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A large component of the safety research undertaken in the second Strategic Highway 
Research Program (SHRP 2) is aimed at reducing the injuries and fatalities that result from 
highway crashes. Through a naturalistic driving study (NDS) involving more than 3,000 vol-
unteer drivers, SHRP 2 expects to learn more about how individual driver behavior interacts 
with vehicle and roadway characteristics. In anticipation of the large volume of data to be 
collected during the NDS, several projects were conducted to demonstrate that it is possible 
to use existing data from previous naturalistic driving studies and data from other sources to 
further the understanding of the risk factors associated with road crashes. More specifically, 
the four S01 projects, entitled Development of Analysis Methods Using Recent Data, exam-
ined the statistical relationship between surrogate measures of collisions (conflicts, critical 
incidents, near collisions, and roadside encroachment) and actual collisions. This report 
presents the results of one of these projects, undertaken by Pennsylvania State University. 
It documents the second phase of a two-phase project under SHRP 2 Safety Project S01B.

The primary objective of this work was to investigate structured modeling paradigms for 
analysis of naturalistic driving data (NDD). Five research questions were identified and 
various models (e.g., event-based models and categorical-outcome models) were applied 
to NDD to determine appropriateness for analysis and suggestions for future analyses. The 
following were the five research questions:

1.	 What is the relationship between events (e.g., crashes, near crashes, and incidents) and 
pre-event maneuvers? What are the contributing driver factors, environmental factors, 
and other factors?

2.	 What hierarchical structure, if any, exists in the manner in which these relationships need 
to be explored?

3.	 What kind of elucidative evidence emerges from the analysis of roadway departure crashes 
in terms of Questions 1 and 2? Is the illustrative hierarchy of relationships generalizable 
to other nonintersection crash types, such as leading vehicle crashes?

4.	 In terms of elucidative evidence, what types of behavioral correlates emerge? For exam-
ple, are attitudinal measurements indicative of revealed behavior in terms of headway 
maintenance and speed reductions?

5.	 If elucidative evidence does in fact emerge in terms of attitudinal correlates and how their 
interactions vary by context, is it plausible to parse out the marginal effects of various 
context variables on crash risk by suitable research design?

This report will provide useful information for analysts of the SHRP 2 NDS data, as well as 
other naturalistic driving data sets.

F O R E W O R D
Charles Fay, Senior Program Officer, Safety

Analysis of Existing Data: Prospective Views on Methodological Paradigms

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22837


C O N T E N T S

	 1	 Executive Summary
	 1	 Background
	 1	 Analysis of VTTI Data
	 2	 Analysis of UMTRI Data
	 3	 Research Hypotheses, Findings, and Implications

	 9	 CHAPTER 1  Introduction
	 9	 Background of Naturalistic Driving Studies
	 9	 Literature Review
	 13	 Summary

	 14	 Chapter 2  Research Approach
	 14	 Overview
	 14	 Analysis of VTTI Data
	 15	 Analysis of UMTRI Data
	 16	 Analysis Plan for VTTI Data
	 23	 Analysis Plan for UMTRI Data
	 28	 Summary

	 33	 Chapter 3  Data Description and Modeling Results
	 33	 VTTI Driver-Based Data and Models
	 40	 VTTI Data: Event-Based Models
	 49	 UMTRI Data: Kinematic Models
	 56	 Cohort-Based Approach

	 64	 Chapter 4  �Conclusions, Implications for SHRP 2  
Safety Program, and Suggested Research

	 64	 Research Question 1
	 65	 Research Question 2
	 66	 Research Question 3
	 68	 Research Question 4
	 68	 Research Question 5
	 69	 Suggested Research

	 71	 References

Analysis of Existing Data: Prospective Views on Methodological Paradigms

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22837


1

Background

In the spring of 2007, Pennsylvania State University (Penn State) was awarded a contract to 
analyze existing naturalistic databases as part of the S01 Safety project within the second Strate-
gic Highway Research Program (SHRP 2). The Penn State team proposed using data collected 
by the Virginia Tech Transportation Institute (VTTI) during the 100-car naturalistic driving 
study (Dingus, Klauer, et al. 2006) and data from the automotive collision avoidance system 
(Ervin et al. 2005) and the road departure crash warning (RDCW) system field operational test 
(LeBlanc et al. 2006) conducted by the University of Michigan Transportation Research Institute 
(UMTRI).

The next two subsections describe the analyses undertaken with each data set. The final section 
summarizes the findings of the research in terms of the five research questions identified in the 
original Penn State proposal and reiterated in the final Phase 1 report to SHRP 2.

Analysis of VTTI Data

Two parallel tracks were pursued in the analysis of the 100-car study data: event-based modeling 
and driver-based modeling. The first approach modeled the occurrence of each event in detail. 
The focus was on understanding the interactions of the many factors that led to event occur-
rence. This initiative fit nicely with the data provided by VTTI, as it allowed events to be com-
pared at three levels (summary definitions provided by Dingus, Klauer, et al. 2006):

•	 Crash—any contact with an object, either moving or fixed, at any speed, in which kinetic 
energy is measurably transferred or dissipated;

•	 Near crash—a circumstance that requires a rapid, evasive maneuver by the subject vehicle, or 
any other vehicle, to avoid a crash; the maneuver causes the vehicle to approach the limits of 
its capabilities (e.g., vehicle braking greater than 0.5 g or steering input resulting in lateral 
acceleration greater than 0.4 g); and

•	 Crash-relevant incident (in this report referred to as a critical incident)—a circumstance that 
requires a crash avoidance response on the part of the subject.

Each of these events was identified by VTTI staff as part of the 100-car study, and the three 
event types were provided to Penn State in response to the team’s data request. Penn State devel-
oped a structured analysis framework for these event-based data; the model specified driver attri-
butes, the context in which the event occurred (including roadway and environmental variables), 
and attributes describing details about the event itself, particularly in the few seconds before and 
during the event. Examples of event-level variables include whether the driver was observed to be 

Executive Summary
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distracted just before the event and whether the vehicle crossed over the lane or road edge. One 
may think of these models as exploring the details of factors associated with the events.

Various model formulations were used to find variables associated with crashes and near 
crashes, and the attributes of vehicle motion associated with such events (e.g., vehicle over lane 
or road edge) that could serve as surrogate measures for crashes were investigated. If these event-
related measures were shown as being positively associated with a crash or near-crash event, they 
were considered as potential surrogates. A set of nonincident control events was received with 
the original data, but it was not useful in the modeling because it contained none of the predic-
tors used in the event analysis. The team tested the specific measures available in the data set and 
attempted to supplement the available vehicle kinematic data by downloading information from 
the NHTSA website. Unfortunately, kinematic data were only available for a small number of 
crashes; near crashes and critical incidents were not represented, and this approach was, there-
fore, abandoned.

One weakness of event analysis is that it precludes the study of drivers who experience none 
of the three measured events (i.e., the safest drivers). In order to include these drivers, the second 
analysis track conducted by Penn State with the VTTI data was a series of models of the number 
of events per driver. Consistent with much of the modeling in the safety field, these analyses were 
conducted using a set of count regression formulations (e.g., Poisson, negative binomial [NB], 
and zero-inflated Poisson [ZIP]) that resulted in estimates of the probability of a driver with 
particular attributes having 0, 1, 2, . . . , n events during the year of the 100-car study. These 
models allowed comparisons to be made across all drivers.

Analysis of UMTRI Data

The UMTRI data consisted of a set of drivers who experienced a series of alerts from onboard 
systems about potential crashes. Because no crashes were recorded in the UMTRI data, the 
dependent variables used in the analyses were derived from a system designed to detect excessive 
speed entering a curve (i.e., the curve speed warning [CSW]) and an alert triggered when the 
subject vehicle deviated from the lane or road edge (i.e., the lateral drift warning [LDW]).

After an initial screening of the data, the team decided to focus on the CSW alerts as they 
provided duration of time and thus contained more details about the driver response to the alert. 
Further, the curve speed event was more consistent with the road departure event covered in the 
VTTI analyses, and it was thought there may be some benefit from the similarity.

Two approaches were taken in the analysis of the UMTRI data. The first used a series of piece-
wise linear models to characterize the nature of the relationship between vehicle kinematics and 
CSW alert frequency and duration. The interest was in finding which kinematic variables were 
most correlated with the triggering of the alert. This information was used to gain insight about 
potential surrogates, under the assumption that the kinematic variables most associated with 
alert occurrence would be potentially efficacious crash surrogates to consider in subsequent 
research. A positive association between a kinematic variable and an alert being triggered could 
be an indication of a kinematic variable that might also be associated with (or potentially caus-
ing) road departure crashes. While the team acknowledges the nature of this conceptual leap, it 
was believed that the exploratory nature of the S01 projects would support this type of analysis. 
Time–series models of the kinematic data were also attempted, but as they did not yield particu-
larly meaningful results, they are not discussed in this report.

The second approach taken with the UMTRI data was to use a cohort-based formulation to 
estimate the probability of a particular number of alerts being triggered for an individual driver 
(e.g., characterized by gender, years of driving experience, and mileage driven in particular con-
texts). This exposure-based analysis is based on actual miles driven under specific environmen-
tal and roadway conditions as measured by the CSW–LDW system. Because of the structure of 
the UMTRI data, the team was able to analyze alert frequency at a very detailed level of exposure.

Analysis of Existing Data: Prospective Views on Methodological Paradigms

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22837


3

One of the most important outcomes of the UMTRI modeling effort is the successful estima-
tion of cohort models using homogeneous trip segments. This formulation takes advantage of 
the unique trip-by-trip data obtained in the naturalistic study, along with geographic informa-
tion system (GIS)–related factors coded by UMTRI (such as road type and environmental con-
ditions), to derive a measure of alert frequency for each trip segment. The issue of interest is the 
ability to truly capitalize not only on the naturalistic driver behavior data, but also on detailed 
GIS roadway data. Since there is a plan to collect detailed roadway data as part of SHRP 2 Safety 
Project S04, Acquisition of Roadway Information, the team believes this formulation merits 
consideration for future studies. Even though the models are estimated with alerts, there is a 
direct parallel to the modeling of crashes or other events of interest. In addition, researchers can 
very flexibly define homogeneous trip segments to match their research needs. The estimated 
models using the cohort formulation verify the efficacy of this approach; the findings are dis-
cussed in the response to Research Question 3.

Research Hypotheses, Findings,  
and Implications

The analysis of the data provided by VTTI and UMTRI was guided by the five research questions. 
This section states and discusses each of the five questions in sequence, specifically including the 
hypothesis or issue explored and a summary of what was discovered. The implications of the 
various findings are discussed in detail in Chapter 4.

Research Question 1

What is the relationship between events (e.g., crashes, near crashes, incidents) and pre-event maneu-
vers? What are the contributing driver factors, environmental factors, and other factors?

The VTTI data set was primarily used to answer this question. The general structure of the 
event-based models was to use predictor variables representing driver, context (i.e., roadway and 
environment), and event attributes. Models were estimated with context-only, driver-only, 
and event-only variables (and combinations of only two of these components). Resulting parameter 
estimates changed substantially depending on how many of the three components were repre-
sented in the model; importantly, the exclusion of any of the components led to major changes 
in estimated parameters (see Chapter 3). The exclusion of any of the set of variables (i.e., driver, 
context, or event) is likely to result in biased parameter estimates, obscuring the effect of any one 
variable on event occurrence. To avoid this bias, future analyses of SHRP 2 event-based data 
(such as in proposed research for the S08 project) should include variables representing driver, 
context, and event attributes. In addition, thorough tests should be conducted to explore changes 
in parameter values and significance. The Penn State team is concerned that parameter estimates 
may exhibit the same characteristics, even in data sets with large sample sizes.

The strongest variables (i.e., those showing the greatest association with crashes or near 
crashes) were the driver distraction variables. These variables included distractions such as those 
attributed to a portable electronic device, internal distractions (such as a pet), or vehicle-related 
distractions (such as adjusting the climate or audio controls). Although the team used distrac-
tion as a predictor variable, some distractions may be endogenous (i.e., the conditions that led 
to the event also led to the distraction) and may not be suitable as event predictors. A range of 
statistical methods to address endogeneity should be considered in these circumstances. In addi-
tion, there may be a need to explore measurement periods beyond the 5-seconds-before-event 
criteria used in the VTTI data base.

Special care should be exercised and perhaps specific models formulated to explore the nature 
of the endogeneity between distractions and other event-related measures. The team’s model 
tests indicate that distractions as predictor variables may not be valid.
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The efficacy of using categorical-outcome models (such as logit or binary hierarchical models) 
to compare crash and noncrash events was explored within the limits of the VTTI data by com-
paring crash and near-crash events (combined) with critical incidents. The Penn State team 
estimated a series of models that yielded generally consistent results concerning the effects of 
particular parameters when using a complete model specification as described above. Given a set 
of event-based data, it is feasible to apply well-established categorical data analysis techniques to 
estimate factors that differentiate between the categorical outcomes. This method implies that 
such a differentiation appears feasible for crashes (or other adverse events) and a sample of 
comparable, similarly described nonevents. Such a comparison was anticipated, but it was not 
achieved because the data for nonevents in the VTTI file did not contain predictor variables 
consistent with the events.

Gender was important in both driver- and event-based models. Many gender-related factors 
were revealed as main effects, but they were particularly apparent as interaction terms, especially 
in driver-based models. Analyses that are directly or indirectly influenced by gender should include 
tests of a range of main effects and interaction terms. Variables with significant promise in future 
modeling include level of education and years of driving experience. Several associations between 
number of previous crashes and violations varied with gender; these associations were not con-
sistent, but they may warrant attention from researchers on gender issues.

A limited number of vehicle factors rose to significance; additional research is needed con-
cerning the analysis of vehicle factors, particularly in conjunction with the gender of the driver.

Research Question 2

What hierarchical structure (statistically speaking), if any, exists in the manner in which these 
relationships need to be explored?

Two hierarchical models are reported with the VTTI data: one was applied to event modeling 
and the second to driver-based models. A third hierarchical model was estimated with the 
UMTRI data using a cohort approach.

Figure ES.1 shows one hierarchy successfully applied to the analysis of event data. The sketch 
is intended to convey that individual drivers may have any number of events; they must have at 
least one, but they may have more. If one were to model this with a count regression approach, 
each event would enter the model as if it were independent and from a different driver.

Using a hierarchical approach, driver attributes enter at the driver level, once for each driver. 
Event characteristics are entered as predictors for each event in which they occur. This hierarchi-
cal approach provided a conceptually justifiable approach to the modeling of complex events 
and was applied to both VTTI and UMTRI data. A driver-based approach presents one way to 
analyze drivers at a separate level from the events of interest, providing a much better depiction 
of the physical process being investigated.

A second hierarchical model (Figure ES.2) was used in the driver-based analysis of the VTTI 
data. In this structure, males and females are accounted for separately, and the model includes 
separate parameter estimates for each gender category.

Figure ES.1.  Hierarchy analysis of event data.
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This driver-based hierarchical model presents another example of how hierarchical approaches 
can be applied to naturalistic data. The benefits of obtaining gender-specific estimates of factors 
contributing to the risk of events are clear.

Research Question 3

What kind of elucidative evidence emerges from the analysis of roadway departure crashes in terms 
of Questions 1 and 2? Is the illustrative hierarchy of relationships generalizable to other nonintersec-
tion crash types such as leading vehicle crashes?

Elucidative evidence refers to evidence of the likely effect of individual predictor variables in 
modeling event occurrence (including crashes). The notion of elucidative evidence includes 
surrogate measures and their testing. Surrogates are a special type of variable that have been 
discussed as a general replacement for crash data; the description and interpretation of Penn 
State surrogate analyses are contained in the responses to this general question. Exposure 
requires a predictor variable reflecting time or distance of travel; exposure-based analyses of 
both data sets are also described in this report. Responses to this question thus provide a sum-
mary of the extent to which the modeling results provide guidance on variables to be given 
priority in future analysis studies. Some evidence suggests that several types of predictor vari-
ables, such as precipitating event information in VTTI models, have particularly important roles 
in the models.

One useful definition was articulated by Hauer in his more focused discussion of the traffic 
conflicts technique as a surrogate measure (Hauer and Gårder 1986): “one should be able to 
make inferences about the safety of an entity on the basis of a short duration ‘conflict count’ 
instead of having to wait a long time for a large number of accidents to materialize.” Shankar has 
argued as part of this research that surrogates have a time dimension (e.g., a measure such as 
time to collision has a clear time dimension; time to road departure is another) (Shankar et al. 
2008). In addition, Shankar argues that a surrogate should be responsive to the same interven-
tions as a crash. An example is a curve warning system alerting the driver to unsafe conditions 
ahead: for a surrogate like near run-off-road crash to be valid, it must be mediated by a curve 
warning alert in the same way as a crash. More generally, surrogates can be considered as mea-
sures that can be substituted for crashes in a safety analysis: in the data for this project, they are 
typically vehicle kinematic– and event-related measures that offer some description of vehicle 
movement and/or position relative to the roadway.

Potential surrogates encountered in the VTTI data include the precipitating events of subject 
over lane or road edge and lost control. In most of the categorical event-based models these two 

All Drivers

FemalesMales

Driver m Driver m+1Driver 1

Event 1
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Event 2

Event 2

Event 3
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Figure ES.2.  Driver-based hierarchical model.
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variables were strong indicators of crash or near-crash events; in hierarchical models subject 
over lane or road edge was the second strongest predictor associated with a crash or near-crash 
event. While this measure has a strong association with crash events, this measure does not have 
a time dimension, so it does not directly meet Shankar’s desirable criteria (Shankar 2008). Fur-
ther, Hauer’s rule could not be applied because the team did not have access to the comparable 
set of subject behavior for noncrashes. It may not be broadly applicable outside of SHRP 2’s 
instrumented vehicles; nevertheless, it is clear that the measure has some potential as a surrogate.

The categorical models explored in this study appear to provide a useful paradigm for explor-
ing surrogates when event-based data are available. While not directly tested with VTTI data, the 
Penn State team believes that kinematic measures or combinations of kinematic and roadway 
position measures are possible measures for future testing. For example, the subject over lane or 
road edge variable contained position-only information and was strongly associated with crash-
related events; inclusion of longitudinal or lateral velocity and lateral position information 
would enhance its predictive ability.

A limitation of the categorical models deserves mention. Initial event-based models, both 
bivariate logistic and hierarchical, used improper speed as an event-based predictor. Successful 
model fit was obtained, but improvement was sought. Driver impairment 1 (drowsy, sleepy, 
fatigued) was substituted as a predictor and much better fit occurred overall, including reduced 
standard errors for several variables. While we were pleased by the improved fit, we were con-
cerned about the apparent model instability. This may be due to the small sample size, but it may 
also reflect endogeneity among the predictors. As a recommendation to future SHRP 2 analysis 
contractors, the team suggests that care be exercised in surrogate analyses; additional empirical 
testing in several other sites and with other drivers should reveal more about this issue.

A method for validating events containing possible surrogates for crashes is proposed and 
discussed in Chapter 3. The statistical predictions from the event-based model were compared 
with text descriptions of the event etiology derived from video and kinematic data; the com-
parison showed that events originally coded by VTTI as critical incidents were statistically esti-
mated to be crashes. It was posited that these events could be used to supplement crash data 
observed directly. The manipulation of the event-based models is proposed as a means of pro-
viding useful information about whether a particular critical incident or near-crash event really 
was similar, statistically, to a crash event in a similar context. Such a comparison is dependent 
on the model being correct. An additional validation technique is discussed using the cohort 
formulation with hierarchical models, leading to the development of safety performance func-
tions for crashes and the surrogate measure.

The UMTRI analyses tested several kinematic measures, particularly longitudinal velocity 
entering curves, as a potential surrogate of event risk; in this case a CSW alert, instead of a crash 
event, was used. Initial tests of piecewise linear models applied to the data as a whole showed that 
the measure has some merit, but the models were weakened statistically by the presence of serial 
correlation in the observations (data were collected at 10 Hz). The team next explored tracking 
individual drivers through the same location multiple times to see if there were repeated behav-
iors or learning and to explore individual variability. The models showed different results than 
the aggregate. While the results were not stunning, they showed potential and are recommended 
over aggregate approaches.

The ability to explore context through the use of the detailed roadway data available through 
Google maps (i.e., by tying kinematic measures to specific road segments) should greatly enhance 
the findings. Tracking individual drivers repeatedly over the same route has potential for addi-
tional insight. Specifically, a range of kinematic variables can be measured at specific points of 
documented high crash frequency; these can be compared with a set of individual drivers’ kine-
matic signatures through the same roads. Kinematic measures at crash locations can be compared 
with similar measures at low-frequency crash locations and tested for their predictive capability.

Cohort-based modeling also shows promise in quantifying context effects (this method is 
addressed in Research Question 5). The driver-based models using VTTI data used self-reported 
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annual mileage as exposure. These models showed that exposure is essential to the study of the 
expected number of events per year for drivers. There was a strong association of exposure with 
the expected number of events, and the inclusion of this variable greatly improved model fit. It 
is clear that travel by individual drivers should be identified to the extent possible through the 
face camera or other technologies. The team developed a model that clearly identified drivers 
who were outliers with respect to the number of events they experienced. Drivers with excep-
tionally high, as well as low, numbers of events can be identified using this technique.

Virtually all of the event-based models showed substantial differences in the effect of distrac-
tions on event occurrence. Most generally, internal distractions (e.g., reading, moving an object 
in the vehicle, or dealing with a pet or insect) were most strongly associated with crash or near-
crash event occurrence. Passenger-related distractions and observations of the driver talking, 
singing, or daydreaming also had consistent positive correlations. Interestingly, the use of a wire-
less device was poorly correlated to event occurrence. These findings, taken as a whole, reveal 
that distractions merit careful measurement in future SHRP 2 analysis efforts. Event data would 
be even more useful if matched with nonevent data collected from all drivers that included com-
parable distraction measures.

Research Question 4

In terms of elucidative evidence, what types of behavioral correlates emerge? For example, are atti-
tudinal measurements indicative of revealed behavior in terms of headway maintenance and speed 
reductions?

The principal measure of behavioral correlation was the Dula Dangerous Driving Index 
(DDDI) (Dula and Ballard 2003) obtained by VTTI during the original 100-car data collection 
effort. The DDDI consists of 28 statements to which the driver is asked to respond on a 5-point 
Likert scale. Example test statements include “I verbally insult drivers who annoy me”; “Pas-
sengers in my car/truck tell me to calm down”; and “I will weave in and out of slower traffic.” 
Responses to the questions are divided into three categories: aggressive driving (AD), negative 
emotional (NE) driving, and risky driving (RD). Each category is intended to capture a different 
aspect or component of dangerous driving.

The DDDI was generally associated with an increase in crashes and near crashes in the event-
based models and was also positively associated with number of events in the driver-based mod-
els. The results were not always easy to interpret or consistent with intuition. In driver-based 
models, for example, AD was associated with an increase in the number of events, but for females 
only. In the event-based models, this same component was associated with a reduction in crash 
or near-crash events (which could be interpreted as an increase in the likelihood of critical inci-
dents). So, while the associations in the data were generally consistent and statistically significant 
(within the limits of the data), there is a concern that the findings were not as interpretable as 
would be desired. The testing conducted with the DDDI confirms the importance of including 
some measure of driver risk propensity in the remaining SHRP 2 data analyses.

In addition to the DDDI, the Life Stress Index was administered to participating primary 
drivers in the 100-car study. This tool attempts to measure the amount of stress present in the 
subject’s life by using factors such as stress at work, difficulty with personal relationships, and 
challenges in the family environment. The Life Stress Index was positively associated with crash 
and near crashes in some event-based models, but it was not a predictor in the driver-based 
models.

Although a metric for life stress provides some interesting data, it is not as important as 
driver-based risk-taking measurements. The proposed testing for the S07 projects, In-Vehicle 
Driving Behavior Field Study, includes a number of perceptual and cognitive tests; psychological 
tests include metrics for risk taking, risk perception, driver style and behavior, and thrill and 
adventure seeking. These data should provide more than ample measures of driver predisposi-
tion for events.
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Research Question 5

If elucidative evidence does in fact emerge in terms of attitudinal correlates and how their interac-
tions vary by context, is it plausible to parse out the marginal effects of various context variables on 
crash risk by suitable research design?

This question bears directly on the importance of context in the analysis of naturalistic driving 
data. Event modeling revealed that failure to include context-related variables will yield a model 
with substantially biased parameter estimates. There is no way the influence of factors such as 
distractions and predisposition variables can be properly assessed without the inclusion of context.

Several aspects of context were revealed to be associated with crash and near-crash outcomes. 
Roadway-related factors were important descriptors of context in the series of event-based mod-
els. The presence of curves was a significant factor in differentiating critical incidents from 
crashes and near crashes. Horizontal curves, in general, indicated a modest increase in risk. 
Horizontal curve presence does not show the magnitude of influence of driver behavior variables 
such as distractions, but it is clearly important in defining context.

Time of day, specifically dawn or dusk, was a substantial factor increasing risk and contributed 
importantly to the definition of context in which crash or near-crash events occurred. This vari-
able was consistently significant and positive in all event-based models and had odds ratios 
(ORs) that exceeded some driver distraction and precipitating event factors. These findings are 
consistent with sleep- and fatigue-related studies of crash risk for both private drivers and the 
motor carrier industry. Future research projects conducted as part of SHRP 2 Safety Project S08, 
Analysis of the SHRP 2 Naturalistic Driving Study Data, need to seriously consider the identifi-
cation of dawn and dusk driving as an important element of context. Comparing crashes, near 
crashes, and critical incidents with a sample of nonevents with comparable attributes would 
serve to validate these findings.

Run-off-road crashes were consistently and negatively associated with increased traffic levels; 
this seems like a plausible association, as drivers are more likely to have crashes, near crashes, 
and critical incidents under more congested traffic conditions. This association was not as strong 
as the associations with the other variables.

In cohort-based models formulated with the UMTRI data, context was generally more strongly 
associated with event outcome (i.e., CSW alerts) than driver-based variables. This general finding 
supports the emphasis on context that has stimulated much discussion during recent research 
symposia. Interestingly, the hierarchical model described in Chapter 3 identifies variability 
between drivers as a major factor in explaining CSW alert frequency. Taken together, these find-
ings support the concept that context and driver attributes are complementary and closely linked.

The cohort-based approach enables the researcher to use naturalistic driving data to examine 
both driver and context factors in a consistent exposure framework. Such research is only possible 
with the detailed data available from a naturalistic driving database, such as the UMTRI RDCW 
data set, which provides data on individual drivers monitored through a series of contexts.

Cohort analysis represents a breakthrough in analysis paradigms for naturalistic data. The 
driver is tracked through a roadway network defined as homogeneous based on the needs of the 
analysis team. Once segments are defined, events (using appropriate screening criteria) can be 
allocated to the segments. The analyst can make the segment designation as fine or coarse as 
roadway and roadside data allow. This framework provides the measurement of the driver’s 
behavior throughout the driver’s travel, as well as in the seconds immediately preceding or fol-
lowing a crash.

A range of statistical methods was used to provide examples of how the cohort-based data 
structure can be used. These are intended to assist future SHRP 2 safety studies by providing 
guidance about data manipulation and variable formulation.
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C h a p t e r  1

Background of Naturalistic 
Driving Studies

Naturalistic driving experiments have been conducted for 
several years and include studies of drivers in their own vehi-
cles and a series of technology tests to assess the safety conse-
quences of advanced in-vehicle technologies. Generally, the 
100-car study conducted by VTTI provided naturalistic data 
to make causal crash assessments, with a focus on the few 
seconds before and after crashes and events of interest (near 
crashes and critical incidents). UMTRI conducted an evalua-
tion of a roadway departure and curve warning system as part 
of the U.S. Intelligent Transportation Systems program.

While both studies were extensive, they did not focus on 
analysis methods per se. The S01 project sought to fill the 
analysis gap by focusing on analysis of existing data with an 
eye toward developing analysis tools for the 2,500-car study.

This report describes examples of analyses conducted in 
exploring paradigms for naturalistic driving data analysis. 
The authors build on and begin to test some of the paradigms 
identified in the Phase 1 report and by Shankar and associates 
(2008). This report has four parts. The literature review that 
concludes this first chapter examines the literature concern-
ing naturalistic driving studies and hierarchical statistical 
methods applied to traffic safety. Chapter 2 describes the 
research methodology and available data, and Chapter 3 dis-
cusses the models estimated from the data. Chapter 4 sum-
marizes the findings and their implications for SHRP 2 Safety 
projects and recommends future research.

Literature Review

Naturalistic Driving Studies

Stutts et al. (2005) unobtrusively collected video data from 
70 volunteer participants driving their own vehicles over a 
period of 1 week. This study provided some of the first natu-
ralistic data on drivers’ exposure to potentially distracting 

events. The data were analyzed by the bootstrap percentile 
method of Mooney and Duval (1993) and provided some 
evidence that distractions can negatively affect driving per-
formance, as measured by higher percentages of drivers hav-
ing no hands on the steering wheel, their eyes directed inside 
rather than outside the vehicle, and their vehicles wandering 
in the travel lane or crossing into another travel lane.

Teams of researchers at Virginia Tech have collected one 
of the most extensive sets of naturalistic driving data, includ-
ing naturalistic driving of light-duty vehicles (Dingus et al. 
2006; Klauer et al. 2006; Lee et al. 2004; Neale et al. 2005). In 
addition, VTTI has collected data and conducted numerous 
fatigue and drowsiness studies as part of a series of studies of 
driver drowsiness systems (Dingus, Neale, et al. 2006; Hanowski 
et al. 2005; Hanowski, Hickman, Fumero, et al. 2007; Hanowski, 
Hickman, Wierwille, et al. 2007). The 100-car naturalistic 
driving study database contains many extreme cases of driving 
behavior and performance, including severe fatigue, impair-
ment, judgment error, risk taking, willingness to engage in 
secondary tasks, aggressive driving, and traffic violations (Neale 
et al. 2005). The data set includes approximately 2,000,000 
vehicle miles, almost 43,000 hours of data, 241 primary and 
secondary drivers, 12 to 13 months of data collection for 
each vehicle, and data from a highly capable instrumenta-
tion system that included five channels of video and vehicle 
kinematic sensors.

Driver inattention was analyzed using the driving data set, 
and risk (ORs) was calculated using both crash and near-
crash data, as well as normal baseline driving data, for various 
sources of inattention (Klauer et al. 2006). The risk percent-
ages were also calculated to estimate the percentage of crashes 
and near crashes occurring in the population that resulted 
from inattention.

