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Preface

The National Academies’ Climate Research Committee (CRC), orga-
nized under the Board on Atmospheric Sciences and Climate, is 
charged to foster atmospheric, oceanic, and related research aimed 

at advancing knowledge and understanding of climate and climate 
change. The Committee on Applied and Theoretical Statistics (CATS), 
which is organized under the Board on Mathematical Sciences and Their 
Applications, is charged to provide a locus of activity and concern for the 
statistical sciences, statistical education, use of statistics, and issues affect-
ing the field. The Committee on Earth Studies (CES), organized under the 
Space Studies Board, provides oversight on civil earth observation space 
activities in the general areas of earth sciences and other remote sensing 
applications, including both applicable technology and all earth science 
disciplines that can be addressed from space. All three committees have 
expertise and a longstanding interest in the use of statistics in climate 
research and applications.

Satellites provide a unique vantage point for studying the earth’s 
climate and associated systems, but obtaining climate-relevant data from 
remotely sensed platforms is a demanding task requiring careful analysis 
and expertise from numerous disciplines. Many of the techniques cur-
rently used to process and analyze remotely sensed climate data could 
potentially be improved using modern statistical techniques. This is par-
ticularly true because the amount of data involved has increased so dra-
matically. To address these issues, and stimulate additional opportunities 
for beneficial collaboration between statisticians, climate scientists, and 
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experts in remote sensing, a workshop was convened December 4, 2008, 
in Washington, D.C., under the auspices of the CRC, CATS, and CES to 
explore uncertainty management in remote sensing, with an emphasis on 
remotely sensed climate information. This workshop brought together 
the statistics and geoscience communities from academia, government, 
and industry.

Through invited presentations and discussion, participants investi-
gated the sources of uncertainty throughout satellite and other remote 
data collection systems, described the statistical methods currently used 
to quantify sources of uncertainty, and discussed how modern statistical 
methods might be used to provide a more useful framework for char-
acterizing and propagating these uncertainties. The primary objectives 
were to examine sources of uncertainty in remote sensing data collection 
systems that include, among other things, issues of sampling, scale, pro-
cessing, and validation. Other topics covered at the workshop included 
the challenge of communicating uncertainties to the end-user and build-
ing institutional capacity to address problems that require expertise from 
both statisticians and earth scientists. 

	 Under the National Academies’ policy, workshops do not produce 
findings and recommendations. Thus, the goal of this workshop report is 
to summarize the major discussion items that arose and to synthesize key 
points from the presentations on uncertainty management in remote sens-
ing. This report was written by rapporteurs and we hope that the broad 
topics covered in this report will stimulate additional opportunities for 
collaborations betweens statisticians and earth scientists. We thank the 
planning team, the presenters, and other participants at the workshop.

Martha McConnell
Scott Weidman
Rapporteurs
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1

Introduction

Great advances have been made in our understanding of the cli-
mate system over the past few decades, and remotely sensed data 
have played a key role in supporting many of these advances. 

Improvements in satellites and in computational and data-handling tech-
niques have yielded high quality, readily accessible data. However, rapid 
increases in data volume have also led to large and complex datasets that 
pose significant challenges in data analysis (NRC, 2007). Uncertainty char-
acterization is needed for every satellite mission and scientists continue 
to be challenged by the need to reduce the uncertainty in remotely sensed 
climate records and projections. The approaches currently used to quan-
tify the uncertainty in remotely sensed data, including statistical methods 
used to calibrate and validate satellite instruments, lack an overall math-
ematically based framework. An additional challenge is characterizing 
uncertainty in ways that are useful to a broad spectrum of end-users. 

In December 2008, three standing committees of the National Acad-
emies held a workshop to survey how statisticians, climate scientists, and 
remote sensing experts might address the challenges of uncertainty man-
agement in remote sensing of climate data. The emphasis of the workshop 
was on raising and discussing issues that could be studied more intently 
by individual researchers or teams of researchers, and on setting the stage 
for possible future collaborative activities. Issues and questions that were 
addressed at the workshop include the following:

�
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1. What methods are currently used to compare time series at single 
points in space with instantaneous but sparsely sampled area averages to 
“validate” remotely sensed climate data? Are there more sophisticated or 
advanced methods that could be applied to improve validation tools or 
uncertainty estimates? Are there alternative means of measuring the same 
phenomena to confirm the accuracy of satellite observations?

2. How can fairly short-term, spatially dense remote sensing observa-
tions inform climate models operating at long time scales and relatively 
coarse spatial resolutions? Are there remotely sensed data that could, 
through the use of modern statistical methods, be useful for improving 
climate models or informing other types of climate research?

3. What are the practical and institutional barriers (e.g., lack of quali-
fied statisticians working in the field) to making progress on developing 
and improving statistical techniques for processing, validating, and ana-
lyzing remotely sensed climate data?

In her introductory remarks at the workshop, planning team chair 
Amy Braverman from the Jet Propulsion Laboratory presented Table 1-1 
to illustrate how statistical methods (rows) can help address three major 
challenges in the use of remotely sensed climate data (the columns). The 
first of these three major challenges is the validation of remote sensing 
retrievals. When a remote sensing instrument retrieves a measurement 
that is used to infer a geophysical value (e.g., atmospheric temperature), 
uncertainties exist both in the measured values and in the statistical model 
used to validate the remotely sensed parameter. The second challenge is 
improving the representation of physical processes within all types of 
climate models. Workshop participants stressed the need to better rep-
resent physical processes within global earth system models, a critical 
component to projecting future climate accurately, reducing uncertainty, 
and ultimately aiding policy decisions. The third major challenge in cli-
mate research where statistics plays an important role is aggregating the 
observed and modeled knowledge, each with their associated uncertain-
ties, to develop a better understanding of the climate system that can lead 
to useful predictions.

Complex and multifaceted relationships in the physics of the climate 
system contribute uncertainty over and above that which is normally 
present in making inferences from massive, spatio-temporal data. Isolat-
ing and quantifying these uncertainties in the face of multiple scales of 
spatial and temporal resolution, nonlinear relationships, feedbacks, and 
varying levels of a priori knowledge poses major challenges to achieving 
the linkages shown in Table 1-1. A formal statistical model that articu-
lates relationships among both known and unknown quantities of inter-
est and observations can sharpen the picture and make the problem 
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more tractable. Random variables can represent uncertain quantities and 
describe relationships through joint and conditional distributions. Ran-
dom variables can also be infused into systems of physical equations, to 
carry information about uncertainties along with information provided 
by physical knowledge. 

TABLE 1-1  Three Major Challenges in the Use of Remotely Sensed 
Climate Data (Columns) and Three Roles Played by Statistical 
Methods (Rows)

Challenge: 
Validation of 
remote sensing 
retrievals

Challenge: 
Improving 
physical 
representations 
and 
understanding

Challenge: 
Extrapolating to 
future climate 
predictions

Role for 
statistics: 
Clarify and 
characterize 
sources of 
uncertainty in
remote sensing
data

Characterize 
spatio-temporal 
mismatches, 
retrieval 
algorithm 
differences; 
address 
sparseness 
or absence of 
ground truth

Develop new 
statistical 
methods to 
make the most 
of new data 
types to address 
new science 
questions

Maximize value 
of limited data 
and hard-
to-formalize 
assumptions
about 
relationships
among past, 
present,
and future

Role for 
statistics: 
Develop 
statistical 
methods 
to quantify 
and reduce 
uncertainty

Develop formal 
statistical error 
measures for 
both bias and 
variance

Develop new 
methods to
exploit massive 
datasets in 
an inferential 
setting

Develop 
formalisms 
for combining 
output from 
different models 
in light of 
available data

Role for 
statistics: 
Provide an 
overarching
framework

Overcome 
mismatches 
by statistical 
modeling of 
relationships 
between 
observed and 
unobserved
quantities.

Pose problems 
as formal 
questions 
of statistical 
inference

Combine 
physical
and statistical 
models

SOURCE: Table courtesy of Amy Braverman, JPL.
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Crafting such hybrid physical-statistical models to capture the essence 
of our understanding is not easy. The climate system is inherently nonlin-
ear and includes feedback loops where variables directly and indirectly 
affect one another. Figure 1-1, presented at the workshop by William 
Rossow from the City College of New York, is a simple diagram of the 
energy and water cycles of the climate system that demonstrates how the 
system is interconnected. In order to gain a true understanding of climate 
feedbacks it is important to understand multiple variables in the climate 
system and their interactions. Clouds and precipitation, for example, 
play a crucial role in both the water cycle and the earth’s energy balance, 
affecting the sources and sinks of heat in the climate system. The release of 
latent heat during precipitation events provides energy that drives atmo-
spheric circulations, and, in turn, atmospheric circulation processes that 
affect the distribution of water vapor and the formation of clouds have a 
pronounced effect on the transfer of radiation through the atmosphere. 
Therefore, analyzing the interrelationships between multiple variables in 
the climate system is key to understanding processes of interest.

Large volumes of remote sensing data are available to assist in refining 
models of physical systems like that shown in Figure 1-1. Data provide 
information about physical mechanisms at work in the atmosphere, and 
also about the uncertainties or gaps in our understanding of how those 
mechanisms operate. To make use of data in this way, however, requires 
that inherent uncertainties and biases in the data themselves be known 
and quantified. Therefore, the problem requires a holistic approach to 
uncertainty management beginning with data collection and validation 
strategies that are cognizant of the uses of the data. These challenges can 
be addressed in two ways: 

1.	 By identifying data collection and analysis methods that minimize 
the uncertainties; and

2.	 By identifying the contributions to uncertainty at the various steps 
in collection and analysis, thereby pointing out the most promising targets 
for improvement.

Uncertainty quantification, in the broadest sense, is to account for 
not only uncertainty in individual parameters within the models that are 
used, but also to account for the uncertainty inherent in the actual mod-
els themselves, which are only approximate representations of physical 
processes. Workshop participants emphasized that improving physical 
process representation is critical for both improving climate models and 
for better characterizing their uncertainties. Statistics can contribute to 
solving this problem by moving beyond linear analysis for individual 
parameters to capture more complex relationships that have a physical 
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meaning. A good statistical model is built in a way that captures some 
of the physical processes that control elements of the climate system, or 
alternative hypotheses about those processes.

The classical method, described at the workshop, for characterizing 
uncertainty in earth science modeling is through sensitivity analysis. Sim-
ply, this method includes changing parameter values in a model to learn 
how much that parameter affects the model output. This method does 
not account for the possibility that more than one process represented in 
the model might rely on the parameter itself, which will affect the uncer-
tainty estimate. In addition, the compounding effect of different sources 
of uncertainty on different parameters is difficult to quantify through 
sensitivity analyses. 

