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The Second Strategic Highway  
Research Program

America’s highway system is critical to meeting the mobility and 
economic needs of local communities, regions, and the nation. 
Developments in research and technology—such as advanced 
materials, communications technology, new data collection tech-
nologies, and human factors science—offer a new opportunity 
to improve the safety and reliability of this important national 
resource. Breakthrough resolution of significant transportation  
problems, however, requires concentrated resources over a short 
time frame. Reflecting this need, the second Strategic Highway 
Research Program (SHRP 2) has an intense, large-scale focus, 
integrates multiple fields of research and technology, and is 
fundamentally different from the broad, mission-oriented, 
discipline-based research programs that have been the mainstay 
of the highway research industry for half a century.

The need for SHRP 2 was identified in TRB Special Report 260: 
Strategic Highway Research: Saving Lives, Reducing Congestion, 
Improving Quality of Life, published in 2001 and based on a study  
sponsored by Congress through the Transportation Equity 
Act for the 21st Century (TEA-21). SHRP 2, modeled after the 
first Strategic Highway Research Program, is a focused, time-
constrained, management-driven program designed to comple-
ment existing highway research programs. SHRP 2 focuses on 
applied research in four areas: Safety, to prevent or reduce the 
severity of highway crashes by understanding driver behavior; 
Renewal, to address the aging infrastructure through rapid 
design and construction methods that cause minimal disrup-
tions and produce lasting facilities; Reliability, to reduce con-
gestion through incident reduction, management, response, and 
mitigation; and Capacity, to integrate mobility, economic, envi-
ronmental, and community needs in the planning and designing 
of new transportation capacity.

SHRP 2 was authorized in August 2005 as part of the Safe, 
Accountable, Flexible, Efficient Transportation Equity Act:  
A Legacy for Users (SAFETEA-LU). The program is managed 
by the Transportation Research Board (TRB) on behalf of the 
National Research Council (NRC). SHRP 2 is conducted under 
a memorandum of understanding among the American Associa-
tion of State Highway and Transportation Officials (AASHTO), 
the Federal Highway Administration (FHWA), and the National 
Academy of Sciences, parent organization of TRB and NRC. 
The program provides for competitive, merit-based selection 
of research contractors; independent research project oversight; 
and dissemination of research results.
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The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars 
engaged in scientific and engineering research, dedicated to the furtherance of science and technology and 
to their use for the general welfare. On the authority of the charter granted to it by Congress in 1863, the 
Academy has a mandate that requires it to advise the federal government on scientific and technical matters. 
Dr. Ralph J. Cicerone is president of the National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter of the National Academy 
of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and 
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F o r e w o r d
Walter Diewald, PhD, SHRP 2 Senior Program Officer, Safety

A large component of the safety research undertaken in the second Strategic Highway 
Research Program (SHRP 2) is aimed at reducing injuries and fatalities that result from high-
way crashes. Through a naturalistic driving study (NDS) involving more than 3,000 volunteer 
drivers, SHRP 2 expects to learn more about how individual driver behavior interacts with 
vehicle and roadway characteristics. In anticipation of the large volume of data to be col-
lected during the SHRP 2 NDS, several projects were undertaken to demonstrate that it is 
possible to use existing NDS data and data from other sources to further the understanding 
of the risk factors associated with road crashes. More specifically, the four projects conducted 
under the title Development of Analysis Methods Using Recent Data examined the statistical 
relationship between surrogate measures of collisions (conflicts, critical incidents, near col-
lisions, or roadside encroachment) and actual collisions. This report presents the results of 
one of these projects, undertaken by the Center for Transportation Studies at the University 
of Minnesota.

This report documents the second phase of a two-phase project under SHRP 2 Safety Project 
S01A. The primary objective of this work was to establish an analytic foundation for using 
conflicts and near crashes as surrogate measures. The project introduced a counterfactual 
analytic approach suggesting that a traffic event qualifies as a crash cause under two con-
ditions: (a) both the event and the crash occurred and (b) had the event in question not 
occurred, then the crash also would not have occurred. Data from site-based field studies and 
vehicle studies were used to extend these ideas from a trajectory model to more complicated 
scenarios.

The report introduces an approach to microscopic (i.e., individual event) modeling of crash-
related events, where driver actions, initial speeds, and vehicle locations are treated as inputs 
to a physical model describing vehicle motion. This choice of modeling strategy reflects a 
need for such models if realistic crash processes are to be included in microscopic traffic 
simulation models. The simple trajectory model can be used to estimate features of crash 
and near-crash events—such as driver reaction times, following headways, and deceleration 
rates—from trajectory data produced from a site-based field study. Given sufficiently large 
samples of crash and near-crash events, this method can be used to compile distributions 
for these inputs for use in traffic simulation models. Finally, the report illustrates how a 
trajectory model, together with estimates of input variables, can quantify the degree to 
which a non-crash event could have been a crash event.

The report describes how these ideas were extended to more complicated scenarios by 
using data from both vehicle- and site-based field studies, including data obtained from 
the 100-car vehicle-based field study, data from site-based video on Interstate 94 from the 
Minnesota Traffic Observatory, and site-based radar data from the Cooperative Intersection 
Collision Avoidance Systems (CICAS) intersection in North Carolina.
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This report describes work done during Phase 2 of SHRP 2 Safety Project S01A, Development 
of Analysis Methods Using Recent Data. In the report submitted at the end of Phase 1, three 
research problems were identified on which progress was needed. The first of these was identi-
fication of an appropriate class of structural models describing how crash and near-crash events 
developed, together with analytic tools for fitting these models to data expected from the vehicle-
based and site-based field studies. The second problem involved counterfactual screening of 
supposed near-crash events to determine their similarity to crashes. The third problem involved 
developing plausible models of how drivers select evasive actions as functions of the situations 
in which they find themselves. Solutions to the second and third research problems are contin-
gent on solution of the first, so the bulk of the project team’s effort during Phase 2 has been 
devoted to structural modeling of crash and near-crash events, using data from the 100-car 
vehicle-based field study, from site-based video data collected by the Minnesota Traffic Observa-
tory (MTO), and from site-based Doppler shift data obtained from the Cooperative Intersection 
Collision Avoidance Systems (CICAS) project. The team’s focus has been on crashes and near 
crashes involving more than one vehicle, of the sort that occurs at intersections.

Background

Chapter 1 of this report outlines the context within which this research has taken place. In the 
United States, there are two substantial national efforts related to road traffic safety. The first is 
the development of the first edition of a Highway Safety Manual (HSM). The second is the 
design and execution of the SHRP 2 Safety field studies. The project team points out that it may 
be possible for the data collected in the SHRP 2 field studies to support the development of 
microscopic (i.e., individual event) crash models, which can be incorporated into traffic simu-
lation models to supplement or replace the macroscopic regression methods used in the first 
edition of the HSM. For this to occur, though, it will be necessary to identify and fit plausible 
microscopic models of crash-related events using the SHRP 2 field data. The team illustrates how 
this might be accomplished using a simple braking-to-stop model applied to trajectory data 
extracted from site-based video and then illustrates how once a fitted model is at hand, it is pos-
sible to quantify the expected number of crashes in a set of noncrash events.

Chapter 2 takes up the problem of extending these ideas to more complicated situations, and 
the project team proposes a modeling strategy where driver behavior is treated as a piecewise 
constant sequence of acceleration changes. Given such an acceleration history and initial values 
for a vehicle’s location and speed, it is logical to move toward a system of ordinary differential 
equations to get predicted histories of the vehicle’s speed and position. Fitting such a model then 
involves identifying the appropriate break points in the acceleration profile, the corresponding 
acceleration levels, and the initial conditions that best fit observed trajectory data. The team 

Executive Summary
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illustrates model identification and estimation using speedometer, radar range, and radar range-
rate data for a near-crash event from the 100-car vehicle-based study. The team also illustrates a 
what-if counterfactual analysis where the final deceleration of the following vehicle is varied over 
a range of values, for each of which, other things being equal, the probability that a collision 
would have resulted is computed.

Findings

Chapter 3 describes the project team’s work with data from the 100-car study. Data were obtained 
for 33 crash and near-crash events, each consisting of approximately 30 s of forward video and 
30 s of instrumentation measures at 10 Hz. The instrumentation measures included speeds from 
the instrumented vehicle’s speedometer, range and range rate for objects ahead of the instru-
mented vehicle from its forward radar, accelerometer measures, GPS positions, heading, yaw 
measures, and indicators of brake, accelerator, and turn signal use. After reviewing the data, 
seven of the 33 events were determined to have data sufficient to attempt modeling, and model 
identification, estimation, and goodness-of-fit evaluation using speedometer, range, and range-
rate data are described. Six of the events involved a leading vehicle and a following vehicle decel-
erating in the same lane of traffic, and it was possible to identify plausible acceleration profiles 
for the leading and the following drivers. From these measures, it was then possible to estimate 
the following driver’s reaction time, together with measures describing the situation at the time 
his or her reaction phase began. The team also reconstructed one event involving a swerving 
maneuver by the following driver, where the forward radar data were limited.

Chapter 4 describes work using site-based video data from the University of Minnesota’s 
Beholder system. This is a set of video cameras, computers, and wireless communication equip-
ment positioned to overlook a section of Interstate 94 in downtown Minneapolis. Vehicle posi-
tions, extracted from video recordings and rectified for camera position effects, provided the raw 
data for the analyses. Four rear-end crash events in July–October 2008 were analyzed, with two 
of these events also including trajectories for vehicles not involved in the crash. In each case, it 
was possible to identify plausible acceleration profiles for each of the involved drivers, which in 
turn provided information on reaction times and conditions at the start of the reaction phase.

Chapter 5 describes pilot work using site-based Doppler shift data collected by the University 
of Minnesota’s Intelligent Vehicles Laboratory as part of the CICAS project. This configuration 
consists of a coordinated set of radar units collecting information on the positions and speeds of 
major approach vehicles approaching a two-way-stop controlled intersection, and LIDAR units 
collecting information on the positions of minor approach vehicles. Since the instrumentation 
configuration was designed to support a prototype driver-information system and not to collect 
data on vehicle trajectories, data acquisition and preparation were not as straightforward as with 
the other data sets; but with some data mining and postprocessing, it was possible to identify one 
event suggesting braking on the part of a major approach vehicle in response to minor approach 
crossing. It was then possible to identify and fit plausible acceleration profiles for both drivers.

Chapter 6 presents the conclusions and recommendations for further research.

Conclusions

1.	 At least for situations where direction of travel is roughly constant, trajectory-based recon-
struction of crash-related events, where trajectory data are used to fit parsimonious models 
of driver behavior, is feasible using both vehicle-based and site-based data.

2.	 It is possible to extend the methods of counterfactual analysis to more complicated structural 
models involving differential equations.

3.	 At least for rear-ending events, there is some limited evidence that the distributions of evasive 
actions for crashes and near crashes share some overlap, so that it should be possible to find 
near-crash events that are similar in other respects to crashes.
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4.	 Although the CICAS system as currently configured was not designed to collect and process 
crash and near-crash trajectory data, with technical modifications it could support site-based 
field research, at least at lower-volume intersections.

5.	 The usefulness of the data produced by the SHRP 2 vehicle-based field study will be strongly 
dependent on the ability to calibrate and maintain the data-collection systems.

Recommendations

1.	 The modeling methods presented in this report should be extended to handle two-directional 
trajectories.

2.	 When attempting to include crash events in a microscopic traffic simulation, plausible models 
that close the feedback loop between existing conditions and driver actions will be necessary. 
This issue should be pursued using the data from the SHRP 2 field studies.

3.	 The trajectory modeling methods described in the report should be enhanced to allow for 
possible serial correlation in trajectory data.

4.	 Compiling data on gap-selection and other intersection-related events will require a data 
setup different from the SHRP 2 vehicle-based field study, so the SHRP 2 vehicle-based field 
study should be complemented with site-based research.

5.	 Clear descriptions of data collection and processing and associated metadata should be 
required in future major data-collection efforts.

Development of Analysis Methods Using Recent Data
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Background and Project Objectives

C h a p t e r  1

Background

In its essence, rational planning involves using predicted con-
sequences to guide selection from among a set of possible 
actions. In road safety engineering, this requires being able to 
predict the frequency and severity of crashes that are expected 
to result from a given design or operational configuration. 
Hauer (1) has argued persuasively for developing a scientifi-
cally justifiable methodology for making these predictions, 
and the last 10 years have seen two major initiatives in the 
United States related to this issue. One is the development of 
the Highway Safety Manual (HSM), the first edition of which 
was released in 2010 by the American Association of State 
Highway and Transportation Officials (AASHTO). The other 
is the safety focus of the SHRP 2 research program.

Highway Safety Manual

The goal of the HSM is to provide highway professionals with 
tools for explicitly considering the safety impacts of engineer-
ing actions. The dominant methodology used to develop the 
HSM is statistical analysis of crash-frequency data, where the 
basic units of analysis are either sections of highway or inter-
sections and where the dependent variables are crash frequen-
cies observed over one or more years. In some cases, these 
frequencies can be broken down by crash type or severity. Gen-
eralized linear models are used to describe baseline associa-
tions between crash frequency and observable road features, 
while the effects of changes from these baseline conditions are 
captured through empirically determined crash-modification 
factors. The effect of an intervention is then predicted by first 
using the base model to predict crash frequency under the pre-
vailing conditions, and then multiplying this expected fre-
quency by a crash-modification factor that reflects the effect of 
the change of interest. Ideally, the crash-modification factor 
was estimated from a well-conducted before/after study that 
controlled for selection bias effects. The strong reliance of the 

HSM ’s first edition on this type of statistical modeling is in 
large part the result of historical developments, where the inte-
grated crash and roadway databases maintained by the High-
way Safety Information System (HSIS) and several individual 
states had attained a useful degree of completeness and the 
development of empirical Bayes and hierarchical Bayes meth-
ods during the 1980s and 1990s brought the supporting statis-
tical tools to a useful degree of maturity.

Regression analyses of aggregated observational data have 
well-understood limits to their ability to discover and describe 
underlying causal processes (2). In 2006, a daylong workshop 
was held during the annual meeting of the Transportation 
Research Board (TRB), which focused on elucidating these 
limits and discussing alternative methods. At that workshop, 
Bonneson and Lord (3) pointed out an interesting analogy 
with the development of the Highway Capacity Manual, where 
first-generation regression models for predicting traffic signal 
delay using naïve specifications of independent variables were 
later replaced by regression models where the form of the 
independent variables was justified theoretically. These in 
turn were replaced by models where the functional forms 
relating traffic flow, capacity, and signal timing to delay were 
justified theoretically. The macroscopic methods developed 
for the Highway Capacity Manual were later supplemented 
and in some instances replaced by microscopic traffic simula-
tion models. Hope was expressed that a similar evolution 
might occur for the HSM, with first-edition regression models 
being supplemented or replaced by structural models that 
explicitly describe the mechanisms’ underlying crash occur-
rence. A better understanding of crash mechanisms could also 
support the use of microscopic traffic simulation models to 
predict the safety consequences of engineering decisions, sim-
ilar to how microscopic models are now used to predict oper-
ational consequences. As researchers working in this area are 
acutely aware, however, a major obstacle to progress is the 
lack of good microscopic data regarding crash occurrence and 
driver behavior more generally.
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crash-related events. The focus of the present project is on 
crashes involving more than one vehicle, resulting from car-
following or gap-selection behavior of the types often occur-
ring at intersections.

Structural Modeling of  
Crash-Related Events

The starting point is Pearl’s (5) notion of a causal model, 
which in the abstract consists of a set of exogenous variables, 
a set of endogenous variables, and, for each endogenous 
variable, a structural equation describing how the variable 
responds to changes in other model variables. A causal model 
can be represented qualitatively using a directed graph, with 
the nodes of the graph representing variables and directed 
arrows indicating direct causal dependencies.

Figure 1.1 displays a simple graphical model for a generic 
crash. The node u, possibly vector-valued, denotes variables 
describing background conditions. The node x denotes the 
variable describing an evasive action, and the node y denotes 
the crash condition. The crash condition y is assumed to be a 
deterministic function of u and x, such that

y(u,x) = 0, if the values for u and x do not produce a crash

y(u,x) = 1, if u and x produce a crash

To make these ideas more concrete, consider a simple two-
vehicle, rear-ending collision model (6, 7). Such an event 
might be observed in the field, or it could arise within a 
microscopic traffic simulation. The initial speed and braking 
deceleration of the leading vehicle are denoted by v1 and a1, 
respectively; the initial speed and braking deceleration of the 
following vehicle by v2 and a2, respectively; and the following 
driver’s headway and reaction time by h2 and r2, respectively. 
A collision occurs when the stopping distance available to the 
following driver is less than that needed to stop without col-
liding with the lead vehicle. Using simple physics, this can be 
expressed as

v r
v

a
h v

v

a2 2
2
2

2
2 2

1
2

12 2
1 1− > − ( . )

If the following driver’s deceleration is taken as the avoid-
ance action, then for the rear-end collision, the variables  

SHRP 2 Safety Program

As originally conceived, the safety focus area of the SHRP 2 
research program comprised two major field studies: a vehicle- 
based study involving “volunteer drivers and a sophisticated 
instrumentation package installed in the volunteers’ vehicles” 
and a site-based study involving video recording of vehicle 
movements at specific locations. These studies were “intended 
to support a comprehensive safety assessment of how driver 
behavior and performance interact with roadway, environ-
mental, vehicular, and human factors and the influence of 
these factors and their interactions on collision risk” (4). At 
present, the vehicle-based study is going forward while the 
site-based study has been limited to preliminary design, with 
further work dependent on the availability of additional 
funding. The SHRP 2 S01 projects develop and apply analytic 
methods relevant to these field studies by identifying salient 
research questions and then attempting to answer them using 
existing data of the type expected from the field studies. The 
S01 request for proposal explicitly identified as important 
“application of crash surrogates” and “the formulation of 
analytic methods to quantify the relationship of human fac-
tors, driver behavior, vehicle, roadway, and environmental 
factors to collision risk.” Special attention was directed to 
roadway departure and intersection crashes.

There is little doubt that the SHRP 2 vehicle-based study 
should produce a rich and unprecedented source of infor
mation concerning driver behavior in normal and crash  
situations and that this should support development and 
evaluation of vehicle-based safety technologies. The study 
should also support traditional statistical investigations seek-
ing to identify associations between roadway conditions and 
crash occurrence. In the project team’s view, the SHRP 2 
field studies could also provide data supporting the develop-
ment and application of microscopic crash models, similar to 
how existing crash record and roadway databases support the 
development and application of regression-based approaches. 
For this to occur, however, analytic tools are needed that can 
fit and test microscopic models using field study data and can 
extract the sort of measurements needed to quantify driver 
behavior in crash-related conditions. The S01 project thus 
has two interrelated objectives. The first is to develop analytic 
tools and demonstrate how these can be used to conduct 
structural model development, using the sort of data expected 
from the SHRP 2 field studies. The second is to develop a 
rigorous method for characterizing near crashes so that 
observations of near crashes might serve as useful surrogates 
for actual crashes. The approach taken by the project team 
can be called trajectory-based reconstruction of crash-related 
events. That is, time history data of vehicle positions, speeds, 
or both are used to estimate values for variables describing 
drivers’ actions and characterizing the conditions leading to 

u

x

y Figure 1.1.  Graphical model  
of a crash-related event.

Development of Analysis Methods Using Recent Data

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22850


6

where yk(t) denotes the (one-dimensional) position of Vehi-
cle k at time t, vk denotes the initial speed of Driver k, ak 
denotes his or her braking acceleration, and t0k denotes the 
time at which braking began. This model can be connected to 
the rear-end collision model described by noting that the 
reaction time of Driver k is simply

r t tk k k= − −0 0 1 41 ( . )

while the initial following headway between Vehicles k and 
k-1 when Driver k-1 began braking is

h y t y t vk k k k k k= ( ) − ( )( )− − −0 0 1 51 1 1 ( . )

At least for simple event types like this, it is then possible 
to generate estimates of initial speeds, braking rates, and 
times of braking initiation by fitting Equation 1.3 to observed 
trajectories. Davis and Swenson (7) describe how Bayes esti-
mates could be computed from trajectory data of the type 
displayed in Figure 1.2. Table 1.1 summarizes the resulting 
estimates for these data.

In principle, then, trajectory-based reconstruction can be 
used to fit structural models and estimate important features 
of crash-related events. One of the project team’s objectives 
is to extend these methods to handle more complicated situa-
tions and to exploit the type of data expected from the SHRP 2 
in-vehicle field study.

Crash Surrogates

The second objective of this project is to develop a quantitative 
method for characterizing and identifying events that can serve 
as useful crash surrogates. This is because crashes, especially 
severe crashes, tend to be rare, so that if one could identify near 
crashes or other surrogate events that carry information about 

(v1, a1, v2, r2, h2) are components of u, a2 is the evasive action, 
and the collision function is

y u x

if v r
v

a
h v
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a
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In this treatment, an event consists of a specification of 
values for each of the model variables. This specification, plus 
Structural Equation 1.2, is sufficient to determine whether 
that event leads to a crash. As they are currently implemented, 
microscopic simulation models are restricted to combina-
tions of values that do not lead to crashes, and an open 
research question involves determining realistic relative fre-
quencies for those combinations that do.

To help illustrate the usefulness of this approach, an exam-
ple originally presented by Davis and Swenson (7) is used. Fig-
ure 1.2 shows trajectories for a platoon of seven vehicles 
successively braking to stops while traveling in the same lane of 
a freeway. The leftmost vehicle was the first vehicle in the pla-
toon, the rightmost vehicle was the last, and a collision occurred 
between the two rightmost vehicles. These trajectories were 
constructed from a video recording of the event by first digitiz-
ing each vehicle’s position on successive video frames and then 
using standard photogrammetry methods to convert from 
image coordinates to ground coordinates. Applying the simple 
braking model described, each of these trajectories can be 
described by the physical model

, 0

0 0 2, 0 0 (1.3)
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Figure 1.2.  Trajectories of seven vehicles braking successively 
to stops.
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any combination of control inputs that approaches the limit 
of the vehicle capabilities” (9).

Both these definitions assume a counterfactual definition 
of the surrogate event, where a crash would have occurred 
had an evasive action not been performed. The 100-car study 
definition places an additional condition, however, that the 
magnitude of the evasive action should be in some sense 
extreme. To see the value of this additional condition, it is 
helpful to return to Table 1.1. The table gives estimates of 
initial speeds, headways, reaction times, and the actual and 
minimum successful decelerations estimated from the vehi-
cle trajectories. First, consider the interaction between Vehi-
cles 1 and 2. The minimum deceleration by Vehicle 2 needed 
to avoid collision was about -6.2 ft/s2, while the actual decel-
eration was about -6.5 ft/s2. Had the deceleration been 
slightly less, other things being equal, a crash would have 
occurred. So, arguably, this event satisfies the ICSTCT defini-
tion of a conflict. Most would agree, though, that it does not 
satisfy the 100-car study condition that the evasive action be 
extreme. For the interaction between Vehicles 5 and 6, the 
minimum successful deceleration was about -17.1 ft/s2 and 
the actual deceleration was about -17.3 ft/s2. This event also 
satisfies the ICSTCT definition of conflict but comes closer to 
satisfying the 100-car study condition as well. The project 
team uses causal models to construct a quantitative measure 
that captures this difference.