Among the research involving naturalistic truck driving 
data (Dingus, Neale, et al. 2006) were cluster analysis studies of 
distraction-related incidents (Hanowski et al. 2005). Two pri-
mary findings were that single drivers drive significantly more 
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curves and how they respond when presented with curve 
speed alert warnings. The study found that lateral accelera-
tion was higher during the day than at night and also higher 
for right turns than left turns (both when evaluating lateral 
acceleration on a time-based average of the value when it 
exceeded a specific driver’s 90th percentile value and when 
the average of the maximum value for individual curves 
exceeded a driver’s 90th percentile value) (LeBlanc et al. 2006, 
pp. 8–28). However, no driver had a 90th percentile value of 
lateral acceleration greater than the 8.2 m/s2 nominal thresh-
old for CSW alerts, and only two drivers had 90th percentile 
values greater than 7.2 m/s2 (LeBlanc et al. 2006, pp. 8–24). 
A combination of these two evaluations found that the avail-
ability of CSW alerts did not have a dramatic effect on a driv-
er’s chosen lateral acceleration (mathematically and physically 
related to longitudinal speed). From a fundamental perspec-
tive, drivers may choose speeds at which to traverse horizontal 
roadway curves based on their comfort level of lateral accel-
eration. They may not want to feel excessive force while tra-
versing curves and will decrease their longitudinal speed to 
maintain comfortable conditions.

Spacek (2005) examined the different types of paths drivers 
take while traversing horizontal curves and compared the fre-
quency of the different types to the best possible path, which 
involves following the centerline of the lane perfectly through 
the entire curve. Using this ideal behavior as a baseline, there 
were five categories for comparison: normal (slightly cutting 
into the inside of the curve for a portion of traversal), correct-
ing (reaching outside of the curve and overcompensating by 
turning harder toward the inside of the curve), cutting (strong 
cutting into the inside of the curve to counteract centripetal 
acceleration—a conscious process), swinging (starting toward 
the outside of the lane and finishing closer to the inside of 
the lane), and drifting (behavior opposite of swinging). The 
results of the study showed that, excluding undefined paths 
taken, cutting and normal behavior ranked first and second, 
respectively, in terms of percentage of track types taken for 
most curve radii (with a slight reversal of ranking for right-
hand curves with radii greater than 65 m).

Wilson et al. (2007) provided an in-depth analysis and 
evaluation of the UMTRI study (LeBlanc et al. 2006). Most of 
the major findings involving CSW alerts involved accelera-
tion characteristics and speed approaching and during curve 
traversal. Vehicle speed approaching a curve was a major 
change-in-speed factor for triggering and reacting to alerts. 
There was a general positive correlation between approach 
speed and acceleration upon alerts being triggered. CSW 
alerts on ramps were mostly analyzed for exit ramps, as an 
alert is much more likely on exit ramps than entrance ramps 
due to the higher travel speed expected on limited access 
roadways. The beginning curvature of exit ramps played a 
role in actually eliciting CSW alerts; if the ramp began with 

aggressively than do team drivers, and that the frequency of 
critical incidents and fatigue-related critical incidents varied 
significantly by the hour of the day. The relationship between 
sleep quantity and involvement in critical incidents (crashes, 
near crashes, or crash-relevant conflicts) was studied using 
detailed sleep and driving data (Hanowski, Hickman, Fumero 
et al. 2007). Interactions between light-duty and heavy-duty 
vehicles used the same data for another targeted study 
(Hanowski, Hickman, Wierwille, et al. 2007).

In addition to the previous light-duty vehicle and truck 
studies, research was conducted at VTTI concerning collision 
warning systems (McLaughlin et al. 2008). Seventy-three 
events were collected during actual driving. Data from the 
host vehicle, such as speed, yaw, acceleration, different con-
trol states (e.g., brake pedal, turn signals), and measures of 
driver attention, were also collected.

Other researchers have used more limited naturalistic driv-
ing data sets to assess a range of safety and operations ques-
tions. One study developed a model of lane-change duration 
for improving microscopic traffic flow simulation (Tijerina 
et al. 1999). Another study collected real-world driving data 
from a small sample of drivers to identify periods of drowsi-
ness and inattention and validate drowsy driver detection 
algorithms. Data on driver exposure to environmental fac-
tors and encounters with driving conflicts, near crashes, and 
actual crashes were used to characterize driver and vehicle 
performance, as well as the driving environment (Toledo and 
Zohar 2007).

Researchers at UMTRI conducted a series of naturalistic 
driving studies as part of a series of field operational tests 
for the U.S. Intelligent Transportation Systems program 
(NHTSA 2005; Bogard et al. 1998; daSilva and Najm 2006; 
Ervin et al. 2005; Sayer et al. 2005; Sayer 2006). Systems tested 
included integrated forward collision warning and adaptive 
cruise control. Targeted studies of distraction and behavior 
(Ervin et al. 2005) found that variability of steering angle, 
mean and variability of lane position, mean and variability 
of throttle position, and variability of speed were affected by 
contextual factors such as road type, road curvature, and 
road condition. Conversing with passengers was the most 
common secondary behavior (15.3%), followed by grooming 
(6.5%) and using cellular phones (5.3%). This study found 
that the use of a cellular phone, eating or drinking, and 
grooming resulted in increased steering variance but did not 
affect lane position or speed variance. Another study (Sayer 
et al. 2005) quantified subjective reliability and performance 
of an in-vehicle warning system as a function of age, gender, 
weather conditions, light levels, and roadway classifications.

UMTRI’s Road Departure Crash Warning System Field 
Operational Test: Methodology and Results (LeBlanc et al. 
2006) evaluated the effects of CSW alerts on vehicle lateral 
acceleration in curves by exploring how drivers travel through 
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Fitzpatrick et al. (2000) also modeled acceleration in and 
near horizontal curves based on assumptions used in previ-
ous FHWA research:

•	 All acceleration and deceleration occur outside the limits 
of the horizontal curve.

•	 Acceleration and deceleration rates are constant and equal 
to 0.85 m/s2.

Tangents had to be kept above a certain minimum (244 m), 
and grades were kept close to 0% (maximum 5% downgrade or 
upgrade) to maintain conditions that allowed vehicles to reach 
the maximum possible speed on the tangent approaching the 
curve without other factors coming into play. Free-flow condi-
tions were required (minimum headway of 5 s) as well. They 
found that speeds did not drop substantially until vehicles 
reached a point 200 m from the point of curvature of the given 
curve. They also found that the average acceleration rate in 
the 200-m zone before the curve was -0.1143 m/s2, which was 
significantly different from the previously assumed value of 
-0.85 m/s2. This rate ranged from 0.01 to 0.54 m/s2, which was 
primarily affected by curve radius. Acceleration within curve 
limits was found to be -0.0724 m/s2, which was significantly 
lower than the assumed value of -0.85 m/s2. The maximum 
observed positive and negative acceleration rates were signifi-
cantly different from -0.85 m/s2. Thus, the assumptions from 
previous research were not appropriate for this particular study. 
Using these results, models were developed that showed that the 
drop in speed approaching a curve was generally inversely related 
to curve radius. Negative acceleration may begin to occur at vari-
ous points upstream of curves, which may be due to site-specific 
differences. Thus, analysis of speed choices and acceleration rates 
at horizontal roadway curves should be carefully performed and 
possibly take into account site-specific differences, especially 
those surrounding curve radii and approach tangent lengths.

Different forms of adaptation can occur on curves based on 
the presence of CSW alerts, personal comfort levels with 
respect to speed and how it affects the centripetal force the 
driver feels, comfort, curve perception, and the driver’s ability 
to maintain a reasonable path while traversing curves. How-
ever, most of the analyses of adaptation involve the effects of 
longitudinal speed choices. Longitudinal speed appears to be 
the primary factor in assessing the level of danger approaching 
and traversing horizontal roadway curves, but it can be indi-
rectly related to other factors mentioned here.

The literature (see Table 1.1) largely confirms the rationale 
for the SHRP 2 naturalistic driving project (S08): the litera-
ture analyzing naturalistic data is limited. Very little attention 
is paid to identifying paradigms (i.e., frameworks or organized 
structures) for analysis and the development of methods that 
evolve from those paradigms. The exploration of analysis 
paradigms is the focus of the Penn State research.

curves with larger radii and progressed to smaller radii, the 
system would be able to detect over time that it was a ramp 
and not another roadway classification. However, some false 
alerts could be triggered if the initial curve on the ramp had a 
relatively small radius.

The Design Quality Assurance Bureau of the New York 
State Department of Transportation (2003) discussed issues 
surrounding superelevation and how it relates to speed choices 
while traversing curves (Bonneson 2000). It is important to 
note that typical passenger cars will skid before rolling over 
during a turning movement, especially if the roadway sur-
face is wet. Since a passenger car (the Nissan Altima) was 
used in the UMTRI study, it was assumed that any situation 
that triggered an alert may have resulted in a skid if necessary 
response maneuvers were not undertaken. Friction allows 
deceleration and steering forces to be transmitted from the 
tires to the roadway surface. The friction factor is used in 
place of the more common coefficient of friction as a ratio of 
the lateral forces that the pavement can resist from the vehi-
cle. Changes in speed can reduce this friction factor, thus 
reducing the friction available for cornering, making curve 
traversal more difficult. This friction factor depends on 
vehicle speed and weight, tire conditions, and pavement 
conditions. However, speed is the most important variable in 
determining the friction factor, as it is the only variable that 
truly determines if a vehicle can safely traverse a curve under 
prevailing conditions. This makes speed likely the most 
important kinematic variable that should be evaluated in 
this analysis.

Interpreting adaptation to alerts through speed changes 
does not necessarily account for the effects of traffic condi-
tions, as certain roadway types have widely varying traffic 
volumes throughout the day. If higher volumes exist and 
headways decrease substantially, speed output in the data set 
will be influenced and may affect model results. Fitzpatrick 
et al. (2000) discussed speed prediction by recording speeds 
on two-lane rural highways; they only included vehicles that 
were at free-flow speeds (headway >5 s). Regression models 
were run to relate speed to several geometric variables, in- 
cluding horizontal curve radius (some models did not 
include horizontal curve radius as a predictor). Models that 
included radius as a predictor (always in the form of 1/R, 
where R = radius) had adjusted R2 values above 0.5. Regard-
less of vertical geometry, 1/R had a strong correlation with 
speed (85th percentile speed) and was always significant, 
sometimes being the only significant predictor. Sufficiently 
large horizontal radii were considered by the researchers to 
be a condition that drivers would deem insufficiently severe 
to require speed reductions. If vertical alignment was consid-
ered an important factor, it was considered the controlling 
factor in speed decisions for radii greater than 800 m. Sharp 
drops in speeds occurred for radii less than 250 m.
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tion with respect to the vehicle operator. This allows one to 
estimate, separately for males and females, the effect of predic-
tor variables on the dependent variable (crash, near crash, or 
critical incident). The hierarchy of the model allows one to 
structure the analysis to reflect more closely what actually hap-
pens on the road. If one considers the crash event itself, a natu-
ral hierarchy is to consider event and context variables at one 
level. These represent details of the situation at the immediate 

Hierarchical Modeling Methods  
Applied to Road Safety

There are a number of advantages to applying hierarchical 
methods to naturalistic data. First, safety data frequently have 
natural hierarchies. For example, it is well known that males 
and females have important differences in crash etiology and 
outcome. One natural hierarchy is thus a gender differentia-

Table 1.1.  Related Reports from Literature Review

Reference Research Objective Analysis Method

Stutts et al. 2005 Study nature of driver distractions Frequency of distractions; bootstrap analyses of lane 
wanderings, lane encroachments, and sudden  
braking associated with distractions

Hanowski et al. 2005 Study driver distraction in commercial vehicle  
operations

Cluster analysis; cross-classification analysis

Dingus, Neale, et al. 2006 Collect and analyze naturalistic data applied to  
driving fatigue

Hazard analysis combined with analysis of variance

Hanowski, Hickman,  
Fumero, et al. 2007

Identify and analyze light vehicle–heavy vehicle  
interactions

Descriptive comparisons of percentages of critical  
incidents by category

Hanowski, Hickman,  
Wierwille, et al. 2007

Quantify and analyze sleep of commercial vehicle  
drivers and associations with crashes

Matched paired t-test

McLaughlin et al. 2008 Analyze collision avoidance systems using  
naturalistic data

Method constructed to test collision avoidance  
systems based on driver reaction and vehicle  
kinematics

Bogard et al. 1998 Characterize safety and comfort issues of driver  
interactions with adaptive cruise control

Histogram; descriptive statistics analysis

Tijerina et al. 1999 Identify periods of driver drowsiness and inattention 
and validate drowsy driver detection algorithms

Drowsy detection algorithm developed by Wierwille

Dingus et al. 2006 Collect large-scale naturalistic driving data; define a 
near crash using quantitative measure

Characterize driver behavior (e.g., driver inattention) 
and roadway environment as they relate to incidents, 
near crashes, and crashes

Characterize changes in driver behavior over time with 
consideration of rear-end conflict and lane change as 
contributing factors

Range/range rate approach applied to quantify a near 
crash (Kiefer et al. 2003); risk ratio applied to driver 
behavior change over time (Greensberg et al. 
1993); estimation of Poisson rate per million vehicle 
miles traveled in relation to Heinrich triangle 
by scenarios (Heinrich et al. 1980)

Lee et al. 2004 Characterize and analyze nature and severity of lane 
changes

Analysis of variance (ANOVA); chi-square analyses

Klauer et al. 2006 Characterize driver inattention using driving data  
collected in the 100-car naturalistic driving study

Odds ratios

Ervin et al. 2005 Analyze impact of integrated forward collision warning 
(FCW) and adaptive cruise control (ACC) systems on 
driver safety and acceptance

Paired t-test; ANOVA

Sayer et al. 2005 Determine frequency and conditions under which driv-
ers engage in secondary behaviors; explore relation-
ship between behaviors and driving performance 
using UMTRI RDCW field operational test data

Mixed-model analysis of variance; autoregressive  
integrated moving average model (ARIMA)

LeBlanc et al. 2006 Analyze suitability of RDCW system, which combines 
LDW and CSW functions

Descriptive statistics analysis

Sullivan et al. 2007 Examine how driver behavior is influenced by the reli-
ability of an in-vehicle warning system using data 
derived from UMTRI RDCW field operational test

Mixed-model analysis of variance
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performed using a GLIMMIX macro in SAS software. The 
GLIMMIX macro employs a pseudolikelihood (Kim et al. 
2007; Wolfinger and O’Connell 1993). This study suggested 
that incorporating naturalistic driving data (personal charac-
teristics such as driver attentiveness, reaction times, vision, 
and aggressiveness and vehicle data such as braking character-
istics, mass, steering characteristics, and tire condition) into 
the models may improve prediction accuracy. A hierarchical 
binomial logistic model has been developed (Wolfinger and 
O’Connell 1993) with a two-level specification: the response 
variable is dichotomous for high (fatal or severe) and low 
(slight or no) injury severity at the individual level (Level 1), 
and the crash level (Level 2) includes various crash features 
such as street lighting and road surface conditions.

Multilevel negative binomial (NB) models have been used 
to capture the spatial variation of the effect of alcohol enforce-
ment intensification (Yannis et al. 2008). The response vari-
able is the number of road accidents with casualties, and the 
explanatory variables include the alcohol controls in Level 1 
and socioeconomic parameters such as population in Level 2 
(different regions). The parameter estimates were also obtained 
through the iterative process of restrictive iterative general-
ized least squares and quasi-likelihood implemented using 
MLwiN software (Rasbash et al. 2000).

Summary

In summary, a series of naturalistic driving studies has been 
conducted for both light-duty and heavy-duty vehicles. Some 
modeling has been conducted with multiple predictor vari-
ables, but no hierarchical models have been applied to the data. 
Existing hierarchical applications include several studies of 
injury severity and two studies, one focusing on enforcement 
and the other on crash type, but no applications to naturalistic 
data were found. Shankar and associates (2008) argue that 
naturalistic data analysis would benefit greatly from the appli-
cation of hierarchical methods because, among other reasons

•	 The functional form for models is not well documented,
•	 Sample size limitations may hinder frequentist approaches, 

and
•	 Driver, event, and context variables are known in the data, but 

their interrelationship in crash modeling is largely untested.

Chapters 2 and 3 focus on empirical data analysis: Chapter 2 
describes the data and analysis approaches used with each 
data set, and Chapter 3 summarizes the results of the model-
ing. Chapter 4 provides an overall summary of the study linked 
specifically to the five Penn State research questions and their 
implications for the SHRP 2 Safety program. The last portion 
of Chapter 4 summarizes lessons learned along with sugges-
tions for future research.

time surrounding the crash event. A second level of consider-
ation could be driver attributes, such as years with a driver’s 
license (i.e., driving experience), which operates over a longer 
time period. These examples illustrate the value of hierarchy: 
to better represent the reality one is seeking to model.

Yet another advantage of hierarchical models is that they 
allow flexibility in model structure; this feature is particularly 
appealing when initially exploring new data sets for which 
model structure is unknown or not well defined. The Phase 1 
report noted that in this context, hierarchical methods allow 
better exploration of variable effects with alternative struc-
tures. This is a common theme touched on in Chapter 3.

Computational advances have facilitated the use of specific 
hierarchical methods, but from the perspective of this report 
the principal advantages are flexibility and facilitated data 
exploration.

There have been several applications of hierarchical mod-
els in the analysis of crash frequency and severity level (Gold-
stein 1995; Rasbash et al. 2002; Sullivan et al. 2007; Wolfinger 
and O’Connell 1993), and there is an additional application 
to law enforcement (Yannis et al. 2008). Iterative generalized 
least squares (Jones and Jorgensen 2003) was employed to fit 
a binary logistic regression model in which the response vari-
able indicated whether each casualty survived with serious 
injuries (response = 0) or died (response = 1). When normal-
ity is assumed, however, the full Bayesian estimation and 
empirical Bayes, treating the prior distribution as known, are 
the same as iterative generalized least squares. Data were ana-
lyzed using a hierarchy of casualties (Level 1), within acci-
dents (Level 2), and within municipalities (Level 3).

Another study (Goldstein 1995) compared the efficiency 
of multilevel logistic models (MLMs) by using maximum 
likelihood, generalized estimating equation models, and logistic 
models using simulated French road crash data between 1996 
and 2000. The hierarchical structure was modeled as the prob-
ability that an occupant (Level 1) in a car (Level 2) during a crash 
(Level 3) died; the response variable, severity, is treated as binary. 
The MLM was the most efficient model, while both generalized 
estimating equation models and logistic models underestimated 
parameters and confidence intervals (CIs). MLM estimates were 
obtained through the iterative process of restrictive iterative 
generalized least squares and penalized quasi-likelihood imple-
mented using MLwiN software (Rasbash et al. 2000).

Hierarchical binomial logistic models (Rasbash et al. 2000) 
were used to solve the suspected heterogeneity in underlying 
causal mechanisms associated with different crash types. This 
study built models for angle, rear-end, and sideswipe crashes 
with the response variable of crash probabilities and data con-
sisting of two levels: Level 1 consisted of crash-level character-
istics, and Level 2 consisted of intersection-level characteristics 
from 91 two-lane rural intersections in the State of Georgia. 
The estimation of multilevel binomial logistic models was 
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C h a p t e r  2

Overview

The analysis of the data provided by VTTI and UMTRI was 
guided by the following five research questions:

1.	 What is the nature of the relationship between events (e.g., 
crashes, near crashes, incidents), and pre-event maneuvers? 
What are the contributing driver, environmental factors, and 
other factors? There are many findings and implications to 
share from analyses concerning this question.

2.	 What hierarchical structure (statistically speaking), if any, 
exists in the manner in which these relationships need to be 
explored? Two specific hierarchical models are reported, 
both using VTTI data: one was applied to event modeling 
and the second to driver-based models. A series of compari-
sons between hierarchical models, estimated using Bayesian 
methods and frequentist models, which are estimated using 
typical maximum likelihood principles, is presented.

3.	 What kind of elucidative evidence emerges from the analysis of 
roadway departure crashes in terms of Questions 1 and 2? Is 
the illustrative hierarchy of relationships generalizable to other 
nonintersection crash types such as leading vehicle crashes? 
Elucidative evidence refers to evidence of the likely effect of 
individual predictor variables in modeling event occur-
rence (including crashes). Surrogates are a special type of 
variable that have been discussed as a general replacement 
for crash data; the description and interpretation of Penn 
State surrogate analyses are contained in the responses to 
this general question. Exposure requires a predictor vari-
able reflecting time or distance of travel; exposure-based 
analyses of both data sets are described in Chapter 3. 
Responses to this question thus provide a summary of the 
extent to which the modeling results provide guidance on 
variables to be given priority in future analysis studies.

4.	 In terms of elucidative evidence, what types of behavioral 
correlates emerge? For example, are attitudinal measure-
ments indicative of revealed behavior in terms of headway 

maintenance and speed reductions? Several behavioral cor-
relates (also referred to in several SHRP 2 safety symposia 
as crash predisposition measures) have emerged as factors 
of interest. The responses to this question describe the 
work in this area.

5.	 If elucidative evidence does in fact emerge in terms of atti-
tudinal correlates and how their interactions vary by con-
text, is it plausible to parse out the marginal effects of 
various context variables on crash risk by suitable research 
design? This question bears directly on the importance 
of context in the analysis of naturalistic data. This sec-
tion summarizes the findings and discusses their impli-
cations for SHRP 2 scheduled projects (specifically S04 
and S08).

Analysis of VTTI Data

Two parallel tracks were pursued in the analysis of the 100-car 
study data. The first approach modeled the occurrence of each 
event in detail and focused on understanding the interaction of 
the many factors that led to event occurrence. This initiative fit 
nicely with the data provided by VTTI, as it allowed the team to 
compare events at three levels (summary definitions provided 
by Dingus, Klauer, et al. 2006):

•	 Crash event—any contact with an object, either moving or 
fixed, at any speed, in which kinetic energy is measurably 
transferred or dissipated;

•	 Near crash—a circumstance that requires a rapid, evasive 
maneuver by the subject vehicle, or any other vehicle, to 
avoid a crash; the maneuver causes the vehicle to approach 
the limits of its capabilities (e.g., vehicle braking greater 
than 0.5 g or steering input resulting in lateral acceleration 
greater than 0.4 g); and

•	 Crash-relevant incident (in this report referred to as a crit-
ical incident)—a circumstance that requires a crash avoid-
ance response on the part of the subject.

Research Approach
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consistent with the road departure event covered in the 
VTTI analyses, and it was thought there may be some ben-
efit from the similarity.

Two approaches were taken in the analysis of the UMTRI 
data. The first was to use a series of piecewise linear models to 
characterize the nature of the relationship between vehicle kine-
matics and CSW alert frequency and duration. The interest was 
in finding which kinematic variables were most correlated with 
the triggering of the alert. This information was used to gain 
insight about potential surrogates, under the assumption that 
the kinematic variables most associated with alert occurrence 
would be potentially good crash surrogates to consider in sub-
sequent research. A positive association between a kinematic 
variable and an alert could be an indication of a kinematic vari-
able that might also be associated with (or potentially causing) 
road departure crash occurrence. While the team acknowledges 
the nature of this conceptual leap, it was believed that the 
exploratory nature of the SHRP 2 S01 projects would support 
this type of analysis. Time–series models of the kinematic data 
were also attempted, but they did not yield particularly mean-
ingful results and are not discussed in this report.

The second approach taken with the UMTRI data was to use 
a cohort-based formulation to estimate the probability of a par-
ticular number of alerts being triggered for an individual driver 
(e.g., characterized by gender, years of driving experience, and 
mileage driven in particular contexts). This formulation is 
based on actual miles driven under specific environmental and 
roadway conditions as measured by the CSW–LDW system. 
Because of the structure of the UMTRI data, the team was able 
to analyze alert frequency at a very detailed level of exposure.

The team believes the successful estimation of the models 
predicting the number of alerts using homogeneous trip seg-
ments is one of the most important outcomes of the UMTRI 
modeling effort. This formulation takes advantage of the 
unique trip-by-trip information in the naturalistic study, along 
with GIS-related factors coded by UMTRI (such as road type 
and environmental conditions), to derive a measure of alert 
frequency in each trip segment. The issue of interest is the 
ability to truly capitalize not only on the naturalistic driver 
behavior data, but also on detailed GIS roadway data. Since 
there is a plan to collect detailed roadway data as part of the 
scheduled SHRP 2 Safety Project S04, the Penn State team 
believes this formulation merits consideration for future 
studies. Even though the models are estimated with alerts, 
there is a direct parallel to the modeling of crashes or other 
events of interest. In addition, researchers can flexibly define 
homogeneous trip segments to match their research needs. 
The Penn State team discussed this approach during several 
SHRP 2–sponsored research symposia. The estimated mod-
els using the cohort formulation verify the efficacy of this 
approach; the findings contribute to answering Research 
Question 3.

Each of these events was identified by VTTI staff as part of 
the 100-car study, and the three event types were provided to 
Penn State in response to the team’s data request. Penn State 
developed a structured analysis framework for these event-
based data; the model specified driver attributes, the context 
in which the event occurred (including roadway and envi-
ronmental variables), and attributes describing details about 
the event itself, particularly in the few seconds before and 
during the event. Examples of event-level variables include 
whether the driver was observed to be distracted just before 
the event and whether the vehicle crossed over the lane or 
road edge. One may think of these models as exploring the 
details of factors associated with the events.

Various model formulations were used to find variables 
associated with crashes and near crashes, and the attributes of 
vehicle motion associated with such events (e.g., vehicle over 
lane or road edge) that could serve as surrogate measures for 
crashes were investigated. If these event-related measures were 
shown as being positively associated with crash or near-crash 
events, they were considered as potential surrogates. The team 
tested the specific measures available in the data set and 
attempted to supplement the available vehicle kinematic data 
by downloading information from the NHTSA website. Unfor-
tunately, kinematic data were only available for a small number 
of crashes; near crashes and critical incidents were not repre-
sented, and this approach was, therefore, abandoned.

One weakness of event analysis is that it precludes the study 
of drivers who experience none of the three measured events 
(i.e., the safest drivers). In order to include these drivers, the 
second analysis track conducted by Penn State with the VTTI 
data was a series of models of the number of events per driver. 
Consistent with much of the modeling in the safety field, these 
analyses were conducted using a set of count regression formu-
lations (e.g., Poisson, negative binomial [NB], and zero-inflated 
Poisson [ZIP]) that resulted in estimates of the probability of a 
driver with particular attributes having 0, 1, 2, . . . , n events 
during the year of the 100-car study. These models allowed 
comparisons to be made across all drivers.

Analysis of UMTRI Data

The UMTRI data consisted of a set of drivers who experi-
enced a series of alerts from onboard systems about potential 
crashes. Because there were no crashes during the study, the 
dependent variables used in the analyses were derived from a 
system designed to detect excessive speed entering a curve 
(i.e., CSW) and an alert triggered when the subject vehicle 
deviated from the lane or road edge (i.e., LDW).

After an initial screening of the data, the team decided  
to focus on the CSW alerts as they provided alert duration 
data and thus contained more details about the driver 
response to the alert. Further, the curve speed event was more 
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Conversely, the event-based models estimate the probabil-
ity of having an event in a given context for drivers with 
events; these models do not include the best drivers in the 
data set (that is, those with no events of interest). As discussed 
in the background section of this report, this omission should 
not necessarily be the case in all naturalistic data sets. Penn 
State’s proposal anticipated that data would be available for 
event-based analyses that included nonevent observations 
(so-called control epochs in the VTTI data), but because 
these epochs contained no context information, they were 
useless for modeling. Consistent with the desire to explore 
multiple analysis paradigms, both driver- and event-based 
analyses are included in this report.

The driver-based models, both frequentist (those applying 
classical maximum likelihood principles with asymptotic 

Analysis Plan for VTTI Data

Figure 2.1 is an overview of the analysis conducted with the 
VTTI data, including separate analysis streams for driver-
based and event-based models. This differentiation in model-
ing approach was identified in the proposal for the current 
study and reflects the authors’ view of the most sensible way 
to approach exploration of the data set. The driver-based 
models estimate the number of events expected of all drivers 
in the data set, including drivers with zero observed events. 
The VTTI data set lacks details concerning all the contexts in 
which the exposure to crash risk occurred, including the 
many miles driven with no events. While these data are avail-
able in concept within the original 100-car naturalistic data 
set, they were not provided to the Penn State team.

Figure 2.1.  Overview of modeling design for VTTI data.
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the undertaking of relative risk and exposure-based 
designs. These studies could not be undertaken with mea-
sured exposure using the VTTI data because data were  
not available for the processed data set that Penn State 
received. Instead, the team used as exposure the subject-
estimated annual mileage obtained during driver inter-
views. Thus, the exposure-based risk analysis shown in 
Figure 2.1 represents the driver-based VTTI modeling, 
which included self-reported annual miles driven for each 
primary driver. Exposure-based models and relative risk 
analyses using measured travel in different contexts were 
developed using UMTRI data and are described in that 
section of the report.

Table 2.1 shows the summary statistics for the driver-
based model. Only the statistically significant covariates 
included in the final models are presented in the table sum-
mary. Driver attributes are presented for all the drivers and 
by gender.

normality assumptions) and Bayesian, are fundamentally 
count regressions that estimate the probability that a driver 
with given attributes has 0, 1, 2, 3, . . . , n events during the 
1-year duration of the Virginia Tech study. Hierarchical 
models are estimated using Bayesian methods. Count models 
under consideration during the study include Poisson, NB, 
ZIP, zero-inflated NB (ZINB), and other models.

Event-based models include (by definition) crashes, near 
crashes, and critical incidents. As with driver-based models, 
a range of model forms was considered, including probit, 
logit (binary, ordered, and multivariate), and hierarchical 
versions of these using Bayesian formulations.

