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People are constantly changing the land surface through construction, agri-
culture, energy production, and other activities. Changes both in how 
land is used by people (land use) and in the vegetation, rock, buildings, 

and other physical material that cover the Earth’s surface (land cover) can be 
described and future land change can be projected using land-change models 
(LCMs). LCMs are a key means for understanding how humans are reshap-
ing the Earth’s surface in the past and present, for forecasting future landscape 
conditions, and for developing policies to manage our use of resources and the 
environment at scales ranging from an individual parcel of land in a city to vast 
expanses of forests around the world. 

The U.S. Landsat satellites have provided an invaluable 40-year record 
of global land cover change, providing input to LCMs, yielding new scientific 
insights, and informing policy on issues ranging from agriculture to regional 
planning and disaster relief. A recent explosion in the number and types of new 
land observations and monitoring data, model approaches, and computational 
infrastructure has ushered in a new generation of LCMs that are capable of new 
applications associated with human-environment systems in increasing detail. 
A wide variety of modeling approaches has been developed, each with different 
strengths, weaknesses, and applications. However, with increasing recognition 
of the role of human action in affecting change in the Earth system, greater 
demand for evaluations and forecasts of these impacts, and a greater variety of 
data sources available, it is timely to evaluate these approaches and their relative 
value for particular types of applications.

	 At the request of the U.S. Geological Survey and the National Aero-
nautics and Space Administration, the National Research Council established 

1

Summary
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2	 Advancing Land Change Modeling

a committee to describe various LCM approaches, suggest guidance for their 
appropriate application, and describe ways to improve the integration of observa-
tion strategies into the models (see Box S.1 for the complete committee charge). 
To carry out its charge, the committee gathered input from stakeholders in the 
LCM community at committee meetings, a workshop, and through an online 
questionnaire.  Based on this input, a review of the literature, and their own 
experience, the committee examined the primary modeling approaches and their 
most suitable applications and identified several key ways to improve LCMs for 
decision makers and scientists. This report provides a summary and evaluation of 
several modeling approaches, and their theoretical and empirical underpinnings, 
relative to complex land-change dynamics and processes, and identifies several 
opportunities for further advancing the science, data, and cyberinfrastructure 
involved in the LCM enterprise. Because of the numerous models available, the 
committee focused on describing the categories of approaches used along with 
selected examples, rather than providing a review of specific models. Addition-
ally, because all modeling approaches have relative strengths and weaknesses, the 
report compares these relative to different purposes.

BOX S.1
Statement of Task

A National Research Council committee will review the present status of spa-
tially explicit land-change modeling approaches and describe future data and 
research needs so that model outputs can better assist the science, policy, and 
decision-support communities. Future needs for higher resolution and more 
accurate projections will require improved coupling of land-change models to 
climate, ecology, biogeochemistry, biogeophysical,  and socioeconomic mod-
els; improved data inputs; improved validation of land-change models; and 
improved estimates of uncertainty associated with model outputs. The study 
will provide guidance on the verification strategies and data, and research 
requirements needed to enhance the next generation of models. In particular, 
the study committee will:

1.	 Assess the analytical capabilities and science and/or policy applications of 
existing and emerging modeling approaches.
2.	 Describe the theoretical and empirical basis and the major technical, re-
search, and data development challenges associated with each modeling 
approach.
3.	 Describe opportunities for improved integration of observation strategies 
(including ground-based survey, satellite, and remote sensing data) with land-
change modeling to improve land-change model outputs to better fulfill scien-
tific and decision making requirements.
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LAND CHANGE MODELING APPROACHES

A wide variety of LCMs has been developed to examine land change pro-
cesses and to make land use and land cover projections. The committee grouped 
these individual models into six categories of modeling approaches: 

1.	 Machine-Learning and Statistical approach uses observations of past land-
cover or land-use changes to calibrate parametric or non-parametric relationships 
between those changes and spatially and temporally specific predictors, 

2.	 Cellular approach integrates maps of suitability for land cover or land use 
with neighborhood effects and information about the amounts of change expected 
to project future changes, 

3.	 Sector-Based Economic approach uses partial and general equilibrium 
structural models to represent supply and demand for land by economic sectors 
within regions based on overall economic activity and trade, 

4.	 Spatially Disaggregate Economic approach estimates structural or reduced 
form econometric models to identify the causal relationships influencing the spa-
tial equilibrium in land systems, and 

5.	 Agent-Based approach simulates the decisions and actions of heteroge-
neous land-change actors that interact with each other and the land surface to 
make changes in the land system.  

6.	 Hybrid approaches encompass applications that combine different 
approaches into a single model or modeling framework.

The first five approaches are arranged roughly in order from least to most 
focused on process.  The approaches that rely on data about land-change patterns, 
including Machine Learning and Statistical, and Cellular, tend to use land-cover 
information from satellite imagery, and relationships based on observed changes 
in the past. These approaches are useful for projecting observed land-cover 
changes over short periods into the future, but often have limited ability to evalu-
ate conditions not observed in the past. The more process-based approaches, such 
as Sector-Based Economic, Spatially Disaggregate Economic, and Agent-Based, 
make greater use of social science information about land-change processes. 
These latter approaches provide more realistic representations of the processes of 
change that can be used to evaluate a wider range of alternative futures, but they 
are more challenging to calibrate and validate and may provide only qualitative 
information about possible future land-change outcomes.

The best modeling approach to use depends on the application.  The rela-
tive advantages of the approaches for particular purposes can be used in various 
policy and decision-making contexts and the modeling approaches tend to serve 
different roles within the context of the four-stage policy cycle: (1) problem 
identification, (2) intervention design, (3) decision and implementation, or (4) 
evaluation. Machine Learning and Statistical and Cellular Modeling approaches 
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4	 Advancing Land Change Modeling

are most suitable for problem identification because, though they lack the richer 
structural detail about process needed to evaluate the effects of changes in policy 
structure, they are easy to implement and can provide valuable descriptions 
and projections of patterns and trends.  Agent-Based and Structural Economic 
approaches are useful for intervention design because they provide a means for 
exploring interactions in the land system and for assessing the possible effects of 
policies or decisions ex ante. Once policies or decisions have been implemented, 
the ex post effects of these implementations can be evaluated using reduced-form 
econometric models that compare observable outcomes either before and after the 
intervention or in an intervention area and a comparable location. Understand-
ing the underlying structures, assumptions, and data requirements of different 
modeling approaches is critical for understanding their applicability for various 
scientific and decision-making purposes.  

IMPROVING LAND CHANGE MODELS

New observations, improvements in modeling capability and computer infra-
structure, and advances in understanding the theoretical and social context of 
land change have created opportunities to improve LCMs to support research and 
decision making on current and future land change. Opportunities are grouped 
into five categories: (1) advances in LCMs themselves, (2) advances in land 
observation strategies, (3) advances in cyberinfrastructure, (4) advances in other 
infrastructure, and (5) developing and using best practices in model evaluation.  
Within each opportunity category are two to four specific initiatives selected by 
the committee that represent important near-term (three to six years) approaches 
to realizing the potential for LCMs to better serve an integrated Earth system 
science enterprise, our understanding of sustainability in human interactions with 
the environment, and decision making about land-related management and policy. 

Opportunities for Advances in LCMs

Advancement of process-based models 

While data- (or pattern-) based models have succeeded in using land-cover 
data products and contributing to land-change science and applications, process-
based models of land change are not as mature. Better process-based models are 
necessary for understanding interactions and feedbacks between people’s actions 
and land change and for simulating policy scenarios to evaluate the impacts of a 
potential policy change on land use. Further developing these approaches to make 
the best use of available data will advance the goal of evaluating past efforts and 
possible future implementations of new policies and management strategies to 
address sustainability challenges.
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Cross-scale integration of LCMs 

Because land-change processes occur at multiple scales, LCMs need to 
link patterns and processes across multiple scales. These kinds of links require 
that models account for connections between distant locations of consumption 
and production of land-based commodities, and their network interactions, and 
employ new analytical methods that link models of global, regional, and local 
processes of land-based decision making. Better understanding of how to include 
representations of heterogeneous actors linked through social networks is also 
needed to better represent both the top-down and bottom-up causes of land 
change.  

Integration with other Earth system models 

Better dynamic coupling of LCMs with a variety of Earth system models 
would improve the ability to understand and project the direct and indirect effects 
of land management decisions and policies on the tradeoffs among various eco-
system services (e.g., food and fiber production, maintenance of biodiversity, 
and carbon storage). Land cover change model results have typically been used 
as input to other environmental models. However, coupling LCMs and environ-
mental models would enable feedbacks between environmental and land-change 
dynamics to be represented and investigated, which is important for long-term 
forecasting.

Bridging LCM with optimization and design-based approaches 

Most LCMs seek to explain and predict changes in land use and land cover 
using either a process- (structural) or pattern-based approach. In contrast, deci-
sions about policy require the ability to determine, given a choice among a set 
of possible policies or designs, which policies will generate landscape patterns 
that are both plausible and acceptable for society. An important challenge is to 
further integrate LCMs with optimization, which is extremely computationally 
intensive, and design-based approaches, which require the engagement of human 
designers and landscape architects, in order to integrate considerations of what 
could be with what should be. 

Opportunities in Land Observation Strategies

The second set of opportunities makes use of the flood of new data to inform 
the development of the next generation of land change models.

Improved capture and processing of remotely sensed data 

A variety of developments in Earth observations have the potential to spur 
advances in land change modeling. Data collected at finer resolutions, coupled 
with object-based image analysis tools, offer the opportunity to develop models 
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6	 Advancing Land Change Modeling

that better represent diverse features in the built and natural environments.  Data 
available at finer temporal resolutions and over longer time periods, including the 
free Landsat archive and historical aerial photo records, present the opportunity 
to better understand the dynamics and non-stationarity of land-change processes 
and incorporate that understanding into LCMs. Data on the three-dimensional 
structure of the landscape from LiDAR and other active sensors permit the devel-
opment of models that can represent quantitative differences in attributes of land 
cover (like biomass) and land use (building density). Creative uses of satellite 
measurements like the nighttime lights products to estimate human settlement 
densities, energy use, and economic activity provide opportunities to develop 
spatially, temporally, and thematically richer inputs to LCMs. Hyperspectral sen-
sors, like those on an array of smaller satellites, permit more detailed information 
about canopy composition that might be useful in parameterizing models that rep-
resent land-management (e.g., fertilization and irrigation) behaviors.  Maximizing 
the ability to capture, interpret, and manage these kinds of data and incorporate 
them into new LCMs represents a significant opportunity for advancing the abil-
ity to use observational data to inform new modeled processes and projections.

Integration of heterogeneous data sources 

Some land change decisions require information not typically included in 
LCMs—including land function, land-use density, land tenure, land management, 
and land value—or information at a variety of spatial and temporal resolutions. 
Integrating these data with socioeconomic and biogeophysical data would facili-
tate coupling of LCMs and other types of models such as those of climate change, 
ecosystem services and biodiversity, energy use, and urbanization.

Data on land-change actors

Land change is the cumulative result of the decisions and interactions of a 
variety of actors—households, firms, landowners, policymakers at local, regional 
and global levels. Micro-data on actors are collected by the Bureau of the Census, 
the Department of Agriculture, and other agencies. Better integration of data on 
these actors and their beliefs, preferences, and behaviors with Earth Observation 
data is critical for improving the ability of LCMs to project future land change 
and to evaluate the consequences of alternative policies.

Making systematic land-use observations

Many observations of natural and human systems must be measured from 
ground-based systems, which are commonly divided among multiple agencies 
and geographies. Possible programs like a national land observatory or national 
survey of land resources could be developed to collect spatially referenced data 
with linked records on land patches, land parcels, and land users. Such a program 
would improve the ability of the LCM community to learn more about land 
change processes, test hypotheses, and improve predictive ability.
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Opportunities in Cyberinfrastructure

A number of the opportunities noted above have the potential to find solu-
tions through contemporary advances in cyberinfrastructure.

Crowd sourcing and distributed data mining

The ability to collect and analyze large amounts of data on individual behav-
iors, much of which is referenced in time and space, has grown tremendously 
over the past decade. Crowd sourcing and distributed data mining are two pri-
mary examples of this kind of development. Combining these data collection 
approaches with LCMs has the potential to extend the reach of LCM results to a 
variety of users and could also lead to better construction, calibration, and vali-
dation of structural or process-based models. However, privacy and proprietary 
concerns will have to be resolved. 

High-performance computing

Cyberinfrastructure is increasingly able to meet the computational demands 
of some of the modeling approaches outlined above. Advances in computing 
power are increasingly based on deployment of multiple processing cores and 
increasing numbers of processors. Taking advantage of this enhanced computing 
power requires that models be written to take advantage of parallel processing, 
i.e., partitioning computational tasks among multiple processors running simul-
taneously.  Greater volumes of distributed data storage provide opportunities to 
incorporate data over larger areas and at finer resolutions into the next generation 
of models.

Opportunities for Infrastructure to Support Land Change Modeling

Progress in land-change modeling is partially impeded by the continued 
reinvention of modeling environments, frameworks, and platforms by various 
research groups.  Opportunities to improve the research infrastructure and help 
to overcome this barrier are summarized below.

Model and software infrastructure

Developing a consistent infrastructure for documenting and sharing models 
and software would help avoid duplication of effort among various constituents 
in the LCM community.  The challenge for the community is to assemble the 
existing infrastructure and enhance it to serve two purposes: (1) advancement 
of the fundamental understanding and representation of land-change processes 
and (2) integration of a wide range of biophysical and socioeconomic models for 
evaluating the impacts of land change. 
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8	 Advancing Land Change Modeling

Data infrastructure

A data infrastructure would provide access to a common set of data resources 
that are necessary for running and validating models of land change.  Infrastruc-
ture developments that aim to support compilation, curation, and comparison of 
the heterogeneous data sources for input to land change models would advance 
this kind of access directly.

Community modeling and governance

A consistent and widely adopted community modeling and governance infra-
structure is important to support developments in LCM. Such an infrastructure 
would provide mechanisms for making decisions and advancing modeling capa-
bilities within a broad community and toward specific, achievable goals and 
capabilities. In particular, it would provide a framework for reaching community 
agreement on specific goals and endpoints to move modeling and data capabili-
ties forward.  

Model Evaluation

There are a variety of practices that can enhance land-change modeling to 
make it more scientifically rigorous and useful in application. Some of these 
practices are established but not always followed, while others require more 
research to test and establish.  

Sensitivity analysis is an established procedure whereby the investigator 
examines the variation in model output due to specific amounts of variation in 
model input, parameter values, or structure. 

Pattern validation requires matching the choice of a metric that compares 
model output to data with the purpose of the modeling exercise for the particular 
application; how this is best done requires additional research.

Structural validation, or validating model processes, remains a challenging 
task in part because the underlying processes that give rise to observed land-use 
patterns are themselves not fully observable.  Continued research on how to 
validate the maintained assumptions that are necessary in order to even specify 
a model would benefit model validation and projections.

CONCLUSION

Multiple communities of science and practice in critical areas associated with 
environmental sustainability, including food, water, energy, climate, health, and 
urbanization, are adopting land-change models (LCMs) to help with understand-
ing and improving human-environment interactions at multiple scales. While 
LCMs have already contributed in all of these areas, an opportunity exists to 
consolidate the understanding of land system interactions, refine and improve the 
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best available modeling approaches, and make significant progress towards new 
analytical and predictive capabilities. The time is ripe to envision, plan for, and 
invest in the next generation of land-change models for an increasingly interdisci-
plinary scientific enterprise that takes advantage of the best available knowledge, 
data and computing resources. 

If appropriately planned and executed, the next generation of models can 
be increasingly process based, link processes in social and natural systems from 
the parcel scale to regional and global scales and make use of better methods for 
process validation, in order to enhance both their predictive skill and their utility 
for policy analyses. New LCMs can also be routinely used, appropriately and 
with greater confidence, for a wider range of scientific and policy purposes, sup-
porting better understanding of land systems, the effects of economic and social 
processes on their dynamics, and their effects on important environmental and 
social outcomes. Taking advantage of a wider range of Earth observation data 
types to enhance their spatial and temporal detail and the categories of informa-
tion they represent, future LCMs can integrate these with data on the human 
attitudes, preferences, and behaviors related to land change, both from traditional 
and a growing number of novel sources for social data.  Highly interconnected 
data systems, well-documented model and software code, and a well function-
ing community of land-change modelers can support the scientific enterprise to 
advance these goals. 

Near-term intellectual and resource investments (three to six years) in the sci-
ence of and infrastructure to support advancements in LCMs could help achieve 
these goals. This report outlines a number of specific areas that are ripe for 
advancement. Such investments have the potential to move forward our under-
standing of, ability to predict, and tools for analyzing policy related to key envi-
ronmental sustainability challenges.
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Land change, which includes changes in land use, land cover, and envi-
ronmental functions related to human-driven processes, can be described 
and projected through land change models (LCMs).  Models of land 

change are applied from the level of individual parcels within urban areas to vast 
expanses of global forests and are used to explain, forecast, and project past, pres-
ent, and future land and landscape conditions important for decision and policy 
making at many different scales.  Due in part to an explosion in observational 
and monitoring data on land cover and spatially explicit environmental and socio-
economic data, as well as advances in analytical and technological infrastructure, 
LCM is now entering a phase with new possibilities for development that could 
help address a large range of decisions that affect human-environment systems. 
These advances permit problems to be addressed in greater detail and with bet-
ter representation of the underlying processes. Researchers continue to push 
LCMs to treat increasingly complex problems and to support robust measures 
for addressing them. 

These developments are taking place in the context of emerging national 
and international attention to global climate change and sustainability, be it 
America’s Climate Choices (NRC, 2011a,b), the U.S. Global Change Research 
Program (2012), or the new sustainability initiative, Future Earth, of the Interna-
tional Council of Science (Reid et al., 2010). These and other programs seek a 
more integrative understanding of human-environment systems and cooperation 
between the science and decision-making communities to tackle critical problems 
associated with human-environment systems. Having their basis in models that 
emphasize changes in land use or land cover, LCMs are confronted with new 
demands as a result of these integrated research and problem-solving goals.

1

The State of Land Change Modeling 

11
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12	 Advancing Land Change Modeling

In this context, the time is appropriate to examine LCMs and to determine 
their applicability for a myriad of scientific and decision-making applications; 
their fit with current themes, concepts, and data; and the improvements needed 
to provide the quality of output increasingly expected of them. To this end, the 
authoring committee was asked by the U.S. Geological Survey and the National 
Aeronautics and Space Administration to review the present status of spatially 
explicit LCM approaches and describe future data and research needs so that 
model outputs can better assist the science, policy, and decision-support com-
munities. They were also asked to provide guidance on the verification strategies 
and data and research requirements needed to enhance the next generation of 
models. The committee was asked specifically to (1) assess the analytical capa-
bilities and science and/or policy applications of existing and emerging modeling 
approaches; (2) describe the theoretical and empirical basis and the major techni-
cal, research, and data development challenges associated with each modeling 
approach; and (3) describe opportunities for improved integration of observation 
strategies (including ground-based survey, satellite, and remote sensing data) with 
LCM to improve LCM outputs to better fulfill scientific and decision-making 
requirements.

In addressing these tasks, the committee necessarily had to place bounds on 
the scope of this assessment. Rather than reviewing specific models, the commit-
tee focused on the need to understand differences among modeling approaches 
which are implemented in various ways and for different purposes. While 
this means that many specific models, of which there are likely thousands of 
instances, are not specifically mentioned in the report, the categories of modeling 
approaches addressed are used in the vast majority of these models. Additionally, 
because of the emphasis of the sponsoring agencies on Earth observations, we 
place greater emphasis on modeling approaches for which these observations are 
relevant inputs, though not to the exclusion of considering other important data 
requirements. 

Despite existence of a broad literature on modeling coupled with land-
transportation systems, we chose to focus on modeling approaches that can 
use transportation patterns as inputs to land change processes.  Approaches to 
modeling transportation systems themselves were outside the scope of our assess-
ment. Additionally, while significant efforts have been made to develop spatial 
optimization approaches to be used for developing land use and cover patterns 
that optimize some specific objectives (what are referred to as normative models), 
these have not been well integrated with models focused on understanding and 
forecasting land changes (what we refer to later as positive models), the third 
chapter of the report identifies opportunities for doing so. The report primarily 
focuses its assessment on positive models.   
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THE SIGNFICANCE OF LAND SYSTEMS AND LAND CHANGE 
MODELS

Land systems, from cityscapes to landscapes, have long been examined to 
understand the causes and consequences of their spatial organization (e.g., Beck-
man, 1972), and various models have been developed to guide in the explicit 
design of these systems to deliver desirable societal and environmental outcomes 
(e.g., Waddell et al., 2003). These traditions notwithstanding, attention to changes 
in land systems and to their modeling has been elevated in importance over the 
past quarter century as awareness of the role of land systems in environmental 
change and sustainability has increased (Reid et al., 2010; Rounsevell et al., 2012; 
Watson et al., 2000). Changes in land systems have significant consequences for 
local to global climate and environmental change (Foley et al., 2005; Pielke, 
2005). For this reason, decisions and policies related to land systems de facto will 
serve as strategies for mitigating and adapting to these changes and to reaching a 
more sustainable world (NRC, 2010a,b). Various scientific and practitioner com-
munities seek to address new types of questions and problems with LCMs, such 
as configuring land systems to ameliorate climate change and developing scalable 
models of land change with improved capacity to be coupled with other envi-
ronmental and socioeconomic models addressing specific topics. These efforts 
have been facilitated by major improvements in the amount and quality of data, 
methods, and technologies relevant for observing and monitoring, analyzing, and 
modeling land system change (NRC, 2003, 2008). The resulting mosaic of LCMs 
is large, tackles various parts of land system change differently, and includes 
models with different strengths for various science or practitioner communities. 

In general, scientists build LCMs to test theories and concepts of land change 
associated with human and environment dynamics and to explore the implications 
of these dynamics for future land changes under scenarios that elude real-world 
observation. The policy and practitioner communities are concerned with guiding 
land use decision making, for which LCMs provide value by enabling exploration 
of the possible outcomes of those decisions. These distinctions notwithstanding, 
LCMs inform and are used by many research and practitioner communities to 
address topics related to the processes of and outcomes from land change across 
a wide range of domains of relevance to environmental change and sustainability, 
including:

1.	 Land-climate interactions;
2.	 Water quantity and quality;
3.	 Biotic diversity, ecosystem function, and trade-offs among ecosystem 

services;
4.	 Food and fiber production;
5.	 Energy and carbon (sequestration); and 
6.	 Urbanization, infrastructure, and the built environment.
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LCMs are especially relevant for these and related topics because land 
systems are expressed spatially as land uses and land covers; these and related 
attributes result from dynamics in land systems and from a series of human-envi-
ronment interactions (Turner et al., 2007). LCMs are used to describe, project, 
and explain the changes in and dynamics of land use and cover, but they can also 
represent the dynamics in these broader land system interactions. They consider 
social and biophysical conditions, processes, and variables to address the land 
system at large, or to target specific social (e.g., vulnerability to hazards) or bio-
physical (e.g., water quality) outcomes. 

Dynamics of land use and land cover are complex, involving multiple social 
and biophysical processes and outcomes. To account for this complexity, LCMs 
may be linked or coupled with climatic, ecological, biogeochemical, biogeo-
physical, and socioeconomic models (Polasky et al., 2008; Robinson et al., 2007), 
such that other models are an input to the LCM, the LCM is an input to other 
models, or the models are coupled bidirectionally.

Complexity is present in land system dynamics because of social and bio-
physical heterogeneity, spatial and social interactions, natural and human adap-
tation, and feedbacks among system components. This leads to variation in 
outcomes by geographical location, social group, or ecosystem type, and to 
nonlinear dynamics that can complicate attempts to validate and predict models. 
Virtually all LCMs produce outcomes that are spatially explicit, either in terms of 
land use and cover or specific biophysical (e.g., NPP, leaf area index, roughness) 
or socioeconomic (e.g., income levels and distributions, age) variables. Complex-
ity typically enlarges the sensitivity of model outcomes to boundary conditions. 

Improvement and Challenges

The past two decades have witnessed an expansion and improvement of 
our understanding of land change dynamics and our ability to project changes 
into the near-term future through many types of LCMs, especially those draw-
ing on remote sensing data of land cover (as opposed to land use) and directed 
to changes in the biophysical dynamics of land systems (Agarwal et al., 2002; 
Lambin, 1997; Parker et al., 2003). Models have improved in their ability to 
treat spatial, temporal and decision-making complexity as described by Agarwal 
(2002) and render detailed outputs, from spatial scales of 1 m to 500 km. Model 
performance is linked to both the quality and resolution of the data employed 
and the degree of fidelity in representing the processes of land change. Machine 
learning, data mining, and statistical methods have advanced to improve our 
ability to identify patterns in the changes we observe. Economic modelers have 
taken advantage of spatially explicit data sets to build and improve models with 
varying levels of detail on economic decision making. Agent-based models have 
increased our capacity to address different types of agents (e.g., households, land 
managers) and their behaviors, especially when backed by empirical data about 
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that behavior (Manson and Evans, 2007). Creative approaches have been devel-
oped for integrating LCMs across scales, across different approaches, and to other 
types of models, including biophysical and socioeconomic types. 

These advances notwithstanding, LCMs confront a number of limitations 
that stem from both data constraints and limits to our understanding of underly-
ing processes. Data constraints can be characterized in several ways, including 
limitations due to the sensor or source (e.g., spatial, spectral, and temporal 
resolutions), limitations due to development of model inputs from the raw data 
(e.g., lack of a single ontology for land use, land cover, or other land variables 
that can be used for classification across all applications), and limitations due to 
poor coordination of or restricted access to a variety of public and proprietary 
primary data about the land systems. Process representations are confounded by 
their complexity, and by temporal nonstationarity in land change processes (e.g., 
changes in zoning, policy, or environmental conditions), prompting an emphasis 
on near-term projections and highlighting the possibility that there are very real 
limits to the level of prediction we can expect LCMs to exhibit (Batty and Torrens 
2005).  In particular, the further into the future that model outputs are projected 
or forecast, the greater is the uncertainty of those outputs. In addition, feedback 
mechanisms within land systems are commonly not represented well, a shortcom-
ing of increasing significance as LCMs address trade-offs of ecosystem services 
and their socioeconomic consequences. Perhaps most importantly, models are 
only beginning to account for spatial and social interactions among different land 
units, land users, and the environmental processes linked to them, especially as 
affected by the shape and pattern of land units and the network structures of social 
interactions. Finally, only a few models attempt to treat cross-scale dynamics—
ascending or descending spatiotemporal scales of land use and cover and land 
change processes—rather than treating adjacent scales as boundary conditions.

KEY CONCEPTS

	 This report relies on and refers to a number of key concepts that underlie 
our understanding of both LCMs and the problems LCMs are built to address. 
Here, we address two major categories of topics, organized around the ideas of 
pattern and process, and of projection, forecast, and scenario, and define a number 
of key terms (Box 1.1).

Pattern and Process

Data on land change provide information about patterns that can be described 
over space and/or time. These patterns of composition and configuration are 
based on observations of various state variables in the land system (e.g., land use, 
land cover, land value, and land management). Spatial patterns can be described 
in the form of maps, or in quantitative measures derived from maps that charac-
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BOX 1.1
Terminology and Definitions

Boundary conditions – attributes and processes affecting the dynamics 
within a model that are set from outside the model and are not affected by 
dynamics within the model.

Calibration – parameters are set in a way that a model reproduces out-
comes similar to those observed for the specific time and place of a case study.

Diagnosis – developing a degree of trust in the model through verification, 
calibration, and validation.