To start, Figure 1.3 shows the probability of collision as a 
function of the following vehicle’s braking deceleration for 
both vehicle pairs. The analysis is probabilistic because the 
values of the important event variables are not known with 
certainty but rather only up to their posterior distributions 
given the trajectory data. Figure 1.3 was prepared by setting 
the follower’s deceleration to each of a set of target values and 
then using Monte Carlo simulation to compute the probabil-
ity of a crash.

Figure 1.3 shows that for Vehicles 1 and 2, decelerations 
greater than about -7 ft/s2 prevent a crash with high proba-
bility, while for Vehicles 5 and 6, decelerations greater than 
about -20 ft/s2 are needed for a similar degree of certainty. 
The latter seems qualitatively close to the definition of near 
crash used in the 100-car study, but to quantify this degree of 
closeness, it is necessary to specify what is meant by an eva-
sive action that approaches the limit of the vehicle’s capabili-
ties. One, but not necessarily the only, way to do this is to 
apply the results of the emergency braking study carried out 
by Fambro et al. (10), where the distribution of braking 
decelerations used by drivers confronted with a surprise 
braking situation had a mean of about -20.3 ft/s2 and a stan-
dard deviation of about 2.6 ft/s2.

Figure 1.4 adds to Figure 1.3 a normal distribution with 
the given mean and standard deviation. Roughly speaking, 
the degree to which a conflict qualifies as a near crash is 

how crashes occur, the value of both in-vehicle and site-based 
studies would increase.

Roughly speaking there are two ways that near-crash 
events might be used as crash surrogates. On the one hand, 
one might carry out an intensive study of how individual near 
crashes occurred, with the goal of identifying causal factors 
for each event. This would be similar to using investigation 
and reconstruction of actual crashes to gain insight into how 
and why crashes occur. On the other hand, one might use 
counts of near crashes as a dependent variable and then look 
to see how these are associated with roadway or driver char-
acteristics. This would be similar to carrying out a statistical 
study of crash frequency. In either case, though, the starting 
point is a set of noncrash events and the need to determine 
the extent to which each could be regarded as a near crash.

Returning to the literature, it is possible to find two related 
but different approaches to defining crash surrogates. One is 
the definition of conflict as put forward by the International 
Calibration Study of Traffic Conflict Techniques (ICSTCT): “A 
traffic conflict is an observable situation in which two or 
more road users approach each other in space and time to 
such an extent that there is a risk of collision if their move-
ments remain unchanged” (8). However, it turned out that 
when attempting to find empirical associations between con-
flict and crash frequencies, it was helpful if conflicts could be 
graded as to their seriousness or severity. This distinction is 
included in the definition of near crash used in the 100-car 
study, which can be regarded as a pilot for the SHRP 2 vehicle-
based field study: “Any circumstance that requires a rapid, 
evasive maneuver by the subject vehicle, or any other vehicle, 
pedestrian, cyclist, or animal to avoid a crash. A rapid, evasive 
maneuver is defined as a steering, braking, accelerating, or 

Table 1.1.  Estimates of Speed, Headway, Reaction 
Time, Braking Deceleration, and Minimal Successful 
Deceleration for Seven Vehicles

Vehicle (k)a vk (ft/s)b hk (s)c rk (s)d ak (ft/s2)e ako (ft/s2)f

1 50.0 — —   -6.8 —

2 46.7 1.69 1.91   -6.5   -6.2

3 41.8 2.00 4.21 -12.6 -11.4

4 42.3 1.87 1.86 -14.2 -12.8

5 39.3 1.21 1.44 -16.0 -14.4

6 42.3 1.17 1.07 -17.3 -17.1

7 41.7 1.24 1.65 -20.3 -24.8

a Number of vehicles
b Speed of the k vehicle
c Headway of the k vehicle
d Reaction time of the k vehicle
e Braking acceleration
f Minimum deceleration needed to avoid collision
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tions, are treated as inputs to a physical model describing 
vehicle motion. The team’s choice of this modeling strategy 
is rooted in the fact that models of this sort are needed if 
realistic crash processes are to be included in microscopic 
traffic simulation models. The team has illustrated how a 
simple version of a trajectory model can be used to estimate 
features of crash and near-crash events, such as driver reac-
tion times, following headways, and deceleration rates, from 
trajectory data of the sort produced from a site-based field 
study. Given sufficiently large samples of crash and near-
crash events, this method could be used to compile distribu-
tions for these inputs, which could, in turn, be used in traffic 
simulation models. Finally, the team has also illustrated how 
a trajectory model, together with estimates of input variables, 
can quantify the degree to which a noncrash event could have 
been a crash. One potential application of this technique 
would be to process a set of noncrash events produced either 

determined by how much of this extreme braking distribu-
tion lies to the left of the crash probability curve. More for-
mally, the probability that a conflict could have been a crash 
is found by integrating the crash probability curve with respect 
to the extreme braking distribution. Although analytically 
intractable, this computation is readily carried out using 
Monte Carlo methods. Table 1.2 gives these results for each 
of the noncolliding vehicle pairs from Table 1.1, and the sum 
of these probabilities can be taken as the expected number of 
crashes in this set of conflict events had the evading drivers 
taken their decelerations from the given distribution.

Summary

To summarize, the project team has introduced an approach 
to microscopic modeling of crash-related events, where 
driver actions, together with initial speeds and vehicle loca-

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

10 0 5 15 20 25 30 

Probability 
of crash 

Vehicles 1 & 2 

Vehicles 5 & 6 

Deceleration (feet/sec2) 

Note: x axis shows decelerations as positive quantities. 

Figure 1.3.  Crash probability as a function of counterfactual 
values for following vehicle’s deceleration.
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by a single driver or at a single location to produce an expected 
number of crashes in this set. This expected number of 
crashes could then serve as a dependent variable in a study of 
driver or site features believed to be related to safety.

The remainder of this report describes the effort to extend 
these ideas to more complicated scenarios using data pro-
duced by both vehicle-based and site-based field studies. 
Chapter 2 outlines the analytic procedures and tools devel-
oped for this project and illustrates their use. Chapter 3 pre
sents analyses of data obtained from the 100-car vehicle-based 
field study. Chapter 4 describes analyses of data from site-
based video on Interstate 94, while Chapter 5 describes work 
with site-based radar data from the Cooperative Intersection 
Collision Avoidance Systems (CICAS) intersection in North 
Carolina. Chapter 6 presents the study’s conclusions and 
recommendations.

Table 1.2.  Crash Probabilities for Each Vehicle Pair, 
Obtained Using the Emergency Braking Distribution

Lead Vehicle Following Vehicle P (crash)a

1 2 0

2 3 0

3 4 0

4 5 .004

5 6 .138

Sum .142

a Probability of crash
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C H A P T E R  2

State-Space Model

Chapter 1 illustrated the trajectory-based approach with 
simple braking-to-stop models estimated from data extracted 
from site-based video. An important objective of this proj-
ect was to develop a common analytic framework that could 
be applied to data from either site- or vehicle-based sensor 
configurations and could accommodate events more com-
plicated than constant speed followed by simple braking-
to-stop. Ultimately, the goal is to model vehicle trajectories 
in two dimensions, where both braking and steering could 
serve as evasive actions. This report, however, focuses on 
the simpler problem of modeling vehicle motion in one 
direction.

The basic idea is to model driver behavior as a piecewise 
constant series of acceleration changes, which are then treated 
as inputs into a dynamic trajectory model. The vehicle’s state 
at a given time is its location and velocity, and the trajectory 
model takes the acceleration input sequence and numeri-
cally integrates the associated differential or difference 
equations to produce time histories of vehicle locations 
and speeds. For discrete-time data, the trajectory model 
can be conveniently represented using the generic linear 
state-space form

x t Ax t Ba t

y t Cx t

+( ) = ( )+ ( )
( ) = ( )

1

2 1( . )

where x(t) is a vector of state variables (position and velocity), 
a(t) is a vector of input variables (accelerations), and y(t) is the 
vector of observed variables. A, B, and C stand for matrices of 
coefficients.

The nature of A, B, C, x(t), and y(t) will vary depending on 
the class of events being modeled and the sort of data avail-
able. For two vehicles following on a straight road, the sim-
plest trajectory model consists of two state variables for each 
vehicle, location and speed, with linear acceleration values as 

inputs. That is, if D denotes the basic time interval of the data, 
then the deterministic progression for a leading and follow-
ing vehicle can be captured by the linear equation
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Here, x1(t) and x2(t) give the locations of the leading and 
following vehicles at time t, v1(t) and v2(t) are the corre-
sponding speeds, and a1(t) and a2(t) are the accelerations. 
For motion in two directions, a similar structure can be 
used but with state and input variables for each direction. 
Given initial values for the state variables and the time  
history for the inputs, the trajectories of both vehicles can 
be replicated.

Since Equation 2.2 describes vehicle motion irrespective of 
the data-collection scenario, the primary difference between 
the site- and vehicle-based scenarios will be the observation 
equation. For vehicle trajectories extracted from video, the 
observations consist of measurements of position for each 
vehicle, leading to an observation equation of the form
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A standard calculation shows that this system is observ-
able, and the two-vehicle system decomposes into two  
one-vehicle systems.

For the vehicle-based data from the 100-car study, the pri-
mary observations are the speed of the following vehicle 
obtained from its speedometer, and the range and range rate 
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for the lead vehicle relative to the follower, obtained from  
the forward radar. This leads to an observation equation of 
the form
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This system is not observable. For instance, it is not pos
sible to obtain estimates of absolute position for each vehicle. 
It also does not decompose into two independent sub
systems, so that estimation and inference will generally 
require working with both vehicles.

For site-based data from the CICAS radar system, observa-
tions consist of both position and speed for individual vehi-
cles, leading to an observation equation of the form
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This also decomposes into two separate subsystems, one for 
each vehicle.

Given estimates of a driver’s initial speed, the times at 
which he or she changed acceleration, and the correspond-
ing accelerations, the differential equations can be solved to 
give predicted time histories of that vehicle’s position and 
speed and predicted values for the observations. Fitting a 
trajectory model then involves searching plausible combi-
nations of values for these input quantities to find those that 
best account for the data. The counterfactual simulation 
needed to assess the degree to which a near crash might have 
been a crash, in turn, involves using probability distributions 
characterizing the residual uncertainty in the model param-
eters as input to a Monte Carlo simulation, where the state 
equation is integrated using random draws from this distri-
bution and the occurrence or nonoccurrence of a collision 
recorded. In the early stages of this study, several different 
approaches to implementing these steps were experimented 
with, including modeling the differential equation model 
using response-surface approximations (1), nonlinear least-
squares estimation using asymptotic normal approxima-
tions to characterize posterior uncertainty (2), and Bayesian 
analysis using Markov Chain Monte Carlo (MCMC) simula-
tion. The WinBUGS software (3) can be used to implement 
MCMC estimation for a variety of relatively complicated 
models, but the project team’s initial attempts to implement 

this by directly coding the differential equations in WinBUGS 
led to estimation runs with excessively long time demands. 
This problem was circumvented by using the WinBUGS dif-
ferential equation interface. This provides compiled proce-
dures that can be included in a WinBUGS model specification, 
which numerically solves ordinary differential equations 
using Runge-Kutta methods. As is the standard practice in 
working the MCMC estimation, exploratory analyses were 
first conducted using frequentist methods, in this case non-
linear least-squares, implemented using either MATLAB (4) 
or R (5). This was done to understand the complexity of the 
acceleration model suggested by a given data set and to obtain 
reasonable starting values for the MCMC simulation. Bayes 
estimates for model parameters were then computed using 
WinBUGS, and counterfactual simulation was carried out 
using the MCMC sample of the posterior distribution for 
these parameters.

Illustrative Example

The general approach is illustrated here using case 104119 
from the 100-car study. This event was a potential near 
crash that involved a lead vehicle and a following vehicle 
successively braking to a stop, with the follower stopping 
short of collision. This was a vehicle-based study, with the 
following vehicle being the instrumented vehicle. The data 
employed in this analysis were the speedometer-measured 
speeds for the instrumented vehicle and range and range 
rate for the leading vehicle, obtained from the follower’s 
forward radar.

Step 1: Graphical Inspection of Data

Figure 2.1 shows the time history of the speedometer-measured 
speeds of the following vehicle converted to units of ft/s. The 
piecewise constant nature to this relation was characteristic 
of all speedometer data obtained for 100-car study cases. 
Inspection of Figure 2.1 suggested a two-phase model where 
the following driver was initially traveling at about 21 ft/s 
and accelerating until about 11 s from the start of the data 
series. He or she then decelerated at a roughly constant rate 
until coming to a stop.

Figure 2.2 shows the time history of the range and range-
rate data provided by the instrumented vehicle’s forward 
radar. The discontinuities in the time-series result from peri-
ods of missing data, when the forward radar apparently lost 
the leading vehicle as a target. To get an initial sense of the 
leading driver’s actions, an approximate speed profile for  
the leading vehicle was often used, obtained by adding the 
range rate to the following vehicle’s speedometer data. A 
plot of these approximate speeds is shown in Figure 2.3. This 
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suggests a three-phase model where a period of constant 
acceleration is followed by a period of roughly constant 
speed, which in turn is followed by a period of constant decel-
eration leading to a stop.

Step 2: Nonlinear Least-Squares Estimation 
of Proposed Models

It is necessary to estimate the following vehicle’s initial speed, 
its acceleration during the first phase, the time at which 

deceleration began, and the deceleration characteristic of the 
second phase. To estimate these, a MATLAB script was writ-
ten that took trial values for these parameters as inputs and 
simulated the following vehicle’s position and speed over time 
by solving the differential equations using a simple Euler’s 
method. The difference between the simulated speeds and 
the speedometer speeds was computed for each time inter-
val, and the squares of these differences were summed to 
produce a measure of fit between the model and the speed-
ometer data. This script was then embedded in a numerical 

Figure 2.1.  Speedometer speeds of following vehicle.
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Figure 2.2.  Range and range-rate data for the leading vehicle.
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search procedure to find the parameter values that minimized 
the sum-of-squares. The resulting estimates and initial 
approximate standard errors are shown in Table 2.1.

For the lead vehicle, the three-phase model was fit to the 
approximate speed data shown in Figure 2.3. The resulting 
nonlinear least-squares estimates and approximate standard 
errors are given in Table 2.2.

Step 3: Bayes Estimation of Vehicle Models

Final Bayes estimates were computed using the MCMC soft-
ware WinBUGS. In essence, WinBUGS generates a simulated 

realization of a Markov chain whose stationary distribution 
is the same as the Bayesian posterior distribution of the 
model parameters given the data. For this, the data were the 
speed profile for the follower and the range and range-rate 
profiles for the leader. Model parameters consisted of accel-
eration profiles and initial speeds for each vehicle, and the 
parameters for both vehicles were estimated in combination 
simultaneously. In the WinBUGS model, predicted values 
for the follower’s speed and the range and range rate for the 

Figure 2.3.  Approximate speed of lead vehicle determined from follower speed  
and range rate.

Table 2.1.  Nonlinear Least-Squares Estimates  
for the Following Vehicle’s Acceleration Model  
(Case 104119)

Parameter Estimate
Standard 

Error

Initial acceleration (ft/s2) 1.45 .02

Final acceleration (ft/s2) −9.9 .17

Transition time (seconds from start) 11.2 .04

Table 2.2.  Nonlinear Least-Squares Estimates 
for Lead Vehicle Acceleration Model  
(Case 104119)

Parameter Estimate
Standard 

Error

First acceleration (ft/s2) 2.36 .05

Second acceleration (ft/s2) −0.84 .23

Third acceleration (ft/s2) −9.86 .40

First change point (s) 6.75 .06

Second change point (s) 10.4 .09
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Table 2.3.  Posterior Summary for Trajectory Model Parameters

Variable Mean
Standard 
Deviation 2.5%ile 97.5%ile

Following Vehicle

Initial speed (ft/s) 20.6 0.24 20.1 21.0

First acceleration (ft/s2) 1.45 0.04 1.38 1.54

Second acceleration (ft/s2) -9.47 0.21 −9.89 −9.05

First change (s) 11.15 0.06 11.04 11.26

Leading Vehicle

Initial speed (ft/s) 18.92 0.31 18.3 19.52

First acceleration (ft/s2) 3.34 0.14 3.08 3.62

Second acceleration (ft/s2) 0.62 0.05 0.51 0.72

Third acceleration (ft/s2) −11.94 0.32 −12.58 −11.34

First change (s) 3.47 0.13 3.22 3.73

Second change (s) 10.61 0.05 10.51 10.72

leader were computed by numerically solving the differential 
equations using ordinary differential equation interface. For 
this case, a 10,000-iteration burn-in period followed by a 
70,000-iteration MCMC sample produced acceptable con-
vergence. Table 2.3 summarizes the Bayes estimates for both 
leader and follower.

Figure 2.4 shows the speedometer speeds of the following 
vehicle, together with the posterior means estimated from 
the MCMC sample. Figure 2.5 shows similar results for the 
range data from the forward radar. Both cases provide rea-
sonable approximations to the observed information.

Finally, Figure 2.6 shows the probability of a rear-end col
lision between the two vehicles as a function of counterfactual 

final decelerations by the following driver. These probabilities 
were computed using Balke and Pearl’s (6) Twin Network 
method, where the follower’s deceleration is set at a target 
value and then, for each outcome of the MCMC, sample val-
ues for the remaining parameters are used as inputs to solve 
the differential equations. This describes what would have 
happened had the event involved those parameter values and 
the counterfactual follower’s deceleration. Simulated range 
values less than zero are taken to indicate a collision, and the 
fraction of the MCMC sample values that lead to collision is 
an estimate of the collision probability. In this case, had the 
follower braked at less than about –10 ft/s2, a collision would 
probably have resulted.
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Figure 2.4.  Measured following vehicle speeds  
and posterior mean predicted speeds from MCMC 
sample.
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Analyses Using Vehicle-Based Data

Data Acquisition  
and Preparation

In May and June 2008, the Virginia Tech Transportation 
Institute (VTTI) provided the project team with data for  
33 events observed during the 100-car in-vehicle study. These 
data comprised time series of measurements from the in-
vehicle sensors, along with the videos from the forward cam-
era, for about 30 s preceding and including the crash or 
near-crash event. Table 3.1 lists the variables obtained.

The first task after receiving these data was to review them 
for completeness and accuracy and flag those events for 
which the data were either incomplete or problematic. For 
this task, a MATLAB-based graphical browsing tool was 
developed that loaded the data from the VTTI-provided text 
file, allowing the analyst to plot the history of selected mea-
surements and to perform two initial simulations of the tra-
jectory of the instrumented vehicle, using either speed- or 
acceleration-based measurements as input. Inconsistencies 
between the outputs of these two models would then indicate 
problems with either the speed or the acceleration data (or 
possibly both) for that event.

For five of the events, measurements from the forward 
radar were not available, so for these it was not possible to 
reconstruct the actions of the leading vehicle. For several more 
of the events, there was a clear discrepancy between the trajec-
tory of the instrumented vehicle as indicated by the speedom-
eter, heading, and yaw measurements, and the trajectory 
reconstructed from the acceleration measurements, indicat-
ing that caution should be used when using these data.

For the instrumented vehicle, the data available consisted 
of speedometer output, lateral and longitudinal accelera-
tions, yaw, heading, and indications of the status of the turn 
signal, the brake, and the accelerator, recorded at 10 Hz. For 
the lead vehicle, the available data consisted of range, range 
rate, and azimuth obtained from the forward-viewing radar, 
also recorded at 10 Hz. Latitude and longitude values from 

the GPS receiver were available, but in all cases these values 
were essentially constant throughout the event.

After initial examination of the data obtained for each of 
the 33 cases, a summary was prepared (see Table 3.2) identify-
ing the potential cases that could be examined for this research, 
based on the quality and the completeness of the available 
data. Several of the events involved lane-changing, swerving, 
or merging on the part of one of the involved vehicles, so that 
the forward radar of the instrumented vehicle provided only 
limited information about the leading vehicle. In total, seven 
of the 33 events were analyzed. Those seven cases are 99540, 
104119, 73082, 104851, 104283, 60289, and 92660.

In the following sections, the analysis of each of these seven 
events is described. The accuracy of the conclusions, though, 
depends on the accuracy of the data on which they are based. 
Although the project team is confident that the results are 
consistent with the data provided, these analyses are pre-
sented as examples of what could potentially be accomplished 
using vehicle-based field data rather than as final determina-
tions of what truly happened in these events.

Case 99540

Description from video: Figures 3.1–3.3 illustrate that in this 
event, the instrumented (i.e., following) vehicle is traveling in 
the right-hand lane of a multilane highway and exits this 
highway to the right. The exit ramp connects to another multi- 
lane highway, and the leading vehicle slows and then comes 
to a stop at the merge point. The following vehicle collides 
with the lead vehicle, which moves forward and then stops on 
the roadway’s shoulder.

Approximately 35 s of data were available from the instru-
mented vehicle at 10 Hz. These data included speeds from the 
instrumented vehicle’s speedometer, and range and range 
rate from its forward radar, as shown in Figure 3.4.

In addition to the original data, approximate speeds for the 
leading vehicle were computed by adding the instrumented 

C h ap  t e r  3
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Table 3.1.  Data Obtained from 100-Car In-Vehicle Study

Data Requested Data Delivered Notes Units

Sync frames

Speed Speed mile/hr

GPS location lat, lon degrees/s

Throttle Throttle unitless

Brake brake_onoff 0 = off, 1 = on

Lateral acceleration accel_x g

Longitudinal acceleration accel_y g

Target ID fwd_ID_n n = 1,2, . . . 7 cycles 1-255

Range fwd_range_n n = 1,2, . . . 7 ft

Range-rate fwd_range_rate_n n = 1,2, . . . 7 ft/s

Azimuth fwd_azimuth_n n = 1,2, . . . 7 degrees

Yaw Yaw degrees/s

Turn signal state turn_signal 0 = off; 1 = left; 2 = right; 3 = both

Video forward Video forward avi format. Video is not synchronized 
with parametric data.

