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The SHRP 2 Naturalistic Driving Study (NDS) was the largest and most comprehensive 
study of its kind ever undertaken. Its central goal was to produce unparalleled data from 
which to study the role of driver performance and behavior in traffic safety and how driver 
behavior affects the risk of crashes. Such research involves understanding how a driver inter-
acts with and adapts to the vehicle, the traffic environment, roadway characteristics, traffic 
control devices, and other environmental features. After-the-fact crash investigations can 
only provide this information indirectly. The NDS data recorded how drivers really drove 
and what they were doing just before they crashed or almost crashed.

The Roadway Information Database (RID), created in parallel with the NDS, contains 
detailed roadway data collected on more than 12,500 centerline miles of highways in and 
around the six study sites, about 200,000 highway miles of data from the highway inventories 
of the six study states, and additional data on crash histories, traffic and weather conditions, 
work zones, and ongoing safety campaigns in the study sites.

The NDS and RID data can be linked to associate driving behavior with the roadway 
environment. The data will be used for years to come for developing and evaluating safety 
countermeasures designed to prevent or reduce the severity of traffic crashes and injuries.

The NDS collected data from more than 3,000 male and female volunteer passenger-vehicle 
drivers, aged 16 to 98, during a 3-year period. Most drivers participated from 1 to 2 years. 
It was conducted at one site in each of six states: Florida, Indiana, New York, North Caro-
lina, Pennsylvania, and Washington. Data collected included vehicle speed, acceleration, 
and braking; vehicle controls, when available; lane position; forward radar; and video views 
forward, to the rear, and on the driver’s face and hands. The NDS data file contains about 
50 million vehicle miles, 5 million trips, more than 3,900 vehicle years, and more than 1 mil-
lion hours of video—a total of about 2 petabytes of data.

Four contracts were awarded in 2012 under SHRP 2 Safety Project S08, Analysis of the 
SHRP 2 Naturalistic Driving Study Data, to study specific research questions using the early 
NDS and RID data. An open competition solicited proposals to address topics of the con-
tractor’s own choosing that would have direct safety applications and that would

•	 Lead to real-world applications and safety benefits (theoretical knowledge without poten-
tial applications was not a priority);

•	 Be broadly applicable to a substantial number of drivers, roadways, or vehicles in the 
United States; and

•	 Demonstrate the use of the unique NDS data (i.e., similar results could not be obtained 
from existing nonnaturalistic data sets).

In addition to these goals, SHRP 2 expected the projects to serve as both pilot testers 
and advisers. As they conducted these first substantial NDS and RID analyses, these stud-
ies’ experienced researchers would discover valuable insights on a host of both pitfalls and 
opportunities that others should know about when they use the data.

F O R E W O R D
James Hedlund, SHRP 2 Special Consultant, Safety Coordination
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The four projects began in February 2012 and were conducted in two phases. In Phase 1, 
which concluded in December 2012, contractors obtained an initial set of data, tested and 
refined their research plans, and developed detailed plans for their full analyses. Three 
projects successfully completed this proof of concept and were selected for Phase 2. These 
three projects obtained and analyzed a much richer, though still preliminary, data set and 
reported their results in July 2014. This report, Analysis of Naturalistic Driving Study Data: 
Safer Glances, Driver Inattention, and Crash Risk, documents one of the three projects.

These projects were conducted while the NDS and RID data files were being built. This 
circumstance imposed constraints that substantially affected the researchers’ work. The con-
straints included the following:

•	 Sample size. In summer 2013, when the projects requested full data sets, the NDS data file 
was only 20% to 30% complete. As a result, each project could only obtain a fraction of 
the trips of interest now available in the full NDS data.

•	 RID not complete and not linked to the NDS. Projects based on roads of specific types 
or locations could not identify these roads from the RID but instead had to use Google 
Earth or a similar database to identify them. They then obtained trips of interest by using 
searches through the NDS that were less efficient than will be possible when the NDS and 
RID are linked.

•	 Data processing. Some data, such as radar, had not been processed from their raw state to 
a form where they were fully ready for analysis.

•	 Data quality. NDS data are field data, and field data are inherently somewhat messy. At the 
time these projects obtained their data, some data had not been quality controlled, and 
some characteristics of the data were not yet well understood.

•	 Tools for data users. Not all crashes and near crashes had been identified, and a separate 
small data set containing only crashes, near crashes, and baseline exposure segments had 
not been built. In addition, a small trip summary file containing key features of each trip 
had not been built. Users can conduct initial analyses on many subjects quickly and easily 
using a trip summary file.

•	 Other demands on data file managers. The first priority for the NDS manager, Virginia 
Tech Transportation Institute (VTTI), and the RID manager, Iowa State University’s Cen-
ter for Transportation Research and Education (CTRE), was to complete data processing 
and quality control. Field data were being ingested continually. Data delivery for users was 
sometimes delayed because of these demands on their resources.

These issues are being resolved in 2014. The NDS and RID data are complete and are 
being linked. Data processing and quality control are being completed. Crash and near-crash 
files and trip summary files are being built.

If this project and the other two were to begin in 2015, each would have more data and 
would obtain the data far more easily and quickly. Readers should keep these constraints 
in mind as they read this report. Despite working under these constraints, the three NDS 
projects have produced valuable new insights into important traffic safety issues that will 
help reduce traffic crashes and injuries.

For an overview of the study, see the following article: K. L. Campbell, The SHRP 2 Natu-
ralistic Driving Study: Addressing Driver Performance and Behavior in Traffic Safety, TR 
News, No. 282, September–October 2012, pp. 30–35. Additional details may be found at the 
study’s InSight website: https://insight.shrp2nds.us/.
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Background

Communication technology pervades our daily living and is increasingly integrated into the car, 
where it has the potential to distract drivers. Consequently, there is a critical need to better 
understand distraction and the limits of attention while driving. Distracted driving, which has 
long been a contributor to motor vehicle crashes, is flourishing in the fertile environment of 
communication, information, and entertainment technology that is transforming the car. The term 
distraction refers to both instances when drivers take their eyes off the road—visual distraction—
and instances when drivers take their mind off the road—cognitive distraction. According to 
the United States–European Union (EU) Driver Distraction and Human Machine Interaction 
(HMI) Working Group, driver inattention is defined as a mismatch between the current attention 
allocation (distribution) and that demanded by activities critical for safe driving, whereas driver 
distraction is defined as diversion of attention away from activities critical for safe driving to 
one or more activities that are not critical for safe driving (Engström, Monk et al. 2013). In the 
current context, the activity critical for safe driving is attention to and control of headway to the 
lead vehicle.

The specific mechanisms and indicators of the risk of inattention are unfortunately not 
definitively quantified. Initial analyses of the Virginia Tech Transportation Institute’s 100-car 
naturalistic driving study focused on general relationships, such as the proportion of crashes 
involving inattention as a contributing factor (Dingus et al. 2006), or the relative and population-
attributable risk associated with different inattention-related activities (Klauer et al. 2006). 
Subsequent analyses have examined the influences of various characteristics, such as total eyes-
off-roadway time (glance history), single glance duration, and glance location. Previous work 
has also focused on calculating the risk associated with (human-identified) classifications of 
distracting tasks, such as talking, dialing, eating, and texting (e.g., Fitch et al. 2013; Klauer et al. 
2006, 2010, 2014; Olson et al. 2009). Although this task risk approach has merit, especially for 
policy decisions and education on what tasks should or shouldn’t be done while driving, it does 
not explain why the tasks are dangerous—nor does it provide the inattention performance risk 
information needed for many countermeasures. It is important to be able to determine whether 
the particular way a driver is doing a task (e.g., radio tuning) is dangerous, rather than simply 
detecting what task is being done. The radio can be tuned in a safe or unsafe way, and the inattention 
performance quantification approach presented here focuses on being able to measure this and, 
in various ways, provide countermeasures based on this.

Compared with data from driving simulator and field experiments, naturalistic driving data 
are valuable because they are able to quantify real crash risk (e.g., NHTSA 2013). But naturalistic 
driving data, until now with the SHRP 2 data set, have had a limited number of crashes. Risk has 
generally been calculated for safety-critical events, which group crashes, near crashes, and 

Executive Summary

Analysis of Naturalistic Driving Study Data: Safer Glances, Driver Inattention, and Crash Risk

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22297


2

incidents together. Detailed driving behavior data recorded in the seconds leading up to crashes 
and near crashes cannot be obtained from test tracks, simulators, or observational data  
(e.g., crash databases).

The SHRP 2 Naturalistic Driving Study can provide the data that are needed to provide 
inattention performance measures associated with precrash situations. The data are essential 
to improve the understanding of driver inattention, for guidelines to reduce distraction from 
electronics devices, for countermeasures that detect and act to reduce distraction while driving, 
and for regulation and education.

Research Questions

The current research aims to determine the relationship between driver inattention and crash 
risk in Lead-vehicle precrash scenarios (corresponding to rear-end crashes). It aims to develop 
inattention-risk relationships, describing how an increase in inattention performance variables 
combines with context in Lead-vehicle precrash scenarios to increase risk. The inattention-risk 
relationships are intended to show which glance behaviors are safer than others and pinpoint the 
most dangerous glances away from the road. A glance is the time from the moment the eyes move 
toward an area of interest (such as the radio, rearview mirror, or forward path) to the moment 
they move away from it. The results aim to (1) support distraction policy, regulation, and guidelines; 
(2) improve intelligent vehicle safety systems; and (3) teach safe glance behaviors.

The main research question is this: What is the relationship between driver inattention and crash 
risk in Lead-Vehicle Precrash Scenarios? Rear-end crashes corresponding to Lead-Vehicle Precrash 
Scenarios are as follows (Najm and Smith 2007):

•	 Scenario 22: Following vehicle (SHRP 2 driver) making a maneuver and approaching lead 
vehicle.

•	 Scenario 23: Following vehicle approaching an accelerating lead vehicle.
•	 Scenario 24: Following vehicle approaching lead vehicle moving at lower constant speed.
•	 Scenario 25: Following vehicle approaching decelerating lead vehicle.
•	 Scenario 26: Following vehicle approaching a stopped lead vehicle.

These Lead-Vehicle Precrash Scenarios constitute about 29%, or 1.7 million, of the crashes that 
occurred in the United States in 2004 (Najm and Smith 2007).

The specific research questions needed to answer the main question are these:

•	 What are the most dangerous glances away from the road, and what are safer glances?
•	 Can risk from distracting activities (secondary tasks) be explained by glance behavior?
•	 How does the timing of lead-vehicle closing kinematics in relation to off-road glances influence 

crash risk?
•	 What crash severity scale is best suited for analysis of risk?
•	 How can we change glance behavior to be safer, and how do the results of this research translate 

into countermeasures?

Data Formation and Methods

The SHRP 2 Naturalistic Driving Study (NDS) is the largest and most comprehensive ever 
undertaken—and the largest coordinated safety program ever undertaken in the United States. 
The study collected data from 3,147 volunteer drivers of all age and gender groups, during a 
3-year data collection period (most drivers participated for 1 to 2 years), amounting to about 
49.7 million vehicle miles, 5 million trip files, 3,958 data years, more than 1 million hours of 
video, and 2 petabytes of data. Data were collected across six sites in Florida, Indiana, New York, 
North Carolina, Pennsylvania, and Washington. An onboard data acquisition system (DAS) was 
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designed, manufactured, and installed in each volunteer’s own vehicle. Data were recorded 
continuously while the participant’s vehicle was operating and sampled at the original resolu-
tion of the sensors. Recorded data included vehicle speed, acceleration, and braking; all vehicle 
controls; lane position; forward radar; and video views forward, to the rear, and on the driver’s 
face and hands.

According to Najm and Smith (2007), five Lead-vehicle precrash scenarios were targeted 
because they were (a) highly ranked in crash frequency, functional years lost, and economic cost; 
(b) proven to be of particular relevance for inattention; and (c) suitable for planned analyses. 
These Lead-Vehicle Precrash Scenarios correspond approximately to rear-end crashes in National 
Automotive Sampling System (NASS) crash databases.

The final data set that was used for analyses contained 46 rear-end crash events, 211 near-crash 
events, 257 matched baseline events, and 260 random baseline events. Because this project was 
one of the first to have access to the SHRP 2 data set in fall 2013 and spring 2014, while data 
collection was ongoing, the final data set was not yet ready. All crashes and near crashes that were 
available at the time of data extraction were used. It was estimated that about 20% to 30% of the 
expected final data set was fully surveyed through kinematic triggers but that the full data set was 
“surveyed” by automatic notification processes (such as onboard Automatic Crash Notification 
algorithms, incident button presses, and site reports).

One random baseline (RBL) per crash or near-crash event was extracted completely at random 
from all trips in the available data and across all drivers and locations. The random baselines are 
used as controls in a case-control approach.

One matched baseline (MBL) per crash or near-crash event was selected to match each 
crash or near-crash event. The matched baselines are used as controls in a case-crossover 
approach. Analysis using the matching baseline was expected to be more robust to possible 
confounding contextual factors such as traffic density, weather, and road type. The matching 
criteria (e.g., driver, trip, no standstill, traffic flow, intersections, speed, weather, day/night) were 
intended to control for contextual factors that could influence glance behavior and thus create 
controls that provide a more similar context for comparison between baseline (control) events 
and crash or near-crash events than the random baselines.

Event data, time-series data, and video were delivered for each event. Event data variables 
describe each event as a whole (in a single value such as precrash scenario type or driver age). 
Time-series data describe the event over time at a sampling frequency that is specific to each 
variable. The primary common time period for analyses was 12 seconds before the crash point  
(in crash events), 12 seconds before minimum time to collision (in near-crash events), and 
12 seconds before a reference point in the matched and random baselines.

As a complement to the variables defined in the SHRP 2 data dictionaries, a number of 
other variables were defined. A method was developed to derive kinematic and optical vari-
ables related to the lead vehicle (LV) by manually annotating lead-vehicle width in forward 
video. From this, many lead-vehicle-related variables were derived, such as optically defined 
range and range rate variables. Manual video annotation of eyeglance location variables and 
a number of other variables were also coded from video. The main glance variable, Eyes off 
Path, was defined as glances away from the vehicle’s path, the direction of the vehicle’s travel; 
a number of glance metrics were derived from this variable. Many other variables were 
defined and used in the detailed analyses of driver behavior (such as reaction points or start 
of evasive maneuvers), vehicle kinematics (such as time to collision), and driving context 
(such as brake light onsets).

Several methods were used estimate the risk of having a critical event (crash, near crash, or 
both, depending on the analysis) as a function of various predictors. The primary method used 
to estimate risk was odds ratios, as calculated by conditional logistic regression: the higher the 
odds ratio, the higher the likelihood of being involved in a crash or near crash. The purpose of 
logistic regression is to develop models of crash or near-crash risk as a function of various pre-
dictors associated with driver behavior and environment.
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Key Results

Risk from Distracting Activities (Secondary Tasks)

The analysis started by replicating previous findings. The analysis shows generally similar results 
that are consistent with previous findings regarding distracting activities and glance metrics. 
In general, distracting activities occurred frequently—much more frequently in crashes, near 
crashes, and baselines than impairments such as drowsiness. In line with previous naturalistic 
driving studies (e.g., Fitch et al. 2013; Klauer et al. 2006, 2010, 2014; Olson et al. 2009), visually 
demanding tasks were associated with the highest risk. When considering crash and near-crash 
situations combined (CNC), the results showed that the aggregate category of Portable Electron-
ics Visual-Manual [odds ratio (OR) 2.7, confidence interval (CI) 1.4–5.2] and, in particular, one 
individual activity in that category, Texting (OR 5.6, CI 2.2–14.5), had the highest odds ratios, 
suggesting a substantial risk.

Talking/Listening on Cell Phone (Figure ES.1) was found to decrease crash/near-crash risk sig-
nificantly compared with not engaging in a phone conversation (OR 0.1, CI 0.01–0.7), representing 
an estimated 10-fold reduction in risk compared with the baseline (OR 10 if the sign of the coeffi-
cient is reversed). There were no crashes when drivers were Talking/Listening on Cell Phone.

Odds ratios for more than 50 distracting activities were examined. However, many of the 
activities did not occur frequently enough to achieve statistical significance. Distracting activities 
do not occur as frequently as glances and thus need larger sample sizes. Other individual catego-
ries, such as Locating/Reaching/Answering a Cell Phone or Adjusting/Monitoring the Radio, or 
other aggregate categories, such as Original Equipment or Vehicle External Distraction, were not 
significantly risky.

Figure ES.1.  Odds ratios (numbers inside circles) and confidence intervals  
(horizontal lines) for specific distracting activities in crashes (C), near crashes 
(NC), and crashes and near crashes combined (CNC). An odds ratio is  
significant only when the confidence interval is fully above or below 1  
(does not cross the vertical line at 1).
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Figure ES.1 shows the ORs associated with specific distracting activities. The precise OR is 
shown in the center of each dot, and the lines surrounding the dots indicate the 95th percentile 
confidence interval. Odds ratios are significant only when the confidence interval does not cross 
the vertical line at 1. Figure ES.1 indicates that texting is significantly risky for crashes and near 
crashes combined and for near crashes alone. The figure also indicates that Talking/Listening on 
a Cell Phone shows a significantly reduced risk for crashes and near crashes combined.

Glance Location and Eyes-off-Path Timelines  
Before Crash or Minimum Time to Collision

Figure ES.2 indicates that the glance locations in the crash events are predominantly toward the 
cell phone and interior objects, followed by left and right windows/mirrors. Noticeably, there is 
a reduction in forward path location viewing until about 1.5 seconds before the crash. The eyes 
return quickly to the forward path location after the 1.5-second mark.

Figure ES.3 provides a concise summary, showing only the percentage of Eyes off Path for 
crashes, near crashes, matched baselines, and random baselines. Figure ES.3 plots Eyes off Path 
over the 12-second period preceding the crash point in crash events, the minimum time to 
collision (TTC) in near-crash events, and the reference points for the baselines. It seems that 
there is generally more Eyes off Path in crashes than in other events and that Eyes off Path is 
increasingly off the road until 1.5 seconds before the crash. In near crashes, a similar but less 
pronounced effect is shown.

Figure ES.2.  Glance locations over time in crash events for the 12 seconds before and 1 second 
after the crash point (at 0 seconds).
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Most Sensitive Glance Risk Metrics

To determine whether risk from distracting activities (secondary tasks) can be explained by glance 
behavior, it was necessary to first find the most predictive glance metrics. We found that many 
Eyes-off-Path glance behavior metrics were powerful drivers of risk, much more so than the type 
of distracting activity (secondary task). The finding that glance behavior has a key contributing role 
in crashes and near crashes is in line with existing research (e.g., Klauer et al. 2006, 2010, 2014). 
However, our analyses of single glance metrics quantified this risk more strongly. In general, the 
greatest risk estimates were shown when crashes were analyzed separately from near crashes.

Although very strong Eyes-off-Path–risk relationships were shown in separate glance metrics, 
the relationship between glance behavior and risk cannot be reduced to a single metric, as there 
is no separate metric that fully accounts for risk on its own. The relationship is analogous to 
accounting for discomfort associated with heat. Temperature is a good metric that accounts for 
much of the variance, but including humidity would result in better predictions, as would 
including wind speed. Each glance metric helps inform the risk estimates.

The most sensitive glance metric model was a linear combination of three-glance metrics 
because it was most predictive of crashes and near crashes. The first glance metric, Off3to1, 
denotes the proportion of time the eyes were off path from 3 seconds until 1 second before the 
crash or minimum time to collision. The second glance metric is the mean duration of off-path 
glances, mean.off. The third metric, mean uncertainty, is the mean value of a composite measure 
based on the Senders et al. (1967) uncertainty model of the driving situation. Of the three metrics, 
the Off3to1 metric is the strongest individual risk-predicting metric.

Clearly, factors other than Eyes off Path contribute to rear-end crashes. For example, factors such 
as age (younger and older) and visibility problems (visual obstructions or rain) were significantly 
different in crashes compared with near crashes.

Figure ES.3.  Percentage of Eyes off Path (for each event type at each time point) in relation to minimum TTC 
or crash point (zero point), and a histogram of the time of the precipitating events associated with each crash 
and near crash. Precipitating events correspond to the lead-vehicle brake light onsets.
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Timing of Eyes off Path Relative to Situation  
Kinematics and Visual Cues

In Figure ES.4, it can be observed that the crashes, near crashes, and matched baselines are rela-
tively well separated in this state space (i.e., Glance Length and the rate of change of inverse Time 
to Collision). In particular, the majority of the crashes—and a subset of the near crashes—are 
organized along a line with a negative slope.

This analysis revealed a distinct mechanism for many of the crashes. In line with Tijerina 
et al. (2004), we found that drivers in most cases did not start to look away when lead vehicle was 
closing. Rather, drivers who crashed typically looked away just before the lead vehicle started 
closing and did not look back until collision was unavoidable. The criticality when looking back, 
and hence the crash risk, is largely determined by an interaction between last glance duration 
and the rate at which the situation changed during the glance (operationalized here in terms of 
inverse TTC change rate). The event outcome is also determined by the vehicle’s braking capacity 
and the driver’s time to react.

Thus, the key mechanism behind these types of rear-end crashes (grouped as Category 1, 
Inopportune glance, in Figure ES.4) can be understood as a “perfect mismatch” between last 
glance duration and situation change rate (in line with the general mismatch conceptualization 
of inattention suggested in Engström, Monk et al. 2013). The crashes grouped under a different 
category (Category 2, Looking away in an already critical situation) followed a similar pattern, 
but here the driver looked away when the vehicles were already closing, often because of visibility 
problems that presumably impaired looming detection.

The probability of such a mismatch depends on the joint probability distributions of glance 
durations and situation kinematics. Since long glances are very rare and short glances are very 
common, many crashes occur due to the combination of a relatively short glance and a high 

Figure ES.4.  Last glance duration versus inverse TTC change rate (the change 
rate of lead-vehicle looming). Ovals mark the three main categories of crashes 
identified through video inspection. Cases marked by squares are included  
as examples in text. The dashed line represents a hypothetical boundary for 
safe glances.
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change rate. Thus, an important finding of the present analysis is that glances that lead to crashes 
may not necessarily have to be long. In fact, the majority of the crashes in the present sample were 
associated with glances shorter than 2 seconds.

A prototypical case for the general mechanism in Category 1 can be seen in Figure ES.5. Here, 
the driver does not expect the lead vehicle to brake and thus looks away from the road while the 
situation is not yet critical (when inverse TTC is close to zero). During the glance away, the lead 
vehicle initiates braking. The level of criticality the driver faces when looking back depends on 
the interaction between the duration of the glance and the rate at which the situation develops, 
yielding the linear organization with a negative slope in Figure ES.4.

Category 2 cases (Figure ES.4) represent situations in which the driver looks away at a 
point when the situation is already critical (i.e., the vehicles are already closing and the inverse 
TTC has already risen significantly above zero). This typically involves a very brief glance 
(around 0.5 second) before the gaze is presumably redirected to the road by the strong loom-
ing cues.

In Category 3 cases (Figure ES.4), the driver looks away and back again before the situation 
turns critical, leading to a small change rate during the last glance and varying glance durations. 
Here the off-path glance most likely did not interfere with the reaction to the event (although it 
may possibly have affected the detection of available predictive cues). Thus, these events can be 
regarded as functionally similar to crashes in which the driver did not look away at all within 8 
seconds. Category 3 events typically involve a strong violation of expectation [e.g., the lead vehi-
cle stops late at yellow light or a traffic queue builds in front of the principal other vehicle (POV) 
in an unexpected location].

Analyses of driver reactions in the crashes and near crashes showed that driver reactions were 
not notably affected by the lead-vehicle brake lights but were instead strongly coupled to situa-
tion kinematics. Brake light onsets occurring while the driver looked forward were generally 
ignored and do not seem to have influenced the willingness of the driver to take the eyes off the 
road. Instead, the data indicate that drivers did not seem to react below an inverse TTC threshold 
of 0.2 and had progressively faster reactions for larger looming values above this 0.2 threshold. 
This behavior was successfully predicted by an accumulator model of reaction timing. Another 
key finding was that reactions in eyes-off-threat situations were generally faster for near crashes 
compared with crashes.

Figure ES.5.  Example of Category 1 crash  
(event ID 19147492). Y-axis units in legend.
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Discussion and Conclusions

What are the most dangerous glances away from the road, and what are safer glances? The team’s 
initial answer to this question was that the most dangerous and safest glances are quantified by 
a three-metric glance model. The model combines a metric of inopportune glance, mean glance 
duration, and a composite measure estimating the driver’s uncertainty of the driving situation.

Can risk from distracting activities (secondary tasks) be explained by glance behavior? The three-
metric glance model and many of the individual glance behavior metrics were substantially more 
predictive than the models based on distracting activities. Portable Electronics Visual-Manual 
interactions were explained by the proportion of Eyes off Path in the 2 seconds overlapping the 
precipitating event, but Texting and Talking/Listening on Cell Phone were not. However, the 
three-metric model could not be compared with the distracting activities because the distracting 
activities were only coded in the 5 seconds preceding the precipitating event until 1 second after. 
This comparison with the three-metric model should be made in future research.

How does the timing of lead-vehicle closing kinematics in relation to off-road glances influence 
crash risk? A key finding in this report was a distinct mechanism for many of the crashes. The 
mismatch depends on the joint probability distributions of glance durations and situation kine-
matics. Thus, an important finding of the present analysis is that glances that lead to crashes may 
not necessarily have to be long.

This key finding motivates reconsideration of the first question: What are the most dangerous 
glances away from the road, and what are safer glances? One way to think about which glances 
are safer than others is in terms of the boundary drawn in Figure ES.4. Under normal conditions 
(e.g., a dry road surface, normal braking capacity, normal visibility conditions), glances can be 
regarded as safe as long as they appear under this line, which is determined by the interaction of 
glance duration and kinematics change rate. Thus, the answer to the first part of the question can 
be reformulated like this: Dangerous glances are those during which the driver gets exposed to 
the risk of a rapidly changing situation. This answer is naturally partly related to the glance dura-
tion: the longer the glance, the greater the probability that the kinematics will develop in such a 
way that the perfect mismatch occurs. However, the second part of the equation is the natural 
variability in vehicle-following situation kinematics. Drivers are normally successful in control-
ling this variability by means of anticipation. However, as shown in the present analysis, the 
safety margins adopted by drivers when looking away are often insufficient to protect them from 
rapid changes in situation kinematics. For a given glance duration, a certain minimum change 
rate is needed to produce a crash. Conversely, for a given change rate, the glance has to be suffi-
ciently long for a crash to happen. A reformulated answer to the second part of Question 1 is thus 
as follows: An off-road glance is only perfectly safe when the safety margins adopted are sufficient to 
protect the driver if the situation changes rapidly during the glance.

Further, driver reactions were found to be strongly coupled to situation kinematics and not 
notably affected by lead-vehicle brake lights. Driver reactions do not occur below a 0.2 inverse 
TTC threshold (i.e., while there is no perceived looming), and driver reactions are progressively 
faster with larger inverse TTC values (a looming lead vehicle) once the eyes return to the road. 
Many researchers have assumed a constant, situation-independent distribution of driver reaction 
times to the situation itself (Sugimoto and Sauer 2005; Kusano and Gabler 2012). The present 
results indicate that such an assumption is inadequate.

What crash severity scale is best suited for analysis of risk? Our analyses resulted in the formulation 
and proposal of two potential severity scales: Model-estimated Injury Risk (MIR) index and Model-
estimated Crash Risk (MCR) index. These scales are created using mathematical simulations and 
applying a model of driver glance behavior to kinematics based on actual crashes and near crashes; 
they represent what may have happened had the event played out according to a specific driver 
model. The two scales (MIR and MCR) provide continuous values and can be calculated for actual 
crash and near-crash events. However, further work is necessary to validate these scales. It should 
be noted that the severity scales are simulated. Actual severity scales—Delta Velocity (DeltaV) for 
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crashes and minimum time to collision (minTTC) for near crashes—are still the most relevant 
metrics when analyzing actual severity (what actually happened in the event). The main drawback 
with the actual severity scales is that they cannot be used to compare both crashes and near crashes. 
This property—the ability to compare potential severity across crashes and near crashes—is enabled 
by the proposed MIR and MCR scales. It is important to note that these scales are also enabled by 
naturalistic data. Without the detailed time-series data leading up to crashes and near crashes, 
it would not be possible to compute the MIR and MCR scales.

The answer to the main research question—What is the relationship between driver inattention 
and crash risk in Lead-Vehicle Precrash Scenarios?—can be found in the general pattern of our 
results. In line with previous naturalistic driving studies, the results show that some activity types 
significantly increase risk (such as Texting and the aggregate category of Portable Electronics 
Visual-Manual). However, for Talking/Listening on Cell Phone, a strong significant decrease in 
risk was found. Notably, there were no crashes while talking/listening on the phone. Three types 
of glance metrics showed the largest odds ratios: (1) the proportion of time the eyes were off path 
between 3 seconds and 1 second before the crash or minimum time to collision, (2) mean dura-
tion of off-path glances, and (3) the mean value of a composite measure estimating the driver’s 
uncertainty of the driving situation. However, it was when these three-glance metrics were com-
bined in a model that they were most predictive of crashes and near crashes.

Analyses of the timing of off-path glances with lead-vehicle closing kinematics and visual 
cues revealed a distinct mechanism behind most of the crashes that can be understood in terms 
of a “perfect mismatch” between last glance duration and the change rate of the lead vehicle 
closing. Crashes occur with short glances and high closure rates, just as crashes occur with long 
glances with slow closure rates. These mismatches can be understood in terms of a joint prob-
ability distribution for glance durations and closure rates in which the most likely combinations 
will show up in a crash sample like the present one. Since long glances are rare, many crashes 
occur due to the combination of a relatively short glance and a high change rate. Another group 
of crashes followed a similar pattern in which the driver looked away when the vehicles were 
already closing, often due to visibility problems that presumably impaired looming detection. 
This pattern of results, or mechanism, was further confirmed in what-if simulation and modeling 
of reaction time.

The main pattern is that lead-vehicle crashes can be understood as the mismatch between 
glance duration and the lead-vehicle closure rate. Timing matters greatly, and taken together, the 
analyses strongly reflect this mechanism.

How can we change glance behavior to be safer, and how do the results of this research translate into 
countermeasures? The findings from this project have clear implications for countermeasures, as 
summarized below.

Regarding human-machine interaction design, distraction guidelines, and other regulatory 
agency countermeasures, the results emphasize the need to tackle the distraction problem as a 
joint probability problem. Risk can most effectively be reduced by removing the timing mismatch 
of eyes off road and lead-vehicle closure rates (inverse TTC change rate). A reduction of both 
sides of the equation—reducing eyes-off-road occurrence and reducing closure rates—is recom-
mended. The results point to the importance of designing interfaces that minimize the need for 
visual interaction, particularly in portable electronic devices. They also indicate that eliminating 
long glances (e.g., glances above a limit of 2 seconds) will not eliminate the distraction problem, 
because inopportune glances of normal short duration with the wrong timing relative to high 
lead-vehicle closure rates often produce rear-end crashes. Further, the results support the poten-
tial for nonvisual interfaces because Talking/Listening on a Cell Phone significantly reduced risk. 
In other words, reduction of off-road glances alone will not solve the problem; a reduction of 
lead-vehicle closure rates is needed.

The results provide strong support for vehicle design and driving support countermeasures, in 
particular active safety systems such as autonomous emergency braking (AEB) systems, forward 
collision warning (FCW), and autonomous cruise control (ACC). Active safety systems provide 
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the safety margins needed to protect the driver if the situation changes rapidly during an off-path 
glance by creating more time headway, issuing warnings to alert the driver to rapid closure rates, 
and actively braking.

For education and behavioral change, it is recommended that the public be made aware of the 
inopportune glance mismatch mechanism, that the importance of adopting safe headways be 
emphasized (particularly for ages 16–17 and 76+), and that usage-based insurance be encouraged 
(e.g., rewarding longer time headways).

Regarding road and infrastructure design, emphasis should be placed on creating smooth 
flowing traffic, reducing the occurrence of sudden, unexpected kinematic changes. Further, 
improving road surfaces to decrease stopping distances and developing self-explaining roads to 
reduce unexpected situations are also needed.
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To illustrate the central topic of the present research, consider 
the following examples. A driver is following a lead vehicle at 
a constant headway with the intention of merging into a lane 
on the freeway. While she glances over her shoulder for an 
appropriate gap to merge into, the lead vehicle suddenly 
brakes. When she looks back at the lead vehicle, it is too late 
to brake in time and a rear-end crash occurs. Alternatively, a 
driver could be reading a text message on his cell phone when 
the lead vehicle suddenly brakes in stop-and-go traffic. In 
each scenario, the driver is looking away from the forward 
view. The first example is perhaps more interesting because it 
illustrates that the driving task itself, not only secondary tasks, 
can cause inattention. Although the argument could be made 
that a good driver is always aware that an emergency situation 
could occur at any time, it is very difficult, if not impossible, 
to remain vigilant and keep attention on all relevant sources 
of information while driving. In particular, the simultaneous 
occurrence of an unexpected event with eyes-diverted has been 
hypothesized to play a key role in the causation of crashes and 
near crashes and has been a central motivating factor to pursue 
the present research.

Communication technology pervades our daily living and 
is increasingly integrated into the car, where it has the poten-
tial to distract drivers. Consequently, there is a critical need 
to better understand distraction and the limits of attention 
while driving. Distracted driving, which has long been a con-
tributor to motor vehicle crashes, is flourishing in the fertile 
environment of communication, information, and entertain-
ment technology that is transforming the car. Distraction 
includes instances when drivers take their eyes off the road—
visual distraction—and instances when drivers take their 
mind off the road—cognitive distraction. According to the 
US-EU Driver Distraction and HMI Working Group, driver 
inattention is defined as a mismatch between the current 
attention allocation (distribution) and that demanded by 
activities critical for safe driving, whereas driver distraction is 
defined as diversion of attention away from activities critical 

for safe driving to one or more activities that are not critical for 
safe driving (Engström, Monk et al. 2013). Driver inattention 
is thus conceived of in terms of mismatches between the current 
allocation of attention and that demanded by activities critical 
for safe driving. In the current context the activity critical for 
safe driving is attention to and control of headway to the 
lead vehicle.

One of the greatest traffic safety challenges of our time is 
to eliminate or moderate crashes that are caused by driver 
inattention. Driver inattention is a long-standing major factor 
related to morbidity and mortality in motor vehicle crashes 
(Evans 2004). It is also a renewed problem associated with 
modern technology-based distractions such as the cell phone 
(NHTSA 2010a). In 2009 distraction was involved in crashes, 
causing 5,474 deaths and leading to 448,000 traffic injuries 
across the United States (NHTSA 2010b). Inattention to 
forward roadway—because of secondary tasks engagement, 
driving-related inattention to the forward roadway, nonspe-
cific eyeglances, and fatigue—was identified as the primary 
contributing factor in 78% of all crashes, 93% of rear-end 
crashes, and 65% of near crashes in the National Highway 
Traffic Safety Administration (NHTSA) 100-car study (Dingus 
et al. 2006). The first three categories involve looking away 
from the forward roadway, and the last category involves loss 
of forward roadway vision from eyelid closure.

Two main developments have combined in the past few 
years to create an escalation in priority of the driver distrac-
tion and inattention issue: (1) research has been showing a 
much clearer association between driver inattention and crash 
risk, and (2) there is a growing concern over the compatibility 
with driving of the ever-increasing functionality available 
through electronic devices (such as smartphones and intelli-
gent vehicle systems). The safety problem at issue in both 
these developments centers on problems related to driver 
inattention. Driver inattention is very high on the political and 
scientific agenda, and the industry is moving fast to respond 
both to enable the use of electronic functionality in a safe 

C h a p t e r  1

Background
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revealed that risk is pinpointed to the timing of off-road 
glances in relation to external events. Risk is primarily associ-
ated with an inopportune single glance duration (Victor and 
Dozza 2011; Victor et al., forthcoming). The most sensitive 
measures for risk were those that quantified an overlap of the 
off-road glance with the precipitating event—a change in the 
state of environment or action that began the sequence lead-
ing to the crash or near crash (e.g., a lead vehicle that begins 
braking). The longer the driver looks away from the road at 
the time of the precipitating event, the greater the risk of a 
crash or near crash. However, these analyses did not look at 
what happened closer to the crash or near crash; rather, they 
looked only at the time of the precipitating event, which was 
at the start of the sequence leading to the crash or near crash 
and could be many seconds before the crash. More work is 
needed with the larger SHRP 2 data set to examine the relative 
contributions of different glance characteristics in relation to 
context, and specifically to examine the detailed mechanisms 
in the period of time between the precipitating event and the 
crash or near crash.

In comparison with driving simulator and field experiments, 
naturalistic driving data are valuable because they are able to 
quantify real crash risk (e.g., NHTSA 2013). Until now, with 
the SHRP 2 data set, naturalistic driving data—have included 
a limited number of crashes. Risk has generally been calculated 
for safety-critical events, which groups together crashes, near 
crashes, and incidents. Detailed driving behavior data recorded 
in the seconds leading up to crashes and near crashes cannot 
be obtained from test tracks, simulators, or observational data 
(e.g., crash databases).

The SHRP 2 Naturalistic Driving Study can provide the 
data that are needed for inattention performance measures 
associated with precrash situations. The data are essential to 
improve the understanding of driver inattention, for guide-
lines to reduce distraction from electronics devices, for counter
measures that detect and act to reduce distraction while 
driving, and for regulation and education.

1.1 Summary of Project Aims

This S08A research targets two of the highest prioritized 
global research questions identified for SHRP 2 in the S02 
Phase 1 report (Boyle et al. 2010):

•	 How do dynamic driver characteristics (e.g., inattention, 
fatigue, workload), as observed through driver performance 
measures, influence crash likelihood? (SHRP 2–GRQ1)

•	 How does driver distraction influence crash likelihood? 
(SHRP 2–GRQ3)

This effort focuses primarily on “driver characteristics, 
behavior, and performance”—one of the four priority areas 

manner and to reduce driver inattention through safety systems 
that are capable of monitoring it.

The specific mechanisms and indicators of the risk of 
inattention are unfortunately not definitively quantified. 
Initial analyses of the 100-car study focused on general relation-
ships, such as the proportion of crashes involving inattention 
as a contributing factor (Dingus et al. 2006), or the relative 
and population-attributable risk associated with different 
inattention-related activities (Klauer et al. 2006). Subsequent 
analyses have examined the influences of various characteristics, 
such as total eyes-off-road time (glance history), single glance 
duration, and glance location. Previous work has also focused 
on calculating the risk associated with (human-identified) 
classifications of distracting tasks, such as talking, dialing, 
eating, and texting (e.g., Fitch et al. 2013; Klauer et al. 2006, 
2010, 2014; Olson et al. 2009). Although this task risk approach 
has merit, especially for policy decisions and education on 
what tasks should or shouldn’t be done while driving, it does 
not explain why the tasks are dangerous—nor does it provide 
the inattention performance risk information needed for many 
countermeasures. It is more important to be able to determine 
whether the particular way a driver is doing a task (e.g., radio 
tuning) is dangerous, rather than simply detecting what task 
is being done. The radio can be tuned in a safe or unsafe way; 
the inattention performance quantification approach presented 
here focuses on being able to measure this and, in various ways, 
provide countermeasures based on this.

Klauer et al. (2006) and Olson et al. (2009) show that criti-
cal events are associated with high eyes-off-road times during 
the 6-second period preceding an event onset. In a reanalysis 
of the 100-car data, Klauer et al. (2010) showed that total Time 
Eyes off the forward Roadway (total TEOR) within a time 
period is associated with increased crash/near-crash risk. The 
shortest significant amounts were 20% (3 seconds) total 
TEOR for a 15-second task duration, or 30% (2 seconds) total 
TEOR for a 6-second task duration. These studies indicate that 
accumulated eyes-off-road time (glance history) is associated 
with higher crash probability, but they did not actually test 
independently the effect of single glance duration or assess 
how single glance duration combines with glance history to 
influence crash risk. Previous naturalistic data analyses have 
generally not looked at the timing aspect of eyes off road—
how the temporal location of off-road glances within the time 
window relates to crash risk.

Using the 100-car data, Liang et al. (2012) compared 24 dif-
ferent ways to combine various glance characteristics, such as 
single glance duration, glance history, and glance location. 
They found that single off-road glance duration was the best 
crash predictor. Glance history (such as Total Glance Time) 
and glance location did not improve risk estimation above 
single glance duration but they were still predictive of crash/
near-crash risk. Further analyses of the 100-car data have 
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set out by SHRP 2 (Boyle et al. 2010). However, this research 
is also relevant for the “intersection crashes or other infra-
structure-related crashes” priority area because Lead-Vehicle 
Precrash Scenarios are overrepresented in intersection crashes.

The current research aims to determine the relationship 
between driver inattention and crash risk in Lead-Vehicle Pre-
crash Scenarios. Inattention is conceptualized as a mismatch 
between attention and situation, in line with the recent U.S.-
EU taxonomy of inattention (Engström, Monk et al. 2013). 
The research aims to develop inattention-risk relationships 
describing how an increase in inattention performance vari-
ables combines with context in Lead-Vehicle Precrash Sce-
narios to increase risk. The inattention-risk relationships are 
intended to show which glance behaviors are safer than others 
and pinpoint the most dangerous glances away from the road. 
The results aim to (1) support distraction policy, regulations, 
and guidelines; (2) improve intelligent vehicle safety systems; 
and (3) teach safe glance behaviors.

Three key developments were proposed as a basis for this 
effort: (1) the development of observable performance-based 
quantifications of inattention; (2) the development of mea-
sures relating inattention to event context characteristics, such 
as stimulus onset; and (3) the development of a validated, 
continuous event severity measure combining a measure of 
safety margin and a measure of injury risk.

The main research question is this: What is the relationship 
between driver inattention and crash risk in Lead-Vehicle Precrash 
Scenarios?

The specific research questions needed to answer this ques-
tion are the following:

•	 Can risk from distracting activities (secondary tasks) be 
explained by glance behavior?

•	 What are the most dangerous glances away from the road, 
and what are safer glances?

•	 How does the timing of lead-vehicle closing kinematics in 
relation to off-road glances influence crash risk?

•	 What crash severity scale is best suited for analysis of risk?
•	 How can we change glance behavior to be safer, and how do 

the results of this research translate into countermeasures?

This report is structured to focus on these research ques-
tions in progression. Each step in the progression of analy-
sis is intended to add more detailed knowledge, going from 
simpler analyses to more precise analyses. The analysis 
starts with an examination of crashes, near crashes, and 
baselines in descriptive (contextual) data. Next, an analysis 
of the risk from distracting activities (secondary tasks) is 
implemented. Thereafter, a replication and extension of 
previous research examines risk from eyes off forward path 
in the period of time at the precipitating event. Next, risk is 
examined from eyes off forward path in the period of time 

leading up to the crash point (in crash events) or the mini-
mum time to collision (in near-crash events). Then, the 
timing of Eyes off Path in relation to situation kinematics 
and visual cues is examined. In the final analyses, actual and 
potential severity is examined. Lastly, we discuss lessons 
learned, provide recommendations for how the results of this 
research can be translated into countermeasures, and identify 
further research needs.

1.2 �SHRP 2 Naturalistic Driving 
Study Background

The second Strategic Highway Research Program (SHRP 2) 
conducted the largest and most comprehensive naturalistic 
driving study (NDS) ever undertaken. The study collected 
data from over 3,000 male and female volunteer passenger-
vehicle drivers, ages 16–98, during a 3-year period, with most 
drivers participating for 1 to 2 years. The study was conducted 
at a site in each of six states: Florida, Indiana, New York, 
North Carolina, Pennsylvania, and Washington. Data collected 
included vehicle speed, acceleration, and braking; vehicle 
controls when available; lane position; forward radar; and 
video views forward, to the rear, and on the driver’s face and 
hands. The NDS data file contains about 50 million vehicle 
miles, 5 million trips, more than 3,900 vehicle-years, and more 
than 1 million hours of video, for a total of about 2 petabytes 
of data.

In parallel, the Roadway Information Database (RID) con-
tains detailed roadway data collected on more than 12,500 
centerline miles of highways in and around the study sites; 
about 200,000 highway miles of data from the highway inven-
tories of the six study states; and additional data on crash 
histories, traffic and weather conditions, work zones, and 
ongoing safety campaigns in the study sites. The NDS and 
RID data can be linked to associate driving behavior with the 
roadway environment.

Campbell (2012) provides an excellent overview of the 
study. Additional details may be found at the study’s InSight 
website (https://insight.SHRP2nds.us/).

The study’s central goal is to produce unparalleled data 
from which to study the role of driver performance and 
behavior in traffic safety and how driver behavior affects the 
risk of crashes. This involves understanding how the driver 
interacts with and adapts to the vehicle, the traffic environ-
ment, roadway characteristics, traffic control devices, and 
other environmental features. After-the-fact crash investiga-
tions can do this only indirectly. The NDS data record how 
drivers really drive and what they are doing just before they 
crash or almost crash. The NDS and RID data will be used for 
years to come to develop and evaluate safety countermeasures 
designed to prevent or reduce the severity of traffic crashes 
and injuries.
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First SHRP 2 NDS Analysis Projects

Four contracts were awarded in 2012 under SHRP 2 Project 
S08, Analysis of the SHRP 2 Naturalistic Driving Study Data, 
to study specific research questions using the early SHRP 2 
NDS and RID data. An open competition solicited proposals 
to address topics of the contractor’s own choosing that would 
have direct safety applications. The request for proposals 
required proposals that would

•	 Lead to real-world applications and safety benefits (theo-
retical knowledge without potential applications was not a 
priority);

•	 Be broadly applicable to a substantial number of drivers, 
roadways, and/or vehicles in the United States; and

•	 Demonstrate the use of the unique NDS data—similar 
results could not be obtained from existing nonnaturalistic 
data sets.

In addition to these goals, SHRP 2 expected the project 
teams to serve as both pilot testers and advisers. As they 
conducted these first substantial NDS and RID analyses, 
these studies’ experienced researchers would discover valuable 
insights on a host of both pitfalls and opportunities that others 
should know about when they use the data.

The four projects began in February 2012 and were con-
ducted in two phases. In Phase 1, which concluded in Decem-
ber 2012, the contractors each obtained an initial set of data, 
tested and refined their research plan, and developed a detailed 
plan for their full analyses. Three projects—of which this study, 
Analysis of Naturalistic Driving Study Data: Safer Glances, Driver 
Inattention, and Crash Risk, is one—successfully completed this 
proof-of-concept phase and were selected for the full Phase 2. 
The three projects obtained and analyzed a much richer though 
still preliminary data set and reported their results in July 2014.

Constraints of the First SHRP 2 NDS Studies

These initial projects were conducted while the NDS and RID 
data files were being built. This imposed constraints that 
affected the work substantially. The constraints included the 
following:

•	 Sample size: In summer 2013, when the projects requested 
their full data sets, the NDS data file was only 20% to 30% 

complete. As a result, each project could obtain only a frac-
tion of the trips of interest, which are now available in the 
full NDS data.

•	 RID not complete and not linked to the NDS: Projects based 
on roads of specific types or locations could not identify 
those roads from the RID but instead had to use Google 
Earth or some similar database to identify them. They then 
obtained trips of interest using less efficient searches through 
the NDS than will be possible when the NDS and RID are  
linked.

•	 Data processing: Some data, such as radar, had not been 
processed from their raw state to a form in which they were 
fully ready for analysis.

•	 Data quality: NDS data are field data, and field data are 
inherently somewhat messy. At the time these projects 
obtained their data, some data had not been quality con-
trolled and some characteristics of the data were not yet well 
understood.

•	 Tools for data users: Not all crashes and near crashes had 
been identified, and a separate small data set containing 
only crashes, near crashes, and baseline exposure segments 
had not been built. Also, a small trip summary file contain-
ing key features of each trip had not been built. Users can 
conduct initial analyses on many subjects quickly and easily 
using the trip summary file.