Drivers – variables that influence a land change variable (outcome).

Endogenous and exogenous variables – factors that are generated or de-
termined from within a system (endogenous) or outside a system (exogenous) 
and can be developed within or outside a model, though they often change 
over time and/or space.

Equifinality – the principle that an observed pattern can be generated by 
multiple different processes.

 Land change – change in land surface characteristics that are usually 
instigated by human action and that have consequences for environmental 
system functions.

Land cover – the biophysical qualities of the land surface (e.g., impervious 
surfaces, vegetation, water, bare soil).

Land system – a set of biophysical processes and human actors and 
organizations, together with the interactions among them, expressed spatially 
in the form of a mosaic of land units with different kinds and degrees of land 
uses and land covers.

Land use – the human intent given to or activity carried out on the land 
surface (e.g., housing, parks, and cultivation).

Linked, nested, and coupled models – linked model refers to one model 
result (process) affecting another; nested models are linked models arranged 
hierarchically by scale; and coupled models allow models to interact dynami-
cally and often in two directions.

terize the organization or configuration of objects or values in the map. In land 
change contexts, this often involves characterizing the size, shape, distribution, 
and connectivity or continuity of land cover or land use, attributes that can have 
significant impacts on human-environment systems (e.g., Chan et al., 2006; 
Laurence and Williamson, 2001; McGarigal et al., 2012).  Temporal patterns can 
describe changes in the composition and configuration of land over time and can 
be described graphically as time trends or with derived statistics that character-
ize the changes, trends, or variability over time. For example, forest transitions, 
involving loss and then regrowth of forest area within countries, exhibit a regular 
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Outcome validation – comparison of model outcomes to data from a 
specific real-world case on those same outcomes.

Path dependence – ultimate or later outcomes of dynamic processes 
are dependent on the outcomes of earlier iterations of the process. Early 
outcomes can constrain the choices later on in the process. 

Pattern versus process – patterns are descriptions of observed phe-
nomena over some time interval or spatial area, whereas processes are the 
mechanisms that generate observed patterns.

Projection, forecast, prediction, and scenario – projection refers to a 
description of a future land system and pathway leading to it; forecast or 
prediction to the most likely projection; and scenario to a plausible descrip-
tion of a possible future state of a land system.

Scale – the extent and resolution of a variable or model in time, space, 
thematic categories, or organizations. 

Scale dynamics – the process interactions across spatiotemporal-or-
ganizational scale.

Spatial interactions – the relationships between variables and pro-
cesses across geographical locations, often described as pairwise relation-
ships or spatial patterns.

Spatially explicit model – a model in which the data and outputs are 
specified for some set of geographical locations (e.g., from pixels to regions 
or continents).

Stationarity – processes during one time period or in one location are 
the same as those in the subsequent time period or other locations (ant-
onym: nonstationarity).

Structural validation – evidence that the processes in a model accu-
rately reflect those operating in a specific real-world situation.

Verification (debugging) – demonstration that the model’s code ex-
presses the intention of the modeler.

temporal pattern that some in the land change community have sought to explain 
(e.g., Rudel, 1998, 2005).

To explain observed land change patterns or trends, land change science 
seeks to understand process. This understanding can be represented with degrees 
of formality varying from informal conceptual models to formal mathematical or 
computational models. Stochastic aspects of this understanding might be included 
with otherwise deterministic processes to represent uncertainty and statistical 
variability in system behavior. 

These distinctions are important because modeling approaches have been 
developed to support science and decision making in land change for a variety of 
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reasons. Two broad purposes of models are to predict/project (PP) and to explain/
learn (EL). While the two categories of purposes need not be mutually exclusive, 
PP can be carried out without the goal of gaining insight into fundamental system 
behavior that is the aim of EL.

Likewise, it is possible to use models for EL in ways that do not provide par-
ticularly strong PP capabilities. Models that use different structures or parameter 
values may fit observed data equally well, a circumstance referred to as equifinal-
ity (Beven and Freer, 2001). A model can provide a good fit to data for the wrong 
or unknown reasons, however, and not capture the internal form and processes 
of the real world. The ability to distinguish between model forms with similar 
degrees of fit is termed identifiability, which is constrained by the adequacy of 
observations, in terms of both accuracy and range of system properties. Where 
processes are represented dynamically, the same model configuration can produce 
potentially very different outcomes (a circumstance referred to as multifinality) 
depending on variations in boundary conditions or stochasticity in the parameters 
or processes, further challenging attempts at identification.

Modeling approaches range from inductive (or pattern based) to deductive 
(process based) (Overmars et al., 2007), though in practice these approaches 
are commonly used together in an iterative manner. Inductive approaches seek 
to observe relationships between outcomes and drivers in order to infer some 
process-level understanding from the patterns in data about specific cases. Deduc-
tive approaches, on the other hand, present models of general processes to spe-
cific cases or experiments that can be used to test these general explanations. 
These approaches can be used jointly in a form of abduction (Paavalo, 2004), 
in which results from analyses of pattern suggest a set of possible explanations 
that can be tested, the findings of which are fed back into the pattern analysis, 
often creating a chain of linked explanations for the phenomenon in question. In 
fact, most operational models reside somewhere between induction (i.e., pattern 
based) and deduction (i.e., process based). Where models fall on this continuum  
affects their characteristics and how their results can be interpreted by users. For 
example, a completely inductive approach uses no theory or thesis in develop-
ing the model structure and might rely instead on machine learning to establish 
relationships between driving variables and outcomes. (Even these approaches, 
however, require selection of the variables, which necessarily draws on some 
level of theory and process understanding.)  This might limit the types of poli-
cies the model can be used to evaluate to those involving only changes in the 
input patterns, restricting their use for policies involving changes in process (e.g., 
incentives to the users of land to make different choices). On the other hand, a 
more strictly process-based model developed without recourse to data on (a) 
specific case(s) might have rich structural detail about the mechanisms but might 
perform poorly when it comes to reproduction of the observed patterns in data. 
Trading off these various strengths is an important component of model choice.
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Projection, Forecast, and Scenario

Our statement of task highlights “future needs for higher-resolution and more 
accurate projections.” Various research communities use the term projection—
and affiliated terms, forecast and scenario—in different ways. In this report, we 
follow the definitions set out by the Intergovernmental Panel on Climate Change 
(IPCC).

The IPCC Third Assessment Report (2001) identifies a projection as “any 
description of the future and the pathway leading to it.”  For our purposes, pro-
jections can be derived from a LCM (e.g., future land use), although other input 
sources for such projections could exist (e.g., assumptions about land policies 
and economic activity). The IPCC distinguishes projections from forecasts or 
predictions (terms that are used interchangeably) by defining the latter two as 
projections that are branded as “most likely,” often based on models to which 
some level of confidence can be attached. 

In contrast, the IPCC defines a scenario as “a coherent, internally consistent, 
and plausible description of a possible future state of the world” (IPCC, 1994). 
Scenarios are used to make projections, but under a specific set of assumptions 
that can include projections from other models (e.g., economic forecasts).  The 
uncertainties about these projections may be unknown, but they may represent 
plausible directions for the initial conditions and external driving forces for a 
set of processes (e.g., land change) (IPCC, 2000). Usually any set of scenarios 
will include a baseline against which others can be compared, often related to 
projections based on currently known conditions and processes. Scenarios can 
be exploratory, and describe how the future might unfold under a set of known 
processes or current trends, or normative, in that they describe a future that 
might be achieved (or avoided) if a specific set of actions is taken. The IPCC 
SRES scenarios (IPCC, 2000) follow the exploratory approach, based on a set of 
demographic and economic assumptions, whereas the representative concentra-
tion pathways follow a more normative approach, wherein they are defined with 
respect to the outcomes and used to evaluate ways those outcomes might be 
achieved (Moss et al., 2010).

NEEDS FOR SCIENCE AND PRACTICE

LCMs are used widely in the overlapping arenas of science and practice 
(decision making, policy, or real-world application in the private and public 
domains), and a clear understanding of the different requirements of each of 
these communities as well as their close connection provide context for the 
later sections of this report. In general, science is concerned with generating 
and organizing knowledge, and the field of land change science and related 
disciplines build LCMs to formalize and test land change and associated theory 
and explore scenarios where real-world experimentation is not possible. For the 
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most part, science-driven modeling efforts tend to become more process based 
as understanding of a problem and the processes evolve, beginning with data-
based exploratory models and proceeding toward more explicit representations 
of process in the models. The value of different approaches to LCM in science 
varies according to both the nature of the modeling approaches and the nature 
and specifi city of the questions.

The communities engaged in practice are concerned with setting sound and 
defensible guidelines for policy and action, and LCMs provide value by reveal-
ing current and exploring possible future outcomes from policy or action. Given 
the number and range of different decision-making units charged with different 
facets of human-environment systems (e.g., climate or water regulation, hous-
ing or zoning, and corporations), LCMs often focus on or link to the missions 
of the individual practitioner groups. In consideration of the roles of models in 
decision making, Figure 1.1 provides a useful conceptual model of how decision 
making proceeds (Verdung, 1997) and serves as a touchstone for later discussions 
about the relative value of different modeling approaches at different stages in 
the decision process. 

Problems (e.g., fl ooding) about which decisions and actions are needed are 
identifi ed in a variety of ways and various interventions are designed to mitigate 
or reduce the problem. Upon evaluation of alternative interventions, some deci-
sion is reached and an intervention implemented. Following implementation, the 

FIGURE 1.1 Decision-making process. SOURCE: Verdung, 1997.
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intervention is evaluated and the results fed back into identifications of similar 
problems in the future. Models can contribute at each stage of this idealized pro-
cess, but the information requirements are different at each stage.

Viewing LCMs in the context of the policy cycle will allow managers and 
policy makers to make more informed decisions regarding the type of model 
output needed during each phase of policy making.  Framing LCM’s in terms of 
the user needs rather than modeler interests represents a departure from previous 
LCM reviews.

The Chesapeake Bay study provides an example of a context within which 
LCMs contribute to formulation of policy and management decisions through 
coupling with other environmental models (Box. 1.2). Land cover changes affect 
runoff and nutrient loadings, and can be adjusted in scenarios to evaluate the 
effects of alternative land-related patterns on achieving water quality goals. 

A variety of science and policy communities, including climate change 
modelers, integrated assessment modelers, and the IPCC, are asking for better 
information about land change at global scales.  Spatial LCMs would provide 
platforms for exploring future scenarios of rural-urban form and structure to 
support decisions about these mitigation strategies. Similar effects of spatial 
patterns on ecological and biogeochemical processes have demonstrated a need 
for spatially explicit characterizations of land change (Debinski and Holt, 2000; 
Irwin and Bockstael, 2007; Robinson et al., 2007).

Despite the differences noted among the uses of LCMs, the science and 
practice communities are connected bidirectionally in the same way that humans 
and the environment are connected. Science informs policy and practice, and the 
outcomes or needs of the latter often prompt additional scientific research. Such 
feedbacks are instrumental to the advancement of LCMs.

MODEL UNCERTAINTY

We note above that temporal non-stationarity in land change processes cre-
ates uncertainty in LCM projections, especially the further into the future that 
the model is applied. In addition, an important property of all models is that they 
contain some irreducible level of uncertainty that can be inherent in the model 
structure (i.e., the basic equations or algorithms), the parameter values, input data, 
or all of these. Uncertainty is endemic in our understanding of land use decision 
making and of the physical state and function of the land system. 

The future state of land systems will be determined by a combination of 
individual and societal constraints and opportunities about which decisions have 
yet to be made. LCMs implicitly or explicitly address decision making in the face 
of opportunities and constraints and biophysical processes not subject to human 
decision making, but which may be fundamentally affected by it. For example, a 
model can simulate where humans will change the landscape, a decision-making 
component that is inherently uncertain. Other parts of the model follow physical 
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BOX 1.2
Chesapeake Bay Land Change Model as Input to the 

Chesapeake Bay Watershed Model

The Chesapeake Bay Program (CBP) is a consortium of federal agen-
cies, states, and Washington, D.C., that aims to develop strategies and imple-
ment methods to restore the health of the Chesapeake Bay. A key component 
of the CBP is the use of an LCM, based on SLEUTH, to provide scenarios of 
land use and land cover that can be input to the Chesapeake Bay Watershed 
Model. Current and future scenarios of land change are entered as input to the 
CBP Scenario Builder to develop parameter sets to parameterize the water-
shed model for simulation of stream flow, nitrogen, phosphorus, and sediment 
loading to the Bay. Different scenarios for land use change are developed to 
assess the long-term potential of achieving water quality goals and to help 
set policies on development and watershed to local-level restoration methods.

SOURCE: Chesapeake Bay Progream, Modeling Workgroup: http://www.chesapeakebay.net/
groups/group/modeling_team.

principles that may not change but are subject to data and parameter uncertainty. 
For instance, models that connect land change with the storage and movement 
of water are guided by physical laws of hydraulics. Incomplete knowledge in the 
current state of water infrastructure, surface topography, and subsurface structure, 
however, introduces substantial uncertainty into understanding and prediction 
of fundamental physical processes. In addition, decision-making processes and 
physical processes interact in a model, for example, as humans change landscapes 
by installing or retrofitting drainage infrastructure toward specific water man-
agement goals, which can change over time (Huang et al., 2013). This provides 
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strong feedbacks to land, to the biological and geophysical properties of the 
landscape, and to human decision making, which may need to be incorporated 
into a LCM. In some instances, human use of the land can drive the environment 
to thresholds that, once crossed, change environmental (ecosystem) function 
(DeFries et al., 2004) and amplify uncertainty.

Model diagnosis, a fundamental part of any modeling exercise, seeks to learn 
about the behavior of the model relative to the real system in order to interpret 
model output appropriately. This diagnosis accounts for the essential modeling 
steps of verification, calibration, and validation. When model parameters are fit 
by calibration to historical data, additional uncertainty is introduced due to the 
inherent temporal nonstationarity of processes. Model diagnosis must, there-
fore, also account for nonstationarity in the data and processes, and stationarity 
assumptions in the model. Model diagnosis is critical to evaluating the represen-
tation of interacting processes, the manner in which the landscape is represented, 
and the uncertainty in each of these forms. In Chapter 3 we outline a framework 
for best practices in model diagnosis in the context of LCMs.

MEASUREMENT AND CHARACTERIZATION OF LAND CHANGE

Land change modeling confronts a rapidly changing data infrastructure that 
affords large opportunities for improved models and their application, but it 
also entails a number of important issues about data quality and assessment that 
require consideration during model development and testing. These include issues 
related to remote sensing of land change as well as other data on the various 
social and biophysical characteristics that define the land system and its drivers 
within LCMs.

Remote Sensing of Land Change

The science of characterizing and measuring land change from remote sens-
ing data has evolved significantly over the past 40 years. The earliest methods—
and still widely used—identify land change as the difference between classified 
land cover maps from two or more points in time or through direct detection of 
changes themselves based on one or more images (Coppin et al., 2004). Although 
this remains the most common approach to characterize land change due to its 
simplicity and flexibility, it is more appropriate for identifying coarse-scale 
quantitative changes based on specific points in time (e.g., deforestation, urban 
expansion) than it is for identifying nuanced qualitative changes (e.g., changes 
in urban density, vegetation health) or dynamic processes that evolve over time, 
like crop rotation and change. 

Advances in change detection analysis provide new opportunities for LCM. 
Most notably, new algorithms that use the entire set (or a subset) of the long 
archival record of many sensors, such as Landsat or MODIS, take advantage of 
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the temporal signal to identify land changes not possible through the traditional 
differencing approach (Zhu et al., 2012). New methods developed from allied 
fields such as geostatistics (Kaliraj et al., 2012), artificial intelligence (Ghosh et 
al., 2008), and time-series analysis (Verbesselt et al., 2010) further improve and 
expand the type of information that can be extracted from remote sensing data. 
Moreover, change detection methods are moving away from individual pixel 
analysis and incorporating spatial neighbors and shape. Further, a whole commu-
nity has emerged around the use of objects as the unit of analysis in object-based 
image analysis and change detection (Chen et al., 2012). Many of these new 
algorithms and methods have yet to be fully utilized in LCMs. 

Here we briefly take stock of some of the key advances in remote sensing 
that significantly contribute to the development of LCMs. In Chapter 3, we iden-
tify new challenges for remote sensing for LCMs and emerging developments in 
algorithms and image processing that could meet these challenges.

1.	 The growing depth of the Landsat archive, coupled with the no-cost 
policy governing its access, has driven a lot of efforts to model observed changes. 
This data set can be seen as an important impetus and enabler of the current 
state-of-the-science in LCM.

2.	 The growing constellation of private and government sensors offer a wide 
range of spatial resolutions, from submeter (Pleides, Quickbird, WorldView, 
GeoEye) to 250-500 m (MODIS). Revisit frequency from daily to weekly obser-
vations makes it possible to examine land change with high temporal frequency. 
With archival records from Landsat, long time series are being coupled with 
high-temporal-frequency and high-spatial-resolution analyses. This increased 
temporal frequency improves our ability to characterize dynamics in the land 
system, diagnose temporal nonstationarity, and develop empirical parameter sets 
for LCMs that are better tuned to historical changes.

3.	 Data from land imaging sensors cover a wide spectral range, from the 
visible to the long-wavelength infrared (also known as thermal imaging) and with 
different spectral bandwidths. Combined with the trend toward higher radiometric 
resolution with dynamic ranges up to 16 bit (65,536 unique values per pixel per 
spectral band), the land change community now has available a large range of 
high spectral detail in a single pixel. This helps to refine the detail within which 
land attributes and types can be represented, and it opens the possibility of incor-
porating more thematic detail into LCMs.

4.	 There are growing numbers of algorithms for spectral mixture analysis to 
estimate the fractions of different materials or cover-types within mixed pixels. 
Rather than assuming a single land cover type per pixel, the resulting maps pro-
vide continuous fields that represent fractional cover of different categories and 
that could be the targeted outcome represented in future LCMs. 

5.	 Algorithm developments that move away from pixel-based analysis pro-
vide new looks at landscapes using shapes and objects as the unit of analysis. 
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Outputs from these analyses are particularly useful for identifying human activity 
or management of the landscape (e.g., agricultural plots) and hold the potential 
to interact more directly with models of human decision making.

6.	 Multiple LiDAR remote sensing platforms, from spaceborne to airborne 
systems, provide information in the third dimension. For example, the Geosci-
ence Laser Altimeter System on ICESat collected data that can be used to map 
vegetation canopy parameters including tree height, biomass volume, and stand 
density. Sensors of this sort further expand the land variables that can be sensed 
and included in LCMs, either as inputs or outputs.

Whereas for many years, the primary land imaging sensors were Landsat and 
the Advanced Very High Resolution Radiometer, the LCM community now has at 
its disposal a large range of additional sensors and types of information for LCM 
inputs. As discussed in Chapter 3, however, the community is only beginning to 
harness the synergies possible from algorithm advances in both the LCM and 
remote sensing communities. 

Other Data for Land Change Models

In addition to data from remote sensing, data from a wide variety of other 
sources are central to development of the ability in LCMs to both characterize 
aspects of the land system that cannot be directly observed with Earth observa-
tion technology (e.g., property ownership) and incorporate information about the 
social, historical, ecological, and other drivers of land change (e.g., population 
growth, economic activity). 

A common challenge that arises with using these data for LCMs is that, with 
the exception of customized surveys, none were designed explicitly for use in 
LCMs but rather for different audiences and different purposes. For example, 
census data are collected over various administrative units and usually at decadal 
intervals. In addition, they can usually be used only at some aggregate level (e.g., 
census blocks), not at their finest spatial resolution. Other data may be recorded 
or collected more intermittently. Land values, for example, may be updated only 
when a property changes ownership. Four measurement and characterization 
issues common to all data for LCMs are briefly reviewed below and opportunities 
for future advancement are outlined in Chapter 3. 

Format of variables

The subjective decision to format variables in LCMs as continuous or dis-
crete influences the type of questions that can be answered and the type of analy-
ses that can be employed (Southworth et al., 2004). With discrete variables, each 
spatial unit is represented by a single categorical value, and these data can detect 
wholesale changes in either the land use or cover (e.g., agriculture to urban) or 
the input drivers (e.g., change in land ownership). Continuous variables allow 
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measurement and characterization of finer details, such as qualitative changes in 
land use or cover (e.g., agricultural intensification or variations in net primary 
productivity) or modification in driver variables (e.g., changes in agricultural 
inputs such as fertilizers). The use of crisp categories simplifies analysis, but it 
requires that the number of categories to use must be determined and categories 
must be applied consistently over time. More categories add more detail, but they 
also make the analysis more complicated. It can be desirable to aggregate catego-
ries to reduce the data to a small number of important categories; the manner in 
which aggregation is performed influences the signals of land change.

Data accuracy and reliability

Understanding the accuracy and reliability of the data used in LCMs is essen-
tial. With remotely sensed data, accuracy is affected by the data source (i.e., sen-
sor) and by the processing steps involved in creating the final map. The lineages 
of other LCM data are often more difficult to identify. For example, the specific 
instruments, field methods, original source material, or analyses used may not be 
recorded or evident. Consequently, it is often difficult to assess the accuracy or 
reliability of these other data sources. Additionally, the increasing availability of 
“volunteered geographic information” (Goodchild, 2007), for which individual 
citizens provide geographic information, presents a new trove of information 
for observing and analyzing change (NRC, 2010c).  While the accuracy of these 
data is nearly impossible to assess, especially given the magnitude of the infor-
mation available and the lack of strict protocols in its collection, the volume of 
data can often be used in creative ways to develop robust characterizations of the 
phenomenon of interest. 

Multiple time points

Inherent to all LCMs is information over time. New methods are needed to 
consider the use of data with high temporal frequency in LCMs (de Beurs and 
Henebry, 2005). While the availability of temporal data from coarse-resolution 
imagery (i.e., > 100 m resolution) has been common for a couple decades, the 
availability of high-frequency data with finer resolutions (i.e., <50 m resolution) 
is a recent occurrence. A challenge for other data sources, such as field surveys 
and censuses, is how to sustain consistent collection efforts over the long term to 
create time-series data that could be more useful for LCMs.

An Abundance of New Data Sources

The growth of new data sources from satellites, aircraft, ground sensors, and 
“citizen science” presents new opportunities to measure and characterize land 
systems. The massive increase in data-gathering methods and data sets has not 
been matched by parallel increases in approaches for turning raw geographic data 
into more meaningful information about land systems or inputs to LCMs. The 
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increase in information that describes and measures land systems requires exper-
tise in inference and knowledge of the local systems in order to make effective 
use of it. In other words, new skills are required to synthesize and qualify data 
from multiple sources and disciplines. Furthermore, measurements from differ-
ent agencies, sensors, and researchers may share the same or similar categories 
but under significantly different conditions and assumptions (i.e., the semantics 
are different)—a common problem in integrating land classes undertaken by dif-
ferent research programs. Therefore, LCMs cannot simply integrate these data 
into a single database; land change scientists must identify robust approaches to 
translate the raw observations into meaningful information (Di Gregorio, 2005). 

STRUCTURE OF THE REPORT

Land change models have been and continue to be critical to a large range of 
uses and users in science and practice. Indeed, the demands on LCMs continue 
to increase in terms of product outcomes and uses. These demands confront a 
series of problems, the broad outline of which has been noted. Input to inform 
the opportunities identified in this report was gathered at committee meetings 
and a workshop, through the committee’s own expertise, and through a question-
naire distributed electronically to a variety of individuals and groups working on 
LCMs (see Appendix A for a full list of contributors). The workshop included 
national and international experts in land-climate interactions, water quantity 
and quality, food-fiber, energy, ecosystem services, and urbanization. In Chapter 
2 we describe and compare approaches to LCM and suggest guidance for their 
appropriate application. In Chapter 3 we suggest ways to improve LCMs and 
outline several forward-looking issues.
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Land Change Modeling Approaches

To move land change modeling forward, it is critical that a common lan-
guage is established to differentiate modeling approaches according to 
their theoretical and empirical bases. The diversity of approaches to land 

change modeling, along with differences in definitions between practitioners from 
different disciplines, does not lend itself to a discrete classification system. Agar-
wal et al. (2002) described models in terms of how they handle spatial, temporal 
and decision making complexity. While this approach provided useful distinc-
tions at the time that review was completed, significant progress in developing 
all modeling approaches has blurred even some of those distinctions.

The committee has identified six generally recognized groups of approaches 
to land change models (LCMs), the first five of which are arrayed roughly in 
order from least to most structurally oriented (i.e., focused on process): (1) 
machine learning and statistical, (2) cellular, (3) sector-based economic, (4) 
spatially disaggregated economic, (5) agent-based, and (6) hybrid approaches. 
While we mention statistical approaches in the first category explicitly, statistical 
methods are used in some way within most of the approaches. There are overlaps 
in the degree and type of process orientation among the approaches that depend 
on the details of the specific model representing these approaches. We include the 
sixth type to acknowledge the importance of studies and applications that com-
bine the different approaches into a single model or modeling framework. The 
following sections outline the theoretical and empirical bases as well as techni-
cal, research, and data challenges for each approach. Examples of each approach 
are also provided. Because of similarities in the approaches, we address both 
forms of economic models in a combined section. Following the discussion of 
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each approach, we compare the key assumptions, data requirements, and recom-
mended uses of each modeling approach.

MACHINE LEARNING AND STATISTICAL

Theoretical and Empirical Basis

Machine learning and statistical methods in LCMs involve approaches to 
represent relationships between inputs (i.e., driving variables) and outputs (i.e., 
land use or cover changes). The data are used to generate maps of transition 
potentials that give an empirically based measure of the possibility of particular 
land transitions. Together with traditional parametric approaches, usually in the 
form of logistic regression (Millington et al. 2007), generalized linear modeling, 
or generalized additive modeling (Brown et al. 2002), several different kinds of 
Bayesian and machine learning algorithms have been used in influential LCMs. 
For example, the Dinamica model offers the option of logistic regression or a 
weights-of-evidence approach, which estimates a statistical model similar to 
logistic regression, but does so within a Bayesian framework (Carlson et al. 
2012).

Neural networks play a central role in both the Land Transformation Model 
(Pijanowski et al., 2002; Ray and Pijanowski, 2010; Tayyebi et al., in press) 
and Idrisi’s Land Change Modeler (Eastman, 2007; see Box 2.1). Neural net-
works represent relationships between land transitions and their explanatory 
variables through a network of weighted relationships that the algorithm adjusts 
iteratively. Genetic algorithms (GAs) have been used to optimize the rule set 
for cellular automaton models, by iteratively adjusting the parameter string that 
defines weights on variables (Jenerette and Wu, 2001). The SLEUTH model 
(Clarke, 2008) uses an input-assisted incremental approach to calibrate a cellular 
automata model, but attempts have been made to use genetic algorithms for this 
purpose (Goldstein 2004). Classification and regression trees are data mining 
tools that use a sequential partitioning process and have been used to model the 
probabilities of landscape change (McDonald and Urban, 2006). A comparison 
across approaches that included logistic regression, Bayesian analysis, weights 
of evidence, and a neural network showed a case-study site where the neural 
network produced a more accurate prediction during a validation interval as 
measured by the area under the relative operating characteristic (ROC) curve and 
a Pierce skill score (Eastman et al., 2005). Although we do not review all of the 
individual methods in detail, we describe the strengths and weaknesses of this 
overall approach relative to the other modeling approaches covered in this study.