Table 3.2.  Summary of the Data Obtained from 33 Events

Event ID Event Type Speedometer Forward Radar

04 Rear-end crash Cuts out ~4 seconds before crash

20 Rear-end crash Nonzero after video indicates vehicle stopped OK

24 Swerve to pole crash Possible Only prior to swerve

104119 Rear-end conflict OK OK

104283 Stationary lead vehicle OK OK

104851 Rear-end conflict OK OK

113846 Lane change conflict Reads constant

118405 Rear-end conflict Reads constant

135941 Merging conflict No near lead vehicle

139130 Multiple crash

167847 Evasive swerve

179442 Rear-end conflict Corrupted

180462 Rear-end conflict Corrupted

183129 Merging conflict

189066 Rear-end conflict Corrupted

20993 Rear-end conflict Reads constant

24523 Lane-change conflict After start of evasive action

38499 Rear-end crash Positive range during/after crash

40003 Rear-end crash Reads constant 0

52243 Rear-end conflict Corrupted

(continued on next page)
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estimates for each vehicle’s initial speed, the time points at 
which each driver changed acceleration and the corre-
sponding accelerations were computed using WinBUGS, 
and the results are displayed in Table 3.3. For this case, 
because the data acquisition began after the leading driver 
had begun his or her final deceleration, the follower’s reac-
tion time was computed as the difference between when the 
lead vehicle came to a stop and when the following driver 
initiated the final deceleration.

At the time the forward radar acquired the leading vehicle, 
the driver of the instrumented vehicle was traveling at about 

vehicle’s speedometer speed to the forward radar’s range rate. 
The speeds for the two vehicles are displayed in Figure 3.5.

Exploratory modeling for both vehicles was conducted 
using MATLAB. For the following (instrumented) vehicle, 
a three-stage model was fit, where a period of initial decel-
eration lasting about 2 s was followed by a period of gentler 
deceleration, which was followed by a short period of much 
stronger deceleration starting less than 1 s before the colli-
sion. For the leading vehicle, a two-stage model was fit, 
where roughly 2 s of deceleration was followed by a period 
of being stopped, which lasted until the collision. Bayes 

Figure 3.1.  An initial view from instrumented  
vehicle’s forward camera (Case 99540).

Figure 3.2.  View as the instrumented vehicle exits 
(Case 99540). The leading vehicle is visible on the 
exit ramp.

Event ID Event Type Speedometer Forward Radar

60289 Rear-end conflict OK OK

73082 Rear-end conflict OK OK

86319 Rear-end conflict Reads constant corrupted

86535 Evasive swerve conflict

87089 Rear-end crash Available only ~2 seconds before  
    crash

92660 Evasive swerve conflict OK, done (without counterfactual) Limited

99129 Evasive swerve conflict

99540 Rear-end crash OK OK

122474 Rear-end conflict Missing

151062 Merging conflict Missing

1984 Rear-end crash Missing

3188 Merging conflict Missing

3336 Merging conflict Missing

Boldface: Analyzed events.

Table 3.2.  Summary of the Data Obtained from 33 Events (continued)
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14.75 ft/s, while the driver of the leading vehicle was traveling 
at about 8.9 ft/s. The leading driver was decelerating at about 
-3.7 ft/s2 and came to a stop about 2.4 s after the acquisition. 
The driver of the following vehicle was initially decelerating 
at about -2.9 ft/s2, but after about 1.9 s eased up to about  
-0.5 ft/s2. About 2.37 s after the leading vehicle came to a stop, 
the driver of the following vehicle began braking at about 
-12.6 ft/s2, but this was not sufficient to prevent a collision. At 
the time the lead vehicle came to a stop, the following vehicle 
was about 20.7 ft behind and traveling at about 9 ft/s.

Figure 3.6 shows the speedometer speeds for the instru-
mented vehicle, along with the speed history predicted by the 
model. Allowing for the piecewise constant nature of the 
recorded speedometer output, the model gives a reasonable 
representation of the follower’s speed profile.

Figure 3.7 shows the radar-measured range between the 
leading and following vehicle, along with the range predicted by 
the model. Again, the model gives a reasonable representation 
of the data.

Figure 3.3.  View at the time of collision with the 
leading vehicle (Case 99540).

Figure 3.4.  Speed, range, and range-rate data (Case 99540).
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Table 3.3.  WinBUGS Estimates for the Model Parameters for Case 99540

Variable Mean Standard Deviation 2.5%ile 97.5%ile

Following Vehicle

Initial speed (ft/s) 14.75 0.16   14.45 15.08

First acceleration (ft/s2) -2.87 0.14   -3.18 -2.61

Second acceleration (ft/s2) -0.48 0.08   -0.63 -0.32

Third acceleration (ft/s2) -12.57 2.31 -17.25 -8.10

First change (s) 1.94 0.09     1.75 2.12

Second change (s) 4.78 0.03     4.71 4.83

Reaction time (s) 2.37 0.12     2.13 2.59

Speed start reaction (ft/s) 8.96 0.11     8.75 9.18

Separation start reaction (t) 20.74 1.01   18.81 22.64

Leading Vehicle

Initial speed (ft/s) 8.94 0.44     8.11 9.81

First acceleration (ft/s2) -3.72 0.35   -4.45 -3.085

Stop time (s) 2.41 0.12     2.20 2.59
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Figure 3.6.  Measured and modeled following vehicle speeds  
(Case 99540).

Figure 3.7.  Measured and modeled range data (Case 99540).
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leader braked to a stop, as did the follower, without colliding 
(Figures 3.9–3.11).

Approximately 35 s of data were available at 10 Hz, includ-
ing speedometer-measured speeds for the instrumented 
vehicle and range and range rate from the follower’s forward 
radar. It was possible to reliably identify the lead vehicle in 
the radar data for about 16 s, and the speed, range, and range 
rate for the period are displayed in Figure 3.12.

Figure 3.13 compares the speed trajectories of the leading 
and following vehicles.

Exploratory modeling for both vehicles was conducted using 
MATLAB. For the following (instrumented) vehicle, a two-
stage model was fit, where a period of initial acceleration was 

To assess the avoidability of this crash, probabilities of col-
lision were computed as a function of counterfactual final 
decelerations on the part of the following driver, as displayed 
in Figure 3.8. For this event, because the following driver did 
not initiate evasive action until close to collision, even fairly 
high counterfactual decelerations are not sufficient to prevent 
the collision.

Case 104119

Description from video: In this event, the instrumented (i.e., 
following) vehicle was traveling on a signalized roadway and 
turned left at an intersection following the lead vehicle. The 

Figure 3.8.  Counterfactual model (Case 99540).
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Figure 3.9.  View at end of follower’s left turn  
(Case 104119).

Figure 3.10.  View at approximately when leader 
began stopping (Case 104119).

Development of Analysis Methods Using Recent Data

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22850


22

after about 10.6 s from the start of the data series, the leader 
began decelerating at about -11.94 ft/s2, which continued until 
the vehicle stopped. About 11.15 s from the start of the data 
series, the follower began decelerating at about -9.47 ft/s2. At 
the time the leader began final deceleration, the follower was 
about 20.7 ft behind and traveling at about 36 ft/s. The follow-
er’s reaction time was fairly quick, about 0.53 s.

Figure 3.14 compares the following vehicle’s speed as 
given by its speedometer and as predicted by the fitted 
model. Figure 3.15 shows a similar comparison of the range 
between the follower and leader as given by the forward 
radar and the range as predicted by the trajectory models. 
In both cases, there is a plausible reconstruction of the data 
series.

Finally, Figure 3.16 displays the probability of a rear-end 
crash occurring as a function of counterfactual final decelera-
tions on the part of the following driver.

Case 73082

Description from video: In this event, both the leading and the 
following vehicles are initially stopped at a signalized inter-
section. The lead vehicle accelerates, then the follower acceler-
ates and the leader pulls away from the follower. The leader 
then brakes to a stop, as does the follower, and the follower 
stops short of the leader without colliding (Figures 3.17–3.19).

Figures 3.20 and 3.21 show the speed, range, and range-
rate plots of the following and leading vehicles.

Exploratory modeling suggested a three-stage model for 
the following vehicle and a four-stage model for the leader. 
Bayes estimates for each vehicle’s initial speed, the time points 
at which each driver changed acceleration, and the corre-
sponding accelerations were computed using WinBUGS. 

followed by deceleration to a stop. For the leading vehicle, a 
three-stage model was fit, where a first stage of acceleration was 
followed by a stage of gentler acceleration, which was then fol-
lowed by decelerating to a stop. Bayes estimates for each vehi-
cle’s initial speed, the time points at which each driver changed 
acceleration, and the corresponding accelerations were com-
puted using WinBUGS. The results are displayed in Table 3.4. 
The following driver’s reaction time was determined as the dif-
ference between when the follower began final deceleration 
and when the leader began final deceleration.

In this case, at the time of the start of the data series, the lead-
ing vehicle was traveling at about 18.9 ft/s and accelerating at 
about 3.34 ft/s2, while the follower was traveling at about 
20.6 ft/s and accelerating at about 1.45 ft/s2. After about 3.46 s, 
the leader eased his or her acceleration to about 0.62 ft/s2, and 

Figure 3.11.  View when follower stopped  
(Case 104119).

Figure 3.12.  Speed, range, and range-rate data (Case 104119).
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leader increased the deceleration rate to about -13.5 ft/s2. 
The following driver initially accelerated at about 5.4 ft/s2, and 
after about 6.65 s, eased to about 2.0 ft/s2. After about 12 s, the 
follower began braking at the relatively high rate of -18.3 ft/s2. 
The follower did not appear to have responded to the leader’s 
initial deceleration.

Figure 3.22 compares the following vehicle’s speed as 
given by its speedometer and the speed as predicted by the 
fitted model. Figure 3.23 shows a similar comparison of  
the range between the follower and leader as given by the 

These results are displayed in Table 3.5. The following driver’s 
reaction time was determined as the difference between the 
time when the follower’s final deceleration began and the time 
when the leader’s final deceleration began.

For this case, the follower’s initial speed was taken to be 
known and equal to 0 ft/s, while at the start of the data 
sequence the leader was traveling at about 2.15 ft/s and accel-
erating at 10.1 ft/s2. After about 1.8 s, the leader reduced 
acceleration to about 4.1 ft/s2. After about 8.8 s the leader 
began decelerating at -3.9 ft/s2, and after about 10.2 s, the 

Figure 3.13.  Speeds of leading and following vehicles (Case 104119).
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Table 3.4.  WinBUGS Estimation Summary for Case 104119

Variable Mean Standard Deviation 2.5%ile 97.5%ile

Following Vehicle

Initial speed (ft/s) 20.6 0.24 20.1 21.0

First acceleration (ft/s2) 1.45 0.04 1.38 1.54

Second acceleration (ft/s2) -9.47 0.21 -9.89 -9.05

First change (s) 11.15 0.06 11.04 11.26

Reaction time (s) 0.53 0.04 0.45 0.62

Speed start reaction (ft/s) 36.04 0.23 35.6 36.5

Separation start reaction (ft) 20.74 1.01 18.81 22.64

Leading Vehicle

Initial speed (ft/s) 18.92 0.31 18.3 19.52

First acceleration (ft/s2) 3.34 0.14 3.08 3.62

Second acceleration (ft/s2) 0.62 0.05 0.51 0.72

Third acceleration (ft/s2) -11.94 0.32  -12.58 -11.34

First change (s) 3.47 0.13 3.22 3.73

Second change (s) 10.61 0.05 10.51 10.72
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Figure 3.14.  Measured and modeled following vehicle speeds  
(Case 104119).
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Figure 3.15.  Measured and modeled range data (Case 104119).
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Figure 3.16.  Counterfactual model (Case 104119).
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forward radar and the range as predicted by the trajectory 
models. In both cases, there is a plausible reconstruction of 
the data series.

Case 104851

In this case, the instrumented vehicle (i.e., the following vehi-
cle) at the start of the video (see Figure 3.24) took a right turn 
and continued to follow the leading vehicle. But then the 
leading vehicle decelerated and came to a complete stop. This 
forced the following vehicle also to decelerate, resulting in a 
near crash. However, the following driver’s deceleration was 
sufficient to enable the vehicle to come to a complete stop 
without any collision. Although the total length of the video 
was 19 s, the event actually happened within the first 8 s. In 
the remaining period of time, both vehicles were stopped.

Figure 3.19.  Following vehicle stopped behind leader 
(Case 73082).

Figure 3.17.  Both vehicles in initial stopped position 
(Case 73082).

Figure 3.18.  Lead vehicle begins braking  
(Case 73082).

The leading vehicle came to a complete stop, indicated by 
the brake lights, which almost resulted in a rear-end collision.

Figure 3.25 shows the speed trajectories of the leading and 
following vehicles. The blue and red lines indicate the speed 
of the following and leading vehicles in ft/s.

The speed of the following vehicle was obtained directly 
from the speedometer of the instrumented car. The approxi-
mate speed of the leading vehicle was calculated by adding 
the speed of the following vehicle and the range-rate data 
obtained from radar. A similar approach was adopted for all 
the remaining cases discussed in this section. Figure 3.26 
shows the range and range-rate data obtained for this event.

After initial estimates of the change points and accelera-
tions were obtained from MATLAB, the trajectory model was 
fitted in WinBUGS for final estimates. In this case, a three-
stage model was developed for the following vehicle, with ini-
tial acceleration followed by two different deceleration stages. 
Table 3.6 gives the final MCMC simulation estimates of the 
parameters.

When the radar acquired the leading vehicle, the initial 
speeds of the following and leading vehicles were 25.66 ft/s 
and 26.07 ft/s, respectively. The leading vehicle decelerated 
in three different stages. The first two deceleration stages 
were characterized by mild deceleration followed by a very 
steep deceleration (–24.29 ft/s2), bringing the leading vehi-
cle to a complete stop. Subsequently, the following vehicle 
initially was accelerating for 2.626 s, and then it decelerated 
at –21.76 ft/s2 followed by a third deceleration of –2.87 ft/s2. 
The predicted piecewise acceleration model was compared 
by fitting the observed data. The range and speed of the 
following vehicle was fitted as shown Figures 3.27 and 3.28. 
Table 3.6 lists the estimates obtained from the WinBUGS 
output.
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Respective speed trajectories for the leading and following 
vehicles were plotted in Figure 3.33. The radar could only man-
age to capture the leading vehicle’s information for about 5 s. 
Also, the range and range-rate data were collected as shown in 
Figure 3.34.

Initial speed of the following vehicle was 60 ft/s, compared 
to the initial speed of 30.93 ft/s for the leading vehicle 
(Table 3.7). This speed is the estimated speed of the leading 
vehicle when the radar captured information about the lead-
ing vehicle for the first time. A two-stage model was proposed 
for the following vehicle where in the first stage the vehicle 
decelerated at -7.57 ft/s2 until 3.92 s, then shifted to a stron-
ger deceleration rate of -16.16 ft/s2. The leading vehicle’s tra-
jectory was also fitted with a two-stage model, with -10 ft/s2 
of deceleration in the first stage for 1.714 s, and -4.332 ft/s2 
deceleration in the second stage.

Similar to the previous cases, a counterfactual model 
based on different deceleration rates for the following vehi-
cle was simulated, and for each deceleration, a probability 
of crash was computed. Figure 3.29 shows how the chance 
of crash varies over different counterfactual deceleration 
values.

Case 104283

This event, as shown in Figures 3.30–3.32, is a near crash. The 
instrumented vehicle was traveling in the rightmost lane of an 
arterial and continued to travel until it was forced to a complete 
stop to avoid a rear-end collision with the leading vehicle, which 
was waiting for a gap to change lanes at a merging section of the 
arterial. The total duration of the video was 35 s, and the event 
occurred at about 23 s.

Figure 3.21.  Speeds of leading and following vehicles (Case 73082).
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Figure 3.20.  Speed, range, and range-rate data (Case 73082).
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Figure 3.22.  Measured and modeled speedometer speeds from following 
vehicle (Case 73082).
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Table 3.5.  Bayes Estimation Summary for Case 73082

Variable Mean
Standard 
Deviation 2.5%ile 97.5%ile

Following Vehicle

Initial speed (ft/s) 0 — — —

First acceleration (ft/s2) 5.41 0.03 5.34 5.47

Second acceleration (ft/s2) 2.0 0.12 1.74 2.23

Third acceleration (ft/s2) -18.33 0.41 -19.16 -17.51

First change (s) 6.65 0.09 6.485 6.84

Second change (s) 11.96 0.05 11.86 12.05

Reaction time (s) 1.75 0.12 1.50 2.0

Speed start reaction (ft/s) 43.08 0.37 42.37 43.78

Separation start reaction (ft) 74.05 0.19 73.61 74.37

Leading Vehicle

Initial speed (ft/s) 2.15 0.23 1.715 2.56

First acceleration (ft/s2) 10.1 0.26 9.64 10.59

Second acceleration (ft/s2) 4.07 0.05 3.97 4.18

Third acceleration (ft/s2) -3.87 0.74 -5.36 -2.46

Fourth acceleration (ft/s2) -13.52 0.41 -14.41 -12.76

First change (s) 1.82 0.06 1.69 1.93

Second change (s) 8.77 0.09 8.61 8.96

Third change (s) 10.21 0.09 10.03 10.39
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The piecewise model appears plausible as shown in Fig-
ures 3.35 and 3.36 fitting the observed speed of the follow-
ing vehicle and range data.

Also, a counterfactual model (see Figure 3.37) was devel-
oped that shows that if everything else remained constant but 
the deceleration of the following vehicle in the last stage was 
stronger than -5.7 ft/s2, then the probability of a crash is 
essentially zero; on the other hand, if the deceleration was 
weaker than about -4.2 ft/s2, a crash is nearly certain.

Case 60289

As shown in Figure 3.38, in this event the two vehicles were 
closely following each other. The leading vehicle accelerated 
and then traveled at uniform speed before it decelerated to 

almost zero speed. The following vehicle kept to the same pat-
tern as the leading vehicle, shown in Figure 3.39. Range and 
range-rate data obtained from the radar is shown in Figure 3.40.

A four-stage model was constructed to fit the following 
vehicle’s speed trajectory. Initially, the following vehicle was 
traveling at 11.21 ft/s and then accelerated at 3.15 ft/s2 for 
5.36 s. Then it traveled at almost constant speed for another 
5 s before decelerating at -2.419 ft/s2 for 4.3 s, followed by a 
strong deceleration of -10.74 ft/s2, and finally came to a stop at 
16.47 s. A similar pattern was observed for the leading vehicle, 
which had an initial acceleration stage of 8.16 ft/s2 for 1.764 s, 
followed by a period of 8.277 s of almost constant speed, and 
then two deceleration stages, with the final deceleration rate as 
high as -9.502 ft/s2. The similar speed profile of the two vehi-
cles seems reasonable because they were following each other 
closely in this case. Table 3.8 shows the WinBUGS estimates.

Predicted versus observed speed and range values (see Fig-
ures 3.41 and 3.42) were plotted and look quite reasonably 
represented by the four-stage model.

A similar counterfactual model (see Figure 3.43) was devel-
oped to show the probability of a crash for different decelera-
tion values in the final stage of the following vehicle.

Case 92660

In this event, a vehicle was closely following another vehicle 
on a two-lane, two-way highway as shown in Figure 3.44. The 
leading vehicle suddenly stopped, and the following vehicle 
had to swerve to avoid a collision, as shown in Figure 3.45.

The speed trajectory (see Figure 3.46) shows that the leading 
vehicle initially traveled at mild acceleration for a considerable 
period of time followed by a steep deceleration, which intensi-
fied in the last or final phase. On the other hand, the following 
(instrumented) vehicle started with a gentle acceleration and 

Figure 3.23.  Measured and modeled range data for leading vehicle 
(Case 73082).
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Figure 3.24.  View of the leading vehicle (Case 104851).
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Figure 3.25.  Speed trajectories of the leading and following vehicles (Case 104851).
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Figure 3.26.  Range and range-rate data (Case 104851).
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Table 3.6.  WinBUGS Estimates for the Model Parameters for Case 104851

Variable Mean
Standard 
Deviation 2.50% Median 97.50%

Following Vehicle

Initial speed (ft/s) 25.66 0.3869 24.92 25.66 26.45

First acceleration (ft/s2) 1.567 0.2429 1.072 1.566 2.027

Second acceleration (ft/s2) -21.76 0.7101 -23.06 -21.79 -20.3

Third acceleration (ft/s2) -2.876 0.3197 -3.461 -2.891 -2.212

First change (s) 2.626 0.02057 2.572 2.629 2.657

Second change (s) 3.811 0.03753 3.755 3.806 3.891

Reaction time (s) 1.059 0.04373 0.9932 1.052 1.161

Leading Vehicle

Initial speed (ft/s) 26.07 0.4079 25.27 26.07 26.88

First acceleration (ft/s2) -2.973 0.2788 -3.54 -2.971 -2.434

Second acceleration (ft/s2) -6.172 0.4611 -7.155 -6.153 -5.319

Third acceleration (ft/s2) -24.29 0.7389 -25.61 -24.34 -22.71

First change (s) 2.752 0.02641 2.674 2.755 2.793

Second change (s) 3.362 0.01218 3.339 3.361 3.387

Figure 3.27.  Predicted and observed range data (Case 104851).
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Figure 3.28.  Predicted and observed instrumented speeds (Case 104851).
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Figure 3.29.  Counterfactual model (Case 104851).
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Figure 3.30.  Initial view from the instrumented  
vehicle traveling in the rightmost lane (Case 104283).

Figure 3.31.  View near the merging section, with 
leading vehicle waiting for a gap (Case 104283).

then moved at almost constant speed for some time, followed 
by the final deceleration as a reaction to the leading vehicle’s 
behavior. Range and range-rate data are shown in Figure 3.47.

The video shows that the following vehicle had to swerve 
around the lead vehicle to avoid a crash, which suggests a two- 
dimensional analysis. The focus here, however, is to extract 
as much information as possible from a one-dimensional 
approach.

Table 3.9 lists the WinBUGS estimates for the parame-
ters. A three-stage model was developed for both the lead-
ing and the following vehicles. The most highlighted result 
that can be seen from the estimates is the very strong decel-

eration in the final stage. The leading vehicle had an initial 
speed of 40 ft/s and accelerated gently at 0.5 ft/s2 for 7 s before 
decelerating at -14.76 ft/s2 for approximately 2.3 s, followed 
by a more intense deceleration of -23 ft/s2 and finally stop-
ping. The following vehicle, with an initial speed of 33.75 ft/s, 
accelerated at 2.48 ft/s2 for 4.23 s and then moved at almost 
zero acceleration for another 4.5 s before finally decelerating 
at -15.57 ft/s2. Figure 3.48 shows the predicted and observed 
range values.