•	 Other demands on data file managers: The first priority for 
the NDS manager, Virginia Tech Transportation Institute 
(VTTI), and the RID manager, Center for Transportation 
Research and Education (CTRE), was to complete data pro-
cessing and quality control. Field data were being ingested 
continually. Data delivery for users sometimes was delayed 
due to these demands on their resources.

These issues are being resolved in 2014. The NDS and RID 
data are complete and are being linked. Data processing and 
quality control are being completed. Crash and near-crash 
files and trip summary files are being built. If the initial three 
projects were to begin in 2015, each would have more data 
and would obtain the data far more easily and quickly. Read-
ers should keep these constraints in mind as they read this 
report. Despite working under these constraints, this project 
and the other two NDS projects have produced valuable new 
insights on important traffic safety issues that will help reduce 
traffic crashes and injuries.
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C h a p t e r  2

2.1 �SHRP 2 Naturalistic  
Driving Study Data

An onboard data acquisition system (DAS) was designed, 
manufactured, and installed in each volunteer’s own vehicle. 
Data were recorded continuously while the participant’s vehi-
cle was operating and sampled at the original resolution of 
the sensors. Recorded data included vehicle speed, accelera-
tion, and braking; all vehicle controls; lane position; forward 
radar; and video views forward, to the rear, and on the driver’s 
face and hands (see Figure 2.1). Additional details may be found 
at the study websites www.SHRP2nds.us/ and http://forums.
SHRP2nds.us/.

2.2 �Formal Data Access 
Procedures

Institutional Review Board (IRB) approval was received 
through the Swedish IRB 00005875 Regional Ethical Review 
Board. The Federal Wide Assurance on file with the Depart-
ment of Health and Human Services is FWA00016822, 
Chalmers University of Technology. The IRB review for Phases 1  
and 2 was done by IRB 00005875; the continuing review was 
taken care of by IRB 00001183. A data requirements specifica-
tion was formulated in cooperation with the data supplier, 
VTTI. After the data requirements specification was finalized, a 
data sharing agreement was executed and the data were received.

2.3 �Targeted General  
Crash Population

Five Lead-Vehicle Precrash Scenarios were selected according 
to the 37 precrash scenario typology for crash-avoidance 
research (Najm and Smith 2007). Najm and Smith established 
a common typology that is useful for both crash and near-crash 
scenarios. These scenarios were targeted (each crash or near 
crash was classified into one of these scenarios) because they 

were (a) highly ranked in crash frequency, functional years lost, 
and economic cost, (b) proven to be of particular relevance for 
inattention, and (c) suitable for planned analyses:

•	 Scenario 22: Following vehicle making a maneuver (fol-
lowing vehicle making a maneuver and approaching lead 
vehicle).

•	 Scenario 23: Lead vehicle accelerating (following vehicle 
approaching an accelerating lead vehicle).

•	 Scenario 24: Lead vehicle moving at lower constant speed 
(following vehicle approaching lead vehicle moving at lower 
constant speed).

•	 Scenario 25: Lead vehicle decelerating (following vehicle 
approaching decelerating lead vehicle).

•	 Scenario 26: Lead vehicle stopped (following vehicle 
approaching a stopped lead vehicle).

These five Lead-Vehicle Precrash Scenarios are approxi-
mately mapped to the rear-end crash type used in National 
Automotive Sampling System (NASS) crash databases, includ-
ing the General Estimates System (GES) and the Crashwor-
thiness Data System (CDS) (Najm et al. 2003). Together, these 
five precrash scenarios constitute about 29%, or 1.7 million,  
of the crashes that occurred in the United States in 2004 (see 
Table 2.1).

2.4 Event Sample-Size Request

Four types of events were requested for analyses: crash events 
(C), near-crash events (NCs), matched baseline events (MBLs), 
and random baseline events (RBLs). The Phase 2 data request 
was for a minimum of 220 event clusters. An event cluster is 
composed of three events: (1) one crash or near-crash event, 
plus (2) one random baseline event, and (3) one matched 
baseline event. That is, each crash or near-crash event was 
accompanied by two baseline events that make up an analysis 
“cluster.” Thus, the request was for a minimum of 220 crash 

Data Set Formation and General Methodology
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Table 2.1.  Characteristics of Targeted Crash Population, by Precrash Scenario Type

22. Following 
Vehicle 
Making  

a Maneuver

23. Lead 
Vehicle 

Accelerating

24. Lead Vehicle 
Moving at 

Lower Constant 
Speed

25. Lead 
Vehicle 

Decelerating

26. Lead 
Vehicle 

Stopped Total

Crashes 85,000
(1.44%)

19,000 
(0.32%)

210,000  
(3.53%)

428,000 
(7.2%)

975,000 
(16.41%)

1,717,000 
(28.9%)

Vehicles 
involved

180,000 
(1.69%)

40,000 
(0.38%)

445,000  
(4.16%)

936,000 
(5.33%)

2,162,000 
(20.21%)

3,763,000 
(31.77%)

People involved 249,000 
(1.66%)

54,000 
(0.36%)

612,000  
(4.07%)

1,283,000 
(8.54%)

3,032,000  
(20.18%)

5,230,000 
(34.81%)

Economic cost 
(U.S. dollars)

1,212,000 
(1.01%)

243,000 
(0.23%)

3,910,000 
(3.26%)

6,390,000 
(5.33%)

15,388,000  
(12.84%)

27,143,000 
(22.67%)

Functional years 
lost

18,000 
(0.67%)

4,000 
(0.15%)

78,000  
(2.81%)

100,000 
(3.62%)

240,000 
(8.69%)

440,000 
(15.94%)

Source: 2004 GES Statistics.

Figure 2.1.  The four video views of the car’s interior.
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or near-crash events, a minimum of 220 MBLs, and a minimum 
of 220 RBLs, for a total minimum of 660 events.

The exact proportion of crash versus near-crash events in 
the minimum 220 was difficult to predetermine as it was not 
known how many crashes would be available. The SHRP 2 
database was not finalized at the time of extraction. However, 
a minimum of 100 crash events was requested. This 100-crash 
minimum was based on an estimation of how many lead-
vehicle crashes (precrash Scenarios 22–26) should be avail-
able in the final SHRP 2 data set and on the expectation that 
in-vehicle Automatic Crash Notification algorithms would 
immediately identify most crashes for immediate processing, 
even if the database was not fully uploaded. This estimate was 
calculated in the following manner. Because the five targeted 
precrash scenarios make up about 29% of the total number 
of crashes in the general population, and 29% of the 700 pro-
jected SHRP 2 crashes equals 203 Lead-Vehicle Precrash 
Scenario–type crashes, and as half of these should be crashes 
in which the subject vehicle strikes a lead vehicle (as opposed 
to the following vehicle hitting the subject vehicle), it could 
be expected that there should be about 100 crashes in the 
SHRP 2 database that are eligible for our analysis. Further, for 
near crashes, it should be relatively easy to find a minimum 
of 100 near crashes, as the projected total number of near 
crashes was 7,000, or about 1,000 eligible Lead-Vehicle Pre-
crash Scenario near crashes.

The sample-size request was driven by an analysis of effect-
size requirements for computation of odds ratios (ORs) and 
by budget considerations. An odds ratio is computed as a ratio 
of the odds in a safety-critical event (crash or near crash) and 
a comparison event (baseline event):

( )
( )= −

(2.1)OR
Odds Safety Critical Event

Odds Comparison Event

Previous analyses of glance variables in the 100-car data 
showed that odds for comparison events are relatively inde-
pendent from the glance variables, and significant ORs were 
as low as 1.3 (Victor and Dozza 2011; Liang et al. 2012). 
Further, OR significance depends on its confidence interval 
(CI), which can be calculated by computing the standard error 
(SE) and applying Equation 2.2.

�= ( )± (2.2)log 1.96CI exp OR SE

In general, the lower the OR and the odds, the more sam-
ples are needed to show statistical significance. Increasing 
the number of baselines helps achieve statistical significance; 
however, the beneficial effect of adding more baselines dis-
sipates when the number of baselines is approximately four 
times as large as the number of safety-critical events. Fig-
ure 2.2 illustrates these features and trends by examining 
four different scenarios with different OR and odds values 

inspired by previous analyses of the 100-car data set (Victor 
and Dozza 2011; Liang et al. 2012). The high scenario cor-
responds to reaching a significant OR equal to 1.5, with odds 
for comparison events equal to 0.2. In this high scenario, it is 
possible to compute ORs in separate analyses of 200 crashes 
and 300 near crashes. In the medium scenario, OR = 1.7 and 
odds = 0.2. In the low scenario, OR = 2 and odds = 0.2. In the 
minimum scenario, OR = 2 and odds = 0.6. In the medium 
and low scenarios, crashes and near crashes are grouped 
together for the OR calculation.

Figure 2.2 can be used, for instance, to appreciate that if 
300 safety-critical events are available (vertical dashed line), then 
at least 300 baselines are necessary to show significance for OR 
as low as 1.5. Figure 2.2 also shows that if safety-critical events 
are less than 200, then achieving significance for OR equal to 1.5 
may be hard even if a larger number of baselines is available.

Figure 2.2 was generated using real data (up to 828 safety-
critical events and 5,000 baselines) from the 100-car study 
(available at http://forums.vtti.vt.edu/index.php?/files/
category/3-100-car-data/). However, in this context, it should 
be considered a qualitative indication primarily because of dif-
ferences in scenarios used. The safety-critical events expected 
from SHRP 2 for this project’s analyses are restricted to a spe-
cific set of precrash scenarios (lead-vehicle). As a consequence, 
both the odds and the OR may be different than in the 100-car 
study, in which many different scenarios were considered 
together. For reference, the significant OR levels found by 
Klauer et al. (2006, 2010) and Liang et al. (2012) were all above 
2.02 for the Total Glance Time variable.

2.5 Event Sampling

A desired sampling procedure was formulated and requested. 
However, this procedure encountered many practical con-
straints, and the actual sampling procedure used all crashes and 
near crashes that were available at the time of data extraction.

A description of the amount of available, searchable data 
in the database when data were extracted was requested as 
multiple data deliveries took place throughout fall 2013 and 
spring 2014. It proved difficult to determine the amount of 
data that was searched because data were in various stages of 
processing and there were many technical difficulties. The 
data provider, VTTI, estimated that about 20% to 30% of the 
expected final data set was fully surveyed through kinematic 
triggers but that the full data set was “surveyed” by automatic 
notification processes (such as onboard Automatic Crash 
Notification algorithms, incident button presses, and site 
reports). That is, many crashes and some near crashes were 
found through automatic notification processes while the 
study was being run and were therefore prioritized for data 
processing above other incoming data. Thus, it is currently 
difficult to know how many of the final set of lead-vehicle 
crashes are included in the current data set.
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Crash and Near-Crash Selection

The formation of a candidate event pool for crashes and near 
crashes was suggested; a subset of crashes and near crashes 
would be sampled from that pool. The idea was that crashes 
should be found by whatever manner possible (e.g., site reports 
or with kinematic triggers) and compiled into a list of candi-
date crash and near-crash events: the candidate event pool. 
From this candidate event pool, a subset of crashes and near 
crashes would be selected. However, for the final data set, a 
sampling approach was not possible. Instead, all available 
crashes and near crashes were selected.

Random Baseline Event Selection

One random baseline (RBL) per crash or near-crash event was 
extracted completely at random from all trips in the available 
data and across all drivers and locations. The random base-
lines are used as controls in a case-control approach. Analysis 

using the random baseline was expected not to be biased by 
the trips in which a safety-critical event took place.

Matched Baseline Event Selection

One matched baseline (MBL) per crash or near-crash event 
was selected to match each crash or near-crash event. The 
matched baselines are used as controls in a case-crossover 
approach. Analysis using the matching baseline was expected 
to be more robust to possible confounding contextual factors 
such as traffic density, weather, and road type. The matching 
criteria were intended to control for contextual factors that 
could influence glance behavior and thus create controls that 
provide a more similar context for comparison between base-
line (control) events and crash or near-crash events than the 
random baselines.

The following matching criteria were formulated. For each 
crash or near crash, the matching baseline must have the same 
driver, must not overlap in time with the crash or near-crash 

Figure 2.2.  Estimation of sample size for crashes/near crashes 
(safety-critical events) and comparison events (baselines) in  
different scenarios corresponding to different levels of significant 
ORs (at odds 0.2, except for the bottom line at odds 0.6). In 
general, higher scenarios correspond to lower OR significance 
and lower odds (Equation 4.1). Dark lines are the trends; the 
bands around the lines cover all possible combinations of 
events and baselines. This variation is due to the nature of 
odds ratios.
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event, and must have a maximum amount of 1.5 seconds of 
standstill (<0.1 km/h). In addition to these three absolute cri-
teria, the following optional matching criteria were defined 
(ordered from most important to least important): a lead 
vehicle should be present during the entire event (but the lead 
vehicle could change), a lead vehicle should not change, traffic 
flow should be matched to divided or undivided, the relation 
to intersection should be matched (not including inter-
change), the event should be taken from the same trip, speed 
should not vary more than ±15 km/h in comparison with the 
crash or near-crash event, the event should be matched accord-
ing to adverse weather (if present in crash or near crash), local-
ity should be matched to limited access or not, traffic density 
should be within one category, and daylight should be matched 
to day or night. If a matched baseline could not be found to 
meet all criteria, then the order of importance was used to 
assist with prioritization in finding matches.

2.6 Final Sample Size

The present analysis uses data extracted from the SHRP 2 
Naturalistic Driving Study database up until the last data 
delivery was received April 7, 2014—before all SHRP 2 data 
were available to be searched.

The final data set that was used for analyses comprises 
46 crash events, 211 near-crash events, 257 matched baseline 
events, and 260 random baseline events. VTTI provided 
47 crash events, 213 near-crash events, 260 matched baseline 
events, and 260 random baseline events in accordance with 
our data request. However, three events (one crash and two 
near crashes) were excluded because more than 30% of the 
glance data was missing in the 12 seconds preceding the crash 
point (in the crash events) or minimum time to collision (in 
the near-crash events). As a consequence, the corresponding 
matched baselines for these three events were also excluded.

2.7 Export Format

Data were provided from VTTI to SAFER in this format:

•	 A CSV file with all the time-series standard data from the 
data acquisition system along with a column for eyeglance 
location and one for lead-vehicle brake light activation, 
provided at a 10-Hz rate;

•	 A CSV file with all the time-series standard data from the 
data acquisition system along with a column for eyeglance 
location and one for lead-vehicle brake light activation, 
provided in a rectangular asynchronous format (i.e., each 
data value is accompanied by its exact timestamp instead 
of being linked to the closest 10-Hz time bin);

•	 A MATLAB workspace with data structures containing the 
information exported into the CSV files;

•	 A clip of the forward video corresponding to the time-series 
data segment;

•	 A clip of the rear video corresponding to the time-series 
data segment;

•	 A data dictionary spreadsheet;
•	 A baseline reduction spreadsheet; and
•	 An event reduction spreadsheet, containing the full contents 

of the SHRP 2 crash event video reduction and additional 
reduction specified by SAFER.

2.8 Event Data

Event data were delivered for each event as a set of variables 
that describes each event as a whole (in a single value such as 
precrash scenario type or driver age).

For all events (C, NC, RBL, MBL), SHRP 2–defined event 
data variables were delivered by the data provider. All event data 
variables were delivered, as defined in the SHRP 2 event data 
dictionary (SHRP 2 NDS Event Definitions and Variables v 
2_1.pdf, available at https://insight.SHRP2nds.us/). In addi-
tion, demographic questionnaire data and driving history ques-
tionnaire data were delivered, as defined in SHRP 2 NDS Driver 
Assessment and Data Dictionary v1_1.xls (available at https://
insight.SHRP2nds.us/). In addition to the SHRP 2 event data 
variables, SAFER defined and asked the data provider for addi-
tional event data variables. Additional event data variables were 
calculated after the data were delivered.

Key Event Data Variables

Only the key event data variables are defined here (for other 
variables, see the SHRP 2 data dictionaries).

Event Severity. This is a general term referring to all valid 
triggered occurrences of an incident, near crash, or crash that 
begin at the precipitating event and end when the evasive 
maneuver has been completed. There were two categories.  
(1) A crash involves any contact that the subject vehicle has with 
an object, either moving or fixed, at any speed in which kinetic 
energy is measurably transferred or dissipated (examples and 
hints: includes other vehicles, roadside barriers, objects on 
or off of the roadway, pedestrians, cyclists, or animals). (2) A 
near crash involves any circumstance that requires a rapid, 
evasive maneuver by the subject vehicle, or any other vehicle, 
pedestrian, cyclist, or animal to avoid a crash. A rapid, evasive 
maneuver is defined as a steering, braking, accelerating, or 
any combination of control inputs that approaches the limits 
of the vehicle capabilities. As a general guideline, subject-
vehicle braking greater than 0.5 g or steering input that results 
in a lateral acceleration greater than 0.4 g to avoid a crash con-
stitutes a rapid maneuver.

Precipitating Event. This is the state of environment or 
action that began the sequence under analysis. Put another 

Analysis of Naturalistic Driving Study Data: Safer Glances, Driver Inattention, and Crash Risk

Copyright National Academy of Sciences. All rights reserved.

https://insight.SHRP2nds.us/
https://insight.SHRP2nds.us/
https://insight.SHRP2nds.us/
http://www.nap.edu/22297


21   

way, what state or action by this vehicle, another vehicle, 
person, animal, or nonfixed object was critical to this vehicle 
becoming involved in the crash or near crash? This is a vehicle 
kinematic measure (based on what the vehicle does—an action, 
not a driver behavior). It occurs outside the vehicle and does 
not include factors such as driver distraction, fatigue, or inter-
action with a child. This is the critical event that made the 
crash or near crash possible. Use the “but for” test: but for this 
event, would the crash or near crash have occurred? This is 
independent of who caused the conflict (fault). For example, 
Vehicle A is speeding and then Vehicle B crosses Vehicle A’s 
path; the precipitating event is Vehicle B crossing Vehicle A’s 
path. If two events occur simultaneously, choose the event that 
imparted the greatest effect on the crash or near crash. If more 
than one sequential event contributed to the crash or near 
crash, determination of which is the precipitating event 
depends on whether the driver had enough time or vehicular 
control to avoid the latter event. If the driver avoids one event 
and immediately encounters another potentially harmful 
event (with no time or ability to avoid the latter), then the 
precipitating event is the first obstacle or event that was suc-
cessfully avoided (this is where the critical envelope begins 
and is the reference point for the other variables). If the driver 
has ample time or vehicular control to avoid the latter event, 
then that latter event is coded as the precipitating event (the 
critical envelope begins here, and all other variables are coded 
on the basis of this event). Note that for cases in which the 
origin of the precipitating event is not visible (e.g., Other vehi-
cle ahead, stopped on roadway more than 2 seconds; or Pedes-
trian in roadway), the start point for the precipitating event is 
when the event is first visible in the forward view of the subject 
vehicle. Note also that a parking lot is considered a roadway; 
thus, for instance, a barrier or light pole in the parking lot is 
considered an object in the roadway.

Distraction 1, 2, 3. Distractions involve observable driver 
engagement in any of the listed secondary tasks, beginning at 
any point during the 5–6 seconds before the onset of the pre-
cipitating event. Note that there is no lower limit for distrac-
tion duration. If there are more than three distractions present, 
select the most critical or those that most directly affect the 
event (defined by event outcome or closest in time to the 
event occurrence). Populate this variable in numerical order 
(if there is only one distraction, name it Distraction 1; if there 
are two, name them Distractions 1 and 2). This variable was 
modified and renamed Secondary Task 1, 2, 3 in a later update 
to the SHRP 2 dictionary.

Lead-Vehicle Precrash Scenario Type. This system of classi-
fying the crashes is based on the precrash scenarios from 
Najm and Smith (2007) corresponding to rear-end crashes. 
The categories are Scenario 22, following vehicle making a 
maneuver; Scenario 23, lead vehicle accelerating; Scenario 24, 
lead vehicle moving at lower constant speed; Scenario 25, lead 
vehicle decelerating; and Scenario 26, lead vehicle stopped.

2.9 Time-Series and Video Data

Time-series data describe the event over time at a sampling 
frequency that is specific to each variable. The time-series 
data used in this project are complex; the aim of this section 
is to provide only the essential details that are needed to 
understand the analyses, not a complete documentation as 
that would be too lengthy.

For all events (C, NC, RBL, MBL), SHRP 2–defined time-
series data variables were delivered by the data provider. All 
event data variables were delivered, as defined in the SHRP 2 
data dictionary (SHRP 2 Researcher Dictionary for Time-
Series Data, Version December 2, 2010). In addition to the 
SHRP 2 time-series variables, SAFER defined and requested 
that the data provider deliver additional time-series variables. 
Additional time-series variables were calculated after the data 
were delivered. This section describes the key processing 
issues and derivation of new variables that were done in addi-
tion to those provided in the SHRP 2 time-series data set.

Data Preprocessing

Once the data were downloaded from the VTTI Scholar web-
site, they were (1) processed to check quality and add new 
measures, (2) restructured to be compatible with the NatWare 
tools (Dozza 2010), and (3) complemented with information 
from the data dictionaries, demography, and vehicle type (to 
make them self-descriptive).

Data processing. Data processing consisted of running a 
script to read all events from VTTI, checking the consistency 
of the data, and deriving new measures (e.g., Eyes off Path). 
This step highlighted which data were available for each of the 
events and pointed out possible incongruences. For example, 
speed from GPS and the network must be highly correlated, 
and some values of acceleration are definitely impossible.

Data restructuring. Data restructuring is not essential but is 
of great help to simplify further analyses. In that respect it is a 
time investment at the beginning of the analyses. Besides mak-
ing the data more user friendly and self-explanatory, data 
restructuring improves computation speed and makes it 
harder for the analyst to make mistakes (e.g., data are not 
referred to by arbitrary indexes but by labels). Also, by restruc-
turing the data according to the NatWare 2.0 format, which is 
an evolution of the format used to analyze the 100-car public 
data (Dozza 2010), it was possible to reuse NatWare’s existing 
scripts and graphical user interfaces (GUIs) to speed up the 
analysis and pay off the time investment (Dozza 2013).

Data completion. Data completion, similar to data restruc-
turing, is not essential but highly desirable because it makes 
analysis easier and faster. The data dictionary, demographics, 
protocol, and vehicle information were linked through iden-
tifiers to the data in the database.
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Data quality analysis. The initial data processing (above) 
checked the data consistency and pointed to some quality 
issues. Further analyses identified other quality issues. The 
following key issues were identified and dealt with:

•	 Transition time coding procedure. The current International 
Organization for Standardization (ISO) standard specifies 
that glance time consists of transition time toward a target 
plus the subsequent dwell time on that target (ISO 15007). 
In Phase 1, we determined that the initial coding procedure 
added transition time to the preceding target’s dwell time 
(e.g., as in Klauer et al. 2006). The transition classification 
procedure was modified for the final data set so that transi-
tions were coded independently, thus enabling the researcher 
to add the transition time to the subsequent target’s dwell 
time (as in the ISO standard) or to the preceding target’s 
dwell time (as in Klauer et al. 2006). The present data set 
uses glance coding according to the ISO standard method 
with the transition time added to the subsequent target’s 
dwell time.

•	 Mask Head Tracker signal quality. In Phase 1, an evaluation 
of the feasibility of using the Mask Head Tracker for auto-
matic glance classification was performed by comparing it 
to manual video annotation. This evaluation indicated that 
it is not advisable to use head tracking data for Phase 2. 
Manual video annotation of eyeglances was chosen for 
Phase 2.

•	 Lead-Vehicle Precrash Scenario–type classification. This clas-
sification included difficulties in classification. The Najm 
and Smith (2007) descriptions were not as easily interpreted 
as we had hoped, and there seems to be a lot of room for 
interpretation. For example, we were uncertain how to deal 
with lane-change conflicts, conflicts occurring during turns 
at intersections, and in particular, conflicts when the lead 
vehicle was stopped. Najm and Smith (2007) state in the 
description of Scenario 26 (lead vehicle stopped), “In about 
50% of the lead vehicle–stopped crashes, the lead vehicle 
first decelerates to a stop and is struck afterwards by a fol-
lowing vehicle. This typically happens in the presence of a 
traffic control device or [when] the lead vehicle is slowing 
down to make a turn. Thus, this particular scenario overlaps 
with the lead vehicle–decelerating scenario.” As it is not stated 
how long the stop lasted, we decided to use the reaction-time 
point as the deciding time (if vehicle was stopped when the 
driver started to react, then Scenario 26; if decelerating but 
not yet stopped or never stops, then Scenario 25). Develop-
ment of standardized definitions is recommended.

•	 Data synchronization. Data synchronization quality issues 
were encountered and dealt with in various ways.

•	 Inconsistencies in format. Data formats were not uniform; for 
example, event data categories sometimes had additional 
spaces or commas or different spellings.

•	 Spatial offsets between sensors. When performing post
processing of radar with complementary data from manual 
annotation of the lead-vehicle width from video, the dis-
tance between the radar and the front facing camera for each 
unique car model is desired but not available. Radar–camera 
distance is used to get more accurate width estimates of the 
vehicle ahead and more seamless merging of the radar and 
lead-vehicle-width video annotation data sets. Additionally, 
to achieve optical parameters as the driver sees them; it 
would have been preferable to also know the forward-
looking camera position in relation to the head of the driver 
in different seating positions. As this is not available in the 
SHRP 2 data set, generic estimates were made. Also, the dis-
tance between the radar and the front bumper may play a 
(small) role in calibration.

•	 Subject-vehicle speed quality. The CAN speed precision, syn-
chronization, and general quality vary greatly between the 
different events. The CAN speed quality can thus be differ-
ent from one event to another. Several quality issues were 
identified, like gaps in the data (missing data) or low resolu-
tion (large “steps”). Furthermore, the sampling rate of the 
CAN speed varies from 1 Hz to 10 Hz. Reasonability checks 
of the data were performed throughout the project, one 
example being speed comparison between CAN speed data 
and video, and comparison between by GPS speed and CAN 
speed. The CAN data were processed to get the subject-
vehicle speed (SVspeed). Because of issues with synchro-
nization and SVspeed resolution, attempts were made to 
combine GPS speed data, CAN speed data, and accelerom-
eter data, but in the end only a simple linear interpolation 
of CAN speed was used. The interpolation was verified 
using integrated longitudinal acceleration. Analysis requir-
ing SVspeed excluded certain events for which CAN speed 
was missing (due to nonexisting CAN on older model cars), 
and this is noted where needed in the analyses.

•	 Radar data quality. The radar quality was problematic, and 
the radar signals were generally not used in the final analy-
ses. Instead, forward video manual annotation of vehicle 
width was used (see the time-series variable definitions 
below). Estimated range and range rate were derived from 
video-based width estimation.

VTTI is in the midst of conducting a project addressing 
radar quality (the VTTI RADAR data project). The objec-
tive of this project is to postprocess the data streams into 
measures characterizing driver behavior and forward con-
ditions through automated means, extracting the follow-
ing items from the radar:
44 Filter, interpolate, extrapolate;
44 Reorganize data to support analysis and research;
44 Select closest target in path of participant vehicle;
44 Eliminate ghost targets;
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44 Allow trip summary data to be calculated, including 
number of targets tracked, time headway, and time to 
collision;

44 Path prediction in the context of determining lead 
vehicles;

44 Parse targets into lanes; and
44 Develop and refine the necessary data to be applied to the 
crash and near-crash algorithms that use radar variables.
At this point there is insufficient information on the out-

come of the VTTI RADAR data project to comment on how 
the identified quality issues will be addressed in the future. 
We believe that the video-based techniques described in 
this report will help improve radar data quality. These tech-
niques can be used to fill in missing data, smooth data, and 
verify potentially inaccurate data. We recommend that 
researchers who are using radar data use forward video to 
provide verification and context to the radar data.

•	 Optical distortion in the forward video. When working with 
image processing or manual annotation of distances in 
an image, distortion of the image needs to be taken into 
account by rectification. Oak Ridge National Laboratory 
provided a set of calibration (checker board) videos and a 
first set of calibration parameters. However, after evalua-
tion of this first parameter set, it was determined that the 
edges and corners of the images were not rectified enough 
for use in this project. Recalibration was made, but this 
produced results similar to the Oak Ridge parameter set’s. 
Yet another recalibration was performed, more focused on 
edge rectification using the Camera Calibration Toolbox 
for MATLAB (Bouguet 2010). The new calibration param-
eters provided a significantly better rectification at the edges 
and corners of the image than the original data set and 
avoided much under- and overestimation of lead-vehicle 
widths when manually annotating video.

Duration of Events

For each event, 60 seconds of data from the data acquisition 
system were delivered if data were available in the trip for that 
period. For the crash events, the 60 seconds included 40 sec-
onds before and 20 seconds after the crash point. For the 
near-crash events, the 60 seconds included 40 seconds before 
and 20 seconds after the minimum distance to lead vehicle. 
For the random baseline events, 60 seconds of data were 
selected at random from the available data. For the matched 
baseline events, 60 seconds of data were selected according to 
the matching criteria below if that much data were available 
in that particular trip.

A prerequisite for many analyses was the manual video 
annotation of crash, near-crash, and baseline events. This 
manual video annotation produced, for example, glance 
behavior, event data, and data regarding lead-vehicle width (as 

specified below). Video annotation was performed by VTTI 
for all annotated variables except the lead-vehicle width, which 
was annotated by SAFER. For each event, VTTI manually 
annotated 20 seconds of data by viewing video and associated 
data (such as speed) for each frame of video. For the crash 
events, these 20 seconds included 15 seconds before and 5 sec-
onds after the crash point, with the additional requirement 
that the data should include at least 5 seconds before the 
precipitating event. For the near-crash events, the 20 seconds 
included 15 seconds before and 5 seconds after the minimum 
distance to lead vehicle, with the additional requirement that 
the data should include at least 5 seconds before the precipitat-
ing event. The minimum distance was used because it was eas-
ily determined by video annotators. For the matched baseline 
and random baseline events, the 20 seconds of data for manual 
video annotation were annotated in the middle of the corre-
sponding 60-second data from the data acquisition system (i.e., 
20–40 seconds into the 60 seconds).

Reference points. For time-series analyses, a reference point 
needs to be specified for each event type.

•	 Matched and random baseline reference points: For random 
baselines and matched baselines, the reference point was 
always set to 0 seconds at 15 seconds into the annotated 
20-second data set that was received from VTTI, and that 
can be seen as a random point.

•	 Crash event reference points: For most analyses here (Chap-
ters 6–8), crash events are aligned to the crash point (as 
determined from video annotation by VTTI) as the refer-
ence point and set to 0 seconds. In analyses concerned with 
the precipitating event (Chapter 5), each crash event is 
realigned, or shifted, to match up in time to the precipitating 
event, which is the reference point.

•	 Near-crash reference points: For most analyses here, near-
crash events are aligned to the optically defined minimum 
time to collision (minTTC) as the reference point and set to 
0 seconds. In analyses concerned with the precipitating 
event (Chapter 5), each near-crash event is realigned, or 
shifted, to match up in time to the precipitating event as the 
reference point. Note that the data were originally delivered 
from VTTI to SAFER with minimum distance as the refer-
ence point set to 0 seconds because that was easiest to deter-
mine from video before minTTC was known. After SAFER 
manually video annotated the lead-vehicle width for each 
near-crash, the near-crash events were realigned to minTTC 
as the reference point set to 0 seconds, instead of the mini-
mum distance point. MinTTC was chosen as the point 
within the near-crash event that was most safety critical.

The consequence of this change of the near-crash reference 
point meant that a 12-second window was the maximum 
length that was used that included all events before the crash 
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point or minTTC. This was because the minimum distance 
point for some near crashes was up to 3 seconds later than the 
minTTC. Therefore, the 12 seconds before the crash point (in 
crash events), 12 seconds before minTTC (in near-crash events), 
and 12 seconds before the reference point in the matched and 
random baselines was chosen as the primary common time 
period for analyses.

In analyses using data from manually coded lead-vehicle 
width (Chapters 7 and 8), a shorter time window is used 
because of limitations related to the size of the lead vehicle at 
far distance, as described there.

Manual annotation of vehicle width in forward video. Given 
that the radar data were difficult to work with, a method was 
developed to derive kinematic and optical variables related to 
the lead vehicle (LV) by manually annotating lead-vehicle 
width in forward video. After an image rectification, the lead-
vehicle-width annotation was performed for all crash, near-
crash, and matched baseline events by viewing forward video 
and clicking on the outer edges of the left and right brake 
lights in every other video frame in a purpose-built tool. 
Random baselines were not annotated as they did not con-
tain much lead-vehicle presence. The main steps of annota-
tion are chronologically listed below.

The real lead-vehicle width was set by identifying the car 
model or by selecting a standard width. After applying the dis-
tortion rectification on the frames, the LV width was annotated. 
The annotation process was done on every other frame; there-
fore the annotation had a frequency of 7.5 Hz. To transform 
this annotation into the range between the SV and the LV, the 
following steps were undertaken: (1) apply a square-kernel 
smoothing filter on the annotated signal (see definition of 
filtered lead-vehicle pixel width), (2) up-sample the signal  
to 15 Hz, (3) transform the annotated pixel width into the 
range between the LV and the SV. The spatial offset between 
the camera and the front bumper was set to 2.128 meters (see 
definition of range).

For analyses using lead-vehicle-width-derived data (Chap-
ters 7 and 8), we used a window of annotated lead-vehicle 
data (in crash events) from -10 seconds preceding the crash 
point (0 seconds) until 2 seconds after, (in near-crash events) 
from -10 seconds preceding the minTTC (0 seconds) until 
2 seconds after, and (in matched baselines) from -10 sec-
onds preceding the baseline reference point (0 seconds) 
until 2 seconds after.

Inter-rater reliability testing was performed as part of the 
process to ensure quality of the lead-vehicle-width coding. 
This method was developed and described by Bärgman et al. 
(2013) using Video Even Recorders. According to Bärgman 
et al., the method accurately predicts ranges less than 10 meters. 
For ranges between 10 meters and 40 meters (car following), 
the error is less than 5% if the lead-vehicle-width estimation 
is accurate. The method should be used with care for ranges 

over 40 meters. To ensure high quality (low variance between 
annotators) of data used for analysis, a training process was 
used. Two events were annotated by five human reductionists 
(annotators) and analyzed for variability in coding. The results 
confirmed the conclusions from Bärgman et al. (2013) that 
annotator comparability is high for ranges up to 40 meters. The 
closer the lead vehicle, the more comparable (smaller coding 
variation, measured by smaller standard deviation) different 
annotations are.

Eyeglance Time-Series Variables

Glance Location. Eyeglance locations were manually annotated 
by VTTI by viewing the driver face video for every video frame 
(15 Hz). Technically, these glance locations are actually dwell 
times, as the transitions are coded separately (see ISO 15007). 
The following categories and locations were used.

•	 -4. No Video. Unable to complete glance analysis because 
the face video view is temporarily unavailable. Note that 
this sometimes occurs for one to two syncs at a time, and a 
“video not available” message may appear. If the glance 
location is the same before and after this occurs and the 
period is only one to two syncs long, then code through 
this period as the glance location present before and after. 
If the video-not-available period is longer than two syncs 
or it occurs during a transition, use the “No Video” option.

•	 -3. Transition. Any frame that is between fixations as the 
eyes move from one fixation to the next. Note that the eyes 
often fixate while the head is still moving. This category is 
based on the eye’s fixation rather than the head’s move-
ment, unless sunglasses preclude the eyes from being seen.

•	 -2. No Eyes Visible. Glance location unknown: Unable to 
complete glance analysis due to an inability to see the 
driver’s eyes/face. Video data are present, but the driver’s 
eyes and face are not visible due to an obstruction (e.g., 
visor, hand) or glare. Use this category when there is no 
way to tell whether the participant’s eyes are on or off the 
road. This is the default and most often used “unknown” 
option, but there may be times when the “off road” option 
listed below may be appropriate.

•	 -1. Not annotated. Time-series data for which glance anno-
tation was not performed.

•	 Forward (Center). Any glance out the forward windshield 
directed toward the direction of the vehicle’s travel. Note 
that when the vehicle is turning, these glances may not be 
directly forward but toward the vehicle’s heading. Count 
these as forward glances. Note also that when the vehicle is 
driving in reverse, forward will be out the back window.

•	 Left Windshield. Any glance out the forward windshield 
when the driver appears to be looking specifically out the 
left margin of the windshield (e.g., as if scanning for traffic 
before turning or glancing at oncoming traffic). This glance 
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location includes anytime the driver is looking out the 
windshield but clearly not in the direction of travel (e.g., at 
road signs or buildings).

•	 Right Windshield. Any glance out the forward windshield 
when the driver appears to be looking specifically out the 
right side of the windshield (e.g., as if scanning for traffic 
before turning, at a vehicle ahead in an adjacent lane, or 
reading a road sign). This glance location includes anytime 
the driver is looking out the windshield but clearly not in 
the direction of travel (e.g., at road signs or buildings).

•	 Left Window/Mirror. Any glance to the left-side mirror or 
window.

•	 Right Window/Mirror. Any glance to the right-side mirror 
or window.

•	 Rearview Mirror. Any glance to the rearview mirror or 
equipment located around it. This glance generally involves 
movement of the eyes to the right and up to the mirror. 
This includes glances that may be made to the rearview 
mirror to look at or interact with back seat passengers.

•	 Over-the-Shoulder (left or right). Any glance over either of 
the participant’s shoulders. In general, this will require the 
eyes to pass the B-pillar. If over the left shoulder, the eyes 
may not be visible, but this glance location can be inferred 
from context. Note that if it is clear from context that an 
over-the-shoulder glance is being made not to check a 
blind spot but instead to interact with a rear seat passenger 
(e.g., food/toy is being handed back), then code the glance 
as Passenger. If context cannot be known with a high level 
of certainty, then code as Over-the-Shoulder.

•	 Instrument Cluster. Any glance to the instrument cluster 
underneath the dashboard. This includes glances to the 
speedometer, control stalks, and steering wheel.

•	 Center Stack. Any glance to the vehicle’s center stack (verti-
cal). Not to be confused with center console (cup holder area 
between driver and passenger), which is discussed under 
Interior Object.

•	 Cell Phone (electronic communications device). Any glance at 
a cell phone or other electronic communications device 
(e.g., Blackberry), no matter where it is located. This includes 
glances to cell phone–related equipment (e.g., battery 
chargers).

•	 Portable Music Player (iPod or similar MP3 device). Any 
glance at an iPod or other personal digital music device, no 
matter where it is located.

•	 Interior Object. Any glance to an identifiable object in the 
vehicle other than a cell phone. These objects include per-
sonal items brought in by the participant (e.g., purse, food, 
papers), any part of the participant’s body that he or she 
may look at (e.g., hand, ends of hair), electronic devices 
other than cell phones (e.g., laptop, PDA), and also original 
equipment manufacturer (OEM)–installed devices that 
don’t fall into other categories (e.g., door lock, window and 

seat controls). Glances to the center console (cupholder area 
between passenger seat and driver seat) are also included in 
this category. The object does not need to be in the camera 
view for a specific frame to be coded with this category. If it 
is clear from surrounding video that the participant is look-
ing at the object, this category may be used. This category 
can be used regardless of whether the participant’s hands 
are/are not visible. Note that if the driver is looking at some-
thing that the passenger is handing over, code the eyeglance 
as Passenger until the object is fully in the driver’s hand, 
then code it as Interior Object (unless it is a cell phone, in 
which case code it as Cell Phone). Also, if the driver is look-
ing at something that the passenger is holding (but never 
hands to the driver), code it as Passenger Glance (not Inte-
rior Object). Individual studies may ask reductionists to 
identify objects in logs or drop down menus, or may cate-
gorize specific objects as Systems of Interest.

•	 Passenger. Any glance to a passenger, whether in front seat 
or rear seat of vehicle. Context will be needed (e.g., they’re 
talking or handing something) to determine this in some 
situations. Note that this does not include glances made to 
rear seat passengers via the rearview mirror. Such glances 
should be coded as Rearview Mirror. Note that if the driver 
is looking at something that the passenger is handing over, 
code the eyeglance as Passenger until the object is fully in 
the driver’s hand, then code it as Interior Object (unless it 
is a cell phone, in which case code it as Cell Phone). Also, if 
the driver is looking at something that the passenger is 
holding (but never hands to the driver), code it as Passenger 
Glance (not Interior Object).

•	 Other. Any glance that cannot be categorized using the 
above codes. The lab manager should be informed of any-
thing that could fall under this category, for appropriate 
follow-up. Some preapproved uses of the Other option are 
the following: when the driver is looking forward and then 
looks straight up at the sky as if watching a plane fly by; and 
when the driver is tilting his or her head back to drink and 
the eyes leave the forward glance but do not really focus on 
anything at all.

•	 No Eyes Visible. Eyes Are off Road. Unable to enter specific 
glance location due to an inability to see the driver’s eyes/
face. However, it is clear that the participant is not looking 
at the roadway. Video is present, but the driver’s eyes and 
face are not visible due to an obstruction (e.g., visor, hand), 
head position, or glare. Use this category when the eyes are 
not visible, and it is not clear what the participant is look-
ing at, but the eyes are obviously not on the roadway.

•	 Eyes Closed. Any time that both the participant’s eyes are 
closed outside of normal blinking (e.g., the subject is falling 
asleep or rubbing eyes). As a rule of thumb, if the eyes are 
closed for five or more timestamps (1⁄3 second) during a slow 
blink, code it as Eyes Closed. Otherwise, code it as the Glance 
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Location present before the eyes closed. If one eye remains 
open, code the location according to the open eye. If only one 
eye is visible, code according to the visible eye.

Eyes on Path. Eyes on Path represents a reduction of the 
Glance Location variable that is converted into Eyes-on-Path 
and Eyes-off-Path glances. It has three values: Eyes on Path, 
Eyes off Path, and Not a Number (NaN). First, glances are cre-
ated by adding transition time toward a target to the subse-
quent dwell time on that target (ISO 15007 definition). Note 
that the Glance Location variable has transitions separately 
coded. Thus, Eyes on Path corresponds to the Forward (Center) 
Glance Location with transitions added. Eyes off Path corre-
sponds to Glance Location Categories 1–15 with transitions 
added. NaN corresponds to cases in which glance location was 
unknown (Glance Location Categories -2 and -1). There 
were no instances of No Video (Category -4). Eye closures 
were examined to decide how to handle them in relation to the 
Eyes-off-Path glance time-series variable. An eye closure was 
coded if the eyes were closed for five or more timestamps 
(1⁄3 second). In total, there were only eight eye closures in the 
entire data set. The duration of these ranged from 1⁄3 second to 
3 seconds. In random baselines, there were two eye closures 
between 1⁄3 and 1 second long. In near crashes, there were two 
eye closures lasting between 1⁄3 and 1 second and one eye clo-
sure, between 2 and 3 seconds. In crashes, there were two eye 
closures between 1⁄3 and 1 second duration and one between 
1 and 2 second duration. Based on these results, eye closures 
were coded as Eyes off Path. The following variables were 
derived using the Eyes off Path time-series variable above:

•	 Proportion of Eyes off Path. Proportion (a proportion from 
0 to 1) of time the eyes were off path during a given period 
of time. These include Off5to1afterPE, Off5to3PE,  
Off3to1PE, Off1to1afterPE, Off11to9, Off9to7, Off7to5, 
Off5to3, Off3to1, and Off1to1after. For example, Off5to1
afterPE denotes the proportion of time the eyes were off 
path in the 5 seconds before until 1 second after the precipi-
tating event, Off1to1afterPE is from 1 second before until 
1 second after the precipitating event, and so on. Similarly, 
Off3to1 denotes the proportion of time the eyes were off 
path from 3 seconds before until 1 second before the crash 
point (in crash events) or minimum time to collision (in 
near-crash events). Likewise, Off11to9 is from 11 seconds 
before until 9 seconds before the crash or minTTC point. 
These variables are directly comparable to the Total Eyes off 
Roadway Time (TEORT) variable used previously by, for 
example, Klauer et al. (2006) and to the Percent Road Cen-
ter variable used by Victor et al. (2009) and evaluated in the 
multidistraction detection algorithm in NHTSA (2013).

•	 Eyes off Path. The amount of time (in seconds) the eyes were 
off path longer than a certain amount within a given period 

of time. These include Off0, Off0.1-0.5, Off0.5-1.0, Off1.0-
1.5, Off1.5-2.0, and Off2.0-6.0. For example, Off0.1-0.5 
denotes the number of observations with Eyes off Path 
between 0.1 and 0.5 second in the 5 seconds before and 
1 second after the precipitating event. Similarly, Off2.0-6.0 
is the number of observations with Eyes off Path between 2 
and 6 seconds in the 5 seconds before and 1 second after the 
precipitating event, and so on. This variable was defined as 
a categorical variable so that each window of 6 seconds 
could be classified as belonging to one mutually exclusive 
category or another.

•	 tg.off. Total glance time off path, the amount of time (in 
seconds) the eyes were off path in the 12 seconds before 
and 1 second after the crash or minTTC.

•	 Overlap. The duration of a glance that overlaps (inter-
sects) with the 2-second point before the crash or minTTC. 
This can be either on the path (overlap.on) or off the path 
(overlap.off).

•	 pre.overlap. The duration of a single glance immediately 
preceding the off-path glance that overlaps with the 2-second 
point before the crash or minTTC. This can be either on 
the path (pre.overlap.on) or off the path (pre.overlap.off).

•	 max.off. The maximum off-path glance duration in the 
12 seconds before the crash or minTTC.

•	 min.on. The minimum on-path glance duration in the  
12 seconds before the crash or minTTC.

•	 Glances. The number of glances in the 12 seconds before 
the crash or minTTC.

•	 Complexity. A composite measure of off-path glance sequence 
complexity, according to Gabadinho et al. (2011). The index 
uses the number of transitions in the sequence as a measure 
of the complexity induced by the state ordering and the 
longitudinal entropy as a measure of the complexity induced 
by the state distribution in the sequence.

•	 Uncertainty. A composite measure based on the “uncertainty 
model” of the driving situation (Senders et al. 1967). These 
include uncertainty.3to1, min.uncertainty, m.uncertainty, 
and max.uncertainty. The model is based on the assumption 
that during off-path glances, uncertainty cumulatively 
increases about the road and the possible presence of other 
vehicles or obstacles, and that certainty cumulatively increases 
during on-path glances. Uncertainty.3to1 is the value in the 
3 seconds to 1 second before the crash or minTTC point. 
Min.uncertainty is the minimum value in the 12 seconds 
before the crash or minTTC, m.uncertainty is the mean 
value in the 12 seconds before the crash or minTTC, and 
max.uncertainty is the maximum value in the 12 seconds 
before the crash or minTTC.

Other Time-Series Variables

Event Time. The time domain within each event plays out 
with negative values before 0 seconds—which is defined as 
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the crash point in crash events and the minimum time to col-
lision in near-crash events, and is set at 15 seconds into the 
video annotated data in the random and matched baseline 
events.

Driver Reaction Point. The onset of the first visible reaction 
of the subject-vehicle (SV) driver to the principal other vehi-
cle, that is, the time at which the driver is first seen to recog-
nize and begin responding to the event. This can involve any 
physiological reaction including body movement, posture, a 
change in facial expression, a movement of the leg toward the 
brake—whichever came first. Note that this is a time-series 
variable and different from the Driver Reaction event data 
variable, which is a specification of how the driver reacted 
(e.g., braking or steering) rather than a specific timestamp 
(when) as is defined here.

Start of Evasive Maneuver. Ideally the point when the driver 
is initiating a brake or steering response, but here defined as 
the first time after the driver reaction point (time) when the 
SVspeed has a negative derivative (i.e., deceleration). If the 
derivative is negative already at the Driver Reaction Point, 
the Driver Reaction Point is used as the Start of Evasive 
Maneuver.

Lead-Vehicle Pixel Width. The manually annotated (video-
reduced) width of the lead vehicle in pixels, as seen from the 
forward video. This is used for all optical parameter and 
range/range rate–based variables. The annotations are made 
on rectified (undistorted) images.

