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F O R E W O R D
Charles Fay, SHRP 2 Senior Program Officer, Safety

A large component of the safety research undertaken in the second Strategic Highway
Research Program (SHRP 2) is aimed at reducing injuries and fatalities that result from high-
way crashes. Through a naturalistic driving study (NDS) involving more than 3,000 volunteer
drivers, SHRP 2 expects to learn more about how individual driver behavior interacts with
vehicle and roadway characteristics. In anticipation of the large volume of data to be collected
during the SHRP 2 NDS, several projects were conducted to demonstrate that it is possible to
use existing NDS data and data from other sources to further the understanding of the risk fac-
tors associated with road crashes. More specifically, the four projects conducted under the title
Development of Analysis Methods Using Recent Data examined the statistical relationship
between surrogate measures of collisions (conflicts, critical incidents, near collisions, or road-
side encroachment) and actual collisions. This report presents the results of one of these proj-
ects, undertaken by the Institute for Transportation, Iowa State University. It documents the
second phase of a two-phase project under SHRP 2 Safety Project S01E.

The primary objective of this work was to investigate the feasibility of using NDS data to
increase our understanding of lane departure crashes. Research questions specific to lane
departure were identified, and data requirements to answer these research questions were
determined. Methodologies for selecting and applying crash surrogates specific to lane depar-
ture were evaluated. Finally, four analytical approaches were investigated: data mining using
classification and regression tree analysis; simple odds ratio and logistic regression; logistic
regression for correlated data that accounts for repeated sampling among observations; and
time series analysis. The report discusses the advantages and limitations for each of these
approaches. It will provide useful information for analysts of the SHRP 2 NDS data.
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Copyrigh
Lane departures are involved in a substantial number of motor vehicle crashes and
account for a considerable number of fatalities. Single-vehicle, run-off-road crashes
account for almost 39% of traffic fatalities. Two-vehicle head-on crashes account for
18% of noninterchange, nonintersection fatal crashes, with 75% occurring on un-
divided two-lane roadways. Addressing lane departure crashes is thus a major safety goal
in the United States.

Lane departures represent a serious safety concern, but the relationships between fac-
tors that influence whether a vehicle departs its lane and the actions and events that
determine the outcome are complex and not well understood. The focus of the second
Strategic Highway Research Program (SHRP 2) safety research plan is a large field study
of naturalistic driving behavior and performance using a comprehensive, state-of-the-
art instrumentation package installed in the vehicles of volunteer participants. The
SHRP 2 naturalistic driving study (NDS) is intended to support a comprehensive safety
assessment of how driver behavior and performance interact with roadway, environ-
mental, and vehicular factors and the influence of these factors and their interactions
on collision risk, especially the risk of lane departure and intersection collisions.

SHRP 2’s safety research plan will produce a database of naturalistic driving behav-
ior data under Safety Project S06, Technical Coordination and Quality Control, and
Safety Project S07, In-Vehicle Driving Behavior Field Study. Vehicle data will be avail-
able from the naturalistic driving data. Environmental data may also be extracted from
the outside video views from the vehicle instrumentation system. Safety Projects S04A,
Roadway Information Database Developer, Technical Coordination, and Quality
Assurance for Mobile Data Collection, and S04B, Mobile Data Collection, will produce
a database of roadway characteristics that can be linked to the naturalistic driving data-
base to support safety analysis. Some roadway data will be obtained from existing data
sets belonging to state and local roadway agencies in the areas where naturalistic driv-
ing study data are collected. Select roadway data elements will also be collected using
mobile data units. Some roadway information may also be obtained from the vehicle
instrumentation’s outside video views. The resulting databases will help researchers bet-
ter understand how combinations of driver behavior and roadway, environmental, and
vehicle factors lead to different outcomes. Specifically, some of the data will be used in
a full-scale evaluation of lane departures in SHRP 2 Safety Project S08, Analysis of the
SHRP 2 Naturalistic Driving Study Data.

In preparation for the SHRP 2 NDS, the primary goals of the research discussed in
this report are to identify lane departure research questions that can be answered using
data collected in the field study, identify data needs to address the questions, and to
demonstrate analytical methods that can be used to answer those research questions.

Executive Summary
1
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To accomplish these goals, the following tasks were performed:

1. Identify important research questions related to lane departures.
2. Review and extract data from existing naturalistic driving studies to assess the types

of data that may be available in these types of studies.
3. Review information about the types of data that will be available from the SHRP 2

naturalistic driving study.
4. Identify which of the identified lane departure research questions (Task 1) are likely

to be feasible for the full-scale study.
5. Identify types of crash surrogates that may be appropriate for use in answering lane

departure research questions.
6. Use existing naturalistic driving data sets to explore methods for analyzing SHRP 2

field study data so as to answer the identified questions (Task 4).

Although lane departures can occur on any roadway type, this report addresses rural
lane departures, with a focus on rural, two-lane, paved roadways.

Identification of Lane Departure Research
Questions and Necessary Factors

One of the main goals of the research was to identify a set of research questions that
could be answered using the SHRP 2 NDS and the roadway characteristics databases
and that would be useful in determining why drivers leave the roadway and which fac-
tors result in different outcomes. The identification of feasible research questions is pre-
sented in Chapter 2. The team also identified questions that are not likely to be feasible
because of data limitations.

Research questions identified as being feasible for the SHRP 2 full-scale study of lane
departures include the following:

• What environmental, roadway, driver, or vehicle factors influence whether a vehicle
departs its lane?

• What environmental, roadway, driver, or vehicle factors influence lane departure
outcome?

• What is the impact of lane departure countermeasures on lane departure frequency
and outcome?

• What is the relationship between lane departure crash surrogates and crashes?

Research questions involving the following factors are not likely to be feasible with
the data resulting from the SHRP 2 field study:

• Driver’s alcohol or drug use;
• Pavement surface friction;
• Pavement edge drop-off; or
• Quantitative measures of rain, snow, or ice on the road.

Identification of Data Necessary 
to Answer Research Questions

Another goal of the research was to determine what data would be necessary to answer
the identified lane departure research questions. A comprehensive literature review was
conducted to identify driver, roadway, environmental, and vehicle factors that have
been shown to have some correlation to lane departure crashes. Factors identified
include horizontal and vertical curvature, roadway cross section, driveway density, illu-
mination, weather, presence of rumble strips, roadway delineation and signing, pave-
Copyright National Academy of Sciences. All rights reserved.
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ment edge drop-off, vehicle type, speeding, influence of alcohol or drugs, driver age, and
distraction. The necessary accuracy and resolution for the identified factors were also
determined. A summary of the data elements is provided in Chapter 4.

Once relevant factors were identified, the team reviewed existing naturalistic driving
study and roadway data to determine whether it was feasible to obtain each data element
identified. This exercise provided insight as to whether data elements were likely to be avail-
able in the SHRP 2 field study and how feasible it would be to extract elements that were
not readily available. The team obtained a number of events from field operational tests
conducted by the University of Michigan Transportation Research Institute (UMTRI) for
a road departure curve warning system. The events contained instances where the drivers
left their lane, as well as normal driving data on rural roadways. Raw data from their instru-
mentation system included vehicle variables (e.g., vehicle location, forward speed, forward
acceleration, yaw, pitch, lateral acceleration) that were provided at 10 Hz and forward
images that were provided at 2 Hz. Roadway and crash data were also obtained for the
UMTRI study area from the Michigan Department of Transportation (MDOT).

The team also received 33 crash or near-crash lane departure events from the VTTI
100-car naturalistic driving study for rural roadways. A reduced data set rather than raw
data was provided for each event for most variables. A video clip showing views outside
the vehicle was also provided.

Both the UMTRI and the VTTI data were examined to determine the feasibility of
extracting relevant driver, vehicle, environmental, and roadway factors. The availability of
the data in the UMTRI and VTTI databases were reviewed and the limitations described.

Chapter 3 summarizes the various data sets used in the research. A description of com-
mon data terms is also provided. Appendices A and B describe the protocols, methods,
and variable descriptions used to extract data from the UMTRI and VTTI naturalistic
driving study data sets. Data were extracted manually, which consumed a large amount
of resources. The method used to extract the data provides a framework that can be used
by other researchers in working with the SHRP 2 naturalistic driving study data.

The accuracy, frequency, and resolution of data elements that were likely to be avail-
able in the SHRP 2 naturalistic driving study were also identified through a review of avail-
able documentation about the instrumented vehicle data acquisition system (Safety
Project S05, Design of the In-Vehicle Driving Behavior and Crash Risk Study) and a review
of preliminary roadway data elements identified in Safety Project S03 (Roadway Measure-
ment System Evaluation), as discussed in Chapter 4. Data elements were also prioritized
because resource limitations in the SHRP field study will constrain data collection.

Information about which data elements were necessary to address lane departure
research questions and limitations expected in the SHRP 2 field was used to provide
input to the proposed instrumented vehicle data acquisition system (Safety Project S05)
and to provide feedback to identification of initial data elements in Safety Project S03.
The information will also help guide identification and prioritization of roadway data
collection in Safety Projects S04A and S04B.

Methodological Approach to Selecting 
Lane Departure Crash Surrogates

Lane departure crashes are a key measure of road safety. However, naturalistic driving
studies, even the fully deployed SHRP 2 field study, will have limited cases of lane depar-
ture crashes. The naturalistic driving study will capture crashes, near crashes, and incidents,
as well as normal driving. The frequency of incidents and near-crash events is typically
greater than the frequency of crashes; incidents and near-crash events may be used as
crash surrogates. Using surrogates will also provide an opportunity to study what hap-
pens preceding and following a lane departure event. The most significant advantage of
naturalistic driving studies is that they provide a firsthand record of the events that pre-
cede crashes and incidents.
Copyright National Academy of Sciences. All rights reserved.
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Chapter 5 discusses potential lane departure crash surrogates that can be obtained
from naturalistic driving study data. Literature on crash surrogates with an emphasis on
lane departure crash surrogates is summarized, and a methodological approach for
selecting and applying lane departure crash surrogates is outlined.

Existing naturalistic driving study data were also evaluated to determine starting
points for setting triggers to identify lane departure events. The team reduced lane depar-
ture incidents in the UMTRI data set for data on rural, two-lane roads resulting in 22
right-side and 51 left-side lane departures. Data for which no incident had occurred,
which represented normal driving data, were also extracted. The reduced data was used
to assess which variables and thresholds may be the most useful in setting triggers to
identify lane departure events in the full-scale field study. Data for several kinematic
vehicle variables that may signal a lane departure (lateral speed, yaw rate, side accelera-
tion, forward acceleration, roll rate, and pitch rate) were identified. Values for the kine-
matic variables were compared for normal driving against left- and right-side lane
departures using a Wilcoxon Rank Sum Test to determine whether the normal driving
data were statistically different from lane departure events.

Although the distributions for most variables were determined to be different at the 95%
level of significance, a significant amount of overlap exists. This indicates the difficulty in
setting thresholds low enough to include all incidents but still high enough so that a large
amount of nonincident data does not have to be evaluated. Although there were not
enough data to determine what threshold values should be set, initial results suggest that
for left-side lane departures, roll rate, yaw rate, side acceleration, and side speed are likely
to be good candidates to identify events. Results suggest that for right-side lane departures,
yaw rate, side acceleration, and lateral speed are good candidates to identify events.

The VTTI and UMTRI data were evaluated separately because different data were
available for each. The only kinematic variables available for the VTTI data set were for-
ward and side acceleration. In addition, no normal driving data were available. As a
result, it was difficult to assess which variables could be used to determine when lane
departures had occurred using that data set.

Ways to partition normal driving data were also evaluated using the UMTRI data.
Lateral offset was compared for several driving situations. Differences were noted between
driving on a tangent and on left- and right-hand curves, between night and daytime
driving, and between individual drivers. Some guidance on stratifying normal driving
by relevant variables was also provided.

Chapter 5 only offers an approach for selecting and evaluating lane departure crash sur-
rogates. With the data available, the team was not able to conduct an analysis to evaluate
the relationship between lane departure crash surrogates and crashes. The UMTRI data set
provided a large number of lane departures and normal driving data but did not include
crashes. The VTTI data set contained both crashes and lane departure events; however,
once the data were partitioned by roadway type, the data were insufficient to conduct an
evaluation. Additionally, no normal driving data were provided for comparison.

Exploration of Analytical Approaches 
to Answer Lane Departure 
Research Questions

Four analytical approaches were identified that can be used to evaluate the data result-
ing from the SHRP 2 field study and thus answer the lane departure research questions
as discussed in Chapter 6:

1. Data mining using classification and regression tree analysis;
2. Simple odds ratio and logistic regression;
Copyright National Academy of Sciences. All rights reserved.
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3. Logistic regression for correlated data that accounts for repeated sampling among
observations (e.g., repeated sampling for the same driver, trip); and

4. Time series analysis.

Initial analysis of the lane departure and normal driving events extracted from the
UMTRI data as discussed in Chapter 5 was conducted using the four approaches. A
description of each approach is presented in Chapter 6. The data used; a description of
the model, results, sample size, and implications for the full-scale study; and data seg-
mentation methods are also presented. The focus is on rural, two-lane roadways. Because
data were limited during the research, the analysis was exploratory to determine whether
the approach is appropriate for the SHRP 2 field study.

Method 1 (classification and regression tree) and Method 2 (simple odds ratio and
logistic regression) evaluated the likelihood of a left- or right-side lane departure. A
sample-based data aggregation approach was used in the classification and regression
tree analysis, and an event-based data aggregation approach was used for the logistic
regression. Although available sample sizes were limited, both methods produced sim-
ilar results. Both indicated that curve radius, driver age, and type of shoulder were rel-
evant in explaining lane departures. Logistic regression also indicated that both left- and
right-side lane departures were more likely to occur at night and were less likely to occur
as lane width increased. The model for left-side lane departures indicated that male
drivers were more likely than female drivers to be involved in a lane departure, and the
model for right-side lane departures indicated that lane departures are more likely on
roadway sections with a higher density of lane departure crashes and for drivers who
spend more time traveling 10 mph or more over the posted speed limit.

The third method expanded on a varied logistic regression approach based on the
logistic regression model just described, which may be better suited to the data from the
full-scale study.

The fourth method, time series analysis, used continuous data to develop a model to
predict offset as a function of several vehicle kinematic variables. The method was devel-
oped and explained in such a way that it could be adapted to the SHRP 2 field study to
include various explanatory variables, including driver behavior. This approach allows
information, such as driver distraction in previous time periods, to be incorporated into
the model.

Each analytical approach has advantages and limitations for the full-scale study, and
selecting an appropriate method depends on the specific research questions posed and
the resources available to reduce the data.

The VTTI data could not be used in the analysis since only a limited number of events
were available once data were extracted for only rural, two-lane roadways.
Copyright National Academy of Sciences. All rights reserved.
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C H A P T E R  1

Background
This chapter introduces the research problem and scope and
outlines the organization of the full report.

Introduction

Lane departure crashes make up a significant number of motor
vehicle crashes and account for a disproportionate number of
fatalities. LeBlanc et al. (2006) estimated that road departure
crashes account for 15,000 fatalities per year in the United
States. Neuman et al. (2003), using Fatality Analysis Report-
ing System (FARS) data, estimated that almost 39% of traffic
fatalities were single-vehicle, run-off-road (ROR) crashes.
Moreover, Neuman et al. (2003) evaluated FARS data and
estimated that 18% of noninterchange, nonintersection fatal
crashes were a result of two-vehicle head-on crashes, the
majority in nonpassing situations, with 75% occurring on
undivided two-lane roadways.

The importance of addressing lane departure crashes has
been underscored by the American Association of State High-
way and Transportation Officials (AASHTO) in its Strategic
Highway Safety Plan. One of the main goals of the plan is to
keep vehicles on the roadway; another goal is to minimize
the adverse consequences of leaving the road. Furthermore,
AASHTO identified mitigating ROR crashes as one of its
emphasis areas (Neuman et al., 2003).

Lane departure is a serious safety concern, yet the relation-
ship between the factors that influence whether a vehicle
departs its lane in the first place and the series of actions and
events that determine the outcome are complex and not under-
stood well. Preventing lane departure in the first place depends
on understanding where in the sequence of crash events the
lane departure could have been prevented and then applying
appropriate countermeasures. For instance, a driver might
begin to drift toward the roadway edge because of inattention
or because he or she approached a curve at a greater speed
than that at which the curve could be negotiated. Both could
lead to a road departure, but different countermeasures
6
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would be used for each. Edgeline rumble strips may prevent
the first, and in-vehicle curve warning systems may prevent
the second.

Once a vehicle departs its lane, the ability to ameliorate the
outcome depends on understanding the factors that influence
each subsequent action or event and then applying the appro-
priate countermeasures to address these factors when appro-
priate. For instance, a vehicle may partially leave the roadway
because of various factors. The ability to recover and safely
return the vehicle to the travel lane depends on the roadway,
environment, and in some cases, vehicle factors, along with
the driver’s response. To illustrate the point, in one situation
a driver encounters a fully paved shoulder after leaving the
roadway and is able to safely correct and return to his or her
travel lane. In an otherwise similar situation, in contrast, the
driver encounters gravel shoulders and then overcorrects and
loses control, resulting in a rollover. In the first case, the pres-
ence of paved shoulders was a key factor in determining sub-
sequent events and the final outcome of the road departure.
In the second case, the presence of loose shoulder material
and the overresponse by the driver exacerbated the situation
and resulted in a more serious outcome. The ability to under-
stand what factors influence whether a crash occurs, as well
as what factors result in less serious outcomes, would greatly
improve the ability to select and evaluate the effectiveness of
appropriate countermeasures.

Currently, understanding why lane departures occur is
limited in three ways. First, crash data are limited. Crashes are
rare and random, and, as a result, safety analyses must depend
on small sample sizes. In addition, crash reporting can be
inconsistent, so comparison across sites is difficult. Another
problem is the timeliness of crash data. Once a counter-
measure is implemented, agencies prefer to evaluate the effec-
tiveness as soon as possible before investing more resources
in the treatment. However, before-and-after crash studies
often cannot be completed for several years after installation
of the treatment, until representative samples can be obtained
 Sciences. All rights reserved.
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and regression to the mean avoided. Crash databases also
provide limited information. The sequence of events leading
to a crash and the surrounding conditions coded into crash
databases are provided by an officer either assessing the 
situation and recording surrounding conditions after the
crash has occurred or questioning drivers and/or witnesses.
The amount of information about the sequence of events
that precedes a crash, as well as the surrounding roadway,
environment, vehicle, and driver conditions that end up in
the crash record depends on the reporting officer. The
accuracy and usefulness of information that is recorded
depend on how carefully the officer evaluates the scene,
how accurately or truthfully a driver or witness recalls the
sequence of events and conditions that led to the crash, and
whether drivers or witnesses actually understood what
occurred. For instance, a driver who leaves the roadway and
encounters a pavement edge drop-off that causes him or
her to lose control as he or she attempts to return to the
roadway may not even realize that the reason he or she lost
control was because his or her rear tire got caught on the
pavement edge.

Second, the ability to fully understand lane departures is
limited because crash databases only record lane departures
that result in a collision. In some cases, collisions, particu-
larly minor ones, are not even reported. Additionally, the
ability to fully understand lane departures and how they can
be prevented or ameliorated requires information about which
conditions lead to more favorable events and outcomes. 
Drivers may leave the roadway edge at the same rate on paved
shoulders as on unpaved shoulders but are more likely to
fully recover on paved shoulders. Because no crash occurred,
there is no record of positive outcomes and which factors
influenced them.

Third, with current data sets, it has only been possible to
study why actual lane departure crashes occur and then to
attempt to develop countermeasures for these relatively rare
events. Drivers are more likely to be involved in a road depar-
ture incident in which they leave the roadway and are able to
avoid a crash and return to their lane than they are to be
involved in an actual crash. For instance, in the Virginia Tech
Transportation Institute (VTTI) 100-car study, researchers
found 69 crashes, 761 near crashes, and 8,295 incidents
(Klauer et al., 2006). In some cases, these incidents are indi-
cators of near misses and provide valuable information
about why crashes occur and the crash potential of a given
situation. In other cases, positive outcomes indicate that
some roadway, environmental, or human factor had a signif-
icant positive influence in making a safe return to the road-
way possible.

Existing naturalistic driving studies, and the future on-road
study scheduled under the second Strategic Highway Research
Program (SHRP 2) with approximately 2,000 instrumented
Copyright National Academy of Sc
vehicles, will provide rich and unique databases that can be
utilized to derive relationships among incidents, crashes, and
human factors; roadway elements; environmental conditions;
and vehicle characteristics and thus address the problems pre-
sented in the previous paragraphs (TRB, 2007). Because crashes
are rare, crash surrogates have been used to better understand
crash risk and overcome many of the problems with crash
databases. Naturalistic driving studies obtain information on
normal driving but can also capture crashes, near crashes, and
incidents that may arise. The frequency of incidents and near-
crash incidents is typically greater than actual crashes and can
provide greater insights related to the circumstances preced-
ing the incident, including the driver’s behavior and any envi-
ronmental, roadway, or traffic conditions that may have
contributed to the incident. Data from incidents and near
crashes can therefore be used as crash surrogate measures to
further examine crash risk.

Using crash surrogates also provides an opportunity to
study what happens before and after an incident. The most
significant advantage of the naturalistic driving studies is that
they provide a firsthand record of the events that precede
crashes and incidents. Roadway, environmental, vehicle, and
human factors can be extracted directly, rather than through
secondhand information from police records and crash data-
bases, to develop relationships among the factors that influ-
ence road departure crash risk. Improved data about actual
events leading to both road departure crashes and noncrash
incidents will be extremely valuable in developing a better
understanding of what negative factors lead to crashes and
near misses, as well as what factors result in more positive
subsequent events and outcomes. Understanding the reasons
why crashes do not occur yields as much useful information
as evaluating why they do occur. In both cases, factors that
cause a vehicle to initially leave the roadway and the relation-
ship among road, environment, vehicle, and human factors
and subsequent events and outcomes can be studied. Dingus
et al. (2006) reported that the analysis of near crashes from
the VTTI naturalistic driving study (NDS) has been valuable,
as it demonstrates drivers successfully performing evasive
maneuvers.

Scope of Research

The main goal of the research discussed in this report was
to identify relevant research questions for addressing lane
departures and to determine whether these questions can
be addressed using data that is expected to result from SHRP
2’s full-scale NDS. For the present project, lane departure
crash surrogates were also identified. The research addressed
rural lane departures, with a focus on rural, two-lane, paved
roadways.
iences. All rights reserved.
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To accomplish this agenda, the researchers performed the
following tasks:

• Driver, roadway, environmental, and vehicle factors
expected to contribute to lane departure crashes (summa-
rized in Chapter 2) were identified through a review of
available literature and through the team’s expertise.

• Data from the VTTI 100-car study and the UMTRI road
departure crash warning (RDCW) field operation test (FOT)
NDS were evaluated to determine whether the data ele-
ments identified could be extracted. The methodology and
protocol for extracting those data elements were outlined.
The methodology and protocol were described so that this
information could be used to extract data from the full-
scale NDS (summarized in Appendices A and B).

• The accuracy, frequency, and resolution of data collection
that would be necessary to address lane departure research
questions were determined and summarized (described in
Chapter 4). Data elements were also prioritized because
resource limitations in the full-scale study will constrain
data collection.

• A framework for extracting data elements from existing
naturalistic studies that can be used for the full-scale study
was developed. Appendices A and B describe the protocols,
methods, and variable descriptions. Available documenta-
tion of the SHRP 2 Safety Projects S03 and S05 work was
reviewed to determine what data sensors would be avail-
able and what data elements are expected to be available in
the full-scale study. The accuracy, frequency, and resolu-
tion of data that are expected to be available to answer lane
departure questions were evaluated. The team identified
limitations and provided feedback to SHRP 2, as described
in Chapter 4.

• Because data were limited, crash surrogates could be not 
be evaluated. Chapter 5 summarizes information about
lane departure crash surrogates and develops a hierarchy
of lane departure crash surrogates that can be used in the
full-scale NDS. Existing NDS data were also evaluated to
determine starting points for setting triggers to identify
lane departure events.

• Several analytical approaches that can be used to answer
lane departure research questions were developed. Lane
departure and normal driving data were identified in the
UMTRI RDCW FOT NDS database, and four approaches
(data mining, calculation of odds ratio, logistic regression,
and a time series analysis) were used to conduct an initial
analysis of the data. A description of each approach is pre-
sented in Chapter 6. The focus was rural, two-lane, paved
roadways.

• Input was also provided to researchers for SHRP 2 Safety
Project S02, Integration of Analysis Methods and Develop-
ment of Analysis Plan. The team collaborated regularly
Copyright National Academy of
with the Safety Project S02 team and provided input to
research questions.

The research presented in this report builds on a Phase I
report (Hallmark et al., 2008), relevant background informa-
tion from which is included here. Most of the information in
this report, however, does not depend on the reader having
reviewed the Phase I report.

Organization of This Report

The remainder of this report is organized as follows:

• Chapter 2 provides the results of a literature review con-
ducted to identify driver, roadway, environmental, and
vehicle factors that have been shown to have some correla-
tion to lane departure crashes. Factors identified include
horizontal and vertical curvature, roadway cross section,
driveway density, illumination, weather, presence of rum-
ble strips, roadway delineation and signing, pavement edge
drop-off, vehicle type, speeding, influence of alcohol or
drugs, driver age, and distraction. Additionally, research
questions are identified that may likely be answered using
data from the full-scale study or that cannot be answered
because of data limitations. The research questions addressed
in the scope of this research are also identified.

• Chapter 3 summarizes the various data sets used in the
research. A description of common data terms is also
provided.

• Chapter 4 identifies data elements that are expected to be
necessary to answer lane departure research questions based
on a survey of available literature and the team’s expertise
regarding lane departure issues. The accuracy, frequency,
and resolution of each data element are determined and
described. Additionally, the availability of the data in the
UMTRI and VTTI databases is reviewed and the limita-
tions described. The chapter also reviews the available doc-
umentation of the SHRP 2 Safety Projects S03 and S05 work.
The accuracy, frequency, and resolution of data that are
expected to be available to answer lane departure questions
in the full-scale study are evaluated. The chapter identifies
limitations and provides feedback to SHRP 2, as described
in Chapter 5. Data elements are also prioritized because
resource limitations in the full-scale study will constrain
data collection.

• Chapter 5 describes lane departure crash surrogates. Litera-
ture on crash surrogates is summarized, and a methodolog-
ical approach for selecting and applying crash surrogates is
outlined. Existing naturalistic driving study data are also
evaluated to determine starting points for setting triggers
to identify lane departure events. A discussion of ways to
partition normal driving data is also evaluated using exist-
 Sciences. All rights reserved.
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ing data. Lateral offset is compared for several driving situ-
ations. Differences are noted between driving on a tangent
and on left- and right-hand curves, between night and day-
time driving, and between individual drivers. This chapter
also provides some guidance on stratifying normal driving
by relevant variables.

• Chapter 6 describes four analytical approaches that can be
used to evaluate naturalistic driving study data and answer
lane departure research questions. Lane departures and
normal driving cases have been identified in the UMTRI
RDCW FOT NDS data, and four approaches (data mining,
calculation of odds ratio, logistic regression, and a time
series analysis) have been used to conduct an initial analy-
sis of the data. A description of each approach is presented
in Chapter 6. The data used, a description of the model,
Copyright National Academy of Sc
results, sample size, and implications for the full-scale study
are also discussed. The focus is on rural, two-lane roadways.
Because data were limited during the research, the analysis
is exploratory, to determine whether the approach is appro-
priate for the full-scale study.

• Chapter 7 provides a summary of the entire project.
• Appendices A and B describe the protocols, methods, and

variable descriptions used to extract data from the UMTRI
and VTTI naturalistic driving study data sets. The method
used to extract the data provides a framework that can be
used by other researchers in working with the full-scale
study. Data were extracted manually, which consumed a
large amount of resources. How lane departures were
identified within the UMTRI data set is also discussed in
Chapter 5.
iences. All rights reserved.
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C H A P T E R  2

Identifying Final Lane Departure Research 
Questions and Relevant Factors
One of the goals of this project was to develop a set of research
questions that could be explored using existing NDS data.
The intent was to then determine which research questions
could adequately be addressed given the data and the likely
limitations of the SHRP 2 full-scale NDS (hereafter referred
to as the full-scale NDS or full-scale study).

In order to identify lane departure research questions, the
research team first identified which driver, vehicle, roadway,
and environmental factors were likely to contribute to the
occurrence and severity of lane departure crashes, based on
an in-depth literature review described in the next section
and on the team’s expertise in lane departure issues. The team
then reviewed data from existing NDSs, as well as information
available about the full-scale NDS. Research questions that
could not feasibly be answered because the necessary data
would not be available or could not be extracted were identi-
fied. This chapter identifies relevant factors, Appendices A
and B address the feasibility of extracting the data elements
from the UMTRI and VTTI databases, and Chapter 4 com-
ments on which data factors are expected to be available with
the full-scale study. The team also identified which research
questions could be addressed in the present research. Although
the information to select final research questions is based on
the information provided in the following chapters, the infor-
mation is also provided in this chapter to simplify report
organization.

Relevant Data Elements
Identified in Existing Literature

In order to formulate research questions, it was necessary to
determine which data elements are the most relevant. This
section addresses factors necessary or desirable to evaluate lane
departure crashes. The data elements were selected through a
review of currently available literature regarding which road-
way, environmental, vehicle, and driver variables are correlated
to road departure crash occurrence. Roadway data elements
10
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and crash data information were also selected based on the
team’s experience in working with road departure crashes and
its understanding of what roadway variables are likely to be
available or collected.

Roadway Factors

Horizontal and Vertical Curves

Horizontal and vertical curvature, as well as grade, have been
correlated with crash occurrence in a number of studies. Torbic
et al. (2004) report that the crash rate for horizontal curves is
approximately three times that of tangent sections. The authors
also indicate that approximately 76% of curve-related fatal
crashes are single-vehicle run-off-road (ROR) crashes and 11%
are head-on with an oncoming vehicle. A review of the Iowa
DOT crash data indicates that in Iowa (2001–2005), 12% of all
fatal crashes and 15% of all major injury crashes occurred on
curves; 14% of all urban fatal crashes and 11% of all urban
major injury crashes occurred on curves; and 11% of all rural
fatal crashes and 19% of all rural major injury crashes occurred
on curves.

Miaou and Lum (1993) studied heavy truck crashes using
1985–1989 Utah Highway System Information System (HSIS)
data and evaluated horizontal curvature, vertical grade, and
width of paved shoulder. They found that as vertical grade
increased, truck accident involvement also increased. They
also found that truck crash involvement increased as horizon-
tal curvature increased, depending on the length of the curve.

Hauer et al. (2004) used a negative multinomial model
using Washington HSIS crash data to predict the nonintersec-
tion accident frequency of urban, four-lane, undivided roads
(1993–1996). They found no significant correlation between
crashes and vertical grade.

Lamm et al. (1988) and Council (1998) found that crash
rates increased as degree of curve increased, even when traf-
fic warning devices were used to warn drivers of the curve.
 Sciences. All rights reserved.
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Mohamedshah et al. (1993) found a nonintuitive negative
correlation between crashes and degree of curve for two-lane
roadways.

Council (1998) also found that the presence of spirals on hor-
izontal curves reduced crash probability on level terrain, but did
not find the same effect for hilly or mountainous terrain.

Vogt and Bared (1998) evaluated two-lane rural road seg-
ments in Minnesota and Washington State using HSIS data
and found a positive correlation between injury crashes and
degree of horizontal curve.

Shankar et al. (1998) evaluated divided state highways with-
out median barriers in Washington State and found a relation-
ship between the number of horizontal curves per kilometer
and median crossover crashes.

Zegeer et al. (1992) evaluated 10,900 horizontal curves on
two-lane roads in Washington State using a weighted linear
regression model. They found that crash likelihood increased
as the degree and length of curve increased. Alternatively, Deng
et al. (2006) evaluated head-on crashes on two-lane roads in
Connecticut for 720 segments using an ordered probit model.
They included geometric characteristics in the analysis, but did
not find that the presence of horizontal or vertical curves was
significant.

The vehicle speed reduction required for traversing a curve
has an impact on the frequency and severity of crashes on
curves. Abrupt changes in operating speed resulting from
changes in horizontal alignment have been suggested to be a
major cause of crashes on rural, two-lane roadways (Lamm
et al., 1988). Higher crash rates were experienced on horizontal
curves that required greater speed reductions (Anderson et al.,
1999). This finding was also supported by Fink and Krammes
(1995), who indicated that curves requiring no speed reduction
had no significantly different mean crash rates from their pre-
ceding roadway tangents. The roadway tangent length also
influences driver behavior. The effect of a long tangent preced-
ing a curve becomes more of a factor on sharp curves. Roadway
tangent lengths also impact crash rates on steep downgrade
curves. Crash rates on curves with long tangent lengths are
more pronounced when the curve is located on a downgrade of
5% or more, with tangent lengths of more than 200 m.

Preston (2009) found that crash rate increases as radius
decreases below 2,000 ft and that around 90% of fatal and
75% of injury crashes occurred on curves with radii less than
1,500 ft.

McLaughlin et al. (2009) evaluated ROR events using the
VTTI 100-car NDS data. In that study, ROR crashes and
events included those where one or more tires contacted a curb
or left the roadway before returning to the roadway, where the
vehicle departed the road and came to a stop, where the vehi-
cle collided with a lane delineation object (e.g., curb, con-
struction barrels), or where the driver braked hard and swerved
to avoid a crash. The authors found a total of 122 ROR events,
Copyright National Academy of S
which included 28 crashes and 94 near crashes. They reported
that 30% of the ROR events occurred on curves, 56% occurred
on tangent sections, and 14% occurred at intersections.

Roadway Cross Section

Lane width, shoulder type, shoulder width, median type, and
median width have all been associated with crash experience.
A summary of some of the available literature follows. Table 2.1
also summarizes the information.
Miaou and Lum (1993) studied heavy truck crashes using
1985–1989 Utah HSIS data and evaluated horizontal curva-
ture, vertical grade, and width of paved shoulders. The authors
found that as the width of the inside paved shoulder increased,
truck involvement decreased.

Mohamedshah et al. (1993) used Utah HSIS data to model
truck crash involvement on two-lane rural roads. The authors
found a negative relationship between two-lane truck crashes
and increased shoulder width.

Vogt and Bared (1998) developed an accident model for
two-lane rural segments and intersections using Minnesota
and Washington State HSIS data (1985–1989). The authors
found a negative correlation between lane width and shoulder
width and injury crashes.

Hauer et al. (2004) used a negative multinomial model
using Washington State HSIS crash data to predict the non-
intersection accident frequency of urban, four-lane, undivided
roads (1993–1996). The authors found no correlation between
crashes and lane widths. The range of lane widths modeled
was 10–12 ft. Moreover, the authors found that roadway seg-
ments with two-way left-turn lanes (TWLTL) had fewer off-
road crashes.

Garber and Ehrhart (2000) considered crash factors for
two-lane roadways in Virginia with speed limits of 55 mph.
The authors used deterministic models to relate crash rate with
mean speed, flow per lane, lane width, and shoulder width.
They found that the effect of mean speed, shoulder width, and
lane width was negligible.

Deng et al. (2006) used an ordered probit model to analyze
head-on crashes for 720 two-lane road segments in Connecti-
cut (1996–2001). The authors found a positive relationship
between narrow roadways and narrow road segments.

Zhang and Ivan (2005) evaluated the effect of geometric
characteristics on head-on crash incidents for two-lane roads
in Connecticut. The authors used negative binomial general-
ized linear models to evaluate the effects of roadway geomet-
ric features on incidents of head-on crashes for 655 segments
using 1996–2001 crash data. They found a correlation between
horizontal and vertical curvature but indicated that lane and
shoulder width were not significant.

Zegeer et al. (1992) evaluated the safety effects of geometric
improvements for 10,900 horizontal curves on two-lane roads
ciences. All rights reserved.
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Authors Data Set Shoulder Lane Other

Miaou and Lum, 1993

Mohamedshah et al., 1993

Vogt and Bared, 1998

Hauer et al., 2004

Garber and Ehrhart, 2000

Deng et al., 2006

Zhang and Ivan, 2005

Zegeer et al., 1992

Heimbach et al., 1974

Sosslau et al., 1978

Zegeer et al., 1981

Abboud and Bowman, 2001

Souleyrette, 2001

Table 2.1. Summary of Literature for Roadway Cross Section

UT HSIS data: Heavy truck
crashes

UT HSIS data: Heavy truck
crashes

MN and WA HSIS data: Rural
two-lane

WA HSIS data: Urban four-
lane undivided

VA data: Two-lane roads

CT: Head-on crashes on two-
lane roads

CT: Head-on crashes on two-
lane roads

WA: Horizontal curves on
two-lane roads

Two-lane highways

KY: State primary, secondary,
and two-lane roads

AL: 2- and 4-foot paved shoul-
ders on two-lane roads

IA: Rural two-lane, four-lane,
expressways

Negative correlation: Inside
paved shoulder width and
truck crashes

Negative correlation: Width and
truck crashes

Negative correlation: Width and
crashes

No correlation: Width and
crash rate

No correlation: Width and
crashes

Lower crash rate for paved
than for unpaved section

Negative correlation: Width and
crash rate

Decrease in ROR, head-on,
and opposite direction side-
swipe crashes for gravel or
paved shoulder width
increase from 0 to 9 ft

No correlation: Paved shoulder
and crashes

Could not detect relationship

Negative correlation:
Width and crashes

No correlation: Width
and crashes

No correlation: Width
and crash rate

Positive correlation:
Narrow roadway
and crashes

No correlation: Lane
width and crashes

Correlation:
Superelevation
deficiencies
and crashes 
in Washington State. The authors found a statistical relation-
ship between crash occurrence for sharper curves, narrower
curve widths, locations with lack of spiral transitions, and
increased super-elevation deficiencies.

Heimbach et al. (1974) found that rural, two-lane high-
ways with paved shoulders had a significantly lower crash rate
than those with unstable shoulders.

Sosslau et al. (1978) found that paved shoulders exhibit
safety benefits. This NCHRP report concluded that roads with
paved shoulders have lower crash rates than unpaved shoul-
ders of the same width. The report also concluded that shoul-
der widths, paved or unpaved, have a greater effect on crash
rates than lane widths. A linear model was developed to pre-
dict crash rates for roadways with varying lane and paved
shoulder widths. The model was generally able to represent
predicted relationships, but there were some inconsistencies.
Copyright National Academy of
In general, crash rates decreased as shoulder widths increased.
This rule applied for sections of roadways with three degrees
or less of horizontal curvature, but the opposite result was
true for roadways with an average daily traffic (ADT) of fewer
than 1,000 vehicles per day (VPD) or more than 5,000 VPD.

Zegeer et al. (1981) conducted a comparative analysis study
of state primary, state secondary, and rural, two-lane roads in
Kentucky. The sections were selected so that they did not
include any major intersections. A database of 15,944 miles
of road was compiled from computer tape, and eight classifi-
cations of roads based on ADT were used. Because about 70%
of the total sample had no shoulder, shoulders were defined
as paved or densely graded. Grass and soil were not considered
shoulders because they are not suitable for driving. Zegeer
et al. found that ROR, head-on, and opposite-direction side-
swipe crash rates decreased as shoulder width increased from
 Sciences. All rights reserved.
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0 to 9 ft, but the crash rates increased slightly for shoulders
from 10 to 12 ft wide. Crash severity, however, did not decrease
with wider shoulders. Zegeer et al.’s results indicated that it is
economically beneficial for roadways with lane widths greater
than 10 ft to widen the shoulders if there are at least five ROR
or opposite-direction crashes in one year. For roads without
shoulders, the optimal shoulder width to install was found to
be 5 ft.

Not all studies have concluded that paved shoulders offer
a significant benefit, however. Abboud and Bowman (2001)
evaluated 2- and 4-ft paved shoulders on two-lane highways
in Alabama and compared them against county statistics for
the expected number of crashes on the treated segments. Crash
records were not kept on specific routes with similar charac-
teristics; therefore, total county crashes in the before and after
periods were used as a control. Crash frequency by type and
severity was analyzed, but no statistically significant differ-
ences were found at the 0.05 alpha confidence level.

Similarly, a study conducted by Souleyrette (2001) was
unable to present significant results. Souleyrette’s study focused
specifically on rural, two-lane and rural, four-lane, divided,
noninterstate freeways in Iowa. Only targeted crashes were
considered for this study. Intersection, median, and roadway
crashes were excluded because they were assumed to be non-
shoulder related. Limited data availability because of conser-
vative shoulder construction practices in Iowa prevented
statistical significance from being obtained with any of the
results. Trends of reduced crash rates were noted but could
not be verified with confidence.

Shankar et al. (2004) used a zero-inflated negative binomial
model to consider the interaction among design, traffic, and
weather on roadside crashes using 318 segments. The authors
found that weather and design factors play a statistically sig-
nificant role in roadside crash occurrence. The authors also
found that shoulder width and presence of a divided median
were related to crash occurrence. In another study, Shankar
et al. (1998) analyzed 275 sections of divided state highways and
found that median width was a statistically significant factor
in crash history.

Driveway Density

Vogt and Bared (1998) developed an accident model for two-
lane rural segments and intersections using Minnesota and
Washington State HSIS data (1985–1989). The authors found
a positive correlation between driveway density and injury
crashes.

Deng et al. (2006) used an ordered probit model to analyze
head-on crashes for 720 two-lane road segments in Connecti-
cut (1996–2001). Among other factors, the authors found
that nighttime crashes and density of access points were sig-
nificantly related to more severe crashes.
Copyright National Academy of Sc
Roadway Lighting

A number of studies have demonstrated that nighttime crash
rates are significantly higher than daytime crash rates and that
lighting can play a positive role in reducing nighttime crashes.
Deng et al. (2006) used an ordered probit model to analyze
head-on crashes for 720 two-lane road segments in Connecti-
cut (1996–2001). Among other factors, the authors found that
nighttime crashes and density of access points were signifi-
cantly related to more severe crashes.

A before-and-after study of lighting along a five-lane road-
way in Chicago from 1952 to 1958 was reported by Lewin et al.
(2003), who found a reduction of 48% in fatal night crashes.
Billion and Parson (1962) compared crashes on 6 miles of
unlighted and 6 miles of lighted major routes with mountable
medians. The night/day crash rate per million miles was 1.5
times higher for unlighted sections than for lighted. Another
study in Illinois compared the night crash rate before and
after a major traffic route was lighted. A night crash reduction
of 36% was recorded (Box, 1989). A New York study com-
pared lighted and unlighted major and collector streets. The
study reported that streets with little or no illumination had
substantially higher night–day crash ratios (Box, 1972).

Elvik (1995) conducted a meta-analysis of 37 published
studies, reported from 1948 to 1989 in 11 countries, that eval-
uated the safety effects of lighting. Analysis of the studies indi-
cated roughly a 65% reduction in nighttime fatal accidents, a
30% reduction in injury accidents, and a 15% reduction in
property-damage-only (PDO) accidents for both intersections
and roadway segments on rural, urban, and freeway facilities
when lighting was installed. The effect of installing lighting
was greater at intersections than at nonintersections; similar
results were found for rural, urban, and freeway environments.

A comparative study in the Netherlands reported that the
ratio of night/day crashes for unlighted rural freeway routes was
28% greater than for lighted routes (International Commission
on Illumination, 1992). A recent Iowa State University/Center
for Transportation Research and Education (ISU/CTRE) study
evaluated rural expressway safety. The researchers did not eval-
uate lighting per se but evaluated other safety aspects of rural
expressways, such as variation in medians and older driver
issues, which may be of interest in evaluating potential safety
benefits of lighting (Maze and Burchett, 2004).

Two studies were found that evaluated lighting on rural pri-
mary routes. Sabey and Johnson (1973) evaluated 43 sites on
trunk highways before and after lighting. The authors found a
statistically significant reduction (50%) in crashes for 19 of the
roads that were high-speed (70+ mph) segments. They found
no statistically significant reduction for lower-speed segments.
Another study by Cornel and MacKay found no statistical dif-
ference in night and serious crash frequencies before and after
lighting was installed on rural highways (FHWA, 1982).
iences. All rights reserved.
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Rumble Strips

Rumble strips have also been found to reduce lane departure
crashes. Table 2.2 summarizes the results of the literature
review.
Authors Data Set Shoulder/Edgeline Rumble Strips Centerline Rumble Strips

Garder and Davies, 2006

Smith and Ivan, 2005

Corkle et al., 2001

Perrillo, 1998

Hickey, 1997

Miles et al., 2005

Persaud et al., 2004

Russell and Rys, 2005

Kohinoor and Weeks, 2009

Outcalt, 2001

Table 2.2. Summary of Literature for Rumble Strips

MN

CT: State highways

Summarized 8 studies

NY: State highways

PA turnpike

TX: Two-lane roadway

7 states: Rural two-lane

Summarized other studies

AZ: Arterials, minor 
arterials, and collectors

CO: Two-lane

Crash reduction: Overall, 27%, sleep-
related ROR, 58%; dry-road ROR, 43%

Crash reduction: SV, fixed object, 33%;
ROR, 48.5%

Crash reduction: ROR, 20 to 72%

Crash reduction: Overall, 65% to 70%

Crash reduction: ROR, 70%; drift-off-
road, 60%

Reduced shoulder encroachments, 46.7%

Crash reduction: All injury, 14%; front
and opposing-direction sideswipe
injury crashes, 25%

Crash reduction: Injury, 15%; 
head-on and opposing-direction
injury, 25%

Crash reduction: Fatal and serious
injury crashes, 61%

Crash reduction: Head-on, 34%;
opposite sideswipe crashes, 36.5%
Hanley et al. (2000) evaluated four crash-reduction factors
currently used by the California Department of Transporta-
tion (Caltrans), including rumble strip installation, defined as
any construction for which a laterally positioned rumble strip
had been installed. In most cases, the researchers indicated
that some shoulder widening occurred as well. They found
statistically significant accident-reduction factors with rumble
strip installation.

Garder and Davies (2006) evaluated the effectiveness of con-
tinuous shoulder rumble strips (CSRS) on reducing crashes on
rural interstates in Maine. The authors found that the pres-
ence of CSRS reduced crashes overall by 27%, reduced sleep-
related ROR crashes by about 58%, and reduced dry-road ROR
crashes by about 43%. They also found that fatal crashes were
reduced more than other crashes.

Smith and Ivan (2005) evaluated the crash reduction result-
ing from milled-in shoulder rumble strips on limited-access
highways within a 3-year period before and after installation
on sections of 20 freeways, including some sections without
rumble strips. The authors found that shoulder rumble strips
overall reduced single-vehicle, fixed-object crashes by 33%.
They indicated that crashes were reduced by as much as
Copyright National Academy of
48.5% within interchange areas and by as little as 12.8% on
sections where the speed limit was less than 65 mph. They
also found that crashes increased in areas where rumble strips
were not installed.

Corkle et al. (2001) summarized eight research studies on
edgeline rumble strips (ERS) and found that ROR crashes
were reduced by 20% to 72%.

The New York State Department of Transportation (NYS-
DOT) began installing continuous shoulder rumble strips in
1993. It began to include continuous shoulder rumble strips
with its regular construction and as site-specific projects on
existing roadways. The New York State Thruway Authority
(NYSTA), which owns and operates private toll roads, installed
continuous shoulder rumble strips between 1992 and 1996.
The advantage of the data drawn from the NYSTA installations
was uniformity, because the data were recorded by a dedicated
troop of the state police force and there were a limited number
of miles from which to collect data. Both agencies had a lim-
ited amount of before-and-after data, so statistical significance
was not tested, but both agencies found a reduction in crashes
of 65% to 70%. It should be noted, however, that some obser-
vations were made during years that included construction of
a “[non-]significant percentage” of continuous shoulder rum-
ble strips (Perrillo, 1998).