Alternative statistical approaches define uncertainty through joint 
probability distributions of parameters. While it is difficult to use this 
approach to identify the correct parameters and distributions when data-
sets are small, advances in data collection, management, and processing 
technologies are increasingly resulting in large datasets. Statistical dis-
tributions and their parameters can be estimated accurately when large 

1-1

FIGURE 1-1  Schematic of energy and water cycles. Red represents transfers of en-
ergy while blue lines show transfers of water. Figure courtesy of William Rossow, 
City College of New  York.
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volumes of data are available. Scientists in the satellite era have this lux
ury, but are concomitantly faced with massive data volumes that create 
challenges for processing and analysis techniques. In principle, large, 
complex, and detailed datasets offer the promise of new knowledge from 
which to better understand the climate system. Statistical methods that 
are developed specifically for new data types can better exploit these 
large, complex datasets that traditional methods (i.e., sensitivity analysis) 
cannot.

Understanding the uncertainties of different processes in the climate 
system requires a variety of approaches. Collaborations involving climate 
scientists and statisticians were identified at the workshop as an effective 
way to promote the development of targeted new methods that would aid 
the science community to question all aspects of the data, and geophysical 
and statistical models. Workshop participants also remarked that modern 
statistical methods can be useful for fusing data from two different instru-
ments, which is a more challenging problem than is generally appreciated. 
For example, data assimilation techniques are one approach to address-
ing the spatial and temporal mismatch between models and observations 
(Daley, 1991; Luo et al., 2007). As described by workshop participant 
Anna Michalak from the University of Michigan, such approaches need 
to account for the spatial and temporal structure of the dataset to allow a 
better understanding of the physical processes that make up the climate 
system.

WHY WORRY ABOUT STATISTICAL STRUCTURE:  
AN EXAMPLE FROM MODELING SNOW DEPTH

Anna Michalak at the University of Michigan described how the sta-
tistical properties in remote sensing datasets offer both a challenge and 
an opportunity. For example, understanding and accounting for statistical 
dependence, including spatial and temporal correlations, can improve 
the utility of observational datasets. The opportunity is that by skillfully 
handling these complexities, we can better take advantage of the full 
information content of the available data, and use this information to 
guide high-payout improvements in models of the Earth system.

In some cases, statisticians and earth scientists use similar techniques 
to evaluate, and take advantage of, the spatial and temporal structure of 
observations of environmental parameters. For example, spatial statistical 
techniques allow one to interpolate (the earth scientist’s term) or predict 
(the statistician’s term) the value of specific environmental parameters 
at unsampled locations. The vast majority of environmental parameters 
(e.g., clouds, precipitation, winds) exhibit spatial and/or temporal cor-
relation, with associated characteristics of scales of variability. As stated 
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by Tobler as the “first law of geography”: “Everything is related to every-
thing else, but near things are more related than distant things” (Tobler, 
1970). Both statisticians and earth sciences have used quantitative tools 
to assess the spatial autocorrelation exhibited by sampled data. Both 
use variograms and/or covariance functions to quantify the degree of 
spatial autocorrelation. An accurate assessment of the spatial variability 
of observed parameters can be used to better understand the underlying 
physical processes.

Figure 1-2 illustrates how understanding and exploiting the spatial 
and temporal structure of data can be useful. In this example, a limited 
number of measurements that are clustered in a non-ideal way are used 
to estimate the mean snow depth in a valley. Simply averaging the ten 
measurements of snow depth does not provide a good representation of 
mean snow depth. Instead, the clustered observations in the left portion of 
the valley clearly need to be weighted less relative to the isolated observa-
tion in the right region. However, how much weight should be assigned 
to each data point? Spatial statistics methods can be used to determine 
the degree of spatial variability in the snow-depth distribution based on 
an analysis of how similar nearby measurements are to one another, and 
how dissimilar far-away measurements are to one another. This informa-
tion, in turn, can be used to quantify the optimal weights to be assigned 
to each measurement. This simple method in spatial statistics allows one 
to calculate an unbiased estimate of mean snow depth in the valley based 
on an uneven distribution of measurements.

In Figure 1-3, we look at a hypothetical dataset describing snow depth 
as a function of elevation, and assuming that the snow depth is also auto-
correlated in space (top panel). These synthetic data were generated in 
such a way that, in reality, there is no overall trend of snow depth with 
elevation, and any observed trend is therefore the result of randomness 
introduced in generating the data. This hypothetical dataset is then used 
to test whether two competing approaches are able to correctly conclude 
that there is no relationship between snow depth and elevation (middle 
panel). In the first approach (red line), classical linear regression is used, 
which ignores the spatial correlation in the data. In the second approach 
(green line), the spatial correlation is accounted for in the estimation pro-
cess. In the example shown in the figure, the classical approach incorrectly 
rejects the null hypothesis that there is no trend between snow depth and 
elevation, whereas the approach based on spatial statistics correctly does 
not reject this hypothesis at the 95 percent confidence level. As the experi-
ment is repeated multiple times with new synthetic data (bottom panel), 
we observe that the linear regression approach incorrectly concludes that 
there is a trend between elevation and snow depth approximately 20 
percent of the time, which is much too high given that the test was run 
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FIGURE 1-2  Example of sampling snow depth in a watershed. Top: aerial map 
of an alpine basin with sample locations (•). Bottom: snow depth at sampling 
location versus distance from the left edge of the valley. The red line represents 
the biased estimate of average snow depth obtained from a simple average of the 
available observations. The green line represents the unbiased estimate obtained 
by assigning weights to the observations based on an understanding of the scales 
of spatial variability of the snow depth in the valley. Figure courtesy of Anna 
Michalak, University of Michigan. Original figure by Tyler Erickson, Michigan 
Tech Research Institute. 
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1.3 A bitmapped

H0 Not Rejected
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1.3 B
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FIGURE 1-3  Hypothetical data on snow depth as a function of elevation. Top: 
illustrates one case of the generated data, and the estimated slope between snow 
depth and elevation, using simple linear regression (red line), and an approach 
that accounts for the spatial correlation of the data (green line). Middle: illustrates 
the probability distribution of the trend of snow depth with elevation using the 
two approaches. Bottom: demonstrates that if the experiment were repeated many 
times, one would erroneously conclude that there was a relationship between 
snow depth and elevation too often if using simple linear regression. Figure cour-
tesy of Anna Michalak, University of Michigan. Original figure by Tyler Erickson, 
Michigan Tech Research Institute.
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in a way that should have yielded only a 5 percent chance of incorrectly 
concluding that there was a trend. The approach that accounts for spa-
tial correlation, concludes that there is a trend 5 percent of the time, as 
expected. Overall, this example illustrates that statistical approaches that 
ignore spatial and/or temporal correlation inherent in environmental 
data carry with them an increased risk of erroneously concluding that 
significant relationships exist between physical phenomena (snow depth 
and elevation, in this case), and, more generally, yield biased estimates 
due to their assumption of independent observations.
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Cross-Cutting Issues

The December 2008 workshop on uncertainty management for 
remotely sensed climate data identified three major issues that cut 
across multiple areas of climate research, illustrating the need for a 

more sophisticated framework for data analysis in order to better under-
stand climate processes:

1.	 The challenge of validating remotely sensed data.
2.	 The need to stay focused on the users of climate information, 

including policymakers. Even if an analysis is perfect and the statisti-
cal tools work, the results might not be interpretable and useful for the 
end-user.

3.	 The need for strengthening collaboration between the earth science 
and statistical communities, the importance of leveraging the strengths of 
each, and the challenges inherent in doing so. 

VALIDATION OF REMOTELY SENSED CLIMATE DATA

Validation of parameters is an essential component of nearly all 
remote sensing-based studies and there are many considerations in per-
forming validation. Errors in different validation techniques are complex 
and difficult to quantify. The workshop participants discussed many chal-
lenges of validating remotely sensed clouds, precipitation, winds, and 
aerosols, though the presentations did not go into great detail on meth-
odologies. Some common questions include: Can the data meet the needs 

11
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of remote sensing application? What is the accuracy of the data product, 
and retrieval product? The following section offers examples of validation 
techniques for remotely sensed climate data.

Techniques for validating remotely sensed data vary for different 
geophysical parameters (e g., winds, aerosols, precipitation, clouds). The 
most common technique is comparing ground measurements to remote 
sensing observations or modeled results. In many situations, a mismatch 
exists between the sensor’s field of view and the scale at which in situ 
measurements are collected. Ground-based measurements cover small 
spatial scales while satellite retrievals cover an area of many kilometers. 
However, in the process of working through a validation, the real structure 
of the data can be revealed. This was nicely described at the workshop 
by Tom Bell from the National Aeronautics and Space Administration 
(NASA), who presented challenges in remote sensing of precipitation. The 
use of in situ measurements for model calibration and validation requires 
a robust method to spatially aggregate ground measurements to the scale 
at which the remotely sensed data are acquired (Box 2-1).

As previously mentioned, defining the uncertainty of model param-
eters is a continuing challenge, but there are multiple methodologies in 
validation studies that can be combined in an optimal way. Examples 
described at the workshop were studies to understand fluxes in atmo-
spheric carbon dioxide (CO2). Some studies will employ measurements 
of CO2 concentration to infer sources and sinks, while other studies build 
biosphere models in an attempt to predict the fluxes. These can be com-
bined, using the biospheric models as a first guess followed by a Bayesian 
framework to integrate the modeled outputs with atmospheric data to get 
a best estimate of carbon sources and sinks. In this approach, there is an 
opportunity to account for the uncertainty in the individual parameters 
as well as the modeling framework that is used to predict the processes 
of interest.