Figure 2.1 illustrates that the driver-based models use 
driver attributes in the data set along with driving behav-
ior (classified as crash, near crash, and critical incident). 
The event-based models use context and event variables as 
predictors along with driver attributes in a search for valid 
surrogates for crashes. The last box in the figure calls for 

Table 2.1.  Summary Statistics for Variables Used in VTTI Driver-Based Models

Driver Group Variable Mean SD Min Max

All drivers Number of events 2.37 5.06 0 28

Gender (male) 0.60 0.49 0 1

Drivers with BS degree or above 0.63 0.49 0 1

Scaled Dula Dangerous Driving Index (DDDI) aggressive 
driving (AD) score 6.23 1.16 4.0 9.1

Scaled DDDI risky driving (RD) score 10.38 1.29 7.2 14.9

Driving experience 18.73 14.41 1.5 52

Past violations 1.35 1.31 0 5

Total mileage 11,369 5,726 12 23,980

Males Number of events 1.72 5.03 0 28

BS degree or above 0.47 0.50 0 1

Scaled DDDI AD score 3.87 3.30 0 9.1

Scaled DDDI RD score 6.22 5.16 0 13.1

Driving experience 12.36 14.73 0 52

Past violations 0.67 1.09 0 5

Total mileage 7,445 7,461 0 23,980

Females Number of events 0.65 1.63 0 10

BS degree or above 0.16 0.37 0 1

Scaled DDDI AD score 2.36 2.99 0 8.1

Scaled DDDI RD score 4.16 5.24 0 14.9

Driving experience 6.37 12.25 0 51

Past violations 0.67 1.20 0 5

Total mileage 3,924 6,021 0 21,564

Note: SD = standard deviation; Min = minimum; Max = maximum.
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of run-off-road–related events includes only 17 crashes, which 
presents a problem for model significance and also fails to uti-
lize the information from the other 180 events (30 near crashes 
and 150 critical incidents). Therefore, two distinct dependent 
variables are considered. The first combines crashes and near 
crashes; the second combines crashes, near crashes, and criti-
cal incidents.

Figure 2.2 presents the frequency distribution for crashes 
and near crashes for the 1-year study, and Figure 2.3 presents 
the frequency distribution for all events (that is, crashes, near 
crashes, and critical incidents). In preliminary modeling, 

Characteristics of Dependent Variables

To discuss the effects of driver attributes on the number of 
events during a time period, simple relationships must be 
formulated between them, such as number of events per 
driver as some function (f ) of his or her attributes:

number of crashes per person during a periodd of time

driver attributes= ( )f

Although the dependent variable on the left-hand side of 
this simple equation is not difficult to obtain, this subsample 
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Figure 2.2.  Frequency distribution of crashes and near crashes.
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models were fit by both dependent variables. The data appear 
overdispersed, with a large number of zero-event drivers and 
a few drivers with high counts of events.

Characteristics of Predictor Variables

The first step in checking the predictor variable data was to 
scrutinize the correlations between all variables in hand to avoid 
multicollinearity and to get a rough sketch of the overall data, 
as shown in Table 2.2. The high correlation between driver age 
and driving experience (0.76) was expected and is summarized 
in Figure 2.4. Dropping age instead of driving experience may 
improve model results, since driving experience usually reflects 
driving skill more directly than age (Shinar 2007).

Education level should not necessarily be considered a con-
tinuous variable, as nonlinear relationships may exist. Hence, 

education levels were initially tested as categorical, as shown 
in Figure 2.5. The education levels 4, 6, 7, and 8 constituted 
less than 20% of the total. Education levels were combined to 
reduce the number of categories to three: some college attended, 
bachelor’s degree, and professional (master’s, PhD, or other) 
degree. Descriptive statistics for the grouped education vari-
able are shown in Table 2.3.

Crash Predisposition Measures

The Dula Dangerous Driving Index (DDDI) was used to mea-
sure drivers’ self-reported likelihoods of dangerous driving. 
Each DDDI scale—DDDI total, aggressive driving (AD), neg-
ative emotional (NE) driving, and risky driving (RD)—had 
tests of internal reliability and evidence of construct validity 
of the scales as part of initial scale development and testing 

Table 2.2.  Correlation Between All Primary VTTI Variables

EVENTS PACCIDENT AGE GENDER EDU DRIYEAR CRASH CYEAR PVIOLATION

EVENTS 1.000 0.072 -0.070 0.050 0.056 -0.039 0.712 0.096 -0.019

PACCIDENT 0.072 1.000 0.400 0.696 0.400 0.228 0.087 0.289 -0.024

AGE -0.070 0.400 1.000 0.676 0.326 0.758 -0.094 0.085 -0.073

GENDER 0.050 0.696 0.676 1.000 0.572 0.421 0.047 0.201 -0.030

EDU 0.056 0.400 0.326 0.572 1.000 0.182 0.073 0.080 -0.042

DRIYEAR -0.039 0.228 0.758 0.421 0.182 1.000 -0.067 0.086 -0.069

CRASH 0.712 0.087 -0.094 0.047 0.073 -0.067 1.000 0.089 -0.108

CYEAR 0.096 0.289 0.085 0.201 0.080 0.086 0.089 1.000 0.089

PVIOLATION -0.019 -0.024 -0.073 -0.030 -0.042 -0.069 -0.108 0.089 1.000

EVENTS = crash, near crash, or critical incident; PACCIDENT = past accident; EDU = educational level; DRIYEAR = number of years driving; CRASH = number of crashes 
experienced by the subject during the study; CYEAR = vehicle age (years); PVIOLATION = past violation.
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Figure 2.4.  Plot of driving experience against driver age.
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Driver-Based Analysis

The naturalistic driving environment is a complex web of 
interactions between various measurable factors that repre-
sent both physical infrastructure and human behavior and 
attributes. Modeling of subjects offers the potential to cap-
ture interactions and characterization of heterogeneity in 
the driving environment. To answer Research Question 1 
(What is the nature of the relationship between events [e.g., 
crashes, near crashes, incidents], and pre-event maneuvers? 
What are the contributing driver factors, environmental fac-
tors, and other factors?), it is crucial to determine what kinds 
of drivers tend to have higher counts of events that poten-
tially increase crash probability; this focus on driver charac-
teristics leads to the idea of driver-based models. These 
models are used to examine the relationships between driver 
attributes and risky driving events by using driver character-
istics such as gender, driving experience, and other socio
economic variables.

A significant amount of research has been conducted on 
the application of Poisson and NB distributions (Jovanis and 
Chang 1986; Miaou 1994; Shankar et al. 1995; Poch and 
Mannering 1996; Milton and Mannering 1996; Lord et al. 
2005, 2007) to predict crash frequencies. The Poisson model 
is only appropriate if the mean and variance of crash frequen-
cies are approximately equal, but the NB model can be applied 
if the data are overdispersed (i.e., the variance of the data is 
significantly greater than the mean).

Let l represent the expected number of events per driver 
during a period of time as a function of b, a set of estimated 
parameters, and xi, a set of crash contributing factors (Jovanis 

(Dula and Ballard 2003). Participants responded to the items 
using the following 5-point Likert scale: A = never, B = rarely, 
C = sometimes, D = often, and E = always. In order to quantify 
the DDDI, numerical values were assigned to each response 
(1 through 5 for A through E, respectively). The higher the score 
per driver, the more dangerous that person’s driving behavior 
was considered to be. To further account for the inconsistency 
of driver responses, DDDI, AD, RD, and NE were rescaled by 
deflating the scores for each driver by their specific mean.

Two additional indices measuring driver risk predisposition 
were included in the analysis (see Dingus et al. 2006 for addi-
tional information). The Driver Stress Inventory uses a 10-point 
Likert scale to obtain information about drivers’ general atti-
tudes toward driving on a variety of roadways and in traffic 
congestion. The Life Stress Inventory contains information 
about the types of stress that the subject may have experienced 
in the past year (e.g., ill relative, marital or relationship prob-
lems, work performance); evidence suggests that these types of 
stresses can predispose an individual to have an elevated crash 
risk. These indices were used in both event- and driver-based 
models to assess correlations with event occurrence.
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Figure 2.5.  Histogram of education levels.

Table 2.3.  Descriptive Statistics of Grouped  
Education Levels for 100 Cases

Variable Mean SD Min Max

Some college 0.4 0.492 0 1

BS degree 0.4 0.492 0 1

Postgraduate college 0.2 0.402 0 1
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probability 1 - pi, contributes in combination to the apparent 
excess zero problems. Thus,

p y p p ei i i
i=( ) = + −( ) −0 1 3λ ( )
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where k is the number of crashes with mean li. Combining 
Equations 3 and 4 provides the ZIP model of crash frequency. 
In the present case, the team used the logit model to estimate 
the proportion of observations with a zero frequency and 
used count regression for the other frequencies.

The Vuong statistic (Vuong 1989) is often used as a measure 
of whether the ZIP or ZINB model fits the modeled data better. 
Shankar (1997) proposed a decision guideline for model selec-
tion among Poisson, NB, ZIP, and ZINB models using the 
Vuong statistic and a, as shown in Table 2.4.

Gender differences in crash experience and etiology are well 
established in the safety literature. Hierarchical structures 
such as the one illustrated in Figure 2.6 can be used to explore 
these differences in the VTTI data. An advantage of hierarchical 
models is that they can capture driver differences over time and 
space, depending on how the data are clustered. This allows the 

and Chang 1986). The Poisson regression finds maximum 
likelihood estimates of the b parameters:

ln ( )λ β εi i ix( ) = + 1

In traffic safety, crash counts are often overdispersed. Thus, 
the use of the NB distribution to represent the distribution of 
crash counts is considered. In Equation 1, exp (εi) is a gamma-
distributed variable with mean 1 and variance a. If the number 
of crashes is conditioned on exp (εi), the resulting probability 
distribution for a given count yi is
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where q = a-1, G represents the gamma function, and a is an 
overdispersion parameter. When a > 0, there is overdispersion 
of the distribution about the mean. The NB distribution can 
capture overdispersion that occurs as a result of unobserved 
heterogeneity in crash data.

In the context of crashes, the likelihood of having a large pro-
portion of zero frequencies is high, implying the importance of 
zero-inflated models. Since their formal introduction by 
Lambert (1992), the use of these models has grown and can be 
found in numerous fields. Crash frequencies can be modeled 
as belonging in two states (Shankar et al. 1997). One state 
occurs when the entity of interest is inherently safe (theoretical 
zero-crash state). In the second state, crash frequencies follow 
some known distribution. ZIP and ZINB models can handle 
this dual-state phenomenon (Miaou 1994; Shankar et al. 1997).

An overabundance of zeros in a crash count distribution 
may reflect true lifetime proportions or may arise as a result of 
partial observability, which poses methodological challenges. 
Shankar (2004) pointed out that if partial observability and 
overdispersion are suspected, NB variants of the ZIP model 
are plausible. With probability pi, the Poisson process, with 

Table 2.4.  Decision Guideline for Model Selection

Vuong Statistic

t-Statistic for Overdispersion 
Parameter a

< 1.96  > 1.96 

< 1.96 ZIP or NB NB

> 1.96 ZIP ZINB

Females

Driver m+1

Males 

Driver n Driver mDriver 1 

All Drivers 

Event 1 

Event 2 

Event 1 Event 1 Event 2 

Event 3 

Figure 2.6.  Hierarchy for driver-based model.
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or risky events per driver during a period of time. Count 
models such as Poisson, NB, ZIP, ZINB, Bayesian multilevel 
Poisson, and Bayesian multilevel NB models are well suited 
to handle VTTI data.

Event-Based Analysis

A series of frequentist models was estimated with a wide 
range of predictor variables. In order to search for consis-
tency in modeled predictor effects, three sets of models were 
compared. The first set of models is binary logit, in which the 
base alternative was a critical incident and the other alterna-
tive was a crash or near crash; positive parameters in this type 
of model reflect an increase in the likelihood of moving from 
a critical incident to a crash or near crash. The second set of 
models is multinomial logit, in which there are three catego-
ries: the baseline is again a critical incident, one category is a 
near-crash event, and the third is a crash event; positive 
parameters reflect an increase in the likelihood of the cate-
gory of outcome compared with a critical incident. A third set 
of models using an ordered logit formulation was estimated.

Estimation and comparison of all three models was chosen as 
a basic approach because of the limited experience modeling 
naturalistic data. The team believes that greater confidence can 
be accumulated about the utility of the naturalistic driving anal-
ysis paradigms if consistent results are obtained across the meth-
ods. The three logit models used in this study are very commonly 
used in transportation analysis (see also Washington et al. 2003).

One can think of these models as reflecting a conditional 
analysis: a study of factors contributing to crashes and near 
crashes compared with those contributing to critical incidents, 
given that an event has occurred. This has a rough parallel in 
most models of injury severity in crashes: the model is an esti-
mate of injury severity given that a crash has occurred. In both 
cases, the models do not provide an estimate of the probability 
of an event (VTTI data) or the probability of an injury (crash 
severity analysis) because of a lack of appropriate exposure data.

Bayesian models offer considerable additional flexibility in 
event-based analyses and assist in answering Research Ques-
tion 2 (What hierarchical structure [statistically speaking], if 
any, exists in the manner in which these relationships need to 
be explored?). Figure 2.7 presents the hierarchy for the Bayesian 
event-based models. Events and their attributes are included 
at the first level, and driver attributes are represented at the 
second level.

In the Bayesian formulation, outcomes are modeled as 
Bernoulli trials, in which a crash or near crash is considered 
a success:

y Bernoulli pij ij~ ( )( ) 10

where pij is the probability of success for event i of driver j 
defined by Equation 11.

investigation of individuals (driver-level parameters) them-
selves as random effects. In the driver-based model, the drivers 
are the units of analysis, but they are aggregated by gender to 
explore gender-specific differences between drivers.

Frequentist models, such as the NB, use predictors (such as 
a male dummy variable or gender-based interaction terms) 
that estimate the difference in probabilities of having Y events 
between males and females; the hierarchical model in Figure 2.6 
shows the effect of a predictor on male crash probability and 
female crash probability individually. The effect of the attri-
bute on male event probabilities is thus estimated separately 
from the effect on female probabilities. This produces a model 
that is much more interpretable.

For the driver-based model, the levels are defined by gender, 
creating two groups. The response variable is the number of 
events for each driver participating in the study. The number 
of events is modeled as a Poisson distribution (see Aguero-
Valverde and Jovanis 2008 for a similar formulation):

yij ij~ ( )Poisson θ( ) 5

where yij is the observed number of events for driver i of gen-
der j, and qij is the expected Poisson rate. The Poisson rate is 
modeled as a function of the covariates following a lognormal 
distribution, as shown in Equation 6:

log ( )θ β βij j jk ijk ij
k

K

X v( ) = + +
=

∑0
1

6

where
	b0j	=	 intercept for gender j,
	bjk	=	coefficient for k covariate and gender j,
	Xijk	=	value of k covariate for event i of gender j, and
	 vij	=	random effects at Level 1.

The random effects represented by vij capture the extra-Poisson 
heterogeneity among drivers.

At the second stage, the coefficients (bjk), including the inter-
cepts, are modeled using very noninformative normal priors:

β jk ~ ( )N 0,1000( ) 7

Now, the prior distribution for the Level 1 random effects is 
given by

vij v~ ( )N 0, τ−( )1 8

where tv is the inverse of the variance, also known as preci-
sion. The precision has a gamma prior:

τv ~ . , . ( )Gamma 0 001 0 001 9( )

with a mean of 1 and a variance of 1,000.
The driver-based model seeks to explore the relationship 

between driver attributes and the expected number of crashes 
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team used the occurrence of an alert (either an LDW or CSW) 
as the dependent variable. This decision immediately created 
the challenge of learning about this measure, as there is a very 
limited literature of its analysis. As a result, a building block 
approach was taken with the alert data. Using the UMTRI 
technical report as an initial guide, the team first explored gen-
eral attributes of the data before settling on an analysis plan. As 
the team worked with the data, it became clear that the CSW 
alerts, because of their relation to road curvature, had a closer 
association with lateral and longitudinal vehicle kinematics. 
The LDW alerts were more closely associated with vehicle posi-
tion within a lane. The team thus chose to focus on CSW alerts 
analyses, given the more likely application to road depar-
ture crashes, at least those occurring on curves.

Rather than select specific model forms, which could 
have confounded the identification of promising variables, 
the team chose a piecewise linear modeling approach and 
explored several formulations. The goal in these analyses 
was to identify factors that were associated with the trigger-
ing of alerts in the hope of identifying these variables as good 
prospects for future study in SHRP 2. It was also expected 
that a cohort-based formulation might have particular advan-
tages for future data analysis. This twofold objective, the iden-
tification of promising variables and testing of alternative 
analysis structures, particularly the cohort formulation, 
motivated the research plan.

Kinematic Models

The Penn State team conducted a careful structured analysis 
of the kinematic data received from UMTRI by using the steps 
outlined in Figure 2.8. Initially, the data received from UMTRI 
needed to be organized in such a way that event counts could 
be defined. Alert durations and alert counts, both aggregated 

log logit p
p

p
Xij

ij

ij
k ijk

k

K

( ) =
−


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
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where
	 a	= intercept,
	 bk	= coefficient for k Level 1 (event level) covariate,
	Xijk	= k covariate for i event of j driver,
	 gl	= coefficient for l Level 2 (driver level) covariate, and
	Zjl	= l covariate for driver j.

Very noninformative normal priors are used for all of the 
coefficients including the intercept [~N (0, 1000)].

Analysis Plan for UMTRI Data

The UMTRI data provided the opportunity to work with a rich 
set of vehicle kinematic variables, but the limitation was that 
there were no crashes in the data set. As a result, the Penn State 

Event 1Event 1 Event 2

Event 3

Driver 3

Driver 1 Driver 2

Event 1 Event 2

Figure 2.7.  Hierarchy used for 
Bayesian event-based models with 
VTTI data.
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Figure 2.8.  Flow chart showing analysis process for UMTRI data.
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to decelerate as needed to safely navigate the curve (dash–dot 
line with crosses). One possible driver adaptation to the CSW is 
to approach the curve without decelerating, waiting for the sys-
tem to provide an alert, and then decelerating more rapidly 
(dashed line with diamonds). With the CSW engaged, drivers 
may approach curves at a constant speed until the alert is trig-
gered, but the prealert speed may be lower than that observed 
during the RDCW-disabled period (dotted line with squares). 
Only empirical testing will determine which of the suggested 
models is observed.

To determine an initial relationship between kinematics and 
time, individual drivers were randomly sampled, and longitu-
dinal speed was taken as the first kinematic variable (Steps D 
and E of Figure 2.8). The relationship between speed and time 
was deemed useful for modeling. Additional relationships 
were developed between speed and other kinematic variables 
in the initial models (Step F). Other models were subsequently 
developed to look at the relationship in a more detailed man-
ner, mostly on the aggregate level (Steps G and H).

To continue to learn more about the data set, the team eval-
uated candidate dependent measurements, including alert fre-
quency, alert duration, and alerts per trip for all drivers. Alert 
counts were then divided by alert ID, from which average 
durations were found. Alert counts, classified by alert ID, were 
then obtained for different exogenous factors (e.g., headlamp 
status, turn-signal status, and windshield wiper status) pro-
vided in the RDCW alert data set. Examples of the organized 
data can be seen in Tables 2.5 through 2.8.

The total number of alerts, 2,605, was used as the sample size 
for analysis. However, this count only provided a glimpse of 
the relationship between the exogenous factors and alert fre-
quency and duration and did not take into account the kine-
matic variables included in the data set. Different time periods 
of observation in the data set were identified by using a combi-
nation of headlight status and solar zenith angle (i.e., the angle 
of the sun relative to the horizon, which was used to identify 
light or darkness conditions for driving). This variable was 
transformed into binary form and included in all models. 

and by driver, needed to be obtained (Step A). Several cross-
tabulations were performed to determine the number of alerts 
occurring under certain circumstances (Step B). Kinematic 
analysis depended on which type of alert contained the data 
that were usable for modeling.

All LDW alerts in the data set essentially had no duration 
(they were listed as instantaneous). Kinematics do not play a 
crucial role in the occurrence of LDW alerts; they are solely 
based on the threshold of lateral displacement from the center-
line of the travel lane. In the case of LDW alerts, there would 
likely be a much weaker relationship between various vehicle 
kinematics and longitudinal speed than was seen during pre-
liminary analysis of CSW alert data. Kinematics were deemed 
to be a desirable attribute of potential crash surrogates, a focus 
of S01 activities, so it was decided that CSW alerts would be 
used for initial analysis (Step C). LDW alerts were included as 
part of cohort-based model development.

The overall approach to the CSW models involved a consid-
eration of the relationship between longitudinal speed and 
combinations of exogenous and kinematic factors. However, 
the primary focus was on the effect of changes in vehicle kine-
matics on vehicle longitudinal speed. The research team focused 
on CSW alert and vehicle kinematics to learn more about one 
type of road departure event: those occurring on curves. Since 
kinematic data were not available through the VTTI data set, 
the team hoped to learn more about this issue through the 
UMTRI data analyses. The proposal stated that the goal was 
exploratory and explicitly said the team would not “compare 
models” across data sets. The team understood the data to be 
different and has sought to take advantage of those differences.

Early in the analysis, through careful review of the UMTRI 
report and communication with UMTRI researchers, it became 
clear that driver adaptation to CSW needed to be considered. 
One can think about driver behavior on curves by constructing 
a diagram such as Figure 2.9. A theoretical baseline is consid-
ered constant deceleration while approaching and moving 
through the curve (solid line with triangles). Another possible 
driver behavior is to approach a curve while slowing and then 

Figure 2.9.  Conceptual model of driver speed adaptation to CSW alerts.
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Table 2.5.  CSW Alert Counts and Duration Summary 
(by ID)

Number and 
Duration of  
CSW Alerts

Alert Type
All CSW 
AlertsCautionary Imminent

No. of alerts (%) 1,867 (71.67) 738 (28.33) 2,605 (100)

Average duration (s) 2.242 4.632 2.919

SD of duration (s) 7.923 15.494 —

Table 2.6.  CSW Alert Counts by Wiper Status

Wiper Status

No. of CSW Alerts by Type

TotalAlert 5 Cautionary Alert 6 Imminent

0 (Off ) 1,730 683 2,413

1 (Low) 43 15 58

2 (High) 6 4 10

4 (Intermittent) 88 36 124

Total 1,867 738 2,605

Table 2.7.  CSW Alert Counts by Headlamp Status

Headlamp 
Status

No. of CSW Alerts by Type

TotalAlert 5 Cautionary Alert 6 Imminent

0 (Off ) 1,234 491 1,725

2 (Low) 609 236 845

3 (High) 24 11 35

Total 1,867 738 2,605

Weather status was estimated by using wiper status. Table 2.9 
shows the counts of alerts (regardless of ID) classified between 
daylight status, wiper status, and headlamp status.

The Penn State team sought to explore changes in driver 
behavior through curves with and without the CSW alert sys-
tem activated. To determine if differences existed in driver lon-
gitudinal and lateral speed behavior between the first week (no 
alerts provided to driver) and Weeks 2 to 4 (alerts provided), 
41 drivers were sampled by plotting longitudinal and lateral 
speed versus time for one randomly selected alert. Sampling 
individual drivers with randomly selected alerts provided some 
evidence of differences between Week 1 and Weeks 2 to 4, so 
speed changes for all drivers were modeled to determine differ-
ences between the two time periods. One may think of these 
analyses as part of Steps E, F, and G in Figure 2.8. It was noted 
that driver adaptation was possibly occurring, so this consider-
ation was included in all the analyses conducted.

Table 2.8.  CSW Alert Counts by System State  
(Disabled or Enabled)

(a) With Duration Summary

Number and 
Duration of 
CSW Alerts

System State
All CSW 
AlertsDisabled Enabled

No. of alerts (%) 694 (26.64) 1,911 (73.36) 2,605 (100)

Average duration (s) 3.057 2.869 2.919

SD of duration (s) 12.495 10.759 —

(b) By Headlamp Status

Headlamp 
Status

System State

TotalDisabled Enabled

0 (Off) 462 1,263 1,725

2 (Low) 220 625 845

3 (High) 12 23 35

Total 694 1,911 2,605

(c) By Wiper Status

Wiper Status

System State

TotalDisabled Enabled

0 (Off) 638 1,775 2,413

1 (Low) 11 47 58

2 (High) 3 7 10

4 (Intermittent) 42 82 124

Total 694 1,911 2,605

Table 2.9.  Count of Alerts by Daylight, Wiper, 
and Headlamp Status

Wiper Status

Daylight

Total

Light Dark

Headlamps

On Off On Off

0 (Off) 280 1,630 496 7 2,413

1 (Low) 21 22 13 2 58

2 (High) 5 3 2 0 10

4 (Intermittent) 48 61 15 0 124

Total 354 1,716 526 9 2,605
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responded. Recall also that kinematic data were not obtained 
from VTTI; the time-based regimes were an attempt to learn 
something about kinematics during an event of interest and 
model it.

In all these models, variables were input at their collected 
rate of 10 Hz. This means that there is serial correlation 
present within the data because multiple observations were 
made on the same event, closely spaced in time. The Penn 
State team recognized this as an analysis issue, but sought  
to learn more about the nature of the interrelationship 
between the kinematic variables. A thorough review of the 
literature revealed few useful references that could improve 
the analysis plan. The team was initially more interested in 
the associations between variables during alert events and 
less concerned about the variables’ statistical significance. 
For this reason, modeling activities were continued, but the 
team was mindful of the need to return to the correlation 
issue in the future.

Similar arguments can be made about the endogeneity 
present in the data. Many of the kinematic variables are the 
result of driver perception and feedback while negotiating and 
approaching curves. As such, they are part of the same physi-
cal and psychological process undertaken by the driver during 
the driving task; they are not independent predictor variables. 
Issues of endogeneity and serial correlation were explored 
through the unsuccessful testing of time–series models. 
Cohort-based approaches were used to fully integrate expo-
sure with event occurrence.

Cohort-Based Approaches

Research Questions 1 to 3 focus on the identification of sur-
rogates and the evaluation of behavioral and contextual cor-
relates of surrogates. Research Question 5 (If elucidative 
evidence does emerge in terms of attitudinal correlates and 
how their interactions vary by context, is it plausible to parse 
out the marginal effects of various context variables on crash 
risk by suitable research design?) focuses on the definition of 
relative risk and exposure-based risk, especially vis-à-vis con-
text. Such assessments can be made using a cohort-based 
approach. The cohort design can be used to formulate an 
exposure-based model relating potential risk factors to sev-
eral possible outcomes. The cohort design is well suited to 
account for measures of exposure such as time at risk or dis-
tance traveled under specific driving conditions. These mea-
sures can be readily obtained from naturalistic studies if the 
data are suitably structured after collection.

Data Structure

The proposed cohort analyses begin, in general, with a driver 
as the unit of analysis; the driver is followed over multiple 

The overall approach to the modeling considered the rela-
tionship between longitudinal speed and combinations of 
exogenous and kinematic factors. The motivation was to seek 
kinematic variables that may be particularly good surrogates 
(e.g., by identifying variables that may influence longitudinal 
speed entering curves). In order to explore a variable’s util-
ity as a surrogate, it was necessary to understand how it was 
related to other vehicle kinematics. Early data analysis quickly 
led to a focus on longitudinal speed entering curves as a prom-
ising variable. Much of the piecewise linear modeling focused 
on this variable.

The modeling process is shown in Figure 2.10. Regimes refer 
to the number of separate pieces of longitudinal speed that were 
modeled. Single-regime models assumed that one equation 
could be used to estimate the longitudinal speed for each tenth 
of a second from 5 s before the alert occurred through the com-
pletion of the alert. Two-regime models broke this time into 
two pieces or regimes, and three-regime models into three sep-
arate pieces. The first step was to determine basic relationships 
between longitudinal speed, time, certain important exogenous 
factors, and several kinematic variables. It was deemed neces-
sary to use interaction terms for the kinematic variables to see 
how they affected each other.

The first models developed were single-regime linear 
regression models using both main effect kinematic vari-
ables and first-order interaction terms among the variables. 
After studying the results of these models, the team deter-
mined that kinematic characteristics changed too much 
over time, so time periods for each model were divided into 
two, and eventually three, regimes. The goal here was to 
better understand the nature of the relationship between 
the triggering of the alert for excessive curve speed entry 
and the detailed vehicle dynamics. Recall that the alert  
is being used as a substitute for a crash event. The team 
wanted to better understand how the kinematic measures 
interacted before the alert and during the alert as the driver 

Step 4: Time-Series Analysis

Step 5: Cohort-based Approaches

Step 3: 3-Regime Models

Step 2: Pure Linear 2-Regime Models

Step 1: Pure Linear 1-Regime Models

Figure 2.10.  Flow chart depicting modeling  
of longitudinal speed entering curve in  
UMTRI data.
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Table 2.11, a second sample table, shows how the indi-
vidual outcomes can be grouped, if needed, for each cohort. 
Each unique combination of driver and context variables is 
now listed with the cumulative time or distance—a measure 
of exposure to risk. Notice that each cohort includes the 
sum of individual trip segments and their outcomes. Each 
driver’s outcomes are aggregated and matched to context. 
The sum of the “1” values in the Outcome column in Table 2.10 
are the number of events of interest for that cohort. The 
length and time variables from Table 2.10 are also summed 
to derive the total time and total distance for each driver in 
each context. Note that the trips without an event of interest 
(i.e., outcome zero) are summed and included in the corre-
sponding total distance and time for each cohort. A dummy 
variable designation is employed for the context variables 
and driver attributes.

This structure allows for the computation of exposure-
based risk (addressing Research Question 3). At the choice of 
the analyst, the cohort data can remain in the individual trip 
form of Table 2.10 with essentially a 0, 1 outcome (and the 
implied use of categorical dependent variables to be mod-
eled), or the data can be aggregated as suggested in Table 2.11, 
and a count regression approach can be used to estimate the 
number of events in each cohort.

There is also flexibility in the definition of the events of inter-
est. In the present study, alerts were used as the dependent vari-
able because they were available in the UMTRI data set. In the 

trips throughout the course of the study. Each driver is asso-
ciated with specific attributes that are constant, such as age, 
gender, driver attitudinal measures, and vehicle type and 
characteristics. Other variables can change throughout the 
course of the study and within each trip (e.g., roadway type, 
roadway characteristics, environmental factors, driver dis-
traction, driver impairment, and driving speed). A subset of 
these variables can be used to define a cohort—that is, a trip 
segment that is homogeneous with respect to the variables of 
interest. Travel time and/or distance may thus be accumu-
lated during the study for individual drivers in each defined 
context (i.e., a homogeneous trip segment).

Travel undertaken in each homogeneous trip segment 
would then be aggregated to determine total exposure and 
total number of events within a cohort. A cohort thus repre-
sents a set of drivers, by type, who experience travel over 
defined homogeneous trip segments characterized by time or 
distance of travel. The number of events of interest (e.g., 
crashes or other events) occurring for a cohort is thus accu-
mulated across identical drivers, retaining the number of 
events and/or the time between events for each driver.