The counterfactual model for this case study is not shown 
because the following vehicle, aside from decelerating, swerved 
to avoid the crash.
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Figure 3.33.  Speed trajectories for the leading and following vehicles 
(Case 104283).
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Figure 3.34.  Range and range-rate data (Case 104283).
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Figure 3.32.  Following vehicle just managed to stop, 
resulting in a near-crash scenario (Case 104283).
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Table 3.7.  WinBUGS Estimates for Case 104283

Variable Mean Standard Deviation 2.50% Median 97.50%

Following Vehicle

Initial speed (ft/s) 60.12 0.3074 59.54 60.12 60.74

First acceleration (ft/s2) -7.574 0.1257 -7.821 -7.573 -7.333

Second acceleration (ft/s2) -16.16 0.372 -16.86 -16.17 -15.41

First change (s) 3.922 0.04541 3.823 3.929 3.991

Time when stop (s) 5.805 0.027 5.754 5.804 5.861

Reaction time (s) 2.207 0.0607 2.083 2.209 2.322

Leading Vehicle

Initial speed (ft/s) 30.93 0.437 30.12 30.91 31.81

First acceleration (ft/s2) -10.86 0.3323 -11.57 -10.84 -10.26

Second acceleration (ft/s2) -4.332 0.1572 -4.648 -4.331 -4.03

First change (s) 1.714 0.05528 1.602 1.716 1.816

Time when stop (s) 4.559 0.07132 4.424 4.557 4.704

Figure 3.35.  Predicted and observed instrumented speeds (Case 104283).
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Figure 3.36.  Predicted and observed range values (Case 104283).
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Figure 3.38.  Initial view of the leading vehicle  
(Case 60289).

Figure 3.37.  Counterfactual model (Case 104283).
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Figure 3.39.  Speed trajectories of the leading and following vehicles (Case 60289).

Figure 3.40.  Range and range-rate data (Case 60289).
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Figure 3.41.  Predicted and observed instrumented speeds (Case 60289).

Table 3.8.  WinBUGS Estimates for Case 60289

 
Variable

 
Mean

Standard 
Deviation 2.50% Median 97.50%

Following Vehicle

Initial speed (ft/s) 11.21 0.2399 10.74 11.21 11.67

First acceleration (ft/s2) 3.149 0.06246 3.034 3.146 3.275

Second acceleration (ft/s2) 0.7217 0.03928 0.6431 0.7219 0.7981

Third acceleration (ft/s2) -2.419 0.1075 -2.635 -2.415 -2.22

Fourth acceleration (ft/s2) -10.74 0.3316 -11.38 -10.74 -10.07

First change (s) 5.364 0.06755 5.236 5.362 5.495

Second change (s) 10.71 0.05586 10.61 10.71 10.83

Third change (s) 14.3 0.03184 14.23 14.3 14.36

Time when stopped (s) 16.47 0.05112 16.37 16.47 16.57

Reaction time (s) 0.4847 0.04604 0.3996 0.4829 0.5788

Leading Vehicle

Initial speed (ft/s) 14.07 0.3193 13.46 14.07 14.71

First acceleration (ft/s2) 8.16 0.2434 7.679 8.164 8.631

Second acceleration (ft/s2) -0.00214 0.04673 -0.09826 -0.00121 0.08024

Third acceleration (ft/s2) -1.45 0.07088 -1.591 -1.448 -1.312

Fourth acceleration (ft/s2) -9.502 0.3231 -10.12 -9.506 -8.857

First change (s) 1.764 0.03767 1.69 1.763 1.841

Second change (s) 8.277 0.1001 8.073 8.28 8.461

Third change (s) 13.81 0.03837 13.74 13.81 13.88
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Figure 3.44.  Initial view of the leading vehicle on a 
two-lane, two-way highway (Case 92660).

Figure 3.45.  Instrumented vehicle swerved to avoid 
collision (Case 92660).

Figure 3.42.  Predicted and observed range values (Case 60289).
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Figure 3.47.  Range and range-rate data (Case 92660).
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Figure 3.46.  Speed trajectories of the leading and following vehicles (Case 92660).
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Table 3.9.  WinBUGS Estimates for the Parameters for Case 92660

Variable Mean Standard Deviation 2.50% Median 97.50%

Following Vehicle

Initial speed (ft/s) 33.75 0.2246 33.33 33.74 34.2

First acceleration (ft/s2) 2.479 0.07467 2.332 2.48 2.625

Second acceleration (ft/s2) 0.1819 0.08929 0.01293 0.1802 0.3597

Third acceleration (ft/s2) -15.57 0.8826 -17.29 -15.57 -13.83

First change (s) 4.229 0.09666 4.036 4.232 4.407

Second change (s) 8.73 0.04538 8.635 8.734 8.812

Time when stop (s) 11.62 0.1311 11.38 11.61 11.9

Leading Vehicle

Initial speed (ft/s) 40.98 0.2145 40.58 40.98 41.41

First acceleration (ft/s2) 0.504 0.05306 0.3998 0.506 0.6038

Second acceleration (ft/s2) -14.76 0.4033 -15.55 -14.76 -13.98

Third acceleration (ft/s2) -23.62 3.443 -31.91 -23.15 -18.31

First change (s) 7.004 0.03893 6.928 7.005 7.077

Second change (s) 9.269 0.1305 9.003 9.267 9.51

Figure 3.48.  Predicted and observed range values (Case 92660).

Development of Analysis Methods Using Recent Data

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22850


40

C h a p t e r  4

Data Acquisition  
and Preparation

The locations selected for analyses of site-based video data 
were two freeway segments on westbound Interstate 94 near 
downtown Minneapolis. One is approximately 500 ft long, 
located between Minnesota State Highway 65 and Portland 
Avenue, and the other is approximately 600 ft long, located 
between Portland Avenue and Park Avenue South. Fig-
ure 4.1 provides an overhead view of these two sites.

The traffic traveling on these two segments was recorded 
using two cameras installed by the Minnesota Traffic Obser-
vatory (MTO) on the roof of a 121-ft-high building near 3rd 
Avenue. The videos were transferred to the MTO and saved at 
a resolution of 640 × 480 pixels and 10 frames/s, from 11 a.m. 
to 8 p.m. daily. Given a target vehicle, its time-series of posi-
tions expressed in screen coordinates were manually extracted 
frame by frame using VideoPoint software (see Figure 4.2).

The screen coordinates obtained from VideoPoint were 
then converted to ground coordinates by first matching sev-
eral reference points on the video images to corresponding 
points on high-resolution satellite photos and then applying 
standard photogrammetric methods.

I-94 Case 1

Description from the video: In this event, the following vehi-
cle (Vehicle 2) and leading vehicle (Vehicle 1) were traveling 
in the middle lane (Figures 4.3 and 4.4). Vehicle 2 collided 
with Vehicle 1.

Trajectory data after the collision were not collected. 
Approximately 15 s of data were available from the video. 
Inspection of these data indicated that both vehicles were 
traveling at constant speeds approximately 9 s before the col-
lision. Only the trajectory data from the last 6 s were used, 
and these are displayed in Figure 4.5.

Exploratory modeling for both vehicles was conducted 
using R software. For Vehicle 1, a two-stage model was fit, 
where a gentle acceleration lasting about 2.7 s was followed 
by a stronger deceleration. For Vehicle 2, a one-stage model 
was fit, where a gentle acceleration lasted until the collision. 
Bayes estimates for each vehicle’s initial speed, the time 
points at which the accelerations changed, and the accelera-
tions in all stages were computed using WinBUGS. These 
results are displayed in Table 4.1.

At the beginning of the study period, Driver 2 was travel-
ing at 24.21 ft/s, while Driver 1 was traveling at 27.5 ft/s. 
Driver 1 accelerated at 1.6 ft/s2 for about 2.7 s and then decel-
erated at -8.779 ft/s2 for about 3.1 s. Driver 2 was accelerating 
at about 1.16 ft/s2 until the collision. No evidence from video 
or trajectory data showed that Driver 2 decelerated to prevent 
a collision. Figures 4.6 and 4.7 show the distance trajectories 
of Vehicles 1 and 2, along with the distance trajectories pre-
dicted by the models.

I-94 Case 2

Description from the video: In this event, the following vehi-
cle (Vehicle 2) and leading vehicle (Vehicle 1) were traveling 
in the middle lane (Figures 4.8 and 4.9). Vehicle 2 collided 
with Vehicle 1.

Approximately 4 s of data were available from the video. The 
trajectory data used for analysis are displayed in Figure 4.10.

Exploratory modeling for both vehicles was conducted 
using R software. For Vehicle 1, a two-stage model was fit, 
where a strong deceleration lasted about 1.5 s and was fol-
lowed by a less strong deceleration. For Vehicle 2, a one-stage 
model was fit, where a gentle acceleration lasted until the col-
lision. Bayes estimates are displayed in Table 4.2.

At the beginning of the study period, Driver 2 was travel-
ing at 33.02 ft/s, while Driver 1 was traveling at 33.12 ft/s. 

Analyses Using Site-Based Video Data

(text continues on page 44)
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Figure 4.4.  View at the time of collision (I-94 Case 1).Figure 4.3.  View at the time the two vehicles enter 
the study segment (I-94 Case 1).

Figure 4.2.  Illustration of VideoPoint trajectory 
extraction.

Study Sites

I 94 

I 35W 

Figure 4.1.  Satellite view of two distance-based  
trajectory-data-collection sites.
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Figure 4.5.  Distance trajectory data (I-94 Case 1).
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Figure 4.6.  Measured and modeled Vehicle 1 distance trajectories (I-94 Case 1).

Table 4.1.  WinBUGS Estimates for I-94 Case 1

Variable Mean Standard Deviation 2.5%ile 97.5%ile

Vehicle 2 (following)

Initial speed (ft/s) 24.21 0.1731 23.87 24.56

First acceleration (ft/s2) 1.155 0.07787 0.9997 1.306

Vehicle 1 (leading)

Initial speed (ft/s) 27.5 0.5015 26.46 28.45

First acceleration (ft/s2) 1.643 0.4585 0.8183 2.615

Second acceleration (ft/s2) -8.779 0.4278 -9.656 -7.983

First change (s) 2.663 0.1136 2.433 2.883
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Figure 4.9.  View at the time of collision (I-94 Case 2).Figure 4.8.  View at the time the two vehicles enter 
the study segment (I-94 Case 2).
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Figure 4.7.  Measured and modeled Vehicle 2 distance trajectories 
(I-94 Case 1).
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Figure 4.10.  Distance trajectory data (I-94 Case 2).
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Table 4.2.  WinBUGS Estimates for I-94 Case 2

Variable Mean Standard Deviation 2.5%ile 97.5%ile

Vehicle 2 (following)

Initial speed (ft/s) 33.02 0.2069 32.62 33.43

First acceleration (ft/s2) -2.512 0.1425 -2.793 2.231

Vehicle 1 (leading)

Initial speed (ft/s) 33.12 0.8424 31.89 35.13

First acceleration (ft/s2) -10.52 1.911 -15.11 -8.507

Second acceleration (ft/s2) -5.436 0.5798 -6.377 -4.099

First change (s) 1.505 0.3309 0.8608 2.134
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Figure 4.11.  Measured and modeled Vehicle 1 distance  
trajectories (I-94 Case 2).

Driver 1 was decelerating at -10.52 ft/s2 for about 1.5 s and 
then decelerated at -5.436 ft/s2 for about 2.3 s. Driver 2 was 
decelerating at -2.512 ft/s2 but was not able to prevent the 
collision. Figures 4.11 and 4.12 show the distance trajectories 
of Vehicles 1 and 2, along with the distance trajectory pre-
dicted by the models.

I-94 Case 3

Description from the video: In this event, three vehicles are 
traveling in the right lane of the study segment (Figures 4.13 
and 4.14). Vehicle 3 collides with Vehicle 2.

Approximately 7 s of data were available from the video. 
The trajectory data used for analysis are displayed in  
Figure 4.15.

Exploratory modeling for each vehicle was conducted 
using R software. For Vehicle 1, a three-stage model was fit, 
where a gentle acceleration lasting for about 2.3 s was fol-
lowed by a 2.4-s stronger deceleration and then by a 2.4-s 

gentler deceleration. For Vehicle 2, a two-stage model was 
fit, where a gentle deceleration lasting for about 3.5 s was 
followed by a 3.2-s stronger deceleration. For Vehicle 3, a 
three-stage model was fit. The trajectory modeling showed 
that Driver 3 decelerated in all three stages. Bayes estimates 
are displayed in Table 4.3. The reaction time of Driver 2 was 
calculated as the time difference between Driver 2’s first 
change point and Driver 1’s first change point. The reaction 
time of Drivers 3 was calculated as the time difference 
between Driver 3’s second change point and Driver 2’s first 
change point.

At the beginning of study period, Drivers 1, 2, and 3 were 
traveling at 21.33 ft/s, 33.42 ft/s, and 51.29 ft/s, respectively. 
Driver 1 accelerated at 1.048 ft/s2 for about 2.2 s at first, then 
decelerated at -8.8 ft/s2 for about 2.3 s, and then decelerated 
at -0.8968 ft/s2 for about 2.4 s. Driver 2 was decelerating at 
-0.8968 ft/s2 for about 3.5 s and then decelerated at -8.0 ft/s2 
for about 3.2 s. Vehicle 3 was apparently initially traveling at 
a much higher speed (51.29 ft/s) than the other two vehicles. 

(continued from page 40)
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Figure 4.14.  View at the time of collision (I-94 Case 3).Figure 4.13.  View at the time the three vehicles enter 
the study segment (I-94 Case 3).
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Figure 4.12.  Measured and modeled Vehicle 2 distance  
trajectories (I-94 Case 2).
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Figure 4.15.  Distance trajectory data (I-94 Case 3).
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Table 4.3.  WinBUGS Estimates for I-94 Case 3

Variable Mean Standard Deviation 2.5%ile 97.5%ile

Vehicle 3

Initial speed (ft/s) 51.29 0.3508 50.66 52.03

First acceleration (ft/s2) -5.618 0.3798 -6.475 -4.992

Second acceleration (ft/s2) -3.206 0.2493 -3.598 -2.617

Third acceleration (ft/s2) -10.24 2.002 -14.88 -7.215

First change (s) 2.295 0.3079 1.726 2.926

Second change (s) 5.375 0.2048 4.924 5.743

Reaction time (s) 1.886 0.2197 1.412 2.285

Vehicle 2

Initial speed (ft/s) 33.42 0.1933 33.03 33.80

First acceleration (ft/s2) -0.8968 0.1368 -1.156 -0.6174

Second acceleration (ft/s2) -8.004 0.2241 -8.463 -7.576

First change (s) 3.489 0.0792 3.333 3.645

Reaction time (s) 1.231 0.1336 0.9572 1.489

Vehicle 1

Initial speed (ft/s) 21.33 0.3953 20.53 22.07

First acceleration (ft/s2) 1.048 1.048 0.2296 1.984

Second acceleration (ft/s2) -8.8 0.5076 -9.974 -7.967

Third acceleration (ft/s2) -0.9801 0.3604 -1.535 -0.1625

First change (s) 2.258 0.1116 2.046 2.49

Second change (s) 4.595 0.1188 4.353 4.819

Although Driver 3 noticed that the traffic in front was  
slowing down and started decelerating before entering the 
data-collection segment, Driver 3 was still not able to avoid 
collision with Vehicle 2 after decelerating at -10.24 ft/s2 for 
about 2.3 s in its last stage.

Figures 4.16, 4.17, and 4.18 show the distance trajectories 
of Vehicles 1, 2, and 3, along with the distance trajectory pre-
dicted by the models.

In this case, to assess the avoidability of collision between 
Vehicles 2 and 3, probabilities of collision between these 
vehicles were computed as a function of counterfactual final 
decelerations (the third stage) of Vehicle 3. This relationship 
is displayed in Figure 4.19.

The probability of collision between Vehicles 1 and 2 was 
also evaluated, assuming that Driver 2 was decelerating at dif-
ferent rates in the last stage. This relationship is displayed in 
Figure 4.20. In this case, since the relative speed between 
Vehicles 1 and 2 in the last stages is small, for most counter-

factual deceleration rates of Vehicle 2, the corresponding 
probabilities of collision are either 1 or 0.

I-94 Case 4

Description from the video: In this event, three vehicles were 
traveling in the right lane of the study segment (Figures 4.21 
and 4.22). Vehicle 3 collided with Vehicle 2.

Approximately 10 s of data were available from the 
video. The trajectory data used for analysis are displayed in 
Figure 4.23.

Exploratory modeling for both vehicles was conducted using 
R software. A three-stage model was fit to each vehicle trajec-
tory. Vehicle 1 accelerated for about 2.6 s, which was followed 
first by a 4.1-s strong deceleration and then by a 3.7-s gentle 
deceleration. The behavior of Drivers 2 and 3 was almost the 
same as that of Driver 1 but with stronger deceleration in their 
last stages. The WinBUGS estimates are shown in Table 4.4. 

(text continues on page 51)
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Figure 4.18.  Measured and modeled Vehicle 3 distance  
trajectories (I-94 Case 3).
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Figure 4.17.  Measured and modeled Vehicle 2 distance trajectories 
(I-94 Case 3).
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Figure 4.16.  Measured and modeled Vehicle 1 distance trajectories  
(I-94 Case 3).
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Figure 4.19.  Probability of collision as a function of counterfactual final deceleration 
by Driver 3 (I-94 Case 3).
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Figure 4.20.  Probability of collision as a function of counterfactual final deceleration 
by Driver 2 (I-94 Case 3).
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Figure 4.22.  View at the time of collision between 
Vehicles 2 and 3 (I-94 Case 4).

Figure 4.21.  View at the time the three vehicles enter 
the study segment (I-94 Case 4).
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Figure 4.23.  Distance trajectory data (I-94 Case 4).
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Table 4.4.  WinBUGS Estimates for I-94 Case 4

Variable Mean Standard Deviation 2.5%ile 97.5%ile

Vehicle 3

Initial speed (ft/s) 21.94 0.164 21.61 22.25

First acceleration (ft/s2) 2.591 0.06958 2.46 2.735

Second acceleration (ft/s2) -0.8846 0.5106 -1.874 0.1521

Third acceleration (ft/s2) -12.89 3.821 -21.83 -7.752

First change (s) 5.9 0.2449 5.336 6.334

Second change (s) 8.723 0.2545 8.171 9.163

Reaction time (s) 1.112 0.2855 0.5099 1.62

Vehicle 2

Initial speed (ft/s) 25.67 0.3143 25.0 26.21

First acceleration (ft/s2) 2.514 0.2232 2.164 3.012

Second acceleration (ft/s2) -0.2509 0.2551 -0.7828 0.2243

Third acceleration (ft/s2) -10.48 0.6891 -11.95 -9.231

First change (s) 3.769 0.3356 3.092 4.372

Second change (s) 7.612 0.1186 7.382 7.847

Reaction time (s) 0.8966 0.1646 0.5863 1.223

Vehicle 1

Initial speed (ft/s) 29.41 0.5065 28.27 30.27

First acceleration (ft/s2) 2.247 0.5051 1.52 3.485

Second acceleration (ft/s2) -0.7111 0.1872 -1.073 -0.3352

Third acceleration (ft/s2) -7.312 0.306 -7.923 -6.729

First change (s) 2.625 0.3319 1.913 3.216

Second change (s) 6.715 0.1183 6.475 6.938
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Figure 4.24.  Measured and modeled Vehicle 1 distance trajectories 
(I-94 Case 4).
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Figure 4.25.  Measured and modeled Vehicle 2 distance  
trajectories (I-94 Case 4).

Although Driver 3 had the strongest final deceleration (at 
-12.89 ft/s2) for about 1.3 s, this was not sufficient to pre-
vent the collision.

Figures 4.24, 4.25, and 4.26 show the distance trajectories 
of Vehicles 1, 2, and 3, respectively, along with the distance 
trajectories predicted by the models.

In this case, the relationship between a counterfactual final 
deceleration of Vehicle 3 and the probability of collision with 
Vehicle 2 is displayed in Figure 4.27. The probability of colli-
sion between Vehicle 1 and 2 was also evaluated, assuming 
Driver 2 was decelerating at a different rate in the last stage. 
This relationship is displayed in Figure 4.28.

The reaction times of Drivers 2 and 3 were calculated as the 
time difference of last change points between Vehicles 2 
and 1, and between Vehicles 3 and 2.

At the beginning of the study period, Drivers 1, 2, and 3 
were traveling at about 29.41 ft/s, 25.67 ft/s, and 21.94 ft/s, 
respectively. Driver 1 first accelerated at 2.247 ft/s2 for 
about 2.6 s, then decelerated at -0.7111 ft/s2 for about 4.1 s, 
and then decelerated at -7.312 ft/s2 for about 3.7 s. Driver 2 
was accelerating at 2.514 ft/s2 for about 3.8 s, decelerated  
at -0.2509 ft/s2 for about 3.8 s, and then decelerated at 
-10.48 ft/s2 to avoid colliding with Vehicle 1. Driver 3 
noticed the strong deceleration of Vehicle 2 in its last stage. 

(continued from page 46)
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Figure 4.27.  Probability of collision as a function of counterfactual final deceleration 
by Driver 3 (I-94 Case 4).
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Figure 4.26.  Measured and modeled Vehicle 3 distance trajectories  
(I-94 Case 4).
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Figure 4.28.  Probability of collision as a function of counterfactual final deceleration 
by Driver 2 (I-94 Case 4).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-32 -27 -22 -17 -12 -7 -2

Probability

Deceleration (feet/sec2)

3

Development of Analysis Methods Using Recent Data

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22850


53

C h a p t e r  5

General Methodology

One of the goals for this project was to explore the utility and 
usability of existing data in traffic safety analysis, specifically 
in the investigation of surrogate measures of safety. The 
approach requires vehicle trajectories. The data collected 
from the Cooperative Intersection Collision Avoidance Sys-
tems (CICAS) project intersections, at least at first glance, 
looked like a promising source of information. This infra-
structure was designed for the purposes of the CICAS project, 
however, and certain features constrain the usefulness of 
these data for more general research purposes. In adherence 
to the principal objective of the SHRP 2 Safety Project S01, 
effort was devoted to assessing the potential utility of this 
extensive data source. This was done both to test the project’s 
core methodology and to identify possible future improve-
ments to the data-collection infrastructure. This chapter 
summarizes the findings of the analysis and the problems 
encountered, along with their proposed solutions, and con-
cludes with an exploratory analysis of one near-crash event.

During the course of this project, all CICAS project sites 
were explored as potential data sources. The Minnesota 
Highway 52 site, although it has more recorded crash cases, 
deploys older technology; the North Carolina US-74E site has 
better sensors and corrects some errors in the collection and 
postprocessing of data. These were the main reasons for 
focusing the project’s efforts on the data originating from the 
North Carolina site. The site is illustrated in Figure 5.1; US-74 
is the main road and Strawberry Boulevard is the side road. 
The goal was to attempt to isolate near-crash events and 
use the structural-model methodology to investigate the 
background and input conditions characterizing a crash or 
near-crash event and their relation to the occurrence or 
nonoccurrence of a collision. The data harvesting procedure 
involved the extraction of possible cases from the CICAS 
database, use of filters for the removal of false positives, and 
visual inspection of the resulting trajectories. It is important 

to note that in contrast to the other data sources used in this 
project, the magnitude of the data available from the CICAS 
site made necessary the development of automated methods 
for event data extraction and the creation of utilities that 
accelerate manual inspection of the extracted information.