Modeling approaches that employ a machine learning or statistical approaches 
typically receive input in the form of two types of maps: (1) maps of land cover 
at time points that bound the calibration interval, and (2) maps of explanatory 
variables, such as topographic slope, distance to roads, etc.  After the algorithm 
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finds this relationship for the calibration interval, the relationship is then typically 
used to extrapolate the same relationship into a subsequent validation interval 
during which the predictive power can be tested. Machine learning algorithms 
can be appropriate for situations where data concerning pattern are available and 
theory concerning process is scant. There are many cases where it is possible to 
obtain land cover maps from more than one time point along with explanatory 
variables for a study site where the investigator is partially ignorant concerning 
the detailed processes of land transformation. A machine learning algorithm 
attempts to learn the mathematical or logical relationships among the patterns of 
land cover and the patterns of the explanatory variables. The machine learning 
algorithm focuses exclusively on encoding and extrapolating the pattern of the 
land change, as opposed to the process of change. If the approach is used for 
prediction, then the prediction assumes stationarity in the land change pattern 
from the calibration interval to the subsequent time interval. Machine learning 
algorithms are used to predict by extrapolating historic patterns and can perform 
the extrapolation in a manner that does not require theory concerning detailed 
processes of change.

Machine learning algorithms are not designed to simulate feedbacks and 
nonstationary processes in coupled natural and human systems, nor are they 
designed to evaluate the effects of policies that attempt to modify processes so 
that future patterns will be different than the past patterns. Machine learning 
algorithms are not designed to simulate the mechanisms of human decision mak-
ing, because machine learning algorithms lack theory concerning the behavior 
of decision making.

Statistical regression methods assume a fixed mathematical form with coef-
ficients that an algorithm estimates to produce an optimal fit, where optimal is 
defined by a mathematical criterion, i.e., a maximum-likelihood criterion. The 
maximum-likelihood criterion leads to a mathematical formula to estimate the 
regression’s coefficients. For example, the regression equation could assume a 
monotonic sigmoidal relationship between land cover change and topographic 
slope. Then the maximum-likelihood algorithm estimates the equation’s coef-
ficients so the regression curve fits as closely as possible to the data, given the 
form of the monotonic sigmoidal relationship. The coefficients indicate whether 
the assumed monotonic relationships are increasing or decreasing, and at what 
rate. The logistic regression might also include interactions among the explana-
tory variables. Diagnostic measurements help to interpret the fitted coefficients 
of the regression equation.

In comparison with logistic regression, machine learning algorithms do not 
require strong assumptions concerning a particular form of a mathematical equa-
tion to express a relationship between the land cover map(s) and the map(s) of 
explanatory variable(s). Machine learning algorithms attempt to mimic biologi-
cal learning systems through predictive artificial intelligence tools.  They fit a 
relationship between the land change variable and the explanatory variable(s) 
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in a manner that is more flexible than regression concerning the mathemati-
cal structure of the fitted relationship and can be designed to be more robust to 
errors in the data (Bishop, 1995). The algorithm uses an iterative process to fit 
a relationship between the patterns in the land cover maps and the explanatory 
variables. Over repeated iterations, the algorithm adjusts the model parameters 
until the algorithm satisfies a stopping criterion. The stopping criterion signals 
that the algorithm either has generated a particular degree of fit for the relation-
ship between the land cover maps and the explanatory variables, or a particular 
amount of stability in the fit from iteration to iteration.

Machine learning algorithms do not necessarily assume sigmoidal or mono-
tonic relationships between the likelihood of land change and explanatory 
variable(s). The machine learning algorithms can also fit interactions among 
variables, just as regressions can. Machine learning algorithms are similar to 
common statistical approaches, in the respect that theory concerning processes 

BOX 2.1
The Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is a machine learning algorithm that 
is available as an option in the Land Change Modeler within the Idrisi GIS 
software. MLP is a neural network that receives maps of explanatory variables 
and land transitions for a calibration time interval and then produces a map 
of transition potential for temporal extrapolation beyond the calibration time 
interval. The transition potential is an index on a scale from 0 to 1, where 
higher numbers indicate pixels that have a combination of explanatory values 
that are more similar to places where the particular transition occurred during 
the calibration interval compared to places where the transition did not occur.

The maps in this box illustrate validation information using Idrisi’s tuto-
rial data concerning the gain of disturbed land in Chiquitania, Bolivia. The 
MLP produced the transition potential map based on the gain of disturbance 
during a calibration interval (1986-1994) and explanatory variables including 
slope, elevation, and distance from streams, roads, urban areas, and previous 
disturbances. The validation interval is 1994-2000; thus, the disturbed pixels 
of 1994 are masked from the analysis because they are not candidates for 
post-1994 gain of disturbance. Map A shows the validation data, where black 
patches show a gain of disturbance. Map B is the output from the MLP, where 
darker shades indicate relatively higher transition potentials. Map C is a transi-
tion potential map that is based exclusively on proximity to disturbed pixels of 
1994, where relatively higher transition potentials are assigned to pixels that 
are closer to disturbance of 1994. The proximity model is included because it 
is best practice to compare the map from a relatively naïve model to the output 
from a more complex model. 
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of land change is expressed through the selection of explanatory variables to 
include and their expected relationships and functional forms, though the theory 
does not necessarily need to be rich. Many models base selection of variables on 
the von Thünen idea of land rents, which relates land use, cover, and change to 
location relative to markets and transportation as well as land suitability through 
variables like soil quality and slope. This theoretical basis is shared with many 
cellular models, and is described in more detail in that section.

Machine learning and statistical approaches can be appropriate for situations 
where data concerning pattern are available and theory concerning process is 
scant. In terms of short-term PP uses of models, machine learning approaches can 
be used to make useful predictions. There are many cases where it is possible to 
obtain land cover maps from more than one time point along with explanatory 
variables for a study site where the investigator is partially ignorant concerning 
the detailed processes of land transformation. A machine learning algorithm can 

FIGURE (A) Gain of disturbance during valida-
tion interval, (B) transition potential from Idrisi’s 
Multi-Layer Perceptron, and (C) transition poten-
tial from a naïve proximity model.
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be used to first identify and represent patterns in data, relating inputs (predictor 
variables) and outputs (a land or land change variable) then generalize those 
relationships to other data sets. As more data become available for LCM appli-
cations, the ability of machine learning algorithms, in particular, to represent 
and generalize relationships in those data offers significant potential for dealing 
efficiently with large data volumes.

Technical, Research and Data Challenges

Because the methods and resulting modeled relationships involved in both 
machine learning and statistical approaches are developed inductively on the 
basis of the inputted data, the models are particularly sensitive to the inputs. For 
example, statistical or machine learning models can be applied to model either 
land use or land cover, and the categories used in the classification will determine 
the resulting model form.  The meaning of the model is determined by the defini-
tions of these categories.  Therefore, model suitability for a given purpose will be 
dependent on the categories in the input map. For these reasons, and because land 
cover data are more plentiful than land use data, statistical and machine learning 
approaches are suitable for modeling land cover changes directly, even though 
these changes may come about through human choices about land use. While 
machine learning methods have been developed in ways that make them less 
sensitive to random errors in the input data than statistical methods, systematic 
biases in data will always affect the resulting models. 

Used in a predictive mode, both machine learning and statistical approaches 
generally assume stationarity in the relationship between predictor and land 
change variables, i.e., that the model fitted during the calibration interval can be 
applied to the subsequent time interval without modification. The advantage is 
that these approaches can be used to predict by extrapolating historic patterns, 
and can perform the extrapolation in a manner that does not require theory con-
cerning detailed processes of change. Additionally, any variables included as 
predictors in the model can be modified to generate scenarios of future change.  
For example, if distance to roads is a predictor variable it is a relatively simple 
task to simulate the effect of introducing a new road by recalculating distance to 
the nearest road.  The disadvantage is that variables that are not included in the 
model, but that might change over time, cannot be accounted for in the projec-
tions or scenarios. What this often means is that scenarios involving changes to 
the economic penalties or incentives or other behaviorally related variables or 
constraints cannot be simulated. However, we address reduced-form econometric 
approaches in the section on Economic models, in which statistical methods can 
be used to estimate and evaluate behaviorally oriented scenarios.

Statistical and machine learning approaches differ in the degree of a pri-
ori structure imposed by the modeler, such that machine learning algorithms 
can more easily represent a variety of complex relationships but there exists a 
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greater risk of overfitting. Overfitting can occur when an algorithm produces a 
mathematical or logical relationship between observed land change and a set of 
explanatory variables that fits the details of a particular calibration data set but 
does not apply to a broader set of applications. This can happen when the rela-
tionship fits the details of the calibration data in such a way that the model fails 
to represent the general principles that extend to other times or places. Spatial or 
temporal nonstationarity in the land change process can mean that a good fit at 
one time or place will not generalize well to other times or places. For example, a 
machine learning algorithm might be able to fit a tight relationship between land 
cover maps and explanatory variables for a given time interval but do a relatively 
poor job of matching observations when the relationship is extrapolated to time 
points beyond the calibration interval, for example because the market or policy 
conditions differ between the two time periods.

If the model is overfit during the calibration stage, then the investigator 
can be lured into a false sense of trust that the model can predict accurately the 
patterns in data for which the model was not calibrated. Overfitting can occur 
in nearly any modeling approach, especially approaches that calibrate a model 
based on a single case study. Thus, an important research topic concerns methods 
to measure and to address overfitting. Because this is a well-known problem in 
machine learning algorithms, a variety of techniques have been developed to 
reduce the risks of overfitting, and generalization outside the calibration data has 
been demonstrated for LCMs (Pijanowski et al. 2005).  One approach that has 
not yet been tried with LCMs is to generate 100s or 1000s of models based on 
the stochastic elements of machine learning that can serve as a model ensemble 
and characterize a range of possible models for a given data set. 

Interpretation of output can be challenging because many algorithms pro-
duce a map of “transition potential” for each land transition, where the transition 
potential indicates whether the apparent conditions are such that the chances of 
land change are relatively high versus low. The transition potentials are typically 
real values on the interval from 0 to 1, and have meaning in terms of their relative 
ranking, but are not necessarily probabilities of change because they are based 
on the time interval of change from the data on which they are based. A separate 
algorithm typically selects pixels with the highest-ranking transition potentials 
to make a hard classification of future change, where the number of selected 
pixels is based on an anticipated quantity of land change over some specified 
time interval. This situation makes it challenging to compare two or more maps 
of transition potential, since a map that has a higher average transition potential 
does not necessarily imply a higher anticipated quantity of change compared to 
a map that has a lower average transition potential. Even if two maps have the 
same average transition potential, it is not clear how to compare maps when they 
have differences in the distribution of the transition potentials, for example, when 
one distribution has a single mode but the other distribution does not. A transi-
tion potential can be interpreted as a probability when it indicates the chance 
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that a particular categorical transition will occur in the pixel during a specific 
time interval. It is possible to convert some types of transition potentials to prob-
abilities by scaling the transition potentials using a projected quantity of each 
categorical transition during a specific time interval (Hsieh, 2009). If transition 
potentials are probabilities, then they have an implied quantity of change for the 
specified time interval. 

Compared to statistical methods, for which a large body of theory exists to 
facilitate diagnosing and interpreting the structure of a given model, machine 
learning approaches are often criticized as a ‘black box’ for which interpretation 
of the model structure and performance is a challenge.  This is a well-known 
challenge for machine learning approaches, and a variety of methods have been 
developed to understand how the predictor variables relate to the outcome (e.g., 
to open the black box). For example, a simple approach to understanding the 
relative contribution of different variables to a machine learning model is to leave 
out each of the variables one at a time and re-calibrate the model (Pijanowski et 
al. 2002). Additionally, in terms of measuring how well the relative ranks from 
the model represent the spatial allocation of the observed transitions, The Rela-
tive Operating Characteristic (ROC) is frequently used because it is designed 
to measure the degree to which higher ranks are concentrated on the feature of 
interest (i.e., change). ROC has been criticized because many modelers use only 
a single summary statistic of the area under the ROC curve (AUC) to indicate 
association (Lobo et al., 2008). The AUC fails to expose the rich information 
that proper interpretation of the full ROC curve can reveal. Another criticism is 
that, like other metrics of predictive ability, the AUC can be large due to cor-
rectly predicted persistence, not correctly predicted change. This problem can 
be mitigated through careful selection of the study extent and by proper use and 
interpretation of the full ROC curve.

Modifications and alternatives to the ROC type of analysis can better express 
the manner in which a transition potential map fits the empirically observed land 
change. Proper selection of the measurement is important because the apparent 
performance of the algorithm can be sensitive to the selection of the measure-
ment. For example, if the machine learning algorithm attempts to maximize the 
percentage of pixels that agree between the simulated map of land cover types 
and the reference map for the same time point, then the algorithm might generate 
output that systematically underestimates the quantity of change. This can occur 
because a simulation of land change is likely to generate allocation errors when 
it simulates change; thus, it can reduce the number of those allocation errors by 
simply predicting very little change. If instead the algorithm seeks to maximize 
a different measurement, such as the figure of merit (Pontius et al., 2008, 2011), 
then the algorithm has an incentive to simulate a more accurate quantity of 
change, because one must simulate an accurate quantity of change in order to 
have the possibility to generate a high figure of merit.
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CELLULAR

Cellular land change models use discrete spatial units as the basic units of 
simulation. Such spatial units can be regularly shaped pixels, parcels, or other 
land units and are usually arrayed in a tessellation. Cellular models use a variety 
of input information to simulate the conversions of land cover or land use in these 
land units based on a rule set or algorithm that is applied synchronously to all 
spatial units and that represents the modeler’s understanding of the land change 
process. The algorithm represents decision making that is, implicitly, assumed 
to take place at the level of the spatial units of simulation, with a one-to-one cor-
respondence assumed between the spatial units and decision maker. Often, the 
same decision algorithm is applied to all spatial units in a study area, or to large 
regions within the study area. Variation in decision making can, therefore, solely 
arise from the attributes of the spatial unit, rather than from the differences in 
decision making of the actors managing the spatial units. 

Theoretical and Empirical Basis

A wide variety of cellular models has emerged over the past two decades, 
differing in their specification and underlying theoretical and empirical basis. Dif-
ferences between cellular model types relate to differences in the algorithms and 
the underlying assumptions that govern the decision rules at the level of spatial 
units. Another difference between groups of cellular models relates to the way the 
quantity of change is determined, as distinct from the locations of change. Model-
ers generally choose between either constraining the total areas of land change 
at the regional level or determining the regional level of land change simply as 
the aggregate of the changes at the level of individual spatial units (Figure 2.1). 
In this section we first look at the theoretical and empirical basis of the decision 
models. This is followed by a discussion of the top-down versus bottom-up guid-
ance in determining the regional quantities of allocated land change.

An assortment of conversion rules have been applied within cellular models. 
However, the underlying assumptions can be categorized in three different groups 
based on the underlying theoretical basis of the models (Schrojenstein Lantman et 
al., 2011): (1) a continuation of historical trends and patterns, (2) allocation based 
on suitability of the land, and (3) allocation based on neighborhood interactions.

Continuation of historical trends and patterns

The premise behind the use of historical trends to project future trends is 
that future land use is assumed to follow patterns of change corresponding to 
recent or historical changes. The use of this assumption may vary from simple 
application of transition probabilities from observed historic changes to the use 
of observed land changes over a past period to empirically estimate relationships 
between land change and location characteristics. This latter case is similar to 
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the application of machine learning methods outlined in the previous section 
and is elaborated below in the discussion of land suitability. As an example, this 
may mean that if agricultural land use was found close to cities in the past, it 
is assumed that future predictions of agricultural land will be allocated close to 
cities. Implicitly, this assumes stationarity in the underlying decision making of 
the actors of land change. Often times this assumption is appropriate, but a bet-
ter understanding of the specific model elements for which and conditions under 
which stationarity is a reasonable assumption would help with structural evalua-
tion of models, a topic we revisit in Chapter 3.

The most well-known approach to constructing models based on continua-
tion of historical trends is the use of Markov chains. In its basic application to 
land change, spatial data are used to calculate a transition matrix over an historic 
time period and then used to derive transition probabilities for the different types 
of conversions. These probabilities are used to calculate land areas of different 
land types in the future in a nonspatial manner.  Burnham (1973) was one of the 
first to propose using Markov chain analyses for modeling land use change, but 
they were later applied by others (Muller and Middleton 1994; Fearnside; Turner 
1987). Because of its simplicity, Markovian analysis was very popular during the 
early phase of development of land change models. However, the approach has a 
number of limitations. The primary limitations of Markov transition probability-

Figure 2.1 Different modeling approaches: Spatial allocation is constrained by a top-down 
demand or fully determined by local conversion rules.

Local conversion rules

Top-down
constraint on
regional land

use area
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based models for land use and land cover change analyses are (1) the assumption 
of stationarity in the transition matrix, that is, that it is constant in both time and 
space; (2) the assumption of spatial independence of transitions; and (3) the dif-
ficulty of ascribing causality within the model, that is, that transition probabilities 
are often derived empirically from multitemporal maps with no description of the 
process (Baker, 1989; Brown et al., 2000). 

Several authors have tried to overcome some of these limitations by merging 
the Markovian concepts with other simulation rules and concepts;  (Goigel and 
Turner, 1988; Guan et al., 2011. These hybrid models often use Markovian mod-
els to determine future quantities of change while the spatial patterns are simu-
lated by another type of cellular model. Though many models have developed 
approaches other than Markov chains to describe future changes, the assumption 
of stationarity is common in other model types. Many statistical and econometric 
models of relations between land use and location factors assume that such rela-
tions remain valid for the period of simulation.

Suitability of land 

Many cellular models use, in one way or another, an assessment of the 
suitability of the spatial units for alternative land uses as a determinant of the 
conversion rules. The land suitability in cellular models is underpinned by the 
theoretical work of von Thünen (1966) and Alonso (1964), which explained land 
use allocation patterns based on the spatial variations in land rent for different 
land uses. Following on the premise that land users aim to maximize profit, each 
parcel is converted to the use with the highest land rent at that location. While 
land suitability is often represented only in a relative terms, these suitability 
models provide a basis for understanding where different land uses or covers are 
most likely to be found. Whether or not land rents are calculated in absolute or 
relative terms often depends on data availability, and relative land rents are com-
monly used for models of land cover, where there may not be a good theoretical 
link between economic rent and cover type. In the original specification of the 
von Thünen model, land rent differs by location and land use due to differences 
in transportation cost and distance to the market. Elaborations of these premises 
accounted for differences in soil quality and infrastructure (Alonso, 1964), while 
Walker and others (Walker, 2004;Walker and Solecki, 2004) extended the under-
lying bid-rent model to account for development and agency.

The suitability of the land is determined in different ways. In some models 
land suitability is directly derived from the physical suitability for alternative uses 
based on agroecological zoning assessments; in other instances this is represented 
by the potential crop yield that may be obtained (Schaldach et al., 2011). Other 
approaches also include infrastructural and socioeconomic location characteris-
tics in the determination of the suitability for a particular use. The importance of 
different location factors as determinant of the suitability can be based on expert 
knowledge captured in multicriteria evaluation procedures (Schaldach et al., 
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2011), a statistical or machine learning approach (as described above), or econo-
metric estimation based on current land use patterns, described below in the sec-
tion on economic approaches (Chomitz and Gray, 1996; Nelson and Geoghegan, 
2002; Verburg et al., 2004a). Multi-criteria evaluation methods do not make strict 
use of the rent-based framework of von Thünen, but provide a means of evaluat-
ing how changes in policy goals or preferences affect desired land allocations 
in a planning context (Eastman et al. 1995; Klosterman 1999). It is important to 
note that econometrically derived suitability maps include factors related to both 
physical suitability and the accessibility of locations and population pressure.

The implementation of suitability maps and their role in allocating land 
change differs between models. Differences mainly depend on the number of 
land use and land cover types addressed and the level of competition assumed 
among the categories. In its simplest form land change between two classes is 
simulated (e.g., urban vs. nonurban or forested vs. deforested area). Land changes 
in such binary cases are simply calculated by applying a cutoff to the suitability 
surface assigning the land use to the highest part of the suitability surface. The 
cutoff value can be determined such that the regional-level quantity of each land 
use type that needs to be allocated is matched (Pontius et al., 2001). In case of 
multiple land cover or land use types these may be allocated hierarchically based 
on their presumed competitive strengths. Often urban land uses are allocated first, 
after which agricultural land uses are allocated according to the suitabilities of the 
locations not yet occupied by urban land use (Letourneau et al., 2012; van Delden 
et al., 2007). (Semi)natural land uses often occupy the remaining locations. 

In other models a more dynamic simulation of the competition between land 
uses or covers is implemented. This is done, for example, by accounting for the 
relative differences in suitability for different land uses and the overall demand 
for those land uses at the regional level or through the dynamic calculation of a 
shadow price for land (Verburg and Overmars, 2009).

Neighborhood interactions

Neighborhood interactions in cellular models are based on the presumption 
that the possibility of transition from one use of land to another is dependent on 
the land use of the locations in the neighborhood. The theoretical underpinning 
for neighborhood effects was provided by Fujita et al. (1999) and Krugman 
(1991, 1999). Arthur (1994) used this concept to explain path dependence in the 
development of cities. In agricultural land use models a rationale for neighbor-
hood interactions is provided by the process of imitation of crop choice and 
agricultural management between neighboring farmers or within their social net-
work. Empirical evidence, however, has shown that such relations are not always 
observed as clearly as theory would suggest (Schmit and Rounsevell, 2006). 

The best-known implementation of neighborhood interactions in land change 
models is in the form of cellular automata (CA). Made famous by Gardner (1970), 
John Conway’s game of life is the best-known example of a cellular automaton 
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to date. Hägerstrand (1967) and Tobler (1970) first introduced cellular automata 
in geography, but they were further developed by Couclelis (1985), Batty and 
Xie (1994), and White et al. (1997). The basic principle of CA is that land use 
change can be explained by the current state of a cell and changes in those of its 
neighbors. CA comprises four elements: (1) cell space, (2) cell states, (3) time 
steps, and (4) transition rules (White and Engelen, 2000). Transition rules specify 
what land changes will (be likely to) happen based on the nearby land cover types 
and can be specified based on expert opinion or derived from different types of 
statistical analysis to inform the specification of the neighborhood rules (Verburg 
et al., 2004b). However, often expert-based rules for neighborhood interaction are 
calibrated based on observed transitions to ensure that the algorithm reproduces 
the observed land cover or -use patterns. 

Neighborhood interactions can also be captured in land change models by 
including them as part of the determinants of the local suitability, for example, 
by including a variable in the suitability model that represents the number of 
occurrences of same land use type in the neighborhood. This may be achieved by 
including an autoregressive term in the econometric model (Lin et al., 2010) or 
a neighborhood variable in the statistical and machine learning models described 
in the section above. Neighborhoods can vary between simple neighborhoods of 
surrounding cells to more complex neighborhoods based on network analysis or 
predefined regions.

An important consequence of including neighborhood interactions is the 
emergence of complex spatial patterns from relatively straightforward decision 
rules as result of the path dependence of the simulation. This allows representa-
tion of a number of typical characteristics of land change, such as the emergence 
of cities (Arthur, 1994). Given their ability to represent characteristics of complex 
system, CA models are sometimes described as a type of agent-based model. The 
key difference is that, for cellular models, spatial entities are the basic units of 
simulation and the topology (or connection) between those units remains fixed, 
whereas agent-based models (described below) represent decision making units 
that have a flexible and dynamic relationship with land units.  The fixed structure 
of the cellular models is least limiting in systems where the land characteristics 
are reasonable indicators of the actor characteristics (e.g., farmers on agricultural 
land are different from residents of urban land) and where movement of actors 
of different types among locations is not a significant aspect of system dynamics.

Top-down or bottom-up determination of aggregate land change

Amounts of land use and land cover change are determined in a top-down 
fashion when observations or projections of the aggregate rate of change are 
available for the region as a whole. These land use–change estimates are used 
as to bound an allocation procedure to identify the locations of land use or 
land cover changes. Models using a top-down structure are constrained cellular 
automata models such as Environment Explorer (de Nijs et al., 2004; White and 
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Engelen, 2000) and models like CLUE-s (Verburg et al., 2002) and the Land 
Transformation Model (Pijanowski et al., 2002). 

Bottom-up procedures typically begin calculations at the level of the indi-
vidual land units.  Examples of such models using a bottom-up structure are pure 
cellular automata models that calculate transitions purely based on the state of 
the neighboring cells. Also the well-known SLEUTH model, in its original form, 
uses a bottom-up approach (Clarke and Gaydos, 1998). Both the top-down and 
the bottom-up approaches have comparative advantages. Whereas the top-down 
approach explicitly incorporates drivers at a higher aggregation level, in addition 
to local drivers that determine spatial allocation patterns, the bottom-up approach 
gives much more weight to local drivers as determinants of aggregate changes 
at higher levels. While some models are exclusively top down or bottom up 
in nature, some combine these approaches in a hybrid. Verburg and Overmars 
(2009), for example, present a hybrid approach in which the dynamics of urban 
and agricultural land are constrained in a top-down manner, by the trade and 
regional demand, while the dynamics between (semi)natural land use types is 
determined solely by the local dynamics originating from the site-specific condi-
tions and land use history. This hybrid demonstration illustrated that the appro-
priate choice of a top-down or bottom-up approach depends on the dominant 
processes that influence the dynamics of a specific land use or land cover type.

Technical, Research, and Data Challenges

Cellular approaches have been extremely successful if measured in terms of 
the number of applications. A wide range of cellular models have been developed 
over the past two decades, mostly based on variations of the implementation 
of the concepts described above. A number of the earlier cellular models, for 
example, SLEUTH (Clarke and Gaydos, 1998), GEOMOD (Pontius et al., 2001), 
and CLUE-s (Verburg et al., 2002), have been very widely applied across case 
studies (see Box 2.2). Another indication of success has been the application of 
this modeling approach in decision support. These models have been used not 
only in local stakeholder dialogues on land use planning (Van Berkel and Ver-
burg, 2012) and regional assessments (Claggett et al., 2004), but in national to 
global scale decision-support (Uthes et al., 2010; van Delden et al., 2011; Verburg 
et al., 2008). 

The success of cellular models can be attributed to their relative simplicity in 
structure and application. The cellular data format matches very well the format 
of land cover data derived from remote sensing and allows a straightforward 
processing. Also, the underlying concepts of trend projection, location suitability, 
and neighborhood interactions are intuitive and can be parameterized by empiri-
cal analysis of time-series data or more advanced econometric and calibration 
methods. The structure of models become much more complex when parcels or 
other spatial units are used instead of rectangular pixels (Lazrak et al., 2010).
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Cellular models are widely available, even included as part of some com-
mercial GIS packages. Because of their availability and simplicity, these models 
are sometimes selected for these reasons and not because the underlying concept 
fits well with the case-study specifics. Operation of cellular models is tied to 
the spatial data layers on which they rely, not only  land cover data but also the 
potential location factors that determine the likelihood of finding a particular land 
cover type at a specific location. Often, model applications are based on a rich set 
of physical factors describing terrain, soil, and climate conditions. Spatial varia-
tions in socioeconomic conditions, including land tenure, are generally identified 
as important considerations for land change, but they are sometimes ignored in 
model applications due to the limited availability of spatially explicit socioeco-
nomic data (Verburg et al., 2011). However, they are included in a number of 
model applications through inclusion of, for example, census data, polygons 
representing parks or other public land, and zoning maps. 

In spite of their many advantages, cellular models also have clear drawbacks. 
These are mainly related to the lack of clear theoretical link between the conver-
sion rules and the actual agents of decision making. By defining the transition 
rules for spatial entities, like pixels, the validity of the conversion rules is largely 
restricted to the specific spatial extent and resolution for which the rules are 
defined or empirically estimated. Though heterogeneity of the land surface is rep-
resented through variables measuring land suitability and access, heterogeneity of 
the actors, for example residential homebuyers with different preferences cannot 
be represented directly. Furthermore, interactions in cellular models are almost 
exclusively represented by spatial neighborhoods, mostly ignoring interactions 
through social and other networks. Finally, scale dependency in spatial models 
(Veldkamp et al., 2001; Walsh et al., 1999) is an issue that makes it difficult to 
transfer model parameterizations across case studies and scales.

