 
39.4 
×39.4 137.8 1.85 5323 6442 8808 3.68E-04 1.494E-03 

Spread_Normal 
39.4 
×39.4 708.7 1.85 2697 3224 3290 3.68E-04 1.494E-03 

Spread_Stiff 
39.4 
×39.4 708.7 1.85 2773 3262 3308 3.68E-04 1.494E-03 

Extension_Soft 
39.4 
×39.4 708.7 1.85 1687 1918 2109 3.68E-04 1.494E-03 

Extension_Normal 
39.4 
×39.4 708.7 1.85 1825 2180 2664 3.68E-04 1.494E-03 

Extension_Stiff 
39.4 
×39.4 708.7 1.85 2006 2470 3145 3.68E-04 1.494E-03 

Piles_Soft 
39.4 
×39.4 708.7 1.85 1798 2116 2523 3.68E-04 1.494E-03 

Piles_Normal 
39.4 
×39.4 708.7 1.85 2088 2616 3197 3.68E-04 1.494E-03 

Piles_Stiff 
39.4 
×39.4 708.7 1.85 2349 3018 3280 3.68E-04 1.494E-03 

Spread_Normal 
19.7 
×19.7 

255.9 1.85 500 581 581 3.96E-04 1.692E-03 

Spread_Stiff 
19.7 
×19.7 255.9 1.85 514 586 586 3.96E-04 1.692E-03 

Extension_Soft 
19.7 
×19.7 255.9 1.85 292 318 295 3.96E-04 1.692E-03 

Extension_Normal 
19.7 
×19.7 255.9 1.85 326 366 403 3.96E-04 1.692E-03 

Extension_Stiff 
19.7 
×19.7 255.9 1.85 360 414 481 3.96E-04 1.692E-03 

Piles_Soft 
19.7 
×19.7 255.9 1.85 468 567 573 3.96E-04 1.692E-03 

Piles_Normal 
19.7 
×19.7 255.9 1.85 514 592 592 3.96E-04 1.692E-03 
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Piles_Stiff 
19.7 
×19.7 255.9 1.85 535 597 597 3.96E-04 1.692E-03 

Spread_Normal 59 ×59 255.9 1.85 10340 12261 15674 2.86E-04 1.211E-03 

Spread_Stiff 59 ×59 255.9 1.85 10710 13034 15850 2.86E-04 1.211E-03 

Extension_Soft 59 ×59 255.9 1.85 8166 8735 10110 2.86E-04 1.211E-03 

Extension_Normal 59 ×59 255.9 1.85 8307 9452 12110 2.86E-04 1.211E-03 

Extension_Stiff 59 ×59 255.9 1.85 8813 10505 14496 2.86E-04 1.211E-03 

Piles_Soft 59 ×59 255.9 1.85 9402 10662 14219 2.86E-04 1.211E-03 

Piles_Normal 59 ×59 255.9 1.85 10793 13248 16508 2.86E-04 1.211E-03 

Piles_Stiff 59 ×59 255.9 1.85 12242 15286 16541 2.86E-04 1.211E-03 

Spread_Normal 
39.4 
×39.4 255.9 0.60 1739 2484 2529 4.46E-04 1.981E-03 

Spread_Stiff 
39.4 
×39.4 255.9 0.60 1795 2541 2542 4.46E-04 1.981E-03 

Extension_Soft 
39.4 
×39.4 255.9 0.60 1189 1527 1846 4.46E-04 1.981E-03 

Extension_Normal 
39.4 
×39.4 255.9 0.60 1305 1797 2347 4.46E-04 1.981E-03 

Extension_Stiff 
39.4 
×39.4 255.9 0.60 1417 2118 2463 4.46E-04 1.981E-03 

Piles_Soft 
39.4 
×39.4 255.9 0.60 1277 1727 2285 4.46E-04 1.981E-03 

Piles_Normal 
39.4 
×39.4 255.9 0.60 1476 2280 2488 4.46E-04 1.981E-03 

Piles_Stiff 
39.4 
×39.4 255.9 0.60 1628 2527 2536 4.46E-04 1.981E-03 

Spread_Normal 
39.4 
×39.4 255.9 3.10 5791 6595 7107 3.19E-04 1.344E-03 

Spread_Stiff 
39.4 
×39.4 255.9 3.10 5988 6749 7131 3.19E-04 1.344E-03 

Extension_Soft 
39.4 
×39.4 255.9 3.10 3652 3864 4190 3.19E-04 1.344E-03 

Extension_Normal 
39.4 
×39.4 255.9 3.10 3792 4206 4827 3.19E-04 1.344E-03 

Extension_Stiff 
39.4 
×39.4 255.9 3.10 4023 4600 5575 3.19E-04 1.344E-03 

Piles_Soft 
39.4 
×39.4 255.9 3.10 3809 4126 4667 3.19E-04 1.344E-03 

Piles_Normal 
39.4 
×39.4 255.9 3.10 4241 4837 5980 3.19E-04 1.344E-03 

Piles_Stiff 
39.4 
×39.4 255.9 3.10 4650 5459 7042 3.19E-04 1.344E-03 

(Column lateral confinement ratio=0.6%) 
Confined core concrete ultimate strain is 0.015 

    First 
Member Unconfined Confined Unconfined Confined 

Foundation 
Type 

b×d 
(in.) 

Height
(in.) 

 

Long. 
rebar ratio 
(%) 

Pp1 
(kips) 

Pu 
(kips) 

Pu 
(kips) 

u 
 (in-1) 

u 
 (in-1) 

Table 4.13.  (Continued).

the ratio between the value from Equation 4.2 and NCHRP 
Report 458 is less than 7% and 11% for the unconfined and 
confined two-column bents, respectively. The maximum dif-
ferences are those corresponding to a soft foundation.

Figure 4.18 (a) and (b) plot Pu from Equation 4.2 versus 
that obtained from the NCHRP Report 458 analysis for the 
unconfined and confined four-column bent systems, respec-
tively. The figures show that the data points are clearly aligned 
along the equal force line indicating that Equation 4.2 is rea-
sonably accurate with a regression coefficient R2 = 0.99 and R2 
= 0.97 for the unconfined and confined four-column systems. 

The COV of the ratio between the value from Equation 4.2 
and NCHRP Report 458 is less than 8% and 14% for the 
unconfined and confined four-column system, respectively. 
The maximum differences are those corresponding to a soft 
foundation.

The larger differences and wider spread of data points 
around the equal force line observed in Figures 4.17 and 4.18 
for the confined cases are due to the larger P-delta effects in 
NCHRP Report 458 related to the high applied vertical live 
load. When the columns are highly confined and the vertical 
load is very high, the P-delta effects produce a softening in the 
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force versus lateral deformation curve. This has caused some 
difficulty in defining the exact failure point in the NCHRP 
Report 458 model.

Model Verification

The empirical model proposed in this study to establish 
the relationship between the ultimate capacity of a multi- 
column bridge substructure system and the lateral load carry-
ing capacity of one column in the system is a function of the 
number of columns in the bent and the ultimate curvature 
capacity of the bent columns. This relationship is expressed 
by an equation of the form:

(4.2)1P P F Cu p mc
u tunc

tconf tunc

= + ϕ − ϕ
ϕ − ϕ







ϕ

where Pp1 gives the capacity of a bridge system under lateral 
load assuming that the analysis is performed using linear-
elastic behavior and failure is defined when one column 
reaches its maximum load carrying capacity as typically done 
when using a force-based analysis, Fmc is a multi-column fac-
tor, Cj is a curvature factor, ju is the ultimate curvature of the 
weakest column in the bent, jtunc is the average curvature for a 
typical unconfined column, jtconf is the average curvature for 
a typical confined column. The typical curvature values for 
the confined and unconfined columns are extracted from the 
results of the survey conducted in NCHRP Report 458.

For a particular bridge system, Pp1 is calculated using 
a linear structural analysis of the system under the effect 
of the applied lateral load. To find Pp1, failure is defined  
as the load at which one column reaches its ultimate capac-
ity. The value for the ultimate curvature at failure ju is  

Figure 4.18.  Lateral capacity by Equation 4.2  
vs. lateral capacity from NCHRP Report 458 for  
four-column bents.
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Figure 4.17.  Lateral capacity by Equation 4.2  
vs. lateral capacity from NCHRP Report 458 for  
two-column bents.
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calculated from the ultimate plastic analysis of the column’s 
cross section.

Values for Fmc, Cj, jtunc, and jtconf have been extracted from 
the analysis of a large number of bridges with two-column, 
three-column and four-column bents. The bents analyzed 
included a range of column sizes, vertical reinforcement 
ratios, and confinement ratios. The analyses also considered 
the effect of different foundation stiffnesses. The recom-
mended values for these parameters are provided in Table 4.1, 
shown previously. The values for jtunc and jtconf are the aver-
age curvatures obtained from the analysis of the column 
sizes used in NCHRP Report 458. The columns analyzed in 
NCHRP Report 458 represent typical column sizes and rein-
forcement ratios collected from a national survey conducted 
as part of the study. The values for jtunc and jtconf are used in 
Equation 4.2 to compare the confinement ratio of the column 
being evaluated to the average confinement ratios observed 
in typical confined and unconfined columns.

Figures 4.19, 4.20, and 4.21 summarize the results pre-
sented in the previous section. These figures are provided 
to visualize how well the proposed model of Equation 4.2 
matches the results obtained from the nonlinear pushover 
analysis of hundreds of bridge systems subjected to lateral 
load applied at the top of the bent. The plots show the values 
of the system capacity Pu obtained from Equation 4.2 versus 
the values obtained from the pushover analysis.

Figure 4.19 is for systems with two-column bents analyzed 
during the course of this study in green as well as those ana-
lyzed during NCHRP Report 458 in blue for unconfined col-
umns and in red for confined columns. Different levels of 
confinement ratios were considered during the analyses per-
formed in NCHRP Report 458. The green data points labeled 
NCHRP 12-86 were obtained during the course of this study 
using a large range of sensitivity analyses. The green data 

points also represent a combination of different confine-
ment ratios. The solid lines give the trend lines obtained 
from a regression analysis of the data. The equations in the 
figure give the equations of the trend lines that describe the 
relationship between the estimated Pu obtained from Equa-
tion 4.2 and the calculated Pu obtained from the nonlinear 
pushover analysis of actual bridge systems. A perfect match 
would lead to a trend line having an equation of the form  
y = 1.0x with a coefficient of regression R2 = 1.0. The results 
in Figure 4.20 are for the bridge systems with three-column 
bents analyzed in this study including all the sensitivity analy-
ses. Figure 4.21 shows the results of the four-column bents 
analyzed in NCHRP Report 458 including those with con-
fined columns (in red) and unconfined columns (in blue). 
All the trend lines in Figures 4.19, 4.20, and 4.21 have slopes 
close to 1.0 and coefficients of regression R2 also close to 1.0. 
This serves to confirm that Equation 4.2 provides a good 
model for estimating the ultimate capacity of bridge systems 

Figure 4.19.  Two-column model verification.
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Figure 4.20.  Three-column model verification. 
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Figure 4.21.  Four-column model verification.
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subjected to lateral load. Another parameter that identifies 
the variation between Equation 4.2 and the analysis results is 
the COV of the ratio between the equation and the analysis 
results. It is observed that the COV is about 9% for the two- 
and three-column systems and about 11.5% for the four- 
column system. The higher COV in the latter case is primar-
ily due to the difficulty of determining the failure point when 
P-delta effects are considered for soft foundations as observed 
in the NCHRP Report 458 data set.

The analyses performed in this study and in NCHRP 
Report 458 assumed that the hinges form in the columns and 
that any weakness in the cap beams, shear capacity, member 
detailing, and connections is represented by reduction in the 
ultimate curvatures of the columns. Chapter 5 of this report 
describes how the weaknesses change the ultimate curvature 
that should be used in Equation 3.1, which is also given above 
as Equation 1.3.

4.3 Calibration of System Factors

Calibration Approach

The calibration of system factors for the force-based 
approach can be executed following the procedure out-
lined in Chapter 2. The process is based on Figure 3.1 that 
describes the behavior of bridges under lateral load assum-
ing that the performance is being evaluated using the force 
levels on the vertical axis. The procedure as presented in this 
chapter assumes that the lognormal reliability model is valid 
for the force-based analysis process. Accordingly, the evalu-
ation of the safety of a bridge under lateral load also can be 
expressed in terms of the probability of failure, which for 
the force-based approach represents the probability that the 
load carrying capacity, P, is smaller than the applied extreme 
load, LE.

= ≤





Pr 1 (4.3)P
P

LE
f

Assuming that both the capacity and the load can be 
expressed by lognormal probability distributions, the prob-
ability of failure can be expanded as

ln * ln * ln *
* (4.4)

2 2 2 2
P

P LE P
LE

f

P LE P LE

( )[ ]( ) ( )
= Φ − −

ξ + ξ








 = Φ

−

ξ + ξ













where P* is the median of the capacity P, xP is the dispersion 
of the lognormal distribution of the capacity. The variables 
with the subscript “LE” are the statistics for the load. F is the 
cumulative normal distribution function.

In this case, the reliability index for the system defined as, 
bsystem, can be calculated as

ln *
* (4.5)

2 2

P
LE

system

u

P LE

( )
β =

ξ + ξ

The reliability index for the failure of the first column 
defined as, bcolumn, can be calculated as

ln *
*

(4.6)

1

2 2

P
LE

column

p

P LE

( )
β =

ξ + ξ

In the program Hazus (2003) developed by FEMA for eval-
uating the seismic risk of structures, the combined dispersion 
for capacity and demand for typical bridge structures and 
structural members is set at 0.602 2

P LEξ + ξ =  for all damage 
types and all bridge members.

As explained in Chapter 2, a probabilistic measure of sys-
tem redundancy can be expressed in terms of the additional 
reliability provided by the system compared to that of the 
member and can be defined as the reliability index margin

(4.7)u system column∆β = β − β

Substituting Equations 4.5 and 4.6 into Equation 4.7, the 
reliability index margin is obtained as

ln *
*

ln *
*

(4.8)
2 2

1

2 2

P
LE

P
LE

u

u

P LE

p

P LE

( )( )
∆β =

ξ + ξ
−

ξ + ξ

Or

ln *
*

(4.9)
1

2 2

P
P

u

u

p

P LE

( )
∆β =

ξ + ξ

This reliability margin can be used as a probabilistic mea-
sure of redundancy. Bridges that meet a reliability margin 
criterion can be defined as being sufficiently redundant. 
Those that do not meet the criterion are non-redundant. For 
example, NCHRP Report 406 observed that redundant super-
structure systems subjected to vertical loads have been tradi-
tionally associated with bridges that meet or exceed a target 
system reliability margin Dbu target = 0.85. The 0.85 target mar-
gin was selected to match the average reliability margin of 
all four-girder bridges because four-girder bridges have been 
widely accepted as being redundant.

Following the approach of NCHRP Report 406, bridge sys-
tems that do not meet the minimum target reliability margin 
should be designed to higher standards by applying a system 
factor fs. The system factor should be calibrated to offset the 
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difference between the target reliability margin and the reli-
ability margin that a system designed using current methods 
provides.

Following the same rationale, it can be assumed that 
bridges under lateral loads should produce a target reliabil-
ity margin Dbu target to be classified as sufficiently redundant. 
Those that do not meet the target reliability margin must be 
designed to meet higher system reliability levels. The higher 
reliability levels should offset the difference between the cal-
culated Dbu and the target value Dbu target. This can be for-
mulated by first evaluating the deficit between the reliability 
index margin provided by a particular bridge system, Dbu, 
and the target reliability index margin Dbu target.

(4.10)deficit targetu u u∆β = ∆β − ∆β

A negative Dbu deficit means that the system provides a higher 
level of redundancy than the minimum required. A positive 
deficit indicates that the bridge system configuration does not 
provide a sufficient level of redundancy. To compensate for 
the lack of redundancy, the members of the bridge should be 
designed to higher standards to ensure that the system pro-
vides a reliability index higher than the one obtained accord-
ing to current standards to offset the reliability deficit. This 
can be formulated as

(4.11)u deficit u targetsystem
N

system system u( )β = β + ∆β = β + ∆β − ∆β

where bN
system is the reliability index that a more conservatively 

designed system should achieve to compensate for the lack 
of adequate levels of redundancy while bsystem is the reliability 
index obtained for the current design. bN

system can be expressed as

ln *
* (4.12)

N

2 2

LP
LE

system
N

u

P LE

( )
β =

ξ + ξ

where Pu*N is the required ultimate load capacity needed to 
reach the system reliability bN

system.
Substituting Equations 4.5, 4.9, and 4.12 into Equa-

tion 4.11 leads to
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The above expression is simplified to give
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which can be written as
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where Pp1*N is the required column capacity obtained by adjust-
ing the currently required member capacity Pp1* by a system 

factor fs such that *
*

1
N 1
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Finally
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The evaluation of the system factor can then be executed 
if the target margin reliability Dbu target is set, and if the dis-
persion coefficient 2 2

P LEξ + ξ  as well as the redundancy ratio 
*

*

N

1
N

P

P
u

p

 are known.

In NCHRP Report 458, it was assumed that the ratio 
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remains constant, independent of the value of P*N
1p  such that 
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P

P
u

u

p

u

p

= = . This is a reasonable assumption as long as 

the redundancy ratio Ru is evaluated for bridges having 
similar configurations including the same number of col-
umns, similar column cross sections and column heights. 
This led to the development of very complex tables of sys-
tem factors that attempt to cover a large array of substruc-
ture systems with different combinations of properties and 
dimensions.

Instead, a review of the NCHRP Report 458 data, comple-
mented with the results of the analyses performed during 
the course of this study, have shown that the relationship 
between the ultimate capacity of a multi-column bridge 
substructure system and the lateral load carrying capac-
ity of one column can be reasonably well represented as 
a function of the number of columns in the bent and the 
ultimate curvature capacity of the bent columns as dem-
onstrated in Section 4.2 of this chapter. A system’s ultimate 
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capacity under lateral load can be represented by an equa-
tion of the form:

= + ϕ − ϕ
ϕ − ϕ







φ (4.2)1P P F Cu p mc
u tunc

tconf tunc

where Pp1 gives the capacity of a bridge system under lateral 
load assuming linear-elastic behavior as typically done when 
using a force-based analysis, Fmc is a multi-column factor, Cj 
is a curvature factor, ju is the ultimate curvature of the weak-
est column in the bent, jtunc is the average curvature for a 
typical unconfined column, jtconf is the average curvature for 
a typical confined column.

For a particular bridge system, Pp1 is calculated using a lin-
ear structural analysis of the system under the effect of the 
applied lateral load. To find Pp1, failure is defined as the load 
at which one column reaches its ultimate capacity assuming 
elasto-plastic behavior. The value for the ultimate curvature 
at failure ju is calculated from the ultimate plastic analysis of 
the column’s cross section.

Values for Fmc, Cj, jtunc, and jtconf have been extracted from 
the analysis of a large number of two-column, three-column, 
and four-column bents. The bents analyzed included a range 
of column sizes, vertical reinforcement ratios, and confine-
ment ratios. The analyses also considered the effect of dif-
ferent foundation stiffnesses. The recommended values for 
these parameters are provided in Table 4.1. The values for 
jtunc and jtconf are the average curvatures obtained from the 
analysis of the column sizes used in NCHRP Report 458. 
The columns analyzed in NCHRP Report 458 represent typi-
cal column sizes and reinforcement ratios collected from a 
national survey conducted as part of the study. The values for 
jtunc and jtconf are used in Equation 4.2 to compare the con-
finement ratio of the column being evaluated to the average 
confinement ratios observed in typical confined and uncon-
fined columns.

The implementation of Equation 4.2 in combination with 
the recommended factors provided in Table 4.1 into Equa-
tion 4.18 will lead to the system factors to be used when 
evaluating the force capacity of bridge systems subjected to 
lateral loads. Specifically, the system factor is a function of 
the target reliability level as well as the combined dispersion 
coefficient. Substituting Equation 4.2 into Equation 4.18, the 
system factor is

exp (4.19)
2 2

F Cs mc
u tunc

tconf tunc

LF LE u targetφ = + ϕ − ϕ
ϕ − ϕ







( )− ξ +ξ ∆β
ϕ

The target reliability index margin, Dbu target, must be set 
by the code writing authorities to match those of acceptable 
values obtained from systems recognized as being adequately 
redundant. The dispersion coefficient 2 2

P LEξ + ξ  must reflect 

the uncertainties associated with estimating the strength and 
the applied loads. As an example, a dispersion coefficient 
equal to 0.60 is used in the program Hazus (2003) prepared 
by FEMA for the analysis of seismic damage risk.

The exponential term in Equation 4.18 is defined as the 
system risk factor as it reflects the acceptable level of risk for 
bridge collapse that can be tolerated such that

exp (4.20)
2 2

s
LF LE u targetℜ = ( )− ξ +ξ ∆β

Table 4.14 gives the risk coefficient, ℜs for different values 
of Dbu target and dispersion coefficients.

As an example, Figure 4.22 shows how the system factor, 
fs, varies as a function of the curvature of the bridge column. 
The figure shows the system factor for different numbers of 
columns in a bent. The system factors in Figure 4.22 are cal-
culated assuming a target reliability margin Dbu target = 0.50 
and a dispersion coefficient 0.602 2

P LEξ + ξ =  such that the 
risk factor is ℜs = 074.

The results in Figure 4.22 show a moderate increase in the 
system factor as the number of columns in the bent increases 
from two to four columns by 0.06. However, the more signifi-
cant increase in the system factor is due to the increase in the 
confinement ratio, which is reflected by the increase in the 
ultimate curvature of the column. In fact, from Equation 4.19, 
it is observed that an increase in the ultimate curvature of the 
section from 3.0 × 10-4 (1/in) to 2.0 × 10-3 (1/in) results in an 
increase in the system factor by about 0.25. A curvature of  
3.0 × 10-4 (1/in) is obtained for this column when the column 
is unconfined. A confinement ratio of 0.003, which according 
to the AASHTO LRFD Seismic Design Guide corresponds to 
a structural detail category B, produces an ultimate curvature 
equal to 0.974 × 10-3 (1/in). A confinement ratio of 0.005, 
which corresponds to structural detail category C, produces 
a curvature equal to 1.30 × 10-3 (1/in). A confinement ratio 
of 0.008 produces a curvature equal to 1.76 × 10-3 (1/in).  
A confinement ratio of 0.01 produces a curvature equal to 
2.05 × 10-3 (1/in).

Implementation Example

A simple example is presented to illustrate the procedure 
that an engineer would follow to include redundancy during 
the safety evaluation of a bridge system subjected to lateral 
load. In this example, the researchers assume that the seis-
mic design of a bridge system with two-column bents in a 
low seismic region calls for each column to have a moment 
capacity Mp = 3.85 × 104 kip-in. To meet the preliminary 
design requirements, the engineer selects a section that has 
a diameter D = 3.6-ft. The column is reinforced by verti-
cal steel bars such that the vertical reinforcement ratio is 
1.85%. Furthermore, the engineer uses a confinement ratio 
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rs = 0.003. The analysis of the section determines that the 
moment capacity of the column meets the requirement and is 
equal to Mp = 3.85 × 10-4 kip-in. and the ultimate curvature is  
ju = 0.974 × 10-3 (1/in).

