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The Air Force and the other military services are increasingly inter-
ested in using models of the behavior of humans, as individuals and 
in groups of various kinds and sizes, to support the development of 

doctrine, strategies, and tactics for dealing with state and nonstate adver-
saries, for use in analysis of the current political and military situation, for 
planning future operations, for training and mission rehearsal, and even for 
the acquisition of new systems. In this report we refer to this broad class 
of models as individual, organizational, and societal (IOS) models. There 
are many lines of research on such models, which span several disciplines, 
have different goals, and often use different terminologies.

The National Research Council was asked by the U.S. Air Force to 
review relevant IOS modeling research programs in the various research 
communities, evaluate the strengths and weaknesses of the programs and 
their methodologies, determine which have the greatest potential for military 
use, and provide guidance for the design of a research program to effectively 
foster the development of IOS models useful to the military. The formal 
statement of task for the study includes the following specific items:

•	 Review the state of the art of the subset of the social sciences per-
ceived as having the greatest payoff in terms of informing future 
computational model developments. 

•	 Review the state of the art in societal� modeling applications serving 

� In this study, the committee broadened the scope to include individual and organizational 
models as well because of the inseparability of all three, given the intended usage.

Executive Summary
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�	 BEHAVIORAL MODELING AND SIMULATION

the U.S. Department of Defense (DoD) and related agencies, with 
special emphasis given to computational modeling and simulation-
based approaches. 

•	 Review the state of the art in the three computational modeling 
communities outside DoD (cognitive science and individual behav-
ioral modeling, network analysis and multiagent organizational 
modeling, and multiresolution modeling and simulation) and iden-
tify strengths and shortcomings in each.

•	 Identify how gaps in societal behavioral modeling applications 
serving DoD and related agencies might be filled by conceptual 
models in the social sciences; computational modeling approaches 
now under way in the social science community; and closer 
linkages between the cognitive science community, the network/
organizational modeling community, and the multiresolution 
modeling and simulation community.

•	 Develop a research and development roadmap to fill current appli-
cation gaps, for the near, mid-, and far term.

Today’s military missions have shifted away from force-on-force 
warfare—fighting nation-states using conventional weapons—toward com-
bating insurgents and terrorist networks in a battlespace in which the atti-
tudes and behaviors of civilian noncombatants may be the primary effects 
of military actions. These new missions call for agile, indigenously sensitive 
forces capable of switching quickly and effectively from conventional com-
bat to humanitarian assistance and able to defuse tense situations without, 
if possible, the use of force. IOS models are greatly needed for planning, 
supporting, and training for these forces and for evaluating the technology 
with which they fight. Models of human behavior in social units—teams, 
organizations, cultural and ethnic groups, and societies—are needed to 
understand, predict, and influence the behavior of these social units. 

For example, models could be used to predict the effects of actions 
intended to disrupt terrorist networks, to predict the response of insur-
gents and the local population to the presence of friendly forces in a given 
area, or to predict the effects of alternative diplomatic, military, and eco-
nomic courses of action on the attitudes and behaviors of the population 
in a region of interest. Models could also be used in training and mission 
rehearsal to create simulation environments in which military units could, 
for example, experience the effects of their actions on the (simulated) 
behavior of a crowd that might either disperse or turn hostile. Models could 
also be used to evaluate the likely results of proposed changes intended to 
make military command and control organizational structures more agile 
and adaptive, and to assess the effects of introducing new technology capa-
bilities on the performance of these organizations.



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

EXECUTIVE SUMMARY	 �

CONCLUSIONS

We use a framework of modeling pitfalls, lessons learned, and future 
needs to characterize our major conclusions in a way that will be most use-
ful to the sponsors in the design of future research programs. The problems 
or pitfalls identified by the committee are organized in terms of five major 
categories: 

1.	 Modeling strategy—matching the problem to the real world: Dif-
ficulties in this area are created either by inattention to the real 
world being modeled or by unrealistic expectations about how 
much of the world can be modeled and how close a match between 
model and world is feasible. 

2.	 Verification, validation, and accreditation: These important func-
tions often are made more difficult by expectations that verifica-
tion, validation, and accreditation (VV&A)—as it has been defined 
for the validation of models of physical systems—can be usefully 
applied to IOS models.

3.	 Modeling tactics—designing the internal structure of a model: 
Problems are sometimes generated by unwarranted assumptions 
about the nature of the social, organizational, cultural, and individ-
ual behavior domains, and sometimes by a failure to deliberately 
and thoughtfully match the scope of the model to the scope of the 
phenomena to be modeled.

4.	 Differences between modeling physical phenomena and human 
behavior—dealing with uncertainty and adaptation: Problems arise 
from unrealistic expectations of how much uncertainty reduction is 
plausible in modeling human and organizational behavior, as well 
as from poor choices in handling the changing nature of human 
structures and processes.

5.	 Combining components and federating models: Problems arise 
from the way in which linkages within and across levels of analysis 
change the nature of system operation. They occur when creat-
ing multilevel models and when linking together more specialized 
models of behavior into a federation of models.

To summarize, IOS modeling is a complex, emerging science with roots 
in many different disciplines. Its advancement requires that researchers 
maintain awareness of each other’s work and build on each other’s results, 
yet the multidisciplinary nature of IOS modeling has created a fragmented 
field. For the field to advance, researchers need better frameworks and 
forums in which to compare, discuss, and evaluate their results. The field 
currently features a multitude of complex models created using different 
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data and different theories to address different problems, making compara-
tive analysis nearly impossible. Common datasets and challenge problems 
are needed in order to learn which modeling approaches and sets of vari-
ables are most useful for specific types of problems.

It seems clear there is no single right model and probably will never 
be. The committee thinks that a federated modeling approach, in which 
different models at different levels are linked together and component sub-
models can be swapped in and out, is promising for attacking complex IOS 
modeling problems. Considerable research needs to be done to make this 
federated vision a reality, however. Standards, architectures, methods, and 
tools are needed to lower the barriers for developing, linking, and validat-
ing federated models.

Different modeling purposes require different types of models. In the 
committee’s judgment, the purpose of the model should drive the appropri-
ate variables to be included in the model. To do this successfully requires 
a clear specification of model purpose and criteria for usefulness for that 
purpose, which in turn requires that model developers work closely with 
the eventual users of the model.

The committee also recommends validation for action, in which the 
purpose of the model drives its validation criteria. IOS models cannot 
be validated “in general”—they must be validated for a specific use. A 
cross-disciplinary community of interest needs to establish and promulgate 
accepted standards for validation of IOS models. Triangulation methods 
that combine expert judgment, qualitative results and theoretical work, 
and quantitative results should be further refined and more widely used. 
Common challenge problems and datasets are needed to facilitate docking 
of models for comparative purposes.

Finally, models of human beings and their individual and collective 
behaviors necessarily include a large amount of inherent uncertainty. This 
uncertainty is not a flaw of the model and cannot be designed out of the 
model. Human behavior is dynamic and adaptive over time, and it is 
impossible at the moment (and into the foreseeable future) to make reliably 
exact predictions about it. Researchers need to develop ways to estimate 
the probability of plausible outcomes and express those estimates in ways 
that are clear and meaningful to model users, who can then judge whether 
the results meet their needs. It is important also to avoid raising expecta-
tions about the capabilities of IOS models beyond what can realistically be 
expected.

Recommendations

Recommendations for an IOS modeling research and development 
program fall into three broad categories: (1) large-scale, integrated cross-
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disciplinary research programs, focused around representative challenge 
problems and common datasets; (2) research in six independent areas 
that will advance the capabilities to address these integrated problems; 
and (3)  multidisciplinary conferences, workshops, and other information 
exchange forums, with attendees to include not only model developers but 
also government program managers and military decision makers.

Integrated Cross-Disciplinary Research Programs

We suggest the funding of multiple large-scale, multiyear research pro-
grams that focus on comparing and, if appropriate, integrating models from 
different disciplines, different perspectives, and different levels of detail. 
The goal would be to create a level playing field on which the capabilities of 
different approaches could be compared and the strengths of each assessed. 
The ultimate goal is to move IOS modeling science forward through the 
process of comparison, docking, and integration.

It is essential for all participants in each program to focus on the same 
well-defined challenge problem instantiated in a common testbed and to use 
a common dataset. At the heart of each program would be a representative 
problem that is critical for military operations, defined in detail. We have 
chosen five representative problems as a starting point for choosing the 
problems to be addressed.