Many cellular models provide reasonable projections of land cover changes 
over relatively short time frames (e.g., up to 20 years). However, in cellular 
models run over large extents and used to inform climate change assessments, 
the simulations are extended to periods of up to one century and over such longer 
time scales, feedbacks in socioecological systems become increasingly important. 
Scarcity of land resources, perception of environmental impact, the functioning 
of the global economic system, as well as policy responses may lead to a modi-
fication of conversion rules as a result of preceding land changes and changing 
decision-making strategies by agents (Meyfroidt, 2013). Cellular models that 
include neighborhood interactions in the transition rules include feedbacks more 
explicitly as the neighborhood state is updated during each simulation step. How-
ever, the model rules generally use the same algorithm (with different inputs) 
over space and time, limiting the representation of endogenous adjustments to 
feedbacks, leading to greater potential for significant divergence between projec-
tions and actual outcomes over longer time frames. In principle, cellular models 
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BOX 2.2
Modeling Land Change Under Alternative Policy Scenarios In 

Europe

The CLUE (Conversion of Land Use and its Effects) model is one of the most 
frequently used land use models worldwide. Although the original model was pub-
lished in 1996 it has been frequently updated and improved to take stock of the 
recent advances in land science and developments in environmental modeling. 
Different versions of the CLUE model, especially Dyna-CLUE and CLUE-scanner, 
have been frequently used in European applications to support policy discussion 
and ex ante evaluations (UNEP, 2007; Verburg et al., 2008). Currently an opera-
tional version of the model is used by the European Commission Joint Research 
Centre for routine assessments. The CLUE model is a cellular model that uses a 
top-down allocation of land use demands calculated by nonspatial models. Its al-
location is based on suitability maps that are estimated using current-day relations 
between land use and location factors. Neighborhood interactions are included 
for urban land uses in a manner similar to cellular automata models to represent 
agglomeration effects.

For the European application, CLUE operates on a 1 km2 spatial resolution 
and yearly time steps. This resolution makes it possible to account for specific 
spatial policies and location-specific driving factors. In the case of adaptation and 
mitigation measures, such regional specificity is important to capture the feed-
backs of local conditions and governance to macroscale patterns of land change. 
The spatial detail is needed to make sufficiently accurate assessments of land 
change effects on emissions and other ecosystem services (Kienast et al., 2009). 
This is especially true for the determination of land change effects on emissions 
of carbon and other greenhouse gases, where the location of land change is of 
prime importance. Tailor-made and scale-specific impact assessment modules, 
documented in peer-reviewed literature, are available for assessment of impacts 
of land change on carbon, hydrology, ecosystem services, and biodiversity.

are capable of implementing feedbacks into the rules and model structure, but 
examples of their implementation are rare (Claessens et al., 2009).

SECTOR-BASED AND SPATIALLY DISAGGREGATED ECONOMIC

Theoretical and Empirical Basis

Economic models of land change begin with a structural model of underly-
ing microeconomic behavior (e.g., utility or profit maximization) that determines 
demand and supply relationships and generates aggregate outcomes of prices and 
land use patterns. Focused on the economic behavior of human actors, economic 
models tend to focus on land use, as opposed to land cover, though they can be 
included within integrated models that also produce land cover outputs.  Fun-
damental to economic models is the price mechanism, which both determines 
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individual choices and is determined by the cumulative choices of all indi-
viduals within a given market area. The concept of equilibrium is used to ensure 
that individual choices and aggregate outcomes are consistent with each other. 
Although equilibrium may be defined in various ways, the condition of market 
clearing, meaning that prices adjust such that markets clear (i.e., excess demand 
and excess supply are zero in all factor and output markets), is standard in these 
models. Equilibrium may be static, in which case agents are myopic and prices 
and land use patterns are unchanging, or dynamic, in which case agents are typi-
cally forward looking and prices and land uses are changing over time subject to 
a constant market-clearing condition. For example, the basic economic land use 
model posits a landowner’s land use decision as a profit-maximizing decision in 
which the landowner chooses the productive use of the land that maximizes the 
landowner’s net returns. Whereas a model with static expectations considers only 
net returns in the current period, a model with dynamic expectations accounts 
for the forward-looking expectations of landowners over future costs and returns, 
which influences the land use decision today. Economists typically use the word 
dynamics to mean forward-looking behavior while others use it to mean changes 
in state variables over time without specific regard to expectations (Irwin and 
Wrenn, 2013). Both types of dynamics are important in the context of land use 
modeling. Forward-looking behavior is a critical element of many economic land 
use models—for example, farmers that make current planting decisions based on 
anticipated future prices of agricultural commodities. Accounting for changes in 
land use over time is an equally important modeling goal, particularly for policy 
scenarios.

Structural economic models are specified based on a number of maintained 
assumptions (e.g., of agents’ behaviors, market structure, and functional form) 
and the parameter values are often estimated using econometric methods. In 
other cases parameter values may be guided by theory, taken from previous stud-
ies reported in the literature, or a range of values may be explored to examine 
the sensitivity of the model to specific parameter assumptions. A fully specified 
structural model can be simulated to generate predictions of prices and land 
use outcomes under baseline and alternative conditions. The advantage of a 
structural approach is that, by modeling the underlying processes explicitly, it 
is possible to account for aggregate-level feedbacks from market interactions 
(e.g., a change in the price of a substitute good) or nonmarket feedbacks (e.g., 
congestion externalities) that influence the equilibrium. A structural modeling 
approach is necessary when the goal is to evaluate the impacts of a nonmarginal 
change, including policy changes, on land use outcomes or to generate projec-
tions of future land use changes under alternative scenarios. This is particularly 
important when modeling complex processes like land use, in which nonmarginal 
feedbacks can arise from interactions within and between the socioeconomic and 
biophysical systems. Because the structural models explicitly describe economic 
processes and interactions, their reliance on the stationarity assumption is less 
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limiting than for the statistical, machine learning, and cellular models. Structural 
models may represent only one or several interdependent sectors of the economy 
(partial equilibrium) or may include all input and output markets of the economy 
(general equilibrium). Because of their added complexity, general equilibrium 
models are defined at more aggregate spatial units (e.g., at the scale of a county, 
region, or nation), whereas partial equilibrium models can be defined either at 
the scale that is commensurate with the individual agent or at more aggregate 
scales. Although structural models rely on a number of maintained assumptions 
related to the equilibrium, the agent behavior, and market structure, the specifica-
tion of these structural characteristics improve the fidelity of these model over 
statistical, machine learning, and cellular approaches to the economic processes 
leading to land use change. Their data requirements, however, are quite different. 
Remotely sensed land cover data is less useful than data on the determinants of 
the supply (e.g., land quality distribution) and demand (e.g., economic activity) 
for different land uses.

In other cases, the goal of the research is not to explicitly model the underly-
ing structural processes of demand and supply, but rather to identify a causal rela-
tionship between one or more explanatory variables and the dependent land use 
variable. In such cases, a reduced-form econometric model is estimated instead. 
A reduced-form model can be derived by expressing the outcome variable of 
interest (e.g., land use, land change, or land value) as a function of explanatory 
variables that are hypothesized to influence profits, utility, or other primitives of 
the structural model. Continuing the example from above, the revenues and costs 
associated with a parcel’s land use are posited to be a function of parcel-specific 
variables, including the parcel’s physical land characteristics and its location rela-
tive to input and output markets. Because the focus of reduced-form modeling 
is on causal identification and estimating effects, a central empirical challenge 
is to address problems of endogeneity that arise when an explanatory variable is 
correlated with the error term. Such endogeneity may arise, for example, from 
a simultaneous relationship between the dependent and explanatory variables, 
omitted variables, or through a systematic, but unobserved, process that deter-
mines selection among the set of land parcels or locations that are observed. 
Addressing such identification challenges is the principal focus of reduced-form 
econometric modeling. However, because neither price formation nor any other 
market or nonmarket feedbacks are explicitly modeled, these models cannot be 
used for analysis of nonmarginal changes that would cause the system to equili-
brate. For this reason, use of reduced-form econometric models for projection 
or prediction, like the statistical models discussed above, generally relies on the 
assumption of temporal stationarity. Because they are derived from an underlying 
economic model of behavior, reduced-form econometric models are better suited 
for modeling land use rather than land cover outcomes. However, when land use 
data are not available, remotely sensed land cover data can be used as a reason-
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able proxy when the relationship between land use and land cover is relatively 
direct, for example, deforestation resulting from agricultural expansion (Nelson 
and Hellerstein 1997; Pfaff et al. 2007). This is no longer the case when land 
cover is not a direct outcome of the underlying land use decision. For example, 
low density exurban development is a residential land use that is comprised 
mostly of vegetative (non-urban) land cover. While econometric techniques may 
still be used for identification, the model results reveal causality related to land 
cover not land use and would be misleading if interpreted in terms of land use.  
In the absence of a clear identification strategy, reduced-form models estimated 
with data on land cover provide only a pattern-based correlation analysis similar 
to the statistical models discussed above.

Economists have used both structural and reduced-form models defined at 
varying spatial scales and geographic extents to model land change processes. At 
the most aggregate scale, sector-based models represent global input and output 
markets that are distinguished by just a few homogeneous regions. At the most 
disaggregate scale, spatial models of individual land use decisions are estimated 
using spatial data on land parcels with a geographic extent of a single county. In 
what follows, we first discuss sector-based models, which vary in their spatial 
scale and extent, but are aggregate structural economic models of one or more 
sectors of the economy. We then consider spatially disaggregate models, which 
use data at the field, parcel, or neighborhood levels to model individual land use 
or location decisions. These models may be either structural or reduced form, 
depending on the research question and available data, and are defined by one or 
more equilibrium assumptions. These models can incorporate site-specific char-
acteristics, such as soil quality; location attributes, such as distance to the near-
est town and neighborhood quality; and individual agent characteristics. Space 
may enter as a source of exogenous heterogeneity or as an endogenous factor 
that is jointly determined with spatial equilibrium prices and land use outcomes. 
Examples of the latter include congestion externalities, agglomeration effects, 
and income sorting. Here we provide only a brief overview of these various 
modeling approaches. More detailed reviews of sector-based models are available 
from André et al. (2010), Hertel et al. (2009), Palatnik and Roson (2009), van der 
Werf and Peterson (2009), and van Tongeren et al. (2001). For more discussion 
of spatially disaggregate models see Brady and Irwin (2011), Irwin et al. (2009), 
and the chapters by Irwin and Wrenn (2013), Klaiber and Kuminoff (2013), and 
Plantinga and Lewis (2013) in The Oxford Handbook of Land Economics (Duke 
and Wu, 2013). 

Sector-Based Models

Sector-based models are structural models of one or more sectors of the 
economy that model the flows of inputs (labor, capital) and outputs (commodi-
ties) across regions or countries in which land is a fixed factor of production. 
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Models are distinguished by the scope of the economic system that is represented: 
general equilibrium models represent the global economy and the interactions and 
feedbacks between different sectors (markets), partial equilibrium (PE) models 
consider detailed description of a specific sector or sectors (e.g., agriculture, 
forestry production, and/or fuel production system) as a closed system without 
linkages with the rest of the economy. PE models determine prices, production, 
and the proportions (or shares) of land within a geographical region (usually a 
country or region) used as inputs in the agricultural, forestry, and/or fuel sectors. 
These models assume that economic conditions in the rest of the world remain 
unchanged.

Computable general equilibrium (CGE) models operationalize the general 
equilibrium structure by using computational methods to solve for the supply, 
demand, and price levels that support equilibrium across interconnected markets 
of an open economy (Wing, 2004). CGE models are able to capture macroeco-
nomic processes and international feedback effects through changes in relative 
prices of inputs and outputs. While broad in geographic and sectorial scope, CGE 
models have limited spatial resolution and usually partition the world into a few 
large homogeneous regions. Each region has a regional representative household 
that allocates resources domestically and production sectors that produce goods 
and services using consumer-owned endowments as primary inputs. Each region 
interacts with other regions through trade. Consumers maximize utility, while 
producers maximize profits in a perfectly competitive market setting, leading to 
endogenously determined prices and quantities of goods and factors of production 
(Khanna and Crago, 2012). This representation means that heterogeneity among 
consumers and producers within a sector, for example in terms of risk tolerance 
or access to capital, are not accounted for in these models. 

PE and CGE models explain the amount of land allocated to different uses by 
demand-supply structures of the land-intensive sectors under certain exogenously 
defined constraints. In addition to data tables of input and output of all included 
commodities, the most important inputs are elasticities, which describe, for 
example, the sensitivity of consumer demand to price changes and of producers’ 
output decisions to input price changes. 

Examples 

Examples of PE models, which consider only the agricultural sector, are 
the ASMGHG model (McCarl and Schneider, 2001; Schneider, 2000), IMPACT 
(Rosegrant et al., 2002), and the model of De Cara et al. (2005). An example of 
a PE model describing the forestry sector is the Global Timber Market Model 
(Sohngen et al., 1999). The following models include both the agricultural and 
forestry sectors: AgLU (Sands and Edmonds, 2005; Sands and Leimbach, 2003), 
FASOM (Adams et al., 2005), and GLOBIOM (Havlik et al., 2008) (see Box 2.3). 

Examples of CGE models analyzing the effect of land cover and land use 
change include FARM (Wong and Alavalapati, 2003), the Global Trade Analysis 
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Project (GTAP) model (Hertel et al., 2009), the Emissions Prediction and Policy 
Analysis (EPPA) model (Babiker et al., 2008), and the IMAGE (Alcamo et al., 
1998). These models are similar in that they are global in scope and are multire-
gion, multisector, and multifactor models.

Technical research and data challenges 

PE models are able to provide initial assessment of the costs and potentials 
of emission reductions for a local or regional policy option. A key limitation of 
PE models is that demand for a land use sector is exogenously given. If there is a 
shock to the system, equilibrium prices change, but it does not change incomes of 
consumers and producers and affects demand curves endogenously. Nevertheless, 
the higher level of detail that comes with a lower level of regional aggregation 
comes as an advantage. As the scale of the policy and the region under study 
becomes larger, CGE models that focus on these effects may have an advantage. 
However, the first generation of CGE models was overly simplistic and did not 
capture many important characteristics of land use economics. Over the past one 
and a half decades, different attempts have been made to extend CGE models to 
allow for detailed analyses of the land use sector. Each modeling approach has 
its own advantages and drawbacks in terms of data requirements, computational 
practices, and accuracy of representation.

There can be gains from coupling the CGE model with models of other 
disciplines or narrower or broader scope, for example when studying linkages 

BOX 2.3
The Agriculture and Land Use (AgLU) Sector-Based Economic 

Model

The Agriculture and Land Use (AgLU) model simulates land use change 
globally and carbon emissions resulting from land use policies. The model 
was developed as an extension of the Edmonds-Reilly-Barns (ERB) model 
of energy consumption and carbon emissions (Edmonds et al.,1996) which 
utilizes oil, gas, coal, and commercial biomass global markets (Sands and 
Kim, 2009).

The three primary drivers of land use change are population growth, 
income growth, and autonomous increases in future crop yields. Currently 
efforts are under way to develop the Integrated Earth System Model (iESM) 
by merging the GCAM model with the National Center for Atmospheric Re-
search’s Community Earth System Model to advance the science of human 
and Earth system interactions, including studies of land use, future bioenergy 
systems, hydrology, climate adaptation, and mitigation. One trade-off, how-
ever, is computational intensity for the near-limitless options in human sys-
tems and decision making. Accordingly, iESM is expected to advance a new 
class of human-Earth systems understanding and analytic capabilities while 
working in tandem with other established modeling capabilities. 
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between climate policy and land use. A few efforts have coupled equilibrium 
models with detailed biophysical models. For example, the PE model IMPACT 
allows for the combined analysis of water and food supply and demand. Based 
on a loose coupling with global hydrologic models, climate change impacts on 
water and food can be analyzed using IMPACT (Zhu et al., 2008). IMAGE is a 
biophysically based global CGE model of agriculture and land use (Alcamo et 
al., 1998) that provides an interlinked system of atmosphere, economy, land, and 
ocean. IMAGE is the first model to have considered the feedback between land 
use change and climate change in both directions. Like IMAGE, MIT’s EPPA 
model is a forward-looking (Babiker et al., 2008) CGE model that is part of 
MIT’s integrated assessment model, the Integrated Global System Model, which 
links a set of coupled human activity and Earth system models (Sokolov et al., 
2005). However, the EPPA model focuses on fossil-fuel emissions from energy 
production and includes agriculture as an aggregate sector only, with land as 
an input that is imperfectly substitutable with the energy materials composite. 
Another example of a coupled modeling system is KLUM-GTAP (Ronneberger 
et al., 2009), where the static global CGE model GTAP is coupled to the land 
use model KLUM (Ronneberger et al., 2005). The biophysical aspects of land are 
included indirectly, as area-specific yields differ for each unit of land.

Spatially Disaggregated Models

Spatially disaggregated economic models are based on the assumption of an 
underlying behavior of profits or utility maximization or cost minimization, all 
of which are continuous variables. However, land use is typically measured as 
a categorical variable at the individual parcel or decision-maker level, requiring 
a discrete choice framework to model an individual’s optimal land use decision 
(Bockstael, 1996). Dynamic discrete choice models that account for both the 
evolution of the model’s state variables and how agents form expectations over 
future values of these variables are computationally difficult, and estimation with 
more than a few state variables becomes intractable. For this reason, most spa-
tially disaggregated models model land use change over time but assume static 
expectations (Plantinga and Lewis, 2013) (see Box 2.4). 

Structural models are distinguished from reduced-form models by explicitly 
representing the underlying microeconomic behavioral process (e.g., profit maxi-
mization or cost minimization) and the mechanism by which these individual 
decisions aggregate up to market-level outcomes. Although the basic concept 
of equilibrium is used to solve this aggregation problem, models differ in how 
equilibrium is defined in the relevant input and output markets. Models may 
treat prices as exogenous if the market extent is large relative to the geographic 
extent of the study. For example, agricultural and forest commodity prices that 
are determined by large regional markets and global market competition are 
exogenous to individual farm or forest operators (e.g., Antle et al., 2001). On the 
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other hand, if the modeling goal is to simulate policies that may induce large-
scale land use shifts, then the price-feedback effects must be accounted for by 
specifying market-equilibrium conditions (e.g., Lubowski et al., 2006). While 
most models assume frictionless markets, equilibrium conditions may also reflect 
market frictions that would constrain the equilibrium, such as information costs, 
credit constraints, or moving costs (e.g., Bayer et al., 2009). If space is important, 
then prices will depend not only to the quantity of land in alternative uses but 
also on its spatial distribution. In turn, the spatial distribution of land use depends 
on price and its spatial variation. Equilibrium is determined by appealing to the 
concept of spatial equilibrium. In a model with homogeneous agents, such as the 
urban bid-rent model, spatial equilibrium is characterized by equal utility or prof-
its across space since any advantage or disadvantage of a location is capitalized 
into its price. On the other hand, models that account for heterogeneity in prefer-
ences or income, such as the equilibrium-locational models, characterize spatial 
equilibrium as a Nash equilibrium in which each individual makes an optimal 
decision given the location or land use decisions of all other agents (Kuminoff et 
al., 2010). In each case, price is the equilibrating mechanism that determines the 
quantity and pattern of land use and land change. 

Because data on revenues and costs associated with spatially disaggregated 
land use choices are often not available, spatially disaggregate models are often 
reduced form. In many cases, the model may not be fully reduced to only 
exogenous variables; that is, the model may include one or more endogenous 
explanatory variables that are determined by the same equilibrium process as 
the dependent variable. For example, in the case of open-space spillovers that 
influence the amenity value of a location, the spatial distribution of open space 
is endogenous to the land market and thus the spatial pattern of residential and 
open space are jointly determined. In a reduced-form model, in which these 
structural relationships are not explicitly represented, problems of endogeneity, 
for example, that arise from simultaneity or unobserved correlation, violate the 
statistical assumptions of the model. A variety of econometric methods have been 
developed to address these identification problems. If properly dealt with, the 
estimated reduced-form model yields consistent and unbiased estimates of the net 
effects of the explanatory variables on the modeled land use outcome. Because 
of their focus on causal identification, reduced-form models are often preferred 
when the research goal is to test one or more specific hypotheses by identifying 
key parameters. For example, this is the case with reduced-form models used in 
quasiexperimental designs in which the goal is often to evaluate the effect of a 
specific policy or policy change on land use outcomes (Towe and Lynch, 2013). 
Reduced-form models can also be used to simulate land use change in response 
to a change in a policy or other variable of the model. However, because these 
models are limited by the assumption of a constant equilibrium, they can only be 
used to simulate the effect of marginal changes on land change outcomes.  

In order to predict the effects of a policy or other change on two-dimensional 
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BOX 2.4
Spatially Disaggregated Economic Model

Lewis et al. (2011) developed a spatially disaggregated integrated as-
sessment model to examine the impacts of incentive-based policies on land 
change and biodiversity conservation. Similar to Nelson et al. (2008), the land 
change model starts with an econometric model of land use decision making 
that uses a random sample of plot-level, repeat observations from the National 
Resources Inventory taken at multiple points in time (1982, 1987, 1992, 1997). 
The authors take advantage of the panel structure of their data by estimating a 
random-parameters logit model that controls for unobserved spatial heteroge-
neity and temporal correlations, which is important for obtaining consistent and 
unbiased estimates of the land change model parameters. Predicted net returns 
for each plot are generated using county-level average net revenue estimates 
from Lubowski et al. (2006) and plot-level data on land quality and other char-
acteristics. The inclusion of economic returns in the model is significant because 
it provides the mechanism for simulating landscape outcomes under alternative 
policies on payment for ecosystem services. Using predicted net revenues for 
each land use for each parcel, the authors calculate the landowner’s minimum 
willingness-to-accept bid, which is the necessary payment that is needed to 
compensate the landowner for taking land out of production and putting it into 
conservation. 

Because biodiversity is dependent on spatially disaggregated patterns of 
land use, a random sample of plot-level data is insufficient for predicting the 
policy impacts on biodiversity outcomes. The authors solve this problem by 
applying the parameter estimates from the plot-level econometric model to a 
complete set of cropland and pasture parcels that are contained within the 2.93 

land use patterns using a spatial disaggregated economic model, some kind of a 
spatial simulation approach needs to be used in addition to the statistical estima-
tion.  A challenge arises in applying the results of discrete-choice models, which 
are probabilistic in nature, to spatial simulation models. Although some research-
ers form deterministic rules from these probabilistic transition estimates, this 
ignores the stochastic nature of the model results. An alternative is to generate 
a large number of different landscapes conforming to the underlying probabilis-
tic rules (Plantinga and Lewis, 2013). The challenge is then to summarize this 
information in a way that conveys the distribution of potential landscape pattern 
outcomes and is useful for policy evaluation. Any simulation of alternative policy 
scenarios or future conditions based on an econometric model necessarily relies 
on a stationarity assumption, that the conditions under which the simulations are 
made are identical to those under which model was fit. The less structural detail 
in the model, i.e., the less the processes are endogenous, the stronger is the sta-
tionarity assumption.
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million hectares of their study region. Willingness-to-accept bids and transition 
probabilities for each parcel starting in cropland or pasture and ending in one 
of four land uses (cropland, pasture, forest, or urban) are calculated. A range 
of conservation payment policies are considered that differ in terms of the total 
budget and the subset of landowners who are considered eligible. Simulations 
of the predicted landscape that would exist 50 years after the policy is enacted 
are generated 500 times for each policy. The result is a prediction of the spatial 
distribution of land in conservation and agricultural production for each policy. 

The authors provide a normative assessment of the policies by computing 
a biodiversity score for each of the simulated landscapes. This integration of 
positive land change and ecosystem models with a normative analysis of the 
economic and ecological trade-offs is something that relatively few studies have 
attempted, but yet is critical for policy guidance (Polasky and Segerson, 2009). 
The authors evaluate the efficiency of the predicted outcomes under each 
policy by comparing the biodiversity score of each policy at each of the budget 
levels to the maximum biodiversity score that is theoretically possible for each 
budget level. They find that simple incentive-based policies that do not account 
for the spatial pattern of conserved lands are highly inefficient. This inefficiency 
arises from the benefits of conserving large spatially contiguous areas and the 
inability of the regulator to spatially coordinate payments to landowners since 
the willingness-to-accept bids are private information and therefore the regulator 
cannot anticipate ex ante the resulting spatial landscape of conservation under 
a given policy and budget. The authors conclude that an auction mechanism to 
elicit landowners’ willingness-to-accept bids and some means to provide incen-
tives for enrollment of spatially contiguous lands are likely necessary to achieve 
real efficiency gains.

Examples

The early spatially disaggregated models were reduced-form binary or multi-
nomial discrete-choice models of discrete land use or land cover categories (e.g., 
Bockstael, 1996; Chomitz and Gray, 1995; Nelson and Hellerstein, 1997). These 
were very similar in form to the statistical approaches described above. Subse-
quent innovations in modeling came with the application of duration models to 
account for time (and nonstationarity) and time-varying variables in the land 
conversion process (Irwin and Bockstael, 2002; Newburn and Berck, 2011; Towe 
et al., 2008) and with price data that provide a means to impute net returns at an 
individual level (Antle et al., 2001; Lubowski et al., 2006; Wu et al., 2004). Most 
recently researchers have developed econometric models that incorporate both 
the discrete and the continuous change aspects of land use (Lewis, 2010; Lewis et 
al., 2009; Wrenn and Irwin, 2012) (see Box 2.4). This is an important innovation 
given that both outcomes—the discrete land use change and the intensity with 
which the land is used—have important impacts on many issues directly related 
to land use and its spatial configuration including ecosystem fragmentation, loss 
of farmland, and urban decentralization.
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Landscape simulation models differ in their research goals. In some cases, 
the question centers on local spatial effects and how they influence the spatial 
structure of markets or land use. For example, Irwin and Bockstael (2002, 2004) 
used estimates from reduced-form duration models to simulate the influence of 
local spatial interactions from neighboring developments on residential develop-
ment patterns. Wu and Plantinga (2003) simulated a spatial equilibrium model 
based on the urban bid-rent model to examine the influence of public open space 
on the spatial structure of urban land rents and land use. Caruso et al. (2007) 
used a similar model to consider the influence of endogenous green amenities and 
congestion effects on the resulting urban land use pattern. Newburn and Berck 
(2011) developed a spatial simulation model based on the urban growth model of 
Capozza and Helsley (1989) to examine the influence of preference heterogene-
ity and differences in suburban versus exurban development costs on leapfrog 
development patterns. 

In other cases, parcel-level econometric models have been usefully inte-
grated with ecosystem models to examine the influence of land management poli-
cies on private landowners’ land use decisions that in turn affect climate change, 
species conservation, water quality, or other ecosystem services. For example, 
Nelson et al. (2008) used National Resources Inventory plot-level data for the 
United States over several time periods to estimate an econometric model of a 
landowner’s decision to allocate land to one of six uses (crops, pasture, forest, 
urban, range, and land enrolled in the Conservation Reserve Program). Decisions 
are posited to be a function of their current land use, land quality of the plot, spe-
cific landowner characteristics, and economic net returns for each land use, which 
are predicted at the plot level by interacting an estimate of average county-level 
net returns with a plot-level measure of land quality. The empirical model yields 
transition probabilities expressed as functions of net returns and the starting land 
use, which allows for the simulation of incentive-based policies by modifying net 
returns and using the model estimates to predict the effect on landowners’ land 
use choices. The estimates are used to generate predicted transition probabilities 
for land parcels located in a western U.S. region under several different conserva-
tion payment policies. Uncertainty is accounted for by running many simulations 
for each policy scenario and examining the distribution of land use patterns for 
each scenario. Predicted land use patterns are then used as inputs into models 
that predict the provision of carbon sequestration and biodiversity conservation. 
The results show that there are trade-offs between these two ecosystem services 
and that policies aimed at increasing the provision of carbon sequestration do not 
necessarily increase species conservation. 