Rumble strips were installed on 80% of the Pennsylvania
Turnpike between 1989 and 1994. Early results after the first
five projects were completed found a 70% reduction in ROR
 Sciences. All rights reserved.
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crashes. After speculation of regression to the mean and other
factors affecting the results, a follow-up study was conducted.
The study included all reportable accidents from 1990 to 1995
and found a slightly more modest result of a 60% reduction in
drift-off-road (DOR) crashes (Hickey, 1997). These results,
however, were not tested for statistical significance.

A preliminary study (Miles et al., 2005) was conducted to
determine the extent of the benefits received by ERS. The study
was conducted on a two-lane road in Texas with an 11-ft travel
lane in each direction separated by a 4-ft-wide center segment
with centerline pavement markings. Before-and-after data were
collected along this 5-mi segment of road between September
10 and 22, 2004, and between November 5 and 17, 2004, respec-
tively (Miles et al., 2005). The geometry of the roadway lim-
its the applicability of the findings to a typical two-lane rural
road and the brief study time period limits the conclusiveness
of the results, but the study still provides an interesting insight
into the operational effects of ERS.

The study by Miles et al. (2005) used rumble strips that
were 12 in. wide; 4 in. was on the marked edge line and 8 in.
was on shoulder pavement. Pneumatic road tubes were used
to collect volume, speed, and lateral position data. Video
footage was also collected to classify the shoulder encroach-
ment maneuvers and determine if the ERS caused any erratic
maneuvers by drivers. A total of 2,985 shoulder encroach-
ments were observed during the 13 days of before-installation
footage and the 13 days of after-installation footage. No
erratic maneuvers were observed in the video data. Statistical
t-tests were performed on the data to determine significance
at the 95% confidence level for any changes in driver behavior
(Miles et al., 2005).

The data from Miles et al. (2005) revealed an overall reduc-
tion in shoulder encroachments during the after period of
46.7%. When broken down by encroachment type, the “other”
case experienced the greatest proportional decrease in shoulder
encroachments. The “other” case included “inadvertent contact
with the edge line because of natural lane shifting, driver inat-
tention or fatigue, swaying motions of trailers, or large load
width.” Encroachments classified as “other” are categorized as
one of four types ranging from “right tires hit,” where only the
right tires contact the rumble strips, to “around,” where both
sets of tires completely cross over the rumble strips (Miles et al.,
2005). While the number of encroachments decreased, the lat-
eral position of vehicles increased in distance beyond the edge
line. This was not statistically significant, however, and standard
deviations were large.

Persaud et al. (2004), using empirical Bayes, analyzed about
98 treatment sites (210 mi) on rural, two-lane roadways in
seven states before and after installation of centerline rumble
strips. The authors found a 14% reduction for all injury crashes
combined (at a 95% confidence level), a 25% reduction for
front- and opposing-direction sideswipe injury crashes (at a
Copyright National Academy of Sc
95% confidence level after installation), and an overall reduc-
tion in crashes of 12% (at a 95% level of significance).

Russell and Rys (2005) summarized the results of several
studies and suggested that the use of centerline rumble strips
reduced overall injury crashes by 15% and reduced head-on
and opposing-direction crashes involving injury by 25%.

Roadway Delineation and Signing

Sun et al. (2007) investigated the distribution of vehicle lateral
position before and after implementation of edgeline mark-
ings on seven tangent and three curve sections of two-lane
roads with less than 22-ft pavement widths in Louisiana. The
authors found that after implementation of the edge lines,
vehicles were more likely to move away from the pavement
edge. They also found that centerline crossings increased at
several sites during the daytime but decreased at night.

Donnell and Mason (2006) evaluated the operation effect
of wider edge lines along curves (8 in. vs. 4 in.) in Pennsylva-
nia. The authors compared differences in several operational
metrics, including change in mean speed, lateral placement,
encroachment frequency, and vehicle position in the travel
lane. Results indicated that wider edge lines did not change
the encroachment proportion, mean speed, or lateral position
along curves.

Tsyganov et al. (2006) compared crash statistics for rural,
two-lane highways in Texas with and without edge lines on
roadways with 9-, 10-, and 11-ft travel lanes with shoulder
widths less than 4 ft using crashes from 1998–2001. On sections
with two or more accidents, highways without edge lines had
an 8% higher mean accident ratio than similar sections with
edge lines. The authors also found an increase in crash fre-
quency with lane-width reductions on sections without edge
lines, but not on roadways with edge lines. On curved seg-
ments, highways without edge lines had a 25.8% higher crash
frequency than those with edge lines.

Pavement Edge Drop-off

Evaluating fatal crashes in Georgia in 1997, Dixon (2005) ran-
domly selected 150 two-lane rural fatal crashes on state and
nonstate system roads. She estimated that in 38 of the 69 (55%)
nonstate system fatal crashes, edge rutting or edge drop-off
was present. The author also determined that edge drop-off
appeared to be one of the crash causal factors for 21 of the 38
(55%) sites where there was drop-off. The study indicated that
drop-off was from 2.5 to 5.0 in. on the rural highway edges.

The Federal Highway Administration (FHWA) estimated
that approximately 160 fatalities and 11,000 injuries result
from crashes related to edge drop-off each year in the United
States (FHWA, 2004). Although a quantitative relationship
between pavement edge drop-off and safety has not been
iences. All rights reserved.
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derived, the U.S. Department of Transportation (USDOT)
has suggested that a drop-off of 3 in. or more of vertical differ-
ential is considered unsafe (FHWA, 2004). AASHTO (1996)
suggested that no vertical differential greater than 2 in. should
occur between lanes. A study by Humphreys and Parham
(1994) found that vertical drop-offs of 4 in. or more between
the roadway surface and adjacent shoulder were unsafe.
Zimmer and Ivey (1982) also showed that safety was related
to pavement edge shape.

Hallmark et al. (2006) reviewed crash reports for Iowa and
Missouri to determine whether crashes were related to pave-
ment edge drop-off. The authors found that approximately
18% of rural ROR crashes in Iowa were potentially edge drop-
off related. They also found that crashes that were potentially
edge drop-off related were more likely to result in a fatal or
major injury crash than other rural ROR crashes. In Missouri,
the authors found that approximately 23% of rural ROR
crashes were potentially pavement edge drop-off related. They
also found a relationship between crashes and an edge drop-
off of 2.5 in. or more.

McLaughlin et al. (2009) evaluated 122 ROR events using
the VTTI 100-car NDS data. The authors reported that change
in lane boundaries was involved in 22% of the events. This
factor included start of median, narrowing of lane, lane drop,
or unusual roadway geometry.

Environmental Factors

Maze et al. (2006) used the 2005 FARS data to evaluate the
impact of weather. They found that pavement condition is
listed as rain, snow, or ice for only 12% of fatal crashes. How-
ever, as noted, this value does not represent the scope of the
problem, because rain-, snow-, or ice-related incidents are only
present during a small amount of driving time. For instance, in
Iowa approximately 21% of crashes are winter-weather related.
The amount of time snow or ice is present is significantly less
than 21%. Additionally, fatal crash frequency during the win-
ter in rural Iowa when pavement conditions are snowy or icy
is about twice the fatal crash frequency when alcohol is a con-
tributing factor.

Deng et al. (2006) used an ordered probit model to analyze
head-on crashes for 720 two-lane road segments in Connecti-
cut (1996–2001). Among other factors, the authors found a
positive relationship between wet roadway surface and crashes.

Shankar et al. (2004) used a zero-inflated negative bino-
mial model to consider the interaction between design, traf-
fic, and weather on roadside crashes using 318 segments. The
authors found that weather plays a statistically significant role
in roadside crash occurrence and contributes to 19.3% of the
likelihood of crash occurrence, while the weather and design
interactions contribute around 6% to the likelihood of crash
occurrence. Their results indicated that the presence of pre-
cipitation in the fall was positively correlated, and the presence
Copyright National Academy of
of precipitation in the spring was negatively correlated with
crash occurrence. The authors also indicated that average
monthly snowfall exceeding 4 in. and the interaction between
snow depth and horizontal curves had a statistically significant
effect on roadside crash frequency.

McLaughlin et al. (2009) evaluated 122 ROR events using the
VTTI 100-car NDS data. They reported the following among
their findings:

• A ROR event is 2.5 times more likely to occur on dark
unlighted roads than during daylight conditions;

• It is 1.8 times more likely on wet roads than dry;
• It is 7 times more likely on roads with snow or ice than on

dry roads; and
• It is 2.5 times more likely to occur during the presence of

precipitation (fog, mist, rain) than during clear conditions.

Vehicle Variables

Vehicle type is relevant because rollover incidents may result
in more serious outcomes for a ROR crash. Pickup trucks and
sport-utility vehicles have a higher center of gravity, which
may result in a different outcome for the same initial sequence
of events during a road departure. Little information was
found about which specific vehicle factors are related to ROR
crashes. It is generally accepted that sport-utility vehicles and
pickup trucks are more prone to rollover. However, little
information was found that describes specific vehicle charac-
teristics in relation to lane departure risk.

For naturalistic driving studies, most vehicle variables can
be collected up front when the instrumentation packages are
installed. It is important to provide representative distribu-
tion of vehicle types for the full-scale NDS.

Driver Factors

General

Spainhour et al. (2005) evaluated fatal crashes in Florida involv-
ing heavy trucks. The authors found that human factors were
the primary contributing factor for 94% of the crashes, with
the most common factors being alcohol/drug use, inattention,
and decision errors.

Dissanayake (2003) used logistic regression to identify influ-
ential factors in young-driver (16 to 25 years old), single-
vehicle ROR crashes. The author used crash data from 1997
and 1998 from police-reported crashes in Florida. Influence
of alcohol or drugs, existence of a curve or grade, and vehicle
speed significantly increased the probability of having a
more severe ROR crash.

McGinnis et al. (2001) analyzed FARS and National Per-
sonal Transportation Studies data for ROR fatal crashes from
 Sciences. All rights reserved.
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1975 to 1997. The authors evaluated how trends changed over
time and found that young drivers, male drivers, drivers over
the age of 70, drivers in utility vehicles, and drivers using alco-
hol had higher involvements in fatal ROR crashes.

Khattak and Hummer (1998) analyzed crashes on two-lane
rural roadways from two counties in North Carolina. The
authors indicated that consumption of alcohol, roadway
surface condition, and horizontal alignment appeared to
influence the occurrence of ROR crashes.

McLaughlin et al. (2009) evaluated 122 ROR events using
the VTTI 100-car NDS data. The authors reported that in
40% of the events, the most common contributing factor was
distraction/inattention. The most common distractor (90%)
was secondary task distraction, which included use of a cell
phone or dialing a cell phone, talking to or looking at passen-
gers, or devoting attention to in-vehicle devices.

Younger Drivers

Ulmer et al. (1997) examined the National Highway Traffic
Safety Administration (NHTSA) General Estimate System
(1993) for 16-year-old drivers and reported that 16-year-
old drivers were more likely than other drivers to be involved
in single-vehicle crashes and in crashes from 6:00 p.m. to
12:00 a.m. These teen drivers were also more likely to be
accompanied by other teen passengers than were 17-, 18-,
or 19-year-olds.

Williams et al. (1997) evaluated fatal crash involvement
among 15-year-old drivers in states that required a learner’s
permit for 15-year-olds and found that crashes involving 15-
year-old drivers were usually single-vehicle crashes, occurred
late at night (between 12:00 a.m. and 6:00 a.m.), and had a
number of passengers in the car. Driving factors that con-
tributed to 15-year-old-driver fatal crashes included speeding
and failure to drive in the proper lane.

A University of North Carolina study (Highway Safety
Research Center, 2000) found that 80% of 16-year-old-driver
nighttime crashes occurred between the hours of 9:00 p.m.
and 12:00 a.m. and 73% of 17-year-old driver nighttime
crashes occurred from 9:00 p.m. to 12:00 a.m. The crash risk
for 16- and 17-year-old drivers was nearly three times greater
between 10:00 p.m. and 12:00 a.m. than during the daylight
hours. Based on the study, the risk per mile driven is even
greater after midnight because most of the nighttime vehi-
cle miles traveled (VMT) by 16- and 17-year-olds occurred
before midnight. Ulmer et al. (1997) examined NHTSA’s
General Estimates System for 16-year-old drivers and found
that 16-year-olds were more likely than other drivers to be
involved in crashes from 6:00 p.m. to 12:00 a.m. Williams
et al. (1997) evaluated fatal crash involvement for 15- and
16-year-olds and found that fatal crashes for 15-year-olds
were more likely to occur between 12:00 a.m. and 6:00 a.m.
Copyright National Academy of Sc
Rice et al. (2004) evaluated how nighttime driving affected
injury crash rates for young drivers in California before
implementation of a graduated driver’s license (GDL) in
1998 and found that crash risk increased after 10:00 p.m.

Adolescent impulsiveness is a natural behavior, but it results
in poor driving judgment and participation in high-risk behav-
iors, such as speeding, inattention, drinking and driving, and
not using a seat belt. Peer pressure also often encourages
risk taking (Chein et al., 2011). According to NHTSA, risk tak-
ing among adolescents appears to be a critical factor in explain-
ing the high number of crashes. For example, younger drivers
tend to accept narrower gaps when pulling out into traffic.
They also have been observed to have shorter following dis-
tances and to drive faster (Ferguson, 2003).

Williams (2001) reported on a study that indicated that for
teenage drivers the presence of one passenger nearly doubles
the fatal crash risk compared with driving alone. In another
study, the fatal crash risk with two or more passengers was
found to be five times as high as driving alone. There was excess
risk for young drivers with passengers during both day and
night hours (Williams, 2001). Another study indicated that the
crash risk when three or more passengers were present was
about four times greater than when driving alone (NHTSA,
2005b). The increased crash risk existed for both daytime and
nighttime crashes, although overall crash risk was much higher
at night. In one study, death rates from 10:00 p.m. to 6:00 a.m.
were 1.74 times higher with passengers than without pas-
sengers. During the daytime, rates were 1.77 times higher
(Williams, 2003). More teen fatal crashes occurred when pas-
sengers, usually other teenagers, were in the car than when
no passengers were in the car. Two out of three teens who
die as passengers are in vehicles driven by other teenagers
(Williams, 2003).

Summarized List of Factors

Table 2.3 summarizes roadway, environmental, vehicle,
and driver factors that have been identified in the literature
or through team expertise as being relevant to the occur-
rence and severity of lane departure crashes. Other factors
that may be necessary to analyze lane departures using NDS
data, such as factors to position a vehicle in respect to 
the roadway, factors to identify potential lane departures
(triggers), or factors relevant to crash surrogates, are not
identified.
Research Questions

One of the goals of this project was to develop a set of research
questions that could be explored using existing NDS data. The
intent was to then determine which research questions could
adequately be addressed given the data and the limitations of
iences. All rights reserved.
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Roadway Factors

Horizontal curves

Vertical curves

Roadway cross section

Signing

Speed limit

Roadway delineation

Roadway defects

Other

Clear zone

Countermeasures not included 
in other roadway factors 
(e.g., paved shoulders)

Environmental Factors

Pavement surface condition

Ambient conditions

Vehicle Factors

Vehicle characteristics

Kinematic

Driver Factors

General

Condition

Teen-specific factors

Substance use

Distractions

Table 2.3. Factors Contributing to Occurrence and Severity of Lane Departure Crashes

Length

Spirals

Relationship to other curves

Length

Relationship to other curves

Lane width

Cross slope

Median type and width

Presence and type

Posted speed limit

Presence and quality of pavement markings

Pavement edge drop-off

Surface friction

Driveway density

Type and location of objects within clear zone

Presence of object delineators

Edgeline and center rumble strips

Additional delineation, such as channelizers,
raised pavement markings

Presence of snow, ice, rain, debris

Time of day

Precipitation

Size

Width

Advanced technologies (e.g., lane departure
warning system, OnStar)

Speed

Age

Driving experience

Reaction time

Fatigue

Emotional state

Presence of passengers

Alcohol

Prescription drugs

Type of distraction

Level of engagement in distraction

Radius or degree of curve

Superelevation

Grade

Surface type

Shoulder type and width

Advisory speed limits

Presence and type of overhead street lighting

Surface irregularities

Road debris

Sight distance

Slope beyond edge of shoulder

Guardrail, barriers

Speed feedback signs

Cable median barrier

Amount of snow, ice, rain

Temperature

Visibility (precipitation, fog, smog, dust)

Type (e.g., SUV, van)

Center of gravity

Braking capabilities

Acceleration

Gender

Aggressiveness

Medical condition

Driver licensing requirements

Illegal drugs

Duration of distraction
Copyright National Academy of Sciences. All rights reserved.
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the SHRP 2 full-scale NDS. Three sets of questions are pre-
sented in the following sections:

1. The first set of questions includes those that were addressed
in this report. These research questions reflect a need for
information that would set the stage to answer research
questions in the full-scale study. These questions could
also be explored further in the full-scale NDS.

2. The second set of questions includes those identified
through this research as being feasible for the full-scale
study. Examples are also provided of more specific ques-
tions within those categories that the team feels can be
realistically addressed, given what was learned during this
research and what is known about the data expected from
the full-scale NDS.

3. The third set of questions includes specific research ques-
tions that the team has determined cannot be realistically
addressed given the data expected to be available from the
full-scale study and given the review of existing NDS data.

The information that supports the research team’s best
estimate about what can or cannot be answered for the full-
scale study is based on information provided in the following
chapters. However, the research questions are placed in this
section because they provide an overview of what follows in
the rest of the report.

In order to identify lane departure research questions, the
team first identified which driver, vehicle, roadway, and envi-
ronmental factors were likely to contribute to the occurrence
and severity of lane departure crashes, based on an in-depth
literature review, as described in the section “Relevant Data
Elements Identified in Existing Literature” (p. 10), and on
the team’s expertise in lane departure issues. The team then
reviewed data from existing NDS from VTTI and UMTRI
and evaluated the feasibility of extracting from these various
vehicle, roadway, driver, and environmental factors. This
information is provided in Appendices A and B. Chapter 4
summarizes data elements that are expected to be necessary
to answer the research questions, reviews the roadway data
elements identified by SHRP 2 Safety Project S03, Roadway
Measurement System Evaluation, and reviews what is expected
to be available from the instrumented vehicle study based on
a review of information from Safety Project S05, Design of the
In-Vehicle Driving Behavior and Crash Risk Study. The abil-
ity to extract data from existing NDS was also explored and
summarized, as this ability relates to the full-scale NDS.

Lane Departure Research Questions
Addressed in Scope of Research

The first set of research questions includes those necessary to set
the stage for answering research questions in the full-scale NDS.
Copyright National Academy of Sc
These questions were explored in this research, and the results
are presented in the following sections. These questions may
also be further addressed using data from the full-scale NDS.

Research Question A-1: What driver, vehicle, roadway, and
environmental factors are necessary to answer a range of research
questions related to lane departures using NDS and roadway
data?

Identifying data needs is an important step in determining
which lane departure research questions can feasibly be
answered. Roadway, driver, environmental, and vehicle fac-
tors expected to influence the occurrence and severity of lane
departures was summarized using a literature review (see sec-
tion “Relevant Data Elements Identified in Existing Litera-
ture,” p. 10). Sources for the various data elements were
identified based on the most current available information
for SHRP 2 Safety Project S07, In-Vehicle Driving Behavior
Field Study, and Safety Project S04B, Mobile Data Collection.
Existing NDS from UMTRI and VTTI were examined, the
data elements necessary to answer lane departure research
questions were extracted, and the feasibility of obtaining the
data was determined. This information is summarized in
Chapter 4.

Research Question A-2: What kinematic variables can be
used to identify lane departure incidents (e.g., lateral drift, lane
departure, near crash)? For instance, a side acceleration of X ft
or a roll rate of Y might define a lane departure.

This question addresses the need to identify vehicle kine-
matic variables that can be used to flag lane departure inci-
dents in the full-scale study. A significant amount of data will
result, and it will be necessary to determine some method to
flag potential incidents in an automated process. The team
conducted an exploratory analysis of kinematic variables for
normal driving, as well as for left- and right-side lane depar-
tures, using the UMTRI and VTTI data sets, as described in
Chapter 5.

Research Question A-3: What environmental, roadway,
driver, or vehicle factors influence whether a vehicle departs
its lane?

This research question addresses understanding environ-
mental, roadway, driver, and vehicle variables that influence
the occurrence of lane departures. Lane departures from the
UMTRI data set were identified, and factors were extracted
from the various corresponding data sets. Several different
analyses were conducted using the UMTRI data that demon-
strated approaches to answering this research question. The
approaches are described in Chapter 6.
iences. All rights reserved.
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Relevant Lane Departure Research
Questions for Full-Scale NDS

The section provides general categories of lane departure ques-
tions that can be answered using the full-scale study. Exam-
ples are also provided of more specific questions within those
categories that can be realistically addressed given what was
learned during this research and based on what is known
about the data expected to result from the full-scale NDS.
This task was based on a review of information available as of
September 2009, when the first draft of this report was sub-
mitted. The team is not aware of any additional information
that alters its original assessment as of January 2010, which is
the date for the final submission of this report.

This set of questions can be addressed by researchers for
SHRP 2 Safety Project S08, Analysis of the SHRP 2 Naturalis-
tic Driving Study Data. To address these questions, researchers
will need data from instrumented vehicles (Safety Project S07),
as well as data that will be gathered or collected during the
roadway data collection effort (Safety Project S04A, Roadway
Information Database Developer, Technical Coordination,
and Quality Assurance for Mobile Data Collection, and Safety
Project S04B). The determination of what can be addressed is
also based on reviewing and extracting variables from the
UMTRI and VTTI NDS data.

Research Question B-1: What environmental, roadway,
driver, or vehicle factors influence whether a vehicle departs
its lane?

This research question addresses understanding driver, road-
way, environmental, and vehicle variables that influence the
occurrence of lane departures. More specific research ques-
tions that could be answered under this general topic include
the following:

• How does roadway surface condition affect lane departure
frequency?

• Are lane departures less likely when pavement markings
are highly visible?

• Does signing have any impact on frequency of road depar-
tures (e.g., large chevrons may make a driver alert to an
adverse horizontal curve)?

• How does roadway lighting affect driver scanning patterns
at night and what is the impact on lane departures?

• What curve characteristics influence the likelihood of a
lane departure?

• What role does distraction play in lane departure frequency?
• What is the relationship between speed and lane departures

on curves?
• How does alcohol consumption influence driver response

to changes in roadway geometry, and what is its impact on
lane departures?
Copyright National Academy o
• Are drivers of sport-utility vehicles and pickup trucks more
likely to engage in aggressive driving behaviors (e.g., speed-
ing, overtaking), and what is the impact of such behaviors
on likelihood of lane departures?

Research Question B-2: What environmental, roadway,
driver, or vehicle factors influence lane departure outcome?

This research question involves understanding driver, road-
way, environmental, and vehicle variables that influence the
outcome of a lane departure when one occurs. More specific
research questions that could be answered under this general
topic include the following:

• How do weather conditions affect lane departure outcome?
• Are drivers who leave the roadway more likely to recover

and safely return to their lane on paved shoulders than on
gravel or earth shoulders? How much of an impact does
shoulder width have on outcome?

• What is the relationship between speed and lane departure
outcome?

• Are drivers in vehicles without automatic braking systems
(ABS) more likely to overcorrect when encountering
snow/ice or loose shoulder material than drivers in vehicles
with ABS?

• How does level of driver forward scanning before a lane
departure influence the likelihood of recovery?

• How do drivers react when encountering various types of
slope beyond the shoulder edge, and how do these reactions
affect lane departure outcome?

• What factors lead to driver overcorrection, and what is its
impact on lane departure outcome?

Research Question B-3: What is the impact of lane departure
countermeasures on lane departure frequency and outcome?

This research question addresses how drivers interact with
countermeasures and addresses why countermeasures are or
are not effective. More specific research questions that could
be answered under this general topic include the following:

• Are drivers more likely to lane keep on roadways with edge-
line rumble strips?

• How likely are drivers to overcorrect or counter-steer away
from edgeline rumble strips and potentially encroach into
an adjacent lane rather than experience a road departure?

• Are drivers who leave the roadway more likely to recover
and safely return to their lane on paved shoulders than on
gravel or earth shoulders? How much of an impact does
shoulder width have on outcome?

• Do edgeline or centerline rumble strips have the same
impact on distracted drivers as on nondistracted drivers?
f Sciences. All rights reserved.
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• Are drivers more likely to travel at unsafe speeds during win-
ter storm events when median cable barriers are present?

• Does additional delineation affect driver forward attention
on curves? What is the impact of delineation on frequency
and outcome of lane departures?

Research Question B-4: What is the relationship between
lane departure crash surrogates and crashes?

One of the main advantages of the full-scale NDS is that it will
provide a unique opportunity to develop relationships between
crash surrogates and crashes. Agencies frequently are unable to
conduct crash analyses to compare the impact of a treatment
for a number of years after the treatment is installed, or they
have few sites for comparison. As a result, it is often difficult
to conduct crash analyses. Understanding the relationships
between lane departure crash surrogates and lane departure
crashes would provide agencies with opportunities to conduct
evaluations sooner.

Answering this research question can provide some infor-
mation on the potential effectiveness of countermeasures such
as edgeline or centerline rumble strips or treatments that
reduce speeds on curves. Specific research questions devel-
oped under this category may also indicate what factors pos-
itively affect the outcome of a lane departure.

Relevant Research Questions That Cannot
Feasibly Be Addressed in the Full-Scale NDS

Several factors expected to be correlated to lane departure
crash frequency and severity will not be collected in any data
sets available during the full-scale NDS. Other factors may be
available, but extraction may be infeasible. The team has deter-
mined that certain research questions cannot be addressed or
cannot be realistically addressed given the data expected to be
available during the full-scale study and based on a review of
existing NDS data.
Copyright National Academy of Sc
Highly relevant research questions related to the occur-
rence, frequency, and severity of lane departure crashes that
cannot be answered include those concerning the following:

• Occurrence or level of alcohol use by the driver (i.e., what
is the relationship between blood alcohol level and fre-
quency of lane departures?): The instrumented vehicle’s
data acquisition system (DAS) is expected to have an alco-
hol sensor that will indicate the presence (but not amount)
of alcohol in the vehicle and will not be able to isolate the
user. Driver alcohol use may be inferred if the driver is 
the sole occupant.

• Occurrence or level of drug use by the driver (i.e., does the
driver’s illegal drug use similarly affect the frequency of
lane departures?): No sensors are available that will pick up
drug use or identify drugs in the driver’s system.

• Pavement friction (i.e., what is the relationship between
lane departures on curves and pavement surface friction?):
Pavement surface friction is unlikely to be collected using
the mobile mapping vans. Even if collected, surface friction
will change over the course of the full-scale study, depend-
ing on such factors as wear and winter maintenance.

• Impact of pavement edge drop-off on lane departure out-
come: Data on pavement edge drop-off is not likely to be
collected by the mobile mapping van because drop-off can
change over short periods of time. As a result, recording
the presence and amount of drop-off at one time period
may not reflect conditions at a future time period. For
instance, there may be several inches of drop-off during the
time the mobile mapping van collects data, but shoulder
maintenance could occur several days later and thus change
conditions drastically.

• Quantitative measure of rain, snow, and ice on road: The
presence of rain, snow, or ice can be determined from the
instrumented vehicle forward video or from environmental
records, but the amount of precipitation on a given stretch
of roadway cannot be measured.
iences. All rights reserved.
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C H A P T E R  3

Data Sets Used
The following sections describe the data sets used throughout
this report for the various analyses. Appendix A provides a
detailed description the variables included in the UMTRI data
set, as well as a description of how a number of variables were
extracted. Appendix B provides a description of variables avail-
able in the VTTI data set.

University of Michigan
Transportation Research
Institute Field Operational 
Test In-Vehicle Data

Several field operational tests were conducted by UMTRI,
including a road departure crash warning (RDCW) system.
The system involved mounting instrumentation packages on
11 vehicles (of the same make and model). In each of the
studies, vehicles were instrumented with a variety of sensing
systems, including a forward video and a driver’s face video,
forward radar and side radar, and a global positioning system
(GPS). The RDCW system also used a camera to record visual
features that delineated the lane and road edges, and radars
that monitored the lane edge. The main advantage of this data
set was that the researchers were able to archive all the data so
the database could be searched and specific data extracted.

The RDCW included a lane departure warning (LDW) sys-
tem and a curve speed warning (CSW) system. The LDW sys-
tem used a forward-looking monochrome camera to identify
visual features near the lane edge. The image position of visual
features and algorithms were used to calculate lane width,
vehicle position within the lane, and relative motion within
the lane. Other sensors, such as GPS, vehicle speed, brake posi-
tion, and forward and side radars, were used to increase the
accuracy and reliability of determining the lane position. The
CSW system processed road geometry to estimate curvature
and then, using vehicle speed and acceleration, computed a
vehicle’s most likely path and risk of leaving the curve (LeBlanc
et al., 2006).
22
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The RDCW system alerted the drivers when they drifted
from their lanes or went too fast to safely negotiate a curve. The
system was tested over 10 months with 78 drivers who were
evenly split by gender and age. Data were collected for a one-
week period prior to activation of the system for each driver.
During the first week of driving, the RDCW was functional and
recording data just as if the system were operational, but alerts
were not provided to the driver. As a result, the first week of
data collection reflected naïve driving with no in-vehicle warn-
ing system alerts.

The RDCW system included six levels of alerts that would
have indicated to the driver that he or she was about to leave
his or her lane or was traveling too fast on a curve. The alerts
included right- and left-lane departure cautionary alerts, right-
and left-lane departure imminent alerts, and cautionary CSW
and imminent CSW alerts. A seventh designation was used
to indicate that a vehicle was negotiating a curve, but this did
not include any alert.

The research team requested data from the road departure
crash warning (RDCW) field operation test (FOT) for the
one-week period prior to activation of the RDCW system for
all instances when one of the six alerts was recorded. Data for
all rural roadways were requested. Rural data are defined in
the UMTRI FOT as data from a location with a population less
than 50,000 persons.

Data for instances when alerts were recorded were used as
starting points to identify potential lane departures. This infor-
mation was used as described in Chapter 5 to develop thresh-
olds for crash surrogate events. The team also requested data
on regular driving that did not involve any alert.

UMTRI provided data in the form of a database, as well as
of forward imagery. Data were provided for 44 different driv-
ers and were divided by alert type. The research team received
over 2,000 alerts (1,506,525 rows of data). Each alert included
approximately 600 rows of data at 10 Hz (one row represents
0.1 s). Data were provided for 30 s before the alert was recorded
and approximately 30 s after. Instances of a vehicle negotiating
 Sciences. All rights reserved.
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a curve were also provided as samples of regular driving and
included approximately 60 s of data. The database contained a
number of data fields (columns) with data from the instru-
mentation system, such as lateral acceleration and forward
speed. The data fields included are described in Appendix A.
The data corresponding to each alert are referred to in the fol-
lowing sections as “vehicle trace,” as shown in Figure 3.1.
Image source: Esri. © 2010 i-cubed. Data source: UMTRI RDCW data set.

Figure 3.1. Example of vehicle trace.
Forward imagery was provided for each vehicle trace.
Images were provided at 2 Hz (2 per s or 1 image per 5 rows 
of vehicle trace data) during times when an alert was not
recorded. Data were provided at 10 Hz (10 per s or 1 image per
row of vehicle trace data) for the 4 s before and 4 s after an alert
was recorded. Imagery was provided as compressed JPEG
images. Images had to be lined up with the corresponding rows
of data. An example forward view is shown in Figure 3.2.
Source: UMTRI RDCW data set.

Figure 3.2. Example of forward video view.
Hereafter, this data set will be referred to as the “UMTRI
naturalistic driving study data set” or “UMTRI data set.”

Data included several roadway types, including rural free-
way, rural freeway ramp, rural expressway, rural four-lane,
rural two-lane paved, and rural two-lane gravel. Since a large
amount of data was provided, the team focused on two-lane
roadways to meet project goals and deadlines. The lane track-
ing system did not perform well on unpaved roadways, so the
study further focused on two-lane, paved roadways.
Copyright National Academy of Sc
The data set included a database file with the following
variables:

• Driver number;
• Trip number;
• Alert time;
• Time;
• Alert ID;
• Alert type;
• Age;
• Gender;
• Curve (present or not);
• Right and left boundary types (type of lane marking);
• Latitude and longitude (used to establish vehicle position);
• Heading;
• Available maneuvering room, right and left (distance to

left and right measured by radar);
• Brake (brake engaged or not);
• Engaged (cruise control engaged or not);
• Lane offset (vehicle offset from lane center);
• Lane offset confidence;
• Lane width;
• Track width (width of vehicle; consistent, since same vehicle

model was used);
• Speed;
• Lateral speed;
• Side and forward acceleration;
• Roll, roll rate, pitch rate, yaw rate;
• Solar angle;
• Wiper (e.g., off, low);
• Headlamp (off, on, parking, high);
• Road class (roadway type: unknown, limited use, major

surface, minor surface, local);
• Curve advisory speed, if present;
• Posted speed limit;
• Curve radius;
• Distance to curve point of intersection;
• Annual average daily traffic (AADT); and
• Number of lanes.

A variable was also included for the widths of the left and
right shoulders. However, all shoulders were indicated in the
data as being 5 m, so it was assumed that this variable was
incorrect. Shoulder width was then measured using the for-
ward imagery instead.

Michigan Geographic
Framework and 
Sufficiency Report

The Michigan Geographic Framework (MGF) is the digital
base map for the state of Michigan. Public roads are one of the
iences. All rights reserved.
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many features maintained as part of this framework. Roadway
attributes include linear referencing descriptors, road name,
address ranges, functional class, and legal ownership. The loca-
tion of most roadway-based data is described using the MGF
linear references.

The Michigan Department of Transportation (MDOT) suf-
ficiency log is an annual report created by the Office of Trans-
portation Planning for the trunk line (state-maintained)
highways. The sufficiency report includes a broad range of
roadway attributes. Sample attributes include MGF-based lin-
ear references, road type, surface and shoulder type, surface
and shoulder width, number of through and turn lanes, traffic
volume, and various sufficiency-based ratings.

The databases were obtained as part of another project at
CTRE. MDOT confirmed through e-mail that the researchers
are allowed to use the data set for the research described in this
report.

Transportation Crash Master

The Transportation Crash Master is an extract of MDOT’s
crash report information system (CRIS) database. It contains
general information about crashes on all public roads, includ-
ing attributes for up to three vehicle units. Crash location is
provided through both MGF-based linear references and
derived geographic coordinates.

The database was obtained as part of another project at
CTRE. MDOT confirmed through e-mail that the researchers
can use the data set for the research described in this report.
One stipulation of using the data is that crashes cannot be
shown in a map in any document or presentation. Data were
available for 2000 to 2006.

Aerial Imagery

Aerial imagery from Esri Corporation was also used. The
team had access to a program in Esri’s geographic informa-
tion system (GIS), ArcMap, which interactively brings up aer-
ial imagery for a location where other spatial data are already
available. The imagery is hosted by Esri and available online
(see http://resources.esri.com/arcgisonlineservices). The data
come from a variety of sources, including U.S. Geological
Survey (USGS) Digital Orthophoto Quarter Quadrangles
(DOQQs). Figures 3.3 and 3.4 show vehicle traces overlaid
with aerial imagery in ArcMap. Google Earth was also used as
a source for aerial imagery.
Copyright National Academy of
Image source: Esri. © 2010 i-cubed. Vehicle trace source: UMTRI RDCW data set.

Figure 3.3. Vehicle traces overlaid with aerial
imagery in ArcMap.
Image source: Esri. © 2010 i-cubed. Vehicle trace source: UMTRI RDCW data set.

Figure 3.4. Single-vehicle trace overlaid with aerial
imagery in ArcMap.
VTTI Naturalistic Driving 
Study from Data Request

The team requested all rural lane departure crashes, near
crashes, and incidents from the VTTI 100-car naturalistic
driving study that occurred in open country or on the inter-
state. A sample of nonevent data was also requested. The team
requested reduced data from events; raw data from the instru-
mented vehicle’s data acquisition system (DAS); and forward,
side, and back video. The team also requested samples from
nonevent driving. The team received a total of 33 crashes or
near crashes on roadways classified as open country or
interstate run-off-road. No incident or nonevent data were
 Sciences. All rights reserved.
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received. It is unknown if the data represented all run-off-road
crashes and near crashes.

A number of variables were requested for the raw data. The
raw data received included the following variables:

• Trip time;
• Trip time elapsed;
• Event start and end time;
• Side and forward acceleration;
• Speed;
• Throttle (throttle position);
• Available maneuvering room forward and rear (included

range, rate, and azimuth);
• Brake (on or off);
• Turn signal state (off, right, left);
• Wiper state;
• Light condition;
• Urban/rural setting; and
• Weather condition.

A variable with latitude and longitude was provided, but its
data fields were invalid and, as a result, vehicle data could not
be spatially located. Other data from the DAS that the team
believed were available and requested but were not received
included the following:

• Vehicle position within lane and lane width from lane
tracking;

• Curve advisory speed and radius;
• Volume;
• Posted speed limit;
• Shoulder width; and
• Shoulder type.

A video clip was provided for each event that included
approximately 45 s of data. Images showing a forward, rear,
and right-side outside view were provided. It is assumed that
the forward view provides as much coverage (distance outside
the front of the vehicle viewed in the image) as was available
in the original data set. It is also assumed that the image reso-
lution is the same as was available in the original VTTI data set
and was not degraded.

VTTI Naturalistic Driving 
Study from the Internet

VTTI recently made some data from their 100-car study pub-
licly available on a data distribution website (http://forums
.vtti.vt.edu/index.php?/files/category/3-100-car-data/). The
following data were obtained:

• Continuous data: Contains data around each crash or near
crash at 10 Hz.
Copyright National Academy of S
• Event eyeglance data: Has recording of participant eye-
glance location for each crash or near crash.

• Event video reduction data set: Contains reduced data from
the video for crashes and near crashes and has information
such as event nature, event type, and precipitating event.

• Event narrative: Has narrative for each crash/near crash.

This data set had data for each of the 33 crashes/near crashes
provided by VTTI. Some events were also available for eight
additional crashes/near crashes that may be used in the analy-
sis of lane departures. The data set provided some additional
information, such as throttle position, lane markings, and dis-
tance to objects left and right.

SHRP 2 Full-Scale
Instrumented Vehicle Study

SHRP 2 is in the process of implementing a large field study of
instrumented vehicles driven by naïve drivers. The naturalistic
driving study will instrument approximately 2,000 vehicles in
six states (Indiana, Pennsylvania, Florida, New York, North
Carolina, and Washington) (Campbell, 2009). The instrumen-
tation will be left in place for 12 or 24 months.

Roadway data will also be obtained through several sources.
Roadway databases from study states will be obtained. SHRP 2
also plans to collect a limited amount of high-resolution road-
way data using deployed mobile mapping units.

A description of the data that are expected to be collected
and that are relevant to answering lane departure research
questions is provided in Chapter 4.

Summary of Terms Used 
to Describe Data

• Continuous data: This type of data is described more in
Chapter 6. Continuous data are naturalistic driving study
data reported at the resolution at which they were collected.
For instance, each row represents one observation of vehi-
cle driving for 0.1 s (10 Hz). This is also referred to in some
studies as “time series data.”

• Dynamic: Dynamic variables are those variables that change
in the short term. These include vehicle kinematic variables
such as speed, acceleration, or position. In reality, most
roadway variables would not change over the course of the
study, but since the roadway a driver is currently traversing
will change in the short term, roadway characteristics are
considered to be dynamic variables. All environmental vari-
ables are also considered to be dynamic.

• Event: This is described more in Chapter 8. An event is an
interval of time centering on a situation of interest, such as
a lane departure. For instance, an event may consist of 30 s
of data before and after a lane departure occurs.
ciences. All rights reserved.
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• Frame: A frame is one row of data from the continuous data.
At 10 Hz this represents a 0.1-s interval.

• Incident: An incident is an occurrence of a situation of
interest, such as a lane departure.

• Static: Static is a way to describe variables that do not change
over the course of the study, such as driver gender, and
results from preinstrumentation driver surveys. Age is likely
to change during the course of the study, but for all intents
Copyright National Academy of
and purposes age can be considered a static variable. Vehi-
cle static variables include vehicle type, track width, and cen-
ter of gravity.

• Vehicle trace: This is used to describe the intervals 
of data provided in the UMTRI data set. Each vehicle
trace consisted of approximately 60 s of data at 10 Hz
(around 600 rows of data), which could be spatially
located.
 Sciences. All rights reserved.
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C H A P T E R  4

Roadway, Driver, Environmental, and Vehicle Data
Needs and Limitations to Address Lane Departures
Using Naturalistic Driving Study Data
Background

This chapter discusses the roadway, driver, environmental, and
vehicle factors that must be included to address the research
questions outlined in Chapter 2 (“Research Questions,” p. 17).
Factors that are expected to be relevant to lane departure
crashes were identified through a review of available literature,
as well as through the team’s expertise in lane departure issues.

Many factors deal with roadway features and the correlation
between roadway countermeasures and lane departures or lane
departure crashes. The intent of including research questions
related to roadway features is to provide roadway agencies with
information about the roadway factors that positively or neg-
atively influence the likelihood of a lane departure so that agen-
cies can better address safety in roadway design and assess the
benefits of various countermeasures, such as rumble strips,
flattening or better delineating curves, and mandating paved
shoulders on reconstruction and rehabilitation projects.

Several environmental factors were also identified as con-
tributing to lane departures and lane departure outcome. A
number of driver factors are also relevant, such as driver char-
acteristics (e.g., age, gender, driving experience), distraction,
and the driver’s emotional or physical state (e.g., medical con-
dition, alcohol or drug use). Vehicle variables are those that
may cause a vehicle to be more or less likely to depart its lane
and affect the subsequent outcome, such as vehicle braking sys-
tem, center of gravity, and vehicle size. Finally, some additional
variables that are not used to evaluate the likelihood of a lane
departure or outcome are nonetheless necessary to identify
vehicle state (e.g., yaw rate, vehicle position). These variables
also need to be included in data streams resulting from the full-
scale NDS. Hence, they are included in subsequent discussions
about necessary data variables.

In order to answer these questions and address the relation-
ship between lane departures and roadway, driver, environ-
mental, and vehicle factors in the full-scale study, data needs
should be identified and limitations in data quality, availabil-
ity, or accuracy should be addressed. This chapter identifies
27
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factors that are expected to be relevant, identifies sources and
limitations from a review of existing naturalistic driving study
data (UMTRI and VTTI), and identifies data limitations that
are expected to be relevant to the full-scale study.

Documentation describing the data sources in the full-scale
in-vehicle naturalistic driving study was also reviewed. The
expected data elements from mobile mapping (SHRP 2 Safety
Project S03, Roadway Measurement System Evaluation) and
the in-vehicle instrumentation (Safety Project S05, Design of
the In-Vehicle Driving Behavior and Crash Risk Study) rele-
vant to lane departures were identified. The availability of the
data in the full-scale driving study is also commented on, and
limitations are identified.

The data sets used to evaluate the feasibility of extracting
necessary data elements to answer the stated lane departure
research questions are described in Chapter 3. A number of
variables were reduced by the team from the data sets described
in this chapter. A detailed description of how variables were
extracted is provided in Appendices A and B.

The next section, “Review of Roadway, Environmental,
and Vehicle Data Elements Available in Existing Naturalistic
Driving Study Data” (p. 28), summarizes the review of exist-
ing data sources to determine whether the necessary data ele-
ments could be extracted. This section describes the minimum
roadway, driver, environmental, and vehicle data elements nec-
essary to answer the research questions. The expected accuracy
and resolution requirements are also discussed. Additionally,
the availability of the data in the existing data sets and the lim-
itations in extracting these data are discussed. An indication
of the accuracy and resolution that would be desirable is also
provided.

The team first reviewed the various data sets that are cur-
rently available, as described in the previous sections, and com-
mented on their adequacy for answering the lane departure
research questions.

Another section below, “Review of Planned Data Collec-
tion for Full In-Vehicle Naturalistic Driving Study” (p. 39),
iences. All rights reserved.
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discusses the review of SHRP 2 Safety Projects S03 and S05
documents that describe the data collection systems for the pro-
posed full-scale naturalistic driving study. The research team’s
understanding of the relevant data collection sensors and tech-
niques and the expected accuracy and frequency of data collec-
tion are summarized. The data elements were compared with
the requirements set out in the next section, “Review of Road-
way, Environmental, and Vehicle Data Elements Available in
Existing Naturalistic Driving Study Data.” The adequacy and
limitations of the methods, data accuracy, and data collection
frequency for answering lane departure research questions are
discussed. The following summarizes information for road-
way, driver, environmental, and vehicle data elements.

It should be noted that the review of the full-scale data col-
lection methods was based on the Safety Project S03 and S05
documents that were available to the research team as of Sep-
tember 2009. The review was also based on the team’s under-
standing of the different sensors/methods. The data review was
completed before the draft version of this report was provided
to SHRP 2 in September. The team has reviewed any informa-
tion that has become available during the review period for this
report, and as of January 2010, the team has had no additional
information that changes the findings presented here.

The naturalistic driving study data from UMTRI and VTTI
were used to evaluate the variables that may be the most useful
in setting triggers to identify lane departure events and to assess
what thresholds may be used. Data were reduced as described
in Appendices A and B.

The UMTRI data resulted in a number of encroachments,
but no conflicts or crashes. Only data for rural, paved, two-lane
roadways were included. The VTTI data included near crashes
and crashes, but no encroachments. Additionally, variables
were not consistent between the two data sets. As a result, the
two data sets were evaluated separately, as discussed in the fol-
lowing sections.

Review of Roadway,
Environmental, and Vehicle
Data Elements Available 
in Existing Naturalistic 
Driving Study Data

The ability to answer the research questions depends on
obtaining the appropriate data about driver, roadway, environ-
mental, and vehicle factors that will probably affect the likeli-
hood of a lane departure, as well as on obtaining data that are
needed to determine crash surrogate thresholds and vehicle
position. Data at the appropriate resolution are also necessary
to develop measures of exposure.

Data from the existing data sets described in Chapter 3,
including naturalistic driving study data from UMTRI and
VTTI, were reviewed to determine whether necessary data
Copyright National Academy of
elements could be extracted. This section describes the min-
imum roadway, driver, environmental, and vehicle data ele-
ments necessary to answer the research questions. The accuracy
and resolution requirements needed are also discussed. The
availability of the data in the existing data sets and the limita-
tions in extracting these data are discussed. An indication of
the accuracy and resolution that would be desirable is also
provided. Exposure factors are also included.

Each data variable has a list of possible sources. For instance,
some types of roadway data could be obtained from aerial
imagery, mobile mapping, state databases, or even the forward
video from the naturalistic driving study data acquisition sys-
tem. In the course of this research, the team often compared
information from one source to another as a check. The team
encourages researchers who will use the data from the full-scale
naturalistic study and other data sets to do the same.

Identification of Necessary Variables

At a minimum, factors that should be included in causal rela-
tionships are those that have already been identified in other
studies. A comprehensive literature review was conducted, and
a list of potential variables that affect the likelihood and sever-
ity of lane departure crashes is reported in Chapter 2 (“Rele-
vant Data Elements Identified in Existing Literature,” p. 10).

These factors were reviewed with the research questions in
mind, and a list of driver, roadway, environmental, and vehi-
cle factors that were determined to be important in addressing
lane departures were summarized based on this information
and the expertise of the research team.

In addition to factors that are expected to positively or neg-
atively affect the likelihood of a lane departure crash, some
other information will also be necessary, such as vehicle posi-
tion and vehicle kinematics. Vehicle kinematics is necessary to
identify triggers that can be used to flag lane departure events
in the full-scale study.