The research teams for these efforts should be multidisciplinary, and the 
program team should also include military users with operational experi-
ence in the domain for which the models are to be developed. These users 
will be ultimate judges of whether model results are useful and will provide 
advice on how the results can best be presented. The use of a common 
challenge problem and a common testbed will facilitate docking of the dif-
ferent models for purposes of comparison. The development of challenge 
problems should be a major focus early in the development of research 
programs.

These integrated programs will encourage mutual education between 
modelers and operational users. Results should be presented at workshops 
for program participants and other interested parties and at public confer-
ences as well as published in the open literature.

Independent Research Thrusts

In support of the integrated programs we recommend, we have identi-
fied six independent areas in which research is needed. Progress in each of 
these areas could increase the ability to develop the integrated modeling 
capabilities that are needed to address military problems. In each area, 
we suggest the funding of multiple research teams from multiple perspec-
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tives, with periodic workshops for researchers to exchange results. We also 
suggest that operational users as well as government program managers 
participate in these workshops. 

Thrust 1: Theory Development

Models should be conceptually correct and grounded in the underly-
ing fundamentals of what is known about individual human and group 
social behavior. However, current theory in this area does not answer all 
of the questions needed to structure models that address relevant issues. 
Basic research is needed for theory development, especially for the low-
level social behaviors that are the building blocks for larger scale social 
behavioral patterns. This theory development work must involve multiple 
disciplines and perspectives with periodic workshops to exchange results.

Theory development challenge problems should be defined to guide 
the work, but these can be nonmilitary and need not involve the level of 
military detail necessary for the integrated problems discussed above. A 
series of workshops should be conducted with researchers to identify key 
theory gaps.

Academic institutions are key players for theory development, but 
they need information, incentives, and funding to address these theoretical 
issues. There is a need to educate researchers in military domains, establish 
conferences and journals in which their results can be presented, provide 
postdoctoral support, and provide funding that allows researchers to spend 
time learning about military domains in depth.

Thrust 2: Uncertainty, Dynamic Adaptability, and Rational Behavior

Models must deal with the inherent uncertainty and the dynamic adap-
tation that characterizes human behavior. Models must also be capable of 
modeling both rational and nonrational behavior. 

Basic research is needed in each of these areas. Issues include

•	 How should models capture the “uncertainty-in-the-small” associ-
ated with individuals and small groups? How can model structures 
and parameters capture this variability, and how much of this vari-
ability must be included for the purposes of the model?

•	 How should models capture the “uncertainty-in-the-large” associ-
ated with populations and variations in population distributions? 
How much variability must be included for the purposes of the 
model?

•	 How can models capture adaptation and learning over time and as 
the results of actions by others? For example, people have multiple 
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overlapping identities and allegiances. How can these be captured 
in a model, and how can one estimate the effects of actions and 
events on the primacy of these multiple allegiances as they affect 
decisions and actions?

•	 What are the factors that contribute to rational, adaptive behavior, 
and what factors induce behavior that appears irrational? Models 
of both rational and nonrational behavior must capture all the 
key factors—cognitive, affective, cultural, and contextual—that 
motivate and shape behavior of specific individuals in specific 
situations.

Better techniques are needed for understanding the implications of 
diversity and variability for model-based sensitivity analysis. Better auto-
mated technology is needed to put the model through its paces to explore 
the parameter space effectively and produce robust results.

Thrust 3: Data Collection Methods 

The difficulty of obtaining data is an ongoing challenge for IOS model-
ing. Research is needed to develop better data collection processes through 
field studies, experiments, and potentially massively multiplayer online 
games (MMOGs).

Although a variety of ethnographic data collection techniques are cur-
rently in use, they need to be better tailored to the needs of IOS models. For 
field data collection, it is necessary to bring modelers and data collectors 
together to develop data ontologies, joint specifications, and data collection 
methodologies and tools that are specifically tuned to IOS models. 

MMOGs are a potential untapped resource for collecting social and 
behavioral data on a large scale. We recommend the creation of a MMOG 
facility and the funding of basic research to determine if MMOGs can be 
used to test, verify, and validate IOS models. We recommend that fund-
ing be put into developing the science of MMOGs. We note that funding 
MMOGs is a risky endeavor, but we think that the potential benefits out-
weigh the risks.

Thrust 4: Federated Models

It is a fundamental conclusion of the committee that no single model-
ing approach can provide all the capabilities needed by DoD. We recom-
mend a federated approach in which modeling components are created 
to be interoperable across levels of aggregation and detail. For example, 
a federated model might include a detailed representation of a few key 
individuals, linked to group-level models of different cultural groups and 
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terrorist organizations, linked to geographic sector–level models of the level 
of unrest in a city. This approach is flexible and extensible, allowing the 
addition or subtraction of models at different levels of detail as needed for 
the problem to be addressed.

Combining model components to create federated models in the sense 
being recommended requires deep semantic interoperability (i.e., theoreti-
cal consistency) and presents difficult challenges. To create semantic inter
operability, it is necessary to recognize that the links among components 
are themselves elements of the model. Research is needed on:

•	 How to ensure that the models being federated embrace compat-
ible assumptions regarding concept abstractions, entity resolution, 
time scale resolution (tempo), uncertainty, adaptability, docking 
standards, input-output, semantics, etc.

•	 How the components of the federated model should be encapsu-
lated and which elements must be exposed to other components.

•	 How specific classes of models should be linked (e.g., cognitive 
models to social network models).

•	 How to ensure dynamic extensibility.

In addressing these issues, IOS modelers should maintain awareness of 
research and development in model federation in the larger modeling and 
simulation community.

Thrust 5: Validation and Usefulness

Current VV&A concepts and practices were developed for the physical 
sciences, and we argue that different approaches are needed for IOS models. 
Specifically, we recommend that a “validation for action” approach be used 
that assesses the usefulness of a model for the specific purposes for which 
it was developed. It is thus very important that the purpose(s) and criteria 
for judging success be clearly stated a priori for all models. We recom-
mend organizing national workshops to agree on appropriate processes for 
VV&A of IOS models and to outline a roadmap for developing improved 
processes and standards. On the basis of the results of this workshop, we 
recommend that a DoD-wide authority develop and disseminate VV&A 
processes and standards for IOS models. Basing model validation on the 
usefulness of the model for specific problems requires that model purposes 
be clearly stated by model users and clearly understood by model devel-
opers. We suggest that, as part of developing a VV&A standard for IOS 
models, clear guidelines be developed for specifying model purpose.
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Thrust 6: Tools and Infrastructure for Model Building

It is important to reduce the barrier to entry for developing models, 
modeling tools, frameworks, and testbeds. Scientists should be able to build 
and validate models without the large overhead currently associated with 
many DoD modeling and simulation investments. It should be possible to 
easily tailor existing models for specific purposes.

Sharing of IOS modeling knowledge across disciplines, as facilitated 
by the conferences and workshops recommended below, will support this 
goal. Work is also needed in developing an infrastructure for IOS modelers, 
including a national network of possible collaborators, common databases 
for model development and testing, and frameworks and toolkits for rapid 
model development.

The limited data that exist for IOS models are often not accessible to 
model developers. We recommend national web-accessible data repositories 
that are open to researchers who seek to inform and test models. For mili-
tarily relevant domains in which some data are classified, we recommend 
an investment in automated tools to sanitize the data.

We also recommend the development and maintenance of an online 
web-based catalog of general approaches, models, simulations, and tools. 
The notion is to develop something along the lines of the Defense Model-
ing and Simulation Office’s Modeling and Simulation Resource Repository 
or the clearinghouse at Carnegie Mellon’s CASOS site (http://www.casos.
cs.cmu.edu). To be effective, the envisioned site needs careful consideration 
in terms of organization, content, currency, and usability. This cannot be a 
one-time effort. It needs significant startup funding and continued support 
over its lifetime. 

Multidisciplinary Conferences and Workshops

A number of the issues and problems identified by the panel were the 
results of the failure of different disciplines to exchange information, or they 
resulted from misunderstandings among government funders of model devel-
opment efforts, military users of models, and model developers. Because of 
the diversity of this group, there is no natural forum for them to exchange 
information. We recommend the organization of special-purpose workshops 
around the integrated research programs recommended above, as well as 
workshops for the independent research thrusts described above.