A recent innovation in structural modeling is the application of equilibrium-
locational-choice models to simulate the effects of various land use policies on 
housing markets and land use allocations at a neighborhood scale. Using the 
observed outcomes of the household sorting process and house prices across 
neighborhoods, it is possible to estimate structural econometric models of house-
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hold location that are consistent with a spatial equilibrium. Because the model 
estimates reflect the underlying preference structure and how households respond 
to market feedbacks (e.g., a price change) and nonmarket feedbacks (e.g., open-
space patterns), the model can be used to predict household location choices 
under future scenarios in which nonmarginal changes may cause households to 
resort. Walsh (2007), for example, examines how an open-space policy affects 
household re-sorting by changing the spatial equilibrium distribution of private 
and public open space across neighborhoods within a metropolitan region. He 
finds the surprising result that a policy to provide additional public open space 
can result in less overall open space as demand for these locations increases and 
households substitute away from private open space. 

Technical research and data challenges 

The primary advantages of structural models of land change are twofold. 
First, they account for the fundamental role of prices (e.g., costs and revenues) 
in explaining individual land use decisions in ways that most machine learning 
and cellular models do not. This permits simulations of incentive-based eco-
nomic policies such as payments for ecosystem services. Recent econometric 
models of land change have incorporated spatially disaggregated predictions 
of net revenues and in so doing accomplish this important goal (e.g., Lewis et 
al., 2011; Lubowski et al., 2006; Nelson et al., 2008). Second, models in which 
price is endogenous are able to capture the feedback effects of predicted land use 
changes on prices and thus can be used to predict the outcomes of policies that 
induce nonmarginal changes and cause the system to reequilibrate. Equilibrium 
locational-choice models provide the best example of this approach to date (e.g., 
Klaiber and Phaneuf, 2010; Walsh, 2007). Combining these two approaches by 
developing an econometric structural model of land use at the parcel level, in 
which the parameters of the market equilibrium are jointly estimated, is a much 
more difficult task and one that has not been achieved. The model by Lubowski 
et al. (2006) provides an alternative approach that combines econometric-based 
predictions of policy-induced land use changes with a policy simulation model 
that uses demand elasticities from previous studies to account for the subsequent 
changes in the prices of agricultural and forest commodities. This analysis is 
carried out at a national level. Accounting for market feedbacks in a spatially 
disaggregated land use simulation model may not be necessary for some output 
markets (e.g., if commodity markets are global), but assumptions regarding spa-
tial equilibrium in more localized markets, including land and housing markets, 
are necessary to capture spatially disaggregated market and nonmarket feedbacks. 
Despite the modeling challenges, developing a spatially disaggregated LCM that 
accounts for such feedbacks is critical for developing spatially disaggregated, 
dynamic land change models and coupling land change and ecosystem models 
over longer periods of time. 

Although structural models are necessary for nonmarginal land change pre-
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diction and policy scenarios, they also face a number of challenges. All structural 
models require maintained assumptions about agent behavior, market structure, 
and functional form. In addition, econometric structural models require a number 
of identifying assumptions about the error processes. Spatial simulation models, 
on the other hand, require assumptions about parameter values. Many of these 
assumptions are difficult to test empirically and therefore additional data and 
analysis are needed to better justify these assumptions. In some cases, structural 
models are also limited in the spatial dimension. Equilibrium locational-choice 
models, for example, are limited to a neighborhood scale of analysis. In most 
cases this neighborhood scale may be sufficient, but smaller-scale analysis of 
feedbacks and land use change may be necessary for certain research questions, 
for example, questions related to land fragmentation and the impact of land use 
change on ecosystems. Other challenges include incorporation of dynamics, 
both in terms of accounting for agents’ expectations over the future evolution 
of equilibrium prices, as well as modeling the evolution of prices and land 
uses over time. So-called dynamic equilibrium models that represent changes in 
equilibrium prices, quantities, and other economic variables over time are well 
known in economics but are difficult to implement in a spatially explicit setting. 
Some progress has been made in urban economics (Desmet and Rosi-Hansberg, 
2010) and resource economics (Brock and Xepapadeas, 2010; Smith et al., 2009). 
More work is needed to develop spatial dynamic models of land change and to 
specify these models empirically to make them useful for policy simulations. 
Finally, structural models are limited by their data requirements, given that data 
on revenues and costs are often difficult to obtain and that it takes a long time to 
develop them. Satellites are unlikely to provide much of the required data. These 
models require a minimum of several years to gather data, implement the model, 
and generate policy simulations.

Like structural models, reduced-form models have a number of strengths and 
limitations. The primary strength of reduced-form models is their focus on causal 
identification. By making explicit assumptions regarding the data generating 
process, the variables that are observed and unobserved, and the structure of the 
error process, these models go beyond simple correlation analysis, as generally 
employed in the statistical modeling approach described above, to identification 
of causal effects. This is essential to testing hypotheses and developing predic-
tive models that can be used for policy. In addition, while assumptions are still 
necessary for identification and interpretation of the results, these models typi-
cally impose fewer assumptions on the data than do structural models. Finally, 
provided data are available, these models can be implemented in a reasonable 
time frame and, because the parameters reflect the causal relationships between 
the observed variables and equilibrium outcomes that are based on underlying 
microeconomic behavior, they can be usefully applied to policy scenarios. 

A primary limitation of reduced-form models is their lack of a structural 
representation of the underlying demand and supply processes that generate the 
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observed land use outcomes. Any application of reduced-form estimates to a 
simulation model implicitly assumes that the underlying equilibrium relation-
ships, including prices, remain unchanged (i.e., are stationary). This is a reason-
able assumption for marginal changes in the system, but not for scenarios of 
nonmarginal changes, such as the introduction of a new policy or a change in 
an existing policy that would induce large-scale shifts in land use allocations or 
prices. For this same reason, their usefulness for simulating landscape changes 
over longer periods of time is also limited.  

AGENT-BASED

Agent-based models (ABMs) represent, in computer code, systems that 
are composed of multiple heterogeneous and interacting actors (i.e., agents; 
Brown, 2006). These systems are often referred to as “multi-agent systems” 
(Wooldridge, 2002) and describe intelligent agents, their interactions, and their 
natural environment. The term “individual-based models” is commonly used in 
the ecology literature to describe models of this sort in applications to ecologi-
cal systems (DeAngelis and Gross, 1992). In the context of land change, agents 
can include land owners, households, farmers, development firms, collectives, 
migrants, management agencies, or policy-making bodies, that is, any actor that 
makes decisions or takes actions that affect land use or land-cover patterns and 
processes (Parker et al., 2003). Agents are discrete entities that are characterized 
by both their attributes and their behaviors. The attributes of agents can be con-
tinuous measures, like the amount of available capital, or discrete categories, like 
“has children” or “belongs to a cooperative.” Agents can interact with each other 
and with the environment in which they live to collect information or carry out 
actions that modify their context. Though not all agent-based models are spatially 
explicit, those used in land change research nearly always are, meaning that the 
agents and/or their actions are referenced to particular locations on the Earth’s 
surface. Because ABMs instantiate a conceptual model that specifies the agents, 
the attributes, actions, and interactions, they are structural models that represent 
the processes of land change explicitly. 

Theoretical and Empirical Basis

ABMs belong to a category of models known as discrete-event simulations 
(Zeigler et al., 2000), which run with some set of starting conditions over some 
period of time, allowing the programmed agents to carry out their actions until 
some specified stopping criterion is satisfied, usually indicated by either a certain 
amount of time or a specified system state. By simulating the individual actions of 
many diverse actors, and measuring the resulting system behavior and outcomes 
over time (e.g., the changes in patterns of land cover), ABMs can be useful tools 
for studying the effects of land change processes that operate at multiple scales 
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and organizational levels. Measured at some time in the future, these system out-
comes can also be used to evaluate projections of land use, land cover, or other 
state variables. Because agents can adapt their behavior to changing conditions, 
the stationarity assumption can be somewhat relaxed in ABMs.  To the degree that 
ABMs rely on input data from some period of time to establish parameter values 
or fix decision processes that do not adapt in other ways (e.g., through learning 
mechanisms) to changing contexts, projections into the future will necessarily 
require the assumption of stationarity parameters and decision processes. So, 
while ABMs can be constructed in ways that relax the assumption of constancy 
in relationships (i.e., stationarity), they are not always constructed in that way. 
Because of this ability to relax assumptions, however, ABMs are well suited to 
representing complexity in land systems.

ABMs have been used for a wide range of applications, from explaining 
spatial patterns of land use or settlement and testing social science concepts, often 
using exploratory-theoretical models, to policy analysis and planning, more often 
using empirical-predictive models (Matthews et al., 2007). Models and applica-
tions toward the exploratory-theoretical end of this continuum tend to resemble 
a range of complex systems models that are often mathematical or analytical in 
nature (LUCC, 2002), including some cellular automata models.  Applications 
of ABMs that aim to test concepts or explain patterns are often compared with 
analytical models of the same system to demonstrate how the ABM (e.g., because 
of heterogeneity and interaction) produces results that deviate from a simpler 
mathematical model. For example, an ABM used to evaluate the relationship 
between the width and location of a greenbelt and patterns of urban sprawl was 
able to recreate results from a simple one-dimensional analytical model, but it 
also demonstrated the sensitivity of results in that model to assumptions about 
homogeneity in agent preferences and in the landscape, and to feedbacks between 
agent preferences their location relative to the greenbelt (Brown et al., 2004). 

Models and applications toward the empirical-predictive end of the model-
application continuum require increasing support from empirical observations 
to orient the models toward more realistic representations of real systems. Land 
change applications of ABMs have incorporated a variety of empirical data types 
into the description of agents, thereby providing some empirical support for the 
types, characteristics, beliefs, and knowledge of agents (Robinson et al., 2007; 
Smajgl et al., 2011). These data inputs have been derived from social surveys 
(Berger and Schreinemachers, 2006), participant observation and ethnographic 
methods (Huigen et al., 2006), field and laboratory experiments (Castillo and 
Saysel, 2005; Evans et al., 2006), a “companion modeling” approach that uses 
participatory methods to engage agents in the construction of their model (LePage 
et al., 2012), and Geographic Information System (GIS)-based spatial data (Irwin 
and Bockstael, 2002). Additionally, a variety of approaches has been employed to 
evaluate the outcomes of models, often through evaluation of predictive accuracy 
(e.g., Brown et al., 2005). An approach to evaluating model outcomes, referred 
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to by Grimm et al. (2005) as pattern-oriented modeling, identifies primary and 
secondary patterns that a model can produce and that can be compared with 
observed patterns in data. When outcomes of interest involve spatial patterns on 
land, a common method is to use satellite or aerial imagery to construct maps of 
land categories at multiple points in time and to compare maps generated by the 
models to these observations and to employ statistical descriptions of the degree 
of match. ABMs can be used to model land use, land cover, or both. If land cover, 
the decisions that affect land cover and land management need to be represented 
explicitly, and the theoretical basis for modeling these land cover or management 
decisions is not as fully developed across different systems as is land use theory. 
When they represent land cover patterns, ABMs benefit from Earth observation 
data, but data to inform agents attributes, their social interactions and decision 
processes is more commonly required for these models.

Issues of multi-finality and equifinality, due to exogenous control, path 
dependence and multiequilibria, affect the predictability of these complex sys-
tems and, therefore, the usefulness of traditional measures of predictive accuracy 
of these models. The pattern-oriented modeling approach can use a wider range 
of patterns, or “stylized facts” (Janssen and Ostrom, 2006), to validate the model. 
For example, a model of rubber crop adoption in Laos (see Box 2.5) was evalu-
ated in terms of the amount of land area planted in rubber, the rate of adoption 
in the study area, and the income inequality among the farmers of the region 
(Evans et al., 2011). In application, ABMs are then commonly used to generate 
alternative future scenarios that can be compared in terms of how the patterns 
respond to changes in model inputs, parameters, or structures, rather than making 
point predictions.

The most important strength of agent-based models is the ability to explicitly 
represent agent behavior while providing a range of options for representing that 
behavior (An, 2012). Many economic land use models derive from assumptions 
of profit or utility maximization that are assumed to fully determine actors’ land 
use or location decisions. In addition to these behavioral assumptions, these 
models typically consider only limited sources of agent or spatial heterogeneity. 
Finally, even when uncertainty enters the model, agents are assumed to form 
rational expectations based on a known distribution of the stochastic process 
(e.g., Capozza and Helsley, 1990). Research in behavioral and decision modeling 
(An, 2012; NRC, 2008b) has produced a range of alternative behavioral models 
that incorporate cognitive processes and uncertainty to explain human decision 
making and that can be implemented and evaluated with agent-based models. 
For example, (a) land use actors can exhibit heterogeneity in their attributes, 
preferences, or decision-making strategies (Robinson, 2006); (b) the amount of 
information available to agents and effort agents use to search for and/or evaluate 
alternatives can limit, or bound, their level of rationality (Manson, 2006; Simon, 
1997); (c) alternatives to utility maximization include, for example, using satis-
ficing behavior, in which agents select alternatives that are “good enough” using 
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BOX 2.5
Agent-Based Model of Rubber Adoption in a Laos Village

Montane mainland Southeast Asia is a region of great biological and cul-
tural diversity that has seen the conversion from traditional agricultural systems 
to more permanent cash crops driven by regional and global markets (Fox and 
Vogler, 2005). This conversion has primarily been from traditional agriculture to 
commercial rubber production and is driven by decisions at the household level 
in which small land holders to convert their land. 

An agent-based model was used to investigate the transition from shifting 
cultivation to rubber production for a study area in northern Laos PDR to assess 
changes in household-level inequalities with the transition from shifting cultiva-
tion to rubber adoption (Evans et al., 2011). Parameters on household-level 
land use preference and risk tolerance in the model were fit so that the model 
reproduced historical land cover patterns (see map below) and household al-
locations of land to rubber versus upland crops developed from field interviews. 
The interviews indicated that households with different assets, experience, and 
risk tolerance had different approaches to this new opportunity resulting in het-
erogeneity of land use and income. 

The model calculated a dramatic change in income inequality through the 
1984-2006 simulation period (see Figure 2). The model demonstrates several 
pulses of rubber adoption and that labor is not the constraining factor as some 
households continue to allocate a majority of their labor to upland crop produc-
tion through the model simulation. 

The model produces a pattern of early adopters and late adopters that fits 
well with theories regarding the diffusion of innovation. This approach provides 
insight on the impact of agricultural innovation on inequality. 

heuristics to determine agent choices (Gotts et al., 2003); (d) agents can learn 
from and adapt to their environment and, therefore, evolve their approaches to 
accessing information, their preferences, and their decision strategies (Magliocca 
et al., 2011); (e) the influence of updated social networks, which can have vari-
able and dynamic structures, can have powerful influences on decisions by 
affecting availability of information and resources (Entwisle et al., 2008); and (f) 
uncertainty and variability in environmental conditions, information availability, 
or decision outcomes can affect agent behaviors (Zellner, 2008).

By explicitly representing heterogeneous agents and the interactions among 
agents and between agents and their environment, ABMs are particularly use-
ful for modeling the formation of outcome patterns, like bilateral prices formed 
through a series of transactions (e.g., Filatova et al., 2009), or patterns on a land-
scape (e.g., Jepsen et al., 2006), which result from a system that lacks centralized 
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control. This is particularly important where the combination of interactions at the 
agent level and heterogeneity among agents produces nonlinear dynamics at the 
aggregate level and renders aggregate or representative-agent models inadequate. 
For example, a model that included a skewed distribution of risk preferences, 
as observed in survey data, produced patterns of land rights and development 
that better matched the observed situation near the Dutch coast than did a model 
that included agents with homogenous risk preferences (Filatova et al., 2011). 
Decentralized systems of heterogeneous and interacting agents can exhibit path 
dependence, such that different equilibria are reached depending on the starting 
point or the order in which actions are taken (Brown et al., 2005). For example, 
the size distribution of farms and their productivity in a region after a period of 
time can be dependent on the average farm size for the first period, with implica-
tions for approaches to regional structural change.

FIGURE 1 Simulated land cover 2006 (Evans et al., 2011).

FIGURE 2 Simulated land cover areas (ha) and Gini coefficient (Evans et al., 2011).
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Because behavior is represented explicitly in ABMs as a decision-making 
process carried out by heterogeneous agents, the models align with conceptual 
models of land use systems involving the interactions of multiple types of actors. 
Because the actions and outcomes of individual agents can be tracked within 
a model, it is easier to communicate the structure and function of an ABM to 
stakeholders than a model that represents agent-level decisions and actions in 
a stylized or aggregate manner through mathematical or statistical functions. 
This alignment has facilitated a number of applications in which ABMs are used 
alongside role-playing games to facilitate participatory modeling and learning 
about resource management problems (Barrateau et al., 2001; d’Aquino et al., 
2003; Dumrongrojwatthana et al., 2011). This approach has been referred to as 
“companion modeling” and has been most vigorously pursued by the develop-
ers of Cormas, based in France (LePage et al., 2012). As models become more 
complicated, with more detail that provides for greater fidelity with real-world 
systems, however, this communication advantage can be lost. An intuitive under-
standing of even a moderately complex model can be challenging, and often 
requires both an understanding of the underlying code and experience with sen-
sitivity analysis through running the model interactively by changing parameter 
values.

Agent-based models are being coupled with models’ natural processes. to 
understand dynamics in coupled natural and human systems.  Though this has 
often involved mainly loose coupling to date, that is, passing output from one 
model to another, ABMs of land change are increasingly being tightly coupled 
with environmental models of various sorts. For example, by coupling an ABM 
that represented demographic and economic processes of households with models 
of forest growth and panda habitat, An et al. (2005) were able to demonstrate 
the effects of energy and internal-migration policy in China on panda habitat. 
Coupling models in this way offers promise for exploring dynamics of coupled 
natural and human systems, and for understanding the role of feedbacks in land 
system dynamics (Liu et al., 2007). 

Technical, Research, and Data Challenges

Many of the challenges related to the use of ABMs stem from their resource-
intensive nature relative to model design, implementation, parameterization, 
calibration, and execution. Because models are usually designed with specific 
questions in mind and can require significant investments in data about both 
agent-level characteristics and aggregate outcomes to apply in specific settings, 
a given model may not be generalizable across other situations or scientific and 
research applications. For these reasons, problems that are simpler (i.e., can 
be explained with simpler analytical models) or focused on prediction rather 
than structural explanations may not need ABMs and the effort involved. Also, 
because the range of potential systems that can be represented in ABMs is quite 
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large, it is quite reasonable to expect that the theory and data needed to build a 
model may not be fully developed in any given instance. In these cases, develop-
ment and analysis of an ABM might usefully contribute to the development of 
theory or the identification of data collection requirements. 

The computational and empirical resources required to implement and apply 
ABMs have limited their application in land change science to local-scale ques-
tions and applications. Efforts have been made recently to develop probabilistic 
(Valbuena et al., 2010), aggregation (Rounsevell et al., 2012), and metasimulation 
(Zou et al., 2012) schemes for generating and applying the insights of ABMs 
to regional and even global scales. Challenges remain in broadly applying and 
comparing these schemes and evaluating them through formal calibration and 
validation activities. Furthermore, approaches of this sort can be used to provide 
structures by which insights from multiple case studies conducted at local scales 
can be aggregated for understanding and integration at regional and global scales 
and to identify how to make compromises between spatial extent and agent com-
plexity (e.g., larger spatial extents may require fewer or simpler agents due to 
computational constraints).

The following additional challenges were identified by participants in our 
workshop:

•	 Economic models of behavior commonly incorporate processes of expec-
tations formation and forward-looking behavior. These processes are not often 
well developed in many agent-based models, and best practices for doing so need 
to be developed.

•	 More modeling work is needed to bridge the gap between spatial eco-
nomic models and ABMs, building on the strengths of each approach. Because 
agent-based models do not enforce an equilibrium or spatial equilibrium con-
dition, models that represent market processes employ ad hoc assumptions to 
specify the bidding and market interaction processes. In the absence of one or 
more closing conditions that establish an equilibrium, there is no way of ensuring 
that these individual behaviors will generate land prices consistent with a market 
equilibrium (Chen et al., 2011). In addition, because of data requirements, these 
assumptions of bidding behavior and market interactions are difficult to test. 
Comparisons are needed between spatial equilibrium models that incorporate 
agent heterogeneity, but rely on a static spatial equilibrium assumption to derive 
market prices, and agent-based models that incorporate heterogeneity, alternative 
types of behaviors, and dynamics over time, but that use ad hoc approaches to 
derive market prices. 

•	 There is need to develop methods to standardize and improve efficiency of 
parameterizing agent decision models. For example, links between statistical and 
agent-based modeling could be better developed, such that methods for calibrat-
ing preference and decision functions for use in ABMs can be developed using 
econometric, experimental, and participatory approaches.

Advancing Land Change Modeling: Opportunities and Research Requirements

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/18385


64	 Advancing Land Change Modeling

•	 Increasing call for use of ABMs in predictive settings will require bet-
ter methods for assimilating data and updating models on the fly. For example, 
operational models will need to be able to be updated when an exogenous shock 
occurs. 

•	 Agent-based modeling efforts benefit from the availability of a wide range 
of data types. These include survey data that are spatially referenced to param-
eterize decision functions; data on land management, use, value, and ownership 
to complement land cover data; and longitudinal versions of all of these data 
types. Efforts to collect, make accessible, and integrate these data will enhance 
these modeling activities. 

•	 Additional work is needed on methods to integrate data across disparate 
sources. For instance, data developed using different functional unit definitions, 
spatial extents, different levels of aggregation, and by different agencies might 
need to be integrated within a single ABM and could be harmonized through 
a variety of interpolation, down-scaling, or up-scaling approaches. Currently 
researchers often recreate data because they are not able to access and/or integrate 
existing data. 

•	 The structural validity of the rules and algorithms used to represent agent 
actions and their interactions in these models has been challenging to demon-
strate. For ABMs, the validation of agent dynamics is often more important than 
the validation of the model outcomes that are the most common validation targets 
for LCMs. 

•	 Because agent-based models can frequently generate multiple outputs, 
due to stochasticity of parameters or inputs, it is important to evaluate the diver-
sity of models outcomes that can result from them. This is especially important 
when combined with evaluation of multiple scenarios, defined by alterations 
in model settings to reflect alternative possible futures or policy interventions. 
Stronger norms for full exploration of the space of model outcomes is needed in 
land change modeling. This goal might benefit from cross-fertilization of methods 
from other modeling communities to learn how to synthesize many runs (Monte 
Carlo–type approaches).

•	 Development of new, dynamic, and multidimensional methods of analysis 
and visualization is needed to help better understand relationships between model 
parameters and model outputs. These methods can further be used to convey to 
stakeholders what a model is actually doing and can be used to display behaviors 
of individual model components (like agents or locations). 

•	 There is a general need for standards and norms for documenting and 
sharing agent-based models. A National Science Foundation–funded effort to 
coordinate research, dissemination, and documentation of agent-based models 
has produced a web-based portal for model sharing (i.e., openabm.org), and the 
ongoing research on the standards of evidence and communication regarding use 
of models in science is crucial to further uptake and credibility of these modeling 
activities.
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HYBRID APPROACHES

Many LCMs are not easily classified into one of the categories discussed in 
the preceding sections. Here we address the fact the conceptual and methodologi-
cal approaches described above are quite often used in combination to represent 
various aspects of land change patterns and processes.  For example, machine 
learning and statistical approaches are often used to develop suitability maps that 
then serve as one of the inputs to a cellular model that incorporates land suitabil-
ity with neighborhood effects to project future land use (Almeida et al. 2008; Li 
and Yeh 2002) or land cover (Hilbert and Ostendorf 2001) patterns.  Similarly, 
sector-based economic models have been integrated with spatial allocation mod-
els to downscale land areas determined in large-scale general equilibrium and 
integrated assessment models for large world regions to individual pixels.  The 
Global Land Model (Hurtt et al., 2011;Hurtt et al., 2006) uses a relatively simple 
expert-based ranking of relative suitabilities in combination with an assumed 
hierarchical ordering of allocation. Other allocation mechanisms are possible, 
building on the statistical, machine learning, and cellular approaches described 
above.  As a final example of hybrid models, coupled representations of land 
use and land cover dynamics, as a means of representing the dynamics of both 
the natural and the human processes involved in land change, have been devel-
oped by combining the statistical, cellular and agent-based approaches described 
above. For example, An et al. (2005) were able to successfully represent interac-
tions between human demography and fuel use, and availability and quality of 
panda habitat by representing dynamics in the human communities with agents 
and the forest dynamics and habitat characteristics with cellular models that 
incorporated algorithms for forest growth and habitat suitability, some of which 
had been developed using statistical models for determination of suitabilities.

Theoretical and Empirical Basis

Land change is the result of multiple human-environment interactions oper-
ating across different scales ranging from global trade of food and energy to local 
management of land resources at the farm and landscape level.  It is represented 
in data ranging from satellite observations of land cover to surveys of human 
attitudes, perceptions, and behaviors, with many other types of data in between. 
So far, researchers have not succeeded in defining an all-compassing theory of 
land change, and the feasibility of formulating such theory is not evident. Addi-
tionally, we have not yet reached the point where we have all the data we need 
to characterize the various land use and land cover changes that are occurring in 
various systems throughout the world.  Therefore, it is reasonable to expect that 
some hybridization of the above approaches, accounting for the heterogeneous 
theories and data environments confronting models that incorporate land use and 
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land cover change dynamics, is necessary to serve contemporary scientific and 
management purposes.

Theories from multiple disciplines, such as economics, geography, demog-
raphy, ecology, and anthropology, contribute to the explanation of land change. 
Often, these theories are related to specific land conversion processes or sectors, 
for example, ecological succession (Cushman et al. 2010), Boserupian theory 
concerning the effects of population on land use sustainability (Boserup, 1965; 
Turner and Fischer-Kowalski, 2010), the induced-intensification thesis (Turner 
and Ali, 1996), neo-Thünen theory about moving frontiers and urban markets 
(Walker, 2004;Walker and Solecki, 2004), and the theories of Fujita and Krug-
man about urban development (Fujita et al., 1999a,b), as notable examples. Most 
theories cannot adequately explain the complexity of land use decision making, 
nor address the processes driving both land use and land cover change. 

It is well understood that decision making processes about land change, as 
well as many of the ecological and disturbance processes affecting land cover 
change, are context dependent and one or multiple theories may provide a proper 
representation for a specific case study or land change process. Therefore, the 
choice of theory and model concept may depend on the specific scale of analysis, 
the processes studied, the availability of data, and the case-study characteristics. 
As an example, in a mature land market, models based on economic theory may 
best be able to capture the dominant processes. In a deforestation frontier the 
land market may not be functioning at all and models driven by geographic or 
institutional factors may be more useful.