Resolution and accuracy were determined on the basis of
the team’s experience, common accuracies for the metric, or
expert opinions. For instance, superelevation is typically from
2% to 12%. As a result, an accuracy of at least ±0.5% seems log-
ical. The desired accuracy of the lane tracking system was spec-
ified as 0.1 m. The lane position tracking system is critical
for addressing lane departure questions. Several experts
were questioned about the level of risk of different lane
departure events. The experts unanimously agreed that even
one tire leaving the paved roadway surface onto a grass,
gravel, or mixed-surface shoulder constitutes a highly dan-
gerous situation. As a result, the lane position tracking sys-
tem should be accurate and reliable enough to determine
when one or more tires have departed the roadway surface.
The average tire width is 6 in. (0.15 m), so a desirable accu-
racy of ±0.1 to 0.15 m was specified.
 Sciences. All rights reserved.
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Vehicle Factors Needed to Answer Lane
Departure Research Questions

The following section summarizes vehicle factors necessary to
address lane departure research questions, indicates potential
sources in the existing data sets, suggests accuracy and fre-
quency needs, and includes comments about accuracy and
availability in the existing data sets.

Data Element: Vehicle Spatial Position 
(Latitude, Longitude)

• Need: Establishes vehicle position so that data can be linked
among spatial databases and spatial relationship between
subject vehicle and features established.

• Potential source for data element: GPS.
• Desired accuracy: Standard GPS accuracy is approxi-

mately 2 to 5 m. Accuracy of 5 m is sufficient to locate vehi-
cle data to a roadway, but higher accuracy is necessary to
determine where a vehicle is at a particular point in time
relative to roadway features collected from other sources.

• Desired frequency: 10 Hz.
• Comments on extracting data from existing data sets:

UMTRI was uncertain about the accuracy of the GPS system
in their RDCW system but estimated the accuracy to be
between 2 and 3 m (from e-mail correspondence). When
vehicle traces were overlaid with aerial imagery and corre-
lated with forward video, the spatial location of the vehicle
appeared quite accurate. GPS data were not provided with
the VTTI data set.

Data Element: Distance Between Vehicle 
and Roadside Objects

Outside objects are generally those that a vehicle may strike,
such as a utility pole or other vehicle, once they leave their
original lane of travel.

• Need: Establishes vehicle position relative to objects so that
time to collision can be calculated and level of risk assessed.

• Potential source for data element: (1) Distance can be
determined using spatial location of vehicle and object, or
(2) distance to objects can be determined using forward
or side radar if the object is within the range of the forward
or side radar.

• Desired accuracy: ±3.0 ft (0.914 m). If a vehicle were trav-
eling at 60 mph (80.67 ft/s) and the nearest strikable fixed
object it may hit were within 3 ft, the error in calculating
total transfer capability would be 3 ft ÷ 80.67 ft/s = 0.0372 s.
For a vehicle traveling 35 mph, the error would be 0.058 s.

• Resolution: NA.
• Comments on extracting data from existing data sets:

Even if objects can be located with a high level of accuracy,
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vehicle position from GPS accuracy is only likely to be at
best ±6.56 ft (2 m), so the ability to correctly measure dis-
tance is constrained by limitations in GPS accuracy. With
use of radar, accuracy is determined by that of the forward
or side radar units. The drawback to this method is that the
radar can only indicate that an object is within the range of
the radar. It will be necessary to identify the object using
forward or side video.

Data Element: Vehicle Position Within Its Lane

• Need: Lane position may be the best indicator of when a lane
departure has occurred. Lane position can also be used to
determine the magnitude of the lane departure in terms of
the departure angle from the roadway and the amount that
the vehicle encroaches onto the shoulder. Both can be used
to set thresholds between different levels of crash surrogates.

• Potential source for data element: Data can only be
obtained from lane position tracking algorithms and associ-
ated data streams such as forward video.

• Desired accuracy: It is not specifically stated, but it appeared
that the accuracy of the lane tracking software in the UMTRI
data was 0.328 ft (0.1 m). Since this is less than the width of
an average tire (around 6 in.), it is expected that this accu-
racy is sufficient.

• Resolution: Collection of vehicle position at 10 Hz is ade-
quate to establish angle of departure and offset.

• Comments on extracting data from existing data sets:
Lane position was not provided with the VTTI data set.
Lane position in the UMTRI data set was given in terms of
a measure of lane width and offset from the lane center at a
given point in time. Vehicle width was known and constant
among all vehicles. Using these three variables, a vehicle’s
position within its lane could be determined as shown in
Figures 4.1 and 4.2. The data provided in the UMTRI data
set were determined to be adequate to extract data neces-
sary to answer the research questions. Lack of some type
of lane positioning information would seriously affect the
ability to determine when crash surrogate events occurred.
Data Element: Longitudinal Acceleration (ax) 
and Speed (vx)

• Need: Magnitude of acceleration (positive or negative) can
indicate an evasive action and can be used as a measure to
determine thresholds between levels of crash surrogates.
Acceleration rates can also be used as indicators of aggres-
sive driving.

• Potential source for data element: Longitudinal acceler-
ation and speed are measured from an accelerometer or
are output from an on-board system. These data were
provided with both the UMTRI and VTTI data sets. Brake
engagement data were also provided, which can be used
iences. All rights reserved.
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Figure 4.1. Determination of
lane departure and amount of
shoulder encroachment.
Figure 4.2. Vehicle tire path calculated from UMTRI data (shows location and amount of
encroachment onto shoulder).
to indicate that a vehicle is braking (decelerating) but not
to provide the magnitude of braking.

• Desired accuracy: 0.1 ft/s2 and 0.1 ft/s (0.03 m/s2 and
0.03 m/s). Acceleration is also frequently expressed in “g ’s.”

• Resolution: Data collected at 10 Hz should be sufficient.
• Comments on extracting data from existing data sets:

None.

Data Element: Lateral Acceleration (ay) 
and Lateral Speed (vy)

• Need: Indicate side movement, which can be used to deter-
mine when a lane departure has occurred and the severity of
the lane departure. Lateral acceleration and speed are also
used to determine roll hazard.

• Potential source for data element: Lateral acceleration and
speed, usually measured from an accelerometer, were avail-
able in both the VTTI and UMTRI data sets.
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• Desired accuracy: 0.1 ft/s2 and 0.1 ft/s (0.03 m/s2 and
0.03 m/s). Acceleration is also frequently expressed in “g ’s.”

• Resolution: Data collected at 10 Hz should be sufficient.
• Comments on extracting data from existing data sets: None.

Data Element: Pitch, Roll, Yaw

• Need: Define vehicle rotation around several axes and are
used to define levels between crash surrogate thresholds and
assess roll hazard.

• Potential source for data element: Usually measured from
an accelerometer.

• Desired accuracy: Unknown.
• Resolution: Data collected at 10 Hz intervals should be

sufficient.
• Comments on extracting data from existing data sets:

This data element was available in the UMTRI data set. No
limitations were noted.

Data Element: Presence and Distance Between
Subject Vehicle and Other Vehicles

• Need: Establish outcome from lane departure and are used
as a measure of level of service. Presence of other vehicles
(opposing, vehicles passed) can be used to determine road-
way density as an exposure method.

• Potential source for data element: Forward or side video,
forward or side radar.

• Desired accuracy: ±3 ft (0.914 m).
• Resolution: Collected as they occur.
• Comments on extracting data from existing data sets:

Oncoming vehicles and vehicles that were passed or that
passed the subject vehicle could be determined from the for-
ward video from both UMTRI and VTTI. However, only a
subjective measure of distance could be obtained from the
forward video, as shown in Figure 4.3 (following closely,
following, forward vehicle present but not following, no 
f Sciences. All rights reserved.
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(a)

(b)

Image source: UMTRI RDCW data set.

Figure 4.3. Subjective measurement of vehicle
following: (a) subject vehicle is following forward
vehicle and one oncoming vehicle is passing 
subject vehicle; and (b) subject vehicle not 
considered to be following forward vehicle.
forward vehicle); distance could not be determined. Dis-
tance to a forward or side vehicle could be determined from
the forward or side radar. However, only vehicles within the
radar range could be detected.

Roadway Factors Needed to Answer 
Lane Departure Research Questions

The following section summarizes roadway factors necessary to
address lane departure research questions, indicates potential
sources in the existing data sets, suggests accuracy and fre-
quency needs, and includes comments about the accuracy and
availability in the existing data sets. Several factors that are
highly relevant but that will not be available in any of the data
sets include the presence, type, and amount of pavement edge
drop-off and pavement surface friction.

A number of studies have suggested that drop-off can con-
tribute to outcome when a driver leaves the edge of the road-
way and that pavement edge drop-off–related crashes tend
to be more severe than other types of run-off-road crashes
(Hallmark et al., 2006). The team provided this as a sugges-
tion during discussions about the in-vehicle instrumentation
package. However, the only method to collect these data with
the in-vehicle instrumentation is to use a camera pointed at the
roadway. This would capture presence and type of drop-off,
but not its amount. Pavement edge drop-off could be collected
with the mobile mapping units, but the amount and presence
of drop-off can vary significantly over time. As a result, record-
ing drop-off with the mobile mapping units would only be rel-
evant for that point in time.

Surface friction is also an important factor in run-off-road
crashes, particularly on curves. However, none of the vehicle
Copyright National Academy of S
instrumentation packages can capture this variable. It can and
may be collected by the mobile mapping units. However, as
with pavement edge drop-off, surface friction can vary signif-
icantly over time, especially in climates where winter weather
maintenance is frequent. As a result, collection of this variable
may only be representative of a particular point in time.

Data Element: Lane Width

• Need: Independent variable in the statistical analysis. Also
needed to establish vehicle position within its lane.

• Potential source for data element: When using lane width
as an independent variable, data can be obtained from exist-
ing roadway data sets or from mobile mapping. Lane width
is expected to be collected using the lane position tracking
system. Lane width was available with the UMTRI data from
the forward lane position tracking system.

• Desired accuracy: An accuracy of 0.328 ft (0.1 m) is likely
the best that can be achieved with the forward lane position
track system.

• Resolution: Data collected at 10 Hz should be sufficient.
• Comments on extracting data from existing data sets: The

ability to measure lane width using the lane position track-
ing system is critical for establishing vehicle position within
the lane and determining when and by how much a vehicle
departs its lane. Lane width was not provided with the VTTI
data set and could not be measured using any of the data
provided. Data from the UMTRI system were adequate for
research needs.

Data Element: Roadway and Shoulder Surface Type

• Need: Independent variable in statistical analyses. The type
of shoulder will also affect potential outcomes for lane
departures.

• Potential source for data element: Existing roadway data
sets or mobile mapping. Roadway and shoulder type could
also be determined from forward video.

• Desired accuracy: Categorical data (should include asphalt,
concrete, gravel, earth).

• Resolution: Several times per mile or when characteristics
change.

• Comments on extracting data from existing data sets:
While identification of features was possible with forward
imagery from the VTTI and UMTRI data sets, color imagery
would enhance the ability to distinguish features.

Data Element: Shoulder and Median Width

• Need: Independent variable in statistical analyses. Shoulder
and median width also affect potential outcomes for lane
departures.
ciences. All rights reserved.
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• Potential source for data element: Existing roadway data
sets or from mobile mapping. Roadway and median width
could also be measured using forward video from UMTRI
when distances were calibrated.

• Desired accuracy: ±0.5 ft (0.152 m).
• Resolution: Several times per mile or when characteristics

change.
• Comments on extracting data from existing data sets:

Shoulder width was calculated in the UMTRI data set using
side radar. The shoulder width measurement, however, was
inaccurate because it was only measuring whether an object
was located within the radar range. Shoulder and median
width could be calculated when a distance was calibrated in
the forward imagery.

Data Element: Number of Lanes, Access 
Control, and Presence and Type of Median

• Need: Establish roadway type. An independent variable in
statistical analyses.

• Potential source for data element: Mobile mapping, for-
ward imagery, aerial imagery, roadway databases.

• Desired accuracy: NA.
• Resolution: Once per mile or when characteristics change.
• Comments on extracting data from existing data sets:

Roadway type, number of lanes, and type of access control
were provided with both UMTRI and VTTI data. Whether
or not the roadway was divided was indicated, but no infor-
mation about presence and type of median was included.
Roadway characteristics could easily be determined from the
aerial imagery as well.

Data Element: Curve Length and Radius

• Need: Independent variable in statistical analyses. May also
be used to assess roll hazard.

• Potential source for data element: Mobile mapping or
aerial imagery.

• Desired accuracy: ±25 ft (7.62 m).
• Resolution: Once per curve.
• Comments on extracting data from existing data sets:

Radius was measured from the lane position tracking system
in the UMTRI data, but the data received were inaccurate.
Radius and curve length were measured from aerial imagery.
The accuracy of this method is not known.

Data Element: Curve Superelevation, 
Lane Cross Slope

• Need: Independent variable in statistical analyses. May also
be used to assess roll hazard.

• Potential source for data element: Mobile mapping is
likely the only feasible source.
Copyright National Academy of
• Desired accuracy: Maximum superelevation for areas with
no ice and snow is 12%; for areas with snow and ice the max-
imum is 8%. Given these ranges, ideal accuracy is 0.5%, but
it is unknown if this accuracy can be practically measured in
the field. Under normal circumstances cross slope is 1.5% to
2%. Ideally, it would be necessary to measure this variable at
0.1% accuracy to determine differences, but this may not be
practical.

• Resolution: Superelevation would need to be measured as it
changes along a curve. Cross slope could be collected several
times per mile or when characteristics change.

• Comments on extracting data from existing data sets:
Superelevation and lane cross slope were not available in any
data sets used and could not be extracted from other sources.

Data Element: Curve Direction from
Perspective of Driver (Curve Left or Right)

• Need: Independent variable in statistical analyses. Also
important for determining the potential outcome of a non-
crash lane departure.

• Potential source for data element: Needs to be determined
for direction of travel. Potential sources are aerial imagery or
mobile mapping. A forward video image can also be used to
determine direction.

• Desired accuracy: NA.
• Resolution: Should be indicated once per curve.
• Comments on extracting data from existing data sets:

None.

Data Element: Distance Between Curves

• Need: Drivers may negotiate curves differently if they travel
for some distance between curves rather than negotiate a
series of curves. Also used as an independent variable in
statistical analyses.

• Potential source for data element: Aerial imagery or mobile
mapping. Distance could also be calculated from the vehicle
instrumentation.

• Desired accuracy: ±25 ft (7.62 m).
• Resolution: Once per curve.
• Comments on extracting data from existing data sets:

Could be determined from either aerial imagery or the
UMTRI vehicle traces. Both were adequate.

Data Element: Type and Characteristics 
of Curve Spirals

• Need: Independent variable in statistical analyses.
• Potential source for data element: Mobile mapping is the

only reasonable method that can be used to determine the
presence of spirals, along with their characteristics, such as
radius and length.

• Desired accuracy: ±25 ft (7.62 m).
 Sciences. All rights reserved.
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• Resolution: Once for each spiral.
• Comments on extracting data from existing data sets: The

team reviewed aerial imagery but could not detect or mea-
sure spirals. No information on spirals was provided with any
of the data sets, and this information could not be extracted.

Data Element: Amount of Grade (Percent), Length of
Grade (ft or m), and Location and Characteristics 
of the Crown and Crest Vertical Curve

• Need: Independent variable in statistical analyses. Also
affects lane departure outcome.

• Potential source for data element: Existing roadway data-
bases and mobile mapping are the best sources. Presence of
vertical grade and where a vehicle is relative to a vertical
curve can be determined from forward video, as shown 
in Figure 4.4. An estimate could be determined from topo-
graphic maps, but this would be time-consuming.
Source: UMTRI RDCW data set.

Figure 4.4. Forward imagery indicating that vehicle
is currently on an upgrade.
• Desired accuracy: 0.5% for grade and ±25 ft (7.62 m) for
length.

• Resolution: Could be measured each time grade changes
and at beginning and ending points on vertical curves.

• Comments on extracting data from existing data sets:
Grade was not provided in any of the data sets reviewed. As
indicated in Figure 4.4, grade could subjectively be deter-
mined in the UMTRI data set by viewing the forward
imagery. The amount or length of grade could not be
determined.

Data Element: Signing (Would Include Features
Such as Overhead Beacons, Signals, 
and Other Traffic Control Signs)

As a minimum, signs collected should include all traffic con-
trol signs (stop and yield), warning signs (e.g., overhead flash-
ing beacons, curve warning, curve advisory speed, change in
alignment warnings, as shown in Figure 4.5), railroad crossing
signs and markings, and school crossing signs and markings.
• Need: Independent variable in statistical analyses.
• Potential source for data element: Mobile mapping, exist-

ing sign inventories, forward video.
• Desired accuracy: The general location of the sign or an

indication that the sign is present is adequate. For instance,
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it would be important to know the number and type of
chevrons along a curve, but it would not be necessary to
know exactly where each is located. It is also assumed that all
signs are compliant with National Cooperative Highway
Research Program (NCHRP) 350 so that they would not
need to be considered as strikable fixed objects when deter-
mining the outcome of a lane departure event. A sign located
using a standard GPS with accuracy of ±6.6 ft (2 m) would
be adequate.

• Resolution: As they occur.
• Comments on extracting data from existing data sets: The

main limitation in the data sets reviewed was that they did
not include most of the signing data. The UMTRI data set
provided the speed limit and advisory speed when known,
but no other sign information was available. A sign’s pres-
ence could be detected in most cases in the forward imagery
for the UMTRI data set. However, because forward imagery
was only provided at 5 Hz (two images per second), in some
cases depending on where the sign was relative to the vehi-
cle’s position when the image was taken, the lettering on the
sign could not be distinguished (especially at night). In most
cases, the vehicle was not close enough in one frame, and in
the next frame the vehicle had passed the sign.

Data Element: Number of Driveway or Other Access
Points (Driveways/Mile, Access Points/Mile)

• Need: Traffic entering and exiting the traffic stream can
impact vehicle operation. This traffic would be included as
an independent variable in statistical analyses.

• Potential source for data element: Mobile mapping, aer-
ial imagery, forward imagery.

• Desired accuracy: NA.
• Resolution: NA.
• Comments on extracting data from existing data sets:

Driveway and other access point densities for each vehicle
trace in the UMTRI data set were determined by overlaying
the traces with aerial imagery. Driveways and access points
could be identified from the forward imagery in most cases,
but this would be an extremely time-consuming method to
extract the data.

Data Element: Presence and Type of Edge 
and Centerline Rumble Strips

• Need: Independent variable in statistical analyses. Also
needed to establish outcome of lane departure.

• Potential source for data element: Roadway databases,
mobile mapping, and forward video.

• Desired accuracy: NA.
• Resolution: Once per mile or when rumble strip starts

or ends.
• Comments on extracting data from existing data sets: This

element would best be determined from mobile mapping,
ciences. All rights reserved.

http://www.nap.edu/22848


34

Evaluation of Data Needs, Crash Surrogates, and Analysis Methods to Address Lane Departure Research Questions Using Naturalistic Driving Study Data
(a)

(d)
(c)

Source: FHWA 2007.

(b)

Figure 4.5. Types of signing to be included: (a) horizontal alignment warning signs; (b) vertical grade warning
signs; (c) miscellaneous warning signs; and (d) roadway condition and advance traffic control warning signs.
but it also can be determined from the forward video, as
shown in Figure 4.6, particularly with color. However, char-
acteristics such as width, depth, or skip distance would be
difficult or impossible to extract from images.
Data Element: Roadway Delineation (Presence 
of Lane Lines or Other On-Roadway Markings)

• Need: Critical for lane position tracking software. Would be
included as an independent variable in statistical analyses.

• Potential source for data element: An initial estimate could
be obtained from mobile mapping. Some states, such as
Copyright National Academy of S
Iowa, have good pavement marking inventories. These
sources could be used as references. However, pavement
markings can wear fairly quickly under adverse conditions,
so a method to determine pavement marking condition cur-
rent to each driving situation would be necessary. This infor-
mation could only come from forward imagery and would
need to be a qualitative assessment (i.e., highly visible, visi-
ble, obscured, not present). Figure 4.7 shows an example of
a subjective measure.
• Desired accuracy: Data would include a quantitative esti-
mate of visibility of markings.

• Resolution: Once per mile or as the situation changes.
ciences. All rights reserved.
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Figure 4.6. Image from DriveCam showing presence
and type of rumble strips.
(a)

(b)

(c)

Source: UMTRI RDCW data set.

Figure 4.7. Subjective measure of lane marking 
condition using forward imagery: (a) pavement
markings indicated as “highly visible”; (b) pavement
markings indicated as “visible”; and (c) right 
pavement markings indicated as “obscured.”
• Comments on extracting data from existing data sets: This
element needs to be current to the driving situation and can
only be extracted from forward imagery. This information
could be obtained from the UMTRI data set, but was more
difficult with the VTTI data set because of image resolution.

Data Element: Location and 
Type of Roadside Objects

• Need: Necessary to determine potential outcome of lane
departures. May be included as an independent variable in
Copyright National Academy of S
statistical analyses. (Features such as guardrail along the
edge of the roadway may impact driver behavior.)

• Potential source for data element: Mobile mapping would
be the primary source. Some data can be obtained from aer-
ial imagery. The presence of fixed objects can be identified
in the forward imagery. Forward and side radar readings can
be used to determine presence and distance of objects within
range.

• Desired accuracy: Since location of fixed objects will be used
to determine time to collision or potential outcome of a lane
departure, a high level of accuracy is desirable. It is expected
that ±3 ft (0.914 m) is sufficient.

• Resolution: Roadside objects should be collected when they
appear; data should be collected for objects within the clear
zone.

• Comments on extracting data from existing data sets:
Only a limited number of fixed objects, such as trees, could
be determined from the aerial imagery (image resolution
was approximately 1 to 3 m depending on the area). Pres-
ence of fixed objects was also identified in the forward
imagery from UMTRI. A rough estimate of distance from
the edge of the roadway could also be made, but this was
not accurate enough to assess the outcome of lane depar-
tures. Forward and side radars can indicate the presence
but not the type of objects that are within the radar range.
Additionally, only objects within the range of the radars
can be identified.

Environmental Factors Needed to Answer
Lane Departure Research Questions

The following section summarizes environmental factors nec-
essary to address lane departure research questions, indicates
potential sources in the existing data sets, suggests accuracy and
frequency needs, and includes comments about the accuracy
and availability in the existing data sets.

Data Element: Roadway Surface Condition
(Weather Related, as Well as Presence of 
Roadway Irregularities Such as Potholes)

• Need: Independent variable in statistical analyses. May also
impact potential outcome of lane departure.

• Potential source for data element: Forward- or other
outward-facing video, status and frequency of wiper blades,
outside temperature if available, roadway weather infor-
mation system (RWIS) data if archived.

• Desired accuracy: Measure is subjective and therefore
inapplicable.

• Resolution: Collected at 10-min intervals or as conditions
change.
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• Comments on extracting data from existing data sets:
A subjective measure of roadway surface condition and
roadway irregularities could be obtained from both the
VTTI and UMTRI forward video. Measures such as pres-
ence of water on the roadway can be determined as shown
in Figure 4.8. Amount of water on the roadway or presence
of ice and vertical elevation differences between lanes and
shoulder (i.e., pavement edge drop-off ) cannot be deter-
mined with any available data sources.
(a)

(b)

(c)

Source: UMTRI RDCW data set.

Figure 4.8. Pavement surface condition from 
forward imagery: (a) snow present but roadway bare;
(b) wet but amount of water cannot be determined;
and (c) surface irregularities.
Data Element: Environmental Conditions Such as
Raining, Snowing, Cloudy, and Clear (May Not
Correspond to Roadway Surface Condition)

• Need: Independent variable in statistical analyses. May
affect sight distance and is related to visibility.

• Potential source for data element: Forward imagery or
archived weather information, ambient temperature probe.

• Desired accuracy: Will be a subjective measure.
• Resolution: Collected at 10-min intervals or when condi-

tions change significantly.
• Comments on extracting data from existing data sets: A

general assessment of environmental conditions could be
obtained from the forward video provided in the UMTRI
and VTTI data sets. Even with wiper position known, it was
difficult to tell how heavy the rainfall was. Archived weather
information can provide general information for an area but
cannot tell the exact environmental conditions in the loca-
tion of the subject vehicle.
Copyright National Academy of
Data Element: Ambient Lighting, Includes 
Presence of Street Lighting

• Need: Independent variable in statistical analyses.
• Potential source for data element: Sun angle, dawn, dusk,

day, and night indicator can be obtained from time stamp
data and U.S. Naval Observatory astronomical data. They
can also be obtained from light meter and headlamp use.

• Desired accuracy: Only subjective measures will be used.
• Resolution: Can be recorded as the situation changes (day

to dusk) or when significant changes occur during the day
because of clouds. The measure can be somewhat generic
(dark, dark with continuous lighting, dawn, dusk, daytime
clear, or daytime with need for headlamps).

• Comments on extracting data from existing data sets: A rel-
ative estimate of ambient lighting could be obtained in most
cases from the UMTRI and VTTI forward imagery. The lim-
itations are that it was difficult during high cloud cover or
low visibility to subjectively estimate ambient lighting.

Data Element: Visibility

• Need: Independent variable in statistical analyses. Serves as
a measure of sight distance and can also indicate surface
conditions.

• Potential source for data element: Forward or other outside
imagery is the only reasonable data source for visibility.

• Desired accuracy: Subjective variable, so accuracy is
irrelevant.

• Resolution: Sampling at 10-min intervals would be 
sufficient.

• Comments on extracting data from existing data sets: This
element was available from forward imagery in the VTTI and
UMTRI data sets; however, in some cases it was difficult to
tell whether visibility or image resolution was the problem,
as shown in Figure 4.9. The cause of decreased visibility could
not be determined. Low visibility is shown in Figure 4.10, but
it is unknown if the cause is fog, smoke, or dust.
Source: UMTRI RDCW data set.

Figure 4.9. Image shows some reduced visibility, but
it may be the result of sun angle or image resolution.
Exposure Factors Needed to Answer Lane
Departure Research Questions

The following section summarizes exposure factors necessary
to address lane departure research questions, indicates poten-
 Sciences. All rights reserved.
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Source: UMTRI RDCW data set.

Figure 4.10. Low visibility appears to be caused 
by fog.
tial sources in the existing data sets, suggests accuracy and fre-
quency needs, and includes comments about the accuracy and
availability in the existing data sets.

Data Element: Annual Average Daily Traffic

• Need: Exposure measure.
• Potential source for data element: Roadway databases;

most states have archived in some form.
• Desired accuracy: Most current year available.
• Resolution: NA.
• Comments on extracting data from existing data sets: This

element could be determined from the crash data when no
other source was available.

Data Element: Time Driving Into Trip

• Need: Exposure measure.
• Potential source for data element: Vehicle data stream.
• Desired accuracy: ±1 s.
• Resolution: Is expected to be available in at least 1-s intervals.
• Comments on extracting data from existing data sets: NA.

Data Element: Amount of Driving on Different
Roadway Types Under Different Environmental
Conditions (Roadway Type, Rural vs. Urban, 
Dry vs. Snow, Snow vs. Ice, Ice vs. Wet)

• Need: Exposure measure.
• Potential source for data element: Vehicle data stream.
• Desired accuracy: ±1 s.
• Resolution: Is expected to be available at least 1-s intervals.
• Comments on extracting data from existing data sets: NA.

Data Element: Density

• Need: Exposure measure.
• Potential source for data element: Forward video.
• Desired accuracy: NA.
• Resolution: NA.
• Comments on extracting data from existing data sets: The

number of oncoming vehicles, of vehicles that passed by 
the subject vehicle, or of vehicles that the subject vehicle
passes can be counted using the forward and side imagery. 
Copyright National Academy of Sc
Density can be calculated from the number of vehicles
encountered over a specific distance. Density is a good
measure of roadway level of service. However, counting
vehicles in the forward or side imagery is time-consuming.

Data Element: Lane Departure Crash Rate

• Need: Exposure measure.
• Potential source for data element: State or local crash

databases.
• Desired accuracy: NA.
• Resolution: NA.
• Comments on extracting data from existing data sets:

Whether or not spatially located crash databases are avail-
able is the only limitation. Lane departure crashes along each
vehicle trace were extracted from the Michigan Department
of Transportation crash database. Crash density was calcu-
lated as crashes per mile. Crash data were unavailable for
Virginia, and the vehicle traces were not spatially located.

Driver Factors Needed to Answer Lane
Departure Research Questions

Data Element: Age, Gender

• Need: Needed for sampling. Included as an independent
variable in statistical analyses.

• Potential source for data element: Driver questionnaire at
beginning of study.

• Desired accuracy: NA.
• Resolution: NA.
• Comments on extracting data from existing data sets: Age

and gender information are available in the UMTRI road-
way data sets, as well as in VTTI video reduction data sets.

• Limitations: NA.

Data Element: Measures of Driver Riskiness

• Need: Included as an independent variable in statistical
analyses.

• Potential source for data element: The general riskiness of
each participant can be obtained from the survey at the
beginning of the study. The amount of time in hard acceler-
ation or the amount of time exceeding the speed limit can be
calculated from vehicle data.

• Desired accuracy: NA.
• Resolution: One riskiness level according to the Dula

Dangerous Driving Index (DDDI) questionnaire for each
trip/event.

• Comments and limitations on extracting data from exist-
ing data sets: The subject aggression levels were collected by
DDDI questionnaires at the beginning of the VTTI 100-car
iences. All rights reserved.
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study, but the detailed results for each driver were unavail-
able. Acceleration and braking data can be obtained from
the data sets, but speed limit information is available neither
in the VTTI nor the UMTRI databases.

Data Element: Driver Distraction (e.g., Passengers,
Cell Phone Usage, Eating)

• Need: Included as an independent variable in statistical
analyses.

• Potential source for data element: Driver distractions dur-
ing the trip or event can be obtained directly from the
driver’s face video or from video reduction data.

• Desired accuracy: Image resolution (640 × 640 pixels) for
the imagery data.

• Resolution: 15 Hz as the minimum and 30 Hz as preferred.
• Comments on extracting data from existing data sets:

Driver distractions can be extracted from UMTRI driver’s
face video. The driver distraction information has already
been extracted by VTTI from the driver’s face video. The eye
location data that can indicate type and duration of driver
distraction, as well as narrative distraction information at
the time of a near crash or crash, is provided by VTTI.

• Limitations: There are some missing values in the eye loca-
tion data set of the VTTI data, which means eye location
during some time intervals is unknown. This makes it hard
to assess whether or not the driver was distracted.

Data Element: Kinematic Measures Before 
and After Incident, Such as Acceleration, 
Braking, and Steering

• Need: Included as an independent variable in statistical
analyses.

• Potential source for data element: Steering angle may be
obtained from vehicle instrumentation; acceleration and
braking information can be obtained from the time series
data sets.

• Desired accuracy: Image resolution (640 × 640 pixels) for
the imagery data.

• Resolution: 15 Hz as the minimum and 30 Hz as preferred.
• Comments on extracting data from existing data sets: The

steering, acceleration, and braking information during near-
crash and crash events was extracted from VTTI video data
and provided in the video reduction data set by VTTI. The
acceleration and braking information can be extracted from
UMTRI foot/brake pedal video. Braking information is also
available in both the VTTI and UMTRI roadway data sets.

• Limitations: Because there is no steering wheel sensor,
information on steering is from video and is highly depen-
dent on video view and quality for both VTTI and UMTRI
data. Steering information for VTTI data is only available at
Copyright National Academy of
the time of the near-crash and crash events but not at other
times when nonincident lane departure events took place.
Such information is hard to obtain because the face videos
from VTTI that can provide steering information are inac-
cessible to us as a result of institutional review board (IRB)
constraints.

Data Element: Alcohol and Drug Usage

• Need: Included as an independent variable in statistical
analyses; however, this only refers to drug or alcohol use if
present in the driver video.

• Potential source for data element: Alcohol and drug use
information can be obtained from video reduction data set.

• Desired accuracy: Image resolution (640 × 640 pixels) for
the imagery data.

• Resolution: 15 Hz as the minimum and 30 Hz as preferred.
• Comments on extracting data from existing data sets:

Alcohol and drug usage information at the time of near-
crash and crash events was extracted and provided in the
VTTI video reduction data set.

• Limitations: Alcohol and drug usage information for
UMTRI data is inaccessible.

Data Element: Driver Fatigue

• Need: Included as an independent variable in statistical
analyses. It should be noted that it is not simple to determine
what constitutes driver fatigue and how fatigue should be
measured. Some researchers have suggested that the variable
that should be measured is drowsiness. This variable is only
mentioned here because it has been included in other natu-
ralistic driving studies.

• Potential source for data element: Indicators of driver
fatigue can be obtained from driver’s face video or the
video reduction data set.

• Desired accuracy: Image resolution (640 × 640 pixels) for
the imagery data.

• Resolution: 15 Hz as the minimum and 30 Hz as preferred.
• Comments on extracting data from existing data sets:

Indicators of driver fatigue information at the time of near-
crash and crash events were extracted and provided in the
VTTI video reduction data set. Eye location data from
the VTTI database also provides information about the time
and duration of drivers’ eye closures, which can indicate
fatigue during the trip. Driver fatigue indicators can also be
extracted from UMTRI driver’s face video.

• Limitations: NA.

Data Element: Lane Departure Intention

• Need: Drivers may intentionally leave their lane for a num-
ber of reasons that may result in a conflict or crash (e.g.,
 Sciences. All rights reserved.
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driver goes around stalled vehicle on shoulder or passes the
vehicle).

• Potential source for data element: Data can only be
obtained from lane position tracking algorithms and asso-
ciated data streams such as forward video.

• Desired accuracy: NA.
• Resolution: NA.

Other Observations Regarding Data Elements

The VTTI data sets provide gender and age information of
the primary drivers but not for secondary drivers who also
used the subject cars. Because there is no driver’s face video
provided by VTTI, demographic information of the secon-
dary drivers could hardly be obtained. This is not a problem
for UMTRI data, which present all needed demographic
information in both the data sets and report appendix.

Summary of Vehicle, Roadway,
Environmental, and Exposure Factors

The factors discussed in the preceding sections are summarized
in Tables 4.1 to 4.5. An indication of the priority for the data
element is also provided.
Table 4.1. Vehicle Factors

Data Element Data Stream Accuracy Frequency Priority

Vehicle position (latitude, longitude)

Distance between vehicle and 
strikable objects

Lane position, lane offset

ax and vx

ay and vy

Pitch, roll, yaw

Distance between vehicles

GPS

Spatial location of vehicle/objects 
or radar

Measured by lane position tracking
system using forward- or other
outward-facing video, GPS, and
other data streams

Accelerometer or On-Board 
Diagnostics (OBD)

Accelerometer or OBD

Accelerometer

Imagery, radar

Best possible (±6.6 ft
[2 m])

±3.0 ft (0.914 m)

±0.1 ft (0.305 m)

±0.1 ft/s2 and 0.1 ft/s
(0.0305 m/s)

±0.1 ft/s2 and 0.1 ft/s
(0.0305 m/s)

±3.0 ft (0.914 m)

10 Hz

NA

10 Hz

10 Hz

10 Hz

10 Hz

NA

High

High

High

High

High

High

High
Review of Planned Data
Collection for Full In-Vehicle
Naturalistic Driving Study

The team first reviewed the various data sets that are currently
available, as described in the previous sections, and com-
mented on their adequacy for answering the lane departure
research questions. The next step was to review any relevant
Copyright National Academy of S
information from SHRP 2 Safety Projects S03 (Roadway Mea-
surement System Evaluation), S04A (Roadway Information
Database Developer, Technical Coordination, and Quality
Assurance for Mobile Data Collection), and S05 (Design of the
In-Vehicle Driving Behavior and Crash Risk Study) that was
available. Existing documentation that describes the instru-
mentation package, roadway data collection protocol, and
description of other data sources for the full in-vehicle natu-
ralistic driving study were reviewed, including the following:

• Design of the In-Vehicle Driving Behavior and Crash Risk
Study. Task 4: Sample Design Interim Report. SHRP 2 Safety
Project S05. Dingus et al. Virginia Tech Transportation
Institute. November 2007.

• “Gaps Identified in the SHRP 2 Safety Program, Relative to
Project S04.” White paper. SHRP 2 Safety Project S03. John
E. Hunt and Anita P. Vandervalk. Applied Research Associ-
ates, Inc., and Cambridge Systematics, Inc. Received Febru-
ary 2009. Includes appendices.

• “Sampling Thoughts for S05 Following the July 2007 SHRP
Safety Research Workshop.” White paper. Jim Hedlund.
July 28, 2007.

• SHRP 2 Safety Program Data Processing Steps. Draft. Novem-
ber 4, 2008.

• Design of the In-Vehicle Driving Behavior and Crash Risk
Study. Task 9: Data System Interim Report (Task 6: Driver
Face and Other Video Recording and Processing). SHRP 2
Safety Project S05. Dingus et al. Virginia Tech Transporta-
tion Institute. September 3, 2008.

• Design of the In-Vehicle Driving Behavior and Crash Risk
Study. Task 9: Data System Interim Report (Task 7: Data Items
and Instrumentation Package Specifications). SHRP 2 Safety
ciences. All rights reserved.
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Table 4.2. Roadway Factors

Data Element Data Stream Accuracy Frequency Priority

Lane width

Roadway and shoulder surface type

Shoulder and median width

Number of lanes, access control, 
presence and type of median

Curve length and radius

Superelevation, lane cross slope

Curve direction

Distance between successive 
curves

Type and characteristics of 
curve spirals

Amount of grade (percent), length 
of grade, and location and 
characteristics of the crown 
and crest vertical curve

Signing

Number of driveway or other 
access points

Presence and type of edge and 
centerline rumble strips

Roadway delineation

Location and type of roadside 
objects

Mobile mapping, forward video

Roadway data sets, mobile mapping,
forward video

Roadway data sets, mobile mapping,
forward video

Mobile mapping, aerial imagery

Mobile mapping or aerial imagery

Mobile mapping van

Forward imagery, aerial imagery

Mobile mapping data, aerial imagery

Roadway data sets, mobile mapping,
forward imagery

Roadway data sets, mobile mapping

Existing sign inventories, mobile 
mapping, forward imagery

Mobile mapping, aerial imagery, 
forward imagery

Roadway data sets, mobile mapping,
forward imagery

Forward imagery

Mobile mapping data, aerial imagery

±0.328 ft (0.1 m)

NA

±0.5 ft (0.15 m)

NA

±25 ft (7.62 m)

±0.5%, 0.1%

NA

±25 ft (7.62 m)

±25 ft (7.62 m)

0.5% for grade and
±25 ft (7.62 m)

±6.6 ft (2.0 m)

NA

NA

NA

±3.0 ft (0.914 m)

10 Hz

NA

10 Hz

Once per mile or
when characteris-
tics change

Once per curve

Several times per
mile

Collected for each
curve

Once per curve

Once per curve

Begin and end
points of grade
change

Once per sign

As needed

Start and end of
rumble strip

Once per mile or as
situation changes

As they occur

High

High

High

Medium

High

Medium

High

Medium

Medium

Medium

High

Medium

High

Medium

Medium
Table 4.3. Environmental Factors

Data Element Data Stream Accuracy Frequency Priority

Roadway surface condition

Ambient condition

Ambient lighting including 
street lighting

Visibility

Archived RWIS data, forward- or
other outward-facing imagery, 
status and frequency of wiper
blades, outside temperature

Archived weather information, 
forward imagery

Sun angle, dawn, dusk, day, night
indicator can be obtained from
time stamp data and U.S. Naval
Observatory astronomical data,
subjective measure from forward
imagery

Forward- or other outward-facing
imagery

Will be qualitative
measure

Will be qualitative
measure

Will be qualitative
measure

Will be qualitative
measure

10-min intervals or if
conditions
change

10-min intervals or if
conditions
change

Once per mile or as
conditions
change

Once per mile

High

Low, if surface
condition
is collected

Medium

High
Copyright National Academy of Sciences. All rights reserved.
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Table 4.4. Exposure Factors

Data Element Data Stream Accuracy Frequency Priority

AADT Roadway data sets Most current year NA Medium
available

Time into trip Vehicle data stream NA 10 Hz Medium

Amount of time driving on various Vehicle data stream NA 10 Hz High
roadway types under different 
conditions

Density Forward/side imagery NA NA High

Lane departure crash data State or local crash databases NA NA Medium
Table 4.5. Driver Factors

Data Element Data Stream Accuracy Frequency Priority

Age and gender

Measures of riskiness

Driver distraction

Driver action before and after 
incident

Alcohol and drug usage

Driver fatigue

aNot applicable because majority of measures are qualitative.

Driver questionnaire

Questionnaire, roadway data sets

Face imagery, video reduction data
sets

Face imagery, roadway data sets,
video reduction data

Video reduction data

Face imagery, video reduction data

NAa

NAa

Image resolution 
(640 × 640 pixels)

Image resolution 
(640 × 640 pixels)

Image resolution 
(640 × 640 pixels)

Image resolution 
(640 × 640 pixels)

NA

Once per trip/event

15 (minimum), 
30 (preferred) Hz

15 (minimum), 30
(preferred) Hz

15 (minimum), 30
(preferred) Hz

15 (minimum), 30
(preferred) Hz

High

Medium

High

Medium

Medium

Medium
Project S05. Dingus et al. Virginia Tech Transportation
Institute. September 3, 2008.

• Design of the In-Vehicle Driving Behavior and Crash Risk
Study. Task 9: Data System Interim Report (Task 7: Data Items
and Instrumentation Package Specifications—Appendices A
and B). SHRP 2 Safety Project S05. Dingus et al. Virginia
Tech Transportation Institute. September 3, 2008.

The following sections describe the research team’s under-
standing of relevant data collection sensors/techniques and the
expected accuracy and frequency of data collection. The data
elements were compared with the requirements set out in the
section “Review of Roadway, Environmental, and Vehicle Data
Elements Available in Existing Naturalistic Driving Study
Data” (p. 28). The adequacy and limitations of the methods,
accuracy, and data collection frequency for answering lane
departure research questions are discussed. The following sum-
marizes information for roadway, environmental, and vehicle
data elements. This review is based on the information avail-
able to the research team as of January 2010.
Copyright National Academy of Sc
Review of Planned Data
Elements from Mobile Mapping
for Full-Scale Naturalistic
Driving Study

The team reviewed a white paper developed for Safety Project
S03 entitled “Gaps Identified in the SHRP 2 Safety Program,
Relative to Project S04” by John E. Hunt, Applied Research
Associates, Inc., and Anita P. Vandervalk, Cambridge System-
atics, Inc. The white paper contains an appendix that lists items
to be included in the data collection demonstration that poten-
tial vendors for Safety Project S04B were asked to collect. The
team reviewed the data elements along with the expected
accuracy and frequency, and the following section provides its
comments about how well the data would answer the lane
departure research questions discussed in previous sections.

The data elements for the data collection demonstration
(rodeo) as indicated by Hunt and Vandervalk are provided in
Tables 4.6 to 4.10. A description of the data features and data
elements, along with the expected frequency and/or accuracy,
iences. All rights reserved.
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Table 4.6. Final Rodeo Asset Data Elements

Adequate for Lane  
Departure Research 

Feature Data Elements Frequency Accuracy Questions

Barrier (presumably this 
includes median 
barriers and guardrail)

On-street parking

Pavement markings

Roadside obstacles

Rumble strips

Sidewalk

Signs

Street lighting

Barrier type, post type, end treatment type and
location (roadside or median)

Begin and end location

Barrier height

Presence of offset bracket or rub rail

Begin, end of parking

Location (right, left, both)

Begin and end point, type, centerline 
marking type

Marking offset

Retroreflectivity

Location of special pavement marking

Description of special pavement marking

Presence and location of raised pavement markers

Type

Offset

Location

Location

Begin and end

Offset from edge of lane

Begin and end

Separated from road

Support type, multiple signs, and sign type

Support location

Location

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

NA

±3 ft (0.914 m)

±1 in. (0.025 m)

±3 ft (0.914 m)

±1 in. (0.025 m)

±0.1 m cd/m2

±3 ft (0.914 m)

±0.25 ft (0.076 m)

±3 ft (0.914 m)

±3 ft (0.914 m)

±1 in. (0.025 m)

±3 ft (0.914 m)

±3 ft (0.914 m)

±3 ft (0.914 m)

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes
is provided. Data elements not necessary to answer lane depar-
ture research questions are not included.

The positional accuracy for various data elements is listed as
±3 ft (0.914 m). Position of the vehicle and objects is most
important in determining total transfer capability or distance to
collision (DTC). If a vehicle were traveling 60 mph (80.67 ft/s)
and the nearest strikable fixed object were located within ±3 ft,
the error in calculating total transfer capability would be 3 ft ÷
80.67 ft/s = 0.0372 s. For a vehicle traveling at 35 mph, the error
would be 0.058 s. An error of 0.1 s would be acceptable for cal-
culating time to collision, so the stated accuracy of the data col-
lection is within that range. The distance error would be ±3 ft
(0.914 m). However, the error from the vehicle position is not
considered at this point.
Copyright National Academy of
With the exception of lane width, all data elements met or
exceeded the desired accuracy that was determined to be nec-
essary to answer lane departure research questions as defined
in the section “Review of Roadway, Environmental, and Vehi-
cle Data Elements Available in Existing Naturalistic Driving
Study Data” (p. 28). The accuracy of lane width is stated as
±0.5 ft (0.152 m). Lane width is critical in determining whether
or not a vehicle that leaves the lane edge has crossed onto an
unpaved shoulder; an accuracy of ±0.328 ft (0.1 m) would be
preferable. The lane position tracking software that is part of
the instrumentation package will measure lane width as well
and use this information to determine vehicle position within
its lane. The lane tracking software is expected to be less accu-
rate than the mobile mapping data collection method. It will
 Sciences. All rights reserved.
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Table 4.7. Final Rodeo Geometric Data Elements

Adequate for Lane 
Departure Research 

Feature Data Elements Frequency Accuracy Questions

Grade

Cross slope

Curvature

Direction and percent

Location

Location

Roadway cross slope

Clear zone cross slope

Clear zone width

Horizontal PC (point of curvature) and PT (point
of tangency); vertical PC and PT

Horizontal curve, vertical curve, and transition
curve length

Horizontal and vertical curve radius

Horizontal curve super elevation

Vertical curve type, presence of transition curve

Stopping sight distance

100%

±0.5%

±3 ft (0.914 m)

±3 ft (0.914 m)

±0.01%

±0.25%

±0.5 ft (0.152 m)

±3 ft (0.914 m)

±2 ft (0.61 m)

±25 ft (7.62 m)

±0.05%

±10 ft (3.05 m)

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes
Table 4.8. Final Rodeo Intersection Data Elements

Adequate for Lane 
Departure Research 

Feature Data Elements Frequency Accuracy Questions

Intersection configuration 
and dimensions

Traffic control

Signal

Stop control

Type, number of approaches, number of
through lanes, presence of channeliza-
tion, number of left-turn lanes, number
of right-turn lanes, presence of cross-
walks, presence of illumination

Location

Skew

Length of left- or right-turn lanes

Type

Type, pedestrian signal head present

Location

Type, presence of flashing beacon

100%

100%

100%

±3 ft (0.914 m)

±0.5°

±2 ft (0.61 m)

±3 ft (0.914 m)

100%

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes
Copyright National Academy of Sciences. All rights reserved.
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Table 4.9. Final Rodeo Pavement Condition Data Elements

Adequate for Lane  
Departure Research 

Feature Data Elements Frequency Accuracy Questions

Pavement edge

Pavement profile

Skid

Amount of pavement edge drop-off

Location

Roughness measures

Critical pavement failure

Macrotexture Reported at 0.1 mile intervals

±0.5 in. (0.013 m)

±3 ft (0.914 m)

±10 in./mile

100%

Yes

Yes

Yes

Yes

Yes
Table 4.10. Final Rodeo Roadway Data Elements

Adequate for Lane  
Departure Research 

Feature Data Elements Frequency Accuracy Questions

Bridges

Driveway

Lanes

Median

Rail crossings

Ramps

Shoulder

Begin and end

Presence of approach slab or bridge rail

Offset

Location

Type

Number or special lane function type

Lane width

Location, lane add point, lane drop point

Type

Location

Width

Location

Number of tracks, control type, crossing number

Grade of approach or leave side

Location

Type of terminal, type of section

Type

Paved width, shoulder total width

Location

100%

100%

100%

100%

100%

100%

100%

±3 ft (0.914 m)

±2 ft (0.61 m)

±3 ft (0.914 m)

±0.5 ft (0.152 m)

±3 ft (0.914 m)

±3 ft (0.914 m)

±0.5 ft (0.152 m)

±3 ft (0.914 m)

±0.5%

±3 ft (0.914 m)

±0.5 ft (0.152 m)

±3 ft (0.914 m)

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes
Copyright National Academy of Sciences. All rights reserved.
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be important to compare actual lane width to what is collected
by the lane position tracking system to serve as a check. Hence,
accurate measurement of lane width is important.