Inherent in many different techniques that are used in processing 
remotely sensed data is the issue of biases. A workshop participant 
described that bias in validation studies of some geophysical parameters 
occurs because of the uneven global distribution of surface cloud observa-
tions. The oceans tend to be cloudier on average than most of the land, 
but there are fewer surface observations over the oceans. For example, 
if a threshold is set for the number of surface observations present in a 
2.5 degree grid box before accepting a data point, the global mean that is 
calculated will depend on that threshold. A threshold will therefore force 
parts of the earth (i.e., the southern oceans), which are known to be very 
cloudy, to be omitted from the averaged data. Furthermore, the samples 
do not stay constant; measurements in a grid box can change from month 
to month, which introduces a source of variability that is generated from 
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the sampling, rather than the cloud itself. Hence, not covering the domain 
of a phenomenon completely (in either space or time) leads to biases. 
Another bias can result in studies of cloud processes if spatial and tempo-
ral autocorrelation is ignored. William Rossow, City College of New York, 
described that the polar orbiting satellite samples low latitudes twice per 
day and has spatial scales of approximately 2,000 km. Physical processes 
that evolve rapidly and on scales smaller than 2,000 km are therefore dif-

BOX 2-1 
Challenges in Validation of Remote Sensing Data:  

Comparison of Error for Monthly Average Precipitation

A common challenge in remote sensing datasets is accounting for errors 
due to sparse sampling. Tom Bell, a NASA scientist, discussed the challenges for 
precipitation. In general, it does not rain very often and it is difficult to quantify rain 
amounts through rain gauges and compare this data with satellite measurements 
taken over many kilometers. The most common method for validating satellite rain 
estimates is to compare rain gauge data collected over a time interval during which 
the satellite passes over, with the satellite rain estimates. However, rain gauges 
do not actually measure what the satellite sees, and the average rain estimates 
from rain gauges and satellites differ over spatial and temporal scales. Therefore, 
it is problematic to account for the validation problem as a difference between the 
satellite average and rain gauge average. The best approach for validating satellite 
rain estimates is to create a model of errors in precipitation estimates. A spectral 
model can be used to help predict the best time interval over which to average the 
rain gauge data when comparing the gauge measurement with a single overflight 
of the satellite (Figure 2-1). In addition to understanding the time interval to aver-
age gauge data, the average area also needs to be determined. Figure 2-1 shows 
the various sampling intervals between different satellite visits occurring over one 
month and demonstrates how the error between satellite averages and (surface) 
rain gauge averages varies in a complex way with the sampling interval of different 
satellites and the choice of spatial area over which averages are taken. 

For example, the error between the rain gauge and the satellite with one 
sample per day is minimized over larger areas, a swath width approximately 300 
km, as shown by the blue curve, representing the Tropical Rainfall Measuring and 
Aqua missions. However, if satellite measurements were to be taken every three 
hours, as shown in the black curve, representing the planned Global Precipitation 
Measurement mission, the error would be minimized by spatially averaging over 
a swath of width about 70 km. This figure demonstrates not only that there is an 
optimal point for sampling but that temporal and spatial sampling are related. If 
satellite data are averaged over 100-km swaths, it is best to look at three-hour data, 
whereas with 500-km swaths, sampling every 24 hours is sufficient. The curves 
also show that the spatial phenomenon of rain events tend to occur on the 100-km 
scale and that there is a “sweet spot” of error for each spatial scale (i.e., three-hr 
sampling for 70-km swaths).
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FIGURE 2-1  Relationship between spatial and temporal sampling of different 
satellites used for measuring precipitation (TRMM—blue curve; GPM—black 
curve). Figure courtesy of Tom Bell, NASA.

ficult to quantify. To study cloud processes, both the space and the time 
scales need to be measured appropriately to see the physical process 
unfold. It is also important not to ignore temporal autocorrelation in the 
tropics, where convection is rapid, or this will introduce bias into the 
results. A monthly mean is not always based on 30 independent samples. 
Caution should be taken in studies investigating interannual variability 
as this is often based on monthly means. The assumption that a monthly 
mean is based on 30 independent samples can lead to what looks like cli-
mate variation in the data, when it could actually be statistical noise. Box 
2-2 gives an example by Tom Bell, NASA, of biases resulting in rainfall 
measurements.

At the 2008 workshop, Jay Mace, University of Utah, compared and 
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validated cloud microphysical properties, with data from multiple instru-
ments, including satellite measurements, ground-based remote sensing 
measurements, and aircraft measurements. The premise for this approach 
is that clouds and precipitation influence the radiation and hydrology of 
the earth through an evolving vertical profile of microphysics. Therefore, 
scientists need to become more skillful at deriving the vertical profile 
of microphysics from remote sensing data in a statistically meaningful 
way.

An example is the comparison of Moderate Resolution Imaging Spec-
troradiometer (MODIS) derived ice water paths with ice water paths 
derived from a ground-based validated radar algorithm. One is a snap-
shot spatially averaged measurement and the other is a time average 
point measurement. For cirrus clouds, a spatial average is generated by 
averaging the MODIS measurements over a rectangle that is oriented 

BOX 2-2 
The Need for a Model of Biases:  

An Example from Rainfall Measurements

Regression analyses between satellite and parameter measurements are 
commonly used for calibration studies and to evaluate the error level of the retriev-
als. However, validation with regression analysis is a common source of bias in 
precipitation studies. For example, comparing long-term averages of rain gauges 
to three different windows of time during satellite overpass reveals that the rela-
tionship between what the gauge sees and what the satellite sees improves as 
the averaging interval around the satellite overpass is reduced (Bowman, 2005). 
Conversely, the agreement is poor when the averaging interval is increased. This 
comparison can be problematic given that the common methodology (e.g., linear 
regression analysis) to understand the amount of agreement between the remote 
sensing estimate and the ground estimate is based on the assumption that the 
ground measurements are accurate. Rain gauges, however, are an imperfect 
measure of how much it actually rains, have their own set of biases and sampling 
issues, and thus, this methodology is not appropriate for precipitation studies given 
that the ground-based estimates are not true values of what the satellite sees. 
The regression analysis also does not take into account the minimum overlap in 
sampling. For example, a poor agreement between the satellite and ground-based 
estimates does not necessarily mean that the satellite is performing poorly. Rather, 
the regression technique may not be the proper tool for calibration studies. This is 
where a statistical model will be helpful in not only describing retrieval error, but 
also useful for validation exercises. An error model can help disentangle spurious 
biases, those generated from methodology, from the real biases of the instruments. 
Validation exercises can generate spurious biases, such as trends that look like 
biases in the remote sensing method which are not really present in the data, but 
are byproducts of the analysis method.
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along the mean wind at the cloud level, while the ground-based radar 
data is an average over a period of time when the cloud layer remained 
uniform (Mace, 2001). Comparing these measurements over a long period 
of time will aid in determining the error characteristics of the satellite 
data. However, the uncertainty in the data, combined with the uncer-
tainty in the science, requires techniques to quantitatively assess these 
errors, and more sophisticated statistical approaches would be helpful in 
accomplishing that objective. 

The validation problem for measurements of aerosols presents other 
issues. Lorraine Remer of NASA spoke at the workshop about validation 
of aerosol optical depth (AOD) measurements, which are measures of 
the column-integrated extinction, and the amount of light that is either 
scattered or absorbed as it passes through the aerosol layer, which gives 
an indication of the amount of aerosol. A satellite measures not just the 
radiation scattered from the aerosol layer, but it also collects some radia-
tion that made it through the aerosol layer from the earth’s surface. The 
surface effect needs to be removed from the satellite signal to estimate the 
extinction, which requires assumptions about the aerosol and the surface, 
thus leaving room for error.

A more direct way of measuring AOD is to use a sunphotometer 
on the ground to measure the transmitted light directly. By combining 
measurements of the sunlight at the top of the atmosphere with the 
amount of sunlight at the surface, the extinction can be determined. This 
approach uses fewer assumptions and under the best conditions MODIS 
can retrieve AOD to within ±0.03, and a well-calibrated sunphotometer 
can measure it within ±0.01. The widespread network of sunphotometers 
called AERONET retrieves data globally. The primary challenge with this 
technique is the mismatch between spatially varying MODIS data and the 
temporally varying sunphotometer data so there are only select areas with 
coincident coverage in measurements between MODIS and AERONET. 
Since AERONET is a land-based network, it is difficult to match an over-
pass with an aerosol observation, and, as addressed earlier, the location 
of the ground-based observation within the satellite grid square is a con-
sideration in validation process.

There are many types of aerosols (e.g., sulfates, black carbon, sea salt). 
Some are natural, while others are anthropogenic. Uncertainties in aero-
sol models, as presented by Joyce Penner of the University of Michigan, 
result from uncertainties in the sources, types, and radiative properties of 
aerosols. Validation of these models cannot come solely from comparisons 
with ground-based data like that of AERONET, because the measured 
AOD is a composite of the effects of the different aerosol types the models 
are attempting to simulate. Aerosol models also cannot be validated with 
satellite data alone, but require a suite of observational data from surface 
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stations of different aerosol species. Sources of uncertainty are also associ-
ated with cloud interaction, chemical production, vertical transport, and 
grid resolution. As noted by several workshop participants, the climate 
science community does not have a good understanding of several rel-
evant processes, potentially creating biases in the models.

Today it is common to produce daily and monthly mean maps of 
the distribution of aerosols which can carry their own uncertainty. For 
example, few retrievals available in a particular grid square will generate 
a higher degree of uncertainty, ultimately affecting the mean distribution 
maps. Different methods of weighting and averaging the data result in 
different distribution maps and mean optical depths. Moreover, not all 
retrievals carry the same level of confidence. A number of options and 
methods need to be considered when analyzing satellite and sunphotom-
eter data, all within the context of the application of the dataset.

THE NEED TO STAY FOCUSED ON THE END-USER

Several participants at the workshop noted that greater attention to 
uncertainties in climate data would help to address important questions 
in climate research and policy. Likewise, greater attention to uncertainty 
quantification, in part, can be driven by specific needs of researchers, 
policy makers, or other end-users of the remotely sensed product. This is 
in contrast, for example, to the situation in the nuclear weapons laborato-
ries, which have already developed sophisticated methods of uncertainty 
quantification in order to address the policy question of whether aging 
warheads remain safe and functional in the absence of complete testing. 
With regard to testing of climate data and models, experiments are run to 
better understand specific physical processes, but there is no option for 
controlled experiments of complete systems.

As the uncertainties of remote sensing instruments become better 
characterized, the question arises of how to represent that information 
in a way that is useful to researchers who examine the data. How does 
one capture the uncertainty of an entire dataset so that the end user can 
use the information? This remains an open question and a difficult one. 
Researchers, both in the geoscience and statistics communities, need to 
become very familiar with a dataset, the data-collection process, and the 
applications of the data in order to understand all the issues and assump-
tions that are associated with the data and its use. Understanding the 
uncertainties of different processes in the climate system requires different 
approaches. For example, a challenge recognized by the community is 
reconciling initial states in models with the observational data. The initial 
states must reflect that uncertainty, thus, every dataset needs attention by 
the scientists to account for that uncertainty in the forecast model. 
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Collaborations between remote sensing climate scientists and statis-
ticians can potentially result in products that are ultimately more useful 
to end-users. Participants pointed out the value of true collaborations, 
wherein statisticians who become familiar with an entire data-collection 
system will help characterize the uncertainty or the variability in the 
equations that model the physical processes, and not just the uncertainty 
in the data collection. The two communities working together may lead 
to different ways to look at the data for the science questions.