A linear-elastic analysis of the system under lateral load 
indicates that one column reaches its moment capacity Mp = 

3.85 × 10-4 kip-in. when a lateral force P1p = 714 kips is applied 
on the two-column bent.

To reduce the risk of collapse under an extreme event, 
the engineer would like to verify that the system will have 
significantly additional capacity in case one of the columns 
reaches its design moment capacity. Using Equation 4.2, 

Target reliability margin 

 targetu  

Dispersion coefficient

2 2
P LE  

Risk factor 

s  

 
 

0.3 
 
 

0.2 0.94 

0.3 0.91 

0.4 0.89 

0.5 0.86 

0.6 0.84 

 
 

0.4 
 
 

0.2 0.92 

0.3 0.89 

0.4 0.85 

0.5 0.82 

0.6 0.79 

 
 

0.5 
 
 

0.2 0.90 

0.3 0.86 

0.4 0.82 

0.5 0.78 

0.6 0.74 

 
 

0.6 
 
 

0.2 0.89 

0.3 0.84 

0.4 0.79 

0.5 0.74 

0.6 0.70 

 
 

0.7 
 
 

0.2 0.87 

0.3 0.81 

0.4 0.76 

0.5 0.70 

0.6 0.66 

 
 

0.8 
 
 

0.2 0.85 

0.3 0.79 

0.4 0.73 

0.5 0.67 

0.6 0.62 

 
 

0.9 
 
 

0.2 0.84 

0.3 0.76 

0.4 0.70 

0.5 0.64 

0.6 0.58 

 
 

1.0 
 
 

0.2 0.82 

0.3 0.74 

0.4 0.67 

0.5 0.61 

0.6 0.55 

Table 4.14.  Risk coefficient for different target  
reliability margins.
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the engineer calculates the ultimate load capacity of the sys­
tem to be

714 1.10 0.24
0.974 10 3.64 10

1.55 10 3.64 10

874

1

3 4

3 4

P P F C

kips

u p mc
u tunc

tconf tunc

= + ϕ − ϕ
ϕ − ϕ







= + × − ×
× − ×







=

φ

− −

− −

The redundancy ratio is obtained as 874
7141

R P
Pu

u

p
= = =

1.22 . This indicates that this bridge with two-column bents 
does provide some level of redundancy. However, this level 
must be checked against the specified requirements. It is 
assumed that the specifications applicable to the jurisdiction 
where the bridge is to be built require a risk factor ℜs = 0.74 
corresponding to a reliability margin Dbu target = 0.50. To verify 
whether the bridge columns meet this requirement, a system 
factor is calculated from Equation 4.19 as

0.74 1.22 0.90F Cs s mc
u tunc

tconf tunc

φ = ℜ + ϕ − ϕ
ϕ − ϕ







= × =ϕ

Because the system factor is less than 1.0, the bridge is not 
sufficiently redundant to meet the risk requirements. Thus, the 
bridge columns must be designed to a higher moment capac­
ity such that fs Mp = 3.85 × 104 kip-in. That is, the moment 
capacity must be increased by (1/0.90) so that Mp = 4.28 × 
104 kip-in.

A higher moment capacity will not turn a non-redundant 
system into a redundant one but it will help compensate for 
the relatively low level of system reliability by increasing the 
reliability of the columns to compensate for the low level of 
redundancy.

Alternatively, the engineer may decide to improve the over­
all reliability of the system by increasing the confinement 
ratio from the original rs = 0.003 to a higher ratio rs = 0.008. 
In this case, the new system factor is calculated from Equa­
tion 4.19 to be fs = 1.02 which is higher than 1.0. Thus, the 
moment capacity Mp = 3.85 × 104 kip-in will be acceptable as 
it will produce the required redundancy level as long as the 
lateral reinforcement is improved to produce a confinement 
ratio equal to rs = 0.008.

Reliability Check

Using Equation 4.9 with Pu/Pp1 = 1.22, it is found that the 
original reliability index margin is Dbu = 0.33, which is lower 
than the target value Dbu target = 0.50. The deficit in the reliabil­
ity index margin is Dbu deficit = Dbu target - Dbu = 0.17. Increas­
ing the moment capacity of the column by a factor 1/0.9 will 
increase the overall reliability of the system to compensate for 
the low level of redundancy.

4.4 � Additional Verifications of Model

P-Delta Effect

P-delta effect, also known as geometric nonlinearity, involves 
the equilibrium and compatibility relationships of a struc­
tural system loaded about its deflected configuration. Of par­
ticular concern is the application of gravity load on bridge 
columns with large lateral deformations. If the deformations 
become sufficiently large as to break from linear compatibility 
relationships, then using SAP2000’s large-displacement and 
large-deformation analyses becomes necessary. This condition 
magnifies the bending moment in the column and reduces 
the deformation capacity. As explained in the SAP2000 
manual, the two sources of P-delta effect are illustrated in 
Figure 4.23, and described as follows:

•	 P-d effect, or P-“small-delta,” is associated with local defor­
mation relative to the element chord between end nodes. 

Figure 4.22.  System factor vs. ultimate curvature 
for example column with risk factor ℜs 5 0.74.
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Figure 4.23.  P-delta about column.
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Typically, P-d only becomes significant at unreasonably 
large displacement values, or in especially slender columns.

•	 P-D effect, or P-“big-delta,” is associated with displace-
ments relative to member ends. Unlike P-d, this type of 
P-delta effect is critical to nonlinear modeling and analysis. 
Gravity loading will influence structural response under 
significant lateral displacement.

To verify that Equation 4.2 is still valid for predicting bridge 
system capacity when P-delta effect is taken into account, the 
analysis of the three-column multi-girder bridge described 
in Section 4.2 is performed for the following three cases:  
(1) without geometric nonlinearity, (2) with P-d effect, and 
(3) P-delta including large displacement effects. Twenty-four 
bridge-bent models with various diameters ranging from 
6-ft to 8-ft and different column heights ranging from 20-ft 
to 40-ft are investigated. The results of the analysis for first 

column failure Pp1 are compared to the system’s ultimate 
capacity Pu obtained from the SAP2000 analysis and the pre-
dicted Pu by Equation 4.2 are listed in Table 4.15. The results 
with P-delta effect (in red) and those without the effect (in 
blue) also are compared in Figure 4.24.

The last column in Table 4.15 shows that the errors remain 
within the same range whether P-delta effects are consid-
ered or not, with the largest differences observed for the very 
slender long columns when the error in Equation 4.2 may 
increase by less than 4%. The trend lines in Figure 4.24 show 
that R2 remains essentially similar whether the P-delta effects 
are considered or not.

Effect of Foundation Stiffness on Bridge 
Systems with Three-Column Bents

The analyses performed in NCHRP Report 458 consid-
ered different foundation types and soil conditions to reflect  

Table 4.15.  Comparison of results with and without P-delta effect.

Category B Diameter 
Column 
Height 

System 
Capacity 

Plastic 
Capacity 

Ultimate 
Column 
Curvature 

System 
Capacity 
by Eq. 4.2

Error 

 
D 
(in.) 

H 
(in.) 

Pu 
(kips) 

Pp1 

(kips) 
u 

 (in-1) 
Pu 
(kips) 

 

None 451-inch 72 451 2480.7 2252.8 0.000717 2774.22 11.83% 

P 451-inch 72 451 2279.5 2121.2 0.000717 2612.16 14.59% 

P 451-inch 72 451 2259.5 2119.9 0.000717 2610.56 15.54% 

None Diameter–7 ft 84 240 9116.3 8079.5 0.000574 9715.24 6.57% 

P Diameter–7 ft 84 240 9074.1 8076.9 0.000574 9712.11 7.03% 

P Diameter–7 ft 84 240 9018.6 8074.5 0.000574 9709.23 7.66% 

None Pile 96 240 11528.4 8870.5 0.000516 10562.1 -8.38% 

P Pile 96 240 11464 8863.1 0.000516 10553.3 -7.94% 

P Pile 96 240 11347.6 8863.9 0.000516 10554.2 -6.99% 

None Pile 96 360 8087.1 6210.4 0.000516 7394.71 -8.56% 

P Pile 96 360 8002.6 6201.6 0.000516 7384.23 -7.73% 

P Pile 96 360 7972.3 6202.5 0.000516 7385.31 -7.36% 

None Pile 96 480 6401 4936.2 0.000516 5877.52 -8.18% 

P Pile 96 480 6290.4 4926.1 0.000516 5865.5 -6.75% 

P Pile 96 480 6252.1 4927 0.000516 5866.57 -6.17% 

None Spread 96 240 13016.1 11881.2 0.000516 14146.9 8.69% 

P Spread 96 240 13010 11820.5 0.000516 14074.6 8.18% 

P Spread 96 240 12866.1 11796.6 0.000516 14046.2 9.17% 

None Spread 96 360 9169.2 8459.6 0.000516 10072.8 9.86% 

P Spread 96 360 9125.3 8405.8 0.000516 10008.8 9.68% 

P Spread 96 360 9089.3 8383.6 0.000516 9982.34 9.83% 

None Spread 96 480 7225.7 6696 0.000516 7972.91 10.34% 

P Spread 96 480 7157.2 6651.4 0.000516 7919.81 10.66% 

P Spread 96 480 7091.9 6671.4 0.000516 7943.62 12.01% 

NOTES: “P ” (i.e., P-“small-delta”) is associated with local deformation relative to the element chord between end nodes. The 

includes P-“small-delta” plus large displacement. 
equilibrium equations take into partial account the deformed configuration of the structure. 
 “P- ” 
 “None” means neither P-“small-delta” nor P-“large-delta” effect is considered. 
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typical substructure design cases. To investigate situations 
where the foundations may be overdesigned or under-
designed, this section analyzes the multi-girder bridge with 
three-column bents assuming different foundation stiff-
nesses. The analysis is then performed for the different foun-
dation stiffness values shown in Table 4.16, which has been 
extracted from NCHRP Report 458, where foundations and 
supporting soils were grouped into eight categories.

In this section, 40 bridge system models with eight types 
of foundations are studied. The analysis results are sum-
marized in Table 4.17. The results also are presented in Fig-
ure 4.25, which plots the estimated ultimate system capacity 
Pu obtained from Equation 4.2 versus the value of Pu obtained 
from the pushover analysis for the different column dimen-
sions and foundations analyzed. The analysis included 3-ft 
diameter columns designed with lateral confinement rein-
forcement ratios rs = 0.24% (original detail), 0.3% (detail 
category B) and 0.5% (detail category C), in addition to cases 
where the diameter is increased up to 8-ft with lateral con-
finement reinforcement ratios rs = 0.3% to obtain a much 
larger range of the ultimate system capacity. Although the 

errors in Table 4.17 are found to vary between -14.68% and 
+12.78%, the trend line in Figure 4.25 shows a regression 
slope of 1.02 with a regression coefficient R2 of 0.99. This 
demonstrates that, generally speaking, the ultimate system 
capacity estimated by Equation 4.2 gives a good approxima-
tion to the actual ultimate capacity of the bridge system and 
the bridge foundation stiffness has no overall effect on the 
proposed equation.

Reduction in Column Curvature

The analyses performed in the previous sections of this 
report and in NCHRP Report 458 assumed that hinges form 
in the columns. Accounting for weaknesses in the cap beams, 
shear capacity, member detailing, and connections can be 
accommodated by reducing the ultimate curvature of the 
columns. FHWA’s Seismic Retrofitting Manual for Highway 
Structures: Part 1—Bridges provides a set of models that 
can be used to estimate the system’s ductility for different 
types of inadequacies in the design of the bridge system. 
This section describes how the models in the FHWA report 
can be adopted during the application of Equation 4.2. For 
that purpose, it is proposed to use a ductility reduction 
factor that can be applied on the ultimate curvature ju in 
Equation 4.2 to account for the reduction in ductility due to 
weaknesses in the system design. Also, in some cases, a mod-
ification of the force Pp1 may need to be applied when the 
capacity of the first member to fail is significantly reduced. 
The proposed approach is specifically described for the 
cases when the cap beam is weaker than the bridge columns  
and when the column shear capacity leads to shearing failures 
before the ultimate moment capacity of a section is reached. 
Weaknesses in lap splicing and other connection details can 
follow the same approach using the models described in the 
FHWA report.
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Figure 4.24.  Comparison of results with and without  
P-delta effect.

Table 4.16.  Foundation types and stiffness.

Founda�on types K_ver�cal
(kN/m)

K_transverse
(kN/m)

K_rota�on
(kN m)

1 spread\normal\ 97200 72900 3650000
2 spread\s�ff\ 147000 110000 5530000
3 extension\so�\ 443077 5226 113726
4 extension\normal\ 1107000 17784 220882
5 extension\s�ff\ 1994000 46628 367348
6 pile\so�\ 675400 18870 376700
7 pile\normal\ 1689000 85870 941700
8 pile\s�ff\ 3039000 299000 1695000

Bridge System Safety and Redundancy

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22365


Table 4.17.  Summary of results for three-column bridge bents with  
various foundations.

 Diameter Column 
Height 

System 
Capacity 

Plastic 
Capacity 

Ultimate 
Column 
Curvature 

System 
Capacity 
by Eq.4.2 

Error 

Category B 
72'' Column 

D 
(in.) 

H 
(in.) 

Pu 
(kips) 

Pp1 

(kips) 
u

(in-1) 
Pu 
(kips)  

1 spread\normal\ 96 240 13016.1 11881.2 0.000516 14146.9 8.69% 

2 spread\stiff\ 96 240 13206.3 11846 0.000516 14105 6.81% 

2 spread\stiff\ 96 180 17012.6 15037.2 0.000516 17904.8 5.24% 

2 spread\stiff\ 96 150 19847.4 17460.4 0.000516 20790.1 4.75% 

2 spread\stiff\ 96 480 7195.2 6636.9 0.000516 7902.54 9.83% 

3 extension\soft\ 96 700 4115.9 3858.4 0.000516 4594.19 11.62% 

4 extension\normal\ 96 400 5518.6 5200.4 0.000516 6192.11 12.20% 

5 extension\stiff\ 96 400 5869 5099 0.000516 6071.37 3.45% 

6 pile\soft\ 96 240 7198.4 6818.1 0.000516 8118.3 12.78% 

7 pile\normal\ 96 700 4922.4 3828.4 0.000516 4558.47 -7.39% 

7 pile\normal\ 96 240 11528.4 8870.5 0.000516 10562.1 -8.38% 

8 pile\stiff\ 96 240 12904.5 9419.7 0.000516 11216 -13.08% 

8 pile\stiff\ 96 480 6955.3 5349.7 0.000516 6369.88 -8.42% 

Category B 
36'' Column 

D 
(in.) 

H 
(in.) 

Pu 
(kips) 

Pp1 

(kips) 
u

 (in-1) 
Pu 
(kips) 

Error 

1 spread\normal\ 36 331 1113 798.349 0.00106 1038.53 -6.69% 

2 spread\stiff\ 36 331 1112.4 784.9 0.00106 1021.03 -8.21% 

2 spread\stiff\ 36 451 922.8 727.1 0.00106 945.843 2.50% 

2 spread\stiff\ 36 150 1752.2 1385.4 0.00106 1802.19 2.85% 

3 extension\soft\ 36 150 1650.8 1386.4 0.00106 1803.49 9.25% 

4 extension\normal\ 36 451 883.6 759.7 0.00106 988.251 11.84% 

4 extension\normal\ 36 150 1866.1 1290.4 0.00106 1678.61 -10.05% 

5 extension\stiff\ 36 451 912.2 738.7 0.00106 960.933 5.34% 

6 pile\soft\ 36 331 1122.2 809.8 0.00106 1053.42 -6.13% 

7 pile\normal\ 36 331 870 581.638 0.00106 756.62 -13.03% 

8 pile\stiff\ 36 331 1126.6 785.6 0.00106 1021.94 -9.29% 

Category C 
36'' Column 

D 
(in.) 

H 
(in.) 

Pu 
(kips) 

Pp1 

(kips) 
u

 (in-1) 
Pu 
(kips) Error 

1 spread\normal\ 36 331 1226 806.364 0.00138 1101.17 -10.18% 

2 spread\stiff\ 36 331 1235.9 792.7 0.00138 1082.51 -12.41% 

3 extension\soft\ 36 331 1388.6 867.6 0.00138 1184.79 -14.68% 

4 extension\normal\ 36 331 1268.4 794.2 0.00138 1084.56 -14.49% 

5 extension\stiff\ 36 331 1237.8 781.7 0.00138 1067.49 -13.76% 

6 pile\soft\ 36 331 1270.4 818 0.00138 1117.06 -12.07% 

7 pile\normal\ 36 331 1232 796.269 0.00138 1087.38 -11.74% 

8 pile\stiff\ 36 331 1225.8 793.5 0.00138 1083.6 -11.60% 

Original 
36'' Column 

D 
(in.) 

H 
(in.) 

Pu 
(kips) 

Pp1 

(kips) 
u

 (in-1) 
Pu 
(kips) Error 

1 spread\normal\ 36 331 1071.186 794.341 0.00096 1017.24 -5.04% 

2 spread\stiff\ 36 180 1509.2 1178.8 0.00096 1509.58 0.03% 

3 extension\soft\ 36 180 1722.9 1200.7 0.00096 1537.62 -10.75% 

4 extension\normal\ 36 180 1609.8 1107 0.00096 1417.63 -11.94% 

5 extension\stiff\ 36 180 1554.3 1111.7 0.00096 1423.65 -8.41% 

6 pile\soft\ 36 180 1610.2 1197.6 0.00096 1533.66 -4.75% 

7 pile\normal\ 36 331 1095.164 784.356 0.00096 1004.45 -8.28% 

8 pile\stiff\ 36 180 1512 1183.8 0.00096 1515.98 0.26% 
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Effect of Inadequate Cap Beams

In a properly designed bridge system, the cap beam should 
be at least as strong as the columns. Thus, no plastic hinges are 
expected to form in the cap beam during a pushover analysis. 
However, reinforced or prestressed concrete cap beams may 
yield and form plastic hinges due to inadequacies in their 
design or to reductions in their capacities due to deteriora-
tion or other phenomena. Plastic hinges form at locations of 
peak bending moment and are therefore likely to occur in 
the end regions of the columns or cap beams. The interac-
tion between columns and cap beams and their strengths will 
determine the likely mode of failure.

Equation 4.2 gives the relationship between the ultimate 
capacity of a multi-column bridge system and the lateral load 
carrying capacity of one column as a function of the number 
of columns in the bent and the ultimate curvature capacity of 
the bent columns. The equation has been developed based on 
the assumption of having strong cap beams. FHWA’s Seismic 
Retrofitting Manual for Highway Structures: Part 1—Bridges 
uses a capacity/demand (C/D) ratio to account for the effect 
of weak cap beams of bridge bents. The same concept can 
be used to reflect the weakness of the cap beam when using 
Equation 4.2. However, in the context of this study, the defini-
tion of demand is not the “demand of the design earthquake” 
as defined in the FHWA report, but the minimum demand 
on the cap beam strength to make it at least as strong as the 
column.

Two parameters need to be checked to verify that the cap 
beam is at least as strong as the column: the moment capacity 
of the beam and the ultimate curvature of the cap beam. The 
moment capacity of the cap beam divided by the moment 
capacity of the column is defined as the moment capacity 
of demand ratio C/Dmoment. The ultimate curvature of the 
cap beam divided by the ultimate curvature of the column is 
defined as curvature capacity over demand ratio C/Dcurvature. 
In a properly designed system, capacity over demand ratios, 
C/D, for both the moment and the curvature should always 

be greater than or equal to 1.0. If C/D is less than 1.0, the sys-
tem’s ability to carry lateral load is reduced. Three cases can be 
considered, as shown in Figure 4.26. For Case A, the moment 
capacity of the cap beam is larger than that of the column, 
but the ultimate curvature of the beam is lower than that of 
the column. For Case B, the moment capacity of the beam is 

Figure 4.26.  Model for cap beam-column capacities.

Figure 4.25.  Effect of foundation on Equation 4.2.
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lower than that of the column but higher than the column’s 
plastic moment. In Case C, the cap beam’s moment capacity 
is lower than the column’s plastic moment. The adjustments 
to be made for Equation 4.2 in each of these cases are studied 
in this section.

Cap Beam Capacity Higher Than Column Capacity

Case A: This is the situation when C/Dcurvature of the cap beam 
leads to a reduction in the curvature capacity of the beam-
column connection, which can be modeled by an equivalent 
reduction in the column’s curvature. The reduction can be rep-
resented by a factor gjc = C/Dcurvature if less than 1.0, otherwise 
no reduction is needed and one can use gjc = 1.0. The modi-
fied Equation 4.2 is then presented as

(4.21)c
beam

column

γ = ϕ
ϕ

ϕ

(4.22)1P P F Cu p mc
c u tunc

tconf tunc

= + γ ϕ − ϕ
ϕ − ϕ







ϕ
ϕ

Cap Beam Capacity Lower Than Column Capacity

When the cap beam strength is weaker than the column 
strength and C/Dmoment is less than 1.0, then two cases can 
be considered. Case B considers the situation where the cap 
beam moment capacity is higher than the plastic moment 
capacity of the column but lower than the ultimate capac-
ity of the column. In this case, the ultimate curvature ju in 
Equation 4.2 needs to be reduced to reflect the lower moment 
capacity of the system as well as the lower ultimate curvature. 
Case C considers the situation where the cap beam moment 
capacity is even lower than the plastic moment capacity of 
the column. In this case, both the load at failure assuming 
linear-elastic behavior, Pp1, as well as the ultimate curvature 
would need to be reduced. Changing the force Pp1 reflects 
the insufficient moment capacity of the connection between 
the cap beam and the bridge columns. In this case, Pp1 is 
calculated as the load at which the cap beam reaches its 
moment capacity.

Case B: If the cap beam strength is higher than the plastic 
moment of the column, but less than the ultimate moment 
capacity of the column, [Mcol.ultimate > Mbeam.plastic > Mcol.plastic], 
then gjc for the beam-column connection will depend on the 
cap beam capacity including moment and curvature capac-
ity, which will cause a weak beam-column connection. The 
column curvature reduction factor gjc is used to reduce ju 
using the following equations:

(4.23)
. .

. .

M M

M M
c M

beam plastic col plastic

col ultimate col plastic

beam

column

γ = γ γ = −
−

× ϕ
ϕ

ϕ ϕ

(4.24)1P P F Cu p mc
c u tunc

tconf tunc

= + γ ϕ − ϕ
ϕ − ϕ







φ
ϕ

Such that gjcju ≈ effective curvature for beam-column 
connection.

Case C: If the cap beam strength is weaker than the plastic 
moment of the column, [Mbeam.plastic < Mcol.plastic], then Pp1 is the 
load at which a plastic hinge forms in the cap beam assuming 
linear-elastic analysis and gjc is used to reduce the column 
curvature.