It should be noted that the upcoming project SHRP 2 Safety
Project S04A will make additional decisions about what data
will be collected by the mobile mapping vehicles in Safety Proj-
ect S04B. This will change the scope of what is being collected.

Review of Planned In-Vehicle
Instrumentation Package and 
Available Data Elements

The following sections summarize a review of the instrumen-
tation package that is planned for the full-scale naturalistic
in-field driving study. The sections provide a summary of
information that was available as of January 2010.

It should be noted that the final specifications for the data
acquisition system (DAS) are not yet available, and some dif-
ferences will be present between what has been reviewed here
and what is available with the final DAS.

The in-vehicle instrumentation package is expected to con-
sist of the following sensors/elements (Dingus et al., 2008a,
Task 6; Dingus et al., 2008b, Task 7):

• Two forward-looking cameras;
• Three rear-looking cameras;
• GPS;
• Incident button;
• Microphone;
• Speaker;
• Alcohol sensor;
• Light sensor;
• Bluetooth radio to communicate with the forward radar;
• Acceleration and orientation sensor;
• On-Board Diagnostics (OBD) II;
• Forward radar; and
• Machine vision capabilities, including lane position and

edge sensing, eyes-forward monitor, and traffic signal state.

Each sensor or element of the DAS that will provide relevant
information for answering lane departure research questions is
discussed below. The following information is provided for
each sensor/element:

• Description;
• List of data elements that are best collected from that sensor/

element or are only available from that source, as well as
potential data elements that could be collected when they
cannot be obtained from other sources;

• Expected accuracy;
• Expected resolution of data collection; and
• Limitations in obtaining the type, amount, or quality of

data necessary.
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Sensor/Elements Related to Roadway,
Environmental, and Vehicle Factors

Sensor/Element: GPS (Dingus et al., 2008b, 
Task 7, Appendices A and B)

• Necessary data elements from sensor/element: Position
(latitude, longitude, altitude), heading.

• Data from sensor/element as secondary source: Forward
and side speed and acceleration (best from On-Board
Diagnostics [OBD]).

• Accuracy: Not stated.
• Resolution: 10 Hz. (It has recently been brought to the

research team’s attention that GPS data may be collected at
1 Hz.)

• Comments and limitations: Accuracy was not stated but is
highly relevant in determining vehicle position. Accuracy is
necessary to link the vehicle to the appropriate roadway and
extract corresponding roadway data elements. It will also be
necessary to determine vehicle position when a lane depar-
ture event occurs. The best source of distance data between
the vehicle and other objects will be radar, but the vehicle
position from the GPS will also be necessary.

Sensor/Element: Forward Video 
(Dingus et al., 2008a, Task 6)

• Description: Two forward videos are expected for the full-
scale study, which will provide a forward view of the road-
way from the perspective of the driver’s field of view. One
video will show a wide forward view of approximately 60°
(primary forward view), and the other will be a narrow view
of approximately 25° (secondary forward view). The sec-
ondary forward view will be zoomed/tilted to provide sup-
port for assessing traffic signal state. Both videos will be
taken with color cameras.

• Necessary data elements from sensor/element: The fol-
lowing data elements are those where the forward camera
is the best or only available source of information:
– Sequence of events;
– Ambient conditions (e.g., clear, raining, snowing);
– Road surface condition (e.g., dry, wet, snow covered,

surface irregularities);
– Oncoming traffic density;
– Identification of surrounding objects when vehicle

engages in lane departure;
– Identification of pedestrians;
– Visibility;
– Lane position tracking;
– Verification of lane departure;
– Curve direction;
– Status of lane markings (e.g., highly visible, obscure); and
– Signal state.
iences. All rights reserved.
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It may be necessary to determine sign location (signs may be
placed or removed after a roadway is scanned using the mobile
mapping system); it will also be possible to provide a qualita-
tive measure of sign condition and retroreflectivity.

• Data from sensor/element as secondary source: While it
may not be practical to obtain roadway data from the for-
ward video, it can serve as both a check and a source when
the data cannot be obtained from other sources. Data ele-
ments that can be obtained include the following:
– Indication of whether the subject vehicle is following

another vehicle and how closely (subjective measure
only);

– Roadway data element type (e.g., shoulder type, presence
and type of guardrail, type of signing, driveways, type of
intersection control, presence and type of rumble strips);

– Although not ideal, measurement of certain roadway
elements is possible when the forward image is calibrated
(e.g., shoulder width, distance to nearby fixed objects);
and

– Qualitative measure of ambient lighting.
• Accuracy: It was stated that the forward view video resolu-

tion would be at least 320 × 240 pixels.
• Resolution: 10 Hz. Video will be stored in quad-format stor-

age at one-fourth of the resolution, as shown in Figure 4.11.
Source: Dingus et al., 2008a, Task 6.

Figure 4.11. Combined video views from VTTI.
Copyright National Academy of S
An example of actual images in the stored format is shown in
Figure 4.12.
Figure 4.12. Example of video view.
• Comments and limitations: Use of color cameras for the
forward views will provide enhanced ability to distinguish
roadway features. Color video will be particularly useful in
identifying roadway surface condition and critical for deter-
mining traffic signal state. It will also be useful in determin-
ing condition of lane lines and signs.
ciences. All rights reserved.
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The wide-view forward video appears to have a fish-eye view
that distorts objects and perspective. Although distance and
identification of objects may come from other data sources,
the fish-eye view could affect the ability to detect nearness of
objects, identify objects, and identify sequence of events. The
distortion appears worst at the edges of the image. This distor-
tion could affect a data reductionist’s ability to determine
run-off-road (ROR) activities.

It will also be important to know if the original imagery data
will be retained and will be available. It was stated that the for-
ward video would be collected with a minimum resolution of
320 × 240 pixels. The images will be cropped and compressed
into a view as shown in Figure 4.12. If the forward views are
compressed and/or cropped, it may be advantageous for some
applications to have the ability to view the forward image in its
original form.

Sensor/Element: Rear-View Video 
(Dingus et al., 2008a, Task 6; Dingus et al., 
2008b, Task 7, Appendices A and B)

• Description: The rear view provides an image of the road-
way from the rear window of the vehicle, generally reflect-
ing the driver’s rear-view perspective. The view should
include the rear driving environment and may provide some
ability to identify presence of back seat passengers.

• Necessary data elements from sensor/element: Presence of
other vehicles, ambient conditions if they cannot be identi-
fied with the forward video.

• Data from sensor/element as secondary source: NA.
• Accuracy: Minimum resolution is 320 × 120 pixels.
• Resolution: 10 Hz.
• Comments and limitations: Given the image resolution pro-

vided in Figure 4.12, it may be difficult to distinguish vehicles
that are not closely following the subject vehicle. This infor-
mation may not be relevant for lane departures, however.
The data collection resolution of 10 Hz is adequate.

Sensor/Element: External Right-Side View 
(Dingus et al., 2008a, Task 6)

• Description: The right-side view provides an image of the
roadway from the right of the driver, reflecting the driver’s
right-side view.

• Necessary data elements from sensor/element: Presence
of vehicles to the subject vehicle’s right rear; presence of
objects to right rear.

• Data from sensor/element as secondary source: NA.
• Accuracy: Minimum resolution is 320 × 120 pixels.
• Resolution: 10 Hz.
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• Comments and limitations: The data collection resolution
of 10 Hz is adequate. The image should be able to provide
information on the presence of another vehicle during a
right-lane departure. However, it may be difficult to distin-
guish relative position given the resolution indicated in
Figure 4.12.

Sensor/Element: Instrument Panel View 
(Dingus et al., 2008a, Task 6)

• Description: Provides an over-the-shoulder view of the
steering column and instrument panel.

• Necessary data elements from sensor/element: Relevant
for driver factors.

• Data from sensor/element as secondary source: May pro-
vide indication of change in steering angle.

• Accuracy: Minimum resolution is 320 × 240 pixels.
• Resolution: 10 Hz.
• Comments and limitations: Should be adequate.

Sensor/Element: Machine Vision Lane Tracking
(Dingus et al., 2008a, Task 6; Dingus et al., 
2008b, Task 7, Appendices A and B)

• Description: VTTI Road Scout (VRS) uses machine vision
to determine the presence and type of lane lines and will cal-
culate a vehicle’s position within its traffic lane. The system
has the capability to determine when a vehicle is in the lane,
crosses a solid marking, crosses a dashed line during lane
changes, or when a lane change is aborted. The system is
self-calibrating. It was tested on a four-lane divided road
with a grass median, a four-lane divided road with left
curb (no lane line), a two-lane road with pavement mark-
ings, a two-lane road with no pavement markings, and a
two-lane gravel road. It is expected to work in the follow-
ing environments:
– Interstates;
– Lined highways;
– Tangent and curved sections;
– Under nighttime driving with or without overhead 

illumination;
– In inclement weather when lane lines are visible;
– On blacktop and concrete; and
– Situations where only the centerline is present or visible.

The system could not determine vehicle position on
gravel or on two-lane, unmarked suburban segments. It
was not clear if the system had been tested on two-lane
rural segments. It can detect an upcoming curve and detect
differences in lane marking type (none, double line [solid
or dashed], single line [solid or dashed], road gutter, road
edge, and raised pavement markings).
iences. All rights reserved.
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System output includes the following:
– Lane offset, which is the position of the center line of the

vehicle with respect to the centerline of the roadway;
– Lane width, determined by estimating the width of the

marked lane in inches;
– Line distance, which is the distance from the center of

the vehicle to the right- or left-lane line; and
– Probability percentages, which is a measure of the like-

lihood that the pavement markings exist (serves as a key
indicator for the overall reliability of the system).
The system is also expected to be able to estimate hori-

zontal curve radius. However, the accuracy is unknown.
• Necessary data elements from sensor/element: Lane posi-

tion, lane location, lane changes, type of lane lines, lane
width, offset from center of lane, distance of wheel from
right- or left-lane boundary, angle of departure (calcu-
lated), lane departure, road departure.

• Data from sensor/element as secondary source: Radius.
• Accuracy: (Units reported in meters.) The accuracy of lane-

position offset was stated as ±0.656 ft (0.2 m) 95% of the
time when lane tracking confidence is high. The system will
store distance from right tire to right-lane boundary, dis-
tance of left tire to left-lane boundary, and lane width with
the same accuracy. The accuracy of the horizontal curvature
is expected to be ±10% of actual roadway radius when lane-
tracking confidence is high.

• Resolution: Minimum 10 Hz.
• Comments and limitations: The expected accuracy of

lane-position tracking for the proposed full-scale study is
expected to be ±0.656 ft (0.2 m), which is lower than the
accuracy for the UMTRI data. The average tire width is
around 6.5 to 9 in. (0.165 to 0.229 m). Hence, the error is
within a normal tire width. While an accuracy of 0.328 ft
(0.1 m) is preferable, the proposed accuracy is expected to
be sufficient. Additional collection of vehicle position at
10 Hz is adequate to establish the angle of departure and
offset.

The radius calculated by the UMTRI lane-tracking
system appeared to be inaccurate. It will be important to
verify the accuracy of the VRS system in calculating
curve radius.

Sensor/Element: Forward Sensor/Radar 
(Dingus et al., 2008b, Task 7, Appendices A and B)

• Description: The system will have a forward radar capable
of tracking and storing information on the five objects clos-
est to the vehicle. Objects can be identified and tracked for
up to 200 m in front of the vehicle within ±0.324 radians
(18°) within the horizontal field of view centered on the test
vehicle heading. The system can identify vehicle type (car,
Copyright National Academy o
motorcycle, truck, pedestrian/bicyclist) and will indicate
what it detects to be the lead vehicle, defined as the closest
vehicle occupying the same lane. It was not clear if the sys-
tem can identify roadside objects other than that they are
present.

• Necessary data elements from sensor/element: Distance to
and location of the nearest strikable object (including other
vehicle); vehicle spacing as indicator of aggressive driving.

• Data from sensor/element as secondary source: The type
of object will likely be determined from forward video but
can be confirmed with radar.

• Accuracy: Distance (in meters), accuracy will be ±1.64 ft
(0.5 m); vehicle target range (in meters per second), accu-
racy is ±1.64 ft/s (0.5 m/s); relationship to target object
(stored in a Polar or Cartesian coordinate system), accuracy
is ±0.052 radians (3°) for Polar; lateral and longitudinal off-
set (in meters), accuracy ±3.28 ft (1.0 m).

• Resolution: Will store at a minimum of 40 Hz for each
track.

• Comments and limitations: The stated accuracy of ±1.64 ft
(0.5 m) is adequate to measure time and distance to collision.

Sensor/Element: Automated Collision Identification
and Notification (Dingus et al., 2008b, 
Task 7, Appendices A and B)

• Description: System that will continuously monitor vehi-
cle sensors to determine when a potential collision has
occurred. The parameters include (1) a longitudinal accel-
eration of at least 3.5 g for at least 500 m, (2) lateral accel-
eration of at least 3.5 g for at least 500 m, or (3) air bag
deployment status.

• Necessary data elements from sensor/element: Indication
of collision.

• Data from sensor/element as secondary source: NA.
• Accuracy: NA.
• Resolution: NA.
• Comments and limitations: NA.

Sensor/Element: Light Sensor (Dingus et al., 
2008b, Task 7, Appendices A and B)

• Description: Senses amount of light.
• Necessary data elements from sensor/element: Amount of

daytime lighting, presence and amount of nighttime lighting.
• Data from sensor/element as secondary source: NA.
• Accuracy: Illumination (in lux from 3 to 80,000), accuracy

is ±3%.
• Resolution: 10 Hz.
• Comments and limitations: Appears to be adequate for

project objectives.
f Sciences. All rights reserved.
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Sensor/Element: Sensor to Record Internal Ambient
Temperature (Dingus et al., 2008b, Task 7,
Appendices A and B)

• Description: Record of vehicle cabin temperature.
• Necessary data elements from sensor/element: Outside

temperature would be useful in making some estimates
about roadway surface condition.

• Data from sensor/element as secondary source: NA.
• Accuracy: ±1°C.
• Resolution: Sampled as changes occur of at the rate of once

per 5 min.
• Comments and limitations: It is not clear why internal

ambient temperature is being recorded and not outside
ambient temperature.

Sensor/Element: Acceleration and Orientation
Sensor (Dingus et al., 2008b, Task 7, 
Appendices A and B)

• Description: Records lateral acceleration, longitudinal
acceleration, vertical acceleration, and yaw rate.

• Necessary data elements from sensor/element: Lateral
and forward acceleration, pitch, pitch rate, yaw, yaw rate.

• Data from sensor/element as secondary source: NA.
• Accuracy: Lateral acceleration (±0.01 m/s2), longitudinal

acceleration (±0.01 m/s2), vertical acceleration (±0.01 m/s2),
and yaw rate (radians/second).

• Resolution: Stored at 10 Hz during normal operation and
higher during high rate of acceleration.

• Comments and limitations: The stated accuracy appears
adequate to answer the research questions.

Sensor/Element: OBD (Dingus et al., 2008b, 
Task 7, Appendices A and B)

• Description: OBD monitors parts of the chassis, body,
and accessory devices and the diagnostic control network
of the car.

• Necessary data elements from sensor/element: The fol-
lowing data elements will be provided and are relevant for
answering the research questions:
– Forward speed (m/s);
– Accelerator pedal position (percent);
– Brake state (on/off );
– Steering wheel position (radians of rotation);
– Brake pedal force (lb/in2);
– Horn status (on/off);
– Gear;
– Headlight status (on/off, parking);
– High beam (on/off);
– Wiper status (intermittent, slow, high, manually activate);
Copyright National Academy of Sc
– Cruise control (on/off);
– Seat belt status (on/off);
– Front-seat passenger status (present/not present);
– Wheel speed (m/s);
– Automatic braking system (ABS) activation;
– Air bag deployment;
– Electronic stability control (indication of when active, if

present);
– Traction control (indication of when active, if present);
– Lane departure warning system (indication of when

active, if present);
– Forward collision warning system (indication of when

active, if present);
– Distance driven during trip (in kilometers);
– Turn signal status (off, left, right, hazard); and
– Driver-initiated event (indication of when driver presses

event button).
• Data from sensor/element as secondary source: NA.
• Accuracy: Accuracy was not stated for any of the relevant

items. The accuracy of the OBD system is assumed to be 
sufficient.

• Resolution: 10 Hz.
• Comments and limitations: Accuracy and resolution are

expected to be sufficient. No additional necessary items
from the OBD were determined.

Sensor/Elements Related to Driver Factors

Sensor/Element: Driver-Face Video 
(Dingus et al., 2008a, Task 6)

• Description: The face video provides an image of the driver’s
face, which can indicate driver distraction and eye location.

• Necessary data elements from sensor/element: Presence 
of driver impairments (distraction, fatigue, emotion) over
time, especially before and at the time of a lane departure. A
driver’s glance direction may indicate driving-related behav-
iors, preincident awareness of conflict, and postincident
behavior.

• Data from sensor/element as secondary source: Driver
identification.

• Accuracy: Minimum resolution is 640 × 640 pixels.
• Resolution: 15 Hz as the minimum and 30 Hz as preferred.
• Comments and limitations: The data collection resolution

of 15 to 30 Hz should be adequate. The image should be
able to provide information on driver fatigue, emotion,
and any secondary tasks other than driving, such as talking
on a cell phone or with passengers and reaching for objects
in the vehicle. However, some secondary tasks, such as text
messaging, might not be captured clearly, since the image
might not be large enough. This kind of information needs
to be provided by other videos.
iences. All rights reserved.
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Sensor/Element: Instrument Panel View 
(Dingus et al., 2008a, Task 6)

• Description: Provides an over-the-shoulder view of the
steering column and instrument panel.

• Necessary data elements from sensor/element: Hands on
steering wheel; secondary tasks in which the driver engages.

• Data from sensor/element as secondary source: Steering
behavior at the time of incident.

• Accuracy: Minimum resolution is 320 × 240 pixels.
• Resolution: 15 Hz as the minimum and 30 Hz as preferred.
• Comments and limitations: Should be adequate.

Note: The instrument panel view has been mentioned
before, but not in detail.

Sensor/Element: External Passenger-Side 
(Right-Side) View (Dingus et al., 2008a, Task 6)

• Description: This view offers information regarding the
traffic around the subject vehicle and can also provide infor-
mation about the passenger(s) in the front and rear seats.

• Necessary data elements from sensor/element: Presence of
vehicles to subject vehicle’s right rear, presence of objects to
right rear.

• Data from sensor/element as secondary source: Can pro-
vide some information about driver distraction related to
passengers.

• Accuracy: Minimum resolution is 320 × 120 pixels.
• Resolution: 10 Hz.
• Comments and limitations: Should be adequate.

Note: This view has been mentioned before, but not in
respect to the driver.

Sensor/Element: Passive Alcohol Sensor 
(Dingus et al., 2008a, Task 6)

• Description: Provides information on the presence of
alcohol.

• Necessary data elements from sensor/element: Alcohol
concentration level.

• Data from sensor/element as secondary source: NA.
• Accuracy: ±0.01 at 0.1 level.
• Resolution: Once per hour.
• Comments and limitations: The sensor is only able to

detect presence of alcohol in the vehicle. The sensor may be
affected by air circulation within the vehicle. Judgments
about whether the driver has been drinking will have to be
made using other information (e.g., the presence of alcohol
Copyright National Academy of
and the fact that the driver is the only occupant may suggest
that the driver has been drinking). The system cannot indi-
cate blood alcohol level.

Summary

The following summarizes information about review of data
elements necessary and review of what is expected to be avail-
able in the full-scale study.

General Comments about Extracting Data
from Existing Data Sources

In general, most of the roadway, environmental, and vehicle
data elements desired could be extracted from the UMTRI nat-
uralistic driving study data and related aerial imagery, crash
databases, and roadway databases. The naturalistic driving data
indicated when the vehicle was traveling on a curve. When
vehicle traces were overlaid with aerial images and compared,
the identified curve locations were quite accurate. Two data
items that were not accurate were shoulder width and curve
radius. This is based on a review of the UMTRI data, as
described in Appendix A.

The forward imagery was adequate for all the applications
for which it was used. One advantage of the UMTRI imagery
over the proposed forward imagery for the full-scale data col-
lection is the width of the forward view that was available. It
was easy to see a large portion of the forward roadway (includ-
ing all of the shoulders), identify objects to the edge of the
roadway, identify ambient conditions, and confirm that a
vehicle was departing its lane from the forward view. While
the forward view with the proposed full-scale in-vehicle
instrumentation is in color, which offers additional advan-
tages, the forward view does not offer the same wide view. As a
result, it may be difficult to identify roadside features. The dis-
tortion of the image (in fish-eye view) in the proposed instru-
mentation package is also particularly problematic. The lateral
portion of the proposed imagery does, however, offer a better
view of overhead features. The two forward views are compared
in Figure 4.13.
The lane position tracking was very useful in the UMTRI
data. It was relatively simple to determine when a vehicle had
left the roadway. It was also relatively easy to tell when the lane
position data were “bad.” The ability to determine a vehicle’s
position within its lane is critical for identifying lane departure
events and answering the lane departure–related research
questions.

Sufficient data were not provided with the VTTI data set
to make the same determinations as for the UMTRI data. In
general, the image resolution was too low that it was diffi-
 Sciences. All rights reserved.
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(a)

(b)

Source: (a) UMTRI RDCW data set; (b) Dingus et al., 2008a, Task 6.

Figure 4.13. Comparison of forward imagery: 
(a) forward view from UMTRI data set; and 
(b) potential forward view for full-scale data collection.
cult to make out many features in the forward video. It was
even difficult to tell from the forward view that the vehicle
was leaving the roadway or which object was in the vehicle’s
path. It is not known if the image data were reduced from
their original format. The database provided with the vehi-
cle trace data was adequate to extract information such as
lateral acceleration.

Summary Comments and Concerns about
Proposed Full-Scale Data Collection Methods

The following is a summary of comments or concerns that
arose during the review of the instrumentation packages that
will be available for the full-scale data collection effort
(SHRP 2 Safety Projects S03 and S05).

• Mobile mapping vans (SHRP 2 Safety Project S03)
– The accuracy and resolution of data collection for all data

elements (except for lane width) met or exceeded the
level of accuracy that was determined to be necessary to
answer lane departure research questions.

– The proposed accuracy of lane width to be collected with
mobile mapping vans is ±0.5 ft (0.152 m). Lane width will
be calculated with the vehicle instrumentation package
lane position tracking system in order to determine vehi-
cle position. The lane tracking system is expected to be
less accurate than the mobile mapping vans, so it will be
important to have an accurate measurement from the
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mobile mapping system as a check. A more accurate
measurement of lane width would be recommended, if
possible. An accuracy of ±0.25 ft (0.076 m) would be
preferable.

– Recent information from various SHRP 2 safety meetings
during the summer of 2009 have indicated that the final
mobile mapping data collection may be somewhat differ-
ent from what was reviewed in this document.

• In-vehicle instrumentation (SHRP 2 Safety Project S05)
– Accuracy of the differential GPS was not stated but is

highly relevant for determining vehicle position relative
to roadway features.

– The use of color imagery for the forward video is a wel-
come addition and will allow objects to be distinguished
more easily. Use of color cameras for the forward views
will provide an enhanced ability to distinguish roadway
features. It will be particularly useful for identifying road-
way surface conditions and critical for determining traf-
fic signal state. It will also be useful for determining the
condition of lane lines, and signs and will allow identifi-
cation of traffic signal state. While not as relevant to lane
departures, this ability will be critical for answering inter-
section questions.

– The image resolution of 320 × 240 pixels for the forward
view appeared adequate.

– The fish-eye view for the forward view distorts objects
and perspective. This is highly problematic for identify-
ing objects and gauging distances. Although distance and
identification of objects may come from other data
sources, the fish-eye view could affect the ability to detect
the nearness of objects, identify objects, and identify the
sequence of events. The distortion appears worst at the
edges of the image. This distortion could affect the abil-
ity to measure distances to roadside objects. The distor-
tion could also affect the ability to identify objects.

– It was indicated that all raw data (both video and sensors)
would be continuously recorded and preserved (Dingus
et al., 2008b, Task 7). It may be useful to view the raw
forward, back, or side video because some information
may be obtained that cannot be obtained with the com-
pressed-resolution images. It is important to clarify
whether the data will be stored in a format that is linked
to the other data and whether the data can be accessed.

– The lane position tracking system is critical for
addressing lane departure questions. Several experts
were questioned about the level of risk of different lane
departure events. They unanimously agreed that even
one tire leaving the paved roadway surface onto a
grass, gravel, or mixed-surface shoulder constitutes a
highly dangerous situation. As a result, the lane posi-
tion tracking system should be accurate and reliable
iences. All rights reserved.
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enough to determine when one or more tires have
departed the roadway surface. The planned lane posi-
tion tracking system for the full-scale study has a stated
accuracy of ±0.656 ft (0.2 m). While this is still within
the range of a normal tire width and is likely to be ade-
quate, any improvements to the planned accuracy would
be beneficial. A lower level of accuracy may be accept-
able where the surface beyond the lane marker is hard
and level.

– It is important that the lane tracking system be verified
both in terms of accuracy and in situations where it may
not perform well.

– It was stated that a combination of in-vehicle sensors
could be used to determine curve radius. It is important
that the accuracy be verified. The radius measurements
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received with the UMTRI data did not appear to be
accurate.

– It was not stated whether the forward radar has the abil-
ity to identify roadside objects.

– It is unclear why internal vehicle cabin temperature is
measured and recorded but not the outside ambient
temperature.

– The method to determine the accuracy of each stated
sensor/data collection element should be stated. For
example, if radius is determined using a combination of
in-vehicle sensors, the test method and results to deter-
mine accuracy should be stated.

– Other discussions about the in-vehicle data collection
system have suggested that a head-pose tracker may be
available.
ciences. All rights reserved.
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C H A P T E R  5

Defining and Evaluating Lane Departure 
Crash Surrogate Thresholds Using 
Naturalistic Driving Study Data

Lane departure crashes are the best measure of safety. Natu-
ralistic driving studies, however, even the fully deployed SHRP
2 field driving study, will have limited cases of lane departure
crashes. The naturalistic driving studies will capture crashes,
near crashes, and incidents, as well as normal driving. The fre-
quency of incidents and near-crash events is typically greater
than the frequency of crashes; incidents and near-crash events
may be used as crash surrogates.

Using surrogates will also provide an opportunity to study
what happens preceding and following an incident or event.
The most significant advantage of naturalistic driving stud-
ies is that they provide a firsthand record of the events that
precede crashes and incidents. Roadway, environmental,
vehicle, and human factors can be extracted directly rather
than from secondhand information from police records and
crash databases to identify relationships among factors that
influence lane departure crash risk. This firsthand informa-
tion can also be used to determine the factors that lead to a
positive outcome. For instance, if a similar number of lane
departures occur on roadway sections with and without
paved shoulders and the paved shoulders have a higher pro-
portion of safe outcomes (vehicles can return safely to the
road), the incidents can be used to evaluate the effectiveness
of paved shoulders.

This chapter discusses potential lane departure surro-
gates that can be obtained from naturalistic driving study
data. Several data sets were used to evaluate thresholds for
lane departure crash surrogates. The data sets are described
fully in Chapter 3. For simplicity, naturalistic driving study
data from UMTRI’s road departure crash warning (RDCW)
field operation test (FOT) is referred to in this chapter as
“the UMTRI data set,” and the naturalistic driving study
data from VTTI’s 100-car study is referred to as the “VTTI
data set.”

The naturalistic driving study data from UMTRI and VTTI
were used to evaluate which variables may be the most useful
in setting triggers to identify lane departure events and to
53
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assess what thresholds may be used. Data were reduced as
described in Appendices A and B.

The UMTRI data resulted in a number of encroachments
but no conflicts or crashes. Only data for rural, paved, two-
lane roadways were included. The VTTI data provided near
crashes and crashes but no encroachments. Additionally, vari-
ables were not consistent between the two data sets. As a result,
the two data sets were evaluated separately, as discussed in the
following sections.

Introduction

Frequency and severity of crash data are commonly used 
to assess whether driver, road, traffic, or environmental fac-
tors influence safety and to evaluate whether a counter-
measure is effective. However, crash-based safety analyses
are plagued by several problems (Songchitruksa and Tarko,
2006). Crashes are rare, and events surrounding a crash are
oftentimes random. As a result, safety analyses often depend
on small sample sizes. Additionally, crash reporting can be
inconsistent, which makes comparisons across sites difficult.
Another problem is the timeliness of crash data. Once a
countermeasure is implemented, agencies like to evaluate
the immediate effectiveness to assess whether more resources
should be invested. However, before-and-after crash studies
often cannot be completed until several years after treatment
installation because a representative sample is not available
immediately to assess significant differences with sufficient
power.

Some researchers have addressed limitations in crash data
by using surrogates to measure crash risk. Surrogates may take
two forms: safety surrogates and crash surrogates. The differ-
ence between the two is related to whether their underlying
relationship to safety has been established. The types of surro-
gates described in the following two paragraphs are examples
of safety surrogates. In most cases, the underlying relationship
between crashes and the safety surrogate is assumed. Selected
iences. All rights reserved.
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safety surrogates are believed to have some relationship to
safety, although a demonstrated relationship rarely exists.
Additionally, when safety surrogates are used in studies, there
is no attempt to define the relationship between the safety sur-
rogate and crashes.

FHWA (2009) suggests that a reduction in violations is a
viable safety surrogate to evaluate the effectiveness of red-light
running countermeasures (e.g., camera enforcement). Other
common surrogates are traffic conflicts, traffic violations, road
user behavior, and speed (Forbes et al., 2003). Change in speed
is frequently used to assess the effectiveness of treatments such
as traffic calming. It is assumed that if speeds are reduced,
crashes will also be reduced. Lane deviation has also been used
as a safety surrogate measure for assessing the likelihood of
run-off-road (ROR) crashes (LeBlanc et al., 2006) and the
likelihood of crashes resulting from distraction (Donmez 
et al., 2006).

Retting et al. (2007) and Bonneson et al. (2004) used reduc-
tion in red-light running violations as a safety surrogate to
assess the effectiveness of red-light-running cameras. Garber 
et al. (2005) evaluated reductions in red-light running citations
to evaluate the effectiveness of red-light-running cameras. The
effectiveness of rumble strips has been evaluated on the basis
of lateral placement and speed (Porter et al., 2004), drivers’
lane position with respect to a forced rumble strip encounter
(Noyce and Elango, 2004), and vehicle’s lateral position and
change in vehicle separation (Pratt et al., 2006). Taylor et al.
(2005) observed vehicle placement relative to the edge line
using single versus double paint lines to delineate presence of
shoulder rumble strips.

The second type of surrogate is the crash surrogate. This
type of surrogate is expected to have some statistically mea-
surable relationship to crashes. Ideally, the relationship between
crashes and the surrogate measure is evaluated or known. If
so, the crash surrogate can be used as a measure of effective-
ness, and the reduction in crashes can be predicted. Shankar
et al. (2008) defines a crash surrogate as a marker that is cor-
related with a crash, usually based on time, so that as time
increases the crash likelihood also increases. The authors also
define a crash surrogate as a measure that is as responsive to
the same interventions as the related crashes. For instance,
edgeline rumble strips are expected to decrease the number
of right-side lane departure incidents, as well as the cases of
ROR crashes.

The main difference between safety surrogates and crash
surrogates is that safety surrogates are used by researchers and
agencies as a stand-in variable for crash data. They are widely
used, but there is no proven relationship between crashes and
the variable used. It is assumed that if the safety surrogate
changes (e.g., reduction in speeds), crash severity or frequency
will improve. Additionally, studies in which safety surrogates
are used do not attempt to derive a relationship.
Copyright National Academy of
Background on Crash
Surrogates

This section discusses the crash surrogates that have been
used in other studies for different types of crashes.

Songchitruksa and Tarko (2006) used extreme value theory
to model crash risk and frequency for right-angle crashes at
intersections. Degree of separation was used as the surrogate
variable, and the authors ordered traffic events from safest to
most dangerous to assess risk. They defined the boundary
between crash and noncrash events using the concept of crash
proximity. They evaluated their methodology and concluded
that there was a promising relationship between safety estimates
and historical crash data.

Archer (2001) used the traffic conflict technique, which reg-
isters the occurrence of near accidents in real-time traffic to rep-
resent accident frequency and outcome. The surrogate measure
proposed by Archer (2001) is defined as “time to accident.”
Gettman and Head (2003) derived surrogate crash measures
from simulation models. The authors indicated that the best
surrogate measures for crash risk were time to collision, post
encroachment time, deceleration rate, maximum speed, and
speed differential. Mounce (1981) evaluated the correlation
between stop sign violations and crash rates. Salman and
Al-Maita (1995) evaluated traffic conflicts and crashes at 18
T-intersections in Jordan and developed a statistically signifi-
cant linear regression model that related annual number of
crashes to mean hourly conflicts. Chin et al. (1992) used a time-
to-collision method to model freeway merging conflicts.

Other researchers have treated crash surrogates as a con-
tinuum, with regular traffic incidents at one end and crashes
at the other. Thresholds are used to partition incidents. Chin
and Quek (1997) describe this as a probability distribution of
incidents. Songchitruksa and Tarko (2006) use the notion of
ordering traffic incidents from the safest to the most danger-
ous (Figure 5.1).
 Scienc
Source: Songchitruksa and Tarko, 2004.

Figure 5.1. Continuum of traffic
incidents.
Different researchers have applied different crash surro-
gates to define the boundary between incidents. A common
es. All rights reserved.
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measure that has been used is time to collision (TTC), where
at TTC = 0 the subject vehicle and another vehicle/object col-
lide, resulting in a crash. Songchitruksa and Tarko (2006) use
the concept of degree of separation. When there is consider-
able separation between vehicles on the same path that are
passing a conflict point, the passage is considered safe. As sep-
aration between vehicles decreases, risk increases until the
two vehicles collide. This continuum of separation of time is
called post-encroachment time (PET). Amount of separation
can be partitioned into different levels of crash incidents that
correspond to different levels of risk. In Songchitruksa and
Tarko (2006), the threshold between the crash and crash-free
boundaries is called crash proximity measure. Others refer to
this threshold as a crash prevention boundary. Burgett and
Gunderson (2001) define a crash prevention boundary as an
analytically derived deterministic expression that separates
driver performance into successful crash avoidance and unsuc-
cessful crash avoidance. For any given set of conditions, there
is a subset of driver brake response and level of deceleration
that will result in crash avoidance and a subset of values that
will result in a crash.

Hayward (1972) suggests the use of TTC when modeling sit-
uations where both vehicles continue in the same path without
changing their speed. TTC is a good crash surrogate for two-
vehicle crashes because the distance or the time separating two
vehicles can be clearly identified.

Crash prevention boundaries have also been used as a crash
surrogate. Burgett and Miller (2001) used velocity, separation
distance, deceleration, and braking to develop crash preven-
tion boundaries for rear-end crashes. Szabo and Wilson (2004)
used the amount of acceleration necessary to avoid a crash as a
function of the timing or location of a warning to define a crash
prevention boundary.

Other crash surrogates used include proportion of remain-
ing stopping distance (Allen et al., 1978), and deceleration
rate (Songchitruksa and Tarko, 2004). Finally, Campbell et al.
(2003) suggested that it is preferable to use physical measures
of vehicle kinematic motions as the crash margin measure
because collisions can be explicitly identified.

Summary of Crash Surrogates
Used for Lane Departures

Several measures have been used as crash surrogates for lane
departures, including lane keeping, TTC, and crash preven-
tion boundaries. However, little information was available
that describes developing statistical relationships between
lane departure crashes and lane departure crash surrogates.
As a result, it is assumed that these types of relationships will
need to be derived from research projects developed as part
of the SHRP 2 Safety Project S08, Analysis of the SHRP 2 Nat-
uralistic Driving Study Data. Crash surrogates that have been
Copyright National Academy of S
used for lane departure crashes are discussed in the following
sections.

Lateral Drift or Lane Keeping

Lateral drift or lane keeping is one measure that has been used
by several researchers to evaluate lane departures. Several stud-
ies conducted at UMTRI, VTTI, and the University of Iowa
(UI) have provided insights based on measures of lateral drift.
UMTRI uses lane keeping to identify when a vehicle leaves the
roadway. UMTRI researchers also define lane offset as the dis-
tance between the centerline of the vehicle and the centerline of
the lane. Lane position and relative motion within the lane are
determined by analyzing the forward-looking monochrome
camera data. On tangent sections, the UMTRI lane departure
warning system (LDWS, part of the RDCW) shows a “lower
cautionary alert” when the vehicle is close to a dashed lane line,
which indicates potential movement into an adjacent travel lane
with no other evidence of an imminent risk of sideswipe col-
lision. Additionally, UMTRI uses the term “lane intrusion,”
which suggests that a lane departure is imminent or likely. On
curves, the UMTRI definition of a likely or imminent lane
departure for the curve speed system (also part of the RDCW)
was based on an estimate of most likely path, given vehicle
speed, driver braking, turn signal use, assumptions about the
unaware driver’s response time, likely deceleration rate, and a
threshold lateral acceleration of 0.25 g, which assumes no super-
elevation exists on the curve (LeBlanc et al., 2006).

Oxley et al. (2004) summarized work by Steyer et al. (2000)
and noted that one of the important safety-related features in
curve negotiation is vehicle lateral placement. Steyer et al.
(2000) argued that the driving path should be considered when
investigating crashes on curves. The authors make the distinc-
tion between right and left curves. Drivers who make left-side
encroachments (across the centerline) may be doing so inten-
tionally as they “cut the corner” or “straighten on the curve” if
they cannot detect any opposing traffic. Steyer et al. (2000) also
indicated that there was lateral placement related to curve
radius, curve length, grade, and available sight distance.

Time to Lane Departure or Time to Collision

Several crash surrogates use time to some critical event as the
measure of crash risk. Time to lane departure (TTLD) reflects
the time remaining before a vehicle crosses the lane line if the
vehicle maintains its current trajectory. Several researchers have
used TTLD or TTC as a crash surrogate measure. Szabo and
Wilson (2004) used TTC in their lane departure warning sys-
tem to determine the point where a vehicle is about to leave
the roadway and the driver should be alerted of the danger.
Pomerleau et al. (1999) used TTLD to determine when a lane
departure warning system should provide a driver alert.
ciences. All rights reserved.
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TTLD was defined as the time until an outer tire edge crosses
the lane line. Mammar et al. (2006) developed a method to
calculate time to line crossing (TTLC), considering both
straight and curved vehicle paths. The authors estimated that
a lane departure because of driver drowsiness leads to a
slower rate of TTLC than in situations such as loss of vehi-
cle control. They also indicated that real-time computation
of TTLC is difficult because of limitations in determining
vehicle kinematic variables, vehicle trajectory prediction,
and lane geometry. As a result, approximate formulas such
as the ratio of lateral distance to lateral speed have been
used. The authors did develop a linear dynamic mode to
predict future vehicle position on the basis of lateral dis-
placement, vehicle position, steering angle, relative yaw
angle, and roadway geometry.

Distance Intruded

Distance intruded measures the distance a vehicle crosses into
an adjacent lane or shoulder. VTTI uses distance intruded to
determine when a lane departure occurs. Its lane tracking sys-
tem sets a trigger to define a “lane bust” or “lane abort” inci-
dent. A lane bust occurs when a vehicle crosses a solid lane
line. An incident is triggered when the vehicle moves a mini-
mum of 3 ft outside a lane boundary without completing a
lane change while traveling at a speed of 45 mph or higher
(Dingus et al., 2006).

Crash Prevention Boundaries

Szabo and Wilson (2004) used the concept of crash preven-
tion boundaries to assess the effectiveness of RDCWs. Two
metrics were used, one for curves and one for tangent sections.
For curve negotiations, there is a critical point at which driv-
ers can receive a road departure warning and respond appro-
priately by decelerating as needed, as shown in Figure 5.2. If
the alert is provided after this point, the driver will not be able
to safely negotiate the curve.
Copyright National Academy of Sciences. 
Source: Szabo and Wilson, 2004.

Figure 5.2. Relationship
between curve geometry and
warning point.
This critical point location is given by

where

vo = initial forward speed,
vs = safe speed for the curve,
tr = driver reaction time,

xw = distance between the warning location and critical
point (CP), and

dreq = deceleration necessary to achieve safe speed at CP.
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The lateral acceleration limit to determine safe speed enter-
ing the curve is

where

r = curve radius and
as = lateral acceleration limit.

The authors used a similar concept for tangent sections
based on the geometry of a lateral drift into a jersey barrier,
as shown in Figure 5.3.
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The equation to determine the warning location and nec-
essary lateral acceleration to avoid a lateral lane departure is

where

alat = lateral acceleration to avoid departure,
θ = departure angle, and

yw = distance from warning location and road boundary.

Movement beyond the crash prevention boundary rep-
resents a situation in which the vehicle is not likely to
recover.

Burgett and Gunderson (2001) also discussed the concept
of a crash prevention boundary for road departure crashes,
which is a function of driver brake response time and the level
of deceleration needed to avoid a crash. The authors discussed
the concept in relation to a driver traveling at a constant speed
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Source: Szabo and Wilson, 2004.

Figure 5.3. Relationship
between lane geometry
and warning point.
on a tangent roadway section. The point at which the vehicle
crosses the lane edge is defined as t = 0, and the crash preven-
tion is defined by the driver’s steering maneuver and level 
of lateral acceleration created by the steering maneuver, as
depicted in Figure 5.4. The authors use the geometric relation-
ship between speed, side acceleration, departure angle, steer-
ing angle, reaction time, and radius of curve for curve sections
to develop crash prevention boundaries. An example is shown
in Figure 5.5 for a 1,000-ft radius curve with a vehicle speed of
50 mph, a shoulder width of 10 ft, and an initial vehicle offset
of 2 ft from the edge of the road.
Copyright National Academy of Sc
Source: Burgett and Gunderson, 2001. 

Figure 5.4. Relationship of driver steering maneuver
and prevention of a road departure.
Source: Burgett and Gunderson, 2001. 

Figure 5.5. Crash prevention boundary for a curve road
departure.
Selection of Lane 
Departure Surrogates

One of the major benefits of naturalistic driving studies is that
they can capture all levels of incidents, including those related
to lane departures. One of the research questions addressed
in this project involved assessing existing naturalistic driving
study data and determining the most appropriate crash surro-
gates to use in lane departure analyses. Potential crash surro-
gates were also evaluated to determine what vehicle kinematic
triggers could be used to flag potential lane departures in the
full-scale study. Since a large amount of data will result from
the full-scale NDS, it will be necessary to have some automated
method to flag events of interest.

The following section organizes information related to
lane departure crash surrogates and outlines a process that
could be used to develop lane departure crash surrogates in
the full-scale study.

Lane departure crashes provide a more complex situation
for developing crash surrogates than other crash types. Most
iences. All rights reserved.
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crash types, such as broadside or rear-end, can be defined by a
time or distance metric (time or distance collision) because the
hazard, collision with another vehicle, is clear. In a lane depar-
ture crash, the main hazard is not always clearly identified, and
in some cases multiple hazards may be present. For instance,
when a vehicle departs the edge of the roadway, multiple haz-
ards may be present and multiple outcomes (sequences of
events) may be possible. Potential hazards include encounter-
ing pavement edge drop-off, which could lead to loss of con-
trol; encountering differential friction between the roadway
surface and shoulder, which could also lead to loss of control;
having the vehicle rollover; or striking a fixed object.

The events accompanying each hazard can also result in a
number of different outcomes, each of which can lead to the
vehicle encountering different hazards. An initial sequence of
events could result in several different outcomes based on dif-
ferent hazards, driver responses, and roadway conditions. Fig-
ure 5.6 shows three possible outcomes for the same initial ROR
event. Each outcome may have a different type of crash surro-
gate to describe it. The first sequence of events for all three sce-
narios includes the vehicle running off the roadway to the right,
encountering loose shoulder material, overcorrecting, and
then crossing the centerline. In the first scenario, the vehicle
then runs off the road to the left and strikes a tree. In the second
scenario, the vehicle runs off the road to the left and overturns
before striking the tree. In the third scenario, the vehicle crosses
the centerline and strikes another vehicle head-on. The initial
sequence of events was the same, but three different outcomes
were possible with three different hazards. Each of the first
events (e.g., ROR, encountering loose shoulder material) could
have led to a different subsequent series of events. For instance,
Figure 5.6. Three possible roadway departure outcomes from same initial
sequence of events.
Copyright National Academy of
the vehicle could have left the roadway to the right, encoun-
tered loose shoulder material, and rolled over.

Each stage of a lane departure can result in a number of out-
comes, and each outcome may need to be described by differ-
ent crash surrogates. As a result, lane departures in the present
study were divided into categories where hazards would be
consistent. Five categories were selected, which include normal
driving, lateral drift within the travel lane, right- or left-side
lane departure where the vehicle stays within the traveled way
(lane encroachment), right- or left-side lane departure where
the vehicle leaves the traveled way (shoulder encroachment),
and lane departure crash.

A crash surrogate or surrogates were identified for each cat-
egory, except for normal driving because normal driving by
definition is absence of conflict. A crash surrogate is the metric
used to set boundaries between events and assess crash risk
(e.g., time/distance to encroachment on the lane edge line). The
crash surrogates and thresholds for each category were deter-
mined after reviewing the available literature on crash surrogate
measures, evaluating existing naturalistic driving study data,
and assessing what is likely to be available with the full-scale
SHRP 2 naturalistic driving study. The crash surrogates and
threshold parameters for each category are described below,
along with the rationale for the selection. Table 5.1 summarizes
the lane departure categories and associated crash surrogates.
Normal Driving

• Description: This category represents the range of behav-
ior remaining when crash surrogates and crash activity are
removed.
 Sciences. All rights reserved.
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Category Hazard Surrogate Metric

Normal driving

Lateral drift

Lane encroachment

Shoulder encroachment

Lane departure crash

Table 5.1. Summary of Lane Departure Categories

None

Crossing lane line

Sideswipe with adjacent or
opposing vehicle

Head-on collision

Crossing lane line onto shoulder
(left or right side)

Shoulder (loss of control)

Rollover

Fixed object collision

Crossing shoulder edge

Vehicle, rollover, fixed object

Lane deviation

Distance to lane departure (DTLD) or time to lane
departure (TTLD)

Time to collision (TTC) or distance to collision (DTC)

TTC or DTC

Same as for shoulder encroachment
Time to lane edge (TTLE) or distance to lane edge

(DTLE)

Change in steering angle or yaw rate

Rollover potential

TTC or DTC

Time to shoulder edge (TTSE) or distance to
shoulder edge (DTSE)

NA

ft

s or ft

s or ft

s or ft

s or ft

Degree/s

Lateral acceleration (g)

s or ft

s or ft

NA
• Crash surrogates: No crash surrogates are used for normal
driving. However, amount of lane deviation is the metric
used to distinguish between normal driving and a lateral
drift.