The CICAS vehicle trajectory database structure and avail-
able information is described in Appendix B. In summary, 
the information available for each vehicle includes x, y coor-
dinates in the state plane system, speed, and acceleration 
measurements, all at 10 Hz. It is vital to understand that these 
are not the raw collected measurements from the site but are 
derived from the raw measurements provided by the instru-
mentation during a data-reduction stage. From the detection 
hardware used, it is known that the sensor radar-based mea-
surements for main-approach vehicles are range, range rate, 
and azimuth at 10 Hz, with similar information collected 
from the LIDAR sensors for the side-road vehicle (although 
it is unclear at what interval). The postprocessing of the raw 
data includes filtering as well as projections to known road-
way features that introduce some difficulties for this study. 
For example, the position of the vehicle is always projected 
onto the lane centerline, resulting in some loss of informa-
tion regarding the transition during lane changes, but more 
importantly during evasive actions taken by the drivers to 
avoid collisions. In addition, after closer inspection of the 
data, the project team concluded that the side-road vehicle 
position is not updated at 10 Hz, since the provided data gen-
erate a stepwise trajectory profile. Speed and acceleration for 
the side-road vehicle display apparently unrealistic behavior, 
so they were excluded from this investigation.

Figure 5.1 shows the North Carolina site for the CICAS 
project. The CICAS database codes events based on side-road 
vehicle maneuvers, along with the gap duration from the 
main-road vehicle movements. This database postprocessing 
makes possible the harvesting of completed cross-mainline 
maneuvers, where the accepted gaps of the side-road crossing 
vehicle may have been small. This involves finding a plausible 

Analyses Using CICAS Site-Based System

Development of Analysis Methods Using Recent Data

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22850


54

time envelope of small, accepted lag times during the cross-
mainline maneuver over the complete lifetime of the tracked 
vehicle. The search was separated by direction for the two 
cross-main-road maneuvers (one for each direction). The 
technique is illustrated for one of the maneuvers. Essentially, 
it involves two inner join steps. The first step is the inner join 
of all tracked targets associated with small gap events for the 
given maneuver within the observation lifetime of the tracked 
target that completed the maneuver (i.e., when the target was 
first and last seen by the system):

CREATE VIEW closecalls AS SELECT targetid, maneuver, 
veh_class, sub1_acpt_lag_zone_exit_date, sub1_acpt_lag_
zone_exit_time

FROM vehicle_acpt_lag
WHERE (maneuver = 1) AND ((3.0 > ANY(sub1_acpt_lags)) 

OR (3.0 > ANY(sub2_acpt_lags)));

CREATE VIEW lifetime AS SELECT vt.targetid, vt.zone_
first_seen, vt.date_first_seen, vt.time_first_seen, vt.zone_
last_seen, vt.date_last_seen, vt.time_last_seen

FROM vehicle_time AS vt
INNER JOIN closecalls AS cc ON (vt.targetid = cc.targetid);

The second step uses the lifetime of this target to harvest all 
tracked targets present during the evolution of the accepted 
lag times for the maneuver.

SELECT *
FROM tracked_targets AS tt
INNER JOIN lifetime AS ltm ON
(tt.date = ltm.date_first_seen) AND
(tt.time >= ltm.time_first_seen) AND
(tt.time <= ltm.time_last_seen);

The preceding procedure returned close to 3,000 cases. 
These are possible near-crash events. To try to reduce the 
false positives, a filtering program was developed.

The first step in the filtering program is to determine the 
predominate direction of travel for all the tracked vehicles. 
Essentially, this can be achieved by keeping track of the lane 
number as the target progresses in time. Second, since the 
primary interest is in events representing near-crash cases 
between a side-road vehicle and main-road vehicle, after the 
first sort, the side-road vehicles are examined. For each side-
road vehicle, main-road vehicles are scanned at the same time 
step and run through a rejection process. In this process, if 
any test fails to return at least one possible conflicting main-
road vehicle, the time step is advanced. The process is sum-
marized in the following steps:

Step 1:	� If no mainline vehicles are present for the given time 
step, then the time step is advanced.

Step 2:	� A distance between the main-road vehicles and the 
side-road vehicle must lie below a specified threshold.

Step 3:	� The speed of the side-road vehicle must be above a 
specified minimum threshold.

Step 4:	� The speed of the main-road vehicle must be above a 
specified minimum threshold.

The rejection at each step can be stored in a table that 
contains the date/time and target IDs. The level of elimina-
tion depends on the specified speed/distance parameters of 
the trajectories. The result of the filtering program contained 
297 cases of near crashes similar to a recorded crash case.

A sample trajectory of a main-road tracked vehicle can be 
seen in Figure 5.2 for one of the resulting maneuvers. Note that 
as long as the lateral position relative to the center lane is within 
a certain margin, the target is snapped to the lane. Generally, 
what has been determined thus far is that the main-road tracked 
vehicle trajectories seem plausible. Unfortunately, this is not the 
case with the trajectories of the side-road vehicle. Although 
when the complete maneuver is plotted in space, the trajectories 
seem plausible (Figure 5.3), when animated in time, it becomes 
clear that peculiar tracking errors exist at critical locations dur-
ing the maneuver. Figure 5.4 illustrates one such case, which has 
been typical of what has been observed thus far.

The side-road tracked vehicle completed a northbound cross 
maneuver over US-74 (aligned east-west in Figure 5.3). It can 
be reasonably assumed that the vehicle never reverses course 
during the maneuver. Under such circumstances, the displace-
ment curve from the start of the maneuver to the last tracked 
location should always monotonically increase. As seen in 
Figure 5.4, particularly at points A, B, and C, this is not the case.

The side-road vehicle seems to make jumps backward, which 
is unrealistic. More important, these jumps do not seem to be 

Studied Intersection

Figure 5.1.  CICAS project at North Carolina site.
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evidence is not enough to pinpoint the source of the difficulty 
and certainly not enough to allow the creation of automated 
correction methodologies, which, in any case, are outside the 
scope of this project. The aforementioned issues constrained 
the project’s ability to process large numbers of possible near 
crashes. Regardless, the rest of this chapter includes the analysis, 
lessons learned, and modeling results for one near-crash event 
at the North Carolina CICAS site.

CICAS North Carolina US-74E 
Near-Crash Case: 12:11 p.m., 
April 25, 2007

Lacking video for this selected event, the sequence of events 
can only be deduced from the animated trajectory informa-
tion for the vehicles involved. Figure 5.5 shows a frame cap-
tured from the visualization tool.

isolated points on the overall trajectory, since the progression 
seems realistic following these course corrections. This last ele-
ment renders difficult the correction of these trajectories even 
manually. After close inspection of many cases, numerous 
hypotheses have been formed on the nature of these discrepan-
cies. Specifically, the errors seem to concentrate in areas where 
the side-road vehicle is stationary or a main-road vehicle is 
nearby. For the portable site deployments such as North Caro-
lina, side-road vehicles are essentially tracked through the inter-
section using horizontal LIDAR units placed at each approach 
of the side road and at a location in the median. The height of 
the LIDAR horizontal scan is set to approximate the height of 
the vehicle bumper. The LIDAR scanner sweep could have 
missed the bumper, occlusions from other vehicles, sensor 
alignment (as the tracked vehicle passes from one sensor data-
collection field to another), or other algorithm processing fac-
tors may also contribute to the error. Of course, such anecdotal 

Figure 5.2.  Tracked target interface showing trajectories of a main-road vehicle.
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Figure 5.3.  Tracked target interface showing trajectories of a side-road vehicle.
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Figure 5.4.  Side-road vehicle displacements.
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description of the event was deduced. Specifically, the side-
road vehicle is performing a northbound crossing of the inter-
section beginning from a standing position approximately 
11 m (36 ft) from the conflict point. Considering this trajec-
tory and the movement rate, the mainline vehicle, which 
initially is moving with an approximate speed of 26.8 m/s 
(60 mph), will eventually collide with the side-road vehicle, 
unless a change of attitude is implemented. The main-road 
driver, realizing this, performs a sequence of decelerations of 
up to more than -2 m/s2 (-6.6 ft/s2) to prevent the crash. The 
maneuver is performed successfully with room to spare. It is 
important to note that the described behavior does not con-
sider any lateral movements of the vehicles, signifying types 
of evasive action other than deceleration, because if such 
movements did happen, they were smaller than the threshold 
used in the database for projecting the vehicle to the closest 
lane centerline. As discussed earlier, the animation of the side-
road vehicle, which depended on the x, y coordinates, indi-
cated that the reported speeds and accelerations do not agree. 
As seen in Figure 5.6, the side-road vehicle apparently never 
stops but appears to move with a constant speed of approxi-
mately 11 mph (4.9 m/s) even while the acceleration increases 
from zero until well after the vehicle is clearly moving. There-
fore, for the rest of the analysis, only the x, y coordinates of 

On the left side of Figure 5.5, there is a schematic of the 
intersection with the lines representing lane and turning cen-
terlines, while on the right side the speed and acceleration 
graphs for the mainline and side-road vehicles are provided. 
A solid red line indicates the side-road vehicle, while magenta 
points indicate the mainline vehicle. On the graph side, the 
green vertical line indicates the values at the current frame 
displayed. In Figure 5.6, a zoomed view of the trajectories is 
presented.

In Figure 5.6, the red circle indicates the mainline vehicle 
involved in the near crash. The vehicle moves toward the 
intersection in subsequent frames. The green (short) part of 
the side-vehicle trajectory is the movement already per-
formed, and the blue (longer) part is the trajectory in future 
frames. The conflict point for these trajectories is also indi-
cated. For the purposes of developing a model describing the 
vehicle trajectories, all coordinates were translated to a sys-
tem that has its center at the conflict point and the x axis 
parallel to the mainline vehicle trajectory. This simplified the 
kinematic equations of the vehicles by using only the distance 
to the conflict point. The speed and acceleration values pro-
vided in the CICAS database already represent the projected 
vectors on the trajectory of each vehicle. From the animation 
of the event, as well as the graphs of speed and acceleration, a 

Figure 5.5.  US-74 near-crash event, 12:11 p.m., April 25, 2007.
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cally, speed exhibits a single point drop of ~1.7 kph (1.0 mph), 
which, apart from being physically unrealistic, is not evident 
in the distance measurements. To explore the extent of this 
phenomenon, the project team proceeded to use the available 
data of speed and acceleration to estimate displacement per 
interval and compared this to the displacement produced by 
the x, y coordinates. This comparison is seen in Figure 5.8. 
For the purpose of the estimation, it was assumed that the 
starting values were known and the process progressed from 
there. The estimates of distance based on speed and accelera-
tion, although not identical, show better agreement with each 
other than they do with the provided distance from the data-
base. This can be seen as an indication that displacement uses 
the sensor range measurement, while speed and acceleration 
use range rate. Still, it is evident that significant filtering has 
been introduced.

In Figure 5.9, a similar comparison is made on speed val-
ues, one being provided and the other calculated based on 

the side-road vehicle are discussed, and speed and accelera-
tion are inferred from them.

The analysis of the data followed two routes. An empirical 
review of the information was performed to determine the 
concurrence of the provided information, followed by a more 
in-depth analysis producing Bayes estimates for each vehicle’s 
initial speed, the time points at which accelerations changed, 
and the accelerations in all stages. The reason for the empirical 
review was based on the quick realization of errors and dis-
crepancies in the information provided, some of which was 
described earlier in this chapter and are illustrated in the fol-
lowing sections specifically for this event. For the first part 
of the analysis, approximately 19 s of data were used for the 
mainline vehicle; 12 s of these were spent approaching the 
conflict point from a starting point approximately 276 m 
away. Figure 5.7 presents a subset of these for clarity.

From this figure, certain problematic measurements, both 
in speed and distance, can immediately be observed. Specifi-

Conflict Point 

Figure 5.6.  Lane centerline trajectories and selected targets.
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Figure 5.7.  Mainline vehicle distance and speed.
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Figure 5.8.  Mainline vehicle distance comparison.
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Exploratory modeling for both vehicles was conducted 
empirically in Excel to identify a plausible piecewise accelera-
tion model. For the mainline vehicle, a three-stage model was 
fit, where a gentle deceleration lasting for about 3 s was fol-
lowed by a stronger deceleration for 1 s and then by an even 
stronger one until the vehicle passed the conflict point. For 
the side-road vehicle, a one-stage model was fit, where a con-
stant mild acceleration carried it over the first part of the 
intersection. To avoid some of the errors and data discrepan-
cies discussed earlier, further analysis used a subset of the 
data starting at the point 8.2 s before the arrival of the main-
line vehicle at the conflict point and ending at that point.

Bayes estimates for each vehicle’s initial speed, the time 
points at which accelerations changed, and the accelerations 
in all stages were computed using WinBUGS. For this analy-
sis, it was deemed necessary to remove some of the most 
obvious problems exhibited in the provided data. Specifi-
cally, in the case of the mainline vehicle, the single point 
speed drop was corrected by adding a fixed value to all subse-
quent data points. For the side-road vehicle, some abnormal 
back-and-forth data points at the beginning of the time 
period were removed. The WinBUGS results are displayed in 
Table 5.1. Figures 5.11 to 5.13 display the comparison 
between model estimates and provided measurements.

One interesting observation resulting from the Bayes esti-
mates of the driver behavior parameters involves the hypothet-
ical mainline vehicle driver reaction time. Although the data are 
not sufficient to draw precise conclusions about the actions of 
the mainline driver, it can reasonably be assumed that the reac-
tion to the side-road vehicle’s encroachment on the mainline 

acceleration. For the speed estimates calculated from accel-
eration, the abnormal speed drop discussed earlier is not 
observed, but this can be either due to the introduction of an 
error in postprocessing or an artifact of the sampling meth-
odology that will not allow it to propagate the acceleration 
measurements. That is, if accelerations were originally esti-
mated as finite differences of speed, then a step change in 
speed will generally not be present in the acceleration esti-
mates. Although in this case this single error can be easily 
corrected, further investigation of the sensor characteristics 
and data reduction methodology would be required to facili-
tate better use of CICAS-collected mainline data with the 
trajectory-based methodology.

Figure 5.10 presents the best information regarding the 
side-road vehicle’s distance-to-conflict point calculated from 
x, y coordinates. From the figure, it is evident that the mea-
surements have both noise and errors and that these are not 
produced at the 10-Hz interval. The profile shows an unnatu-
ral stepwise progress for the vehicle. In this figure, back-and-
forth movements of the vehicle can be observed, as discussed 
earlier in this chapter. This case of a near crash was selected 
for analysis after a large number of events were reviewed to 
locate a relevant case with the fewest discrepancies, so that 
manual postprocessing with a minimal amount of abductive 
inference was possible. Specifically, in this case the problems 
can be found mainly in time periods that are not important 
for the analysis (before the vehicle comes to rest at the stop 
line and after it has sufficiently cleared the conflict point). 
Hence, further investigation used only information from 
time -6 s to time 1 s, approximately.
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Figure 5.9.  Mainline vehicle speed comparison.
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Table 5.1.  WinBUGS Estimates for CICAS Near-Crash Case

Variable Mean
Standard 
Deviation 2.5%tile 97.5%tile

Side-Road Vehicle (initial speed zero)

First acceleration (ft/s2) 4.74616 0.2188416 4.32632 5.18896

Movement start (s) -6.1422 0.102 -6.339 -5.95308

Main-Road Vehicle

Initial Speed (ft/s) 82.0328 0.0498888 81.9344 82.1312

First acceleration (ft/s2) -2.4987 0.0270666 -2.551184 -2.44426

Second acceleration (ft/s2) -5.32016 0.0070487 -5.61536 -4.92984

Third acceleration (ft/s2) -7.04872 0.0201326 -7.0848 -7.00608

First change (s) -5.23692 0.03635 -5.31564 -5.17452

Second change (s) -4.323 0.06229 -4.45548 -4.22988
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Figure 5.11.  Measured and modeled side-road vehicle distances.
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Figure 5.12.  Measured and modeled main-road vehicle speeds.
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of the video data was conducted manually; issues concerning 
automatic reduction of video data, although important, were 
treated as outside the scope of this project. The main objec-
tive of the work described in Chapter 5 was to assess the abil-
ity of an alternative technology, based on using Doppler shift 
methods, to support the analytic approach. One advantage of 
this alternative technology is that the problem of automati-
cally extracting vehicle trajectories from video is avoided and 
that a database of potentially useful events currently exists. The 
project team’s experience indicated that its structural model-
ing and counterfactual screening methods can be applied to 
these data, but that to support this research, the existing data-
collection and storage methods would require some technical 
modifications.

must be somewhere between the first and second change time 
points, -5.24 to -4.323. If the Bayes estimate for the side vehicles 
starting time of encroachment is ignored and the data provided 
are followed literally, the encroachment may be said to start at 
around time point -5.012. This indicates a possible reaction 
time zone of -0.224 to 0.689 s. This is a tight reaction time for 
a driver noticing movement at a distance of more than 70 m 
(~230 ft). Alternatively, though, if the Bayes estimate for the 
side vehicle time of encroachment is accepted, then the reaction 
time zone is 0.9 to 1.8 s, which is much more reasonable.

In conclusion, Chapter 4 described how the trajectory-
based reconstruction method could be applied to site-based 
video data to estimate values of physical and behavioral vari-
ables characterizing crash and near-crash events. Reduction 
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Figure 5.13.  Measured and modeled main-road vehicle distances.
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C h a p t e r  6

Summary

It may be helpful to recall the primary goal of this project: to 
develop and test analytic methods that could then be applied 
to data produced by the SHRP 2 Safety field studies. The gen-
eral approach was first to identify interesting research prob-
lems and then attempt to solve them using data similar to 
what is expected from the field studies. Chapters 3 to 5 illus-
trated how Bayesian statistical methods can be used to fit mod-
els to trajectory data, the parameters of these models being 
related to interesting event features. Although the empirical 
results presented in Chapters 3 to 5 offer some tantalizing 
suggestions regarding the relationships between crashes and 
conflicts, and the degree to which noncrash events provide 
information about crashes, the project team’s position is that 
the number of events analyzed is too small to justify drawing 
general conclusions. Such conclusions, of course, are what one 
hopes will result from the field studies. In this chapter, then, 
the discussion is restricted to methodological issues.

In the work plan submitted at the end of Phase 1, three 
research problems were identified on which progress was 
needed. The first of these was identification of an appropriate 
class of structural models describing how crash and near-
crash events developed, together with analytic tools for fitting 
these models to data expected from the vehicle- and site-
based field studies. The second problem involved counter
factual screening of supposed near-crash events to determine 
their similarity to crashes, and in the Phase 1 report, a theo-
retical result was developed, which indicated that those near-
crash events that are most like crashes would have evasive 
actions more extreme than those used in crashes. The third 
problem involved developing plausible models of how driv-
ers select evasive actions as functions of the situations in 
which they find themselves. In the Phase 1 report, it was indi-
cated that given an adequately large sample of crash and 
near-crash events for which estimates of background condi-
tions and driver actions were available, it should be possible 

to conduct exploratory modeling of evasive action selection 
using regression-type models.

Solutions to the second and third research problems are 
contingent on a solution to the first, so the bulk of the effort 
during Phase 2 was devoted to structural modeling of crash 
and near-crash events. Chapter 2 of this report described a class 
of models that characterized driver behavior as a sequence of 
discrete changes in acceleration and illustrated how an ordi-
nary differential equation taking this acceleration sequence as 
an input, together with initial speeds and positions, could be 
integrated to give a predicted trajectory for the vehicle’s motion. 
It was then illustrated how the parameters describing a driv-
er’s acceleration sequence and the initial conditions could be 
estimated from vehicle trajectory data. It was also shown how 
the identified model and estimates could be used to address 
the second research problem by computing the probability a 
crash would have resulted, other things being equal, as a func-
tion of a range of counterfactual evasive actions. Chapter 3 of 
this report described the application of the project team’s meth-
ods to seven rear-ending crash and near-crash events obtained 
from the 100-car vehicle-based field study. Chapter 4 described 
application to six rear-ending crash and near-crash events 
using site-based video data obtained from the MTO, while 
Chapter 5 described a pilot application to an intersection 
angle conflict using site-based Doppler shift data obtained 
from the CICAS system.

Conclusions

Statistical analyses of crash frequency data can identify reli-
able associations between crash experience and roadway or 
driver features but are of limited value in discovering how 
crashes occur. The first conclusion is that in situations where 
the direction of travel is roughly constant, trajectory-based 
reconstruction of crash-related events, where trajectory data 
are used to fit parsimonious models of driver behavior, is 
feasible using both vehicle-based and site-based data. The 

Conclusions and Recommendations
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Table 6.1.  Estimated Maximum Evasive Deceleration for  
Following Vehicles in 10 Events Analyzed in Chapters 3 and 4

Event ID Deceleration (ft/s2) Event Type

100-Car Vehicle-Based Data

99540 -12.6 Rear-end crash

104119 -9.5 Rear-end near crash

73082 -18.3 Rear-end near crash

104851 -21.8 Rear-end near crash

104283 -16.2 Rear-end near crash

60289 -10.7 Rear-end near crash

I-94 Site-Based Data

Oct 8 1600: vehicles 1 and 2 -8.0 Rear-end near crash

Oct 8 1600: vehicles 2 and 3 -10.2 Rear-end crash

Oct 13: vehicles 1 and 2 -10.5 Rear-end near crash

Oct 13: vehicles 2 and 3 -12.9 Rear-end crash

product of such a reconstruction is a set of estimates of when 
and by how much drivers changed their acceleration and the 
background conditions associated with these changes. These 
estimates can in turn be used to produce estimates of driver 
reaction times, following distances, and selected/rejected 
gaps. Bayes estimates, especially estimates of posterior prob-
ability distributions, can be obtained using Markov Chain 
Monte Carlo simulation. This approach is especially helpful in 
studying crash-related events involving two or more vehicles, 
where information on the behavior of drivers in noninstru-
mented vehicles is required.

One goal of traffic safety research is identifying causes of 
traffic crashes. The notion of cause has historically been rather 
difficult to pin down, but a good case can be made that a com-
mon core exists in what is meant by cause in statistical estima-
tion of crash-reduction factors, in reconstruction of individual 
crashes, and in simulation of crash events. This common core 
is a counterfactual definition of cause (1). As indicated in 
Chapter 1, a counterfactual component is also present in 
working definitions of traffic conflict and near crash. Given 
a simple structural model of an event along with Bayes esti-
mates of the posterior distribution for the model’s param-
eters, it is possible to quantify the degree to which a near 
crash could have been a crash by perturbing a driver’s evasive 
action and computing the probability that a crash results. The 
second conclusion is that it is possible to extend the methods 
of counterfactual analysis to more complicated structural 
models involving differential equations.