Jay Mace, University of Utah, presented an example of how uncer-
tainty analysis can contribute to climate modeling. Sanderson et al. (2008) 
published results of a statistical study of climate models in which the 
investigators varied the parameterizations over some parameter space 
and looked at the sensitivity of the model results to the tuning. One of 
the tuning parameters examined was the ice crystal fall speed, and that 
paper concluded that it is an important parameter in a climate model, in 
part, because this process takes ice out of the upper troposphere where it 
shields the upward infrared radiation. Thus, ice fall speed turns out to be 
a powerful tuning knob for a climate modeler. In response to that paper, 
Deng and Mace (2008) published a study that looked at Doppler veloc-
ity data from the Atmospheric Radiation Measurement (ARM) sites and 
parameterized the ice crystal fall speed as a function of ice water path and 
temperature. This is an example of how information from various remote 
sensors can feed directly into model parameterizations. Because the many 
different climate models in existence use different parameters and gener-
ate different results, better knowledge of the uncertainties is critical for 
building the next generation of climate models.

Workshop participants noted that statisticians and earth scientists 
need to consider the end-user of the product because different end-users 
will require different applications of remotely sensed data, and this will 
determine how the dataset will be processed. For example, end-users, 
such as policy makers, want to know about uncertainty in climate projec-
tions, which includes model uncertainty, observational uncertainty, and 
the overall uncertainty of our knowledge. As the climate community 
focuses more on addressing the questions posed by policy makers and 
other end-users, the collaborations between earth scientists and statisti-
cians will likely be encouraged. A remote sensing scientist produces a 
product, which has biases and uncertainties that are spatiotemporally 
correlated as a function of the statistical properties of the observed fields 
and the manner in which they were sampled. A modeler uses the prod-
ucts, for example as gridded, averaged fields, and introduces biases and 
uncertainties into the predictions, projections, and analyses. The remote 
sensing scientist and the modeler must collaborate to ensure the accuracy 
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of the product. This implies an enterprise-wide need for collaboration 
between the data producers and data users. 

CROSS-DISCIPLINARY COLLABORATIONS BETWEEN  
CLIMATE SCIENTISTS AND STATISTICIANS

The challenge of understanding a system as complex as climate 
requires a partnership between geoscientists and statisticians because 
neither community has all of the expertise that is required. Each commu-
nity is attempting to understand climate processes interacting at multiple 
scales and the workshop participants called for more sophisticated tech-
niques to study these interactions that can benefit both communities. The 
workshop demonstrated that the community is still at a fairly rudimen-
tary stage of understanding the complexity of the climate system. Being 
at an early stage of understanding, it is not always obvious to outsiders, 
including those who might fund such investigations, that these lines of 
research and their necessary collaborations are essential to progress in cli-
mate science. The development of tools and methods to approach climate 
datasets for analyses is an ongoing endeavor. Research into better statisti-
cal methods enables us to, among other things, account for autocorrela-
tion and provide ways to infer greater information from sparse data. 

A primary motivation for this workshop, and a fundamental area for 
collaboration recognized by the workshop participants, lies in quantify-
ing uncertainty in climate records, given that a better understanding of 
the climate system can be obtained with a more sophisticated approach 
to handling uncertainties. This includes accounting for the uncertainty in 
the individual model parameters and also the uncertainty that is inherent 
in the modeling framework. Statisticians can help formalize how geosci-
entists can use well-characterized uncertainties to ultimately understand 
the uncertainties in the forecast model.

Other areas were suggested as being ripe for collaboration between 
climate scientists and statisticians, including the monitoring of simple 
state variables in the atmosphere, and understanding the large cycles 
in the atmosphere, such as the water cycle and the carbon cycle and the 
interactions between them. It is difficult to examine these cycles due to 
their complexities, and statistical methods can be useful for teasing out 
information. Another area for collaboration is looking deeper into the 
interactions between variables, including a better understanding of forc-
ing variables such as CO2 concentrations and aerosols. We need a con-
ceptual framework for applying different statistical techniques to these 
areas. Statisticians need to tackle the full state space at the full resolution, 
and physically quantify and validate the results of any models that are 
generated. The agencies that fund remote sensing benefit when statistical 
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investigations explore data in a new way and find additional value in 
systems that are already aloft, as well as when they provide information 
that will guide resource decisions in the future.

Collaborations between geoscientists and statisticians open up the 
opportunity for tailoring methods to fit a specific geophysical situation, 
with specific improvements in accuracy, precision, and/or run time. Sta-
tistical textbooks, publications, and software do not necessarily provide 
the necessary technology transition, making collaborations critical. For 
example in a method like kriging, presented by Noel Cressie at Ohio 
State University,� it can be difficult to discern how to define a statistical 
model and probability distributions that will lead to optimal interpola-
tion. The standard formulation assumes that parameters follow simple 
probability distributions (e.g., Gaussian distribution), but real data have 
many structures. Creating a prior distribution that incorporates an under-
standing, sometimes quite subtle, of the actual physical processes is a task 
best performed through collaborations. Workshop participants described 
that most productive collaborations are two-way, in that both perspec-
tives, of the geoscientist and the statistician, are applied to understand-
ing all aspects of the problem. Certainly, the geoscientist may evaluate 
the appropriateness of statistical steps and the assumptions embedded 
in them. Conversely, the statistician may also be intimately familiar with 
how the geoscientists developed the mathematical models, because some 
of the uncertainties and assumptions are embedded in the equations. As 
described earlier, a primary goal for climate scientists is to understand the 
physical processes that are directly relevant to climate model, and this can 
be addressed through the use of statistical models.

Many of the workshop participants recognized that interdisciplinary 
work is hard. It is difficult to get funding because research proposals need 
to convince two separate communities that often do not communicate. 
Additionally, if a study generates a new approach that is too complicated, 
that approach will often not be utilized. An advance that requires oth-
ers to learn a new technique has to be of obvious value and explainable. 
Complex solutions can be dangerous if they hide assumptions that were 
made during the derivations of the method, but which are not appropriate 
for the remote sensing application. This is another reason why a statisti-
cian involved in collaboration must be intimately involved in the geosci-
ences modeling to recognize such a situation. Climate research is ripe for 
additional statistical sophistication, even at the risk of adding complexity, 
because the climate model predictions are critical to society.

There are also impediments to cross-disciplinary collaborations. First, 

� A detailed description of kriging is presented in Appendix B, in the talk summary for 
Noel Cressie.
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communication across the disciplines is a necessity that was highlighted 
in the workshop discussion. Both communities, geosciences and statistics, 
will benefit from an ongoing interaction as well as continued effort to 
understand the literature outside their field to find what has been done 
in a certain area in order to make improvements. Second, if done well, 
cross-disciplinary collaboration can be a very productive, but requires 
commitment from both communities. And third, workshop participants 
expressed that the funding is not adequate to support enough cross-dis-
ciplinary collaboration.

What incentives exist for collaborations? For many years, statisticians 
have had little trouble finding interesting work. It takes a special kind of 
statistician to want to be in this cross-disciplinary area. Cross-disciplinary 
collaboration also needs support from the climate community; that is, geo-
scientists need to make known that they want statistical expertise to solve 
some of these complex problems. Participants also felt that the federal 
agencies that fund climate research need to be aware of this constraint.

Box 2-3 illustrates the nature of the problem as ensemble approaches 
to large datasets are becoming more common. A key point in the discus-
sion is that a simple mean is not the complete answer. Rather, the statistics 
and earth science communities can come together to take advantage of the 
variability in the data. The structure of the dataset needs to be analyzed 
to better understand the multiple physical processes that make up the 
climate system.
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BOX 2-3 
The Nature of the Problem: Lessons from a Santa Claus

The use of ensembles, permutations of data, provides a sampling of the 
space over which the data can range and can be an effective way to begin think-
ing about complicated statistical problems. For example, Figure 2-2 presented by 
Doug Nychka, National Center for Atmospheric Research, includes 100 variants 
of a depiction of Santa Claus. Kriging, a common statistical technique, allows 
us to generate the best statistical estimate of the mean of the variants, and an 
ensemble around that mean can provide information about the uncertainty. How-
ever, a traditional method such as kriging may not be the optimal way to describe 
Santa’s features, as this approach represents a point-wise “expected value” and 
does not preserve the spatial relationships present in individual sample images. 
The “mean Santa” shown in the large image does not capture specific information 
such as Santa’s nose or other particulars. However, having the 100 realizations of 
Santa enables one to query what is known. In addition, the ability to infer details 
about the physical processes associated with Santa (e.g., his delivery of presents 
on Christmas Eve) is complicated by the fact that the only information available 
is through parameterizations that come from modeling efforts, much like the pa-
rameterizations in global climate models. Moreover, when a parameterization is 
needed, it might be better to rely on one or more of the 100 variants rather than 
basing the parameterization on the mean Santa, which does not directly represent 
any underlying model of processes as do the individual depictions. It is important 
to remember that the ensemble of variants is generated according to some as-
sumptions about how to sample parameter space, and it might not be the best 
sampling for every purpose.

Workshop participants argued that climate is defined by characteristic varia-
tion, not by average values. Climate is the product of a complex fluid dynamical 
system, and the products of such systems are defined by the system’s history, 
not its equilibrium. The atmosphere is constantly evolving, whereas the different 
versions of Santa in Figure 2-2 are not related in a fundamentally dynamical way. 
Rather than trying to understand the outcome of the averaging, it may be more 
beneficial to solve the problem of inaccurate model representation of climate. While 
kriging and generating an ensemble provide a valuable comprehensive view of a 
dataset, the ultimate goal of analysis is to discover the more subtle features of 
the structure of the distribution, which are often lost in simple analyses focusing 
on the mean, or average, or an observed process. For example, the average of a 
Mozart sonata is a single note, but that does not convey anything of importance 
about the piece of music.
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FIGURE 2-2  Top: 100 variants of Santa Claus; Bottom: the average Santa Claus 
based on the 100 variants. Figure courtesy of Jason Salavon.
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Concluding Thoughts

As conveyed by many participants at the National Academies’ 
workshop on uncertainty management for remotely sensed cli-
mate data, it would be helpful if the climate research community 

as a whole could settle on priority questions where collaboration with 
the statistics community would be most beneficial. The advancement of 
statistical techniques could then focus on these fundamental science ques-
tions. For example, the importance of climate models for policy making 
suggests that improved statistical techniques for improving their param-
eterizations and analyzing their output could have substantial benefits for 
both the scientific community and society as a whole. There are historical 
precedents for this type of progress; for example, in the 1970s and 1980s 
the community recognized that it was critical to gain a better understand-
ing of how clouds affect the earth’s radiation budget. Today, we have a 
much clearer picture of how clouds alter the transfer of radiation through 
the atmosphere on a variety of timescales, and progress on this topic has 
allowed scientists to develop a more comprehensive, although still incom-
plete, understanding of the feedbacks between clouds and other aspects 
of the climate system. 