IOS modelers need to be educated on:

•	 The nature of the military decisions for which models are relevant.
•	 Desired model functionality.
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•	 The most useful form for presenting model results.
•	 The value of work performed by others outside their discipline.
•	 Feasible and appropriate VV&A approaches for IOS models.

Operational users and managers need to be educated on:

•	 The value of multidisciplinary approaches and the need for review 
of models from multiple perspectives.

•	 The inherent uncertainty associated with model predictions.
•	 The value of models for sensitivity and trade-off analysis (versus 

the one right answer).
•	 The design of virtual experiments to assess results over a range of 

conditions.
•	 Reasonable definitions of validation for IOS models, feasible 

approaches for VV&A testing, and why these approaches differ 
from those used for physics-based models.

The recommended workshops should involve model developers, opera-
tional military users of the models, and government personnel making 
funding decisions regarding model development. 

Roadmap for Future Research and Development

The committee recommends a use-driven research program to extend 
the state of the art in IOS modeling, focused around a series of challenge 
problems—clear specifications of the uses to which the model is to be put, 
defined to be relevant to military needs, and expanded over time as progress 
is made in modeling approaches, tools, and technologies. The purpose of 
the model, as captured in the challenge problems, drives the theory to be 
applied, the data to be used, and the model development. Model develop-
ment is made easier by modeling tools and infrastructure and relies on 
federation standards to ensure the interoperability of model components. 
Once the model is developed it is validated by asking the question: Is the 
model useful for its intended purpose? 

The recommended program proceeds in a cyclical fashion. Based on the 
answers to the question “Is the model useful?” new models may need to be 
developed, new theory and new data (and new types of data) may be needed, 
and new interoperability standards, tools, and infrastructure may be required. 
Depending on the results, the problem itself may need to be redefined, clari-
fied, or expanded. These challenge problems, combined with periodic work-
shops and conferences to compare and exchange results, serve as a unifying 
force and a common ground for the fragmented field of IOS modeling, pro-
viding a foundation on which scientific progress can be made.
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Part I

BACKGROUND AND NEED FOR 
ORGANIZATIONAL MODELS
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Introduction

In 1951, Isaac Asimov published a science fiction novel, Foundation, 
that imagined a future world in which a maverick genius, Hari Seldon, 
invented a new science—psychohistory—that was capable of mathe-

matically predicting “the reactions of human conglomerates to fixed social 
and economic stimuli” (Asimov, 1951, p. 19). In Asimov’s novel, Seldon’s 
psychohistory equations are used to predict the collapse of a galactic empire, 
allowing a band of scientists (the Foundation) to act to preserve human 
knowledge and greatly shorten the period of chaos that follows the galactic 
collapse.

Asimov’s vision has inspired generations of scientists. Today scientists 
find themselves at the edge of what he imagined—working on computa-
tional mathematical models of aggregate human behavior that allow them 
to understand, assess, and, to a very limited extent, predict “the reactions 
of human conglomerates.” This report assesses how close they have come 
to that vision and what still remains to be done.

The study was requested by the Human Effectiveness Division of the U.S. 
Air Force Research Laboratory, with additional funding from the Air Force 
Office of Scientific Research. The Air Force and the other military services 
are increasingly interested in using models of the behavior of humans, as 
individuals and in groups of various kinds and sizes to support the develop-
ment of doctrine, strategies, and tactics for dealing with state and nonstate 
adversaries, in support of military planning and operations, acquisition pro-
grams, and as training and simulation tools. In this report, we are calling 
them individual, organizational, and societal (IOS) models. There are many 
lines of research on such models, in academia, industry, and the military, and 
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it would be difficult for a military program office staff to become thoroughly 
familiar with all of them or to evaluate the potential of each research pro-
gram for use by the military. The modeling efforts span several disciplines, 
have different goals, and often use different terminologies.

The Air Force therefore asked the National Research Council (NRC) 
to review several relevant IOS modeling research programs, evaluate the 
strengths and weaknesses of the programs and their methodologies, deter-
mine which have the greatest potential for general military use (i.e., not 
just Air Force specific), and provide the Air Force with guidance for the 
design of a research program to effectively foster the development of IOS 
models useful for the military. One of the great strengths of the NRC is its 
ability to convene committees of experts from a broad range of disciplines 
and facilitate their cooperative work on the study of a cross-disciplinary 
topic like this one.

Study Task and Objectives

The formal statement of task from the cooperative agreement between 
the NRC and the Air Force for this study is as follows:

•	 Review the state of the art of the subset of the social sciences per-
ceived as having the greatest payoff in terms of informing future 
computational model developments. These will include
o	 key conceptual models in the areas of anthropology, sociology, 

social psychology, political science, organizational theory, and 
similar social sciences specialties

o	 efforts in developing computational models, “artificial life” sim-
ulations, and the like being undertaken by these communities

•	 Review the state of the art in societal� modeling applications serv-
ing the Department of Defense (DoD) and related agencies, with 
special emphasis given to computational modeling and simulation-
based approaches 

•	 Review the state of the art in the three computational modeling 
communities outside DoD, and identify strengths and shortcomings 
in each:
o	 cognitive science and individual behavioral modeling
o	 network analysis and multiagent organizational modeling
o	 multiresolution modeling and simulation

� In this study, the committee broadened the scope to include individual and organizational 
models as well, because of the inseparability of all three, given the intended usage. Additional 
discussion appears in the Concepts and Definitions section below, as well as in chapters 
following.
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•	 Identify how gaps in societal behavioral modeling applications 
serving DoD and related agencies might be filled by:
o	 conceptual models in the social sciences
o	 computational modeling approaches now under way in the 

social science community
o	 closer linkages—via shared research, common development 

frameworks, interlinked computational models and the 
like—between the cognitive science community, the network/
organizational modeling community, and the multiresolution 
modeling and simulation community

•	 Develop a research and development roadmap to fill current appli-
cation gaps, for the near, mid-, and far term�

National Academies’ Response

The NRC, an operating arm of the National Academies, responded 
by appointing a committee of 13 experts, drawn from the social sciences 
and from several human behavior modeling communities and disciplines, 
following the procedures mandated for all NRC committee appointments. 
These procedures are designed to ensure that committee members are 
chosen for their expertise, independence, and diversity and that the com-
mittee’s membership is balanced and without conflicts of interest. The 
appointments were finalized after the discussion of sources of potential bias 
and conflict of interest at the committee’s first meeting in April 2005. Brief 
biographies of the committee members appear in Appendix D. 

The Committee’s Approach

The committee developed its approach to the task at the first meeting. 
We discussed each member’s expertise and identified information needs in 
several domains, including the military’s needs and uses for IOS modeling, 
research now under way under military contracts (and often not available 
in the open literature), and the current state of the art of modeling efforts 
in the social science and computational modeling communities listed in 
the task statement. We developed plans for obtaining and analyzing the 
needed information and for organizing the report. The committee also 
discussed the scope of its task and determined what would and would not 
be attempted. 

� In our recommendations, we distinguish actions to be taken in the first year, years 2–4, and 
beyond. These may be interpreted to correspond to near-, mid-, and far-term horizons.
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Defining the Project Scope

To achieve the objectives of the study, the committee needed to review 
the state of the art in several modeling disciplines and communities of prac-
tice. We decided that it would be neither feasible nor useful, for the purposes 
of this study, to produce an exhaustive literature review. Rather we decided 
to summarize relevant knowledge in each of the modeling areas, and to orga-
nize our summary review of each area using a template of significant features 
developed by the committee. The template focused on the applicability of 
each type of modeling approach to the DoD’s IOS modeling needs.

Gathering Data

The committee used a variety of data-gathering methods, mainly over 
the period of the first three meetings. We reviewed pertinent literature, 
scholarly and applied, including publicly available military documents, 
such as the Quadrennial Defense Review (U.S. Department of Defense, 
2006), with each committee member concentrating on his or her area of 
expertise. We invited the sponsor and other military experts to brief us on 
the particulars of DoD’s needs for IOS models and on the expectations of 
potential model users, and we invited managers of DoD modeling research 
programs to tell us about their programs. We appointed three military 
operations experts with some knowledge of IOS modeling as consultants 
to the committee, enlisting their help in developing representative scenarios 
of situations in which models might be used by DoD, as one way of under-
standing the need for IOS models.