(4.25)c
beam

column

γ = ϕ
ϕ

ϕ

(4.26)1P P F Cu p mc
c u tunc

tconf tunc

= + γ ϕ − ϕ
ϕ − ϕ







ϕ
ϕ

Forty bridge-bent models are analyzed using SAP2000 
and compared to Equations 4.21 through 4.26 as appropri-
ate for Cases A, B, and C to demonstrate the validity of the 
proposed approach for treating bridges with weak cap beams. 
For simplicity, Equations 4.21 through 4.26 will be referred to 
as modified Equation 4.2.

Weak Cap Beam Model Verification

To verify if Equations 4.21 through 4.26 are valid, 40 bridge 
models with 7-ft diameter columns having different column 
heights in the range of 16.7-ft up to 32.6-ft are investigated. 
All column sections have a transverse confinement ratio of 
0.3%. The result of the linear-elastic analysis at which the 
first member reaches its plastic capacity is defined as Pp1. The 
values for Pp1, as well as those of the system ultimate capacity 
Pu obtained from the nonlinear SAP2000 pushover analysis, 
are presented in Table 4.18. The table also gives the column 
curvatures and the capacity over demand ratios C/Dcurvature 
column curvature and C/Dmoment. The SAP2000 results for 
Case A are compared to Pu predicted by Equation 4.22 show-
ing a maximum difference on the order of 7.64%. The maxi-
mum differences for Case B and Case C are 8.26% and 8.64%, 
respectively.

Figure 4.27 plots all the data of the predicted Pu from the 
modified empirical model versus the pushover analysis val-
ues. All the trend lines in Figure 4.27 have slopes close to 1.0 
and the coefficients of regression are R2 = 0.97, R2 = 0.95, and 
R2 = 0.94 for Cases A, B, and C, respectively. These results 
show that the proposed equations can be used in engineering 
practice to estimate the ultimate capacity of bridge systems 
subjected to lateral load for cases involving weaknesses in the 
moment and curvature capacities of the cap beams. Several 
examples are presented to illustrate how an engineer can use 
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Case A 

Diameter Column 
Height 

System 
Capacity 

Plastic 
Capacity 

Ultimate 
Column 
Curvature 

C/D 
Ratio 
Moment 

C/D 
Ratio 
Curvature 

System 
Capacity 
by Eq.4.22 

Error 

D 
(in.) 

H 
(in.) 

Pu 
(kips) 

Pp1 

(kips) 
Phi_ult. 
(in-1) M * * Pu 

(kips)  

84 391 5859 5244.8 0.000574 1.26 1.00 6306.6 7.64% 

84 391 5859 5244.8 0.000574 1.26 0.90 6245.7 6.60% 

84 391 5811.6 5244.8 0.000574 1.26 0.80 6184.8 6.42% 

84 391 5811.6 5244.8 0.000574 1.26 0.70 6123.9 5.37% 

84 391 5785.2 5244.8 0.000574 1.26 0.60 6063.0 4.80% 

84 391 5766 5244.8 0.000574 1.26 0.50 6002.1 4.10% 

84 391 5742.4 5244.8 0.000574 1.26 0.40 5941.2 3.46% 

84 391 5714.4 5244.8 0.000574 1.26 0.30 5880.3 2.90% 

84 360 6291.4 5609.4 0.000574 1.26 0.80 6614.8 5.14% 

84 330 6775.4 6018.3 0.000574 1.26 0.80 7097.0 4.75% 

84 300 7384.1 6495.5 0.000574 1.26 0.80 7659.7 3.73% 

84 270 8205.3 7058.2 0.000574 1.26 0.80 8323.3 1.44% 

84 240 9103.1 7729.2 0.000574 1.26 0.80 9114.5 0.13% 

84 200 10801.7 8848.9 0.000574 1.26 0.80 10434.9 -3.40% 

Case B 

Diameter 
Column 
Height 

System 
Capacity 

Plastic 
Capacity 

Ultimate 
Column 
Curvature 

C/D 
Ratio 
Moment 

C/D 
Ratio 
Curvature 

System 
Capacity 
by Eq.4.24 

Error 

D 
(in.) 

H 
(in.) 

Pu 
(kips) 

Pp1 

(kips) 
Phi_ult. 
(in-1) M * * Pu 

(kips)  

84 391 5713.3 5244.8 0.000574 0.00 1.25 5697.6 -0.27% 

84 391 5725.8 5244.8 0.000574 0.21 1.25 5827.1 1.77% 

84 391 5740.8 5244.8 0.000574 0.30 1.25 5880.3 2.43% 

84 391 5740.2 5244.8 0.000574 0.40 1.25 5941.2 3.50% 

84 391 5746.6 5244.8 0.000574 0.50 1.25 6002.1 4.45% 

84 391 5747.6 5244.8 0.000574 0.60 1.25 6063.0 5.49% 

84 391 5762.6 5244.8 0.000574 0.74 1.25 6150.6 6.73% 

84 391 5769 5244.8 0.000574 0.90 1.25 6245.7 8.26% 

84 360 6161.1 5609.4 0.000574 0.21 1.25 6232.1 1.15% 

84 330 6619.7 6018.3 0.000574 0.21 1.25 6686.4 1.01% 

84 300 7214.6 6495.5 0.000574 0.21 1.25 7216.6 0.03% 

84 270 7932.9 7058.2 0.000574 0.21 1.25 7841.8 -1.15% 

84 240 8782.4 7729.2 0.000574 0.21 1.25 8587.3 -2.22% 

84 200 10424.4 8848.9 0.000574 0.21 1.25 9831.3 -5.69% 

Table 4.18.  Comparison of system capacities from SAP2000 and Equations 4.22, 
4.24, and 4.26.
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the proposed approach when evaluating the ultimate load 
carrying capacity of a bridge system subjected to distributed 
lateral load.

Implementation Example: Weak Cap Beam Case A

Case A is the situation when C/Dcurvature of the cap beam 
leads to a reduction in the curvature capacity of the beam-

column connection, which can be modeled by an equivalent 
reduction in the column’s curvature. The reduction can be 
represented by a factor gjc and the modified Equation 4.22 is 
then presented as

1P P F Cc
beam

column
u p mc

c u tunc

tconf tunc

γ = ϕ
ϕ

= + γ ϕ − ϕ
ϕ − ϕ







ϕ ϕ
ϕ
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Figure 4.27.  Predicted Pu vs. Pu from SAP2000 for weak  
cap beams.

Case C 

Diameter Column 
Height 

System 
Capacity 

Plastic 
Capacity 

Ultimate 
Column 
Curvature 

C/D 
Ratio 
Moment 

C/D 
Ratio 
Curvature 

System 
Capacity 
by Eq.4.26 

Error 

D 
(in.) 

H 
(in.) 

Pu 
(kips) 

Pp1 

(kips) 
Phi_ult. 
(in-1) M * * Pu 

(kips)  

84 391 5084.7 4314.3 0.000574 N/A 1.00 5187.8 2.03% 

84 391 4896 4314.3 0.000574 N/A 0.50 4937.3 0.84% 

84 391 4535.2 4314.3 0.000574 N/A 0.20 4787.0 5.55% 

84 391 3730.1 3294.0 0.000574 N/A 0.05 3597.5 -3.55% 

84 391 3955.1 3294.5 0.000574 N/A 0.09 3613.4 -8.64% 

84 391 3191 3020.4 0.000574 N/A 0.05 3298.7 3.38% 

84 391 3199.7 3020.6 0.000574 N/A 0.09 3313.0 3.54% 

84 391 3180.6 3020.6 0.000574 N/A 0.05 3298.9 3.72% 

84 391 3180.6 3020.6 0.000574 N/A 0.09 3313.0 4.16% 

84 360 3359.5 3233.4 0.000574 N/A 0.09 3546.4 5.56% 

84 330 3548.1 3480.7 0.000574 N/A 0.09 3817.7 7.60% 

84 300 3768.8 3600.7 0.000574 N/A 0.09 3949.3 4.79% 

NOTES: * When M or  is larger than 1.0, the maximum value of 1.0 is used to calculate the reduction factor 

c M  
which is applied for the ultimate curvature of column, otherwise use the actual values. M is not 

applicable (N/A) for Case C. 

Table 4.18.  (Continued).
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This example is for a three-span continuous bridge with 
two three-column bents where the lateral confinement rein-
forcement ratio of each column is rs = 0.3% (detail cate-
gory B). Each column’s height is 32.6-ft with a 7-ft diameter. 
The columns of the bridge system are based on stiff founda-
tions that are assumed to be fixed. A cross-section analysis 
shows that the plastic moment capacity Mp for the cap beam 
without axial loads is 250,000 kip-in. The ultimate curva-
tures for the cap beam and column without axial load are 
3.6 × 10-4 in-1 and 7.2 × 10-4 in-1. The ultimate curvature of 
the middle column subjected to the axial load of 214 kips 
including dead load and 20% of live load is 5.74 × 10-4 in-1. 
The pushover analysis shows that the first column reaches 
its plastic capacity when the lateral force is Pp1 = 5,244.8 kip.

The steps necessary to obtain the maximum ultimate 
capacity of the system and the system factor fs are as follows:

1.	 Determine the curvature capacity/demand (C/Dcurvature) 
ratio gjc

3.60 10

7.20 10
0.50 1.0

4

4
c

beam

column

γ = ϕ
ϕ

= ×
×

= ≤ϕ

−

−

2.	 Estimate the ultimate system capacity. According to 
Equation 4.22, the lateral load capacity of the entire 
bridge system is

5244.8 1.16 0.24
0.50 5.74 10 3.64 10

1.55 10 3.64 10

6,002

1

4 4

3 4

P P F C

kips

u p mc
c u tunc

tconf tunc

( )

= + γ ϕ − ϕ
ϕ − ϕ







= + × − ×
× − ×







=

ϕ
ϕ

− −

− −

The pushover analysis would give Pu = 5,766 kips. The 
error in Pu observed when Equation 4.22 is used as com-
pared to the pushover analysis is

6002 5766

5766
100% 4%ε = − × =

3.	 Find the system factor. The bridge columns with the weak 
cap beam in Case A should be evaluated using a system 
factor equal to

exp

exp
6,002

5,244.8
0.850.6 0.5

F Cs mc
c u tunc

tconf tunc

u targetφ = + γ ϕ − ϕ
ϕ − ϕ







= 



 =

−ξ×∆β
ϕ

ϕ

− ×

Implementation Example: Weak Cap Beam Case B

If the cap beam strength is higher than the plastic moment 
of the column, but less than the ultimate moment capacity of 
the column, [Mcol.ultimate > Mbeam.plastic > Mcol.plastic], then gjc for 
the beam-column connection will depend on the cap beam 
capacity accounting for both the moment and curvature 
capacities, which will cause a weak beam-column connection. 
The column curvature reduction factor gjc is used to reduce 
ju using the following equations:

. .

. .

M M

M M
c M

beam plastic col plastic

col ultimate col plastic

beam

column

γ = γ γ = −
−

× ϕ
ϕ

ϕ ϕ

1P P F Cu p mc
c u tunc

tconf tunc

= + γ ϕ − ϕ
ϕ − ϕ







φ
ϕ

such that gjc ju ≈ effective curvature for beam-column 
connection.

In this example, the same multi-girder three-span bridge 
with two three-column bents is used where the lateral confine-
ment reinforcement ratio is rs = 0.3% (detail category B). The 
column height is 32.6-ft with a 7-ft diameter. The columns 
are fixed to the stiff foundation. A cross-section analysis shows 
that the plastic moment capacity Mp for cap beam without 
axial loads is 202,000 kip-in. The ultimate curvatures for the 
cap beam and column without axial load are 9.03 × 10-4 in-1 
and 7.2 × 10-4 in-1. The ultimate moment, plastic moment and  
ultimate curvature of the middle column subjected to the axial 
load of 214 kips including dead load and 20% of live load is 
214,600 kip-in., 198,600 kip-in., and 5.74 × 10-4 in.-1, respec-
tively. The pushover analysis shows that the first column reaches 
its plastic capacity when the lateral force is Pp1 = 5,244.8 kip.

The steps necessary to obtain the maximum ultimate 
capacity of the system and the system factor fs are as follows:

1.	 Determine the moment capacity/demand (C/Dmoment) 
ratio gM

202,000 198,600

214,600 198,600
0.21

. .

. .

M M

M M
M

beam plastic col plastic

col ultimate col plastic

γ = −
−

= −
−

=

2.	 Determine the curvature capacity/demand (C/Dcurvature) 
ratio gj

9.03 10

7.20 10
1.25 1.0

therefore use 1.0

4

4

beam

column

γ = ϕ
ϕ

= ×
×

= ≥

γ =

ϕ

−

−

ϕ

3.	 Determine the reduction factor gjc

0.21 1.0 0.21c Mγ = γ γ = × =ϕ ϕ

B r i d g e  S y s t e m  S a f e t y  a n d  R e d u n d a n c y

C o p y r i g h t  N a t i o n a l  A c a d e m y  o f  S c i e n c e s .  A l l  r i g h t s  r e s e r v e d .

http://www.nap.edu/22365


73   

4.	 Estimate the ultimate system capacity. According to Equa-
tion 4.24, the lateral load capacity of the entire bridge 
system is

5,244.8 1.16 0.24
0.21 5.74 10 3.64 10

1.55 10 3.64 10

5,827.1
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3 4
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× − ×
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ϕ
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− −
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The pushover analysis would give Pu = 5,725.8 kips. 
The error in Pu observed when Equation 4.24 is used as 

compared to the pushover analysis is
5827.1 5725.8

5725.8
ε = − ×

100% 1.77%=

5.	 System factor. The bridge columns with the weak cap 
beam in Case B should be evaluated using a system factor 
equal to

exp

exp
5,827.1

5,244.8
0.820.6 0.5

F Cs mc
c u tunc

tconf tunc
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ϕ

ϕ
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Implementation Example: Weak Cap Beam Case C

If the cap beam strength is weaker than the plastic moment 
of the column [Mbeam.plastic < Mcol.plastic], then gjc is used to reduce 
column curvature using the following equation:

1P P F Cc
beam

column
u p mc

c u tunc

tconf tunc

γ = ϕ
ϕ

= + γ ϕ − ϕ
ϕ − ϕ







ϕ ϕ
ϕ

Note: In the linear-elastic analysis used in Case C, Pp1 is the 
load at which the moment in the cap beam reaches its plastic 
moment capacity.

The same multi-girder three-span bridge with two three-
column bents where the lateral confinement reinforcement 
ratio is rs = 0.3% (detail category B) is used in this example. 
Each column’s height is 30.0-ft with a 7-ft diameter. The 
columns are fixed to the stiff foundation. A cross-section 
analysis shows that the plastic moment capacity Mp for the 
cap beam without axial loads is 30,000 kip-in. The ultimate 
curvatures for the cap beam and column without axial load 
are 6.49 × 10-5 in-1 and 7.2 × 10-4 in-1. The ultimate curvature 
of the middle column subjected to the axial load of 214 kips 
including dead load and 20% of live load is 5.74 × 10-4 in-1. 
The pushover analysis shows that the cap beam reaches its 
plastic capacity when the lateral force is Pp1 = 3,233.4 kips.

The steps necessary to obtain the maximum ultimate 
capacity of the system and the system factor fs are as follows:

1.	 Determine the curvature capacity/demand (C/Dcurvature) 
ratio gjc

6.49 10

7.20 10
0.09 1.0

5

4
c

beam

column

γ = ϕ
ϕ

= ×
×

= ≤ϕ

−

−

2.	 Estimate ultimate system capacity. According to Equa-
tion 4.26, the lateral load capacity of the entire bridge 
system is

3233.4 1.16 0.24
0.09 5.74 10 3.64 10

1.55 10 3.64 10
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The pushover analysis would give Pu = 3,359.5 kips. 
The error in Pu observed when Equation 4.26 is used as 
compared to the pushover analysis is

3546.4 3359.5

3359.5
100% 5.56%ε = − × =

3.	 System factor. The bridge columns with the weak cap 
beam in Case C should be evaluated using a system factor 
equal to

exp

exp
3546.4

3233.4
0.810.6 0.5

F Cs mc
c u tunc

tconf tunc
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( )
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ϕ − ϕ
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−ξ×∆β
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ϕ

− ×

Effect of Column Shear

Weak shear model: Equation 4.2 and the modified ver-
sions in Equations 4.22, 4.24, and 4.26 are derived based on 
the assumption that the shear strength of a column is suf-
ficiently large so that no column shear failure occurs when 
the bridge system is subjected to incremental lateral loads. 
However, in inadequately designed bridges or deteriorated 
bridges, column shear failure may occur prior to flexural 
yielding or after flexural yielding but before bending failures. 
Using the same approach followed by the FHWA Seismic 
Retrofitting Manual (2006), a weakness in the shear capac-
ity can be expressed in terms of the ratio of shear capacity 
over shear demand where in this context shear demand is the 
shear capacity corresponding to the load at which the column 
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reaches its bending moment capacity. This ratio will be repre-
sented by the term C/Dshear.

Figure 4.28 describes the model for the shear capacity 
evaluation process where Vu(d) is defined as the maximum 
column shear force observed in the column during the push-
over analysis assuming that the column will fail in bending 
moment. As an example, in idealistic elasto-plastic condi-
tions, Vu(d) is the shear resulting from plastic hinging at both 
the top and bottom of the column if both ends are fixed or 
the maximum shear force in the column when the fixed end 
reaches its maximum moment capacity if the other end is 
pinned. The shear demand in idealistic conditions can be cal-
culated as Vu(d) = Mu/Lceff where Lceff is the effective column 
length, which depends on boundary conditions at the two 

ends of the column. For fixed-fixed columns Lceff = Height of 
column/2. For pinned-fixed columns Lceff = Height of column. 
The actual boundary conditions of the columns are usually 
neither fixed-fixed nor pinned-fixed because the actual stiff-
nesses of the cap beam and foundations are not infinitely 
stiff, which may cause difficulties in determining the effective 
length. Therefore, it is recommended that Vu(d) be obtained 
from the pushover analysis.

Following the FHWA Seismic Retrofitting Manual (2006) 
and Figure 4.28, Vi(c) is defined as the initial shear resistance 
of the undamaged column, which includes the resistance of 
the gross concrete section and the transverse steel. Also, Vf(c) 
is defined as the final shear resistance of the damaged column, 
which considers only the transverse steel that is effectively 
anchored. The overall shear capacity of the column can then 
be modeled by a trilinear curve as shown in Figure 4.28.

Three possible cases mentioned in the FHWA manual are 
considered for evaluating the capacity over demand, C/Dshear, 
ratio for column shear. Case A represents the situation where 
the initial shear capacity Vi(c) is lower than the shear demand 
Vu(d). Case B reflects the situation where the shear demand 
is lower than Vi(c) but higher than Vf(c). Case C is when the 
shear demand is lower than Vi(c) and Vf(c). The three cases 
are treated as described next.

Case A: If the initial shear resistance of the undamaged 
column is insufficient to withstand the maximum shear force 
due to plastic hinging, [Vi(c) < Vu(d)], a brittle shear failure 
may occur prior to the formation of a plastic hinge. In this 
case, the ultimate system capacity Pu is estimated by multi-
plying Pp1, which is the capacity of the system when one col-
umn reaches its moment capacity by C/Dshear ratio, which is 

defined as :C
D

V c
V dshear

i

u

( )
( )=

(4.27)1P P
V c

V d
u p

i

u

( )
( )

=

Case B: If the initial shear resistance of the column is suf-
ficient to withstand the maximum shear force due to plastic 
hinging, but the final shear resistance of the column is not, 
[Vi(c) > Vu(d) > Vf(c)], then gv = C/Dshear ratio for column 
shear will depend on the amount of flexural yielding, which 
will cause a degradation in shear capacity from Vi(c) to Vu(d). 
The shear reduction factor gv is used to reduce ju using the 
following equations:

(4.28)
V c V d

V c V c
V

i u

i f

( ) ( )
( ) ( )

γ = −
−

(4.29)1P P F Cu p mc
V u tunc

tconf tunc

= + γ ϕ − ϕ
ϕ − ϕ







φFigure 4.28.  Resolution of shear 
demand and shear capacity.
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such that gVju ≈ effective curvature for columns weak in 
shear.

Case C: If the final shear resistance of the column is suf-
ficient to withstand the maximum shear force due to plastic 
hinging, [Vf(c) > Vu(d)], then no modification shall be made 
to Equation 4.2.

As described in the FHWA manual, the method proposed 
for evaluating the effect of column shear failure on bridge 
system redundancy is based on engineering judgment and 
assumes an idealized model of shear column behavior. This 
method may be visualized by examining the assumed rela-
tionships between shear capacity and shear demand as shown 
in Figure 4.28. Case A occurs when the column cannot achieve 
flexural yielding because of a low initial shear capacity. In this 
case, the column’s C/Dshear ratio is calculated by dividing the 
initial shear capacity of the column by the shear demand. Case 
B will result when a shear failure is expected to occur due to 
shear capacity degradation resulting from plastic hinging of 
the column. Case C is assumed when the degradation in col-
umn shear capacity is not expected to result in a shear failure.

Weak shear model verification: The implementation of 
Equation 4.27 for Case A for brittle shear failures is straight-
forward. For Case C, shear failure will not take place because 
the shear capacity of the columns is sufficient to withstand 
the maximum shear force due to plastic hinging. Therefore, 
Equation 4.2 is valid without any modification. On the other 
hand, Equations 4.28 and 4.29 need to be validated for col-
umns that meet the Case B criteria.

Following the FHWA manual’s model of Figure 4.28, the 
shear capacity of a Case B column starts to decrease when the 
ductility is larger than 2.0 as the concrete damages during 
the pushover analysis. As shown in Figure 4.28, the reduc-
tion in the shear capacity will not allow the curvature of the 
column section to reach its ultimate value and failure takes 
place at a lower ductility. Based on Figure 4.28, a measure of 
the ductility reduction can be calculated as

V c V d

V c V c
V

i u

i f

( ) ( )
( ) ( )

γ = −
−

where Vi(c) = initial shear resistance of the undamaged col-
umn including the resistance of the gross concrete section 
and the transverse steel, Vf(c) = final shear resistance of the 
damaged column accounting for the transverse steel that is 
effectively anchored, and Vu(d) = demand shear force.

When Vu(d) = Vf(c) the shear reduction factor is gv = 1.0. 
This means that the shear resistance of the column is suf-
ficient to withstand the maximum shear force due to plastic 
hinging and no reduction in the column’s ductility capacity 
is observed. When Vu(d) = Vi(c) the shear reduction is gv = 0, 
which means that the initial shear resistance is only capable 
of withstanding the linear-elastic loading stage after which 

point the column fails in shear with very little ductility. In 
this case, we assume that the column will fail at or close to the 
initiation of plastic hinging.

Based on the logic described above and assuming a lin-
ear relationship between the moment and the shear, as well 
as a linear relationship between the moment and the curva-
ture, the shear reduction factor can be approximately used 
to express the reduction in the curvature capacity of the col-
umn using the schematic of Figure 4.29. Therefore, the shear 
reduction factor gv can be applied in Equation 4.29 to obtain 
the ultimate capacity of a multi-column bridge system whose 
column may be weak in shear. In the following parts of this 
section, the validity of the model is verified by comparing the 
results obtained using Equation 4.29 and those obtained from 
SAP2000 for columns with different levels of shear capacity.