As described throughout the workshop, the components of the climate 
system are coupled and interact in multiple ways and at multiple scales, 
which makes it difficult to discern which components are contributing 
the most to the uncertainties in our knowledge. In addition, the chal-
lenges associated with quantifying uncertainties in a certain geophysical 
parameter (e.g., precipitation) are typically unique, and cannot necessarily 
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be readily translated to other system components. However, a statistical 
framework for evaluating uncertainties throughout the system can help 
lead to a logical roadmap for a research enterprise. 

As conveyed by many workshop participants, stronger collaboration 
between the earth science and statistics communities would likely result 
in many benefits. Workshop participants suggested that additional, more 
focused workshops might be organized as a way of spurring progress 
in understanding uncertainties associated with particular geophysical 
processes and with some particular data-collection challenges (e.g., mea-
suring aerosols or cloud cover). These follow-on workshops could probe 
more deeply into particular models, research, and challenges. Examples 
might include the advancement of statistical techniques to address spatial 
and temporal autocorrelation in large datasets and methods to incorpo-
rate more physical knowledge and physical modeling into the statistical 
models that will help improve calibration and validation studies. 

With the rich collection of remotely sensed data, the workshop par-
ticipants discussed that considerable progress could be made by going 
beyond simple monthly and annual averages to describe the climate sys-
tem, and that modern statistical methods had much to offer in the area 
of representing the physical processes that make up the climate system. 
There is a wealth of data to be processed, and analysis of this data requires 
both good physical models and modern statistical methods to fully under-
stand the biases and residual errors. In the era of advanced earth science 
collection and processing techniques, the fusion of multiple datasets is a 
challenge in the remote sensing community and represents another rich 
area for collaboration, as does data assimilation. 

The goal for a statistical framework is to account for uncertainty not 
only in individual parameters but also in the entire modeling framework 
used to predict the processes of interest. An overall statistical framework 
for accounting for uncertainty in remotely sensed climate data and in 
climate models might also assist in the development of an integrated 
strategy for communicating uncertainties. Such progress would not only 
aid research in the earth science and statistics communities, but will result 
in more useful information for the climate policy community. 



Copyright © National Academy of Sciences. All rights reserved.

Uncertainty Management in Remote Sensing of Climate Data: Summary of a Workshop

References

Bowman, K.P. 2005. Comparison of TRMM precipitation retrievals with rain gauge data from 
ocean buoys. Journal of Climate 18:178-190.

Cressie, N., and G. Johannesson. 2006. Spatial prediction for massive datasets. In Mastering 
the Data Explosion in the Earth and Environmental Sciences: Proceedings of the Australian 
Academy of Science Elizabeth and Frederick White Conference. Canberra, Australia: Austra-
lian Academy of Science. 11 pp.

Cressie, N., and G. Johannesson. 2008. Fixed rank kriging for very large spatial data sets. 
Journal of the Royal Statistical Society, Series B 70:209-226.

Daley, R. 1991. Atmospheric Data Analysis. Cambridge, UK: Cambridge University Press. 
457 pp.

Deng, M., and G.G. Mace. 2008. Cirrus cloud microphysical properties and air motion statis-
tics using cloud radar Doppler moments: Water content, particle size, and sedimentation 
relationships. Geophysical Research Letters 35, L17808, doi:10.1029/2008GL035054. 

Luo, M., C.P. Rinsland, C.D. Rodgers, J.A. Logan, H. Worden, S. Kulawik, A. Eldering, A. 
Goldman, M.W. Shephard, M. Gunson, and M. Lampel. 2007. Comparison of carbon 
monoxide measurements by TES and MOPITT: Influence of a priori data and instru-
ment characteristics on nadir atmospheric species retrievals. Journal of Geophysical 
Research 112:D09303, doi:10.1029/2006JD007663.

Mace, G.G. 2001. Atmospheric Radiation Measurement Program Southern Great Plains Case 
Study, 6 March 2001. Available online at http://www.met.utah.edu/mace/homepages/
research/archive/sgp/sgp.html, accessed July 17, 2009.

NRC (National Research Council). 2007. Environmental data management at NOAA: Ar-
chiving, stewardship, and access. Washington, DC: The National Academies Press.

Sanderson, B.M., C. Piani, W.J. Ingram, D.A. Stone, and M.R. Allen. 2008. Towards con-
straining climate sensitivity by linear analysis of feedback patterns in thousands of 
perturbed-physics GCM simulations. Climate Dynamics 30:175-190.

Shi, T., and N. Cressie. 2007. Global statistical analysis of MISR aerosol data: A massive data 
product from NASA’s Terra satellite. Environmetrics 18:665-680.

26



Copyright © National Academy of Sciences. All rights reserved.

Uncertainty Management in Remote Sensing of Climate Data: Summary of a Workshop

REFERENCES	 27

 Shi, T., B. Yu, and A.J. Braverman. 2002. MISR Cloud Detection over Ice/Snow Using Linear 
Correlation Matching. Technical Report 630. Berkeley, CA: University of California 
Berkeley Department of Statistics.

Shi, T., B. Yu, E. Clothiaux, and A. Braverman. 2004. Cloud detection over ice and snow us-
ing MISR data. Technical Report 663. Berkeley, CA: University of California Berkeley 
Department of Statistics.

Tobler, W.R. 1970. A computer movie simulating urban growth in the Detroit region. Eco-
nomic Geography 46:236.



Copyright © National Academy of Sciences. All rights reserved.

Uncertainty Management in Remote Sensing of Climate Data: Summary of a Workshop



Copyright © National Academy of Sciences. All rights reserved.

Uncertainty Management in Remote Sensing of Climate Data: Summary of a Workshop

Appendix A

Workshop Agenda

Workshop on Uncertainty Management in Remote 
Sensing of Climate Data

December 4, 2008 
The Doubletree Hotel 

1515 Rhode Island Ave., NW 
Washington, DC 20005

8:30 	 Welcoming remarks and overall workshop goals
	 Amy Braverman, Jet Propulsion Laboratory

Session A: Introduction

8:40 	� Differences in terminology, techniques, and approaches between 
statisticians and earth scientists

	 Anna Michalak, University of Michigan

9:00 	 Remote sensing of surface winds
	� Ralph Milliff, Northwest Research Associates, Inc., Colorado 

Research Associates

9:30 	 Remote sensing and precipitation
	 Tom Bell, NASA

10:00 	 Discussion 
	 Moderator: Amy Braverman, Jet Propulsion Laboratory

10:15 	 Break
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Session B: Clouds

10:30 	 Different types of uncertainties in cloud data sets
	 William Rossow, City College of New York, CUNY

11:00 	 Machine learning techniques for cloud classification
	 Bin Yu, University of California at Berkeley

11:30 	� Validation of cloud property measurements from multiple 
instruments

	 Jay Mace, University of Utah

12:00	 Discussion 
	 Moderator: Karen Kafadar, Indiana University

12:30 	 Working Lunch

Session C: Aerosols

1:30 	� Uncertainty issues associated with remotely sensed data sets for 
aerosols

	 Lorraine Remer, NASA

2:00 	 Spatial statistics with an emphasis on aerosol data
	 Noel Cressie, Ohio State University

2:30 	 Discussion 
	 Moderator: Steve Platnick, NASA

3:00 	 Break

Session D: Integrating models and data

3:15 	 Aerosol and cloud representation in global models
	 Joyce Penner, University of Michigan

3:45 	� Data assimilation as a hierarchical statistical process, interacting 
dynamically with modeling

	 Christopher Wikle, University of Missouri

4:15 	 Discussion 
	 Moderator: John Bates, NOAA
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Session E: Making progress through practical and institutional 
barriers

4:30 	� The practical and institutional barriers for making progress on 
developing and improving statistical techniques for processing, 
validating, and analyzing remotely sensed climate data

	 Doug Nychka, NCAR

5:00 	 Discussion 
	 Moderator: Amy Braverman, Jet Propulsion Laboratory

5:25 	 Wrap-up and final remarks

5:30 	 Adjourn
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Summaries of Workshop Presentations

Differences in Terminology,  
Techniques, and Approaches Between  

Statisticians And Earth Scientists

Anna M. Michalak, University of Michigan

Characterizing the complexity and quantifying the uncertainty in 
environmental systems will aid in better understanding the systems and 
improving model forecasts. However, the differences in terminology and 
approaches used by the statistics and earth science communities are just 
one of the impediments to successfully analyzing remote sensing climate 
datasets. This talk illustrates some applications of statistical methods for 
optimizing the use of in situ and remote sensing datasets of the climate 
system. In order to assess the predictions obtained using models that 
integrate such datasets, tools must be developed that quantify the full 
uncertainty associated with such models, rather than simply evaluat-
ing the sensitivity of model predictions to a set of model parameters. In 
many cases, the uncertainty associated with the conceptual framework 
of the models and the specific parameterizations included in the models, 
outweigh the uncertainty caused by incomplete knowledge of individual 
parameters. 

When sparse spatial data are integrated in analyses, uncertainties 
that arise due to spatially and temporally non-uniform sampling can 
be accounted for using the principles of spatial statistics. Because clas-
sical statistics is based on the assumption of independent observations, 
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these tools do not account for the spatial and/or temporal autocorrelation 
inherent to the majority of environmental phenomena. This can lead to 
biased estimates and erroneous identification of relationships between 
parameters. Developing statistical tools that explicitly account for spatial 
or temporal autocorrelation avoids such errors. In addition, using models 
that quantify and account for spatial and/or temporal correlation can 
decrease the uncertainty associated with model predictions because the 
spatial or temporal information footprint of available data can be assessed 
and used to inform the model. 

Spatial statistics tools can be used to combine data collected from dif-
ferent instruments with differing resolutions, and to reduce uncertainties 
associated with data interpolation, among other things. This talk empha-
sized that principles of spatial statistics can address many of the chal-
lenges in geoscience. The simplest examples of spatial statistics are inter-
polating data and generating realizations (i.e., equally likely scenarios) of 
a given process given sparse data. These principles can be applied to data 
at any scale. On a global scale, for example, data from the Orbiting Carbon 
Observatory, a satellite designed to measure carbon dioxide (CO2) from 
space to improve our understanding of global CO2 concentrations, would 
have contained large gaps due to the satellite track and the presence of 
clouds and aerosols. Methods based on geostatistics are being developed 
to generate estimates of the global distribution of CO2 based on such 
data, by first characterizing the degree of spatial variability in the CO2 
observations, and using this information to estimate CO2 for portions of 
the globe that are not measured. On a local scale, similar principles have 
been applied to a project that assesses areas of low oxygen in Lake Erie. 
It is difficult to quantify the extent of the Lake Erie dead zone and how 
it varies from year to year because the in situ measurements are sparse. 
Therefore, new statistical techniques were developed to identify remote 
sensing variables that are good predictors of the dissolved oxygen con-
centration, and these variables are then merged in a geostatistical frame-
work with available in situ data to estimate the spatial extent of hypoxia, 
and how it varies across years. Results show that fusing the in situ and 
remotely sensed data yields a more realistic distribution of the extent of 
hypoxia, with lower associated uncertainties, when compared with the 
results using only the in situ data.