Filtered Lead-Vehicle Pixel Width. Limited resolution, noise, 
and compression artifacts combined with the human factor 
(reductionist precision in “clicking” at the edges of the lead 
vehicle) lowers the ability to consistently and accurately detect 
lead-vehicle pixel width over subsequent frames (for more 
detail, see Bärgman et al. 2013). In addition, the tool used for 
lead-vehicle-width annotation has a limited subpixel resolu-
tion. The noise propagates to the calculation of optical variable 
(Theta, ThetaDot, Tau, invTau, etc.) and range-based variables 
(range and range rate). This noise is especially problematic 
for quantities involving a time derivative (e.g., ThetaDot and 
invTau) and especially at low pixel widths, for which the esti-
mation uncertainty is large compared with the pixel width 
being estimated. Therefore, a square-kernel smoothing filter 
(convolution-like) with amplitude-adapted width is applied 
to the raw manually reduced pixel width time-series data. The 
basic idea behind the filter is as follows: Assuming there is 
a certain pixel width, W0, for which only one observation is 
enough to satisfactorily determine the pixel width, combined 
with the assumption of Gaussian noise with constant vari-
ance regardless of the pixel width being measured, a con-
stant relative uncertainty can be obtained by averaging N = 
(W0/W)2 observations. This expression can be obtained by 
noting that if the measured pixel width W is normally distri
buted around the true value W*, with variance s2, the average 

of N measurements is also normally distributed around W*, 
but with variance sN

2 = s2/N. Thus, to obtain a certain relative 
error C = sN/W*, we need N = s2/C2W*2 measurements, and 
we can set C by choosing a W* = W0 for which we believe that 
N = 1 yields an acceptable relative error. As only one observa-
tion is available at each frame, the observed pixel widths from 
N consecutive frames are averaged. Rapid changes in the dis-
tance to the lead vehicle may result in rapid changes in the 
observed pixel width, which violates the assumption that N 
consecutive frames could be averaged. Therefore, the maxi-
mum kernel size is limited, and the filter is applied multiple 
times instead.

On the one hand, as the filter size is adaptive, an observa-
tion at time ti with a filter width of Ni is influenced by a 
higher-amplitude observation at ti+k if k ≤ Ni/2. On the other 
hand, the observation at time ti+k is not influenced by the 
observation at time ti if k > Ni+k/2. Thus, the filter does not 
conserve the energy of the signal, but given other sources of 
error for this application, the effect should be negligible.

Practically, this filter runs a square-kernel across the raw 
lead-vehicle pixel width time series, averaging across a dynamic 
number of width measurements (frames). The number of mea-
surements used (kernel width) was determined by N = (W0/W)2, 
where we used W0 = 170 pixels, where W is the measured pixel 
width at each point in time. The implementation we used ran 
the filter three consecutive times and we allowed the N (kernel 
width) to be a maximum of only 5 pixels to minimize peak 
attenuation and phase shift. An example application can be 
seen in Figure 2.3.

Range. The time-series range from the following vehicle to 
the lead vehicle, in meters. Calculated via manual annotation 
of lead-vehicle width in pixels, calculated as Range = Wreal/
Wpixels * f - Roffset, where Wreal is the estimated real width of the 
lead vehicle, Wpixels is the filtered annotated width of the lead 
vehicle in pixels, f is the focal length of the camera in pixels, 
and Roffset is the mean offset between the camera and the front 
bumper estimated from crashes. The real width of the lead 
vehicle was estimated by either identifying vehicle make and 
model from the image or, when that was not possible, using 
standard category widths per vehicle type (Table 2.2). The 
mean Roffset between the camera and the front bumper was 
estimated by getting the mean of the range at the time of 
crash (i.e., only crashes), M = 2.13 m, SD = 0.25 m.

Range Rate. The time-series range rate between the subject 
vehicle and the lead vehicle—that is, the derivative of the 
range between the two vehicles, effectively the relative speed, 
in meters per second. The derivative of the range was made 
with a three-point floating window linear regression.

Subject-Vehicle Speed (SVspeed). The time-series speed of 
the following (instrumented) vehicle throughout the event; 
interpolated CAN speed.
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Lead-Vehicle Speed (LVspeed). The time-series speed of the 
lead vehicle throughout the event, calculated by adding 
SVspeed and range rate.

Theta (q). The angle of the rear end of the lead vehicle, as 
seen from the camera. The lead-vehicle pixel width is manu-
ally annotated on a rectified image. Calculated by Theta = 2 * 
arctan(Wpixels/(2 * f )), where Wpixels is the filtered manually 

Table 2.2.  Standard Lead-Vehicle 
Widths

Vehicle Type Standard Width (m)

Coupe 1.7

Sedan 1.75

Wagon 1.76

SUV 1.8

Pickup truck ~1.9

Semitrailer truck 2.5

Van 2.5

Car trailer ~1.9

Large car trailer 2.1

Customized sports car 1.82

Note: The “standard” lead-vehicle widths were used when 
make and model could not be extracted from images. 
For use in transformation from pixel width to range.

annotated lead-vehicle width, and f is the camera focal length 
in pixels.

ThetaDot (q-dot). The optical expansion of the rear of the 
lead vehicle. ThetaDot = d(Theta)/dt. The derivative is practi-
cally calculated through a three-point floating window linear 
regression.

Tau (t). Calculated by Tau = Theta/ThetaDot.
invTau (t-1). Calculated by invTau = 1/Tau.
Time to Collision (TTC). The time left until crash, given no 

actions by either the lead or the following (subject) driver. Two 
different uses/definitions. See Inverse Time to Collision.

Minimum Time to Collision (minTTC). The smallest TTC 
in the event. Set to zero at the crash point for crashes. See also 
Inverse Time to Collision.

Inverse Time to Collision (invTTC). In this analysis, invTau 
has two different definitions. First, it is the simple range rate 
divided by range (as defined previously). This version of 
invTTC (and TTC alike) is used in only a few sections in the 
report. In those cases, it is explicitly stated that invTTC is the 
range rate over range implementation. Second, in most parts 
of the report, invTTC is calculated through optically defined 
TTC, estimated directly from the optical angle in terms of 
Tau (t)—that is, Theta (q) divided by its time derivative 
ThetaDot (q-dot) (Lee 1976). This assumes small angles. 
Optically, q and q-dot characterize the looming (optical 
expansion) of the lead vehicle. An advantage of using the 
optically (rather than the physically) specified TTC is that 

Figure 2.3.  Annotated (raw) and filtered lead-vehicle pixel width in 
relation to filter size.
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this is the type of information that humans presumably use 
to perceive and control the situation kinematics in driving 
and other forms of locomotion (although it is debated exactly 
what optical information is used for different types of tasks). 
Another benefit of using optically defined TTC is that no esti-
mate of the real lead-vehicle width is needed, minimizing 
sources of error. Since TTC goes to infinity at zero relative 
velocity (e.g., at constant distance in normal following situa-
tions), its inverse 1/TTC—referred to as invTTC—is used in 
most analyses. Note that a main difference between the range 
rate/range implementation and the optical implementation 
is that the former is the estimated invTTC at the vehicle 
bumper, while the latter is the invTTC at the camera (by the 
rearview mirror).

Time Headway (Headway). The headway and closing dis-
tances were calculated on the basis of optical variables man-
ually annotated from the forward video, as further described 
above. The headway between the subject vehicle and lead 
vehicle was calculated on the basis of the manually anno-
tated optical angle q subtended by the POV at the camera 
and assumptions on vehicle width (see Range), as well as the 
SVspeed.

Model-Estimated Injury Risk (MIR) index. An index related 
to the risk of an injury of a specific level (MAIS3+) for an 
event, given a hypothetical driver behavior (glance off-path 
behavior) and simulated following-vehicle kinematics, calcu-
lated through mathematical simulations.

Model-Estimated Crash Risk (MCR) index. An index related 
to the probability of an event becoming a crash, given a hypo-
thetical driver behavior (glance off-path behavior) and 
simulated following-vehicle kinematics, calculated through 
mathematical simulations.

Delta Velocity (DeltaV). Change in velocity of the involved 
vehicles because of the crash. This variable takes into account 
masses, and in our implementation assumes a fully plastic 
impact. It is based on range rate at impact and only available 
for crashes. For details, see Appendix A.

Maximum Severity Delta Velocity (MSDeltaV). The relative 
velocity at impact if the subject vehicle continues with the 
same speed as just before the start of evasive maneuver (that 
is, not performing any evasive maneuver), multiplied with 
the mass ratio m2/(m1 + m2), where m1 and m2 are masses of 
the two involved vehicles, where m2 is the heavier of the two. 
For details, see Appendix A.
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C h a p t e r  3

This analysis primarily focuses on providing the context for 
which subsequent analyses can be interpreted. It provides an 
orientation regarding the context, conditions, and driver 
demographics from which the data were collected. It also aims 
to confirm the matching criteria for the matched baselines.

For each descriptive variable, differences were inspected 
among the four event types: random baseline, matched base-
line, near crash, and crash. In some cases, such as demo-
graphic variables (e.g., age), it was not appropriate to include 
a matched baseline because the variable is guaranteed to 
match the combined crash/near-crash population. However, 
random baseline, near-crash, and crash events can vary on 
demographics. Event-type constraints are indicated in each 
section.

Logistic regression using either a binomial (for comparing 
two event types) or multinomial (for comparing more than 
two event types) distribution function was used to test 
whether descriptors differ among event types. Event type was 
treated as the dependent measure, and each descriptor was 
tested individually.

3.1 Overview of Differences

Crashes differed significantly from near crashes in the follow-
ing ways. There were more younger drivers and more older 
drivers in crashes than near crashes, and the crash-involved 
drivers had driven less mileage in the previous year. There 
were more “lead vehicle stopped” (precrash Scenario 26) in 
crashes and more “lead vehicle decelerating” (precrash Sce-
nario 25) in near crashes. Similarly, regarding the precipitat-
ing event types, there were more “vehicle slowed and stopped 
for less than 2 seconds” in crashes and more “vehicle deceler-
ating” in near crashes. Crashes involved a greater proportion 
of “no driver reaction” (17%) and “braking with lockup” 
(15%); near crashes involved more “braking without lockup” 
and more “braking and steering.” Crashes were also more 
likely to include a visual obstruction than near crashes, and 

more likely to occur in rainy or clear weather than near 
crashes, which were more likely to occur in cloudy condi-
tions. Crashes and near crashes were found with different 
triggers.

Crashes and near crashes did not significantly differ with 
regard to preincident maneuver, relation to junction, traffic 
flow, locality, traffic density, number of travel lanes, or mean 
speed.

When comparing all four event types, we found significant 
differences in relation to junction, traffic flow, locality, traffic 
density, and travel lanes, with a marginally significant differ-
ence for weather. Among demographic variables, gender and 
driving experience did not differ by event type.

With regard to the 11 matching criteria for matched baselines 
and their corresponding CNC events, the degree of matching 
was high:

  1.	 Same driver—required and met.
  2.	 Must not overlap in time with the crash or near-crash 

event—required and met.
  3.	 Must have a maximum amount of 1.5 seconds of stand-

still (<0.1 km/h)—required and met.
  4.	 Traffic flow should be matched to divided or undivided—

met.
  5.	 The relation to intersection should be matched (not 

including interchange)—met for crashes; near crashes 
were more likely to be at intersections or intersection-
related than their matched baselines, which were more 
likely to not be at a junction.

  6.	 The event should be taken from the same trip—78% of 
the crash–matched baselines and 79% of the near-crash–
matched baselines were taken from the same trips.

  7.	 Speed should not vary more than ±15 km/h in compari-
son with the crash or near-crash event—met.

  8.	 The event should be matched according to adverse weather 
(if present in crash or near crash)—met.

  9.	 Locality should be matched to limited access or not—met.

Differences Between Event Types  
in Descriptive Variables
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10.	 Traffic density should be within one category—met.
11.	 Daylight should be matched to day or night—met.

3.2 �Differences in  
Descriptive Variables

Age

The distribution of age groups is shown in Figure 3.1. The fig-
ure indicates that both older and younger drivers are more rep-
resented in crashes than in other event types. Logistic regression 
using age groups as indicated in the figure showed a signifi-
cant effect of age [Wald X2 (14) = 29.9, p = 0.0079]. The model 
indicates that, as shown in the figure, older and younger drivers 
are significantly overrepresented in crashes, relative to ran-
dom baseline and near crashes. Random baseline events also 
include more older drivers than near crashes do.

Gender

Driver gender did not significantly differ between event types. 
The male (M)/female (F) distribution was as follows: ran-
dom baselines (53% M, 47% F), matched baselines (52% M,  
47% F), near crashes (52% M, 47% F), and crashes (52% M, 
48% F).

Mileage

In the driving history questionnaire, drivers responded to the 
question “Approximately how many miles did you drive last 
year?” Mileage was treated as a continuous variable in the 
logistic regression, and it was marginally significantly associ-
ated with event type [Wald X2 (2) = 5.72, p = 0.0570]. Mileage 
for crashes (x– = 9,000) was lower than for near crashes (x– = 
12,840) and random baselines (x– = 12,082).

Precrash Scenario Types

The precrash scenario types, as defined by Najm and Smith 
(2007), are shown for crashes and near crashes in Figure 3.2. 
All but one crash and six near crashes fell into the two catego-
ries of Lead Vehicle Decelerating and Lead Vehicle Stopped. 
Lead Vehicle Stopped is a common source of confusion, as it is 
often interpreted as the subject vehicle approaching a lead 
vehicle that was stopped from the beginning. Recall that the 
team decided to use the reaction-time point as the deciding 
time (if stopped when the driver started to react, then Sce-
nario 26; if decelerating but not yet stopped or never stops, 
then Scenario 25). Logistic regression indicates that crashes 
are significantly more likely to fall into the Lead-Vehicle-
Stopped Scenario, while near crashes are more likely to fall into 

Figure 3.1.  Percentage of random baselines, near crashes, and crashes by driver age.
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The Lead-Vehicle-Decelerating Scenario [Wald X2 (1) = 8.44, 
p = 0.0037].

Precipitating Events

The distribution of precipitating events for crashes and near 
crashes is shown in Figure 3.3. Many categories were repre-
sented by only one or two events, so for analysis purposes, 
these were recoded into three categories: (1) Other or subject 
vehicle decelerating, (2) Other or subject vehicle slowed and 
stopped for less than 2 seconds, and (3) Other or subject vehi-
cle stopped in roadway for more than 2 seconds. Other cate-
gories in Figure 3.3 had too few observations to include in 
analysis, so they were dropped. The distribution of these cat-
egories differed significantly for crashes and near crashes 
[Wald X2 (2) = 8.67, p = 0.0131] such that crashes were more 
likely to involve a vehicle slowed and stopped for less than  
2 seconds, while near crashes were more likely to involve a 
vehicle decelerating.

Trigger Type

Trigger type for finding crashes and near crashes was not ana-
lyzed statistically but is presented here in Figure 3.4. The 

trigger represents the filter component by which a given event 
was included in the set of cases to be evaluated further through 
video review. These triggers can introduce certain qualities 
in the events that are likely to drive the overall differences 
between crashes and near crashes. The near crashes were 
almost entirely found using a high deceleration threshold. 
Crashes were found primarily through site reports and Auto-
matic Crash Notification (ACN). ACN is a VTTI-proprietary 
real-time crash detection algorithm with unknown trigger 
values. Given the differences in how crashes and near crashes 
were found, it is unlikely that the events are homogeneous in 
origin. Wu and Jovanis (2012) discuss the implications of 
using dissimilar filters when crash and near-crash events are 
analyzed jointly.

Driver Reaction

Driver reaction was significantly different for crashes and 
near crashes [Wald X2 (7) = 25.29, p = 0.0007]. The pattern  
of reaction is shown in Figure 3.5. Crashes involve a greater 
proportion of no reaction (17%) and braking with lockup 
(15%) than near crashes. In near crashes, braking without 
lockup made up 75% of cases, and braking and steering made 
up another 18% of near crashes.

Figure 3.2.  Percentage of precrash scenarios in near-crash and crash events, according  
to precrash Scenarios 22–26 from Najm and Smith (2007).
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Visual Obstructions

Visual obstructions were originally categorized into a variety of 
elements as shown in Figure 3.6. However, since there were few 
observations in each unique category, we recategorized the 
data into “Obstruction Present” and “No Obstruction.” Based 
on this simple categorization, crashes were significantly more 
likely to include an obstruction compared with near crashes 
[Wald X2 (1) = 4.54, p = 0.0331]. Nonetheless, 70% of crashes 
and 83% of near crashes involved no visual obstruction.

Speed

Mean speed did not differ for crashes and near crashes, but it 
did differ between crash/near-crash events and random base-
line events [Wald X2 (3) = 28.61, p < 0.0001]. Mean speed was 
57.1 km/h during random baselines, 52.2 km/h during matched 
baselines, 46.6 km/h during near crashes, and 39.8 km/h during 
crashes. The lower speeds during crash and near-crash events 
may be due to slowing in response to the precipitating event.

Maximum speed also varied as a function of event type 
across the four events [Wald X2 (3) = 17.32, p = 0.0006], but 
the difference between near crashes and crashes was only 

marginally significant [Wald X2 (1) = 3.18, p = 0.0746]. Maxi-
mum speed was highest in random baselines (62.2 km/h on 
average), followed by matched baselines (59.0 km/h), near 
crashes (55.7 km/h), and crashes (48.1 km/h). See Figure 3.7.

Speed Similarity Between Matched Baselines 
and Crashes/Near Crashes

A matching criterion was requested such that the matched 
baseline events should be within ±15 km/h of their corre-
sponding crash or near-crash event. Mean speed was signifi-
cantly lower for near crashes compared with their matched 
baselines [Wald X2 (1) = 6.98, p = 0.0082] but within the 
±15 km/h criteria. Crashes were not different from their 
matched baselines. Similarly, maximum speed was margin-
ally lower for near crashes compared with their matched 
baselines [Wald X2 (1) = 3.33, p = 0.0679] but not different for 
crashes. Means across events are shown in Table 3.1.

Traffic Flow

Traffic flow is defined as “roadway design (including the pres-
ence or lack of a median) at the start of the precipitating 

Figure 3.3.  Percentage of precipitating events in near-crash  
and crash events.
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event. If the event occurs at an intersection, the traffic flow 
conditions just before the intersection should be recorded.”

Crashes and near crashes were not different from their 
matched baseline cases or from each other on traffic flow. 
However, crashes, near crashes, and all matched baselines 
were different from random baselines on this variable [Wald 
X2 (12) = 36.50, p = 0.0003]. See Figure 3.8. In particular, 
random baseline events were more likely than the other three 
event types to occur on undivided roads.

Relation to Junction

Relation to junction is defined as “the relation of the involved 
driver or drivers to a junction (point where two roads meet) 
at the time of the start of the precipitating event. If the inci-
dent occurs off of the roadway, the relation to junction is 
determined by the point of departure. Note that this is differ-
ent than GES in that this database records relation to junction 

at the beginning of the precipitating event, while the GES 
manual codes this variable at the beginning of the first harm-
ful event.”

Crashes did not differ from their matched baselines on 
relation to junction, but near crashes did [Wald X2 (7) = 33.60, 
p < 0.0001]. Near crashes are more likely to be at intersections 
or to be intersection-related, while their matched baselines are 
more likely not to be at a junction. Across all event types, this 
pattern was significant, with crashes and near crashes more 
likely to be at or related to an intersection and both baseline 
types not at a junction [Wald X2 (24) = 85.41, p < 0.0001]. 
This pattern is shown in Figure 3.9.

Locality

Locality is defined as “the best description of the surround-
ings at the time of the start of the precipitating event. If there 
are any commercial buildings, indicate as business/industrial 

Figure 3.4.  Percentage of trigger types that found near-crash and crash events.
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Figure 3.5.  Percentage of driver reactions for near-crash and crash events.

Figure 3.6.  Percentage of visual obstructions in near-crash and crash events.
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Table 3.1.  Comparison of Speed Similarity Between 
Matched Baselines and Crashes/Near Crashes

Event Type
Mean Speed 

(km/h)
Maximum 

Speed (km/h)

Crash 39.8 48.1

Matched baseline for crash 46.2 53.3

Near crash 46.6 55.7

Matched baseline for near crash 53.5 60.1

area (this category takes precedence over others). Indicate 
school, church, or playground if the driver passes one of 
these areas at the same time as the beginning of the event 
(these categories take precedence over any other categories 
except business/industrial).”

Locality did not differ between crashes and their matched 
baselines or between near crashes and their matched base-
lines. However, random baseline events were significantly 
more likely to occur in residential areas and less likely to 
occur on interstate highways than the other three event types 
[Wald X2 (30) = 57.47, p = 0.0018]. See Figure 3.10.

Traffic Density

Traffic density is defined as “the level of traffic density at the 
time of the start of the precipitating event, based entirely 
on number of vehicles and the ability of the driver to select 
the driving speed.” The results for traffic density mirror 
those of locality. Crashes and near crashes were not differ-
ent from each other or their matched baselines. However, 
the random baseline was significantly more likely to occur 
in free-flowing traffic than any of the other event types 
[Wald X2 (18) = 165.98, p < 0.0001]. The pattern is shown 
in Figure 3.11.

Weather

Weather is defined as “the weather condition at the time of 
the start of the precipitating event.” Relative to their matched 
baselines, crashes were not different with respect to weather. 
Crashes are more likely than near crashes to occur in rainy 
or clear weather [Wald X2 (1) = 10.32, p = 0.0354]. See Fig-
ure 3.12. Near crashes were significantly more likely to occur 
in cloudy conditions and less likely to occur in clear con
ditions than their matched baselines [Wald X2 (4) = 10.87,  
p = 0.0281].

Figure 3.7.  Percentage of maximum speed by event type.
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Figure 3.8.  Percentage of types of traffic flow by event type.

Figure 3.9.  Percentage of relation to junction by event type.
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Figure 3.10.  Percentage of locality type by event type.

Figure 3.11.  Percentage of traffic density by event type.
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Figure 3.12.  Percentage of weather type by event type.

Figure 3.13.  Percentage of lighting type by event type.
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Surface Condition

Surface condition is defined as “the type of roadway surface 
condition that would affect the vehicle’s coefficient of fric-
tion at the start of the precipitating event.” Surface condition 
did not differ among any of the event types, including com-
parisons between crashes, near crashes, and their respective 
matched baselines.

Lighting

Lighting is defined as “the lighting condition at the time of the 
start of the precipitating event.” Lighting did not vary between 

near crashes and crashes, or between each of these and their 
matched baselines. However, random baselines were signifi-
cantly more likely to occur in dark-but-lighted conditions 
than the other groups [Wald X2 (12) = 29.41, p = 0.0034]. See 
Figure 3.13.

Same Trip

Of the 46 crashes, 36 (78%) matched baselines came from 
the same trip (preceding the crash). This was also true for 
167 (79%) of the 211 near crashes. The remaining matched 
baselines were selected from a different trip by the same 
driver.
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C h a p t e r  4

One central topic in naturalistic driving study research has 
been the calculation of risk associated with (human-identified) 
classifications of distracting activity types (also called second-
ary tasks), such as talking, dialing, eating, and texting (Fitch 
et al. 2013; Klauer et al. 2006, 2010, 2014; Olson et al. 2009). This 
task risk approach has had particular influence on policy and 
rulemaking decisions regarding tasks that should or should not 
be done while driving. Thus, it is of particular relevance for the 
present research to be able to relate the team’s inattention per-
formance approach (quantifying Eyes off Path and lead-vehicle 
closing in later chapters of this report) to the task risk approach. 
We began by examining task risk in distracting activities.

4.1 Methods

For Chapters 4–6, we estimated the odds ratio of having a criti-
cal event (crash, near crash, or both, depending on the analysis) 
as a function of various predictors. Chapter 4 covers activity 
types as predictors, Chapter 5 focuses on the precipitating 
event and behavior surrounding it, and Chapter 6 focuses on 
glance behavior preceding minimum time to collision.

The primary method used to estimate odds ratios in this 
study is conditional logistic regression. However, it is useful 
to understand unconditional logistic regression first and then 
contrast the conditional approach. The purpose of logistic 
regression is to develop models of crash or near-crash risk as a 
function of various predictors associated with driver behavior 
and environment. Logistic regression is used in a wide variety 
of applications when the response variable has a small number 
of possible outcomes. The binary outcome case is most com-
mon and is described here.

Suppose the response variable, y, for a driving event is 
assigned a value of 1 if it resulted in a crash (or near crash) 
and is assigned the value of 0 if it did not result in a crash. The 
data set also has a set of r predictors, x1, x2 . . . xr, each of which 
describes a characteristic of the situation, driver, or behavior 
(e.g., glance pattern, distracting activity) in each case.

The logistic regression model uses these data to predict the 
risk of crashing, given the predictors, according to the formula 
given in Equation 4.1.
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where p̂ is the predicted probability of crashing, b0 is the 
intercept, the bi are coefficients of the predictors, and the xi 
are the predictor values. The model-fitting process results in 
estimates of the bs and an additional error component that 
measures model uncertainty using any lack of fit of the model 
to the data.

Logistic regression is a type of general linear model in that 
a simple transformation of the predicted outcome is related to 
a linear function of predictors (though individual predictors 
can also be transformed). Here, the odds of crashing are defined 
as p/(1–p). Logistic regression models the natural logarithm 
(ln) odds of crashing on the left side of the model equation as 
a linear function of predictor variables on the right side of the 
model equation. For N events, the model equation is shown 
in Equation 4.2.
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where b0 is the intercept parameter, bj, j = 1, . . . , r are regression 
coefficients or slope parameters, and xij are known predictor 
variables such as distracting activity. Note that this formulation 
is equivalent to Equation 4.1 but focuses on the linear portion 
of the equation. Like many models, logistic regression models 
are fit using the method of maximum likelihood.

Since the left side of the model equation represents the 
ln odds of a crash, the slope parameters have interpretations 
as ln odds ratios. For a continuous predictor x such as inverse 
Tau, the slope parameter attached to it represents the ln odds 
of a crash for a unit increase in inverse Tau at fixed values of 
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all other predictors. For a binary predictor such as cell phone 
use that is coded 0 if the occupant did not use a cell phone 
and 1 if the occupant did use a cell phone, the slope parameter 
represents the ln odds of a crash for occupants who used a cell 
phone, compared with those who did not. Because multiple 
predictors are included in the model, an odds ratio for a variable 
is interpreted under the assumption that it has been adjusted 
for the other predictors included in the model.

One challenge with logistic regression is interpreting odds 
ratios. Most readers find risk ratios to be more intuitive, and 
there is a tendency to want to interpret odds ratios as risk 
ratios. However, risk has a significant analytical disadvantage 
in that it is bounded between 0 and 1. If the risk of an event 
is, say, 50% under Condition A, then the risk ratio cannot be 
more than 2 for Condition B compared with Condition A. 
However, odds can range from zero to infinity, and their ratio 
is not constrained by the size of the denominator. However, 
in circumstances when the outcome of interest is rare (<5% 
probability), an odds ratio can be interpreted as relative risk. 
In that case the odds ratio approximates a relative risk, and it 
is appropriate use logistic regression as an exposure-based 
risk model (Greenland and Thomas 1982).

In this study, we used an adaptation of logistic regression 
that is often used in epidemiology to increase efficiency of 
sampling (Rothman 2012). Instead of selecting a large num-
ber of events and identifying crashes among them, we selected 
crashes and near crashes and then found one matching event 
in the baseline for each crash or near crash. This is called a 
matched case–control study, and in this case, because matched 
events are from the same driver, it falls into the class of studies 
known as case-crossover.

Because this method controls the percentage of analyzed 
cases that are crashes (50%), the intercept in logistic regres-
sion is meaningless. Instead, conditional logistic regression 
estimates the probability that each specific event is the event 
in its group that resulted in a crash. Matching characteristics 
cannot be used as predictors because they do not distinguish 
between crashes and baseline within each group. However, 
other characteristics (e.g., gaze patterns or distractions) as 
well as interactions between matching variables and other 
characteristics can be used.

Although the intercept, or b0, is not estimated with condi-
tional logistic regression, the remaining coefficients are still 
interpretable in the same way as for logistic regression. Indeed, 
if there were only one group, conditional and unconditional 
logistic regression would produce the same estimates (other 
than the intercept). In addition, with unconditional logistic 
regression, coefficients of predictors are unbiased, even when 
the underlying sample is biased, as it is here (Breslow 1996).

Although both forms of logistic regression produce com-
parable coefficients, unconditional logistic regression is not 
appropriate for matched data sets. The matching itself is a 

feature of the sampling, not the underlying process, and 
therefore must be taken into account using conditional logis-
tic regression.

Although we control the base risk by using a 1–1 match, the 
odds ratios for predictors can be interpreted in this context  
as risk ratios. Because the odds ratios are unbiased, they are 
expected to be the same, even if sampled differently. In driving, 
crashes and even near crashes are extremely rare events that 
would fall under the “rare disease assumption” level. The next 
sections present odds ratios for crashes, near crashes, or both 
as a function of a variety of predictors.

4.2 Distracting Activities

Distracting activities were manually coded by reviewing video 
by VTTI according to the SHRP 2 data dictionary (Variables 
Distraction 1, Distraction 2, and Distraction 3 in the SHRP 2 
NDS Event Definitions and Variables v 2_1 from December 
2010). In accordance with the SHRP 2 data dictionary, dis-
tracting activities were coded if present within the 6-second 
time window including 5 seconds before and 1 second after the 
precipitating event (or a random point for the baselines). 
There are more than 50 categories of distracting activities in the 
data dictionary and many subtle nuances in classification of 
the various categories. Therefore, caution should be taken 
when interpreting categories, and the data dictionary should 
be used as support for interpretation. For example, the Talking/
Listening on Cell Phone category excludes locating, reaching 
for, and answering a cell phone but actually does include 
hanging up (this is discussed in greater detail in Section 6.1). 
The rationale within the data dictionary is unclear for includ-
ing an explicitly visual-manual interaction (hanging up) in 
an activity that seems to be clearly designated as nonvisual 
(talking/listening). This seems problematic as it creates a 
category that is not easily mapped onto clearly defined dimen-
sions of distraction and makes it more difficult to draw con-
clusions regarding nonvisual/nonmanual interaction.

Classes of distracting activities (Distraction 1, 2, 3 event 
variables) present in the 5 seconds before the precipitating 
event and 1 second after were developed, because relatively few 
observations were present in the individual categories (see 
below). Note that the individual categories Lost in Thought 
(three cases), Looked but Did Not See (three cases), and Cogni-
tive, Other (zero cases) were not included in the classes as they 
were believed to be questionable categories and difficult to 
group together with other nonvisual activities.

Classes of distracting activities are as follows:

  1.	 Portable Electronics Talking/Listening: Talking/Listening 
on Cell Phone.

  2.	 Portable Electronics Visual-Manual: Dialing Hands-Free 
Cell Phone Using Voice-Activated Software; Texting on 
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Cell Phone; Dialing Handheld Cell Phone; Dialing Hand-
held Cell Phone Using Quick Keys; Locating/Reaching/
Answering Cell Phone; Cell Phone, Other; Locating/
Reaching PDA; Operating PDA; Viewing PDA; PDA, 
Other.

  3.	 Original Equipment: Reaching for object that is a manu-
facturer-installed device; Adjusting/Monitoring Cli-
mate Control; Adjusting/Monitoring Radio; Inserting/
Retrieving Cassette; Inserting/Retrieving CD; Adjusting/
Monitoring Other Devices Integral to Vehicle.

  4.	 Nonelectronics, Nonvisual: Talking/Singing Lost in thought; 
Looked but did not see; Cognitive, other (deleted, as 
described above).

  5.	 Nonelectronics Other: Dancing; Reading; Writing; Mov-
ing Object in Vehicle; Insect in Vehicle; Pet in Vehicle; 
Object Dropped by Driver; Reaching for Object, Other; 
Object in Vehicle, Other; Reaching for Food-Related or 
Drink-Related Item; Eating with Utensils; Eating with-
out Utensils; Drinking with Lid and Straw; Drinking 
with Lid, No Straw; Drinking with Straw, No Lid; Drink-
ing from Open Container; Reaching for Cigar/Cigarette; 
Lighting Cigar/Cigarette; Smoking Cigar/Cigarette; 
Extinguishing Cigar/Cigarette; Reaching for Personal 
Body-Related Item; Combing/Brushing/Fixing Hair; 
Applying Makeup; Shaving; Brushing/Flossing Teeth; 
Biting Nails/Cuticles; Removing/Adjusting Jewelry; 
Removing/Inserting/Adjusting Contact Lenses or Glasses; 
Other Personal Hygiene.

  6.	 Nonelectronics, Passenger-Related: Passenger in Adjacent 
Seat—Interaction; Passenger in Adjacent Seat—No 
Interaction or Cannot Tell; Passenger in Rear Seat—
Interaction; Passenger in Rear Seat—No Interaction  
or Cannot Tell; Child in Adjacent Seat—Interaction; 
Child in Adjacent Seat—No Interaction or Cannot Tell; 
Child in Rear Seat—Interaction; Child in Rear Seat—
No Interaction or Cannot Tell.

  7.	 Vehicle-External Distraction: Looking at Previous Crash 
or Incident; Looking at Pedestrian; Looking at Animal; 
Looking at an Object External to the Vehicle; Distracted 
by Construction; Other External Distraction.

  8.	 Inattention to the Forward Roadway: Inattention to the 
Forward Roadway—Left Window; Inattention to the 
Forward Roadway—Left Mirror; Inattention to the For-
ward Roadway—Center Mirror; Inattention to the For-
ward Roadway—Right Mirror; Inattention to the 
Forward Roadway—Right Window; Inattention to the 
Forward Roadway—Back Window.

  9.	 Other: Other nonspecific Eyeglance; Inattention, Other; 
Unknown Type (Distraction Present); Unknown.

10.	 Not Distracted: Not Distracted.

Figure 4.1 shows the odds ratio for several variables. The 
precise OR is shown in the center of each dot, and the lines 

surrounding the dots indicate the 95th percentile confidence 
interval. Odds ratios are significant when the confidence 
interval does not cross 1 on the x-axis. For each activity three 
ORs are shown: the near-crash (NC) situations, the crash and 
near-crash (CNC) situations combined, and the crash (C) 
situations. In some cases, there are insufficient data to calcu-
late precise confidence intervals, such as the OR of crashes 
associated with phone conversations. There were no crashes 
when drivers were engaged in Portable Electronics Talking/
Listening and so the OR and its confidence interval (CI) are 
undefined, represented by the CI that extends across the full 
width of the graph. Note that Portable_electronics_talking_
listening in Figure 4.1 corresponds to the Talking_listening_
on_cell_phone category in Figure 4.2.

Talking_listening_on_cell_phone in Figure 4.2 is part of 
the Portable_electronics_talking_listening aggregate category 
in Figure 4.1. Not surprisingly, Texting has a high OR of 5.6 
(CI 2.2–14.5) for crash and near-crash situations, but Talking_ 
listening_on_cell_phone has an OR of only 0.1—representing 
a large reduction in risk. The magnitude of the risk reduction 
(a protective effect) can be directly compared with the magni-
tude of the risk by reversing the sign of the coefficient before 
converting it to an odds ratio. In this case, the odds ratio 
would be approximately 10—greater than the risk of texting.

Odds ratios for more than 50 distracting activities were 
examined. However, many of the activities did not occur fre-
quently enough to achieve statistical significance. Distracting 
activities do not occur as frequently as glances and thus need 
larger sample sizes. Individual categories, such as Locating/
Reaching for/Answering a Cell Phone or Adjusting/Monitor-
ing the Radio, or other aggregate categories, such as Original 
Equipment or Vehicle External Distraction, were not signifi-
cantly risky.

4.3 Driver Impairments

The Driver Impairments event data variable was examined 
(see Figure 4.3). Distraction occurred frequently in the events 
collected for this study, and the odds ratios associated with 
these distractions suggest they contribute to crashes. There is an 
association of distraction and crashes [OR = 3.0, CI (1.1, 8.3)], 
near crashes [OR = 1.6, CI (1.0, 2.4)], and crashes and near 
crashes together [OR = 1.8, CI (1.2, 2.6)]. Impairments associ-
ated with drowsiness, drugs, and alcohol were much less fre-
quent. Figure 4.3 shows the distribution of these impairments 
relative to distraction. Of these impairments, only drowsiness 
occurred frequently enough to merit investigation. A condi-
tional logistic regression model found an odds ratio of 2.7, but 
the relatively few cases leads to large confidence intervals and 
a failure to achieve statistical significance [Wald X2(1) = 2.1,  
p = 0.147]. Distraction is dominant, and the other behaviors 
or impairments are rare in this sample of driving.
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Figure 4.1.  Odds ratios (numbers inside circles) and confidence intervals  
(horizontal lines) for classes of distracting activities in crashes, near crashes, 
and crashes and near crashes combined. Odds ratios are significant only 
when confidence intervals are fully above or below 1 (do not cross vertical 
line at 1). Presence of a distracting activity was coded between 5 seconds 
before and 1 second after the precipitating event.

Figure 4.2.  Odds ratios (numbers inside circles) and confidence intervals  
(horizontal lines) for specific distracting activities. Odds ratios are significant 
only when confidence intervals are fully above or below 1 (do not cross 
vertical line at 1). Presence of distracting activity was coded between  
5 seconds before and 1 second after the precipitating event.
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4.4 Conclusions

The effect of these distracting activities on the likelihood of 
crashes and near crashes varies tremendously. Some activities, 
such as Talking/Listening on Cell Phone, have an odds ratio 
substantially less than one, suggesting a protective effect; 
others, such as Texting, have an odds ratio much greater than 
one, suggesting a substantial risk. Texting (OR 5.6, CI 2.2–14.5) 
and the aggregate category of Portable Electronics Visual-
Manual (OR 2.7, 1.4–5.2) had the highest odds ratios, suggest-
ing a substantial risk. Talking/Listening on Cell Phone was 
found to decrease risk significantly compared with not engag-
ing in a phone conversation (OR 0.1, CI 0.01–0.7), represent-
ing an estimated 10-fold reduction in risk compared with 
baseline (OR 10 if the sign of the coefficient is reversed). In 
line with predictions regarding sample-size limitations, sig-
nificant differences for distracting activities were not found 
for crash events alone as there were too few observations in 
this category. However, notably, there were no crashes when 

drivers were engaged in Talking/Listening on a Cell Phone. 
The limitation in sample size also influenced the ability to 
detect significant odds ratios in other distracting activities 
(such as dialing a cell phone or adjusting the radio). Note that 
the limitation in sample size affects the odds ratio analysis of 
distracting activities because distracting activities are not 
found in all events. The odds ratio analysis of glance data is 
not affected in the same manner because off-path glances 
occur in almost all events, providing more data to work with.

Other behaviors and impairments (drowsiness, drugs, and 
alcohol) are rare. Of these, only drowsiness occurred fre-
quently enough to merit investigation and showed an odds 
ratio of 2.7, but was not statistically significant.

In sum, distracting activities occur frequently, much more 
frequently than impairments such as drowsiness. Some activ-
ities, such as phone conversations, have an odds ratio sub-
stantially less than one, suggesting a protective effect, and 
others, such as texting, have an odds ratio much greater than 
one, suggesting a substantial risk.

Figure 4.3.  Distribution of driver impairments relative to distracting activities  
across all event types together (crashes, near crashes, matched baselines,  
and random baselines).
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C h a p t e r  5

Chapters 5 and 6 focus on the research question, What are the 
most dangerous glances away from the road, and what are 
safer glances? To begin the analysis of which glance character-
istics are associated with the most risk, the logical place to 
start is to use the SHRP 2 NDS data to perform a replication 
of or comparison with the 100-car analyses (Klauer et al. 2006, 
2010; Liang et al. 2012; Victor and Dozza 2011). The 100-car 
glance analyses focused on comparing the relative influence 
of various glance characteristics on risk (expressed as ORs). 
Conducting a replication analysis makes it possible to set the 
SHRP 2 OR results into context with previous research.

Previous 100-car reanalysis research analyzed 6 seconds 
of data aligned to the precipitating event; this is the reason 
for the setup of alignment and the 6-second window in this 
chapter. The analyzed events here comprise a 6-second interval, 
5 seconds before the precipitating event (PE) and 1 second after, 
for each crash, near-crash, and baseline event.

5.1 �Risk from Total Eyes 
off Path Time at the 
Precipitating Event

Previous analyses have focused on analyzing crash/near-crash 
risk from Total Eyes off Roadway Time (TEORT) at the pre-
cipitating event (Klauer et al. 2006, 2010, 2014; Fitch et al. 2013; 
Olson et al. 2009). The present analysis replicates these earlier 
analyses so that we can directly compare OR estimates between 
the present SHRP 2 data and previous data. The TEOR variable 
is directly comparable to this project’s variable, Total Eyes off 
Path Time (TEOPT). The only difference is that we believe it is 
more correct to refer to the variable as Eyes off Path than Eyes 
off Road, even though it is coded in the same manner.

The odds ratios were calculated in two ways. First, the 
crude odds ratios were calculated to allow direct compari-
sons with similarly calculated odds ratios in previous studies 
(e.g., Klauer et al. 2006). Crude odds ratios are based directly on 
the ratios of event occurrence (e.g., crashes) and nonoccurrence 

(e.g., random baseline) for situations that contain the potential 
risk factor (e.g., cell phone conversation) and those that do not. 
Random baselines have no matching variables and so are 
analyzed using standard logistic regression, which produces 
odds ratios that are exactly equivalent to crude odds ratios when 
no other variables are present.

Second, conditional logistic regression was used for com-
parison with previous case-crossover analyses (e.g., Klauer 
et al. 2010). Here the team used matched baselines instead 
of random baselines and estimated ORs for the same set of 
predictors.

Using conditional logistic regression is critical with data 
that include matched baselines because the crude odds ratios 
provide biased estimates of the true odds ratios for this data 
type—typically underestimating the odds ratios. Crude odds 
ratios also neglect the dependence between events and the 
baselines and so can underestimate the confidence interval 
surrounding the estimates. Crude odds ratios are provided here 
to facilitate comparison with previous analyses and are shown 
as small solid dots in the figures.

TEOPT Risk in 5 Seconds Before and 
1 Second After the Precipitating Event

Eyes off Path time was calculated for a window of 5 seconds 
before and 1 second after the precipitating event. Here, Eyes 
off Path time is the amount of time (in seconds) the eyes were 
off path longer than a certain amount within this 6-second 
period. Bins of 0.1–0.5 second, 0.5–1.0 second, 1.0–1.5 sec-
onds, 1.5–2.0 seconds, and 2.0–2.6 seconds were used. Note 
that each bin is compared with the case in which the driver’s 
eyes were on the path for the entire 6 seconds (Off0).

Figure 5.1 shows the odds ratios and 95th percentile con-
fidence intervals calculated with matched baselines using 
conditional logistic regression (OR), with matched baselines as 
controls. The figure also shows the odds ratios for the crude 
odds ratios as small dots.

Risk at the Precipitating Event
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Only the TEOPTs greater than 2 seconds (Off2.0-6.0) pro-
duce an odds ratio with a confidence interval that does not 
include 1.0. The small filled dots show the crude odds ratios; for 
the near crashes (NC) and the combination of crashes and near 
crashes (CNC), the crude odds ratios are lower than the odds 
ratios from the conditional logistic regression, indicated by the 
large open circles and the numeral at the center of those circles.

In analyses of risk in the 6 seconds around the time of the 
precipitating event (5 seconds leading up to the precipitat-
ing event and 1 second after), TEOPTs above 2 seconds were 
shown to be significantly risky for crashes (OR 2.1), near 
crashes (OR 1.9), and crashes and near crashes combined 
(OR 2.1). Lower TEOPTs were not significantly risky. This 
result is directly comparable to the very similar 100-car 
study findings (Klauer et al. 2010) concerning Total Eyes off 
Roadway Times (TEORTs). Klauer et al. showed an odds ratio 
of 1.6 (CI 1.3, 2.0) compared with this project’s odds ratio 
of 2.1 (CI 1.2, 3.6) for the case-crossover (matched baselines) 
comparison. In the case-control (random baselines) com-
parison, Klauer et al. showed an odds ratio of 2.1 (CI 1.7, 2.8), 
while this project found an odds ratio of 2.0 (CI 1.2, 3.2).

Eyes-off-Path Timeline

Figure 5.2 shows a potential explanation for the OR results: 
the percentage of glances directed off the road increases in the 
5 seconds before the event onset and 1 second after for crashes 

and near crashes. Each point in the graph represents the aver-
age proportion of time eyes are off road at every tenth of a 
second. For reference, the SHRP 2 data are plotted with the 
100-car data (Victor and Dozza 2011).

A key observation in Figure 5.2 is that the Eyes-off-Path pat-
terns for crashes and near crashes are markedly different. For 
near crashes, the peak is lower. For crashes, there is actually a 
dip just before the PE, and the highest peak is about a second 
after. The SHRP 2 data in Figure 5.2 show an increase in eyes 
off the forward path as the precipitating event approaches in 
time, similar to that found in the 100-car data. However, in the 
SHRP 2 data, the increase continues after the PE for the crashes.

Figure 5.2 also seems to indicate that there is generally more 
Eyes off Path time in crashes and near crashes, that there is 
generally more Eyes off Path time in matched baselines than 
random baselines, and that these baselines are comparable to 
the 100-car baselines. Figure 5.2 also shows variation in when 
the crash point (in crashes) and minimum TTC (in near 
crashes) occurs relative to the precipitating event.

Another general observation that should be noted is that 
proportions of crashes to near crashes matter in the combined 
crash/near-crash values. When combining crashes with near 
crashes, the fact that there are many more near crashes influ-
ences the combined crash/near-crash values toward near 
crashes, a simple weighting effect. Thus, we need to be mind-
ful of this weighting effect in which proportions of event types 
change the data in a combined data set. This is particularly 

Figure 5.1.  Odds ratios and confidence intervals for total off-path glance 
durations in the 5 seconds before and 1 second after the precipitating event.
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important because incidents and near crashes are often much 
more numerous than crashes. Reconsidering the 100-car Eyes-
off-Path data and other naturalistic driving study data with 
this in mind may prove important, as the patterns that emerge 
from crashes may be very different from near crashes and inci-
dents, if separated.

Timing Difference Between Precipitating 
Event and Brake Light Onset

To understand in more detail what the precipitating event 
was, a comparison of whether the precipitating event repre-
sented the brake light onset was calculated. Figure 5.3 clearly 
shows that the precipitating events coincided with a brake 

light onset. Thus, in our data set, the precipitating event (PE) 
can be largely seen as brake light (BL) onset. That is, it was 
largely the brake light onset that was annotated as “the state 
of environment or action that began the sequence under 
analysis.”

5.2 �Eyes-off-Path Risk  
in Time Segments at  
the Precipitating Event

An important feature of Figure 5.2 is that the proportion of 
Eyes off Path is not uniform—there is a pronounced increase 
around the precipitating event. Consequently, analysis of 
windows of time preceding the precipitating event might 

Figure 5.2.  Percentage of glances off path in relation to the precipitating event, crash points,  
and minimum time to collision (TTC) (for near crashes). The zero point on the x-axis indicates  
the onset of the precipitating event.

Analysis of Naturalistic Driving Study Data: Safer Glances, Driver Inattention, and Crash Risk

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22297


49   

reveal how the timing of glances away from the road influence 
crash and near-crash risk.

Odds ratios were calculated for four windows of time 
before the precipitating event. One window encompasses the 
1 second preceding and the 1 second following the precipitat-
ing event (Off1to1afterPE). Two other windows capture the 
influence of glances that occur earlier. Off3to1PE is a window 
from 3 seconds to 1 second before the precipitating event, and 
Off5to3PE is a window from 5 seconds to 3 seconds before 
the precipitating event. The final period, Off5to1afterPE, cal-
culates the overall proportion the eyes were off the forward 
path during the entire 6-second period. These variables are 
coded as proportion of Eyes off Path for the stated window 
and so have a maximum value of 1.0. The odds ratio is relative 
to zero for each variable. See Figure 5.4.