To demonstrate the validity of the proposed approach for 
treating bridges with potential weaknesses in shear strength, 
several bridge systems with different levels of shear capacity 
are analyzed. The three-span multi-girder steel bridge with 
three columns per bent is used as the base case for the analy-
ses described in this section. Two analyses are performed: the 
first analysis is performed assuming that the M-phi curve 
is elasto-plastic in order to find Pp1 and the results are used 
to find an approximation to the shear demand force Vu(d), 
which is assumed to be the shear force when one column 
reaches its plastic moment capacity Mp. The second analysis 
accounts for the nonlinear M-phi curve as well as the duc-
tile shear hinge to find Pu. As shown in Figure 4.28, the shear 
hinge model requires as input the initial shear capacity Vi(c) 
and the displacement Dy, which is the displacement at which 
Mp is reached and that can be taken from the first linear-elastic 
analysis. The model assumes that the shear force capacity 
begins to degrade when the displacement is 2Dy. Also, the 
shear hinge model requires the final shear capacity Vf(c), 

Figure 4.29.  Relationship between insufficient shear 
capacity, moment, and curvature.
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which is assumed to be reached when the displacement is at 
5 Dy. A linear interpolation is used to find the shear capacity 
when the displacement is between 2 Dy and 5 Dy.

Following the shear-strength models of Ang et al. (1989) 
and Wong et al. (1993) that have been used in the FHWA 
manual, the initial shear force capacity is defined by

V c V V (4.30)i si ci( ) = +

where Vsi is the shear strength due to the reinforcing steel and 
Vci is the shear strength due to the concrete. The steel’s con-
tribution to the shear capacity is

= π ′
2

(4.31)V
A f D

s
si

sh yh

and the concrete shearing strength is

0.37 1
3

(in megapascals)(4.32a)V
P

f A
f Aci

c g
c e= α +

′






′

4.45 1
3

(in pounds per square inch)(4.32b)

V
P

f A
f Aci

c g
c e= α +

′






′

where the column aspect ratio a is equal to 1.0, and D and 
D′ = column diameter and core diameter measured to the 

centerline of the transverse hoop or spiral, which has a cross-
sectional area Ash and yield strength fyh. The effective shear 
area is Ae = 0.8Ag.

According to the FHWA manual, the final shearing force 
Vf(c) is shear capacity of the transverse steel that is effectively 
anchored represented by Vsi and residual concrete capacity is 
not considered.

To verify the validity of Equation 4.29, 16 bridge models 
with columns having various diameters ranging from 3-ft to 
8-ft and different column heights in the range of 16.7-ft up 
to 40-ft are investigated. All column sections have a transverse 
confinement ratio of 0.3%. The results of shear capacities, 
shear demand, shear reduction factors, first column yielding 
displacement, plastic capacity Pp1, and system ultimate capacity 
Pu obtained from the SAP2000 analysis are listed in Table 4.19. 
The SAP2000 results are compared to Pu predicted by Equa-
tion 4.29 showing a maximum difference on the order of 13%.

Figure 4.30 plots all the data of the predicted Pu versus the 
pushover analysis values. The trend line in Figure 4.30 shows 
a trend line with a slope equal to 1.02 and regression coeffi-
cient R2 = 0.99. A perfect model would produce a slope equal 
to 1.00 and R2 = 1.0. The results in Figure 4.30 demonstrate 
that the proposed shear reduction factor approach can be 
used to estimate the reduction in the column’s curvature due 
to weaknesses in the shear capacity of bridge columns.

Implementation Example: Shear Example for Case A—If 
the initial shear resistance of the undamaged column is insuf-
ficient to withstand the maximum shear force due to plastic 

Table 4.19.  Results summary for Case B.

Dia.
In.

Col.
Length
In.

Vu(d)
Kips

Vi(c)=Vci
+Vf
Kips

Vci
kips

Vf(c)
kips V

y
In.

Pu by
SAP
kips

Pp1
kips

u
in 1x10 3

Es�.
Pu
kips

Error

36 391 101 343 251 92 0.96 3.79 1078 723 1.06 934 13%

36 300 131 343 251 92 0.84 2.28 1125 802 1.06 1017 10%

36 200 193 343 251 92 0.60 1.07 1392 1042 1.06 1265 9%

72 480 436 1305 939 366 0.93 3.57 3152 2314 0.717 2825 10%

72 400 507 1305 939 366 0.85 2.61 3563 2621 0.717 3171 11%

72 300 639 1305 939 366 0.71 1.62 4447 3234 0.717 3847 13%

84 480 783 1768 1270 499 0.78 2.52 4956 4518 0.574 5315 7%

84 440 850 1768 1270 499 0.72 2.15 5299 4858 0.574 5686 7%

84 400 930 1768 1270 499 0.66 1.81 5753 5264 0.574 6122 6%

84 360 1026 1768 1270 499 0.58 1.50 6284 5754 0.574 6641 6%

84 320 1145 1768 1270 499 0.49 1.22 7004 6355 0.574 7266 4%

84 280 1294 1768 1270 499 0.37 0.97 7914 7109 0.574 8031 1%

84 240 1487 1768 1270 499 0.22 0.75 9095 8080 0.574 8985 1%

84 200 1749 1768 1270 499 0.02 0.57 9887 9375 0.574 10201 3%

96 280 1836 2303 1652 651 0.28 0.92 11483 10228 0.516 11413 1%

96 240 2101 2303 1652 651 0.12 0.72 12186 11603 0.516 12753 5%
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hinging, [Vi(c) < Vu(d)], a brittle shear failure may occur prior 
to the formation of a plastic hinge and the C/Dshear ratio may 
be calculated and multiplied by the capacity when one column 
reaches the plastic moment of the weakest column in the bent, 
such that

1P P
V c

V d
u p

i

u

( )
( )

=

This example assumes that the bridge has three-column 
bents where the lateral confinement reinforcement ratio in 
the columns is rs = 0.3% (detail category B) and the longitu-
dinal reinforcement ratio is r = 1.66%. Each column’s height 
is 16.67-ft with a 7-ft diameter. The columns are based on 
stiff foundations that are assumed to be fixed and the cap 
beam is also assumed to be very rigid. The reinforcement is 
assumed to have a yielding stress Fy = 60 ksi. The unconfined 
concrete strength is assumed to be 4 ksi. The axial force on 
a single column is equal to 130 kip. A cross-section analysis 
shows that the plastic moment capacity Mp is 197,400 kip-in. 
The pushover analysis shows that the first column reaches its 
plastic capacity when the lateral force is Pp1 = 6,355 kip.

The steps necessary to obtain the maximum ultimate capac-
ity of the system and the system factor fs are as follows:

1.	 Determine the shear capacity contributed by concrete Vci.

4.45 1
3

4.45 1.0 1
3 130,000

4000 84 4

4000 0.8 84 4 1000

1270

2

2

V
P

f A
f A

kips

ci
c g

c e

( )

( )

( )( )

= α +
′







′

= + ×
× π ×







π

=

2.	 Determine the shear capacity contributed by reinforce-
ment Vsi. For a circular column with hoop reinforcement, 
the lateral confinement ratio is expressed as

4

4
2

V

V

D A

s D

A

sD
s

s

c

sh shρ = = π ′
π ′

=
′

Where, D′ = column core diameter measured to the cen-
terline of the transverse hoop, which has a cross-sectional 
area Ash and yield strength fyh. S is spacing of hoops. The 
effective shear area is Ae = 0.8Ag.

The shear capacity due to the steel is

2
where

4
V

A f D

s
s

A

D
si

sh yh sh

s

= π ′ =
ρ ′

which leads to

2 4 8

3.1416 60 0.003 84

8
499

2

2

V A f D
D

A

f D

kips

si sh yh
s

sh

yh s

( )( )( )

= π
′
ρ ′ = π ρ ′

= =

3.	 Determine initial shear resistance of the undamaged col-
umn Vi(c).

1,270 499 1,769V c V V kipsi ci si( ) = + = + =

4.	 Determine the maximum column shear force result-
ing from plastic hinging Vu(d). For this simple exam-
ple, an approximation to the shear demand can be 
obtained as Vu(d) = Mu/Lceff. For the fixed-fixed column  
Vu(d) = Mu/Lceff = 2Mu/L = 2 × 197,400/200 = 1,974 kips.

5.	 Estimate the ultimate system capacity.
Since Vi(c) = 1,769 kips < Vu(d) = 1,974 kips, a brittle 

shear failure will occur prior to the formation of a plastic 

Figure 4.30.  Estimated Pu by Equation 4.29 vs. Pu from  
SAP2000.
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hinge during the pushover analysis. Therefore, according 
to Equation 4.27, the lateral load capacity of the entire 
bridge system is

6,355
1,769

1,974
5,6951P P

V c

V d
kipu p

i

d

( )
( )

= = × =

6.	 Find the system factor. This bridge system will fail in  
brittle shear and is non-redundant. Therefore, the bridge 
columns should be evaluated using a system factor  
equal to

exp

exp
5,695

6355
0.660.6 0.5

F Cs mc
u tunc

tconf tunc

u target

( )
φ = + ϕ − ϕ

ϕ − ϕ






= =

−ξ×∆β
ϕ

− ×

Implementation Example: Shear Example  
for Case B

If the initial shear resistance of the column is sufficient 
to withstand the maximum shear force due to plastic hing-
ing, but the final shear resistance of the column is not, [Vi(c)  
> Vu(d) > Vf (c)], then the C/Dshear ratio for the column will 
depend on the extent of flexural yielding, which will cause 
a degradation in the shear capacity from Vi(c) to Vu(d). The 
ultimate curvature capacity of the column ju obtained from 
the ultimate bending capacity is multiplied by the shear 
reduction factor gv to obtain the actual curvature at failure 
and the system capacity is calculated from

1P P F Cu p mc
v u tunc

tconf tunc

= + γ ϕ − ϕ
ϕ − ϕ







ϕ

where 

effective curvature

V c V d

V c V c
V

i u

i f

V u

( ) ( )
( ) ( )

γ = −
−

γ ϕ ≈

This example assumes the same multi-girder three-span 
bridge with two three-column bents where the lateral con-
finement reinforcement ratio is rs = 0.3% (detail category B) 
and the longitudinal reinforcement ratio is r = 1.66%. The 
column height is 26.7-ft with a 7-ft diameter. The columns 
are fixed to the stiff foundation and the rigid cap beam. The 
reinforcement is assumed to have a yielding stress Fy = 60 ksi. 
The unconfined concrete strength is assumed to be 4 ksi. The 
axial load is 130 kips and the plastic moment capacity of the 
column Mp is 197,400 kip-in. The pushover analysis assum-
ing elastic behavior indicates that the first column reaches 
its plastic moment capacity at Pp1 = 6,355 kip. The nonlinear 

pushover analysis shows that the ultimate lateral load capac-
ity is Pu is 7003.8 kip.

The steps necessary to obtain the maximum ultimate capac-
ity of the system and the system factor fs are as follows:

1.	 Determine the shear capacity contributed by concrete, Vci.

4.45 1
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
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π
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2.	 Determine the shear capacity contributed by the rein-
forcement Vsi. For a circular column with hoop reinforce-
ment, the lateral confinement ratio is expressed as

4

4
2

V

V

D A

s D

A

sD
s

s

c

sh shρ = = π ′
π ′

=
′

where, D′ = column core diameter measured to the center
line of the transverse hoop, which has a cross-sectional 
area Ash and yield strength fyh. S is spacing of hoops. The 
effective shear area is Ae = 0.8Ag.

The steel shear capacity is

2
where

4
V

A f D

s
s

A

D
si

sh yh sh

s

= π ′ =
ρ ′

By combining the two equations, the contribution of 
the steel reinforcement to the shear capacity is

2 4 8

3.1416 60 0.003 84

8
449

2

2

V A f D
D

A

f D

kips

si sh yh
s

sh

yh s

( )( )( )

= π
′
ρ ′ = π ρ ′

= =

The final shear resistance of the damaged column, Vf(c), 
includes only that transverse steel which is effectively 
anchored, giving Vf(c) = Vsi = 499 kip.

3.	 Determine the initial shear resistance of the undamaged 
column Vi(c).

1,270 499 1,769V c V V kipi ci si( ) = + = + =

4.	 Determine the maximum column shear force resulting 
from plastic hinging Vu(d).

Assuming elastic behavior, the pushover analysis indi-
cates that the first column reaches its plastic moment 
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capacity when the load is Pp = 6355 kip. At that load, the 
shear force in the column is assumed to be equal to the 
demand shear force Vu(d), which is equal to 1,145 kip.

Another way to estimate this lateral force Vu(d) is 
to use the equation Vu(d) = Mu/Lceff. For a fixed-fixed 
column, Vu(d) = Mu/Lceff = 2Mu/L = 2 × 197,400/320 =	
1,234 kips. The 8% difference between the two approaches 
is partially due to the flexibility of the cap beam but  
also due to the axial forces that are obtained in the col-
umn when the pushover analysis is performed as com-
pared to the Mu/Lceff approach that ignores the axial 
forces.

5.	 Determine the shear reduction factor and find load factor 
Pu. According to Equation 4.28, the reduction factor for 
the ultimate curvature is found from

1769 1145

1769 449
0.49

V c V d

V c V c
V

i u

i f

( ) ( )
( ) ( )

γ = −
−

= −
−

=

and the ultimate system capacity for the bridge is

6,355 1.16 0.24
0.49 5.74 10 3.64 10

1.55 10 3.64 10
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1

4 4

3 4
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kip

u p mc
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ϕ

− −

− −

The pushover analysis would give Pu = 7003.8 kip. The 
error in Pu observed when Equation 4.29 is used as com-
pared to the pushover analysis is

7266 7003.8

7003.8
100% 4%ε = − × =

Using the more approximate Vu(d) = Mu/Lceff, the shear 
reduction factor is calculated as

1769 1234

1769 449
0.405

V c V d
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γ = −
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=

and the ultimate system capacity is
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The error in Pu is 
7203 7003.8

7003.8
100% 3%ε = − × =

6.	 System factor.
This bridge system will fail in shear due to shear capac-

ity degradation resulting from plastic hinging of the 
column and is non-redundant. Therefore, the bridge col-
umns should be evaluated using a system factor equal to

exp

exp
7,203

6,355
0.840.6 0.5

F Cs mc
V u tunc
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− ×

The system factor is calculated to be, fs = 0.84.

Implementation Example: Shear Example  
for Case C

If the final shear resistance of the column is sufficient to 
withstand the maximum shear force due to plastic hing-
ing, [Vf(c) > Vu(d)], then no modification shall be made to 
Equation 4.2.

In this example, the researchers assume that the bridge 
system and column properties are the same as those given 
in the previous example for Case B except for the column 
height, which is taken to be 33.33-ft, and the boundary con-
dition, which is assumed to be pinned at the bottom, and 
the column is assumed to be fixed to the cap beam. The 
pushover analysis performed assuming elastic behavior 
shows that the lateral force Pp1 at which the first column 
reaches its plastic moment capacity is Pp1 = 5,263.8 kip. 
The nonlinear pushover analysis gives an ultimate capacity  
Pu = 6,122 kip.

Following the same steps outlined in the Case B example, 
the researchers find Vf(c) = Vsi = 499 kip. Also, for a fixed-
pinned column, Vu(d) = Mu/Lceff = Mu/L = 197,400/400 = 
493.5 kips < 499 kips = Vf(c).

Therefore, no modification shall be made to Equation 4.2, 
and the ultimate system capacity is

5,263.8 1.16 0.24
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If comparing results of the pushover analysis, the researchers 

find that the error in Pu is 
6,330 6,122

6,122
100% 3.4%ε = − × =
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This bridge system will fail in ductile bending and the col-
umns should be evaluated using a system factor equal to

exp

exp
6,330

5,263.8
0.890.6 0.5

F Cs mc
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u targetφ = + ϕ − ϕ
ϕ − ϕ







= 



 =

−ξ×∆β
ϕ

− ×

The system factor is calculated to be, fs = 0.89 which is 
higher than that needed when the failure is due to shear.

4.5 Conclusions

This chapter presents the proposed model for estimating 
the system capacity of bridge systems subjected to uniform 
lateral load at the superstructure level and how the model 
can be used to define system factors that can be applied 
during the safety evaluation of new and existing bridge sys-
tems. A summary of the results of the analyses conducted 
during the course of the project and those assembled from 
NCHRP Report 458 to validate the proposed model is given. 

A method to adjust the model to account for weaknesses 
in the pier cap beams and weaknesses in the shear capacity 
of the columns also is described. Several examples of how 
the equation can be used for particular types of bridges are 
provided.

References

Ang, B. G., Priestley, M. J. N., and Paulay, T. (1989) “Seismic Shear 
Strength of Circular Reinforced Concrete Columns,” ACI Structural 
Journal 86(1) 45–59.

Buckle, I., et al. (2006) Seismic Retrofitting Manual for Highway Struc-
tures: Part 1—Bridges (No. FHWA-HRT-06-032).

Collins, M. P. and D. Mitchell (1991) Prestressed Concrete Structures. 
Prentice-Hall, Englewood Cliffs, NJ.

Liu, D., et al. (2001) NCHRP Report 458: Redundancy in Highway Bridge 
Substructures. Transportation Research Board, National Research 
Council, Washington, D.C.

Mander, J. B. and Priestly, M. J. N. (1988) “Observed Stress-Strain 
Behavior of Confined Concrete,” Journal of Structural Engineering, 
ASCE, 114(8) Aug, 1827–1849.

Wong, Y. L., Paulay, T., and Priestley, M. N. (1993) “Response of Cir-
cular Reinforced Concrete Columns to Multi-Directional Seismic 
Attack,” ACI Structural Journal 90(2) 180–191.

Bridge System Safety and Redundancy

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22365


81   

5.1 � Measures of System Safety 
and Redundancy

Figure 5.1 gives a conceptual representation of the perfor-
mance of a structure under increasing loads and the different 
levels that should be considered when evaluating member safety, 
system safety, and system redundancy. For example, the green 
line labeled “Intact system” may represent the applied load ver-
sus maximum vertical displacement of a ductile multi-girder 
bridge superstructure. In this case, the load is incremented to 
study the behavior of an intact system that was not previously 
subjected to any damaging load or event when the system is 
subjected to increasing live loads. The bilinear brown line rep-
resents the behavior assumed using traditional linear-elastic 
analysis methods. The blue line labeled “Damaged bridge” rep-
resents the response of a bridge system that has been previously 
damaged by deterioration, overloading, or an extreme event.

To obtain the response of the originally intact system, it is 
assumed that the vertical live load applied on the structure has 
the configuration of the AASHTO HS-20 vehicle. The bridge 
is first loaded by the dead load and then the HS-20 load is 
applied. Usually, due to the presence of safety factors, no fail-
ure occurs after the application of the dead load plus the HS-20 
load. Using traditional safety evaluation procedures, the first 
structural member is assumed to fail when the HS-20 truck 
weight is multiplied by a factor LF1. LF1 would then be related 
to member safety. Note that if the bridge is under designed, 
or has major structural deficiencies, it is possible to have LF1 
less than 1.0. Although the analysis can be performed using 
any basic truck model, the HS-20 truck configuration is used 
because it is the standard truck in the AASHTO specifications.

Generally, the actual behavior follows the green curve and 
the ultimate capacity of the entire bridge system is not reached 
until the HS-20 truck weight is multiplied by a factor LFu. LFu 
would give an evaluation of system safety. Large vertical defor-
mations rendering the bridge unfit for use are reached when 
the HS-20 truck weight is multiplied by a factor LFf. LFf gives a 
measure of system functionality. A bridge that has been loaded 
up to this point is said to have lost its functionality.

If the bridge has sustained major damage due to the failure 
of one or more of its members, its behavior is represented 
by the curve labeled “Damaged bridge.” Examples of dam-
aged bridges include structures that may have lost or suffered 
reduced member capacities in one or several members due to 
an extreme event such as collisions, fire, blast, fatigue fracture, 
or major degradation of member capacity caused by corro-
sion or deterioration. In these cases, the ultimate capacity of 
the damaged bridge is reached when the weight of the HS-20 
truck is multiplied by a factor LFd. LFd would give a measure 
of the remaining safety of a damaged system.

The load multipliers, LF1, LFf, LFu, and LFd provide deter-
ministic estimates of critical limit states that describe the 
safety of a structural system in its original intact state and its 
damaged state. These load multipliers are usually obtained by 
performing an incremental nonlinear finite element analysis 
of the structure. Because of the presence of large uncertain-
ties in estimating the parameters that control member prop-
erties, the bridge response, and the applied loads, the safety 
of the bridge members or system may be represented by the 
probability of failure, Pf, or the reliability index, b.

Both Pf and b can be evaluated for each of the four critical 
limit states identified in Figure 5.1. Assuming that the load 
carrying capacity and the load follow lognormal distribu-
tions, the relationship between the reliability index and the 
load multipliers, LF, for a bridge superstructure subjected to 
multiples of the HS-20 truck loading can be approximated as
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where R′ = R - D in this case represents the ability of the sys-
tem to carry live load or the strength in the system beyond the 
dead load. R′ is related to the load multiplier obtained from 
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the incremental analysis by R′ = LF × HS20. The applied live 
load P = LL × HS20 is the expected maximum live load that 
will be applied on the superstructure within the appropriate 
service period. HS20 is the load effect of the nominal HS-20 
design truck. VLF is the COV of the bridge resistance defined 
as the standard deviation divided by the mean value. VLL is 
the COV of the applied live load. Equation 5.1 gives a good 
approximation to the actual reliability index b as long as the 
COV VLF and VLL remain below 20%, which is generally the 
case for bridge superstructures subjected to vertical live loads. 
Several sensitivity analyses have indicated that the lognormal 
model provides a reasonable model for system reliability index 
calculations in bridge engineering (Ghosn et al., 2010, 2012).

In Equation 5.1, both the resistance and the applied live load 
are expressed as a function of the HS-20 truck load effect, which 
can then be factored out. The same formulation can be executed 
if the analysis is performed using a different nominal load such 
as the HL-93 design load or the AASHTO legal trucks.

If redundancy is defined as the capability of a structure to 
continue to carry loads after the failure of the most critical 
member, then comparisons between the load multipliers LFu, 
LFf, LFd, and LF1 would provide non-subjective and quanti-
fiable measures of system redundancy. Thus, the following 
three deterministic measures of system redundancy may be 
defined in terms of the ratio of the system’s capacity as com-
pared to the most critical member’s capacity:

R
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LF
(5.2)

R
LF

LF

u
u

1

f
f

1

d
d

1

=

=

=

where Ru = system reserve ratio for the ultimate limit state, 
Rf = system reserve ratio for the functionality limit state, 
Rd = system reserve ratio for the damage condition. Ru, Rf, 
and Rd can thus be used as measures of system redundancy as 
they represent the ability of a system to carry load beyond the 
failure of the most critical member.