Spatial aggregation, averaging, and linear interpolation are often 
using to merge data collected from multiple remote sensing instruments. 
Such approaches, however, do not yield at optimal estimate at the target 
scale of analysis, and estimated values can be influenced by samples in 
neighboring pixels. This problem is exacerbated when remote sensing 
data are “re-sampled” multiple times. Spatial statistical tools applied to 
measurements from one or more instruments that may have different 
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resolutions, coupled with an understanding of the point spread function, 
and a quantification of the spatial and temporal covariance, can be used 
to optimally combine data from multiple sensors to yield estimates at any 
target resolution.

	 Three areas that are ripe for collaboration between statisticians and 
earth scientists are (i) the development of rigorous tools for quantifying 
the uncertainty associated with parameters using in climate models, (ii) 
the development of tools for comprehensively quantifying the uncertainty 
associated with model predictions, including errors caused by the model 
formulation, and (iii) developing tools for integrating data across spatial 
and temporal scales. Furthermore, these two groups can come together 
to build a better understanding of the physical processes that are relevant 
to climate models, ultimately leading to improved physics-based models 
and projections. This could be achieved by developing statistical models 
that emulate many of the underlying physical processes, and explicitly 
account for the uncertainty associated with all model components.

Remote Sensing of Surface Winds

Ralph Milliff, Northwest Research Associates

Bayesian hierarchical modeling (BHM) is a fundamental statistical 
approach for addressing problems in remote sensing climate datasets. 
Building blocks for BHM include the data-stage distribution (i.e., likeli-
hood), which quantifies the uncertainty in observations, and the process-
model-stage distribution (i.e., prior), which quantifies the uncertainty in 
the physics of the process. These stages introduce parameters, and esti-
mates in the posterior of the parameters can be determined. One advan-
tage of the BHM approach is that it takes multiple data sources into one 
model. The first two stages allow for satellite data and data from other 
platforms to be combined with the physics. Estimates in the posterior 
of the parameters introduced in a model may be influenced by both the 
data-distribution and process-model stages. BHM has been successful in 
characterizing surface-wind processes over the Labrador Sea, the tropical 
ocean and the Mediterranean. This talk describes how BHM may be used 
to characterize surface-vector winds for ensemble data assimilation and 
an ocean forecast model for the Mediterranean Sea. The research further 
demonstrates that surface-vector winds can be used to identify uncertain-
ties in dependent variables in the forecast model. 

The Mediterranean ocean forecast system uses realizations from the 
posterior of the wind BHM to generate physically realistic spreads in the 
forecast initial conditions from which ocean ensemble forecasts can be 
launched. The strategy is to exploit the precisely characterized uncertainty 
of satellite observations. The prediction grid shows clusters of wind vec-
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tors, and the uncertainty in the clusters is a function of space and time. 
This is an alternative way of thinking about uncertainty. Traditionally, 
geoscientists think of an error in the satellite as projected to the error in 
the field. However, the uncertainty in this case depends on whether or 
not the satellite was there and the strength of the surface winds. Thinking 
about uncertainty in this way can lead to important understandings of 
processes that depend on the dynamics of the system. Subtle shifts in the 
spread of wind vectors from the posterior generate different wind stress 
curls, the vorticity in the wind that drives the eddy field in the ocean. The 
vorticity-driven eddies occur on a scale (i.e., the ocean mesoscale) that 
is a primary source of uncertainty in the ocean forecast (i.e., at synoptic 
scales). Over the Mediterranean Sea, the eddies affect the general circula-
tion of the basin including deep water formation. Mistral events, where 
cold dry air blows off the European continent in late winter, generate 
large wind stress curl, the uncertainty of which can be characterized. 
The forecast model generates physically realistic spreads in the forecast 
initial condition, and the spread is focused on uncertain scales of the 
general circulation in the Mediterranean. The uncertainty is temporally 
and regionally specific. 

This methodology can also be used to better understand the physics 
from the posterior distribution of BHM parameters in the process model 
(i.e., the pressure gradient terms in the present case). The posterior distri-
butions for those parameters on the geostrophic and ageostrophic terms, 
with and without the QuikSCAT data, are examined. The scatterometer is 
providing more ageostrophic information than the weather center fields. 
The example demonstrates that the prior can be more complex.

Remote Sensing and Precipitation

Tom Bell, National Aeronautics and Space Administration

Precipitation is highly erratic in space and time, and success in devel-
oping adequate statistical descriptions of precipitation has been mixed. 
The fact that precipitation rates are zero much of the time over much of 
an area is a special nuisance. In addition, remote sensing errors in this area 
are complex and difficult to quantify. Rain gauges, providing the most 
accurate ground-based measurements of precipitation, cover only a very 
small area, essentially the size of a bucket, and are used to validate time-
specific satellite measurements taken over many kilometers. This poses 
many challenges in modeling the errors associated with these estimates 
to characterize the types of biases in the satellite estimates. 

Rain gauges provide time-averaged rain rates, whereas satellites take 
measurements from a volume of space above the ground. It is, therefore, 
problematic to try to make validations and comparisons between these 
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two very different sources of data. Analogous challenges can arise in 
comparing estimates collected from different satellites. For example, the 
Tropical Rainfall Measuring Mission (TRMM) satellite has a radar instru-
ment that measures rainfall amounts at every level in the atmosphere, as 
well as a visible infrared instrument and a microwave instrument that 
detects raindrops. The observational swath of the microwave instrument 
is 800 km wide, and the satellite makes roughly one observation per day. 
This results in a very sparse dataset distribution in time that also becomes 
increasingly complex to describe once one considers the orbital variations 
of the satellite and its measurements. It is important for statisticians to 
appreciate the complexity of the dataset to gain an understanding of the 
issue prior to analysis. 	

The temporal and spatial discrepancies between the rain gauge data 
and the satellite measurements lead to several questions about the valida-
tion process that must be considered: what size area should be used in 
averaging satellite data, what is the optimal time period over which the 
rain gauge data should be averaged, and if a satellite passes several times 
in one month, how long before and after the pass should the rain gauge 
data be averaged? A spectral model can be very useful for spatial and 
temporal statistics. The model is designed to represent the larger areas 
that tend to evolve more slowly in time and have very long correlation 
times versus small areas with short correlation times. This is an important 
characteristic in rainfall and other geophysical fields. Small events evolve 
and move over an area more quickly than large events. An example of the 
uses for the spectral model is represented in Box 2-1, illustrating that there 
is an optimal time averaged sampling interval.

The complexity of rain distributions requires better statistical models 
that can account for the rain-rate distribution, the space-time behavior 
distribution, the multivariate distribution, and also the error. The under-
lying assumptions need to be carefully considered before the models are 
used for any specific application. In addition, it is highly beneficial to both 
the earth science and statistics communities when techniques are well 
understood and accessible. 

Different Types of Uncertainties in Cloud DataSets

William Rossow, City College of New York

Clouds pose multiple challenges for interpreting datasets to detect 
climate variability. Better statistical methods can aid the geoscience com-
munity by helping to better define important measurements related 
to clouds, such as cloud area and coverage, point-area comparisons of 
clouds, sampling of cloud variability, and monitoring cloud evolution. 
Remote sensing of clouds is very difficult in part because of resolution 
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and the effects of finite sensitivity and detection. The latter effects had 
been largely ignored until the last couple of decades. Cloud size varies 
greatly, and this complicates the measurement of cloud fraction. A well-
designed detection threshold that produces a good estimate of cloud 
fraction despite the problems associated with size and area measurement 
has been demonstrated by the International Satellite Cloud Climatology 
Project (ISCCP). In terms of point-area comparisons, it is important to be 
cautious when comparing ground measurements and satellite data. The 
two represent very different measurements and have different accuracies 
and errors associated with them. 

Cloud sampling requires knowledge of the scales of the variability, 
the sampling scale, the precision of the measurements and the end goal 
to which the estimates will be applied. Clouds exhibit the most variability 
at larger spatial scales. The variability is dominated by the same scales as 
is the atmospheric circulation. In addition, temporal autocorrelation must 
be accounted for when considering inferences about monthly means. For 
example, monthly data may consist of only 10 truly independent samples 
rather than 30 because of day-to-day variations. If not properly calculated, 
this can lead to monthly means that, for instance, give misleading infor-
mation about inter-annual variability, such as El Niño-Southern Oscilla-
tion (ENSO) patterns. Monthly means are commonly used in discussions 
of climate variation, but the mean can also mask small variations in the 
dataset. In addition, statistical methods need to be improved so we can 
remove the effects of autocorrelations.	

Cloud interactions with the climate system should be considered in 
the context of multiple processes and the relationships between those 
processes. Atmospheric circulation, clouds, precipitation, and radiative 
fluxes are all related and often occur within the same cloud system. 
Clouds and precipitation, for example, are fluid systems that are coupled 
spatially and temporally and should be considered together. Studying just 
one parameter at a time does not provide a full picture of the dynamics 
that are actually occurring. Similarly, averaging can provide valuable 
information, but averaged values do not help us determine the structure 
of the physics. Thus we need more sophisticated ways to analyze the non-
Gaussian, highly nonlinear, multi-variate, and multi-scale coupled data 
that are available. A partnership between the fields of geosciences and 
statistics is needed to develop techniques and models capable of render-
ing the available data into something interpretable and useful. There is a 
multitude of climate models that utilize different parameters and generate 
different results. The community needs better ways to determine which 
of these models best represent the climate system.
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Machine Learning Techniques  
for Cloud Classification

Bin Yu, University of California at Berkeley

The uncertainties in cloud radiation feedback on global climate remain 
a great obstacle in understanding and predicting future climate changes. 
This talk describes a case study of cloud detection over the Arctic region 
using machine learning methods and data generated from the Multi-angle 
Imaging SpectroRadiometer (MISR). The MISR’s algorithm retrieves the 
cloud height and cloud movement by matching the same cloud from 
three angles. However, clouds above snow- and ice-covered surfaces are 
particularly difficult to detect because the temperature and reflectivity 
of the clouds are similar to the snow and ice surfaces. Retrieval is also 
particularly difficult when trying to detect thin clouds in polar regions. 
This talk describes a methodology for addressing these challenges. The 
starting point was to measure the ground rather than clouds, because the 
ground is fixed. It was found that correlations between angles are strong 
over snow- and ice-covered surfaces and weak in areas covered by high 
clouds. Exploiting the multiple angles in MISR, the linear-correlation 
matching clustering (LCMC) (Shi et al., 2002) technique was developed 
to distinguish between smooth surfaces and thin clouds. However, the 
LCMC in polar regions was insufficient for detecting smooth surfaces, 
such as frozen rivers, and areas of thin clouds, which led to the develop-
ment of an enhanced LCMC (ELCMC) (Shi et al., 2004).