Figure 5.4 has several notable features. First, the odds ratios 
shown in this figure are notably greater than those in Figure 5.1. 
The scale in Figure 5.1 ranges from 0 to 5, and the scale in this 
figure extends from 0 to 15. The proportion of eyes off the 
road over various windows can be a very sensitive measure 
of distraction-related risk. Second, the highest odds ratios 
occur with the time window that overlaps the precipitating 
event, as shown by the points at the bottom of the figure. The 
proportion of time the eyes are off the forward path during 

the time of the precipitating event is a particularly good pre-
dictor of crash and near-crash involvement. Third, the crude 
odds ratios are systematically lower than those estimated 
through conditional logistic regression. Most interesting, the 
odds ratios associated with crashes are substantially greater 
than those associated with near crashes; however, the relatively 
few crashes lead to large confidence intervals and preclude 
any definitive interpretation of these results.

5.3 Conclusions

In contrast to the analysis (in Figure 5.1) that calculated Eyes 
off Path time as the amount of time (in seconds) the eyes 
were off path between 2 and 6 seconds within the 6-second 
period (i.e., the Off2.0-6.0 variable), the Off5to1afterPE vari-
able calculated the proportion of time the eyes were off path 
in the 5 seconds before until 1 second after the precipitating 
event. The key difference between these calculations is that in 
Off5to1afterPE, all Eyes off Path data are included, whereas the 
Off2.0-6.0 only counts instances with values above 2 seconds. 
This is an important difference because the Off5to1afterPE 
variable showed significantly elevated odds ratios for crashes 
(OR 13.2), near crashes (OR 2.8), and crashes and near crashes 
combined (OR 3.6).

Figure 5.3.  Comparison between when the precipitating event (PE) occurred (at 0 seconds) and the brake light 
(BL) onset that was closest in time for crashes and near crashes.
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The analysis that divided the 6-second window at the pre-
cipitating event into three 2-second segments revealed signifi-
cantly high odds ratios. The 2-second segment surrounding 
the precipitating event (Off1to1afterPE) was riskiest, showing 
significantly high odds ratios for crashes (OR 9.3), near crashes 
(OR 3.7), and crashes and near crashes combined (OR 4.3). 
Similarly, for the 2-second segment 3 seconds to 1 second 
before the precipitating event, significance was shown for 
crashes (OR 8.2) and for crashes and near crashes combined 
(OR 2.1). The only other significant effect using the 2-second 
segments was found for 5 seconds to 3 seconds before the pre-
cipitating event in near crashes (OR 1.9). This analysis indi-
cates that the risk is highest closer in time to the precipitating 
event. The results show that higher risk for larger proportions 
of Eyes off Path closer to the precipitating event is strongest in 
crash events. This effect is clearly visible in Figure 5.2, which 
shows how the percentage of Eyes off Path is greatest in crashes 
and greatest around the precipitating event for both crashes 

and near crashes in the SHRP 2 data and in the 100-car data. 
Figure 5.2 also seems to indicate that there is generally more 
Eyes off Path time in crashes than near crashes, that there is 
generally more Eyes off Path time in matched baselines than 
random baselines, and that these baselines are comparable to 
the 100-car baselines.

In sum, one objective of the analysis presented in this 
chapter was to replicate previous findings. The analysis shows 
generally similar results that are consistent with previous 
findings and are within the margin of error of the studies. 
Interestingly, these consistent findings were achieved with far 
fewer baselines as a comparison [e.g., Klauer et al. (2006) used 
five baselines per crash or near crash, while this analysis used 
only one]. Analysis of eyes off the road in the time windows 
preceding and overlapping the critical event shows that the 
timing of glances matters—glances away from the road during 
the precipitating event are particularly strongly associated with 
crashes and near crashes.

Figure 5.4.  Odds ratios and confidence intervals for various windows  
in the 5 seconds before and 1 second after the precipitating event.
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C h a p t e r  6

This chapter conducts a series of analyses targeting the 
research question, What are the most dangerous glances away 
from the road, and what are safer glances? It also examines 
the research question, Can risk from distracting activities 
(secondary tasks) be explained by glance behavior?

6.1 �Distribution of  
Glances Over Time

The plot of Eyes off Path over time surrounding the precipi-
tating event (Figure 5.2) clearly coincided with the odds 
ratios in Chapter 5 and may be a useful tool to understand 
more precisely which mechanisms are behind the risk from 
Eyes off Path. To examine further the more specific relation-
ships of Eyes-off-Path glance behavior in the next sections, it 
is useful to examine the distribution of glances and the distri-
bution of glance locations over time.

Glance Location Timelines

Figures 6.1 through 6.4 show timelines that indicate the pro-
portion of various glances in the 12 seconds preceding the 
crash, the 12 seconds preceding the minimum time to colli-
sion for the near crashes, and a random point for the baselines. 
These figures show glance locations over time for the crash, 
near-crash, matched baseline, and random baseline events. 
The glance locations include the transition time toward the 
locations according to ISO 15007. The crash data are aligned 
with the crash point at zero seconds, and the near-crash data 
are aligned with the minimum time to collision at zero sec-
onds. Matched and random baselines are aligned to a ran-
domly chosen reference point at zero seconds. It should be 
noted that the values for each glance location, at each point in 
time, are mean values for the all observations. For example, 
Figure 6.1 cannot be interpreted to mean 30% of the drivers 
looked at the forward path the full time. In fact, for the crashes, 
only four drivers (9%) looked at the forward path for the full 

12 seconds preceding the crash or minTTC, and for the 
matched baselines, only 32 (12%) did.

Figure 6.1 indicates that the glance locations in the crash 
events are predominantly toward the cell phone and interior 
objects, followed by left and right windows and mirrors. 
Noticeably, there is a reduction of forward path location view-
ing up until about 1.5 seconds before the crash. The eyes return 
quickly to the forward path location after the 1.5-second mark. 
Figure 6.2 shows a similar, but less pronounced pattern for near 
crashes.

These patterns contrast sharply with those for the matched 
and random baseline events, shown in Figures 6.3 and 6.4; a 
much larger proportion of eyes is directed to the forward 
path—dark blue dominates Figures 6.3 and 6.4 in a way that 
it does not in Figures 6.1 and 6.2. In the matched baseline 
events (Figure 6.3), there is proportionally more forward 
path viewing; glances to the cell phone and interior objects 
are also predominant, but to a lesser degree. In the random 
baselines (Figure 6.4), glance locations are comparable to the 
matched baselines (Figure 6.3); however, there seems to be 
proportionally more forward path viewing, and this seems to 
be because there is less cell phone viewing. These differences 
have important implications for generalizing the odds ratios 
calculated from the matched baselines to more general driv-
ing situations. It may be more due to the fact that there are 
differences in driver’s willingness to engage in secondary 
tasks than differences in the traffic situation. The drivers 
included in the matched baselines were those who eventually 
crashed or nearly crashed. These drivers thus seemed to have 
a higher prevalence of phone interaction than those in the 
random baselines.

To shed further light on potential mechanisms behind the 
protective effect of Talking/Listening on a Cell Phone (OR 0.1; 
see Figure 4.2), we compared the glance locations for matched 
baseline and near-crash events in which at least one of Distrac-
tion 1, 2, or 3 was coded as Talking/Listening on Cell Phone 
with glance locations for all remaining matched baselines. 

Risk from Eyes off Path Before Crash  
or Minimum Time to Collision
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Figure 6.1.  Percentage of glance locations over time in crash events for the 12 seconds 
before and 1 second after the crash point (at 0 seconds).

Figure 6.2.  Percentage of glance locations over time in near-crash events for the  
12 seconds before and 1 second after the minimum time to collision (at 0 seconds).
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Figure 6.3.  Percentage of glance locations over time in matched baseline events  
for the 12 seconds before and 1 second after a randomly chosen reference point  
(at 0 seconds).

Figure 6.4.  Percentage of glance locations over time in random baseline events  
for the 12 seconds before and 1 second after a randomly chosen reference point 
(at 0 seconds).
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(Recall from Chapter 4 that Talking/Listening on Cell Phone 
was not present in any crash.) In this calculation, the mean 
values rather than time series were used.

The results are shown in Figure 6.5. The comparison of 
main interest is between matched baselines with and without 
phone conversation. The proportion of off-path glances (i.e., 
not on forward path) is very similar between talking/listening 
events and the remaining events, with values just above 20% 
proportion Eyes off Path. However, the distribution of the 
various glance locations seems to differ. In particular, the pro-
portion of windshield and mirror glances is substantially 
higher for talking/listening cases while glances related to other 
secondary tasks than the phone substantially fell, especially 
glances to interior objects.

Somewhat surprisingly, the matched baseline events with 
Talking/Listening on Cell Phone still contain some glances to 
toward the phone. To understand this result, it is important to 
understand exactly how the beginning and end of the Talking/
Listening on Cell Phone distraction type was annotated. Recall 
from Section 4.2 that Distractions 1, 2, and 3 were always 
coded during the 6-second time window including 5 seconds 
before and 1 second after the precipitating event (or a random 
point for the baselines). In many cases, the talking/listening 

was already ongoing at the beginning of the time window and 
continued after the end of the time window. However, in some 
events, the talking/listening began or ended during the time 
window. In such cases, the start and end points of the talking/
listening were defined as follows (SHRP 2 dictionary v2.1):

•	 Event start point. “Phone is at the driver’s ear. If using an 
earpiece, it begins when the driver has pushed the last but-
ton on his or her phone.”

•	 Event end point. “Phone is away from the ear and the driver 
has let go of the phone, OR (if driver does not release 
phone) the phone is no longer moving (i.e., driver puts the 
phone down in their lap but doesn’t let go of the phone). 
Once they put the phone in their lap and it is still (even if 
still holding it), this should be recorded as ‘Cell phone, 
other.’ If they are using an earpiece, it is when they push a 
button on their phone to end the call.”

From this definition, it is clear that talking/listening may also 
involve glances related to the visual-manual interaction required 
for hanging up, which is the reason some glances toward the 
phone are coded as belonging to the talking/listening time seg-
ment. If the end point of talking/listening had been defined so 

Figure 6.5.  Percentage of glance locations for matched baselines in which talking/listening was coded as  
distraction compared with remaining matched baselines, and glance locations for the four near crashes that 
occurred while Talking/Listening on Cell Phone. Glance locations only represent the time periods when the 
talking/listening distracting activity was coded (i.e., for 5 seconds before and 1 second after the reference 
point in the baselines and for 5 seconds before and 1 second after the precipitating event in near crashes).
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that glances associated with the hanging up activity were 
excluded, the total proportion of off-path glances would have 
been somewhat lower for the talking/listening cases and thus 
indicative of a general gaze-concentration effect. Moreover, 
almost 100% of the glances in the talking/listening events would 
have been driving-related (left or right windshield and 
mirrors).

In the four near-crash events involving Talking/Listening 
on Cell Phone, glances away from the road hardly occurred at 
all. However, due to the limited number of events it is difficult 
to draw any firm conclusions based on this result.

Eyes-off-Path Timelines

Figure 6.6 provides a concise summary of the preceding fig-
ures, showing only the percentage of Eyes off Path for crashes, 
near crashes, matched baselines, and random baselines. Fig-
ure 6.6 plots Eyes off Path over the 12-second period preced-
ing the crash point (in crash events), the minimum time to 
collision (in near-crash events), and the reference points for 
the baselines. Similar to Figures 6.1–6.4, there seem to be gen-
erally more Eyes off Path in crashes than in the other events, 
and Eyes off Path are increasingly off road up until 1.5 sec-
onds before the crash. In near crashes a similar, but less 

pronounced, effect is shown. The Figure 6.6 also shows the 
location of the precipitating events relative to the crash point, 
with most precipitating events occurring between 1 second 
and 5 seconds before the crash point.

Glance Histograms for Eyes  
on Path and Eyes off Path

Figure 6.7 shows the frequency distribution and the cumula-
tive distribution of Eyes off Path. A Kolgomorov-Smirnov 
test for the equality of the Eyes-off-Path distributions shows 
that all event-type distributions are significantly different 
from each other (at the p < 0.05 level), except the crash and 
near-crash glance distributions, which are not significantly 
different from each other (p = 0.115).

These results generally confirm the impression conveyed 
by Figures 6.1 through 6.4. Drivers in the matching base-
lines drivers look away from road more than those in the 
random baselines. The difference between the random and 
matched baselines might be due to the same drivers doing 
more secondary tasks or it might reflect the other matching 
variables, such as road type or being part of the same trip. 
Figure 6.7 suggests a difference between crashes and near 
crashes, with crashes having more long glances, but the KS 

Figure 6.6.  Percentage of glances off path (for each event type at each time point) in relation to minimum time 
to collision or crash point (at 0 seconds), and a histogram of the time of the precipitating events associated 
with each crash and near crash. The precipitating events correspond to the lead-vehicle brake light onsets.
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test shows no significant difference. This likely reflects a lack 
of statistical power associated with the small sample of 
crashes.

6.2 �Eyes-off-Path Risk in Time 
Segments Preceding  
Crash or Minimum  
Time to Collision

Similar to the analysis of the proportion off-path glances asso-
ciated with time windows preceding the precipitating event, 
an analysis was conducted for time windows preceding the 
crash point or minimum time-to-collision point. Odds ratios 
were calculated for six windows at six points relative to the 
crash point. One window encompasses the 1 second preceding 
and 1 second following the reference point (Off1to1after). 
Five other windows capture the influence of glances that occur 
earlier. Off3to1 is a window of from 3 seconds to 1 second 
before the reference point (crash or minTTC), and Off5to3 is 
from 5 seconds to 3 seconds before. The other windows step 
sample the timeline even earlier, with the last one considering 
the proportion of eyes off the forward path from 11 seconds 
to 9 seconds before the crash point. For example, within the 

time from 3 seconds to 1 second preceding the reference point, 
we have calculated the proportion of time eyes are off the road 
out of these 2 seconds. As with the analysis of the 2-second 
windows over the 6 seconds surrounding the precipitating 
event (in Figure 5.4), these variables are coded as the propor-
tion of Eyes off Path for the stated window and so have a maxi-
mum value of 1.0. The odds ratio is relative to zero for each 
variable.

Total Eyes-off-Path Risk Preceding  
Crash or Minimum Time to Collision

Figure 6.8 shows that the proportion of glances off path in the 
window immediately preceding the crash point or minTTC is 
most strongly associated with crashes and near crashes, but 
the proportion of glances off path that overlap the crash 
point is not. The odds ratio for the window that overlaps the 
crash point is small, which corresponds to the tendency of 
drivers to return their eyes to the road just before or just after 
a crash, associated with the time window immediately pre-
ceding the crash point. The odds ratio declines as the window 
used to summarize the off-path glances moves further from 
the crash point.

Figure 6.7.  Distributions of Eyes-off-Path Glance Lengths (percentage and cumulative percentage) for the 
12-second period before the crash points (crash events) and minimum time to collision (near-crash events), 
and a random point for random and matched baselines.
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Cumulative Risk for Time  
Segments Preceding Crash or  
Minimum Time to Collision

The preceding analysis of the proportion of time eyes were 
off the forward path shows that eyes off the forward path dur-
ing windows of time near the precipitating event or the mini-
mum time to collision are particularly risky but that earlier 
windows may also be influential. That is, the odds ratios are 
highest for the window from 3 seconds to 1 second before the 
crash point, but the odds ratios in the two preceding windows 
also achieve statistical significance. Extended periods of eyes 
off the road might be expected to add to the risk associated 
with the eyes being off the road in the period immediately 
preceding the crash.

This analysis considers the degree to which the proportion 
of Eyes off Path in the earlier windows contributes to risk after 
the most risky periods are considered. This is done by fitting 
a series of models starting with the most risky window— 
the window at 3 seconds to 1 second preceding the crash or 
minTTC. The models were assessed using the Akaike infor-
mation criterion (AIC); lower values of AIC indicate better 

models, and differences of less than 2 suggest the models do 
not differ substantially (Burnham et al. 2010).

The models for each time window were created so that the 
estimated odds ratios of crashes and near crashes are the 
same as those in Figure 6.8. The best of these models, Off3to1, 
was extended by adding the other time windows. That is, the 
other time windows were added as predictors in addition to 
Off3to1. Of these models, the one including only Off3to1 
emerged as most likely; the other most likely model included 
both the time window 2 seconds before the minimum time to 
collision and the time window 10 seconds before the mini-
mum time to collision. Interestingly, none of these models 
had a lower AIC value than the model that used only the 
2-second time window from 3 seconds to 1 second preceding 
the crash or minimum time to collision (Off3to1). This 
Off3to1 model has an odds ratio of 5.9 (see Figure 6.8) for 
cases in which the driver looks away from the forward path 
compared with a driver who looks to the forward path.

Table 6.1 summarizes these models, with the first column 
indicating the predictors used in the model. The model 
description indicates the linear combination used in the 
logistic regression, which is based on the proportion of time 

Figure 6.8.  Odds ratios and confidence intervals for various windows in the 
12 seconds before and 1 second after the crash point.
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the eyes are off the forward path during a 2-second window. 
All these are additive, except for the case in which the inter
action was tested (i.e., Off3to1+ Off11to9+ Off3to1X 
Off11to9). The second column shows the AIC, the third 
shows the difference from the model with the lowest AIC, and 
the final shows the model likelihood. A lower AIC indicates 
the model fits the data better, but a difference of less than 2 is 
typically required to justify including another variable based 
on statistical significance. Based on the AIC criterion, the 
Off3to1 model is best, and adding the proportion of time off 
road in the time from 11 to 9 seconds before the crash does 
not lower the AIC enough to justify including this variable. 
The model likelihood, indicated in the last column, shows the 
simplest model is substantially more likely than the others. 
This analysis shows there is no substantial cumulative effect 
from the proportion of Eyes off Path in the windows preced-
ing the Off3to1 variable.

Further examination of the cumulative effect of propor-
tion of Eyes off Path can be made by comparing these results 
(Table 6.1) with the glances leading to and overlapping the 
precipitating event. Table 6.2 indicates the combined influ-
ence of Eyes-off-Path metrics during windows leading to and 
overlapping the precipitating event. Similar to the odds ratios 
in Figure 5.4, the AIC values show that the best model is one 
that includes the window overlapping the precipitating event 
and the window that includes the entire 6-second period. The 
AIC of other models that include the overlapping window 
differ by less than 2, suggesting that they also fit the data well 
and that the period overlapping the precipitating event is an 
important determinant of risk. Models with only the earlier 
time windows of 5 to 3 seconds before and 3 to 1 second 
before the precipitating event perform relatively poorly.

However, the Delta AIC between the best glance model in 
Table 6.2 (pe.Off1to1after_pe.Off5to1after, AIC 337.86) and 

Table 6.1.  Contribution of Cumulative Effect of Proportion  
of Eyes off Path

Model AICc Delta_AICc Model Likelihood

Off3to1 320.39 0.00 1.00

Off3to1+Off11to9 320.66 0.28 0.87

Off3to1+Off9to7 321.47 1.09 0.58

Off3to1+Off7to5 322.40 2.01 0.37

Off3to1+Off5to3 322.40 2.02 0.37

Off3to1+ Off11to9+ Off3to1X Off11to9 322.66 2.27 0.32

Off5to3 349.30 28.92 0.00

Off7to5 352.89 32.51 0.00

Off11to9 353.03 32.65 0.00

Off9to7 357.74 37.35 0.00

Note: The models are assessed using Akaike information criterion (AIC). Lower values of AIC indicate 
better models, and differences of AIC less than 2 suggest the models do not differ substantially  
(Burnham et al. 2010).

Table 6.2.  Contribution of the Cumulative Effect  
of the Proportion of Eyes off Path in the 5 Seconds  
Before and 1 Second After the Precipitating Event

Model AICc Delta_AICc Model Likelihood

pe.Off1to1after_pe.Off5to1after 337.86 0 1

pe.Off1to1after_pe.Off5to3 338.88 1.02 0.6

pe.Off1to1after_pe.Off3to1 339.16 1.3 0.52

pe.Off5to1after 339.3 1.44 0.49

pe.Off1to1after 339.43 1.57 0.46

pe.Off3to1 347.54 9.68 0.01

pe.Off5to3 351.96 14.1 0
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the best model in Table 6.1 (Off3to1, AIC 320.39) is 17.47. 
Delta AICs from the best models indicate how much inferior 
they are. A Delta AIC difference of 2 is significant; a difference 
of 10 or more means there is little support for the competing 
model (p < 0.00001). Thus, the risk estimation from the 
period overlapping the precipitating event is substantially 
poorer than the risk estimation 3 to 1 second before the crash 
(Table 6.1); this further confirms the observation that there is 
no substantial cumulative effect from the proportion of Eyes 
off Path in the windows preceding the Off3to1 variable.

6.3 �Risk from Glance 
Sequences Preceding 
Crash or Minimum  
Time to Collision

The preceding analysis focused on the proportion of time the 
driver’s eyes were off the forward path, without consideration 
of individual glance characteristics. The next step is to assess 

the risk contributions of different glance characteristics, where 
glances are considered the unit of analysis rather than propor-
tion of eyes off the forward path during a window of time. In 
the following analysis of glance characteristics, the cumulative 
effect of multiple glances is considered using an estimate of 
the hypothetical uncertainty that builds when the eyes are off 
the forward path and then diminishes when the eyes return  
to the forward path (Senders et al. 1967; Zwahlen et al. 1988).

Figure 6.9 summarizes the association between the glance 
parameters and crashes and near crashes. Some of these 
parameters are closely related to the window-based mea-
sures of proportion of Eyes off Path. For example, overlap.
off is the duration of the glance that overlaps the point 
2 seconds before the crash point, and pre.overlap.on is the 
duration of the glance preceding the overlapping glance 
that is directed to the forward path. Not surprisingly, a 
glance that overlaps this point is associated with an increase 
in crashes and near crashes. Importantly, the units of these 
metrics is seconds rather than proportion, so the odds ratios 

Figure 6.9.  Odds ratios and confidence intervals for glance characteristics.
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shown in Figure 6.9 represent the incremental increase in odds 
associated with one unit of change in the glance metric. Glances 
can last 13 seconds, whereas time proportion of the time win-
dows in the previous section ranged between zero and 1. 
Although the duration of off-path overlapping glances has a 
strong association with crashes, the risk contribution of the 
on-path glance that precedes this overlapping glance is small.

Three related glance parameters had a strong influence on 
crashes and near crashes: the number of off-path glances longer 
than 2 seconds (twosec.glances), the maximum duration of off-
path glances (max.off), and the mean duration of off-path 
glances (mean.off). In contrast, the number of glances (glances) 
and the minimum duration of on-path glances had little effect 
(min.on). The complexity of the glance pattern (complexity), 
shown at the bottom of the figure, shows an odds ratio larger 
than any other metric, but the confidence intervals are also very 
wide. Further investigation of this parameter seems warranted 
because it might provide a holistic assessment of how the com-
bination of glances over the 12 seconds preceding a crash might 
contribute to risk. One such holistic glance metric is uncertainty, 
which is examined in the next section. The remaining glance 
characteristics in the figure are Total Glance Time off path  
(tg.off), duration of a single glance on path immediately pre-
ceding the off-path glance that overlaps with the 2-second point 
before the crash or minTTC (pre.overlap.on), and duration of 
off-path glance that overlaps (intersects) with the 2-second 
point before the crash or minTTC (overlap.off).

Figure 6.10 shows the level of uncertainty as defined by an 
exponential accumulation and dissipation model, in which 
uncertainty increases when the driver’s eyes are off path and 

decreases when they are on path (Senders et al. 1967). The 
timelines in Figure 6.10 are for a selection of five crash events; 
they show that with extended off-path glances, uncertainty 
can increase to 1, and with extended on-path glances, uncer-
tainty can decline to zero. Uncertainty arises from long glances 
away from the road, as well as from short glances to the road. 
It can also accumulate over time if drivers fail to look toward 
the road long enough to recover from previous off-path 
glances. The parameters for the uncertainly model were not fit 
to the data but were fixed to a level that produces reasonable 
behavior, such as no uncertainty with a glance to the forward 
path of several seconds. Optimizing these parameters to maxi-
mize the odds ratio associated with differences in uncertainty 
is likely to produce a substantially better account of the risk 
associated with a sequence of off-path glances.

Figure 6.11 shows several summary metrics of uncertainty 
and their corresponding odds ratios. “Uncertainty.3to1” is the 
mean uncertainty over the window from 3 seconds to 1 second 
before the crash or point of minimum time to collision. Mini-
mum uncertainty and maximum uncertainty over the 12 sec-
onds are labeled “min.uncertainty” and “max.uncertainty,” 
respectively. Finally, mean uncertainty in the 12  seconds is 
labeled “m.uncertainty.” All the uncertainty metrics have both 
high odds ratios and large confidence intervals for crashes, with 
reductions in both for near crashes. Minimum uncertainty and 
maximum uncertainty do not reach significance as predictors. 
However, both mean uncertainty metrics (either 3 seconds to  
1 second or over the 12 seconds) have odds ratios significantly 
higher than 1. Near-crash and CNC odds ratios for both are 
similar, but crash odds ratios are quite high for both (OR 11.5 

Figure 6.10.  Timelines of glances and corresponding uncertainty for 
five crashes.
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Figure 6.11.  Odds ratios and confidence intervals for various uncertainty 
characteristics.

for the 3-seconds-to-1-second window and OR 22.2. for the full 
window). These confidence intervals overlap each other.

Combinations of Glance Metrics Within  
the 12 Seconds Before Crash or minTTC

Three classes of glance metrics were considered for combina-
tion in a model: metrics based on the proportion of glances off-
path during various time windows, metrics based on individual 
glances, and metrics based on uncertainty associated with off-
path glances. An important application of these metrics is to 
assess the incremental risk associated with distracting activities 
(secondary tasks) beyond what can be expected from the glance 
distribution (see Section 6.4). For this, we need to identify the 

most sensitive glance metric combinations. The most promis-
ing metric from each class was selected: Off3to1 from the  
window-based approach (Off3to1), mean off-path glance dura-
tion (mean.off), and mean uncertainty from the uncertainty 
function (m.uncertainty). Models were fit with each of these 
metrics and their interactions. The models were assessed using 
Akaike information criterion (AIC); lower values of AIC indi-
cate better models, and differences of AIC less than 2 suggest the 
models do not differ substantially (Burnham et al. 2010).

As shown in Table 6.3, a model based on a linear combina-
tion of all three metrics (Off3to1_mean.off_m.uncertainty) 
emerged as most predictive of crashes and near crashes as it 
had the lowest AIC value (AIC 317.07). This three-metric 
model was substantially better than the second most predictive 

Table 6.3.  Glance Metric Combinations Most Closely 
Associated With Crashes and Near Crashes in  
the 12 Seconds Before the Crash or minTTC

Model AICc Delta_AICc Model Likelihood

Off3to1_max.off_m.uncertainty 317.07 0.00 1.00

Off3to1 320.39 3.31 0.19

Off3to1Xmax.off 321.44 4.37 0.11

Off3to1Xmax.offXm.uncertainty 321.59 4.51 0.10

Off3to1Xm.uncertainty 322.01 4.94 0.08

max.off 337.58 20.50 0.00

m.uncertainty 345.86 28.79 0.00
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model based only on the proportion of glances off-path  
(AIC 320.39), at a Delta AIC difference of 3.31. As an indi-
vidual metric, the Off3to1 metric was a very good model in 
comparison with max.off and m.uncertainty.

6.4 �Risk Contributions from 
Distracting Activities  
Over and Above What  
Can Be Explained by 
Glance Behavior

Recall the research question, Can risk from distracting activ-
ities (secondary tasks) be explained by glance behavior? The 
risk of distracting activities (secondary tasks) might be 
explained largely by the off-path glances they induce; alter-
natively, the risk associated with secondary tasks might be 
associated with other properties of the distracting activities. 
Risk from additional properties such as manual distraction 
or cognitive distraction may add to the risk explained by 
Eyes off Path.

To assess the incremental risk (of crash and near-crash 
events) associated with distracting activities beyond that 
expected from the Eyes off Path, we had originally intended to 
compare the glance behavior within the full 12-second period 
leading up to the crash/minTTC and the full periods within 
baselines, with the presence of distracting activities within those 
periods of time. Unfortunately, due to a misunderstanding in 
interpretation of the data requirements document, the distract-
ing activities were not coded for the full periods. Distracting 
activities were only coded for the 5 seconds preceding and 1 sec-
ond after the precipitating event in crashes and near crashes or 
the reference point in baselines (as discussed in Chapters 4 
and 5). Thus, to assess the potential additive risk associated with 
distracting activities over and above the Eyes-off-Path glance 

metrics, we need to use the most predictive glance model for the 
6 seconds surrounding the precipitating event (the 5 seconds 
preceding and 1 second after the precipitating event).

The combined effects of glance metrics for the timeline 
anchored by the precipitating event showed a different pattern 
of glance metrics (Table 6.4) than in Table 6.3. The best indi-
cator included the proportion of eyes off the road in the 2 sec-
onds overlapping the precipitating event (pe.Off1to1after, 
AIC 339.43). For the relatively short timeline of 5 seconds 
preceding and 1 second after the precipitating event, the other 
glance metrics failed to improve the prediction substantially. 
Note that the three-metric glance model of the longer glance 
history preceding the crash/minTTC (Off3to1_max.off_m.
uncertainty, AIC 317.07, in Table 6.3) was a far better predic-
tor of risk of a crash or near crash than the 2 seconds overlap-
ping the precipitating event (pe.Off1to1after, AIC 339.43), 
with a Delta AIC of 22.36 between these two models.

As already discussed, the distracting activities were only 
coded for the 5 seconds preceding and 1 second after the pre-
cipitating event. For this reason, the proportion of eyes off 
path in the 2 seconds overlapping the precipitating event (pe.
Off1to1after) was used to assess the contribution of distract-
ing activities because the comparison has to use the glance 
behavior from the same period of time.

Table 6.5 shows that the proportion of Eyes off Path in the 
2 seconds overlapping the precipitating event (pe.Off1to1after, 
AIC 339.43) is substantially more predictive than the models 
based on distracting activities alone (e.g., Texting), as the dif-
ference compared with the pe.Off1to1after model is greater 
than 2—a significant difference.

Because the model based on the proportion of eyes off 
path in the 2 seconds overlapping the precipitating event is so 
superior to the models based on distracting activities, it might 
be expected to fully account for the effect of distracting 

Table 6.4.  Glance Metric Combinations Most Closely Associated 
With Crashes and Near Crashes in the 5 Seconds Before  
and 1 Second After the Precipitating Event

Model AICc Delta_AICc Model Likelihood

pe.Off1to1after 339.43 0 1

pe.Off1to1afterXm.uncertainty 339.86 0.43 0.81

pe.Off1to1after_max.off_m.uncertainty 340.21 0.77 0.68

pe.Off1to1afterXmax.off 340.67 1.23 0.54

pe.Off1to1afterXmax.offXm.uncertainty 342.36 2.93 0.23

pe.max.off 343.81 4.38 0.11

pe.m.uncertainty 345.69 6.26 0.04

pe.complexity 351.37 11.94 0
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activities (secondary tasks). To test this assertion, a series of 
models was created in which the effect of each class of dis-
tracting activities was added to the effect of the glances met-
rics. If the proportion of Eyes-off-Path metric fully accounts 
for distraction risk, then adding the distracting activities to 
the model will result in no reduction in the AIC value of 
339.43 for the pe.Off1to1after model.

Table 6.6 explicitly shows the contribution of the dis-
tracting activity to that of the proportion of Eyes-off-Path 
metric (pe.Off1to1after). When Talking/Listening on Cell 
Phone is combined with the proportion of Eyes-off-Path 
metric (pe.Off1to1after.TalkingListening, AIC 333.03), the 
model is substantially better than the pe.Off1to1after metric 
alone (a Delta AIC reduction of 6.41). Similarly, when Text
ing is combined with the proportion of Eyes-off-Path met-
ric (pe.Off1to1after.Texting, AIC 334.23), the model is 
substantially better than the pe.Off1to1after metric alone (a 
Delta AIC reduction of 5.2). In both cases the activity does  
contribute to improving the risk estimation over and above 
the Eyes-off-Path metric, but the activity has more affect for 
talking than for texting. In both cases, not considering 

Table 6.5.  Risk Predicted by the Proportion of 
Eyes off Path in the 2 Seconds Overlapping the 
Precipitating Event and Distracting Activities in 
the 5 Seconds Before and 1 Second After the 
Precipitating Event

Model AICc Delta_AICc Model Likelihood

pe.Off1to1after 339.43 0 1

Texting 341.66 2.23 0.33

TalkingListening 348.53 9.1 0.01

VisualManual 349.59 10.16 0.01

Table 6.6.  Contribution to Risk Estimation from Distracting 
Activities in the 5 Seconds Before and 1 Second After  
the Precipitating Event and Proportion of Eyes off Path  
in the 2 Seconds Overlapping the Precipitating Event

Model AICc Delta_AICc Model Likelihood

pe.Off1to1after.TalkingListening 333.03 0 1

pe.Off1to1after.Texting 334.23 1.21 0.55

pe.Off1to1after 339.43 6.41 0.04

Texting 341.66 8.63 0

pe.Off1to1after.VisualManual 347.92 14.90 0

Talking 348.53 15.51 0

glances provides a very poor indicator of risk (as the indi-
vidual AICs for Texting and Talking/Listening are substan-
tially lower than pe.Off1to1after). Thus, in the case of Talking/
Listening on Cell Phone, the combined model provides a bet-
ter estimation of the risk reduction, and in the case of Text
ing, the combined model provides a better estimation of the 
risk increase.

When the Portable Electronics Visual-Manual activity is 
combined with the proportion of Eyes-off-Path metric (pe.
Off1to1after.VisualManual, AIC 347.92), the model is substan-
tially poorer than the pe.Off1to1after metric alone (a Delta 
AIC increase of 8.49 between these two models). Thus, for 
more general visual-manual interactions, the risk estimation is 
not improved by adding the distracting activity. Rather, the risk 
increase is better explained by the proportion of Eyes off Path.

The interpretation of this pattern is that the effect of Texting 
and Talking/Listening on Cell Phone is not fully accounted for 
by the particular Eyes-off-Path model, but the effect of the gen-
eral category of Portable Electronics Visual-Manual is fully 
accounted for. The risk-increasing (Texting) and risk-decreasing 
(Talking/Listening on Cell Phone) influences may go beyond 
glance patterns. This hypothesis should be explored in future 
work, but it is intriguing to consider the possibility that task 
demands (e.g., cognitive distraction) or other characteristics 
(e.g., drivers may keep longer headways when talking on the 
phone) for these tasks may provide additional disbenefit or 
benefit in terms of risk in rear-end striking crashes, beyond their 
influence on glances.

Note that this analysis of the risk contributions from dis-
tracting activities over and above what can be explained by 
glance behavior was limited by the fact that the distracting 
activities were not coded for the period of time up until the 
crash or near-crash minTTC. Future work should compare 
the much more powerful model based on a linear combina-
tion of all three metrics (Off3to1_mean.off_m.uncertainty, 
AIC 317.07) with distracting activities occurring in a 
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comparable window of time closer to the crash or near-
crash minTTC. It is possible that the influences of distracting 
activities can be explained by this more powerful three-metric 
glance model.

6.5 Conclusions

This chapter considered the contribution to risk of three 
classes of glance metrics: proportion of eyes off the forward 
path during the time window preceding crashes and near-
crash minTTC, summary of metrics of glance sequences, 
and uncertainty that reflects the sequence of glances. Indi-
vidually, each class of metric indicated risk more strongly 
and precisely than the classes of distracting activities. The 
risk indicated by each class of glance metric is not redundant 
with the others because a model that includes the interactions 

between metrics provides the most precise indicator of crashes 
and near crashes.

Interestingly, the protective effect of cell phone conversation 
(Talking/Listening on Cell Phone) is not fully accounted for by 
this combination of glance metrics and neither is the risk asso-
ciated with activities such as texting, but the risk associated 
with the more general class of Visual-Manual Distractions 
associated with visual-manual interactions is accounted for by 
glance metrics.

An important limit of the glances model, including the 
three-glance metrics, is that it assumes risk is purely a function 
of the driver’s attention to the road (Eyes-off-Path metrics). 
However, risk likely stems from both drivers’ attention to the 
road and the demands of the road. The following chapter con-
siders how the changes in the lead-vehicle kinematics affect the 
risk of a crash or near crash.
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C h a p t e r  7

This chapter examines the research question, How does the 
timing of lead-vehicle closing kinematics in relation to off-
road glances influence crash risk? The previous chapters have 
demonstrated, in line with existing results (e.g., Klauer et al. 
2006, 2010), that the performance of activities requiring eyes 
off the forward path is associated with significantly increased 
risk for crashes and near crashes. Moreover, it was shown that 
the timing of off-path glances within the time window preced-
ing the crash strongly determines the risk level. In particular, 
for a time window aligned to the precipitating event (PE), off-
path glances around the PE appear to be the most risky. For a 
time window aligned to the crash point or minimum time to 
collision, the risk was highest for glances occurring within 
3  seconds to 1 second before the crash/minTTC. To better 
understand why the timing of glances matters for crash risk, a 
more detailed analysis of the timing relations between, on the 
one hand, the driver’s visual behavior and reactions and, on 
the other, visual cues and situation kinematics was conducted. 
This analysis also aimed to determine to what extent these 
timing relations distinguish crashes from near crashes.

This addresses the general hypothesis that the simultane-
ous occurrence of Eyes off Path and an unexpected event 
plays a key role in the causation of rear-end crashes, which—
as mentioned in Chapter 1, Background—was a key motiva-
tion for the present research. In line with this hypothesis, 
Tijerina et al. (2004), in a study on eyeglance behavior during 
car following, found that drivers in normal following situa-
tions generally did not take their eyes off the road unless the 
range rate was near zero (i.e., the distance between the vehi-
cles is not closing). They also found that distance or time 
headway was generally not taken into account when deciding 
on an off-road glance. Thus, drivers’ decisions on whether to 
take the eyes off the road seem to be largely based on expecta-
tions of whether or not the lead vehicle will brake in the next 
few seconds. However, driver expectations are sometimes vio-
lated. If the lead vehicle brakes during the off-path glance and 
the driver has not adopted a sufficient headway, the situation 

may end up in a crash. Tijerina et al. suggested that this may 
be the key mechanism explaining why inattention is the lead-
ing factor contributing to rear-end crashes.

One objective of the present analysis was to investigate to 
what extent this “inopportune glance due to expectation vio-
lation” mechanism applied to the rear-end crashes in the 
present data set. A further key issue concerns what factors 
made the critical difference in situations when the driver suc-
cessfully escaped collision (i.e., near crashes).

One important aspect concerns the timing of glances in 
relation to brake lights. Experimental studies have found that 
brake light onsets reliably trigger reactions in vehicle-following 
situations (e.g., Lieberman et al. 2007). If these results gener-
alize to real-world driving, it would be expected that missed 
brake light onsets are associated with crashes and near crashes. 
More specifically, brake light onsets occurring during off-road 
glances should be more prevalent for crashes and near crashes 
compared with baselines. Thus, one objective of the present 
analysis was to investigate whether this hypothesis was sup-
ported by the present data. Furthermore, if brake light onsets 
are used by drivers to predict that the lead vehicle will soon 
brake, drivers should generally be reluctant to take their eyes 
off the road if the brake light onset occurs at a moment when 
they have their eyes on the road (assuming the brake lights are 
salient enough to be detected). Thus, brake light onsets were 
also analyzed in relation to subsequent off-path glances.

Another key objective of the present analysis was to analyze 
the kinematic situation (e.g., speed, headway, and time to col-
lision) at the start and end of the last glance before the crash/
near crash. According to the inopportune glance mechanism 
hypothesized above, the kinematics for crashes and near 
crashes should be similar to normal driving (i.e., the matched 
baselines) at the beginning of the last glance but more critical 
when looking back. A further question of interest is whether 
the drivers who crashed adopted a smaller initial headway 
than those who successfully escaped or if the key difference 
between crashes and near crashes relates more to how the 

Timing of Eyes off Path Relative to  
Situation Kinematics and Visual Cues

Analysis of Naturalistic Driving Study Data: Safer Glances, Driver Inattention, and Crash Risk

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22297


66

criticality of the situation developed while looking away. Fur-
thermore, to what extent did the duration of the last glance 
influence the event outcome? Did the situation develop into 
a crash rather than a near crash mainly because the driver was 
looking away for a long time period, or was it rather the rate 
at which the situation changed during the glance away that 
produced the crash? This latter question is of fundamental 
importance for answering the key question addressed by the 
present project: What characterizes safe glances?

A final objective was to analyze driver reactions after look-
ing back the last time before the crash or near crash. Are such 
reactions triggered mainly by brake lights or by the perceived 
kinematics of the driving situation (i.e., the optical expan-
sion, looming, of the lead vehicle)? Can differences in driver 
reactions further explain why an event develops into a crash 
rather than a near crash? It was also investigated how last-
second driver reactions in critical rear-end situations could 
be modeled to enable computer simulation of these phenom-
ena. A specific analysis was also carried out on drivers’ reac-
tions when they were talking/listening on a cell phone. As 
reported in Chapter 4, this activity was associated with a 
reduced risk of a crash/near crash, that is, a protective effect. 
Similar results have been found in previous studies (Olson 
et al. 2009; Hickman et al. 2010), but the basic mechanism 
behind this effect is still not well understood. This analysis 
specifically aimed to investigate whether the protective effect 
of talking/listening on a cell phone could be explained in 
terms of differences in driver reactions relative to situation 
kinematics.

7.1 Method

Glance annotation. This analysis used the same Eyes-on-Path 
signal as the previous analyses, further described in Section 2.9.

Kinematics. Due to the limited quality of the radar data, the 
headway and closing distances were calculated on the basis of 
optical variables manually annotated from the forward video, 
as further described in Section 2.9. It should be noted that the 
time to collision (TTC) was estimated directly from the opti-
cal angle Theta (q) subtended by the lead vehicle at the camera 
in terms of Tau (t), that is, q divided by its time derivative 
q-dot (Lee 1976). Optically, q and q-dot characterize the 
looming (optical expansion) of the lead vehicle. An advantage 
of using the optically (rather than the physically) specified 
TTC is that this is the type of information that humans pre-
sumably use to perceive and control the situation kinematics 
in driving and other forms of locomotion, although it is 
debated exactly what optical information is used for different 
types of tasks (e.g., Flach et al. 2004). One consequence is that 
TTC here refers to the TTC for the camera rather than the sub-
ject vehicle’s front bumper. Since TTC goes to infinity at zero 
relative velocity (e.g., at constant distance in normal following 

situations), its inverse 1/TTC (referred to as invTTC) was used 
in the analysis.

Event Selection

This analysis included crashes, near crashes, and matched 
baselines. Since the analysis focused specifically on glance tim-
ing, events that did not include an off-path glance were 
excluded. As described in Section 2.9 for the matched base-
lines, the optical angle (q) was only annotated for approxi-
mately 10 seconds before the reference point (i.e., the point 
corresponding to the crash point and minTTC for crashes and 
near crashes, respectively) and 5 seconds after. Since the exact 
duration of the precrash annotations varied somewhat, a time 
window of 8 seconds before the reference point was used in 
the present analysis. Only events in which the lead vehicle was 
continuously present within a time window of 8 seconds to 
1 second before the crash/minTTC were included in the analy-
sis. Thus, the analysis focused on “pure” vehicle-following or 
approach situations, excluding cut-in and lane-change sce-
narios in which the lead vehicle appeared or changed in the 
last second, leading to a discontinuous optical angle signal. 
The main reason for excluding these events was that they rep-
resented very different kinematic situations which would have 
made the analysis substantially more complicated. However, it 
is important to keep this in mind when interpreting the results. 
In addition, the optical angle annotation was sometimes miss-
ing because of other reasons, such as reduced visibility (e.g., 
heavy rain, fog, or darkness) or limited video quality.

As described in Section 2.6, the total data set used in this proj-
ect consisted of 46 crashes, 211 near crashes, and 257 matched 
baselines. In total, 5 crashes, 34 near crashes, and 25 matched 
baselines were excluded because of missing or insufficient 
annotation of optical angle according to the criteria above. 
This led to a basic data set of 41 crashes, 177 near crashes, 
and 232 matched baselines used as the starting point for all 
analysis in this chapter. In addition, some further cases were 
excluded due to constraints in the specific analyses, as further 
described below.

7.2 Results

Timing of Glances Relative to Brake Lights

First, the analysis considers the timing of brake light onsets in 
relation to off-road glances. In this analysis, only those events 
that contained at least one brake light onset were included. 
This led to a data set containing 35 crashes, 156 near crashes, 
and 75 matched baselines. The results are shown in Table 7.1.

First, the prevalence of co-occurrences of brake light onsets 
and Eyes off Path were compared between crashes, near crashes, 
and matched baselines. Brake light onsets co-occurred with an 
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off-path glance in 23% of the crashes, 34% of near crashes, 
and 31% of matched baselines. This comparison thus includes 
co-occurrence of Eyes off Path with any brake light onset in the 
8-second time window. Table 7.1 also gives the numbers and 
percentages of co-occurrences of eyes off path and the last 
brake light onset in the time window, which are generally simi-
lar to those obtained for co-occurrence with any brake light 
onset. These results indicate that co-occurrences of eyes off 
path and brake light onsets were about as prevalent for the 
matched baselines as for the near crashes and slightly less prev-
alent for crashes. Thus, drivers who crashed or nearly crashed 
were not more likely to have looked away at the last brake light 
onset than baseline drivers. This indicates that whether drivers 
missed brake light onsets by looking away did not play any 
significant role in the development of the crashes and near 
crashes in the present sample.

Given that the majority of drivers had their eyes on the 
road when the brake light illuminated, to what extent did 
drivers then look away from the forward path? If drivers reliably 

interpret brake light onset as a sign of a potential threat, then 
one would expect to see very few cases where the driver looked 
away after having seen a brake light onset, particularly in the 
baselines. Similarly, drivers generally do not look away when 
they see the lead vehicle closing (Tijerina et al. 2004). How-
ever, the results show (Table 7.1) that situations in which the 
driver looked away after a last brake light onset when the eyes 
were on the forward path are indeed common and occur in 
almost half of the crashes, and in about 30% of near crashes 
and matched baselines. Figure 7.1 shows two examples of 
time-series plots for crashes in which the driver looked toward 
the forward path at the last brake light onset and but then 
looked away.

Taken together, these results suggest that brake lights have 
a negligible effect on driver behavior in real-world driving situ-
ations. In the majority of crashes, near crashes, and matched 
baselines, the driver looked forward at the moment when 
the lead vehicle’s brake lights illuminated for the last time. 
However, this did not prevent the crashes and near crashes, 

Table 7.1.  Analysis of the Timing of Off-Path Glances Relative to Brake Light Onsets (BLOs)

Event Type
Total Number 

of Valid Events

Number of 
Events With 
Brake Light 

Onset (N BLO)

Number of Events With 
BLO When Any BLO 

Occurred During Eyes off 
Path (EOP) (% of N BLO)

Number of Events With 
BLO When the Last 

BLO Occurred During 
EOP (% of N BLO)

Number of Events With 
BLO When Driver Looked 
Away After Seeing Last 

BLO (% of N BLO)

Crashes 41 35 (85%) 8 (23%) 8 (23%) 17 (49%)

Near crashes 177 156 (88%) 53 (34%) 48 (31%) 43 (28%)

Matched baseline 232 75 (32%) 23 (31%) 21 (28%) 23 (31%)

Figure 7.1.  Examples of time-series plots for two crash events (event IDs 10631463 and 10631469 for left and 
right plots, respectively) in which the drivers eventually looked away despite having the eyes on the road  
at the last brake light onset.
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indicating that the drivers generally ignored this predictive 
information. Moreover, a significant proportion of these driv-
ers even looked away from the road just after having seen the 
brake lights illuminate. This tendency to look away after pre-
sumably having seen a brake light onset was stronger for 
crashes than for near crashes and matched baselines.