• Lower boundary: This category has no lower boundary.
• Upper boundary: The boundary or threshold level between

normal driving and lateral drift will need to be determined
in the full-scale study. Lane keeping for individual drivers
will vary, and drivers will maintain lane position differently
based on a variety of factors, such as different roadway con-
ditions (e.g., two-lane versus four-lane, presence and type of
curve), weather conditions, time of day, and length of time
driving. In order to set this threshold, it will be necessary to
develop a range of normal vehicle activity under different
situations and then determine what constitutes normal driv-
ing for a given scenario.

Depending on the resources available, normal driving can
be established for individual drivers for situations of interest
Copyright National Academy of Sc
(daytime versus nighttime driving) or can be determined for
a cohort of drivers. Some evaluation of what might define nor-
mal driving was conducted using the UMTRI data set and is
discussed in the section “Identifying Lane Departure Incidents
Using Existing Data Sets” (p. 65).

Lateral Drift

• Description: This category includes incidents in which a
vehicle’s deviation within its lane or its direction of travel
to the right or left will result in a lane departure unless the
driver changes course.

• Crash surrogates: A single crash surrogate can be used to
measure lateral drift because the only hazard is leaving
the vehicle lane. The crash surrogate selected to assess lat-
eral drift is distance to lane departure (DTLD), as shown
in Figure 5.7. Distance is used rather than time because
the lane tracking system used in the full-scale naturalistic
study is expected to provide distance measurements.
Figure 5.7. Distance to lane departure.
iences. All rights reserved.
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TTLD can also be calculated and used as the surrogate
measure.

• Lower boundary: Lower boundary is the point where nor-
mal driving ends, which will need to be determined in the
full-scale study. This category will need to be defined after
examination of data in the full-scale NDS.

• Upper boundary: The upper boundary for lateral drift and
a lane departure is where the vehicle’s outside tires come
within a certain tolerance distance (Xtol) of the lane line 
or lane boundary. A tolerance distance is necessary because
lane tracking systems can only locate a vehicle within its
lane to a certain level of accuracy. As a result, the tolerance
distance reflects uncertainty in locating the vehicle. UMTRI
used a tolerance distance of 0.1 m in its study. The distance
that will be used in the SHRP 2 naturalistic study will
depend on the accuracy of the lane tracking system used.

• Data needs: DTLD requires vehicle position relative to its
lane. The GPS system that will be available with the full-scale
system will not be accurate enough to locate a vehicle pre-
cisely within its lane. The only way to obtain vehicle lane
position will be to use the lane tracking system that will 
be available with the vehicle instrumentation package. The
planned lane position tracking system for the full-scale study
Copyright National Academy of
has a stated accuracy of ±0.656 ft (0.2 m). This is within the
range of a normal tire width and is likely to be adequate.

• Limitations: It will be difficult to calculate TTLC from any
of the available SHRP 2 study variables, with the exception
of the lane tracking system. The system is not expected to
perform on gravel roads or in situations where either lane
lines or some other lane delineation are not present (e.g.,
snow-covered roadway).

The vehicle trace from the UMTRI data, depicted in Fig-
ure 5.8, shows an example of a lateral drift, where the vehicle
clearly drifted to the right but did not leave its lane.
Source: UMTRI RDCW data set. 

Figure 5.8. Vehicle trace of nondeparture lateral drift.
Lane Encroachment

• Description: This category includes incidents where a
vehicle departs its original lane of travel and encroaches
into an adjacent travel lane. This adjacent lane may have
other vehicles traveling in the same or opposite directions.
An encroachment is defined as one or more tires encroach-
ing or crossing the edge of the lane line.

• Crash surrogates: The main hazard for an encroachment
into an adjacent lane is a sideswipe or rear-end collision with
 Sciences. All rights reserved.
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another vehicle. The main hazard for an encroachment into
an oncoming lane is a head-on or opposing-direction side-
swipe crash. The crash surrogate for a head-on, sideswipe, or
rear-end collision with another vehicle is TTC. DTC can also
be calculated. Level of risk can be defined by a threshold
value as the point at which an evasive steering maneuver is
required to avoid a collision.

If the subject vehicle does not encounter another vehicle
after encroaching into one or more lanes of travel, the next
proximate hazard is leaving the roadway. The crash surrogate
in this case would be time to lane edge (TTLE) or distance to
lane edge (DTLE).

• Lower boundary: This is the threshold for lateral drift, as
described above.

• Upper boundary: The threshold between a lane encroach-
ment and a shoulder encroachment is the point at which the
vehicle’s outside tires come within a certain tolerance dis-
tance (Xtol) of the lane line or lane boundary separating the
lane and adjacent shoulder, similar to what was described
for a lateral drift. The threshold between a lane encroach-
ment and lane departure crash is the point at which the sub-
ject vehicle strikes another vehicle.

• Data needs: Calculation of time to collision requires vehi-
cle speed, distance to adjacent or oncoming vehicle, coef-
ficient of friction, grade, deceleration rate, and vehicle
braking characteristics. Distance to adjacent vehicle will
need to be determined using forward or side radar. Thus,
time or distance to collision can only be calculated when a
vehicle is within the tolerance of the radar systems.

• Limitations: The ability to determine time or distance to
collision or lane edge depends on the accuracy of the lane
tracking system and the accuracy with which and distance
at which the instrumented vehicle radar system can track
objects in its path.

Shoulder Encroachment

• Description: This category includes incidents where a
vehicle departs the traveled roadway surface onto a paved
or unpaved shoulder. This is often referred to as a road
departure or ROR incident.

• Crash surrogates: There can be several hazards once a
vehicle leaves the traveled portion of the roadway. The first
hazard encountered when leaving the traveled way is the
shoulder itself. Specific shoulder hazards that might be
encountered include differential friction between the road-
way and unpaved shoulder and other shoulder irregulari-
ties (e.g., loose material, muddy shoulders) that may lead
to loss of control or overturning of the vehicle.
Copyright National Academy of Scie
Hazards are different for a paved shoulder and unpaved
shoulder. The team met with several lane departure experts
at the Iowa Department of Transportation (Iowa DOT) and
FHWA, and it was decided that encroachments onto the
shoulder under different circumstances present different
levels of crash risk. An encroachment onto a paved shoul-
der introduces a lower level of risk, in the absence of haz-
ards, than an encroachment onto an unpaved shoulder,
even if TTC or time to shoulder edge (TTSE) is the same.
The friction differential between the unpaved shoulder and
paved roadway poses a risk for loss of control anytime the
vehicle partially or fully leaves the paved roadway surface.
This may be addressed by categorizing the encroachment
into different levels of risk or considering time to paved
shoulder edge as one crash surrogate and time to unpaved
shoulder edge as another.

It is difficult to determine a crash surrogate for loss of
control on the shoulder because it does not fit within any
of the typical metrics used in crash surrogates. Changes of
a certain magnitude in steering angle or yaw rate may be
used to identify loss of control, but they are not crash sur-
rogates per se. It may be necessary to define the next most
likely sequence of events (overturn, return to travel lane,
cross centerline) and then use the corresponding crash sur-
rogate for that event.

Rollover potential is the crash surrogate when rollover is
a possibility. Rollover potential is described in the section
“Determining Rollover Potential” (p. 72).

The next hazard encountered when leaving the traveled
way is collision with a fixed object. This can occur on the
shoulder or when the vehicle leaves the shoulder. When a
fixed object (e.g., tree, guardrail, mailbox, utility pole, bridge
abutment) presents the most immediate hazard, the pro-
posed crash surrogate is TTC or DTC.

Another hazard when leaving the roadway is that, once
a vehicle leaves the shoulder, it may encounter an adverse
slope, which may result in overturning. When the primary
hazard is leaving the shoulder, the proposed crash surro-
gate is TTSE. Rollover risk may also be used.

Level of risk for most of the crash surrogates listed above
can be defined by the actions that need to be taken to avoid
a crash. The point between a lower risk and a higher risk
event may be defined as the point at which a severe evasive
action is required to avoid a crash. Once a vehicle leaves the
roadway onto to the shoulder, the recovery options are
braking to a stop before leaving the shoulder or striking an
object, or steering back onto the original travel lane.

Evasive actions occur when the vehicle undergoes a
steering or braking maneuver that exceeds normal steering
or braking. AASHTO uses a deceleration rate of 11.2 ft/s2

(0.35 g) for stopping distance because this deceleration is
within the capability of most drivers to stay within their
nces. All rights reserved.
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lane and control their vehicle when braking on wet surfaces
(AASHTO, 2004). A value of 14.8 ft/s2 (0.46 g) is used for
emergency braking. VTTI used a lateral acceleration of
≥0.7 g as a trigger that a lane departure incident had
occurred (Dingus et al., 2006). Thus, between 0.35 g and
0.7 g is a good starting point for setting the threshold decel-
eration between an encroachment and a lane departure
conflict. It will be necessary to examine a number of lane
departure incidents and subjectively assess what consti-
tutes an encroachment versus a lane departure conflict and
then determine the boundary between normal and signif-
icant braking.

Time to collision (tTTC) is a function of initial vehicle
velocity, angle of departure (θ), coefficient of friction ( f )
between the tires and shoulder, braking capabilities of the
vehicle, driver reaction time, driver response, distance to the
object (dobj), grade, and deceleration rate (a). The time to
collision (tcritical) that requires a critical deceleration rate (acrit-

ical) in order for the vehicle to stop safely is the threshold
between an encroachment and a lane departure conflict, as
shown in Figure 5.9. The time to collision (tnorm) where a
vehicle can stop safely with normal deceleration rates (anorm),
as shown in Figure 5.10, is given by the following:

t t tnorm TTC critical= − ( . )5 4
Figure 5.9. Threshold requiring evasive deceleration.
Copyright National Academy of
Figure 5.10. Threshold requiring normal deceleration.
Similarly, TTSE or distance to shoulder edge (DTSE) is
a function of initial vehicle velocity, angle of departure (θ),
coefficient of friction (f) between the tires and shoulder,
braking capabilities of the vehicle, driver reaction time,
driver response, distance to the shoulder edge (dshld), shoul-
der width (wshld), grade, and deceleration rate (a). The dis-
tance the vehicle travels before crossing the edge of the
shoulder (Figure 5.11) is given by the following:

d
w

shld

shld= ( )sin
( . )

θ
5 5
Figure 5.11. Distance to edge of shoulder.
Less information was available about what constitutes a
normal range of steering angles than was available for nor-
mal passenger vehicle deceleration rates. As a result, it may
also be necessary to examine a number of lane departure
incidents and subjectively assess what constitutes a signif-
icant evasive action. The threshold defining a significant
evasive action is the point at which a driver must employ
excessive steering maneuvers in order to avoid the object
or shoulder edge, as shown in Figures 5.12 and 5.13.
• Lower boundary: This is the threshold for lane encroach-
ments as described above.

• Upper boundary: The threshold between a shoulder
encroachment and a lane departure crash is when the
vehicle physically strikes an object or physically rolls over
(crash), which may defined as TTC or TTSE = 0.

• Data needs: Calculation of time or distance to collision or
time or distance to shoulder edge requires vehicle speed,
deceleration, angle of departure, shoulder width, distance
to fixed object, coefficient of friction, grade, and decelera-
tion rate.

• Limitations: In the full-scale NDS, friction will not be avail-
able. The expected spatial accuracy of roadside features is
±3.0 ft (0.914 m). The accuracy of the GPS, used to deter-
mine the vehicle’s spatial position, is unknown, but the GPS
will not have differential correction capabilities. Accuracy
for a nondifferentially corrected GPS can be as low as ±15 m
(49.2 ft). This would significantly affect the ability to cal-
culate TTC. The vehicle instrumentation packages are
expected to be able to determine distance and heading to
objects using the forward or side radar. The vehicle instru-
mentation system will have a forward radar capable of
tracking and storing information for the five objects closest
to the vehicle. Objects can be identified and tracked for 
up to 200 m (656.2 ft) in front of the vehicle within ±0.324
 Sciences. All rights reserved.
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Figure 5.12. Threshold for normal steering.
Copyright National Academy of S
Figure 5.13. Threshold for evasive steering.
radians (18°) of the horizontal field of view, given that the
field of view is centered on the test vehicle heading.

Figure 5.14 shows a typical vehicle trace for a nonconflict
encroachment (UMTRI data). As shown, the vehicle leaves
the roadway for some distance and then safely returns.
Source: UMTRI RDCW data set. 

Figure 5.14. Vehicle trace of nonconflict run-off-road incident.
Lane Departure Crash

• Description: A crash is defined as an incident where a vehi-
cle strikes another vehicle or object (TTC or TTSE = 0). A
vehicle overturning one or more times is also considered to
be a crash. A crash may also be defined as a situation where
cie
the vehicle leaves the roadway and is forced to an unplanned
stop. For instance, sliding off a roadway during a winter
weather event and then sliding to a stop in the median may
be considered a crash. This category includes all lane depar-
ture crashes, whether or not they are reported in a police
document, that are observed in the naturalistic study. A
reported collision is one where a crash report is filed. An
unreported collision is one observed in the naturalistic study
but for which a police accident report has not been filed;
consequently, the crash would not show up in a crash data-
base. For example, a driver leaves the roadway and strikes a
mailbox but proceeds after recovering. In some states, there
is no requirement to report property-damage-only crashes
nces. All rights reserved.
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unless the damage exceeds some value. The VTTI driving
study found that out of 82 minor nonproperty-damage con-
tact collisions, only 15 were reported to the police (Dingus
et al., 2006).

• Crash surrogates: NA.
• Lower boundary: This is the threshold for lane or shoul-

der encroachments as previously described.
• Upper boundary: NA.
• Data needs: Identification of lane departure crashes will

require setting triggers for vehicle kinematics that provide
indications that a crash has occurred (e.g., sudden deceler-
ation). It is expected that crashes will be identified as part
of the data quality assurance (SHRP 2 Safety Project S06,
Technical Coordination and Quality Control).

• Limitations: It is expected that VTTI will identify crashes
during the full-scale instrumented vehicle data collection
and that most crashes will be identified. However, the iden-
tification of crashes will be highly dependent on the thresh-
olds used, and, as such, some crashes (e.g., vehicle sliding off
the roadway during winter weather) may not be included.

Evaluating Incident Outcome
with UMTRI Data

A number of lane departure incidents in the UMTRI data set
were assessed so that they could be divided into categories and
crash surrogates in order to test the system for its ability to cat-
egorize lane departures, as described in the previous sections.

For each lane departure, the hazard that the vehicle was
most likely to encounter after departing its lane based on fac-
tors such as angle of departure, surrounding hazards, and
vehicle speeds was determined. Hazards were those that pre-
sented the most imminent threat. The object (hazard) most
likely to be struck was determined for each situation by esti-
mating the anticipated vehicle path and by a visual inspection
of the forward and aerial imagery. A hazard could also
include an oncoming vehicle or the shoulder if no specific
objects were in the vehicle’s likely path.

Figure 5.15 shows an example of how potential hazards
were determined for one vehicle. The subject’s vehicle exited
the roadway and encroached 2.1 ft onto a paved shoulder. If
the vehicle were to continue along its path, the intersecting
roadway provided the first hazard that the subject vehicle
would encounter. If the vehicle returned to the roadway and
overcorrected, the first hazard the vehicle would encounter
was an oncoming vehicle, as shown in Figure 5.16. Each vehi-
cle’s position was determined for various points in time.
Copyright National Academy of
Figure 5.15. Schematic of a vehicle departing its
lane and its likely path if the driver does not correct
lane departure.
Figure 5.16. Schematic of vehicle departing its lane
and overcorrecting.
Figures 5.17 and 5.18 show other examples of how potential
hazards can be determined. In this case, the vehicle departed its
lane to the left and crossed the centerline. The forward imagery
and aerial imagery for the location were examined for poten-
tial hazards (Figure 5.18). The most imminent hazard for the
scenario if the vehicle were to continue on its current path (to
the left) or overcorrect to the right was determined using vehi-
cle speed, vehicle position, and location of potential hazards.
At the vehicle’s current speed and trajectory, if the vehicle did
not correct its path, the most imminent hazard was the left
guardrail. The shoulder is paved and poses a low hazard. If the
vehicle overcorrected, an estimation of the potential paths off
the right side of the roadway indicated that the most likely haz-
ard was a mailbox. No oncoming vehicles were present, so col-
lision with another vehicle was not a potential threat.
 Sciences. All rights reserved.
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Source: UMTRI RDCW data set. 

Figure 5.17. Forward image for where vehicle
departed the roadway (cross centerline).
Figure 5.18. Schematic of potential outcomes and hazards encountered.
Identifying Lane Departure
Incidents Using Existing 
Data Sets

The full-scale SHRP 2 naturalistic driving study will result in
a tremendous amount of data. This amount will necessitate
an automated method to identify lane departures. An auto-
mated method would entail selecting variables within the nat-
uralistic driving data sets that are most likely to experience a
significant change during a lane departure, and establishing a
threshold value for these variables so they can be used as flags
for potential lane departures.

Triggers Used in Other 
Naturalistic Driving Studies

VTTI selected relevant variables and triggers to set thresholds
between valid and invalid critical events (Dingus et al., 2006).
The study used a sensitivity analysis to evaluate placement of
triggers at various levels. If a trigger is set too low (Type I error,
or lower sensitivity), a larger percentage of actual incidents is
selected, as well as a larger number of nonincidents (false
alarms). This results in longer and less useful data reduction
Copyright National Academy of S
time. Alternatively, if the trigger is set too high (Type II error),
nonincidents are less likely to be selected, but a larger number
of actual incidents may be missed as well.

VTTI used an iterative process to select triggers for valid
incidents. Triggers were set to a lower sensitivity, and data
reduction was used to evaluate resulting incidents. VTTI
researchers used a normal distribution to depict how Type
I and Type II errors could be minimized based on signal
detection theory, as shown in Figure 5.19. The final triggers
for variables related to lane departure incidents include the
following:

• Lateral acceleration ≥0.7 g;
• Longitudinal acceleration ≥0.6 g;
• Longitudinal acceleration ≥0.5 and forward TTC ≤4 s;
• Longitudinal deceleration 0.4 g to 0.5 g, forward TTC ≤4 s,

and distance to collision <100 ft; and
• Yaw rate ≥⎟ 4°⎟ change in heading within a 3-s window of

time.
c

McLaughlin et al. (2009) evaluated ROR crashes and near
crashes using the VTTI 100-car study. These researchers iden-
tified ROR maneuvers by evaluating steering wheel position,
yaw rate, and braking, as shown in Figure 5.20.
The University of Iowa teen driver study used a trigger of 
0.5 g for lateral acceleration to indicate when a potential inci-
dent had occurred (McGehee et al., 2007).

Evaluation of Lane Departure 
Thresholds Using UMTRI Data

The naturalistic driving study data from UMTRI and VTTI
were used to evaluate which variables may be the most useful
iences. All rights reserved.

http://www.nap.edu/22848


66

Evaluation of Data Needs, Crash Surrogates, and Analysis Methods to Address Lane Departure Research Questions Using Naturalistic Driving Study Data
Source: Dingus et al., 2006. 

Figure 5.19. Graphical depiction of setting trigger criteria
using the distribution of valid events.
Source: McLaughlin et al., 2009. 

Figure 5.20. Steering wheel angle relative to
ROR maneuver.
in setting triggers to identify lane departure events and to
assess what thresholds may be used. Data were reduced as
described in Appendix A.

The UMTRI data indicated a number of encroachments, but
no conflicts or crashes. Only data for rural, paved, two-lane
roadways were included. The VTTI data provided near crashes
and crashes, but no encroachments. Additionally, variables
were not consistent between the two data sets. The two data
sets therefore were evaluated separately. This section describes
the evaluation using the UMTRI data, and the following sec-
tion describes the evaluation using the VTTI data.

The first section below examines differences in kinematic
variables between normal driving data and left- and right-side
lane departures. The second section compares normal driv-
ing to assess variables that could be used to partition normal
driving data. The third section discusses sample size issues.

It should be noted that left-side lane departure in curves is
sometimes intentional and, rather than being due to an unin-
tentional lane departure, is due to the driver intentionally
“cutting the curve.” While the researchers did not account for
Copyright National Academy of
this specifically, this should be considered when evaluating
lane departures.

Examining Kinematic Variables

The UMTRI data reduction resulted in 22 right-side and 51
left-side lane departure events for two-lane rural roads. An
incident was a situation where the vehicle departed its lane by
0.1 m or more at some point. All incidents were considered to
be encroachments because the vehicle departed its lane in each
case but was not forced to take some evasive maneuver and did
not lose control on the shoulder.

The continuous data surrounding each incident was
extracted. Data for which no incident had occurred was
termed “normal” driving data. Several variables were exam-
ined to determine whether they could be used to set thresh-
olds between normal driving and lane departure incidents.
The maximum positive and negative value for each incident
was extracted for the following vehicle kinematic variables:
lateral speed, lateral acceleration, yaw rate, forward accelera-
tion, roll rate, and pitch rate.

The maximum negative and positive values for various vehi-
cle kinematic variables for right-side and left-side events were
compared with approximately 105,400 records (in 0.1-s inter-
vals) of nonincident (normal) driving. Data for each kinematic
variable (lateral speed, yaw rate, side acceleration, forward
acceleration, roll rate, and pitch rate) for the normal data were
graphed against the data for the lane departure events.

Figure 5.21 shows the distribution of data for the kinematic
variable “lateral or side speed (in m/s)” for left- and right-side
lane departures that are all approximately normal. The distri-
bution for normal driving is the center distribution, shown in
maroon. The distribution of maximum positive side acceler-
ation for left-side lane departures is shown to the right in
green, and the distribution of maximum negative side accel-
eration is shown to the left in blue. Data for left- and right-side
 Sciences. All rights reserved.
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(a)
(b)

Figure 5.21. Distribution of lateral speed (m/s) for normal driving compared with maximum positive and 
negative values from (a) left-side and (b) right-side lane departures.
lane departures were evaluated separately because they have
different kinematic signatures. The analysis showed differ-
ences in acceleration among the left- and right-side departures
compared with normal driving (p < 0.05 for all comparisons).

Figure 5.22 shows the distribution of data for the kinematic
variable “forward acceleration for left- and right-side lane
departures in g’s.” Figures 5.23 to 5.26 show the same infor-
mation for lateral or side acceleration in g’s, roll rate in degrees
per second, pitch rate in degrees per second, and yaw rate in
degrees per second, respectively.
(a)

(b)

Figure 5.22. Distributions of forward acceleration (g) for normal driving compared with maximum positive and
negative values from (a) left-side and (b) right-side lane departures.
Because the values for the left side and right side were dis-
crete, a ranking test was used. The Wilcoxon Rank Sum Test
Copyright National Academy of Sc
was used to determine whether the normal driving data were
statistically different from events data. The test determines
whether two independent samples of observations are from
the same distribution. It evaluates the sign and magnitude of
the rank of differences between pairs, and assesses whether
two independent samples have similar rankings. In all cases
except maximum low yaw rate for right-side lane departures,
the test showed that the data were statistically different.

Although the distributions for most variables were deter-
mined to be different at the 95% level of significance, a signif-
icant amount of overlap exists, as shown in Figures 5.21 to
5.26. Thus, setting a higher threshold to ensure that a larger
iences. All rights reserved.
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(a)
(b)

Figure 5.23. Distributions of lateral acceleration (g) for normal driving compared with maximum positive and
negative values from (a) left-side and (b) right-side lane departures.
(a)
(b)

Figure 5.24. Distributions of roll rate (degrees/s) for normal driving compared with maximum positive and 
negative values from (a) left-side and (b) right-side lane departures.
(a) (b)

Figure 5.25. Distributions of pitch rate (degrees/s) for normal driving compared with maximum positive and
negative values from (a) left-side and (b) right-side lane departures.
Copyright National Academy of Sciences. All rights reserved.
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(a)
(b)

Figure 5.26. Distributions of yaw rate (degrees/s) for normal driving compared with maximum positive and
negative values from (a) left-side and (b) right-side lane departures.
number of normal driving conditions are not included may
result in a threshold that will likely miss a large number of
events. The alternative is also true: setting a lower threshold
to include most events may also result in the inclusion of a
large number of nonevents, which will result in more unnec-
essary data reduction. This is similar to what VTTI found as
its study evaluated methods to set appropriate triggers, as dis-
cussed in the section “Triggers Used in Other Naturalistic
Driving Studies” (p. 65).

To summarize the data, differences exist in vehicle kine-
matic values for lane departure events and for normal driving.
Copyright National Academy of Sc
However, although the data can be shown to be different and
statistically significant, a considerable overlap still exists. This
indicates the difficulty in setting thresholds low enough to
include all incidents but still high enough so that a large
amount of nonincident data does not have to be evaluated.

Tables 5.2 and 5.3 show the range of maximum and mini-
mum values for each kinematic variable. The values for lateral
speed in Table 5.2 can be interpreted to mean that the contin-
uous data for each left-lane departure included at least one value
between −1.04 m/s and −0.03 m/s and at least one value with a
lateral speed of 0.20 m/s or higher. If these values represented
Lateral Speed (m/s) Yaw Rate (deg/s) Side Acceleration (g)

Max Negative Max Positive Max Negative Max Positive Max Negative Max Positive

−1.04 to −0.03 0.20 to 1.56 −13.3 to −0.2 0.10 to 6.15 −0.23 to −0.01 0.02 to 0.42

Forward Acceleration (m/s2) Roll Rate (deg/s) Pitch Rate (deg/s)

−0.13 to −0.03 0.03 to 0.13 −8.70 to −0.06 1.45 to 8.54 −5.64 to −0.13 0.48 to 10.19

Table 5.2. Range of Maximum Negative and Positive Values for Left-Lane Departure Events for UMTRI Data
Lateral Speed (m/s) Yaw Rate (deg/s) Side Acceleration (m/s2)

Max Negative Max Positive Max Negative Max Positive Max Negative Max Positive

−1.28 to −0.08 0.22 to 2.40 −1.90 to −0.05 0.15 to 12.20 −0.26 to −0.01 0.01 to 0.1

Forward Acceleration (m/s2) Roll Rate (deg/s) Pitch Rate (deg/s)

−0.14 to −0.02 0.01 to 0.07 −7.43 to −0.76 0.69 to 8.29 −5.86 to −0.81 1.05 to 6.26

Table 5.3. Range of Maximum Negative and Positive Values for Right-Lane Departure Events for UMTRI Data
iences. All rights reserved.
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a large number of lane departure incidents, they could be used
as a starting point to set threshold values for flagging lane depar-
tures. However, as indicated, there were not enough samples
of incidents to determine what threshold values should be set.
It will be necessary to set thresholds after examination of a
much larger number of incidents in the full-scale study. How-
ever, initial results suggest that for left-side lane departures,
roll rate, yaw rate, side acceleration, and side speed are likely
to be good candidates to identify events. Results suggest that
for right-side lane departures, yaw rate, side acceleration, and
lateral speed are good candidates to identify encroachments.
Ayers et al. (2004), for instance, indicated that yaw rate is the
first indication that a potential vehicle movement may be
occurring.

Selecting Parameters to Partition 
Driving Environments

The analysis in the previous sections included all incidents
and normal driving data that were extracted for two-lane
rural roads. In reality, vehicle kinematic variables will differ
among different driver, roadway, and environmental factors;
in the large-scale study, differences in vehicle operation under
different roadways and environments should be considered
and statistically controlled. The Wilcoxon Rank Sum Test was
used to compare whether distributions of lateral offset were
different under several driving scenarios.

Although only a limited amount of data was available, an
exploratory analysis of differences in normal data for different
situations was made to get a sense of how data might be parti-
Copyright National Academy of
tioned. The lane offset variable, which indicates the offset of the
vehicle’s center from the center of the lane, was used for com-
parison. Normal driving data on a tangent section was com-
pared with normal driving on a right-hand and left-hand curve
(orientation of curve from the perspective of the driver—e.g.,
a right-hand curve to the right). As shown in Figure 5.27, lat-
eral offset differs from a tangent section to a right- or left-hand
curve, and lateral offset on a right-hand curve also differs from
lateral offset on a left-hand curve. Data were not sufficient to
compare lateral offset for different curve radii, but this vari-
able is expected to have a large impact. Results indicated that
differences were statistically significant at the 95% level of
significance.
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Figure 5.27. Vehicle offset for tangent section versus right and left curve.
Differences in lateral offset were also compared for day-
time versus nighttime driving. As indicated in Figure 5.28, the
mean lateral offsets in the two situations were similar, but the
results of the Wilcoxon Rank Sum Test indicate that the dis-
tributions were different at the 95% level of significance. Data
were compared for tangent sections only.
Differences between drivers were also compared. Lateral off-
set by driver for normal driving is shown in Figures 5.29 and
5.30. Data were compared for tangent sections only. As shown,
lateral offset among drivers varies significantly. Distribution of
lateral offset was compared among all drivers and differences
were statistically significant for all driver pairs except for Driv-
ers 14 and 48, Drivers 14 and 60, and Drivers 64 and 85. This is
the expected result because different drivers have different
driving styles.
Lateral offset was compared for several situations, as
described in the previous paragraphs. Differences were noted
 Sciences. All rights reserved.
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Figure 5.28. Vehicle offset for daytime versus nighttime driving on tangent
sections.
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Figure 5.29. Vehicle offset for Drivers 6, 8, 12, 14, 16, 17, 18, and 24 for 
tangent sections.
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Figure 5.30. Vehicle offset for Drivers 28, 35, 48, 51, 59, 60, 64, and 85 for
tangent sections.
between driving on a tangent and on a left- or right-hand
curve, between nighttime and daytime driving, and between
individual drivers. As indicated, differences are expected as to
what constitutes normal driving behavior. Normal driving can
be stratified by a large number of variables. Assuming the focus
of lane departures will be on rural roadways, the minimum
roadway and environmental characteristics should include the
following:

• Roadway type (e.g., two lane, four-lane undivided, four-
lane divided);

• Tangent versus curve;
• Radius of curve (may be aggregated to ranges of curve radii);
• Paved versus unpaved shoulders;
• Narrow versus wide shoulders;
• Dry versus wet versus snow- or ice-covered roadways;
• Nighttime versus daytime driving, including presence of

overhead street lighting;
• Presence of rumble strips;
• Posted speed limit; and
• Roadway surface (paved versus dirt or gravel).

Evaluation of Lane Departure 
Thresholds Using VTTI Data

The VTTI and UMTRI data were evaluated separately because
different data were available from each. Additionally, the
UMTRI data had only data for encroachments, while the VTTI
data had only data for crashes and near crashes. The disadvan-
Copyright National Academy of
tage of the VTTI data was that it included all roadway types and
only had a limited sample size (n = 29). Additionally, no expo-
sure (normal) driving data were available to the research team,
so event thresholds could not be compared against normal
driving conditions.

Thresholds for the crash and near-crash incidents available
from the VTTI data were evaluated. Continuous data were
available for 29 lane departure incidents. The crash and near-
crash events showed distinct changes in forward and side accel-
eration, which were the only two variables that could be used
to evaluate the data. Several examples are shown in Figures 5.31
and 5.32.
Table 5.4 shows the range of maximum and minimum val-
ues for each kinematic variable for each lane departure event.
The values for side acceleration in Table 5.2 indicate that all
left-lane departures had at least one negative value that was
−0.01 g and at least one positive value that was greater than
0.02 g. As shown in Table 5.3, each right-side lane departure
had at least one negative value for side acceleration that was
−0.01 g or lower and one positive that was 0.01 g or higher.
These values could therefore be used as starting points in
identifying lane departure events.
Determining Rollover Potential

Background

On average, approximately 274,000 light vehicles were involved
in rollover crashes annually between 1999 and 2003 (NHTSA,
 Sciences. All rights reserved.
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Source: VTTI data set. 

Figure 5.31. Forward and side acceleration trace for near crash on two-lane roadway.
Source: VTTI data set. 

Figure 5.32. Forward and side acceleration trace for near crash on two-lane roadway.
Side Acceleration (g) Forward Acceleration (g)

Max Negative Max Positive Max Negative Max Positive

Left-lane departure −0.68 to −0.05 0.03 to 0.23 −0.80 to −0.03 0.03 to 0.74

Right-lane departure −2.69 to −0.01 0.08 to 0.29 −1.90 to −0.11 0.05 to 0.95

Table 5.4. Range of Maximum Negative and Positive Values for VTTI Crash and Near-Crash Events
2005b). Although rollover crashes made up only 2% of crashes,
they accounted for almost one-third of light vehicle occupant
fatalities (including 59% of sport-utility vehicle fatalities) in
2003. Rollover crashes accounted for 10,182 fatalities for pas-
senger vehicle occupants in 2007 (Insurance Institute for High-
way Safety, 2009).

Most rollovers occur when a driver loses control of a vehicle
and the vehicle begins to slide sideways. At this point, a curb,
guardrail, tree stump, or soft or uneven ground on the side of
the roadway can “trip” the vehicle and cause it to roll over.
Rollovers are also caused by a driver turning too aggressively
either at high velocity or with a sharp turning radius, causing
Copyright National Academy of Sc
the vehicle to tip up and then roll over. Rollovers can also take
place after a collision with another vehicle.

Estimating Rollover Propensity

The risk of a vehicle being involved in a rollover depends on a
number of factors, including the vehicle’s center of gravity,
vehicle design, friction between surface and tires, steering
input, roadway geometry, and vehicle speed. As a result, deter-
mining the likelihood that a vehicle will roll over can be fairly
complicated. The simplified methods that follow, however,
have been used to estimate roll propensity.
iences. All rights reserved.
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Source: AASHTO, 2001. © American Association of State Highway and Transportation Officials (AASHTO). 
All rights reserved.

Figure 5.33. Maximum side friction factors.
Copyright National Academy of Sciences. All rights reserved.
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One of the main methods to assess rollover risk is to use the
static stability factor (SSF) (NHTSA, 2005a). SSF is given by
Equation 5.6:

where

t = vehicle track width and
h = height to center of gravity.

Gillespie (1992) expanded the concept to develop the rela-
tionship between forces acting on the vehicle and a mea-
sure of vehicle stability against rollover. The relationship is
given by

where

athreshold = maximum side acceleration sustained before a
vehicle engages in rollover and

ϕ = cross slope (for flat roads) or superelevation (for
curves).

In designing horizontal curves, the radius is calculated
(AASHTO, 2001) using the formula

and

ϕ = −v
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where

v = advisory speed or design speed limit in m/s,
f = safe side friction coefficient,
g = 9.81 m/s2, and
R = radius of the curve expressed in m.

Substituting Equation 5.9 into Equation 5.7 yields the
following:

Friction (f) can be obtained using Figure 5.33.
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Summary

The value of the naturalistic driving study is the ability to gain
insight on crashes that may not be observed using other data
collection approaches (e.g., crash databases, test tracks, driving
simulators). Thus, even though the number of crashes may not
be as representative, naturalistic studies do capture many use-
ful safety and crash surrogates that may not be observed in
police-reported crashes but can provide more insight into what
can precipitate a crash—before a crash actually occurs.

This report has outlined information that may be used to
develop crash surrogates for lane departures. Selection of crash
surrogates for lane departures is not an easy task because mul-
tiple hazards can be present for each lane departure, and differ-
ent surrogates may need to be specified depending on the most
likely hazard. Lane departures are partitioned into categories
and the surrogates are defined for the hazards most likely to be
encountered.

Additionally, the team evaluated lane departures in the
UMTRI and VTTI NDSs and identified some starting points
for setting triggers for the full-scale study.
iences. All rights reserved.
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C H A P T E R  6

Analytical Tools and Initial Analysis 
of Lane Departure Research Questions
This chapter outlines several exploratory analytical approaches
that were used to evaluate the existing naturalistic driving
study data and that may be appropriate for analyzing the
data that will result from the full-scale naturalistic driving
study data to answer a variety of lane departure research
questions.

The first is a data mining approach (classification and regres-
sion tree analysis). The second uses odds ratio and logistic
regression. The third approach describes how the exploratory
method used in the second can be expanded for the full-scale
study to account for repeated measurements. The fourth
approach is a time series analysis. Each approach uses data sam-
pled in a different way. Each is described in a separate section,
with the following information provided for each section:

• Background information that describes the general
methodology;

• Details on how the approach was used to conduct an initial
analysis of existing naturalistic driving studies;

• Results from the initial analysis of existing data;
• Considerations for the full-scale study, with a particular focus

on data reduction and sampling;
• Limitations of the method using the existing data; and
• Expected limitations and advantages for the full-scale study.

Information common to all methods, such as data sam-
pling approaches and data reduction, is provided in separate
sections.

Objective

The objective of this analysis plan was to develop and explore
methodologies to answer research questions relating to lane
departure crashes. The focus was to identify which roadway,
driver, vehicle, and environmental factors are the best explana-
tory variables in predicting an increased likelihood of lane
departures and lane departure crashes.
76
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Improved data about actual events that lead to a lane depar-
ture crash or a noncrash incident will be extremely valuable
in developing a better understanding of what negative factors
lead to crashes and near misses, as well as of the factors that
result in more positive subsequent events and outcomes.
Understanding why crashes did not occur yields as much
useful information as evaluating why they did occur. In both
cases, factors that cause a vehicle to initially leave the roadway
and the relationship between road, environment, vehicle, and
human factors and subsequent events and outcomes can be
studied. Dingus et al. (2006) reported that analysis of near
crashes from the VTTI naturalistic driving study was valuable,
as it demonstrated drivers successfully performing evasive
maneuvers.

The intent of answering lane departure research questions
is to provide roadway agencies and other practitioners with
information about which factors positively or negatively influ-
ence the likelihood of a lane departure. A better understand-
ing of roadway factors will allow agencies to better address
safety in roadway design and assess the benefits of various
countermeasures, such as rumble strips, flattening or better
delineating curves, mandating paved shoulders on reconstruc-
tion and rehabilitation projects, and policy. A better under-
standing of driver factors related to lane departures will allow
agencies to make better policy decisions, such as addressing
younger driver training and licensing. A better understanding
of environmental factors will enable agencies, for instance, to
make informed winter maintenance decisions and determine
trade-offs in application of street lighting.

Audience

The primary audiences who can utilize the information
obtained from answering lane departure research question
in the full-scale study are state, county, and local transporta-
tion agencies and policy makers. Consequently, the informa-
tion obtained should be in a format that can be used to make
 Sciences. All rights reserved.
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informed decisions about improved highway design during
initial design and during reconstruction and rehabilitation.
The information can also be used to select appropriate road-
way countermeasures and guide policy decisions. Hence, the
outcome of this lane departure analysis should provide quan-
titative relationships between lane departure crash likelihood
and explanatory factors so that agencies can estimate the ben-
efits and costs of implementing countermeasures.

Given the likely audience, results presented in the form of
“rumble strips reduce lane departures by 20%” or “drivers are
four times more likely to be involved in a fatal/major injury
crash on a two-lane roadway with 12-ft lanes and 6-ft gravel
shoulders than on a two-lane roadway with 12-ft lanes and
2-ft paved shoulders” would be the most useful for compar-
ing alternatives.

Consequently, analysis methods that provide crash reduc-
tion factors or odds ratios may be the most beneficial for pro-
viding specific information that can be used in assessing the
costs and benefits of different designs or countermeasures.
Highway engineers and policy makers have some familiarity
with these types of analyses, and the results of these types of
analysis can be communicated to the general public. However,
it will only be possible to create crash reduction factors if suf-
ficient crashes are available in the full-scale study.

The information in this report is geared toward those
who will conduct or review lane departure analyses using the
naturalistic driving study.

Data Availability in Full-Scale
Naturalistic Driving Study to
Answer Lane Departure
Research Questions

This section provides a brief discussion of the data expected
to be available in the full-scale naturalistic driving study to
answer lane departure research questions as they relate to the
discussion on analytical methods in this section. Chapter 4
provides an in-depth review of the most recently available
information and discusses the availability of data in the full-
scale study to answer lane departure research questions. The
accuracy, frequency of collection, and resolution that are
expected to be necessary to address lane departure research
questions is presented, and comments regarding the adequacy
of the expected data collection are provided.

Dynamic driver and vehicle data are expected to be collected
by the vehicle instrumentation DAS at 10 Hz (0.1-s intervals).
Data will be reported at this level of resolution. Some data ele-
ments may be collected at a higher resolution (at a rate higher
than 10 Hz) and will be aggregated to the 10-Hz level. Other
data will be collected at a lower frequency or resolution and
will be reported at 10 Hz.
Copyright National Academy of S
Sensors available in the DAS that will monitor drivers include
left-side, right-side, and head position driver video and a pas-
sive alcohol sensor. There has been some discussion about a
“head position tracking system” being provided in the DAS.
It is unknown at this time whether this will be available or
whether head position tracking will be completed for all data
or only for a subset of the data.

Dynamic vehicle factors from the DAS include forward/side
radar; collection of vehicle kinematics (e.g., speed, acceleration,
side acceleration); vehicle spatial position; and forward, side,
and back video.

The final data set available to researchers is expected to con-
sist of a spatial data set that contains individual vehicle/driver
activity data at 10 Hz (1 row or frame per 0.1 s) and that infor-
mation from other sources will be linked to that database and
reported at the same level, even if those data are not collected
at the same frequency. Static driver and vehicle variables may
be either linked to the data set or provided in a relational data-
base that can be joined to the spatial driver/vehicle data set.

Roadway data will be collected by the mobile mapping sys-
tem (SHRP 2 Safety Project S04B) or will be available from
existing state databases. The mobile mapping system will only
collect data from a sample of roadways in a given study area.
As a result, the same roadway data and the same data accu-
racy and resolution may not be available for all roadways. If
the source of data is state databases, some differences will result
across study areas.

Roadway data, when available, is expected to be linked to the
vehicle data in the full-scale study using spatial overlay. Most of
the roadway data will be collected at a lower rate than 10 Hz but
will be reported with the final data set at that level. For instance,
shoulder width may only be measured once per mile. If linked
with the vehicle data, shoulder width will be included as a field
reported for each 0.1 s, but the value would be consistent for all
0.1-s observations between each 1-mi sample interval.

Roadway variables that are not provided will need to be
extracted from the outside vehicle imagery, aerial images, or
other sources.

Two dynamic environmental factors will be included in the
DAS: time and outside temperature. All other environmental
factors will need to be extracted from the outside vehicle
imagery or other sources.

Certain static characteristics, such as driver age, driver gen-
der, vehicle type, and vehicle track width, will also be avail-
able. If they are not included as data fields in the continuous
data, they can be linked and included as data fields in the
continuous data.

No dynamic driver factors will be provided with the final
data set except for readings from a passive alcohol sensor. As
indicated, some head tracking information may be available.
All other driver factors will have to be reduced from the driver
video (e.g., distractions). Reduction of driver data at the
ciences. All rights reserved.
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0.1-s interval would require a tremendous amount of resources.
Therefore, data applications using continuous data would likely
need to reduce driver data at a lower resolution (e.g., once per
minute). This information can then be linked to the contin-
uous data. Some automation can be used, but applications
would need to be developed for this.

Driver factors relevant to driver distraction that would need
to be reduced include the following: head position, which
serves as a measure of eyeglance location; distractions (e.g.,
cell phone use, talking to passengers); hand position on steer-
ing wheel or other location; and measures of fatigue, such as
head drooping or yawning.

Data Segmentation
Approaches

Modeling relies on obtaining the necessary data at the appro-
priate level of accuracy, frequency, and resolution. Data can
be extracted in different ways depending on the application.
Researchers for SHRP Safety Project S02, Integration of Analy-
sis Methods and Development of Analysis Plan (Boyle et al.,
2010), developed a model segmentation approach that can be
applied to answering research questions for the full-scale nat-
uralistic driving study data, as described below.

This approach is included in the analysis plan because it
was decided that this was a useful structure for presenting the
ways data were collected for the four analyses described in the
following sections. The data segmentation is as follows:

• Continuous (frame): At this level, data are modeled at the
rate at which they were collected, resulting in very large
sample sizes. This is similar to the raw data set that would
result from the instrumented vehicle DAS. The data will
be quality assured, and some review of the data will be
necessary.

The instrumented vehicle data is expected to be collected
at 10 Hz (0.1-s intervals). The term “continuous” is used,
although in reality the data are discrete because they rep-
resent data aggregated to a set amount of time (i.e., data are
aggregated to 0.1-s intervals). However, for all intents and
purposes, the data can be considered as continuous.

• Sequential blocks: At this level, data are sampled and aggre-
gated to blocks or epochs in which they are summarized
over consecutive time periods. For instance, a 5-min sam-
pling rate would indicate that data over each 5-min period
are summarized into one observation. Data from different
data fields can be aggregated over the block of time in differ-
ent ways. For instance, the data for a particular field could
be averaged, it could be summed, minimum and maximum
values could be provided, or the number of times a partic-
ular value occurs could be reported. Data can be aggregated
for any time period up to the trip level.
Copyright National Academy of
• Sample based: Data at this level are sampled at regular time
intervals but are not aggregated. For instance, driver head
pose may be sampled and reduced by the researchers every
2 min. Data at this level represents a snapshot in time.

• Event: Data at this level are aggregated for an incident (e.g.,
lane departure) or some other event of interest. Event data
are aggregated for a set amount of time around an “event”
to one observation per event (e.g., 30 s before the event start
to 30 s after). An incident could be a crash, near crash, lane
departure, and so forth. An example of an event of interest
is vehicle activity in the vicinity of signalized intersections
where one or more approaches have a posted speed limit of
50 mph or higher (high-speed signalized intersections). An
event differs from a block in that it contains data only when
an incident or event of interest has occurred.

Examples of data at the continuous, sequential block, and
sample-based levels are shown in Figures 6.1 to 6.3. The vari-
able speed is “evaluated” for a theoretical database. As shown
in Figure 6.1, data at the continuous level are used at the rate
at which they are reported in the naturalistic driving study. As
a result, one observation is present for each 0.1-s of driving
(one row). Figure 6.2 shows data collected at the sequential
block level. A 1-min sampling interval was selected, and data
were aggregated over each 1-min period. Each minute of data
would provide one observation. An example of the sample-
based approach is shown in Figure 6.3 for the same data set.
Data are sampled at 1-min intervals. As a result, one row of
data is extracted for each 1-min sample period. Speed would
be reported for the 0.1-s interval extracted. One observation
would be present for each 1-min period, but the data would
reflect the 0.1-s intervals only.
General Information About
Data Reduction

This section provides general information about how the
existing naturalistic driving study data were reduced for the
analyses described in this chapter. Data for rural driving was
requested from UMTRI for the road departure crash warn-
ing (RDCW) field operation test (FOT). A description of the
data request and detailed description of the data received
and other data sets used is provided in Chapter 3. A detailed
description of the data reduction process is provided in
Chapter 4.

Data were provided for subjects during the period when
the RDCW system was functioning and recording data but
not providing feedback to drivers. UMTRI provided data for
rural roadways for 44 drivers. Vehicle activity data were pro-
vided in a Microsoft Access database and were provided as
continuous data. Each row of data represented 0.1 s of vehi-
cle driving for one driver during a trip. Forward imagery was
 Sciences. All rights reserved.

http://www.nap.edu/22848


79

Evaluation of Data Needs, Crash Surrogates, and Analysis Methods to Address Lane Departure Research Questions Using Naturalistic Driving Study Data
Figure 6.1. Example of data set showing data segmented at the 
continuous level.
provided in most cases at 2 Hz (two rows per second, or one
image per five rows of vehicle trace data). During times when
the RDCW system alert reported that a lane departure may
have occurred, forward imagery was provided at 10 Hz (10 rows
per second, or 1 image per row of vehicle data trace data) for
the 4 s before and 4 s after an alert was recorded.