The question remains of how to quantify the clouds. This talk com-
pares performance of the ELCMC against two other machine learning 
techniques, the quadratic discriminant analysis (ELCMC-QDA) and the 
ELCMC support vector machine. The latter was determined to be compu-
tationally slow. Expert labeling provides the highest accuracy, but that is 
too slow for most purposes; the ELCMC-QDA provides about 92 percent 
of the accuracy of expert labeling. The use of expert labels improve the 
accuracy rates, however, they are expensive and impossible to obtain for 
every block of data. Information from the Moderate Resolution Imaging 
Spectroradiometer (MODIS), was then utilized to inform accurate labels, 
and gives complementary information to MISR. The MISR and MODIS 
consensus pixels are more accurate than MISR or MODIS alone and fusing 
the data from MISR ELCMC and MODIS improves the average accuracy 
of polar cloud detection.

This is an example of truly interdisciplinary work where statistical 
machine learning merges statistics with computational sciences. This was 
an iterative process with feedbacks and inputs from MISR team at every 
step. The goal was to solve the scientific problem with the streaming data 
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constraint, and an uncertainty measure was given based on posterior 
probability.

Validation of Cloud Property Measurements from 
Multiple Instruments

Jay Mace, University of Utah

The influence of clouds and precipitation on the radiation and hydrol-
ogy of Earth depend fundamentally on the evolution of the vertical profile 
of microphysics. The understanding of this evolution is possible through 
observation-based models. The validity of the observations, however, is 
dependant on how well the vertical profile of microphysics is derived 
from remote sensing data in a statistically meaningful way. This talk dem-
onstrates how to compare and validate microphysical cloud properties 
using multiple instruments including satellite measurements, ground-
based remote sensing measurements, and aircraft measurements. 

Cloud properties play an important role in the climate system. Reduc-
ing the uncertainties in climate models is necessary to improve our under-
standing of feedback mechanisms in the climate system, including feed-
back between the hydrologic cycle and cloud aerosol precipitation. The 
ability to infer cloud properties using remote sensing will aid in reducing 
these uncertainties in the climate models and allow us to gain a better 
understanding of the climate system and feedback mechanisms. There are 
multiple phases in the evolutions of clouds and cloud-size distributions. 
The interaction of clouds and their evolution occurs at the particle level, 
and therefore the particle size distribution is a critical component to the 
cloud problem. The evolution of clouds from aerosols to precipitation 
fundamentally occurs at the particle level and therefore, to understand 
feedback mechanisms, we must drill down to the particle size distribu-
tion (PSD). Statistical distributions are used to estimate PSD in climate 
models. Integrating across the PSD estimates how many aerosol particles 
are nucleating to create a cloud. This is one of the ill-defined quantities 
derived from remote sensing data. 

The mass of a cloud is also of interest. Some clouds with very dif-
ferent properties (e.g., type, water content, ice content) can exhibit the 
same radar reflectivity. Remote sensing algorithms are required that can 
identify differences in extinction for different clouds with similar proper-
ties. A simple PSD characterization requires 3-4 parameters, which is the 
essence of the cloud problem. With satellite data, we seldom have more 
than one or two independent pieces of information to describe a given 
cloud volume or cloud column, which makes it fundamentally impossible 
to derive the details of the more complicated size distribution.

Many instruments are used in conjunction to measure clouds, includ-
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ing in situ aircraft, ground sites, and satellite sensor suites. In situ aircraft 
measurement within the cloud volume is the common tool used to pro-
vide “ground truth” against which satellite measurements are compared. 
Ground sites through the ARM program have upward-looking remote 
sensors that provide detailed profiles and have the advantage of working 
over long periods of time. However, these sites are constrained in cover-
age because they only measure one point. Satellite sensor suites move 
beyond single-instrument measurements, but the measurement profiles 
are limited, and they are very expensive. 

Each of these techniques has associated uncertainties. For aircraft, 
uncertainties are associated with sample volume relevance and artifacts, 
such as those caused by the shattering of ice crystals on aircraft surfaces. 
Uncertainty is also associated with the algorithm used to determine cloud 
properties from remote sensing at ground sites. Like all algorithms, the 
algorithms used for cloud properties include key assumptions, such as the 
mass of ice crystal as a function of particle size. The retrieval technique 
also adds to the error. Algorithms incorporate assumptions about physi-
cal parameters, which contribute to the uncertainties in the algorithms in 
subtle ways.

An example of comparing ground-based and satellite data is seen in 
examining Moderate Resolution Imaging Spectroradiometer (MODIS) 
derived ice water paths. Ice water paths may be derived from a validated 
radar algorithm and compared with the MODIS data, showing reasonable 
agreement. However, one is a snapshot spatially averaged measurement 
and the other is a time average point measure. For cirrus clouds, a spatial 
average is generated by averaging the MODIS measurements over a rect-
angle that is oriented along the mean wind at the cloud level, and then 
averaging the ground-based radar data over a period of time when the 
cloud layer remains uniform. Comparing these measurements over a long 
period of time will aid in determining the error characteristics of the satel-
lite. The uncertainty in the data, however, combined with the uncertainty 
in the science requires techniques to quantitatively assess these errors, and 
more sophisticated approaches would be helpful. 

While techniques to quantitatively assess error in datasets exist, more 
sophisticated approaches would be helpful. A systematic approach to 
collecting and managing aircraft data to define empirical relationships is 
suggested. Combining multiple measurements in instrument suites and 
continuing and improving in situ measurements are critical for validation. 
Several elements are required to make progress in this area. Using single 
instruments is outdated, and a suite of sensors that provide multiple 
independent measurement profiles needs to be continued and improved 
upon. A long-term systematic global in situ measurement program is a 
critical adjunct to remote sensors.
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Uncertainty Issues Associated with Remotely Sensed 
Datasets for Aerosols

Lorraine Remer, National Aeronautics and Space Administration

A number of uncertainties are associated with deriving aerosols from 
the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite. 
While many varieties of substances are considered aerosols, the diffuse 
and smooth aerosols are the most important when studying the climate 
system, as they reflect and absorb sunlight. It is difficult to distinguish 
between different types of aerosols from clouds in remote sensing retriev-
als. The satellite measures the aerosol optical depth (AOD), which are 
measures of the column-integrated extinction, the amount of light that is 
either scattered or absorbed as it passes through the aerosol layer giving 
an indication of the amount of aerosol. A satellite measures not just the 
radiation scattered from the aerosol layer, but it also collects some radia-
tion that made it through the aerosol layer from the earth’s surface. The 
surface effect needs to be removed from the satellite signal to estimate the 
extinction, which requires assumptions about the aerosol and the surface, 
leaving room for error. A more direct way of measuring AOD is to use a 
sunphotometer on the ground to measure the transmitted light directly. 
Combining measurements of the sunlight at the top of the atmosphere 
with the amount of sunlight at the surface, the extinction can be deter-
mined. This approach uses fewer assumptions and under the best condi-
tions MODIS can retrieve AOD to within ±0.03, and a well-calibrated 
sunphotometer can measure it within ±0.01. The widespread network of 
sunphotometers called Aerosol Robotics Network (AERONET) retrieves 
data globally. The primary challenge with this technique is the mismatch 
between the spatially varying MODIS data and temporally varying sun-
photometer data. There are select areas with coincident coverage in mea-
surements between MODIS and AERONET. AERONET is a land-based 
network, and matching an overpass with an observation is rare. The 
location of the ground-based observation within the satellite grid square 
is a consideration in validation process.

Collocating AOD observations does not address uncertainty issues 
with other retrieved parameters like aerosol particle size. Collocating with 
sunphotometers takes advantage of the ground instruments’ cloud-clear-
ing algorithm. Comparing the spatial statistics with the temporal statistics 
increases the number of points that can be used from AERONET. With 
these results, information about the uncertainties of the remote measure-
ments of AOD can be determined.

Another challenge is using the validated retrievals to generate daily 
and monthly mean maps of aerosol distributions that improve our under-
standing of climate. A complication arises when the weighting of the data 
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is considered in the calculation of the monthly means. With few retrievals 
available for a particular grid square, there is a greater likelihood of high 
uncertainty. Different methods of weighting and averaging the data result 
in significantly different distribution maps and mean optical depths. Not 
all retrievals carry the same level of confidence. There are a number of 
options and methods to consider when analyzing the means from satellite 
and sunphotometer data, and finding a suitable solution is largely situ-
ational and dependent on the specific application under consideration.

Spatial Statistics with an Emphasis on Aerosol Data

Noel Cressie, Ohio State University

Statistical science is a paradigm that incorporates uncertainty into 
the description, explanation, and prediction of processes and parameters 
in the world. Spatio-temporal statistics incorporates space and time into 
statistical models of all aspects of the uncertainty. There are a multitude 
of statistical techniques that can be applied to climate datasets, and hier-
archical statistical modeling is one such. The uncertainty can be modeled 
in a hierarchical manner where, at each level of uncertainty, a statistical 
model is used. There are at least two levels in the hierarchy, resulting in 
data models and process models, the latter being a representation of a 
physical process of interest. Fundamental to hierarchical statistical mod-
els is the use of conditional distributions. This results in a product form 
for the joint distribution; then Bayes’ Theorem can be used to obtain the 
posterior distribution of unknown processes or parameters (e.g., aerosol 
optical depth in a modeling of data from the MISR instrument on NASA’s 
Terra satellite). 

Kriging is a spatial regression technique applied to datasets to filter 
out noise and fill gaps, and it can be shown to arise from a Gaussian-
Gaussian hierarchical statistical model. Kriging methodology requires 
estimation of the spatial covariances in the dataset, from which a math-
ematical formula can be constructed to fill in the gaps in the dataset. 
This formula is simply the mean of the posterior distribution referred to 
earlier, with suitable substitution of estimates of unknown parameters. If 
we build a spatio-temporal model at the finest scale, even at a scale where 
there is a lack of data, and then aggregate up from that scale, the relation-
ships will allow computation of any covariance at the scale of interest. 
This approach also allows one to determine the kriging standard error, 
which is a measure of the uncertainty in the smoothed, gap-filled prod-
uct. Algorithms that can be used with the data, such as nearest-neighbor 
smoothing and inverse-distance weighting, do not allow the estimation 
of uncertainty that kriging allows. 