The Phase 1 report presented a theoretical argument to 
the effect that for a near-crash event to be similar to a crash 
event, the near-crash event should have an evasive action 

more extreme than that in the crash event. If crashes tend to 
involve extreme evasive actions, then this would imply that 
those near crashes that are most similar to crashes would tend 
to be less frequent than crashes. Although a conclusive test of 
this prediction would require more data than were available 
in this study, Table 6.1 hints that this might not be as big a 
problem as feared.

The maximum evasive deceleration observed for the crash 
events was about -12.9 ft/s2, while the maximum evasive 
deceleration observed for a near-crash event was about 
-21.8 ft/s2, with the second-most extreme successful evasive 
deceleration being about -18.3 ft/s2. The third conclusion 
is that, at least for rear-ending events, there is some limited 
evidence that the distributions of evasive actions for crashes 
and near crashes share some overlap, so that it should be 
possible to find near-crash events that are similar in other 
respects to crashes.

Vehicle-based data configurations have definite limits 
regarding information provided about noninstrumented vehi-
cles involved in multivehicle crashes or near crashes. Chapter 4 
illustrated how site-based video with manual extraction of 
vehicle trajectory data can support structural modeling and 
counterfactual analysis of multivehicle events, but clearly this 
is not feasible for processing very large numbers of events 
that might be expected from a longitudinal study. The CICAS 
data-collection system, based on radar and LIDAR units, col-
lects and processes large amounts of vehicle trajectory data at 
intersections. The current CICAS configuration and architec-
ture is designed to provide available gap information to minor-
approach drivers rather than to process and analyze data on 
crashes and conflicts. With some technical modifications, 
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however, this system has the potential to provide data needed 
for structural modeling of crash and near-crash events, at least 
at lower-volume intersections.

Conclusions are only as reliable as the data upon which 
they are based, and as described in Chapter 3, in many cases, 
the vehicle-based data from the 100-car study showed incom-
pleteness, inconsistencies, or errors that limited the ability to 
use them. These included cases where the forward radar data 
were missing or corrupted, where the speedometer data were 
clearly in error, and where there were marked differences in 
the vehicle trajectory as implied by the accelerometer measures 
and as implied by the speedometer and heading measures. It 
was also true for all cases studied that the GPS coordinates 
were not sufficiently refined to determine vehicle trajectories. 
It is recognized that the 100-car study was a pilot effort and that 
detailed quantitative reconstruction of events was probably 
not one of the study’s objectives. Nonetheless, the final con-
clusion here is that the usefulness of the data produced by the 
SHRP 2 vehicle-based field study will be strongly dependent 
on the ability to calibrate and maintain the data-collection 
systems.

Recommendations  
for Future Work

All but one of the crash and near-crash events analyzed so far 
show essentially straight-line trajectories for the involved 
vehicles. Although the project team has developed a prelimi-
nary model code that allows for two-directional trajectories, 
it was not possible within the time and resource constraints 
to bring this to the degree of maturity achieved for straight-
line events. Since two-directional motion occurs when a 
driver uses swerving as an evasive action and when a left-
turning driver selects a gap, the first recommendation is for 
developing and testing trajectory estimation tools that handle 
two-directional trajectories.

In the reconstruction of crash and near-crash events, driver 
inputs such as acceleration rates, reaction times, and follow-
ing distances can be treated as exogenous quantities to be esti-
mated, and the issue of how drivers select evasive actions does 
not arise. When attempting to include crash events in a micro-
scopic traffic simulation, however, plausible models that 
close the feedback loop between existing conditions and 
driver actions are necessary. The second recommendation 

is for conducting research on this issue using the data from 
the SHRP 2 field studies.

The Phase 1 report pointed out that in some cases the resid-
uals obtained after fitting a trajectory model showed serial cor-
relation. When serial correlation is present but unaccounted 
for, the standard errors and confidence intervals associated 
with parameter estimates suggest more precision for those esti-
mates than is justified. That is, although in all the analyzed 
cases the trajectory models that were fit give reasonable descrip-
tions of data, there may be greater uncertainty in the parameter 
estimates than have been so far acknowledged. The third rec-
ommendation is that this project’s model estimation methods 
be enhanced to allow for possible serial correlation.

The project’s experience with vehicle-based data indicated 
that except for car-following events where both vehicles remain 
primarily in the same lane, the quantitative information 
available about driver behavior in noninstrumented vehicles 
is essentially nonexistent. Compiling data on gap-selection 
and other intersection-related events will then require a dif-
ferent data setup. The fourth recommendation, then, is that 
the vehicle-based study be complemented with site-based 
research.

During the course of this project, a recurring factor was the 
unknown or uncertain influence of the measurement method 
or hardware, as well as the postcollection filtering, on the avail-
able data. In all future studies, consistency and transparency in 
data collection and processing methodologies are paramount. 
Past efforts naturally were affected by the objectives and pri-
orities of the projects funding, so that future dissemination of 
data may have received less emphasis. Considering that the pri-
mary objective of SHRP 2 Safety Project S01 was to examine 
the usability of existing data, it is clear that the broader utility 
of data in a project be recognized. Therefore, the final recom-
mendation is that, beginning with SHRP 2 and similar feder-
ally funded projects, a clause be added to each RFP to make 
sure that the data-collection setup, postcollection processing, 
and storage and availability of information are clearly described 
in the final report.
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Analysis Tools Developed in This Project

A p p e n d i x  A

MATLAB GUIs

The SHRP 2 Safety Project S01A graphical user interface (GUI) 
for data analysis has been implemented in the MATLAB GUI 
Development Environment. It displays a map of the highway 
and the trajectories of the tracked targets overlaid on the high-
way. Playback can be controlled as desired, and there are side 
plots displaying other information regarding the acceleration 
and velocity of the tracked targets. Reference frames can be 
changed as required, and an output text file can be generated, 
which contains the trajectory of a specific target vehicle for 
postprocessing.

The browsing tool can accommodate data from the CICAS-
instrumented sites (tested with data from the Minnesota and 
North Carolina sites), as well as process data from the VTTI 
100-car study. Figures A.1 and A.2 are screenshots of the site-
based data GUI and the vehicle-based data GUI, respectively.

In the case of the site-based data, the browser generates the 
intersection geometry based on the available survey informa-
tion provided by the research team. The coordinate systems 
of the vehicle trajectories are all in state plane, but the browser 
allows the user to set any arbitrary coordinate system and 
performs the conversion automatically. Considering that the 
site-based data contain trajectories from multiple vehicles, 
the browser allows the user to select which vehicles to observe 
in order to avoid visual clutter. Selecting the Play button 
(Figure A.1) plays the animation. The blue trajectory of the 
selected target changes into green, referencing past periods. 
All the vehicles’ locations are plotted on the highway, and the 
mantissa of the target IDs are shown next to each vehicle. The 
magenta circle around one of the vehicles indicates that this 
is the selected target. Other playback controls are as follows:

•	 The Pause button pauses the animation. Clicking Play again 
resumes the animation from the current frame.

•	 The Stop button stops the animation and returns to the 
first frame.

•	 The Forward (Rewind) button moves forward (backward) 
one frame at a time.

•	 The Fast Forward (Fast Rewind) button moves forward 
(backward) 10 frames at a time.

•	 The scroll bar above the playback controls can also be used 
to navigate through the animation frames.

When the animation is playing, clicking any of the forward/
rewind controls or the scroll bar will immediately pause the 
animation.

The vehicle-based data browser interface is similar in nature, 
but since there is no specific map to be displayed, additional 
measurement charts are presented instead.

MATLAB Estimation Scripts

Straight-Line Trajectory Model

function simout=traj1d(beta)
% function simout=traject1d(beta)
% input:
% x0=beta(1)
% vx0=beta(2)
% ax0=beta(3)
% ax1=beta(4)
% ax2=beta(5)
% tc1=beta(6)
% tc2=beta(7)
% output:
% simout=[x′ vx′ ax′]
% global n delta

global n delta
x0=beta(1)
vx0=beta(2)
ax0=beta(3)
ax1=beta(4)
ax2=beta(5)
tc1=beta(6)
tc2=beta(7)
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Figure A.1.  Site-based data browser.

Figure A.2.  Vehicle-based data browser.
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for (k in 1:n.good1) {
v1[k] ~ dnorm(vhat[k],tau1)
vhat[k] <- state1[index1[k],2] }

for (k in 1:n.good2) {
range[k] ~ dnorm(rangehat[k], tau2)
rangehat[k] <- state2[index2[k],1]-state1[index2[k],1]
rrate[k] ~ dnorm(ratehat[k],tau3)
ratehat[k] <- state2[index2[k],2]-state1[index2[k],2]
}

state1[1:n.grid,1:dim] <- ode.block(inits1[1:n.block1,1:dim], 
grid[1:n.grid],D(A1[1:dim],t),origins1[1:n.block1],tol)

D(A1[1],t) <- A1[2]
D(A1[2],t) <- acc1

acc1 <- piecewise(vec.acc1[1:n.block1])

vec.acc1[1] <- a11
vec.acc1[2] <- a12
vec.acc1[3] <- 0

origins1[1] <- 0
origins1[2] <- t11
# v1x <- v10+a11*t11
# origins1[3] <- t11+v1x/(-a12)
origins1[3] <- t12

inits1[1,1] <- 0-v10*delta
inits1[1,2] <- v10
inits1[2,1] <- 0
inits1[2,2] <- 0
inits1[3,1] <- 0
inits1[3,2] <- 0

state2[1:n.grid,1:dim] <- ode.block(inits2[1:n.
block2,1:dim],grid[1:n.grid],D(A2[1:dim],t),origins2[1:n.
block2],tol)

D(A2[1],t) <- A2[2]
D(A2[2],t) <- acc2

acc2 <- piecewise(vec.acc2[1:n.block2])
vec.acc2[1] <- a21
vec.acc2[2] <- a22
vec.acc2[3] <- a23
vec.acc2[4] <- 0

origins2[1] <- 0
origins2[2] <- t21
origins2[3] <- t22
# v2x <- v20+a21*t21+a22*(t22-t21)
# origins2[4] <- t22+v2x/(-a23)
origins2[4] <- t23
# follower reaction time
r <- t11-t22
yindex0 <- round(t22/delta)
yy0 <- rangehat[yindex0]
vv0 <- vhat[yindex0]

inits2[1,1] <- range[1]-v20*delta
inits2[1,2] <- v20

x(1)=x0;
vx(1)=vx0;
ax(1)= ax0;
for t=2:n
    x(t)=x(t-1)+vx(t-1)*delta;
    vx(t)=vx(t-1)+ax(t-1)*delta;
    if vx(t) < 0
      vx(t)=0;
    end
    ax(t)=ax0;
    if (t*delta > tc1)
        ax(t)=ax1;
    end
    if(t*delta > tc2)
        ax(t)=ax2;
    end
end
simout=[x′ vx′ ax′];

Compute Sum-of-Squares

function ss=sumsqr0(alpha)
global n delta tc1 tc2 ydat1
betax=[alpha tc1 tc2];
simoutx=traj1d(betax);
err=ydat1-simoutx(:,1);
ss=err′*err;

Grid Search of Change Points

% grid search over critical time points 
for lead vehicle
clear ssx;
nn=size(t0grid);
nt0=nn1(2);
nn1=size(t1grid);
nt1=nn1(2);
for i=1:nt0
for j=1:nt1
t0=t0grid(i);
t1=t1grid(j);
alpha1=fminsearch(@sumsqr,alpha0,options);
betax=[alpha1 t0 t1];
ssx(i,j)=ss2(beta2x);
end
end

Example of WinBUGS Code

Model:
# 100-CAR case 104119
# 3-block model for follower (vehicle 1)
# 4-block model for leader (vehicle 2)
# separate calls to ode.block for leader and follower
# includes counterfactual simulation
# lagged initialization
# speed reparameterization

{

for (k in 1:n.grid) {grid[k] <- k*delta}
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inits2[2,1] <- 0
inits2[2,2] <- 0
inits2[3,1] <- 0
inits2[3,2] <- 0
inits2[4,1] <- 0
inits2[4,2] <- 0

v10 ~ dnorm(0, 1.0E-06)I(0,)
v11 ~ dnorm(0,1.0E-06)I(0,)

# final speed is stopped
v12 <- 0
a11 <- (v11-v10)/t11
a12 <- (v12-v11)/(t12-t11)
v20 ~ dnorm(0,1.0E-06)I(0,)
v21 ~ dnorm(0, 1.0E-06)I(0,)
v22 ~ dnorm(0, 1.0E-06)I(0,)

# final speed is stopped
v23 <- 0
a21 <- (v21-v20)/t21
a22 <- (v22-v21)/(t22-t21)
a23 <- (v23-v22)/(t23-t22)

t11 ~ dunif(10,12)
t12 ~ dunif(13,16)
t21 ~ dunif(3,5)
t22 ~ dunif(9,11.5)
t23 ~ dunif(13,15)

tau1 ~ dgamma(.001,.001)
tau2 ~ dgamma(.001,.001)
tau3 ~ dgamma(.001,.001)
sig21 <- 1/tau1
sig22 <- 1/tau2
sig23 <- 1/tau3

# counterfactual simulation

# follower model

state1.star[1:n.grid,1:dim] <- ode.block(inits1.star[1:n.
block1,1:dim], grid[1:n.grid],D(A1.star[1:dim],t),origins1.
star[1:n.block1],tol)

D(A1.star[1],t) <- A1.star[2]
D(A1.star[2],t) <- acc1.star

acc1.star <- piecewise(vec.acc1.star[1:n.block1])

vec.acc1.star[1] <- a11.star
vec.acc1.star[2] <- a12.star
vec.acc1.star[3] <- 0

a11.star <- a11

origins1.star[1] <- 0
origins1.star[2] <- t11
v1x.star <- v10+a11.star*t11
origins1.star[3] <- t11+v1x.star/(-a12.star)
inits1.star[1,1] <- 0-v10*delta
inits1.star[1,2] <- v10
inits1.star[2,1] <- 0
inits1.star[2,2] <- 0
inits1.star[3,1] <- 0
inits1.star[3,2] <- 0

# leader model

state2.star[1:n.grid,1:dim] <- ode.block(inits2.star[1:n.
block2,1:dim],grid[1:n.grid],D(A2.star[1:dim],t),origins2.star 
[1:n.block2],tol)

D(A2.star[1],t) <- A2.star[2]
D(A2.star[2],t) <- acc2.star

acc2.star <- piecewise(vec.acc2.star[1:n.block2])
vec.acc2.star[1] <- a21.star
vec.acc2.star[2] <- a22.star
vec.acc2.star[3] <- a23.star
vec.acc2.star[4] <- 0

a21.star <- a21
a22.star <- a22
a23.star <- a23

origins2.star[1] <- 0
origins2.star[2] <- t21
origins2.star[3] <- t22
v2x.star <- v20+a21.star*t21+a22.star*(t22-t21)
origins2.star[4] <- t22+v2x.star/(-a23.star)

inits2.star[1,1] <- range[1]-v20*delta
inits2.star[1,2] <- v20
inits2.star[2,1] <- 0
inits2.star[2,2] <- 0
inits2.star[3,1] <- 0
inits2.star[3,2] <- 0
inits2.star[4,1] <- 0
inits2.star[4,2] <- 0

for (k in 1:n.grid) {
range.star[k] <- state2.star[k,1]-state1.star[k,1]
hitcheck[k] <- 1-step(range.star[k]) }
hitsum <- sum(hitcheck[])
hit <- step(hitsum-0.5) }

}

Data click on one of the arrows to open the data

Inits
list(v10=20.7,v11=20,tau1=1,v20=20,v21=20,v22=20,tau2=1, 
tau3=1,t11=11.2,t12=14.5,t21=4,t22=10.4,t23=14)
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A p p e n d i x  B

Database Architecture

This section gives a detailed description of the database 
schema and metadata used for each field site. The metadata 
are described first, followed by the associated schema that 
enables extraction of target tracking and raw sensor point 
tracking data.

Metadata

The metadata are contained within several XML text files, 
which describe the range sensor locations, the zone-to-region 
mapping, the intersection center, and the maneuver topol-
ogy. Of key importance for the report herein are the defini-
tions of various maneuver events, which consist of tracked 
targets passing through a defined combination of three zones 
(Figure B.1). The project team is interested in the side-road 
vehicle maneuver events that correspond with the crash event 
occurring at the site: the side-road vehicle attempts to cross 
the median zone to the other side, requiring the driver of that 
vehicle to judge and accept gaps from each mainline direc-
tion during the crossing maneuver. This maneuver is defined 
when the vehicle enters and exits from zones 2 and 1, respec-
tively, and vice versa, entering and exiting zones 1 and 2; i.e., 
the maneuver attribute within the vehicle_acpt_lag relational 
table (Table B.1). For a given maneuver, other zones define 
stop events (stop bar), pullout after the stop (accepted lag), 
and progression after pullout (transition) events. A maneu-
ver type is defined only if a vehicle (e.g., a tracked target) has 
been determined to pass through all zones constituting the 
maneuver. Thus, continuing with the example, and referring 
to Figure B.1, the straight-through zone1-zone2 maneuver 
passes through zones 9, 10, 11, 7, 15, 16, and 17. Note that the 
recorded crash for this site did not have the straight-straight 
maneuver assigned because the maneuver was never com-
pleted. A piece of the metadata file defining maneuver types, 
maneuver_config_<database name>.xml, follows, with the 
zones referenced in Figure B.1.

<?xml version= “1.0” encoding= “UTF-8”?>

<!-- follow xml rules -->
<!-- this is a comment -->
<!-- comments can span
more than one line -->
<maneuver_config>
    <config>
        <num_maneuver ctype=“int”>14</num_maneuver>
    </config>
    <maneuver1>
        <!-- maneuverID -->
        <maneuverID ctype=“int”>1</maneuverID>
        <!-- enter_zone -->
        <enter_zone ctype= “int”>1</enter_zone>
        <!-- exit_zone -->
        <exit_zone ctype=“int”>2</exit_zone>
        <!-- description of the maneuver -->
        <description ctype=“char”>Strawberry Blvd N to  
            Strawberry Blvd N</description>
        <!-- type of maneuver, straight,right,left -->
        <type ctype=“char”>straight,straight</type>
        <roadType ctype=“char”>minor</roadType>
    </maneuver1>
    <maneuver2>
        <!-- maneuverID -->
        <maneuverID ctype=“int”>2</maneuverID>
        <!-- enter_zone -->
        <enter_zone ctype=“int”>2</enter_zone>
        <!-- exit_zone -->
        <exit_zone ctype=“int”>1</exit_zone>
        <!-- description of the maneuver -->
        <description ctype=“char”>Strawberry Blvd S to  
            Strawberry Blvd S</description>
        <!-- type of maneuver, straight,right,left -->
        <type ctype=“char”>straight,straight</type>
        <roadType ctype=“char”>minor</roadType>
    </maneuver2>

The CICAS Site-Based System
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Schema

Presently, nine tables make up the database schema for each 
site: (1) gap_data, (2) sensor_collector, (3) sensor_status,  
(4) tracked_targets, (5) vehicle_acpt-lag, (6) vehicle_avail_gap, 
(7) vehicle_region, (8) vehicle_time, (9) vehicle_zone. Of most 
importance to the extraction of near-crash information are the 
relational tables: vehicle_acpt_lag, tracked_targets, sensor_
collector, and vehicle_zone (Tables B.1–B.4). Other tables—
vehicle_time and vehicle_region—can be used to “follow” a 
known tracked target and qualify time ranges of interest 
and so forth. The simplest way to mine interesting traffic 
events is to query the dates and times of specific events 
within the vehicle_acpt_lag table. The returned date-time 
stamps can then be used to develop secondary queries to 
extract actual tracked-target trajectories within the tracked_
targets table.

Regarding the vehicle classification attribute veh_class: 
Although nine classification categories are detected, they are 
grouped into four categories that can be reliably discriminated 
(within 5% accuracy). They are as follows:

1.	 Motorcycles, sedans, and small SUVs (Classes 1 and 2);
2.	 Large SUVs and pickup trucks (Class 3);

3.	 Single-unit trucks (Class 4–Class 6); and
4.	 Semitrucks and other large vehicles (Class 7 and higher).

The optimal decision boundaries of the class-discriminate 
function are based on using vehicle height and length.

For most of the intersection decision support (IDS) sites to 
date, there are 14 maneuver types; most contain two sub
maneuver actions.

A close cousin to the vehicle_zone table is the vehicle_
region table. The attributes are similar except “region” is sub-
stituted for “zone.” The primary keys are therefore targetid 
and region. There is also the zone attribute, which can be 
used for relational outer-joins with vehicle_zone to obtain all 
region-based events of the tracked target, as follows:

SELECT zone, region, enter_region_date, enter_region_time, 
exit_region_date, exit_region_time, enter_region_speed, exit_
region_speed FROM vehicle_region AS vr OUTER JOIN 
vehicle_zone AS vz ON (vz.targetid = vr.targetid, vz.zone = 
vr.zone);

The vehicle_time table contains relationships defining 
when a tracked target was first and last observed, as well as 
other information about the tracked target. Table B.5 lists the 
attributes.

Figure B.1.  Zone convention for the North Carolina site.
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Table B.1.  vehicle_acpt_lag

Attribute Type Description/Comments

targetid Double Primary key, target vehicle ID of tracked maneuver.

maneuver Integer Primary key, maneuver type, if not defined, equals a blank space.

veh_class Integer Vehicle type (1–9 categories) by experimentally determined 
length/max-height ranges.

sub1_acpt_lag_zone Integer Submaneuver accepted lag zone number.

sub1_acpt_lag_zone_exit_date Date Date front of vehicle crossed over the lag zone.

sub1_acpt_lag_zone_exit_time Time without time zone Time front of vehicle crossed over the lag zone.

sub1_stopbar_zone Integer Submaneuver.

sub1_stopbar_zone_exit_date Double var length array Date front of vehicle crossed over the stop-bar zone.

sub1_stopbar_zone_exit_time Double var length array Time front of vehicle crossed over the stop-bar zone.

sub1_acpt_lags 
 
 

Double var length array 
 
 

Accepted lag times in seconds of mainline vehicles for each  
conflicting lane (front of side vehicle has crossed over lag zone). 
Typically, length = 2 for two lanes w.r.t. intersection center  
reference.

sub1_acpt_gaps 
 

Double var length array 
 

Accepted gap times of mainline vehicles in seconds for each  
conflicting lane (front of vehicle has crossed over stop-bar zone 
[not pulled onto mainline]) w.r.t. intersection center reference.

sub1_rej_gaps Double var length array Same convention as accepted gaps but rejected gaps (vehicle did 
not proceed with a maneuver).

sub1_stopbar_acpt_lags 
 
 

Double var length array 
 
 

Accepted lag times in seconds of mainline vehicles for each  
conflicting lane (front of side vehicle has crossed over stop-bar 
zone). Typically, length = 2 for two lanes w.r.t. intersection 
center reference.

sub1_stopbar_rej_lags 
 
 

Integer var length array 
 
 

Accepted lag times in seconds of mainline vehicles for each 
conflicting lane (front of side vehicle has crossed over stop-bar 
zone). Typically, length = 2 for two lanes w.r.t. intersection  
center reference.

sub2_acpt_lag_zone Integer Second submaneuver portion of maneuver = n.

sub2_acpt_lag_zone_exit_date Date Date front of vehicle crossed over the second lag zone.

sub2_stopbar_zone Integer Same convention as sub1 attributes but for second submaneuver.

sub2_acpt_lag_zone_exit_time Time without time zone Same convention as sub1 attributes but for second submaneuver.

sub2_stopbar_zone Integer Same convention as sub1 attributes but for second submaneuver.

sub2_stopbar_zone_exit_date Double var length array Same convention as sub1 attributes but for second submaneuver.

sub2_stopbar_zone_exit_time Double var length array Same convention as sub1 attributes but for second submaneuver.

sub2_acpt_lags Double var length array Same convention as sub1 attributes but for second submaneuver.

sub2_acpt_gaps Double var length array Same convention as sub1 attributes but for second submaneuver.

sub2_rej_gaps Double var length array Same convention as sub1 attributes but for second submaneuver.

sub2_stopbar_acpt_lags Double var length array Same convention as sub1 attributes but for second submaneuver.

sub2_stopbar_rej_lags Integer var length array Same convention as sub1 attributes but for second submaneuver.
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Currently Available Crash Data

The crashes involve two events from the Minnesota Highway 
52 fixed site and one from the North Carolina site. The proj-
ect team obtained four videos for the three crashes that were 
date-time stamped (one of the crashes had video from two 
camera perspectives). The status of these crash data sets is 
summarized in Table B.8.