This concept is illustrated in Table 2.10, a sample table that 
contains the initial cohort data in which a particular outcome 
(i.e., an event or nonevent) occurs after some period of time 
or length of travel. The context and driver attributes are 
selected by the researcher depending on the issues to be 
explored.

Table 2.10.  Initial Cohort-Based Data Structure for UMTRI CSW Alerts

Outcome 
(0/1) Length Time

Context (all context  
variables needed)

Driver Attributes  
(as many as needed)

Table 2.11.  Summed Event Outcomes by Context and Driver Attributes  
with Exposure Measures

No. of 
Outcomes 
(count)

Total Length 
(vehicle mile)

Total Time 
(vehicle hour)

Context  
(all context variables 

needed)

Driver Attributes  
(as many as  

needed)
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Cohort-Based Count Regression and Event Analysis

The initial analysis involved the use of traditional NB count 
regressions to show how both context- and driver-related 
variables affect the likelihood of alert occurrence. The first set 
of sample models included all drivers, but the data were dis-
aggregated by the roadway functional classification used for 
the homogeneous trip segment data set. Two functional 
classes were used to illustrate these models: Functional 
Class 1—limited access (limited-access freeway); and Func-
tional Class 3—nonlimited access (minor surface). The 
response variable was either the number of LDW or CSW 
alerts (not the total number of alerts). The eight models esti-
mated are summarized in Table 2.14.

The initial predictors considered included the following:

•	 Context variables: ramp (for nonlimited access), urban/
rural, day/night, wet/dry (based on windshield wiper use), 
and RDCW disabled/enabled status; and

•	 Driver variables: gender, education, years of driving expe-
rience, last year’s mileage driven, use of glasses or contacts, 
and smoker/nonsmoker.

It may not be appropriate or useful to include kinematic 
variables in a specification or model of this type because the 
averages of kinematic values over homogeneous trip seg-
ments may not represent what is actually happening during 
the course of the traversal of the entire segment. In addi-
tion, the aggregation of average values for each kinematic 
variable may be problematic because they may be affected 
by factors that could be used to redefine homogenous trip 
segments, but they are not included in the data set. For 
example, suppose additional variables were included in the 
data set, including curve and tangent presence, presence of 
an intersection, traffic volume, and grade. These could be 
used to redefine homogeneous trip segments. Once the seg-
ments are redefined, average speeds would more accurately 
reflect travel speeds on each segment.

The UMTRI event-based models used binary logit struc-
ture, including single- and multilevel specification, similar to 
those used in the VTTI event-based models.

Summary

This chapter describes the model structures applied to the VTTI 
and UMTRI data sets in order to identify prospective views of 
methodological paradigms. For each data set, the Penn 
State team described why it developed the specific model para-
digms and how the paradigms related to the proposed research 
questions. The next chapter presents a summary of the results 
of the empirical investigation.

larger data set available in SHRP 2 Safety Project S07, crashes 
could certainly be used, or even crashes of a specific type such 
as roadway departure or intersection-related crashes.

For the UMTRI data, the Penn State team demonstrates 
both the categorical-outcome models using logistic regression 
and survival models along with count regression models using 
data formulated as shown in Table 2.11. This data set allows 
the estimation of a count regression model of the probability 
of having Y events during the study period. An estimation is 
formulated of the mean of the underlying probability distribu-
tion (such as Poisson and NB).

Once this basic structure is obtained, several additional 
analyses may be undertaken beyond the basic count regression:

1.	 The week of the study can be included from the UMTRI 
data to test driver adaptation with the RDCW system 
installed. This information is not required with general 
naturalistic driving data, but it provides an opportunity to 
test for learning. As with context and driver attributes, 
there would be dummy variables to describe each week of 
the study, with Week 1 as the baseline.

2.	 A case–control formulation is possible from the basic data 
(Table 2.10); each row in the data set is either a case (Y = 1) 
or a control (Y = 0). While there may be large variability in 
the data, such a model can be formulated and estimated 
using different random samples of controls.

Table 2.12 shows the structure used to define cohorts in 
the UMTRI data on the basis of rural or urban settings, road-
way functional classification, ramp presence, and lighting 
conditions. The model would provide an estimate (through 
parameter values) of the effect of each of these factors on the 
outcome measure (e.g., CSW or LDW alerts).

Risk and Relative Risk

Risk was calculated for each cohort as the number of total 
alerts, CSW alerts, and LDW alerts (each analyzed separately) 
divided by the total exposure (time) to the specific environ-
ment (see Table 2.13 for example calculations of risk and 
relative risk, using RDCW system data). In particular, each 
cohort was compared with the baseline cohort (Cohort 3) to 
determine the relative risk. Relative risk (RR) is a ratio of the 
probability of the event occurring in the exposed group ver-
sus a nonexposed group:

RR
P

P
= exposed

non-exposed

These basic calculations aimed to satisfy the proposal com-
mitment to estimate exposure-based risk and relative risk.
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(continued on next page)

Setting
Functional 
Classification Ramp

Day/ 
Night

Cohort 
No.

Total 
Alerts CSW LDW

Segment Time 
(vehicle hour)

Segment 
Distance (mi)

Urban FC1, limited 
access

yes day   1 NA NA NA NA NA

night   2 NA NA NA NA NA

no day   3 2,399 146 2,253 4,778.16 31,379.245

night   4 945 49 896 1,466.784 9,693.391

FC2, limited 
access

yes day   5 NA NA NA NA NA

night   6 NA NA NA NA NA

no day   7 1,074 56 1,018 1,494.564 9,444.842

night   8 526 23 503 572.268 3,827.514

FC3, limited 
access

yes day   9 NA NA NA NA NA

night 10 NA NA NA NA NA

no day 11 28 3 25 42.94 228.528

night 12 12 2 10 18.264 116.138

FC1, nonlimited 
access

yes day 13 248 134 114 153.08 760.026

night 14 100 36 64 45.076 264.462

no day 15 0 0 0 0.821 1.446

night 16 0 0 0 1.84 1.537

FC2, nonlimited 
access

yes day 17 292 178 114 119.327 548.112

night 18 121 58 63 38.313 198.587

no day 19 324 124 200 975.078 3,346.723

night 20 93 24 69 215.723 818.44

FC3, nonlimited 
access

yes day 21 448 353 95 203.914 801.668

night 22 117 77 40 60.693 264.53

no day 23 902 184 718 3,750.3 10,563.31

night 24 388 52 336 994.524 3,264.723

FC4, nonlimited 
access

yes day 25 234 204 30 103.732 320.584

night 26 74 61 13 34.36 123.676

no day 27 1,653 228 1,425 5,972.7 17,149.845

night 28 640 65 575 1,569.57 4,797.187

FC5, nonlimited 
access

yes day 29 5 4 1 3.19 7.571

night 30 0 0 0 0.516 2.028

no day 31 234 198 36 3,583.62 5,779.455

night 32 77 59 18 1,086.198 1,684.258

No functional 
class

no day 65 NA NA NA NA NA

night 66 NA NA NA NA NA

day 67 400 0 400 5,694.9 21,623.717

night 68 135 0 135 1,230.654 3,559.623

Table 2.12.  Cohort Structure
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Setting
Functional 
Classification Ramp

Day/ 
Night

Cohort 
No.

Total 
Alerts CSW LDW

Segment Time 
(vehicle hour)

Segment 
Distance (mi)

Rural FC1, limited 
access

yes day 33 NA NA NA NA NA

night 34 NA NA NA NA NA

no day 35 163 9 154 680.61 5,053.614

night 36 87 2 85 136.287 1,025.625

FC2, limited  
access

yes day 37 NA NA NA NA NA

night 38 NA NA NA NA NA

no day 39 169 6 163 433.368 3,079.085

night 40 63 0 63 101.293 755.244

FC3, limited 
access

yes day 41 NA NA NA NA NA

night 42 NA NA NA NA NA

no day 43 0 0 0 0.141 0.773

night 44 NA NA NA NA NA

FC1, nonlimited 
access

yes day 45 11 8 3 3.223 18.804

night 46 0 0 0 0.003 0.026

no day 47 NA NA NA NA NA

night 48 NA NA NA NA NA

FC2, nonlimited 
access

yes day 49 7 6 1 2.653 12.312

night 50 0 0 0 0.674 3.746

no day 51 50 0 50 244.535 1,471.637

night 52 6 0 6 13.984 89.434

FC3, nonlimited 
access

yes day 53 23 21 2 6.844 20.91

night 54 2 1 1 0.554 2.293

no day 55 215 44 171 644.496 3,331.434

night 56 41 6 35 85.865 433.793

FC4, nonlimited 
access

yes day 57 25 22 3 7.433 26.621

night 58 9 7 2 2.717 9.983

no day 59 407 90 317 872.292 4,041.153

night 60 165 13 152 250.577 1,106.478

FC5, nonlimited 
access

yes day 61 0 0 0 0.246 0.804

night 62 NA NA NA NA NA

no day 63 52 46 6 300.024 929.395

night 64 5 5 0 67.803 213.677

No functional 
class

no day 69 NA NA NA NA NA

night 70 NA NA NA NA NA

day 71 63 0 63 355.584 1,672.599

night 72 2 0 2 25.996 36.334

Table 2.12.  Cohort Structure (continued)
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Cohort

Risk (time) RR (time) Risk (distance) RR (distance)

CSW LDW CSW LDW CSW LDW CSW LDW

3 0.0306 0.4715 1.000 1.000 0.0047 0.0718 1.000 1.000

4 0.0334 0.6109 1.093 1.296 0.0051 0.0924 1.086 1.287

7 0.0375 0.6811 1.226 1.445 0.0059 0.1078 1.274 1.501

8 0.0402 0.8790 1.315 1.864 0.0060 0.1314 1.292 1.830

11 0.0699 0.5822 2.287 1.235 0.0131 0.1094 2.821 1.524

12 0.1095 0.5475 3.584 1.161 0.0172 0.0861 3.701 1.199

13 0.8754 0.7447 28.648 1.579 0.1763 0.1500 37.894 2.089

14 0.7986 1.4198 26.137 3.011 0.1361 0.2420 29.257 3.371

15 0.0000 0.0000 0.000 0.000 0.0000 0.0000 0.000 0.000

16 0.0000 0.0000 0.000 0.000 0.0000 0.0000 0.000 0.000

17 1.4917 0.9554 48.819 2.026 0.3248 0.2080 69.798 2.897

18 1.5138 1.6443 49.544 3.487 0.2921 0.3172 62.772 4.418

19 0.1272 0.2051 4.162 0.435 0.0371 0.0598 7.963 0.832

20 0.1113 0.3199 3.641 0.678 0.0293 0.0843 6.303 1.174

21 1.7311 0.4659 56.655 0.988 0.4403 0.1185 94.639 1.650

22 1.2687 0.6591 41.520 1.398 0.2911 0.1512 62.561 2.106

23 0.0491 0.1915 1.606 0.406 0.0174 0.0680 3.744 0.947

24 0.0523 0.3379 1.711 0.717 0.0159 0.1029 3.423 1.433

25 1.9666 0.2892 64.361 0.613 0.6363 0.0936 136.766 1.303

26 1.7753 0.3784 58.102 0.802 0.4932 0.1051 106.007 1.464

27 0.0382 0.2386 1.249 0.506 0.0133 0.0831 2.857 1.157

28 0.0414 0.3663 1.355 0.777 0.0135 0.1199 2.912 1.669

29 1.2540 0.3135 41.041 0.665 0.5283 0.1321 113.546 1.840

30 0.0000 0.0000 0.000 0.000 0.0000 0.0000 0.000 0.000

31 0.0553 0.0100 1.808 0.021 0.0343 0.0062 7.363 0.087

32 0.0543 0.0166 1.778 0.035 0.0350 0.0107 7.529 0.149

35 0.0132 0.2263 0.433 0.480 0.0018 0.0305 0.383 0.424

36 0.0147 0.6237 0.480 1.323 0.0020 0.0829 0.419 1.154

39 0.0138 0.3761 0.453 0.798 0.0019 0.0529 0.419 0.737

40 0.0000 0.6220 0.000 1.319 0.0000 0.0834 0.000 1.162

43 0.0000 0.0000 0.000 0.000 0.0000 0.0000 0.000 0.000

45 2.4823 0.9309 81.240 1.974 0.4254 0.1595 91.438 2.222

46 0.0000 0.0000 0.000 0.000 0.0000 0.0000 0.000 0.000

49 2.2616 0.3769 74.016 0.799 0.4873 0.0812 104.737 1.131

50 0.0000 0.0000 0.000 0.000 0.0000 0.0000 0.000 0.000

51 0.0000 0.2045 0.000 0.434 0.0000 0.0340 0.000 0.473

52 0.0000 0.4290 0.000 0.910 0.0000 0.0671 0.000 0.934

53 3.0686 0.2922 100.425 0.620 1.0043 0.0956 215.847 1.332

(continued on next page)

Table 2.13.  Risk and Relative Risk for Each Cohort

Analysis of Existing Data: Prospective Views on Methodological Paradigms

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22837


32

Table 2.14.  Division of Single-Level Model Types  
by Exposure Measure, Functional Class, and Alert Type

Distance as exposure Functional Class 1—limited access CSW 1

LDW 2

Functional Class 3—nonlimited access CSW 3

LDW 4

Time as exposure Functional Class 1—limited access CSW 5

LDW 6

Functional Class 3—nonlimited access CSW 7

LDW 8

Cohort

Risk (time) RR (time) Risk (distance) RR (distance)

CSW LDW CSW LDW CSW LDW CSW LDW

54 1.8044 1.8044 59.052 3.827 0.4361 0.4361 93.724 6.074

55 0.0683 0.2653 2.234 0.563 0.0132 0.0513 2.839 0.715

56 0.0699 0.4076 2.287 0.864 0.0138 0.0807 2.973 1.124

57 2.9598 0.4036 96.867 0.856 0.8264 0.1127 177.618 1.570

58 2.5767 0.7362 84.329 1.561 0.7012 0.2003 150.705 2.790

59 0.1032 0.3634 3.377 0.771 0.0223 0.0784 4.787 1.093

60 0.0519 0.6066 1.698 1.286 0.0117 0.1374 2.525 1.913

61 0.0000 0.0000 0.000 0.000 0.0000 0.0000 0.000 0.000

63 0.1533 0.0200 5.018 0.042 0.0495 0.0065 10.638 0.090

64 0.0737 0.0000 2.413 0.000 0.0234 0.0000 5.029 0.000

67 0.0000 0.0702 0.000 0.149 0.0000 0.0185 0.000 0.258

68 0.0000 0.1097 0.000 0.233 0.0000 0.0379 0.000 0.528

71 0.0000 0.1772 0.000 0.376 0.0000 0.0377 0.000 0.525

72 0.0000 0.0769 0.000 0.163 0.0000 0.0550 0.000 0.767

Table 2.13.  Risk and Relative Risk for Each Cohort (continued)
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C h a p t e r  3

This chapter describes each of the data sets analyzed by the 
Penn State team along with the results of the analyses per-
formed on those data. The chapter begins with a discussion 
of the VTTI data and models followed by a discussion of the 
data from UMTRI and the models estimated from those data.

VTTI Driver-Based Data 
and Models

Table 3.1 provides an overview of the data provided by VTTI 
that were used by the Penn State team. As noted in Chapters 1 
and 2, the sample size was much less than the team expected, 
and in some cases, variables requested were not provided.

Events are identified by using a screening technique devel-
oped by VTTI (Dingus et al. 2006); the Penn State team 
received event data and other attributes directly from VTTI. 
Review of video in and around the vehicle was used by VTTI 
to develop variables typically recorded on police accident 
reports (e.g., crash type and assessments of precipitating 
event, driver distraction, and impairment), but in this case 
observed on the video. In addition, the driver-related attri-
butes typically collected at the time of subject recruitment 
were subsequently used in models to explore their association 
with event occurrence. Variables in the data set included 
measures of demographics, physiological attributes, and 
often measures of possible crash predisposition, such as indi-
ces of driver aggression or life stress.

Specific variables derived from the data are defined in 
Table 3.1. All data were originally collected by VTTI and 
assembled into a database for Penn State. The basic depen-
dent variable was the identification of event by type (i.e., 
crash, near crash, or critical incident). This dependent vari-
able was used individually in event-based models as a cate-
gorical outcome or as a count by type in driver-based models. 
Precipitating event attributes included a designation of vehi-
cle loss of control by the driver when driver actions resulted 
in the vehicle being over the lane or edge line. These variable 

descriptors were taken from descriptions in police accident 
reports or NHTSA databases to facilitate subsequent analy-
ses. Driver impairment is based on observation of the driver 
on video, not on any in-vehicle technology.

Driver distraction was carefully categorized and included 
distraction from wireless device use; vehicle-related activities 
(e.g., adjusting heat and radio); passenger-related activities 
(e.g., talking and interacting with a passenger); talking to self, 
singing, and other activities; internal distractions such as day-
dreaming or being lost in thought; dining (includes eating or 
drinking); and a collection of other distractions occurring in 
small numbers individually. Each of these distraction categories 
was only coded once for each driver and was dichotomous.

Context variables were also observed from the video, 
including the four variables shown in Table 3.1. Traffic den-
sity was estimated in five categories based on the density of 
traffic observed around the vehicle at the time of the event.

Driver attributes included objective variables such as age and 
gender along with crash predisposition measures. The Dula 
Dangerous Driving Index (DDDI) was intended to provide a 
detailed description of the type of dangerous driving partici-
pants may engage in, as well as a total danger index (Dula and 
Ballard 2003). The Life Stress Index was used to describe the 
level of stress the driver was experiencing caused by issues such 
as job problems and family difficulties (Dingus et al. 2006). 
Such issues do not pertain directly to driving, but they are 
thought to be associated with crash risk. All driver attribute data 
were collected at the time of subject recruitment.

Comparisons with Poisson and 
Negative Binomial Distributions

A preliminary check of model fit was conducted by plotting a 
dependent variable with an assumed Poisson distribution by 
using the sample mean, since Poisson distribution can be 
described by only one parameter, l. An NB distribution is 
also plotted by using the sample mean and variance, since an 

Data Description and Modeling Results
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Accordingly, one may also consider the use of ZIP and ZINB 
models, which can improve model goodness of fit.

Systematic Model Testing

A series of count regression models were tested in groups. In 
general, a Poisson regression, NB regression, and ZIP model 
were tested with the same set of variables. Early testing using this 
approach indicated that parameter estimates were not consistent 

NB distribution needs to be described by two parameters, a 
and b, which can be substituted by the sample mean and vari-
ance. The values of the overdispersion parameter a, shown in 
Figure 3.1 and Figure 3.2, are 2.55 and 2.15, respectively. The 
values of a suggest that no matter which dependent vari-
able is used, the NB distribution fits better than the Poisson 
distribution as a result of the violation of the assumption of 
the mean being equal to variance. Poisson models tend to 
underpredict zeros, and NB models overpredict zeros a bit. 

Table 3.1.  Summary of VTTI Variables Used in Modeling

Variable Type Definition Source Comment

Event of interest Crash; near crash; critical 
incident

Observed from video 
(see text)

Crashes include events recorded on police 
accident reports; others are new information 
available only from naturalistic studies.

Event Attributes

Precipitating event

•	lost control
•	subject over lane/road edge

Event immediately preced-
ing crash

Video Observed from video in naturalistic studies; 
categorical dichotomous variable.

Driver impairment

•	suspected drug or alcohol 
impairment

•	fatigued/sleepy

Suspected alcohol/drug 
involvement

Suspected fatigue/ 
sleepiness/drowsiness

Video Alcohol/drug involvement observed in natural-
istic study; required much judgment.

Driver distraction

•	wireless device
•	vehicle-related
•	passenger-related
•	talking, singing, etc.
•	internal distraction
•	dining
•	other

Distraction by category Video Distraction is observed in video.

Context

Road, environment, and traffic 
conditions at time of event

•	presence of curve
•	day/night/dusk
•	road surface condition
•	traffic density

Presence of a road ele-
ment or environmental 
condition at time of 
event

Video The context within which the event occurred is 
observed through the use of video; cate
gorical variable, typically dichotomous.

Driver Attributes

Demographic

•	gender
•	age
•	years driving

Self-reported demo-
graphic data

Self-reported survey Obtained through self-reports as recorded on 
questionnaires before the initiation of driving 
in the instrumented vehicle.

Psychological (measures of crash 
predisposition)

•	Dula Dangerous Driving Index (DDDI)
•	Life Stress Index
•	Driving Stress Inventory

Measures of personality, 
life stress and/or risk 
acceptance at time of 
initiation into study

Self-reported through 
use of specific tools 
before driving

Specific predisposition used in total; compo-
nents of DDDI used to separate negative 
emotion, aggressive driving, and risky 
driving. DDDI also used with individual scale 
adjustment.

Estimated exposure Estimated number of miles 
driven in previous year

Self-reported during 
subject screening

Obtained during subject intake surveys.
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•	 Set B: Predictors included a series of gender interaction terms 
for each of the variables used in Set A. The objective was to 
explore gender differences, which were expected from the 
literature. Overall consistency of the models improved, but 
there were still differences in model significance.

•	 Set C: Predictors included Set A plus a series of predisposi-
tion variables (DDDI, Life Stress Index, and Driving Stress 
Inventory) as main effects. Some predisposition variables 
were significant; main effects proved a poor specification 
for these data.

across the three basic regression types. As a result, several sets of 
models were constructed, and model fit was assessed for each set; 
the findings of the models, including model fit criteria, are sum-
marized in Table 3.2. The model sets are described as follows:

•	 Set A: Predictors are main effects for objective data (e.g., age, 
gender, years driving). This is the starting point for most 
modeling, but it proved inadequate in the present endeavor 
as the three model types did not yield consistent parameter 
estimates, levels of significance, or goodness of fit.
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Figure 3.2.  Observed crashes and near crashes compared with 
Poisson and NB distributions.
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Figure 3.1.  Observed total number of events compared with 
Poisson and NB distributions.
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is gradually getting closer to the actual level of 47%, indicat-
ing a generally better fit in this important attribute.

One can quickly see that the first four predictors represent 
variables interacting with gender. Inexperienced males have 
an elevated number of events expected, while having a college 
degree reduces the expected number. For females, the num-
ber of years driving and the number of previous violations are 
negatively correlated with the expected number of events, 
and the scaled AD score is positively associated. All predictors 
are significant at conventional levels. The team used a com-
fortable p = .20 as the cutoff to allow the inclusion of variables 
of potential interest that may fail conventional tests because 
of the small sample size. Several variables contribute to the 
estimation of overdispersion, including miles driven, years of 
driving experience, and scaled AD score.

Additional Discussion of Frequentist  
Models: Elasticity

To provide some insight into the implication of parameter 
estimation results, elasticities were computed to determine 
the marginal effects of the independent variables (Shankar 
et al. 1995). Elasticity provides an estimate of the impact of a 

•	 Set D: This set combined Set B with miles driven per year, 
a combination that provided a dramatic improvement in 
overall fit.

•	 Set E: Main effects and interactions were included in this 
parsimonious model.

•	 Set F: This parsimonious model had a parameterized esti-
mate for a using a linear model.

Four evaluation criteria are listed in Table 3.2: the percent-
age of zeros predicted, the value of a, the Pearson dispersion 
statistic, and the log likelihood. This summary shows how the 
team systematically evaluated count regression model quality.

Several trends are apparent in the data. The log likelihood 
generally improves with the smallest value (best fit) occur-
ring with the NB model enhanced by a parameterized estima-
tion for a. This improvement in overall fit is obtained with 
six predictors for the NB portion and another three for esti-
mating a (the model with parameterized a is summarized in 
Table 3.3). The Pearson statistic shows continued improve-
ment and a continues to drop steadily, indicating that over-
dispersion is becoming less of a problem. Note also that as the 
model explains more variability in the data, the value of the 
a parameter declines. Finally, the percentage of zeros predicted 

Table 3.2.  Overview of Driver-Based Count Regression Models

Model 
Set Predictors Included in Testing N

NB Models

Note
Predicted 
Zeros (%)a `b( _ )

Pearson 
Statisticc

Log 
Likelihood

A Gender, number years driving, education 
beyond bachelor’s degree, bachelor’s 
degree, number of previous violations, 
number of previous crashes, age of 
vehicle

83 62.62 1.68 (.39) 1.49 -151.54 All primary predictors are 
main effects

B DRYRF, DRYRM, PGRADM, PGRADF, 
BSM, BSF, PVIOF, PVIOM, PACCM, 
PACCF, CYRF, CYRM

83 59.77 1.49 (.35) 1.38 -147.56 Gender difference consider-
ation: Break down pri-
mary predictors into 
interaction terms

C Gender, years of driving experience, 
post bachelor’s, bachelor’s degree, 
previous violations, previous acci-
dents, miles driven in last year, scaled 
DDDI AD score, scaled DDDI NE 
score, car age, Life Stress Index score

83 54.72 1.21 (.30) 1.29 -142.41 Consider driver’s attitude 
toward driving, such as 
DDDI scores, Driving 
Stress Inventory, and Life 
Stress Inventory

D DRYRF, DRYRM, PGRADM, PGRADF, 
BSM, BSF, PVIOF, PVIOM, PACCM, 
PACCF, CYRF, CYRM, miles driven in 
previous year

83 52.72 1.12 (.28) 1.12 -139.26 Consider miles driven in a 
year

E LOWDRM1, CYRF, BSM, PVIOF, miles 
driven in previous year, ADADF

83 51.08 1.04 (.26) 0.96 -138.31 Final model, constant a

F LOWDRM1, CYRF, BSM, PVIOF, miles 
driven in previous year, ADADF

83 	 NA NA 	 NA -132.30 Final model with 
parameterized a

a Observed percentage of zeros is 47%.
b a is overdispersion parameter; significantly greater than zero indicates overdispersion.
c Pearson chi-square dispersion statistic; sum of model Pearson residuals divided by degrees of freedom.

Analysis of Existing Data: Prospective Views on Methodological Paradigms

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22837


37

For example, the average event frequency li for driver i 
increases 0.71% if the driver is male and has less than 10 years 
of driving experience, compared with males with more than 
10 years of driving experience, assuming the error terms are 
independent of xik and remain unchanged (and the model is 
correct). The elasticities from the final NB model are shown 
in Table 3.4.

The elasticity gives an indication of the effect of a predictor 
on the outcome (expected number of events). A quick scan of 
Table 3.4 shows that males with at least a college degree are 
substantially safer than their counterparts; males with less 
than 10 years’ experience have an increase in expected events.

A 1% increase in driving mileage results in a 0.14% increase 
in expected number of events for both males and females 
per 1,000 miles driven. Mileage driven per year represents driver 
exposure to events. More exposure results in a higher probability 
of crashes and thus a higher expected number of events.

variable on the expected frequency and is interpreted as the 
effect of a 1% change in the variable on the expected fre-
quency li. The elasticity of frequency li is defined as

E
x

x
xx

i

i

ik

ik
k ikik

iλ λ
λ

β= ∂ ×
∂

= ( )12

where
	 E	=	elasticity,
	xik	=	value of kth independent variable for observation i,
	bk	=	estimated parameter for kth independent variable, and
	li	=	expected frequency for observation i.

Note that elasticities are computed for each observation i. It 
is common to report a single elasticity as the average elasticity 
over all values of i.

The elasticity shown in Equation 12 is only appropriate for 
continuous variables such as highway lane width, distance from 
the outside shoulder edge to roadside features, and vertical 
curve length (Shankar et al. 1995). It is not a valid evaluator for 
binary categorical indicator variables. A pseudoelasticity can be 
computed to estimate an approximate elasticity for indicator 
variables. The pseudoelasticity gives the incremental change in 
frequency caused by changes in the indicator variables. The 
pseudoelasticity for indicator variables is computed as
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Table 3.3.  NB Driver-Based Model with Parameterized ` , Best Overall Driver-Based Model

Variable Coefficient SE Z p-Value 95% CI

Males with <10 years driving experience 1.757 0.331 5.310 .000 (1.108, 2.405)

Years driving for females -0.324 0.109 -2.980 .003 (-0.537, -0.111)

Having a college degree for males -0.610 0.315 -1.930 .053 (-1.228, 0.008)

Number of previous violations for females -0.537 0.170 -3.150 .002 (-0.871, -0.203)

Miles driven in previous year 0.000 0.000 5.650 .000 (0.000, 0.000)

Scaled AD score for females 0.393 0.165 2.390 .017 (0.070, 0.715)

Constant -1.907 0.494 -3.860 .000 (-2.875, -0.939)

Variables that Parameterize the Dispersion Parameter Coefficient SE Z p-Value 95% CI

Scaled AD index (ADAD) 1.241 0.485 2.560 .011 (0.290, 2.191)

Years driving experience 0.063 0.034 1.870 .061 (-0.003, 0.130)

Miles driven in previous year 0.000 0.000 1.480 .138 (0.000, 0.000)

Constant -11.615 4.506 -2.580 .010 (-20.447, -2.784)

Note: The model is based on 83 observations. SE = standard error; likelihood ratio (LR).
LR chi-squared (6) = 39.42
probability > chi-squared = 0
pseudo R2 = 0.1297
log likelihood = -132.30

Table 3.4.  Elasticities from Final NB Model

Variable Elasticity

Males’ driving experience <10 years 0.71

Interaction between females and age of car -0.36

Males with bachelor’s degree or above -2.11

Females’ past violations -0.74

Mileage divided by 1,000 0.14

Scaled DDDI aggressive driving (AD) score 0.40
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each individual had in a year, and the explanatory variables 
include individual socioeconomic characteristics at Level 1 and 
gender at Level 2. Models were estimated using the open-source 
software OpenBUGS. The first 1,000 model iterations were dis-
carded as burn-in. The next 100,000 iterations were used to 
obtain summary statistics of the posterior distribution of 
parameters. Convergence was assessed by visual inspection of 
the Monte Carlo–Markov chains. The number of iterations was 
selected such that the Monte Carlo error for each parameter in 
the model would be less than 10% of the parameter’s SD.

In Table 3.5, the variable names appear in the first column 
followed by the estimated parameter value, or the mean, and 
its SD in the next two columns, respectively. The hierarchical 
modeling structure (full Bayes) produces 5% and 95% credi-
ble set estimates, instead of the CIs normally produced in fre-
quentist estimation. Parameters with 5% to 95% credible set 
values that do not include zero are generally accepted as sig-
nificant. A single asterisk (*) indicates a significant variable, 
and a double asterisk (**) indicates a variable that is margin-
ally significant (i.e., has a credible set of 10% to 90% that does 
not include zero). Elasticities were also calculated based on the 
coefficients from the 100,000 iterations and Equations 9 and 
10, as shown in Table 3.6. Therefore, the credible sets for all 
elasticities of predictors are also available.