The system reserve ratios of Equation 5.2, as defined in 
NCHRP Report 406 and NCHRP Report 458, provide nominal 
deterministic measures of bridge redundancy. For example, 
when the ratio Ru is equal to 1.0 (LFu = LF1), the ultimate 
capacity of the system is equal to the capacity of the bridge 
to resist failure of its most critical member. Such a bridge is 
non-redundant. As Ru increases, the level of bridge redun-
dancy increases.

A redundant bridge also should be able to function with-
out leading to high levels of deformations as its members 
undergo large nonlinear deformations. Thus, Rf provides 
another measure of redundancy.

Similarly, a robust bridge structure should be able to carry 
some load after damage to one or more of its members, and 
Rd would provide another quantifiable non-subjective mea-
sure of structural redundancy.

During the course of this study and upon the review of 
NCHRP Report 406 results, it was established that a strong 
correlation exists between LFf and LFu obviating the need to 
use both of these measures. The strong correlation between 
LFf and LFu has been discussed in Chapter 2 and presented in 
Figures 2.3 and 2.4. This strong correlation led the calcula-
tions in NCHRP Report 406 to produce similar system fac-
tors for the ultimate capacity and functionality limit states. 
For this reason, the analyses performed in this chapter are 
based on the ultimate capacity LFu, and the analysis of system 
redundancy will be represented by Ru for the originally intact 
system and Rd for a damaged system.
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Intact system

Damaged 
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Bridge ResponseFirst member
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capacity of
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Figure 5.1.  Representation of typical behavior of bridge systems.
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The load multipliers, LFi, and the system reserve ratios in 
Equation 5.2 provide deterministic estimates of system safety 
and redundancy while Equation 5.1 can be used to determine 
the reliability index, b, for any member or system limit state. 
The reliability indices corresponding to the load multipliers 
LF1, LFu, or LFd of Figure 5.1 may be expressed respectively as 
bmember, bultimate, and bdamaged. The relationship between these 
three reliability indices can be investigated by studying the 
differences between them. This is achieved by defining Dbu 
and Dbd to be respectively the reliability index margins for 
the system’s ultimate and damaged limit states as

∆ = −

∆ = −

β β β

β β β

u ultimate member

d damaged member

(5..3)

The reliability index margins of Equation 5.3 give probabi-
listic measures of redundancy as they represent the additional 
safety provided by the system as compared to the safety of 
the most critical bridge member. These reliability measures 
are directly related to the deterministic measures defined in 
Equation 5.2. As an example, using the simplified lognormal 
reliability model of Equation 5.1 for a bridge system under 
the effect of vertical live loading and assuming that the COV 
of LFu, LFd, and LF1 are all equal to the same value, VLF, the 
relation between the probabilistic and deterministic mea-
sures of redundancy are obtained from
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In Equation 5.4, the live load for the ultimate and first mem-
ber failure limit states is taken as the 75-year maximum live 
load to remain consistent with the AASHTO LRFD specifica-
tions that assume that a bridge structure should have a design 
life equal to 75 years. However, for damaged bridges under the 
effect of live load, the calculation of the reliability index for the 
damaged system is executed using the 2-year maximum load 
represented by the load multiplier, LL2, rather than the maxi-
mum load for the 75-year design life. The use of the 2-year 
load is based on the assumption that any major damage to 

a bridge should, in a worst case scenario, be detected during 
the mandatory biennial inspection cycle and thus no bridge is 
expected to remain damaged for more than 2 years.

Because bridge engineers are not expected to perform 
incremental load analyses or reliability analyses and use the 
reliability index margins to ascertain the level of redundancy 
of typical bridge configurations, NCHRP Report 406 pro-
posed to calibrate system factors that can be directly used 
in the design-check equation to account for the redundancy 
of typical bridge structural systems. The process followed 
to establish the system factors is described in Chapter 2 and 
is expanded in Section 5.3 for bridge systems under verti-
cal loads. The calibration of the system factors requires the 
results of the analyses of typical bridge configurations that 
have been designed to meet current design standards, those 
that do not meet the standards, as well as those that may be 
overdesigned. The analysis compares the ultimate system 
capacity of originally intact systems as well as the capacity 
of damaged systems. Section 5.2 summarizes the results for 
the originally intact systems analyzed in this study and in 
NCHRP Report 406. Section 5.4 calibrates the system factors 
for the originally intact systems. Section 5.5 summarizes the 
results of the analysis for the damaged systems. Section 5.6 
calibrates the system factors for the damaged bridges.

5.2 � Summary of Bridge Analysis 
and Results for Originally 
Intact Systems

The bridges analyzed in this study consist of continuous 
three-span composite steel I-girder bridges with two bents 
supported by three columns each, simple-span and continu-
ous three-span composite steel tub girders, and simple-span 
and continuous span prestressed concrete spread box girders. 
The results of these analyses are supplemented by the results 
of simple-span and two-span continuous composite steel 
I-girder bridges and simple-span and two-span continuous 
prestressed concrete I-girder bridges performed in NCHRP 
Report 406. Validation of the results of the nonlinear analyses 
was made by comparing analytical results of representative 
bridges using the simplified space frame models adopted in 
this study and the results of more advanced finite element 
models and experimental test results. These comparisons have 
demonstrated that the 3-D space frame models were reason-
ably accurate and can be used for the purposes of this study.

Prestressed Concrete I-Girder Bridges

Many simple-span and continuous-span prestressed I-girder 
bridges were analyzed in NCHRP Report 406. The results of these 
analyses were extracted for this project to study how the redun-
dancy of these bridges varies with the number of beams, beam 
spacing, and span length. Specifically, over 100 simple-span 
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bridges varying in length between 45-ft and 150-ft with a com-
posite concrete deck supported by 4, 6, 8, and 10 beams spaced 
at 4-ft, 6-ft, 8-ft, 10-ft, and 12-ft are analyzed. Also, over 50 pre-
stressed concrete I-girder bridges with two continuous spans 
varying in length between 100-ft and 150-ft supported by 4, 6, 8 
and 10 beams spaced at 4-ft, 6-ft, 8-ft, 10-ft, and 12-ft are inves-
tigated. The bridges’ concrete slabs varied in depth between 
7.5-in. and 8.5-in. depending on the beam spacing. The beams 
are assumed to have a compressive concrete strength f ′c = 5 ksi 
while the deck’s strength is equal to f ′c = 3.5 ksi. The prestress-
ing tendons are assumed to be 270-ksi steel. The bridges were 
designed to exactly satisfy the strength requirements of the 
AASHTO LRFD design specifications. This was done even 
though normally it is the serviceability criteria that govern the 
design of prestressed members because bridge redundancy is 
related to member strength and ultimate system capacity. Sen-
sitivity analyses also were performed to investigate the effect of 
changes in member strength, slab strength, and dead weight, as 
well as other parameters. The material data were used to obtain 
the moment-curvature relationships for the steel beams using 
analytical methods. The moment-curvature relationships were 
then used to perform the nonlinear analysis of the bridge. For 
the prestressed concrete bridges, the material data were used to 
obtain the moment-curvature relationships for the beams using 
analytical methods. The moment-curvature relationships were 
then used to perform the nonlinear analysis of the bridge.

The results of the analysis of the prestressed concrete 
I-girder bridges are separated into two groups: narrow bridges 
are defined as those that have four beams at 4-ft spacing, four 
beams at 6-ft spacing, and six beams at 4-ft spacing; all the  

other bridges are defined as wide bridges. The results of the 
wide bridges are used to compare the ultimate capacity of 
the originally intact bridge represented by LFu to the capacity  
to resist first member failure represented by LF1. The compari-
son showed that LFu is highly dependent on LF1 with a relation-
ship that can be well represented by an equation of the form

= + γ1.16 0.75 (5.5)1LF LFu

where LFu is the ultimate capacity of the originally intact system 
expressed in terms of the number of side-by-side HS-20 trucks 
that the bridge can carry when the ultimate capacity is reached. 
LF1 is the load capacity at first member failure expressed in 
terms of the number of side-by-side HS-20 trucks that the sys-
tem can carry before the first member reaches its load carry-
ing capacity. g is a normalized stiffness ratio that represents the 
stiffness of the non-composite beam member compared to the 
stiffness of the deck. For I-girder bridges, g = 1.

The validity of Equation 5.5 for the response of simple-span 
and continuous prestressed concrete I-girder bridges is verified 
in Figure 5.2, which plots the results obtained from Equation 5.5 
versus the results obtained from the nonlinear analysis in blue 
for simple-span and in red for continuous span bridges. These 
results are for bridges loaded by two side-by-side trucks in  
the middle of one span. These data exclude the results for 
narrow bridges consisting of four beams at 4-ft and 6-ft spac-
ing and for six beams at 4-ft spacing. The plots show how the 
results follow a consistent trend that, for the wide bridges, is 
largely independent of span length, number of beams, or beam 
spacing. Also, the trend is largely independent of the beam 
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Figure 5.2.  Verification of Equation 5.5 for prestressed concrete 
I-girder bridges.
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strength and the dead load. The plot shows that the points lie 
close to a 45° line. The equation in the figure gives the equation 
of the trend line, which describes the relationship between the 
predicted LFu obtained from Equation 5.5 and the calculated 
LFu obtained from the nonlinear pushdown analysis of actual 
bridge systems. The trend line shows a slope equal to 0.97 and 
a coefficient of regression R2 = 0.92. A perfect match would 
lead to a trend line having an equation of the form y = 1.0 x 
with a coefficient of regression R2 = 1.0. The COV of the error 
between the predicted values and the analytical results is 4.53%.

Composite Steel I-Girder Bridges

Numerous simple-span and continuous-span composite-
steel I-girder bridges were analyzed in NCHRP Report 406. 
The results of these analyses were extracted for this project 
to study how the redundancy of these bridges varies with the 
number of beams, beam spacing, and span length. Specifically, 
over 100 simple-span bridges varying in length between 45-ft 
and 150-ft with a composite concrete deck supported by 4, 
6, 8, and 10 beams spaced at 4-ft, 6-ft, 8-ft, 10-ft, and 12-ft 
are analyzed. Also, over 30 composite steel I-girder bridges 
with two 120-ft continuous spans supported by 4, 6, 8, and 
10 beams spaced at 4-ft, 6-ft, 8-ft, 10-ft, and 12-ft are inves-
tigated. The bridges’ concrete slabs varied in depth between 
7.5-in. and 8.5-in. depending on the beam spacing. The beams 
are assumed to be A-36 steel while the deck’s strength is equal 
to f ′c = 3.5 ksi. The bridges were designed to exactly satisfy  

the strength requirements of the AASHTO LRFD design speci-
fications. Sensitivity analyses also were performed to investigate 
the effect of changes in member strength, slab strength, and 
dead weight, as well as other parameters. The moment-rotation 
relationships for the bridges analyzed in NCHRP Report 406 
were obtained using existing empirical models based on test 
results as described in the appendices of NCHRP Report 406. 
The moment-rotation relationships were then used to per-
form the nonlinear analysis of the bridge. The analyses were 
performed assuming that the sections in negative bending 
are compact and the results are compared to the cases where 
the sections in negative bending are noncompact.

The results in NCHRP Report 406 were supplemented by 
the results of the analysis of three-span continuous bridges 
with span lengths 50-ft, 80-ft, and 50-ft. The bridges were 
assumed to have 4, 5, or 6 beams at 8-ft spacing. The bridges 
were analyzed for different strengths and beam stiffness by 
assuming that they have different values for ultimate moment 
capacities and moments of inertia.

The results of the analysis of the wide composite steel I-girder 
bridges that compare the ultimate capacity of the originally 
intact bridge system represented by LFu to the capacity to resist 
first member failure represented by LF1 also were found to be 
well represented by Equation 5.5. The validity of Equation 5.5 
with g = 1 for the response of simple-span and continuous 
composite steel I-girder bridges is verified in Figure 5.3, which 
plots the results obtained from Equation 5.5 versus the results 
obtained from the nonlinear analysis in blue for simple-span 

Figure 5.3.  Verification of Equation 5.5 for composite steel I-girder bridges.
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and in red for continuous span bridges. These results are for 
bridges loaded by two side-by-side trucks in the middle of one 
span. These data exclude the results for narrow bridges consist-
ing of four beams at 4-ft and 6-ft spacing and for six beams at 
4-ft spacing. The plots show how the results follow a consistent 
trend that, for the wide bridges, is largely independent of span 
length, number of beams, or beam spacing. Also, the trend is 
largely independent of the beam strength and the dead load. 
The plot shows that the points lie along a 45° line. The equa-
tion in the figure gives the equation of the trend line, which 
describes the relationship between the estimated LFu obtained 
from Equation 5.5 and the calculated LFu obtained from the 
nonlinear pushdown analysis of actual bridge systems. The 
trend line shows a slope equal to 1.05 and a coefficient of regres-
sion R2 = 0.92. A perfect match would lead to a trend line having 
an equation of the form y = 1.0 x with a coefficient of regression 
R2 = 1.0. The plot shows that Equation 5.5 under predicts the 
ultimate capacity of continuous bridges with noncompact sec-
tions by a very slight amount and those of continuous bridges 
with compact sections by a little more. However, the differences 
in the behavior of simple-span, continuous noncompact and 
continuous compact bridges are very small and can be ignored 
for the sake of keeping the prediction model as simple as pos-
sible. The COV of the error between the predicted values and 
the analytical results is 7.70%, which is quite reasonable given 
the large variations in the bridge geometries.

Prestressed Concrete Box-Girder Bridges

A 120-ft simply supported bridge consisting of twin pre-
stressed concrete box girders was analyzed during this course of 
study. The spacing between the two boxes from center to center 
is 14′9″. The bridge width is 37′ with 10″ depth concrete slab 
and the box’s depth is 6′10.5″. The boxes are assumed to have 
a compressive concrete strength f ′c = 7.35 ksi while the deck’s 
strength is equal to f ′c = 4.35 ksi. Mander’s model (Mander, 
1984) was adopted for the stress-strain curve for concrete. The 
prestressing tendons are assumed to be 270-ksi steel.

Sensitivity analyses also were performed to investigate the 
effect of changes in member strength, dead load, and span 
continuity. The baseline continuous bridge has three spans at 
80-ft, 120-ft, 80-ft. The analysis was performed for the narrow 
bridge configuration with one lane loaded. The results of the 
analysis of the prestressed concrete box-girder bridges that 
compare the ultimate capacity of the originally intact bridge 
represented by LFu to the capacity to resist first member failure 
represented by LF1 also were found to be well represented by 
Equation 5.5. However, for continuous box-girder bridges, the 
value of g was found to depend on the stiffness of the box near 
the support as described in Equation 5.6. The modification 
to g reflects the ability of continuous bridges with very high 
box stiffness to slab ratio to transfer the load longitudinally 

to the adjacent spans when the loaded span experiences non-
linear deformations as opposed to simple-span bridges and 
bridges with relatively low beam stiffness which would tend 
to transfer the load laterally to the other beams within the 
loaded span. The modified g is expressed as
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where EIbox is the stiffness of the non-composite main lon-
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the stiffness of a 120-in. segment of the slab with a modulus of 
elasticity Eslab in lb/in2 and a slab thickness ts in inches. The value 
in the denominator is a typical stiffness ratio for I-girder bridges 
used as a baseline. The moment of inertia Ibox is for the cracked 
section that ignores the portion of the concrete in tension.

The validity of Equation 5.5 with the modified g of Equa-
tion 5.6 for the response of simple-span and continuous pre-
stressed concrete box-girder bridges is verified in Figure 5.4, 
which plots the results obtained from Equation 5.5 versus 
the results obtained from the nonlinear analysis in blue for 
simple-span and in red for continuous span bridges. These 
results are for bridges loaded by one HS-20 truck in the middle 
of one span. The plots show how the results follow a consistent 
trend that is largely independent of the beam strength and the 
dead load. The plot shows that the points lie along a 45° line. 
The equation in the figure gives the equation of the trend line, 
which describes the relationship between the estimated LFu 
obtained from Equation 5.5 and the calculated LFu obtained 
from the nonlinear pushdown analysis of actual bridge sys-
tems. The trend line shows a slope equal to 1.01 and a coef-
ficient of regression R2 = 0.98. A perfect match would lead to a 
trend line having an equation of the form y = 1.0 x with a coef-
ficient of regression R2 = 1.0. The COV of the error between 
the predicted values and the analytical results is 6.27%.

In the final recommendation it is suggested that a g = 2 be 
used as a conservative value to keep the approach simple.

Composite Steel Box-Girder Bridges

A twin steel tub girder bridge with sections having a box with 
9″ plate thickness supporting a three-span continuous bridge 
was also analyzed as a baseline for studying the behavior of steel 
box-girder bridges. The bridge span configuration is 100-ft, 
120-ft, 100-ft. The analyses also were performed on variations 
of the bridge assuming different member strengths. The results 
were supplemented with those of simple-span steel box bridges 
with different member strengths, span lengths, dimension of 
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box sections, number of boxes, and box spacing. During the 
analyses of the bridges, wide bridges were loaded by two side-
by-side trucks; narrow bridges were loaded by only one truck.

The results of the analysis of the steel box-girder bridges, 
which compare the ultimate capacity of the originally intact 
bridge represented by LFu to the capacity to resist first mem-
ber failure represented by LF1, also were found to be well rep-
resented by Equation 5.5 with the modified g of Equation 5.6. 
The validity of Equation 5.5 for the response of simple-span 
and continuous steel box-girder bridges is verified in Fig-
ure 5.5, which plots the results obtained from Equation 5.5 

versus the results obtained from the nonlinear analysis in 
blue for simple-span and in red for continuous span bridges. 
These results are for wide bridges loaded by two side-by-side 
trucks and narrow bridges loaded by only one truck. The plot 
shows that the points lie along a 45° line. The equation in 
the figure gives the equation of the trend line that describes 
the relationship between the estimated LFu obtained from 
Equation 5.5 and the calculated LFu obtained from the 
nonlinear pushdown analysis of actual bridge systems. The 
trend line shows a slope equal to 1.02 and a coefficient of 
regression R2 = 0.99. A perfect match would lead to a trend 
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Figure 5.4.  Verification of Equation 5.5 for P/S concrete box bridges.
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line having an equation of the form y = 1.0 x with a coef-
ficient of regression R2 = 1.0. The COV of the error between 
the predicted values and the analytical results is 4.11%.

Model Modification for Continuous 
Box-Girder Bridges

Modified Model

The sensitivity analyses described in this report demon-
strated that continuous box-girder bridges provide signifi-
cantly higher redundancy levels than other types of bridges. 
This was attributed to the high stiffness of the boxes near the 
interior supports, which improved their ability to transfer the 
load to the adjacent spans as represented by the term g in Equa-
tion 5.5. Additional observations indicated that the moment 
capacity of the box girder in the negative bending region also 
plays an important role in allowing for the transfer of the load 
to the other spans. To account for this effect, a large number of 
three-span and two-span composite steel box-girder bridges, 
as well as three-span prestressed concrete box-girder bridges, 
were analyzed for different stiffness and strength values. In 
particular, the additional sensitivity analysis studied the effect 
of the stiffness of the boxes, the moment capacity of the boxes 
in the negative bending region, the moment capacity in the 
positive bending region, dead load magnitude, thickness of 
the slab, and the moment capacity of the slab.

The results of the additional analyses performed indicated 
that the originally proposed Equations 5.5 and 5.6 can be fur-
ther modified to account for the effect of the negative bending 
capacity and the stiffness of the box girders. An updated unified 
equation that would estimate the load factor LFu for the ulti-
mate limit state of originally intact bridges in function of the 
load factor LF1 corresponding to the first member failure taking 
account the span continuity for box girders is presented as

= + γ1.16 0.75 (5.7)1LF LFu
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That is, LF1 in Equation 5.7 represents the ability of the 
weakest section of the beam, which can be either the positive 
bending section or the negative bending section depending 
on the moment capacity in each region (R), the dead load 
moment in each region (D), and the effect of the applied live 
load moment on the most critical beam (L1) where the live 
load represents two side-by-side HS-20 trucks applied at the 
middle of the span. The positive superscript in Equation 5.8 

is for the positive bending region; the negative superscript is 
for the negative bending region.

Furthermore, the value of g in Equation 5.7 should be 
modified as shown in Equation 5.9.
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The modification factor g is thus adjusted to take into 
account the stiffness of continuous box-girder bridges relative 
to slab stiffness as well as the negative bending strength capac-
ity of the box. EIbox is the stiffness for the cracked section of the 
box girder in negative bending that ignores the portion of the 
concrete in tension. Etransverse slab is the modulus of elasticity for 
the slab between the boxes, bs = 120 in gives the width of the 
slab assuming the stiffness is calculated based on a 120-in. wide 

slab section having a depth ts, = −+
+ +

+1
1

LF
R D

L
is the load factor 

in the positive bending region due to two side-by-side HS-20 
trucks applied in the middle of the span and R+, D+, and L1

+ 
are the moment resistance, dead load, and maximum live load 
effect of the most critical beam in the positive bending region. 
LF1

- is the load factor in the most critical member in negative 

bending where = −−
− −

−1
1

LF
R D

L
obtained for the two side-by-

side HS-20 trucks applied at the middle of the span and R-, D-, 
and L1

- are the moment capacity, dead load moment, and live 
load moment in the most critical negative bending section. The 
value of 38 is used to normalize the equation and is based on 
the stiffness of typical steel I-girder bridges designed to exactly 
satisfy the specifications’ strength criteria.

Verification of Modified Model

To verify the validity of the proposed modified model, a sen-
sitivity analysis is performed by analyzing several three-span 
and two-span steel box-girder bridges, three-span prestressed 
concrete box-girder bridges, as well as three-span steel I-girder 
bridges.

Figures 5.6, 5.7, 5.8, and 5.9 plot the predicted load fac-
tor LFu obtained from Equations 5.7, 5.8, and 5.9 versus the 
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Figure 5.6.  Verification of model for three-span continuous 
steel box-girder bridges.
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LFu value obtained from the nonlinear analysis performed 
using SAP2000. The plots are for three-span continuous steel 
box-girder bridges (Figure 5.6), two-span continuous steel 
box-girder bridges (Figure 5.7), three-span continuous pre-
stressed concrete box-girder bridges (Figure 5.8) and three-
span continuous I-girder bridges (Figure 5.9). All the trend 
lines in the figures have slopes close to 1.0 and coefficients 
of regression R2 also close to 1.0. This serves to confirm that 
Equation 5.7 provides a good model for estimating the ulti-
mate capacity of bridge systems subjected to vertical live load. 
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Figure 5.7.  Verification of model for two-span continuous steel 
box-girder bridges.

The maximum COV for the error between the predicted and 
the SAP2000 values is on the order of 5.5%.

Narrow Simple-Span I-Girder Bridges

The load factors for simple-span prestressed concrete and 
steel I-girder bridges having 4 beams at 4-ft spacing and four 
beams at 6-ft spacing or six beams at 4-ft spacing are plotted in 
Figures 5.10 and 5.11. These bridges are considered to be nar-
row bridges. The figures show a different trend in the behavior 
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Figure 5.8.  Verification of model for three-span continuous 
prestressed concrete box-girder bridges.
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of simple-span narrow bridges where the ultimate capacity of 
the originally intact systems is considerably lower than that of 
wide bridges. No discernible difference is observed between 
steel I-girder and prestressed concrete I-girder bridges.