Data Analysis and Review

In our later meetings, the committee discussed the information we had 
found, developed a framework for presenting our findings and conclusions, 
and developed recommendations for the study sponsor. The report structure 
is straightforward: we discuss DoD’s need for modeling and the current 
knowledge and capabilities (state of the art) in the modeling community. We 
then highlight the important gaps between the state of the art and the iden-
tified needs and discuss ways to bridge the gap in a research program.

Concepts and Definitions

Because the field of IOS modeling is spread among several disciplines 
and domains, the same terms are often used with different meanings by dif-
ferent authors. We felt it necessary to agree on common definitions for some 
important terms and then to use the terms in only the defined senses.
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First, what should we call this area of modeling that spans the range 
from individual actors who are members of a small group to whole 
nations, societies, or ethnic groups? We are using the term “individual/
organizational/societal” modeling to convey this broad meaning, to cover 
the modeling communities that are concerned with the full span of human 
behavior, including individuals, teams, small groups, large groups (includ-
ing different cultures and ethnic/religious groups), societies, nations, and 
national coalitions. We are of course not viewing this as merely a one-
dimensional progression in the size of the “human conglomerate,” but 
rather as a rich tapestry of many dimensions that are complexly interlinked 
via relationships that are only now being recognized, let alone understood. 
Through the course of this report, we hope to point out some of the key 
relationships, as well as the considerable distance there is to go in terms 
of understanding the fundamental interdependencies and interactions that 
exist, in a manner that supports meaningful and useful models.

Second, what should we call these different levels of “knowledge repre-
sentation” that start with empirically based observations of human activity� 
and end with computational instantiations (specifically, computer-based 
simulations) of human behavior, often referred to simply as “models”? 
It is certainly beyond the scope of the committee to develop an ontology 
of human behavior representation, but we think that it is appropriate to 
attempt to identify at least four levels that proliferate in the modeling com-
munity. Going from the general to the specific, they are

•	 Theory: This is an explanation of how something works, in this 
case how one of the human conglomerates behaves for a given set 
of traits (or culture) in a given situation or environment. Theories 
may be global (e.g., at the individual level, a “unified theory of cog-
nition”), or they may be local (e.g., the decay of working memory). 
Theories may be formal or informal, mathematical or verbal, well 
formed and founded, ill formed and unfounded, and everything in 
between.

•	 Architecture: This is a more specific statement of a theory, one that 
places a structure under it, and attempts to either: (a) break down 
the theory into smaller and perhaps more readily understood com-
ponents or subtheories (e.g., at the individual level again, a “cogni-
tive architecture”) or (b) link the theory with collateral theories to 
explain behavior at a larger scale or in more complex environments 
(e.g., an architecture to link cultural influences on social networks). 
“Good” architectures attempt to maintain as much generality as 

� Although not always: some might argue that one starts with internalized theoretical con-
structs that shape what one observes, rather than the other way around.
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possible (i.e., are parameter-free, domain independent, etc.), so 
as to be able to accommodate the broadest set of behaviors and 
situations. 

•	 Model: This is a yet more specific representation of the human 
conglomerate, one that can be directly derived from a correspond-
ing theory, or, more indirectly, instantiated from an associated 
architecture, in which the specific instantiation takes into account, 
for the entity being modeled, that entity’s inherent characteristics 
(e.g., personality traits, religious beliefs, social connectivity, etc.), 
the associated domain-specific knowledge base (e.g., knowing the 
local village streets), and the specific situation and environment of 
interest (e.g., crowd formation in a village).� Like theories, models 
can be global or local, and well founded or not.

•	 Simulation: This is a still yet more specific representation of the 
human conglomerate, this time instantiated in executable soft-
ware. Simulations can be developed directly from theories (e.g., by 
coding up, say, a mathematical equation embodying a particular 
theory), from architectures (by developing a simulation within the 
software/system development environment associated with a par-
ticular architecture, if available), or from models instantiated for a 
specific situation (giving rise to the term “computational models”).� 
The power of a simulation is several-fold: simulated “data” can be 
compared with empirically collected data for model validation 
purposes; simulations can be used to explore the range of potential 
outcomes; and simulations can be used to drive new theory devel-
opment and empirical data collection efforts, via the generation of 
new hypotheses based on simulation-based “experiments.”�

Again, we emphasize that this is not intended to be a definitive ontol-
ogy of behavior modeling and simulation, but merely an attempt to clarify 
terms somewhat, terms that are often used interchangeably in the literature 
(including, occasionally, this report).

� Although models can be directly instantiated from theories, there is a trend toward increas
ing use of “intermediate” architectures, driven both by the practical benefits gained by the 
model developers in being able to instantiate well-grounded models quickly for specific situ-
ations and by the lessons learned gained by the architecture developers with each new model 
instantiation.

� Again, the trend in the well-established modeling and simulation community is to dis
courage “direct coding” from theory to simulation and instead move through the levels out-
lined here, because of the advantages gained from established architectures and model-specific 
databases (which may be reused), although clearly the development overhead is higher.

� In addition to the other uses identified in Chapter 2.
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Cautions for IOS Modeling

In our discussions with military personnel, and in interactions outside 
the committee deliberations, the committee became aware that many people 
may have unrealistic expectations of what a model or simulation of human 
behavior is able to do. No model is ever likely to be able to predict exactly 
what an individual or group will do, except in a situation so constrained, 
with alternatives so well understood, that a model is not needed. Human 
behavior, individually and in groups, is governed by so many variables, 
including many that are not likely to be susceptible to capture in a model, 
that the best any model will do is to narrow the range of plausible behav-
ioral outcomes of a defined situation. For example, a model may be able to 
forecast the most likely range of outcomes of a potential course of action. 
It may be able to direct attention to situational variables that are known 
to be important but may have been overlooked in a particular engagement. 
A well-designed model may draw a decision maker’s attention to possible 
unintended consequences (“second-order effects”) of a planned course of 
action. But it will not be able to make point predictions, such as “If we take 
Action A, the adversary will attack at Point B early tomorrow morning with 
three simultaneous improvised explosive devices (IEDs).” So we speak of 
models forecasting a range of outcomes, rather than making precise predic-
tions. Certainly models that can produce such forecasts are a worthwhile 
objective. They can serve many useful purposes, from supporting training, 
to serving as tactical decision aids, to examining possible outcomes of alter-
native strategies or policies.

Some of the known difficulties of developing and implementing models 
are discussed later in the report, but a few may bear mention at this point. 
The most desirable data to put into a model that would provide the most 
accurate forecasts often will not be available: the data may not be acces-
sible, may not be in a usable form, or may not be verifiably accurate, 
timely, or complete. In fact, it is common knowledge that adversaries will 
often attempt to provide false data (disinformation) if they think it will 
be believed and used. So the development of a model, in itself, is only a 
small part of the work that must be done to use it, and there is never a 
guarantee that good information will be available to implement the model 
when it is needed. These issues must be taken into account in the design 
of models. 

The work of developing models of adversary behavior is never com-
plete, because any worthy adversary, once it realizes that its modus operandi 
is known and defenses are being used against it, will make changes in its 
organization, operations, etc., designed to invalidate the model. So we 
have the ever-changing methods used by insurgencies to attack friendly 
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forces� or innocent citizens in the Middle East: car bombs, IEDs, suicide 
bombers, each adapted or supplanted by a different method as soon as 
effective countermeasures are devised. This means that a modeling effort 
must include ongoing maintenance and updating functions if it is to remain 
useful.

Another challenge is that some of the research on modeling for military 
purposes must necessarily be conducted at high security levels, in secure 
environments. It is likely that much of the fundamental research for the 
design of modeling methods and tools can be done in open venues by 
researchers with low or no security clearances, but any work that includes 
specific and current field information on individuals or groups, specifics 
on friendly or adversary force capabilities, or detailed operational plans 
must of necessity be highly classified to prevent the adversary anticipation, 
adaptation, and/or exploitation discussed above. 

Finally, it is important to recall that the predecessor report by the NRC 
in this area (National Research Council, 1998, p. 8) noted that “the mod-
eling of cognition and action by individuals and groups is quite possibly 
the most difficult task humans have yet undertaken. Developments in this 
area are still in their infancy.” This situation has not changed significantly 
in the mere 10 years since the publication of that report. But the world 
has, and, as a result, it has become ever more clear that human behavioral 
modeling at all levels is critical to DoD specifically and to the nation more 
generally.