The scaled DDDI for aggressive driving (AD) showed a 0.4% 
increase in the expected number of events for a 1% change in 
the index. Recall that this index represented strong positive 
responses to questions such as: “I verbally insult drivers who 
annoy me” and “I deliberately use my car/truck to block drivers 
who tailgate me.” Although ongoing research debates the effects 
of aggressiveness on the probability of crashes and the design of 
questionnaires that intend to quantify driver aggressiveness, 
results show the existence of an association between driver 
aggressiveness and the number of events.

A 1% increase in females’ past violations results in a 0.74% 
decrease in the expected number of critical events compared with 
males. This result could be interpreted as a type of learning effect.

A 1% increase in the interaction between females and vehi-
cle age results in a 0.36% decrease in the expected number of 
events compared with the interaction between males and 
vehicle age. This result is difficult to interpret and may be a 
variable that represents another phenomenon. Despite many 
attempts to remove this variable, it persisted.

Multilevel Driver-Based Modeling

The multilevel driver-based model in Table 3.5 has a two-level 
specification. The response variable is the number of events that 

Table 3.5.  Estimates for Multilevel Driver-Based Model (NB)

Variable Mean SD

Percentile

2.5% 5% 10% 90% 95% 97.5%

Intercept (F)* -13.71 8.26 -29.32 -27.42 -24.44 -3.14 -0.39 2.63

Intercept (M)* -18.97 6.93 -33.17 -30.74 -27.94 -10.29 -7.95 -5.98

Scaled DDDI aggressive driving (AD) (F)** 0.59 0.38 -0.18 -0.06 0.09 1.07 1.20 1.31

Scaled DDDI AD (M) 0.01 0.26 -0.51 -0.42 -0.32 0.34 0.43 0.52

Scaled DDDI risky driving (RD) (F) 0.34 0.32 -0.32 -0.21 -0.08 0.73 0.87 0.98

Scaled DDDI RD (M)** 0.41 0.28 -0.12 -0.04 0.06 0.77 0.88 0.98

Bachelor’s degree or above (F) 0.08 0.87 -1.62 -1.33 -1.02 1.19 1.52 1.83

Bachelor’s degree or above (M)* -1.24 0.65 -2.53 -2.31 -2.06 -0.42 -0.17 0.04

Years of driving experience (F)** -0.05 0.03 -0.11 -0.10 -0.09 -0.01 0.00 0.01

Years of driving experience (M)* -0.06 0.02 -0.11 -0.10 -0.09 -0.03 -0.02 -0.02

Mileage driven in past year (F)* 0.87 0.55 -0.13 0.03 0.18 1.63 1.81 1.99

Mileage driven in past year (M)* 1.77 0.56 0.74 0.89 1.07 2.49 2.73 2.93

Past violations (F)* -0.60 0.29 -1.21 -1.10 -0.98 -0.23 -0.13 -0.05

Past violations (M) 0.06 0.22 -0.38 -0.31 -0.22 0.33 0.41 0.49

sigma2.v* 1.71 0.59 0.85 0.94 1.06 2.49 2.81 3.13

*Significant at 95%, **significant at 90%.
Note: M = male; F = female.
Dbar (posterior mean of the deviance) = 204.7
Dhat (point estimate of deviance) = 159
DIC (deviance information criterion) = 250.3
pD = 45.62 (pD [effective number of parameters] = Dbar - Dhat)
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difference is that one can now assess the effect of the variable 
on men and women separately.

Discussion of Outliers

As a by-product of running the hierarchical driver-based 
model using a Poisson lognormal model, the team was able 
to observe individual drivers’ random effects. Any random 
effect that has a mean significantly different from zero for a 
driver identifies that person as an outlier or a substantial 
deviation from the sampled driver population. This devia-
tion can be interpreted as the driver coming from a different 
population of drivers than the majority of drivers in the data 
set. The chance that each of the five drivers (2, 4, 15, 16, and 
55) listed in Table 3.7 is identified as an outlier is at least 95%. 
For example, Driver 55 had 28 events at his age of 59 years. 
Statistical outliers thus may reflect some type of selection bias 
or model misspecification.

Both females’ and males’ total mileage driven in 1 year 
are  inherently significant, supporting the argument that 
higher exposure increases the likelihood of events. Moreover, 
both males and females with more driving experience had a 
reduced expected number of events. Female scaled aggressive 
driving (AD) scores and male risky driving (RD) scores are 
marginally significant, implying that a higher female scaled 
AD score and male scaled RD score increase the expected 
number of events.

This model provides two additional findings. First, males 
with at least a college degree have fewer events than males 
without bachelor’s degrees; this effect is not significant for 
females. Second, females who had more traffic violations in 
the past had fewer events in a year.

The interested reader can compare the parameter values 
and the elasticities in this hierarchical model (Tables 3.5 and 
3.6, respectively) with the NB model in Tables 3.3 and 3.4. 
There are changes in sign and magnitude, but the greatest 

Table 3.6.  Elasticity Estimates from Multilevel NB Model

Variable Mean SD

Percentile

2.5% 5% 10% 90% 95% 97.5%

E.adad (F)** 1.16 0.80 -0.37 -0.13 0.14 2.17 2.51 2.79

E.adad (M) -0.73 0.86 -2.38 -2.13 -1.82 0.37 0.70 0.96

E.adrd (F)** 1.07 0.83 -0.62 -0.32 0.02 2.12 2.40 2.66

E.adrd (M)** 1.79 1.34 -0.89 -0.42 0.09 3.49 3.98 4.39

E.BSabove (F) -0.83 1.95 -5.65 -3.92 -2.57 0.48 0.60 0.68

E.BSabove (M) -0.97 1.10 -3.73 -3.04 -2.36 0.16 0.33 0.46

E.exp (F)* -0.31 0.18 -0.68 -0.61 -0.54 -0.08 -0.02 0.03

E.exp (M)* -0.79 0.27 -1.34 -1.24 -1.14 -0.46 -0.38 -0.30

E.mil (F)* 2.71 1.47 0.09 0.46 0.89 4.58 5.10 5.76

E.mil (M)* 10.42 3.65 3.98 4.84 5.91 15.21 16.81 18.34

E.pvio (F)* -0.35 0.17 -0.69 -0.63 -0.56 -0.14 -0.09 -0.04

E.pvio (M) 0.10 0.10 -0.11 -0.07 -0.03 0.23 0.26 0.29

Note: E. = elasticity.

Table 3.7.  Identification of Outliers: Mean and SD of Expected Number of Events  
for Driver-Based Hierarchical Model

Driver ID Mean SD

Percentile

2.5% 5% 10% 90% 95% 97.5%

Driver 2 1.78 0.92 0.03 0.31 0.63 2.96 3.33 3.66

Driver 4 -1.75 0.82 -3.45 -3.15 -2.81 -0.73 -0.45 -0.21

Driver 15 1.80 0.60 0.64 0.84 1.05 2.57 2.80 3.01

Driver 16 2.01 0.62 0.83 1.02 1.23 2.80 3.05 3.26

Driver 55 2.59 0.61 1.42 1.61 1.83 3.36 3.60 3.81
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sign and some, such as curve, change in level of significance as 
well. Using a Chi-square test to compare the two models results 
in a significant difference being found with the calculated Chi-
square equal to 8.82 (resulting level of significance is p = 0.0030).

The situation becomes even more dramatic when event 
attributes are added: ORs double or triple for some predic-
tors. The model’s goodness of fit is dramatically improved, as 
shown by both the log likelihood and pseudo R2 values. Tests 
between the full model and the model with context and driver 
attributes again show significant improvement with a Chi-
square value of 10.73 and level of significance, p = 0.0011.

Why did the team undertake this exercise? The primary rea-
son was to point out the difficulty in modeling a data set with 
almost no prior history. Naturalistic data really are unique, and 
this experience points out one of the challenges in their analysis. 
Many other transportation fields provide researchers with a 
sufficient history to know where to begin and what pitfalls to 
avoid. In naturalistic analysis researchers are virtually starting 
from scratch and have to evolve rules from their own experi-
ence. This experience is in some ways similar to what was 
learned in the driver-based models: develop models carefully. 
In this case, the message is to be sure all three components of the 
model are present, or ORs and other estimation output are 
likely to be biased.

For the purposes of discussion, one can assume that the fully 
specified binary logit model shown in Table 3.9 is a reasonable 
comparison to a hierarchical model, as specified in Chapter 2.

Multilevel Event-Based Model

Table 3.10 presents a summary of an event-based hierarchical 
model. The table shows all variables included in the hierar-
chy. Parameter values and SEs are included along with ORs 
(for significant variables only). At Level 1, the event-based 
data set presents two types of variables: event attributes 
(occurrences inside the car) and driving environment (occur-
rences outside the car). Level 2 models driver attributes, rep-
resenting the varying effects of predisposition (DDDI and 
Life Stress Index values) and years of driving experience.

Notice that the two precipitating events are significant (loss 
of control is marginally significant). Loss of control includes 
excessive speed and a loss of control with poor road condi-
tions. Unfortunately, the team was unable to make further 
inferences concerning lane versus road edge departures (or 
left- versus right-side departures) because of limitations in 
sample size for crashes and near crashes. Both parameters 
are  positive, indicating that these behaviors increase crash 
and near-crash likelihood compared with that for a critical 
incident.

With the modeling results for a binary logit model (fre-
quentist estimated) and a hierarchical model now available, 
the pattern of parameter significance and magnitude can be 
discussed. Several interpretations of the distraction variables 

The conclusion is that there are substantial advantages to 
using the Bayesian approach, one of which is to identify and 
quantify individual driver heterogeneity. In this case, the 
drivers so identified may be considered as sampled from a 
different population of drivers. Four of the drivers (2, 15, 16, 
and 55) had higher underlying event risk. Driver 2 was an 
inexperienced male driver with high annual mileage who had 
a lower than expected event risk. No generalities can be made 
from a single observation; however, this result shows that 
drivers with low expected event risk, as well as high-risk 
drivers, may be identified by this method.

VTTI Data: Event-Based Models

Comparing Different Single-Level Models: 
Effects of Omitting Predictors

In many respects the easiest way to begin to understand the 
modeling conducted on the 100-car study events is to present 
a series of straightforward examples. The Penn State team con-
ducted initial screening of binary, multinomial, and ordered 
logit models to assess their ease of interpretation and overall 
quality of prediction. The binary logit model resulted in the 
best goodness of fit, as indicated by an Akaike Information Cri-
terion (AIC) of 205.32. The AIC values for the multinomial 
and ordered logit models were 296.62 and 293.11, respectively. 
The binary logit model is, in many respects, the most straight-
forward to interpret. Thus, the focus of the analysis was based 
on the use of binary logit models.

Binary logit models were estimated to develop an under-
standing of the effects of omitting variables. One model 
included only driving environment variables, and the other 
included a combination of driving environment variables and 
driver attributes. The third model, with the identical specifica-
tion, was a model with the previous two sets of variables and 
an added set reflecting event attributes. The data used in the 
analysis are summarized in Table 3.8, and the results of the 
modeling are summarized in Table 3.9. Additional tests were 
conducted with other pairs of the three sets of variables, but 
discussion of these three models is sufficient to identify trends.

Table 3.9 shows the parameter mean and SD for each of the 
three models. Next to these values is the percentage differ-
ence with respect to the last, fully specified model. The next 
column for each model shows the odds ratio (OR) and, in 
parentheses, the difference in the OR between the full model 
and the other two.

The first model considers context only; this is a familiar 
model to many road safety analysts because context variables 
form the primary variables typically included in a safety perfor-
mance function, which is fundamental to contemporary road 
safety management. Notice that by adding driver attributes, the 
parameters in the first model change substantially: some change 
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•	 Distraction 5: internal distraction—reading, a moving 
object in the vehicle, dealing with an insect or pet.

•	 Distraction 6: dining—includes eating or drinking.
•	 Distraction 7: other—smoking, external distraction, per-

sonal hygiene, and driving-related inattention to forward 
roadway were aggregated into this category as a result of 
sample size constraints.

Among the distractions, internal and vehicle- and passenger-
related distractions are significant, and talking/singing/
daydreaming is marginally significant. All have positive coef-
ficients, indicating that they increase the likelihood of a crash 

are available. The baseline for this set of variables is no dis-
traction. Variables were extracted from video observations of 
drivers during the events of interest, including

•	 Distraction 1: wireless device—related to locating or oper-
ating a wireless device.

•	 Distraction 2: vehicle related—adjusting climate control, 
radio, audio devices, and other vehicle devices.

•	 Distraction 3: passenger related—attributable to a passen-
ger in the subject’s vehicle.

•	 Distraction 4: talking, singing, or daydreaming—self-evident 
definition.

Table 3.8.  Variable Definitions for Tests of Event-Based Omitted Variable Bias

Group Variable Name Definition
Variable 
Type Mean SD Min Max

Dependent variable Event outcome Crash/near crash (1); critical incident (0) Binary 0.25 0.44 0 1

Event attributes Precipitating Factor 1: 
Loss of control

Lose control of vehicle as a result of  
vehicle failures, poor road conditions, 

  excessive speed (from GES critical event)

Binary 0.37 0.23 0 1

Precipitating Factor 2: 
Subject over lane line/
road edge

System detected vehicle over the lane 
line or roadway edge (from GES critical 
event)

Binary 0.50 0.25 0 1

Driver Impairment 1: 
Drowsy, sleepy, 
asleep, and fatigue

Driver appears to show these characteris-
tics (all are based on GES “driver 
distracted by” variable)

Binary 0.21 0.16 0 1

Distraction 1: Wireless 
device

Distraction related to locating or 
operating a wireless device

Binary 0.10 0.08 0 1

Distraction 2: Vehicle 
related

Adjusting climate control, radio, audio 
devices, etc.

Binary 0.04 0.04 0 1

Distraction 3: Passenger 
related

Distraction attributable to passenger in 
vehicle

Binary 0.06 0.05 0 1

Distraction 4: Talking/
singing/daydreaming

Self-evident definition Binary 0.04 0.03 0 1

Distraction 5: Internal 
distraction

Reading, moving object, handling insect 
or pet

Binary 0.06 0.05 0 1

Distraction 6: Dining Includes eating and drinking Binary 0.02 0.02 0 1

Distraction 7: Other Smoking, external distraction, personal 
hygiene, driving-related inattention 
to forward roadway

Binary 0.11 0.10 0 1

Driving context Alignment Curve (1); tangent (0) Binary 0.31 0.22 0 1

Lighting Dawn/dusk (1); day (0) Binary 0.06 0.06 0 1

Surface condition Dry (1); wet/icy/snowy (0) Binary 0.19 0.15 0 1

Traffic density Not free flow (1); free flow (0) Binary 0.25 0.19 0 1

Driver attributes DDDI AD Index Scale reflecting intent to harm Continuous 11.44 1.41 7 23

DDDI NE Index Scale reflecting negative emotions  
during driving

Continuous 21.19 1.41 11 34

DDDI RD Index Scale reflecting risky driving Continuous 19.28 0.71 12 31

Driver experience Number of years with license Continuous 16.167 7.071 1.5 52

Life Stress Index Scale reflecting stress in one’s life Continuous 180.2 45.3 0 560
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Table 3.9.  Summary of Initial Estimated Binary Logit Event-Based Models

Type Variable

Context Only Context and Driver Attributes Fully Specified

Parameter
Coeff 

Diff (%)
OR  

(% Point Diff)

Parameter
Coeff 

Diff (%)
OR  

(% Point Diff)

Parameter

ORCoeff SD Coeff SD Coeff SD

Intercept -1.155 0.231 NA NA 0.903 1.172 NA NA -1.672 1.808 NA

Event 
attributes

Precipitating Event 1: Loss of 
control

NA NA

1.135 1.023 3.111

Precipitating Event 2: Subject 
over lane line/road edge

2.269 0.998 9.670

Driver Impairment 1: Drowsy/ 
sleepy/asleep/fatigued

1.571 0.618 4.811

Distraction 1: Wireless device 0.780 0.775 2.181

Distraction 2: Vehicle related 2.224 0.940 9.244

Distraction 3: Passenger related 1.794 0.848 6.013

Distraction 4: Talking/singing/
daydreaming

1.996 1.089 7.360

Distraction 5: Internal distraction 3.086 0.985 21.889

Distraction 6: Dining 1.879 1.306 6.547

Distraction 7: Other 1.248 0.740 3.483

Context Alignment 1: Curve 0.644 0.331 -30.89 1.904 (-63.6) 0.475 0.371 -0.06 1.608 (-93.2) 0.932 0.475 2.540

Lighting 1: Dawn/dusk 1.105 0.609 -51.82 3.019 (-688.6) 0.743 0.657 -50.13 2.102 (-780.3) 2.293 0.743 9.905

Surface condition 1: Wet/icy/
snowy

0.078 0.411 -91.53 1.081 (-142.6) -0.171 0.463 -118.61 0.843 (-166.4) 0.919 0.621 2.507

Traffic density 1: Not free flow -1.633 0.554 -25.34 0.196 (8.4) -1.995 0.594 -8.77 0.136 (2.4) -2.187 0.686 0.112

Driver 
attributes

DDDI AD score

NA

-0.099 0.043 30.39 0.906 (1.9) -0.120 0.050 0.887

DDDI NE score -0.095 0.056 19.19 0.909 (-0.6) -0.089 0.070 0.915

DDDI RD score 0.049 0.075 -33.79 1.050 (0.2) 0.047 0.092 1.048

Driver experience -0.033 0.015 49.33 0.968 (2.6) -0.060 0.020 0.942

Life Stress Index 0.004 0.001 -17.03 1.004 (0) 0.004 0.002 1.004

Fit Statistics Log likelihood -117.802 -103.424 -82.818

Pseudo R2 0.079 0.192 0.349

Note: Coeff = Coefficient; Diff = Differential.
*Significant difference between context with driver attributes and context only: chi-square = 8.82, p = .0030.
**Significant difference between full specification, single level and context with driver attributes: chi-square = 10.73, p = .0011.
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the past year. There are 42 events, including such items as per-
sonal injury or illness, change in financial state, and change in 
social activities. Each of these items has a weight; the variable 
entered in the model is the sum of the weights for each driver 
for each of the items checked. Based on the structure of the 
inventory, it measures general stress in someone’s life.

The DDDI consists of 28 statements to which the driver is 
asked to respond on a 5-point Likert scale (never, rarely, 
sometimes, often, and always). Each of the categories of 
response is assigned an integer from 1 to 5. Example index 
statements include but are not limited to the following: “I ver-
bally insult drivers who annoy me”; “Passengers in my car/
truck tell me to calm down”; and “I will weave in and out of 
slower traffic.” The responses to the questions are divided into 
the three categories of aggressive driving (AD), negative emo-
tional (NE) driving, and risky driving (RD) (Dula and Ballard 
2003). Each captures a different aspect or component of dan-
gerous driving. The AD component is intended to reflect 
behavior intended to harm other living beings, either physi-
cally or emotionally. A positive response to the first example 

or near crash compared with the likelihood of an incident. 
Using a wireless device (at least at the time of data collection) 
is not significant. Driver impairment, including drowsiness, 
sleepiness, and fatigue, is also significant and positive.

Three context variables are significant determinants of event 
likelihood. Non-free-flow traffic density is negative in sign, 
indicating that this reduces the likelihood of a run-off-road 
crash or near crash and increases the likelihood of a critical inci-
dent. The presence of a curve and conditions at dawn or dusk 
both increase run-off-road crash and near-crash likelihood. The 
variable wet/icy/snowy is marginally significant and positive.

Life stress and years of driving experience are significant 
in differentiating events. A high score on the life stress test 
increases the likelihood of a crash or near crash compared with 
the likelihood of an incident, while drivers with more years of 
(self-reported) driving experience have a reduced likelihood of 
a crash or near crash compared with the likelihood for a critical 
incident.

Several driver-level variables are significant. The Life Stress 
Inventory asks drivers to mark each event that occurred during 

Table 3.10.  Multilevel Event-Based Model

Type Variable

Parameter Percentile

ORMean SD 2.5% 97.5%

Level 1 Covariates: 
Event attributes

Intercept -1.77 1.88 -5.58 1.86 NA

Precipitating Event 1: Loss of control 1.51 1.13 -0.50 3.91 9.08

Precipitating Event 2: Subject over lane line/road edge* 2.83 1.11 0.90 5.21 33.42

Driver Impairment 1: Drowsy/sleepy/asleep/fatigued* 1.29 0.58 0.17 2.46 4.29

Distraction 1: Wireless device 0.25 0.78 -1.31 1.74 NA

Distraction 2: Vehicle related* 1.95 0.97 -0.01 3.81 11.1

Distraction 3: Passenger related* 1.51 0.86 -0.16 3.21 6.58

Distraction 4: Talking/singing/daydreaming** 1.67 1.14 -0.64 3.85 9.82

Distraction 5: Internal distraction* 3.13 1.00 1.24 5.18 38.82

Distraction 6: Dining 1.05 1.44 -1.83 3.82 NA

Distraction 7: Other 1.12 1.05 -0.97 3.18 NA

Level 1 Covariates: 
Driving environment

Alignment 1: Curve* 1.10 0.51 0.11 2.11 3.38

Lighting 1: Dawn/dusk* 2.42 0.79 0.89 3.99 15.12

Surface condition 1: Wet/icy/snowy** 0.82 0.65 -0.43 2.10 2.79

Traffic density 1: Not free flow* -2.38 0.69 -3.83 -1.11 0.12

Level 2 Covariates: 
Driver attributes

DDDI AD Index* -13.67 5.31 -24.35 -3.41 0.87

DDDI NE Index -10.83 7.07 -24.88 2.70 NA

DDDI RD Index 6.13 9.21 -11.83 24.39 NA

Years of driving experience* -0.06 0.02 -0.11 -0.03 0.94

Life Stress Index* 0.50 0.17 0.18 0.83 1.67

*Significant at 10% level.
**Significant at 20% level.
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sought. Driver Impairment 1 (drowsy, sleepy, fatigued) was 
substituted as a predictor and a much better fit occurred 
overall, including reduced SEs for several variables. While the 
team was pleased by the improved fit, there was concern 
about the apparent model instability. Such instability may be 
the result of the small sample size, but it may also reflect 
endogeneity among the predictors. As a recommendation to 
future SHRP 2 analysis contractors, the team suggests that 
care be exercised in surrogate analyses; additional empirical 
testing in several sites and with other drivers should reveal 
more about this issue.

A Method of Identifying Event Validity 
in Surrogate Testing

Background

One of the principal goals and challenges of the SHRP 2 Safety 
program is to develop procedures to identify crash surrogates. 
One useful definition was articulated by Hauer and Gårder 
(1986) in their focused discussion of the traffic conflicts tech-
nique as a surrogate measure (quoted above). Additional attri-
butes of surrogates as having a time dimension and being 
responsive to countermeasures in the same way as in an actual 
crash have been proposed as part of the present research 
(Shankar et al. 2008). More generally, surrogates can be con-
sidered as measures that can be substituted for crashes in a 
safety analysis: in the data for this project, they are typically 
vehicle kinematic– and event-related measures that offer some 
description of vehicle movement and/or position relative to 
the roadway.

In concept, one would like to test and explore these issues 
in a naturalistic data set of many crashes, near crashes, and 
critical incidents. With a large naturalistic data set of 100 or 
more vehicles measured over 2 years or more (as in the S07 
project), potentially thousands of observations of each can-
didate surrogate (e.g., thousands of measures of individual 
lateral accelerations at curves) would be available. It may be 
useful to explore whether the events containing the surrogate 
measures are similar to crash events. If there were a way to 
test for similarity, then researchers might be able to obtain a 
large enough and more valid set of surrogate measurements.

So, the goal here is to develop a way to validate surrogates. 
The Penn State team wants to see if the observations they have 
do the best job of identifying safety problems. The specific test 
of validity proposed is to use the event-based model to predict 
the probability of a crash event. Observations of the surrogate 
measure (e.g., a vehicle kinematic measurement) would then 
be screened to include only those involved in events predicted 
to be crashes by the model. Of course, such an analysis is con-
tingent on the model’s correctness. This method is offered as 
a promising way to improve future surrogate analysis.

statement mentioned above represents AD, to the second 
statement NE, and to the last statement, RD. The value of the 
predictor variable is the sum of the rating responses to each 
question in each of the three DDDI components. The model 
indicates that those who are aggressive or who have negative 
emotions while driving are more likely to have critical inci-
dents (i.e., less likely to have crashes or near crashes). This 
finding needs to be verified with a larger data set using non-
events as the baseline. The point here is that these predisposi-
tion measures need to be included in models of this type 
because they appear to be associated with event outcomes.

A few words are in order concerning the use of event-based 
models to test possible surrogates. Potential surrogates include 
the precipitating events of subject over lane or road edge and 
loss of control. These two variables were derived by the VTTI 
data coders as part of the original 100-car data set. In most 
event models they were strong indicators of crash or near-
crash events in the categorical models; in hierarchical models 
subject over lane or road edge was the second-strongest predic-
tor associated with the prediction of a crash or near-crash 
event. Although this measure is strongly associated with crash 
events, it lacks a time dimension, which is one of the desirable 
surrogate criteria proposed by Shankar and colleagues (2008). 
In their discussion of the traffic conflicts technique as a surro-
gate measure, Hauer and Gårder (1986) commented that “one 
should be able to make inferences about the safety of an entity 
on the basis of a short duration ‘conflict count’ instead of hav-
ing to wait a long time for a large number of accidents to 
materialize.” This suggestion could not be applied because the 
team did not have access to the comparable set of subject 
behaviors for noncrashes. Were such data available, the hierar-
chical model could be formulated to test the association 
between this measure and crashes. The application of this mea-
sure outside of SHRP 2’s instrumented vehicles is as yet uncer-
tain, but it is clear that it has some potential as a surrogate.

These models have important implications for SHRP 2 pro-
gram concerns to identify useful surrogate measures. The cat-
egorical models explored in this study appear to be a useful 
paradigm to explore surrogates when they include event-
based data. While kinematic measures or combinations of 
kinematic and roadway position measures were not directly 
tested with VTTI data, the Penn State team believes they are 
possible measures for future testing. The subject over lane or 
road edge variable contained position-only information and 
was very strongly associated with crash-related events; the 
team believes that the inclusion of longitudinal or lateral 
velocity and lateral position information would enhance this 
variable’s predictive ability.

A limitation of the categorical models deserves mention. 
Initial event-based models, both bivariate logistic and hierar-
chical, used improper speed as an event-based predictor. 
Successful model fit was obtained, but improvement was 
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crashes. This is the first example of a validated event that can 
be used as a source of a surrogate observation (e.g., the value 
coded for the variable exceed road or lane edge); if kinematic 
measures were available as candidate surrogates, the lateral 
vehicle position or the longitudinal or lateral speed when the 
event took place could be used.

Events I19 and I195 are incidents, but they are predicted to 
be crashes. Thus they may be considered statistically close to 
crash events even though crashes were avoided. A surrogate 
may be selected from these events with additional validity as 
well. What is of interest is that researchers now have a statisti-
cal method to identify and quantify these promising events.

While the figure is a bit cluttered, several promising inci-
dents occurring on curves are readily identifiable (e.g., I32, 
I31, and I205). Events NC624, NC198, and C13 are among 
several events correctly predicted as crashes or near crashes.

Figure 3.3 provides an aggregate perspective, as it contains 
only the context variable of presence of curve. All six vari-
ables listed above can be used to create more specific, well-
defined contexts to determine how many valid events are 
identified in each context.

One particular advantage of naturalistic data such as the 
VTTI data is the ability it offers the researcher to use the nar-
rative to compare the etiology of incidents and crashes in 
each context. The narrative, derived from analysis of video 
after the event is identified by kinematic screening criteria, 
can be used to verify if the etiology of the incident in a context 
was actually similar to that of crashes in the same context. 
Such verification can be thought of as additional validation 
for the event in question.

Proposed Method

The proposed method takes advantage of the event-based 
models developed from the VTTI data analysis for road 
departure crashes. One of the important factors derived from 
the event-based models was the presence of context variables 
as important predictors of crashes or near crashes. These 
variables included the presence of a horizontal curve, dawn 
or dusk, road surface conditions, traffic conditions (free-flow 
or non-free-flow), and presence of driver distraction at the 
time of the event. Other combinations of context variables 
could be used, but these are of particular interest because 
they were among the most significant predictors in the event-
based models.

The basis of the method is to work with the predicted 
outcomes from the model that differentiates the two event 
groups. Output from the hierarchical models was chosen 
because the team believed that such output is more valid 
from a strictly statistical standpoint. Figure 3.3 summarizes 
all the observations. Events are denoted with a number after 
a letter code as follows: I for incident, NC for near crash, and 
C for crash. The left half of the figure shows results for events 
taking place on tangent sections (curve = 0), and the right 
half for events occurring on horizontal curves. The y axis rep-
resents the predicted probability for each event. Any event 
with a predicted probability above 0.5 is considered to have 
been predicted to have that outcome. For example, crashes 
C130 and C133 occur on tangent sections and are predicted 
as crashes with a probability close to 76%. Incidents I19 and 
I195 also occur on tangent sections but are predicted as 
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Figure 3.3.  Predicted events for tangent (left) and curve (right) sections.
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tives written by data coders at VTTI during data assembly. All 
three events involved a driver falling asleep and nearly running 
off the road. Other scenarios and contexts yielded different 
numbers of crashes, near crashes, and critical incidents. There 
is now a structured statistical method that offers promise in 
using naturalistic data to identify events that are similar to 
crashes; once identified as such, measures strongly correlated 
with the event outcome can be tested as surrogates.

Example 2
Figure 3.5 illustrates another context in which the nature of the 
relationships is less clear. This context includes the following 

Applications to More Specific Contexts

Example 1
Figure 3.4 shows the predicted probabilities for three event cases 
that occurred during a crash scenario with the following condi-
tions: tangent road section, dawn or dusk lighting conditions, 
free-flow traffic, dry road, and vehicle over road edge. For this 
context, critical incident I195 was predicted with high probabil-
ity as a crash. Although the model was structured to differentiate 
crashes and near crashes from critical incidents, a by-product 
of the model estimation is the identification of events that are 
predicted to be similar to crashes or near crashes. These three 
events were validated as being similar by comparing the narra-

Figure 3.4.  Example 1: Using predicted probabilities to identify crash 
surrogate events.