Several variables used in the analysis were provided with
the data set: driver number, trip number, time since start of
trip, driver age, driver gender, vehicle spatial position, head-
ing, brake on or off, cruise control on or off, vehicle offset
from center of lane, lane width, vehicle track width, speed,
lateral speed, lateral acceleration, side acceleration, yaw rate,
roll rate, pitch rate, wiper status, headlamp status, road type,
posted speed limit, advisory speed, AADT, and number of
thru lanes. In some cases, advisory speed and posted speed
limit were not included and had to be obtained from the for-
ward imagery.
Copyright National Academy of Sc
A number of variables that were not provided in the
UMTRI data could be extracted or created from either the
UMTRI data or from other available data sources. Other
data sources included aerial imagery, a roadway database,
and a crash database for Michigan. (The databases are
described in Chapter 3; extraction of data elements is dis-
cussed in Appendix A.)

Because large amounts of data were provided and data reduc-
tion became a time-consuming task, it was decided to focus on
rural, two-lane, paved roadways. Only paved roadways were
considered because the lane tracking system did not function
well on unpaved surfaces, such as gravel.

In order to determine what other variables should be
extracted, the team conducted a comprehensive literature
review and compiled a list of potential variables that have
been shown to affect the likelihood and severity of lane depar-
ture crashes (see Chapter 2).
iences. All rights reserved.
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Figure 6.2. Example of data set showing data segmented at the sequential 
block level.
All of the data elements that the team determined were
important from the literature and could be obtained from
one of the available databases (vehicle data, aerial imagery,
roadway data, forward imagery, and crash database) were
extracted. In several cases, data were obtained from the
merging of two or more databases. For instance, curve radius
and direction were determined by overlaying the vehicle
database with aerial imagery and determining the start and
end point in the vehicle data that corresponded to each
curve, while curve radius was measured using the aerial
imagery.

The original continuous vehicle activity data from UMTRI
were provided in a database with each row representing 0.1 s
of activity for a particular driver/vehicle. When other variables
were extracted from the various data sets, they were linked to
the continuous data even if they were extracted at a lower res-
olution. For instance, shoulder width was determined for a
homogenous roadway section. All vehicle activity along that
Copyright National Academy o
section would have been selected, and a data field “ShldWidth”
would be populated with the single measurement for shoul-
der width.

A summary of the variables used in the different analyses is
provided in Tables 6.1 and 6.2. A number of other variables
were extracted, such as type of curve advisory signing and vis-
ibility, but were not included in the analyses because of low
sample sizes.
Lane departures were determined by calculating vehicle
wheel path using vehicle offset, lane width, and track width,
as described in Appendix A. A lane departure was defined
as a vehicle wheel path crossing over the right (right-side
lane departure) or left (left-side lane departure) lane line
and encroaching upon either the shoulder or the adjacent
lane by 0.1 m or more. The threshold 0.1 m was used as a
buffer because there is some uncertainty in estimation of
wheel path. In all cases, the vehicle departed the lane and
then returned to the initial lane of travel without losing
f Sciences. All rights reserved.
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Figure 6.3. Example of data set showing data segmented at the 
sample level.
control or making sudden evasive maneuvers. This type of
lane departure was referred to as an encroachment in the
discussion on crash surrogates in Chapter 5. The UMTRI
data set did not provide any near crash or crashes. It should
be noted that some of the left-side lane departures may
have been cases of drivers intentionally “cutting the curve.”
It may be possible to ascertain this from the driver’s face
video and from the driver’s hand position on the steering
wheel. However, the team did not have access to this type
of information.

The data reduction resulted in a total of 22 right-side lane
departure and 51 left-side lane departure events for two-lane
rural roads. It also resulted in over 113,000 observations (0.1-s
data frames) of normal driving.

Data for which lane departure incidents occurred were
modeled as continuous data in the data mining and time series
analysis approaches and were summarized by event for the
approach using an odds ratio. In this case, data for a block of
time around left- or right-side lane departures were summa-
rized as an “event.” The start point for each lane departure was
Copyright National Academy of Sc
determined by identifying the point at which the vehicle began
deviating from its path toward the edge of the lane, as shown
in Figure 6.4. The end point of the event was the point after the
vehicle returned to the roadway and corrected its path. The
start and end times were noted at those points, and the contin-
uous data for each event were extracted. A lane departure event
included time spent drifting from the roadway or lane, time off
the roadway or lane, and time returning to the original lane 
of travel. The average lane departure was approximately 8.0 s
(80 instances of 0.1-s observations). Depending on the amount
of time included, each event was weighted accordingly.
Data for which no lane departure had occurred were used to
represent normal driving data. Shankar et al. (2008) referred to
exposure measures as “controls.” Events are situations of inter-
est (crash, near crash), and controls are situations where the
outcome is absent (normal driving). Risk can be determined by
dividing the number of events by total exposure (“control”) for
a cohort.

Normal driving data were used as continuous data for the
data mining and times series analyses and were summarized
iences. All rights reserved.
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Variable Source Description Variable Type

Driver Variables

Age

Gender

OvrSpd5

OvrSpd10

OvrAdvSpd5

OvrAdvSpd10

Vehicle Variables

Spd

LatSpd

Ax

Ay

RollRate

PitchRate

YawRate

Following

Environmental Variables

Time

EnvCond

RoadSurf

Provided with data set

Calculated from speed and
posted speed limit

Calculated from speed and
posted speed limit

Provided with data set

Extracted from forward video

Extracted from forward video
and time

Extracted from forward video

Extracted from forward video
and wiper status

Age of driver

1 = male, 2 = female

Fraction of time driver exceeds the posted speed limit by 5 mph on rural,
two-lane roads

Fraction of time driver exceeds the posted speed limit by 10 mph on rural,
two-lane roads

Fraction of time driver exceeds the advisory curve speed by 5 mph on
rural, two-lane roads

Fraction of time driver exceeds the advisory curve speed by 10 mph on
rural, two-lane roads

Vehicle forward speed (m/s)

Vehicle side speed (m/s)

Forward acceleration (m/s2)

Side acceleration (m/s2)

Rate of roll (deg/s)

Pitch rate (deg/s)

Rate of yaw (deg/s)

Subjective measure of vehicle following

0: Not following

1: Following

2: Following closely

Indicates time of day

0: Day

1: Dawn/dusk/night

There was no overhead lighting on any of the roadways, so all nighttime
driving was dark/unlighted.

Prevailing atmospheric conditions

0: Clear (no precipitation)

1: Light to moderate rain

2: Heavy rain

3: Light to moderate snow

4: Heavy snow

5: Fog

0: Dry

1: Wet

There was no snow on any of the roadways.

Numeric

Categorical

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

Categorical

Categorical

Categorical

Categorical

Table 6.1. Description of Driver, Vehicle, and Environmental Variables
Copyright National Academy of Sciences. All rights reserved.
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Variable Source Description Variable Type

Roadway Variables

Radius

CurveType

LaneWidth

ShldWidth

ShldType

PvMCond

DwyDen

Other Variables

AADT

OnDen

Conflict

Angle

MaxOff

CrshDen

Extracted from aerial imagery

Extracted from forward video

Provided

Extracted from forward video

Provided

Extracted from forward video

Extracted from forward video and
vehicle data

Extracted from vehicle data

Extracted from Michigan crash
database and aerial imagery

Curve radius in m

Direction of curve from perspective of driver

0: No curve

1: Right curve

2: Left curve

Lane width in m

Shoulder width in m

Type of shoulder present

1: Paved

3: Gravel

4: Earth

6: No shoulder

7: Partially paved

Pavement marking condition

0: Highly visible

1: Visible

2: Obscure

Density of driveways to the right (driveways/m)

Annual average daily traffic for roadway segment in vehicles per day

Density of on-coming vehicle (vehicles/m)

Indicates type of vehicle event

11: Normal driving

21: Right-side lane departure

31: Left-side lane departure

Angle that vehicle left roadway during departure

Maximum distance vehicle encroached into adjacent lane or shoulder
during lane departure

Density of lane departure crashes along roadway segment (crashes/m)

Numeric

Categorical

Numeric

Numeric

Categorical

Categorical

Numeric

Numeric

Numeric

Categorical

Numeric

Numeric

Numeric

Table 6.2. Description of Roadway and Other Variables
into epochs, which are similar to events for the odds ratio
analysis. Epochs were selected by driver and trip when roadway
and environmental conditions were consistent. When a change
in roadway occurred, a new epoch was created. For instance,
data for a driver traveling along a specific roadway during a
particular trip would be partitioned each time roadway condi-
tions changed. Data along a tangent section would be marked
as one epoch if the roadway cross section did not change.
Copyright National Academy of Sc
When the vehicle encountered a curve, a new epoch would be
created that contained all of the vehicle activity on the curve.
At the end of the curve, a new epoch would be created for the
next tangent section. Data could not be partitioned by driver
characteristics because dynamic driver characteristics were not
available and static driver variables such as age and gender did
not change. In most cases, environmental conditions were con-
sistent across a roadway section, so it was not necessary to
iences. All rights reserved.
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Figure 6.4. Begin and end point for event.

Source: UMTRI RDCW data set.
consider changes in environmental conditions. Data were
summarized for each epoch. The length of each epoch was dif-
ferent because drivers spent different amounts of time driving
on a particular type of roadway. The number of 0.1-s intervals
for each epoch was included as a weighting factor.

Information about normal driving is useful because it can
be used to represent exposure. One of the strengths of the
naturalistic driving studies is that a substantial amount of
normal driving will be available, which can be used to deter-
mine a driver’s exposure for a particular set of circumstances.
Currently, there is no realistic method to obtain exposure
data for an individual driver, and it is even more difficult to
obtain detailed exposure for a cohort of drivers.

The most common measures to calculate exposure for a
driver cohort is to use number of licensed drivers partitioned by
age or some other characteristic. However, the use of number
of licensed drivers assumes that all drivers drive an equal num-
ber of miles and may overestimate or underestimate involve-
ment if the driver group has different travel trends. For instance,
older drivers may drive substantially less than drivers in other
age groups. VMT by age group is a better measure because it
demonstrates actual exposure, but it is difficult to obtain on a
local or even state level. National studies, such as the National
Personal Transportation Study (NPTS), have developed VMT
fractions by age group, but national statistics may not be repre-
sentative of state and local areas.

Actual VMT by age group can be extracted from natura-
listic driving study data for a given set of conditions. This
will provide a unique opportunity to study risk by driver
sub-population groups. Using the naturalistic driving study,
the amount of driving a driver or group of drivers engages
in on a particular roadway type can be used as a measure of
exposure.
Copyright National Academy of
Analysis Approach 1: 
Data Mining

Three different analysis approaches were used to model the
UMTRI data. The first was a data mining approach, described
in this section.

Description

Data mining is the process of analyzing data to uncover pat-
terns and establish relationships. Data mining processes may
include the following (Search SQL Server, 2009):

• Association, which involves looking for patterns consisting
of events that are connected to each other;

• Sequencing, which involves looking for patterns consisting
of events where one event leads to another;

• Classification, which involves looking for new patterns;
• Clustering, which involves organizing groups of facts; and
• Forecasting, which involves looking for patterns that can be

used to make predictions.

Data mining is the exploration and analysis of large
amounts of data to discover meaningful patterns and rules
in the data that are not evident. The process can be auto-
mated or semiautomated (Collier et al., 1998). The discov-
ery of patterns leads to additional knowledge. Data mining
is useful for large data sets where patterns cannot easily be
uncovered by human analysts. It also allows analysis of data
that may never have been analyzed using other techniques.
It can be used for both prediction and description (Tan 
et al., 2006).
 Sciences. All rights reserved.
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Sampling Approach

A sample-based approach using a sampling interval of 0.1 s
was used to model the data. As a result, every 10th observation
(0.1-s frame) was selected. The sample included both normal
data and left- and right-side lane departures.

Response Variables

Two models were developed, one with a response variable for
right-side lane departures and the other with a response vari-
able for left-side lane departures.

Explanatory Variables

All of the driver, roadway, and environmental variables in
Tables 6.1 and 6.2 were evaluated in different combinations.
Variables that were expected to be correlated were not evalu-
ated at the same time.

Modeling Approach and Results

Description of Classification and Regression 
Tree Model

A classification and regression tree model was the data mining
modeling approach selected. Classification methods assign
objects to predefined categories (Tan et al., 2006). Tree-based
models are used for both classification and regression. A tree-
based analysis uses a response variable (Y) that can be either
quantitative or qualitative and a set of classification or predic-
tor variables (Xi) that may be a mixture of ordinal or nominal
variables. For classification trees the response is categorical,
and for regression trees the dependent variable is quantitative
(Nagpual, 2009). Classification and regression trees use algo-
rithms to determine a set of if-then logical split conditions that
divide the data into subsets. One of the advantages of regres-
sion tree analysis over traditional regression analysis is that it
is a nonparametric method that does not require assumptions
of a particular distribution and is more resistant to the effects
of outliers; splits usually occur at nonoutlier values. Tree mod-
els are nonlinear, indicating that there is no assumption about
the underlying relationships between the response and explana-
tory variables. In addition, independent variables do not have
to be specified in advance. A regression tree selects only the
most important independent variables and the values of those
variables that result in the maximum reduction in deviance.
Another advantage is that results are invariant with respect to
monotone transformations of the independent variables.
Thus, the researcher does not have to test a number of trans-
formations to find the “best” fit (Roberts et al., 1999). The
regression tree also allows relationships between variables to
be uncovered that may not be determined using other meth-
Copyright National Academy of S
ods (StatSoft, 2008). For instance, shoulder width may be rel-
evant in determining whether a right-side lane departure
results in a lane departure crash on curves of a certain radius
but may not be relevant for tangent sections or curves with
larger radii.

S-PLUS Statistical Software’s (Version 8.0.4) classification
and regression tree analysis was used to evaluate the data.
Regression tree rules are determined by a procedure known as
recursive partitioning, which iteratively generates a tree struc-
ture by splitting the sample data set into two subsets accord-
ing to two rules. First, the independent variable that produces
the maximum reduction in variability is identified. Next, the
value of the variable that results in the maximum reduction in
variability is selected (Wolf et al., 1998).

Figure 6.5 shows an example of a classification and regres-
sion tree analysis that was used to determine the factors related
to high accelerations at intersections in a model to predict
vehicle activity for emissions modeling (Hallmark et al., 2002).
As indicated, the tree split on the variables queue position,
approach grade, and distance to the nearest downstream sig-
nalized intersection. A vehicle that was on a segment with a
downstream distance of less than 902 ft, that was in a queue
position less than 2 (first in queue), and that was on approach
with a grade of −1% or lower had an acceleration of 10.85 ft/s2

starting up from the intersection stop line. As shown, grade
was only relevant for vehicles in queue positions 1, 2, and 3,
and distance to the nearest downstream signalized intersection
was only relevant for vehicles in queue position 1.
c

Figure 6.5. Example of a classification and regres-
sion tree used to model vehicle acceleration for
emissions modeling.
In growing a regression tree, the binary partitioning algo-
rithm recursively splits the data in each node until the node
is homogenous or until a minimum criterion such as number
of observations is met. If left unconstrained, a regression tree
can grow until it results in a complex model with a single obser-
vation at each terminal node that explains all the deviance.
iences. All rights reserved.
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However, for application purposes, it is desirable to create an
end product that balances the model’s ability to explain the
maximum amount of deviation with a simpler model that is
easy to interpret and apply. To simplify the final model, the
user can set values such as the minimum number of obser-
vations present before a split occurs or minimum deviance
allowed at each node. Default values may also be used. Three
other functions in S-PLUS can be used to simplify the tree, as
described below.

Pruning reduces the nodes on a tree by successively snip-
ping off the least important splits. The equation to determine
the importance of a subtree using a cost-complexity measure
is as follows (Insightful Corporation, 2007):

where
Dk(T′) is the deviance of the subtree T ′,
k is the cost-complexity parameter, and
size(T′) is the number of terminal nodes of T′.

Cost complexity pruning selects the subtree T ′ which mini-
mizes Dk(T ′) over all subtrees.

The second function that can be used to simplify the model
is shrinking, which reduces the number of effective nodes.
This is accomplished by shrinking the fitted value of each
node toward its parent node using the following algorithm
(Insightful Corporation, 2007):

where
k is the shrinking parameter (k may be a scalar or a vector,
0 < k < 1),

(node) is the usual fitted value for a node, and
ŷ(parent) is the shrunken fitted value for the node’s parent.

Snipping allows the user to interactively remove nodes and
try various modifications to the original model. The effects of
using any of the procedures (pruning, shrinking, snipping,
modifying the minimum number of observations, modifying
the minimum node size, or modifying the minimum node
deviance) can be evaluated by observing normal probability
plots of the residuals for the tree object, comparing residual
mean deviance for different models, or inspecting a plot of
the reduction in deviance with the addition of nodes. The
residual mean deviance (rmd) is an indicator of regression
tree fit and is the statistic reported rather than the traditional
r2 value in linear regression analysis. The rmd is the mean
deviance of the data samples in the terminal nodes of an esti-
mated tree model. A lower value for rmd indicates a better fit
(Roberts et al., 1999).

Ɲ

ˆ ˆ ( . )y node k node k y parent( ) = ( )+ −( ) ( )• •1 6 2Ɲ

D T D T k size Tk ′( ) = ′( )+ ′( )• ( . )6 1
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Analysis Approach

Classification and regression tree analysis methods were used
to identify variables with the most explanatory power in influ-
encing the occurrence of a right- or left-side lane departure. A
separate model was created for right- and left-side departures.

For each model, a variety of explanatory variables were
evaluated in different combinations. Variables that did not
appear in one of the main branches of the regression tree
being evaluated were removed, and other combinations of
variables were evaluated. Initial models resulted in complex
trees. For example, the initial left-side lane departure model
is shown in Figure 6.6. As indicated, the tree model is com-
plex. S-PLUS plots the tree structure so that the more impor-
tant the parent split, the farther the children node pairs are
from the parents. This information and a plot of the deviance
as a function of the number of nodes and cost-complexity
parameters were used to evaluate the most relevant splits. The
snip and prune tree functions in S-PLUS were used to
develop the final models shown in Figures 6.7 and 6.8.
Results

As shown in Figure 6.7, the most relevant explanatory variables
for left-side lane departures were radius of curve, driver age,
and shoulder type. The values at the end of the tree nodes indi-
cate the type of lane departure. The value 11 was used for
normal driving, and the value 31 was used to indicate that a
left-side lane departure had occurred. The numbers showed
trends only: the higher the node value, the more likely a left-
side lane departure would occur. The values do not correspond
to an actual probability and are an artifact of the model used to
develop the regression trees. With significantly more data, the
model could have been developed so that the probability of
lane departure was the node value. Because there was not a sub-
stantial amount of data, the tree should only be interpreted to
show a general pattern and break points for variables where
relationships are emerging. For instance, for the left-side lane
departure, age was relevant when curve radius was less that
1,081 ft but was not relevant for curve radii greater than this.

As indicated in Figure 6.8, the most relevant explanatory
variables for right-side lane departures were also radius of curve,
driver age, and shoulder type. The values at the ends of the tree
nodes indicate the type of lane departure. The value 11 was used
for normal driving, and the value 21 was used to indicate that a
right-side lane departure had occurred. The higher the node
value, the more likely a right-side lane departure would occur.

Estimating Sample Size 
for the Full-Scale Study

As indicated, only limited data were available to evaluate the
lane departure research questions. In this section, sample size
 Sciences. All rights reserved.
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Figure 6.6. Initial tree model for left-side lane departures.
Figure 6.7. Final tree model for left-side lane departures.
for the full-scale study is addressed using classification and
regression trees.

Appropriate sample size for classification and regression trees
is not easily determined. Sample size depends on factors such as
number of variables, deviance at each node, complexity of the
model, and minimum specified node size. Most model pack-
ages set some minimum default node size. In S-PLUS, the
default node size is five observations.

Morgan et al. (2009) evaluated methods to test sample size
for decision-tree analysis. The authors indicate that when data
sets are too large, decision trees may overfit. They also found
Copyright National Academy of S
that accuracy decreases as sample size increases. From the
data they evaluated, they found that relatively stable patterns
emerged between 8,000 and 16,000 samples with models that
had a large number of variables to evaluate. The authors also
describe other work to evaluate sample size.

Application to Full-Scale Study

A sample-based approach is expected to be the best data
sampling method for classification and regression tree analy-
sis. Use of continuous data would require reduction of a
ciences. All rights reserved.
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Figure 6.8. Final tree model for right-side lane departures.
large amount of data, which would be extremely resource-
intensive.

The main advantage to data mining is that it will be useful
in uncovering relationships in the data that may not be found
using other methods. Additionally, data mining can also eval-
uate a large amount of data using an automated process.

One disadvantage is that this modeling approach is not
common among practitioners. It will be necessary to interpret
results so that practitioners can incorporate the information
into decision-making models, such as comparing the costs
and benefits of a particular countermeasure.

Analysis Approach 2: Odds
Ratio and Logistic Regression

The second analysis approach was to calculate odds ratios, as
described in this section.

Description

In this approach, both a simple odds ratio test and logistic
regression were used to identify factors related to lane depar-
tures. An odds ratio compares the probability of an event hap-
pening with the probability of the same event not happening.
Logistic regression evaluates the association between a binary
response and explanatory variables. The natural logarithm of
the odds is related to explanatory variables using a linear model.

The difference between the approaches used here and the
case-control used later is in the assumptions that are made for
modeling. The odds ratio and the logistic regression approaches
used here assume random independent sampling from a spe-
Copyright National Academy of
cific event (either left-lane-departure or right-lane-departure)
and random independent sampling of normal driving epochs.

Each epoch was treated as an individual observation. Since
the same driver may have been represented in more than 
one epoch, correlations between epochs may have existed. 
However, since this was an exploratory analysis, these two
approaches used all available epochs and made the assumption
of independence for simplicity. In future analyses, when larger
data sets are available, researchers could test if the correlation
is zero. If the correlation is not zero, several adjustments could
be considered. For example, researchers could model the cor-
relation structure or use the paired case-control approach.

Data Sampling Approach

Data were reduced as described in the previous section on data
mining (p. 84). Each lane departure event or normal driving
epoch was modeled as one observation. However, the models
were weighted by the number of 0.1-s intervals for each event
or epoch.

Response Variables

Occurrence of a lane departure was the response variable.
Right-side and left-side lane departures were modeled 
separately.

Explanatory Variables

A number of explanatory variables were available, as shown
in Tables 6.1 and 6.2. When variables were highly likely to
 Sciences. All rights reserved.
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be correlated, only one variable was evaluated. For instance,
ambient conditions and roadway surface condition are highly
correlated. Road surface condition was used because it is more
likely to have an impact on whether a driver has a lane depar-
ture. Variables were not included in the simple odds ratio when
there were not enough observations to calculate an odds ratio.

Simple Odds Ratio Modeling 
Approach and Results

Simple odds ratios were calculated using Equation 6.3:

where
OR = odds ratio,
RDj = number of observations for situation j where lane

departure occurs,
RDk = number of observations for situation k where lane

departure occurs,
NDj = number of observations for situation j where no lane

departure occurs, and
NDk = number of observations for situation k where no lane

departure occurs.

The 95% confidence interval was calculated using Equa-
tions 6.4, 6.5, and 6.6:

and

CI of OR is exp log OR sd( ) ±( )1 96 6 4. ( . )�

OR =
RD RD

ND ND
j k

j k

( . )6 3
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The simple odds ratio only allows for two responses within
a variable (e.g., rumble strips present or not). Therefore, when
a variable had several responses, an odds ratio was calculated
for each response if there were sufficient values. For instance,
curve type had three responses: no curve, left-hand curve, and
right-hand curve. As a result, presence of left-hand and right-
hand curves was compared against tangent sections.

The results of this approach are presented in Table 6.3. Cat-
egories were created for numeric variables such as radius, as
shown in Table 6.3, to create two responses. When numeric
variables could not easily be combined into categories, they
were not included.

standard deviation of log odds ratio

1 RD

( )
= +j 11 RD 1 ND 1 NDk j k+ +( )0 5

6 6
.

( . )

standard deviation of log odds ratio

1 1

( )
= +A B ++ +( )1 1C D

0 5
6 5

.
( . )
Left-Side Departure vs. Normal Right-Side Departure vs. Normal

Variable Odds Ratio Confidence Interval Odds Ratio Confidence Interval

Radius < 200 m vs. tangent 10.9 (9.7, 12.3) 29.2 (25.4, 33.5)

400 m > radius ≥ 200 m vs. tangent 32.8 (30.1, 35.9) 10.9 (9.6, 12.4)

600 m > radius ≥ 400 m vs. tangent 19.7 (17.8, 21.8) 22.1 (18.8, 25.9)

600 m ≥ radius vs. tangent 20.4 (18.4, 22.7) 13.6 (11.3, 16.4)

Left-hand curve vs. tangent 5.1 (4.78, 5.54) 3.84 (3.37, 4.38)

Right-hand curve vs. tangent 2.95 (2.71, 3.20) 6.60 (5.93, 7.34)

Wet vs. dry roadway 0.97 (0.9, 1.1) Not enough samples

Day vs. night/dusk 1.8 (1.7, 1.9) 0.38 (0.3, 0.4)

Male vs. female 1.28 (1.19, 1.38) 1.14 (1.02, 1.28)

Gravel vs. paved/partially paved 9.83 (8.37, 11.54) 0.16 (0.14, 0.18)

Earth vs. paved/partially paved 5.36 (4.55, 6.32) 0.07 (0.06, 0.08)

Table 6.3. Results of Simple Odds Ratio
As indicated, radius of curvature was highly relevant in the
occurrence of right- and left-side departures. Left-side and
right-side lane departures were 10.9 times and 29.2 times
more likely to occur on curves with a very small radius (less
than 200 m) than on a tangent section. Lane departures were
also much more likely to occur on other curve radii as shown.
Curve direction from the perspective of the driver (left curve
vs. right curve) was also relevant in determining the occurrence
of both right- and left-side lane departures. The odds of a left-
side lane departure on a left-hand curve were 5.1 greater than
on a tangent section, and for a right-hand curve the odds were
2.95 greater. The odds of having a right-side lane departure
iences. All rights reserved.
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were 3.8 for left-hand curves and 6.6 for right-hand curves.
Weather and time of day did not appear to be relevant because
the odds ratio was close to 1.0. Men were slightly more likely
than women to be involved in both types of lane departures
(1.3 for left-side lane departure, 1.1 for right-side lane depar-
ture). Shoulder type appeared to be relevant for left-side but
not right-side lane departures. It should be noted that a left-
side lane departure on a curve can be intentional (cutting the
curve). It was not possible to distinguish between intentional
and unintentional lane departures, except for events like a
vehicle changing lanes to avoid a parked car or object in the
roadway. These lane departures were removed but others, as
indicated, could not be identified.

Logistic Regression Modeling 
Approach and Results

Multivariate logistic regression was used to examine factors
associated with the risk of both left- and right-side lane depar-
tures using data summarized from the UMTRI data set, as
described in the previous section on data mining (p. 84). In each
model, the records for lane departures were used as the cases,
while records without lane departures (normal driving) were
used as the controls. Separate models were created for left- and
right-side lane departures. Both models were created using the
LOGISTIC procedure in the SAS/STAT 9.2 software package.

The response variable was presence of a lane departure, Z,
given as 0 if there is no lane departure (normal driving) and
1 if a lane departure occurred.

The models for right- and left-side lane departures were
created using the following logic. Occurrence of a lane depar-
ture Z is the response variable. Z is a Bernoulli variable with
p = P(Z = 1) as the probability of occurrence of a lane depar-
ture. Therefore, p/(1 − p) is the odds of a lane departure hap-
pening. In order to link the odds of a lane departure to the
explanatory variables investigated (X’s), the logit link func-
tion was used. Hence, a connection between the probability
of a lane departure and the linear combination of predictor
variables (X’s) using Equation 6.7:

Stepwise selection was used to determine which variables
were relevant and should be included in the model. For each
step, a covariate was added to the model if the significance
level for entry was met (0.1 was used). Then the chi-square
statistic was computed. If the covariate satisfied the signifi-
cance level (0.1), it was included in the model. The Akaike
information criteria (AIC) and Schwarz criterion (SC) were
used to compare models and determine which variables to
include in the final model.

Only a small sample of left- and right-side lane departures
was available. As a result, it was not possible to evaluate the

logit . . . kp p p X Xk( ) = −( )( ) = + +log ( . )1 6 70 1 1β β β
Copyright National Academy of
significance of all variables and test correlations between vari-
ables. In order to build a model that best represented the data,
the decision to remove variables from the model was based
on whether correlation among input variables was expected.
The maximum likelihood (ML) method was used to calculate
the coefficient estimates, and the Wald statistic was used to
test the significance of covariates.

The variable Observation was used as the frequency vari-
able in the model, which indicated the frequency of occur-
rence of each observation. This variable was used to weight
the model. Odds ratios were used to assess whether a specific
condition was more or less likely to result in a lane departure.
An odds ratio greater than 1 indicated that the odds of a lane
departure occurring are higher, and an odds ratio less than 1
revealed lower odds.

Left-Side Lane Departures

Equation 6.8 describes the final model for left-side lane depar-
tures. The estimated log (odds) is given by

Model statistics are provided in Table 6.4, and the odds
ratio estimates are shown in Table 6.5.
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The first variable in Equation 6.8, AGE, is driver age. As
indicated, as driver age increases, the odds for a left-side lane
departure decrease, which indicates that involvement in left-
side lane departures decreases with age.

Results for GENDER show that drivers involved in left-side
lane departures are 1.4 times more likely to be male drivers
(condition 1) than female drivers (condition 2).

The variable Radius is the radius of a curve. A very large value
of 9999 was used for tangent sections, and the variable was
modeled as a continuous variable. Table 6.5 shows that as radius
increases, the likelihood of a lane departure decreases.

A negative correlation between LaneWidth and the likeli-
hood of a left-side lane departure suggests that as lane width
increases, the odds for the left-lane departure decrease.

The result for the variable TimeOfDay is a comparison of
the odds of having a left-side lane departure during the day
compared with at night. As shown, the odds ratio of having a
left-lane departure during the day (condition 0) compared
with at night (condition 1) is 0.542, indicating that a left-side
lane departure is less likely to happen during the day. Alter-
natively, the odds of a lane departure at night compared with
during the day are 1/0.542 = 1.85.
 Sciences. All rights reserved.

http://www.nap.edu/22848


91

Evaluation of Data Needs, Crash Surrogates, and Analysis Methods to Address Lane Departure Research Questions Using Naturalistic Driving Study Data

Copyright National Academy of S
Intercept 
Criterion Only Intercept and Covariates

AIC 35815.581 29956.217

SC 35825.176 30023.384

−2 Log L 35813.581 29942.217

Association of Predicted Probabilities and Observed Responses

Percent 80.0 Somers’ D 0.624
concordant

Percent 17.6 Gamma 0.640
discordant

Percent tied 2.4 Tau-a 0.047

Pairs 442473680 c 0.812

R-Square

R-square 0.0526 Max-rescaled R-square 0.1873

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-square DF Pr > ChiSq

445.9524 8 <.0001

Table 6.4. Model Fit Statistics for Left-Side 
Lane Departure
Variable Condition Estimate Std Error p-value OR 95% Lower OR Estimate OR 95% Upper

Age 1 −0.0105 0.00123 <.0001 0.987 0.990 0.992

Gender 1 vs. 2 0.1682 0.0204 <.0001 1.292 1.400 1.517

Radius 1 −0.00025 3.637E-6 <.0001 1.000 1.000 1.000

LaneWidth 1 −0.7823 0.0712 <.0001 0.398 0.457 0.526

TimeOfDay 0 vs. 1 −0.3067 0.0178 <.0001 0.505 0.542 0.581

CrashDensity 1 −20.9528 3.5571 <.0001 <0.001 <0.001 <0.001

Table 6.5. Results for the Left-Side Lane Departure Model
The last variable, CrashDensity, indicates the odds of a lane
departure based on the density of lane departure crashes
along the segment. As shown, the probability of having a left-
side lane departure decreases as the density of lane departure
crashes increases. The results of this variable are counter to
what was expected. It was expected that roadway sections
with a high density of lane departure crashes would be more
likely to have lane departures.

Right-Side Lane Departure Crashes

Equation 6.9 describes the final model for right-side lane
departure events. The estimated log (odds) of a right-side lane
departure is given by

Model statistics are provided in Table 6.6, and the odds
ratio estimates are shown in Table 6.7.
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The positive estimate for the variable Age in Equation 6.9
indicates that as age increases, the odds of a right-side lane
departure also increase. This is the opposite of the result for
left-side lane departures.

The negative estimate for the variable Radius indicates that
as radius increases, the odds of having a right-side lane depar-
ture decrease. As a result, the likelihood of having a right-side
lane departure is greater on curves with smaller radii.

The coefficient for LaneWidth indicates that as the lane width
increases, the odds for a right-side lane departure decrease.

The variable ShldType indicates that the type of shoulder
is significant. Nonpaved shoulder types were compared with
paved shoulders (condition 1). The odds of having a right-
side lane departure when gravel shoulders (condition 3) were
present compared with when paved shoulders were present
are 0.08. The odds of having a right-side lane departure when
earth shoulders (condition 4) or partially paved shoulders
(condition 7) were present compared with when paved shoul-
ders were present are 0.01 and 0.29, respectively. Hence, the
odds of a right-side lane departure are greater on paved shoul-
ders than on earth, gravel, or partially paved shoulders. The
odds of having a right-side lane departure when very narrow
shoulders (condition 6) were present compared with when
paved shoulders were present are 1.34. However, the confi-
dence interval contains 1, so the difference is not statistically
significant. In addition, there were very few observations where
no shoulder was present.

The variable Time represents time of day. The odds of a right-
side lane departure during the day (condition 0) compared with
at night (condition 1) are 0.564. Alternatively, the odds of a
ciences. All rights reserved.
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Intercept 
Criterion Only Intercept and Covariates

AIC 17921.931 11629.157

SC 17931.503 11734.452

−2 Log L 17919.931 11607.157

Association of Predicted Probabilities and Observed Responses

Percent 94.0 Somers’ D 0.884
concordant

Percent 5.6 Gamma 0.887
discordant

Percent tied 0.3 Tau-a 0.029

Pairs 183668320 c 0.942

R-Square

R-square 0.0578 Max-rescaled R-square 0.3717

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-square DF Pr > ChiSq

1510.8238 8 <.0001

Table 6.6. Model Fit Statistics for the Right-Side
Lane Departure Model
Variable Condition Estimate Std Error p-value OR 95% Lower OR Estimate OR 95% Upper 

Age 1 0.0427 0.00286 <.0001 1.038 1.044 1.050

Radius 1 −0.00025 6.192E-6 <.0001 1.000 1.000 1.000

LaneWidth 1 −1.4042 0.1140 <.0001 0.196 0.246 0.307

ShldType 3 vs. 1 −0.8994 0.0647 <.0001 0.069 0.083 0.101

ShldType 4 vs. 1 −2.9345 0.1048 <.0001 0.008 0.011 0.014

ShldType 6 vs. 1 1.8799 0.1220 <.0001 0.967 1.338 1.850

ShldType 7 vs. 1 0.3650 0.0519 <.0001 0.252 0.294 0.343

Time 0 vs. 1 −0.2864 0.0402 <.0001 0.482 0.564 0.660

CrshDen 1 81.9774 7.9325 <.0001 >999.999 >999.999 >999.999

OvrSpd10 1 1.8347 0.0696 <.0001 5.464 6.264 7.180

Table 6.7. Results for the Right-Side Lane Departure Model
right-side lane departure at night can be computed by
1/0.0564 = 1.77. Hence, the odds of having a lane departure at
night are 1.77 times the odds of having one during the day.

The variable CrshDen is the number of actual lane depar-
ture crashes per meter for the section of roadway where the
vehicle activity took place. The result shows that as crash den-
sity increases, the odds of having a right-side lane departure
increase dramatically. This is also the opposite of what was
found for left-side lane departures.

The last variable, OvrSpd10, indicates the amount of time
a driver spends going 10 mph over the speed limit. The results
indicate that drivers who spend more time traveling 10 mph
Copyright National Academy of
or more over the speed limit increase their odds of having a
right-side lane departure.

Sample Size for Full-Scale Study

As indicated, only limited data were available for evaluating the
lane departure research questions. In this section, a method to
estimate sample size for the full-scale study is presented for
the logistic regression.

A literature review regarding sample size indicated that there
are various schools of thought on determining sample size for
logistic regression. References include Hosmer and Lemeshow
(2000, 339–347), Agresti (2002, 242–243), and Hsieh et al.
(1998, 1623–1634).

Calculation of sample size for logistic regression can be com-
plicated because multiple logistic regression analysis is non-
linear. Hsieh et al. (1998) suggest a method for simplifying
sample-size calculation. Based on their method, the following
describes an example calculation of sample size for the two
logistic regression models presented in the previous section.

Left-Side Lane Departure

In order to calculate sample size for left-side lane departures,
one of the explanatory variables that is of interest is first chosen
(e.g., LaneWidth, termed as X).

The sample size is calculated according to the following
equations:

where
π is the estimated probability when all the continuous vari-
ables are at their means, calculated as 0.03184.

δ τ τ τ= + +( ) ( )[ ] + −( )[ ]1 1 5 4 1 4 6 112 2 2exp exp ( . )

n z z= + −( )[ ] +( ) ( ) −( )[− −1 1

2 2 2 24 1 2 1α β τ πδ πτ ρexp � ]] ( . )6 10
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τ is the effect of X at the mean level of the other predictors.
For example, to determine the necessary sample size for
detecting that the effect of a one standard deviation increase
in lane width results in a 50% increase in the odds of left
lane departure, with all other continuous variables at their
mean values, then τ = log(1.5).
z1−α and z1−β are the (1 − α) and (1 − β) standard normal
quantiles, respectively.
α is the level of significance, which is 0.05 here.
1 − β is the power, which is 0.9 here.
ρ is the multiple correlation of X and the remaining covari-
ates in the model.

The R2 in linear regression can be used to measure ρ, which
is 0.1621 here. Inserting all of the above values into Equation
6.11 provides an estimated sample size for the logistic regres-
sion, which is 1,663.

Right-Side Lane Departure

Similarly for the right-side lane departure model, sample size
is calculated using

π = 0.01634
ρ = 0.1505
τ = log(1.5)

The sample size is determined to be 3,109 using Equations
6.10 and 6.11.

Application to Full-Scale Study

In order to apply logistic regression to the full-scale naturalis-
tic driving study, the following approach may be considered.
A sequential block approach may be used to reduce the data.
The first step would be to identify all lane departure crashes,
near crashes, and encroachments that meet the requirements
of the research question. For instance, only right-side lane
departures on four-lane, rural, divided roadways may be
included. A set amount of time, an epoch, would be deter-
mined based on the average length of lane departure. For
instance, the epoch could comprise 3 s before the lane depar-
ture and 3 s after, resulting in a 6-s interval. Normal driving
data could be sampled at regular intervals (e.g., 5 min) and
data aggregated for that epoch. For instance, if a 6-s epoch was
selected, all lane departure events would be extracted, data for
vehicle activity meeting the criteria would be sampled every 
5 min, and 6 s of data would be reduced for that interval.
Driver, roadway, and environmental conditions would need to
be consistent across the epoch. For instance, if the driver were
traveling on a tangent section at the beginning of the epoch
and then encountered a curve after 2 s, the epoch would have
to be adjusted to include just the tangent section or the curve.

Logistic regression analysis is ideal for the naturalistic driv-
ing study because normal driving data will be provided that
Copyright National Academy of Sc
can be used to account for exposure. Historically, it has been
difficult to account for driver activity under a range of situa-
tions to determine if one situation is overrepresented. For
instance, it is commonly accepted that crashes are more likely
during a winter weather event. However, it is very difficult to
determine what fraction of time drivers spend driving on snowy
or icy roads, so it is difficult to determine whether crashes under
these conditions are overrepresented.

Additionally, the results of logistic regression can be
expressed as odds ratios, which can easily be explained to lay
persons and used by transportation agencies.

Analysis Approach 3: 
Logistic Regression 
for Correlated Data

The previous section described an analysis approach using
logistic regression to evaluate the odds of having a left- or right-
side lane departure based on a small sample of available data.
Because the sample size was small, it was difficult to address
issues such as the correlation between data that occurs when
repeated samples are taken from the same situation (e.g.,
repeated samples for the same driver, same trip). This section
provides an alternate approach using logistic regression con-
sidering correlated data.

Description

This approach considers matched control and event samples
to avoid confounders. For each selected case epoch, several
matched controlled periods of the same length are sampled
from the same driver and same trip. Other covariates not
selected in the model (either because of not recorded or not
enough data to have a good estimate) are assumed to be con-
stant in the same trip of the same driver. For example, a
sleepy driver in a trip is sleepy the whole trip, not just at the
end of the trip. The effects of these covariates are thus elim-
inated in this matched case-control model. Further, each
epoch is assumed to be separated (not adjacent), so there is
an assumption of independence within each matched case-
control set.

The conditional logistic regression model focuses on esti-
mating the differences within these matched sets. The goal is
to understand the association between covariates (either envi-
ronmental, driver related, roadway related, or vehicle related)
on the probability of an event. Each period includes a response
variable that takes on the values Y = 1 (event) or Y = 0 (no
event) and candidate explanatory variables whose distribu-
tion of values within the epoch can be summarized using, for
example, the observed range (max-min) of values of the
covariate. Consider Yij�Xij ∼ Bernoulli(pθ(Xij)), the response in
the jth sample of the ith driver. Assume that j = 1 corresponds
to the case. Let Yi = (Yi1, Yi2, . . . , Yini) and Xi = (Xi1, Xi2, . . . , Xini).
iences. All rights reserved.
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The likelihood function is given by Li(θ�Yi) = f(Yi �Xi) / 
[Σpermutation of yi f(Y �Xi)] = [Πj∈control exp(x − ijβ)] / [Σchoose(ni,mi)

Πj∈control exp(xijβ)].
The following example combines left-lane and right-lane

departures as events. The significant positive model coeffi-
cients suggest that there exists a correlation between an event
and time periods when a driver exhibits a large variation in
lateral speed and lateral acceleration.

Data set:

Driver 6 8 12 24 48 51 60 Total

Number of sampled 11 3 21 15 16 6 16 88
periods (1 case, 
others control)

If the variable LaneOffset is available:

exp se
coef (coef) (coef) z p

max(LaneOffset) − 8.37 4317 3.05 2.74 0.0061
min(LaneOffset)

max(AY) − min(AY) 6.63 755 3.01 2.20 0.0280

Likelihood ratio test = 19.4 on 2 df, p = 6.21e-05, n = 88.

If the variable LaneOffset is not available:

exp se
coef (coef) (coef) z p

max(LATERALSPEED) − 4.91 136.0 2.44 2.01 0.044
min(LATERALSPEED)

max(AY) − min(AY) 3.63 37.7 2.83 1.28 0.200

Likelihood ratio test = 14.2 on 2 df, p = 0.000817, n = 88.

The correlation within is an important issue for the longitu-
dinal data. Not dealing with this correlation can cause biased
estimates and underestimated standard deviation (suppose
positively correlated). The following sections describe another
model that assumes hierarchical structure to deal with the cor-
relation within trips and nested in drivers. While the matched
case-control method assumes independent matched set and
tries to eliminate the correlation, the following method puts
the correlation structure in the model.

Sample

Given the example above, suppose now that periods are
selected from both run-off-road (ROR) and non-ROR events
under some common fixed condition, such as the same cur-
vature or the same weather conditions. Samples are selected
from all qualifying periods.
Copyright National Academy of
Difference from the Matched Case-Control
(the Conditional Logistic Model)

For the periods in the preceding section, the data set is con-
structed by sampling from the population of cases and the
population of controls, even though observations may be cor-
related (e.g., they could be sampled from the same trip).

Question of Interest

The question that may be answered with this approach is:
What factors may be associated with the risk of ROR events?

Response Variable

The response variable is a ROR event.

Covariates

Any variable for which measurements are available can be
included in the model as an independent variable. These
might include, for example, driver characteristics, environ-
mental conditions, and road conditions.

Model

The model is described by the following: Let Yij = 1 if the jth
sample (period) for the ith driver has ROR = 1. Assume that
the distribution of Yij is Bernoulli with logit(P(Yij = 1�Xij)) =
Xijβ + Zijγi. Here, Xij denotes the covariates corresponding to
the jth period for the ith driver, and γi is a (multivariate) nor-
mal distributed random variable that is driver-specific. This
random variable permits accounting for the correlation
between observations within the same driver data.

Model Example

For the example, continuous periods longer than 5 s (ROR
event periods or nonevent periods) are selected. For each
period, the middle 5 s are selected and the variables of inter-
est within each period are summarized. Then, consider a ran-
dom intercept for “driver” and a second random effect to
represent “trip nested within driver” in the mixed-effect
model and use forward selection of covariates based on the
AIC, as shown in the following:

Fixed effects (R: glmer)

Estimate Std. Error Z value Pr(>�z�)

(Intercept) −8.662 1.880 −4.61 4.1e-06

Mean of shoulder 0.995 0.400 2.48 0.013
width

Max(LaneOffset) − 3.346 1.986 1.68 0.092
min(LaneOffset)

Max(YawRate) − 0.592 0.330 1.80 0.073
min(YawRate)
 Sciences. All rights reserved.
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Estimated using generalized estimating equations (GEE) 
(R: geepack: geeglm)

Estimate Std. Error Wald Pr(>�W�)

(Intercept) −7.721 2.112 13.36 0.00026

Mean of shoulder 0.819 0.500 2.69 0.10119
width

Max(LaneOffset) − 2.419 1.544 2.45 0.11728
min(LaneOffset)

Max(YawRate) − 0.681 0.248 7.51 0.00614
min(YawRate)

The statistical model R was used to estimate the example,
and the functions used are shown in parentheses.

Note that by introducing the random effects into the
model, inferences about the association between lane offset
and the probability of an event and between yaw rate and the
probability of an event are impacted and changed from sta-
tistically significant to statistically insignificant.

Sample Size

Estimating sample size in generalized linear mixed models is,
in general, not a straightforward endeavor. Dang et al. (2008)
and Liu and Liang (1997) derived the exact form of the sam-
ple size estimator for the two-sample problem with correlated
binary responses and exchangeable correlation structure by
finding the approximating variance of the regression coeffi-
cient. Maas and Hox (2005) presented a simulation result for
models with one random coefficient and one random slope
at different sample sizes.

Sample Size Calculation Using a Generalized
Estimating Equations Method and a 
Simple Example

The following provides an example sample size calculation.
Consider an additional explanatory variable, OvrSpd5, that is
associated with driver behavior (frequency of driving over the
speed limit). A mixed model was fit using GEE as described
for the example above, and the regression coefficient associ-
ated with OvrSpd5 was not found to be significantly different
than zero. Because the p-value for the hypothesis that the
regression coefficient is equal to zero is 0.9338, the null
hypothesis H0: β4 = 0 is not rejected. If the alternative hypoth-
esis (H0: β4 = βa) happens to be true, then we would like to
have enough power to reject the null hypothesis. Assume that
the estimated coefficient β4 = −0.0136 is correct and that the
standard error 0.1543 is correct under the current sample
size. We want to increase the sample size to reduce the stan-
dard error enough so that we can achieve Type I error <0.05
when the true value of β4 is 0 and the power of the test is at
Copyright National Academy of Sc
least 0.8 when the true value of β4 is −0.0136. The coefficients
for this example are described as follows:

Coefficients (R: geepack: geeglm)

Estimate Std. Error Wald Pr(>�W�)

(Intercept) −7.3837 5.1027 2.09 0.1479

Mean of shoulder 0.8218 0.4830 2.90 0.0888
width

Max(LaneOffset) − 2.3889 1.6127 2.19 0.1385
min(LaneOffset)

Max(YawRate) − 0.6792 0.2604 6.80 0.0091
min(YawRate)

OvrSpd5 −0.0136 0.1643 0.01 0.9338

To obtain an estimate of the appropriate sample size under
those conditions, some assumptions need to be made. These
are as follows:

1. There is a fixed number of drivers indexed by s = 1, 2,
. . . , S.

2. Each driver has repeated measurements t = 1, 2, . . . , T.
3. The correlation structure is “exchangeable.” This means

that every pair of samples in the same subgroup has the
same correlation.