At the same time, land change may be influenced by several types of pro-
cesses synchronously that require different modeling concepts: for example, 
although land decision makers may be oriented towards optimizing benefits of 
land use, these benefits are often influenced by land change in the neighborhood, 
creating scaling effects. Because land change modeling often involves repre-
sentation of cross-scale interactions, interactions among different land types or 
sectors, and determination of both the amount and spatial pattern of land cover 
types, there are multiple procedural opportunities for including different model-
ing approaches. While some opportunities for hybridization (e.g., for representing 
different land sectors) are driven by differences in the theoretical basis for such 
models, others (e.g., for crossing scales) are driven by the relative efficiency of 
different algorithmic approaches to linking across scales and processes, and still 
others, e.g., linking models of land use and land cover, are driven by multiple 
concerns that also include data availability. Hybrid modeling approaches there-
fore can combine different underlying conceptual frameworks, theories, and 
empirical observations into a system representation and allow the modeler to 
choose appropriate procedure for modeling depending on the practical needs of 
modeling across the range of representation in land systems.

Hybrid approaches can involve:
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1. a combination of approaches to more fully represent decision making, 
for example, agent-based decision making that includes a cellular neighborhood 
model to account for neighborhood interactions in the decision making, or a 
machine learning model to represent human cognition (e.g., Manson 2005);

2. the use of different approaches for different scales to capture the dominant 
processes at the scale addressed, for example, economic models for aggregate 
land shares that constrain cellular spatial-allocation models (e.g., Sohl et al., 
2012);

3. the use of different modeling concepts for different land change types 
considered, for example, using a cellular automata (neighborhood-based) model 
for urban land use with an  econometric approach for other land cover types 
(Verburg and Overmars, 2009); or

4. the use of one approach to parameterize a model using a different approach, 
for example, machine learning to parameterize a cellular model (Pijanowski et 
al., 2005; Sangermano et al., 2010).

5. the conceptual integration of modeling frameworks, for example, the 
development of a common language to refer to automata with fixed (i.e., cellular) 
versus flexible (i.e., agent-based) topologies (Torrens and Benenson, 2005).

Strengths and Weaknesses

Hybrid modeling approaches take advantage of the strengths of the indi-
vidual approaches and reduce some of their inherent limitations. The lack of 
overarching theory or systems description in some cases, and data or both in 
others, makes it necessary to carefully match existing theories and modeling con-
cepts to the conditions and empirical contexts under which they are valid. Hybrid 
approaches allow such flexibility. At the same time, hybridization of modeling 
concepts allows the development of novel approaches can better represent the 
complexity of reality. 

Hybridization also involves risks. Often the combination of multiple concepts 
leads to an increased complexity reducing the ease of interpretation of simulated 
changes and hampering causal tracing of emergent land changes. For this reason, 
model calibration and validation across the multiple hybridized components can 
be challenging. Separate components of a hybrid model might be calibrated in 
different ways, according to the empirical demands of each approach, but there 
is often little theoretical guidance on how the combination of components should 
be parameterized. As with any modeling approach, the ways the combination of 
model types represents reality and to what extent the model is able to answer the 
questions of the stakeholders of the modeling effort will determine its success.
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 A COMPARISON OF LAND CHANGE MODELING APPROACHES

Ultimately, the aims of land change modeling are to advance the science of 
land change, to improve our understanding of interactions between land change 
and various environmental processes, and to provide capacity to support decision 
making around problems involving land change. For these purposes, the various 
modeling approaches reviewed here provide capabilities to explain and learn 
(EL) about land system dynamics, as well as to project and predict (PP) future 
states of land systems.  The ability to evaluate the impacts of environmental and 
social changes on the land system, especially through the use of scenarios, and 
to provide input to other models is also an important use to which models have 
been put. 

We have arranged the five main modeling approaches in our assessment 
roughly in order from those most focused on modeling pattern (beginning to 
Machine Learning and Statistical Approaches) to more structural models that 
focus more on the processes of land change (including Economic and Agent-
Based Approaches) (Table 2.1). While an evaluation of the validity of any given 
model or approach for any given purpose is beyond the scope of this assessment, 
we were able to identify some of the implications of these broad differences for 
how models based on these approaches can be used. In general terms, models that 
have a more explicit representation of a given process, like those that represent 
land use decision making with structural Economic or Agent-Based approaches, 
are more flexible to different types of changes in context that can be evaluated 
through model scenarios, including for example changes in credit availability, the 
level of enforcement for illegal activities, or the amount of information available 
about alternative choices.  Paradoxically, perhaps, models with a greater degree 
of explicitness in representing process, while useful for predicting the conse-
quences of alternative scenarios qualitatively, often perform less well making 
quantitative projections or predictions about specific outcomes at specific places 
or times. This can result from their inclusion of processes for which parameter 
values are unavailable empirically or are highly uncertain, feedback processes 
that can create path dependent outcomes with multiple equilibria, thereby raising 
the level of uncertainty in predictions, or processes that produce outcomes for 
which semantically compatible observations are unavailable. The key example of 
this latter point is the challenge, especially over large extents, of obtaining spa-
tially explicit land use information. The need for land use data, due to its relative 
incompatibility with satellite measurements, is a mismatch with which the LCM 
community consistently struggles. For these reasons, approaches that are focused 
on fitting observed patterns (like Statistical and Machine Learning approaches) 
and extrapolating them into the future can both satisfy the users for which making 
near-term predictions is an important goal and make efficient use of the extensive 
record of spatially explicit land cover and other remotely sensed observations.  
As we have discussed in Chapter 1, these models are not limited by data so much 
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as they are by a lack of representation of the theory behind our understanding 
of land change processes. Machine Learning approaches can represent well the 
relationships between, for example, land cover changes that are observable in 
multiple Landsat images over time and a variety of biophysical, location, and 
other variables, and used these relationships for extrapolation to estimate where 
future changes might be expected to occur. As long as the structural elements of 
the system remain unchanged (i.e., are stationary), projections can provide use-
ful information about near-term changes. Because of their thinner theoretical and 
process grounding, however, models that focus on observed patterns are limited 
in their ability to support evaluations of scenarios involving structural change. 
While no single modeling approach can serve all purposes equally well, each of 
the modeling approaches we describe has been adapted within a wide variety of 
settings, often to move them along this pattern-process continuum, and the hybrid 
modeling approaches that combine specific approaches provide particular flex-
ibility in developing models that address particular challenges. 

The relative strengths of the approaches with respect to representing pat-
terns and processes, then, further affect their appropriateness within policy- and 
decision-making contexts. The committee considered the roles that LCMs can 
play within the context of the cycle of policy and decision making presented in 
Chapter 1(adapted from Verdung, 1997), and developed an approximate mapping 
of modeling approaches to stages in that cycle (Figure 2.2). Within this mapping, 
we identify the suitability of machine learning and cellular models in the prob-
lem identification step, because of their assumptions of stationarity and lack the 
richer structural detail about process needed to evaluate the effects of changes in 
policy structure. Projections of future trends can be useful to identify situations 
in which significant problems may arise if action is not taken, for example in 
managing total maximum daily loads in an area experiencing significant urban 
growth. These modeling approaches can also be useful at later stages, where, for 
example, policies or decisions that involve changing or constraining land changes 
spatially (e.g., through creation of protected areas) or where baselines based on 
extrapolating past trends are needed for ex ante assessment, but their comparative 
advantage is in problem identification. 

To consider interventions that affect agent behaviors or might generate mar-
ket feedbacks that have spillover effects on other components or locations in 
the land system, the richer behavioral specificity of agent-based and structural 
economic models provides a basis for exploring the structure of the land system 
and the interactions inherent in it, and exploring dynamics that might benefit from 
intervention. For example, links between household inequality and environmental 
outcomes can be explored to identify the reasons for and opportunities to improve 
both. The process specificity of these modeling approaches is usually needed to 
weigh the effects of alternative interventions.

In moving to a decision about some policy or other action, structural eco-
nomic models, including both sector-based and spatially disaggregate as well as 
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Figure 2.2  Land change modeling approaches (outer circle) placed within the context of 
the policy- and decision-making cycle (inner circle). SOURCE: modifi ed from Verdung, 
1997.

agent-based models, and hybrid models provide capabilities that can be exploited 
for assessing the possible effects of the policy, ex ante. For example, the GTAP 
model (Hertel, 1997), which is a static multi-region, multi-sector, CGE model, 
was used to evaluate the implications of biofuel mandates for land use demand 
both within the United States and internationally through the possible effects on 
the prices of food commodities (Keeney and Hertel, 2009).

Once policies or decisions have been implemented, the need for evaluat-
ing the effects of these implementations, ex post, is often quite effectively met 
through use of reduced-form economic models that estimate the magnitude of 
the effect of the intervention, usually by comparing observable outcomes either 
before and after the intervention or in an intervention area and some comparable 

Problem
Identi�cation

Decision and 
Implementation

Intervention
Design

Evaluation

Problem

Intervention
Design

EvaluationEvaluation

Decision and 
Implementation

Intervention

    
M

AC
H

IN
E 

LE
A

RN
IN

G
       STRUCTURAL ECONO

M
IC

   S
TRUCTURAL ECONOMIC

    
    

    
    

    
    

   C
EL

LU
LA

R

Ex-post Assessment

                    AGENT-BASED

     
      

      A
GENT-BASED

             Ex-ante        Assessm
ent

 Hybrid SECTOR-BASED/CELLULAR

                 REDUCED-FORM ECONOMETRIC

Advancing Land Change Modeling: Opportunities and Research Requirements

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/18385


LAND CHANGE MODELING APPROACHES	 73

location. For example, Andam et al. (2008) used reduced-form econometric 
methods to evaluate the effectiveness of protected areas in reducing deforestation 
globally by estimating the effects of the protected areas on deforestation rates 
in comparison with those found in areas in close proximity to protected areas.

Understanding the underlying structures, assumptions, and data requirements 
of different modeling approaches is critical to understanding their applicability 
for various scientific and decision-making purposes. This review provides a 
framework for comparison of multiple modeling approaches in relation to specific 
objectives. The next section of this report outlines opportunities and needs for 
advances that will improve modeling capabilities into the future.
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3

Improving Land Change Modeling

The various approaches employed in land change models (LCMs) have 
emerged from multiple disciplinary traditions, and future progress in 
improving LCMs will likewise draw on multidisciplinary developments. 

At this point in the development of LCMs, as a category of models that bridges 
and couples among the dynamics and processes of social systems and natural sys-
tems, the diversity of model types has served a number of scientific and practical 
goals. The growing demands on these models within the science of sustainability 
and for integration with environmental models require that the community of 
model builders and users take advantage of a number of opportunities to advance 
both the theoretical and empirical grounding of models. We identify opportunities 
in modeling that derive from the potential for better models, better use of data 
and cyberinfrastructure, better community infrastructure for LCM developers and 
users, and better use of best practices in model evaluation.

OPPORTUNITIES FOR ADVANCES IN LAND CHANGE MODELS 

Advancement of Process-Based Models

The approaches on the pattern end of the pattern-process spectrum will con-
tinue to provide useful service in a number of scientific and practical settings, as 
outlined in Chapter 2. However, a number of  new applications of models involv-
ing developing and evaluating innovative land-based policies, exemplified, for 
example, by payments for ecosystem services (PES) and REDD+ strategies for 
curbing deforestation and land degradation while providing income for forest-
dependent communities, demand a stronger process (i.e. theoretical) basis for 
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LCMs. The theory, data, and methods needed for developing process-based mod-
els are arguably less well developed than those needed for models based on pat-
terns.  Modeling approaches are required that can be used to evaluate how these 
policies will influence human behavior and in turn affect land cover and human 
well-being (Nelson et al., 2009). For example, PES schemes pose a challenge for 
modeling because they alter the economic incentives to influence current land use 
behavior and thus land trajectories. Also, evaluations of REDD+ policies require 
an estimation of baseline emissions, e.g., the amount of deforestation that would 
happen in the absence of a new policy. While these baselines have tended to use 
machine learning and statistical models (i.e., data-based models) to project past 
rates of deforestation, process-based baselines could include demographic and 
economic changes that might affect future deforestation (Huettner et al. 2009). 
Additionally, evaluations of new policies require models that represent behavioral 
responses to new incentives or constraints, both of which require some under-
standing and representation of process. Because such policies tend to address 
only a few of a multitude of interconnected outcomes (e.g., numerous ecosystem 
services and human well-being factors), better process representation is needed 
to evaluate possible unintended consequences from such policies.  

Because they account for the underlying decision-making processes of 
agents that determine land change outcomes, process-based models can be used 
to advance understanding of how human actors respond to changing environmen-
tal, economic, or policy conditions and to simulate policy scenarios of the impacts 
of a hypothetical policy change on land use outcomes. Process representations 
are particularly important when modeling complexity in land-change processes 
in which feedbacks can arise from interactions that are both within and between 
the socioeconomic and biophysical systems. 

Despite meaningful advances, more work is needed to further develop pro-
cess-based models that are consistent with theory, empirically verifiable, and use-
ful for policy. Many efforts to date have focused on one or at most two of these 
goals, and fewer if any have accomplished all three goals. For example, structural 
econometric models are derived from economic theory and estimated using real-
world data, but they are largely static and can only incorporate limited forms of 
spatial heterogeneity. Agent-based models are often specified using real-world 
data, can incorporate many more forms of agent and spatial heterogeneity, and 
are designed to step through time, but they are often ad hoc in their representa-
tion of market and other mechanisms and often lack the empirical or theoretical 
grounding for some of the assumptions that are necessary to operationalize a 
given model. As outlined in Chapter 2, it is possible to develop spatial equilib-
rium economic models that incorporate some form of dynamics and to develop 
agent-based models that are consistent with microeconomic foundations. In some 
ways, these different approaches to process-based modeling are converging and 
there are additional gains to be had from continuing to work toward narrowing 
the gap. For example, because of their added flexibility, agent-based models can 
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be useful in testing the maintained assumptions of economic structural models 
by comparing model predictions from long-run spatial equilibrium with a short-
run constrained equilibrium subject to additional constraints such as incomplete 
information or borrowing constraints. The process of reproducing the results 
of analytical models with a computational model is sometimes referred to as 
“docking” and has been shown to be a useful way to build agent-based models 
that relax assumptions while building on solid theoretical principles (Brown et 
al., 2004). 

By representing agents’ behaviors and their behavioral responses to policy, 
process models permit researchers to generate and compare predictions of land 
changes under baseline and alternative policy scenarios. The quality of such 
scenarios and predictions is limited by the maintained assumptions and process 
details in the models. Research on cognitive processes demonstrates substantial 
heterogeneity among agents in terms of their formation of values, preferences, 
attitudes, and norms and how these preferences are modified by environmen-
tal change (Meyfroidt, 2012). Additionally, theory and empirical research on 
forward-looking behavior underscores the importance of accounting for hetero-
geneous expectations over future outcomes that influence agents’ decisions in 
the current period (Irwin and Wrenn, 2013). Incorporating these new theoretical 
insights is critical for improving the structural validity and predictive capability 
of LCMs, and requires improved model formulations and better data on indi-
vidual agents and their decision-making processes over time and at spatial scales 
commensurate with the individual agents. We address the issue of data availabil-
ity in the section on opportunities in observation.

Cross-Scale Integration of Land Change Models

A major goal of the environmental science community is to develop a predic-
tive and process understanding of the interactions of land change dynamics with 
climate; ecosystem biodiversity; and the cycling of water, carbon, and nutrients. 
The need for this understanding is manifested at scales ranging from parcels to 
the globe and is a central element connecting a set of scientific and policy groups’ 
recommendations such as the Grand Challenges in Environmental Science by 
the National Research Council (NRC, 2001). This challenge emphasizes both 
research to elucidate the primary feedbacks between socioeconomic, geophysical, 
and ecosystem processes critical to the coupling of land, water, and ecosystem 
change, and the ability to reconstruct and forecast historical and future scenario 
trajectories. To make advancements on these goals, two types of model coupling 
are required: coupling of LCMs at multiple scales, and coupling LCMs with 
other types of models. This subsection addresses the former; the next subsection 
addresses the latter.

Globalization is having the effect of coupling global- with local-scale drivers 
of land change, and land use decisions are increasingly driven by factors in dis-
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tant markets in addition to local-scale factors (Erb et al., 2009; Seto et al., 2012). 
There is a growing separation between the locations of production and consump-
tion of land-based commodities, including carbon stocks. Consumers outsource 
their land use to other regions or countries and a virtual land trade develops. In 
addition, land use is affected by remittances sent by migrants, the specific organi-
zation of global commodity value chains, channels of foreign investments in land, 
the transfer of market or technological information to producers via a diversity of 
networks (from farmer associations to Internet and cell phones), and the develop-
ment and promotion of niche commodities that target narrow but wealthy market 
segments with high-value commodities produced in limited quantities. Modeling 
such teleconnections (or telecoupling) and network interactions is a major chal-
lenge that requires analytical methods that link multiregion input-output models 
with regional and local-scale models of land-based decision making (Würten-
berger et al., 2006) and representations of social networks. 

While the sector-based approaches outlined in Chapter 2 provide a frame-
work for modeling interregional flows of capital, materials, and people, they 
represent entire sectors within entire regions as single representative agents. Such 
representations preclude incorporating an understanding of how heterogeneous 
decision-making strategies affect demand and supply of products and inputs 
(including land), and how interactions among actors within a given sector or 
region might produce particular patterns of production or consumption (Roun-
sevell et al., 2012). For example, the emergence of a cluster of activity within a 
region, like that which occurred in the information technology industry within the 
Silicon Valley of California and manufacturing in Shenzhen, China, can produce 
efficiencies and increasing returns to investment and create demands for land that 
are not represented or in quantities not reflected in aggregate models (Arthur, 
1994). The spatially disaggregated economic and agent-based models provide 
a means to represent heterogeneity and interactions, but they have not yet been 
developed at scales that permit representation of global-scale flows. Although it 
is possible that such models could be developed, parameterized, and simulated 
at global scales, it is also possible that a scaffolding of modeling approaches, 
which specifies which models are used to pass different kinds of information 
among different scales of representation, will be a more efficient and effective 
for representing global-to-local interactions. Possible directions include either 
combining the aggregate and finer-scale models to link feedbacks and interactions 
at the finer scale within the context of global-scale flows, or using experiments at 
the fine scale to evaluate nonlinear dynamics that emerge and represent important 
sensitivities of results at the coarser scale.

Cross-Scale Integration of LCMs with Other Earth System Models

For years, models of a variety of environmental processes have taken land 
cover and land use as inputs to condition model parameters or set internal fluxes 
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or states, and they generate information that may in turn condition land manage-
ment decisions and feed back to land change. Examples include models of Earth 
surface processes like exchange of water, energy, carbon, and nutrients with the 
atmosphere that are critical to weather and climate prediction (e.g., Bondeau et 
al. 2007; Lawrence et al. 2011); watershed models that generate flow, nutrients, 
and sediment to receiving water bodies (e.g., Ray et al. 2010; Bulygina et al. 
2012); and ecological patch dynamics of growth, succession, and disturbance 
(e.g., Desai et al. 2007; Thompson et al. 2011). By coupling these models with 
LCMs, the ability to predict and understand the direct and indirect effects of 
land management decisions and policies on the trade-offs at short to long time 
scales on ecosystem services (e.g., food and fiber production, water regulation, 
maintenance of biodiversity, and carbon storage (Lapola et al., 2010; Nelson et 
al., 2009; Wiley et al., 2010) is improved. In the short term, or in areas not expe-
riencing significant change, land change is typically considered a static model 
input and a coupling with dynamic LCMs is not required. However, interest in 
long-term forecasting requires some ability to couple models to represent feed-
backs between environmental and land change dynamics. The ability to set up 
and carefully specify different scenarios facilitates the development of verifiable 
models that provide utility to policy makers and decision makers. 

From a systems perspective, the degree and completeness of coupling of 
environment and land change processes needed within a model (or set of linked 
models) is dependent on which processes are included as endogenous dynam-
ics, and which are prescribed as exogenous drivers and boundary conditions. 
More comprehensive models, representing more endogenous processes, may be 
required to evaluate and forecast trade-offs and interactions between different 
ecosystem services and land change, both in the short term and over the mul-
tidecadal time scales envisioned in climate change mitigation and adaptation. 
Examples of situations where land change produces trade-offs include those 
between carbon sequestration and freshwater supply from land conversion to 
plantation forestry and natural regrowth (e.g., Farley et al., 2005) and between 
low-density zoning for watershed protection and septic-derived nitrogen load-
ing (e.g., Shields et al., 2008). Current LCMs use a range of simple to complex 
methods to estimate biophysical outcomes or consequences of land change, such 
that choices about model parsimony, comprehensiveness, and complexity affect 
the richness of environmental information that can be provided for decision 
makers. In any coupled model, a balance of the different components in terms of 
degree of complexity and data demands is preferred to promote representation 
of critical feedbacks. 

The research and operational environmental models which use land use 
and land cover (LULC) as one-way inputs to determine model parameters or set 
internal fluxes or states are numerous. LULC are typically used as categorical 
variables with class-specific attributes that are used to generate model parameters. 
This is done either by assignment from look-up tables by LULC category or by 
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specifying class-specific equations that may use additional ancillary information 
(e.g., remote sensing radiances). Well-known examples include the use of LULC 
to assign or calculate properties including surface albedo, impervious area, or leaf 
area index (LAI). Human behavior (e.g., irrigation, fertilization, harvesting, and 
conservation practices) may also be set by land classes, or it can be attributed 
separately using associated demographic and economic information. The distinc-
tion, and confusion, between land use and land cover as inputs to these models 
is important and represents an area where data advances, described below, can 
advance the effectiveness of models. While land-cover inputs to biophysical 
models are common, the dynamic coupling of LCMs to these model is less so. 

Opportunities for environmental processes to provide one-way inputs to 
LCMs also exist but have been less commonly employed. At the scale of indi-
vidual land patches, a set of land cover classes will be developed within an 
ecological successional trajectory following disturbance or other forms of land 
conversion (e.g., agricultural abandonment, timber harvest or fire). These func-
tions may use simple, rule-based succession trajectories (e.g., through Markov 
chains). However, there is significant potential to better couple process-based 
growth and succession models to represent both the processes of environmental 
change and feedbacks with land use and management. A set of models rang-
ing from growth and yield curves through complex community ecological and 
biogeochemical models (e.g., Biome-BGC, CENTURY, ED, LANDIS) were 
designed to simulate ecosystem dynamics within prescribed species or life-form 
classes, or to simulate ecological population dynamics. Modeled changes in either 
ecological patch attributes such as standing biomass, water and nutrient avail-
ability, or habitat quality can then be used to condition land conversion processes. 
These models can also be sensitive to local edaphic or microclimate conditions, 
such that patch-specific trajectories can vary in space and time rather than follow-
ing a domain-wide set of common, prescribed rules. As such, the heterogeneous 
information conditioning patch- or parcel-scale conversion can influence more 
spatially variable and environmentally coupled LCMs.

A more complete analysis of interactions between altered biogeochemical, 
hydrologic, and other ecosystem services and land change would incorporate 
two-way coupling through feedbacks. These feedbacks could be realized through 
altered supply and demand of critical ecosystem resources (e.g., water, food, 
and carbon credits) or from regulatory response to degraded air or water quality. 
While more comprehensive models would have the advantage of endogenizing 
these feedbacks, current understanding and ability to represent these interactions 
within coupled models are subject to high uncertainty, especially over longer time 
scales. Full two-way coupled models, in which land and environmental systems 
coevolve, are beginning to emerge. Schaldach and Priess (2008) reviewed a set 
of models that have been used to endogenize and couple environmental and land 
change processes. Model structures range from loose coupling with information 
passing between separate models (e.g. Claessens et al., 2009) to more tightly 
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coupled models in which common variables are processed by different modules 
or through unified equation sets, providing close feedback between environmental 
and socioeconomic processes associated with land change dynamics. Maintaining 
dynamics through the full system, rather than prescribing either the land change 
or environmental components of a coupled model, necessarily increases model 
comprehensiveness and complexity, and so a challenge is to balance and man-
age code complexity through a combination of prioritizing process and feedback 
selection and simplifying the component models, and by more sophisticated 
informatics.  Other challenges include the need to determine how an output from 
one model relates to the input of another, the lack of standard scales in coupling 
(and associated aggregation/disaggregation problems), and the assessment and 
management of uncertainty from one model in another (e.g. Pijanowski et al. 
2011).

One approach to implementing full coupling between LCMs and environ-
mental process models would be through operationalizing the conceptual model 
developed by the Integrative Science for Society and Environment (ISSE) (Col-
lins et al., 2008), which links human outcomes and activities with ecosystem 
functions through the identification and management of ecosystem services. 
As an example, a set of land models (e.g., the Patuxent Land Model, Ever-
glades Land Model) combined land valuation and conversion over different uses, 
with simulation modules for coupled water, carbon, and nutrient cycling. Land 
cover class has a first-order impact on ecosystems by setting model parameters. 
Because land valuation can be subject to simulated ecosystem components, such 
as the productivity of agricultural land, a local feedback on decision making is 
developed at the parcel level, such that less productive agricultural land will have 
a greater probability of being developed. Extension of these models to quantify 
values of ecosystem services, and measures of human well-being (e.g., Costanza, 
2000) developed at landscape to regional levels as a result of the coupled dynam-
ics, could serve as a basis to complete the major feedback look in the ISSE 
conceptual model.  

A number of LCMs can include this form of local feedback of ecosystem to 
parcel-level decisions on land conversion and, by extension, influence neighbor-
hood-scale patterns. Larger-scale feedbacks of ecosystem processes to socioeco-
nomic decision making can occur from runoff quantity and quality, which can 
initiate institutional responses and regulatory constraints on development and 
economic activity, or from land surface–atmosphere exchange through simulated 
emissions of heat, vapor, greenhouse gases, and other pollutants. This type of 
feedback would be a cumulative one derived from aggregated ecosystem patch 
behavior at larger regional to global levels.  Such a feedback would also need to 
be endogenized within the model at these larger scales through representation of 
institutional actors that respond to observed changes by constraining land man-
agement, including land conversion and economic activities. To represent the 
appropriate spatial units at every scale and across different kinds of processes, 
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one option is to use a “class containment hierarchy” in which fine-resolution 
land patches are explicitly connected and progressively contained and linked 
within larger-scale units (e.g., hillslopes, subcatchments), defined as connected 
component regions that maintain class-specific common attributes and process 
dynamics. Hierarchical frameworks linking processes over multiple scales can 
be used to resolve fine- to larger-scale interactions.

Bridging LCMs with Optimization and Design-Based Approaches

 	 The land change models reviewed in Chapter 2 are described as positive 
models that seek to explain and predict changes in land use and land cover using 
either a process-based or a pattern-based modeling approach. In contrast, policy-
makers can also benefit from a normative evaluation of these predicted outcomes: 
Given a choice among a set of possible policies or designs, which policy will 
generate a landscape pattern that is “best” in some sense for society? Various 
evaluation methods have been developed in urban planning, geography, econom-
ics, and related disciplines to assess alternative land use or land cover outcomes. 
The challenge is to develop and use LCMs at scales relevant to design and to 
connect design to patterns on the landscape, and to use optimization approaches 
together with the LCM approaches we describe in Chapter 2. For example, one 
study linked an optimization model with a cellular automaton simulation to gen-
erate future projections that could be optimized for and evaluated on how well 
they met specific planning objectives (Ward et al. 2003). Other work has used 
optimization approaches based on LCMs coupled with watershed models to help 
in identifying and locating land uses that reduce watershed impacts (Tang et al. 
2005; Maringanti et al. 2009). An important challenge is that the optimization 
approaches widely used in spatial sciences, from land use and ecosystem service 
planning (e.g., Polasky et al., 2008; Roetter et al., 2005; Seppelt and Voinov, 
2002; Stewart et al., 2004) to site selection for businesses (Church and Murray, 
2009), are extremely intensive computationally. 