Figure 3.5.  Example 2: Using predicted probabilities to identify 
crash surrogate events.
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looks away from the road to obtain the object. The vehicle 
drifts to the right and nearly hits a boat loaded on a trailer 
that is parked on the right side of the road.

Case 2 (Figure 3.7) involves the following context: straight 
alignment, dawn or dusk, free-flow traffic, dry surface, 
fatigued driver, no loss of control, and vehicle over edge of 
road. The following narratives compare I195 to NC199 and 
NC201 (these three events belong to the same male, age 
59 years):

•	 I195: Subject falls asleep behind the wheel and drifts 
toward the right edge of the road. He suddenly wakes up 
and jerks the wheel to the left to get back in his lane.

•	 NC199: Subject driver falls asleep while driving, and the 
vehicle runs off the road to the right.

•	 NC201: Subject driver falls asleep while driving, and the 
vehicle runs off the road to the right.

Case 3 (Figure 3.8) involves the following context: curve, 
daylight, free-flow traffic, dry surface, no fatigue, no loss of 
control, and vehicle over edge of road. The narratives below 
compare I15 to C97, NC120, NC198, and NC9:

•	 I15: Subject is distracted and drifts over the left side of her 
lane. She has to steer right to avoid hitting the median.

•	 C97: Subject driver pulls over to park along the right side 
of the road and hits the curb as he is parking.

•	 NC120: Subject driver is looking at a piece of paper as he 
drives under an overpass. The road curves to the left and 
the vehicle veers left and nearly hits the left median.

attributes: horizontal roadway curve, daylight, free-flow traffic 
conditions, dry surface, no loss of control, and vehicle off road 
edge. Incident I15 was identified as a promising event, and 
crash C97 and near crashes NC120, NC198, and NC9 were 
correctly predicted. There are a host of incidents that were cor-
rectly predicted but were likely to be poor events for the pur-
poses because they were not similar to crashes. Several crashes 
and near crashes were also predicted in the range of 0.0 to 0.4 
(not well described by the model). This case illustrates that dif-
ferent contexts have differing numbers of events, and the abil-
ity to predict varies substantially.

Other Promising Events Identified  
and Their Corresponding Narratives

The following six cases evaluate I19, I195, I15, I31, I205, and 
I32 as potential useful events.

Case 1 (Figure 3.6) involves the following context: straight 
alignment, daylight, free-flow traffic, dry surface, no driver 
impairment, no loss of control, and vehicle over edge of 
road. The following three narratives compare I19 to C174 
and NC99:

•	 I19: Subject driver is reading, and, as a result, she loses 
control of the car. She has to steer to the left in order to 
avoid any kind of conflict (internal distraction).

•	 C174: Subject driver is holding a cup in her right hand and 
turning right at an intersection. She cuts the corner and 
hits the curb on the right side.

•	 NC99: Subject driver is reaching for what appears to be a 
cell phone charger. She takes both hands off the wheel and 

Figure 3.6.  Predicted crash probabilities for Case 1.
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These examples are sufficient to illustrate the method. 
The team hopes that if a valid model is developed, the screen-
ing of valid events will help in the identification of the sur-
rogate measured within those contexts, eliminating the need 
to go back to narratives for additional assurance. Automat-
ing the process through the use of an event-based model 
promises potential time savings and accurate surrogate 
identification.

•	 NC198: Subject driver is looking at or for an unknown 
object near the passenger seat. The road curves to the right 
and the vehicle goes off the right edge of the road.

•	 NC9: Subject driver is talking to a passenger in the adjacent 
seat while driving on a single-lane road. The road forks at 
an interchange, and the subject driver moves from the lane 
on the right to the lane on the left, nearly hitting the median 
in between the two.

Figure 3.7.  Predicted crash probabilities for Case 2.
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Figure 3.8.  Predicted crash probabilities for Case 3.
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UMTRI Data: Kinematic Models

Table 3.11 is a glossary of interaction term variable acronyms 
used in UMTRI kinematic models. They include explicit rec-
ognition of positive (e.g., PlanoffPpi as positive lane offset 
interacting with positive pitch) and negative (e.g., Nlaspro, 
which is negative lateral speed interacting with positive roll) 
measures so the team could better understand the vehicle’s 
movement when alerts were triggered. This table is included 
to help the reader track the detailed discussion of the models 
that follows. The text generally follows the summary of model 
structure described for UMTRI data in Chapter 2.

Single-Regime Models

The first single-regime models developed relationships between 
speed (both longitudinal and lateral) and main effect kinematic 
variables. Different combinations of predictor variables were 
tested, particularly exploring the inclusion and exclusion of 
steer angle and roadway classification. It was determined dur-
ing the course of this initial step in the modeling process that 
lateral speed proved to be a poor potential surrogate: models 
showed poor fit, and parameter estimates had little to no effect 
on the dependent variable (see Table 3.12 as an example).

The model in Table 3.13, however, has a respectable good-
ness of fit and reasonable parameter estimates. All parameters 
are significant. It is hard to distinguish the validity of coeffi-
cient signs (positive versus negative) because they may be 
partly based on curve direction. Using directional lateral speed 
and lane offset (Table 3.13) instead of the general forms 
improves their significance and interpretation. Overall model 
fit significantly improves as well, even with steering angle 
removed. Roadway classification has a substantial effect on 
longitudinal speed (see Table 3.14), and all road classes are sig-
nificant except for Road Class 6 (ramps).

Kinematic variables were formed into interacting variables 
to determine further how they affect longitudinal speed, 
since it seemed plausible that changes in different vehicle 
kinematics are correlated (e.g., yaw and roll are correlated, 
since yaw occurs when the wheels are turned, thus causing 
the car to undergo slight roll). An example of strong correla-
tion between yaw and steering angle can be seen in Table 3.15 
(entries of high correlation are in bold).

The strong correlation between steer and yaw is expected. 
When a vehicle enters a horizontal roadway curve, the driver 
is required to turn the wheels to maintain position on the 
roadway, thus changing the steering angle from zero. When a 
vehicle undergoes a turn, it experiences rotation about its ver-
tical axis (perpendicular to the roadway surface), also known 
as yaw. Thus, a change in steering angle will result in a change 
in yaw in the same direction. Because this relationship exists, 
models can be developed without having to include all 

Table 3.11.  Glossary for Kinematic Interaction Terms

Kinematic Interaction Terms

PlanoffPlas Positive lane offset, positive lateral speed

NlanoffNlas Negative lane offset, negative lateral speed

PlanoffNlas Positive lane offset, negative lateral speed

NlanoffPlas Negative lane offset, positive lateral speed

PlanoffPy Positive lane offset, positive yaw rate

PlanoffNy Positive lane offset, negative yaw rate

NlanoffPy Negative lane offset, positive yaw rate

NlanoffNy Negative lane offset, negative yaw rate

PlanoffPpi Positive lane offset, positive pitch rate

PlanoffNpi Positive lane offset, negative pitch rate

NlanoffPpi Negative lane offset, positive pitch rate

NlanoffNpi Negative lane offset, negative pitch rate

PlanoffPro Positive lane offset, positive roll angle

PlanoffNro Positive lane offset, negative roll angle

NlanoffPro Negative lane offset, positive roll angle

NlanoffNro Negative lane offset, negative roll angle

PlasPy Positive lateral speed, positive yaw rate

PlasNy Positive lateral speed, negative yaw rate

NlasNy Negative lateral speed, negative yaw rate

NlasPy Negative lateral speed, positive yaw rate

PlasPpi Positive lateral speed, positive pitch rate

NlasPpi Negative lateral speed, positive pitch rate

NlasNpi Negative lateral speed, negative pitch rate

PlasNpi Positive lateral speed, negative pitch rate

PlasPro Positive lateral speed, positive roll angle

NlasPro Negative lateral speed, positive roll angle

NlasNro Negative lateral speed, negative roll angle

PlasNro Positive lateral speed, negative roll angle

PyPro Positive yaw rate, positive roll angle

PyNro Positive yaw rate, negative roll angle

NyNro Negative yaw rate, negative roll angle

NyPro Negative yaw rate, positive roll angle

PyPpi Positive yaw rate, positive pitch rate

PyNpi Positive yaw rate, negative pitch rate

NyNpi Negative yaw rate, negative pitch rate

NyPpi Negative yaw rate, positive pitch rate

ProPpi Positive roll angle, positive pitch rate

ProNpi Positive roll angle, negative pitch rate

NroNpi Negative roll angle, negative pitch rate

NroPpi Negative roll angle, positive pitch rate
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Table 3.12.  Lateral Speed Model, Linear Regression

Variable Name Coefficient Std. Err. t-statistic p-value

Speed 0.0025 0.0000 52.2700 0.0000

Yaw rate 0.0059 0.0004 13.7600 0.0000

Pitch rate 0.0007 0.0003 2.3800 0.0170

Roll angle 0.0020 0.0002 13.2900 0.0000

Steer angle -0.0014 0.0001 -17.2400 0.0000

Lane offset 0.0690 0.0004 155.0500 0.0000

Constant -0.0632 0.0013 -49.0100 0.0000

Number of obs = 1,391,799; Prob > F = 0.0000; R-squared = 0.019;  
Adj R-squared = 0.019.

Table 3.13.  Model 1: Longitudinal Speed, 
Single Regime, Directional Kinematics 
(Except Lateral Speed and Lane Offset), 
Linear Regression

Variable Name Coefficient t-statistic p-value

Lateral speed 0.4487 9.56 0.0000

Lane offset 0.1497 5.27 0.0000

Positive pitch -0.7406 -29.11 0.0000

Negative pitch -0.5802 -24.91 0.0000

Positive roll 1.2721 115.08 0.0000

Negative roll 1.6482 145.07 0.0000

Positive yaw -0.9798 -34.00 0.0000

Negative yaw -0.3201 -14.12 0.0000

PSteer -0.3897 -74.92 0.0000

NSteer -0.4188 -116.02 0.0000

Constant 47.4985 1327.18 0.0000

Number of obs = 336,548; Prob > F = 0.0000; R-squared = 0.3182; 
Adj R-squared = 0.3182.

Table 3.14.  Model 2: Longitudinal Speed, Single 
Regime, and Directional Kinematics (All) with 
Roadway Classification, Linear Regression

Variable Name Coefficient t-statistic p-value

Positive lateral speed 0.7148 9.68 0.0000

Negative lateral speed 0.8419 14.56 0.0000

Positive lane offset -1.9080 -38.64 0.0000

Negative lane offset -1.6185 -39.95 0.0000

Positive pitch -0.5164 -23.87 0.0000

Negative pitch -0.3892 -19.66 0.0000

Positive roll 1.1603 125.88 0.0000

Negative roll 1.5100 167.13 0.0000

Positive yaw -2.5338 -260.63 0.0000

Negative yaw -2.0422 -204.29 0.0000

Road class: Limited access 12.0936 11.42 0.0000

Road class: Major surface -7.4495 -7.04 0.0000

Road class: Minor surface -4.1978 -3.97 0.0000

Road class: Local road -7.3286 -6.92 0.0000

Road class: Ramp 1.2477 1.18 0.2380

Constant 48.4004 45.76 0.0000

Number of obs = 336,547; Prob > F = 0.0000; R-squared = 0.5079;  
Adj R-squared = 0.5079.

Table 3.15.  Correlation Between Steer and Yaw

Positive 
Yaw

Negative 
Yaw

Positive 
Steer 
Angle

Negative 
Steer 
Angle

Positive yaw 1

Negative yaw -0.27 1

Positive steer 
angle

0.9777 -0.25 1

Negative steer 
angle

-0.2656 0.9381 -0.2469 1.0000

kinematic variables. When analyzing model results, it can be 
assumed that longitudinal speed would be affected similarly 
by yaw rate and steering angle.

Tables 3.16, Table 3.17a, and Table 3.17b summarize the best 
models established for the pure linear, single-regime models. 
Both models include the variables measurement duration (a 
measure of time; measurement duration = 0 at the beginning of 
observation, and measurement duration = 5 at the time when 
the alert is triggered), dark or light, RDCW disabled or enabled, 
and roadway classification. Both models also have several kine-
matic variables as interaction terms. Model (a) does not include 
interaction terms for lane offset, instead using only main effects. 
Table 3.16 shows the goodness-of-fit results from the two mod-
els. The parameter estimates are shown in Table 3.17a and b. Yaw and lane offset have the biggest effect on longitudinal 

speed in the single-regime model without interaction terms. 
Because the test vehicles had rigid bodies, roll would have less 
effect than yaw on longitudinal speed changes for kinematic 
models. Yaw will have the same (mathematical) relationship 
to speed and steering angle regardless of vehicle body rigidity. 
Roadway classification plays an important role in affecting 
longitudinal speed because of the difference in design speeds 
between roadways of different classifications. The interaction 
terms with the greatest effect on longitudinal speed are those 
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combining lane offset and yaw, lane offset and pitch, lateral 
speed and yaw, and lateral speed and roll; the latter two sets 
of terms (i.e., lateral speed and yaw and lateral speed and roll) 
can be directly related in fundamental kinematics. Both mod-
els in Tables 3.17a and b had good fit and generally significant 
parameters.

The use of roadway classification improved the goodness 
of fit of the single-regime models, showing that roadway 
classification may play an integral role in determining other 
relationships between vehicle kinematics and longitudinal 
speed. The goodness of fit for the non-interaction-term 
models was substantially better with roadway classification 
included (both interaction term models included roadway 
classification).

Two-Regime Models

The eight models summarized in Tables 3.18 through 3.26 
show the initial approach to the second step in the flow chart in 
Figure 2.10—that is, pure linear, two regimes. These models 
include additional predictors, dark and roadway classification. 
The kinematic variables are separated into positive and negative 
based on directionality of measurement. Tables 3.22 through 
3.25 include a variable called measurement duration. The first 
regime is defined as occurring when measurement duration is 
between 0 and 5 s: this is the time before the alert is triggered 

Table 3.16.  Goodness of Fit, Kinematic Models

(a) Lane Offset Main Effects

Source SS df MS

Model 28965404.1 34 851923.7

Residual 32225550.1 336513 95.76317

Total 61190954.2 336547 181.8199

Number of observations = 336,548
F(34,336513) = 8655.86
probability > F = 0
R2 = 0.4734
adjusted R2 = 0.4733
root MSE = 9.7859

(b) Lane Offset Interactions

Source SS df MS

Model 29386711.1 48 612223.2

Residual 31804243 336499 94.51512

Total 61190954.2 336547 181.8199

Number of observations = 336,548
F(48,336499) = 59,56.3
probability > F = 0
R2 = 0.4802
adjusted R2 = 0.4802
root MSE = 9.7219

Table 3.17a.  Model 3: Longitudinal Speed, 
Single Regime, Interaction Kinematic Variables, 
Except Lane Offset Model

Variable Name Coefficient t p > t

Constant 62.1109 1048.44 0

Measurement duration -0.2674 -62.97 0

Dark 0.798 18.28 0

RDCW system disabled 0.9835 25.56 0

Road class: Unknown -11.7686 -18.52 0

Road class: Major surface -20.1951 -321.36 0

Road class: Minor surface -16.9241 -262.02 0

Road class: Local -20.1031 -283 0

Road class: Ramp -11.0104 -189.6 0

PlasPy -1.9049 -25.47 0

PlasNy -2.01 -28.7 0

NlasNy -1.2461 -24.79 0

NlasPy -1.566 -36.64 0

PlasPpi -1.6472 -17.32 0

NlasPpi -0.6317 -8.73 0

NlasNpi -0.7383 -9.88 0

PlasNpi -1.4035 -13.01 0

PlasPro 2.0415 35.49 0

NlasPro 1.1364 29.88 0

NlasNro 1.5697 43.32 0

PlasNro 1.819 29.73 0

PyPro -0.5621 -6.07 0

PyNro -0.0686 -144.55 0

NyNro -0.6218 -3.13 0.002

NyPro -0.055 -72.34 0

PyPpi -0.3765 -20.98 0

PyNpi -0.3984 -18.47 0

NyNpi -0.3637 -13.64 0

NyPpi -0.3645 -19.75 0

NroNpi 0.3786 20.99 0

NroPpi 0.3412 22.99 0

ProPpi 0.2945 21 0

ProNpi 0.3131 17.17 0

PlaneOff -2.2706 -45.14 0

NlaneOff -1.8736 -47.31 0
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(recall that each observation of an alert or pseudoalert begins 5 s 
before the alert and continues until 5 s after the alert is extin-
guished). The second regime is the magnitude of the defined 
measurement duration beyond 5 s. This is the duration of time 
after the alert is triggered until 5 s after the alert turns off—that 
is, it is the end of observation for each specific alert.

In Table 3.18, the fit of Model 4 is good, as indicated by an 
adjusted R2 value of 0.47. Roadway classification has a negative 
effect on speed, since freeway is the baseline class (RC0 is insig-
nificant due to a small sample size). Directional lane offset vari-
ables should be combined, as drivers would be assumed to 
decrease longitudinal speed in order to increase ease of reposi-
tioning their vehicles laterally regardless of offset direction. Roll 
parameters have positive signs (although lower coefficient 
absolute values than most other kinematics) because they imply 
larger values of longitudinal speed (higher speed relates to 

Table 3.17b.  Model 3: Longitudinal Speed, Single Regime, Interaction Kinematic Variables, All;  
Linear Regression

Variable Name Coefficient t p > t Variable Name Coefficient t p > t

Constant 61.2216 1081.46 0 PyPpi -0.187 -12.27 0

Measurement duration -0.279 -65.24 0 PyNpi -0.2215 -12.09 0

Dark 0.758 17.43 0 NyNpi -0.265 -11.03 0

RDCW system disabled 0.886 23.22 0 NyPpi -0.2412 -13.41 0

Road class: Unknown -11.1077 -18.09 0 NroNpi 0.2509 16.03 0

Road class: Major surface -19.878 -320.61 0 NroPpi 0.2096 15.93 0

Road class: Minor surface -16.6159 -259.31 0 ProPpi 0.231 16.34 0

Road class: Local -19.7223 -278.23 0 ProNpi 0.2524 14.81 0

Road class: Ramp -10.9782 -191.14 0 PlanoffPlas -0.1476 -0.79 0.427

PlasPy -1.4205 -20.6 0 NlanoffNlas -0.5811 -14 0

PlasNy -1.6799 -25.34 0 PlanoffNlas -1.7864 -9.79 0

NlasNy -0.7116 -13.26 0 NlanoffPlas -0.7072 -4.66 0

NlasPy -1.0807 -23.28 0 PlanoffPy -1.175 -31.41 0

PlasPpi -0.7441 -7.97 0 PlanoffNy -0.9226 -21.19 0

NlasPpi 0.3035 3.87 0 NlanoffPy -0.6296 -20.97 0

NlasNpi 0.1211 1.55 0.121 NlanoffNy -0.758 -23.68 0

PlasNpi -0.595 -5.83 0 PlanoffPpi -1.4029 -25.31 0

PlasPro 1.6342 28.72 0 PlanoffNpi -1.1881 -21.54 0

NlasPro 0.6117 14.65 0 NlanoffPpi -0.9522 -20.17 0

NlasNro 1.0995 27.07 0 NlanoffNpi -0.8805 -19.84 0

PlasNro 1.2776 21.95 0 PlanoffPro 0.5273 14.49 0

PyPro -0.5421 -5.94 0 PlanoffNro 1.0945 33.86 0

PyNro -0.0678 -119.14 0 NlanoffPro 0.6313 25.37 0

NyNro -0.6098 -3.35 0.001 NlanoffNro 0.5448 19.64 0

NyPro -0.0478 -54.34 0

greater lateral force, which is translated to the vehicle body 
through roll). Yaw would tend to decrease longitudinal speed as 
a result of additional friction between the tires and the roadway 
when yaw does not equal zero. Lateral speed is associated with 
increases in longitudinal speed, since vehicles with higher speeds 
tend to have more difficulty maintaining lane position.

R2 in Model 5 (Table 3.19) is about the same as in Model 4, 
indicating good model fit. The effects of the kinematic vari-
ables on longitudinal speed are similar to but slightly stronger 
than those in Model 4 (the signs are the same, but the absolute 
values are generally higher). The alert system being on may 
have caused drivers to react differently approaching curves, 
even before alerts were triggered. As in previous models, road-
way classification tends to decrease longitudinal speed, given 
the baseline roadway classification of freeway. RC0 was dropped 
due to the absence of observations in this regime.
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Table 3.18.  Model 4: Longitudinal Speed, Two-
Regime, Week 1, 5 s Before Alert, Linear Regression

Variable Name Coefficient t-statistic p-value

Dark 1.2521 10.04 0.0000

Positive yaw -3.1605 -85.18 0.0000

Negative yaw -1.6041 -36.75 0.0000

Positive roll 0.6950 19.74 0.0000

Negative roll 1.7320 54.31 0.0000

Positive pitch -0.6966 -10.04 0.0000

Negative pitch -0.5804 -8.70 0.0000

Positive lane offset -1.7872 -11.22 0.0000

Negative lane offset -1.8011 -13.66 0.0000

Positive lateral speed 1.8389 8.24 0.0000

Negative lateral speed 0.7882 4.40 0.0000

Road class: Unknown 2.8306 0.83 0.4060

Road class: Major surface -18.7711 -117.72 0.0000

Road class: Minor surface -16.1927 -99.69 0.0000

Road class: Local -17.5117 -79.02 0.0000

Road class: Ramp -9.1532 -63.32 0.0000

Constant 62.0448 443.54 0.0000

Number of obs = 34,700; Prob > F = 0.0000; R-squared = 0.4026;  
Adj R-squared = 0.4024.

Table 3.19.  Model 5: Longitudinal Speed, Two-Regime, 
Weeks 2 to 4, 5 s Before Alert, Linear Regression

Variable Name Coefficient t-statistic p-value

Dark 0.8362 10.98 0.0000

Positive yaw -2.256558 -112.88 0.0000

Negative yaw -2.245391 -85.35 0.0000

Positive roll 1.1166 52.02 0.0000

Negative roll 1.0615 56.77 0.0000

Positive pitch -0.6801366 -16.42 0.0000

Negative pitch -0.5676225 -14.23 0.0000

Positive lane offset -2.385719 -24.56 0.0000

Negative lane offset -2.647468 -32.4 0.0000

Positive lateral speed 2.1194 13.77 0.0000

Negative lateral speed 1.7488 14.48 0.0000

Road class: Unknown (dropped) NA NA

Road class: Major surface -17.74598 -176.17 0.0000

Road class: Minor surface -15.44258 -148.85 0.0000

Road class: Local -19.32087 -163.8 0.0000

Road class: Ramp -9.120569 -98.1 0.0000

Constant 61.4877 664.57 0.0000

Number of obs = 95,550; Prob > F = 0.0000; R-squared = 0.4719;  
Adj R-squared = 0.4718.

Table 3.20.  Model 6: Longitudinal Speed, Two-Regime, 
Week 1, After Alert Triggered, Linear Regression

Variable Name Coefficient t-statistic p-value

Dark 0.4697 4.85 0.0000

Positive yaw -2.742213 -129.57 0.0000

Negative yaw -2.213393 -85.57 0.0000

Positive roll 1.4140 61.70 0.0000

Negative roll 1.8732 94.54 0.0000

Positive pitch -0.43522 -8.4 0.0000

Negative pitch -0.2240527 -4.97 0.0000

Positive lane offset -1.900215 -16.88 0.0000

Negative lane offset -0.7797679 -8.55 0.0000

Positive lateral speed 0.2729 1.71 0.0880

Negative lateral speed 0.0749 0.60 0.5490

Road class: Unknown (dropped) NA NA

Road class: Major surface -20.70069 -140.53 0.0000

Road class: Minor surface -17.37473 -123.56 0.0000

Road class: Local -17.57807 -96.2 0.0000

Road class: Ramp -11.50564 -97.97 0.0000

Constant 59.3494 462.94 0.0000

Number of obs = 55,916; Prob > F = 0.0000; R-squared = 0.545;  
Adj R-squared = 0.5448.

Table 3.21.  Model 7: Longitudinal Speed, Two-Regime, 
Weeks 2 to 4, After Alert Triggered, Linear Regression

Variable Name Coefficient t-statistic p-value

Dark 1.0133 17.67 0.0000

Positive yaw -2.463306 -180.99 0.0000

Negative yaw -1.949263 -160.11 0.0000

Positive roll 1.2893 108.46 0.0000

Negative roll 1.6317 128.17 0.0000

Positive pitch -0.3776544 -12.21 0.0000

Negative pitch -0.2904763 -10.49 0.0000

Positive lane offset -1.93061 -27.09 0.0000

Negative lane offset -1.431001 -24.74 0.0000

Positive lateral speed -0.1336889 -1.25 0.2100

Negative lateral speed 0.8682 10.43 0.0000

Road class: Unknown -12.0463 -11.28 0.0000

Road class: Major surface -20.07718 -220.41 0.0000

Road class: Minor surface -16.29487 -179.14 0.0000

Road class: Local -19.30426 -203.35 0.0000

Road class: Ramp -11.32301 -146.28 0.0000

Constant 58.1756 706.91 0.0000

Number of obs = 150,382; Prob > F = 0.0000; R-squared = 0.5184;  
Adj R-squared = 0.5184.
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Table 3.22.  Model 8: Longitudinal Speed, Two-
Regime, Week 1, 5 s Before Alert, Add Measurement 
Duration, Linear Regression

Variable Name Coefficient t-statistic p-value

Dark 1.2525 10.04 0.0000

Positive yaw -3.164436 -85.22 0.0000

Negative yaw -1.609261 -36.83 0.0000

Positive roll 0.6985 19.82 0.0000

Negative roll 1.7355 54.38 0.0000

Positive pitch -0.6952267 -10.02 0.0000

Negative pitch -0.5789266 -8.67 0.0000

Positive lane offset -1.772985 -11.12 0.0000

Negative lane offset -1.785805 -13.53 0.0000

Positive lateral speed 1.8408 8.25 0.0000

Negative lateral speed 0.7782 4.35 0.0000

Road class: Unknown 2.6442 0.78 0.4380

Road class: Major surface -18.76191 -117.64 0.0000

Road class: Minor surface -16.18095 -99.58 0.0000

Road class: Local -17.49641 -78.93 0.0000

Road class: Ramp -9.127808 -63 0.0000

Measurement duration -0.0925925 -2.57 0.0100

Constant 62.2482 387.28 0.0000

Number of obs = 34,700; Prob > F = 0.0000; R-squared = 0.4727;  
Adj R-squared = 0.4725.

Table 3.23.  Model 9: Longitudinal Speed, Two-
Regime, Weeks 2 to 4, 5 s Before Alert, Add 
Measurement Duration, Linear Regression

Variable Name Coefficient t-statistic p-value

Dark 0.8362 10.98 0.0000

Positive yaw -2.256553 -112.72 0.0000

Negative yaw -2.245389 -85.35 0.0000

Positive roll 1.1166 52.00 0.0000

Negative roll 1.0614 56.68 0.0000

Positive pitch -0.68014 -16.41 0.0000

Negative pitch -0.5676268 -14.23 0.0000

Positive lane offset -2.385723 -24.56 0.0000

Negative lane offset -2.64747 -32.4 0.0000

Positive lateral speed 2.1194 13.76 0.0000

Negative lateral speed 1.7488 14.48 0.0000

Road class: Unknown (dropped) NA NA

Road class: Major surface -17.74599 -176.11 0.0000

Road class: Minor surface -15.4426 -148.78 0.0000

Road class: Local -19.32089 -163.68 0.0000

Road class: Ramp -9.120596 -97.91 0.0000

Measurement duration 0.0001 0.00 0.9960

Constant 61.4875 591.98 0.0000

Number of obs = 95,550; Prob > F = 0.0000; R-squared = 0.4719;  
Adj R-squared = 0.4718.

In Table 3.20, Model 6 has an improved R2 (0.54) com-
pared with the previous models. The coefficient for the con-
stant is slightly lower than in Models 4 and 5, implying that 
longitudinal speed through the curve would be lower after 
an alert was triggered. Lateral speed is insignificant, regard-
less of direction. The signs for virtually all kinematic vari-
ables are the same as in Models 4 and 5, but the general 
effect of the variables decreases. This may be the result of 
anticipated drops in speed while traversing curves. Road-
way classification has a generally lesser effect, but only 
marginally less.

In Table 3.21, R2 is 0.518 for Model 7, very close to that in 
the previous model. Positive lateral speed becomes insignifi-
cant and changes sign. The effects of yaw and roll on longi
tudinal speed become stronger, while the effect of most 
other kinematic variables decreases. Roadway classification 
increases in general significance while having more overall 
effect (greater absolute value of coefficients). The Model 7 
constant is slightly lower than in Model 6, as drivers would be 
expected to decrease their speed more quickly than in the 
system-disabled period.

In Table 3.22, the R2 value for Model 8 is 0.47, similar to 
the same model without the measurement duration variable. 
Measurement duration is marginally significant and contrib-
utes little to the model’s goodness of fit. All signs for kine-

matic variables are the same as in the models without 
measurement duration, and the coefficients are similar. The 
constant is higher than for all other two-regime models, as 
drivers would be expected to enter curves at higher speeds, 
relying on the alert system to warn them when deceleration is 
necessary.

In Table 3.23, R2, variable signs, coefficients, and signifi-
cances for Model 9 are similar to the model without measure-
ment duration. Measurement duration has virtually no effect 
on longitudinal speed. Its t-statistic is not actually zero, since 
the p-value is not exactly one. STATA, the software package 
used to run these models, will display a zero for a t-statistic if 
it is close enough to zero based on the number of decimal 
places with zeros. The actual t-statistic is

coefficient

dard errorstan
= 0 0001049

0 021808

.

. 44
0 0048= .

In Table 3.24, the R2 in Model 10 is slightly higher than in 
the comparable model without measurement duration 
(Model 6). As in Model 9, coefficient values are similar and 
the constant is slightly higher; measurement duration is sig-
nificant and has a negative effect on longitudinal speed.

In Table 3.25, the R2 for Model 11 is 0.526, slightly higher 
than in the model without measurement duration. Positive 
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Adding measurement duration affected the models slightly, 
but there were no drastic changes in coefficients and goodness 
of fit. Lateral speed had little effect on longitudinal speed for 
any two-regime model. When measurement duration was 
added to the models, the R2 value increased slightly for most 
models. The effect of specific kinematic factors tended to be 
relatively constant across the models. Because the baseline 
classification was freeway, all roadway classification variables 
had negative coefficients. Measurement duration played a 
more important role in the after-alert-was-triggered models; 
the effect of time on change in longitudinal speed should be 
more noticeable after an alert is triggered (drivers would be 
expected to decrease speed more significantly after an alert is 
triggered to decrease the degree of danger).

lateral speed is the only insignificant variable. All variables in 
this model have the same signs and similar effects as in the 
model without measurement duration.