Organization of thE Report

The report is organized into three parts. Part I provides background 
information and explains the need for organizational models. Chapter 1 
gives the background of the study and the committee’s approach to the 
work. Chapter 2 discusses evolving missions of the military and the appli-
cability of IOS modeling to those missions. It includes an introduction to a 
set of military scenarios that are used throughout the report as exemplars 
of situations that could benefit from the use of modeling.

Part II contains extensive descriptions of the major modeling method-
ologies and model types the committee reviewed. Models take many forms, 
ranging from loose conceptual models to precise mathematical models (Lave 
and March, 1975). They include agent-based models, cognitive models, 
expert systems, dynamical systems, and input-output models. The diverse 
expertise of the committee members contributed greatly to the complete-

� The term “friendly forces” is used to refer to forces that are either formally or informally 
allied with the United States and that support its objectives. It may thus refer to the armed 
forces of allied nations or to forces representing nonstate organizations or factions.
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ness of this review but also made it challenging to agree on an organizing 
framework for presenting the review results. Refined through multiple itera-
tions, the organizing framework that we developed represents a significant 
product of the study, as discussed in the introduction to Part II.

Chapter 3 presents conceptual and cultural (verbal) models. The sub-
sequent model descriptions are then organized according to the level of 
granularity of the models. We have differentiated “macro” models that 
describe organizations and their behaviors on a large scale (Chapter 4); 
“micro” models dealing on a level as detailed as the individual actors within 
groups or organizations (Chapter 5); and “meso” or intermediate models 
somewhere between these two, as well as integrated, multilevel models 
(both in Chapter 6). We discuss games separately in Chapter 7 because 
although they incorporate formal models, they do not easily fit into any of 
the other categories.

For each methodology, we describe the method and its current state 
of development, often with some history of the field. We review the appli-
cability of the methodology to the modeling requirements identified in 
Chapter 2, its major limitations, issues of data, verification and validation, 
and needs for continued research and development.

 The discussions of models and methodologies are not exhaustive. We 
have attempted to provide an overview of a broad range of model types 
and modeling methods, although the committee members, chosen for their 
range of modeling expertise, naturally discussed in greatest depth the areas 
with which they are most familiar. 

In Chapter 8 we discuss some generic issues, such as integration across 
levels of models, modeling frameworks and tools, model verification and 
validation, and data sources and quality. Chapter 9 summarizes the state 
of the art of IOS modeling as presented in Part II and its utility for the 
applications discussed in Part I.

In Part III we identify the gaps between the current modeling capabilities 
and the military’s modeling needs, and, in Chapter 10, we discuss common 
problems or pitfalls that may impede the development and application of 
models or reduce their utility. In Chapter 11 we present recommendations 
for a research roadmap, a program of use-inspired IOS modeling research 
and development designed to reduce the gaps and develop the needed 
capabilities.

The report ends with four appendixes. Appendix A provides a list of 
acronyms and abbreviations used in the report, spelled out, with some infor-
mation on their meanings. Appendix B contains detailed military scenarios 
that served as exemplars for considering how models could be used for 
military purposes. Appendix C provides detailed material relevant to the 
discussion in Chapter 8 of DIME/PMESII modeling paradigms. Appendix D 
provides biographical sketches of committee members and staff. 
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2

Military Missions and  
How IOS Models Can Help 

Computational modeling and simulation (M&S) technology have 
long been useful military tools, although these models have focused 
primarily on physical effects, such as the predicted capabilities of 

sensors or weapons systems. Today, the changing nature of military mis-
sions is driving the need for new types of computational models that focus 
on human behavior, specifically on human behavior in social units, such as 
organizations and societies.

The military has traditionally made use of computational modeling in 
three broad areas of activity:

1.	 Analysis and forecasting for planning. Models are used for the 
fusion of fragmented and incomplete information about enemy 
activities and capabilities. For example, models of enemy equip-
ment can be used to interpret fragmentary data on the performance 
of that equipment (e.g., what capabilities in the equipment could 
have resulted in the observed performance). Forecasting models are 
used to develop courses of action (COAs) based on the desired out-
comes and their estimated likelihood of achieving those outcomes. 
At a simple level, for example, models are used to forecast the 
effectiveness of different types of weapons against different kinds 
of targets.

2.	 Simulation for training and rehearsal. Models are used in simula-
tions that create training and rehearsal environments. For example, 
pilots practice complex and dangerous combat maneuvers in simu-
lators before encountering them in exercises or combat, and tank 
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commanders practice ground combat missions before an actual 
engagement. In both situations, considerable effort goes into model
ing the environment (e.g., aerodynamics and terrain), simulating the 
dynamics of the friendly and enemy sensors and weapons systems, 
and providing the critical performance feedback to trainees needed 
for skill improvement and “learning to criterion.” 

3.	 Design and evaluation for acquisition. When a system is designed, 
built, and acquired, models are used throughout the process to pre-
dict performance and make design decisions based on cost-benefit 
trade-offs. For example, detailed physical and electronic models 
can be used to predict the additional range of a sensor accruing 
from a proposed enhancement (and increased cost), to support a 
cost-benefit trade-off.

In this chapter we argue that the successful performance of all three 
of these activities in today’s military environment requires not only the 
traditional set of physically based models and simulations now used, but 
also computational models of human behavior, particularly computa-
tional models of human behavior in social units. We begin by describing 
today’s changing military missions in order to explain why—in the current 
environment—analysis, planning, training, and acquisition require models 
of human behavior at many levels: at the individual level, at the team or 
organizational level, and at the societal level. We then give specific examples 
of how these individual, organizational, and societal (IOS) models could 
be used by the military. Finally, we briefly review current military IOS 
modeling efforts and summarize the major challenges involved in meeting 
current needs. Subsequent chapters provide a broader review of state-of-
the-art IOS behavioral modeling approaches, assess the extent to which 
those approaches have the potential to meet military needs, identify major 
shortfalls and gaps, and recommend a plan of action to address them.

Military Missions Now and Into the Future

This section reviews the changing nature of today’s military missions 
to explain why effective forecasting, training, and acquisition require com-
putational IOS models.

Overarching Strategy and Operational Enablers

The changing nature of current and future military missions is made 
quite explicit in the Department of Defense’s (DoD) Quadrennial Defense 
Review (U.S. Department of Defense, 2006). Coming out of a long tradition 
of “attrition-based” conventional warfare and backed ultimately by nuclear-
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based mutual assured destruction (MAD), DoD is now undergoing a shift 
of tectonic proportions to operationalize the National Defense Strategy of 
“fighting the long war” and has identified five critical operational enablers:

1.	 Defeating multinational multiethnic terrorist networks that “seek 
to break the will of nations that have joined the fight alongside 
the United States by attacking their populations” and “use intimi-
dation, propaganda and indiscriminate violence in an attempt to 
subjugate the Muslim world under a radical theocratic tyranny” 
(U.S. Department of Defense, 2006, p. 13).

2.	 Defending the homeland in depth against both terrorist networks 
and hostile states with weapons of mass destruction (WMD) capa-
bilities. Globalization enables “the spread of extremist ideologies” 
and “the movement of terrorists” and “empowers small groups and 
individuals” with the result that “nation-states no longer have a 
monopoly over the catastrophic use of violence” (U.S. Department 
of Defense, 2006, p. 36).

3.	 Shaping the choices of countries at strategic crossroads to protect 
the “future strategic position and freedom of action of the United 
States, its allies and partners” by shaping the choices of “major and 
emerging powers . . . in ways that foster cooperation and mutual 
security interests” (U.S. Department of Defense, 2006, p. 39). In 
addition to the Middle Eastern region, countries of particular con-
cern are India, China, and Russia.

4.	 Preventing the acquisition or use of WMD by hostile states (e.g., 
Iran) or nonstate actors (e.g., Osama bin Laden). “Based on the 
demonstrated ease with which uncooperative states and non-state 
actors can conceal WMD programs and related activities, [we] 
must expect further intelligence gaps and surprises” (U.S. Depart-
ment of Defense, 2006, p. 45).

5.	 Refining DoD’s force planning construct for wartime to move grad-
ually from a two-front conventional campaign capability to more 
loosely defined “distributed, long-duration operations, including 
unconventional warfare, foreign internal defense, counterterror-
ism, counterinsurgency, and stabilization and reconstruction opera-
tions” (U.S. Department of Defense, 2006, p. 36).