4. We are interested in testing the hypothesis H0: HA = h0

versus H1: Hβ ≠ h0. H is (0, 0, 0, 0, 1) and h0 in this exam-
ple is 0.

5. We let b denote the point estimate of β and let cov(b) =
T−1Vb (where the covariance matrix can either be model
based or can be estimated using robust methods). Then,
the Wald test statistic Q = T(Hb − h0)′[HV(b)H′]−1(Hb − h0)
is asymptotically distributed as a χ2(p, λ) random vari-
able with df = p and a noncentrality parameter λ = 0
under H0 and λ = λH1 under H1. The power of the test is
PH1(Q > χ2(p, 0)1−α), where α is the significance level.
The sample size is calculated by finding the minimum n
such that the PH1(Q > χ2(p, 0)1−α) achieves the desired
power level.

Comparison of the Logistic Regression Model

Both methods are trying to deal with the correlation struc-
ture. The matched case-control method uses fewer samples;
the mixed effect model can use more samples but needs to
make assumptions on the correlation structure and estimate
extra coefficient for correlations. Currently, both models can
extract information from this pilot data set. For a larger scale
of study, when researchers can afford to deal with the corre-
lation structure, the mixed effect model may provide more
information.
iences. All rights reserved.
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Analysis Approach 4: 
Time Series Analysis

Different from more common case-control study, the natu-
ralistic data provides more than just counts of events. The
purpose of using a dynamic model that puts interests on each
0.1 s includes modeling the pattern of driving and providing
information “on” (while) driving.

For example, we know lane offset is correlated to lane depar-
ture events. When the time window is small, the car is out of
the road during the event, so the measurement of lane offset
is different from normal driving. When the time window is
slightly larger, the averaged lane offset has not crossed the
edge of the road, and there is no difference between “driver
feels comfortable to stay close to edge at this section” and
“driver is going to cross the edge next second.” The “random”
(distribution) explains the different outcomes with the same
explanation variables as “randomness.”

We could also look at the data in another perspective. We
look at one instant while driving and think the following
actions as the results of current status, driver’s decision and
operation, environment effect, and some randomness. Assume
the current status is fixed and observed. Other factors are
changed over time. If we could build a model, we could fore-
cast a few seconds ahead. We might be able to determine some
conflicts—for example, in danger but not reacted, or in danger
and reacted but not enough.

This example is rather simplified. In the larger study, this
model needs several longer continuous mechanical-recoded
data that are known in closed situations (e.g., similar lane
type) to train the basic model and test on the shorter manu-
ally collected data (e.g., from video, radius).

The fourth analysis approach used continuous data in a
time series model, as described in this section.

Description

The main advantage of applying a time series analysis to nat-
uralistic driving study data is that it allows relationships
between variables across time to be incorporated into the
model. As a result, relationships can be established between,
for example, driver distraction in previous time periods and
probability of a lane departure or crash in a subsequent time
period. A time series model can also be used to model out-
come. Current methods, which use crash data to analyze the
impact of countermeasures on safety, have only accom-
plished their goals by waiting for the system to fail (i.e., a
crash occurs). In contrast, a time series analysis allows posi-
tive outcomes to be evaluated and relationships between 
positive outcomes and roadway, driver, or environmental
features to be determined.
Copyright National Academy of
Time series models are extensions of regression models,
where the errors are assumed to be correlated; thus, selection
of independent variables to be included in the model and the
form of the association between independent and dependent
variables in the model can be addressed in a standard fashion.

Sampling Approach

To demonstrate this analysis approach, data were modeled
using continuous data (i.e., each observation represents 0.1 s
of vehicle activity). All of the variables listed in Tables 6.2 and
6.3 were available but, because of the complexity of a time
series model, only a few initial variables were included to
demonstrate proof of concept.

Response Variables

The response variable is vector-valued. The first element of
the vector is a variable associated with movement (e.g., lane
offset, yaw rate), whereas the second element is a variable
associated with the operation of the vehicle (e.g., accelera-
tion). We use Y1(t) and Y2(t) to denote the first and second
elements of the response vector.

Explanatory Variables

The model can include continuous, block-summarized, or
static covariates. It can also include smoothed functions of
independent variables that may vary by periods. We use X(t)
to denote the value of the vector of covariates at time t. There
is no restriction on the number and type of covariates that can
be included in the model. In particular, we can include driver,
roadway, vehicle, or environmental variables and explore the
association between them and the response variable while at
the same time accounting for the correlation of consecutive
observations obtained from the same process.

Modeling Approach and Results

We assume that E(Y1(t)) = g(Y1(<t), X(≤t), Y2(<t)). That is,
the mean of the movement response variable at any given
time t depends on movement at times preceding t, on the
covariates up to and including their value at time t, and on the
operation response variable at times prior to t. To complete
the specification of the model, it is necessary to define the ker-
nel of the model (i.e., the functional form for g in the equa-
tion), the size of the lag (the number of observation periods
for which correlation coefficients will be estimated), and the
structure of the error term in the model.

One widely used model that permits accounting for the
autocorrelation in the observed data is the Autoregressive
 Sciences. All rights reserved.
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Moving Average Model of order p and q (ARMA(p,q)). The
standard version of the ARMA(p,q) model has a linear kernel
and the general form

where Y1(t) might denote, for example, lane offset at time t;
e(t) is a random error term, often distributed as a normal ran-
dom variable; and X(t) is a vector of explanatory variables.
The coefficients ai, bj, and β are unknown and must be esti-
mated from the data. The model includes p lagged terms for
the autoregressive part of the model, and q lagged terms for
the moving average portion of the model.

As an example, consider a specific driver from the available
data set. An ARMA(3,2) model was fit to the continuous
observations obtained over 102.5 s in Trip 2 of Driver 6. The

Y t a Y t a Y t p e t b e tp1 1 1 1 11 1( ) = −( )+ + −( )+ ( )+ −( ). . .

++ + −( )+ ′ ( ). . . b e t q X tq β ( . )6 12
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coefficients p = 3 and q = 2 and the two covariates were cho-
sen using the AIC.

Suppose that we wish to predict the location of the vehicle
at time = t + 1, given information about the location, lateral
speed, and lateral acceleration of the vehicle at time = t and
earlier. In this example, we only use time-dependent covari-
ates. The example that follows presents a more general model,
where other types of covariates, such as shoulder surface and
shoulder width, are also included.

The model was fit using the statistical software R. Table 6.8
shows the estimated model parameters and their standard
errors. We note, for example, that lateral speed at time t is neg-
atively and significantly associated with lane offset at time t + 1,
and the reverse is true for lateral acceleration. These two explan-
atory variables appear to be good predictors of lane offset.
Table 6.8. Estimates of the Parameters in the ARMA(3,2) Model Based on the Data 
Collected During 102.5 s During the Second Trip of Driver 6 in the Data Set Coefficients

ar1 ar2 ar3 ma1 ma2 Intercept LATERALSPE (t � 1) AY(t � 1)

2.8021 2.6402 0.8379 −1.8103 0.9189 0.2742 −1.1262 2.0016

SE 0.0263 0.0524 0.0262 0.0192 0.0167 0.2382 0.1481 0.8626

σ2 estimated as 0.000323: log likelihood = 2660.57, AIC = −5303.15
c

Figure 6.9 shows two graphs. On the top panel, the stan-
dardized residuals over time computed from the model are
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Figure 6.9. Diagnostic plots for the ARMA(3,2) model fit to Driver 6.
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displayed. Because the residuals are standardized, we expect
that about 99% of them will be within three standard devia-
tions of their mean zero. The plot suggests that there are very
few residuals that exceed the value 3 (in absolute value), so we
are comfortable concluding that there appear to be no out-
liers in this particular data set and with respect to this model.
Further, there seems to be no obvious pattern in the residu-
als, even though they are plotted in time order. This is consis-
tent with the plot shown in the bottom panel of Figure 6.9. In
this plot, we show the autocovariance function estimated
from the estimated residuals. If the order of the model is cor-
rect, then we expect to see no significant autocorrelation
among residuals. From these two diagnostic plots, we con-
clude that the model appears to fit the data reasonably well
and that the autocorrelation and moving average structure in
the model account for the correlation between observations
collected over time.

Because the goal was to predict the lane offset at a future
time given information available now, we predict the lane off-
set for this driver during this trip for the 3 s that follow the
end of the trip. The predicted lane offset and the 1 standard
deviation bands are shown in Figure 6.10.
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Figure 6.10. Observed lane offset for Driver 6 in Trip 2 (black solid curve),
one-step-ahead prediction of the 3 s beginning at the end of the trip 
(middle red dashed curve), and the �1 standard deviation region around 
the prediction (top and bottom red dashed curves).
However, to obtain lane offset predictions, we used a naive
approach, in that we assumed that both lateral speed and lat-
eral acceleration remained fixed at the values observed at the
end of the trip. We know that lateral speed and lateral accel-
eration also change during the prediction period, however.
The simple prediction approach can be extended to allow for
evolution of the covariates over time, but to do so we must
explicitly include lateral speed and lateral acceleration as
vector-valued response variables and model each variable as
a function of the other two.

For a second example, we can use the data collected for
Driver 51, whose trip included two curves. It can be antici-
pated that the association between lane offset and curve will
depend not only on curve characteristics such as length and
Copyright National Academy o
radius but also on the location of the vehicle within the curve.
In the original data set, we have information about whether
the driver is entering a curve to the left or to the right, and we
also know the length of the curve. The data set includes a vari-
able called CURVE, which takes on the value 1 during all time
periods in which the driver is taking a right curve, the value 2
during all time periods in which the driver takes a turn to the
left, and the value 0 whenever the driver’s vehicle is on a
straight road.

Figure 6.11 shows the value of the variable CURVE for
Driver 51. We have changed the labels to −1, 0, and 1 to denote
left curve, no curve, and right curve, respectively. The three
dashed curves colored red, blue, and green in the figure corre-
spond to three different smooth functions that depend on the
length of the curve. All three smooth representations (or sum-
maries) of the curves improve the fit of the time series model
relative to the model that includes the static −1, 0, 1 labels. The
function drawn in red is best, at least in the AIC sense.
The function that smoothes out the effect of a curve over
the period during which the driver is negotiating it can per-
haps be improved by including the radius of the curve (in
addition to the length) in the smoothing function.

Using the same ARMA(3,2) model but now with an addi-
tional explanatory variable consisting of the smooth curve
indicator, we fitted the indicator corresponding to the red
trajectory in Figure 6.11. Table 6.9 shows the estimated model
parameters and their standard errors. Note that when we
include the curve indicator into the model, lagged yaw rate is
no longer statistically significant. Lateral speed continues to
be negatively and significantly associated with lane offset.
As in the earlier example, we can explore residual plots and
autocovariance plots to carry out model diagnostics. Figure 6.12
shows the time-ordered estimated residuals (top panel) and the
autocovariance function for the estimated residuals (bottom
panel). We see from the top panel that the proportion of
standardized residuals with very high or very low values is
f Sciences. All rights reserved.
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Figure 6.11. Original curve indicator (black solid line) and three smooth functions 
of curve length.
Table 6.9. Estimates of the Parameters in the ARMA(3,2) Model Based on the 
Data Collected for Driver 51 in the Data Set

ar1 ar2 ar3 ma1 ma2 Intercept LATERAL SPE (t � 1) AY (t � 1) Smooth (Curve)

0.8558 0.9891 −0.8541 0.2144 −0.7747 −0.2199 −1.2364 −0.5456 0.9797

SE 0.0662 0.0137 0.0649 0.0833 0.0832 0.0975 0.4287 3.2924 0.2394

σ2 estimated as 0.00443: log likelihood = 1309.5, AIC = −2599
Standardized Residuals
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Figure 6.12. Diagnostic plots for the ARMA(3,2) model fit to Driver 51.
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negligible, and the autocovariance function in the bottom panel
suggests that the autoregressive and the moving average struc-
tures in the residual account for the residual time dependence.

Sample Size

Several methods were considered to estimate the sample size
needs for conducting a time series analysis in the full-scale
study. The methodology is rather complicated, and it was
decided that it is beyond the scope of this report to describe
the methodology.

Application to Full-Scale Study

For continuously driving online forecasting in the full-scale
study, the research team proposes fitting a normal dynamic
linear model (DLM) that permits continuous updating of the
forecast distributions when new observations become avail-
able. Each update can be made by optimizing some function
of the observed data and the previous forecasts. Two such
optimization approaches include the minimum mean square
and the Bayesian (posterior distribution) criterion. If the
variance is known, the Bayesian forecasting for the DLM is
essentially equivalent to the Kalman filter used extensively in
engineering control processes.

The univariate normal DLM is sometimes known as a
state-space model and includes the following:

• Observation equation Yt = Ftθt + νt, with νt ∼ N1(0, Vt)
• State evolution equation θt = Gtθt−1 + ωt, with ωt ∼Np(0,Wt)
• Initial prior (θ0�D0) ∼ N(m0,C0), where (m0,C0) fixed and 

Dt = {Yt, Dt−1}

The model states that the underlying “state” θt evolves
smoothly over time as an autoregressive process and that the
observation at time t is a smooth function of the state. Coef-
ficients Ft and Gt are often assumed to be constant over time,
but they can also be allowed to be time dependent.

When the state-space model is linear and when the two
random drivers ν and ω are normally and independently dis-
tributed, forecasting consists essentially of the estimation of
normal conditional means at each step. The one-step forecast
at each t is then obtained as follows:

• Posterior at t − 1: (θt−1�Dt−1) ∼ N(mt−1,Ct−1).
• Prior at t: (θt�Dt−1) ∼ N(Gtmt−1,Rt) where Rt = GtCt−1Gt́ + Wt.
• Forecast: (Yt�Dt−1) ∼ N(Ft́Gtmt−1,Qt) where Qt = Ft́RtFt + Vt.
• Posterior at t: (θt�Dt) ∼ N(mt,Ct) where mt = Gtmt−1 + At(Yt

− Ft́Gtmt−1) and Ct = Rt − AtAt́Qt, At = RtFtQt
−1

The following is an example problem of the Kalman filter
from Bar-Shalom et al. 2001. This example involves trying to
Copyright National Academy of
estimate the distance (range) between two vehicles and their
relative speed (range rate).

Consider X(t) = (range(t), range rate(t))´. Assuming a con-
stant range rate, we have the following:

• Original state equation x(k) = Fx(k − 1), where F is the sys-
tem matrix.

• Original measurement y(k) = Hx(k), where H is the mea-
surement matrix.

• True state equation x(k) = Fx(k − 1) + Gu(k − 1), where 
u(k − 1) is acceleration.

• Observed measurement y(k) = Hx(k) + w(k), where w(k) is
the measurement error.

In previous continuous-time models, the explanatory
variables in the additive model explained the vehicle shifts
(left ← or right →) related to the variables. Another option
is to connect the explanatory variables to vehicle recovery
time after model prediction. Let t0 = the starting time where
the 3-s prediction confidence (credible) region covers
either edge of the lane. If the driver adjusts the vehicle
before the ROR event happens, then t = 0. Let t1 =
the time it takes the whole vehicle to return to the lane.
Assume the failure time t = t1 − t0 is exponentially distrib-
uted with the density function f(t) = λe−λt. The log hazard
function should be modeled as h(t) = Xβ. This model
answers questions like “recovery time versus road condi-
tion” or “recovery time versus driver’s record.”

Summary and Conclusions

Several exploratory analysis methods were applied to data
extracted from existing naturalistic driving studies to demon-
strate ways in which lane departure research questions could
be answered in the SHRP 2 full-scale study. The intent of the
analyses was to demonstrate different methods that could be
used to analyze the data that will result from the full-scale
study.

A data sampling approach developed by the SHRP 2 Safety
Project S02 researchers was described, and four analysis meth-
ods were presented. The four approaches included (1) a data
mining approach using classification and regression tree analy-
sis, (2) simple odds ratio and logistic regression, (3) logistic
regression for correlated data that accounts for repeated sam-
pling among observations (e.g., repeated sampling for the same
driver, trip), and (4) a time series analysis.

Three of these methods were used to evaluate existing nat-
uralistic driving study data, and one method expanded on a
varied logistic regression approach that may be better suited
to the data from the full-scale study. Data were available from
the UMTRI road departure crash warning (RDCW) field
operation test (FOT) that contained a number of nonconflict
 Sciences. All rights reserved.
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lane departures and samples of normal driving. Methods 1
and 2 ([1] classification and regression tree and [2] simple
odds ratio and logistic regression) evaluated the likelihood of
a left- or right-side lane departure. A sample-based approach
was used in the classification and regression tree analysis, and
an event-based approach was used for the logistic regression.
Although available sample sizes were limited, both methods
resulted in similar results. Both indicated that curve radius,
driver age, and type of shoulder were relevant in explaining
lane departures. The logistic regression also indicated that
both left- and right-side lane departures were more likely to
occur at night and were less likely to occur as lane width
increased. The model for left-side lane departures indicated
that male drivers were more likely than female drivers to be
involved in a lane departure, and the model for right-side lane
departures indicated that lane departures are more likely on
roadway sections with a higher density of lane departure
crashes and for drivers who spend more time traveling 10
mph or more over the posted speed limit.

The fourth method, time series analysis, used continuous
data to develop a model to predict offset as a function of sev-
eral vehicle kinematic variables. The method was developed
and explained in such a way that it could be adapted to the
full-scale study to include various explanatory variables,
including driver behavior. This approach allows information,
such as driver distraction in previous time periods, to be
incorporated into the model.

As indicated, the analyses presented in this chapter were
exploratory, with the intent to demonstrate different analysis
methods that could be used to analyze the data that will result
from the full-scale study. Because the amount of data was lim-
ited, the analyses in most cases yielded only preliminary results.

Selecting an appropriate model for the full-scale naturalis-
tic study will depend on the research questions posed and the
resources that can be used to reduce data. Each approach has
its advantages and limitations in terms of the full-scale natu-
ralistic study. The main advantage of the classification and
regression tree analysis is that it can be used to uncover pat-
terns in the data that other methods may mask. The results
may indicate that a variable is only relevant at a certain point
(splitting value). For instance, there may only be a correlation
between lane departures and curves with a radius of 500 ft or
less, while no relation exists with larger curve radii. It is diffi-
cult to uncover this sort of structure using other models. Tree
models are also adept at revealing complex interactions be-
tween variables. Each branch may have different combinations
of variables, and the same variable can be present in more than
one part of the tree. This complexity reveals dependencies
Copyright National Academy of Sc
between variables and the point at which the dependency
exists (Hosmer and Lemeshow, 1986). However, several dis-
advantages exist for this method. A classification and regres-
sion tree may result in unstable decision trees if improper
modifications are made. If data have a complex structure, a
classification and regression tree may not correctly model the
data structure (Timofeev, 2004). A classification and regres-
sion tree can also result in an overly complex tree structure
and in models that are better for prediction than estimation
(Hosmer and Lemeshow, 1986). Additionally, practitioners
may not be as familiar with regression tree analysis as other
methods, and incorporating the resulting information into
decision making may be difficult.

Logistic regression analysis is ideal for the naturalistic driv-
ing study because normal driving data can be used to account
for exposure. This is important because, historically, it has
been difficult to account for driver activity under a range of
situations in order to determine if one situation is overrepre-
sented. While naturalistic data provides the volume of data
needed to assess the representation of various types of situa-
tions, researchers face the challenge of constructing meaning-
ful equivalence classes to define these situations. Results of
logistic regression can be expressed as odds ratios, which can
easily be explained to lay persons and used by transportation
agencies.

One disadvantage is that researchers, when applying logis-
tic regression appropriately to the full naturalistic driving
study, need to specify and identify events of interest. As a
result, some relationships may not be uncovered.

Time series models are highly appropriate for naturalistic
driving study data because they can account for dependencies
between driver behaviors and other factors in time intervals.
The main advantage of applying a time series analysis to nat-
uralistic driving study data is that the analysis allows relation-
ships between variables across time to be incorporated into the
model. As a result, relationships such as driver distraction in
previous time periods and probability of a red-light-running
crash in a subsequent time period can be established. The
biggest drawback to time series models is that they require the
use of continuous (raw) data. Reducing variables not already
included in the data sets at this level of data segmentation can
be tremendously resource-intensive. Additionally, in the case
of the example model presented above, only a few variables
and a small data set were used and the model was still rather
complicated. The results of time series analyses are also not
common to highway agencies, and consequently it will be dif-
ficult to present results in a manner than can easily be used in
decision making.
iences. All rights reserved.
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C H A P T E R  7

Summary
Lane departure crashes make up a substantial number of motor
vehicle crashes and account for a disproportionate number of
fatalities. Single-vehicle ROR crashes account for almost
39% of traffic fatalities. Two-vehicle head-on crashes result
in 18% of noninterchange, nonintersection fatal crashes,
with 75% occurring on undivided two-lane roadways. Hence,
addressing lane departure crashes is a major safety goal in the
United States.

Lane departure is a serious safety concern, yet the relation-
ship between the factors that influence whether a vehicle
departs its lane in the first place and the series of actions and
events that determine the outcome are complex and not well
understood. SHRP 2 is in the process of implementing a large-
scale field study to collect naturalistic driving data at various
locations throughout the United States. This study will result
in a rich database that can be used to evaluate lane departures
and better determine how the integration of driver behavior
and roadway, environmental, and vehicle factors lead to dif-
ferent outcomes.

This research investigated which lane departure research
questions can be answered when data from SHRP 2’s full-scale
naturalistic driving study data become available. The focus was
to determine the necessary and available data factors that could
fully answer the lane departure research questions and to con-
duct initial analyses of existing naturalistic driving study data
to develop methods that can be used for the full-scale study.
Analytical methods that could be used to answer those research
questions were also explored. The focus of this research was on
rural, two-lane, paved roadways.

The following paragraphs summarize the information pro-
vided in each chapter.

Chapter 1 provided background information and outlined
the scope of the research.

Chapter 2 summarized the final research questions and pro-
vided the results of a literature review conducted to identify
driver, roadway, environmental, and vehicle factors that have
some correlation to lane departure crashes. Factors identified
102
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included horizontal and vertical curvature, roadway cross sec-
tion, driveway density, illumination, weather, presence of rum-
ble strips, roadway delineation and signing, pavement edge
drop-off, vehicle type, speeding, influence of alcohol or drugs,
driver age, and distraction.

Information about the factors known to influence the like-
lihood and outcome of lane departures was used to formulate
a set of lane departure research questions that would be desir-
able to answer if the appropriate data were available. Data sets
from existing naturalistic driving studies were explored, and
the most current information about the data likely to be avail-
able in the full-scale study was reviewed (i.e., driver, roadway,
environmental, and vehicle variables). Research questions
were then categorized to distinguish those that were likely to
be answered using data from the full-scale study and those
that were not likely to be answered because of data limita-
tions. Research questions addressed during the scope of this
research were also identified.

Lane departure research questions that are not likely to be
feasible in the full-scale study include those that require the
following factors: alcohol or drug use by the driver (alcohol
sensor will be present but will not record individual use),
pavement surface friction measurements, pavement edge drop-
off, and quantitative measures of rain, snow, or ice on the
road. Identifying the feasible research questions in Chapter 2
required information provided throughout this report, but
the information was summarized in Chapter 2 for the purpose
of clarity.

Chapter 3 summarized the various data sets used in the
research. A description of common data terms was also
provided.

Chapter 4 identified data elements that are expected to be
necessary for answering the lane departure research questions,
based on a survey of the available literature, as well as on the
team’s expertise on lane departure issues. The accuracy, fre-
quency, and resolution of each data element was determined
and described. The availability of the data in the UMTRI and
 Sciences. All rights reserved.
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VTTI databases was reviewed and the limitations described.
The team also reviewed the available documentation of the
work for SHRP 2 Safety Projects S03 (Roadway Measurement
System Evaluation), S04A (Roadway Information Database
Developer, Technical Coordination, and Quality Assurance
for Mobile Data Collection), and S04B (Mobile Data Collec-
tion). Based on these sources, the accuracy, frequency, and
resolution of data that are expected to be available to answer
the lane departure research questions in the full-scale study
were evaluated. The team identified limitations and provided
feedback to SHRP 2, as described in Chapter 4. Data elements
were also prioritized, because resource limitations in the full-
scale study will constrain data collection.

Chapter 5 discussed potential lane departure surrogates that
can be obtained from naturalistic driving study data. Literature
regarding crash surrogates was summarized, and a method-
ological approach for selecting and applying crash surrogates
was outlined. Existing naturalistic driving study data were also
evaluated to determine starting points for setting triggers that
would identify lane departure events. The ways normal driving
data may be partitioned were also evaluated using existing data.
Lateral offset was compared for several driving situations. Dif-
ferences were noted between driving on a tangent and on a left-
or right-hand curve, between nighttime and daytime driving,
and between individual drivers. As indicated in the chapter,
differences are expected in what constitutes normal driving
behavior. This analysis provided some guidance on stratifying
normal driving by relevant variables.

Chapter 6 described four analytical approaches that can be
used to evaluate naturalistic driving study data and answer
lane departure research questions. Several exploratory analy-
sis methods were applied to data extracted from existing nat-
uralistic driving studies to demonstrate ways in which lane
departure research questions could be answered in the full-
scale study. The intent of the analyses was to demonstrate dif-
ferent analysis methods that could be used to analyze the data
that will result from the full-scale study.

A data sampling approach (developed by the SHRP 2 Safety
Project S02 researchers) was described, and four analysis meth-
ods were presented. The four approaches included (1) a data
mining approach using classification and regression tree analy-
sis, (2) simple odds ratio and logistic regression, (3) logistic
regression for correlated data that accounts for repeated
Copyright National Academy of S
sampling among observations (e.g., repeated sampling for the
same driver, trip), and (4) a time series analysis.

Three of these methods were used to evaluate existing natu-
ralistic driving study data, and one method expanded on a var-
ied logistic regression approach that may be better suited to the
data from the full-scale study. Data were available from the
UMTRI RDCW FOT that contained a number of nonconflict
lane departures and samples of normal driving. Methods 1 and
2 ([1] classification and regression tree and [2] simple odds ratio
and logistic regression) evaluated the likelihood of a left- or
right-side lane departure. A sample-based approach was used
in the classification and regression tree analysis, and an event-
based approach was used for the logistic regression. Although
available sample sizes were limited, both methods resulted in
similar results. Both indicated that curve radius, driver age, and
type of shoulder were relevant in explaining lane departures.
The logistic regression also indicated that both left- and right-
side lane departures were more likely to occur at night and were
less likely to occur as lane width increased. The model for left-
side lane departures indicated that male drivers were more likely
than female drivers to be involved in a lane departure, and the
model for right-side lane departures indicated that lane depar-
tures are more likely on roadway sections with a higher density
of lane departure crashes and for drivers who spend more time
traveling 10 mph or more over the posted speed limit.

The fourth method, time series analysis, used continuous
data to develop a model to predict offset as a function of sev-
eral vehicle kinematic variables. The method was developed
and explained in such a way that it could be adapted to the full-
scale study to include various explanatory variables, including
driver behavior. This approach allows information, such as
driver distraction in previous time periods, to be incorporated
into the model.

Appendices A and B describe the protocols, methods, and
variable descriptions used to extract data from the UMTRI
RDCW FOT and VTTI 100-car naturalistic driving study
data. The method used to extract the data provided a frame-
work that can be used by other researchers working with the
full-scale study. Data were extracted manually, which con-
sumed a large amount of resources. However, the framework
can be used to automate the extraction of some data. Appen-
dix A also provides a discussion about how lane departures
were identified in the UMTRI data set.
ciences. All rights reserved.
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A P P E N D I X  A

Methodology for Extraction of Data Elements 
from the UMTRI Naturalistic Driving Study Data Set
This appendix includes description of the methodology to
extract variables necessary to answer lane departure research
questions using the UMTRI naturalistic driving study data
set. The focus of the analysis is lane departures on rural,
two-lane roadways.

All the data were extracted and reduced manually, since
the team was exploring and evaluating what was available
with the data. This took a tremendous amount of resources.
Once researchers spend some time familiarizing themselves
with the data in the full-scale study, it is expected that
methods can be developed to automate some of the data
extraction.

The data sets used are described in detail in Chapter 3.

Data Preparation

The UMTRI data were provided in the form of continuous
vehicle data. Each row of data represented 0.1 s of driving.
Vehicle data were provided by vehicle alert type as indicated
in the section “University of Michigan Transportation Research
Institute Field Operational Test In-Vehicle Data” at the begin-
ning of Chapter 3. The road departure crash warning (RDCW)
system included six levels of alerts to indicate to the driver that
he or she was about to leave his or her lane or was traveling too
fast on a curve. The alerts included a right- and left-lane depar-
ture cautionary alert, right- and left-lane departure imminent
alerts, cautionary curve speed warning, and imminent curve
speed warning. A seventh designation was used to indicate that
a vehicle was negotiating a curve, but no alert has been included
for this.

Data were provided on 44 drivers. Data were divided by
alert type. Over 2,000 alerts/curves were received. Continuous
data were provided, with a resolution of 10 Hz (one row rep-
resents 0.1 s). A total of 1,506,525 rows of data were received.
Data were provided for 30 s before an alert was recorded 
to approximately 30 s after (called a trace). Instances of a
vehicle negotiating a curve were also provided as samples
109

Copyright National Academy of S
of regular driving and also included approximately 60 s of
data (approximately 600 rows per alert/curve). The data-
base contained a number of data fields (columns) with data
from the instrumentation system, such as lateral acceleration
and forward speed. The data corresponding to each alert is
referred to as a “vehicle trace.” The data also contained a
number of columns that represent data from sources other
than the instrumentation system, such as static driver char-
acteristics (age, gender) and roadway variables (lane width,
road class).

A large amount of time was spent reviewing the vehicle
trace data set to determine what was included and how to link
the UMTRI database and forward video data. Latitude and
longitude were provided for each row of data, and geographic
files were created for each vehicle trace using ArcMap. Each
UMTRI vehicle trace was overlaid with aerial imagery, and
the roadway type identified from the aerial image was matched
to individual vehicle traces. Vehicle location (e.g., tangent,
curve, freeway ramp) was determined and mapped to the
corresponding vehicle rows. Vehicle data in the vicinity of a
major intersection where the vehicle would have stopped or
slowed significantly were identified and tagged. Data around
intersections where the vehicle stopped or slowed significantly
were not included in the final analysis.

Overlap in vehicle traces was also identified and removed.
The team found significant overlap in the UMTRI vehicle
traces. This is due to the manner in which the data were
queried. For instance, UMTRI extracted data on curves, so
when several curves were in a row, a vehicle trace was extracted
for each curve. This resulted in several vehicle traces with over-
lapping data (see Figure A.1). The data for the overlapping
areas were for the same vehicle, trip, and times. It was neces-
sary to identify overlaps so that the same data would not be
used twice in the analysis.
The rural designation used by UMTRI was for data 
collected in locations where the population was less than
50,000. This resulted in vehicle traces located in developed
ciences. All rights reserved.
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Image source: Esri. © 2010 i-cubed. Vehicle trace source: UMTRI. 

Figure A.1. Overlapping vehicle traces.
areas. The team identified and removed vehicle traces where
the activity occurred within an incorporated area or in an
area with significant development along the roadway. Only
regular rural driving was desired, and areas with a large
amount of development would result in different driving
patterns.

A large number of vehicle traces that indicated a driver was
negotiating a curve turned out to be either a vehicle turning
at an intersection or a vehicle turning off of or onto a roadway.
Occurrences of these types were indicated. If the majority of
the vehicle trace was regular, uninterrupted rural driving,
the nonintersection or nonturning portion of the trace was
retained. When the majority of the vehicle trace was turning
activity, the trace was not included.

Preparation of the data for further analysis required a sig-
nificant amount of manual data reduction. Additionally, the
lane tracking system used in the RDCW did not perform well
on unpaved surfaces. As a result, the team decided to focus on
rural, two-lane, paved roadways. All resulting analyses were
for this type of roadway.

Available List of Variables
Included in Analysis and
Methodology to Extract
Additional Variables

The following is a list of variables available in the UMTRI data
or extracted to be included in the analyses of lane departures
using the naturalistic driving study data. The variables are
summarized by category: general, driver, vehicle, roadway,
environmental, and exposure.
Copyright National Academy of
General Variables Included 
in the UMTRI Data Set

The following general data fields were included in the UMTRI
database. They were not included as variables in any of the
analyses but were used in the extraction of other data.

• Time: In centiseconds (cs) since DAS started. Indicates time
into the trip. It was used to identify alert times, identify
overlap between vehicle traces, flag the beginning and end
of events, determine how far into the trip an event occurred,
and was used as an identifying feature. It was also used to
correlate forward video images to vehicle traces.

• Starttime: Indicates the time an alert identified by UMTRI
started. Time in cs since DAS started.

• Endtime: Indicates time an event identified by UMTRI
ended. Time in cs since DAS started.

• EventID: Indicates the type of alert that was flagged for the
vehicle trace. The alert was defined by the UMTRI FOT.
This information was used to flag potential lane departures
as defined by the UMTRI researchers. Events were defined
differently for the research described in this report. This
information was only used as a starting point to define
events. The data field EventID used the following convention:
– 1: LDW Cautionary Left;
– 2: LDW Cautionary Right;
– 3: LDW Imminent Left;
– 4: LDW Imminent Right;
– 5: Curve Speed Cautionary;
– 6: Curve Speed Imminent; and
– 7: Negotiating Curve (this indicated the presence of a

curve but in most cases represented normal driving).
 Sciences. All rights reserved.
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• LDWBoundaryRight and LDWBoundaryLeft: Represent
the type of lane line to the left or right of the vehicle’s present
lane. This information was used by the UMTRI system to
determine position and offset within a lane. Lane lines were
indicated as follows:
– 0: missing;
– 1: dashed;
– 2: solid; and
– 3: virtual.

• Latitude and Longitude: In degrees. Both were used in
identifying vehicle position for each time interval and 
in creating vehicle traces in Esri’s geographic information
system package, ArcMap, as shown in Figure A.1.

• Heading: In degrees. Indicates GPS heading for each time
interval.

• Radius: In meters. The radius of curvature was calculated
from the lane departure warning system. This data field
was subsequently determined to be inaccurate, so the radius
of curve was then calculated from aerial imagery by the
CTRE team.

• ThruLanes: Indicates the number of through lanes. This
variable was used to identify vehicle traces on two-lane
roadways.

• ShoulderLeft and ShoulderRight: In meters. These vari-
ables indicate shoulder width. In all cases, their values were
recorded as 5 m. These values were subsequently determined
to be inaccurate, so actual shoulder widths were then deter-
mined and extracted using the forward images.

Driver Variables

The following driver variables were available with the original
data set or were extracted from the various data sets.
Copyright National Academy of Sc
• Driver age: In years. Provided with data set.
• Driver gender: Provided with data set; 1 = male, 2 = female.
• Trip number: Provided with data set. The number of trips

previous to and including the current trip.
• Aggression_Accel: Percentage. This variable reflects aggres-

sive driving. It is defined as the percentage of time a specific
driver exceeds a set acceleration level. The acceleration level
is specific to the facility (e.g., two lane, freeway, intersection).
The acceleration level can be determined by developing
a distribution of accelerations (in m/s2) for all drivers 
in the data set where vehicle activity is on two-lane rural
roadways and the data did not include stopping or starting
at intersections. The threshold will be set once all data
have been reduced for all drivers. Acceleration for each
time interval is available from the variable Ax. Figure A.2
shows the acceleration distribution for Drivers 6 and 12.
Acceleration should be separated by positive and negative
acceleration.
(a) (b)

Figure A.2. (a) Distribution of deceleration and (b) acceleration (m/s2) for Drivers 6 and 12.
• OvrSpd5 and OvrSpd10: Percentage. These variables reflect
aggressive driving. They are defined as the percentage of
time a specific driver exceeds the posted speed limit by 
5 or 10 mph, respectively. The percentage of time driver k
exceeds the speed limit by i mph was calculated using
Equation A.1:

This reflects driving traces included in the analysis of
two-lane roadways. Records with missing data were not
included in the analysis.

PerOverSpeed

number of records where spee

ik =

dd for
driver mph over speed limit

Total

k i≥
nnumber of records for driver

A
k

( . )1
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• OvrCurveSpd5 and OvrCurveSpd10: Percentage. These
variables reflect aggressive driving. They are defined as the
percentage of time a specific driver exceeds the advisory
curve speed limit by 5 or 10 mph (when there is a curve
advisory). The percentage of time driver k exceeds the
curve advisory speed limit by i mph was calculated using
Equation A.2:

PerOverCurveSpeed

number of records where

ik =

speed for
driver mph over curve advisok i≥ rry speed limit

Total number of records for ddriver where there
are curve speed limit

k
advisories A( . )2
Copyright National Academy o
Summary Statistics for Aggressive 
Driving Variables

Several variables were created to assess a measure of aggressive
driving. Acceleration distributions were created for each driver
for nonevent (normal) data. Table A.1 shows the acceleration
summary statistics for individual drivers. The data represent
driver accelerations during nonevents (normal driving). As
shown, individual driver characteristics vary. Figures A.3
and A.4 provide box plots showing ranges of driver accelera-
tion characteristics.
Dr6 Dr8 Dr12 Dr14 Dr16 Dr17 Dr18 Dr24

Min: −2.59 −2.96 −1.20 −0.47 −0.93 −2.11 −2.27 −2.23

Mean: −0.07 −0.09 −0.02 0.14 0.01 −0.03 −0.02 −0.02

Max: 1.25 1.71 1.17 0.94 2.09 1.96 1.52 1.29

Std Dev. 0.37 0.53 0.27 0.31 0.28 0.34 0.42 0.38

Dr28 Dr35 Dr48 Dr51 Dr59 Dr60 Dr64 Dr85

Min: −2.74 −2.36 −2.44 −2.61 −3.08 −2.78 −2.32 −2.67

Mean: 0.00 −0.03 −0.07 −0.11 −0.09 −0.07 −0.03 −0.03

Max: 1.76 2.09 1.19 1.22 0.74 1.88 1.26 2.15

Std Dev. 0.35 0.40 0.33 0.40 0.49 0.54 0.52 0.43

Table A.1. Acceleration Statistics for Individual Drivers for Two-Lane Rural Paved Roads
Figure A.3. Box plots showing acceleration ranges 
for Drivers 6, 8, 12, 14, 16, 17, 18, 24.
Table A.2 provides a summary of the percentage of time
each driver travels over the posted speed limit by 5 or 10 mph,
or the curve advisory speed limit by 10 or 15 mph. Cells shown
as NA indicate curves with no advisory speed limits for the
f Sciences. All rights reserved.
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Figure A.4. Box plots showing acceleration ranges for 
Drivers 28, 35, 48, 51, 59, 60, 64, 85.
Posted Speed Limit Advisory Speed

Over Over Over 
Driver 5 mph 10 mph 10 mph OvrAdv15

6 0.0% 0.0% NA NA

8 49.0% 7.0% NA NA

12 8.0% 0.0% 83.0% 11.0%

14 36.0% 5.3% NA NA

16 1.2% 0.0% 31.4% 14.1%

17 0.9% 0.0% 2.3% 0.0%

18 12.1% 6.0% 41.7% 27.1%

24 36.0% 3.0% 78.0% 12.0%

28 90.2% 81.8% 100.0% 45.4%

35 21.9% 2.1% 41.1% 16.0%

48 25.0% 3.0% 75.0% 47.0%

51 13.2% 0.0% NA NA

59 8.5% 0.0% 89.0% 7.5%

60 41.8% 15.0% 63.7% 25.0%

64 55.5% 11.1% 61.1% 28.4%

85 25.0% 3.0% 75.0% 47.0%

Table A.2. Percentage of Time Driver Spends 
Over Posted or Advisory Speed Limit
Copyright National Academy of Sc
driver or the advisory speed was unknown. As indicated,
drivers regularly travel over the posted and advisory speed
limits but do so at different frequencies. Driver 6 rarely trav-
eled over the posted speed limit and Driver 17 rarely traveled
over either the posted or advisory speed limit. In contrast,
Driver 28 traveled over the posted speed limit by 5 or 10 mph
most of the time, exceeded the advisory speed on curves by
10 mph all of the time, and exceeded the advisory speed by
15 mph 45% of the time.

Vehicle Variables

All vehicles in the UMTRI data set were of the same type.
Thus, no individual vehicle characteristics, such as vehicle
height, were considered. The following vehicle variables
were included in the data set or were extracted:

• Speed: In meters per second (m/s). Provided with the data
set, this variable indicates forward (longitudinal) vehicle
velocity for each time interval.

• LateralSpeed: In m/s. Provided with the data set, this
variable indicates lateral vehicle velocity for each time
interval.

• Ax: In meters per second squared (m/s2). Provided with
the data set, this variable indicates forward (longitudinal)
vehicle acceleration for each time interval. Deceleration is
defined as negative acceleration.

• Ay: In m/s2. Provided with the data set, this variable indi-
cates lateral vehicle acceleration for each time interval.
Deceleration is defined as negative acceleration.
iences. All rights reserved.
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• Brake: Provided with the data set, this is a categorical
variable that indicates whether the brake was engaged, where
0 = not engaged and 1 = engaged.

• Engaged: Provided with the data set, this is a categorical
variable that indicates whether cruise control was engaged,
where 0 = off and 1 = on.

• Roll: In degrees. Provided with the data set, this variable
indicates degrees of roll for each time interval.

• RollRate: In degrees per second (deg/s). Provided with the
data set, this variable indicates roll rate for each time interval.

• PitchRate: In deg/s. Provided with the data set, this vari-
able indicates pitch rate for each time interval.

• YawRate: In deg/s. Provided with the data set, this variable
indicates pitch rate for each time interval.

• AmrRight and AmrLeft: In meters. Provided with the data
set, these variables indicate distance to the nearest object to
the right or left, respectively, for each time interval.

• TravelDirection: Determined from the time stamp and the
aerial image (categorical). This variable indicates the primary
direction of travel, where NB = northbound, SB = south-
bound, NEB = northeast bound, and so forth.

Roadway Variables

The following variables are those that relate to the roadway
and were either available with the UMTRI data set or were
extracted from variables or other data sets.

• LaneWidth: In meters. Provided with the data set, this
variable records the lane width for every time interval and
was calculated within the instrumentation package based
on the presence of left and right lane lines. Since lane width
can vary from time interval to time interval, lane width was
averaged across all intervals for each vehicle trace according
to Equation A.3.

where

LaneWidthAvgk = average lane width for the travel lane
calculated for each vehicle trace,

LaneWidthi = lane width for time interval i, and
Nk = number of time intervals in vehicle

trace k.

• RoadType: Determined from aerial imagery (categorical).
Vehicle traces were overlaid with aerial imagery and time
intervals were coded according to the corresponding road-
way type. A single trace could consist of vehicle activity on
several different roadway types. Areas around intersections
were only designated as “intersection” when the vehicle

LaneWidthAvg
LaneWidth

Ak

i

k

= Σ
N

( . )3
Copyright National Academy of 
would have to stop or slow down to yield right-of-way.
Time intervals for intersections where the vehicle was not
presented with any traffic control were coded as the regu-
lar roadway type (e.g., two-lane undivided). The variable
RoadType was compared against the variable RoadClass
included with the data, but was more descriptive. RoadType
was designated using the following conventions:
– 1: Two-lane undivided (one lane each direction);
– 2: Four-lane undivided;
– 3: Six-lane undivided;
– 4: Four-lane divided (two lanes each direction);
– 5: Six-lane divided (usually three lanes each direction);
– 6: Freeway ramp (further indicated as diamond or

cloverleaf ramp);
– 7: At or near intersection;
– 8: Other;
– 9: Eight-lane divided; and
– 9999: unknown.

• CurveType: Determined from aerial imagery (categorical).
This variable indicates whether the curve is to the left or right
from the driver’s perspective (inside or outside of curve)
during a particular time interval. Direction was confirmed
by the forward video. CurveType was designated using the
following conventions:
– 0: No curve;
– 1: Curve right; and
– 2: Curve left.

• PvmMarking: Determined from the forward video (categor-
ical). This variable is a subjective assessment of the visibility
of pavement markings. A driver’s ability to lane keep depends
to some extent on having positive guidance as to the location
of the traveled lane. The team reviewed the forward video
and assigned pavement marking condition value according
to the variable’s categories. It should be noted that pavement
markings for the same stretch of roadway would appear dif-
ferently at night or under wet conditions than during the
day or dry conditions. Examples are shown in Figures A.5
and A.6. This variable was an attempt to determine the mark-
ing visibility from the perspective of the driver and was
defined with the following categories:
– 0: Highly visible;
– 1: Visible;
– 2: Partially obscured;
– 3: Obscured; and
– 4: Nonexistent.
• CurveSign: Determined from the forward video (categor-
ical). This variable indicates whether some type of curve
signing can be seen in the time intervals corresponding to
a particular curve. Curve signing includes chevrons, curve
warning signs, and curve advisory speed signs. A sign was
indicated as being a curve warning when it simply provided
additional information about the curve similar to those
Sciences. All rights reserved.
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Source: UMTRI. 

Figure A.5. Pavement markings indicated as 
“highly visible” under nighttime conditions.
Copyright National Academy of S
Source: UMTRI. 

Figure A.6. Pavement markings indicated as 
“visible” under nighttime conditions.
shown in Figure A.7. A sign with an advisory speed was also
indicated as a curve advisory sign.
Source: FHWA 2007. 

Figure A.7. Common curve warning signs.
• RoadwayLength: In meters. Determined from the aerial
imagery. This variable measures the length of each vehicle
trace using a distance measuring tool in ArcMap. Roadway-
Length is used in estimating density, crash rate, and drive-
ways per mile.

• ShoulderType: Determined from the forward video (cate-
gorical). This variable classifies from visual observation
the type of shoulder along a roadway section of a vehicle
trace. Shoulder type is classified according to the following
conventions:
– 1: Paved;
– 2: Paved/gravel;
– 3: Gravel;
– 4: Earth;
– 5: Earth/paved;
– 6: No shoulder; and
– 7: Partially paved (includes 2 and 5 when used).

• ShoulderWidth: In meters. Measured from the forward
image by calibrating a known distance (lane width) in the
image.
• PavedShldrWidth: In meters. Measures the part of a shoul-
der’s width that is paved. PavedShldrWidth is measured
from the forward image by calibrating a known distance
(lane width) in the image.

• Radius: In meters. Measures the radius of a curve using
aerial images.

• PostedSpeed and AdvisorySpeed: In miles per hour. Curve
advisory speed limit and posted speed limit were included
in some of the data set’s vehicle traces. When they were not
included, they were obtained from the forward imagery
when available. When posted speed limit was not included
and could not be obtained from the forward imagery, it was
obtained where possible from the crash data of a roadway
segment. Posted speed limit was included as a variable in
the Michigan crash data. In most cases there were multiple
crashes along a roadway segment; all these crashes were
confirmed to have consistently occurred in places with
posted speed limits.