Simple-span bridges with four beams at 4-ft spacing are 
not redundant for the ultimate limit state with LFu = LF1. The 
actual slope of the trend line for these cases obtained in Fig-
ure 5.10 is 1.01. That is, when one beam fails, the entire bridge 
will collapse. Bridges with four beams at 6-ft spacing are 
slightly more redundant showing that LFu is approximately 
equal to 1.11xLF1. The relationship between LFu and LF1 for 
bridges with six beams at 4-ft spacing is LFu = 1.18xLF1.

Narrow Continuous Span I-Girder Bridges

The load factors for narrow continuous span prestressed 
concrete bridges having 4 beams at 4-ft spacing and four beams 
at 6-ft spacing or six beams at 4-ft spacing are plotted in Fig-
ure 5.11. These bridges are considered to be narrow bridges. 
The plot shows LFu versus LF1 obtained of the narrow continu-
ous bridges and compares them to those of wide continuous 
span bridges. The figure demonstrates that bridge continuity 
helps improve bridge redundancy for the four beams at 6-ft 
and the six beams at 4-ft bridges placing them within the same 
range as the continuous wide bridges. However, the continuity 

Figure 5.9.  Verification of model for three-span continuous 
I-girder bridges.
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did not sufficiently improve the redundancy of four beams at 
4-ft which remained at a lower level of redundancy. Only four 
narrow continuous steel I-girder bridges were analyzed having  
4 beams at 60-ft and six beams at 4-ft spacing with compact and 
noncompact sections in negative bending. These data points 
were also plotted in Figure 5.11 but no discernible difference 
is observed between the narrow steel I-girder and prestressed 
concrete I-girder bridges. These observations are made when 
the bridge is loaded by two side-by-side trucks in the same span.

The results of the analysis as plotted in Figure 5.11 dem-
onstrate that for narrow continuous bridges, Equation 5.7 is 
applicable with g = 0 for 4 beams at 4-ft spacing and g = 1.0 
for all other number of beams and beam spacing.

Narrow Box-Girder Bridges

The load factors for narrow continuous box-girder bridges 
having two boxes each 6-ft wide spaced at 12-ft center on cen-
ter for a bridge width of 24-ft are plotted in Figure 5.12. These 
bridges are considered to be narrow bridges. Three plots are 
given. Two plots are for simple-span concrete and steel bridges 
loaded by a single lane of traffic. The third plot shows the 
results when the bridge is loaded by two side-by-side HS-20 
trucks. The plots show LFu versus LF1 obtained of the narrow 
simple-span bridges loaded in two lanes and compare them 
to those loaded in a single lane. The figure demonstrates that 
narrow box-girder bridges loaded by a single lane behave like 
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Figure 5.10.  Plot of LFu vs. LF1 for narrow simple-span I-girder bridges.

Figure 5.11.  Plot of LFu vs. LF1 for narrow continuous span 
I-girder bridges.
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wide bridges while those loaded in two lanes show practically 
no redundancy with LFu = 1.03 LF1.

Continuous Span I-Girder Bridges 
with Noncompact Sections

When the section in negative bending is noncompact, the 
dominant failure mechanism may be due to trucks in differ-
ent contiguous spans of the bridge rather than the two side-
by-side trucks in the same span. The analysis of noncompact 
bridges loaded by a single HS-20 truck in each of two con-
tiguous spans was performed in NCHRP Report 406 and aug-
mented by additional analyses performed during the course of 
this study. These analyses are used to supplement the analysis 
of the bridges loaded by two side-by-side trucks in one span. 
The minimum value of LFu from both loading scenarios is 

then compared to the minimum of LF1
+ and LF1

- as defined in 
Equation 5.8. The results of the analysis show that, generally 
speaking, when first member failure takes place in negative 
bending with LF1

- less than LF1
+, the loading of the two spans 

governs the ultimate capacity of the system and the bridge 
reaches its ultimate capacity soon after the noncompact mem-
ber in negative bending reaches its limiting capacity. These 
bridges show essentially no redundancy and LFu = LF1

-. Gen-
erally, when LF1

+ is lower than LF1
-, failure is controlled by the 

system loaded by two side-by-side trucks in a single span and 
Equation 5.7 is valid. Figure 5.13 shows the results obtained 
from noncompact bridges for the two failure modes governed 
by Equation 5.7 and LFu = LF1

-. Figure 5.14 serves to verify 
that the proposed approach for predicting the ultimate load 
capacity of continuous I-girder bridges with noncompact sec-
tions in the negative bending region is reasonably accurate.

Figure 5.12.  Plot of LFu vs. LF1 for narrow box-girder bridges.
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Continuous-Span Steel Box-Girder Bridges 
with Noncompact Negative Sections

The AASHTO LRFD Bridge Design Specifications indicate 
that steel box-girder sections in negative bending should be 
considered to be noncompact. For this reason, several analy-
ses were performed assuming that the boxes in the negative 
bending regions have no ductility and that they will fail as 
soon as their moment capacity is first reached. The bridges 
are analyzed under the effect of two trucks placed in different 
contiguous spans of the bridge, and the results are compared 
to those obtained when two side-by-side trucks are placed in 
the same span. The minimum value of LFu from both load-
ing scenarios is then compared to the minimum of LF1

+ and 

LF1
- as defined in Equation 5.8. The results of the analysis 

show that, generally speaking, first member failure takes place 
in negative bending when LF1

- is considerably lower than 
LF1

+ and the loading of the two spans governs the ultimate 
capacity of the system. For these cases, the bridge reaches 
its ultimate capacity soon after the noncompact member in 
negative bending reaches its limiting capacity. These bridges 
show some level of redundancy and LFu = 1.16LF1

-. Generally, 
when LF1

+ is lower than LF1
-, failure is controlled by the system 

loaded by two side-by-side trucks in a single span and Equa-
tion 5.7 is valid. Figure 5.15 shows the results obtained from 
noncompact bridges for the two failure modes governed by 
Equation 5.7 and LFu = 1.16LF1

-. A sensitivity analysis shows 
that the transition between the two curves takes places when 

Figure 5.14.  Verification of model for continuous I-girder bridges with 
noncompact sections in negative bending.
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Figure 5.15.  LFu versus LF1 for continuous box-girder bridges with 
noncompact sections in negative bending.
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LF1
-<1.75LF1

+. The transition between the two curves describ-
ing the two failure modes is not sudden and can be expressed 
using the parameter g defined in Equation 5.9.

Continuous-Span Narrow  
Box-Girder Bridges

To investigate the behavior of originally intact narrow con-
tinuous bridges under overload, several analyses were per-
formed for prestressed concrete and steel bridges covering 
bridges with compact and noncompact sections in negative 
bending. Narrow box-girder bridges are defined as those hav-
ing two boxes with a total travel width equal to 24-ft. The 
analyses are performed for bridges composed of two boxes 
each 6-ft wide, spaced at 12-ft center to center. The bridges 

are analyzed under the effect of two trucks placed in different 
contiguous spans of the bridge and the results are compared 
to those obtained when two side-by-side trucks are placed in 
the same span. The minimum value of LFu from both load-
ing scenarios is then compared to the minimum of LF1

+ and 
LF1

- as defined in Equation 5.8. The analysis was performed 
for bridges with compact sections in negative bending and 
also sections that are noncompact in negative bending. It is 
observed that the results closely follow the model established 
in Equation 5.7 as demonstrated in Figures 5.16 and 5.17.

Summary

The analyses performed during the course of this project 
and NCHRP Report 406 have produced results on the ulti-
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Figure 5.16.  LFu vs. LF1 for narrow continuous box-girder bridges.

Figure 5.17.  Verification of model for narrow continuous 
box-girder bridges.
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mate load carrying capacities of originally intact typical 
bridge configurations and compared these to the load capac-
ity of critical members. Consistent patterns for the relation-
ship between these parameters describing the performance 
of bridges are possible for evaluating the redundancy of 
bridge superstructures using a few characteristic parameters 
that, as described in Equations 5.7, 5.8, and 5.9, consist of the 
member moment resistance in positive and negative bending 
regions, the applied dead load moment, the moment from 
live load applied on the most critical member and, for con-
tinuous bridges, the parameter g which gives the relative stiff-
ness of the beam near the support to the stiffness of the slab. 
The parameter g reflects the ability of continuous bridges 
with stiff sections near the support to spread the load to the 
adjacent spans as the loaded span undergoes nonlinear defor-
mations. The results of the relationship between the ultimate 
capacity of originally intact systems under vertical load and 
the load carrying capacity of the most critical member are 
summarized in Table 5.1. The analyses performed in this 
section addressed the ultimate capacities of originally intact 
bridges. Section 5.5 addresses damaged bridge systems that 
may have lost the load carrying capacity of a critical member 
due to various possible deterioration or extreme events.

That is, LF1 in Equation 5.7 represents the load carrying 
capacity of the weakest section of the beam, which can be 

either the positive bending section or the negative bending 
section depending on the moment capacity in each region 
(R), the dead load moment in each region (D), and the effect 
of the applied live load moment on the most critical beam 
(L1) where the live load represents two side-by-side HS-20 
trucks applied at the middle of the span or two trucks in one 
lane applied in each of two contiguous spans. The positive 
superscript in R, D, and L1 is for the positive bending region, 
the negative superscript is for the negative bending region.

Furthermore, the value of g for the box-girder bridges in 
Table 5.1 is obtained from
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Table 5.1.  Summary of LFu vs. LF1 for originally intact systems under 
vertical loads.
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Bridge Cross-Section Type  

Simple-span 4 I-beams at 4-ft LFu=1.01 LF1 

Simple-span 4 I-beams at 6-ft LFu=1.11 LF1 

Simple-span 6 I-beams at 4-ft LFu=1.18 LF1 

Continuous span 4 I-beams at 4-ft with compact members LFu=1.16 LF1 

Continuous steel I-girder bridges with noncompact negative 

bending sections and 1 11.16 0.75LF LF  11.00uLF LF

All other simple-span and continuous I-beam bridges LFu=1.16 LF1+0.75 

Narrow simple-span box-girder bridges less than 24-ft wide  LFu=1.03 LF1 

All other simple-span box-girder bridges  LFu=1.16 LF1+0.75 

Narrow continuous box-girder bridges less than 24-ft wide LFu=1.16 LF1+0.75 

Continuous steel box-girder bridges with noncompact 

negative bending sections and 1

1

1.75
LF

LF
 LFu=1.16 LF1+0.75 

All other continuous box-girder bridges LFu=1.16 LF1+0.75  
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The modification factor g takes into account the stiffness of 
continuous box-girder bridges relative to slab stiffness as well 
as the negative bending strength capacity of the box. EIbox is the 
stiffness for the cracked section of the box girder in negative 
bending, which ignores the portion of the concrete in tension. 
Etransverse slab is the modulus of elasticity for the slab between 
the boxes, bs = 120 in. gives the width of the slab assuming 
the stiffness is calculated based on a 120-in. wide slab sec-

tion having a depth ts, = −+
+ +

+1
1

LF
R D

L
is the load factor in the 

positive bending region due to two side-by-side HS-20 trucks 
applied in the middle of the span or two trucks in one lane 
applied in each of two contiguous spans; and R+, D+, and L1

+ 
are the moment resistance, dead load, and maximum live load 
effect of the most critical beam in the positive bending region. 
LF1

- is the load factor in the most critical member in negative  

bending where = −−
− −

−1
1

LF
R D

L
obtained for the two side-by-

side HS-20 trucks applied at the middle of the span or two  
trucks in one lane applied in each of two contiguous spans 
and R-, D-, and L1

- are the moment capacity, dead load 
moment, and live load moment in the most critical nega-
tive bending section. The value of 38 is used to normalize 
the equation and is based on the stiffness of typical steel 
I-girder bridges designed to exactly satisfy the specifications’ 
strength criteria.

5.3 � Calibration of System Factors for 
Bridges under Vertical Loads

Concept of System Factors

Following the procedures proposed in the AASHTO LRFD 
Bridge Design Specifications and the Canadian bridge code, 
it is recommended that different member design criteria be 
established for bridges based on their levels of redundancy. 
This can be achieved by applying a system factor in the safety-
check equation such that bridges with low levels of redun-
dancy be required to have higher member resistances than 
those of bridges with high levels of redundancy. The system 
factor can be implemented in the member safety-check equa-
tion that takes the form

1 (5.10)R D L Is n
N

d n l n ( )φ φ = γ + γ +

where fs is the system factor that is defined as a statistically 
based multiplier relating to the safety and redundancy of 
the complete system. The system factor is applied to the fac-
tored nominal member resistance RN

n that would be needed to 
meet the required factored loads accounting for the system’s 
redundancy. The proposed system factor replaces the load 
modifier h used in Section 1.3.2 of the LRFD specifications. 
The system factor is placed on the left side of the equation 

because the system factor is related to the capacity of the sys-
tem and should be used as a resistance multiplier as is the 
norm in reliability-based LRFD codes. f is the member resis-
tance factor, gd is the dead load factor, Dn is the dead load 
effect, gl is the live load factor, Ln is the live load effect on an 
individual member, and I is the dynamic amplification factor.

When fs is equal to 1.0, Equation 5.10 becomes the same 
as the current design equation. If fs is greater than 1.0, this 
indicates that the system’s configuration provides a sufficient 
level of redundancy and thus the members of the bridge can 
be designed to have lower strengths than those of bridges 
with low levels of redundancy. When it is less than 1.0, then 
the level of redundancy is not sufficient and the bridge mem-
bers must be designed to have higher strengths than members 
of bridges with high levels of redundancy.

The system factors should be calibrated using a reliability 
model such that a system factor equal to 1.0 indicates that the 
reliability index of the system is higher than that of the mem-
ber by an amount equal to a target value. Specifically, the reli-
ability index for the ultimate limit state of the originally intact 
system, bultimate, is higher than the reliability index of the mem-
ber, bmember by a margin reliability index Dbu equal to the target 
reliability margin Dbu target. For bridges susceptible to local dam-
age, the reliability index for the ultimate limit state of the dam-
aged system, bdamaged, is higher than the reliability index of the 
member of the originally intact bridge, bmember by a margin reli-
ability index Dbd equal to the target reliability margin Dbd target.

Based on the analysis of typical four-girder steel and pre-
stressed concrete bridges, NCHRP Report 406 recommended 
that the target reliability index margins be set at Dbu equal to 
0.85 and Dbd equal to -2.70. These targets were selected to 
match the average reliability index margins of typical four-
girder bridges because these bridges have been traditionally 
accepted as providing sufficient levels of redundancy. In this 
chapter, system factors are calibrated so that bridge configu-
rations that produce reliability index margins equal to the 
target values are assigned a system factor fs = 1.0. If the mar-
gin is less than the target value, then the system factor will 
serve to increase the reliability of the system by an amount 
equal to the difference. Thus, a system factor less than 1.0 is 
assigned. If the reliability index margin is higher than the tar-
get, then a system factor greater than 1.0 may be used to lower 
the reliability index of the system by an amount equal to the 
difference between the available margin and the target value.

Calibration Approach

The calibration of the system factor fs can be executed 
using Equations 5.1 through 5.4 so that the reliability index for  
the intact system bultimate and that of the damaged system bdamage 
are increased when the available Dbu and Dbd are lower than the 
target values set at Dbu target = 0.85 and Dbd target = -2.70. On the 
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other hand, fs should serve to lower the reliability index for the 
system when the available Dbu and Dbd are higher than the tar-
get values. The amount by which bultimate and bdamage should be 
increased should be equal to the deficit in the available Dbu and 
Dbd when compared to the target values while the amount by 
which bultimate and bdamage should be decreased should be equal 
to the surplus in the available Dbu and Dbd when compared 
to the target values. The formulation can be summarized as 
described next for the ultimate limit state of originally intact 
systems. The same exact procedure also is valid for finding the 
system factor for the damaged condition limit state.

The reliability index for a bridge member is calculated using 
the lognormal model as

β =







+

ln
(5.11)

1

75

2 2

LF

LL
V V

member

LF LL

where 1LF is the mean value of LF1, which is calculated from 
the linear structural analysis of the bridge up until the first 
member fails. LF1 gives the number of HS-20 trucks that the 
bridge member can carry in addition to the dead load. It can 
be expressed as

(5.12)1
1

LF
R D

L
= −

where R is the bridge member capacity, D is the dead load 
effect, and L1 is the effect on that member due to the applica-
tion of one set of HS-20 trucks on the bridge.

If LF1 is found based on the nominal values of R and D, 
then the mean 1LF is related to the nominal value of LF1 
through a bias bLF such that

= (5.13)
1

1

b
LF

LF
LF

The results of the nonlinear analysis of the entire system 
will serve to find the load factor LFu, which also is used to find 
the reliability index for the ultimate limit state

β =







+

ln
(5.14)75

2 2

LF

LL
V V

ultimate

u

LF LL

The reliability index margin is found from

(5.15)u ultimate member∆β = β − β

The calculated reliability index margin is compared to the 
target value and the deficit is found as

( )∆β = ∆β − ∆β = ∆β − β − β (5.16)u deficit u target u u target ultimate member

A negative Dbu deficit indicates that the redundancy level of 
the system is more than adequate, while a positive Dbu deficit 
indicates that the redundancy of the system is not sufficient.

The system factor should serve to change the resistances of 
the bridge members so that a system that is adequately redun-
dant could be allowed to have lower member resistances while 
the member resistances of a system that is not adequately 
redundant should be increased. The change in the member 
resistance should be sufficient to offset the deficit in the reli-
ability index margin defined as Dbu deficit, so that the modified 
bridge will produce a modified system reliability index bN

ultimate. 
A bridge that is non-redundant should have a higher system 
reliability bN

ultimate value than a system designed using current 
methods. The higher system reliability index should serve to 
compensate for the deficit in the reliability margin so that

( )

β = β + ∆β

= β + ∆β − β − β

= ∆β +β (5.17)

ultimate
N

ultimate u deficit

ultimate u target ultimate member

u target member

The new ultimate system capacity is related to the higher 
reliability index by

β =







+

ln
(5.18)75

2 2

LF

LL
V V

ultimate
N

u
N

LF LL

where LFu
N is the mean value that the new system ultimate 

capacity should reach. Substituting Equation 5.18 into Equa-
tion 5.17 gives







+
= ∆β + β

ln
(5.19)75

2 2

LF

LL
V V

u
N

LF LL

u target member

Equation 5.19 can be used to solve for the mean value of 
the required new system capacity using

= ( )∆β +β + (5.20)75
2 2LF LL eu

N V Vu target member LF LL

Given the mean value LFu
N , the nominal required system 

capacity is obtained from

= (5.21)LF
LF

b
u
N u

N

LF

The required member capacity associated with a system 
having an ultimate capacity LFu

N can be inferred from the rela-
tionship established between LFu and LF1 for typical bridge 
configurations. For example, in NCHRP Report 406 it was 
observed that the ratio Ru = LFu/LF1 is approximately con-
stant. This assumption was found valid when LF1 remained 
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within the range of typical new designs. Further review of 
the NCHRP Report 406 data augmented by the results of the 
analyses performed as part of this project show that a better 
approximation for the relationship between LFu and LF1 for 
all simple-span and continuous I-girder bridges is obtained 
from an equation of the form

= × +1.16 0.75 (5.22)1LF LFu

Therefore, the required load factor for first member failure 
can be obtained from

= − 0.75

1.16
(5.23)1LF

LF
N u

N

Using Equation 5.8, the load factor for first member failure 

is related to the nominal member capacity by = −
.1

1

LF
R D

L
N

N

 
Thus, the required member resistance is

= × + (5.24)1 1R LF L DN N

The system factor associated with this bridge system con-
figuration should serve to increase R to a new value RN. Thus, 
the system factor, fs can be obtained from

(5.25)
R

R
s

N
φ =

If the traditional design gives a value for the resistance 
( )[ ]= γ + γ +

φ
1

,R
D L I

n
d n l n  then the modified member design 

equation becomes the same as that in Equation 5.10, repeated 
below.

1R D L Is n
N

d n l n ( )φ φ = γ + γ +

The process described above also can be used to derive an 
algebraic expression that gives the system factor directly as 
a function of the coefficient in Equation 5.7 and the dead 
load to member resistance ratio. The closed-form expression 
is given as

[ ]η = −





+ − −

φ =
η

ξ∆β 1
1

1
(5.26)

1

2

1 1

e
D R

C
D R

C

C LF
D R

red

red

red

s

T

where Cred1 and Cred2 are respectively the slopes and intercepts of 
the redundancy equations in Table 5.1. As an example, in Equa-
tion 5.7 Cred1 = 1.16 and Cred2 = 0.75g. D/R in Equation 5.26 is 
the dead load to resistance ratio, LF1 is the live load capacity 
of the most critical member as defined in Equation 5.8, DbT 
is the target reliability index margin set at DbT = 0.85, and

2 2V VLF LLξ = + is the dispersion coefficient defined as the 
square root of the sum of the square of the COV for the live load 
carrying capacity LF and the maximum applied live load LL.

Calibration Example

A numerical example is presented to illustrate the calibra-
tion of system factors. The example uses a three-span con-
tinuous composite steel I-girder bridge having span lengths 
of 50-ft, 80-ft, 50-ft. The bridge is composed of six parallel 
members at 8-ft spacing. The ultimate moment capacity in 
the positive bending region was found to be R = 49,730 kip-in. 
The dead load effect at the midpoint of the center span is 
found to be D = 4,860 kip-in. The moment at the midpoint 
of the external girder of the center span due to the two side-
by-side HS-20 AASHTO trucks is L1 = 6,450 kip-in.

The nonlinear push down analysis showed that the ulti-
mate capacity is reached when the weights of the HS-20 
trucks are multiplied by a factor LFu = 8.70.

A traditional check of member safety assuming no resis-
tance or load factors gives the load factor for first member 
failure as shown in Equation 5.8 by

= − = − =49,730 4,860

6,450
6.961

1

LF
R D

L

Using the data provided by Nowak (1999), the bias in the 
estimated value of LF1 is obtained as bLF = 1.13. The COV for 
the live load and the load factors are estimated as VLL = 19%, 
VLF = 13.5%. It is assumed that an adequately redundant sys-
tem should have a reliability index margin Δbtarget = 0.85.

a.  Calculation of bmember

Table 5.2 gives the mean value for the applied load as 
extracted from Nowak (1999) for simple-span bridges; 
because no such data is available for continuous bridges 
in positive bending the same values are used in this analy-
sis. Accordingly mean maximum applied live load for the 

Two Lane
Loading

One Lane
Loading

Span LL75 LL2 LL75 LL2
45 � 1.67 1.53 1.97 1.81
60 � 1.72 1.60 2.02 1.86
80 � 1.81 1.67 2.14 1.98
100 � 1.89 1.75 2.26 2.08
120 � 1.98 1.84 2.35 2.17
150 � 2.01 1.87 2.37 2.19

Table 5.2.  Mean of applied loads  
as function of the effect of AASHTO 
HS-20 trucks.
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design life of the structure LL75 for the 80-ft span loaded 
in two lanes is 1.81.