This last finding, that drivers who crashed more often looked 
forward at the last brake light onset, and also often looked away 
after having seen the brake lights illuminate, is somewhat dif-
ficult to interpret. One possibility is that this is a side effect of 
the kinematic conditions that typically lead to rear-end crashes. 
Chapter 9, Conclusions and Recommendations, returns to this 
issue, but first, the following section considers the timing of 
glances in relation to situation kinematics.

7.3 �Timing of the Last  
Glance Relative to 
Situation Kinematics

This section reports on the analysis of situation kinematics 
relative to the last glance. The last glance was defined as the 
last glance away from the forward path initiated before the 
reference point (the crash point for crashes, the minimum 
TTC for near crashes, and a random point for the matched 
baselines). Thus, the end of the last glance could sometimes 
occur after the reference point, that is, outside the -8-to-
0-seconds time window.

In this analysis, some events were excluded over and above 
those excluded due to missing optical angle information 
(described above)—for several possible reasons. The main 
reason for exclusion was that no off-path glances occurred 
within the 8-second time window. In total, there were 6 such 
crashes, 34 near crashes, and 51 matched baselines. Since some 
of these cases were already excluded due to missing optical 
angle, this led to the exclusion of an additional 4 crashes, 
29 near crashes, and 46 matched baselines.

Another reason for excluding events was that the last glance 
began before the start of the 8-second time window, which 
only affected measures related to the glance onset. The end of 
the last glance was searched for outside the time window and 
thus, last glance end data were only missing if the glance did 

not end within an additional 5 seconds after the 8-second time 
window (this happened in only a single case, a near crash). 
The number of excluded events due to missing optical angle 
and missing/incomplete glances is summarized in Table 7.2.

Data could also be missing in other signals, which affected 
the total number of data points used in each of the specific 
analyses below. The total number of valid events used in the 
analyses is indicated in each subplot.

For the different kinematic variables investigated, t-tests 
were used to test for statistically significant differences at last 
glance (LG) start and LG end as well as between the event types. 
The planned comparisons of main interest were as follows:

•	 Crashes versus near crashes at LG start (two-sample t-test);
•	 Crashes and near crashes versus matched baselines at LG 

start (paired sample t-test);
•	 LG start versus LG end for crashes (paired sample t-test);
•	 LG start versus LG end for near crashes (paired sample 

t-test); and
•	 Crashes versus near crashes at LG end (two-sample t-test).

A significance level of a = 0.05 was used in all tests.

Relative Velocity

Figure 7.2 plots the relative velocity (range rate) between the 
subject vehicle and the lead vehicle at the start and end of the 
last glance way from the forward path. At LG start, the mean 
values for crashes and near crashes were not significantly dif-
ferent. However, the relative velocity was significantly higher 
(more negative) for crashes and near crashes compared with 
the matched baselines [t(133) = -4.99, p < 0.001]. In the 
majority of cases for all event types, the relative velocity at the 
start of the last glance is close to zero (thus indicating a normal 
following situation in which the subject vehicle and lead vehi-
cle are traveling with roughly equal velocities). However, the 
negative tails indicate the presence of cases in which the sub-
ject vehicle was already closing in on the lead vehicle at LG 
start. This seems to be more common for crashes and near 
crashes but also occurs in the matched baselines. Video inspec-
tion revealed that these matched baseline cases typically involve 

Table 7.2.  Summary of Exclusion of Events for Analysis of Last Glance Timing

Event Type

Original 
Number 

of Events

Cases 
Excluded Due 

to Missing 
Optical Angle

Additional Cases 
Excluded Due to 
Lack of Off-Path 

Glances

Additional 
Cases 

Missing 
LG Starts

Additional 
Cases 

Missing 
LG Ends

Remaining 
Number of 
LG Starts

Remaining 
Number of 
LG Ends

Crashes 46 5 4 1 0 36 37

Near crashes 211 34 29 5 1 143 147

Matched baselines 257 25 46 8 0 178 186

Note: LG = last glance.
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situations in which the subject vehicle closes in rapidly on the 
lead vehicle, but at a larger distance than in crash and near-crash 
situations.

The distributions of relative velocity at LG end indicate a 
strong average change in relative speed during the last glance 
away, both for crashes [t(35) = 8.54, p << 0.001] and near 
crashes [t(141) = 10.77, p << 0.001]. While the change was 
slightly larger for crashes, the difference from the near crashes 

was minor and not statistically significant. Thus, the shift in 
relative velocity during the LG does not seem to influence 
whether the event develops into a crash or near crash.

Time Headway

Figure 7.3 plots the initial time headway (THW) at the begin-
ning and end of the last glance. The distributions of time 

Figure 7.2.  Relative velocity at the beginning and end of the last glance  
by event type.

Figure 7.3.  Time headway at beginning and end of the last glance  
by event type.
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headway when the drivers looked away are very similar for all 
three event types (with no statistically significant differences 
between the means). This again indicates, in line with Tijerina 
et al. (2004), that the situation at the beginning of the last 
glance generally represented a normal following situation, in 
which the driver judged it safe to take his or her eyes off the 
road. It can be noted that drivers generally adopted relatively 
small headways when looking away, and this did not differ 
between the event types. It can also be noted that crashes with 
initial headways above 2 seconds were very rare.

For both crashes and near crashes, the time headway was 
significantly reduced when looking back [t(28) = 4.04, p < 
0.001 and t(129) = 6.41, p << 0.001]. In contrast with the 
results for relative velocity, the time headway when looking 
back was significantly smaller for crashes than for near 
crashes [t(165) = -2.87, p = 0.005]. This indicates that for the 
majority of the crashes and near crashes, a large portion of 
the initial safety margin was consumed during the last glance, 
where the reduction was significantly larger for crashes than 
for near crashes.

Figure 7.4 plots the THW at LG start against the duration 
of the last glance. Although there is some indication of lon-
ger adopted time headways for the extreme glance durations 
(>2 seconds), the minimum tolerance margin adopted by the 
driver is still often very small. Thus, again in line with Tijerina 
et al. (2004), drivers apparently do not generally take time 
headway into account when deciding on how long to look 
away from the road. It can also be noted that the few crashes 
for headways larger than 2 seconds only occurred for the 
extreme glances longer than 4 seconds. Thus, most events 
occurred at short headways with relatively short glances.

Inverse Time to Collision

The inverse time to collision (invTTC) at the beginning and 
end of the last glance is plotted in Figure 7.5. At the LG start, it 
can be observed that, for the majority of all drivers, the last 
glance begins when invTTC is near zero (i.e., the situation is 
still not critical, at least kinematically). The invTTC distribu-
tion for the matched baselines at both LG start and LG end is 
relatively narrow and symmetrical around zero. For crashes 
and near crashes, the distributions at LG start shift slightly 
toward the positive side, where the means for both crashes and 
near crashes are close to invTTC = 0.1. There was no significant 
difference between the crashes and near crashes for invTTC at 
LG start. However, the difference between matched baselines 
and crashes and near crashes combined was statistically signifi-
cant [t(141) = 3.91, p < 0.001]. In line with the results on rela-
tive velocity above, this indicates that at least some crash/near 
crash–involved drivers looked away at a moment when the gap 
between the vehicles was already closing.

At the LG end, invTTC had generally changed significantly, 
both for crashes and near crashes [t(35) = 5.97, p << 0.001 
and t(140) = 14.1, p << 0.001, respectively]. Furthermore, the 
invTTC at LG end was significantly larger for crashes than for 
near crashes [t(180) = 3.47, p < 0.001]. This indicates that the 
situation when looking back was on average more critical for 
the crashes than the near crashes.

Summary

Taken together, the results reported in this section support 
the initial general hypothesis that many rear-end crashes 
occur because of an unexpected closing of the lead vehicle 

Figure 7.4.  Time headway at the start of the last glance versus 
the last glance duration.
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while the driver is looking away from the forward path. When 
the last glance is initiated, the situation is generally still kine-
matically similar to a normal following situation and the 
driver considers it safe to look away. However, in a few cases, 
the driver looked away when the lead vehicle was already clos-
ing. In general, drivers do not seem to adapt their headway 
based on the expected duration of the glance to be initiated. 
The time headway when looking away is on average relatively 
short and does not differ between crashes, near crashes, and 
baselines. When the driver looks back, the situation has gen-
erally turned critical for crashes and near crashes. Crashes are 
clearly distinguished from near crashes by a higher criticality 
at LG end, as reflected by significantly shorter time headways 
and larger invTTC.

However, this analysis does not tell to what extent this 
higher criticality when looking back is due to the duration of 
the last glance and to what extent it relates to the rate at which 
the kinematics changed during the glance. This question is 
addressed next.

7.4 �Mismatch Mechanisms: 
Last Glance Duration 
Versus invTTC Change Rate

For two kinematically identical rear-end scenarios, the LG 
duration could make the difference between a crash and a 
near crash; the longer the glance, the more time the criticality 
(e.g., invTTC) of the situation has to develop. Conversely, for 
two off-path glances of the same duration, the rate at which 
the criticality changes during the glances determines the crit-
icality when looking back at the road.

To analyze the relative contribution of these two factors to 
crash and near-crash risk, a multivariate logistic regression 
analysis was carried out for last glance (LG) duration and 
invTTC change rate. The invTTC change rate was computed 
as the slope of a linear function fitted to the invTTC data dur-
ing the last glance (by means of the MATLAB robustfit func-
tion), as illustrated in Figure 7.6.

Figure 7.7 plots the distribution of LG duration and invTTC 
change rate for the three event types. It can be observed that 

Figure 7.5.  Inverse time to collision (invTTC) at the onset and offset of the 
last glance by event type.

Figure 7.6.  Illustration of the calculation of invTTC 
change rate (c) as the slope of a linear function  
fitted to the invTTC data during the last glance off 
the forward path (event ID 10631432).
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the mean LG duration and invTTC change rate are both 
higher for crashes than for near crashes although the distribu-
tions overlap considerably.

The multivariate logistic regression analysis assesses the 
effect of last glance duration and the invTTC change rate on 
the likelihood of a crash/near crash relative to the matched 
baselines. It should be kept in mind that this analysis excludes 
cases with no off-path glances. Hence, the models presented 
here represent the crash/near-crash likelihood only for cases 
in which the driver looked away at least once in the 8 seconds 
before the crash/minTTC. Due to the relatively large number 
of missing cases in the matched crash/near crash and matched 
baselines pairs, a mixed effect model, rather than conditional 
logistic regression model, was used.

Table 7.3 summarizes the AIC criteria for six estimated 
models. The models are discussed in order, beginning at the 
bottom of the table. The first model is a null model that 
includes only the intercept. The second model includes only 
the LG duration (LGD), and the third includes only the 
invTTC change rate (CR). The fourth model includes a linear 
combination of LGD and CR, while the fifth model includes 
the interaction. The final model includes the linear combina-
tion of CR and LG and the interaction term.

The results show that all models are superior to the null 
model, but that LGD does not improve predictions beyond 
the effect of CR. The linear combination of CR and LG was 
not significantly better than the model including only CR. 
However, the model that includes the interaction LGD and 
CR was substantially better than the others. The obtained dif-
ference in AIC of 14 between this and linear combination was 

relatively large. As a rule of thumb, models that have an AIC 
that is 10 units higher than the others can safely be removed 
from consideration (Burnham and Anderson 2004). The full 
model that included both the individual contributions of 
LGD and CR along with the interaction term had a slightly 
lower AIC (Delta AIC = 2.65). However, the difference was 
relatively small.

Based on this analysis, it may be concluded that invTTC 
change rate during the last glance had a strong effect on crash/ 
near-crash risk while the individual effect of the glance dura-
tion was much weaker. Moreover, invTTC change rate and 
glance duration interacted strongly—to the degree that addi-
tional contribution of the individual invTTC rate and LG dura-
tion factors is marginal. What the present analysis essentially 

Table 7.3.  General Results from 
Multivariate Regression Analysis of 
the Effect of Last Glance Duration 
(LGD) and invTTC Change Rate 
(CR) on Crash/Near-Crash Risk

Model AICc Delta AICc

LGD.CR.LGD X CR 226.12 2.65

LGD X CR 228.77 14.08

CR.LG 242.85 1.72

CR 244.57 206.61

LGD 451.18 265.38

Null model 716.56

Figure 7.7.  Distribution of last glance duration (left) and invTTC change rate (right) for the three event types.
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shows is that, given that the driver looks away from the road 
within the 8 seconds before the crash, the risk that the event 
develops into a crash or near crash is mainly determined 
by the interaction of invTTC change rate and last glance 
duration.

To gain further insight into this interaction between LG 
duration and the invTTC change rate during the last glance, 
the two variables were plotted against each other, as shown in 
Figure 7.8. It can be observed that the crashes, near crashes, 
and matched baselines are relatively well separated in this 
state space. In particular, the majority of the crashes and a 
subset of the near crashes are approximately linearly orga-
nized with a negative slope. This is clearly the source of the 
strong interaction in the logistic regression analysis above.

The key implication of this result is that the majority of the 
rear-end crashes in the present sample can be characterized 
in terms of a particular combination of LG duration and 
invTTC change rate. For a short glance away from the road, 
the change rate needs to be higher for a crash to occur. Con-
versely, for a long glance, a lower change rate is sufficient to 
produce a crash. If the required combination of glance dura-
tion and change rate is not present, the situation normally 
results in a near crash, as indicated by the large cluster of near 
crashes below the hypothetical boundary in Figure 7.8.

However, a number of crashes do not fit this pattern. In 
particular, several crashes with low change rates cluster with 

the matched baselines and a significant portion of the near 
crashes. Moreover, some cases have moderate to high change 
rates but very short LG durations that tile up vertically to the 
left in the figure. To better understand the characteristics of 
these different clusters of crashes, the forward video record-
ings for each crash were inspected together with correspond-
ing time-series plots of glances and kinematics. This analysis 
suggests that the present crashes can be roughly divided into 
three main categories, also indicated in Figure 7.8 and further 
described below.

Category 1: Inopportune Glance

These crashes are the prototypical cases for the general mech-
anism suggested by Tijerina et al. (2004) and constitute the 
bulk (about 60%) of the crashes in the subset analyzed here. 
In these cases, the driver does not expect the lead vehicle to 
brake and thus looks away from the road while the situation 
is not yet critical (when invTTC is close to zero). During the 
glance away, the lead vehicle initiates braking. The level of 
criticality the driver faces when looking back depends on the 
interaction between the duration of the glance and the rate at 
which the situation develops, yielding the linear organization 
with a negative slope in Figure 7.8.

Inspection of videos and time-series plots indicated that the 
driver typically looked away just before the invTTC started to 

Figure 7.8.  Last glance duration versus invTTC change rate. The ovals 
mark the three main categories of crashes identified through video  
inspection. The cases marked by squares are described in the text.  
The dashed line represents the hypothetical boundary for safe glances.
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grow above zero. There was most often a strong violation of 
expectations; these events often occurred at junctions when 
the principal other vehicle (POV) would normally continue 
ahead but instead stopped suddenly and unexpectedly. The 
last glance was in some cases preceded by other glances that 
may have impaired the detection of visual cues that could have 
predicted the lead vehicle’s action. When the driver looked 
back the second-to-last time (i.e., at the end of the glance pre-
ceding the last glance), the invTTC was generally close to zero 
or negative (in the latter case the lead vehicle accelerated away, 
which may have further enhanced the false expectation). The 
lead vehicle’s brake lights were often salient and, as indicated 
by the analysis in Table 7.1, often illuminated while the driver 
looked forward. However, as also shown above, these brake 
light onsets generally failed to influence the driver’s decision 
to take his or her eyes off the road. In the upper left region of 
Figure 7.8 (short glances, high change rate), there is some 
overlap with Category 2, in which the driver looked away 
when invTTC had already risen significantly above zero (see 
below). The cases at the lower right end of Category 1 of Fig-
ure 7.8 (extreme LG duration, low change rate) are typically 
low-speed scenarios in which the driver looks away for an 
extensive period while the vehicle is moving very slowly toward 
a stationary POV (e.g., in stop-and-go traffic).

An example of a representative Category 1 crash is given in 
Figure 7.9. This case is also marked in Figure 7.8.

Category 2: Looking Away in  
an Already Critical Situation

These cases represent situations in which the driver looks 
away at a point when the situation is already critical—that is, 

the vehicles are already closing and the invTTC has already 
risen significantly above zero. This typically involves a very 
brief glance (around 0.5 second) before the gaze is presum-
ably redirected to the road by the strong looming cues. These 
cases constitute about 20% of the cases in Figure 7.8 (as men-
tioned above, some of these cases overlap with Category 1).

Based on the video inspection, there seem to be several 
potential reasons (which sometimes combine) for why the 
last glance was initiated even though the POV was closing. 
These include

•	 Reduced visibility due to rain, darkness, or glare;
•	 A fast approach while time sharing, leading to a small angu-

lar rate (q-dot) when looking back before the last glance;
•	 Intense visual time sharing with a short gap between the 

second-to-last and the last glance; and
•	 A search for escape: The driver knows that he or she is on 

a collision course and looks to the sides/mirrors for an 
escape path.

An example of a Category 2 crash is given in Figure 7.10.

Category 3: Looking Away and Back Again 
Before the Situation Has Turned Critical

Here the driver looks away and back again before the situation 
has turned critical, leading to a small change rate during the 
last glance and varying glance durations. Here the off-path 
glance(s) most likely did not interfere with the reaction to the 
event (although it may possibly have affected the detection of 
available predictive cues). Thus, these events can be regarded 
as functionally similar to crashes in which the drivers did not 

Figure 7.9.  Example of a Category 1 crash  
(event ID 19147492).

Figure 7.10.  Example of a Category 2 crash  
(event ID 19147617).

Analysis of Naturalistic Driving Study Data: Safer Glances, Driver Inattention, and Crash Risk

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22297


75   

look away at all within the 8-second window (these were 
excluded in the present analysis, as explained above).

Video inspection revealed that Category 3 events typically 
involved a strong violation of expectation (e.g., the lead vehi-
cle stops late at yellow light, or a traffic queue builds in front 
of the POV in an unexpected location). The driver’s reaction 
to the closing vehicle does not appear to be markedly delayed. 
Rather, an insufficient safety margin and/or a strong lead-
vehicle deceleration rate seem to be key mechanisms behind 
these crashes. Moreover, the effectiveness of the avoidance 
maneuver may be a key factor separating crashes from near 
crashes in these events. A more detailed quantitative analysis 
is needed before any safe conclusions may be drawn. An exam-
ple of a Category 3 crash is given in Figure 7.11.

Summary

The analysis in this section demonstrates that the majority of 
the rear-end crashes in the present subset are well explained 
by the general hypothesis stated above (based on Tijerina et al. 
2004). These Category 1 crashes can be explained in terms of 
the co-occurrence of an off-path glance and a change in situ-
ation kinematics (normally the lead vehicle initiating braking) 
that strongly violated the driver’s expectations. In line with 
Tijerina et al., the situation was generally kinematically non-
critical at the moment when the driver looked away and then 
changed rapidly just after the driver looked away. Crashes in 
this category are generally distinguished from near crashes 
by the combination of last glance duration and the rate at 
which the situation changes during the glance away (here oper-
ationalized as invTTC change rate). Thus, these crashes hap-
pen largely due to a “perfect mismatch” between the visual 

attention to the forward roadway and the kinematics of the 
traffic situation, in line with the general mismatch model of 
driver inattention suggested by Engström, Monk et al. (2013). 
For a given glance duration, a certain minimum change rate is 
needed to produce a crash. Conversely, for a given change rate, 
the glance has to be sufficiently long for a crash to happen. 
This leads to the strong interaction between last glance dura-
tion and invTTC change rate in influencing crash/near-crash 
risk observed in the multivariate logistic regression analysis.

However, a number of crashes did not entirely fit this pat-
tern. Category 2 crashes are characterized by the driver look-
ing away for the last time at a moment when the situation was 
already kinematically critical (i.e., the distance between the 
two vehicles was already closing at LG start). This indicates 
that other factors than off-path glances affected the driver’s 
ability to detect the hazard. Video inspection suggested that, 
in particular, reduced visibility might be a key factor in this 
type of crash. This seems to be in line with the finding in 
Chapter 3 (Figure 3.6) that visual obstructions (in particular 
sunlight, precipitation, curve/hill, and broken or inappropri-
ately cleaned windshield) are overrepresented in crashes. 
However, a more detailed and systematic analysis of these fac-
tors is needed before any safe conclusions may be drawn.

Finally, in the Category 3 crashes, drivers looked back before 
the situation had turned critical, and thus, the last glance did 
not directly contribute to the crash. In these crashes, an insuf-
ficient safety margin (headway) in combination with a strong 
violation of expectation seems to be the key mechanism that 
led to the crash.

This analysis thus provides one answer to what constitutes 
safer glances: As long as the combination of glance duration 
and change rate remains in the safe region under the hypo-
thetical boundary indicated in Figure 7.8, the situation nor-
mally does not result in Category 1 crashes. Minimizing the 
duration of off-path glances is naturally one way to achieve 
this. However, the present data show, in line with previous 
studies, that excessive glance durations are infrequent, even in 
crashes. The extreme glance durations (>4 seconds) in the 
present sample typically occurred at close to zero speed in 
stop-and-go situations. Of the crashes in Category 1, 50% 
occurred for glances shorter than 2 seconds, combined with 
a high change rate (there are also a number of similar cases in 
Category 2). Thus, an efficient strategy to protect oneself 
from Category 1 crashes is to ensure that the headway when 
looking away is sufficient while, at the same time, avoiding 
extreme glance durations. As can be observed in Figures 7.3 
and 7.4, rear-end crashes with a time headway above 2 sec-
onds at LG start were rare, and the average headway adopted 
at LG start was generally small, also in the baseline events. 
Therefore, a shift toward a more defensive driving style with 
larger adopted headways would have a very strong potential 
for preventing these types of crashes. Note that this strategy 

Figure 7.11.  Example of a Category 3 crash  
(event ID 19147493).
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does not apply to cut-in scenarios, which were excluded from 
the present analysis.

What determines the location of the critical boundary for 
the Category 1 crashes? First, it is largely determined by vehi-
cle’s braking capacity (given road surface conditions). The 
single crash not included in any of the categories in Figure 7.8 
followed the general pattern of a Category 1 event. The invTTC 
consumed during the last glance would normally not have 
been sufficient to produce a crash; however, video inspection 
as well as the video annotation revealed that the driver was 
skidding with brake lockup (due to wet road surface), so the 
stopping distance was longer than usual. With a normal stop-
ping distance, this crash would have ended up a near crash 
(like the other events that surround it). Thus, improvements 
in vehicle braking systems and roads that reduce stopping dis-
tances would shift the boundary upward (i.e., requiring a 
greater change rate for a given last glance duration to produce 
a crash).

Second, the boundary also depends on what the driver does 
after looking back to the forward path the last time. For exam-
ple, did drivers that successfully avoided the crash react faster 
to the impending hazard after looking back than those who 
crashed? This topic is addressed in the following section.

7.5 �What Triggers Drivers’ 
Responses After  
the Last Glance?

So far, the focus has been on what happens before and during 
the final off-road glance, and how this differs between crashes, 
near crashes, and normal driving. A main insight has been that 
in many crashes (Category 1 in Figure 7.8) the amount of 
change in situation kinematics during the final off-path glance 
(as determined by the interaction between glance duration and 
kinematics change rate) seems to be a main factor separating 
these crashes from near crashes. However, there could also be 
differences between near crashes and crashes in what hap-
pened after the final glance, a possibility that applies to all three 
categories of crashes in Figure 7.8. Investigating this possibility 
seems relevant, not the least for the crashes in Category 3, for 
which the analyses so far in this chapter have not shed any light 
on potential causes (other than some preliminary suggestions 
based on video inspection). This section looks specifically at 
the question of when drivers reacted to the rear-end situation, 
with the aim of answering the following questions:

•	 When, in relation to the situation kinematics, did drivers 
react? Were there differences between near crashes and 
crashes in this respect?

•	 Do POV brake lights predict timing of SV driver reaction?

One tool used to answer these questions will be parameter-
fitting and comparison of reaction timing models. The test of 
these models is in itself an additional aim here, since it is envi-
sioned that they can be useful in future analyses. For example, 
they may be used in Monte Carlo simulations to extrapolate 
from the findings in this chapter by studying a wide range of 
hypothetical rear-end situations, or to address “what if” ques-
tions about the SHRP 2 events.

Throughout this section, driver reaction point refers to the 
manual annotation of “the first visible reaction of the SV 
driver to the POV [such as a] body movement, a change in 
facial expression, etc.” This point of driver reaction does not 
necessarily coincide exactly with the initiation of an evasive 
braking or steering maneuver; it was adopted here due to dif-
ficulties in identifying the exact point of maneuver onset, 
partially caused by the lack of reliable data on pedal use (see 
Section 2.9). From manual inspection of the driver reaction 
point annotations, it is clear that in a great majority of cases 
this annotation is followed within some tenths of a second by 
signs of subject-vehicle deceleration (although there are some 
exceptions to this rule).

The inclusion criteria adopted here (see Table 7.4) targeted 
the same type of scenarios as described above in this chapter, 
but they were stricter to allow parameter-fitting of models in 
the time plane. Matched baseline events were not included at 
all, since they did not have any annotated driver reaction 
points.

The difference in exclusion rate between crashes and near 
crashes was mainly due to three criteria: (1) greater prevalence 
of events with >8 seconds driving with Eyes on Path before 
reaction among near crashes than crashes (Criterion 2), (2) lack 
of optical data all the way up to the point of extrapolated colli-
sion (see next section) in 21 near-crash events (Criterion 3), and 
(3) a manual effort to inspect the quality of GPS speed data in 
crashes without CAN speed data, allowing inclusion of three 
crash events that would otherwise have been programmatically 
excluded (Criterion 4).

Driver Reaction Timing, Situation  
Kinematics, and Brake Lights

Figure 7.12 provides a first look at the extracted data, repre-
senting each event as a vertical gray line. Each event line starts 
on the x-axis, at the event’s invTTC at end of last off-path 
glance (here and below denoted invTTCELG); passes through 
a black cross, showing the time from end of last glance to 
annotated driver reaction point; and ends at a blue dot, show-
ing the time when a collision would have occurred, assuming 
the driver did not react at all and, in practice, defined as a 
constant SV speed from the annotated driver reaction point 
(same approach as in Chapter 8).
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First, consider the actual driver reaction points (the black 
crosses). For both crashes and near crashes, two approximate 
regimes of behavior are discernible in this figure, to the left 
and right of an invTTCELG = 0.2 s-1 threshold:

1.	 A clear majority of the long times to reaction >1 second 
occurred for invTTCELG < 0.2 s-1 (seven out of eight for 

crashes; 27 out of 28 for near crashes). This is consistent 
with the observation in the previous section that in some 
events, more specifically those in Category 3 of Figure 7.8, 
the driver did not find anything to react to at the end of the 
last off-path glance. Indeed, all the crashes in Category 3 of 
Figure 7.8 have invTTCELG < 0.2 s-1. As a shorthand through-
out this section, events with invTTCELG < 0.2 s-1 will be 

Table 7.4.  Exclusion of Crashes and Near Crashes for the Analysis  
of Driver Reaction Timing

Exclusion Criterion
Crashes Excluded  

(% of total 46)
Near Crashes Excluded  

(% of total 211)

1. No annotated reaction before collision 5a (11%) 0

2. �Time from last off-path glance to reaction >8 seconds, 
or no off-path glances in event

3 (7%) 35 (17%)

3. �Optical data not complete from end of last glance to 
extrapolated point of collision

3 (7%) 32 (15%)

4. �No usable CAN or GPS SVspeed data (missing or with 
apparent synchronization issues)

1 (2%) 14 (7%)

5. �Annotated reaction with driver’s eyes still off-path 0 9 (4%)

6. �Other apparent problems with the optical angle data 0 3 (1%)

7. �Annotated reaction after minimum distance point 0 1 (<1%)

Total number of excluded events 12 (26%) 94 (45%)

Total number of included events 34 117

a In four of these five crash events, the driver’s eyes were still off-path at collision.

Figure 7.12.  Inverse TTC at end of last glance (invTTCELG) versus time from end of last 
glance to the driver reaction point and to extrapolated collision. Threshold invTTCELG = 0.2 
s1 is shown as a vertical dashed line; the regression line, fitted to reactions in crash events 
with invTTCELG > 0.2 s1, is shown as a red line in both panels. Eyes-off-threat crashes  
correspond to Categories 1 and 2 in Figure 7.8; eyes-on-threat crashes correspond  
to Category 3.
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referred to as eyes-on-threat events, in line with the conclu-
sion above in this chapter that in the Category 3 crashes, the 
rear-end threat arose after the last off-path glance.

2.	 A clear majority of all short times to reaction, ≤1 second, 
occurred for invTTCELG > 0.2 s-1 (25 out of 26 for crashes; 
82 out of 89 for near crashes), suggesting situations in 
which a threat arose sometime before the end of the off-
path glance, such that the driver found something to react 
to more or less immediately after the glance. Consistent 
with this idea, all the crashes in Categories 1 and 2 of Fig-
ure 7.8 have invTTCELG > 0.2 s-1; throughout this section, 
events with invTTCELG > 0.2 s-1 will be referred to as eyes-
off-threat events. For these events, there are significant 
decreases in time to reaction with increasing invTTCELG 
for both crashes [r = -0.52; t(24) = 2.96; p = 0.007; regres-
sion line shown in both panels of Figure 7.12] and near 
crashes [r = -0.25; t(81) = 2.30; p = 0.024; regression line 
not shown in Figure 7.12].

Given the aims of this section, it is interesting to note that 
for eyes-off-threat near crashes (i.e., the near crashes with 
invTTCELG < 0.2 s-1), driver reaction points seem to group 
below the regression line for eyes-off-threat crashes (the red 
line in both panels of Figure 7.12). To verify this impression, 
deviations from this regression line were compared between 
crashes and near crashes; they were found to have signifi-
cantly different averages [t(107) = -4.020; p = 0.0001], with 
near-crashing drivers reacting, on average, 0.19 seconds faster 
than what is predicted by the regression line for crashes.

Next, consider the blue dots, showing the time after end of 
last off-path glance, of nonreaction collisions. This time dura-
tion can be regarded as a crude estimate of situation urgency 
at end of last off-path glance, and there are two observations 
to be made here. First, the times to nonreaction collision seem 
shorter in crashes than in near crashes. If so, this would mean 
that not only was invTTCELG at end of last glance higher, on 
average, for crashes than for near crashes (as shown in Fig-
ure 7.5), but also for a given invTTCELG the situation grew 
worse faster for crashes (e.g., due to larger POV decelerations). 
As a crude test of this possibility, times to nonreaction colli-
sion in the invTTCELG interval [0.4, 0.7] s-1 (where there is a 
reasonable coverage of both crashes and near crashes) were 
compared and found to be lower for crashes (1.4 seconds) 
than for near crashes (1.7 seconds), but this difference is not 
statistically significant [t(48) = -1.268; p = 0.21]. A similar test 
for the eyes-on-threat crashes (with invTTCELG < 0.2 s-1) also 
comes up nonsignificant [average times to extrapolated colli-
sion are 4.9 seconds for crashes and 4.7 seconds for near 
crashes; t(40) = 0.188; p = 0.85].

Second, it should be noted that in most crash events, there 
are time margins after the observed reaction point within 
which reaction could have occurred and still precede a collision, 

in some cases up to 2 seconds. This observation—as well as the 
observation of only one nonreaction collision with Eyes on 
Path among the 46 crashes in the total data set (see Table 7.4)—
suggests that if a driver looks forward, he or she will generally 
react (at least in the sense of a first visible reaction) to a rear-
end threat before the actual crash. This makes a very strong 
case for the hypothesis that situation kinematics (e.g., medi-
ated by visual looming) have an effect on the timing of driver 
reactions.

The analysis in Table 7.1 indicated that drivers in crashes 
and near crashes generally tended to ignore the onset of brake 
lights as a cue that the lead vehicle was likely to become a 
threat in the near future. Nonetheless, it is still possible that 
lead-vehicle brake lights influenced driver reactions once the 
situation became critical (i.e., after the end of the last glance). 
However, in most crashes (74%) and near crashes (79%), POV 
brake lights were on all the way from end of last glance to the 
driver reaction point, so it is clear from Figure 7.12 that, in 
general, drivers did not react within some fixed, situation-
independent reaction time to the sight of already illuminated 
brake lights. Figure 7.13 shows driver reaction points in the 
(rather few) events in which one or more brake light onsets 
occurred between end of last glance and the driver reaction 
point; the figure also shows when in time the last brake light 
onset occurred (the start of the red lines). One interesting pos-
sibility regarding the difference between crashes and near 
crashes starting at invTTCELG < 0.2 s-1 (i.e., the eyes-on-threat 
events, corresponding to Category 3 of Figure 7.8) would have 
been that near-crashing drivers in these events were more suc-
cessful than crashing drivers at responding to brake light 
onsets. However, the data shown in Figure 7.13 do not provide 
any strong support for this idea. Among the five eyes-on-
threat crashes, driver reaction came within 1 second after brake 
light onset in one case (20%). For near crashes, the same figure 
was seven cases out of 20 (35%), a difference that was not sta-
tistically significant (p = 0.47; Fisher’s exact test). In the other 
crashes and near crashes shown in Figure 7.13, reaction came 
any time up to 6 or 7 seconds after the last brake light onset. 
This leaves the general impression that brake light onsets had 
rather little to do with the timing of driver reactions in the 
present crashes and near crashes.

Thus, so far the results indicate that brake lights had a lim-
ited effect on reaction timing but that reactions were instead 
strongly related to kinematics, at least in the sense that driver 
reaction occurred (with only one exception) before the actual 
crash, and typically with quite some time margin left to when 
a nonreacting driver would have crashed. Figure 7.14 pro-
vides further insight into the relationship between kinematics 
and reactions, by showing both invTTC at end of last glance 
(on the x-axis) and invTTC at the driver reaction point, 
referred to here as invTTCR (on the y-axis). A diagonal y = x 
line is shown; a reaction on this line implies an event in which 
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Figure 7.13.  As in Figure 7.12, but showing only events with one or more brake  
light onsets between end of last glance and the driver reaction point. The red 
stripes begin at the time of last brake light onset and, for clarity, end at the driver 
reaction point (regardless of whether or not the brake lights remained illuminated 
up to this point).
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Figure 7.14.  invTTC at end of last off-path glance (invTTCELG) versus invTTC at the 
driver reaction point (invTTCR), for crashes and near crashes. Four red rings show 
driver reactions in the four near crashes when the driver talked/listened on cell  
phone (right panel): one cell phone event (at invTTCR ≈ 0.5) was included in the  
other analyses of this section; the other three were originally excluded (see Table 7.4) 
due to time to reaction over 8 seconds (one case), or to no optical cues available at  
the end of the last off-path glance (two cases; at invTTCELG = 0 since both were clear 
eyes-on-road Category 3 events).
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invTTC was the same at end of last glance and reaction. As in 
Figure 7.12, there are signs of qualitative differences between 
eyes-on-threat and eyes-off-threat events, and there are traces 
of the same 0.2 s-1 threshold for invTTCR. In the figure, both 
of these thresholds are shown, as one vertical and one hori-
zontal line.

1.	 To the left of the vertical line in the figure—that is, for the 
eyes-on-threat events (with invTTCELG < 0.2 s-1)—there is 
a vertical gap from the diagonal y = x line up to the hori-
zontal line, above which almost all reactions occur, with 
some variability. This signifies that in both crashes and 
near crashes, reactions generally did not occur before the 
kinematics had evolved to at least a level of 0.2 s-1 invTTC. 
Specifically, for these crashes and near crashes, average 
invTTCR was 0.49 s-1 and 0.45 s-1, respectively, a non
significant difference [t(40) = 0.479; p = 0.63].

2.	 To the right of the vertical line—that is, for the eyes-off-
threat events (with invTTCELG > 0.2 s-1)—driver reactions 
are present directly from the diagonal y = x line, again with 
variability, creating a diagonal band of points in the plot 
both for crashes and near crashes. This band seems to have 
a larger vertical spread for crashes than for near crashes. 
Indeed, the average of invTTCR - invTTCELG—that is, the 
height of reactions over the y = x line—was significantly 
larger [t(107) = 6.182 < p 0.0001] for crashes (0.32 s-1 
average increase) than for near crashes (0.13 s-1 average 
increase). In other words, even for comparable situation 
kinematics at end of last glance, crashing drivers reacted, 
on average, at a point in time with more severe kinematics 
than near-crashing drivers.

Another way of formulating this last result is that, on aver-
age, in eyes-off-threat events, the situation changed more for 
the worse in crashes than in near crashes during the time 
interval from end of last glance to the driver reaction point. 
This is analogous to what was found in the previous section 
regarding changes in kinematics during the last off-path 
glance, and again both time (here, time to reaction) and kine-
matics change rate could play a role. Here, it has already been 
observed, in relation to Figure 7.12, that for eyes-off-threat 
events, driver reactions were, on average, significantly slower 
in crashes than in near crashes and that there was a possible 
nonsignificant trend of times to extrapolated collision being 
shorter in crashes than in near crashes (implying a faster kine-
matics change rate). Both of these observations align with the 
observed difference in total change in invTTC from end of 
last glance to the driver reaction point.

Driver Reactions When Talking/ 
Listening on a Cell Phone

Several naturalistic driving studies have found cell phone 
conversation to have a protective effect (Olson et al. 2009; 

Hickman et al. 2010). The present study found an even 
stronger protective effect, with an odds ratio for Talking/ 
Listening on Cell Phone of 0.1 (see Chapter 4). To investigate 
to what extent this effect is related to changes in driver reac-
tions induced by phone conversation, the four near-crash 
events in which the driver was coded as Talking/Listening on 
Cell Phone are plotted in the right panel of Figure 7.14 along 
with the other events in which the driver was not in a phone 
conversation. (As described in Chapter 4, there were no 
crashes in the present sample coded as Talking/Listening on 
Cell Phone.)

First, it may be noted that all four talking/listening near 
crashes are of the eyes-on-threat type (i.e., Category 3). Sec-
ond, as can be observed in Figure 7.14, there are no indica-
tions that the cell phone conversation affects reactions to the 
rear-end threat; these drivers react at about the same kine-
matic severities as the other nearly crashing drivers. Average 
invTTCR for the four talking/listening drivers was 0.38 s-1, 
which is actually lower than the average 0.45 s-1 for the other 
eyes-on-threat near crashes. However, the difference was 
nonsignificant [t(35) = -0.708; p = 0.48].

Underlying Mechanisms and Model-Fitting

Driver reactions in the SHRP 2 crashes and near crashes are 
strongly associated with situation kinematics. Reactions are 
almost never observed for invTTC below 0.2 s-1, but above 
this threshold, reactions almost always occur before collision. 
In practice this means that at progressively higher invTTCELG, 
the reactions are progressively faster.

A candidate mechanism that could account for this set of 
observations is called evidence accumulation. In psychology 
and neuroscience, some models assume that overt actions are 
triggered once evidence for their suitability has accumulated 
to a threshold (also known as diffusion or race models). These 
models have been found to account well for reaction-time dis-
tributions in a wide variety of tasks (Gold and Shadlen 2007; 
Ratcliff and Van Dongen 2011), including brake reactions to 
expected activations of lead-vehicle brake lights (Ratcliff and 
Strayer 2013). Potential neural correlates of such processes 
have also been identified (Gold and Shadlen 2007; Purcell 
et al. 2010). Markkula (2014) hypothesized that timing of 
brake responses in driving could be driven by accumulation 
of the various cues that signal the possible need for decel
eration (e.g., contextual, augmenting, and primary cues, in 
the terminology of Tijerina et al. 2004). Here, using the same 
type of accumulator as Markkula (2014) and, for simplicity, 
assuming accumulation of invTTC, driver reaction could be 
hypothesized to occur when an activation A(t) ≥ 0, changing 
over time as

( ) ( ) ( )= − + εinvTTC (7.1)
dA t

dt
t M t
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has risen above a threshold At. Here invTTC is used, but 
inverse Tau could equally be used. (Here, these two are the 
same; see above in this section. Also see, for example, Flach 
et al. 2004, Kiefer et al. 2005, and Fajen 2007 for alternative 
visual cues to consider.) Markkula (2014) suggested that 
the model parameter M could be regarded as the sum of the 
influence from all other cues (e.g., contextual cues) and that it 
therefore could be affected by factors such as attention or 
expectancy. e(t) is a noise term (e.g., normally distributed) 
that relates to inherent variability in underlying neural activ-
ity. For a given parameterization of the model as formulated 
above:

•	 No reactions will be generated as long as invTTC is suffi-
ciently below M [sufficiently below given the variability of 
e(t)]; and

•	 Above M, larger values of invTTC will cause activation to 
reach threshold faster.

In other words, qualitatively, the model is completely in 
line with what has been observed here.

To test these ideas in practice, the model in Equation 7.1 
was parameter-fitted to the crash and near-crash data sepa-
rately, by means of a genetic algorithm (GA) optimizing 
parameters to minimize DRMS, the root mean square deviation 
between observed and predicted times of reaction (Wahde 
2008). e(t) = 0 to allow this type of deterministic simulation 
and model-fitting (rather than, for example, maximum likeli-
hood model-fitting). This approach can provide a first idea of 
the usefulness of the model, but perfect fits should not be 
expected. A deterministic model with one shared parameter-
ization for all events cannot at all account for natural variabil-
ity in reaction times [nonzero e(t)] or for variations between 
events in driver attention or expectancy (varying M).

For each event, the model was fed the invTTC history start-
ing from end of last glance. To allow meaningful fitting of 
model reactions occurring later than the observed reactions, 
the effect of driver avoidance maneuvering on invTTC was 
removed, as mentioned above, by assuming a constant SV 
vehicle speed after the annotated point of driver reaction. To 
reduce the risk of obtaining local optima, each optimization 
was repeated three times, with 500 GA generations in each 
repetition, and reasonable optimization convergence was sub-
jectively verified by inspection of model-fit time histories.

Figure 7.14 shows the fit of the model to the crash and 
near-crash data, together with the coefficients of determina-
tion R2, interpretable as the amount of variance explained by 
the model, computed as

∑
∑

( )
( )

= − = −
−

−
1 12 , ,

2

,

2R
SS

SS

T T

T T
E

T

i model i observedi

i observed observedi

where Ti,observed are the observed times to reaction, with average 
T
–

observed, and Ti,model are the corresponding model predictions. 
Negative values for R2 thus imply that the model produces 
larger prediction errors than what would be obtained for a 
fixed prediction Ti,model = T

–
observed for all events.

Figure 7.15 shows that for both crashes and near crashes, 
the accumulator model is rather successful at predicting times 
to reaction (R2 = 0.95 and R2 = 0.93, respectively, root mean 
square error of predicted reaction timing DRMS ≈ 0.4 second) 
when considering the entire sets of data, in which the vari-
ability is dominated by the long times to reaction of the eyes-
on-threat crashes. If singling out only the shorter times to 
reaction of the eyes-off-threat crashes (invTTCELG > 0.2 s-1; 
bottom left panel of Figure 7.15), the coefficient of determina-
tion is more modest (R2 = 0.24), but note that it is comparable 
to what was obtained for the linear correlation in Figure 7.12 
(R2 = 0.27). This can be interpreted as the model indeed pro-
viding a possible underlying mechanism behind that linear 
correlation, but not having any further explanatory power 
beyond it (and, as mentioned above, no means of accounting 
for, for example, variations in attention or expectancy). When 
fitting the model only to the eyes-off-threat events, a slightly 
better fit, with DRMS = 0.24 seconds and R2 = 0.28, was obtained.

For the eyes-off-threat near crashes, the linear correlation 
in Figure 7.12, was, although statistically significant, even 
weaker than for the crashes (R2 = 0.06). As is clear from Fig-
ure 7.14 (bottom right panel), this weak correlation was not 
recreated by the accumulator model. Also, fitting only to the 
invTTCELG > 0.2 s-1 subset yielded an improved model fit, 
DRMS = 0.20 seconds, though still with a negative coefficient of 
determination (R2 = -0.04).

That the accumulator model was less able to fit the times to 
reaction in eyes-off-threat near crashes than in eyes-off-threat 
crashes could imply there were some differences in mecha-
nisms between these crashes and near crashes which the model 
doesn’t cover. Another possibility might be that a type of selec-
tion bias comes into play, making any signs of evidence accu-
mulation difficult to discern. Driver reactions in the crash 
events did not seem tightly constrained by the need to lead to 
collisions to be included in the data set (as discussed in relation 
to Figure 7.12). However, reaction timing in near crashes was 
constrained both from above (must be early enough to avoid 
crash) and from below (must be late enough to generate a near 
crash). In other words, the SHRP 2 vehicles may have been 
involved in many driving events with similar kinematics to the 
near-crash events, but those did not register as near crashes 
because the driver happened to react slightly faster (in the 
terms of the model, due to favorable e, or a lower M), or they 
registered as a crash because of a slightly later reaction. If so, 
this could mean that variability in observed near-crash driver 
reactions may be dictated more by the kinematic constraints 
of near-crash-detecting triggers and crash-avoidance feasibility, 
than by actual driver behavior phenomena.
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As a contrast to the accumulator model, another two-
parameter model was also fitted that predicts a driver reac-
tion and a fixed reaction-time delay TR after passing an 
invTTC threshold. At long times to reaction, this model 
closely approximates the accumulator model (with M as the 
invTTC threshold, and accumulation to At as a delay). As 
could therefore be expected, this simpler model also worked 
well for the eyes-on-threat events, with long times to reaction 
(overall DRMS = 0.38 seconds and R2 = 0.94 for crashes; DRMS = 
0.43 seconds and R2 = 0.94 for near crashes). However, for the 
shorter times to reaction of the eyes-off-threat events, this 
model will almost always predict a time to reaction of TR, 
yielding poor fits (DRMS = 0.29 seconds and R2 = -0.04 for 

crashes; DRMS = 0.33 seconds and R2 = -1.74 for near crashes) 
and reinforcing the idea that something akin to evidence 
accumulation is needed to explain the effect of situation 
kinematics on times to reaction in eyes-off-threat events.

Finally, consider the parameter values obtained for the accu-
mulator model when fitted to crashes and near crashes. The 
mere observation that the parameter values differ does not 
provide much information, since M and At are to some extent 
redundant (a higher M can be partially compensated for by a 
lower At, and vice versa). Therefore, analogously to what was 
done for the linear correlation in Figure 7.12, Figure 7.16 shows 
the results of applying the accumulator model obtained for 
near crashes to the crash events. For the eyes-off-threat crashes, 

Figure 7.15.  Fits of the accumulator model to observed reactions, in crashes and near crashes. 
The top two panels show full sets of data used for model-fitting. The bottom two graphs provide 
a zoomed-in view of the events with invTTC at end of the last glance > 0.2 s1.
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with short times to reaction, the model fitted to near crashes 
predicted faster reactions than the model fitted to crashes, and 
the average difference of 0.22 seconds is well in line with the 
0.19 seconds difference observed in relation to Figure 7.12. For 
the eyes-on-threat crashes, with longer times to reaction, pre-
diction deviations went in both directions, adding up to the 
near-crash model predicting, on average, 0.01-second shorter 
times to reaction. This is in line with the apparent lack of dif-
ference in reaction timing between eyes-on-threat crashes and 
near crashes observed in Figure 7.14.

Summary

In conclusion, it has been shown that driver reactions in the 
SHRP 2 crashes and near crashes were not notably affected by 
POV brake lights but were instead strongly coupled to situa-
tion kinematics. It was found that the categories of crashes in 
Figure 7.8 could be neatly separated by a threshold of invTT-
CELG at end of last off-path glance: the eyes-off-threat crashes 
(Categories 1 and 2) all had invTTCELG > 0.2 s-1, and the eyes-
on-threat crashes (Category 3) all had invTTCELG < 0.2 s-1. For 
eyes-on-threat events (both crashes and near crashes), very 
few reactions occurred before reaching an invTTC of at least 
0.2 s-1. This means the reaction could occur an arbitrarily long 
time after the last off-path glance. In contrast, for eyes-off-
threat events (again, both crashes and near crashes), the driver 
reactions almost always came within a second, and almost 

always before the crash, in practice implying that reactions 
were faster in situations with high invTTCELG.