This is a remarkable shift in emphasis since the terrorist attacks in the 
United States on September 11, 2001, and may very well be a turning point 
away from more than 50 years of conventional force planning (backed by 
MAD) and the start of a much more agile and indigenously sensitive force. 
The United States is no longer fighting nation-states using conventional 
weapons but instead is fighting a very different kind of organization—
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terrorist networks—in a battlespace in which effects may be defined by the 
attitudes and behaviors of civilian noncombatants rather than by bombs on 
targets.� In order to analyze, plan, train, and acquire effective technology 
for this new battlespace, models are needed to help people understand and 
interpret fragmentary information about terrorist activities and understand 
the likely effects of U.S. actions on the attitudes and behaviors of diverse 
multicultural civilian populations. People need to understand the forces that 
drive individuals to join terrorist organizations, how these organizations 
function, and how they organize action. People need to understand the 
factors that contribute to the stability of neighborhoods and regions and 
how military actions as well as political, diplomatic, and economic actions 
contribute to that stability. People need to understand complex shifting 
cultural allegiances and how U.S. actions affect those allegiances. Models 
of sensor and weapons systems are not adequate tools for fighting this long 
war. The nation’s defense planners need IOS models that capture the rich-
ness of individual, team, organizational, societal, and cultural influences 
that can help to address the key dimensions of the new battlespace.

Dimensions of the New Battlespace

In this section we examine some of the drivers of the changing DoD 
mission to gain insight into what this shift in mission means for IOS model-
ing requirements.

The Impact of Urbanization

One of the key drivers in this shift has been the growing recognition 
that fundamental world demographics are changing: “The world’s urban 
population reached 2.9 billion in 2000 and is expected to rise to 5 billion 
by 2030. Whereas 30 per cent of the world population lived in urban areas 
in 1950, the proportion of urban dwellers rose to 47 per cent by 2000 and 
is projected to attain 60 per cent by 2030. . . . At current rates of change, 
the number of urban dwellers will equal the number of rural dwellers in the 
world in 2007” (United Nations, 2002, Part I, p. 5). The military implica-

� A note of caution is appropriate here. Although it is true that at the time of this writing the 
United States is not engaged in a conventional war, that is not to say that it will not be engaged 
in one at some point in the future. Thus, there is always the danger that the nation will be 
“preparing for the last war” (e.g., today’s Afghanistan and Iraq campaigns) via a wholesale 
shift in focus to nonconventional strategies, tactics, and weapons systems. DoD recognizes 
this, as noted in the fifth “operational enabler” cited above (U.S. Department of Defense, 
2006, p. 36), identifying the desire to “move gradually [emphasis added] from a two-front 
conventional campaign capability. . . .” Clearly, the operative issue is how long this transition 
takes and to what extent it transforms the services’ force structure.
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tions of this fact are explored in depth in two recent RAND studies (Glenn, 
2000; Vick et al., 2002). Key issues and implications that emerge from these 
studies and others include:

•	 Most, if not all, of the future conflicts the nation will face will have 
an urban component, based both on historic precedent and on the 
fact that the adversaries are no match for U.S. forces in “open 
field” engagements.

•	 It will no longer be sufficient to avoid urban and surrounding 
built-up areas during military operations, as has so long been U.S. 
doctrine. According to a 2002 Joint Chiefs of Staff report, “urban 
areas are the natural battleground for terrorists: the effects of ter-
rorist acts are greater and more noticeable and the terrorist groups 
more difficult to locate and identify” (Joint Chiefs of Staff, 2002, 
p. III-27). From a “hearts and minds” standpoint, there is also a 
clear political advantage of having a close connection with the 
noncombatant urban population.

•	 Urban operations are extremely difficult, with the operational 
environment characterized by high densities and tempos, inherent 
complexity, and constraints. The battle tempo can be extremely 
high, forcing rapid assessments, decisions, and actions. Collateral 
damage issues covering critical infrastructure losses, damage to 
symbolic edifices, and noncombatant loss of life are critical.

Urban operations are also complicated by the fact that mission objec-
tives can vary dramatically in both time and space, running from all-out 
conflict to infrastructure rehabilitation. This spatiotemporal nonuniformity 
has been referred to as the “three-block war” by the former commandant 
of the Marine Corps, General Charles C. Krulak: “In one moment in time, 
our service members will be feeding and clothing displaced refugees, provid-
ing humanitarian assistance. In the next moment, they will be holding two 
warring tribes apart—conducting peacekeeping operations—and, finally, 
they will be fighting a highly lethal mid-intensity battle—all on the same 
day . . . all within three city blocks. It will be what we call the ‘three block 
war’” (Krulak, 1997, p. 139).

In these stability and support operations (SASO) stages, it becomes 
increasingly important to interact with and not alienate the local popula-
tion, get their support to identify social networks of adversaries (and poten-
tial allies), and anticipate first- and second-order effects (i.e., unintended 
consequences) of actions that are within the scope of the unit’s capabili-
ties (i.e., executing a search-and-destroy mission) but that may be highly 
counterproductive in the long run. It also follows that as the mission 
becomes dictated less by military objectives than by social and political 
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objectives, there is a need to ensure greater interaction with other orga-
nizations outside the local unit’s normal sphere of interest. Not only does 
this imply a greater reliance on joint operations (coordinating the sister 
services), and increasingly a reliance on coalition (non-U.S.) partners, but 
it also implies greater interagency coordination, both national (e.g., the 
State Department, the intelligence agencies, the organs of public diplomacy, 
U.S.-based nongovernmental organizations or NGOs), international (e.g., 
sister intelligence services, non-U.S. NGOs), and private-sector economic 
interests. As a consequence, in order to address and achieve the peacemak-
ing objectives in the new theaters of war, planners must somehow consider 
and assess the aggregated complex interactions of entire social systems, 
both regional in behaviors and global in influence, at resolutions of fidelity 
neither needed nor attempted in prior military history.� 

The objectives and technologies of peacemaking in this environment 
are very different from those of conventional warfare, most notably, a sub-
stantially increased emphasis on peacekeeping, disaster relief, and nation-
state building (see, for example, the Urban Sunrise study of the Air Force 
Research Laboratory, 2004). The urban operational environment serves to 
transform what was once viewed as a strictly military (and tactically diffi-
cult) engagement into something that is now considerably more holistic and 
focuses primarily on social, organizational, and cultural factors involving 
key individuals, nonmilitary groups, local crowds, and indigenous popula-
tions, all within a rich tapestry of a complex local infrastructure overlaid 
by local, national, and transnational economic markets, organizational and 
social structures, traditions, cultures, and religious beliefs. 

The Growing Importance of Pre- and Postconflict Operations

The changing nature of military missions is putting increasing focus 
on operations that occur before and after periods of overt conflict. These 
pre- and postconflict operations may persist much longer than the conflict 
itself, as is all too well illustrated by the current situation in Iraq.

In the doctrine for Joint Urban Operations (JUO) (Joint Chiefs of Staff, 
2002) five phases are recognized—understand, shape, engage, consolidate, 
and transition (USECT, emphasis added): 

� While the military is the branch of the U.S. government having primary responsibility for 
projecting U.S. power overseas, it may be a classic case of “mission creep” for the military to 
be taking a leading role in economic development, political reconstruction, diplomacy, disaster 
relief, and intercultural communication. But this is exactly what is happening in today’s con-
flicts, with young servicemen serving effectively as “mayors” of Iraqi villages, see http://www.
washingtonpost.com/wp-dyn/content/article/2007/01/11/AR2007011101576.html. And this is 
likely to remain the case until other U.S. agencies or NGOs can take the lead, or the United 
States successfully transitions these functions back to the local population.
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1.	 Understand: “The JFC [joint forces commander] evaluates the 
urban battlespace, including the urban triad [the physical terrain, 
the urban infrastructure, and the population] and the threat, to 
determine the implications for military operations. This evalua-
tion extends from complex terrain considerations to the even more 
complex impact of the sheer number of actors operating in an 
urban battlespace. On one hand there may be adversary military 
troops, criminal gangs, vigilantes, and paramilitary factions oper-
ating among the noncombatant population. On the other hand, 
especially in MOOTW [military operations other than war], the 
situation may be further complicated by the presence of nonmilitary 
government departments and agencies, to include intelligence, law 
enforcement, and other specialized entities” (Joint Chiefs of Staff, 
2002, Chapter II, pp. 8-9).