The project team harvested target trajectories of the main-
road and side-road vehicles for one of the crashes (date 
stamped: 4-06-2007, which occurred at the Highway 52 site). 
In this case, the side-road vehicle did not contain a valid 
tracked-target trajectory. Rather, the team filtered the raw 
sensor collector data, which contained the front-vehicle tar-
gets of the side-road vehicle. Targets through the center zones 
of the intersections are missing.

In terms of near crashes, the general strategy to harvest 
data has been to search for occurrences of side-road vehicles 
accepting short lags for certain maneuver types and then to 
use MATLAB to visually infer potential “near crashes” for 

Other Relational Tables

There are two other tables within each site database that have 
not been considered for extraction of near-misses or crash 
data. Essentially, they can be used to derive traffic character-
istics (related to lag times) and sensor operation over desired 
time periods. The gap_data table (Table B.6) contains more 
global information about primary, secondary, and tertiary 
lags for every time stamp during field operation. The size of 
the variable length array is based on the number of lanes used 
for each lag attribute (table name does not reflect that it rep-
resents mainline lag times). If there is no measurable lag, the 
lag times are set to 1,000 (sec).

Lastly, the sensor_status table, summarized in Table B.7, 
contains the status of all sensors at the site for each time 
stamp recorded during operation. It can be used to ensure 
that all the roadside data collection sensors were operational 
over the time period of the near-miss event candidates under 
study. This is achieved by querying for any values equal to 
zero in the sensor_status attribute.

Table B.2.  tracked_targets

Attribute Type Description/Comments

date Date Primary key.

time Time without time zone Primary key.

num_targets Integer Defines number of elements in remaining table attributes.

targetid Double var length array Unique target ID, based on time-date encoded number in the 
mantissa and a unique identifier in the abscissa.

x_state Double var length array NAD83 state plane coordinate, meters.

x_state Double var length array NAD83 state plane coordinate, meters.

x_dot_state Double var length array Estimate of velocity, w.r.t. NAD83 state plane coordinate system.

y_dot_state Double var length array Estimate of velocity, w.r.t. NAD83 state plane coordinate system.

speed Double var length array Speed, m/s.

heading Double var length array Vehicle heading, radians.

acceleration Double var length array m/s2

distance_to_intersection Double var length array w.r.t. intersection center.

time_to_intersection Double var length array In seconds, if not calculated, equals 1,000.

cur_lane Integer var length array Mainline lanes; lane numbers defined in map file for each site.

region Integer var length array Refer to appropriate region map and datafile.

sensor_type Integer var length array Refer to metadata description for sensor type, equals –1 for 
undefined.

sensor_index Integer var length array Refer to metadata description for sensor number and associated 
state plane coordinate. Location, equals –1 for undefined.

length Double var length array Estimate of vehicle length, if not defined equals 0.

max_height Double var length array Estimate of vehicle height, if not defined equals 0.
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Table B.3.  sensor_collector

Attribute Type Description/Comments

date Date Primary key, date stamp.

time Time without time zone Primary key, time stamp.

num_targets Integer Number of raw sensor target points.

sensortimestamp Double var length array Internal sensor time stamp.

x_local Double var length array Sensor target point w.r.t. sensor coordinate system.

y_local Double var length array

x_dot_local Double var length array Sensor estimate of velocity.

y_dot_local Double var length array Sensor estimate of velocity.

x_state Double var length array Sensor target point w.r.t. NAD83 state plane system.

y_state Double var length array Sensor target point w.r.t. NAD83 state plane system.

x_dot_state Double var length array Sensor target point w.r.t. NAD83 state plane system.

y_dot_state Double var length array Sensor target point w.r.t. NAD83 state plane system.

height Double var length array Vehicle max. height.

length Double var length array Vehicle length.

num_sensors Integer Number of entries for the following three attributes:  
sensor_index, sensor_type, and sensor_status.

sensor_index Integer var length array The sensor number as defined in the XML metadata file.

sensor_type Integer var length array The sensor type as defined in the XML metadata file.

sensor_status Integer var length array Sensor status.

Table B.4.  vehicle_zone

 
Attribute

 
Type

Description/
Comments

targetid Date Primary key, 
date stamp.

zone Integer Primary key.

region_first_seen Integer

enter_zone_date Date

enter_zone_time Time without 
time zone

region_last_seen Integer

exit_zone_date Date

exit_zone_time Time without 
time zone

enter_zone_speed Double

enter_zone_inter_dist Double

veh_time_in_zone Double

min_speed_zone Double

max_speed_zone Double

ave_speed_zone Double

Table B.5.  vehicle_time

 
Attribute

 
Type

Description/
Comments

targetid Double Primary key, 
tracked target.

date_first_seen Date

time_first_seen Time without 
time zone

region_first_seen Integer

date_last_time Date

time_last_seen Integer

region_last_seen Integer

zone_first_seen Integer

zone_last_seen Integer

maneuver Double

veh_time_tracked Double

veh_length Double

veh_height Double

veh_min_speed Double

veh_max_speed Double

veh_avg_speed Double
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Table B.6.  gap_data

Attribute Type Description/Comments

date Date Primary key, date stamp.

time Time without time zone Primary key, every time step during field operation.

num_lanes Integer

primary_gap Double var array First vehicle lag times in each lane; defaults to 1,000 if there is no measurable lag.

secondary_gap Double var array Second vehicle lag times in each lane; defaults to 1,000 if there is no measurable lag.

tertiary_gap Integer Third vehicle lag times in each lane; defaults to 1,000 if there is no measurable lag.

Table B.7.  sensor_status

Attribute Type Description/Comments

date Date Primary key, date stamp.

time Time without time zone Primary key, time stamp.

num_sensors Integer Total number of sensors used at the site.

sensor_status Integer var array Stores “1” for good, “0” for faulty/not operational.

sensor_index Integer var array Sensor index ID numbers.

sensor_type Integer var array List of the type of sensor (LIDAR, RADAR, and so on) 
corresponding to each sensor index.

Table B.8.  Current Crash Data Sets

 
Site, Date of Crash

 
Camera Data

Database  
Trajectories

Accident  
Reports

 
Comments

HW52/CSAH9, 4/6/2007 1 camera Y Y Side vehicle trajectory available as raw sensor data from 
camera tracking system.

HW52/CSAH9, 09/21/2007 2 cameras N Y Side vehicle trajectory available as raw sensor collector (SC) 
data from camera tracking system.

North Carolina 1 camera Y N Side vehicle tracked-targets file is not correct; advice is to go 
back to raw, sensor collector data for visual observation of 
potential “matches” of moving side vehicle target.

further verification and analysis. For example, there may be 
points in the mainline trajectories where the tracked target 
changed lanes well enough ahead of the side-road vehicle to 
“easily” avoid a collision. Or perhaps the mainline vehicle 
was not in a conflicting lane at all. This is not possible to 
detect based on a query alone.

Initially the attempt at drilling down to find this data was 
not successful. This was primarily because of a “bug” in the 
accepted lag/gap calculations stored within the site databases. 
However, this bug has now been resolved and the database of 
particular interest (North Carolina) has been rebuilt and 
reinstalled.

The database will essentially be queried for straight-line 
cross-intersection maneuvers that are similar to the attempted 
maneuver by the side vehicle involved in the crash at the 
North Carolina site. In essence, the side-road vehicle must 
accept two lags, one from each mainline direction, during 
its mainline crossing maneuver. The criteria of the accepted 
lag calculation is arbitrary, of course, but times of less than 
3 s have been chosen; that is, as the vehicle crosses the road, 
the first submaneuver of the vehicle crossing into the 
median or the second, last submaneuver of the vehicle 
crossing over the remainder of the mainline road accepted 
lags of 3 s.
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Note that zones 9 and 17 represent the stop-bar and transi-
tion zone, respectively, for the given maneuver type. For the 
side-road maneuver crossing the other direction, maneuver=2, 
the stop-bar and exiting transition zones are 12 and 20, respec-
tively. Yet another method to obtain a more “broad” envelope 
is to query the vehicle_time relational table as follows:

SELECT zone_first_seen, date_first_seen, time_first_seen, 
zone_last_seen, date_last_seen, time_last_seen FROM vehicle_
time WHERE (targetid == < returned targetid from vehicle_
acpt_lag >);

In either case, the time ranges are then used to harvest 
the tracked_targets relational table within the desired 
envelope. Note that possible mainline lane changing 
maneuvers by the potentially conflicting vehicle are not 
precisely characterized within the tracked-targets data. 
That is, after the lateral movement of the vehicle exceeds an 
experimentally determined threshold, the tracked-target 
attribute lane will be updated accordingly. Thus, in addition 
to the tracked-targets data, the raw sensor collector data will 
be harvested over the same period for later analysis. In order 
to use the raw sensor collector data, however, a completely 
new predictive filter will need to be developed to extract the 
desired vehicles to “track,” in addition to creating optimal 
lateral paths for the vehicle. Note that the lateral error of the 
radar sensors used to obtain the mainline vehicle trajectories 
incur large lateral errors because of surface ambiguity of the 
vehicle’s front or rear bumper and surfaces.

SELECT targetid, maneuver, veh_class, sub1_acpt_lag_zone_
exit_date, sub1_acpt_lag_zone_exit_time FROM vehicle_
acpt_lag WHERE

(maneuver = 1) AND
((sub1_acpt_lags < 3.0) OR (sub2_acpt_lags < 3.0));

The returned date-time stamps and tracked-target ID of the 
vehicles that completed the maneuvers will be used as part of 
the criteria to harvest tracked-target and raw sensor collector 
data. The other part of the search criteria, particularly the 
amount of time before the accepted lag event times occurred, 
needs to be considered. It is desired to observe the side vehicle 
trajectory starting immediately before the vehicle entered the 
stop-bar region of the side road. The vehicle_zone relational 
table will be used to obtain the date-time when the particular 
target ID entered the first stop-bar zone. In this case, the 
desired zone number is specified in the following query:

SELECT enter_zone_date, enter_zone_time FROM vehicle_
zone WHERE

�(zone == 9) AND (targetid == < returned targetid from  
  vehicle_acpt_lag >);

Optionally, the completion time for the near-miss candi-
date to be observed could be defined using the same vehicle_
zone table as follows:

SELECT exit_zone_date, exit_zone_time FROM vehicle_zone 
WHERE

�(zone == 17) AND (targetid == < returned targetid from  
  vehicle_acpt_lag >);
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Outline of a Causal Theory of Traffic  
Conflicts and Collisions

Gary A. Davis, John Hourdos, and Hui Xiong

Department of Civil Engineering, Minnesota  
Traffic Observatory, University of Minnesota

Using recent developments in causal analysis, a minimal model 
capable of rigorously representing traffic conflicts and crashes is con-
structed. This model is then used to derive relationships between 
these types of events. The first result indicates that the magnitude of 
the minimum sufficient evasive action can be used to partition the 
space of background conditions, leading to a natural scale for ranking 
the severity of conflicts. The second result indicates that crashes can 
possibly arise from any region of the space of background conditions 
with the contributions of different regions of the background space to 
the crash population being weighted by evasive action. The third 
result gives a counterfactual definition of a type of conflict called a 
close encounter and relates the relative frequency of close encounters 
to that of crashes, with the evasive action determining the crash-to-
conflict ratio. It is then illustrated how trajectory-based reconstruc-
tion can be used to classify close encounters with respect to seriousness 
and to estimate the potential number of crashes in a set of close 
encounters.

Introduction

It is a commonplace observation that certain drivers or loca­
tions experience a higher frequency of traffic crashes than do 
other comparable entities. Hauer (1997) has identified the 
expected number of crashes of a stated type over a stated 
time interval as an appropriate measure of the safety of an 
entity; other things being equal, safety can be estimated by 
counting the crashes that have occurred. The relative rarity 
of crashes, however, means that even for entities and crash 
types of relatively high frequency, such as multiple vehicle 
crashes at busy urban intersections, observation periods of 
several years may be needed to produce estimates with 
acceptable statistical properties. This has led to a search for 
surrogate events that occur at more easily observable rates 

and whose frequency or nature are indicative of the fre­
quency or nature of crashes.

The hypothesis that noncatastrophic events might provide 
information concerning the nature of catastrophic events is 
not new and can be found, for example, in the use of “critical 
incidents” in evaluating the proficiency of air traffic control­
lers and assessing pilot errors (Flanagan 1954). In traffic engi­
neering, the first use of traffic conflicts as crash surrogates is 
usually attributed to Perkins and Harris (1968), but during 
the 1970s several versions of the traffic conflict technique 
were developed and employed in both North America and 
Europe (Asmussen 1984). The Association for International 
Cooperation in Traffic Conflict Techniques proposed the fol­
lowing definition of traffic conflict:

A traffic conflict is an observable situation in which two or 
more road users approach each other in space and time to 
such an extent that there is a risk of collision if their move­
ments remain unchanged. (Guttinger 1984, p. 18)

In what follows, we will first briefly review the literature on 
conflicts and surrogate events, with a focus on three inter­
related issues. The first issue concerns Heinrich’s Triangle as 
a model for traffic safety. The second issue concerns the grad­
ing of conflicts or surrogate events with respect to seriousness 
or severity. The third issue concerns the relation between 
crash frequencies and conflict frequencies.

Heinrich’s Triangle

Heinrich’s Triangle is a name given to the hypothesis that 
events can be ranked in order of increasing severity but decreas­
ing frequency. This idea is often represented graphically with 
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Hayward (1972) introduced the use of time to collision (TTC) 
as a measure of conflict severity. At a given instant, TTC is the 
time at which two road-using entities would collide if each 
persisted on its present course. Hayward illustrated how, 
when plotting TTC versus time, TTC would first decrease to 
a minimal value and then increase after one or more of the 
involved entities initiated evasive action. The minimum value 
of TTC for an encounter was taken as a measure of how close 
the encounter was to an actual collision.

In the Swedish traffic conflict technique, TTC at the instant 
a road user initiates evasive action, rather than the minimum 
TTC over a time interval, was taken as the measure of conflict 
severity. In its initial implementations at an urban inter­
section, the Swedish TTC defined serious conflicts as those 
with TTC < 1.5 s. Using this definition, estimates of the crashes 
per conflict with orders of magnitude of 10-5 were reported 
(Hyden and Linderholm 1984). When attempting to extend 
this idea to rural intersections, however, it was found that 
vehicle speed also needed to be considered, ultimately leading 
Svensson and Hyden (2006) to grade severity as a function of 
the ratio of TTC to closing speed (CS),

Severity TTC CS= ( )f ( )1

with higher values of TTC/CS indicating conflicts of lower 
severity. This characterization is especially interesting because 
TTC/CS is inversely proportional to the minimum decelera­
tion needed to bring the vehicle to a stop in the TTC interval. 
Svensson and Hyden also advanced the intriguing hypothesis 
that severe conflicts result from a mismatch between a road 
user’s expectations and actual events.

A similar approach to grading the severity of vehicle inter­
actions has been developed in the United States to support 
evaluation of collision warning systems. In Smith et al. (2002), 
the situation between leading and following vehicles was 
characterized in terms of the current separation between the 
two vehicles, called the range (R), and the speed difference 
between the vehicles, called the range rate (RR). Using driver 
behavior data observed in driving simulators and test-track 
experiments, range versus range-rate curves were then used 
to partition the set of possible range and range-rate combina­
tions into subsets reflecting crash, near-crash, conflict, and 
low-risk situations. For example, the relationship

R RR g= ( )( )2 2 65 2. ( )

where g denotes the gravitational acceleration, was suggested 
as roughly dividing the crash and near-crash conditions.

In Najm et al. (2006), a TTC was defined via

TTC
R

RR
= ( )3

a pyramid divided into horizontal sections, each section rep­
resenting a class of events. The height of a section from the 
pyramid’s base represents the severity of the corresponding 
class of events, while the volume of the section represents the 
relative frequency for that class. For example, fatal accidents 
are least frequent, so they would occupy the tip of the pyra­
mid. Below fatal accidents might be injury accidents and 
then noninjury accidents, close calls, and so forth. Heinrich 
(1959) developed this hypothesis with regard to industrial 
accidents and conjectured that stable relative frequencies could 
be found between the levels of a pyramid. In traffic safety, qual­
itative versions of Heinrich’s Triangle have been invoked for 
conceptual illustration (e.g., Hauer 1997; Svensson and Hyden 
2006), while Dingus et al. (1999) pointed out that establish­
ing predictable relationships between the levels of a Heinrich’s 
Triangle could justify using observations of near-crash events 
to evaluate the potential safety benefits of crash-avoidance 
technologies. Dingus et al. (2006) then provided empirical 
support for such a triangular relationship between conflicts, 
near crashes, and crashes observed in the 100-Car Naturalis­
tic Driving Study.

Grading Conflict Severity

Interest in grading the severity of conflicts arose relatively 
early in the development of traffic conflict methods, in con­
nection with difficulties encountered in establishing empirical 
relationships between conflict counts and observed crash fre­
quencies. For example, Guttinger (1984) and Baguley (1984) 
presented selected graphs showing crashes as increasing 
functions of conflicts, but more comprehensive studies by 
Cooper (1984) and Migletz et al. (1985) reported instances 
where crash experience appeared to increase, appeared to 
have no relation, or appeared to decrease as measures of con­
flicts increased. If a Heinrich’s Triangle-like relationship is 
accurate, then it would be expected that establishing a rela­
tionship between events in neighboring levels of the pyramid 
would be easier than between events at one level and events 
aggregated over several lower levels. This in turn means that 
objective criteria would be needed for assigning events to 
their appropriate severity levels. As an example, in a study of 
vehicle and pedestrian interactions, Guttinger reported a 
clear association between crash frequency and the frequency 
of serious conflicts, which were defined as follows:

Serious conflict: a sudden motor reaction by a party or both of 
the parties involved in a traffic situation towards the other to 
avoid a collision, with a distance of about one metre or less 
between those involved. (Guttinger 1984, p. 19)

Here, a serious conflict is defined using both the physical 
separation between the involved entities and the “sudden­
ness” of evasive action. For vehicle-to-vehicle interactions, 
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and combinations of TTC versus RR were used to define 
boundaries between near-crash and conflict situations. Since 
range rate can also be interpreted as closing speed (CS), there 
is a clear similarity between this approach to grading severity 
and that developed by Svensson and Hyden.

Finally, in the 100-car study, near-crash events were defined 
explicitly in terms of the magnitude of a required evasive 
action, as

Any circumstance that requires a rapid, evasive maneuver by 
the subject vehicle, or any other vehicle, pedestrian, cyclist, or 
animal to avoid a crash. A rapid, evasive maneuver is defined 
as a steering, braking, accelerating, or any combination of 
control inputs that approaches the limit of the vehicle capa­
bilities. (Dingus et al. 2006)

Since, as pointed out, the ratio TTC/CS is inversely pro­
portional to a stopping deceleration, we have an additional 
overlap among the proposed methods for grading conflict 
severity.

Relationship Between Crashes 
and Conflicts

The third issue identified involves the relationship, if any, 
between crash frequency and conflict frequency. Early efforts 
focused on attempting to establish correlations between con­
flict and crash frequencies, but Hauer (1982) noted that if 
conflicts are treated as crash opportunities, some of which 
actually result in crashes, then the relationship between con­
flicts and crash frequency should take the form

Expected number of crashes

Number of confli= ccts crash­to­conflict ratio( )× ( ) ( )4

That is, the number of conflicts is a measure of crash 
opportunities, while the crash-to-conflict ratio reflects the 
probability that a given crash opportunity results in a crash. 
In this case, the theoretical correlation between the random 
variables generating crash and conflict frequencies will depend 
both on the magnitude of the crash-to-conflict ratio and on 
the variability in the number of conflicts, and so could be low 
even when these quantities are known perfectly. Hauer and 
Garder (1986) gave a more extensive treatment of this 
approach, pointing out that the usefulness of Equation 4 as a 
predictive tool depended first on the ability to estimate the 
crash-to-conflict ratio with acceptable precision and second 
on the stability of this ratio across different entities or times.

If conflicts of different degrees of severity have different 
probabilities of resulting in crashes, then a study that mixes 
together conflicts of varying severity may find it difficult to 
identify a stable crash-to-conflict ratio. This then leads to the 

problem of identifying groupings of conflicts having stable 
ratios. One possible solution is to interpret the crash-to- 
conflict ratio as the probability that a conflict results in a 
crash and then allow this probability to vary continuously 
with a measure of conflict severity. For example, Saunier and 
Sayed (2008), drawing on work by Hu et al. (2004), have con­
jectured that, when conflict severity is measured using TTC, 
a relationship of the form

P TTC TTCcrash( ) = −( ) exp ( )σ 2
5

may prove useful.
An alternative approach to relating observed conflict fre­

quencies to crash likelihood is to treat crashes and conflicts  
as events varying continuously on some dimension, with 
crashes being at an extreme of this dimension. It might then 
be possible to apply extreme-value statistics to estimate the 
probability of these extreme events. This approach was ini­
tially proposed by Campbell et al. (1996), who applied it to 
three measures of car-following obtained from a study of 
drivers in instrumented vehicles: range, TTC, and available 
reaction time. For each of these variables, a value of zero 
defines the point at which a collision occurs; and for each of 
these variables, the fitted extreme-value distribution assigned 
a probability of zero to crash events. The authors pointed out 
that for this method to be valid, crash and noncrash events 
should result as random outcomes from the same underlying 
probability distribution, and that if crash events and normal-
driving events come from different populations, then the 
standard assumptions of extreme-event statistics may not be 
satisfied.