Table 3.26 shows the summary of deceleration results from 
the two-regime models. There is clear evidence of driver 
adaptation to the CSW technology. During the first week 
(pseudoalerts), drivers approached curves during the first 5 s 
of measurement at a deceleration rate of 0.093 mph/0.1 s. 
After activation of the system (Weeks 2 to 4), this same 5-s 
time period had virtually no deceleration (-0.0001 mph/0.1 s). 
Changes were also observed in deceleration after an alert was 
triggered (compared with deceleration during the pseudo-
alert). In this case, drivers decelerated at a rate of 0.231 
mph/0.1 s compared with 0.29 mph/0.1 s. Taken in combin- 
ation, this driver adaptation indicates that when the CSW is 
engaged, drivers approach the curve at a constant speed and 
then decelerate relatively rapidly compared with a decelerat-
ing entry and less rapid deceleration without the technology. 
One interpretation is that the drivers are relying on the sys-
tem to warn them of an unsafe curve entry rather than 
approaching curves more cautiously. It is recognized that 
the origins of these parameters are models that include all 
drivers, a form of aggregate analysis. The next steps were to 
construct similar models for individual drivers or smaller 
groups of drivers.

Table 3.24.  Model 10: Longitudinal Speed, Two-
Regime, Week 1, After Alert, Add Measurement 
Duration, Linear Regression

Variable Name Coefficient t-statistic p-value

Dark 0.3240 3.35 0.0010

Positive yaw -2.7082 -128.32 0.0000

Negative yaw -2.1695 -84.09 0.0000

Positive roll 1.4102 61.84 0.0000

Negative roll 1.9022 96.31 0.0000

Positive pitch -0.4412 -8.56 0.0000

Negative pitch -0.2392 -5.33 0.0000

Positive lane offset -1.9257 -17.19 0.0000

Negative lane offset -0.5608 -6.15 0.0000

Positive lateral speed 0.1085 0.68 0.4950

Negative lateral speed -0.0466 -0.37 0.7080

Road class: Unknown (dropped) NA NA

Road class: Major surface -20.8376 -142.07 0.0000

Road class: Minor surface -17.5749 -125.40 0.0000

Road class: Local -17.7594 -97.61 0.0000

Road class: Ramp -11.5181 -98.58 0.0000

Measurement duration -0.2314 -23.88 0.0000

Constant 61.3664 401.15 0.0000

Number of obs = 55,916; Prob > F = 0.0000; R-squared = 0.5496;  
Adj R-squared = 0.5494.

Table 3.25.  Model 11: Longitudinal Speed, Two-
Regime, Weeks 2 to 4, After Alert, Add Measurement 
Duration, Linear Regression

Variable Name Coefficient t-statistic p-value

Dark 0.9294 16.32 0.0000

Positive yaw -2.3985 -176.70 0.0000

Negative yaw -1.9214 -158.84 0.0000

Positive roll 1.3072 110.74 0.0000

Negative roll 1.6316 129.14 0.0000

Positive pitch -0.3959 -12.90 0.0000

Negative pitch -0.3001 -10.93 0.0000

Positive lane offset -1.9495 -27.57 0.0000

Negative lane offset -1.4182 -24.71 0.0000

Positive lateral speed -0.1298 -1.23 0.2200

Negative lateral speed 0.7935 9.61 0.0000

Road class: Unknown -10.8223 -10.21 0.0000

Road class: Major surface -20.1622 -222.99 0.0000

Road class: Minor surface -16.4879 -182.46 0.0000

Road class: Local -19.2835 -204.68 0.0000

Road class: Ramp -11.2679 -146.66 0.0000

Measurement duration -0.2897 -48.01 0.0000

Constant 60.6840 625.89 0.0000

Number of obs = 150,382; Prob > F = 0.0000; R-squared = 0.5257;  
Adj R-squared = 0.5256.

Table 3.26.  Summary of Deceleration Results 
for Two-Regime Models

mph/0.1 s

Week 1 Week 2–4

5 s before alert (0 ≤ measurement 
duration ≤ 5)

0.0926 -0.0001

After alert triggered 0.2314 0.2897
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Cohort-Based Approach

The cohort design can be used to formulate an exposure-
based model relating potential risk factors to several possible 
outcomes. The cohort design is well-suited to account for 
measures of exposure such as time at risk or distance traveled 
under specific driving conditions. Survival analysis, count 
regression, and logistic regression are suitable statistical meth-
ods to analyze data from a cohort design. The Penn State team 
estimated several models with both CSW and LDW alerts as 
predictors. Only CSW alert findings are reported because they 
are principally the same as the LDW alert findings and CSW 
alerts are, as discussed above, more correlated with roadway 
departure events.

The count regression models for CSW alerts highlight the 
effect of roadway-related context. The team estimated and 
compared two models: one for limited access roads (UMTRI 
Functional Class 1) and the other for nonlimited access roads 
(UMTRI Functional Class 3). Logistic regression modeling 
highlights the importance of driver variables and the effect 
that driver variables have on model fit, parameter signifi-
cance, magnitude, and sign. Interestingly, the results are 
rather different from those for the event-based models devel-
oped with the VTTI data.

Count Regression

The initial analysis involved the use of negative binomial (NB) 
count regressions to show how both context and driver-related 
variables affect the likelihood of alert occurrence. In the first set 
of sample models, the data were segmented by roadway func-
tional classification. In the second set of sample models, multi

Three-Regime Models

The two-regime model assumes that one model can be used 
to characterize driver longitudinal speed for alert durations as 
long as 15 to 20 s. There are relatively few of these long-duration 
events, but they may need a different model, and they may also 
influence the estimation of the models of short-to-moderate 
duration. In addition, few of the observations 20 s from the 
alert trigger were accurately estimated in the two-regime 
model. Figure 3.9 summarizes model fit to the data for the best 
two-regime model.

Thus, the next step was to create a model with three regimes. 
All models included the measurement duration variable. As in 
the two-regime models, there was a division at measurement 
duration of 5 s and, in addition, a second division at measure-
ment duration of 20 s. The estimation results for the three-
regime model are shown in Tables 3.27 through 3.29.

One noticeable feature of the models in Tables 3.28 and 
3.29 is the substantial change in the estimated value for mea-
surement duration: drivers with the system accelerate more 
aggressively after 20 s than drivers without the system. This 
difference may reflect a greater confidence in system users 
that they have, in fact, exited the curve, but it nevertheless 
demonstrates driver adaptation.

A Chow test was performed to determine if there were 
significant changes in parameters as a whole for the time 
periods 5 s before the alert and the time after the alert was 
triggered. Table 3.30 shows that each pair of models differed 
on the basis that the parameter coefficients were sufficiently 
different. This test confirms that driver behavior changes 
with the system activated compared with the system not 
activated.

Figure 3.9.  Longitudinal speed versus measurement duration 
(solid line is mean of data points).

Analysis of Existing Data: Prospective Views on Methodological Paradigms

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22837


57

Table 3.27.  Model 12: Longitudinal Speed, Three-Regime, 5 s Before Alert, Linear Regression

Model 12a Week 1 Model 12b Weeks 2–4

Variable Name Coefficient t-statistic p-value Variable Name Coefficient t-statistic p-value

Dark 1.2517 9.11 0.0000 Dark 0.8362 10.60 0.0000

Positive yaw -3.1645 -53.23 0.0000 Positive yaw -2.2566 -80.07 0.0000

Negative yaw -1.6091 -21.79 0.0000 Negative yaw -2.2454 -41.04 0.0000

Positive roll 0.6983 13.46 0.0000 Positive roll 1.1166 30.34 0.0000

Negative roll 1.7354 37.36 0.0000 Negative roll 1.0614 44.56 0.0000

Positive pitch -0.6950 -10.68 0.0000 Positive pitch -0.6801 -17.40 0.0000

Negative pitch -0.5788 -9.32 0.0000 Negative pitch -0.5676 -15.12 0.0000

Positive lane offset -1.7731 -12.07 0.0000 Positive lane offset -2.3857 -23.22 0.0000

Negative lane offset -1.7836 -14.11 0.0000 Negative lane offset -2.6475 -32.64 0.0000

Positive lateral speed 1.8396 7.84 0.0000 Positive lateral speed 2.1194 13.21 0.0000

Negative lateral speed 0.7765 4.90 0.0000 Negative lateral speed 1.7488 14.84 0.0000

Road class: Major surface -18.7643 -119.89 0.0000 Road class: Major surface -17.7460 -178.11 0.0000

Road class: Minor surface -16.1835 -94.49 0.0000 Road class: Minor surface -15.4426 -136.77 0.0000

Road class: Local -17.4991 -85.12 0.0000 Road class: Local -19.3209 -159.24 0.0000

Road class: Ramp -9.1299 -58.20 0.0000 Road class: Ramp -9.1206 -91.98 0.0000

Measurement duration -0.0932 -2.58 0.0100 Measurement duration 0.0001 0.00 0.9960

Constant 62.2522 376.14 0.0000 Constant 61.4875 561.09 0.0000

Number of obs = 34,700; Prob > F = 0.0000; R-squared = 0.4727;  
Adj R-squared = 0.4725.

Number of obs = 95,500; Prob > F = 0.0000; R-squared = 0.4719;  
Adj R-squared = 0.4718.

Table 3.28.  Model 13: Longitudinal Speed, Three-Regime, Alert Triggered to 20 s, Linear Regression

Model 13a Week 1 Model 13b Weeks 2–4

Variable Name Coefficient t-statistic p-value Variable Name Coefficient t-statistic p-value

Dark 0.3660 3.37 0.0010 Dark 1.0610 17.61 0.0000

Positive yaw -2.7340 -96.83 0.0000 Positive yaw -2.3950 -137.45 0.0000

Negative yaw -2.1470 -62.77 0.0000 Negative yaw -1.8980 -98.45 0.0000

Positive roll 1.4360 49.50 0.0000 Positive roll 1.3430 82.35 0.0000

Negative roll 1.9510 75.38 0.0000 Negative roll 1.6760 108.50 0.0000

Positive pitch -0.4370 -8.75 0.0000 Positive pitch -0.4380 -15.07 0.0000

Negative pitch -0.2220 -5.00 0.0000 Negative pitch -0.3330 -12.58 0.0000

Positive lane offset -1.9350 -17.25 0.0000 Positive lane offset -1.9080 -27.28 0.0000

Negative lane offset -0.7630 -8.84 0.0000 Negative lane offset -1.4710 -26.92 0.0000

Positive lateral speed 0.3260 2.08 0.0370 Positive lateral speed -0.1220 -1.21 0.2260

Negative lateral speed 0.1840 1.69 0.0910 Negative lateral speed 0.6800 8.70 0.0000

Road class: Major surface -20.8720 -130.05 0.0000 Road class: Major surface -20.0790 -210.70 0.0000

Road class: Minor surface -17.5940 -116.31 0.0000 Road class: Minor surface -16.5850 -172.11 0.0000

Road class: Local -17.7790 -94.20 0.0000 Road class: Local -19.3090 -189.80 0.0000

Road class: Ramp -11.6630 -81.92 0.0000 Road class: Ramp -11.4410 -132.71 0.0000

Measurement duration -0.4190 -28.81 0.0000 Measurement duration -0.5480 -63.66 0.0000

Constant 62.8520 340.11 0.0000 Constant 62.7250 562.56 0.0000

Number of obs = 537,880; Prob > F = 0.0000; R-squared = 0.5539;  
Adj R-squared = 0.5539.

Number of obs = 145,707; Prob > F = 0.0000; R-squared = 0.5347;  
Adj R-squared = 0.5347.

Analysis of Existing Data: Prospective Views on Methodological Paradigms

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22837


58

level specification was applied to cluster driver attributes at a 
second, separate level. Note that road class was used, but addi-
tional dimensions beyond road class could have been specified, 

Table 3.30.  Chow Test for Comparison 
of Parameter Estimates

Models 12a and 12b Models 13a and 13b

SSR pooled 12252145.2 16207567.5

SSR Model 1 3218375.28 4537057.93

SSR Model 2 8950406.52 11583691.7

k 17 17

n1 34700 53788

n2 95550 145707

Numerator 4903.729412 5106.933529

Denominator 94.07076341 81.24429421

F 52.4856042 63.04938272

Degree N 17 17

Degree D 130250 199495

Result F > 1.96 F > 1.96

p = 0 p = 0

Table 3.29.  Model 14: Longitudinal Speed, Three-Regime, 20+ s, Linear Regression

Model 14a Week 1 Model 14b Weeks 2–4

Variable Name Coefficient t-statistic p-value Variable Name Coefficient t-statistic p-value

Dark -3.6790 -11.22 0.0000 Dark -1.1040 -2.75 0.0060

Positive yaw -1.7680 -17.69 0.0000 Positive yaw -1.4590 -19.13 0.0000

Negative yaw 0.4560 1.32 0.1860 Negative yaw -1.1830 -9.32 0.0000

Positive roll 0.3010 1.34 0.1800 Positive roll 1.1090 11.53 0.0000

Negative roll 1.5030 13.46 0.0000 Negative roll 0.8630 10.68 0.0000

Positive pitch 0.0380 0.15 0.8780 Positive pitch 0.3610 2.50 0.0120

Negative pitch -0.2570 -1.42 0.1570 Negative pitch 0.5820 5.07 0.0000

Positive lane offset -2.7010 -5.51 0.0000 Positive lane offset -2.6160 -9.16 0.0000

Negative lane offset 0.3910 1.14 0.2550 Negative lane offset -2.3950 -9.48 0.0000

Positive lateral speed -7.2000 -6.73 0.0000 Positive lateral speed -3.9790 -6.81 0.0000

Negative lateral speed -3.6780 -4.45 0.0000 Negative lateral speed 1.6290 2.57 0.0100

Road class: Major surface -12.6560 -14.53 0.0000 Road class: Major surface -28.0880 -16.84 0.0000

Road class: Minor surface -12.1850 -17.31 0.0000 Road class: Minor surface -4.7560 -5.97 0.0000

Road class: Local -8.0200 -8.73 0.0000 Road class: Local -14.6600 -18.70 0.0000

Road class: Ramp -14.8210 -21.85 0.0000 Road class: Ramp -9.6080 -13.95 0.0000

Measurement duration 0.3190 6.32 0.0000 Measurement duration 0.7820 22.95 0.0000

Constant 48.7330 31.49 0.0000 Constant 34.3720 27.52 0.0000

Number of obs = 2,158; Prob > F = 0.0000; R-squared = 0.5554;  
Adj R-squared = 0.5554.

Number of obs = 4,766; Prob > F = 0.0000; R-squared = 0.5171;  
Adj R-squared = 0.5171.

such as day/night or wet/dry conditions. The cohort may be 
defined quite flexibly, using any variable that is an attribute of 
the road, environment, and/or driver (and is, of course, con-
tinuously measured as part of the naturalistic data).

Single-Level Models

The single-level models segment the data by functional class 
and alert type. Initial context-related predictors include ramp 
presence (for nonlimited access roads only), urban/rural set-
tings, day/night, dry/wet conditions (based on the use of 
windshield wipers), and RDCW system disabled/enabled 
state. Driver predictors included gender, education, years of 
driving experience, last year’s mileage driven, use of glasses or 
contacts, and whether or not the driver is a smoker. Two-way 
interaction terms were tested for both context and driver 
attributes. Note that the structure of the model bears a strong 
similarity to the event-based models estimated using VTTI 
data. The VTTI models were able to capture only those attri-
butes immediately surrounding the event. The cohort for-
mulation includes many of the same variables, but the cohort 
models include exposure measured on the same scale as con-
text, which is important in obtaining a broader view of the 
effect of context throughout the driver’s travel.
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frequency based on the fact that the wet variable has a negative 
coefficient. Overdispersion results show that the NB regression 
is a better choice than the Poisson regression. These results are 
summarized in Table 3.32. Once again a chi-square test of the 
model compared to a constant term should that the model was 
significant with a significance probability less than 0.001.

Initially, the team expected to see a positive correlation 
between speed and CSW alert counts. However, the result 
showed that such a correlation does not always occur. Check-
ing scatter plots of speed against CSW count, it was observed 
that some speeds were below 18 mph, which is the minimum 
speed required to trigger CSW alerts. This observation illus-
trates the need to carefully define homogeneous when using 
naturalistic data with a cohort data structure. There is tre-
mendous power in the method, but only if recognized in the 
collection of the original data set.

The count regression approach with cohort structure can 
be used to explore crash surrogate measures and their utility 
in safety analyses. One extension of the models in Tables 3.30 
and 3.31 is the inclusion of potential crash surrogates as pre-
dictor variables. A count of the frequency of a surrogate 
occurrence can be used as a predictor, and its association and 
significance can be tested against the dependent measure. 

Table 3.31 summarizes the model results for limited access 
segments. Factors increasing the number of alerts on limited 
access segments include exposure in the form of distance, dry 
daytime conditions, urban settings, being male, high mileage 
in the previous year if the driver is a female, and being a male 
with a bachelor’s degree or above; all other predictors decrease 
alert frequency. Six of the predictors in this model are insig-
nificant. Higher driving experience generally drives down 
CSW occurrence, and wet conditions would likely decrease 
alert frequency as drivers tend to decrease travel speeds in wet 
weather. The use of the NB model over the Poisson model was 
warranted based on alpha and its likelihood ratio test. A chi-
square test of the model compared to only a constant term 
yielded a test statistic value of 47.89 with a corresponding sig-
nificance probability less than 0.001.

The following factors increase CSW alert frequency on 
Functional Class 3 roads: distance as a form of exposure, day-
time conditions, urban roadways (both ramps and nonramps), 
rural ramps (insignificant), males with more mileage driven in 
the last year (although gender–mileage interactions are insig-
nificant), and males with a bachelor’s degree or above (although 
the gender–education interaction term is generally insignifi-
cant, at least marginally). Dry conditions also increase alert 

Table 3.31.  CSW NB Regression, Functional Class 1: Limited Access,  
Distance as Exposure

CSW Coefficient SE z p > z 95% CI

Miles driven 0.027 0.006 4.700 <0.001 (0.016, 0.039)

RDCW disabled -0.362 0.236 -1.540 0.125 (-0.825, 0.100)

Nighttime baseline NA NA NA NA

Daytime wet -0.402 0.376 -1.070 0.284 (-1.139, 0.334)

Daytime dry 1.131 0.366 3.090 0.002 (0.413, 1.849)

Urban 1.296 0.389 3.330 0.001 (0.534, 2.058)

Male 0.777 0.717 1.080 0.279 (-0.629, 2.183)

Female last year’s mileage (per 1,000 mi) 0.080 0.033 2.400 0.017 (0.0145, 0.145)

Male last year’s mileage (per 1,000 mi) -0.014 0.023 -0.600 0.550 (-0.059, 0.035)

Male driving experience (years) -0.031 0.011 -2.830 0.005 (-0.052, -0.009)

Female driving experience (years) -0.043 0.012 -3.650 <0.001 (-0.066, -0.020)

Female with bachelor’s degree or above -0.532 0.399 -1.330 0.183 (-1.314, 0.251)

Male with bachelor’s degree or above 0.325 0.315 1.030 0.301 (-0.291, 0.942)

Constant -2.807 0.613 -4.580 <0.001 (-4.009, -1.606)

Alpha 1.220 0.348 NA NA (0.697, 2.133)

Number of observations = 405
log likelihood = -275.43729
LR chi-squared (12) = 98.54
pseudo R2 = 0.1517
LR test of alpha = 0
chi-bar squared (01) = 47.89
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paired with and tested against relevant surrogates (such as 
lateral accelerations) to obtain more targeted evaluations. 
The cohort formulation would allow the validity of surrogates 
to be tested using safety performance functions. This concept 
could be explored as part of the SHRP 2 S08 projects.

Multilevel Models

Since the output from models including either distance or 
time as exposure were consistent using the single-level struc-
ture, the team only considered models including distance as 
a form of exposure as analysis examples for further multilevel 
formulation. The goal of this model development is to dem-
onstrate the application of hierarchical models to cohort-
structured data.

Figure 3.10 summarizes the application of the multilevel 
approach to CSW alerts on limited access roads (Functional 
Class 1). The first equation in Figure 3.10 says that the num-
ber of CSW alerts obeys the NB distribution. The predictors 
used here are those used in the best single-level models. The 
second equation says that the expected number of CSW alerts 
(log p) is a function of miles driven (miles), RDCW disabled 

This would show an association between a surrogate and an 
event of interest such as crashes.

Another way to explore surrogate measures is to use them 
as dependent variables. The variable is entered as a count on 
a segment similar to the way crashes would be entered for an 
identification of sites with promise (see Aguero-Valverde 
and Jovanis 2008 for a recent example of the standard sites 
with promise formulation). Bivariate Poisson–log normal or 
similar formulations within a Bayes hierarchical structure 
(Aguero-Valverde and Jovanis 2010) can be used with crash 
and surrogate frequency as the dependent variables. Using a 
common specification, the researcher could explore differ-
ences in the significance of predictors. Of even greater utility 
would be the development of safety performance functions 
for both crashes and surrogate measures. One could then 
compare the sites with promise developed for the two safety 
performance functions. A test of the validity of a surrogate 
would be its ability to identify the same sites with promise. 
The ability to validate a surrogate in this way is of particular 
importance in that one application of surrogates is to identify 
risky locations without waiting for years of crash data. 
Specific crash types such as roadway departure could be 

Table 3.32.  CSW NB Regression, Functional Class 3: Nonlimited Access, 
Distance As Exposure

CSW Coefficient SE z p > z 95% CI

Miles driven 0.087 0.016 5.440 <0.001 (0.055, 0.118)

RDCW disabled -0.762 0.133 -5.730 <0.001 (-1.023, -0.502)

Day 1.054 0.150 7.030 <0.001 (0.760, 1.348)

Wet -1.535 0.175 -8.780 <0.001 (-1.878, -1.193)

Rural nonramp baseline NA NA NA NA

Urban ramp 2.184 0.270 8.090 <0.001 (1.655, 2.714)

Rural ramp 0.493 0.377 1.310 0.191 (-0.246, 1.231)

Urban nonramp 1.068 0.254 4.200 <0.001 (0.569, 1.566)

Male -0.542 0.417 -1.300 0.194 (-1.359, 0.275)

Female last year’s mileage -0.001 0.017 -0.060 0.950 (-0.034, 0.032)

Male last year’s mileage 0.015 0.011 1.330 0.183 (-0.007, 0.037)

Male driving experience (years) -0.016 0.006 -2.790 0.005 (-0.027, -0.005)

Female driving experience (years) -0.023 0.006 -4.090 <0.001 (-0.035, -0.012)

Female with bachelor’s degree or above -0.178 0.207 -0.860 0.390 (-0.583, 0.228)

Male with bachelor’s degree or above 0.285 0.163 1.750 0.080 (-0.034, 0.605)

Constant -1.702 0.411 -4.140 <0.001 (-2.508, -0.895)

Alpha 0.987 0.143 NA NA (0.742, 1.312)

Number of observations = 900
log likelihood = -832.47787
LR chi-squared (14) = 320.99
pseudo R2 = 0.1616
LR test of alpha = 0
chi-bar squared (01) = 199.53

Analysis of Existing Data: Prospective Views on Methodological Paradigms

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22837


61

bachelor’s degree or above, last year’s miles driven, and years 
of driving experience, are shown after the second equation. 
Specifically, it is a random intercept and random slope model 
formulation (i.e., both the intercept and the slope vary ran-
domly across the subjects). Thus, the third equation says that 
the mean constant term for all drivers is -2.891 (SE is 0.856), 
and their variance is 0.977 (with SE of 0.327; these values are 
shown in the covariance matrix for all random effects after 
the second-level predictors). The SE for the coefficient 
(0.856) is used to construct the CI for the estimated param-
eter. The variance for the random intercepts (0.977) indicates 
how the intercepts vary across individual subjects. In other 
words, the individual subject intercept varies about this mean 
(-2.891) with a variance estimated as 0.977 (SE is 0.327). 
Similarly, the fourth equation says that the mean gender 
effect is 1.283 with SE of 1.054, suggesting that males tend to 
have higher numbers of CSW alerts. The individual subject 
slopes do not vary about this mean on Functional Class 1 
because the value for the variance of gender (u61) is 0.000.

Concerning multilevel model random effect covariance, it 
can be assumed either that the second-level predictors are 
independent of each other or that they are correlated to each 
other. While a more generalized setup can be used to specify 
a correlated covariance matrix, the team had to assume inde-
pendence (hence values under the diagonal were restricted to 
being zeros) because of computational difficulties. Along the 
diagonal, the variance for the random constant term is 0.977, 
which is much greater than that for other random effects, 
implying that individual drivers provide the main source of 

status (rdcwdisabled), the interaction between daylight and 
the use of windshield wipers (wetday), the interaction 
between daylight and no use of windshield wipers (dryday), 
the interaction between night and the use of windshield 
wipers (wetnight), gender (1 if male), females with bachelor’s 
degrees or above (Fbsabove), males with bachelor’s degrees 
or above (Mbsabove), the interaction between females and 
last year’s miles driven in thousands (Fmiles), the interaction 
between males and last year’s miles driven in thousands 
(Mmiles), the interaction between females and years of 
driving experience (Fexp), the interaction between males and 
years of driving experience (Mexp), and urban/rural settings. 
The link function used here is logarithm.

The unit of the first level is the context combination 
(cohort). The coefficients of the predictors in the first level 
are shown in the second equation (with SEs in parentheses). 
The variable miles (miles traveled in the homogeneous trip 
segment) indicates the exposure measured directly. Greater 
exposure results in a higher expected number of alerts trig-
gered. The negative sign of rdcwdisabled implies that the 
number of CSW alerts triggered during Weeks 2 to 4 is greater 
than in Week 1, resulting from higher exposure (3 weeks with 
system enabled versus 1 week with system disabled). The 
baseline for the group of interacting variables (wiper use and 
day/night) is the interaction between night and the absence 
of wiper usage; wet reduces the expected number of alerts 
triggered in both daytime and nighttime conditions.

The unit of the second level is the individual driver. The 
coefficients for the second-level predictors, such as gender, 

Figure 3.10.  Multilevel NB model: Functional Class 1, limited access, CSW.

Analysis of Existing Data: Prospective Views on Methodological Paradigms

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22837


62

structure. Thus, these models were structured as event-based 
models using homogeneous trip segment data. There are 
331,641 homogeneous trip segments for all drivers in the data 
set. Each of the 2,605 CSW and 10,452 LDW alerts were 
matched to the segments on which they occurred. These logit 
models can be used to form the basis of a case–control study, 
which matches cases and controls (noncases) within the lim-
its of certain confounding factors (e.g., posted speed limit 
and average annual daily traffic).

Compared with the baseline functional class, all other func-
tional classes except Functional Class 3 (limited access, which 
was insignificant) increase a driver’s odds of having a CSW 
alert. Ramps substantially increase alert odds, while daytime 
conditions slightly increase the odds. Urban settings, wet condi-
tions (based on windshield wiper use), driving with the RDCW 
system disabled, higher minimum segment speeds, and longer 
segment distances decrease CSW odds, although urban settings 
and windshield wiper use are insignificant. Higher maximum 
segment speed and higher numbers of brake applications on a 
segment slightly increase CSW alert odds, although brake appli-
cations are insignificant. The pseudo R2 indicates a moderately 
reasonable fit for this model (see Table 3.33).

variation. This finding illustrates that the multilevel approach 
applied to cohort-based event data can potentially identify 
driver-related factors that would be difficult or impossible to 
detect using other typical approaches (such as those applied 
to the VTTI data).

All predictors have the same sign and similar magnitudes as 
the single-level model for expected numbers of CSW alerts trig-
gered and can be interpreted similarly; however, the SEs in the 
single-level models were underestimated. The following factors 
increase CSW alert frequency on Functional Class 1 roads: 
exposure in the form of distance, dry daytime conditions, urban 
settings, being male, higher previous mileage as a female, and 
being a male with a bachelor’s degree or above; all other predic-
tors decrease alert frequency. The variables of being male, being 
of either gender with a bachelor’s degree or above, and higher 
previous mileage as a male in this model are insignificant.

Logistic Regression Models

The UMTRI data were also applied to logit models, using a 
single-level structure, to compare alert events with nonalerts, 
which can only be done using a homogenous trip segment 

Table 3.33.  Single-Level Cohort-Based Logit Model, CSW

CSW Coefficient OR SE for OR z p > z 95% CI for OR

Functional Class 1: Limited access baseline 1.00 NA NA NA NA

Functional Class 2: Limited access 0.42 1.528 0.203 3.190 0.001 (1.178, 1.983)

Functional Class 3: Limited access 0.57 1.760 0.804 1.240 0.216 (0.719, 4.309)

Functional Class 1: Nonlimited access 1.11 3.024 0.362 9.250 <0.001 (2.392, 3.823)

Functional Class 2: Nonlimited access 1.60 4.935 0.487 16.160 <0.001 (4.066, 5.988)

Functional Class 3: Nonlimited access 1.00 2.712 0.251 10.780 <0.001 (2.262, 3.251)

Functional Class 4: Nonlimited access 0.99 2.694 0.251 10.650 <0.001 (2.245, 3.233)

Functional Class 5: Nonlimited access 1.56 4.772 0.498 14.980 <0.001 (3.890, 5.855)

Ramp 2.22 9.180 0.517 39.350 <0.001 (8.220, 10.251)

Daytime 0.21 1.239 0.063 4.200 <0.001 (1.121, 1.370)

Urban -0.13 0.882 0.062 -1.790 0.074 (0.769, 1.012)

Windshield wiper use (on/off) -0.06 0.940 0.023 -2.530 0.011 (0.896, 0.986)

RDCW disabled -0.16 0.855 0.040 -3.320 0.001 (0.780, 0.938)

Maximum segment speed 0.19 1.205 0.004 50.080 <0.001 (1.196, 1.214)

Minimum segment speed -0.11 0.894 0.002 -44.880 <0.001 (0.890, 0.898)

No. of brake applications on segment 0.00 1.003 0.003 1.000 0.317 (0.997, 1.008)

Segment distance (mi) -0.03 0.973 0.005 -5.460 <0.001 (0.964, 0.983)

Number of observations = 331,641
log likelihood = -10922.3
LR chi-squared (16) = 8595.98
probability > chi-squared = 0.001
pseudo R2 = 0.2824

Analysis of Existing Data: Prospective Views on Methodological Paradigms

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/22837


63

maximum and minimum speed are similar to their effects in 
the first CSW logit model, but the OR for brake applications 
is slightly higher (but is still insignificant). Segment distance 
increases alert odds but is insignificant. Gender interactions 
with education, experience, and mileage driven in the previ-
ous year mostly have odds ratios (ORs) close to 1.0, meaning 
they do not have much of an effect on CSW alert odds. 
Gender–education interactions are significant, as are males 
interacted with last year’s mileage (all other driver attributes 
are at least marginally significant). The pseudo R2 is similar to 
that for the first CSW logit model, indicating decent model fit.