2.	 Shape: “Shaping includes all actions that the JFC takes to seize the 
initiative and set the conditions for decisive operations to begin. 
The JFC shapes the battlespace to best suit operational objectives 
by exerting appropriate influence on adversary forces, friendly 
forces, the information environment, and particularly the elements 
of the urban triad. Methods of shaping may include . . . the phased 
deployment and employment of joint forces. Rather than deploying 
combat forces initially, the JFC may, in many cases, need to deploy 
noncombat forces early, such as civil affairs (CA), public affairs 
(PA), medical support, and psychological operations (PSYOP) units. 
. . . Critical to shaping operations is the isolation of the urban area 
to support the campaign” along physical, informational, and moral 
dimensions (Joint Chiefs of Staff, 2002, Chapter II, p. 11).

3.	 Engage: “To engage, the JFC brings the full dimensional capabilities 
of the force to bear in order to accomplish operational objectives. 
Engagement can range from full combat in war to FHA [foreign 
humanitarian assistance] and logistic support for disaster relief 
operations. It consists of those actions taken by the JFC against 
a hostile force, a political situation, or a natural or humanitarian 
predicament that will most directly accomplish the mission. In all 
cases, the speed and precision with which the JFC engages will 
largely determine any degree of success. . . . [S]uccessful engage-
ment requires . . . the seizure, disruption, control, or destruction of 
the adversary’s critical factors,” which include their “capabilities, 
requirements, and vulnerabilities” and may include 

o	 “tangible components of the infrastructure such as power 
grids, communications centers, transportation hubs, or basic 
services.”
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o	 “intangible socio-economic or political factors such as financial 
centers and capabilities, particular demographic groups and 
sites, and cultural sensitivities.”

In addition, “both offensive and defensive JUOs will probably entail 
heavy use of IO [information operations] and CMO [civil military 
operations]” (Joint Chiefs of Staff, 2002, Chapter II, p. 12).

4.	 Consolidate: “In war and MOOTW, the focus of consolidation 
is not just on protecting what has been gained, but also retaining 
the initiative to disorganize the adversary in depth. . . . Consolida-
tion may place heavy emphasis on logistic support and CMO. The 
nature of the urban triad ensures that the JFC will have to contend 
with issues concerning physical damage, noncombatants, and infra-
structure as part of consolidation. CMO and PSYOP units may 
continue to be especially critical in this aspect, as well as engineer-
ing efforts ranging from destruction to repairs to new construction. 
Equally important are the expected issues of infrastructure collapse 
and the tasks of FHA and disaster relief” (Joint Chiefs of Staff, 
2002, Chapter II, pp. 12-13).

5.	 Transition: “In general, the end state of JUOs is the termination 
of operations after strategic and operational objectives have been 
achieved. This may include the transfer of routine responsibilities 
over the urban area from military to civilian authorities, another 
military force, or regional or international organizations. . . . In 
JUOs, transition may occur in one part of an urban area while 
engagement still is going on in another [three-block war]” (Joint 
Chiefs of Staff, 2002, Chapter II, p. 13).

Note the overall emphasis on the social and organizational interactions 
of a diverse set of actors, including noncombatants, noncombat forces, 
and local and multinational civilian agencies. There is also a focus on the 
effects of informational, socioeconomic, and political factors on attitudes 
and behaviors in the urban battlespace.

Changes in the Nature and Scale of Intervention Operations 

Urbanization and the broader view of military USECT interventions 
yield a dramatic expansion of considerations of scale, in both spatial and 
temporal dimensions, as well as an expansion in the nature and types of 
intervention to be considered.

In the spatial dimension, urban operations demand a much finer view of 
the battlespace: it is no longer sufficient to consider high-level aggregates of 
large units and large geographic areas of responsibility, such as one might do 
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in planning conventional operations at the division level and above. Instead, 
the urban domain demands a block-by-block (if not building-by-building) 
geographic focus, at squad-level units consisting of only a few individual 
soldiers. At the other end of the spectrum, the broad considerations of 
USECT phasing of an engagement call for understanding wide-ranging 
geopolitical factors, including the nation-states involved, and the associated 
ethnic, cultural, religious, and economic factors in the region. These are typi-
cally not small or geographically focused but may in fact encompass huge 
spatial overlay regions of the potential battlespace (e.g., the Middle East). As 
a consequence, there are simultaneous demands to have a very fine spatial 
focus (at, say, the building level) while simultaneously being highly sensitive 
to the very large regional characteristics of the battlespace. 

In the temporal dimension, a similar situation exists. The fine-scale 
urban focus, with its short “interaction distances,” typified by an impro-
vised explosive device (IED) or a rocket-propelled grenade, demand a very 
fine-grained temporal view of events for assessment, planning, and execu-
tion. Planning horizons are short, and urban operations demand a high 
temporal resolution of activities if operations are to succeed.� The time 
available to plan operations is likewise compressed, and planning windows 
are compressed, often down to minutes. At the other end of the spectrum, 
USECT phases can take months or years to accomplish and are often char-
acterized by considerably slower temporal dynamics and windows, in both 
the planning and the execution of activities. Thus, as in the situation with 
the spatial dimension, there is a simultaneous stretching of the temporal 
dimension from both ends, from very quickly occurring events at a high 
temporal resolution (e.g., building clearing), to activities that evolve at a 
considerably slower pace, demanding low temporal resolution but long time 
horizons (e.g., nation building).

A key issue for modeling IOS behavior is the spatiotemporal “cover-
age” that must be accommodated in models. One can clearly no longer 
expect that a high-level aggregate model of, say, an armored division cov-
ering miles of open plain will be up to the challenge of anticipating the 
outcome of a fast-paced short-range small-unit urban engagement. Nor will 
the small-unit model be any indicator of overall outcome in the big picture 
of the overall military engagement. And neither is up to the challenge of 
anticipating outcomes in the larger USECT tableau, with its many other 
dimensions beyond the application of military force.

Growth of the spatiotemporal scale is also accompanied by an expan-
sion of intervention options available in urban operations over the several 
USECT phases. This is a natural consequence of the additional dimensions 

� This is perhaps best illustrated with the detailed step-by-step choreography that goes into 
the planning of a simple room clearing by a four-man squad. 
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and structures that make up the urban environment and its indigenous 
population, as illustrated in the deliberately simplified three-layer struc-
ture of Figure 2-1. Shown here is the conventional physical structure (and 
infrastructure) that is the focus of traditional military campaigns, on which 
is superimposed an information structure associated with elements of the 
underlying physical entities, in turn superimposed by a cognitive struc-
ture characterized by individual and group perceptions, beliefs, intentions, 
plans, and actions (Air Force Research Laboratory, 2004).

The focus for planning military operations is increasingly on under-
standing and forecasting� “nonkinetic” effects. Kinetic effects are associ-
ated with the use of “kinetic weapons”—conventional bullets and bombs. 
Nonkinetic weapons and defenses are associated primarily with IO, which 
include the triad of electronic warfare, computer network operations (both 
defensive and offensive), and influence operations, which include PSYOPS, 
military deception, and operations security (OPSEC). Nonkinetic options 
also include the use of nonlethal weapons at the individual or crowd level 
(e.g., high-powered microwaves) and at the population level (e.g., disabling 
or destroying one or more components of, say, an urban infrastructure).

In this expanded battlespace, planning and executing effects-based oper-
ations (McCrabb, 2001) require analysis of the potential effects that a given 
set of diplomatic, information, military, and economic (DIME) actions will 
have across the full range of the political, military, economic, social, infor-
mation, and infrastructure (PMESII) context. To be useful for analysis and 
planning, behavioral models must capture not only the separate effects of 
each action in each of these areas but also the interactions of these factors.