Assuming a lognormal model, the reliability index bmember 
for the failure of the first member can be expressed as

ln
LF

LL
ln

1.13 6.96

1.81
0.19 0.135

6.31

1

75

2 2 2 2V V
member

LL LF

β =
+

=

×

+
=

b.  Calculation of bultimate

Assuming that the load factor LFu and the live load factor 
LL75 follow lognormal distributions, the reliability index of 
the system for the ultimate limit state can be found as

ln
LF

LL
ln

1.13 8.70

1.81
0.19 0.135

7.2675

2 2 2 2V V
ultimate

u

LL LF

β =
+

=

×

+
=

Thus, the reliability index margin for this bridge con-
figuration is found to be larger than the target value.

7.26 6.31 0.95 0.85u ultimate member u target∆β = β − β = − = > ∆β =

c.  Calculating LFN
1

Because the reliability index margin is greater than the 
target value, it would be allowed to lower the required 
member capacities of the main bridge members, so that 
the system reliability is reduced. The target system reliabil-
ity index for the ultimate limit state can then be reduced 
by the difference between the existing

( )

( )

β =







+
= β − ∆β − ∆β

= − − =

ln

7.26 0.95 0.85 7.16

75

2 2

LF

LL
V V

ultimate
N

u
N

LF LL

ultimate u u target

= × = × =× + × +Thus, 1.81 9.607.16
75

7.16 0.19 0.1352 2 2 2LF e LL eu
N V VLL LF

= = =9.60

1.13
8.50LF

LF

b
u
N u

N

LF

The analysis of a large number of I-girder bridges has 
established an empirical relationship between LFu and LF1 
given as

1.16 0.751LF LFu = × + γ

Thus, for g = 1, LF1
N = (LFN

u - 0.75)/1.16 = (8.50 - 
0.75)/1.16 = 6.68 which would provide the required nom-

inal member capacity from 1
1

LF
R D

L
N

N

= −
or RN = LF1

N × 

L1 + D = 6.68 × 6,450 + 4,860 = 47,946 kip–in

d.  Calculating System Factor fsystem

The system factor for this bridge configuration is 
obtained as

49,730

47,946
1.04

R

R
system

N
φ = = =

e.  Alternate Calculation of System Factor fsystem from 
Equation 5.26

Given the redundancy coefficients Cred1 = 1.16 and 
Cred2 = 0.75, a dead load to resistance ratio D/R = 4860/ 
49730 = 0.098, LF1 = 6.96, ΔbT = 0.85 and ξ = + =2 2V VLF LL

0.19 0.135 0.233,2 2+ = the load modifier is obtained as

[ ]

η = −





+ − − 

= −





+ −
×

−

=

ξ∆β

×

1
1

1 0.098

1.16
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0.75

1.16 6.96
1 0.098
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1
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The system factor for this bridge configuration is 
obtained as

1 1

0.962
1.04systemφ =

η
= =

which is the same value obtained going through the pro-
cess (a) through (d).

This result indicates that this bridge configuration is redun-
dant providing a sufficient margin of safety against collapse 
should the most critical girder of the bridge reach its ultimate 
capacity. Therefore, it would be possible to reduce the member 
capacity by a factor of 1.04 and have a bridge system capacity 
sufficiently high to safely carry the maximum expected live 
load during the service life of the bridge.

The results of the implementation of the calibration 
process for the ultimate limit state of originally intact typi-
cal bridge configurations analyzed in NCHRP Report 406 
and  during the course of this project are summarized in 
Section 5.4.

5.4 � System Factors for Ultimate 
Limit State of Originally 
Intact Bridges

Implementation of System Factors  
in Bridge Specifications

Table 5.1 presented a set of equations that were calibrated 
to describe the relationship between member load carrying 
capacity and the ultimate load carrying capacity of bridge 

Bridge System Safety and Redundancy

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22365


100

systems under vertical load. The relationships in Table 5.1 can 
be presented by equations of the form

= + (5.27)1 1 2LF C LF Cu red red

The relationships in Table 5.1 can be used to calibrate the 
system factors to be incorporated into the member design 
equation to account for bridge system redundancy as pre-
sented in Equation 5.10 and repeated below.

( )φ φ = γ + γ +1R D L Is n
N

d n l n

As derived in Section 5.3, the calibration of the system fac-
tor would lead to an expression that gives the system factor 
directly as a function of the coefficients of Equation 5.27 as 
listed in Table 5.1, and the dead load to member resistance 
ratio. The closed-form expression for the system factors, fs, is 
given in terms of a load modifier, h, as was shown

[ ]η = −





+ − −

φ =
η

ξ∆β 1
1

1
(5.26)
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where Cred1 and Cred2 are respectively the slopes and intercepts 
of the redundancy equations in Table 5.1. As an example, Equa-
tion 5.7 would give Cred1 = 1.16 and Cred2 = 0.75g. D/R in Equa-
tion 5.26 is the dead load to resistance ratio, LF1 is the live load 
capacity of the most critical member as defined in Equation 5.8, 
DbT is the target reliability index margin set at DbT = 0.85 and

2 2V VLF LLξ = + is the dispersion coefficient defined as the 
square root of the sum of the square of the COV for the live 
load carrying capacity LF and the maximum applied live load 
LL. An investigation of the COV for LF shows that VLF is about 
15% and VLL = 20% so that 15% 20% 25%.2 2ξ = + =

The implementation of Equation 5.26 for different val-
ues of LF1 and D/R for bridges that satisfy the relationship 
LFu = 1.16LF1+0.75g where Cred1 = 1.16 and Cred2 = 0.75g 

leads to plots similar to those presented in Figures 5.18 and 
5.19. Although Equation 5.26 should be relatively easy to 
apply, the data points were found to be well represented by 
the red curves, which follow an equation of the form

( )φ = + −
+

γ1
1 1.5

1
(5.28)

2

1
2

2
D R

LF
s

The range of error in fs from Equations 5.26 and 5.28 was 
found to be -0.03 and 0.01 when g = 1.0 and from -0.03 to 
0.05 when g = 4. This range of error is deemed acceptable.

When Cred2 in Equation 5.26 is equal to zero, the system 
factor equation reduces to

( )
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which can be implemented to find the system factors for the 
cases where LFu = Cred1xLF1.

The implementation of Equations 5.28 and 5.29 into the 
bridge categories of Table 5.1 leads to the set of system factors 
listed in Table 5.3.

That is, LF1 in Table 5.3 represents the load carrying capac-
ity of the weakest section of the beam, which either can be 
the positive bending section or the negative bending section 

Figure 5.18.  Plot of system factor vs. LF1 for Equations 5.26 
and 5.28 with g  1.
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Figure 5.19.  Plot of system factor vs. LF1 for Equations 5.26 
and 5.28 with g  4.
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Bridge Cross-Section Type System Factor 

Simple-span 4 I-beams at 4-ft 
 

0.80 0.16s
D

R  

Simple-span 4 I-beams at 6-ft 
 

0.90 0.09s
D

R  

Simple-span 6 I-beams at 4-ft 
 

0.95 0.05s
D

R  

Continuous span 4 I-beams at 4-ft with compact members 
 

0.93 0.07s
D

R  

Continuous steel I-girder bridges with noncompact negative 

bending sections and 1 11.16 0.75LF LF  

 

0.80 0.16s
D

R

All other simple-span and continuous I-beam bridges 
2

2
1

1 1.5 /
1

1s

D R

LF
 

Narrow simple-span box-girder bridges less than 24-ft wide 
 

0.83 0.14s
D

R  

All other simple-span box-girder bridges  
2

2
1

1 1.5 /
1

1s

D R

LF
 

Narrow continuous box-girder bridges less than 24-ft wide 
2

2
1

1 1.5 /
1

1s

D R

LF
 

Continuous steel box-girder bridges with noncompact 

negative bending sections and 1 11.75LF LF  

2

2
1

1 1.5 /
1

1s

D R

LF
 

All other continuous box-girder bridges 
2

2
2

1

1 1.5 /
1

1s

D R

LF
 

Table 5.3.  System factors for originally intact systems under 
vertical loads.
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depending on the moment capacity in each region (R), the 
dead load moment in each region (D), and the effect of the 
applied live load moment on the most critical beam (L1) where 
the live load represents two side-by-side HS-20 trucks applied 
at the middle of the span or two trucks in one lane applied 
in each of two contiguous spans. The positive superscript in 
R, D, and L1 is for the positive bending region, the negative 
superscript is for the negative bending region.

The parameter L1 gives the live load applied on the most 
critical member, which is defined as the member that fails 
first. It can be calculated as

. .
. .

1.10
1L D F LL

D F
LLactual

AASHTO LRFD Table= × = ×

where D.F. is the distribution factor and LL is the effect of the 
HL-93 truck load with no impact factor and no lane load. 
Because the distribution factors in the AASHTO LRFD speci-
fications are conservative, a correction factor = 1.10 is applied 
when D.F. is taken from the AASHTO table. The bias = 1.10 
was applied during the development of the AASHTO LRFD 
load distribution tables for conservative designs. In the case 
of estimating the redundancy of a bridge system, keeping the 
bias would lead to unconservative estimates of the system fac-
tor. For the analysis of a single lane of traffic load, the mul-
tiple presence factor M.P. = 1.2 should also be removed from 
the tabulated D.F. values.

Furthermore, it is proposed to use a factor equal to g = 2 as 
a conservative value. In actuality, the value of g for the con-
tinuous box-girder bridges in Table 5.2 is obtained as
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The modification factor g takes into account the stiffness of 
continuous box-girder bridges relative to slab stiffness as well 
as the negative bending strength capacity of the box. EIbox is 
the stiffness for the cracked section of the box girder in nega-
tive bending, which ignores the portion of the concrete in ten-
sion. Etransverse slab is the modulus of elasticity for the slab between 
the boxes, bs = 120 in. gives the width of the slab assuming the 

stiffness is calculated based on a 120-in.-wide slab section hav-

ing a depth ts, = −+
+ +

+1
1

LF
R D

L
is the load factor in the positive 

bending region due to two side-by-side HS-20 trucks applied 
in the middle of the span or two trucks in one lane applied 
in each of two contiguous spans, and R+, D+, and L1

+ are the 
moment resistance, dead load, and maximum live load effect 
of the most critical beam in the positive bending region. LF1

- is 
the load factor in the most critical member in negative bend-

ing where = −−
− −

−1
1

LF
R D

L
 obtained for the two side-by-side  

HS-20 trucks applied in the middle of the span or due to two 
trucks in one lane applied in each of two contiguous spans, and 
R-, D-, and L1

- are the moment capacity, dead load moment, 
and live load moment in the most critical negative bending 
section. The value of 38 is used to normalize the equation 
and is based on the stiffness of typical steel I-girder bridges 
designed to exactly satisfy the specifications’ strength criteria.

The implementation of the system factors for I-girder 
bridges presented in this chapter is straightforward so that 
engineers could apply the concept in a routine manner. For 
example, during the rating process, the engineer can calcu-
late the resistance R, the dead load effect D, and the AASHTO 
LRFD load distribution factor D.F., and find Mtruck, which is 
the moment of the design truck load of the HL-93 (which is 
the same as the HS-20 truck). The effect on one beam is cal-
culated as L1 = D.F.xMtruck where D.F. is the distribution factor. 
Next, the engineer finds the load factor that causes the first 
member to fail LF1 from the equation

= −
1

1

LF
R D

L

Although L1 is calculated in this study using a structural 
model of the entire bridge, an approximation for L1 can be 
obtained using the distribution factors of the LRFD speci-
fications. Because of their lack of accuracy, using the sim-
plified AASHTO distribution factors given in the standard 
specifications is not recommended. The equation to find LF1 
is the rating factor equation without safety factors or impact. 
Given LF1, the engineer can find the system factor from Equa-
tion 5.26 as illustrated in the following example.

Numerical Example for Implementation

A numerical example is provided to illustrate the proce-
dure for using the system factor during the rating of an exist-
ing bridge.

In this example the researchers assume a hypothetical case 
where the bending moment capacity of a 120-ft prestressed 
concrete bridge with six beams at 8-ft spacing was found 
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to be R = 7200 kip-ft. The dead load effect is found to be 
3500 kip-ft. The moment due to the AASHTO truck load 
alone is 1880 kip-ft. The moment for the AASHTO 3S-2 legal 
load is 1682 kip-ft. The distribution factor from the AASHTO 
LRFD is 0.75 and the impact factor is 1.33.

The LRFR Operating Rating for a site where the average 
daily truck traffic is ADTT>5,000 is obtained as

= φ − γ
γ

= × − ×
× × ×

=. .
1.0 7200 1.25 3500

1.80 1682 0.75 1.33
0.94R F

R D

L
n D n

L n

This rating factor value based on individual member capac-
ity implies that the bridge should be closed, posted, immediately 
rehabilitated, or replaced. Given the redundant configuration of 
the bridge, the bridge owners may choose to delay such actions 
if the bridge system capacity is found to be sufficiently high so 
that the bridge would be able to withstand the potential over-
loading of a main girder.

To assess the entire system’s load carrying capacity, the sys-
tem factor is calculated based on Equation 5.26. A first step 
would require the calculation of LF1 according to Equation 5.8

= −
×

= −
× =

. .
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2.891
20
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R D

D F LLHS

where the 1.10 bias is applied because the D.F. is taken from 
the AASHTO LRFD tables. If the bridge’s six beams are spaced 
at more than 4-ft then Equation 5.26 is used to find the sys-

tem factor with = =3500
7200 0.49.D
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The adjusted system rating of the bridge is then executed 
using

. .
1.09 1.0 7200 1.25 3500

1.80 1682 0.75 1.33
1.15R F

R D

L
s n D n

L n

= φ φ − γ
γ

= × × − ×
× × ×

=

where the system factor fs is 1.09 and the other factors and 
variables are those that are normally used during the usual 
rating process.

The adjusted rating factor R.F. = 1.15, which is higher than 
1.0, implies that the bridge system will still be able to sup-
port the applied loads should one member reach its limit-
ing capacity because of the bridge’s redundant configuration. 

The bridge’s redundancy is making the system’s capacity sig-
nificantly higher than the capacities of the individual mem-
bers. Thus, even if one member reaches its limiting capacity, 
the bridge system will not collapse.

In calculating LF1, the researchers have assumed in this 
exercise that the distribution factors in the AASHTO LRFD 
are on the average conservative by a factor of about 1.10 for 
I-girder bridges. Accounting for this difference leads to a sys-
tem factor lower than estimated from the use of the AASHTO 
LRFD distribution factors and a lower rating than would have 
been obtained if the AASHTO table is used without the cor-
rection. If, for the sake of simplicity, it is assumed that the 
load distribution factor in the AASHTO tables is accurate, 
then calculated value for LF1 is approximated as

= −
×

= −
×

=
. .
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The adjusted system rating of the bridge is then executed 
leading to a slightly more conservative rating factor.

. .
1.075 1.0 7200 1.25 3500

1.80 1682 0.75 1.33
1.11R F

R D

L
s n D n
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= φ φ − γ
γ

= × × − ×
× × ×

=

The proposed approach is believed to be superior to those 
of the current AASHTO LRFD specifications and the Cana-
dian bridge code because the proposed approach eliminates 
the subjectivity in deciding which load modifier or reliabil-
ity index the engineer should use. The proposed approach is 
based on non-subjective parameters and criteria that are avail-
able to the engineer from the bridge cross section (number 
of beams and beam spacing) and the resistance and applied 
loads that are calculated during traditional bridge design and 
rating processes.

5.5 � Summary of Bridge Analysis and 
Results for Damaged Bridges

This section summarizes the results of the analyses of dam-
aged I-girder and box-girder bridges. The damage scenario 
consisted of removing an entire I-beam from the multi-girder 
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bridges. For the box-girder bridges, the main damage sce-
nario also consisted of removing an entire web. In addition, 
the analyses considered an alternate damage scenario consist-
ing of removing a 6-in. segment of both webs and the bottom 
flange of one steel box girder.

Prestressed Concrete and Composite 
Steel I-Girder Bridges

Numerous simple-span and continuous-span composite-
steel I-girder bridges and prestressed concrete I-girder bridges 
were analyzed in NCHRP Report 406. The results of these 
analyses are extracted for the purposes of this project to study 
how the redundancy of these bridges varies with the number 
of beams, beam spacing, and span length. The simple-span 
bridges varied in length between 45-ft and 150-ft with a com-
posite concrete deck supported by 4, 6, 8, and 10 beams spaced 
at 4-ft, 6-ft, 8-ft, 10-ft, and 12-ft. Also, the NCHRP Report 406 
sample included composite steel I-girder bridges with two 
120-ft continuous spans supported by 4, 6, 8, and 10 beams 
spaced at 4-ft, 6-ft, 8-ft, 10-ft, and 12-ft. The bridges’ concrete 
slabs varied in depth between 7.5-in. and 8.5-in. depending 
on the beam spacing. The beams are assumed to be A-36 steel 
while the deck’s strength is equal to f ′c = 3.5 ksi. Also, over 
50 prestressed concrete I-girder bridges with two continuous 
spans varying in length between 100-ft and 150-ft supported 
by 4, 6, 8, and 10 beams spaced at 4-ft, 6-ft, 8-ft, 10-ft, and 12-ft 
were investigated. The bridges’ concrete slabs varied in depth 
between 7.5-in. and 8.5-in. depending on the beam spacing. 
The beams are assumed to have a compressive concrete strength 
f ′c = 5 ksi while the deck’s strength is equal to f ′c = 3.5 ksi. The 
prestressing tendons are assumed to be 270-ksi steel.

The NCHRP Report 406 bridges were designed to exactly 
satisfy the strength requirements of the AASHTO LRFD 

design specifications. Sensitivity analyses also were per-
formed to investigate the effect of changes in member strength, 
slab strength, dead weight, as well as other parameters. The 
moment-rotation relationships for the steel bridges analyzed 
in NCHRP Report 406 were obtained using existing empirical 
models based on test results as described in the appendices of 
NCHRP Report 406. The moment-rotation relationships were 
then used to perform the nonlinear analysis of the bridge. The 
analyses were performed assuming that the sections in nega-
tive bending are compact and the results are compared to the 
cases where the sections in negative bending are noncompact.

The results provided in NCHRP Report 406 were supple-
mented by the results of the analysis of three-span contin-
uous bridges with span lengths 50-ft, 80-ft, and 50-ft. The 
bridges were assumed to have 4, 5, or 6 beams at 8-ft spacing. 
The bridges were analyzed for different strengths and beam 
stiffness by assuming that they have different values for ulti-
mate moment capacities and moments of inertia.

The results of the analysis of the wide composite steel 
I-girder bridges that compare the damaged system capacity of 
the bridge system represented by LFd to the capacity to resist 
first member failure represented by LF1 were found to be highly 
dependent on the beam spacing while the number of beams 
had generally little influence on the results except for the case 
where the bridge had only four beams at 4-ft center to center. 
The results are plotted in Figure 5.20 for the results averaged 
over their span lengths. The figure shows a clear dependence on 
beam spacing while the number of beams are only important 
for the bridge with four beams at 4-ft. The LFd/LF1 ratio was 
not related to the span length as illustrated in Figure 5.21.

The prestressed concrete bridges showed similar trends for 
the effect of beam spacing as shown in Figure 5.22. However, 
LFd/LF1 generally dropped as the span length increased as 
shown in Figure 5.23.
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Figure 5.20.  Plot of LFd /LF1 vs. beam spacing for steel I-girder bridges.
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Figure 5.21.  Effect of span length on LFd/LF1 for steel I-girder bridges.
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Figure 5.22.  Plot of LFd /LF1 vs. beam spacing for damaged 
prestressed concrete I-girder bridges.
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Figure 5.23.  Effect of span length on LFd/LF1 for damaged 
prestressed concrete I-girder bridges.
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The plot of LFd versus LF1 for a set of simple-span bridges is 
presented in Figure 5.24. The results show a strong linear rela-
tionship between LFd and LF1 with an equation of the form

= 0.60 (5.30)1LF LFd

The same analysis was performed on a set of continu-
ous steel girder bridges. The analysis compared the results 
of compact and noncompact sections for the case when the 
damaged bridge was loaded with two lanes in the middle of 
the span to the case when two trucks are in one lane, one 
truck placed in each of two consecutive spans. The results are 
plotted in Figure 5.25 by taking the minimum value of LFd 
from the two loading cases and comparing it to the minimum 
value of LF1. The plot shows that a lower bound for the results 
that would cover compact and noncompact sections can be 
established using a linear relationship of the form

= 0.59 (5.31)1LF LFd

This linear relationship is obtained from the regression 
analysis of the results of bridges with noncompact sections in 
negative bending. The analyses in Figures 5.24 and 5.25 were 
for bridges with four beams at 8-ft spacing and six beams at 
8-ft spacing, respectively. As noted, the relationship between 
LFd and LF1 is also affected by the beam spacing. Additional 
analyses also investigated the effect of the deck slab strength 
and the weight of the damaged beam.

Box-Girder Bridges with Severe  
Damage to One Web

Numerous steel and concrete box-girder bridges were ana-
lyzed assuming two damage scenarios. The first damage sce-
nario assumes severe damage to an external web representing 
the consequences of collisions or severe corrosion to the pre-
stressing tendons of prestressed concrete or the corrosion of 
steel box-girder bridges. In these models, it is assumed that the 
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Figure 5.24.  Relation between LFd and LF1 for simple-span 
steel I-girder bridges.

Figure 5.25.  Relationship between LFd  and LF1 for continuous steel 
I-girder bridges.
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torsional rigidity of the box is not affected by the damage. The 
results of these analyses are summarized in Figure 5.26. The fig-
ure shows that the load carrying capacity of damaged systems 
is related to the ability of the system to resist first member 
failure with a relationship of the form

= 0.72 (5.32)1LF LFd

The relationship, which is somewhat similar to that of con-
tinuous I-girder bridges, holds for narrow simple-span box-
girder bridges, wide simple-span box-girder bridges, as well 
as three-span and two-span continuous box-girder bridges 
as long as the damaged box maintains a sufficient level of 
torsional rigidity. However, if the damaged box of a narrow 
simple-span bridge loses its torsional capacity altogether, 
the capacity of the system degrades to close to half its load 
carrying capacity. This is because the torsional capacity of 
a damaged narrow box will help redistribute the load to the 
remaining three box webs and this ability is lost if the tor-
sional capacity is lost. However, the same is not necessarily 
true for wide boxes that have a much larger web spacing and 
spacing between the boxes. In this case, the torsional capac-
ity of the box will not add a significant ability to redistribute 
the load to the undamaged box. This is because the torsional 
capacity may help redistribute the load locally but, globally, 
the contribution of the torsion is offset by the longer distance 
to the undamaged portions of the bridge. The load carrying 
capacity of damaged narrow simple box-girder bridges that 
lose one box’s torsional capacity along with one web will fol-
low an equation of the form

= 0.46 (5.33)1LF LFd

Although the AASHTO specifications assume that all steel 
box girders in negative bending should be considered to have 
noncompact sections, in this project, several continuous 
steel boxes with compact sections in negative bending were 
analyzed to study how box ductility would affect the dam-
aged bridge system’s capacity assuming severe damage to an 
external web. Continuous prestressed concrete boxes also are 
investigated. The results of these analyses are summarized in 
Figure 5.27. The figure shows that the load carrying capacity 
of damaged systems is related to the ability of the system to 
resist first member failure with a relationship of the form

= +0.59 4.50 (5.34)1LF LFd

The relationship is different from that of three-span and 
two-span continuous box-girder bridges with noncompact 
sections over the supports. The data in Figure 5.27 include 
wide and narrow prestressed concrete boxes loaded by two 
lanes of traffic or separately by one lane loaded by one truck, 
one in each span. The wide steel boxes also were loaded by 
two trucks side by side or separately by one truck in each span. 
Two cases are considered for the effect of torsional rigidity  
for the damaged continuous steel boxes. One case assumes 
that the torsional rigidity is not affected by the damage, and 
in another case the damage is assumed to also eliminate the tor-
sional rigidity. Equation 5.34 is found to give a lower bound to 
all the cases considered.