One of the limitations of kriging is that it cannot be applied to 
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large datasets because it does not scale well computationally. However, 
fixed rank kriging (FRK), a rather new statistical method (Cressie and 
Johannesson, 2006) using a spatial mixed-effects model, is a technique 
that can be applied to large, remote sensing datasets. This technique is 
computationally feasible and is able to deal with the dimension reduction 
that other spatial and temporal statistical methods have not been able to 
address. The “fixed” adjective refers to a fixed number of basis functions; 
as the number of bases grows, more information can be gleaned about 
the finer-scale variability. If the finer-scale variability is not present, then 
fewer basis functions can be used in this method. Importantly, the spatial 
covariances for FRK do not have to be stationary (Shi and Cressie, 2007; 
Cressie and Johannesson, 2008). The covariances determined by FRK can 
also be used in a cross-validation technique to estimate the uncertainty of 
the data that lie within a grid box.

Aerosol and Cloud Representation in Global Models

Joyce Penner, University of Michigan

Global climate modelers continually work to improve climate models 
by analyzing observational data to gain better insights into the phys-
ics of atmospheric processes. The challenges associated with comparing 
climate models and data are similar to validation studies that compare 
satellite retrievals with ground-based measurements. Global climate 
models (GCMs) use a grid that is based on how long a period is to be 
represented by the simulation, typically 100 years, and how many times 
the model is run. Within each grid cell, the model physics and dynamics 
are represented and provide information about various attributes of the 
atmosphere, such as aerosol and cloud concentrations. The resolution, 
however, is too coarse to resolve clouds.

The coarse grid resolution requires parameterization of physical pro-
cesses. Scientists must approximate many of the prognostic variables 
needed to draw conclusions about significant parts of the climate system, 
such as clouds and their effects on the radiation budget. Some of the pro-
cesses that must be parameterized are convection, turbulence, radiation, 
and microphysics, all of which influence the complex cloud distributions 
that we observe, but which cannot be represented in detail in GCMs. The 
water mass of clouds, cloud fraction, and mixing processes, for example, 
have to be predicted and these predictions include uncertainties. There 
are many challenges associated with parameterization. In both the verti-
cal and horizontal planes, the cloud cover can be thinner than what the 
resolution allows. When combining these two, it becomes necessary to 
make assumptions about the variation in the horizontal coverage in the 
vertical direction. Adding more complexity, clouds within one horizon-
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tal grid layer might have varying densities and vertical positions. The 
assumptions made about cloud distribution and radiation effects have 
consequences in the overall output of the model. 

Climate models are validated by comparing the results to satellite 
data (as well as in situ data). In GCMs, clouds and the feedback from 
clouds, resulting from changes in the temperature, are one of the greatest 
sources of uncertainty. This is due to the lack of fine-scale grid models 
that can properly represent the sub-grid-scale features that are required 
to accurately predict climate changes. 

Aerosol models represent various processes, such as emissions that 
form secondary aerosols, chemistry, aerosol microphysics, transport, and 
dry and wet deposition. The uncertainty associated with these models 
comes partly from variability in the sources of aerosols, given that there 
are multiple aerosol species. In addition, the representation of the other 
processes differs from model to model. Validation of the chemical compo-
sition of the aerosols in the models cannot come from comparisons with 
satellite data or ground-based remote sensing data like that of AERONET, 
because the measured aerosol optical depth (AOD) is a composite of the 
effects of the different aerosol types we attempt to model. So while mea-
surements of the global average aerosol optical depth can improve, this 
will not completely resolve the differences between various models and 
observations. Convection also has large implications for the prediction of 
the vertical distribution of a particular aerosol. The impact of an aerosol 
such as black carbon varies depending on its vertical distribution. If the 
black carbon is located near the surface, it will tend to heat the surface 
whereas if it is primarily located in the free troposphere, it will act to cool 
the surface. The vertical distribution of the rest of the aerosols that make 
up the total AOD also affects their impact, since AOD can increase by 
aerosol water uptake and the uptake will generally be larger if the aerosol 
is located in the boundary layer where the relative humidity is generally 
higher than it is in the free troposphere. Thus the AOD and the effect of 
black carbon are dependent on how the vertical transport is treated. There 
is a significant difference in the vertical distribution of aerosols when 
aerosols from different GCMs are compared with each other. In addition 
there are significant differences in AOD between different versions of the 
same GCMs when different horizontal resolutions are compared.This is 
due to the changes in the predicted relative humidity in higher resolution 
GCMs.

The sources of uncertainty associated with aerosol models come from 
emissions, wet/dry removal, chemical production, and vertical transport. 
Scientists must address the biases and potential errors connected to grid 
resolution and also with the shortcomings in modeling some specific pro-
cesses. Fortunately, it may be possible to use the extensive satellite data 
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to address some of these issues and to make improvements in modeling 
the processes that are not well parameterized.

Data Assimilation as a Hierarchical Statistical 
Process, Interacting Dynamically with Modeling

Christopher Wikle, University of Missouri

A Bayesian approach to climate models has an advantage by address-
ing processes that are non-Gaussian and nonlinear (i.e., geophysical pro-
cesses in the climate system). From a statistical perspective, data assimi-
lation is combining data with prior knowledge from sources such as 
mathematical models, other datasets, expert opinion, and others to gain 
an understanding of the true state of the system. A Bayesian perspective 
to retrospective data assimilation, combining information to create datas-
ets for use in climate model initial conditions, is explored in this talk. For 
example, a wind dataset that can be replicated over time and space has 
uncertainty associated with the satellite observations and these uncertain-
ties influence the weighted combination of the prior mean and the mean 
data as well as the outcome of the posterior data distributions. In order to 
minimize these uncertainties, physical properties of the system need to be 
improved and applied to the statistical representation. The fundamental 
challenges in data assimilation techniques include model complexity, 
model uncertainty, state process dimensionality, and data volume, which 
are all interrelated. 	

The Bayesian hierarchical model methodology uses building blocks 
by separating the data and process variables (e.g., temperature, wind) in 
the model from the model parameters, which are quantities introduced in 
the model development, such as measurement error, to better understand 
the associated uncertainties. A critical question is quantifying the uncer-
tainty in the process model. A common solution is to include an additive 
error term, but this does not represent all model uncertainty. Another 
option is to treat the model output as data to be used in a statistical model, 
however, in this approach the underlying dynamics of interacting state 
processes are ignored. A spectrum of models between deterministic and 
stochastic is the most useful and should be dependant on the goal of the 
analysis, the type of data, and the type of prior information that is avail-
able in the study. The advantage is that the models can accommodate 
more complex dynamics, however the interpretability of the parameters 
suffers. 

Data volume is increasingly becoming problematic for better under-
standing the physical processes that are interacting with the climate system 
and for quantifying the uncertainty in remotely sensed datasets. Datasets 
are large and, at times, of poor quality and may include unknown biases 
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and errors. This challenge requires the statistics and earth sciences com-
munities to work together in this era of large datasets. Given that earth 
scientists and statisticians could learn a great deal from each other, it is 
unfortunate that they face poor communication across the two disciplines. 
Finally, funding is not adequate to support the type of collaboration that 
is needed to foster growth and improvement in these disciplines.

The Practical and Institutional Barriers for 
Making Progress on Developing and Improving 

Statistical Techniques for Processing, Validating, 
and Analyzing Remotely Sensed Climate Data

Doug Nychka, National Center for Atmospheric Research

A few significant obstacles that are most commonly felt by statisti-
cians and geoscientists who deal with processing, validating, and ana-
lyzing remotely sensed climate data include resistance to new ideas by 
members of the community, lack of funding for analysis following a 
satellite launch, and the need for more work on combining models with 
observations through data assimilation. This talk addresses these barriers 
from case studies in the community.

A colleague working in the field of GPS meteorology noted that there 
are opportunities for statisticians and geoscientists to work together 
toward a common objective, but that community resistance can be prob-
lematic. As an example, an atmospheric sounding project encountered 
strong community resistance which was not overcome until personal 
bridge-building was carried out between people who wanted to imple-
ment various outputs from the proposed data analysis and people that 
were able to build and launch the satellite. In this circumstance, the bar-
rier was lifted and progress was made.

A second colleague, who works with the Measurements in Pollution 
of the Troposphere (MOPITT) instrument, raised a concern about the diffi-
culty of obtaining sustained data-analysis efforts. The analysis work must 
be re-justified every few years after the initial funding period. Although 
there can be funding available to build and launch a new satellite-based 
instrument, there is less support to analyze the resultant data or to inte-
grate one set of satellite retrevials with other sets of observations and data 
products. In addition, the expertise of those in the field may not be used to 
the maximum extent possible when it comes to analysis, perhaps because 
of the shortage of funding for an analysis study. One way to improve the 
chances of obtaining funding could be a virtual simulation facility that 
would allow scientists to test new instrument designs with the conditions 
represented by various global atmospheric/ocean models and with the 
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kinds of statistical methodology that would be used for retrievals. The 
most ambitious evaluation would be using data assimilation to combine 
a numerical model with the synthetic satellite measurements and other 
more standard geophysical data to assess the added benefit of the new 
instrument. This would be an efficient way to verify the importance of 
new instruments because it would account for the data analysis of the 
measurements and their coincidence or uniqueness with other types of 
data. 

A third scientist highlighted both opportunities and barriers that 
scientists face when they attempt to reconcile satellite data and model 
results. It is well known that climate is a long-term average of complicated 
geophysical processes. However, results from satellite data are on a much 
shorter time scale and are not suitable for directly determining climato-
logical averages. When these data are compared to model results over a 
specific time period, the atmospheric component of a climate model is 
essentially being used to forecast weather. The use of weather forecasting 
techniques such as data assimilation to improve geophysical models is 
an emerging interdisciplinary approach that falls outside of traditional 
methods in climate science. This presents a conceptual challenge to scien-
tists because the short-time-scale process information must be reconciled 
with the performance of the model in simulating long-term climate. Also 
they must learn how to use a new and more complicated statistical tool. 
The ensemble data assimilation methods used in this case study also 
allow for characterizing the statistical uncertainty of the analysis and so 
add another layer to the interpretation of the scientific results. This can 
also be seen as an opportunity to make significant improvements to the 
models and the physics behind them. Using data assimilation in this way 
creates an opportunity to use multiple instruments and parameters from 
remotely sensed data to improve upon model physics and dynamics. It 
essentially blurs the line between climate and weather models, which can 
be a beneficial way to improve both.
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