Marxan, a piece of widely used conservation planning software, provides a 
good example of a normative approach based on optimization to evaluating land 
use alternatives. This software is designed to solve complex conservation plan-
ning problems in landscapes and seascapes (Watts et al., 2009). Whereas earlier 
versions of Marxan mainly focused on the optimal allocation of reserved areas 
for nature conservation, later versions were extended with zones, providing land 
use zoning options in geographical regions for biodiversity conservation. The 
software allows any parcel of land to be allocated to a specific zone. Each zone 
then has the option of its own actions, objectives, and constraints, with the flex-
ibility to define the contribution of each zone to achieve targets for prespecified 
features (e.g., species or habitats). The objective is to minimize the total cost of 
implementing the zoning plan while ensuring a variety of conservation and land 
use objectives are achieved. In one application, Wilson et al. (2010) used Marxan 
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to prioritize investments in alternative conservation strategies in East Kalimantan 
(Indonesian Borneo).  

Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) is a 
spatially explicit software-based tool developed by the Natural Capital Project 
(http://www.naturalcapitalproject.org) that provides a means of comparing trade-
offs among ecosystem services by quantifying the value of natural capital in 
biophysical and economic terms. The modeling process starts with stakeholder-
defined scenarios of LULC changes in the study region of interest. Given these 
scenarios as inputs, InVEST calculates the changes in targeted ecosystem services 
(e.g., including biodiversity conservation, water quality, and commodity produc-
tion levels) for each scenario. The approach provides a means of quantifying 
ecosystem services in a spatially explicit manner and analyzing trade-offs among 
alternative scenarios or policy options, including how payments for ecosystem 
services can alleviate trade-offs in which private markets result in an insufficient 
provision of ecosystem services by landowners. For example, Goldstein et al. 
(2012) applied InVEST to evaluate the environmental and financial implications 
of alternative land use development plans for the largest private landholder in 
Hawaii, Kamehameha Schools. They examined the implications of these alter-
native land use scenarios for multiple ecosystem services, including biofuel 
feedstocks, food crops, forestry, livestock, and residential development. They 
predicted the changes in these ecosystem services for each land use scenario 
and then used observed prices or parameter estimates of nonmarket values from 
the literature to translate changes in ecosystem services into monetary benefits 
and costs. They found, for example, that diversifying agriculture can generate 
additional financial returns and contribute to climate change mitigation through 
increased carbon storage, but that trade-offs exist between carbon storage and 
water quality. Based on this information, the private landholder developed a 
land use plan to meet private financial goals that also generated societal benefits 
through climate change mitigation, improved food security, and rural economic 
development. These calculations in InVEST could also be thought of as objec-
tives to be attained in an optimization process.

Clear synergies can be achieved from integrating positive LCMs with nor-
mative methods such as Marxan and InVEST, and traditional design approaches, 
which could provide a means for generating and evaluating land change scenarios 
and policy or management mechanisms that meet some specific goals. Positive 
models have the capacity to explain or predict land change patterns and processes 
that are associated with specific trends or policy changes and normative models 
elucidate the trade-offs associated with predicted outcomes and identify desir-
able outcomes considering those trade-offs. When used in combination, LCMs 
and normative approaches could be used in analyses of the trade-offs relative to 
multiple objectives generated by the change.  Process-based LCMs and norma-
tive approaches together can provide meaningful guidance to policy makers 
regarding the potential benefits and costs of a policy by describing the predicted 

Advancing Land Change Modeling: Opportunities and Research Requirements

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/18385


84	 Advancing Land Change Modeling

effects of a policy on land change.  Data-based LCMs integrated with normative 
approaches can also be used to explore how projected land changes compare to 
some specified objectives and possible ideal outcomes  (Seppelt et al., 2013). 
Because many existing optimization models include spatial patterns as explicit 
objectives, combined analyses of positive and normative models might be useful 
to fully incorporate the shape, size, distribution, and connection among different 
land units into the analyses of land system dynamics and trade-offs. Advances in 
combining positive and normative approaches will likely require adaptations of 
both, extending optimization approaches, like Marxan, to include dynamic land 
systems and adapting LCMs to couple more directly with the environmental and 
other models that are used to evaluate and quantify outcomes, using tools like 
InVEST.

OPPORTUNITIES IN LAND OBSERVATION STRATEGIES

The second set of opportunities is not necessarily associated with the avail-
ability of data, but rather in how the enormous quantity of new data can be 
incorporated into LCMs, how land change modelers can learn about and adapt 
modeling approaches to use these new data sets, and how land change modelers 
can help inform the development of image-processing algorithms and data col-
lection schemes that can generate products for the next generation of land change 
models. This opportunity identifies both gaps in the availability of data for LCMs, 
particularly in limiting the characterization of processes of land change, and ways 
to fill those gaps. Additional opportunities are presented through new cyberinfra-
structure, discussed in the next section. These challenges have been mentioned 
by others and some progress towards meeting these challenges is being made. 
However, the committee believes that more progress on these topics is needed to 
mainstream these advances into LCMs and respond to user-requirements.

Improved Capture and Processing of Remotely Sensed Data 

New data sets are required that can provide information on the dynamics, 
stationarity, and complexity of land and land-related processes. There has been 
a significant increase in new satellite and airborne sensors, which has resulted in 
an explosion of data and new analyses, but the development and application of 
models has not kept pace with developments in data. Large data sets provide new 
opportunities for land modeling but create various needs for automated process-
ing. Methods that were developed for analysis of small- to medium-sized sets 
of images or similar packages of related data need to be adapted to handle long 
time series and larger geographic extents, often at finer spatial resolutions. For 
example, new image-processing algorithms that use objects rather than pixels as 
the unit of analysis may provide new types of data opportunities to link satellite-
based LULC information with land management information (Pasher and King, 
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2010; Zhu and Woodcock, 2012), and to develop models that operate on patch 
or parcels rather than pixels, which are the most common unit of analysis in 
LCMs. High-spatial-resolution data, such as that provided by QuickBird, are able 
to provide fine-scale habitat and plant diversity information (Hall et al., 2012) 
and active sensors, like LiDAR, provide canopy structural information (Ardila 
et al. 2012; Walton et al. 2008; Lehrbass & J. Wang 2012; Morsdorf et al. 2004; 
Sohn & Dowman 2007), both of which create opportunities to develop LCMs 
that generate land-cover outputs with detail that goes beyond nominal categories. 
Significant efforts at mapping LiDAR during leaf-off periods is supporting DEM 
creation and flood management purposes, but more leaf-on LiDAR data is needed 
for these applications related to vegetation canopy structure.  Additionally, new 
and improved image-processing algorithms are providing new information about 
land use and land-use characteristics, such as land-use intensity (Franke et al., 
2012).  These algorithms can be deployed to develop data-based LCMs that are 
more directly sensitive to land use.

Essential to future progress in LCMs is the continuity of satellite-, airborne-, 
and survey- based observations that build on the existing record of Landsat, as 
well as national surveys and censuses, in order to estimate and calibrate LCMs. 
A majority of respondents to the committee’s informal questionnaire mentioned 
the importance of capturing historic data, such as aerial photos and old land 
records, as well as maintaining satellite mission continuity.  With the Landsat 
record now spanning more than 40 years and the entire archive now available 
free of charge, new algorithms are being developed that utilize the entire (or 
most of the) time series. These high-frequency temporal observations provide 
new types of information on land cover and land use, such as disturbance (Bau-
mann et al., 2012; Stueve et al., 2011; Zhu et al., 2012) and land-use intensity 
(Maxwell and Sylvester 2012), which were not available with the less frequent 
observational data commonly used prior to the opening of the archive. In addi-
tion to creating opportunities for new data inputs to LCMs, the higher temporal 
frequency of images permits the kind of temporal analysis used to describe 
LULC temporal dynamics at coarser resolutions (Eastman et al. 2009; deBeurs 
and Henebry 2010) and at moderate to fine resolutions. In combination with the 
growing length of the archive of Landsat images, these new analyses will facili-
tate a better empirical understanding of spatial and temporal non-stationarities in 
land-change processes, which can ultimately improve our understanding of key 
variables and processes that need to be incorporated in LCMs. Furthermore, the 
higher frequency of available observations will drive demand for restructured 
LCM frameworks, especially for those that are more data-based (i.e., statisti-
cal, machines-learning, and cellular approaches), and  that accommodate more 
frequent observations and more recent observations, perhaps through use of data 
assimilation approaches (e.g., Rodell et al. 2004).  These approaches have not 
been used with LCMs to date.

 Historical aerial photo data sets offer the potential to extend existing records 
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of land cover and its change even further into the recent past, before the avail-
ability of satellite imagery (e.g., Sylvester et al. 2013). Object-based analysis 
and machine learning algorithms are particularly promising technologies to cre-
ate land use information from historical photos. Contextual information from 
object-based approaches promises to improve classification of aerial photography, 
despite inconsistent spatial and spectral information in these data (Laliberte et 
al., 2004).  As longer time series data become available, e.g., greater than 70 
years, the challenges and opportunities of modeling land change through peri-
ods of structural economic and technological change becomes very real. While 
Chayanovian and Boserupian theories of development provide a starting point 
for understanding livelihood changes on these time scales, few structural models 
exist of how land systems evolve over longer time frames, though new models 
could build upon theoretical and empirical work in economic and demographic 
literature (e.g., Galor and Weil 2000; deSherbinin et al. 2008). While longer term 
economic and population forecasts are already incorporated as inputs to a variety 
of LCMs that rely on statistical approaches to allocate the land implications of 
these changes spatially (e.g., Bierwagen et al. 2010), endogenizing these changes 
in longer-term structural models would permit a better representation of complex 
dynamics and feedbacks between land use and livelihoods. 

Remotely sensed data are being used in new ways to generate socioeconomic 
information, such as the use of the nighttime lights product to estimate variables 
related to energy consumption (Zhao et al., 2012; Kiran Chand et al., 2009; 
Townsend and Bruce, 2010; De Zouza Filho et al., 2004), and economic activity 
(Chen and Nordhaus, 2011; Henderson et al., 2012). By providing a means to 
estimate key socioeconomic variables in spatially and temporally explicit ways, 
these new analyses provide a basis for new approaches to parameterizing LCMs.  
For example, data on energy use or economic activity could be used to better 
represent a diversity of livelihoods and land-use strategies, which could convert 
to better representations of how and where land is likely to change.

The growth of small Earth observation sensors is another important devel-
opment in remote sensing. The constellation of newer and smaller satellite and 
airborne platforms includes many from private companies and private-public 
partnerships such as Specim hyperspectral airborne sensors (Eagle, Hawk, Owl, 
and Dual) from Finland, Itres Compact Airborne Spectrographic Imager family 
of sensors from Canada, and Proba-1 from the European Space Agency, to name 
only a few. Hyperspectral sensors provide the opportunity to develop richer bio-
physical attributes of the land surface that could provide new measurement inputs 
to LCMs. For example, because these sensors are sensitive to canopy chlorophyll 
and nitrogen (e.g., Ebbers et al 2002; Kaye et al. 2005), it may be possible to use 
them to infer information about variations in land management behaviors, which 
are hard to measure.  Some of these smaller satellites are configured for specific 
applications in specific regions. For example, the Disaster Monitor Constellation 
of small and low-cost Earth observation sensors developed by Surrey Satellite 
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Technology Limited in the United Kingdom can be used for land monitoring at 
high spatial resolutions, which include NigeriaSat-1, NigeriaSat-2, NigeriaSat-
X, Beijing-1, and UK-DMC-1, among others. The Advanced SCATterometer 
onboard the Metop satellite is a follow-on to the European Remote Sensing scat-
terometers and provides a soil moisture product at coarse spatial resolutions (25 
and 50 km) and at nearly daily repeat cycles (Brocca et al., 2010). Soil moisture 
retrieved in this way could be used as an input to LCMs, for example to help 
parameterize a model that includes decision to irrigate as one of its processes. 

Integration of Heterogeneous Data Sources

An important challenge to making the most of remotely sensed data for 
use within LCMs is to integrate them with a variety of heterogeneous data sets. 
Land change information at a variety of spatial and temporal resolutions can be 
integrated with socioeconomic and biogeophysical data for coupling of LCMs 
and other types of models such as models of climate change, ecosystem services 
and biodiversity, energy use, and urbanization. There is also a need to go beyond 
LULC in LCMs and incorporate other dimensions of land. As discussed above, 
new remote sensing sensors and approaches are showing promise in better retriev-
ing land-cover dynamics, land-use variables like intensity, biophysical variables 
like plant nutrient contents and soil moisture.  Data fusion approaches have 
shown promise for these purposes (Lunetta et al. 1998; Sun et al. 2003; Mutlu et 
al. 2008). Other variables, including land function, land use density, land tenure, 
land management, and land value are difficult to characterize on the basis of 
remote sensing data alone. Land function includes the provision of goods and 
services related to the intended land use as well as benefits from aesthetic values, 
cultural heritage, and preservation of biodiversity. Information on land use den-
sity, though it can be estimated from nighttime lights images, might benefit from 
additional data about residences, buildings, or employment. LCMs increasingly 
need to represent information and processes about land management decisions, 
often at high temporal resolutions, such as crop types, irrigation, fertilizers, and 
urban development patterns. While soil moisture and canopy nutrients can help, 
data on land management decisions (e.g., permitting new urban development) and 
policies (e.g., zoning and stormwater incentives) need to be available at differ-
ent administrative levels (e.g., local, county, and regional land use plans). Poor 
availability of spatially explicit ecological data, such as crop pollination, timber 
production, and land-based carbon resources, constrains assessments based on 
ecosystem service models like InVEST. In all of these cases data from remote 
sensing are useful, but insufficient sources that need to be combined with other 
available data. Combining and leveraging various data sources to create hybrid 
data products that draw together remotely sensed, spatial, and social data can 
create new types of information products.

To support further developments in the use of remotely sensed data to  
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estimate aspects of the land surface that have greater relevance to assessment 
of both its human and ecological value, and to make these data available for 
adaptation within LCMs, ongoing in situ observations and survey programs are 
needed on all of these topics. Additionally, though data on land value and land 
ownership cannot be collected through remote sensing, they are often available 
locally in the developed world but more inconsistently available in the develop-
ing world. Unfortunately, no consistent program for compiling the data exists, 
so the research community also lacks good, reliable access to data on land value 
and land ownership (i.e., cadastral data). Opportunities for compiling land parcel 
data have been outlined elsewhere (NRC, 2007), and data on land values, based 
on transactions, can be collected and compiled (e.g., Zillow and Trulia), but these 
data remain an expensive component of many LCM projects. Understanding and 
communicating the limits of data availability and their implications are important 
throughout the modeling process.

Data on Land-Change Actors

Land change is the cumulative result of the decisions and interactions of a 
variety of actors—households, firms, landowners, and policy makers at local, 
regional, and global levels. Current models, as well as their theoretical and empir-
ical bases, are limited to some extent by their use of (a) aggregate data that miss 
important sources of spatial heterogeneity; (b) cross-sectional data that prohibit 
causal identification; and (c) a dearth of microdata on the characteristics, prefer-
ences, and decision-making processes of households, firms, policy makers, and 
other agents whose actions determine land change outcomes. These limitations 
are especially marked for the process-based approaches such as structural eco-
nomic and agent-based. Better data on these actors and their beliefs, preferences, 
and behaviors is critical to improving the theoretical underpinnings, structural 
specifications, the predictive ability, and the usefulness of LCMs in evaluating the 
consequences of alternative policies. These data should be spatially explicit and 
available for multiple points in time so that they can be used to specify dynamic 
spatial models of land change processes.

Despite the increasing availability of spatial data on land change, data on 
the individuals whose choices and interactions generate observed land changes 
are often missing. For example, though parcel-level property tax data have been 
increasingly used in LCMs, these data omit information about households, for 
example, income, race, presence of children, education, and other variables 
that influence household location choices. Researchers have compensated by 
combining the parcel data with data from the U.S. Census Bureau on household 
characteristics, but these data are only publicly available at a more aggregated 
spatial scale (block group or tract) and traditionally were available only every 
10 years. Since 2006, the U.S. Census Bureau has published the American Com-
munity Survey, which provides data on a subset of household characteristics for 
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a sample of households in the United States. The data are produced annually to 
represent an aggregation of observations of a period of years, which depends on 
the spatial scale of observations. Although this approach adds temporal dynamics, 
it is achieved through temporal averaging which limits its usefulness. Creating 
data sets that contain spatial data on individual characteristics and behaviors over 
time will require considerably more effort and resources. 

In the absence of a systematic and purposeful data-collection effort on land 
change actors, many ad hoc approaches to generating these data have emerged. 
Several of these approaches are quite promising. The approaches that have been 
used to collect data on agent characteristics, decision processes, and behaviors 
represented in agent-based models include surveys, field and laboratory experi-
ments, participant observation, role-playing games, and inference with statistical 
methods (Robinson et al., 2007), most of which involve significant expense. An 
innovative example of the latter is the use of restricted microdata that are avail-
able from some government agencies. For example, the U.S. Census Bureau oper-
ates 14 secure research data centers located in different parts of the United States 
that provide opportunities to work with restricted-use microdata on households 
and firms. Restricted access to confidential data on farmers and farming opera-
tions in the United States is available through the U.S. Department of Agriculture 
(USDA). These data permit new research questions regarding the underlying 
economic or behavioral process to be studied by providing additional information 
about individual characteristics and location. 

For example, Kirwan (2009) used individual data on farms and farm rental 
rates to identify the effect of government agricultural subsidies on farm rental 
rates. The individual-level farm data are critical to identifying the causal effect, 
which otherwise would be impossible to separate from correlated unobserved 
variables using more aggregate data. Finally, there are examples of innovative 
models estimated with microdata from a survey. For example, Conley and Udry 
(2010) modeled the role of technology spillovers in influencing agricultural 
production decisions in rural Ghana. These authors collected intricate details 
about the neighbors with whom pineapple farmers in Ghana communicate and 
what they share with each other about their production practices. They then used 
these microdata on social interactions to estimate a microeconomic model of 
technology spillovers based on social learning. Game-based approaches, partici-
patory mapping, and participant observation approaches support more deductive 
approaches that avoid the major assumptions about human behavior involved in 
statistical modeling (e.g., Castella et al., 2005). These approaches are generally 
applied for smaller areas and may be challenging to scale to larger areas.

Making Systematic Land Use Observations

In addition to consistency and continuity provided by remotely sensed obser-
vations, the reliance of LCMs on heterogeneous data, many of which are not 
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completely observable remotely, means that a healthy LCM enterprise relies on 
robust and ongoing on-the-ground observations of multiple dimensions of natural 
and human systems. Because survey programs on land characteristics, like those 
on water, are divided among multiple agencies and geographies, integrating data 
for understanding and predicting changes in the land system can be particularly 
challenging. For example, in the United States, data on forests are collected by 
the USDA Forest Service through its Forest Inventory and Assessment, data 
on farms through the Census of Agriculture, data on demographics through the 
Census Bureau, and so on. All agencies use different sampling schemes, temporal 
return intervals, and geographic aggregation units.

The Natural Resources Inventory (NRI), developed and implemented by 
the Natural Resources Conservation Service, has been the only national-scale, 
repeated sample of land use, but it was not designed or intended to serve that 
purpose. Nonetheless, important research on the drivers of land use change has 
resulted from that program (Lubowski et al., 2006). The loss of continuity in fine-
scale NRI land use data is a setback for forecasting land change in the United 
States at fine scales. 

For these reasons, the committee obtained information from the community 
about the potential need for a national land observatory, or a national survey 
of land resources. The idea was raised at one public meeting, where it was 
discussed constructively by participants. We followed this discussion with an 
informal questionnaire that reached members of the LCM community. Over 100 
responses to the questionnaire revealed support and interest in using data from 
such a survey. Although beyond the scope of this report to outline the design for 
such a survey, we conclude that a program to collect spatially referenced data 
with linked records on land patches, land parcels, and land users sampled through 
a purposive design and maintained through repeated waves over time presents a 
significant opportunity for the LCM community.  Such a program would facilitate 
greater understanding of land change processes, would allow hypotheses to be 
tested, and would  improve our predictive ability.

OPPORTUNITIES IN CYBERINFRASTRUCTURE

A number of the challenges noted above have the potential to find solutions 
through contemporary advances in cyberinfrastructure. In the following sections, 
two areas are described in which cyberinfrastructure advances represent potential 
opportunities for land change modeling. 

Crowd Sourcing and Distributed Data Mining

A key data need for better construction, calibration, and validation of struc-
tural models is in the area of microdata on agents, especially for process-based 
LCMs. The ability to collect and analyze very large amounts of data on individual 
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behaviors, much of which is referenced in time and space, has grown tremen-
dously over the past decade. Examples include point-of-sales data on individual 
purchases by consumers, location-aware technologies that track individuals in 
space and time, and Internet activities that reveal social networks. Additionally, 
computationally and labor-intensive processes are increasingly being conducted 
by distributed groups, assisted by the increases in the computational power 
of computers alongside high-speed Internet access. Lazer et al. (2009) viewed 
this development as an emerging computational social science that is based on 
researchers’ ability to harness these data. However, as Miller (2010) discusses, the 
privacy and propriety issues are not trivial and are mostly unresolved. 

Additionally, the LCM community could benefit from  distributed data col-
lection facilitated by Global Positioning System– and Internet-enabled mobile 
devices. A number of recent projects have successfully combined data from 
traditional sources with geospatial and other data that are crowd sourced from 
a relevant population and illustrate how data-collection efforts might be struc-
tured to facilitate model parameterization. Citizen-contributed data supported the 
implementation of Ushahidi in Haiti following the 2010 earthquake, which helped 
plot at least 4,000 distinct disaster events (Zook et al., 2012), where universities 
and nonprofit agencies played important roles in disaster response. Information 
was provided by volunteers and aggregated for visualization, use, and analysis. 
Micropayments for microtasks, following on the model of Amazon’s Mechanical 
Turk, have also shown promise as a means for data collection (Kittur et al., 2008), 
including social survey data. These data could be used as inputs on the heteroge-
neity of actors in agent-based approaches. Statistical and econometric approaches 
to parameterizing the behavior of land-use actors could take advantage of these 
data, but issues related to uncertainty in these data require further investigation 
(Flanagin et al. 2008). Given the potential for large volumes in these data, and 
problems associated with unknown and variable data quality, data mining and 
machine learning approaches may be the most promising approaches for extract-
ing model inputs from them. Extensible data tools on mobile devices have also 
been used to enhance the participatory nature of efforts to collect microdata on 
agents. Google Maps, and other cloud-based mapping technologies, are already 
being used in environmental monitoring projects to create geospatial data sets 
that are coproduced by the public and scientists (Connors et al., 2012; Goodchild, 
2007). Examples in international agriculture include the Avaaj Otalo study, which 
used an interactive voice forum for rural farmers (Patel et al., 2010); another study 
used mobile phones for collecting information at various points in the coffee 
production process for small farmers (Schwartzman and Parikh, 2007); and the 
Digital Green project delivered targeted information to marginal farmers through 
participatory networks (Gandhi et al., 2009). Combining these data-collection 
approaches with LCMs has the potential to improve both availability of microdata 
and the degree to which findings from LCM projects make their way to a diversity 
of participants in the land system.
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High-Performance Computing

A second opportunity for which cyberinfrastructure developments show 
promise is the increasing ability to meet the computational demands of some 
of the modeling approaches outlined above. Given increasing data volumes and 
model interactions that might be expected for some modeling applications based 
on the opportunities outlined above, developments in processors, data storage, 
and network bandwidth all offer important improvements.  For example, coupling 
land change and environmental process models at high resolutions provides 
opportunities to explicitly incorporate information on fine-scale patch or parcel 
adjacency, connectivity, and shape, which regional to global-scale models often 
leave out or attempt to parameterize as subgrid-scale phenomena. Models that 
incorporate finer-scale spatial interactions over larger spatial domains would 
provide benefit to regional and global-scale models. The advent of spatially dis-
tributed models in the environmental sciences has both required higher-resolution 
information to resolve shape, adjacency, or connectivity, and developed a greater 
demand for this information, including LULC. Distributed data storage, which 
can be used to maintain archives of large longitudinal data sets, together with 
increased network speeds facilitates these kinds of model developments and 
model couplings.  These developments will surely require that taking advantage 
of these opportunities will require new approaches to engineering and implement-
ing LCMs. In another example, the integration of optimization approaches into 
land change modeling to represent agent decision making and to develop optimal 
land patterns and functions, particularly at finer resolutions and over heteroge-
neous areas, requires use of both advanced computational tools and new heuristic 
approaches to improve their computational feasibility (Batty, 2008; Wright and 
Wang, 2011).

Advances in processing power are increasingly based on deployment of 
multiple processing cores and increasing numbers of processors. Distributed 
computing takes advantage of processors that are linked across networks and 
present opportunities for distributing modeling and simulation tasks. New archi-
tectures like graphic processing units (GPUs) also offer enhanced capacity. Tak-
ing advantage of this enhanced computing power requires that models be written 
to take advantage of parallel processing, that is, the partitioning of computational 
tasks among multiple processors running simultaneously. When significant data 
communication is required between parallel processing tasks, the advantages of 
parallel processing can be reduced and careful design of the parallel algorithm is 
required. For this reason, some modeling approaches and problems will be able to 
benefit from these developments in computing more than others. Li et al. (2012) 
report a 30-fold increase in processing speed for a cellular automaton model run-
ning on a GPU versus a traditionally developed model. Tang and Bennett (2011) 
were also able to achieve between 10 and 40 times the processing speed by run-
ning an agent-based model of opinion diffusion on a GPU.
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OPPORTUNITIES FOR INFRASTRUCTURE TO SUPPORT LAND 
CHANGE MODELING

Progress in land change modeling is partially impeded by the continued 
reinvention of modeling environments, frameworks, and platforms by various 
research groups. Below are some specific findings regarding research infra-
structure that could facilitate solutions to overcome this barrier. Specifically, we 
identify three kinds of infrastructure investments that would facilitate integration, 
comparison, and synergy across the community of land change modelers: model 
infrastructure, data infrastructure, and community governance.

The community infrastructure envisioned for land change modeling might 
be modeled on existing structures developed within other fields. For example, 
the atmospheric modeling community has developed a community infrastructure 
for building, providing data inputs to, comparing, validating, and learning from 
atmospheric and related models aimed at global change science. This has evolved 
as the Community Earth System Modeling community, and it includes a number 
of working groups focused on specific aspects of the Earth system (http://www.
cesm.ucar.edu/). One working group, focused on the “Community Land Model,” 
is developing modeling capabilities that focus on “ecological climatology” in 
order to better link physical, chemical, and biological aspects of the land surface 
to atmospheric processes (http://www.cgd.ucar.edu/tss/clm/). The effort does 
not include any of the social and economic processes needed to model land use 
dynamics, but represents a potential model for infrastructure development and 
governance for future community efforts in land change modeling. This includes 
regular open meetings, a community model development approach, model inter-
comparison activities, and  compilation of data sets and activities for model 
validation. The heterogeneity of approaches to LCM outlined in this report may 
require a structure that accommodates a wider range of applications.  These issues 
are explored below.

Model and Software Infrastructure

A model infrastructure would address the need for models, model code, and 
model platforms that can be used to avoid duplication of effort among various 
constituents in the land change modeling community. Such an infrastructure 
should be open source to permit contributions from and availability to partici-
pants from throughout the scientific community. Some of this infrastructure exists 
in various forms already, as existing open-source platforms and models. The 
challenge for the LCM community is assembling this existing infrastructure and 
building on it in such a way that it can serve as a platform for (a) further advanc-
ing fundamental understanding and representation of land change processes and 
(b) integration with a wide range of biophysical and socioeconomic models for 
evaluating the impacts of land change. 