This is an important point, and it will be helpful to give it 
a more formal restatement. Suppose driving events can be 
divided into two subsets, “normal driving” and “close calls.” 
Let y denote a numerical variable characterizing these events, 
and let yc denote a critical value for y such that when y < yc, a 
crash occurs. Then the probability of a crash is given by the 
appropriate mixture of the two sets of conditions

P P y yc Pcrash normal driving normal drivi( ) = <( ) nng

close call close call

( )
+ <( ) ( )P y yc P ( )6

Given an adequate sample of normal driving conditions, 
standard extreme-value methods could be used to approxi­
mate P(y < yc |normal driving), and given a sample of close 
calls, extreme-value methods could be used to approximate 
P(y < yc |close call). However, if P(y < yc |normal driving) ≠ 
P(y < yc |close call), extreme-value methods applied to obser­
vations of normal driving conditions will generally not be 
sufficient to estimate crash probabilities.
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how these formal results might be applied to actual crash and 
near-crash events.

Causal Model of Crashes  
and Conflicts

Our starting point is Pearl’s (2000) notion of a causal model, 
which consists of a set of exogenous variables, a set of endog­
enous variables and, for each endogenous variable, a struc­
tural equation describing how that variable responds to 
changes in other model variables. A causal model can be rep­
resented qualitatively using a directed graph, with the nodes 
of the graph representing variables and directed arrows indi­
cating direct causal dependencies. Figure C.1 displays the 
simple graphical model that underlies our treatment. The 
node u, which may be vector-valued, denotes variables describ­
ing background conditions. The node x denotes the variable 
describing evasive or avoidance action, and the node y is a 
crash-related outcome. Associated with y is a critical value yc 
such that if y(u,x) < yc, then a crash results.

In what follows, we will assume that the evasive action x 
takes on values from a discrete set X = {x1,x2, . . . , xn}, with x1 
< x2 < . . . < xn, and the background conditions take one value 
from a denumerable set U. Since continuous ranges of pos­
sible evasive action values or background conditions can be 
approximated arbitrarily well by discrete sets, this is a rela­
tively weak constraint. It will, however, allow us to derive 
results using elementary mathematics and avoid some of the 
technicalities that arise when treating general sets X.

To complete the model specification, we need a probability 
distribution over the values taken on the background vari­
ables, denoted by P(u), and a structural equation describing 
how evasive actions are selected. However, the results we 
will develop require only the weaker condition that we have  
a conditional probability distribution for the evasive action, 
denoted by P(x |u). The conditional independence structure 
implied by the graphical model in Figure C.1 then means that 
the full joint distribution for our model factors into one with 
the form

P y x u P y x u P x u P u, , , ( )( ) = ( ) ( ) ( ) 7

The nature of u and x and the functional form for y(u,x) 
will, of course, vary depending on the type of crash under 

Analytic results relevant to this issue have been given by 
Al-Hussaini and El-Adll (2004). One of the key features of 
extreme-value statistics is that the distribution functions of 
extreme values from random samples tend to converge, after 
suitable normalization, to one of only three limiting distribu­
tions. This means that if it is possible to identify which of 
these three distributions is appropriate for a given problem, 
then predictions of extreme events can be accomplished even 
when detailed knowledge of the underlying probability model 
is lacking. Al-Hussaini and El-Adll (2004) show that the clas­
sic convergence results do not necessarily apply to data gen­
erated by finite mixtures of distributions, such as Equation 6. 
In this case, the limiting distribution for the extreme values 
can depend both on the type of mixture components and on 
their relative weights.

One approach to solving this problem would be to identify 
an observable variable that could serve as a proxy for the dif­
ferent driving conditions and then allow one’s extreme-value 
model to depend on this. Apparently independently of the 
aforementioned work, Songchitruksa and Tarko (2006) applied 
extreme-event methods to observations of postencroach­
ment time (PET) obtained from video recordings of vehicle 
encounters at intersections. By allowing their extreme-value 
distributions to vary with measures of traffic flow, the authors 
were able to generate predicted crash frequencies that were, 
at least for some intersections, consistent with observed crash 
frequencies.

To summarize, there has been a long-standing interest in 
using surrogate events such as traffic conflicts as a proxy for 
crashes, and a long-standing belief that it should be possible 
to relate the expected number of crashes to a measure of con­
flict frequency. Initial difficulties in establishing stable crash-
to-conflict relationships led to an interest in grading the 
severity of conflicts, with the idea being that severe conflicts 
would be more reflective of crashes. Currently in the litera­
ture there are descriptions of several methods for assessing 
severity of a noncrash event, which rely on measures of the 
kinematic variables, and show some overlap.

One point to emphasize is that the working definitions of 
observable conflicts cited previously all have counterfactual 
components. That is, a conflict is defined as a noncrash event 
where, had things been different, a crash would have resulted. 
Counterfactuals are somewhat difficult to address rigorously 
(Lewis 1973), but recently Pearl (2000) has described formal 
tools that allow one to assess probabilities assigned to both 
factual and counterfactual statements. In what follows, we 
will use some of these tools to give a rigorous counterfactual 
definition of traffic conflict and then use that definition to 
derive a relationship between the relative frequency of crashes 
and that of conflicts of differing severity, where it turns out 
that the crash-to-conflict ratios are governed by drivers’ abil­
ity to achieve successful evasive action. We will then illustrate 

u

x

y

Figure C.1.  Simple graphical 
model of crash events depicting 
conditional independence  
structure.
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The distance separating the major approach from the col­
lision point at this time is
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A collision is taken to occur when y(u,x) < 0.
In what follows, we will assume that the function y(u,x) is 

monotonic in x, in the sense that, for each u, x1 > x2 implies 
that y(u,x1) > y(u,x2). That is, for a given set of background 
conditions, increasing the magnitude of the evasive action 
does not produce a crash where one would not have occurred 
otherwise. It is straightforward to verify that, given reason­
able constraints of the background conditions, this monoto­
nicity condition is satisfied by both the above models.

Model Properties

The first consequence of our model is that set X, together 
with the monotonic structural equation y(u,x), can be used 
to partition the set of background conditions. That is, the sets

U1 = {u: y(u,xj) ≥ yc, j = 1, . . , n}

U2 = {u: y(u,x1) < yc & y(u,xj) ≥ yc, j = 2, . . , n}

. . .

Uj = {u: y(u,xi) < yc, i = 1, . . , j - 1 & y(u,xi) ≥ yc, i = j, . . , n}

. . .

Un+1 = {u: y(u,xi) < yc, j = 1, . . , xn}

form a partition of the set of background conditions. A proof 
of this claim is given in the appendix to this paper.

One way to interpret the sets U1, . . , Un+1 is as follows. 
Define the function

xmin(u) = the smallest value xj such that y(u,xj) ≥ yc.

For each possible background condition u, xmin(u) gives the 
lowest value of the evasive action that prevents a crash. U1 is 
then the set of conditions where a crash never occurs, Uj is the 
set of all conditions for which xmin(u) = xj, j = 1, . . . n, and Un+1 
is the set of conditions where a crash is unavoidable. The back­
ground conditions belonging to a given set in our partition 
share the same value for xmin, so each set in our partition is 
identified by its characteristic minimum successful evasive 
action. If xmin(u) is taken as a measure of the severity of an 
event, then we have a partition of events with respect to severity.

The second consequence is that probability of a crash is a 
mixture of the crash probabilities from the different sets in 
our partition.

consideration. For example, in Brill’s (1972) simple two-
vehicle rear-ending collision model, the initial speed and 
braking deceleration of the leading vehicle can be denoted by 
v1 and a1, respectively, while v2 and a2 denote the initial speed 
and braking deceleration of the following vehicle, and h2 and 
r2 denote the following headway and reaction time of the fol­
lowing driver. A collision occurs when the stopping distance 
available to the following driver is less than that needed to 
stop without colliding with the lead vehicle. That is, when

v h
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If we take the following driver’s deceleration as the avoid­
ance action, then the variables (v1, a1, v2, r2, h2) would be com­
ponents of u, the evasive action x would be a2, and the 
outcome function would be

y u x v h
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a
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Placing a probability distribution over the values taken on 
by the model’s exogenous variables produces what Pearl 
(2000) calls a probabilistic causal model. This distribution, 
together with the structural equations for the endogenous 
variables, is then sufficient to compute probabilities assigned 
to both factual and counterfactual events.

As another example, consider the interaction of major and 
minor approach vehicles at a two-way-stop controlled inter­
section, where the minor approach vehicle crosses in front of 
the major approach vehicle.

Let:

y2 = �initial distance of major approach vehicle from colli­
sion point

v2 = initial speed of major approach vehicle
r2 = reaction time of major approach driver
a2 = deceleration of major approach driver
y1 = �initial distance of minor approach vehicle from colli­

sion point
v1 = initial speed of minor approach vehicle
a1 = acceleration of minor approach driver

Here, the deceleration of the major approach driver is taken 
as the evasive action and the remaining variables describe 
background conditions. The time needed by the minor 
approach driver to clear the collision point is

ˆ ( )t
v a y

a1
1
2

1 1

1

2
10=

+
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Here the notation P(Uj) has been used as shorthand for 
P(u∈Uj). This result can then be used to eliminate P(Uj) in 
Equation 13, giving the probability of a crash in terms of close 
encounters and evasive actions

P y yc P y yc x x y yc

P x x

j x x
j
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j
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For background events in set Uj, a crash occurs if  
x ≤ xj-1, while a close encounter occurs if x = xj. The ratio  
P(x ≤ xj-1 |Uj)/P(x = xj |Uj) can thus be interpreted as a crash-
to-conflict ratio, and Equation 14 states that crashes can 
result from close encounters of varying severity, with possibly 
different crash-to-conflict ratios. Equation 14 is a generaliza­
tion of the relationship proposed in Equation 4, with an 
explicit representation of the crash-to-conflict ratio.

To summarize, Equation 12 states that, for this model, the 
probability of crash can be expressed in terms of the proba­
bility distribution for background conditions together with 
knowledge of how evasive actions are chosen. Equation 14 
states that the probability distributions for the background 
conditions can be dispensed with if it is possible to find prob­
ability distributions for a type of traffic conflict we call a close 
encounter. In either case, though, it is the evasive action 
model that determines the relative contribution of a region in 
the space of background conditions to the population of 
crashes.

Applying the Results

Since the definition of a close encounter has both factual and 
counterfactual components, determining whether an observed 
event is a close encounter requires conducting a counter­
factual test. This is most easily done when one has at hand the 
structural equation y(u,x) and plausible estimates of the val­
ues for the event’s background variables. For the simple rear-
ending collision model described, Davis and Swenson (2006) 
have discussed how Bayes estimates of the background condi­
tions and the evasive action can be obtained by fitting a model 
to a vehicle’s trajectory data extracted from a video recording 
of the event. Given posterior distributions characterizing the 
uncertainty regarding the event’s background conditions, it  
is then straightforward to compute the probability of a crash 
as a function of different values of the evasive action, using 
Monte Carlo simulation. Figure C.3 shows plots of the crash 
probability versus braking deceleration for two noncolli­
sion events observed on Interstate 94 by (the predecessor 
of) the Minnesota Traffic Observatory. For the encounter 

P P y yc P x x u U P u Uj
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(A proof of this claim is given in the appendix to this paper.)
This relationship states that, in principle, crashes can result 

from most regions of the space of background conditions, 
and it is the evasive action model that converts the possibility 
of crash into whether a crash actually occurs. Other things 
being equal, those regions where it is difficult to achieve a 
successful evasive action should contribute proportionally 
more to the set of crashes.

Our third result concerns the relationship between con­
flicts and crashes. As noted, working definitions of conflict 
and near crash have a counterfactual component: an observed 
conflict or near crash is a noncrash event that, had things 
been different, could have been a crash. A rigorous definition 
of conflict will thus require a method for formally stating this 
counterfactual condition, and one of the strengths of Pearl’s 
theory is that it provides just such a method. Pearl (2000) has 
used this formal language to explicate different ideas regard­
ing causal effects and to identify conditions that allow causal 
effects to be estimated from nonexperimental studies. Davis 
(2002) has argued that the concepts of causal effect used in 
statistical safety studies, crash simulation studies, and crash 
reconstruction can be treated as instances of what Pearl calls 
probability of necessity.

Following Pearl’s treatment, the notation yx=x0 will stand 
for the value taken on by the variable y when the variable x is 
set, counterfactually, to the value x0. Probabilities regarding 
counterfactual claims are then evaluated using the modified 
graphical model depicted in Figure C.2. In order to sidestep 
the surplus meaning attached to notions like conflict and 
near crash, we will define a close encounter as an event with 
y ≥ yc (crash does not occur), x = xj (evasive action of level xj 
was observed), but yx=xj-1 < yc (had the next weakest evasive 
action xj-1 been employed, a crash would have occurred.) It 
can then be shown that

P CE P y yc x x y yc

P x x U P U

j x x

j j j

j
( ) = ≥ = <( )

= = )( (
= −

& &
1

)) ( )13

(A proof of this claim is given in the appendix to this paper.)

u

x=x0

y

Figure C.2.  Modified graphical 
model of crash for assessing 
counterfactual event x 5 x0.
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This ratio will tend to be large for subsets where the minimum 
successful evasive action comes from the right-hand tail of 
the distribution of evasive actions. That is, other things being 
equal, crashes should tend to have extreme values of the eva­
sive action, and this is what Figure C.4 shows. This gives us a 
possible interpretation of the empirical findings that the fre­
quency of serious conflicts tends to be more reliably associated 
with the frequency of crashes.

The results in Figure C.4 also suggest a means for approx­
imating the expected number of crashes from a set of non­
crash events, where detailed knowledge of the evasive action 
model may not be necessary. If the limited data shown in 
Figure C.4 are typical of rear-ending events, the space of back­
ground conditions can be roughly divided into two subsets, 
one where crash occurrence tends to be negligible, character­
ized by P(x < xmin(u)) ≈ 0, and one subset from which crashes 
tend to be generated—that is, where P(x < xmin(u)) > 0. If, in 
addition, the evasive action model can be taken as roughly 
constant in this crash-producing region, then an estimate 
of the number of crashes in a set of noncrash events can be 
computed as the sum of the probabilities that each of these 
events could have been a crash. That is, if P(x = xj |u = ui) = 
P(x = xj), then

P P y yc P x x P x xj
j

jcrash( ) = <( ) = >( ) =( )∑ min ( )16

Figure C.5 shows the two relationships depicted in Fig­
ure C.3, along with a proposed probability distribution for 

between Vehicles 1 and 2, braking decelerations on the part of 
Driver 2 below about 7 ft/s2 would probably have resulted in a 
collision, while for the encounter between Vehicles 5 and 6, 
braking decelerations by Driver 6 below about 15 ft/s2 would 
probably have resulted in a collision.

The results shown in Figure C.3 make no reference to the 
actual braking decelerations used and so by themselves are 
not sufficient to determine if the event qualifies as a close 
encounter. Figure C.4, however, displays point estimates  
of actual and minimal braking decelerations for vehicles 
involved in three freeway rear-ending crash events, also taken 
from Davis and Swenson (2006), and including the two 
events illustrated in Figure C.3. The three rightmost points 
on Figure C.4 represent decelerations for colliding vehicles, 
while the points in the cluster to the left represent, with one 
exception, decelerations of successful stops before colliding. 
The first interesting observation from Figure C.4 is that the 
noncolliding drivers appeared to select decelerations close to 
the minima needed to stop without colliding. Since for each 
noncolliding vehicle a relatively small decrease in deceleration 
would have led, other things being equal, to a collision, each 
of the successful stops arguably qualifies as a close encounter. 
The second interesting observation is that the decelerations 
used by colliding drivers tend to be substantially greater than 
those used in the observed close encounters. Referring to 
Equation 14, the crash-to-conflict ratio for near-crash events 
for subset Uj takes the form

P x x U P x x Uj j j j≤( ) =( )−1 15( )
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Figure C.3.  Crash probability versus braking deceleration for two noncrash 
events. The event involving Vehicles 1 and 2 is arguably less severe than the 
event involving Vehicles 5 and 6.
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noncrash events, together with a proposed probability density for  
decelerations.
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In this paper, we postulated a minimal theoretical structure 
that incorporates crashes, near crashes, and conflicts; defined 
rigorously what we mean by a surrogate event; and then 
derived a relationship between crash propensity and the sur­
rogate. Our treatment produced a natural, one-dimensional 
method for grading the severity of noncrash events in terms 
of their minimum successful evasive actions. Our treat­
ment also produced a generalization of Hauer’s proposed 
relationship between expected crashes and conflicts, where 
the crash-to-conflict ratio is governed by the evasive action 
model, suggesting that a better understanding of crash-to-
conflict ratios could be had through a better understanding 
of evasive action. Finally, combining our treatment with 
some preliminary empirical work on rear-ending conflicts 
and crashes led to a suggested alternative method for estimat­
ing the expected number of crashes from a set of conflicts, 
where each conflict is assigned a probability of (counter­
factually) being a crash.

It may occasionally happen that a theoretical treatment 
can substitute for empirical work, but more often the best a 
theoretical treatment can offer is an interpretation of past 
work and a guide for future work. For situations where crash 
outcome is a monotonic function of an evasive action, our 
treatment indicated that converting a set of conflict events to 
an estimate of crash tendency requires (1) counterfactual 
testing to correctly classify the conflict events, and (2) under­
standing how evasive actions are selected over a range of con­
flict severities, so that correct crash-to-conflict ratios can be 
determined. These requirements, in turn, suggest directions 
for future work. First, one important focus would be on 
developing defensible models of how drivers select evasive 
actions as functions of background conditions. Second, we 
indicated previous work where counterfactual testing was 
accomplished through trajectory-based reconstruction of 
rear-ending events, based on fairly simple algebraic trajectory 
models. This initial work should be extended to support more 
complicated models, possibly based on differential equations. 
Third, it may happen that the structural features of a particu­
lar problem allow Steps 1 and 2 to be simplified. We illustrated 
one such simplification where detailed knowledge of evasive 
action mechanisms was replaced by an empirically derived 
probability density, and highlighted the assumptions needed 
to justify this simplification. We suspect that the majority, if 
not all, of proposed traffic conflict techniques can be regarded 
as simplifications of Steps 1 and 2, but where the simplifying 
assumptions are to greater or lesser degrees unclear. If this 
is the case, then the credibility and usefulness of economical 
traffic conflict techniques could be enhanced substantially by 
unpacking these assumptions and determining the condi­
tions under which they are valid.

emergency braking decelerations. This proposed distribution 
is based on a normal distribution, with mean and variance 
taken from the surprise braking tests reported by Fambro  
et al. (1997). Since for monotonic relationships y(x,u) < yc 
only if xmin(u) > x, the function giving crash probability ver­
sus braking deceleration is equivalent to the function giving 
probability of failing to achieve the minimum safe decelera­
tion versus braking deceleration. “Integrating” this function 
with respect to the braking deceleration distribution then 
gives the probability that the event could have been a crash 
had the following driver’s deceleration been similar to that 
observed by Fambro et al. (1997). Table C.1 displays these 
counterfactual crash probabilities computed for five leader–
follower pairs of noncolliding vehicles observed on Inter­
state 94 using the Fambro et al. (1997) statistics. Pairs 1–2 
and 5–6 are the same, as shown in Figures C.3 and C.5. The 
expected number of crashes in this set, which is simply the 
sum of these probabilities, would be 0.142.

Discussion

Traffic collisions tend to be relatively rare but of nontrivial 
financial and personal consequence when they happen. It is 
not surprising then that substantial effort has been invested 
in finding useful surrogates for collisions, which are easier to 
observe but that still provide information on the frequency 
and nature of collisions. Our review of the literature on traffic 
conflicts and near crashes identified two important trends. 
The first is that conflicts can be ranked with respect to sever­
ity and that the more severe conflicts tend to show reliable 
associations with crash experience. The second is that work­
ing definitions of observed conflicts contain a counterfactual 
component, where a conflict is an event in which, had some 
action not occurred, a crash would have occurred.

Table C.1.  Crash Probabilities Computed for Five 
Leader–Follower Pairs of Noncolliding Vehicles

Vehicle Number
Estimated Follower 
Deceleration (ft/s2)a

Leader Follower Actual Minimum P(crash)

1 2   6.5 (.06)   6.2 (.06) 0

2 3 12.6 (.99) 11.4 (.66) 0

3 4 14.2 (.51) 12.8 (.43) 0

4 5 16.0 (.91) 14.4 (.63) .004

5 6 17.3 (1.6) 17.1 (1.5) .138

Sum .142

a Standard deviations for deceleration estimate are given in parentheses.
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Appendix to “Outline of a 
Causal Theory of Traffic 
Conflicts and Collisions”

Derivations of Main Results

Let U denote the set of possible values for the background 
variables u and X denote the set of possible values for the eva­
sive action x. For simplicity, we will assume that U is count­
able, and X is finite,

X x x x x x xn n= { } < < <1 2 1 2, , , . . .. . , with

Proposition 1. Consider the sets

U1 = {u∈U : y(u,xj) ≥ yc, j = 1, . . , n}

U2 = {u∈U: y(u,x1) < yc, y(u,xj) ≥ yc, j = 2, . . , n}

. . .

Uj = �{u∈U : y(u,xi) < yc, i = 1, . . , j - 1 & y(u,xi) ≥ yc, i = j, . . , n}

. . .

Un+1 = {u∈U : y(u,xj) < yc, j = 1, . . , n}

The sets U1, U2, . . , Un+1 form a partition of U.

Proof: We need to show that U1∪U2∪ . . . Un+1 = U, and 
Ui∩Uj = f whenever i ≠ j. Let u∈Uj. Then u∈U. Now let u∈U. 
Then y(u,x1), y(u,x2), . . y(u,xn) are all well defined. If y(u,x1) ≥ 
yc, u∈U1, while if y(u,xn) < yc, then u∈Un+1. Now, suppose 
y(u,x1) < yc and y(u,xn) ≥ yc. By the monotonicity property of 
y(u,x), there exists value k such that y(u, x) < yc for all x < xk 
and y(u,x) ≥ yc for all x ≥ xk. Hence, u∈Uk, and we have shown 
that U1∪U2∪ . . . Un+1 = U. Next, suppose i ≠ j and there exists 
u belonging to both Ui and Uj. If i < j, u∈Ui implies y(u,xi) ≥ yc 
but u∈Uj implies y(u,xi) < yc, a contradiction. The case i > j is 
handled similarly, giving us Ui∩Uj = f when i ≠ j.
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