It has been explained that an accumulator model of reac-
tion timing, accumulating invTTC once invTTC has reached 
a minimum threshold, would, qualitatively, predict exactly 
these observations (no reactions below an invTTC threshold, 
and progressively faster reactions above it). In actual model-
fitting to the observed reactions, a simple two-parameter 
accumulator was found to account acceptably well for reac-
tion variability in crash events (both eyes-off-threat and eyes-
on-threat) and in eyes-on-threat near-crash events, but not in 
eyes-off-threat near crashes. This could possibly relate to 
issues of selection bias, which make model-fitting to this type 
of naturalistic data challenging in general.

There are clear signs that, for eyes-off-threat events, near-
crashing drivers reacted, on average, about 0.2 second faster 
than crashing drivers, and there are possible indications that 
the crash events in this regime also evolved to higher severity 
faster than comparable near crashes. This implies that causa-
tion of eyes-off-threat crashes could be further understood as 
involving (a) kinematics that changed faster than in similar 
near crashes after the end of the last off-path glance (not sta-
tistically proven here), and (b) drivers that for some reason 
had slower reactions (statistically significant). These slower 
driver reactions could be a result of natural variability in reac-
tion timing, such that slightly slower reactions happened to 
lead to crashes, and slightly faster reactions did not. However, 
the descriptive data analysis (Chapter 3) identifies a number 
of factors that were overrepresented in crashes, such as young 
age, rain, and visual obstructions—factors that could be 
hypothesized to be associated with slower reactions in critical 
situations. Another factor that could be expected to influence 
driver reactions is the degree to which the driver’s expectancy 
was violated (Green 2000); it is possible that crashes on aver-
age involved situations in which the driver was more certain 
that the lead vehicle would not brake, leading to a longer time 
to reaction. Finally, one aspect which has not been considered 
in the analyses presented here is the possibility of drivers 
acquiring some information about the impending rear-end 
situation via peripheral vision (Lamble et al. 1999; Markkula, 
2014). This could be needed to convincingly explain some of 
the very short and even zero times to reaction occurring in 
some eyes-off-threat events, especially in near crashes.

For the eyes-on-threat crashes, the analyses in this section 
did not identify any specific differences from comparable near 
crashes that could serve as clues regarding crash causation. No 
clear signs were found of slower reactions from crashing driv-
ers or of situation kinematics evolving faster in crashes than in 
near crashes. Moreover, drivers involved in cell phone conver-
sation did not respond at higher invTTC (looming) values 
than the other near-crash-involved drivers. Overall, these 
results suggest that what separates eyes-on-threat crashes 

Figure 7.16.  Comparison of fits of crash data 
for the crash model (gray crosses, same as  
in top left panel of Figure 7.15) and the near-
crash model (blue crosses, same parameters 
as in top right panel of Figure 7.15).
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from comparable near crashes may be related to failures to 
apply crash-avoidance braking or steering maneuvers after the 
point of driver reaction. This could involve differences in the 
time from observed driver reaction (such as studied here) to 
initiation of actual maneuvering, but also differences in factors 
such as actual maneuvering capacity of the vehicle on the road 
(e.g., relating to vehicle brakes, road surface friction), space 
available for lateral maneuvering, or the extent to which the 
drivers used the full maneuvering capacities of the vehicle.

7.6 Conclusions

The present analysis has yielded several novel insights on the 
role of glance timing relative to external events in rear-end 
crashes. The main conclusions are summarized and discussed 
below.

Conclusion 1: Brake Lights Have a  
Limited Impact on Driver Behavior  
in Rear-End Situations

The present results indicate that the timing relationship 
between brake light onsets and off-path glances does not have 
any impact on whether the situation develops into a safety-
critical event. In fact, co-occurrences between Eyes off Path 
and brake light onsets were less prevalent in crashes com-
pared with near crashes and matched baselines. Moreover, 
brake light onsets occurring while the driver looked forward 
were generally ignored and do not seem to have influenced 
the willingness of the driver to take his or her eyes off the 
road. Finally, as further discussed below, there was no indica-
tion that drivers reacted to brake light onsets after looking 
back to the road for the last time.

One possible explanation for why many drivers in the pres-
ent sample seem to have ignored brake light onsets is based on 
the notion that their predictive value could be limited. Brake 
light onsets are very common in noncritical situations; as indi-
cated in Table 7.1, 32% of the matched baselines in the present 
sample included brake light onsets. Thus, the great majority of 
brake light onsets that drivers are exposed to are not associated 
with any real threat. This may lead to a “cry-wolf” effect such 
that evidence from brake lights is taken more lightly than, for 
example, the detection of a closing lead vehicle. In the present 
crashes and near crashes, strong expectations that the lead vehi-
cle would not brake may thus have overridden the relatively 
weak evidence from the brake light onset that the lead vehicle 
might become a threat in the near future.

Drivers about to crash were more likely than near-crash 
and baseline drivers to look ahead when the brake lights 
illuminated, and also more likely to look away in the next 
moment. One possible explanation for this somewhat coun-
terintuitive finding is that the phenomenon occurs as an 
indirect consequence of the way rear-end crashes typically 

happen. As described above (and further discussed below), a 
large portion of rear-end crashes (Category 1) occur because 
of a particular combination of glance duration and the rate at 
which the criticality changes (measured here in terms of 
invTTC change rate). For this to happen, the driver must 
often look away precisely at the wrong moment, that is, just 
after the invTTC has started to rise. Since the last brake light 
onset often occurs just before the rise in invTTC, it will often 
also occur at a moment when the driver looks ahead. Fig-
ure 7.1 provided two examples, and there were many similar 
cases among the Category 1 crashes.

It should be noted that this does not mean that drivers 
never use brake lights as a cue for initiating braking. On the 
contrary, early responses to brake lights may have been a key 
reason that many potentially critical scenarios did not end up 
as crashes and near crashes in the present sample. However, as 
suggested by the cry-wolf effect described above, strong expec-
tations induced by other cues and/or a strong motivation to 
engage in a secondary task may easily override evidence from 
brake light onset that the lead vehicle is about to close.

An issue that has not been systematically addressed in the 
present analysis is the saliency of the brake lights. Here it was 
generally assumed that the brake light onset was perceived 
when the driver was looking ahead and missed when looking 
away. However, this may not always be the case since detec-
tion also depends on the saliency of the brake lights, which 
may be strongly reduced, for example, due to strong sunlight. 
As mentioned above, video inspection of the Category 1 
crashes indicated that the driver often looked away despite a 
very salient brake light onset. However, a more systematic 
analysis is needed to better understand the role of brake light 
saliency in this context.

Conclusion 2: Most Rear-End Crashes Are 
Characterized by a Mismatch Between 
Duration of the Last Glance and the Change 
Rate of the Situation Kinematics

The present analysis revealed, for the first time, how the driv-
er’s visual behavior and the situation kinematics interact to 
produce rear-end crashes, yielding a distinct pattern that 
characterizes the majority of crashes in the present sample 
(i.e., those belonging to Category 1 in Figure 7.8, and exem-
plified in Figures 7.9 and 7.12). These crashes happen because 
of a rapid change in situation kinematics, often occurring just 
after the driver has taken his or her eyes off the road. The 
crash mechanism is constrained by the fact that drivers nor-
mally do not take their eyes off the forward roadway if they 
detect that the lead vehicle is closing (Tijerina et al. 2004). 
Thus, the kinematic situation is perceived as normal when 
the driver looks away but has turned critical when the driver 
looks back. This can thus be understood in terms of a mis-
match model of driver inattention (Engström, Monk et al. 

Analysis of Naturalistic Driving Study Data: Safer Glances, Driver Inattention, and Crash Risk

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22297


85   

2013), in which the duration of the last glance and the invTTC 
change rate combine into a “perfect mismatch” that produces 
the crash. If one of the two constraints is not met (e.g., the 
glance is too short or the change rate is too low), the situation 
will end up in a near crash or may not turn critical at all.

This mechanism results in the linear organization of Cat-
egory 1 crashes in Figure 7.8. One way to look at this phe-
nomenon is as the result of a natural variability in situation 
kinematics in vehicle-following situations and the driver’s 
(learned) ability to control it. The driver’s decision to take his 
or her eyes off the road is largely guided by expectation. Thus, 
long glances are very infrequent because the driving situation 
normally does not permit them. Similarly, very rapidly chang-
ing kinematics in vehicle-following situations are also infre-
quent (because the lead-vehicle drivers are also good at 
controlling variability). Thus, the probability of Category 1 
rear-end crashes can be understood in terms of a joint prob-
ability distribution of off-path glance durations and kine-
matics change rates. Long off-path glances require only a low 
change rate for a crash to happen, while short glances require  
high rates. The pattern observed in Figure 7.8 emerges because 
long glances and fast change rates are both rare, and the points 
along this line represent the combinations with the highest 
joint probability. The present limited sample of crashes mainly 
contains low-severity crashes on the border of the near-crash 
region. With a larger sample, containing more severe cases, 
the crashes would be expected to be less linearly organized, 
featuring the more rare—and severe—combinations of long 
glances and fast kinematics.

The present data suggest a hypothetical boundary for what 
characterizes safe glances (see Figure 7.8). Off-road glances 
and change rates below this line are unlikely to produce a 
crash. However, the key problem is that the variability in situ-
ation kinematics is only partially controlled by the driver. One 
important implication of the present results is that the major-
ity of Category 1 and Category 2 crashes are produced by rela-
tively short glances (<2 seconds). Thus, even in the hypothetical 
situation in which all glances longer than 2 seconds are elimi-
nated, the majority of crashes directly caused by off-path 
glances would remain (all other things being equal).

A simple and efficient strategy for counteracting these cat-
egories would be to increase headway; very few Category 1 or 
2 crashes happened at initial headways (at LG start) larger 
than 2 seconds. Moreover, the present analysis showed that 
the lead vehicle often initiated braking just before the driver 
looked away, as indicated by the frequent occurrence of brake 
light onsets while the driver was still looking forward (e.g., 
the cases plotted in Figure 7.16). However, the driver often 
ignored the brake lights and looked away just before strong 
looming cues (indicating closing of the lead vehicle) started 
to appear. Thus, if the driver could be reliably alerted already 
at the point when the lead vehicle initiates braking (in some 
way other than by the lead vehicle’s brake lights, which seem 

to have lost their predictive value due to the cry-wolf effect), 
many of the critical off-path glances could likely be elimi-
nated. Collision warnings enabled by V2X technology should 
have a great potential in this context.

Although the majority of the present crashes could be 
explained by the mechanism just discussed, the results also 
pointed to other mechanisms behind rear-end crashes. In 
particular, in the Category 2 crashes, drivers typically failed to 
detect that the lead vehicle was already closing and eventually 
looked away from the road, thus further delaying their reac-
tion. The preliminary video inspection pointed to reduced 
visibility as a key factor in these cases, but a more systematic 
analysis is needed to establish this.

Finally, in a significant portion of the present crashes, 
grouped as Category 3 and characterized as eyes-on-threat, 
the off-road glance did not have anything to do with the driv-
er’s reaction. These crashes are thus functionally similar to 
crashes in which the driver did not look away at all before the 
crash. Further analysis is needed to determine the key factors 
behind these crashes, although some initial speculations were 
offered above.

Conclusion 3: Driver Reactions Are Coupled 
to the (Perceived) Situation Kinematics

A key insight from the analysis of driver reactions is that reac-
tions in critical situations are strongly coupled to the situa-
tion kinematics. As mentioned above, this analysis further 
demonstrated that neither the drivers who crashed nor those 
ending up in near crashes appeared to have responded to 
brake light onsets that occurred after looking back. (Note, 
however, that the number of cases with a brake light onset 
occurring after the last glance back was relatively limited.) 
Rather, the present results indicate that the moment when the 
driver reacts is mainly determined by the presence of suffi-
ciently strong optical cues indicating that the lead vehicle is 
closing. The analysis indicates that drivers with their eyes on 
the road did not react until the criticality of the situation was 
sufficiently high, as mediated by visual looming. The present 
data for crashes and near crashes indicate an invTTC (or 1/t) 
threshold of roughly 0.2, below which drivers did not seem to 
react. While both this finding and the lack of reaction to 
brake lights can possibly be explained in terms of selection 
bias (drivers ended up in these crashes and near crashes pre-
cisely because they did not react earlier), a key further find-
ing, not affected by selection bias, was that all but one driver 
did react after passing the 0.2 invTTC threshold.

This last result has important consequences for how to deal 
with the concept of reaction time in naturalistic data. In previ-
ous studies of near-crash and crash events (e.g., in simulation 
models), many researchers have assumed a constant, situation-
independent distribution of driver reaction times to the situa-
tion itself (Sugimoto and Sauer 2005; Kusano and Gabler 
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2012). The present results indicate that such an assumption is 
inadequate. Rather, a model of driver reactions in critical rear-
end situations must account for the fact that drivers react 
when the situation is perceived as sufficiently critical (e.g., 
when looming information has accumulated above a thresh-
old). In the present eyes-on-threat situations (Category 3), the 
reaction time largely depended on the moment when the 
driver looked back to the road for the last time and the way 
the kinematics developed, rather than on a driver-inherent 
reaction time. Thus, the concept of reaction time is generally 
meaningless in naturalistic driving analysis—except in specific 
types of situations (such as the current eyes-off-threat cases in 
Categories 1 and 2) in which the driver looks back at a moment 
when invTTC has risen above the critical threshold.

Another key finding was that reactions in eyes-off-threat 
situations were generally faster for near crashes than for 
crashes. It is not possible to determine whether this reflects an 
actual difference in reaction performance between crash- and 
near-crash-involved drivers or just a selection bias operating 
on a natural variability in time to reaction; however, this result 
at least indicates that small differences in the time to reaction 
after looking back to the road sometimes determine whether 
the event results in a crash or a near crash.

Finally, the specific analysis of reaction timing in the four 
near crashes in which the driver was Talking/Listening on Cell 
Phone did not indicate any significant difference in reaction 
performance to the other near crashes. If, as suggested by 
experimental studies (e.g., Brookhuis et al. 1991; Alm and 
Nilsson 1995; Strayer et al. 2003; Strayer and Drews 2004; 
Strayer et al. 2006), cell phone conversation induces reaction 
delays critical for road safety, drivers on the phone would be 
expected to react markedly slower (i.e., at higher invTTC) 
than the average near-crash driver. It is of course difficult to 
draw any safe conclusions on the basis of just four cases, but 
there is no sign of such an effect in these data. If anything, the 
invTTC values at which these drivers reacted were slightly 
lower than average.

However, the general results from the reaction analysis 
have further implications for the generalizability of results 
from experimental studies on cell phone conversation to the 
real world. Most of these studies have used reactions to the 
lead-vehicle brake lights as the key performance measure. 
However, as demonstrated by the present analysis, drivers do 
not seem to react to brake lights in naturalistic rear-end situ-
ations but rather to the situation kinematics, mediated by 
visual looming. Thus, whether the cognitive load induced by 
cell phone conversation delays reactions to brake lights might 
be irrelevant for understanding reactions to looming in real-
world situations. In fact, the few experimental lead-vehicle 
braking studies on cognitive load in which the brake lights 
were turned off (Muttart et al. 2007) or using other looming 
stimuli (Baumann et al. 2008) have generally found a null 
effect of cognitive load on driver reaction performance. This 

does not explain the protective effect found in the present 
study (Section 4.1) as well as previous naturalistic driving 
studies. But it may at least suggest a reason why talking/listening 
does not increase crash risk in naturalistic rear-end crashes, as 
would be predicted by the experimental results.

Conclusion 4: Modeling Driver Reactions  
on the Basis of Naturalistic Data Is Feasible

Initial attempts to model driver reactions based on evidence 
accumulation were partly successful. First, such a model con-
ceptually accounts for the general observed patterns: reactions 
do not occur while there is no looming (as observed in the 
eyes-on-threat cases), but reactions nevertheless almost always 
occur before crash, that is, faster in more severe situations (as 
observed in the eyes-off-threat cases). Thus, this type of model 
is clearly superior to naïve models that assume a constant reac-
tion time to the situation as such, or to brake lights. The model 
also did a reasonably good job in capturing the fine-grained 
variance in eyes-off-threat cases in which the driver looks back 
to the road when looming cues are already present. However, 
the model did not capture all the variance in these reactions; 
this is not surprising given the multitude of factors that possi-
bly influence time to reaction at this scale (e.g., visibility, the 
eccentricity of the off-path glances, individual variation). The 
proposed model is still potentially useful for simulating driver 
reactions in computer simulations of the phenomena investi-
gated here. A particularly promising application area is what-if 
simulations, such as those described in Chapter 8, or the evalu-
ation of active safety systems [e.g., forward collision warning 
(FCW) and autonomous emergency braking (AEB) systems].

Further Work

While the present analysis has yielded several new insights on 
the relationship between the last off-path glance and situa-
tion kinematics/visual cues, a fundamental question remains: 
Why did the driver take his or her eyes off the road at that 
inopportune moment in time? This decision might be gov-
erned by a balance between (1) the motivation to perform a 
secondary task and (2) expectations on how the situation will 
develop. Expectations derive from the driver’s current under-
standing of the situation, which, in turn, depends on the per-
ception of relevant contextual cues (such as a traffic queue 
building up ahead or a red light). Glances away from the for-
ward path very likely impair the detection of such contextual 
cues, leaving the driver with an inadequate understanding of 
the situation and possibly increasing the risk that an inop-
portune glance will coincide with sudden braking by the lead 
vehicle. One way to address this issue is through video-based 
analysis using a dedicated coding scheme. See Engström, 
Werneke et al. (2013) for the first step in this direction.
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C h a p t e r  8

The previous analyses have focused on crash-contributing 
factors in Lead-Vehicle Precrash Scenarios, including descrip-
tive variables, distracting activities, glance behavior, situation 
kinematics, and visual cues. The focus has been on quantify-
ing crash risk rather than injury risk. By developing methods 
to estimate both the probability of crashing and injury risk, 
this chapter focuses on the research question, What crash 
severity scale is best suited for analysis of risk?

Here, we propose a method that estimates potential out-
come severity (crash probability and injury risk) by using a 
model to simulate the effect of applying different glance dura-
tions on the actual kinematics of the crashes and near crashes. 
These potential outcome severity scales, Model-estimated 
Injury Risk (MIR) and Model-estimated Crash Risk (MCR), 
are indices that are output as continuous values, in contrast to 
the approach used in previous chapters, which has two broad 
crash and near-crash categories.

According to current common practice, safety-critical events 
in naturalistic driving data are grouped into categories such as 
crash or near crash in the SHRP 2 Event Severity variable. This 
approach has been used extensively in naturalistic driving 
studies (see Fitch et al. 2013; Klauer et al. 2010; Olson et al. 
2009). However, such an approach has significant limita-
tions. For example, does the categorization always treat a crash 
as more severe than a near crash? Why should an Event Severity 
variable value a very-low-velocity, stop-and-go crash (e.g., 
<1 mph) as more severe than a high-speed near crash on a 
motorway, in which the driver is just barely able to stop with full 
braking from 70 mph? The categorization approach cannot 
provide a continuous outcome variable for risk analyses across 
crashes and near crashes. MIR and MCR are two continuous 
variables that can be calculated for near crashes and crashes 
alike. The potential severity scales developed here were com-
pared with actual outcome severity scales: (1) DeltaV, the esti-
mated change in velocity for the vehicles in a crash (Kusano and 
Gabler 2010), and (2) minimum time to collision (minTTC) 
(Lee 1976). These outcome scales provide information about 

what actually happened in an event, are well established, and are 
described more in detail in Appendix A. We also compared the 
crashes and near crashes in the SHRP 2 sample with accident 
statistics, including the use of extreme value analysis (EVA) 
(Jonasson and Rootzén 2014).

As shown in previous chapters, the mismatch between Eyes-
off-Path glances and event kinematics is central to an event 
becoming a crash. Thus, it makes sense to ask these questions: 
What if the last glance duration was different in a particular 
event? What if the driver in the subject vehicle started his or her 
glance at a different point in time? Would there still be a crash? 
Would it turn into a near crash? Given a specific off-path glance 
behavior, what is the risk that this particular driving situation’s 
kinematics would end in a crash or result in an injury?

The basic idea behind potential (model-based) severity 
scales is the use of mathematical simulations to provide insight 
into what could have happened in a specific event if the driver 
had behaved differently (i.e., different glance behavior). These 
can be called what-if simulations because they make it possi-
ble to study how a change in driver glance behavior would 
have influenced the outcome of an individual event. An exam-
ple of what-if simulations using naturalistic driving data is 
McLaughlin et al. (2008) in which the safety benefit of forward 
collision warning (FCW) systems was evaluated by applying  
FCW algorithms to the kinematic data of 60 near-crash events 
and 13 crash events in lead-vehicle conflicts. In the what-if 
simulations presented here, the kinematics of the subject vehi-
cle are changed depending on driver off-path glance behavior 
to determine the effect that different glance distributions could 
have on the crash/near-crash outcome. These what-if simula-
tions are used to calculate the following three potential severity 
scales: (1) Maximum Severity Delta Velocity (MSDeltaV), 
(2) Model-estimated Injury Risk (MIR) index, and (3) Model-
estimated Crash Risk (MCR) index.

A primary objective of this chapter is to demonstrate the 
usefulness of what-if simulations and potential (model-
based) severity scales as tools for analyzing driver behavior in 

Actual and Potential Severity
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naturalistic driving data. The aim is not to provide definitive 
answers but rather to show a proof of concept. First, we 
describe and show how to calculate the potential severity scales 
and compare them with the actual severity scales (DeltaV and 
minTTC). Then we present how these methods can be used to 
perform three types of analyses: (1) glance duration analysis, 
(2) secondary-task analysis, and (3) generalization analysis. 
The what-if method and potential severity scales are primarily 
demonstrated through examples.

The first example, glance duration analysis, presents an 
application of potential severity scales to evaluate the effect of 
the duration of the last glance, when applied to the crashes and  
near crashes. The second example, secondary-task analysis, 
presents an evaluation procedure that can facilitate relative-risk 
estimates of secondary tasks (e.g., navigation entry or texting) 
with different off-path glance distributions. Two hypothetical 
tasks are evaluated. The final example, generalization analysis, 
evaluates the selection of near crashes and crashes in the sam-
ple, with respect to accident statistics, and explores the use of  
extreme value theory. The what-if method is in early-stage 
development and needs to be validated, and the underlying 
assumptions and limitations need further scrutiny.

A brief description of the method and results are given 
below. Detailed descriptions of the what-if simulations and 
the potential severity scales can be found in Appendix A.

8.1 �The Three Potential 
Severity Scales

Maximum Severity Delta Velocity (MSDeltaV) is the estimated 
(mass-adjusted) DeltaV of an event had the subject vehicle’s 
driver not performed an evasive maneuver. MSDeltaV is calcu-
lated by running a what-if simulation in which any evasive brak-
ing maneuver by the driver in the subject vehicle is “removed.” 
This removal includes the replacement of the SVspeed after the 
evasive maneuver with a constant speed equal to the speed just 
before the evasive maneuver. For crashes in which the driver did 
not perform an evasive maneuver, MSDeltaV is equal to the 
actual (original event) DeltaV.

The Model-estimated Injury Risk (MIR) index is a potential 
severity metric that extrapolates from any event in naturalistic 
driving data with an evasive maneuver (e.g., crash or near crash) 
to a continuous injury-risk value (called MIR) of the event, 
given a model of driver glance-off-path behavior. This is not the 
risk of an injury in the actual event as it happened, but rather 
the risk of a serious injury in the event had it played out differ-
ently according to the simulation. According to the Abbreviated 
Injury Scale, serious injury in this context is defined as MAIS3+ 
injury (Gennarelli and Wodzin 2005). The possible glance 
behaviors are assumed to be a sample from a probabilistic dis-
tribution that can be either generic or estimated from available 
data. The calculation of MIR presented here is equivalent to 

applying all glances in a glance-off-path distribution to the 
kinematics of a specific event and estimating the injury risk 
given that distribution. That is, MIR is acquired via simulation 
and is related to an estimate of MAIS3+ injury risk, given the 
underlying assumptions. The higher the MIR index, the higher 
the risk of injury.

The Model-estimated Crash Risk (MCR) index is based on 
the same concept as MIR, but the index represents the prob-
ability of a crash. Here, the what-if simulation classifies an 
event as crash or no-crash for a specific glance duration. It is 
equivalent to each glance duration in the glance-off-path dis-
tribution being simulated, and the outcome is classified as 
crash or no-crash. This is different from MIR, for which the 
injury risk of those crashes is calculated as well.

One use for both MIR and MCR is to apply them to a sam-
ple of crashes and near crashes (e.g., the data set used in this 
study). This is equivalent to performing all permutations of 
glance-off-path (in a chosen distribution) on all near crashes 
and crashes in the sample, producing a distribution of MIR 
and MCR indices for that sample.

8.2 �What-If Simulation Basics 
and the Calculation  
of MIR and MCR

The what-if simulations and calculations of MIR and MCR 
indices are based on a set of assumptions and a procedure 
that are briefly described below. For details and the reasoning 
around the choices, see Appendix A.

Prerequisites

•	 The extraction of both the subject- and lead-vehicle 
kinematics.

•	 The choice of a brake profile (how the driver brakes) to be 
used as a hypothetical brake response in the simulations. 
We use a constant 8 m/s2. However, the brake profile does 
not have to be constant and the same across events. Future 
implementations should consider using (1) different brake 
profiles depending on scenario-specific parameters, such 
as the estimated coefficient of friction; and (2) different 
brake profiles depending on the urgency of the situation 
(e.g., low or high looming or looming rate). The former 
may use estimates of the coefficient of friction from video 
or quantitative data [actual acceleration and, for example, 
antilock braking system (ABS) engagement]. Including the 
coefficient of friction on the results will provide higher-
fidelity results that minimize the effect of road conditions 
as a confounding factor. The latter (urgency-based brake 
response) may attenuate the effect of looming rates on the 
outcome, but it depends on which urgency/brake response 
relationship is established and used.
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•	 The choice of a driver reaction time—that is, time from 
looking back on the road until applying full brake. Con-
clusion 3 under Section 7.6 indicated that the results 
show that a fixed reaction time is not correct. However, 
we choose a fixed reaction time (0.4 second) since it pro-
duces conservative estimates of risk and shows proof of 
concept. The value 0.4 second is the median of the reac-
tion time for crashes in which the reaction is made after 
invTTC ≥ 0.1 s-1 is fulfilled. That is, the median reaction 
time for drivers when the invTTC reached at least 0.1 s-1 
before the driver reaction (brake response) is 0.4 second. 
Alternative reaction models can be integrated into the 
current simulation. One implication of using a short and 
constant reaction time is that the MIR and MCR esti-
mates will be lower on a sample level. Similar to the use 
of urgency-based brake profiles, if a looming-based reac-
tion time were used (e.g., based on the results in Chap-
ter 7) in the what-if simulation, the effect of high looming 
rate might be somewhat attenuated due to faster responses 
at high looming.

•	 The choice and extraction of the off-path glance distribu-
tion that should be used in the simulations. We choose the 
glance distribution from matched baseline events for most 
analyses but when comparing tasks, we also used the glance 
distributions of the individual tasks (as well as the total 
task time).

•	 The choice of where (an anchor point) and how to place 
the glance-off-road distribution in time, in the simulation. 

This choice is very important for the actual outcome sever-
ity estimates. We choose an anchor point at the threshold 
of the invTTC = 0.1 s-1 close to the crash or minTTC of the 
event. This is based on the assumption that the driver’s 
glance behavior (glance-off-road distribution) is the same 
as in normal driving (matched baseline) up until that point.

•	 A choice of injury-risk function, transforming DeltaV into 
injury risk that is relevant for rear-end crashes. We created 
an injury-risk function from NASS Crashworthiness Data 
System (CDS) data.

•	 Identification of the time point of start of evasive maneu-
ver in the original events. We use the time of the first nega-
tive derivative (deceleration) of the SVspeed after the driver 
reaction point.

What-If Procedure

The method of what-if simulations starts with the removal 
of the evasive maneuver in the original event from the 
SVspeed, substituting SVspeed at all times after the start of 
evasive maneuver with the speed just before the evasive 
maneuver.

Second, a simulation is run to get the outcome of “all” pos-
sible starts of an evasive maneuver by braking (Figure 8.1, 
Panel 1). The result is the impact speed related to the initiation 
of an evasive maneuver at “all” times in the event. The cyan 
curve in Figure 8.1, Panel 1, is the original event’s LVspeed. 
The red curve is the original event’s SVspeed. The green lines 

Figure 8.1.  A short description of the main steps for calculating MIR 
and MCR.
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(slopes) represent successful evasive maneuvers (where there 
was no crash) in the SVspeed simulations up until the first 
simulation ending in a crash, based on different starting 
points of the simulated evasive maneuvers. The blue lines 
(slopes) represent simulated SVspeeds where the outcome 
was a crash. The blue horizontal line is the simulated 
SVspeed until the start of each simulated evasive maneuver. 
The dashed black line is the evasive maneuver part of the 
SVspeed for the first simulation resulting in a crash. The 
start of the evasive maneuver corresponding to this first 
simulated crash is marked by a black X. The red Xs show the 
time instance and SVspeed value for the first and second 
simulations that resulted in a crash. The difference between 
the SVspeeds for the simulated crashes and the original 
LVspeed are the impact speed (shown as vertical red lines). 
For example, for the first crash, follow the original SVspeed, 
then the simulated (horizontal) SVspeed, until the black X. 
At that time the evasive maneuver starts. Follow the dashed 
line down to the red X. That is the crash point. The crash 
point is defined as the first time the relative distance goes 
below zero (integration of SVspeed and LVspeed with an 
initial distance).

As a third step, the injury risk for each start of evasive maneu-
ver is calculated (Figure 8.1, Panel 2), based on (1) the estimated 
impact speed in the previous step, (2) the chosen injury-risk 
function, and (3) estimates of SV and POV masses. That is, 
each simulated start of evasive maneuver has a corresponding 
risk of injury. The black X corresponds to the black X in Fig-
ure 8.1, Panel 1—that is, the start of the evasive maneuver for 
the first simulated event that became a crash.

As a fourth step (Figure 8.1, Panel 3), we place the glance 
distribution at the chosen anchor point (in this implementa-
tion, invTTC = 0.1 s-1; see Appendix A). Now both the injury 
risks and the glance distributions are in the time domain, 
ready for calculating estimated injury (and crash) risk.

Finally, by integrating the product of the injury risks and the 
glance distribution at each time point over time, an estimate 
of the injury risk for this event can be obtained, given (1) the 
glance behavior, and (2) the original lead-vehicle kinematics 
and simulated subject-vehicle behavior (Figure 8.1, Panel 4). 
This yields a value of the MIR index. The MCR index is derived 
by counting instances of the simulation for an event that results 
in a crash and relating this to the total number of instances 
rather than calculating the injury risk that corresponds to each 
such instance (i.e., MIR).

This procedure to calculate MIR and MCR can now be 
applied to the crash and near-crash data to address different 
questions. In the following section, actual and potential out-
come severity scales are compared as applied to the events in 
the present sample. Then, three analyses that may be per-
formed using this approach are briefly described and results 
are shown.

8.3 �Actual Outcome Severity 
Versus Potential  
Outcome Severity

The comparison of actual and potential outcome severity 
scales is made by calculating each scale value for each of the 
crashes and near crashes in the present sample. Figure 8.2 
shows six different outcome severity scales. When comparing 
the actual and potential severity scales, it is apparent that the 
actual severity scales are difficult to work with across crashes 
and near crashes because they cannot be used for both crashes 
and near crashes (see the three left panels in Figure 8.2). The 
three left panels show actual outcome severity (what actually 
happened) in this study’s data set. The three right panels 
show potential severity scales (what could have happened, 
created using what-if simulations) in the data set. The six 
scales are described in turn.

The dichotomous categorization of crashes and near 
crashes (leftmost panel in Figure 8.2) has so far been used 
extensively in analysis in naturalistic driving data, but it does 
not provide a way to compare the two event categories (crash 
and near-crash) or make comparisons within each category. 
The minimum time to collision (second panel from the left) 
is well established, and although it has some drawbacks, it is 
one of the most readily used scales of severity for near 
crashes, especially as a safety-critical event trigger in natu-
ralistic driving studies (Rootzén and Jonasson 2014). How-
ever, even though minTTC is defined for crashes, it is not 
very helpful because the minTTC for crashes is by definition 
zero. The DeltaV (Figure 8.2, third panel from the left) is 
also a well-established metric of actual outcome severity  
(Buzeman et al. 1998; Kusano and Gabler 2010; Viano and 
Parenteau 2010), but it is only defined for crashes, since there 
is no actual crash in a near crash. Of the scales presented 
here, the DeltaV metric is the most relevant metric for actual 
outcome injury estimations.

The third panel from the right in Figure 8.2 shows Maxi-
mum Severity Delta Velocity (MSDeltaV), which is an esti-
mate, using what-if simulations, of the DeltaV had the driver 
not performed an evasive maneuver. Although this is a con-
tinuous potential severity metric, it does not account for any 
driver reaction; rather, it plays out each event to the maxi-
mum possible DeltaV (excluding the following vehicle’s 
driver accelerating into the crash). MSDeltaV may still be 
used for evaluation of sample selections and for analyses that 
do not involve driver behavior explicitly. The difference  
between DeltaV (third panel from left) and MSDeltaV (third 
panel from right) is that DeltaV takes into account the braking 
of the subject vehicle after the start of the evasive maneuver, 
while MSDeltaV removes it. This difference is primarily created 
by the time headway at the start of evasive maneuver and the 
amplitude (brake profile) of subject-vehicle deceleration.
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In the second panel from the right, MCR values for the indi-
vidual crashes and near crashes are shown. The scale is clearly 
continuous for both crashes and near crashes. Thus, a high-
speed near crash is rated higher than a low-speed stop-and-go 
crash. However, this is not what actually happened; it is what 
might have happened given an underlying driver behavior 
model. In this way, MCR is most applicable to analysis of pre-
cursors of contributing factors in safety-critical events, as 
opposed to analysis of how drivers avoid crashes once a safety-
critical event is under way. The resolution depends on the 
granularity of the glance distribution (fewer glances in the 
creation of the distribution mean lower resolution).

The rightmost panel in Figure 8.2 shows the MIR values. 
This scale is continuous as well, for both crashes and near 
crashes. Although difficult to judge, comparing MIR and 
MCR, there seem to be only a few crashes and near crashes 
with high injury risk, while the probability of crashing is 
more uniformly distributed. This results, in part, from the 
matching of the matched baseline glance distribution and the 
specific crash and near-crash events in the sample; a different 
sample might produce different results. However, the results 
in our study seem reasonable since we would generally expect 
a low probability of serious injury and a higher and more 
uniform probability of crashing for any safety-critical event.

8.4 Glance Duration Analysis

To evaluate the injury risk related to a last glance of a different 
duration, the MIR and MCR indices can be calculated using 
different glance durations. A calculation of MIR was made for 
each last glance duration between 0.1 second and 4.0 seconds, 
in steps of 0.1 second. That is, instead of using the matched 
baseline distribution in the MIR calculations, a glance “distri-
bution” with glances of only one specific duration was used 
for each simulation. These completely artificial distributions 
contained 100 glances (events) of the same duration (e.g., 
0.7 second or 1.8 seconds). We call these distributions just to be 
coherent with the method descriptions. The single-duration 
distribution was applied to all crash and near-crash events 
respectively, producing a MIR index distribution for all near 
crashes and crashes (separately) for each 0.1-second step. Based 
on this distribution, the standard error could also be calculated. 
Each one-duration distribution was applied, conditioning it 
on overlapping the invTTC = 0.1 s-1 (see Figure 8.1). Note  
that in this and subsequent analyses, a number of events 
(crashes and near crashes) were excluded. Since this is a proof 
of concept, details of the exclusion criteria are not provided, but 
the majority were excluded because they were very-low-speed 
events or because there were some problems with data quality 

Figure 8.2.  Application of six different severity scales on the crashes and near crashes used in this report. The 
three left plots show actual severity scales; the three right plots show potential severity scales. Left to right: 
dichotomous classification into crashes and near crashes, minTTC (crashes equal zero), DeltaV for crashes  
(no near crashes shown since DeltaV is undefined for near crashes), MSDeltaV, MCR, and MIR.
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(e.g., availability of speed). The exclusion of very-low-speed 
events may affect the results, but since all analyses are relative 
(i.e., using the same sample of crashes and near crashes when 
comparisons are made), the effect is likely minor.

Results from Glance Duration Analysis

The MIR starts to increase more rapidly around a last glance 
duration of 1.25 seconds and after that is practically linearly 
increasing (Figure 8.3). On average, MIR for crashes seems, at 
least for longer durations, to reflect more severe kinematics 
than for near crashes, though the confidence intervals over-
lap. The glance anchor point (invTTC = 0.1 s-1) can be seen 
as aligning the application of the glance for both crashes and 
near crashes to a common “start” of critical kinematics. Then, 
since for the same glance duration crashes have a higher MIR 
than near crashes, what is different is the rate at which the 
event is unfolding. These results indicate that crashes in the 
sample are, on average, developing faster than near crashes, 
which is consistent with the results in Chapter 7.

8.5 Secondary-Task Analysis

The crash risk related to a visual-manual task—such as radio 
turning, navigation entry, or texting—can be evaluated by 
studying the effect of glance behavior related to these tasks 
(such as glance histograms collected in a separate experiment) 

on actual crashes and near crashes in naturalistic data (e.g., 
the distributions found in NHTSA 2013). Here we introduce 
a method that may be used to complement to such analyses. It 
uses what-if simulations to assess potential (model-based) 
injury risk, given the assumptions for the MIR index con-
struction described above. This section describes the method 
and exemplifies its use with two hypothetical task-glance dis-
tributions (Eyes off Path) with corresponding task durations 
(total task time). The method is based on performing simula-
tions of how the duration of the last glance off path affects 
MIR when applied to our sample of crashes and near crashes—
that is, what would happen had the glance distribution in the 
event been similar to the one described by the glance distribu-
tion of the evaluated task. We only calculate MIR, but the same 
methodology can just as well be applied to MCR.

In this analysis (but not all what-if analyses) it is important 
that the on-path glances be taken into account in the calcu-
lations. In the matched baseline distributions in SHRP 2, 
drivers are looking on the road approximately 79% of the 
time. When performing a visual-manual task, however, the 
time of gaze on road is much smaller, say 30% of the time 
(NHTSA 2013). We want to compare a task of a specific 
length (total task time)—for example, 20 seconds—with an 
alternative use of that same amount of time, as in baseline 
driving. The top panel in Figure 8.4 shows the matched baseline 
distribution with what is called a point mass at a glance dura-
tion of zero. This point mass corresponds to the time looking 

Figure 8.3.  The mean MIR value for all crashes (red) and near 
crashes (blue) in the sample,  the standard error (dashed 
lines).
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on the road. The bar at zero is 79% of the total distribution 
(histogram). That is, there is a 79% chance (probability of 
0.79) that the driver will be looking on the road at some 
critical point (e.g., invTTC = 0.1 s-1). The bottom left panel 
in Figure 8.4 shows an example of a (hypothetical) “simple” 
task, off-road glance distribution. Here the point mass at zero 
is 30% of the total of the distribution (histogram); thus, while 
performing this task, there is a 30% chance that the driver is 
looking at the road when something occurs.

To get the relative risk of engaging in different tasks, an MIR 
index is first calculated for each of the tasks to be compared, 
by applying the corresponding glance distribution to the kine-
matics of all crashes and near crashes in the sample. The same 
is done for the matched baseline glance distribution. All the 

glance-off-path distributions include point masses at dura-
tion zero (0) to account for the time when the driver is looking 
on the road (Victor et al. 2009). The resulting MIR indices for 
the application of each task’s glance distribution (conditioned 
on overlapping invTTC = 0.1 s-1) to the kinematics of each 
crash and near crash in the SHRP 2 sample can be compared 
with the corresponding distribution that results from applica-
tion of the matched baseline glance distribution to the same 
set of crashes and near crashes. This can be done using the 
method outlined in Figure 8.1.

Since the tasks take different amounts of time to complete, 
the total duration of the individual tasks is needed to calcu-
late relative risk. Let us assume that the easy task takes, on 
average, 20 seconds to complete, while the difficult task takes 

Figure 8.4.  Matched baseline glance distribution with a point mass at zero (78.83%) (top), the glance distribution 
of a hypothetical easy task with a point mass at zero (30%) (bottom left), and the glance distribution of a hypo-
thetical difficult task with a point mass at zero (30%) (bottom right). Point masses correspond to the portion of 
the time looking on the roadway for the respective task (e.g., 0.3  30% glances on forward roadway).
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40 seconds to complete. The RelativeRiskTask_vs_task of the two 
tasks can be calculated using the following equation, where 
the mean MIR of the matched baseline glance distribution is 
subtracted from the easy and difficult tasks’ mean MIRs, and 
the relative risk is scaled by the difference in Total Glance 
Time. This equation effectively assumes an alternative use 
(glance behavior) for the difference in total task time between 
the easy and difficult tasks (20 seconds), equivalent to that of 
the matched baseline. That is, it takes into account the MIR 
for the 20-second matched baseline behavior that is the dif-
ference between the two tasks (total task time).

( )
( )=

−
−

RelativeRisk

TotalTaskTime

TotalTaskTime

_ _

DifficultTask MatchedBaseline

EasyTask MatchedBaseline

DifficultTask

EasyTask

MIR MIR

MIR MIR

Task vs task

i

Observe that this equation would have a population interpreta-
tion if the distribution of the sample of (near) accidents was 
representative of all the possibly dangerous situations. Since this 
is not entirely correct because of selection bias, a better proce-
dure should incorporate weighting. Such weighting is not con-
sidered here, but research on how this should be implemented 
would be a good next step in the method development.

If only the relative risk between the task and matched base-
line is desired, a simple division of mean MIRs can be per-
formed (RelativeRiskTask_vs_MBL). This risk includes the point 
mass at zero.

=RelativeRisk _ _

Task

MatchedBaseline

MIR

MIRTask vs MBL

Results from Secondary-Task Analysis

The difference between the MIR index for the matched baseline 
glance (M = 0.267, SD = 0.372) and the simple task (M = 0.776, 
SD = 1.194) is significant, t256 = 9.76, p < 0.001. Similarly, the 
difference between the MIR for the matched baseline glance 
and the difficult task (M = 0.856, SD = 1.150) is significant,  
t256 = 11.91, p < 0.001 (see Figure 8.5).

The relative risk of the difficult task and matched baseline 
(ratio of MIR index means; RelativeRiskDifficult_task_vs_MBL) is 3.2. 
The relative risk of the simple task and matched baseline 
(RelativeRiskEasy_task_vs_MBL) is 2.9. Now assume the difficult 
task’s total task time is 40 seconds, and the easy task’s total 
task time is 20 seconds. Using the equation for relative task 
risk, the relative risk is calculated to be 2.31 [RelativeRiskDifficult_ 

task_vs_MBL = (0.856 - 0.267)/(0.776 - 0.267) p (40/20)]. This is 
the relative risk of engaging in the difficult task (difficult task 
off-path glance distribution with a total task time of 40 sec-
onds), compared with engaging in the easy task (with a total 
task time of 20 seconds).

This relative task risk is almost the same as the relative risk 
that corresponds to two tasks with exactly the same glance-
off-path distribution but with different durations (i.e., total 
task time 20 seconds and 40 seconds but same glance distri-
bution), for which the relative risk would be 2.0. The small 
increase in relative risk (2.31 compared with 2.0) is due to the 
relatively minor difference in glance distributions between 
the two tasks. Comparing the off-path glances for the two 
tasks (Figure 8.4 bottom left and right), the difficult task has 
a few longer (>2.5-second) off-path glances than the easy 
task. There is also a relatively large difference in glance prob-
ability in the 0.75-second and 1.25-second bins, with a higher 

Figure 8.5.  The MIR when all the glances (glance-off-path distribution) from matched baseline (left),  
a hypothetical simple task (middle), and a hypothetical difficult task (right) are applied to all crash and 
near-crash event kinematics in the SHRP 2 data set, using what-if simulations.
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probability of glances of 1.25-second duration in the difficult 
task compared with the easy task, and vice versa for 0.75 sec-
onds. Longer glances in either task would increase the MIR 
for that task (compare with Figure 8.3).

Another key component affecting the task risk is the por-
tion (ratio) of time the driver looks at the forward path dur-
ing task execution. In the MIR calculation this is represented 
as a point mass at zero duration in the glance distribution 
(Figure 8.4). If the two tasks had different point masses at 
zero, that would have had additional effects on the relative 
risk, increasing the risk for the task that had a lower portion 
of glances on road during the task. To illustrate how to evalu-
ate the influence of the portion of time looking at the forward 
roadway, calculations of relative task risk were done for the 
hypothetical easy task with 11 different point masses. The 
point masses used were 0% to 100% glances to the forward 
roadway during the task, in 10% steps. Obviously, 0% and 
100% glances off road during the task may not be relevant.

The relative risk for the glance-off-road ratio of the 
matched baseline (78.83%; point mass in Figure 8.4, top) 
compared with the easy task with point mass of the same 
value (78.83%) is approximately 1.6. This is the same relative 
risk as if the matched baseline off-path glances had been 
compared with the easy tasks off-path glance distribution, 
without taking the glances on the forward roadway into 
account. Further, by simulating different glance-on-forward-
roadway ratios it is possible to identify the percentage of gaze 
on the forward roadway that would create a risk equal to that 
of driving without doing the task. In our hypothetical easy 
task, with linear interpolation between 80% and 90%, this 
point is approximately 87% on-road glances during the task 
(as in the matched baseline).

In summary, the two hypothetical tasks’ off-path glance dis-
tributions shown in Figure 8.4 are similar, with a somewhat 
higher proportion of longer glances in the difficult task, while 
the total task time is longer for the difficult task. This results in 
a relative risk close to the one that would be obtained had only 
the total task time been taken into account. Note that this analy-
sis assumes that drivers have the same glance behavior (1) up 
until invTTC = 0.1 s-1, and (2) in all contexts in our sample of 
crashes and near crashes. These assumptions need to be dis-
cussed and the method developed further. Specifically, focus 
should be placed on identifying means to get the context 
dependency in the task-glance-off-path distributions sorted 
out. That is, there are likely different matched baseline glance 
distributions for different subscenarios and also for rear-end 
scenarios. Subscenarios may include highway driving with  
heavy and light traffic, respectively, or rural close-to-intersection 
scenarios. When calculating MIR for the crashes and near 
crashes for different tasks and baseline, to calculate relative task 
risk, it is likely more correct to use different matched baseline 
glance distributions for different scenarios. It would also be 

important to know if drivers would start engaging in the spe-
cific task for each of the different scenarios.

8.6 �Generalization Analysis: 
Comparison of  
DeltaV Metrics

In accident statistics, the DeltaVs of crashes are recorded. To 
evaluate how representative the selection of crashes is in a sam-
ple (e.g., our SHRP 2 data set), a comparison of distributions 
of DeltaV between accident statistics and the sample of crashes 
can be made. Since near crashes by definition did not result in 
a crash, they do not have DeltaVs. Therefore, we also com-
pare MSDeltaV for both crashes and near crashes to a DeltaV 
distribution from accident statistics. We use the National 
Automotive Sampling System–Crashworthiness Data System 
(NASS-CDS) crash database (NHTSA 2010c) to construct a 
distribution of DeltaV for rear-end crashes for this evaluation 
of representativeness. NASS-CDS is a probability sample of 
approximately 3,300–4,000 tow-away crashes involving a light 
vehicle per year. Each crash is investigated, and, when possible, 
DeltaV is reconstructed from measurements of damage to the 
vehicle. We used weights and survey techniques (Taylor Series) 
to estimate the distribution of DeltaV for rear-end striking 
crashes (frontal impacts) (see Appendix A). The distributions 
of DeltaV and MSDeltaV were plotted as cumulative distribu-
tion functions (CDFs), and the sample means were compared 
with simple t-test statistics.