• DwyDensity: In driveways/m. Measured from aerial
imagery and verified with the forward video when neces-
sary. This variable counts the number of driveways along a
vehicle trace. Driveway density is the number of driveways
ciences. All rights reserved.
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to the right of the vehicle in the direction of travel divided
by vehicle trace length.

Driveway density was calculated as indicated above but
not included as a variable in the analysis. In retrospect, if
driveway density were included, it would be more appro-
priate to estimate it for a set distance in the immediate
vicinity of the respective data points.

Environmental Variables

The following describes environmental variables that were
either available with the UMTRI data set or were extracted.

• Wiper: Provided with the data set (categorical). This vari-
able indicates wiper blade status, which is an indicator of
ambient precipitation in a time interval. Wiper status was
designated using the following conventions:
– 0: Off;
– 1: Low;
– 2: High;
– 3: Invalid; and
– 4: Intermittent.

• Headlamp: Provided with the data set (categorical). This
variable indicates headlamp status, which is an indicator of
ambient lighting conditions in a time interval. Headlamp
status was designated using the following conventions:
– 0: Off;
– 1: Parking;
– 2: Low; and
– 3: High.

• SolarZenithAngle: In degrees. Provided with the data set.
SolarZenithAngle can be used to determine time of day.

• RoadSurf: Determined from the forward video (categorical).
This variable specifies pavement surface condition accord-
ing to the following conventions:
– 0: Bare (no evidence of precipitation);
– 1: Wet;
– 2: Snow cover along edge of roadway but travel lane is

bare or mostly bare;
– 3: Snow cover along edges and within roadway but bare

vehicle tracks;
– 4: Light snow cover over entire roadway surface; and
– 5: Medium or greater snow cover over entire traveled

way.
• TimeOfDay: In most cases, determined from the time stamp

and forward video. This variable indicates the period when
a vehicle trace occurred (categorical). It was recorded accord-
ing to the following conventions:
0: Daytime;
1: Dawn/dusk; and
2: Nighttime.
Copyright National Academy of
• EnvCondition: Obtained from the forward video. This
variable indicates the prevailing atmospheric conditions
when the driving trace occurred. Windshield wiper state
can also be used to determine precipitation. EnvCondition
indicates atmospheric conditions and may not correlate to
pavement surface conditions. For instance, the prevailing
environmental condition may be clear but there may be
snow on the roadway surface. Environmental condition was
designated using the following conventions:
0: Clear (no precipitation);
1: Light to moderate rain;
2: Heavy rain;
3: Light to moderate snow;
4: Heavy snow; and
5: Fog.

• Lighting: Determined from the forward imagery. This vari-
able indicates the presence of street lighting (categorical).
Most nonintersection, noninterchange sections of rural
roadways are unlit. Street lighting conditions were catego-
rized according to the following conventions:
0: No overhead street lighting;
1: Continuous lighting along roadway segment; and
2: Intersection or interchange lighting but no continuous
lighting on segment.

• SegmentLength: Segment length was measured from aerial
imagery and reported in meters. It was used in calculating
crash density, vehicle density, and so forth.

Measure of Exposure Variables

The following variables were used as measures of exposure.
These were either available with the UMTRI data set or were
extracted as described.

• AADT: In vehicles per day (vpd). Annual average daily
traffic for each roadway was provided with the UMTRI
data set.

• TimeDriving: In seconds. The amount of time that a driver
had been driving before the start of the vehicle trace was
determined from the vehicle trace time stamp. Drivers who
have been on the road for a significant time may be more
likely to become drowsy or inattentive.

• OnVehDensity: In vehicles per meter (v/m). The number
of oncoming vehicles that passed the subject vehicle during
the driving trace was determined from the forward video.
Oncoming traffic density was calculated by dividing the
total number of oncoming vehicles by segment length.

• PassDensity: In v/m. Determined from the forward video,
this variable provides the number of vehicles the subject
vehicle passes. Passed traffic density was calculated by
dividing total number of vehicles passed by the segment
length.
 Sciences. All rights reserved.
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• OtherPassDensity: The number of vehicles traveling in the
same direction that passed the subject vehicle was deter-
mined from the forward video. The density of vehicles
passing the subject vehicle (v/m) was calculated by divid-
ing the number of passing vehicles by the segment length.

• Following: Determined from the forward video. This vari-
able indicates whether the subject vehicle was following
another vehicle (categorical). A vehicle following very closely
could also be detected by the forward radar. A vehicle is
considered to be following another vehicle if it is close
enough that the lead vehicle could influence its behavior.
Figure A.8 shows an example of this. Figure A.9 shows an
example of a situation in which a vehicle would not be con-
sidered as following another. Following was designated by
the following conventions:
0: Not following;
1: Following; and
2: Following closely.
Figure A.8. Subject vehicle considered to be following
lead vehicle.
Figure A.9. Subject vehicle not considered to 
be following lead vehicle.
Other Exposure Variables

Other information available about the UMTRI data may also
be used to determine exposure. It was reported that 80% of
vehicle trips in the UMTRI FOT data were during the day and
20% were at night (LeBlanc et al., 2006). This information can
be used to determine nighttime exposure. Trip length, travel by
location (rural versus urban), and average trip distance by age
and gender are available in the report by LeBlanc et al. (2006).

• LDCrashes: The number of lane departure crashes that
had occurred along the roadway where the vehicle trace
was located was also determined. Crash data were available
from the Michigan DOT as described in Chapter 3. The
Michigan crash data contains four sequences of events for
Copyright National Academy of Sc
up to three vehicles. Lane departure crashes were identified
by reviewing sequence of events and crash type. Data were
available for 2000 to 2006 (7 years of crash data). If any of
the following were indicated for any vehicle in a crash, the
crash was identified as being a lane departure crash:
– Crossed centerline or median.
– Ran-off-road left.
– Ran-off-road right.
– Re-entered road.
– Collision with fixed object:

� Bridge, pier, or abutment;
� Bridge parapet end;
� Bridge rail;
� Guardrail face;
� Guardrail end;
� Median barrier;
� Traffic sign post;
� Traffic signal post;
� Luminaire support;
� Utility pole;
� Other pole;
� Culvert;
� Curb;
� Ditch;
� Embankment;
� Fence;
� Mailbox;
� Tree;
� Railroad crossing signal;
� Building;
� Traffic island;
� Fire hydrant;
� Impact attenuator; and
� Other fixed object.

Crashes that were identified as being lane departure
crashes were extracted into a separate database and were
plotted along with vehicle traces in ArcMap. Crashes falling
along the vehicle trace were selected. The crash information
was reviewed and any crashes which were not indicated as
occurring on the roadway where the vehicle trace was
located were discarded.

• CrashDensity: Crash density in crashes per mile was cal-
culated by dividing total number of lane departure crashes
along the vehicle trace by the length of the trace.

Identifying and Extracting 
Lane Departure Incidents

One of the research questions addressed by the team is how
to define lane departure crash surrogate events and to develop
thresholds between those events on the basis of vehicle
kinematics, such as lateral acceleration. In order to answer
iences. All rights reserved.
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the two research questions, it was necessary to identify actual
lane departures within the UMTRI data set so that this infor-
mation could be used to begin identifying thresholds. This
section describes how vehicle lane departure events were
identified and extracted from the UMTRI data set. Discussion
of thresholds is provided in Chapter 5.

As indicated in the section on data preparation at the begin-
ning of this appendix, some of the vehicle traces provided by
UMTRI had been flagged as a lane departure or curve warning
alert. Alerts were identified according to the road departure
crash warning (RDCW) system field operational testing
protocol. The thresholds set for the RDCW system alerts are
discussed in Chapter 3. Their identification of alerts was used
as a starting to point to identify lane departures. Other instances
of lane departures were also found in the vehicle traces as
described in the following sections.

Identifying Lane Departure Incidents

The main method to identify lane departures was to evaluate
vehicle wheel path. Lane departures were also confirmed by a
review of the forward imagery. Wheel paths were determined
by calculating a vehicle position within its lane for each record
of data (one record per 0.1 s of vehicle activity). The UMTRI
data set had the following variables that were used to calculate
wheel path.

• TrackWidth: In meters. Width of vehicle wheelbase was
used to calculate offset from the left and right lane lines.
Since all vehicles in the data set were of the same type, track
width was consistent between vehicles.

• LaneWidth: In meters. Provided with the data set, this vari-
able recorded the lane width for each time interval and was
calculated within the instrumentation package based on pres-
ence of left and right lane lines. Since lane width is calculated,
it will vary from time interval to time interval even though in
reality the lane width would not vary in this manner.
Copyright National Academy of
• Offset: In meters. Provided with the data set, this variable
indicates the vehicle offset from the center of the lane as
calculated by the lane departure warning system. Offset is
shown as the variable O in Figure A.10.
Figure A.10. Schematic of variables
used to calculate lane edge and
wheel path locations.
– Right and left lane edge and right and left wheel paths
were calculated for each time interval for each vehicle
path. Figure A.10 shows a schematic of the variables used
to calculate lane edge and wheel path.

– Lane line and wheel path locations are referenced from
the right lane edge (RLE) which is set as the reference
point (0). Position is positive moving to the left as
shown in Figure A.11. Left lane edge is calculated using
Equation A.4.
Figure A.11. Lane edge and wheel path plotted by time interval.
where

LLEk = position of left lane edge for time interval k,
RLEk = position of right lane edge for time interval k,

and
Wk = lane width measured at time interval k.

Since RLE is always referenced as 0, LLEk = Wk.

LLE RLE Ak k k= +W ( . )4
 Sciences. All rights reserved.
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Right wheel path is calculated using lane width, lane off-
set, and track width according to Equation A.5:

where

RWPk = right wheel path (in meters) is the location of the
right wheel path relative to the right and left lane
lines for time interval k,

Wk = lane width (in m) measured by RCWS for time
interval k,

T = vehicle track width, given as 1.73 m, and
Ok = vehicle offset (in meters) is the distance between

the centerline of the vehicle and the centerline of
the lane for time interval k.

Left wheel path was calculated using Equation A.6:

where

RWPk = right wheel path (in meters) for time interval k
and

T = vehicle track width, given as 1.73 m.

Once wheel paths and lane edge were calculated, they were
converted to feet since it was more intuitive to view wheel
path traces in familiar units.

A plot of lane edge and wheel path position was created in
Excel for each vehicle trace as shown in Figure A.12. Each plot
was evaluated to determine where lane departures occurred.

LWP RWP Ak k= +T ( . )6

RWP Ak

k k= − −W T O

2
5( . )
Figure A.12. Vehicle wheel path intruding on left lane edge 
(left image) or right lane edge (right image).
A lane departure was defined as a vehicle wheel path crossing
over the right or left lane line and encroaching upon either
Copyright National Academy 
the shoulder or adjacent lane as shown in Figure A.13. Lane
encroachment to the right was determined when the right
wheel path (RWPk) had a negative value since the right lane
edge was defined as 0. An encroachment to the left was deter-
mined when the value for the left wheel path (LWPk) was greater
than the lane width (Wk). Because there is some uncertainty in
estimation of where the lane edges are, UMTRI used a buffer
and only included encroachments that were greater than 0.1 m
past the lane edge (LeBlanc et al., 2006). The research team
adopted its convention and only included lane departures when
the vehicle was more than 0.1 m (0.328 ft or 3.94 in.) beyond
the left or right lane edge.
Each wheel path plot was also inspected in conjunction
with the corresponding forward imagery. In some cases, a lane
departure had occurred but was intentional, such as a vehicle
turning into a driveway or moving over for a parked vehicle.
Figure A.13, for instance, shows a subject vehicle moving
over for a stopped vehicle. Situations where a lane departure
was intentional were not included as lane departures in the
analyses.

Additional Information Extracted 
for Lane Departures

Once a lane departure was identified, additional information
about the lane departure was extracted using the various
data sets. The angle of departure (θ) from the roadway was
calculated as shown in Figures A.14 and A.15. The approxi-
mate linear path of the right wheel for a right-lane departure
or left wheel for a left-lane departure was determined using
vehicle path data just prior to the lane departure. The approx-
imate linear path the departing tire would have followed had
the vehicle not recovered was determined by estimation. The
linear paths and geometrical relationships were used to deter-
mine the angle of departure as shown in Figure A.15.
of Sciences. All rights reserved.
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(a)

(b)

Figure A.13. Identification of intentional lane departure for vehicle parked on shoulder:
(a) vehicle wheel path shows lane departure and (b) video indicates lane departure 
was the result of the subject vehicle moving over for parked vehicle.
Figure A.14. Estimation of wheel path for vehicle trace.
Figure A.15. Schematic for angle of departure.
Copyright National Academy of Sciences. All rights reserved.
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The angle of departure was calculated using Equation A.7:

where

Angle of departure (θ) = angle that the vehicle departed
from its original straight-line
wheel path (in degrees),

L = longitudinal distance vehicle
traveled from the point the wheel
departed from the straight-line

Angle of departure
Off

θ( ) = ⎛
⎝⎜

⎞
⎠⎟

arctan (
L

tot

AA. )7
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path to the point of maximum
offset (Offmax), and

Offtot = total distance from the straight-
line path to the point of maxi-
mum offset (Offmax).

Maximum offset (Offmax) was the maximum distance that
the wheel encroached beyond the edge of the lane. Maximum
offset for right-lane departures was calculated by subtracting
the offset value for the maximum point of encroachment to the
right from the right-lane edge position. Maximum offset for
left-lane departures was calculated by subtracting left-lane edge
from offset at the maximum point of encroachment.
ciences. All rights reserved.
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A P P E N D I X  B

Methodology for Extraction of Data Elements 
from the Virginia Tech Transportation Institute 
Naturalistic Driving Study Data Set

The following describes the variables selected to evaluate
lane departure research questions using the VTTI naturalis-
tic driving study data set (100-car study). It also describes the
methodology to extract those variables when relevant.

VTTI had already identified near crashes and crashes as part
of the 100-car naturalistic driving study data. These were the
only data available; there were no exposure data. Thirty-three
near crashes and crashes were provided by VTTI after a data
request was made as part of this project. VTTI has since made
some data from their 100-car study publically available on 
a data distribution website (http://forums.vtti.vt.edu/index
.php?/files/category/3-100-car-data/). Data on rural areas
from this website showed that lane departure was involved.
These data from the VTTI website had not been included
among the data earlier provided to the research team. The nar-
rative and other data descriptions for data from both sources
were reviewed. Several cases that had been identified as near
crash or crash have been found to be the result of intentional
lane changes or merging by the subject or another driver. These
instances were not included in the present study, because it
focuses on unintentional lane departures. Excluding these
cases yielded a total of 29 crashes and near crashes that were used
in various analyses. However, the VTTI data consisted of all
rural roadway types (e.g., ramp, divided, two lane), so there
were very few samples for each particular roadway type. A
description of the data sets is provided in Chapter 3.

VTTI had already identified the start and end times for
each near crash or crash to reduce events. Their convention was
used to define the start and end points when continuous data
were used.

Data from VTTI were already reduced in the sense that
crashes and near crashes were identified; the video data were
already reduced, providing event narratives, eyeglance infor-
mation, and so forth. The data were processed into various
databases to facilitate analysis.

The VTTI data required very little processing and included
data for both divided roadways and two-lane roadways. As a
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result, both were used in several of the analyses even though
only data for two-lane roadways were extracted from the
UMTRI data. Only data on rural roadways were included.

Since spatial information was not provided with the VTTI
data, additional data could not be extracted from other sources,
such as aerial imagery.

Continuous data were provided at 10 Hz (0.1 s) for each
crash or near crash.

The following lists the variables that were available in the
VTTI data or was extracted and was expected to be used in the
analysis.

Vehicle Variables

Information was obtained by the VTTI data reductionist,
unless otherwise indicated.

• Vehicle type: No information was provided about vehicle
type.

• Acceleration: Forward and side acceleration were provided
for each record of data, measured in g-force (g).

• Speed: Forward speed in mph.
• Available maneuvering room forward and rear: Range (ft)

and position (degrees) of obstructions in range of radar.
• Brake: Brake status (off/on).
• Turn signal state: Status of turn signal (off, right, left).
• Vehicle factors: Vehicle factors that may have contributed

to event (e.g., tire defect or malfunction, wiper defect or
malfunction).

Driver Variables

Information was obtained by the VTTI data reductionist,
unless otherwise indicated.

• Age: Driver age.
• Gender: Driver gender.
• Driver reaction: Driver reaction in response to the event

(e.g., steered to left, steered to right).
f Sciences. All rights reserved.
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• Driver behavior: Driver actions that occurred near the event,
actions that led to the event, or actions taken to avoid the
event (e.g., exceeded speed limit, avoided animal, driving
without lights).

• Driver impairment: Potential driver factors (e.g., drowsy,
angry, drugs).

• Driver distraction: Up to three distractions that the driver
was engaged in 5 to 6 s prior to the onset of the event
(e.g., lost in thought, reading).

• Hand on wheel: Describes whether driver had hands on
wheel (no hands, left hand, right hand, both hands).

• Visual obstructions: Factors that may have interfered with
driver’s line of sight (e.g., curve, trees, rain).

• Reaction of other drivers: Action or maneuvers by other
drivers causing the event or in response to the event.

Event Variables

Information was obtained by the VTTI data reductionist,
unless otherwise indicated.

• Event start and end: Time stamp that marks approximate
start and end of event.

• Event nature: Type of conflict that occurred (e.g., conflict
with lead vehicle, conflict with merging vehicle).

• Preincident maneuver: The action that the vehicle was
engaged in just prior to the event (e.g., going straight,
stopped in traffic).

• Maneuver judgment: Indication of the legality of maneuver
leading to the event as determined by the data reductionist.

• Precipitating event: Event that started the sequence leading
to the crash or near crash (e.g., subject over right-lane line).

• Post maneuver: Vehicle action after avoidance of crash or
near crash.

• Vehicles: Number of vehicles, type of vehicles, maneuver
of other vehicles involved in the event.

• Fault: Indication of which driver caused the event.
• Vehicle position: Position of surrounding vehicles (e.g., in

front and to right).

Roadway Variables

Information was obtained by the VTTI data reductionist, un-
less otherwise indicated.

• Infrastructure: Roadway factors that may have affected a
driver’s ability to safely navigate the roadway (e.g., roadway
alignment, weather).

• Lanes: Number of traffic lanes in the direction of travel.
• Geometry: Presence of curve or grade (e.g., straight/level,

curve/level, straight/grade).
• Land use: Land use in area at start of the event (e.g., church,

residential).
Copyright National Academy of S
Traffic Variables

Information was obtained by the VTTI data reductionist,
unless otherwise indicated.

• Density: Level of service (A to F) as determined by the data
reduction.

• Traffic control: Traffic control at start of the event (e.g.,
stop sign).

• Intersection: Position of vehicle relative to intersection or
junction at the time of the event (e.g., nonintersection,
intersection, driveway).

Environmental Variables

Information was obtained by the VTTI data reductionist, un-
less otherwise indicated.

• Roadway surface condition: Roadway surface condition
that may have caused a reduced coefficient of friction (e.g.,
wet, dry, ice).

• Lighting: Light condition (dawn, daylight, dusk, dark/lighted,
dark/not lighted).

• Weather: Ambient weather (clear, cloudy, fog, mist, rain,
snow, sleet, smoke).

Data Limitations

A number of variables that were determined to be necessary to
answer the lane departure research questions were not available
from any source in the VTTI data. A list of data variables neces-
sary to answer the lane departure research questions is summa-
rized in Chapter 4, which also outlines the limitation of the
VTTI data. In summary, the primary limitations that affected
the research team’s ability to fully answer research questions
included the following:

• No lane tracking information, such as lane width or vehicle
offset, was available that could determine vehicle position
relative to the lane. The researchers had to rely on the VTTI
data reductionist’s interpretation of whether a vehicle had
departed its lane.

• Vehicle spatial position (latitude/longitude) was not
provided. As a result, the researchers could not overlay
the vehicle traces with aerial imagery or other spatial data
sets to extract additional information, such as radius of
curve.

• Forward video resolution made it difficult to determine a
number of factors that could be determined in the UMTRI
forward video. For instance, in the UMTRI data, it was pos-
sible to tell the distance to an object on the side of the road-
way and to determine the pavement surface condition.
ciences. All rights reserved.
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A P P E N D I X  C

Assessment of Availability of Roadway Data 
Elements in the SHRP 2 Naturalistic 
Driving Study Data Acquisition System
Background

A preliminary test run of the SHRP 2 data acquisition system
(DAS) was evaluated to determine what roadway data elements
could feasibly be extracted in the event they are not available in
roadway data sets from SHRP 2 Safety Project S04A (Roadway
Information Database Developer, Technical Coordination,
and Quality Assurance for Mobile Data Collection) or Safety
Project S04B (Mobile Data Collection). A list of roadway fac-
tors that are necessary to answer lane departure research
questions was developed by the CTRE team as part of their
efforts in Safety Project S04A. The research team for this proj-
ect reviewed the list of roadway data elements and DAS data set
and commented on which roadway factors can be extracted
from the DAS data set which may be useful to researchers for
Safety Project S08 (Analysis of the SHRP 2 Naturalistic Driving
Study Data), as well as to other researchers. Ideally, roadway
information will be available from the mobile mapping data
collection for Safety Project S04B. However, Safety Project
S04B data collection will not cover all areas where naturalistic
driving study data will be collected, and not all necessary fac-
tors will be collected under Safety Project S04B. It is there-
fore important to comment on whether these factors can be
reduced from the naturalistic driving study data when they
cannot be obtained from existing data sets or the roadway
data set.

Evaluation of the accuracy of the lane tracking system and
of the global positioning system (GPS) is beyond the scope of
this project.

Description of DAS

VTTI instrumented a test vehicle with what is expected to be
the final version of the data acquisition system that will be
used by the pilot study sites in SHRP 2 Safety Project S07 (In-
Vehicle Driving Behavior Field Study). The CTRE team
received two sets of test runs from VTTI. The data were col-
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lected over the test route that had been surveyed for vendors
participating in the mobile mapping data collection rodeo for
SHRP 2 Safety Project S03 (Roadway Measurement System
Evaluation) (Figure C.1). The data received included two video
files with four video views (Figure C.2) and a database with raw
system data that included GPS coordinates for the following
vehicle data:

• Vehicle kinematics (e.g., speed, forward acceleration);
• Lane position;
• Presence of lane lines;
• Steering wheel position;
• Turn signal state;
• Temperature; and
• Light level.
Methodology to Extract Data
Elements from DAS

The team reviewed the GPS traces and the forward and back
videos to determine roadway data items that could be extracted.
The team assessed the data using three methods as described
in the following sections.

Comparing List of Roadway Data 
Elements to Forward Video

First, the team used a list of roadway data elements that had
been identified as part of SHRP 2 Safety Project S04A. The list
identified roadway data elements that had been indicated as
being important in addressing either road departure or inter-
section crashes research questions. Research questions from
Safety Projects S01 (Development of Analysis Methods Using
Recent Data), S02 (Integration of Analysis Methods and
Development of Analysis Plan), S05 (Design of the In-Vehicle
Driving Behavior and Crash Risk Study), and S06 (Technical
Coordination and Quality Control) were reviewed and data
 Sciences. All rights reserved.
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Figure C.1. Trace of DAS activity data.
Figure C.2. Video views provided with DAS.
elements identified. Next, the team reviewed data elements
included in the Highway Safety Information System (HSIS),
Model Inventory of Roadway Elements (MIRE), and the Model
Minimum Uniform Crash Criteria (MMUCC). Data elements
included in those inventories not already identified were
added to the list. A survey was conducted under SHRP 2 Safety
Project S04A to solicit additional user input. Roadway data
elements not already identified were added to the list and a
final list of roadway data elements that would be necessary to
comprehensively answer lane departure or intersection safety
questions was completed.

The team reviewed the forward video, and as each item was
encountered, they noted whether the data element could be
Copyright National Academy of Sc
seen in the forward video and whether it was likely that data
reductionists could identify and extract the data element. The
list of data elements and assessment of whether it could be col-
lected using the forward video is provided in Tables C.1 to C.5.
The team primarily tested whether a feature was present. Loca-
tion of an object can be associated with a corresponding road-
way feature. For instance, a vehicle trace can be located to a
particular curve and forward imagery could indicate presence
of several chevrons. As a result, the curve could be coded as
having chevrons. However, spacing of the chevrons or exact
location of the chevrons could not be determined. An approx-
imate location could be identified if the forward video frame,
vehicle’s spatial position, and location of a proximate feature
on an aerial image could be linked. This would be significantly
affected by the accuracy of the GPS.
Length cannot be accurately calculated. However, length of
an object, such as length of a horizontal curve, could be roughly
estimated if the begin and end points are located in the forward
frame of the video, which provides an estimate of time (t).
Vehicle speed (v) can be extracted from vehicle data in the DAS
and length (L) calculated as:

As indicated, it is possible to approximate location and
length of an object. However, there was no feasible way to test
the accuracy of these measurements for this exercise. As a
result, the effort focused on identification of features. Elements
included in the list of roadway data elements that could not fea-
sibly be extracted are indicated as not applicable (NA). In some
cases a feature was included in the list but the data reduction-
ists did not view that object in the DAS database. This may be
because the feature was not present in the test run made by the

L v t= �
iences. All rights reserved.
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Table C.1. Identification of Curve Data Elements and Roadway Cross-Section Features

Data Element Features DAS

Horizontal curvature

Vertical curvature

Cross section

Shoulder

Presence

Length

Location

Presence and type of spirals

Tangent length between adjacent curves

Radius or degree of curve

Presence and amount of superelevation

Direction of curve

Curve deflection angle

Vertical curve length

Tangent length between adjacent curves

Grade (percent)

Grade direction

Terrain type

Grade length

Lane width

Surface width

Number of lanes

Lane direction (one way, two way, auxiliary, reversible)

Cross slope

Type (e.g., regular; two-way left-turn lane)

Turn lane length

Surface type

Median type

Median width

Curb type

Type and characteristics of bicycle facilities

On-street parking type

Right/left shoulder type

Right/left shoulder paved width

Right/left total shoulder width

Right/left shoulder slope

Right/left shoulder condition

Yes

Could be approximated from time between frames and
vehicle speed

Begin and end points can be approximately located

NA

Could be approximated from time between frames and
vehicle speed

NA

NA

Can be determined from driver perspective; left-hand
vs. right-hand

NA

Difficult to establish the begin point of a vertical curve

NA

NA

NA

Can determine flat vs. hilly vs. mountainous

Difficult to establish the begin point of a grade

NA

NA

Yes

Yes

NA

Yes

NA

Yes

Yes; could differentiate between grass, flush, raised

NA

Yes

Either was not present or could not be identified

Yes

Yes

NA

NA

NA

NA
Copyright National Academy of Sciences. All rights reserved.
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Table C.2. Identification of Signs by Type

Data Element Features DAS

Regulatory signs

Warning signs

Guide signs

Service signs (e.g., 
camping, food)

Other

Speed limit

Pass/no pass zones

Other (lane end, do not enter, no parking)

School area

Railroad crossing

Stop

Yield

Horizontal alignment signs and location (e.g., chevron,
curve advisory speed)

Roadway cross-section changes (e.g., lane ends)

Vehicular warning (e.g., horse and buggy)

Nonvehicular warning (e.g., deer, pedestrian, 
snowmobiles)

Object markers

Speed reduction

Slippery when wet

Guide destination signs (type and location)

Route signs (type and location)

Route sign auxiliary signs (type and location)

Advance turn and directional arrow auxiliary signs
(type and location)

Sign type

School crossing

Yes; in some cases sign text was blurred

Either was not present or could not be identified

Yes; in some cases sign text was blurred

Yes; although text was blurred in some cases, sign
shape was distinct

Either was not present or could not be identified

Yes; shape was distinct

Yes; shape was distinct

Yes; chevrons can be identified; with curve advisory
signs, in some cases sign text/symbol was blurred

Yes; in some cases sign text was blurred

Either was not present or could not be identified

Yes; in some cases sign text was blurred

Yes; shape was distinct

Yes; in some cases sign text was blurred

Either was not present or could not be identified

Yes; although text was blurred in some cases, sign
shape was distinct

Yes; in some cases sign text was blurred

Yes; in some cases sign text was blurred

Yes; in some cases sign text was blurred

Yes; in some cases sign text was blurred

Yes; shape was distinct
VTTI instrumented car (e.g., no roundabouts were present) or
the feature may have been present but data reductionists did
not observe an instances of the feature.

It should be noted that both data sets were collected under
clear conditions in the daytime. There was some glare, but
there were no adverse ambient conditions. Consequently, the
ability to identify features does not account for that variation
in conditions that will be present in the full-scale study.

Table C.1 indicates which curve and roadway cross-section
features could be identified. The items apply to both tangent
sections and intersections. The presence of horizontal and
vertical curves could be easily determined for pronounced
curves. A very flat vertical curve or horizontal curve with a
large radius would be difficult to identify. Most of the features
of a curve cannot be determined (e.g., radius, supereleva-
tion). Width of objects cannot be determined using any of the
DAS data elements.
Copyright National Academy of S
Figure C.3 illustrates some of the cross-section data elements
as viewed by the data reductionist.
A list of sign types that were identified as being important to
lane departure or intersection research questions is listed in
Table C.2, along with an indication if they can be identified in
the forward imagery of the DAS. However, the text or symbols
on the sign face was often difficult to read. Signs with distinct
shapes (e.g., stop, yield) were the easiest to identify. The sign
face for speed limit signs was usually legible. It was more diffi-
cult to identify signs when there was significant glare or foliage
along the roadway. It was also difficult to detect signs when
there was on-street parking or the test vehicle was traveling on
an inside lane away from the road edge. This was particularly
problematic when other vehicles were between the test vehicle
and road edge. Table C.2 indicates if the sign could be identi-
fied. Figure C.4 illustrates some of the sign data elements as
viewed by the data reductionists.
ciences. All rights reserved.
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Table C.3. Identification of Pavement Marking and Lighting

Data Element Features DAS

Pavement markings

Illumination

Edge line

Centerline (e.g., dashed, solid)

Location of pass/no pass

Lane line

Center island

Arrows (e.g., merge, left only)

Text (e.g., Slow, School Ahead)

Raised pavement markings

Stop and yield lines

Crosswalks

Parking

Other (e.g., speed hump, HOV, colored pavement, curve
ahead)

Overhead lighting type

Overhead lighting location

Overhead lighting characteristics (e.g., lumens)

Type of in-pavement lighting

Location of in-pavement lighting

Yes

Yes

NA

Yes

Yes

Yes

Yes

Either was not present or could not be identified

Yes

Yes

Yes

Yes, found instance of colored pavement

Presence and type of mast arm could be determined

NA

NA

Did not encounter in database

Did not encounter in database
Pavement markings were evaluated and are listed by type
in Table C.3. Pavement markings in almost all cases were eas-
ily identified. Pavement markings included lane lines, painted
median/gore areas, and on-pavement markings such as stop
bars or turn lane designations. In most cases, a qualitative
assessment of condition was possible. For instance, markings
could be categorized by grouping such as “like new,” “good
condition,” “faded but visible,” or “faded barely visible.” An
assessment of lighting is also included in Table C.3. Examples
of pavement markings and lighting from the analysis are
shown in Figure C.5.
Evaluation of roadway surface elements and identification
of objects in the clear zone are listed in Table C.4. Surface type
could be identified between asphalt, concrete, and gravel. No
surface condition data elements (e.g., friction, roughness) can
be determined. Only obvious roadway defects, such as patch-
ing, could be identified in the forward video. Clear zone ele-
ments were also included. The type of objects within the clear
zone could easily be determined. This includes trees, utility
poles, guardrails, and so forth. Examples of roadway sur-
face and clear zone elements from the analysis are shown in
Figure C.6.
Table C.5 provides information about how well counter-
measures and access management features could be extracted.
Copyright National Academy of
Only centerline rumble strips were identified in the forward
video. Edge line, shoulder line, and advance stop line rumble
strips were either not located along any of the roadways or were
present but could not be identified. One speed feedback sign
and one flashing beacon were identified in the data. Although
it was not possible to read the text on the feedback sign, it was
possible to determine through the forward video whether the
sign was activated or turned off. Presence of driveways and type
of median can be identified in the DAS data set. Together they
can be used to estimate level of access control. Bridge charac-
teristics were also included in Table C.5. Bridge type and pres-
ence of barriers and abutments could be determined from the
forward video. Examples of data elements as they appeared in
the data set are provided in Figure C.7.
The data elements listed in Tables C.1 to C.5 apply to the
entire roadway. Data elements in Table C.6 are specific to
intersections. Several cross-section features were identified as
important elements that are specific to intersections. Number
of lanes for each approach of an intersection could usually be
determined if the cross streets were visible within the forward
video frame. The number of lanes could always be determined
for the approach where the vehicle was located. Left- and right-
turn prohibitions can be determined if the corresponding sign
can be identified.
 Sciences. All rights reserved.
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Table C.4. Identification of Roadway Surface and Clear Zone Characteristics

Data Element Features DAS

Road surface

Roadway defects

Clear zone

Surface type (e.g., gravel, asphalt, PCC)

Surface friction

Macro-texture

Pavement roughness

Pavement condition

Roadway rideability

Pavement edge drop-off

Roughness

Surface irregularities

Road debris (best source would be forward video)

Type of objects within clear zone (tree, utility pole, sign)

Clear zone distance

Slope beyond edge of shoulder

Presence, type of guardrail

Guardrail end

Guardrail face

Curb presence

Curb type

Right-of-way

Roadside hardware types and location (e.g., barriers,
culverts)

On-street parking

Concrete barrier

Other longitudinal barriers

Yes

NA

NA

NA

NA

NA

NA

NA

Some irregularities could be determined, but it was
difficult to distinguish from shade

Yes; observed plastic bag flying down the street

Yes

NA

NA

Yes

Yes

Yes

Yes

Yes

NA

Could only identify if hazard marking was present

Yes

Yes

Yes
The type of intersection control by approach could be
determined in all cases for the approach where the vehicle
was located. In some cases, type of control could be deter-
mined for adjacent or opposing approaches. When a signal
is present, it can be inferred that all approaches are signal-
ized. When a stop sign is present, it can be assumed that the
opposing approach is also stop controlled if it cannot be deter-
mined from the forward view. When no control is noted for
the approach where the test vehicle was traveling and con-
trol for adjacent approaches cannot be determined, it may
be difficult to determine if the intersection is uncontrolled or
whether the adjacent streets have stop control. When stop
control is present for the approach where the vehicle is located
and the control cannot be identified for adjacent approaches,
it may be difficult to determine whether the intersection is
two-way or four-way stop controlled. No instances of advance
Copyright National Academy of Sc
stop line rumble strips and red-light-running cameras were
found. It is possible that they were present but were not
identified.

The signal phase (red, yellow, green) could be determined
for the approach where the vehicle was traveling and can be
inferred for other approaches by vehicle movements. Signal
phase state could be identified in almost all situations, with
the exception of turn arrows. Turn arrows were very difficult
to discern in many cases. Signal progression could be inferred
based on the number of times the vehicle received the green
phase through a series of intersections.

Several intersection features are shown in Figure C.8 as
they were identified in the forward video.
Red-light running is a significant cause of many intersec-
tion crashes. The team therefore reviewed the forward video
view to determine whether a data reductionist could identify
iences. All rights reserved.
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Table C.5. Identification of Other Countermeasures and Access

Data Element Features DAS

Other counter-
measures

Access

Bridge structures

Type of edge line or shoulder rumble strips

Location of edge line or shoulder RS

Type of centerline rumble strips

Location of centerline rumble strips

Advance stop line rumble strips

Type of speed feedback signs

Channelizers, delineators

Presence of safety edge

Automated speed enforcement

Cable barrier

Crash attenuators/cushion

Vertical deflection (e.g., speed tables, raised 
intersection)

Application of high friction surfaces

Driveway density

Roadway facility type (e.g., collector, arterial)

Access control

Type (overpass, underpass, water crossing)

Bridge deck width

Barriers (e.g., railing)

Abutments

Either was not present or could not be identified

Either was not present or could not be identified

Either was not present or could not be identified

Either was not present or could not be identified

Either was not present or could not be identified

Encountered one speed feedback sign; speed display
was blurred, but it was possible to tell if activated
or not

Yes

NA

Could only be detected if signing was present; either
was not present or could not be located

Yes

Yes

Was not present in database

NA

Driveways could be identified and counted

NA

Could determine presence and type of median as well
as driveways; access could be inferred

Yes

NA

Yes

Yes
whether the instrumented vehicle ran the red light, although
red-light running is technically not a roadway data element.
The signal state could be observed in most cases, so the signal
change from yellow to red and the position of the instrumented
vehicle relative to the stop bar could usually be observed. Fig-
ure C.9 shows the signal turn from green to yellow to red. Since
signal state can be determined, a situation where the front of
the vehicle has crossed the stop bar after the signal turns red
could be identified as running the red light. Figure C.10 shows
the instrumented test vehicle crossing the stop bar while the
signal is yellow.
Evaluation of Percentage of Time That Feature
Characteristics Can Be Identified

The second evaluation method assessed the number of times
characteristics of a particular type of feature could be identified.
Copyright National Academy of
The team selected several critical items that would be necessary
in evaluating lane departure or intersection crashes. At least 10
of the data items were identified, if present, and a determination
made as to whether features could be extracted. For instance, a
number of regulatory and advisory signs were identified. Then
the number of times the sign message could be detected was
recorded. For instance, an advisory sign may be detected by
color and shape, but the text or symbol could not be read.

Results are shown in Table C.7 for the majority of features.
As the table indicates, chevrons were located three times in
the DAS databases. The chevron symbol and number of
chevrons could be identified in all three instances. Work zone
signs were encountered five times and were assessed to deter-
mine whether the sign text or symbol could be interpreted. In
all five cases, no text or symbol could be identified. Ten route
signs were extracted and 70% of the time the route or guiding

(text continues on page 137)
 Sciences. All rights reserved.
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Figure C.3. Identification of cross-section elements: (a) illustrates change from asphalt to concrete (surface
type); (b) paved/earth shoulder; (c) sidewalk along roadway; and (d) raised median.

(b)(a)

(d)(c)
Copyright National Academy of Sciences. All rights reserved.
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Figure C.4. Identification of sign types: (a) difficulty identifying signs with glare or vegetation present; (b) guide
sign; (c) warning sign face visible; (d) warning sign face not visible; (e) speed limit sign; and (f) turn prohibition.

(b)(a)

(d)
(c)

(e)
(f )
Copyright National Academy of Sciences. All rights reserved.
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Figure C.5. Identification of pavement markings and lighting: (a) crosswalk; (b) turn arrows; (c) other on-
pavement markings; (d) fading school sign; (e) overhead lighting (cobra head); and (f) decorative street light.

(b)(a)

(d)

(c)

(f)(e)
Copyright National Academy of Sciences. All rights reserved.
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Figure C.6. Identification of roadway surface and clear zone elements: (a) guardrail within clear zone and 
(b) pavement damage.

(b)
(a)
Figure C.7. Identification of countermeasures: (a) colored pavement marking and (b) speed feedback sign
(activated).

(b)

(a)
Copyright National Academy of Sciences. All rights reserved.
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Table C.6. Identification of Intersection Features

Data Element Features DAS

Cross section

Intersection control

Other counter-
measures

Other

Intersection/interchange type (includes railroad)

Number of lanes by approach

Number of approaches

Left- and right-turn prohibitions

Intersection skew angle

Channelization (islands)

Intersection offset (whether crossroad approach 
centerlines are directly opposed or offset by some
distance)

Intersection offset distance

Control by approach (includes railroad crossing signals)

Signal characteristic (e.g., signal head configuration,
lens size)

Type of signalization (e.g., fixed, actuated)

Presence of left-turn arrow (indication of left-turn 
phasing)

Detector type

Overhead beacons

Pedestrian signal

Pedestrian signal features (e.g., push button)

Advance stop line rumble strips

Red-light running countermeasures

Sight distance

Signal progression

Traffic signal state

Red-light running

Yes

Yes; for the approach where the vehicle is located

Yes

If the corresponding sign can be identified

NA

Yes

NA

NA

Yes; for the approach where the vehicle is located

Lens head configuration could usually be determined

NA

Was very difficult to see turn arrows, but signal head
configuration could be determined, so presence of
left arrow could be inferred

NA

Either was not present or could not be identified

Could detect presence if in line of sight when passing
through intersection

NA

Either was not present or could not identify

NA

An estimate can be made based on driver’s line of
sight from forward view

Signal state could be determined in most cases, so
progression could be inferred

Yes, except for left/right arrow

Yes, if stop line can be identified
Copyright National Academy of Sciences. All rights reserved.
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(b)(a)

(d)
(c)

(f)
(e)

Figure C.8. Identification of intersection features: (a) channelization; (b) turn prohibition; (c) signal head
configuration; (d) signal phase easily identified (note green left-turn arrow); (e) signal phase difficult to
identify for left turn; and (f) signal phase difficult to identify.
Copyright National Academy of Sciences. All rights reserved.
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(b)
(a)

(c)

Figure C.9. Features to identify red-light running: (a) signal identified as green; (b) signal identified as yellow;
and (c) signal identified as red.
information could be read. Ten on-pavement markings were
also selected and, in all cases, the type of marking could be
identified. This included left turn and “SCHOOL.” Sixteen
speed limit signs were extracted and the numeric speed
limit could be identified for all of the signs. In some cases,
the text “Speed Limit” may not have been legible, but 
the sign could be identified since it was distinct. Fifteen reg-
ulatory signs other than speed limit, stop, or yield, were
identified by shape and color. The sign message could be
determined for 73% of the signs. Signals were identified 
for the approach where the instrumented vehicle was trav-
eling for 26 intersections. The overhead signal phase could

(continued from page 130)
Copyright National Academy of Sc
be determined 100% for through movements. In some
cases it was difficult to determine the state for left-turn
arrows.

Thirty-five warning signs were identified and an attempt
was made to identify the sign text or symbol. The signs only
included those with the traditional diamond shape. Warning
signs such as channelizers, which have a distinct shape, were
not included in this assessment. When the sign message could
be determined, it is indicated in Table C.8. When the message
was not legible, it was listed by whether it was text or symbol,
since this could be determined even if the exact message could
not. The sign message could be determined for around 46%
of the signs.
iences. All rights reserved.

http://www.nap.edu/22848


138

Evaluation of Data Needs, Crash Surrogates, and Analysis Methods to Address Lane Departure Research Questions Using Naturalistic Driving Study Data
Figure C.10. Vehicle crossing stop bar during yellow.
Table C.7. Assessment of Ability to Identify Features

Data Element Feature Assessed Times Encountered Times Recognized

Chevrons Chevron symbol and number of chevrons 3 3 100.0%

Work zone sign Message 5 0.0%

Guide/route sign Message 10 7 70.0%

On-pavement marking Message 10 10 100.0%

Speed limit Speed limit 16 16 100.0%

Regulatory 15 11 73.3%

Signal Phase 26 26 100.0%

Stop sign Message 3 3 100.0%
Copyright National Academy of
Table C.8. Assessment of Warning Signs

Times Times 
Warning Sign Type Encountered Recognized

Total warning signs 35 16

End of divided roadway 3 3

Lane ends 1 1

Left-hand curve 2 2

Merge 2 2

Reduced speed ahead 3 3

Right-hand curve 1 1

Signal ahead 2 2

Start divided highway 1 1

Watch for deer 1 1

Unknown symbol 9 0

Unknown text 10 0
Comparison of Data Elements in DAS with 
Safety Project S03 Rodeo Elements

Several of the data elements that were collected as part of SHRP
2 Safety Project S03 data collection rodeo with mobile mapping
vans were used to determine whether the same data item could
be identified in the DAS data set. Data elements from the rodeo
data set were overlaid with the GPS vehicle traces from the
DAS data. The GPS data points nearest the feature in question
were selected and corresponding time stamps noted. The time
stamps were located in the forward video and the forward view
searched for several frames before and after to locate the object.
The process is depicted in Figure C.11. If the object was located,
it was noted and compared against the description for the data
element in the rodeo data set.
Eighteen signs were extracted from the rodeo data. Two
signs could not be located in the DAS in any reasonable prox-
imity. Many of the signs were identified by shape or color, but
in many cases the text or symbol was not legible. Results are
shown in Table C.9.
Table C.10 shows identification of pavement markings. As
noted, seven pavement markings that were selected in the
rodeo data could be identified in the forward video.
Miscellaneous other objects were also compared between
the two data sets as shown in Table C.11. Two streetlights were
located in the mobile mapping data. One could be identified in
the forward video in the approximate location. The second
streetlight was located in an area of heavy vegetation and sig-
nificant glare was present in the forward image. As a result, the
streetlight could not be distinguished from other background
features. One segment was indicated as having centerline rum-
ble strips in the mobile mapping data. The approximate begin
 Sciences. All rights reserved.
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Figure C.11. Method to compare objects in mobile mapping database
with features identifiable in the DAS forward view.
Table C.9. Comparison of Signs Between 
Rodeo Data and DAS

Sign Type How Sign Was Identified

Speed limit Could not locate

Exit sign Could not locate

Merge Merge symbol

Food next right Identified blue sign with text but could 
not read text

Gas next right Identified blue sign with business symbols

Overhead guide Overhead guide sign

Adopt a highway Identified small blue sign but could not 
read text

School speed limit Flashing beacon
when flashing

Object marker Object marker

School sign School sign

State route Route sign

Object marker Object marker

School sign School sign

Right lane must turn Identified white sign

Right lane must turn Identified sign over right-turn lane

Right lane must turn Identified sign over right-turn lane

Stop here on red By text
Copyright National Academy of S
Table C.10. Comparison of Pavement Markings
Between Rodeo Data and DAS

Pavement Markings How Markings Were Identified

Stop bar By shape

School Text “SCHOOL”

Stop bar By shape

Right turn only By shape

Right-turn arrow By shape

Stop bar By shape

Stop bar By shape
Table C.11. Comparison of Other Objects 
Between Rodeo Data and DAS

Object How Object Was Identified

Street light By shape

Street light Could not identify, heavy tree cover and 
bad sun angle

Centerline rumble strips Identified approximate beginning of 
rumble strips

Guardrail Identified end of guardrail
ciences. All rights reserved.
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point of the rumble strip section was located. The presence of
guardrail in the forward video was easily identified.

Summary

The team reviewed sample data sets that were collected using
what is expected to be the final version of the instrumented
vehicle data acquisition system. The data were collected by
VTTI using a test vehicle that traversed the same route where
data were collected for a demonstration of mobile mapping
vendor capabilities. Three methods were used to evaluate how
well roadway data elements could be identified using data from
the DAS and how feasible data extraction using this method
would be.

In the first method, data reductionists reviewed the forward
video from the DAS to assess which roadway features could be
identified using manual data reduction. The team had devel-
oped a list of relevant roadway data elements as part of their
work for Safety Project S04A. The team determined which
of the data elements could be collected, if applicable. Most
Copyright National Academy of
features could be recognized to some degree in the DAS for-
ward video. The presence of a sign could be determined in
most cases, but text and symbols were frequently illegible.

In the second method, the team extracted a sample of some
data elements and examined them to determine what percent-
age of the time certain features about the element could be
identified. For instance the team identified 35 instances of
warning signs. The text or symbol could only be recognized
slightly less than half of the time.

In the third method, location of several data elements col-
lected in Safety Project S03 for the mobile mapping rodeo were
compared with the GPS position and the time stamped from
the DAS. The location of the object in the forward video was
then identified, if possible.

In summary, a large number of roadway features, including
traffic signal state, could be identified in the DAS. The general
location of roadway features relative to the roadway could be
determined, but actual location could not be established. For
instance, it was possible to determine that a school crossing
sign was located just before a crosswalk.
 Sciences. All rights reserved.
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