Advancing Land Change Modeling: Opportunities and Research Requirements

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/18385


94	 Advancing Land Change Modeling

Existing open-source models have served the community well and have 
allowed scientists to include land change dynamics in studies across various fields 
and applications. For example, SLEUTH is a cellular model that has been used 
extensively in studies of urbanization (Clarke and Gaydos, 1988; Clarke et al., 
1997; Herold et al., 2003) and its effects on urban landcape dynamics (Berling-
Wolff and Wu, 2004; Syphard et al., 2005) and watershed impacts (Claggett et al., 
2004; Jantz et al., 2010). CLUE, also a cellular model, has been used widely to 
generate land change scenarios and impact assessments at regional scales (Less-
chen et al., 2007; Veldkamp and Fresco, 1996; Verburg et al., 2006; Wassenaar 
et al., 2007). UrbanSIM, a microsimulation model that is similar in character to 
agent-based models, has been used in a number of cities to develop forecasts of 
urban development, travel demand, and environmental impacts (Waddell, 2002) 
and has been used in Seattle (Waddell et al., 2007); Paris (de Palma et al., 2007); 
Detroit; Durham, North Carolina; Honolulu; and Houston, among others. Use 
of existing models is attractive at least partially because of the time required to 
build models. A number of challenges with using existing models include (a) 
poor understanding on the part of the user of the underlying mechanisms and 
parameters, (b) related to the first, inappropriate application of a model in situa-
tions or at scales for which it is not suited, and (c) difficulties of understanding 
code structures and details, which can make modifications very time consuming 
to make. Problems (a) and (c) above are made more acute when models are 
developed with proprietary processes and codes, because users have a harder time 
assessing and adapting these models.

To facilitate more expeditious construction of models and greater ease of 
model modification and integration, a number of open-source modeling environ-
ments have been developed that are either intended specifically for land change 
modeling or more general modeling environments that are suitable for land 
change modeling applications. In the former category, Dinamica EGO provides 
an environment for graphical construction of scripts that implement cellular 
models based on a number of primitive operations, referred to as functors (www.
csr.ufmg.br/dinamica/). While the framework has the more general applicability 
of model builders within GIS packages (like ArcGIS and Idrisi), it has been most 
commonly applied to land change questions (e.g., Soares-Filho et al., 2006, 2010; 
Thapa and Murayama, 2011). The Open Platform for Urban Simulation (OPUS) 
was developed by the team that produced UrbanSim as a more general model 
development environment for building and testing urban models (Waddell et 
al., 2005; www.urbansim.org/downloads/manual/dev-version/opus-userguide/). 
OPUS uses Python to access object codes that can be used to build more complex 
models. 

A wide variety of other general modeling environments have been used for 
building land change models. For agent-based models, the earliest open-source 
tool was Swarm (www.swarm.org), which required models to be developed in 
the objective-C language. Repast (repast.sourceforge.net) offers similar software 
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functions to Swarm, but the models can be developed in the more common Java 
language, C++, or Python. Among many other agent-based modeling platforms 
are NetLogo (http://ccl.northwestern.edu/netlogo/), in which models are devel-
oped within its own high-level programming language, MASON (http://cs.gmu.
edu/~eclab/projects/mason/) based on Java, and Cormas (http://cormas.cirad.fr/
indexeng.htm) based on Smalltalk. Each of these environments provides software 
tools that can be incorporated into new agent-based models (in the form of pro-
grams) that can be used to represent model components, control model function, 
and evaluate and visualize model output. Because cells can be treated as agents 
in these model environments, cellular models can also be implemented using 
these platforms. The Global Trade and Analysis Project (GTAP) has served as an 
important platform for developing a variety of computable general equilibrium 
models, including those related to land use change (www.gtap.agecon.purdue.
edu). While the model platform itself is not open source, the GTAP database that 
is the core of the project has been developed through open-source institutional 
arrangements. Econometric models are generally developed with software plat-
forms aimed at statistical analysis. R is an important open-source platform for 
development of statistical models, including econometric models (http://www.r-
project.org/). R provides tools for data calculation, statistical estimation, and 
visualization that are accessed through the R scripting language.

Infrastructure to support future developments in land change modeling will 
surely need to build on these existing resources, but efforts at coordination toward 
the needs of land change modeling will be beneficial. Such coordinated efforts 
should aim toward identifying the various constituent processes of land change 
and developing software components that represent those constituent processes. 
Formal descriptions of such components can become an important step toward 
combining parts of models and developing modules that can be changed or 
interoperated. For example, Parker et al. (2008) described a “conceptual design 
pattern” for agent-based models of land use change that serves as an example 
of the kind of general model descriptive framework that can be envisioned and 
implemented. This conceptual design pattern describes land change processes in 
six conceptual design considerations that might define modules of any given land 
change model: information/data, interfaces to other models, demographics, land 
use decisions, land exchange, and model operation. 

Apart from attempts to develop modules that can interact within a common 
framework, the development of formal model descriptions can help with com-
munication and replication of existing models or model components. Just as 
standards for descriptions of data have been critical to the advance of data sharing 
and interoperability, descriptions of models are equally important, but they are 
less well developed. A first attempt was made at a metadata content standard for 
computational models (Smith et al., 2001), but this standard has not been further 
developed. The Overview, Design concepts and Details protocol was proposed 
(Grimm et al., 2006) for agent-based models and has been widely used within the 
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community of researchers using these models. However, further development of 
such standards and protocols within the land change modeling community could 
help further advances in model development and application.

Data Infrastructure

A data infrastructure would provide access to a common set of data resources 
that are necessary for running and validating models of land change.  The major-
ity of respondents to the committee’s user community questionnaire expressed 
some level of support for such a common set of data resources.  The second 
section of this chapter outlines data sources that are essential to the land change 
modeling enterprise, from historical data on land use and land cover change at 
multiple scales to a variety of demographic, economic, and policy inputs to land 
change models. The challenge of modeling land changes is exacerbated by the 
diversity of data requirements and the need for these data to be collected over 
time. Although a variety of data sets exist to support these needs, further devel-
opments in improving spatial and temporal resolutions and better representing 
changes over time would be facilitated by a formal data infrastructure to support 
land change modeling. 

Existing resources include a variety of national and regional agencies sup-
porting data on land cover change, often provided by space agencies as products 
from satellite image programs. For example, the National Aeronautics and Space 
Administration (NASA) supports the “Global Land Cover Facility” as a provider 
of image data and derived land cover products (http://glcf.umiacs.umd.edu/data/). 
GlobCover is a product provided as a service of the European Space Agency in 
conjunction with the United Nations Food and Agriculture Organisation (http://
due.esrin.esa.int/prjs/prjs68.php). Aside from satellite image data that can be used 
to collect land cover information consistently over regional to global extents, 
existing data at subnational and local levels is more heterogeneous and, therefore, 
difficult to compile in comparable formats. Some efforts have been made to do so 
for land and demographic data sets. For example, global historical land cover data 
(1700-2000) have been compiled through a number of research projects that have 
been aimed primarily at supporting global Earth system dynamics models with 
dynamic land cover information (Hurtt et al., 2006; Klein Goldewijk and Raman-
kutty, 2004). Furthermore, the Center for International Earth Science Informa-
tion Network, supported through NASA’s Socioeconomic Data and Applications 
Center, compiles and provides access to a variety of global socioeconomic data 
that can support land change model development. Compiling comparable data 
from local-level cadastral, land use, survey, and other data sets is an important 
challenge for the land change modeling community.

Future infrastructure developments need to further support compilation, 
curation, and comparison of the heterogeneous data sources for input to, and 
parameterization and validation of LCMs. This component of the infrastructure 
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for land change modeling requires open access to, documentation of, and struc-
tured organization of heterogeneous data for land change science. A couple of 
existing data infrastructure models are worth exploring, and also connecting to, 
as they include data to which the land change modeling community might rea-
sonably expect to connect. GEON serves as a set of software and data resources 
that supports data sharing and integration in the Earth sciences communities 
and has focused on digital elevation, geophysical, and bore hole and well data 
(www.geongrid.org). Early stages of this network required development of com-
mon semantic frameworks for describing and modeling data with heterogeneous 
semantic and spatial definitions and scales, and the links between them (e.g., 
Vaccari et al., 2009).  The Consortium of Universities for the Advancement of 
Hydrologic Science has developed a hydrological information system that links 
together data on the hydrologic environment (his.cuahsi.org) and was developed 
through a similar data publishing and integration process (e.g., Horsburgh et 
al., 2009). Similar to both of these projects, a data infrastructure to support land 
change modeling would need to recognize the different thematic data that are 
necessary; recognize their heterogeneous semantic, spatial, and temporal refer-
encing; and develop a structured system for access and integration in the form of 
a global integrated land information system. 

A number of promising developments in this direction might be helpful 
to the development of such an integrated system. Examples include, first, the 
recent support by the National Science Foundation for the Global Collabora-
tion Engine, which aims to facilitate integration of data and models working at 
various scales specifically for the land change modeling community (ecotope.
org/projects/globe). The project aims to provide global data that can be used to 
enhance comparability among diverse case studies, which are a common mode of 
data analysis within land change science. Second, the TerraPopulus project aims 
to integrate data on population, land cover, climate, and land use across the globe 
and over time. The population data include commonly used aggregated microdata 
on individuals, which are compiled as part of the IPUMS-International project 
(www.terrapop.org). Finally, the Geoshare project (https://geoshareproject.org/) 
aims to coordinate global data relevant to economic analysis of global agriculture 
and land use systems. Each of these projects is still new at the time of this writ-
ing, so how they develop to support land change modeling has yet to be proven. 

Community Modeling and Governance

A community modeling and governance infrastructure that supports develop-
ments in land change modeling would provide mechanisms for decision making 
and advancement of modeling capabilities within a broad community and toward 
specific, achievable goals and capabilities. A community of land change modelers 
could settle on a series of specific goals and endpoints and work together with 
input from that broad community to move modeling and data capabilities forward 
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in ways similar to those outlined in the previous two sections.  The majority of 
respondents to the committee’s informal user community questionnaire either 
supported or saw value in such community models.

Two existing structures serve as potential models for how such a community 
structure might work. The first is that used for the Community Earth System 
Model (CESM), which currently has a sub-component called the Community 
Land Model, described above. This model effort is carried out by a group of 
researchers who seek funding on their own to provide advancements within a 
democratically governed framework, organized by working groups, to make 
changes to the model. All changes must be freely available with open code and 
documentation, which is the responsibility of the developer. For example, a new 
working group on a community land use model could decide to further develop 
the details of the conceptual design pattern outlined by Parker et al. (2008), or 
some other framework, that can then serve as a basis for development of plug-
and-play land change modules that could be used to construct a variety of dif-
ferent land change models that are linked to a variety of other environmental 
models. The newly formed Societal Dimensions Working Group with the CESM 
framework could be an institutional location for the work, or some subset of it.

A second structure is that offered to the community of modelers applying 
agent-based modeling to understand socioecological systems in the form of the 
Network for Computation Modeling for SocioEcological Science, which main-
tains openabm.org as a platform for sharing open models and resources and is 
working on developing and furthering protocols for model documentation and 
development. A much looser confederation of modelers, this structure provides 
a rule-based framework within which modelers can contribute a wide range of 
models and around which specific outcomes or goals do not need to be agreed 
upon.

MODEL EVALUATION

There are a variety of practices that can enhance land change modeling to 
make it more scientifically rigorous and useful in application. Some of these 
practices are established but not always followed, whereas others require more 
research to test and establish. A set of reviews and standards have been produced 
of best practices for environmental modeling (e.g., Crout et al., 2008; EPA, 
2009). Here we summarize best practices in the evaluation of LCMs in four 
broad categories: sources of uncertainty, sensitivity analysis, pattern validation, 
and structural validation.

Sources of Uncertainty

Uncertainty in LCMs can come from a variety of different sources. The data 
concerning inputs and values of model parameters usually have some level of 
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error. These data describe the boundary conditions (e.g., initial land cover) and 
exogenous dynamics (e.g., price fluctuations). Additionally, the model structure 
itself will have some uncertainty associated with it, including the processes 
represented in the model, their interactions, and how they are represented math-
ematically or algorithmically. The uncertainty in these aspects of the model 
can stem from both incomplete information about their historical states, due to 
uncertainties or unavailability of data, and variations in their states over some 
observation period (i.e., nonstationarity in the process). Substantial uncertainty 
in forecasting future states is often due to nonstationarity in processes. Non-
stationarity may exist due to changes in exogenous conditions that cannot be 
endogenized within the model, and shifts in processes that are poorly understood 
(e.g., changes in human decision making due to developing cultural attitudes or 
preferences). Although quantification of model uncertainties provides important 
evidence about model efficacy, these uncertainties must be placed in the context 
of an understanding of the effects of nonstationarity in the process on the predic-
tive ability of any given model. 

There are as many possible measures of stationarity as there are measures 
of change. A process might be stationary according to one measurement but not 
according to another measurement. It is essential to understand whether a pro-
cess is stationary according to particular measurements when LCMs are used to 
extrapolate historic trends. It is possible that the land change process during the 
historic calibration interval is different than a more recent time interval that is 
used for validation in terms of the structure of the process or the magnitude of 
various drivers. If this is the case, an extrapolation model will not have a high 
measurement of validity. Thus, it is necessary to understand the stationarity in 
the process before engaging deeply in empirical-based modeling. Many modeling 
exercises begin by creating a business-as-usual scenario, which is a scenario that 
extrapolates historic trends. However, if historic trends have been nonstationary, 
then historic business has not been usual, in which case it makes little sense to 
construct a business-as-usual scenario. 

Sensitivity Analysis

Sensitivity analysis is an established procedure whereby the investigator 
examines the variation in model output due to specific amounts of variation in 
model input, parameter values, or structure. Sensitivity analysis can be useful 
to evaluate the importance of uncertainty arising from multiple sources and to 
understand better the situations in which the modeled system may show impor-
tant changes in behavior. Evaluation of the sensitivity of a model to one or more 
parameters can be evaluated by perturbing a parameter’s value over a specific 
range, thus creating a range of outputs. The rate of change of results relative to 
inputs provides an assessment of sensitivity. Sensitivity will vary both by param-
eter and by the initial value of the parameter that is perturbed, such that sensitivity 
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may be a local property. Extension to two or more parameters is accomplished in 
a similar manner, by simultaneously perturbing multiple parameters, and facili-
tates evaluation of interaction effects of the parameters (Ligmann-Zielinska and 
Jankowski, 2008).

A similar approach can be accomplished by perturbing values of one or more 
data inputs to establish sensitivity of the model to the range of exogenous forc-
ing information, or to initial conditions. Additionally, sensitivity analysis can be 
applied to model structure, both for cases where separate models will be evalu-
ated and where there are options for different process representations in the same 
model. Because differences in structural or dynamic characteristics of a model 
are important elements of sensitivity, comparison of single-map outputs may be 
inadequate for evaluating model sensitivity, and evaluations may need to be made 
over the entire course of a model run (Ligmann-Zielinska and Sun, 2010) or in 
ways that compare across multiple runs of the same model (Brown et al., 2005).

	 It is important to perform sensitivity analysis in a manner that relates 
to the particular research question because models can make many minor or 
self-cancelling errors that are ultimately not important for a model’s particular 
purpose. For example, in a model whose purpose is to simulate carbon dioxide 
emissions as a result of deforestation, errors of omission in predicting land change 
that balance with errors of commission can be ignored as not important in terms 
of the goal of estimating total carbon emissions. In one study, a comparison of 
seven different carbon maps indicated that uncertainty in the quantity of carbon 
is much more important than uncertainty in how the land change model simulates 
the spatial allocation of deforestation (Gutierrez-Velez and Pontius, 2012).

Model selection sometimes makes a large difference in results, but some-
times model selection is not the most important factor. For example, a comparison 
of the predictive accuracy of the output maps from two models, cellular automata/
Markov versus Geomod, found that the variation in results between models was 
less than the variation within a model due to parameter selection. 

Best-practice modeling should result in models with a level of complexity 
no greater than what is required for a specific project or application. Models 
that have too many parameters and assumptions are difficult to calibrate and 
validate. Sensitivity analysis offers one method to prioritize research and deter-
mine the most important parts of the model to develop. If the results of a LCM 
are insensitive to certain processes or parameters, then the model or efforts to 
determine parameter values can be simplified. This allows prioritization of effort 
and resources toward more sensitive processes, parameters, and input data. Thus, 
sensitivity analysis can facilitate the design of research to simplify the model and 
to focus effort on the most sensitive parts of a model. 

Advancing Land Change Modeling: Opportunities and Research Requirements

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/18385


IMPROVING LAND CHANGE MODELING	 101

Pattern Validation

Evaluation of model performance often requires comparison of model simu-
lations with observed outcomes. Simulations from LCMs usually produce maps 
of land use, land cover, or some other land-related variable. A standard approach 
to evaluating the simulation of a land change model is to develop the model 
through calibration with historical data, for example using two or more maps of 
land cover during the calibration time interval. The calibrated model then simu-
lates a validation to another time point for which reference data are available. 
The map of simulated change is then compared with the map of actual reference 
change during the validation interval to evaluate the differences based on some 
set of metrics. This comparison requires three maps: the reference map at the 
start time of the simulation, the reference map at the end time of the simulation, 
and the simulation map at the end time of the simulation. This three-map analysis 
shows how the simulated change compares to the reference change by revealing 
five components: (1) reference change simulated correctly as change (i.e., hits), 
(2) reference change simulated incorrectly as persistence (i.e., misses), (3) refer-
ence persistence simulated incorrectly as change (i.e., false alarms), (4) reference 
persistence simulated correctly as persistence (i.e., correct rejections), and (5) 
reference change simulated incorrectly as change to the wrong gaining category 
(i.e., wrong hits) (Pontius et al., 2011). The relative value of each of these five 
components can be used to compute quantity disagreement and allocation dis-
agreement (Pontius and Millones, 2011). 

The three-map comparison and its five components reveal the accuracy of 
the land change model versus a null model that predicts complete persistence. 
Where the land change model generates a miss, the null model would also pro-
duce a miss. Where the land change model generates a false alarm, the null model 
would produce a correct rejection. Where the land change model obtains a hit or 
a wrong hit, the null model would produce a miss. Thus, if the modeler computes 
the five components of the three-map comparison, the modeler has produced 
a comparison with a null model. A frequent blunder is to compute a two-map 
comparison between the reference map at the end time of the simulation and 
the simulation map at the end time of the simulation. This two-map comparison 
cannot distinguish between correctly simulated change (i.e., hits) and correctly 
simulated persistence (i.e., correct rejections).

After the modeler sees the map of the five components, there are a variety of 
more detailed ways that the modeler can compare the pattern of simulated change 
versus the pattern of reference change. There are a plethora of pattern metrics 
that consider the spatial distribution of the patches in the map. Such metrics can 
consider the patches’ numbers, sizes, and shapes. The particular research ques-
tion should dictate whether details concerning the configuration of the patches 
in the map are important. For example, if the application concerns biodiversity 
protection, then it is likely to be important to consider whether forest is in one 
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large patch or several smaller patches. If the goal is to measure the quantity of 
carbon emission, then the configuration of the patches is probably less important. 
It can be tricky to select a metric that is mathematically rigorous, intellectually 
assessable, intuitively interpretable, and practically useful (see Box 3.1). A neces-
sary best practice is to match the measurement of the model with the purpose of 
the modeling exercise for the particular application. This is an area that requires 
more research. 

Whatever metrics the modeler adopts, it is important to use the metrics to 

BOX 3.1 
The Challenge of Selecting a Pattern Metric

Selecting an appropriate pattern metric that can indicate process is a chal-
lenge. Many modelers are interested in measuring the output of maps based on 
the spatial pattern metrics of the maps, such as number of patches. The figure 
below contrasts three cases where we compare the land change between two 
time points. All three cases have one patch of forest at time 1 and demonstrate 
a process where deforestation occurs on the edge between forest and nonfor-
est. However, this single process generates different patterns due to interaction 
between various initial configurations and quantities of change. In this example, 
case A has a different initial configuration than cases B and C, while case C has 
less deforestation than cases A and B. Cases A and C have one forest patch 
at time 2, while case B has two forest patches. This illustrates how the number 
of patches can be sensitive to an interaction between the configuration of the 
initial landscape and the quantity of change.

Time 1 Time 2

Ca
se

 A
Ca

se
 B

Ca
se

 C

Black means Forest
White means Non-Forest

Advancing Land Change Modeling: Opportunities and Research Requirements

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/18385


IMPROVING LAND CHANGE MODELING	 103

compare the output from a land change model to the output from a correspond-
ing naïve model that is applied to the same study site. A naïve model is one that 
is based on a simplistic conceptualization of the land change process and that 
offers a baseline that is easy to understand and implement. For example, a naïve 
model of deforestation could allocate the simulated deforestation on the edges 
of the initial forest patches. Then the output from the naïve simulation could be 
compared to the output from a more complex model. It is important to compare 
the output from a complex model to the output from a naïve model to measure 
whether there is any increase in predictive ability in the more complex model. A 
naïve model might use randomness to allocate change, but researchers frequently 
already know that the process of change is not random; thus, a random model is 
likely to produce an extremely low baseline. A naïve model that is based on one 
simple idea such as proximity to a single feature is likely to generate a much more 
challenging baseline than randomness. For this reason, it can be misleading to use 
metrics, such as kappa, that compare model output to a random pattern (Pontius 
and Millones, 2011). The literature sometimes uses the term neutral model to 
convey the idea of a naïve model that offers a baseline for comparison to a more 
complex model; however, if neutral models are based on randomness, then such 
neutral models are likely to produce an unchallenging baseline. 

If there is no baseline for comparison, then the investigator is frequently 
tempted to use universal standards for model performance, such as defining good 
as greater than eighty-five percent agreement between the simulated map and 
the reference map. Universal standards for model performance are problematic, 
because they are by definition not specific to any particular research question or 
study site. 

The concepts of equifinality and multifinality also need to be considered 
when selecting a metric for model assessment, especially when that metric mea-
sures only the pattern in the output map (Brown et al., 2006). Equifinality is the 
situation where two different processes produce the same result. For example, 
uniform versus highly variable patterns of risk aversion might, in some settings, 
produce identical patterns of agricultural activity. In this situation, it is possible 
that the model uses an incorrect process to produce the correct pattern.

In other cases, a process-based model uses the correct process to generate 
an incorrect pattern. Multifinality is the situation where a single process has the 
ability to generate many different patterns. One possible cause for this phenom-
enon is path dependency, whereby a few initiating events occur due to a poorly 
understood process, and then those events trigger numerous other processes. For 
example, there might be tremendous uncertainty where a corporation will build 
a facility, but then the facility generates urban growth near wherever it is placed. 
Thus, a model can simulate correctly the process of growth that follows the initial 
siting of the facility, but the model realizes that there is uncertainty in the place-
ment of the initial facility. In this situation, a process-based model simulates the 
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correct process, but it might not produce the correct pattern, as measured by a 
particular pattern metric. 

Structural Validation

Models may have predictive accuracy in the sense that they generate pre-
dicted land use patterns that exhibit a close correspondence to the actual land 
use pattern at some point in time. Models can also have process accuracy, which 
Brown et al. (2005) define as consistency between real-world processes and the 
processes by which locations or land use patterns are determined in the model. 
Devising ways of validating model processes remains a challenging task in part 
because the underlying processes that give rise to observed land use patterns 
are themselves not fully observable. In addition, because more than one process 
may generate a qualitatively similar land use pattern, there is not a one-to-one 
mapping between the hypothesized underlying process and the predicted pattern. 
Finally, interactions and other sources of nonlinearity imply that many processes 
related to land changes may be path dependent, in which case small random or 
poorly understood shocks in the process may cause large deviations in observable 
land use–pattern outcomes. The implication is that the underlying process cannot 
be discerned based on the observed patterns and additional information is needed 
to identify the underlying process (Epstein, 2006). 

Process validation may occur at several different levels of modeling. In the 
simplest case, the focus may be on identification of one or more key structural 
parameters of the process. Data over time can be extremely useful in addressing 
this challenge. Panel data techniques commonly used in econometrics permit 
the researcher to control for unobserved spatial heterogeneity, for example, by 
controlling for all spatial dependence so that a causal effect can be identified. 
Robustness checks are a common means of validation, for example, by using an 
alternative identification strategy or a falsification test that can discern spurious 
effects of the data.

Grimm et al. (2005) offer an approach to process validation that makes use of 
comparisons of observed and predicted patterns, like those outlined in the previ-
ous section. However, in their pattern-oriented modeling approach, the emphasis 
is on identifying multiple dimensions of pattern that may be very different from 
one another in character. For example, depending on the goals of the model, the 
different patterns produced by an agent-based model that could be compared with 
data, could include maps of land cover, distributions of income, rates of defores-
tation over time, and numbers of actors engaged in off-farm income. The patterns 
are classified as primary patterns (i.e., those that the model was built to explain) 
and secondary patterns (i.e., those that the model can generate but are second-
ary to its primary purpose). The argument is that the more patterns a model can 
reproduce, and the more disparate those patterns are in character, the more likely 
we are to be able to validate the mechanisms by which the model produces those 
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patterns. This is an indirect approach, but offers promise for structural models 
(like agent-based models) that can produce various types of outcomes.

More challenging is validating the assumptions that are necessary to specify 
a model. For example, models of land development or household locational 
choice are based on maintained assumptions regarding the structure of produc-
ers’ costs or households’ preferences from which the specific functional form of 
the model is derived. Validating these assumptions requires collecting additional 
information, devising strategies to test these maintained assumptions, and quan-
tifying the degree of uncertainty surrounding these assumptions given that they 
are sometimes unverifiable. Kuminoff (2009) provides an example of how the 
maintained assumptions of functional form, preference distributions, and neigh-
borhood delineation (all used in structural econometric models of household 
locational choice) can be assessed in terms of their influence on model results. 
This approach provides a means for quantifying how uncertainty regarding the 
maintained assumptions of the model impacts the model’s predictions by clari-
fying how each assumption influences the model results. Brown et al. (2005) 
proposed a strategy for quantifying the degree of spatial uncertainty that arises 
when processes are path dependent, which limits the model’s predictive accu-
racy. They concluded that it is possible to determine an appropriate level of path 
dependence or stochasticity in the model by comparing results from one model 
across a wide range of models and landscape patterns. More work along these 
lines is needed to validate process-based models and to evaluate the reliability 
of a model’s predictions, which is particularly important for guiding policy. This 
need applies equally to structural and reduced-form economic models as well as 
agent-based models that rely on a number of maintained assumptions about the 
agent bidding and market-interactions processes.
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B

Online Questionnaire

The questionnaire below was developed and used by the committee to gather 
information from key individuals and organizations involved in spatial data infra-
structure development and implementation. A total of 116 respondents, 24 percent 
of whom were from outside the United States, submitted their answers to these 
questions using an online form.

Online Questionnaire: Land Change Modeling

At the request of the U.S. Geological Survey and National Aeronautics and 
Space Administration, the National Research Council is conducting a study to 
review the present status of spatially explicit land change modeling approaches 
and describe future data and research needs so that model outputs can better assist 
the science, policy, and decision-support communities. For a full statement of the 
committee’s task, click here.

Because the committee cannot hear from all the individuals and organiza-
tions that have valuable experience and ideas on this topic, the committee seeks 
your help on the following five questions.

Within the context of land modeling:

1. 	What data products are you using for building, validating, and running 
land change models?
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2. 	What data products do you most need that do not exist or are not 
accessible?

3. 	How might a national sample of land use, land cover, and related data be 
useful to your work?

4. 	Would you participate in a land data clearinghouse?

5. 	Would you participate in a community effort aimed at coordinating devel-
opment and application of land change models?
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