Results from Comparison of DeltaV Metrics

The actual DeltaVs in the crashes in the sample are substan-
tially lower compared with the DeltaVs in the CDS accident 
statistics (Figure 8.6). However, this is expected, since the 
CDS samples tow-away crashes, which are generally the more 
severe 40% of police-reported crashes. The SHRP 2 sample 
includes crashes with very low DeltaV (even near zero), which 
in many cases would not be severe enough even to meet 
police-report criteria. These crashes have very low risk of 
injury and even limited property damage. There is no signifi-
cant difference (t227 = 0.606, p > 0.05) between the mean 
MSDeltaV for crashes and near crashes in the SHRP 2 sam-
ple. This means that without the just-in-time evasive maneu-
ver, near crashes in this sample have the same potential for 
injury as the crashes. It is interesting that at their maximum 
severity, these crashes fall near the DeltaV distribution for 
tow-away crashes. The CDS crash severity is a notable land-
mark, though there is no reason why these crashes should 
necessarily fall near that line. Interestingly, given the low 
actual severity of the SHRP 2 crashes, a larger sample that 
includes higher-severity crashes would be expected to include 
some very high MSDeltaV values.
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8.7 �Generalization Analysis: 
Extreme Value Analysis

This section discusses results of models using extreme value 
theory to extrapolate from crashes to high-severity (extreme) 
DeltaV values and from near crashes to crash risk. Like the 
severity modeling in Sections 8.3–8.5, this approach tries to 
evaluate how the sample of crashes and near crashes relates to 
those that appear in crash databases.

Following Jonasson and Rootzén (2014), we modeled the 
minimum time to collision (= max {-TTC}) from the set of 
near crashes using a Generalized Extreme Value (GEV) distri-
bution. We removed TTC values of less than 1.5 seconds, and 
used L-Moments estimation to obtain a fit from which we 
could estimate the rate of minTTC = 0 per near-crash event. 

The parameter estimates were �µ  = -1.058, �σ = 0.291, and �ξ = 
-0.244. The model fit is shown in Figure 8.7. The points gen-
erally fall on the 45-degree line, indicating reasonably good fit.

The return period plot is shown in Figure 8.8. Note that the 
observed values lie inside the confidence intervals but are 
tending toward the lower bound at the higher return levels. 
When the fit line crosses a return level of 0.0, the correspond-
ing return period is the number of near crashes expected 
before a crash would occur. This occurs at 7,815 crashes, indi-
cating a probability of 0.00013 of minTTC reaching zero. 
Interestingly, this value is below the confidence interval from 
Jonasson and Rootzén (2014), who used data from the  
100-car study. Thus, using this set of near crashes, we esti-
mated a greater risk of crashing than they did.

Figure 8.6.  Cumulative density functions (distributions) of  
different DeltaV scales.

Figure 8.7.  Empirical versus model quantiles for Generalized Extreme Value 
(GEV) fit to minTTC data from near crashes. Points lying on the 45-degree 
line indicate good fit.
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We also used extreme value analysis (EVA) to estimate the 
tail of the impact-speed distribution for crashes. Since impact 
speed is not an extreme value, we used the points-over-
threshold, or exceedance, model. This approach involves 
selecting a high threshold and modeling only the observations 
above that threshold using a Generalized Pareto (GP) distri-
bution. The threshold was selected to be 4 m/s, which maxi-
mizes the sample size of the exceedances while still remaining 
in the tail of the distribution. This is necessary because the GP 
model only applies to distribution tails, and thresholds that 
are too low tend to produce bias in the estimates.

The GP model fit is shown in Figure 8.9. The points do not 
fall entirely on the 45-degree line, but seem to indicate that the 
empirical quantiles are higher than the model quantiles. This 
was the best fit of the available methods but indicates the weak-
ness of trying to model a tail with such a small sample of points. 
To generalize a reasonable fit to the tail, a sample of 200 or 
more crashes would likely be necessary so that the tail sample 
(generally <1.5% of the sample) is large enough (Coles 2001).

Using this GP model, we looked at the return level for impact 
speed, shown in Figure 8.10. Here, the return level climbs slowly 
but steadily (in the log of event count). Note that return levels 
only make sense for a return period large enough to be above 
threshold. Thus, only return levels of 100+ crashes are likely 
to be interpretable.

To put these values in context, we computed the return 
level for return periods of 100, 200, 300, 400, and 500 events. 
These correspond to impact speeds of 14.4, 15.2, 15.7, 16.1, 
and 16.3 m/s. The CDS return periods for these impact 
speeds are plotted in Figure 8.11 against the GP return peri-
ods for comparison. In general, the GP return periods are 
more spread out than those from CDS (i.e., more events are 
needed to see values at the next level based on the GP model 
compared with the CDS estimates). However, these values 
are generally comparable to the upper tail from CDS. In 
general, since CDS is only tow-away crashes, we would 
expect the true return period to be greater (approximately 
double).

Figure 8.8.  Return level versus return period for near-crash GEV fit.

Figure 8.9.  Model fit for Generalized Pareto model of impact-speed 
exceedances.
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Figure 8.10.  Return level graph for Generalized Pareto model of impact speed 
in crashes.

Figure 8.11.  Return periods for the Crashworthiness 
Data System (CDS) and GP models of SHRP 2 
crashes for a sample set of impact speeds.

0

100

200

300

400

500

600

0 100 200 300 400 500 600

CD
S 

Re
tu

rn
 P

er
io

d

Generalized Pareto Return Periods

The EVA results demonstrate that crashes in this set are 
reasonably comparable to CDS crashes of the same type. 
Crashes from SHRP 2 form a small set of lower-speed 
events, but higher-impact-speed events would not be 
expected with a small sample in general. The EVA approach 
allows us to use the lower-speed events to estimate how many 
higher-speed events would be expected to occur if we had a 
larger sample of crashes. In addition, EVA makes it possible 
to estimate the correspondence between near-crash and crash 
events. We expect a crash to occur once per 7,815 near crashes, 
a number that is lower than was estimated from the 100-car 
study. Unlike the 100-car study, these near crashes appear to 
be more similar to crashes. At a minimum, the selection of 
rear-end-striking crashes creates a more uniform sample 
that might begin to correspond to a set like that described 
in Wu and Jovanis (2012).

8.8 �General Discussion  
on Actual and  
Potential Severity

The what-if simulations introduced in this chapter can be 
used to create potential severity scales that are continuous 
and common across crashes and near crashes (i.e., the MIR 
index and the MCR index), given a model of driver behavior 
and a set of assumptions for the simulations. These scales can, 
in turn, be used for many different types of analysis. We used 
three examples to demonstrate proof of concept but did not 
aim to provide definite results.

Potential (Model-Estimated) Severity 
and Example Analyses

This report introduces the MIR and MCR scales, acknowledg-
ing the need for further evaluation and adjustment. However, 
the main aim of MIR and MCR is to establish a methodologi-
cal framework and proof of concept. In particular, there is a 
clear need for a continuous severity scale that can be applied 
to both near crashes and crashes. The work described in this 
report shows in many ways that near crashes are not simply a 
less-severe version of a critical event, as the categorical meth-
ods assume. Crashes and near crashes are different instan-
tiations of a risk that was established earlier in the event and 
based on mismatches between driver behavior and the event 
kinematics (e.g., lead-vehicle deceleration). The scales 
described here provide a way to focus on the potential for 
damage (injury or crash) of each event, rather than the way 
things happened to turn out in a given case. In future analy-
ses, this should help to better differentiate precursors to 
crashes and methods of prevention. As discussed earlier, 
crashes often arise from situations that change quickly, 
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resulting in higher MIR and MCR indices. It may be that rem-
edies for these situations are what is needed. Analysis to that 
end would benefit from separating cases (whether crash or 
near crash) that have high MIR/MCR from those with a lower 
MIR/MCR.

The next steps in the development of MIR and MCR and the 
corresponding what-if simulation focus on validation strate-
gies. The validation will likely result in refinement of the 
method, for example, by using different reaction models or 
matching glance distributions with scenarios. Two different 
types of validations should be performed. First is the validation 
of the underlying assumptions in themselves. For example, 
how valid is it to condition the glances to overlap invTTC =  
0.1 s-1? Is there a need to establish different glance distribu-
tions for different scenarios (e.g., time headway) and do sepa-
rate analysis for the different scenarios? The second type of 
validation relates to comparison of the MIR outcomes to crash 
statistics. For example, the MIR distributions for the present 
sample of crashes and near crashes can be compared with 
observed measures of the injury risk from accident statistics.

In the glance duration analysis, the impact of the duration 
of a glance was evaluated. The results are in line with the 
results in Chapter 7 and show the potential of applying hypo-
thetical ideas of glance behavior (i.e., not empirical glance 
distribution) on existing data. In the analyses using this 
method, a main assumption affecting the results is/will be the 
anchoring of the glances as overlapping invTTC = 0.1 s-1. This 
choice of anchor point was made for a few different reasons. 
We did want to capture the basic idea that drivers try to avoid 
a critical situation by adapting to the situation. In the Tijerina 
et al. (2004) study of eyeglance behavior during car following, 
it was found that drivers under normal car-following condi-
tions generally do not take their eyes off the road unless both 
the SV and lead vehicle are traveling at approximately the 
same speed (i.e., at range rates close to zero). Although we 
want to adopt a strategy based on drivers avoiding critical 
situations, we want a driver model that is reasonably related 
to the kinematics of crashes and near crashes. In Chapter 7, 
Figure 7.4 shows that for matched baseline, only a few drivers 
started to look away at an invTTC higher than 0.1 s-1. At the 
same time the mean of invTTC for near crashes is just below 
invTTC = 0.1 s-1. This led us, for proof of concept, to choose 
invTTC = 0.1 s-1 as the gaze anchor point. Future application 
of the method can change this anchor point. Another obvious 
anchor point would be invTTC = 0.2 s-1 as described in Chap-
ter 7 (e.g., Figure 7.3). Appendix A also includes a description 
of how to apply the glance distributions at the original start of 
last glance off path instead of conditioning on an overlap of,  
for example, invTTC 0.1 s-1 or invTTC 0.2 s-1. That is, the 
glances start at the actual start of each last glance in the origi-
nal event. Further development is needed on the choice of 
anchor point. Should lower-value anchor points be chosen 

instead, in line with Tijerina et al. (2004)? Or should thresh-
olds such as invTTC = 0.2 s-1 be used? If a lower-value 
approach is chosen, data quality may also be a limiting factor 
(noise at longer ranges; see Appendix A).

The second example addressed the calculation of relative 
risk by calculating MIR for two hypothetical tasks. That is, 
there is a need to measure the potential risks from eyeglance 
characteristics of tasks that have different glance distribu-
tions, total task time, and Total Eyes off Road Time (TEORT). 
The scales developed here present one way to incorporate 
these different elements of a complex glance pattern into a 
risk scale (MIR/MCR). More work is needed to understand 
whether the risks of different glance patterns are fully charac-
terized by this approach. However, MIR was calculated for all 
crashes and near crashes (N = 256) with the two (hypotheti-
cal) task-glance-off-road distributions and matched base-
lines. Results showed a relative risk that was only slightly 
higher than the risk that only took into account exposure 
(20-second task versus 40-second task). However, the off-
path glance distributions were only slightly different with the 
same ratio of eyes on road. Although this is just an example, 
it does show how exposure (total task time) contributes to 
relative task risk. The longer the total task time, the higher the 
risk of exposure is. Only a very large shift in the glance distri-
bution toward longer glances for a task, or a different ratio of 
glances on the forward roadway between tasks, would create 
a similar risk. Further analysis should include

1.	 Real tasks (a larger set of task-glance distributions with 
real data);

2.	 Evaluation of how the glance anchoring affects the relative 
risks;

3.	 Evaluation of how different driver reaction models, includ-
ing how the glance durations on path (between glances off 
path), would affect the results;

4.	 Categorizing events into subscenarios to extract a matched 
baseline for each subscenario and used it for the respective 
events MIR calculations; and

5.	 Further investigation of driver adaptation/self-pacing in 
initiation of tasks in different scenarios.

The glance anchoring analysis is practically a sensitivity analy-
sis in which the anchor point may be, for example, (a) the 
original last-glance off-road start, (b) a different invTTC 
threshold, or (c) based on a different reaction model (e.g., 
what is described in Chapter 7). Also, the evaluation of reac-
tion models and the categorization into subscenarios can be 
seen as sensitivity analyses—but with the focus to enhance 
precision in the relative-risk estimates. Finally, the question of 
whether a driver would initiate a specific task in a specific situ-
ation is not considered in the current model. Further work is 
needed to investigate how this can be integrated.
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The third example addressed the representativeness of the 
sample of crashes and near crashes. This was done by com-
paring DeltaV from accident statistics (NASS-CDS crash 
database) with the actual DeltaV of the crashes in the sample 
as well as the MSDeltaV for both crashes and near crashes. 
The results were as expected and were further corroborated 
by EVA analysis.

Limitations

The potential severity metrics developed here depend on the 
extent to which the underlying behavior model actually repre-
sents (or is related to) driver behavior in the contexts in which 
it is applied. It is important to take the limitations of these 
metrics into account in any analysis. It is, for example, not 
wise to mix analysis of the behavior that actually happened in 
an event with the potential severity scales, unless there are 
strong reasons for doing so. The next step in the development 
of MIR, MCR, and the corresponding what-if simulations is 
to focus on validation strategies—that is, validation of the 
individual assumptions (including further refinement) and 
comparison with accident statistics. Since all scales rely on the 
underlying model, it is those that have to be validated further, 
in the context of use in what-if simulations.

There are 15 identified assumptions related to the what-if 
simulations and the creation of MIR and MCR. These are 
described in detail in Appendix A. Of the 15, five are in need 
of particular scrutiny and evaluation. We believe these five 
(more than the others) may affect MIR/MCR index calcula-
tions in a way that not only shifts the scale but also may affect 
conclusions without easily being about to assess why. The fol-
lowing is a list of these five assumptions (details are provided in 
Appendix A). Note that the first four are at different levels and 
violate conclusions in previous chapters. Future applications of 
MIR and MCR should likely revise the implementation; how-
ever, due to late data availability, parallel analysis (results 
from other chapters arrived late), and the aim only to show 
proof of concept, these assumptions stand and were kept for 
the current implementation:

1.	 Driver’s glance behavior (glance-off-path distribution) is 
the same as that in the matched baseline (or task when per-
forming task analysis) up until the chosen anchor point 
(invTTC = 0.1 s-1);

2.	 Drivers respond by braking at 8 m/s2 in all situations;
3.	 Brake initiation is made a fixed reaction time (0.4 second) 

after the driver has looked back on the road;
4.	 The quality of data is not affecting results significantly; 

and
5.	 It is reasonable to assume that, had the event not become 

critical, the driver would have continued at the same speed 
as just before the evasive maneuver.

The extreme value analysis provides a glimpse into the 
relationship between near crashes and crashes. It would ben-
efit from a larger sample size and might be applied to a larger 
number of descriptors. In addition, future analysis might try 
the multivariate approach described in Jonasson and Rootzén 
(2014). Further, crashes and near crashes result from an 
interplay between potentially critical kinematic situations 
and local glance behavior. Thus, there are typically many 
more similar kinematic situations present in the driving data 
that—combined with extreme glance behavior—would have 
resulted in near crashes or crashes. It is of some interest to try 
to develop estimation methods to weight the observed crash 
kinetics to better represent these potentially critical situa-
tions and to estimate their frequencies per driving distance 
or driving time.

8.9 �Conclusions on Actual 
and Potential Severity

This chapter has described a novel approach to analyzing 
driver behavior in naturalistic driving data. Specifically, we 
propose two potential severity scales, created using mathe-
matical simulations that apply a model of driver glance behav-
ior to kinematics based on actual crashes and near crashes. 
The two scales (MIR and MCR) are continuous and calculable 
for crashes and near crashes alike. These properties may be 
fundamental in future analysis of naturalistic driving data, but 
they are not present for available actual outcome severity met-
rics, such as DeltaV and minTTC. We recommend that DeltaV 
and minTTC be calculated for all crashes and near crashes, 
respectively. Proof of concept of the evaluation of visual-manual 
task risk was established through the application of MIR to two 
(hypothetical) visual-manual tasks. The results of the example 
application of MIR (to study the effect of last glance-off-path 
duration between crashes and near crashes) are in line with 
results in Chapter 7. That is, they show that crash scenarios 
play out faster than near-crash scenarios—higher risks at 
shorter glance durations. The potential severity metrics are 
likely to have many uses. Those uses range from visual-manual  
task evaluation—by facilitating a continuous metric in advanced 
driver assistance systems evaluation (rather than simply count-
ing instances of crashes and near crashes)—to providing a tool 
for further validation of driver models (e.g., reaction models). 
Given the inherent limitations in the metrics, assumptions 
must be evaluated extensively for each analysis use-case.

We demonstrate how a comparable, continuous metric for 
crashes and near crashes can allow a more nuanced analysis 
of the precursor conditions, which can be worse in some near 
crashes than in some crashes. This approach focuses on com-
mon elements of the precursor conditions and provides a way 
to analyze them without including the influence of actions 
that were taken afterwards (i.e., success or failure to avoid). 
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While success or failure to avoid is important for understand-
ing avoidance itself, the outcome of an event does not, in itself, 
determine the inherent risk of crashing in that event.

Another use of the approach is to evaluate the consequences 
of different task-related glance distributions on a large set of 
crashes and near crashes. Potential consequences of tasks 
depend on the inherent risk in an event, which is often related 
to how fast it develops. These, again, are independent of what 
actually happened.

Finally, the EVA begins to quantify the relationship between 
crashes and near crashes. The similarity of precursor condi-
tions for near crashes and crashes, combined with the very 
large number of EVA-estimated near crashes per crash, sug-
gests that avoidance is common. Thus, failure to avoid may be 
fairly random, while avoidance of the circumstances (focus on 
the precursors) might be more effective in reducing crash risk.

Thus, the analyses undertaken to answer the research 
question, What crash severity scale is best suited for analysis 
of risk? resulted in the formulation and proposal of two 
potential severity scales: Model-estimated Injury Risk (MIR) 
index and Model-estimated Crash Risk (MCR) index. These 

scales were created using mathematical simulations, applying 
a model of driver glance behavior to kinematics based on 
actual crashes and near crashes, and represent what might 
have happened had the event played out according to a specific 
driver model. The two scales (MIR and MCR) provide con-
tinuous values and can be calculated for actual crash and near-
crash events. However, further work is necessary to validate the 
scales. Note that the severity scales are simulated. Actual sever-
ity scales—Delta Velocity (DeltaV) for crashes and minimum 
time to collision (minTTC) for near crashes—are still the 
most relevant metrics when analyzing actual severity (what 
actually happened in the event) and should be calculated for 
the SHRP 2 data set. The main drawback with the actual 
severity scales is that they cannot be used to compare both 
crashes and near crashes. This property—the ability to com-
pare potential severity across crashes and near crashes—is 
enabled by our proposed MIR and MCR scales. It is impor-
tant to note that these scales are also enabled by naturalistic 
data. Without the detailed time-series data leading up to 
crashes and near crashes, the MIR and MCR scales could not 
be computed.
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C h a p t e r  9

This chapter focuses on answering the detailed research ques-
tions first and then, the main research question.

What are the most dangerous glances 
away from the road, and what are safer 
glances? Can risk from distracting 
activities (secondary tasks) be  
explained by glance behavior?

The analysis started by replicating previous findings. The 
analysis shows generally similar results that are consistent 
with previous findings regarding distracting activities and 
glance metrics. In general, distracting activities occurred 
frequently—much more frequently in crashes, near crashes, 
and baselines than impairments such as drowsiness. In line 
with previous naturalistic driving studies (e.g., Fitch et al. 
2013; Klauer et al. 2006, 2010, 2014; Olson et al. 2009), visu-
ally demanding tasks were associated with the highest risk. 
When considering crash and near-crash (CNC) situations 
combined, the results showed that the aggregate category of 
Portable Electronics Visual-Manual (OR 2.7, CI 1.4–5.2), 
and in particular, one individual activity in that category, 
Texting (OR 5.6, CI 2.2–14.5), had the highest odds ratios, 
suggesting a substantial risk.

Talking/Listening on Cell Phone was found to decrease 
crash/near-crash risk significantly compared with not engag-
ing in a phone conversation (OR 0.1, CI 0.01–0.7), represent-
ing an estimated 10-fold reduction in risk compared with 
baseline (OR 10 if the sign of the coefficient is reversed). 
There were no crashes when drivers were Talking/Listening 
on Cell Phone.

Odds ratios for more than 50 distracting activities were 
examined. However, many of the activities did not occur fre-
quently enough to achieve statistical significance. Distracting 
activities do not occur as frequently as glances and thus need 
larger sample sizes. Other individual categories (e.g., Locating/
Reaching/Answering Cell Phone or Adjusting/Monitoring 

Radio) or other aggregate categories (e.g., Original Equipment 
or Vehicle External Distraction) were not significantly risky.

To determine whether risk from distracting activities (sec-
ondary tasks) can be explained by glance behavior, it was 
necessary to first find the most predictive glance metrics. Many 
Eyes-off-Path glance behavior metrics were found to be power-
ful predictors of risk, much more so than the type of distracting 
activity (secondary task). The finding that glance behavior 
plays a key contributing role in crashes and near crashes is in 
line with existing research (e.g., Klauer et al. 2006, 2010, 2014). 
However, our analyses of separate glance metrics specified more 
strongly the benefits of using glance metrics to estimate risk. 
In general, the largest risk estimates were shown when crashes 
were analyzed separately from near crashes.

Although very strong Eyes-off-Path–risk relationships were 
shown in separate glance metrics, the relationship between 
glance behavior and risk cannot be reduced to a single metric, 
as there is no separate metric that fully accounts for risk on its 
own. The relationship is analogous to accounting for discom-
fort associated with heat. Temperature is a good metric that 
accounts for much of the variance, but including humidity 
would result in better predictions, as would including wind 
speed. Each glance metric helps inform the risk estimates.

The most sensitive glance metric model was a linear com-
bination of three-glance metrics as it was most predictive of 
crashes and near crashes. The first glance metric, Off3to1, rep-
resents the proportion of time the eyes were off path from 
3 seconds before until 1 second before the crash or minimum 
time to collision. The second glance metric is the mean dura-
tion of off-path glances during the 12 seconds preceding the 
crash point or minTTC (mean.off). The third metric, mean 
uncertainty (m.uncertainty), is the mean value (in the same 
12 seconds) of a composite measure based on the “uncertainty 
model” of the driving situation (Senders et al. 1967). However, 
if an individual metric is to be used, the Off3to1 metric was 
the second most powerful model after the linear combination 
of the three-glance metrics and much more powerful than the 

Conclusions and Recommendations
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max.off and m.uncertainty metrics used individually. Note 
that the Off3to1 metric is equivalent to the metric Percent 
Road Center (PRC) (Victor et al. 2009). The PRC metric takes 
the percentage of on-road gaze, while the Off3to1 metric takes 
the proportion (0–1) of off-road gaze; thus, they produce 
directly comparable values (Off3to1 being the inverse of PRC).

Thus, based on our results up to this point, the question, 
What are the most dangerous glances away from the road, and 
what are safer glances? can be answered in this way: the most 
dangerous and safest glances are quantified by the three-
metric glance model, which combines a metric of inoppor-
tune glance, mean glance duration, and a composite measure 
estimating the driver’s uncertainty of the driving situation.

Returning to the question of whether this most sensitive 
glance metric model can explain the risk from distracting activ-
ities, we found that it was substantially more predictive than 
the models based on distracting activities. Because the three- 
metric glance model was so superior, it might be expected to  
fully account for the effect of distracting activities (secondary 
tasks). However, the three-metric model could not be com-
pared in a straightforward manner with distracting activities 
because the distracting activities were only coded in the  
5 seconds preceding the precipitating event and 1 second after. 
Instead the best-performing glance model available at the 
precipitating event was used: the proportion of Eyes off Path 
in the 2 seconds overlapping the precipitating event. The 
aggregated category of distracting activities called Portable 
Electronics Visual-Manual was accounted for by the propor-
tion of Eyes-off-Path metric. However, we also found that the 
risk-increasing effect of Texting and risk-decreasing effect of 
Talking/Listening on Cell Phone were not accounted for by that 
metric. This gives some indication that the crash/near-crash 
risk of neither Texting nor Talking/Listening on Cell Phone is 
fully determined by glances. Hence, properties of the activi-
ties themselves further add to the risk. The present analysis 
does not further indicate what these properties might be, but 
cognitive load and motivational factors likely play a role in 
both Texting and Talking/Listening on Cell Phone. However, 
the influences of distracting activities might be explained by 
the more powerful three-metric glance model. This is clearly an 
interesting a topic for further research.

On the basis of these results our answer to the question, Can 
risk from distracting activities (secondary tasks) be explained 
by glance behavior? is mixed and requires further research: 
Portable Electronics Visual-Manual was accounted for by the 
proportion of Eyes off Path in the 2 seconds overlapping the 
precipitating event, but Texting and Talking/Listening on Cell 
Phone were not.

The finding that Talking/Listening on Cell Phone signifi-
cantly reduces risk compared with not engaging in a phone 
conversation (OR 0.1) is in line with previous naturalistic 
driving studies (Olsson et al. 2009; Hickman et al. 2010) but 

shows an even stronger protective effect (lower OR). The 
present study extends these results in several ways. First, the 
number of crashes in Olson et al. (2009) was limited, and it 
has been suggested that the protective effect primarily occurs 
for near crashes and incidents rather than crashes. However, 
the present results point in the opposite direction. None of the 
crashes in the present study involved phone conversation and 
thus, increasing the proportion of crashes would be expected 
to reduce the odds ratio for combined crashes and near crashes 
even further. Second, previous studies found the protective 
effect only for commercial vehicle (mainly long-haul truck) 
drivers; the present results show that it also occurs for passenger-
car drivers. Third, one criticism against the previous studies has 
been that the baselines were poorly matched with the crashes 
and near crashes. However, the present results demonstrate 
that the effect also occurs with a baseline sample of closely 
matched events.

One important caveat is that the present study included only 
rear-end scenarios, and it is unclear to what extent these results 
generalize to other scenarios. The cognitive load induced 
by phone conversation may lead to an increased crash risk in 
other crash scenarios involving higher cognitive or executive 
functions (such as planning, decision making, novel sequences 
of action, or inhibiting habitual responses) rather than the 
more automatic reaction to a looming lead vehicle. For exam-
ple, cognitive load may lead to impaired detection of red traffic 
lights or other types of signalized information in intersection 
scenarios. Indeed, one possible reason for the stronger protec-
tive effect in the present study is that the protective effect is 
strongest in rear-end scenarios, which constitute a relatively 
large portion (about 30%) of all crashes. Thus, any increased 
risk due to cognitive load in less frequent crash scenarios may 
be washed out by the strong protective effect in the more fre-
quently occurring rear-end scenarios. This hypothesis can be 
further investigated by examining the prevalence of cognitive 
load for different crash types in the SHRP 2 data set. Note that 
the protective effect of talking/listening found in the present 
data may not necessarily generalize to more severe crashes 
involving injuries and fatalities.

So how can this strong protective effect for rear-end crashes 
be explained? One common suggestion is that the cognitive 
load induced by phone conversation counteracts drowsiness. 
This explanation seems consistent with previous findings 
that the effect mainly occurs for commercial vehicle drivers, in 
particular long-haul truck operations. However, in the present 
study, drowsiness was relatively rare in both baselines and 
crash/near-crash events. Thus, this explanation does not seem 
to account for the present results.

Another possible explanation derives from the well-
established experimental finding that phone conversation 
(and other cognitively loading tasks) induces a concentra-
tion of gaze toward the road center. If this effect occurs in 
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naturalistic driving, the chances are greater that the eyes are 
on the forward path when a lead vehicle brakes, thus disabling 
the key mismatch mechanism behind Category 1 rear-end 
crashes (further discussed below). Indeed, Victor and Dozza 
(2011) found such a gaze-concentration effect in the 100-car 
study data. In the present data shown in Figure 6.5, Talking/
Listening was not associated with a general reduction in off-
path glances. Thus, by contrast to the 100-car study, the present 
data do not lend strong support for a pure gaze-concentration 
explanation. However, if the glances to the phone associated 
with hanging up are excluded, the present data show at least 
a tendency for gaze concentration. Thus, subtle differences 
in the distraction coding may be one reason for the differences 
between these studies. Also, the 100-car analysis included all 
scenario types while the present analysis only included rear-end 
scenarios.

Another related explanation is the task displacement hypo
thesis. Recent naturalistic studies suggest that drivers are on the 
phone about 10% of their driving time (Fitch et al. 2013). 
In our present matched baselines sample, the prevalence of 
Talking/Listening on Cell Phone was about 5%. Thus, because 
of its prevalence, phone conversation may displace or reduce 
engagement in other more risky activities such as texting, thus 
reducing the overall risk. The analysis of glance locations in 
Figure 6.5 clearly offers some support for this idea.

A more specific version of this hypothesis is what may be 
called the glance displacement hypothesis. As shown in Fig-
ure 6.5, the proportion of off-path glances was similar for 
matched baseline events with and without talking/listening 
coded as a distraction. Even if the phone glances are removed 
(as discussed above), the proportion of off-path glances in 
these events is still fairly high. The great majority of the 
glances presumably occurring during phone conversation are 
toward the left/right windshield and the left/right mirrors; 
almost no glances are to other secondary tasks (Figure 6.5). 
Thus, off-path glances while Talking/Listening on Cell Phone 
were mainly related to the driving task (e.g., road scanning 
and routine mirror checks while overtaking). This suggests 
that visual time sharing between driving-related activities is 
more “in pace” with the driving situation than visual time 
sharing with a secondary task. So, over and above a general 
gaze-concentration effect, replacing secondary-task glances 
with driving-related glances may increase the chance that the 
driver looks ahead at the critical moment when the lead vehi-
cle brakes. In other words, driving-related glances may be less 
likely than secondary-task-related glances to combine with a 
sudden, unexpected, lead-vehicle closure. Therefore, the “per-
fect mismatch” mechanism outlined in Chapter 7 is more likely 
to be disabled during talking/listening compared with other 
instances of normal driving. This hypothesized difference 
between driving-related and secondary-task-related glances 
may be further exacerbated by the fact that driving-related 

glances usually occur at a smaller visual eccentricity relative 
to the forward path than secondary-task glances. A small 
visual eccentricity increases the chance that a looming lead 
vehicle will be detected early in the peripheral field of view. 
This explanation appears to be the one that best fits the pres-
ent data. However, more detailed analyses are needed to fur-
ther examine this and other potential explanations for the 
protective effect.

Factors other than Eyes off Path also contribute to rear-end 
crashes. First, factors such as age (16–17 years and 76+ years) 
and visibility problems (visual obstructions or rain) may 
influence risk. Second, the present sample contains a signifi-
cant proportion of crashes and near crashes in which off-path 
glances were not the main contributing factor, such as when 
the driver looked at the road for the entire 12 seconds before the 
crash or only looked away at the beginning of the event. These 
crashes and near crashes were not systematically investigated in 
the present study. However, it may be that false expectations, 
small headways, and/or inadequately performed avoidance 
maneuvers may be key contributing factors. Clearly, further 
analysis is needed.

How does the timing of lead-vehicle closing 
kinematics in relation to off-road glances 
influence crash risk?

Given the present and previous findings on the importance of 
glance timing (e.g., Liang et al. 2012; Victor and Dozza 2011), 
we set out to study off-path glance timing with lead-vehicle 
closing kinematics and visual cues. This analysis revealed a 
distinct mechanism for many of the crashes. In line with 
Tijerina et al. (2004), we found that drivers in most cases did 
not look away when the lead vehicle was closing. Drivers who 
crashed typically looked away just before the lead vehicle 
started closing and did not look back until collision was 
unavoidable. This implies that, while drivers generally self-
regulate their off-road glances based on expectations of how 
the situation will develop, their self-regulation is not always 
effective because expectations are sometimes violated. The 
criticality when looking back, and thus the crash risk, is largely 
determined by an interaction between last glance duration 
and the rate at which the situation changed during the glance 
(operationalized here in terms of inverse TTC change rate). 
The event outcome is also determined by the vehicle’s braking 
capacity and the driver’s time to react.

Thus, the key mechanism behind these types of rear-end 
crashes (grouped as Category 1, Inopportune glance, in Fig-
ure 7.8) can be understood as a perfect mismatch between last 
glance duration and situation change rate (in line with the 
general mismatch conceptualization of inattention suggested 
in Engström, Monk et al. 2013). The crashes grouped under 
Category 2, Looking away in an already critical situation, 
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followed a similar pattern. But here the driver looked away when 
the vehicles were already closing, often because of visibility 
problems that presumably impaired looming detection. 

The probability for the type of mismatch characterizing 
Category 1 and, to some extent, Category 2 crashes depends 
on the joint probability distributions of glance durations and 
situation kinematics. Since long glances are rare, many crashes 
occur due to the combination of a relatively short glance and 
a high change rate. Thus, an important finding of the present 
analysis is that glances that lead to crashes may not necessarily 
have to be long. The majority of the crashes in the present 
sample were associated with glances shorter than 2 seconds.

This key finding motivates reconsideration of the question, 
What are the most dangerous glances away from the road, and 
what are safer glances? One way to think about which glances 
are safer than others is in terms of the boundary drawn in 
Figure 7.8. Under normal conditions (e.g., a dry road surface, 
normal braking capacity, normal visibility conditions), glances 
can be regarded as safe as long as they appear under this line, 
which is determined by the interaction of glance duration and 
kinematics change rate.

Thus, the answer to the first part of the question can be 
reformulated like this: Dangerous glances are those during 
which the driver is exposed to the risk of a rapidly changing 
situation. This is naturally partly related to the glance dura-
tion; the longer the glance, the greater the probability that the 
kinematics will develop in such a way that the perfect mis-
match occurs. However, the second part of the equation is the 
natural variability in vehicle-following situation kinematics. 
Drivers are normally successful in controlling this variability 
by means of anticipation. However, as shown in the present 
analysis, the safety margins adopted by drivers when looking 
away are often insufficient to protect them from unexpected 
rapid changes in situation kinematics. A reformulated answer 
to the second part of the question can be stated as follows: 
An off-road glance is only perfectly safe when the safety margins 
adopted are sufficient to protect the driver if the situation changes 
rapidly during the glance.

An important further question is this: What made the driver 
look away at that critical moment? It is likely that off-path 
glances further “upstream” in the chain of events leading to 
the crash may induce misunderstandings of the situation that 
influence the decision to initiate the critical last glance. These 
types of upstream effects of off-path glances have not been 
addressed in the present analysis and constitute an important 
area of further research.

What crash severity scale is best suited  
for analysis of risk?

The analyses to answer to this research question resulted  
in the formulation and proposal of two potential severity 

scales: Model-estimated Injury Risk (MIR) index and Model-
estimated Crash Risk (MCR) index. These scales were created 
using mathematical simulations, applying a model of driver 
glance behavior to kinematics based on actual crashes and near 
crashes, and they represent what might have happened had the 
event played out according to a specific driver model. The two 
scales (MIR and MCR) provide continuous values and can be 
calculated for actual crash and near-crash events. However, 
further work is necessary to validate the scales. Note that the 
severity scales are simulated. Actual severity scales Delta Velocity 
(DeltaV) for crashes and minimum time to collision (minTTC) 
for near crashes are still the most relevant metrics when ana
lyzing actual severity (what actually happened in the event), 
and analyses of the SHRP 2 crashes and near crashes should 
use them. The main drawback with the actual severity scales is 
that they cannot be used to compare both crashes and near 
crashes. This property—the ability to compare potential severity 
across crashes and near crashes—is enabled by the proposed 
MIR and MCR scales. It is important to note that these scales 
are also enabled by naturalistic data. Without the detailed time-
series data leading up to crashes and near crashes, the MIR and 
MCR scales could not be computed.

How can we change glance behavior  
to be safer, and how do the results of this 
research translate into countermeasures?

The findings of this research have several implications for 
countermeasures. Based on the general mismatch mecha-
nism identified in the present analysis, countermeasures for 
rear-end crashes may be considered in terms of two general 
aims: (1) reduce the risk for the occurrence of mismatches 
between off-path glances and changes in situation kinematics 
and (2) if such mismatches still occur, maximize the chance 
of recovery.

Human-machine interaction design, 
distraction guidelines, and other regulatory 
agency countermeasures

HMI design and performance guidelines, such as the ESoP, 
AAM, and JAMA guidelines, and standards such as ISO (see 
Regan, Lee, and Young 2008) are important tools that should 
be used at different stages in the user-centered design process 
to support the safe design and evaluation of vehicle human-
machine interfaces for driving-related systems. HMI design 
guidelines provide design specifications for installation, infor-
mation presentation, interaction with displays and controls, 
system behavior, and information about the system. HMI 
performance guidelines set out the minimum level of perfor-
mance that a system must meet when tested in accordance 
with a prescribed test method.
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Current HMI guidelines provide a mix of design and perfor-
mance guidelines. Problems associated with current guide-
lines, as well as standards developed around the world, were 
reviewed in Regan, Lee, and Young (2008). Regan, Victor et al. 
(2008) indicated that the main concern with current guide-
lines and standards is a lack of scientific knowledge to provide 
unequivocal assessment and robust compliance criteria for 
performance testing. Ideally, the approach to develop and 
implement performance standards for vehicle electronic devices 
would prescribe “practical, repeatable methods to measure 
the distracting effect of these devices and reliable benchmark 
levels of unacceptable performance” (Regan, Victor et al. 
2008). These should be consistent for original, aftermarket, 
and portable devices and should not stifle product innovation. 
An aim of this project was to address that lack of scientific 
knowledge.

The main recent development regarding HMI guidelines is 
the NHTSA Visual-Manual Driver Distraction Guidelines for 
In-Vehicle Electronic Devices, released in 2013. It contains a 
set of design guidelines and acceptance criteria for perfor-
mance testing with the aim of minimizing visual-manual dis-
traction and promoting nonvisual means for interaction. The 
evaluation methods in these guidelines are based on previous 
naturalistic driving study reports, such as Klauer et al. (2006) 
and Olson et al. (2009). In particular, they argue that in-vehicle 
systems which cannot be used without taking the eyes off the 
road for more than 2 seconds at a time are inappropriate for 
use while driving. The 2-second limit is included in several of 
the guideline performance criteria that must be met by in-
vehicle systems to be considered safe to use while driving. The 
2-second limit for what constitutes unsafe off-road glances is 
also central to the Alliance of Automobile Manufacturers design 
guidelines.

Note that the present results are based on Lead-vehicle pre-
crash scenarios and may not transfer to other precrash types. 
However, given these results, some observations can be made 
that may have relevance for distraction guidelines, as follows:

•	 The results clearly emphasize the importance of designing 
interfaces that minimize the need for visual interaction. 
Eyes-off-Path glances are strongly associated with crash risk, 
near-crash risk, and the combination of both.

•	 The results show that off-path glances leading to rear-end 
crashes are most often due to visual interaction with porta-
ble electronic devices rather than vehicle-integrated sys-
tems. Thus, efforts should focus on minimizing Eyes-off-Path 
glances with portable electronic devices.

•	 The risk-reducing effect found for Talking/Listening on Cell 
Phone seems to support the potential for nonvisual inter-
faces to enable safe interaction. Future research is needed to 
investigate whether the present findings generalize to other 
scenarios and to other nonvisual, but cognitively loading 

tasks, such as voice interaction. In addition, the present 
results emphasize the need to confirm that such interfaces 
are indeed nonvisual.

•	 The results show that the majority of crashes were associ-
ated with relatively short glances. This is likely due to their 
higher frequency; thus, based on the present results, there is 
a higher likelihood of mismatch with external events. These 
results indicate that eliminating long glances (e.g., glances 
above a limit of 2 seconds) will not eliminate the problem. 
Rather, the results clearly demonstrate that inopportune 
glances of normal duration with the wrong timing relative 
to high lead-vehicle closure rates often produce rear-end 
crashes. HMI design should thus also minimize occurrence 
of shorter glances.

•	 The present analyses were not specifically designed to answer 
the question of whether or not the NHTSA 12-second Total 
Eyes off Road Time (TEORT) limit for distracting activities 
(secondary tasks) is supported. Fully addressing this issue 
would require coding each distracting activity from start to 
end. The present analysis used fixed 6-second or 12-second 
windows; thus, the coded data excludes cases that would vio-
late the 12-second NHTSA limit. However, the present data 
can be examined to see if they support the general notion of 
the NHTSA 12-second TEORT limit, or if crashes are associ-
ated with more TEORT. Several sources of results need to be 
examined.

First, the analysis in Section 6.2 showed that odds ratios are 
highest for the proportion of time the eyes are off the forward 
path during the window from 3 seconds to 1 second before the 
crash point (Off3to1), but the odds ratios in the two preceding 
windows (5 seconds to 3 seconds, and 7 seconds to 5 seconds) 
also achieved statistical significance. Note that significance 
in those two preceding windows can be present even if they  
do not provide a significant contribution beyond that of the 
Off3to1 (the extreme case would be if these variables were 
perfectly correlated with Off3to1). The research team analyzed 
whether extended periods of eyes off the road in preceding 
windows might add to the risk. The results showed that there 
was no significant cumulative effect from the proportion of 
Eyes off Path in the windows preceding the Off3to1 variable. 
Thus, this analysis showed that risk was not associated with 
more Total Eyes off Path Time (TEOPT) than the 3 seconds 
to 1 second before the crash point.

Second, the analysis of glance characteristics showed that in 
addition to the Off3to1 variable, the mean single glance dura-
tion during the 12-second window (mean.off), and the mean 
level of uncertainty (m.uncertainty) during the 12-second 
window were together the best predictors of risk from glance 
data. Thus, although cumulative TEORT (in the time period 
before 3 seconds before the crash) was not supported as a 
more predictive indicator of risk, other characteristics within 
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the 12-second window (mean single glance duration and 
mean level of uncertainty) were supported.

Third, when examining the joint probability of lead-vehicle 
closure change rate and eyes off road (Chapter 7), a strong 
relationship was shown in the mismatch mechanism. The main 
determinant of risk appears to be the probability of mismatch, 
because fast change rates and short glances are associated with 
crashes, as well as long glances and slower change rates. Thus, 
although there does not appear to be a risk contribution from 
an accumulation of TEORT and the risk can be pinpointed in 
the mismatch mechanism, it can be argued that risk increases 
with a total exposure from the amount of eyes off road over 
time (as an increase in joint probability). Exposure to the joint 
probability of mismatch is affected by a number of factors, 
such as the driver’s choice to frequently perform distracting 
tasks (e.g., texting), the type of traffic, and whether or not 
active safety systems are reducing the lead-vehicle closure 
change rate.

These results indicate that the conclusions drawn here would 
not have been different if the entire lengths of secondary tasks 
had been coded from start to finish.

Vehicle design and driving support

The results provide strong support for the potential of active 
safety systems—such as autonomous emergency braking 
(AEB) systems, forward collision warning (FCW), autono-
mous cruise control (ACC)—as main countermeasures for 
inattention-related crashes. Active safety systems provide the 
safety margins needed to protect the driver if the situation 
changes rapidly during an off-path glance by creating more 
time headway, issuing warnings, and actively braking.

As shown in Figures 7.3 and 7.4, drivers often adopt small 
headways in vehicle-following situations and do not seem to 
adapt the headway much when looking away from the road. 
Figures 7.3 and 7.4 also show that drivers looking away from 
the road almost never crash if the time headway at the begin-
ning of the last glance is larger than 2 seconds. Thus, in theory, 
a simple way to prevent the crashes in the present sample is to 
increase the time headway. The European Field Operational 
Test (euroFOT), an EU-funded project, demonstrated that 
adaptive cruise control has the potential to significantly increase 
the average headway adopted by drivers. In terms of the present 
mismatch framework, this would reduce the risk of unexpected, 
high closure rates. Given the present results, such an increase 
in headway would be expected to have strong safety benefits  
(as long as the situations in which the adaptive cruise control 
is used overlap with those in which crashes occur).

As discussed in Chapter 7, the boundary suggested for safe 
glances (Figure 7.8) depends critically on the braking perfor-
mance of the lead vehicle. In many situations, a slight differ-
ence in the vehicle’s braking performance may distinguish a 

crash from a near crash. A short glance may be perfectly safe 
under normal road surface conditions but may induce a crash 
if the stopping distance is increased due to a wet road surface 
or an ineffective braking system. As mentioned above, this was 
precisely the mechanism behind the single crash in Figure 7.8 
not assigned to any of the three categories. Thus, improving 
vehicle braking systems should have great potential for miti-
gating the effects of inopportune glances. The same holds for 
AEB systems.

The results on driver reactions show that drivers react to 
progressively faster invTTC values above 0.2 and do not react to 
values below 0.2. An accumulator model successfully predicted 
driver reactions, and this model could likely be developed to 
improve the activation of warnings and interventions to better 
correspond to driver reaction times.

Systems for real-time inattention detection and mitigation 
have great safety potential, and development within inatten-
tion monitoring is a priority (e.g., NHTSA 2010a). Inattention 
sensing and support is being developed to detect drowsiness 
and distraction. Driver inattention sensing can be used for a 
wide range of functions and driver feedback (for a review, see 
Engström and Victor 2008). Driver assistance can be provided 
either by information and warnings or by adapting vehicle 
collision avoidance functionality, depending on detection of 
the risky inattention mismatch situations that were identified 
in the present research (see Figure 7.8). The project results are 
directly relevant for and have the potential to greatly improve 
real-time algorithms used for distraction and inattention 
detection (e.g., NHTSA 2013).

The results are very relevant for the design of forward col-
lision warning (FCW) algorithms. Most FCW algorithms in 
use are based on a kinematic threat analysis, using some kind 
of time-to-collision–based threshold for when to warn the 
driver. Because this approach has difficulty separating late but 
controlled hard braking from hard braking in response to 
an unexpected event, nuisance alarms are common. Many 
researchers have therefore envisioned that the next step for 
FCWs in terms of increasing their hit rate (i.e., reducing the 
rate of nuisance warnings) would come through including in 
the warning algorithm assessments of driver states—that is, 
make it an inattention-adaptive collision warning.

The present results provide an enhanced understanding of 
the crash-producing mechanisms targeted by FCW, which can 
be used to improve the sensitivity and specificity of collision 
warning algorithms and to enable inattention-adaptive algo-
rithms. An alternative approach, which is worth pursuing, is 
to tune FCW to warn more exactly when the risk is greatest 
according to the present results. For the analyzed events, it will 
be possible to establish how well existing FCW algorithms 
would have done in terms of alerting the driver. It will also be 
possible to devise principles for how to further optimize FCW 
algorithms in terms of warnings given and warning timing, 
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based on the driver’s attention state and the traffic environ-
ment. For example, in some cases with relatively low kinematic 
threat level, a warning might still be warranted if the driver is 
very distracted; inversely, an attentive driver might not need a 
warning even if the kinematic threat level is high (for more 
information, see Engström and Victor 2008).

The present results also indicate a strong potential for 
vehicle-to-vehicle (V2V) communication-enabled FCW func-
tions to prevent many of the crashes in the present sample. 
Video observation revealed that a common type of precrash 
scenario leading up to these crashes is the rapid build-up of a 
traffic queue in front of the lead vehicle. The traffic queue, 
however, is often hidden from the driver by the lead vehicle, so 
the driver often judges that it is safe to look away even if the 
threat is already present. If the driver had been alerted to the 
situation early by means of V2V communication with a vehi-
cle in the traffic queue, many of these crashes would very likely 
have been prevented.