Steel Box-Girder Bridges with Fractured Box

Several steel simple-span and continuous box-girder bridges 
were analyzed assuming that one box was damaged due to 

Figure 5.26.  Summary of the results for damaged box-girder bridges.
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fatigue fracture. This is done by removing about a 1-ft 
segment in each of the webs and the bottom flange at the 
midpoint along the length of one box. In these models, it is 
assumed that the torsional rigidity of the remaining portions 
of the box is not affected by the damage. The results of these 
analyses are summarized in Figure 5.28. The figure shows that 
the load carrying capacity of simple-span damaged systems 
also is related to the ability of the system to resist first mem-
ber failure with a relationship of the form

0.82 4.14 (5.35)1LF LFd = −

However, continuous bridges show remarkably strong 
ability to continue to carry significant loads after damage. 
This is due to the cantilevering effect that continuous bridges 
provide allowing for the effect of the damage to be reason-
ably low.

Effect of Beam Spacing

The results of simple-span bridges provided in NCHRP 
Report 406 demonstrate a clear dependence on beam spac-
ing, as shown in Figure 5.20. However, the load factor LF1 for 
the bridges analyzed during NCHRP Report 406 had a very 
limited range with LF1 varying between 2.2 and 4.7. This  
made it difficult to understand how the damaged bridge 
load factor LFd varies as the first member failure load fac-
tor LF1 changes. Therefore, additional bridge models having 
load factors LF1 ranging between 3.0 and 8.0 were analyzed. 
In the analysis, the dead load applied along the length of 
each beam is assumed to be 0.97 kip/ft and the deck’s capac-
ity to carry moment in the transverse direction 13.5 kip-ft/ft 
(or 1615 kip-in. for each 10-ft-wide slab segment). This 
value for moment capacity of the deck is similar to the one 
used in NCHRP Report 406. Figure 5.29 plots the damaged 
system capacity of the bridge system represented by LFd 
versus the capacity to resist first member failure represented 
by LF1. The results show a consistent trend of increasing 
damaged bridge capacity as the capacity of the first member 
represented by LF1 increases. The relationship between LFd 
and LF1 is depicted in Figure 5.30. The figure also shows 
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Figure 5.27.  Summary of the results for damaged continuous box-girder 
bridges with compact section at supports.

Figure 5.28.  Plot of LFd vs. LF1 for fractured box-girder 
bridges.
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how LFd decreases for the same LF1 as the beam spacing 
increases. The trend with beam spacing is similar to that 
depicted in Figure 5.20 with LFd = 0.48 LF1 for the systems 
analyzed in this case with beams at 8-ft, LFd = 0.43 LF1 for 
bridges with beams at 6-ft, and LFd = 0.37 LF1 for bridges 
with beams at 12-ft.

As depicted in Figure 5.30, which includes the data from 
NCHRP Report 406 and additional data obtained during 
the course of this project, the relationship that, on average, 
describes the ratio of LFd/LF1 as a function of the beam spac-
ing is found to be

( )= −1 0.056 (5.36)
1

LF

LF
S

d

where S is the beam spacing in feet.
The relationship is for the average beam with a distributed 

weight along the length of the bridge of 1.0 kip/ft per beam. 
The equation gives the general trend with some variation 

around the trend based on the properties of the girders and 
the span length.

For continuous two-span steel bridges, NCHRP Report 406 
considered two negative bending section types: those that 
are compact and those with noncompact sections. Also, two 
load cases are considered. The first load case consisted of 
two trucks side-by-side in one span. The second load case 
placed one truck in each span. The load factor that causes 
the first failure of a member assuming linear-elastic behavior 
was used to determine LF1. LFd was the lowest load carrying 
capacity of the damaged system after removing one entire 
girder from one span. The results for the steel I-girder bridges 
are presented in Figure 5.31. The results for continuous pre-
stressed concrete I-girder bridges are given in Figure 5.32. 
The plot shows that the trend line is very similar to that of the 
compact steel bridges. Therefore, the same equation would be 
applicable for both the continuous prestressed concrete and 
compact steel bridges.

Figure 5.29.  Effect of beam spacing on simple-span damaged 
bridges.
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Figure 5.30.  Effect of beam spacing on damaged bridges.
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Effect of Dead Weight of Damaged Beam

The results of simple-span bridges provided in NCHRP 
Report 406 also demonstrate that bridge redundancy for the 
damaged limit state depends on the weight of the damaged 
beam that must be transferred to the adjacent undamaged 
beams as the bridge is loaded. To better establish this relation-
ship, additional bridge models having a load factor LF1 rang-
ing from 3.0 and up to 8.0 were analyzed. In the analysis, the 
spacing for each beam was fixed at 8-ft and the deck capacity 
is kept at 13.5 kip-ft/ft of slab. Figure 5.33 plots the damaged 
system capacity of the bridge systems analyzed in this case 
represented by LFd versus the capacity to resist first member 
failure represented by LF1.The results show that a doubling 
of the beam weight will reduce the slope of LFd versus LF1 
by 23%.

As depicted in Figure 5.33, the relationship that, on aver-
age, describes the ratio of LFd/LF1 as a function of the beam 
spacing is found to be

( )= − ω0.60 0.12 (5.37)
1

LF

LF
d

where w is the weight of the beam per unit length expressed 
in kip/ft.

The relationship is for the average beam with a distributed 
weight along the length of the bridge of 1.0 kip/ft per beam. 
The equation gives the general trend with some variation 
around the trend based on the properties of the girders and 
the span length.

Alternatively, a correction factor can be used on the origi-
nal Equations 5.30 through 5.36 to reflect the reduction in 

Figure 5.31.  Effect of beam spacing on damaged continuous 
steel I-girder bridges.
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Figure 5.32.  Effect of beam spacing on damaged continuous 
prestressed concrete I-girder bridges.
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the redundancy ratio. The weight correction factor is defined 
as gweight

1.23 0.23 (5.38)d modifiedLF

LF
kip ftweight

d
beam ( )γ = = − ω

where wbeam is the total dead weight applied on each beam 
expressed in kip per unit length.

Effect of Deck Capacity

The effect of the deck’s bending moment capacity also is 
investigated to study how bridge redundancy varies when the 
deck’s bending moment capacity is reduced. In the analysis 

performed in this section, the spacing between the beams is set 
at 8-ft or 10-ft, and the dead load on each beam is 0.97 kip/ft.  
Figure 5.34 plots the damaged system capacity of bridge 
systems represented by LFd versus the capacity to resist first 
member failure represented by LF1 for systems analyzed 
in this sensitivity analysis. The results show that damaged 
bridges will carry less live load as the deck’s moment capacity 
decreases. The trend in Figure 5.34 also demonstrates that the 
increase in LFd as the deck capacity increases will be smaller if 
the bridge member capacity represented by LF1 itself is small. 
As LF1 increases, the deck’s contribution to increasing the 
overall damaged bridge’s capacity increases.

The improvement due to deck capacity for damaged bridges 
can be depicted as shown in Figure 5.35. Furthermore, a  

Figure 5.33.  Effect of dead weight of damaged beam.
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Figure 5.34.  Effect of deck capacity Mu deck on capacity of 
damaged bridges.
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verification of the effect of diaphragm capacity with dif-
ferent spacing is shown in Figure 5.36. The base line is the 
deck with a transverse bending moment capacity equal to 
Mtransverse = 13.5 kip-ft/ft (or 1615 kip-in. for each 10-ft-wide 
slab segment). The load capacity of the bridge system varies 
almost linearly as a function of Mtransverse reaching an upper 
limit for improvement at about 1.10 to 1.20. The presence of 
diaphragms and cross beams can be considered in terms of  
the contribution they make to improve the transverse bend-
ing capacity of the system. Of course, this assumes that the 
cross beams are distributed along the length of the bridge and 
especially near the middle of the span. It also assumes that 
they are firmly attached to the longitudinal beams to resist the 
large bending moments that will develop as the damaged sys-
tem is overloaded as shown in Figure 5.35. The equation that 
describes the effect of the transverse bending capacity is given 
in terms of a slab effect correction factor, gtransverse, as

γ = = + ≤0.50
13.5 .

0.50 1.10 (5.39)
modifiedLF

LF

M

kip ft ft
transverse

d

d

transverse

(5.40)M M Mtransverse slab br L= +

where Mtransverse = combined moment capacity for lateral load 
transverse expressed in kip-ft per unit slab width, Mslab = moment 
capacity of slab per unit width, and Mbr/L = contribution of the 
bracing and diaphragms to transverse moment capacity calcu-
lated using Equation 5.41 or 5.42.

Equivalent transverse moment capacity for cross brac-
ing as defined in the FHWA Steel Bridge Design Handbook: 
Bracing System Design (2012)

(5.41)M
F h

L
br L

br b

b

=

Equivalent transverse moment capacity for diaphragm

(5.42)M
M

L
br L

br

b

=

where Mbr = moment capacity of diaphragms contributing  
to lateral transverse distribution of vertical load between 
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Figure 5.35.  Modification curve for deck capacity Mtransverse.
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adjacent main bridge girders; Fbr = bracing chord force deter-
mined from the applicable limit state for the bolts (see AISC 
Steel Construction Manual, 2011, Part 7), welds (see AISC, 
2011, Part 8), and connecting elements (see AISC, 2011, 
Part 9); Lb = spacing of the cross frames or diaphragms; and 
hb = distance between the bracing top and bottom chords.

Summary

The redundancy of damaged bridge systems that may have 
lost the load carrying capacity of a critical member due to 
various possible deterioration mechanisms or extreme events 
is a function of the beam spacing, the slab strength, and the 
dead load that the damaged beam needs to release to the 
remaining intact members. The results of damaged bridges 
show a clear correlation between LFd and LF1 represented by 

the redundancy ratio defined as
1

R
LF

LF
d

d= . Table 5.4 lists the 

relationship obtained for Rd as a function of span length and 

the load carrying capacity of the most critical member LF1 
accounting for the variation in Rd with slab strength and dead 
weight applied on the damaged member for the bridge types 
analyzed in this study.

5.6 � System Factors for 
Damaged Bridges

The calibration of the system factor for bridges suscep-
tible to major damage to main load carrying members was 
performed using the same procedure outlined for the ulti-
mate limit state, and the target reliability margin was set at 
Dbd target = -2.70. This target value was selected because it cor-
responds to the average margin obtained for typical 4-beam 
I-girder bridges, which have traditionally been accepted as 
providing acceptable levels of redundancy.

The calibration of the system factor can be performed eas-
ily using the expression in Equation 5.26. In most of the cases 

Bridge Cross-Section Type 

Equation for Redundancy Ratio 

1

d
d

LF
R

LF
 

Simple-span and continuous prestressed concrete I-
beam bridges with four beams at 4-ft 

0.56d transverse weightR  

Simple-span and continuous compact steel I-girder 
bridges with four beams at 4-ft 

0.64d transverse weightR  

Continuous noncompact steel I-girder bridges with 
four beams at 4-ft 

0.58d transverse weightR  

Wide simple-span I-girder bridges 1 0.056d transverse weightR S  

Wide continuous compact steel and prestressed 
concrete I-girder bridges  

1.35 0.08d transverseR S  

Wide continuous noncompact steel I-girder bridges 1.00 0.08d transverseR S  

Narrow simple-span steel box-girder bridges less 
than 24-ft, open box no torsional rigidity  0.46d transverseR

Fractured simple-span steel box-girder bridges less 
than 24-ft wide  

1

4.14
0.82d transverseR

LF
 

All other simple-span box-girder bridges  0.72d transverseR  

Continuous steel box-girder bridges with 
noncompact negative bending sections and 

1

1

1.75
LF

LF
 

0.72d transverseR  

All other continuous box-girder bridges 
1

4.50
0.59d transverseR

LF
 

where S = beam spacing in feet.

d modified 1.23 0.23 ( / )weight beam
d

LF
kip ft

LF
γ = = − ω

mod 0.50 0.50 1.10
13.5 . /

d ified transverse
transverse

d

LF M

LF kip ft ft
γ = = + ≤

and ωbeam is the total dead weight applied on each beam expressed in kip per unit length.
Mtransverse is the combined moment capacity of the slab and transverse members including 
diaphragms expressed in kip-ft per unit slab width.

Table 5.4.  Summary of LFd vs. LF1 for damaged systems under 
vertical loads.
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listed in Table 5.3, the redundancy equation can be repre-
sented in the form

=LF C LF (5.43)d red1 1

where the parameter Cred1 is equal to the redundancy ratio Rd.
The algebraic manipulation of Equation 5.26 is given as

η =
−











+ − − 
ξ∆β

1
1

1

2

1 1

e
D

R
C

D
R

C

C LF
D

R
red

red

red

T

φ =
η
1

s

with Cred1 = Rd and Cred2 = 0 leads to an expression for the sys-
tem factor given as

( )
φ =

− −0.47 0.47
(5.44)

R

R
D

R

s
d

d

where 0.47 is obtained from 0.93e(ξDbT) where the COV for the 
evaluation of the capacity of the bridge system is assumed to be 

x = 25% and 0.93 is the live load bias
LL

LL
2

75

= in Equation 2.16 

that accounts for the maximum 2-year live load as compared 
to the 75-year live load. NCHRP Report 406 recommends that 
the calibration of the system factor for the damaged bridge 
limit state be based on a 2-year live load, which coincides with 
the normal bridge inspection period at which point in time 
the damage to the bridge will certainly be detected and appro-
priate actions taken to close, post, or rehabilitate it.

The process of determining the system factor for the dam-
aged bridge limit state can then be executed using Equa-
tion 5.44, where appropriate values for Rd are obtained for 
the particular bridge configuration from Table 5.4. A sum-
mary of the proposed system factors for damaged I-girder 
and box-girder bridges is provided in Tables 5.5 and 5.6 as 

a function of the redundancy ratio =
1

R
LF

LF
d

d , which gives the 

capacity of a damaged bridge system that has previously lost 
the load carrying capacity of a main member given as LFd and 
the ability of the originally intact bridge to resist first member 
failure, which is represented by the variable, LF1, defined in 
Equation 5.8. For the box-girder bridges, three different dam-
age scenarios are considered. In the first scenario, one box is 
assumed to have been exposed to a fatigue type fracture that 
sliced through the entire bottom flange and two webs. The 
second scenario assumed major damage to one web while 
maintaining the torsional capacity of the box. The third sce-
nario considered that the failure of the web also led to the loss 
of the torsional rigidity of the box.

Tables 5.5 and 5.6 list the expressions for Rd as a function of 
beam spacing, slab strength, and the dead weight applied on the 
damaged member for the bridge types analyzed in this study.

5.7 Conclusions

This chapter summarized the results of the redundancy 
analysis of simple-span and continuous steel and prestressed 
concrete I-girder and box-girder bridges. The redundancy was 
evaluated for the ultimate limit state of the originally intact 

Bridge Cross-Section Type Redundancy Ratio 
1

d
d

LF
R

LF
 System Factor 

Simple-span and 
continuous prestressed 
concrete I-girder bridges 
with four beams at 4-ft 

0.56d transverse weightR  

0.47 (0.47 )

d
s

d

R
D

R
R  

Simple-span and 
continuous compact steel I-
girder bridges  
with four beams at 4-ft 

0.64d transverse weightR  

All other 
simple-span I-girder 
bridges 

1 0.056d transverse weightR S

Continuous noncompact 
steel I-girder bridges 
with four beams at 4-ft 

0.58d transverseR  

All other continuous 
noncompact steel I-girder 
bridges 

1.00 0.08d transverseR S  

All other continuous 
compact steel and 
prestressed concrete I-
girder bridges 

1.35 0.08d transverseR S  

Table 5.5.  System factors for damaged I-girder bridges under 
vertical loads.
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bridges, as well as bridges that have suffered major damage to 
the most critical bridge member. The results were fitted into 
equations that best described the redundancy based on a set 
of simple parameters that describe the bridge geometry and 
main load carrying characteristics. These parameters include 
the number of beams and beam spacing; the load carrying 
capacity of the main members; the dead over live load ratio; 
and, in the case of damaged bridges, the dead weight that was 
carried by the damaged beam prior to damage; and the trans-
verse load carrying capacity of the bridge expressed in terms of 
the maximum moment that the slab and diaphragms can carry.

The analyses performed as part of this study and NCHRP 
Report 406 highlight the difficulty of analyzing the behavior 
and load carrying capacities of damaged bridges. The results 
for damaged bridges are highly sensitive to many parameters, 
especially the modeling of the damage scenario and the sharp 
discontinuities that these create in the structural model, the 
torsional capacity of the remaining members of the dam-
aged system, and the contributions of the slab and secondary 
members, including diaphragm and bracings. A large num-
ber of sensitivity analyses were performed to understand the 

interaction between these parameters. However, more sen-
sitivity analyses are needed to better evaluate the range of 
variations and the upper limits for the proposed models.
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Table 5.6.  System factors for damaged box-girder bridges 
under vertical loads.

Bridge Cross-Section Type Redundancy Ratio 
1

d
d

LF
R

LF
 System Factor 

Fractured simple-span steel 
box-girder bridges less than 
24-ft wide 

Non-redundant s=0.80 

Narrow simple-span steel 
box-girder bridges less than 
24-ft 
with no torsional rigidity  

0.46d transverseR

0.47 (0.47 )

d
s

d

R
D

R
R

All other simple-span box-
girder bridges 
 

0.72d transverseR  

Continuous steel box-girder 
bridges with noncompact 
negative bending sections 
and 1 11.75LF LF  

0.72d transverseR

 
All other continuous box-
girder bridges 
 

1

4.50
0.59d transverseR

LF
 

where S = beam spacing in feet.
1.23 0.23 ( / )weight beam kip ftγ = − ω

ωbeam = total dead weight on the damaged beam in kip per unit length.

0.50 0.50
13.5 . /

transverse
transverse

M

kip ft ft
γ = +

Mtransverse = combined moment capacity of the slab and transverse members including  
diaphragms expressed in kip-ft per unit slab width. 

The range of applicability of transverseγ has been verified for I-girder bridges for up to a range

of transverseγ =1.10.
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Conclusions

This report calibrated system factors that can be used 
to account for the presence (or the lack of) redundancy in 
common-type bridge configurations subjected to distributed 
lateral loads and vertical live load. The system factors can be  
used during the design and safety assessment of bridges sub
jected to lateral loads being evaluated using the displacement- 
based approach specified in the LRFD Seismic Design provisions 
or the traditional force-based approach. Also, the report pre-
sented system factors calibrated for application with originally 
intact as well as damaged bridge systems subjected to vertical 
vehicular overloads.

The proposed system factors are consolidated into equations 
and fewer tables than those presented in NCHRP Report 406 
and NCHRP Report 458. This was achieved by establishing 
simple relationships between the system factors and relevant 
geometric properties of the systems or material properties of 
the primary bridge members. The consolidation of the sys-
tem factors into fewer tables is meant to simplify the process 
of applying the system factors in actual bridge engineering 
practice. The equations and tables proposed in this study  
are developed following extensive sensitivity analyses to 
account for bridges with members that may be overdesigned 
compared to the minimum design requirements of current and 
previous specifications and for bridges with deficient member 
strengths. This makes the proposed system factors applicable 

for the design of new bridges and the safety evaluation of 
existing bridges.

The proposed equations are necessarily designed to provide 
an approximate evaluation of the redundancy of bridges as 
they are meant to cover a wide range of bridge parameters. 
The proposed sets of system factor equations are presented in 
a format suitable for inclusion in the AASHTO LRFD Bridge 
Design Specifications and the manual for bridge evaluation in 
Appendix A.1 and Appendix A.2 of the contractor’s final report 
(available on the TRB website). Appendix A.3 (also available on 
the TRB website) gives three examples illustrating how the 
system factor equations can be used during the design or the 
rating of I-girder and spread box-girder bridges under vertical 
loads and the design of a multi-column bridge system under 
lateral load. These examples complement other examples pro-
vided in the body of the report.

For more accurate evaluations of the redundancy of specific 
bridges, a direct redundancy evaluation involving the non
linear analysis of bridge systems is required. Appendices B.1, 
B.2, and B.3 of the contractor’s final report (available on 
the TRB website) describe the analysis process through three 
examples. These examples consist of the analysis of a multi-
cell prestressed concrete box-girder bridge under vertical 
and lateral load, a steel truss bridge and a continuous steel 
two-box-girder bridge under vertical load.
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Abbreviations and acronyms used without definitions in TRB publications:

A4A Airlines for America
AAAE American Association of Airport Executives
AASHO American Association of State Highway Officials
AASHTO American Association of State Highway and Transportation Officials
ACI–NA Airports Council International–North America
ACRP Airport Cooperative Research Program
ADA Americans with Disabilities Act
APTA American Public Transportation Association
ASCE American Society of Civil Engineers
ASME American Society of Mechanical Engineers
ASTM American Society for Testing and Materials
ATA American Trucking Associations
CTAA Community Transportation Association of America
CTBSSP Commercial Truck and Bus Safety Synthesis Program
DHS Department of Homeland Security
DOE Department of Energy
EPA Environmental Protection Agency
FAA Federal Aviation Administration
FHWA Federal Highway Administration
FMCSA Federal Motor Carrier Safety Administration
FRA Federal Railroad Administration
FTA Federal Transit Administration
HMCRP Hazardous Materials Cooperative Research Program
IEEE Institute of Electrical and Electronics Engineers
ISTEA Intermodal Surface Transportation Efficiency Act of 1991
ITE Institute of Transportation Engineers
MAP-21 Moving Ahead for Progress in the 21st Century Act (2012)
NASA National Aeronautics and Space Administration
NASAO National Association of State Aviation Officials
NCFRP National Cooperative Freight Research Program
NCHRP National Cooperative Highway Research Program
NHTSA National Highway Traffic Safety Administration
NTSB National Transportation Safety Board
PHMSA Pipeline and Hazardous Materials Safety Administration
RITA Research and Innovative Technology Administration
SAE Society of Automotive Engineers
SAFETEA-LU Safe, Accountable, Flexible, Efficient Transportation Equity Act: 
 A Legacy for Users (2005)
TCRP Transit Cooperative Research Program
TEA-21 Transportation Equity Act for the 21st Century (1998)
TRB Transportation Research Board
TSA Transportation Security Administration
U.S.DOT United States Department of Transportation
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