Table 3.34 shows a model that incorporates driver attri-
butes as predictors. As in the first CSW logit model, all func-
tional classes increase CSW alert odds compared with the 
baseline, but the two limited access functional classes are 
insignificant. Compared with rural nonramp locations, urban 
nonramps decrease alert odds but are insignificant. All ramp 
locations increase CSW alert odds and are significant (this is 
expected since most CSW alerts occurred on ramps). Daytime 
conditions slightly increase odds, while wet conditions slightly 
decrease odds. Driving with the alert system disabled decreases 
the odds of a CSW alert but is insignificant. The effects of 

Table 3.34.  Single-Level Cohort-Based Logit Model, CSW with Driver Attributes

Variable Coefficient OR SE for OR z p > z 95% CI for OR

Functional Class 1: Limited access baseline 1.00 NA NA NA NA

Functional Class 2: Limited access 0.26 1.295 0.204 1.640 0.100 (0.951, 1.764)

Functional Class 3: Limited access 0.27 1.305 0.766 0.450 0.650 (0.413, 4.122)

Functional Class 1: Nonlimited access 1.02 2.770 0.369 7.650 <0.001 (2.134, 3.596)

Functional Class 2: Nonlimited access 1.64 5.174 0.565 15.040 <0.001 (4.176, 6.410)

Functional Class 3: Nonlimited access 1.07 2.926 0.298 10.520 <0.001 (2.395, 3.573)

Functional Class 4: Nonlimited access 1.02 2.776 0.283 10.000 <0.001 (2.272, 3.390)

Functional Class 5: Nonlimited access 1.70 5.458 0.627 14.770 <0.001 (4.357, 6.836)

Rural nonramp baseline 1.00 NA NA NA NA

Urban nonramp -0.05 0.953 0.081 -0.570 0.572 (0.807, 1.126)

Urban ramp 2.13 8.410 0.775 23.100 <0.001 (7.020, 10.075)

Rural ramp 2.28 9.797 1.657 13.490 <0.001 (7.033, 13.648)

Daytime 0.28 1.321 0.078 4.730 <0.001 (1.177, 1.482)

Wet conditions -0.31 0.737 0.062 -3.620 <0.001 (0.625, 0.870)

RDCW disabled -0.15 0.863 0.044 -2.860 0.004 (0.780, 0.955)

Maximum segment speed 0.19 1.205 0.005 44.550 <0.001 (1.195, 1.215)

Minimum segment speed -0.11 0.893 0.003 -40.160 <0.001 (0.888, 0.898)

No. of brake applications on segment 0.01 1.006 0.004 1.700 0.089 (0.999, 1.013)

Segment distance (mi) 0.13 1.137 0.069 2.100 0.036 (1.008, 1.281)

Female with bachelor’s or above -0.32 0.727 0.064 -3.620 <0.001 (0.612, 0.864)

Male with bachelor’s or above -0.01 0.994 0.002 -3.260 0.001 (0.990, 0.997)

Male years of driving experience -0.01 0.989 0.002 -5.580 <0.001 (0.985, 0.993)

Female years of driving experience 0.0004 1.0004 0.0057 0.730 0.466 (1.000, 1.000014)

Female last year’s mileage driven 0.99 1.000 0.0034 2.930 0.003 (1.000, 1.000)

Male last year’s mileage driven -0.02 0.978 0.006 -3.370 0.001 (0.965, 0.991)

Number of observations = 279,166
log likelihood = -9231.2975
pseudo R2 = 0.2889
LR chi-squared (23) = 7501.19
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C h a p t e r  4

This report contains many models (although only a portion 
of those estimated) and many findings. To provide structure 
to these findings and their implications for the SHRP 2 Safety 
program, the chapter is organized according to the five original 
research questions. The chapter concludes with suggestions 
for future research.

Research Question 1

What is the relationship between events (e.g., crashes, near crashes, 
and incidents) and pre-event maneuvers? What are the contrib-
uting driver factors, environmental factors, and other factors?

This broad question encompassed many different models 
yielding a variety of findings. The general structure of the event-
based models was to use predictor variables representing driver, 
context (i.e., roadway and environment), and event attributes. 
A set of tests was conducted to specifically explore changes in 
parameter estimates if variables from only one or two of these 
components were included in the model. Specifically, models 
were estimated with context-only, driver-only, and event-only 
variables (and combinations of only two of the components). 
Resulting parameter estimates changed substantially depend-
ing on how many of the three components were represented 
in the model; importantly, the exclusion of any of the com-
ponents led to major changes in estimated parameters (see 
Chapter 3).

Implications for SHRP 2 Safety Program: Failure to test the 
inclusion of context-, driver-, and event-based variables runs 
the risk of producing a model with biased parameters. Although 
the data were limited and this is only one realization of an 
experiment, the results of this test showed substantial param-
eter changes in the tests of parameter inclusion. Both the 
magnitudes and SEs of the parameters changed substantially. 
This is clear evidence that the exclusion of any of the set of 
variables (i.e., driver, context, and event) is very likely to result 
in biased parameter estimates, obscuring the effect of any one 
variable on event occurrence. Based on this result, future 

analyses of SHRP 2 event-based data (such as in proposed 
research for the S08 project) should be required to include 
variables representing driver, context, and event attributes. 
In addition, thorough tests should be conducted to explore 
changes in parameter values and significance. The Penn State 
team is concerned that parameter estimates may exhibit the 
same characteristics, even in data sets with large sample sizes.

One is left to ponder the reasons for this apparent interac-
tion. One possibility relates to the nature of the variables 
used to predict the outcome. Among the strongest variables 
(i.e., those showing the greatest association with crashes or near 
crashes) were the driver distraction variables. These variables, 
which were derived from the driver face camera, included 
distractions such as those attributed to a portable electronic 
device, internal distractions (such as a pet or other creature 
within the vehicle), or vehicle-related distractions such as 
adjusting the climate or audio controls. Some may view these 
driver actions as endogenous to the event process (i.e., the 
conditions that led to the event also led to the distraction). 
While this may not be true in all cases, it is likely true for some. 
While distraction was used as a predictor variable, the team 
now understands, after further deliberation, that some distrac-
tions may be endogenous and may not be suitable as event 
predictors. A range of statistical methods to address endoge-
neity should be considered in these circumstances. In addition, 
exploring measurement periods beyond the 5-s-before-event 
criterion used in the VTTI database may be necessary.

So, while the modeling seems feasible, a caution is in order: 
carefully consider event model specification. Special care 
should be exercised and perhaps specific models formulated 
to explore the nature of the endogeneity between distractions 
and other event-related measures. Although distractions have 
been used in the modeling (and by others) as predictor vari-
ables, the model tests indicate their use may not be valid.

An additional issue of interest is to reach conclusions, how-
ever tentative, concerning the efficacy of using categorical-
outcome models (such as logit or binary hierarchical models) 

Conclusions, Implications for SHRP 2 Safety 
Program, and Suggested Research
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particularly considering the gender of the driver. The small 
sample size limited the ability to make inferences concerning 
vehicle type.

Research Question 2

What hierarchical structure (statistically speaking), if any, 
exists in the manner in which these relationships need to be 
explored?

Figure 4.1 shows one hierarchy successfully applied to the 
analysis of event data. The sketch is intended to convey that 
individual drivers may have any number of events; they must 
have at least one, but they may have more. If one were to 
model this with a count regression approach, each event 
would enter the model as if it were independent and from a 
different driver.

Using a hierarchical approach, driver attributes enter at 
the driver level, once for each driver. Event characteristics are 
entered as predictors for each event in which they occur. This 
hierarchical approach (described in Chapter 2, with findings 
in Chapter 3) provides a conceptually justifiable approach to 
the modeling of complex events.

Implications for SHRP 2 Safety Program: There are many 
hierarchical approaches that may be taken with a data set 
such as those presented in naturalistic driving studies. Much 
attention has been focused on the analysis of events; the driver-
based approach presents one way to analyze drivers at a sepa-
rate level from the events of interest, providing a much better 
depiction of the physical process being investigated.

A second hierarchical model was used in the driver-based 
analysis of the VTTI data. That data structure is shown in 
Figure 4.2.

In this structure, males and females are accounted for sep-
arately, including separate parameter estimates for each gen-
der category. In a single-level model, there would typically be 
a dummy variable representing the difference between males 
and females, but not an indication of the actual parameter 
value for each gender specifically. The hierarchical approach 
provides this additional information; a model of this type is 
developed in Chapter 2 and described as applied to VTTI data 
in Chapter 3.

Implications for SHRP 2 Safety Program: This presents 
another example of how hierarchical approaches can be applied 

to compare crash and noncrash events. The Penn State team 
explored this issue within the limits of the data by comparing 
crash and near-crash events (combined) with critical inci-
dents. The series of models estimated by the team yielded 
generally consistent results concerning the effects of particu-
lar parameters when using a complete model specification as 
described above.

Implications for SHRP 2 Safety Program: Given a set of data 
that is event-based, such as the VTTI data file, it is feasible to 
apply well-established categorical data analysis techniques to 
estimate factors that differentiate between the categorical 
outcomes. In this case, the team differentiated between crashes 
and near crashes (combined) and critical incidents. This 
implies that such a differentiation appears feasible for crashes 
(or other adverse events) and a sample of comparable, simi-
larly described nonevents. Such a comparison was expected to 
occur in this research, but the data for nonevents in the VTTI 
file did not contain predictor variables consistent with the 
events; as a result, the VTTI data did not permit such analysis.

Several strong gender-related differences in factors contrib-
ute to crash or near-crash and critical incident occurrence. 
Gender was important in both driver- and event-based mod-
els, hardly a surprise given the extensive literature on gender-
related safety differences. Many gender-related factors were 
revealed as main effects, but they were particularly apparent 
as interaction terms, especially in driver-based models.

Implications for SHRP 2 Safety Program: Analyses that are 
directly or indirectly influenced by gender should include 
tests of a range of main effects and interaction terms. Vari-
ables with significant promise in future modeling include 
level of education and years of driving experience. There were 
associations between number of previous crashes and traffic 
violations that varied with gender; these associations were not 
consistent, but they may warrant attention from researchers 
on gender issues.

A limited number of vehicle factors rose to significance. 
There was some indication that older vehicles driven by women 
were associated with a reduction in event frequency. The team 
did not interpret this as a direct safety effect. Despite many 
attempts to replace this variable with others of greater intuitive 
appeal, this result persisted.

Implications for SHRP 2 Safety Program: Clearly, additional 
research is needed concerning the analysis of vehicle factors, 

Figure 4.1.  Hierarchy analysis of event data.
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surrogates include the precipitating events of subject over 
lane or road edge and lost control. These two variables were 
derived by the VTTI data coders as part of the original 100-car 
data set. In most event models they were strong indicators 
of crash or near-crash events in the categorical models; in 
hierarchical models subject over lane or road edge was the 
second strongest predictor associated with the prediction of 
a crash or near-crash event. While there is strong association 
with crash events, this measure does not have a time dimen-
sion, so it does not directly meet the desirable criterion sug-
gested in the Phase 1 report and by Shankar and colleagues 
(2008). Further, Hauer and Gårder’s rule could not be applied 
because the team did not have access to the comparable set of 
subject behavior for noncrashes. Were such data available, 
the hierarchical model could be formulated to test the asso-
ciation between this measure and crashes. One is also left to 
ponder exactly how this measure could be broadly applied 
outside of SHRP 2’s instrumented vehicles, but it is clear that 
this measure has some potential as a surrogate.

Implications for SHRP 2 Safety Program: The categorical 
models explored in this study appear to be a useful paradigm 
to explore surrogates when provided with event-based data. 
While kinematic measures or combinations of kinematic and 
roadway position measures were not directly tested with VTTI 
data, the Penn State team believes they are possible measures 
for future testing. The subject over lane or road edge variable 
contained position-only information and was very strongly 
associated with crash-related events; the team believes that 
including longitudinal or lateral velocity and lateral position 
information would enhance this variable’s predictive ability.

A limitation of the categorical models deserves mention. 
Initial event-based models, both bivariate logistic and hierar-
chical, used improper speed as an event-based predictor. Suc-
cessful model fit was obtained, but improvement was sought. 
Driver Impairment 1 (drowsy, sleepy, fatigued) was substi-
tuted as a predictor and a much better fit occurred overall, 
including reduced SEs for several variables. While the team 

to naturalistic data. The benefits of obtaining gender-specific 
estimates of factors contributing to the risk of events are clear.

Research Question 3

What kind of elucidative evidence emerges from the analysis of 
roadway departure crashes in terms of Questions 1 and 2? Is 
the illustrative hierarchy of relationships generalizable to other 
nonintersection crash types such as leading vehicle crashes?

In its proposal to SHRP 2, the Penn State team described the 
desirability of comparing hierarchical modeling structures 
and models for road departure and lead vehicle collisions. This 
could not be done because of a lack of available lead vehicle 
event data in the supplied VTTI database.

The Penn State team considers the notion of elucidative 
evidence to include surrogate measures and their testing, as 
well as exposure-based models developed during the study. 
There is also evidence that several types of predictor variables, 
such as precipitating event information in the VTTI models, 
have particularly important roles in the models.

One useful definition of crash surrogates was articulated 
by Hauer and Gårder (1986) in their focused discussion of the 
traffic conflicts technique as a surrogate measure: “one should 
be able to make inferences about the safety of an entity on the 
basis of a short duration ‘conflict count’ instead of having to 
wait a long time for a large number of accidents to material-
ize.” Additional attributes of surrogates as having a time dimen-
sion and being responsive to countermeasures (as a crash 
would be) have been proposed in the Phase 1 report and by 
Shankar and colleagues (2008). More generally, surrogates can 
be considered as measures that can be substituted for crashes 
in a safety analysis: in the data for this project, they are typi-
cally vehicle kinematic—and event-related measures that 
offer some description of vehicle movement and/or position 
relative to the roadway.

The first example of surrogate testing is contained in the 
event-based analyses conducted with the VTTI data. Potential 
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Figure 4.2.  Driver-based hierarchical model.
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same route has potential for additional insight. Again, detailed 
and accurate roadway data from project S04 will be essential 
to these tests. Specifically, a range of kinematic variables can 
be measured at specific points of documented high crash fre-
quency; these can be compared with a set of individual drivers’ 
kinematic signatures through the same roads. Kinematic 
measures at crash locations can be compared with similar 
measures at low-frequency crash locations and tested for their 
predictive capability.

Driver-based models used self-reported annual mileage 
(provided by drivers during 100-car study interviews) as expo-
sure. While measured miles and time of travel would have 
been preferred, the team felt that self-reported exposure 
would be a reasonable start. Measured travel from the UMTRI 
study was used for exposure in the cohort-based analyses 
described in the discussion of Research Question 5. The driver-
based models using VTTI data showed that exposure (in this 
case, miles driven per year) is essential to the study of the 
expected number of events per year for drivers. There was a 
strong association with the expected number of events, and 
the inclusion of the variable greatly improved model fit.

Implications for SHRP 2 Safety Program: Not surprisingly, 
the driver-based analyses indicated that exposure was essen-
tial to the modeling of the expected number of events. It is 
clear that travel by individual drivers should be identified to 
the extent possible through the face camera or other technolo-
gies. Researchers interested in identifying high-risk drivers 
should explore the hierarchical models formulated in Chap-
ter 2 and empirically tested in Chapter 3. The team developed 
a model that clearly identified drivers who were outliers with 
respect to the number of events they experienced. Drivers with 
exceptionally high, as well as low, numbers of events were 
identified. This method can be used in the identification of 
outlier drivers in subsequent SHRP 2 analysis activities.

In consideration of the previous comments about driver 
distraction and endogeneity, it is of interest to briefly discuss 
the findings of the analysis with respect to this variable. All 
distractions are not alike in their effect on event occurrence: 
virtually all of the event-based models showed substantial 
differences in the effect of distractions on event occurrence. 
Most generally, internal distractions (e.g., reading, moving an 
object in the vehicle, dealing with a pet or insect) were most 
strongly associated with crash or near-crash event occurrence; 
passenger-related distractions and occurrences of the driver 
talking, singing, or daydreaming also had consistent positive 
correlation. Interestingly, the use of a wireless device was 
poorly correlated to event occurrence. These findings must 
be considered in the context that the VTTI data were collected 
before 2006, when cell phone usage was at a lower level than 
now, and devices generally had fewer features than in 2010.

Implications for SHRP 2 Safety Program: These findings, 
taken as a whole, reveal that distractions are an important 

was pleased by the improved fit, there was concern about the 
apparent model instability. This apparent instability may be 
the result of the small sample size, but it may also reflect endo-
geneity among the predictors. As a recommendation to future 
SHRP 2 analysis contractors, the team suggests that care be 
exercised in surrogate analyses; additional empirical testing 
in several other sites and with other drivers should reveal more 
about this issue.

A method for validating events containing possible surro-
gates for crashes is proposed and discussed in Chapter 3. The 
statistical predictions from the event-based model were com-
pared to text descriptions of the event etiology derived from 
video and kinematic data (using the original VTTI data cod-
ing); the comparison showed that events originally coded as 
critical incidents were statistically estimated to be crashes. It 
was posited that these events could be used to supplement 
crash data observed directly. The manipulation of the event-
based models is proposed to provide useful information about 
whether a particular critical incident or near-crash event really 
was similar, statistically, to a crash event in a similar context. 
Such a comparison is, of course, dependent on the model being 
correct.

Implications for SHRP 2 Safety Program: The team offers 
this method as a way for future SHRP 2 researchers to supple-
ment their crash data. The method was developed along the 
way to working with event-based data. It may be used by others 
as needed.

The UMTRI analyses tested several kinematic measures, 
particularly longitudinal velocity entering curves, as a potential 
surrogate of event risk, in this case a CSW alert (instead of a 
crash event). Initial tests of piecewise linear models applied to 
the data as a whole showed that the measure has some merit, 
but the models were weakened statistically by the presence 
of serial correlation in the observations (data were collected at 
10 Hz). The team next explored tracking individual drivers 
through the same location multiple times to see if repeated 
behaviors or learning occurred and to explore individual 
variability. The models showed different results from the 
aggregate. While the results were not stunning, they showed 
potential and are recommended over aggregate approaches.

Part of the analysis of individual drivers tied the kinematic 
measures to specific road segments using Google maps. The 
next set of analysis contracts should have detailed roadway 
data available for at least a few of the study sites through 
SHRP 2 S04 contracts. The ability to explore context for this 
modeling should greatly enhance the findings. The cohort-
based modeling also shows promise in quantifying context 
effects; this method is described further in the discussion of 
Research Question 5.

Implications for SHRP 2 Safety Program: After estimating 
a great many models with aggregate data, the team believes 
an approach that tracks individual drivers repeatedly over the 
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the subsequent modeling and hopes that the results are more 
consistent than those obtained in the present analyses.

In addition to the DDDI, the Life Stress Index was admin-
istered to participating primary drivers in the 100-car study. 
This tool attempts to measure the amount of stress present in 
one’s life as a whole by using factors such as stress at work, 
difficulty with personal relationships, and challenges in the 
family environment. The Life Stress Index was positively 
associated with crashes and near crashes in some event-based 
models, but it was not a predictor in the driver-based models. 
Although the Life Stress Index is another important metric to 
have, it is not as important as a driving-focused metric such 
as the DDDI.

Implications for SHRP 2 Safety Program: It would be of 
interest to obtain a metric for life stress, but this is not as 
important as driver-based risk-taking measurement. The pro-
posed testing for the S07 projects includes a number of per-
ceptual and cognitive tests; psychological tests include metrics 
for risk taking, risk perception, driver style and behavior, and 
thrill and adventure seeking. This should provide more than 
ample measures of driver predisposition for events.

Research Question 5

If elucidative evidence does in fact emerge in terms of attitudinal 
correlates and how their interactions vary by context, is it plau-
sible to parse out the marginal effects of various context variables 
on crash risk by suitable research design?

The response to this research question has two parts. First, 
the team discussed the effects of the various components of 
context, specifically roadway-related factors, time of day, and 
traffic levels, on the probability of crash and near-crash occur-
rence. These inferences are drawn from the event-based models 
with the 100-car data. Second, the team considered the cohort-
based analyses conducted with the UMTRI data and expanded 
on their possible role in SHRP 2 projects, particularly S08.

Context was an extremely important factor to consider; 
several aspects of context were revealed to be associated with 
crash or near-crash outcomes. Roadway-related factors were 
important descriptors of context in the series of event-based 
models. The presence of curves was a significant factor in dif-
ferentiating critical incidents from crashes and near crashes. 
While there was some inconsistency in the magnitude of the 
effect, horizontal curves, in general, indicated a modest increase 
in risk. Horizontal curve presence does not show the magni-
tude of influence of driver behavior variables such as distrac-
tions, but it is clearly important in defining context.

Implications for SHRP 2 Safety Program: Context, as related 
to roadway and roadside geometry and features, is planned to 
be collected through SHRP 2 Safety Project S04. The analyses 
indicate this is an extremely important activity. The event 
modeling described in Chapter 3 reveals that failure to include 

factor to measure in future SHRP 2 analysis efforts. If a por-
tion of SHRP 2 funds are to be used to preprocess S07 project 
data to produce event files, then distractions would seem to be 
a high-priority measure to obtain for each event. The event 
data would be even more useful if matched with nonevent 
data collected from all drivers that include comparable dis-
traction measures.

Research Question 4

In terms of elucidative evidence, what types of behavioral corre-
lates emerge? For example, are attitudinal measurements indica-
tive of revealed behavior in terms of headway maintenance and 
speed reductions?

The principal measure of behavioral correlation was the 
DDDI collected by VTTI during the original 100-car data col-
lection effort (Dula and Ballard 2003). The DDDI consists of 
28 statements to which the driver is asked to respond on a 
5-point Likert scale (never, rarely, sometimes, often, and 
always). Each of the categories of response is assigned an 
integer from 1 to 5. Example test statements include the fol-
lowing: “I verbally insult drivers who annoy me”; “Passengers 
in my car/truck tell me to calm down”; and “I will weave in and 
out of slower traffic.” Based on previous research, the responses 
to the questions are divided into three categories of driving: 
aggressive driving (AD), negative emotional (NE) driving, 
and risky driving (RD). Each category is intended to capture 
a different aspect or component of dangerous driving.

The DDDI was generally associated with an increase in 
crashes or near crashes in the event-based models and was 
also positively associated with the number of events in the 
driver-based models. The results were not always easy to 
interpret or consistent with intuition. In driver-based models, 
the AD component was associated with an increase in the 
number of events, but for females only. In the event-based 
models, this same component was associated with a reduc-
tion in crash or near-crash events (which could be interpreted 
as an increase in the likelihood of critical incidents). So, while 
there were associations in the data, and they were generally 
consistent and statistically significant (within the limits of the 
data), there is a concern that the findings were not as inter-
pretable as would be desired. The DDDI developers cite vali-
dation studies conducted on a simulator (Dula and Ballard 
2003), but no additional references to the use of this index 
were found during a Web search.

Implications for SHRP 2 Safety Program: The Penn State 
team believes that the testing conducted with the DDDI con-
firms the importance of including some measure of driver 
risk propensity in the remaining SHRP 2 data analyses. The 
current plans for the data collection projects (S07) call for 
the use of other metrics for estimating risk taking. The team 
expects that these metrics will be shown to be important in 
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factors in a consistent exposure framework that includes both. 
This ability is only possible with the detailed data available 
from a naturalistic driving database in which an individual 
driver is monitored through a series of contexts (such as in 
the UMTRI RDCW data set).

Implications for SHRP 2 Safety Program: The team believes 
that cohort analysis represents a breakthrough in analysis 
paradigms for naturalistic data. The driver is tracked through 
a roadway network defined as homogeneous based on the needs 
of the analysis team. Once segments are defined, events (using 
appropriate screening criteria) can be allocated to the segments. 
The user or analyst can make the segment designation as fine or 
coarse as roadway and roadside data allow. This framework 
provides the measurement of the driver’s actions and behavior 
throughout the driver’s travel, not just in the seconds immedi-
ately preceding or following a crash. Nevertheless, there is likely 
to always be a demand to study the details of the crash process 
in the few seconds before and after a crash or other event. The 
cohort approach provides a structure for the analyst to flexibly 
define how the behavior of the driver can be studied.

The team used a range of statistical methods to provide 
examples of how the cohort-based data structure can be used. 
These are intended to assist future SHRP 2 safety studies by 
providing guidance about data manipulation and variable 
formulation.

Suggested Research

The analyses completed to date offer a number of lessons 
learned concerning methodological issues in the analysis of 
naturalistic driving data. Among the more important are

1.	 Even with the much larger data set available in the SHRP 2 
S07 project, there is a need to be rigorous in the applica-
tion of Poisson, NB, ZIP, and other count regression tech-
niques. As documented in this report, the estimation of 
literally hundreds of models will be necessary to obtain 
consistent estimates of model parameters. Models con-
taining main effects may not be sufficient. It was not until 
interaction-based models were tested that the count-based 
models started to yield consistent parameter estimates 
and improved goodness of fit. Model estimation following 
this suggestion should be considered good practice.

2.	 The overdispersion parameter (i.e., a) in the NB model is 
an important indicator of heterogeneity and needs to be 
thoroughly studied. Including predictors for the parame-
ter yielded much improved fit with this data set.

3.	 Context is extremely important. The elasticity for time 
of day (dawn or dusk) in the event-based models was as 
large as the most important driver distraction variables. 
The presence of horizontal curves was also marginally 
significant. These findings reinforce the importance of the 

context-related variables will yield a model with substantially 
biased parameter estimates. Accurately assessing the influence 
of factors such as distractions and predisposition is impossi-
ble without the inclusion of context. In the 100-car study, 
many of the context variables were obtained from video of 
the event. In the remaining SHRP 2 projects it seems to be 
envisioned that much of these data will be obtained from the 
enhanced GIS data collected as part of the S04 activity. A cost 
savings will certainly be realized if context data can be gath-
ered in this way, but it is likely that a degree of checking will 
be necessary to verify roadway and roadside features obtained 
from the GIS with camera data from the vehicles.

Time of day, specifically dawn or dusk, was a substantial 
factor increasing risk and again contributed importantly to 
the definition of context in which crash or near-crash events 
occur. This variable was consistently significant and positive 
in all event-based models and had ORs that exceeded some 
driver distraction and precipitating event factors. These find-
ings are consistent with sleep- and fatigue-related studies of 
crash risk for private drivers and the motor carrier industry.

Implications for SHRP 2 Safety Program: Future research 
projects conducted as part of SHRP 2 Safety Project S08 need 
to seriously consider the identification of dawn and dusk driv-
ing. This is an important element of context. As before, a 
comparison of crashes, near crashes, and critical incidents to 
a sample of nonevents with comparable attributes would serve 
to validate these findings.

Run-off-road crashes were consistently and negatively asso-
ciated with increased traffic levels; this seems like a sensible 
association, as drivers are more likely to have other types of 
crashes, near crashes, and critical incidents under more con-
gested traffic conditions. The association was not as strong as 
other variables previously discussed.

Implications for SHRP 2 Safety Program: It would be advan-
tageous if some measure of traffic level could be collected or 
available for the S08 analysis projects; measurement other 
than through vehicle cameras would also be beneficial. The 
traffic data are important but, in the team’s judgment, not as 
important as the measurement of roadway and roadside fea-
tures and time of day (dawn or dusk).

In cohort-based models formulated with the UMTRI data, 
context was generally more strongly associated with event out-
come (i.e., CSW alerts) than driver-based variables. This 
general finding supports the emphasis on context that has 
stimulated much discussion during research symposia. Never-
theless, the Penn State team wishes to caution that there is no 
implication that driver actions are unimportant. In fact, the 
team views context and driver attributes as mutually comple-
mentary and closely linked.

The team would like to emphasize that the cohort-based 
approach allows, for the first time, it is believed, the ability to 
use naturalistic driving data to examine driver and context 
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adaptation to technology reflected in changes in driver 
behavior in vehicles with and without warning systems. 
Adaptation has been a topic of many research papers; the 
evidence continues to build of its importance in any effec-
tiveness analysis. Extensions of the cohort-based formula-
tions offer promise in exploring linkages between driver, 
context, and kinematic variables.

6.	 Future naturalistic driving studies could define homoge-
neous trip segments to facilitate inclusion of kinematic 
variables. As the size of the road segment shrinks, there 
will be an improved ability to capture potentially signifi-
cant vehicle kinematics linked to geometric features. This 
suggestion is closely linked to the more general question 
of improved precision and resolution for road-segment 
event modeling, and it is the substantial promise of link-
ing S07 and S04 databases.

The Penn State team has explored the provided data sets 
with methods that the authors believe fit the need. The team 
hopes it has contributed to an improved understanding of 
promising methods to analyze naturalistic driving data.

roadway-related data collection activity within SHRP 2 
safety projects and the need to thoroughly consider how 
these data can be included in more precise and accurate 
event-prediction models. Clearly it will be important to be 
able to identify noncrash events with common attributes 
in the data to better estimate crash risk in the larger data set.

4.	 There is a need to continue to test models that integrate 
kinematic data with broader data characterizing the event, 
driver attributes, and context. The event-based models 
contained in Chapter 3 only scratch the surface of these 
formulations. There is a particular need to include vehicle 
kinematics to more closely tie vehicle location (e.g., within 
the lane) and movement (e.g., longitudinal speed) within 
event-based model frameworks. Hierarchical models offer 
particular advantages given their flexibility and relaxation 
of assumptions concerning variable probability distribu-
tions. The cohort formulations discussed in Chapter 3 
seem to offer particular promise with respect to kinematic 
variable inclusion.

5.	 The technology-intense group of vehicles in the SHRP 2 
field study requires the careful consideration of driver 
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