Education and behavioral change

As noted above, the present results indicate that a behavioral 
change toward longer time headway might have prevented a 
major portion of the present crashes. However, motivating 
drivers to make a sustained behavioral change is notoriously 
difficult. One way to address this is by means of public aware-
ness campaigns. Another is behavior-based safety (BBS) pro-
grams, which are relatively well established in the commercial 
transport domain and have proven very efficient for inducing 
long-term behavioral improvement (e.g., Hickman et al. 2007). 
Such programs have also been successfully applied with teen 
drivers (Carney et al. 2010). BBS programs of this type are 
naturally not well suited to private motorists. However, one way 
to influence the behavior of this group is through usage-based 
insurance, which is a rapidly growing business linked to the 
general Big Data trend. For example, points or rewards could 
be given for keeping longer time headways.

Whatever the means for influencing drivers’ behavior, a 
key implication of the present research is that the adoption of 
safe headways should be a key target in behavioral change 
programs for road safety. The results identify the types of 
glance behaviors and contexts that are particularly dangerous 
and also identify safer behaviors and contexts. Thus they can 
be used for education, outreach, training, and licensing to 
teach and inform drivers how to behave in a safer manner.

Road and infrastructure design

Road and infrastructure design is of key importance both for 
preventing glance–traffic situation mismatches and for maxi-
mizing the chance of recovery in case they occur.

First, as discussed above, drivers’ glance allocation is strongly 
determined by expectations, and attentional mismatches 

typically occur when expectations are violated. Designing the 
infrastructure layout in a way that supports the development of 
correct expectations and minimizes the risk of misunderstand-
ing situations should have a strong potential for preventing 
rear-end crashes. While the present research has focused on 
mechanisms related to last-second reaction failures, under-
standing how expectations shape visual behavior and how 
this relates to infrastructure layout is an important topic for 
further research. The concept of self-explaining roads, coined by 
Theeuwes and Godthelp (1995), is a good starting point.

Second, addressing the other side of the mismatch equa-
tion, improvements in traffic control that aim to reduce dis-
ruptive traffic flows have potential for reducing the prevalence 
of sudden, unexpected, kinematic changes that often combine 
with off-path glances in producing rear-end crashes.

Third, as discussed above, the boundary for safe glances 
(Figure 7.8) depends critically on the stopping distance, which, 
in turn, depends on both the braking system and the road 
surface. Thus, by the same argument as for vehicle braking 
systems, improving road surfaces and their maintenance should 
have great potential for mitigating the effects of inopportune 
glances.

Assessing the potential efficiency 
of countermeasures

As described above, the present research has yielded several 
novel insights with respect to countermeasures for rear-end 
crashes. However, due to the complexity of the mechanisms 
involved, the potential efficiency of these countermeasures is 
difficult to assess.

Computer simulations based on the present type of natural-
istic crash and near-crash data have great potential for obtain-
ing more accurate estimates of the safety benefits of crash 
countermeasures. In particular, the level of detail with respect 
to crash kinematics and driver behavior available in these data 
makes it possible to reconstruct the crash scenario in simula-
tion and ask the question, What if things had been different?

One variant of such what-if simulations (focusing on the 
effects of different last-glance distributions) was presented in 
Chapter 8. The SHRP 2 data were also used to develop driver 
reaction models for use in such simulations, as described in 
Chapter 7. The severity scales and simulation models described 
in Chapter 8 will also be very useful for addressing not just 
crash prevention but also the injury reduction potential of 
different countermeasures.

What is the relationship between  
driver inattention and crash risk in  
Lead-Vehicle Precrash Scenarios?

The answer to the main research question can be found in the 
general pattern of the results. They show, in line with previous 
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naturalistic driving studies, that some activity types signifi-
cantly increase risk (such as Texting and Portable Electronics 
Visual-Manual). However, a strong significant decrease in risk 
was found for Talking/Listening on Cell Phone. Notably, there 
were no crashes while the driver was talking/listening on the 
phone. Three types of glance metrics showed the largest 
odds ratios: (1) the proportion of time the eyes were off path 
between 3 seconds and 1 second before the crash or minimum 
time to collision, (2) mean duration of off-path glances, and 
(3) the mean value of a composite measure estimating the 
driver’s uncertainty of the driving situation. Further, when the 
three-glance metrics were combined in a glances model, they 
were more predictive of crashes and near crashes than each 
metric individually. However, an important limit of the glances 
model that included the three-glance metrics is that it assumes 
risk is purely a function of the driver’s attention to the road 
(Eyes-off-Path metrics).

Risk stems more precisely from both the driver’s attention 
to the road and the demands of the road. Analyses of the tim-
ing of off-path glances with lead-vehicle closing kinematics 
and visual cues revealed a distinct mechanism behind most of 
the crashes that can be understood in terms of a perfect mis-
match between last glance duration and the change rate of the 
lead vehicle closing. Crashes occur with short glances and high 
closure rates, just as crashes occur with long glances with slow 
closure rates. These mismatches can be understood in terms 
of a joint probability distribution for glance durations and 
closure rates where the most likely combinations will show up 
in a crash sample like the present one. Since long glances are 
rare, many crashes occur because of the combination of a rela-
tively short glance and a high change rate. Another group of 
crashes followed a similar pattern, but in those cases the driver 
looked away when the vehicles were already closing, often 
because of visibility problems that presumably impaired 
looming detection. This pattern of results, or mechanism, was 
further confirmed in what-if simulation and modeling of 
reaction time.

The main pattern is that lead-vehicle crashes can be under-
stood as the mismatch between glance duration and the 
lead-vehicle closure rate. Timing matters greatly, and taken 
together, the analyses strongly reflect this mechanism.

Limitations

This study is very specific as it examined only Lead-Vehicle 
Precrash Scenarios (rear-end crashes and near crashes). These 
Lead-Vehicle Precrash Scenarios represent about 29% of 
crashes (Najm et al. 2003). Consideration should be given to 
several issues regarding generalizability and biases in the data.

To what extent can the current findings be generalized  
to the greater population of Lead-Vehicle Precrash Scenarios 
(rear-end crashes and near crashes)? To our knowledge, the 

current data set, although not the final SHRP 2 data set, is the 
largest sample of Lead-Vehicle Precrash Scenarios used for 
risk estimation. Previous naturalistic data studies have had 
smaller samples of lead-vehicle crashes, and crash databases 
do not include driver behavior data (e.g., glance behavior) in 
the precrash phase. Clear indications of similarity and con-
gruency with previous research are given by the replication 
analyses—for example, similarity in odds ratios on distract-
ing activities and glance behavior at the precipitating event 
(Chapters 4 and 5) and similarity with the glance data in the 
100-car data set (Figure 5.2).

Then the question can be asked, What biases in data and 
findings are due to the sample of data used versus what might 
have been the sample if the entire SHRP 2 data set? Although 
an estimated 20% to 30% of the expected final data set was 
fully surveyed through kinematic triggers, the full data set was 
“surveyed” by automatic notification processes (e.g., onboard 
Automatic Crash Notification algorithms, incident button 
presses, and site reports). Arguably, the most severe or notice-
able crashes were found through the automatic notification 
processes. Future research on the full SHRP 2 data set is needed 
to determine similarity and biases in the current data set.

The question can also be asked, What is the representative-
ness of the current crash data sample to more serious crashes? 
Is it possible that the distraction risks and characteristics under-
lying serious rear-end crashes are not the same as those in the 
relatively minor crashes in the current crash data set? Figure 8.6 
(and Figure 8.2) indicates that the actual DeltaVs in the crashes 
in the sample are substantially lower than the DeltaVs in the 
CDS accident statistics. This is expected, since CDS samples 
tow-away crashes, which are generally the more severe 40% of 
police-reported crashes. The SHRP 2 sample includes crashes 
with very low DeltaV (even near zero), which in many cases 
would not be severe enough to meet police-report criteria. 
As the present sample does not include crashes above DeltaV 
8 m/s2, this is a limitation of this study, and care should be 
taken in drawing conclusions beyond this level. Section 7.6 
suggests that more severe crashes would be expected to be less 
linearly organized along the negative slope in Figure 7.8, fea-
turing more rare, and severe, combinations of long glances 
and fast kinematics. This is clearly a topic for further research.

To what extent do the findings transfer to other crash types, 
for example, run-off-road crashes and intersection crashes? 
Some indication of transferability is given by the similarity 
with the 100-car data set (as in Figure 5.2), as the 100-car data 
set included all crashes, near crashes, and incidents found in 
that study. As discussed above, consideration of other crash 
types should be given, particularly with regard to the finding 
of reduction in risk from Talking/Listening on Cell Phone. 
The cognitive load induced by phone conversation may lead 
to an increased crash risk in other scenarios that involve 
higher cognitive or executive functions (such as planning, 
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decision making, novel sequences of action, or inhibiting habit-
ual responses) rather than the more automatic reaction to a 
looming lead vehicle. For example, cognitive load may lead to 
impaired detection of red traffic lights or other types of sig-
nalized information in intersection scenarios. In run-off-road 
scenarios, the present methodology, which quantifies change 
rate of a looming lead vehicle (invTTC), would have to be 
modified and developed. In particular, defining the crash point 
in run-off-road crashes is challenging, as time to line crossings 
or road edge crossings may not be as imminent to the driver as 
hitting an object. Further, run-off-road crashes do not typically 
involve an unpredictable behavioral component from another 
driver as Lead-Vehicle Precrash Scenarios do.

To what extent are near crashes reasonable as surrogates 
for crashes? There were differences between crashes and near 
crashes in many metrics, such as eyes-off-road proportions, 
odds ratios, lead-vehicle-closure change rates, and driver 
reaction times. Near crashes are generally different than the 
baseline events in this sample and also generally different than 
crashes, emerging somewhere between the two in many met-
rics. Because near crashes are more numerous than crashes, 
there is a clear weighting effect from using proportionally more 
near crashes than crashes in risk estimates combining crashes 

and near crashes, as can be seen in odds ratios (e.g., Figure 5.4 
and Figure 6.8) and percentage of eyes off path (e.g., Figure 5.2). 
Combining crashes and near crashes generally dilutes the 
effect found in crashes but reduces the confidence intervals 
because of the larger sample and thus, it allows detection of 
more significant effects at a lower magnitude in combined 
crash/near-crash risk. Clearly, there is value in using near 
crashes, but risk magnitude estimations are lower. As more 
crashes become available for analyses in the SHRP 2 data set, 
this near-crash surrogate issue can be investigated further 
and perhaps modeled.

One further limitation is that we cannot compare our results 
with a similar data set without portable electronic devices. 
Portable electronic device interactions, including visual-manual 
interactions, texting, and talking/listening on a cell phone, 
are present in the current data set, but we do not know the 
proportions and distributions of glance behaviors had they 
not been available in society. Thus, we do not know whether 
their presence displaces other interactions and glance behaviors 
or if they increase Eyes-off-Path glances. Although a subset or 
control condition could be created, selecting drivers that do 
not use their cell phones, it would not be representative of 
drivers who would choose to use them if they had one.
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actual severity. The actual outcome severity which is the result 
of the actual event (e.g., DeltaV and minimum time to 
collision).

crash. Any contact that the subject vehicle has with an object, 
either moving or fixed, at any speed in which kinetic energy 
is measurably transferred or dissipated. Examples and hints: 
Includes other vehicles, roadside barriers, objects on or off 
of the roadway, pedestrians, cyclists, or animals. In the 
rear-end collisions in the present data set, only vehicle-to-
vehicle contacts are classified as a crash.

driver distraction. Diversion of attention away from activities 
critical for safe driving to one or more activities that are not 
critical for safe driving. A type of driver inattention.

driver inattention. A mismatch between the current attention 
allocation (distribution) and that demanded by activities 
critical for safe driving. Includes driver distraction.

eyes off path. Glances away from the vehicle’s path, the direc-
tion of the vehicle’s travel. Includes transitions toward an 
off-path location and eye closures greater than 1∕3 second.

FCW. Forward collision warning system.
glance. Time from the moment at which the direction of 

gaze moves toward an area of interest to the moment it 
moves away from it. A glance consists of transition time 
toward a target plus the subsequent dwell time on that target 
(ISO 15007).

inopportune glance. A glance away from the forward path at 
an inappropriate time.

lead vehicle (LV). The vehicle preceding the subject (partici-
pant) vehicle in the same lane.

Lead-Vehicle Precrash Scenarios. A classification of the crash 
according to precrash Scenarios 22–26 from Najm and 
Smith (2007) corresponding to rear-end crashes in National 
Automotive Sampling System (NASS) crash databases.

near crash. Any circumstance that requires a rapid, evasive 
maneuver by the subject vehicle or any other vehicle, pedes-
trian, cyclist, or animal to avoid a crash. A rapid, evasive 

maneuver is defined as steering, braking, accelerating, or 
any combination of control inputs that approaches the 
limits of the vehicle capabilities. Examples and hints: As a 
general guideline, subject-vehicle braking greater than 0.5 g 
or steering input that results in a lateral acceleration greater 
than 0.4 g to avoid a crash constitutes a rapid maneuver.

odds ratio (OR). A measure of association between an expo-
sure and an outcome. The OR represents the odds that an 
outcome will occur given a particular exposure compared 
with the odds of the outcome occurring in the absence of 
that exposure. For example, the odds ratio of having a critical 
event (crash, near crash, or both, depending on the analysis) 
is calculated as a function of various predictors, such as 
glance characteristics or distraction types.

potential severity. The severity which can potentially result 
from a scenario, based on mathematical simulations.

precipitating event. The state of environment or action that 
began the sequence under analysis—that is, what state or 
action by this vehicle, another vehicle, person, animal or non-
fixed object was critical to this vehicle becoming involved in 
the crash or near crash? This is a vehicle kinematic measure 
(based on what the vehicle does; an action, not a driver 
behavior). It occurs outside the vehicle and does not include 
factors such as driver distraction, fatigue, or disciplining 
a child.

secondary task. A task, unrelated to driving, that requires 
drivers to divert attention from the driving task (e.g., talking 
on a cell phone, talking to passenger[s], eating).

subject vehicle (SV). The participant’s instrumented vehicle. 
That is, the following vehicle in the Lead-Vehicle Precrash 
Scenarios.

time headway (THW). Elapsed time between when the front 
of the lead vehicle passes a point on the roadway and when 
the front of the following vehicle passes the same point.

time to collision (TTC). The time left to crash before two vehi-
cles collide (rear-end collision) if no evasive action is taken.

Glossary
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vehicle kinematics. The description of the motion of vehi-
cles. For example, the description of the trajectories of the 
subject (driver’s) vehicle and the lead vehicle and their dif-
ferential properties, such as velocity, acceleration, and time 
to collision.

VTTI. Virginia Tech Transportation Institute.
what-if simulations. A process of changing parameters 

(e.g., removing evasive maneuvers), applying alterna-
tive driver behaviors, and analyzing outcomes of such 
simulations.
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A p p e n d i x  A

This appendix provides more details on the actual and poten-
tial outcome severity scales described in Chapter 8. It includes 
a description of the methods, as well as details on assump-
tions that were used in the construction of these methods.

First, we describe the actual outcome severity scales in more 
detail, including issues that were identified related to the spe-
cific implementation on the available data. Second, we describe 
the potential severity scales. Assumptions behind both of 
the methods are also discussed.

A.1 �Actual Outcome 
Severity Scales

Crash/Near-Crash Dichotomy

The crashes and near crashes were identified by VTTI through 
kinematic triggers and site reports (and for some crashes, 
crash notifications by the drivers). Classification of these 
events as crashes and near crashes was done through manual 
reduction of video.

DeltaV

In traditional crash databases and in-depth crash investiga-
tions, the outcome severity is either directly related to physical 
harm (injury or death) or defined in monetary terms (cost of 
repairs, health care costs, loss-off-functional years, etc.). The 
Abbreviated Injury Scale (AIS) is a commonly used injury 
severity metric, used for classification of injuries for different 
parts of the body according to an established coding schema 
(Gennarelli and Wodzin 2005). AIS ranges from 1 to 6—AIS 1 
is a minor injury and AIS 6 is generally not survivable. A large 
body of research has been aimed at establishing the risk of sus-
taining a specific degree of injury given some measurable vari-
able. One such variable is the change of velocity of the involved 
road users during the impact, the so-called DeltaV (Buzeman 
et al. 1998; Viano and Parenteau 2010). The calculation of 
DeltaV is based on the law of momentum conservation of the 

crashing road users. In this analysis we focus on lead-vehicle 
conflicts, thus Equation A.1 is relevant for DeltaV calculation 
(Kusano and Gabler 2010). Further, we assume pure rear-end 
collisions, thus the cos(a) term becomes 1. The masses of the 
involved road users are m1 and m2, while the speeds of the two 
road users at impact are V1 and V2. In lead-vehicle conflicts, the 
sum of speeds is equivalent to the relative velocity at the time 
of impact.

(A.1)2 1 2

1 2

DeltaV
m V V Cos

m m

( )= + α
+

p

The calculation of DeltaV in our implementation relies on the 
range rate between the subject vehicle (SV) and the lead vehi-
cle (LV). That is, the range rate at impact is used to estimate 
V1 + V2. Also, an estimate of the subject-vehicle and lead-vehicle 
masses is needed.

Time to Collision and Minimum  
Time to Collision

The definition of time to collision (TTC) and minimum time to 
collision (minTTC) used in Chapter 8 as a severity metric is a 
simple range divided by range rate operation, where the range 
and range rates are calculated as described in Chapter 2. This 
definition of TTC and minTTC is different from the definition 
in Chapter 2 (used in most of the main report), and also dif-
ferent with respect to the inverse time to collision (invTTC) =  
0.1 s-1 threshold used in Chapter 8. The available data pro-
duce some challenges in the TTC and minTTC calculations, 
described below.

Assumptions and Limitations

In the specific implementation of the actual severity scales in 
this project, the following main assumptions and limitations 
were identified.

Actual and Potential Outcome Severity Scales
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Sampling Strategies in Naturalistic Driving Data

The crash/near-crash dichotomy is provided as is from VTTI. 
There are major issues with the sampling strategies in general 
in naturalistic driving studies. In particular, the near crashes 
found in the data are taken from a set of cases that meet any of 
a group of kinematic and other filters. The purpose of filtering 
is to reduce the workload of video reviewers, but this goal is 
not equivalent to the goal of finding a random sample of near 
crashes. In fact, filters for near crashes have become increas-
ingly severe (e.g., harder braking, lower TTC) over time as 
naturalistic studies have been performed. This biases the col-
lection of near crashes in ways that are not understood because 
false negatives are not reviewed. Furthermore, at the end of 
the process, non-near-crash events are filtered out in a partly 
subjective manner by the annotator looking at the videos.

An associated problem with this method is that the filters 
by which near crashes and crashes are typically found are 
different. Thus, near crashes, which are treated as a category 
of events that can serve as a surrogate for crashes, are fil-
tered into the data set by different means. This in itself can 
make near crashes different from crashes in unintended and 
unmeasured ways.

General Problems with Estimating DeltaV

Several basic issues with estimating DeltaV pertain to several 
sources of data used in calculation of DeltaV and are relevant 
to our implementation of DeltaV calculations. First, we do 
not use (or have) any coefficient of restitution. That is, we are 
considering all impacts to be completely plastic. Second, we 
do not have the actual change in speed, we only have an esti-
mate of the impact speed (that estimate may be better than 
what is available from many other data sources used to calcu-
late DeltaV, however).

Estimate of Vehicle Masses for DeltaV Calculations

To perform the type of DeltaV calculations that we do, we need 
the masses of the involved vehicles. We do not have these. We 
do not have the subject vehicles’ mass in any event (although 
likely available elsewhere); for the lead vehicles, we have the 
masses extracted from databases when the make and model of 
the lead vehicle could be determined from image data. Thus, 
for the subject vehicles we use a “standard” mass, and for the 
lead vehicles, we use either the make-and-model mass (empty) 
or a “standard” mass according to vehicle-type classification.

DeltaV and minTTC Based on Manual  
Lead-Vehicle Width Estimates

Both the DeltaV and the minTTC metrics are based on the 
manually annotated lead-vehicle width and an estimate of 

the actual lead-vehicle width. This means that all issues 
related to this approach are also inherent in the DeltaV and 
minTTC estimates. One major issue related to this way of 
estimating range is this: width estimates of the lead vehicle (in 
meters) are needed to get range. A 10-cm width estimate 
error gives approximately a 6% error in the range (Bärgman 
et al. 2013). DeltaV and TTC use the derivative of the range, 
with calculation of TTC also involving the absolute range.

Note, however, that although our DeltaV estimates may 
have built-in errors through the impact-speed (i.e., range rate 
at impact) estimates, our estimates are not derived post-hoc, 
by studying vehicle deformation, but rather use a more direct 
measure of impact speed.

A.2 �Potential Outcome 
Severity Scales

This section provides detailed descriptions of how the Model-
estimated Injury Risk (MIR) severity scale can be calculated 
for two different gaze anchor point strategies. Details on the 
calculation of the potential severity scale are described, and 
assumptions and limitations of the what-if simulations and 
the corresponding MIR scale are discussed.

As stated in the main report, the severity scale is formulated 
as the expectation of some function describing the severity of 
a crash or a near-crash event with respect to the probability 
distribution describing time to eyes-on-road given that the 
glance covers some critical time point (Approach 1). We will 
also consider the option of conditioning on the glance starting 
at some particular point (Approach 2). That is, we add one 
option to how the severity scales may be calculated. In math-
ematical terms, the scale calculations can be formulated as 
follows.

We provide a somewhat simple description, followed by a 
more mathematical description.

General Description of the MIR  
Severity Scale Calculation

Possible what-if questions include the following:

•	 What if the driver looked away at a particular point (e.g., 
defined through invTTC = 0.1 s-1)?

•	 What if the driver glanced away during a longer/shorter 
time than he or she actually did?

We will attempt to answer these questions by considering 
the different driver behaviors (i.e., times when the driver 
looks back on road) that can occur in a rear-end crash sce-
nario, what these behaviors lead to (e.g., risk of injury), and 
the probability of such behaviors occurring for an average 
driver in a particular traffic situation.
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To answer the questions above, we need to obtain appro-
priate distributions describing glance-off-road behavior. This 
is more difficult than it may seem. Data usually provide the 
frequencies that describe how often a glance of certain length 
occurs in a particular driving situation, such as the matched 
baseline data in our data set. These frequencies give an approx-
imation of the statistical distribution of the glance lengths, 
given that the driver has, in fact, glanced away from the road 
(even if, depending on how the data were collected, some 
transformations may be necessary; Rootzén and Zholud, sub-
mitted). Observe that, although below we will operate with 
these conditional distributions, we may very well apply simi-
lar approaches to the unconditional ones (i.e., the distribu-
tions that incorporate the possibility that the driver is not 
looking away from the road at the particular point of time 
that we are studying).

Let us assume that we have obtained the empirical proba-
bility density function (PDF) describing the off-road glance 
length. We also have constructed some sort of function describ-
ing the danger of late reaction—assumed to be caused by an 
off-road glance (e.g., the probability of an injury). We are now 
interested in measuring the expected risk corresponding to a 
situation given that certain conditions are met (e.g., the brak-
ing profile of the leading car looks a certain way, and the driver 
of the following vehicle had eyes off road at a crucial time 
point). The expected risk can be calculated by taking the expec-
tation of the risk function with respect to the distribution 
describing when the driver of the following vehicle looks back 
on road. This distribution need not be the same as the glance 
length distribution obtained from the data, since both of the 
questions above involve conditioning: in the first the off-road 
glance covers a critical point, and in the second the off-road 
glance starts at a particular point.

Let us start by constructing the severity index correspond-
ing to the latter approach—that is, the one conditioned on a 
glance starting at a particular point (see Figure A.1). Consider 
what we need and what we have. We need a PDF describing 
time to eyes on road given that a glance has started. Call it h1. 
We have the raw data from which the empirical distribution 
of the glance length, given that a glance occurs, can be con-
structed. That is, the raw data provide exactly what we want, 
and no further transformations of the glance distribution are 
necessary. We can calculate the severity index in a straightfor-
ward manner by applying the formula for expectation of a 
function with respect to a discrete distribution: E[R(T)] = 
sum(fi z Ri). Observe that, in general, h1 can have any form. It 
may, for example, put all the probability mass on time points 
that are larger than time to collision, leading to the same 
E[R(T)] that would have resulted if all the probability mass 
was concentrated at the exact moment of collision.

Constructing the severity index corresponding to the first 
question (Approach 1) is a bit more complicated. Again, it 

involves a conditioning. But now, rather than saying that a 
glance has to start at a certain point, we say that it has to cover 
this certain point. That is, we need the distribution of time to 
look back given that the glance is longer than the distance 
between the start of the glance t1 and the critical point (see Fig-
ure A.2). The resulting distribution will then describe the 
probability of looking off the road for an additional number 
of seconds, given that the driver has already looked away from 
the road for a while and missed the time point that we are 
interested. This distribution will be nonnegative for all time 
points t such that t is greater than 0 and less than the longest 
glance length observed in the empirical data. It will be con-
tinuous and nonincreasing. Because of the continuity, the 
severity index will be calculated as an integral, rather than a 
sum—that is, E[R(T)] = int(h(t) z R(t)dt). One of the conse-
quences of this construction will be that E[R(T)], unlike in 
the previous case, will not become a constant if all the prob-
ability mass of f is to the right of time to collision. That is, 
if time to collision is 5 seconds and we have two empirical 

Figure A.1.  Application of a glance  
distribution (matched baseline) as the 
beginning of the original last off-path 
glance (example with a 2-second  
original last off-path glance).

Figure A.2.  Conditioning the glance  
distribution (matched baseline) on  
overlapping a fixed point (invTTC 5  
0.1 s1, example with 2-second original 
last off-path glance).
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f(x) distributions, one placing all its mass on 10 seconds and 
another on 15 seconds, E[R(T)] will be larger in the latter case 
than in the former.

Mathematical Description of the  
MIR Severity Scale Calculation

Let X denote the (stochastic) length of an off-road glance. We 
will call the corresponding PDF function f(x). In our case, this 
function is usually obtained from the data. However, we could 
also use a generic PDF to, for example, assess the impact that 
different hypothetical glance behaviors have on the severity 
scale. Further details on how f(x) is obtained can be found 
below.

Further, assume that a glance of length X covers some criti-
cal point Tcrit and consider the difference between X and 
Tcrit—that is, the remaining time of off-road glance given that 
Tcrit occurred somewhere in [0,X]. Denote this (stochastic) 
length for T, with the corresponding PDF h(t). In statistical 
terms, h(t) is the overshot distribution of f(x), and the cor-
responding cumulative distribution function (CDF) describes 
P(X - Tcrit < t | 0 < Tcrit < X). For further details on construc-
tion of h(t), see the next section.

For each time point in a scenario, we construct a risk func-
tion R(t). Theoretically, R(t) may be any function, but it usually 
describes consequences arising from the driver glancing back 
at t. Examples are the impact-speed DeltaV and probability of 
an injury; see the section on construction of the R(t) below.

A severity scale is constructed by combining either R(t) 
and h(t) (Approach 1) or R(t) and f(x) (Approach 2). Explic-
itly, in Approach 1 we calculate

E intR t R t h t dt[ ] ( )( ) ( ) ( )= i

and for Approach 2

E int alt E sum
if is discrete, as is the case when it is obtained
from empirical data .

R t R t f t dt R t R x f x
f

i ii i( ) ( )( )([ ] [ ]( )

)

( ) ( ) ( ) ( )= =

Note that the second approach uses the distribution corre-
sponding to the actual glance lengths, while the first approach 
uses the overshot distribution. The logic behind this can be 
most easily understood by considering the difference in con-
ditioning in the first and the second approach. In the second 
approach, we are interested in the length of a glance given that 
it starts at a particular point, which is exactly what we obtain 
by considering the possible glance length in some population. 
In the first approach we are interested in the glance length 
given that it covers a particular point. The f(x) distribution 
is no longer applicable, but, rather, has to be transformed  
into h(t).

Construction of the Overshot PDF h(t)

To begin with, let us introduce some notation. For calculations, 
we operate with two probabilistic distributions: F(x), which is 
the CDF (cumulative distribution function) corresponding to 
the distribution of the glance lengths in a population, and H(t), 
which is the CDF of the so-called overshot distribution of F(x), 
defined as H(t) = P(X - Tcrit < t | 0 < Tcrit < X). We also have the 
corresponding PDF distributions f(x) and h(t). Below, we 
describe in detail how we may obtain h(t) from f(x).

Observe that in the expression for H(t) above we have two 
random entities: the length of an off-road glance X, and the 
exact time at which Tcrit occurs. We also have a conditioning, 
namely that Tcrit should occur during an off-road glance. We 
also have h(t) = H′(t) (i.e., the PDF function is the derivative 
of the CDF function with respect to t). Last, to simplify calcu-
lations, we assume that f(x) is discrete, as is the case if it is 
obtained from the real data. The approach can be easily gen-
eralized to the case where f(x) is a generic continuous distribu-
tion by, essentially, replacing summation with integration.

Keeping this in mind, we rewrite the expression for H(t) as

sum_ , 0

0 sum_

crit crit

crit

H t x P T x t X x T X

P X x T X x s t g x

( )
( )

( ) { }

{ } ( ) ( )

= > − = < <

= < < = i

That is, we condition on X taking on a particular value x and 
sum over all possible x. Let us now consider the two terms 
within the sum, g(x) and s(t), separately.

The g(x) term reflects the probability that we will see a glance 
of a certain length in a population, given that this glance con-
tains some critical point. Observe that, if we assume that Tcrit 
can occur at random (i.e., as a Poisson process) during driving, 
then we are more likely to see a Tcrit within a longer glance than 
within a shorter glance. So, to obtain g(x) we need to perform 
a so-called size-bias correction of f(x) that reflects this prop-
erty. Explicitly, we calculate g(x) through

sum_g x f x x x f x x( )( ) ( ) { } ( )= i i

so that the probability that Tcrit is inside a longer glance increases 
proportionally to glance length x.

The s(t) term describes the probability that, given that we 
have a glance of a certain length x and that Tcrit is within this 
glance, the critical point is to the right of some time point t, 
0 < t < x. To derive this probability, we make the assumption 
that, under these conditions, Tcrit is distributed according to 
Uniform(0,t) distribution—that is, it can occur anywhere 
within the glance with equal probability. Given this assump-
tion, we have s(t) = t/x if x > t and s(t) = 0 if x < t, and we 
arrive at the expression

H t x x t t f x x x f xsum_ : sum_i i( )({ }( ) ( ) { } ( )= >
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Finally, using h(t) = H′(t), we can differentiate the sum with 
respect to t to obtain

isum_ : sum_h t x x t f x x x f x( )({ }( ) ( ) { } ( )= >

In words, h(t) for a certain t is basically the (normalized) 
sum of probabilities of the glances that correspond to x that 
are larger than t. One thing to note here is that h(t) is defined 
for all t and not just t such that t = x. This means that, although 
f(x) is discrete, h(t) is continuous.

Construction of R(t)

The construction of R(t) is less mathematical. The following 
is just an enhancement of the description in the main report 
(Chapter 8). Figure 8.1 in the main report is advantageously 
used in combination with this description.

  1.	 Vehicle kinematics are extracted. The subject-vehicle speed 
(SVspeed) is the interpolation (usually up-sampling) of 
the CAN speed to match event time. The lead-vehicle 
speed is the sum of the SVspeed and the range rate.

  2.	 Start of evasive maneuver is identified by using the man-
ually annotated reaction point (reduction by VTTI) and 
set to the first time after the reaction point when the 
derivative of the SVspeed is negative (deceleration).

  3.	 The evasive maneuver is “washed away” (removed) by 
setting all SVspeeds after the start of evasive maneuver to 
the SVspeed at the start of evasive maneuver.

  4.	 A brake profile is chosen. We have chosen 8 m/s2 (see the 
assumptions section below for the reasoning).

  5.	 A braking rate corresponding to a constant 8 m/s2 is 
applied at each time in event time (each 0.1 second), 
simulating different SV driver responses.

  6.	 The simulated SVspeed and the lead-vehicle speed 
(LVspeed) are integrated for each simulation to get 
changes in distance.

  7.	 Using the SV and LV distances from speed integration 
and the initial range between the two, each simulation is 
checked for ranges below zero (crash).

  8.	 For the simulations resulting in a crash, the impact speed is 
calculated by extracting the relative speed between SVspeed 
and LVspeed at the first time the range goes below zero.

  9.	 A hypothetical impact-speed profile is created in event 
time. That is, for each simulated start of evasive maneuver 
there is a corresponding impact speed. The impact speed is 
zero for all no-crash simulations, and it is the impact speed 
calculated in the previous step for all crash simulations.

10.	 The masses of the lead vehicle and the subject vehicle are 
estimated. The SV mass was set the same for all events; 
the LV mass was either retrieved from databases after 
identifying the make and model from video, or a mass per 
vehicle category was applied.

11.	 An injury-risk function is chosen. We created an injury-
risk function for rear-end events based on National Auto-
motive Sampling System–Crashworthiness Data System 
(NASS-CDS) rear-end-striking crashes, using logistic 
regression. The function used was injury_risk = 1/(1 + 
exp(-(-10.31316311 + 0.33308 * DeltaV))); it relates 
DeltaV to MAIS3+ injuries, with an intercept adjustment. 
The CDS data set contains only tow-away crashes, which 
are more severe than the average police-reported crash. 
This biases the intercept term in the relationship between 
DeltaV and injury, but, unfortunately, there is no police-
reported crash data set that includes DeltaV. To remedy 
this, we adjust the intercept according to the Breslow  
(1996) formula. The formula requires a base risk of injury, 
which is estimated based on the National Automotive 
Sampling System–General Estimates System (NASS-GES) 
data set, a data set of police-reported crashes.

12.	 The hypothetical impact-speed profile is converted to a 
hypothetical injury-risk profile by applying the injury-
risk function. Now there is an injury risk associated with 
each start of evasive maneuver. This is one example of 
R(t), used in the current implementation. However, R(t) 
can be any function describing the severity of an indi-
vidual event as a time series.

Using invTTC Instead of invTau

The what-if simulation development has been run in parallel 
with other parts of the project. Until late in the project, 
inverse Tau (invTau) was used instead of invTTC in most 
analysis. Since the two metrics are similar, but TTC is under-
standable by more people, the decision was made to change 
to invTTC in most places in the project and to describe the 
difference in Chapter 3. Specifically for the MIR/MCR devel-
opment, it was the difference at invTau = 0.1 s-1 that mattered. 
In analyzing the difference between invTau and invTTC at 
invTau = 0.1 s-1, it was found that the difference is practically 
negligible (difference: M = -0.000526 s-1, SD = 0.000859 s-1, 
max = -0.000019 s-1, min -0.00081 s-1). The equation for cal-
culation of the difference between optically defined invTau 
and optically defined invTTC at invTau = 0.1 s-1 is

�
Diff TTC 0.1

sin0.1

1

0.1

1 0.1

0.1

1 1

1

1( )
= τ − = −

θ
θτ =

−
τ =
− τ =
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Note that the invTTC used in the project is calculated at the 
camera position and not at the vehicle bumper. Thus, it is 
optically defined invTTC at the camera.

Maximum Severity DeltaV Severity Measure

The Maximum Severity Delta Velocity (MSDeltaV) is the sever-
ity that would result if the subject vehicle’s driver performed 
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no evasive maneuver. DeltaV is the most common approach 
for measuring crash severity in traditional accident investiga-
tions and correlation with injury risk (see the DeltaV section 
above); we calculate what DeltaV would result if no evasive 
maneuver was made by the SV driver. The MSDeltaV severity 
requires the identification of the SV evasive maneuver (see 
Chapter 3, variable definitions). We define MSDeltaV as the 
relative velocity at impact if the subject vehicle continues 
with the same speed as just before the evasive maneuver, mul-
tiplied with the mass ratio m2/(m1 + m2) as explained in the 
DeltaV section above. Since MSDeltaV requires an evasive 
maneuver (which is then “removed”), it is not defined for 
baseline events. However, the calculations could be applied 
for any chosen time point in a baseline event. This would in 
some events result in very high MSDeltaV values. Consider 
two vehicles, 1,000 m apart and both driving at a constant 
steady state speed of 100 km/h. Even if the lead vehicle braked 
softly to a stop, MSDeltaV calculated using the time point 
when the lead vehicle started braking as a “random” evasive 
maneuver would result in a 100-km/h MSDeltaV. This issue 
may be mitigated by adding some time window for calcula-
tions. A main advantage and disadvantage of MSDeltaV is 
that it does not depend on driver actions/reactions, and thus 
the measure may be considered orthogonal to driver behavior 
indicators.

Assumptions in the Creation of the What-If 
Simulations and Potential Severity  
Scales MIR, MCR, and MSDeltaV

The following subsections describe and discuss the reasoning 
behind the major and some minor assumptions made when 
creating the what-if simulations and the potential severity 
scales presented in the main report. They also describe limita-
tions of the approach in general and issues with the applica-
tion of the method to the SHRP 2 data set available for this 
project. The headings below are statements of assumptions. 
Note that we only aim to show proof of concept. Some of the 
discussions below, however, are from the perspective of the 
actual use of the method, while others only discuss the assump-
tions from the perspective of proof of concept.

The subject-vehicle driver not looking on the road 
ahead is the only reason for crashing, except when 
the driver keeps such short headway that, even  
with 8-m/s2 deceleration, he or she cannot  
avoid a crash.

As described in the sections of the report focusing on analy-
sis of mechanism, it was found that—for a majority of the 
crashes—drivers are looking away close to the crash. Other 
evidence also showed that glances seem to be a major contrib-
uting factor to the occurrence of crashes (Chapters 6 and 7). 

Further, in Chapter 7 it is shown that in some crashes the 
headway is too small for the driver to avoid crashing (Cate-
gory 3 crashes described in Section 7.4), even if he or she is 
keeping an eye on the road and reacting fast. However, since 
not all rear-end crashes can be identified as having glances as 
a contributing factor (a portion of the Category 3 crashes, 
Section 7.4), the assumption and subsequent what-if simula-
tions will fail to address such cases. This limitation has impli-
cations for using what-if simulations as we are proposing 
them. Care needs to be taken with respect to interpretation of 
results.

The single last glance is the only reason for a delay 
in reaction.

This assumption is studied in Chapters 6 and 7 and is par-
tially rejected. That is, the last glance is shown to play a large 
role in the occurrence of a crash, but it is not the only reason. 
However, since the aim of the implementation of the what-if 
simulations and potential severity scales was mainly to dem-
onstrate the concept, this simpler model was chosen. A more 
complicated approach would be needed to also explain his-
torical glances. Future research and applications of the what-
if simulations should consider implementing more advanced 
and validated models of driver glance behavior. It is not un-
realistic that most reaction models can be transformed into 
an “equivalent” last-glance distribution.

The subject-vehicle driver’s glance behavior  
(glance off-road distribution) is the same as  
that in the matched baseline up until the  
chosen anchor point (invTTC = 0.1 s-1).

We chose an anchor point of invTTC = 0.1 s-1 for several rea-
sons. We wanted to capture the basic idea that drivers try to 
avoid critical situations by adapting to the situation. In the 
Tijerina et al. (2004) study of eyeglance behavior during car fol-
lowing, it was found that drivers under normal car-following  
conditions generally do not take their eyes off the road unless 
both the subject vehicle and lead vehicle are traveling at approx-
imately the same speed (i.e., at range rates close to zero). 
Although we want to adopt a strategy based on drivers avoiding 
critical situations, we want a driver model that is reasonably 
related to the kinematics of crashes and near crashes. In Chap-
ter 7, Figure 7.5, it is shown that for the matched baseline, only 
a few drivers started to look away at an invTTC higher than 
0.1 s-1. At the same time the mean of invTTC for near crashes is 
just below invTTC = 0.1 s-1. This leads us, for proof of concept, 
to choose invTTC = 0.1 s-1 as the gaze anchor point. Future 
applications of the method can change this anchor point. 
Another obvious anchor point would be invTTC = 0.2 s-1 as 
described in Chapter 7 (e.g., Figure 7.3). Previously in this 
appendix we also included a description of how to apply the 
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glance distributions at the original start of last glance off road 
instead of conditioning on an overlap with, for example, 
invTTC = 0.1 s-1 (or 0.2 s-1). Further development is needed 
on the choice of anchor point. Should lower-value anchor 
points be chosen instead, in line with Tijerina et al. (2004), or 
should thresholds such as invTTC = 0.2 s-1 be used? If a lower-
value approach is chosen, data quality may also be a limiting 
factor (noise at longer ranges).

For task analyses, driver’s glance behaviors are the same as 
the original task distribution up until the chosen anchor 
point. This has the same issues as for the matched baseline, 
but in addition, the initiation of a task is likely dependent on 
context. Thus, if analysis of task risks is to be performed using 
our method, it is advisable to do an extended scenario selec-
tion. That is, if the analyst can identify the contexts in which 
drivers are (not) engaging in the tasks to be evaluated, then 
only crashes and near crashes matching those contexts should 
be selected for the analysis. In that way the context bias is 
minimized.

Drivers respond by braking at 8 m/s2  
in all situations.

In the simulation framework any brake profile can be used, 
including dynamic brake responses that depend on context. 
However, in our work we chose 8 m/s2 as a conservative (hard) 
brake response. By choosing a relatively aggressive brake pro-
file, estimates of risks are lowered. The brake profile choice 
has a pronounced effect on the outcome scale, and this choice 
needs to be an informed one, depending on the application 
of the method.

The braking is initiated after a fixed reaction time 
(0.4 second) after the driver looks back on the road.

Conclusion 3 of Section 7.6 states that the results from the 
analysis in Chapter 7 show a fixed reaction time is not correct, 
for several reasons. However, we chose a fixed reaction time 
of 0.4 second because it produces conservative estimates of 
risk. The value 0.4 second is the median of the reaction time 
for crashes when the reaction is made after invTTC ≥ 0.1 s-1 
is fulfilled (Figure A.3). That is, the invTTC has reached at 
least 0.1 s-1 before the driver reaction. Alternative reaction 
models can be integrated into the current model.

Peripheral vision does not help the driver react 
earlier (by moving the eyes back to the road).

In this approach we are not considering glance-off-road 
eccentricity and potential effects of looking back earlier due to 
peripheral vision. To allow for inclusion of such effects, data 
on glance-off-road eccentricity are needed, together with a 
model of the effects as a function of context (e.g., looming).

The quality of data is not affecting 
results significantly.

Data in the available data set have several quality issues. The 
following issues have been identified as directly influencing 
what-if simulation results, but others may not have been found.

The SVspeed signal is, for many events, not synchronized with 
other data, especially range rate. This quality issue has major 
implications in the what-if simulations. Since the LVspeed is 

Figure A.3.  Driver response time between last glance on  
path and the driver reaction in crashes with invTTC ≥ 0.1 at 
glance on-road onset (n 5 26; mean 0.458 second; median 
0.400 second).
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a major component (kept constant in all simulations of an 
individual event) in the what-if simulations, the creation of 
LVspeed is crucial. Since LVspeed is calculated by adding 
SVspeed and range rate, the synchronization of those two sig-
nals is important. If the SVspeed is a few hundred millisec-
onds late (delay) in an event, a hard deceleration by the 
following vehicle—seen in the range rate—will be seen as a 
fast increase in LVspeed (acceleration). This lead-vehicle 
acceleration is then just an artifact, creating delays in the 
crash point in what-if simulations. It may be possible to 
address the synchronization issues per event, but we treat 
such artifacts as noise in the data.

The SVspeed signal has a sample frequency of only 1 Hz for 
some events (vehicles). This issue is similar to that of synchro-
nization, since 1 second between samples is effectively a delay 
when there are fast deceleration responses.

The range, range rate, and invTTC signals are noisy at larger 
ranges between the SV and LV. Both LVspeed and invTTC are 
major components in the what-if simulations. Both are based 
on the manually annotated lead-vehicle widths. To under-
stand the implications of data quality, sensitivity analysis 
would have to be run.

Glance-off-path distributions from the matched 
baseline events in our sample are representative 
for car-following scenarios.

Sample selection bias is an issue because the matched base-
lines are matched to crashes and near crashes. It is not unlikely 
that these crashes and near crashes are created by drivers who 
have longer glances away from the roadway (since they actu-
ally got into the events in the first place) or who are close 
followers (tailgaters). It would be interesting to compare 
matched baselines in which the situation, but not the driver, 
was matched, with the matched baseline. Such analysis would 
confirm or reject the potential bias concerns. Also, a method-
ological enhancement would be to match events of particular 
scenario types with the glance-off-road distributions for each 
respective type.

The choice of injury-risk function and transforming 
DeltaV into injury risk are relevant for our events.

Calculation of injury risk is often difficult. Calculation of 
hypothetical injury risks may be controversial. The steps used 
to get to injury risk are crucial. We use an injury-risk function 
based on NASS-CDS data on rear-end collisions, with an 
intercept adjustment to account for the lower-severity event 
in our sample (see Chapter 8). Researchers implementing 
MIR or MCR should take care in using the impact-speed to 
injury-risk transformation most appropriate to the specific 
analysis at hand.

Identification of the time point of start of evasive 
maneuver in the original events is correct.

Our implementation of start of evasive maneuver is relatively 
crude. It uses manual annotation of the first driver reaction to 
the event as a basis for the definition of start of evasive maneu-
ver. There are many approaches to extracting the start of eva-
sive maneuver. However, implementing a pure mathematical 
definition is problematic, since events play out in very differ-
ent ways in naturalistic data. It may be wise in future studies 
to evaluate the choice of start of evasive maneuver through 
sensitivity analyses. If an incorrect evasive maneuver is imple-
mented, the initial conditions for the simulations will be 
wrong. Specifically, the initial SVspeed will be wrong.

It is reasonable to assume that, had the event not 
become critical, the driver would have continued at 
the speed he or she was maintaining just before the 
evasive maneuver.

This assumption is likely valid in many contexts, but there 
are definitely contexts in which this does not hold. When a 
driver is approaching an intersection with a red traffic light 
or is already turning, he or she may look away for a short 
period of time (for some reason), but that driver is not likely 
to take the long glances off path that drivers in car-following 
situations on a freeway do. That is, glance distributions are 
contextually dependent. To perform more detailed and con-
textually correct MIR and MCR calculations, different 
glance distributions may have to be used for different con-
texts (e.g., use freeway-driving matched baselines for free-
way near crashes and crashes and identify other scenario 
types for other contexts). This may be difficult, and thus, 
future application of MIR and MCR may have a limitation 
in use.

The assumptions necessary to be able to 
perform the what-if simulations, with respect  
to the lead-vehicle actions, are reasonable.

When creating what-if simulations for near crashes, the 
LVspeed (SVspeed + range rate) is available from the origi-
nal event. For crashes, however, LVspeed is not available 
after the crash. This means that for simulations extending 
after the crash point (higher-severity), assumptions must be 
made. We assume that the lead vehicle would have contin-
ued with the same deceleration as just before the event, until 
it was standing still. If the lead vehicle was accelerating, we 
set the LVspeed for all times after the original crash point to 
the LVspeed observed in the sample before the crash point. 
The implications of this approach are not easily understood 
and have to be investigated further.
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The exclusion of events in the MIR/MCR  
calculation does not bias results significantly.

In our MIR and MCR analysis we excluded events that did not 
complete the what-if simulations for a number of reasons. One 
of these reasons was that the event did not become a crash even 
in the 5 seconds available after the event. That is, the relative 
velocities and the initial distance were such that there was 
not a crash for 5 seconds. This, and other outliers in the data 
that are excluded, may produce bias in results. However, if 
MIR/MCR are used to compare a distribution of MIR/MCR 
between, for example, two tasks, this is likely negligible. Also 
for other applications it is likely a minor issue.

Individual drivers’ glance behavior  
and driving style are independent.

It is clearly not the case that individual drivers’ glance behav-
ior and driving style are independent. The frequency at which 
the critical situations are occurring should, to some extent, 
depend on the driver. Also, it could well be the case that the 
glancing behavior, reaction times, and so on are different for 
different drivers. The current approach does not take such 
dependencies into account. Potentially, there may be a clear 
correlation between a driver’s glancing behavior and his or 
her driving style—for example, a driver who knows himself 
or herself to be easily distracted may tend to keep at a longer 
distance from the leading vehicle.
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