HOW IOS behavioral Models CAN HELP THE MILITARY

The changing nature of DoD’s mission has greatly increased the need 
for IOS models that capture the cognitive, organizational, societal, and 
cultural factors that are critical in the urban battlespace. IOS models are 
needed across the full spectrum of operations, particularly during urban 

� We introduce the term “forecasting” here, in place of predicting, to reemphasize the difficult 
problem of anticipating individual or organizational behavior (see Chapter 1), in comparison 
to that of anticipating the consequences of well-understood physical or engineering laws, the 
latter operating under conditions in which there is neither agency nor feedback involved (e.g., 
when you swing a hammer, the hammer does not deliberately try to avoid the nail in order to 
dissuade you from further swinging, so that your dynamic model of the muscle-hammer system 
is reasonably “predictive”). The term “forecasting” is also loaded with weather analogies, 
serving to remind us of how weather “point predictions” (in time and space) are almost always 
wrong and how “bounding envelope forecasts” are much more likely to capture the future 
trajectory of the weather, especially as the spatial and temporal resolution grows more coarse 
(i.e., with larger geographic areas covering “climate zones” and longer time windows covering 
“seasonal variations”). See also the extensive discussion of forecasting in Chapter 8.
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FIGURE 2-1  Heterogeneous structures that must be represented in the urban 
environment.
SOURCE: Air Force Research Laboratory (2004, p. 10).

operations, as indicated by the number one recommendation of the recent 
Joint Urban Operations Workshop: “Employ high-resolution modeling, 
simulations, and other decision support tools that incorporate friendly, 
enemy, and neutral forces, plus the urban population in order to conduct 
rehearsals, assess courses of action, and make better decisions faster than 
the enemy in an urban operation” (Mahoney, 2005). 

This section reviews how IOS models can contribute to today’s missions 
in the three broad areas: (1) analysis and forecasting for planning, (2) train-
ing and rehearsal, and (3) design and evaluation for acquisition. Another 
view of such applications is found in Axelrod (2004).
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Potential Use of IOS Models for Analysis, Forecasting, and Planning

In general military operations, COA development and planning has 
been traditionally a completely manual operation, with a heavy reliance on 
staff experience and seat-of-the-pants “mental models” of the adversary 
and its likely response to potential military activities. Consequently, it is 
often the case that only a few COAs are generated, evaluated, and planned 
for—often with only minimal computer-based support. 

Figure 2-2 illustrates the essential closed-loop nature of military plan-
ning and operations� and indicates where models could be of use. A walk 
around the loop begins with the external world or battlespace shown at 
the bottom of the figure. Many actors populate the space, including blue 
(friendly) forces, red (adversary) forces, and a range of others depending on 
the particular environment (e.g., whether it is urban or not). Some of the 
blue assets include sensors and data collection systems that pick up incom-
plete and uncertain information about the battlespace and, via associated 
communications assets, transmit it to a variety of data processing facilities 
and data storage centers. Some support relatively short-term data needs 
(Intelligence [INTEL] data) for current operations, while others may sup-
port long-term development of background data and knowledge bases.

The INTEL data support “inner loop” situation assessment—that is, 
short-term assessment of the state of the battlespace—to estimate the cur-
rent situation in the face of collected information that is incomplete, noisy, 
and stale, which may also be compromised by reporting errors, communi-
cations failures, and deliberate disinformation on the part of the adversary. 
This is clearly a complex estimation process. Given this estimate of the cur-
rent situation, decisions can be made and orders/requests can be modified 
or generated, triggering a set of general action requirements defining how 
to use a range of blue assets (data collection systems, weapons platforms, 
etc.), thus closing the loop. 

Also shown in the figure is the use of background data and long-term 
knowledge bases to support “outer loop” situation forecasting� of the 
future evolution of the battlespace, based on the inner loop’s current assess-
ment of the situation and any available behavioral, cultural, or historical 
knowledge pertinent to the conflict, geography, and population. This is 
clearly another complex process fraught with uncertainty, both because of 
the attempt to forecast into the future based on knowledge of the current 
situation and the reliance on uncertain information stored in the knowledge 

� This is essentially a more detailed version of the OODA (observe, orient, decide, act) loop 
of Colonel John Boyd, USAF (Ret.). For more information about John Boyd and his writings, 
see Defense and the National Interest (2007).

� The term “prediction” is shown in the figure to be consistent with the original USAF study 
from which the figure is adapted. 
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bases and generated by the inner loop situation assessment activity. The 
objective is to generate an estimate of the future situation (or envelope of 
future situations) at different time scales and geographic resolution, so as 
to be able to plan accordingly, across a range of time horizons, areas of 
responsibility, and military functional specialties (INTEL, OPS, logistics, 
etc.). The net results of this process are COAs and plans generated at all 
echelons, to support the inner loop action generation activities, as indicated 
in the figure.

Whether focusing on the inner loop or outer loop activities, it should 
be clear that current estimates and future forecasts must naturally rely on 
IOS behavior models of some sort. They may be implicit seat-of-the-pants 
mental models held by the personnel performing the intelligence, planning, 
and operational functions, or they may be explicit and simplified computa-
tional models (possibly instantiated at vastly different time scales or spatial 
resolution), but they all implicitly attempt to forecast behavior by using a 
model as an “extrapolation engine” operating on the current assessed state 
of the situation, using the best available information and knowledge col-
lected from the battlespace, and knowing what future blue asset activities 
are likely to be.�

IOS behavior models, their associated simulations, and model-derived 
tools are needed to track, identify, and target critical individuals and 
resources and to assess the relative ability of various courses of action to 
influence adversary behavior and to win the hearts and minds of the indig-
enous population. Whether the issue is mapping the human terrain (Kipp, 
Grau, Prinslow, and Smith, 2006; Schaffer, 2005),� or understanding the 
atmospherics, evaluating the impact of interventions to promote or inhibit 
state failure, forecasting hot spots of activities in urban settings, or provid-
ing more cultural and cognitive situation awareness, IOS behavior models 
and their derivatives (simulations and tools) are clearly needed.

Models for Understanding, Forecasting, Shaping, and Responding to 
Adversary Behavior

Reliable anticipation and forecasting of individual human and col-
lective organizational behavior on the part of the adversary is the highest 
goal of all military commanders. This view is embraced by the Army and 
the Marine Corps, in their call for doctrine and tools that enable “predic-

� This last component supporting the forecasting process assumes that blue assets behave 
according to plan and is predicated on the notion that “the best way to predict the future is 
to create it” (The Drucker School, Claremont Graduate University, 2008). See http://www.
cgu.edu/pages/4181.asp. 

� See http://www.army.mil/professionalwriting/volumes/volume4/december_2006/12_06_2.html. 
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tive analysis” (Kasales, 2002), especially as potential future engagements 
become more asymmetric and urban, less influenced by traditional for-
malisms of conventional military doctrine, and more determined by the 
contextual influences of society: political and military organizations, ethnic 
groups, national cultures, and transnational religious organizations (Brown, 
1997; Lwin, 1997; Staten, 1998). A similar view is held by a host of mili-
tary and other groups: 

•	 The Air Force Scientific Advisory Board’s (SAB’s) Predictive Battle
space Awareness Study (U.S. Air Force Scientific Advisory Board, 
2002a, 2002b) 

•	 A more recent SAB study on the need for behavior modeling in 
urban operations (U.S. Air Force Scientific Advisory Board, 2005)

•	 Ongoing science and technology efforts being conducted by the 
Defense Advanced Research Projects Agency (DARPA) (e.g., the 
RAID, Integrated Battle Command, and Integrated Crisis Early 
Warning System programs) 

•	 The Office of Naval Research’s Affordable Human Behavior Model
ing program (see http://www.onr.navy.mil/sci_tech/personnel/342/
training_afford.asp)

•	 The USAF Commander’s Predictive Environment program (see 
http://www.wintersim.org/abstracts06/Mil.htm) 

•	 JFCOM’s Urban Resolve program (see http://www.jfcom.mil/about/
experiments/uresolve.htm and the like) 

•	 Conferences and workshops focused on the problem (e.g., the 2003 
DMSO-sponsored conference on organizational simulation, see 
https://www.dmso.mil/public/) 

•	 The 2003 Army Research Institute-sponsored Workshop on Cogni-
tion and Multi-Agent Interaction, the Air Force Office of Scientific 
Research (AFOSR) Workshop on Culture and Adversary Modeling, 
2005, 2006 

•	 The Annual International Conference on Complex Systems (see 
http://necsi.org/events/conferences.html)

Before and during military operations, IOS models can serve as decision 
aids and as guides for data collection. Models can, have been, and should be 
developed to support tactical, operational, and strategic missions. Key uses 
for IOS models include model-based INTEL fusion and situation assessment, 
forecasting (projecting), planning (COA development and assessment), mis-
sion rehearsal, execution monitoring, and postexecution assessment. IOS 
models can be used to gather information (“see”); assess or evaluate the cur-
rent state (“identify”); explain, understand, and forecast behavior (“think”); 
shape, manage, and disrupt oneself or the enemy (“do”); and aid in decision 



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

38	 BEHAVIORAL MODELING AND SIMULATION

making or strategizing (“reflect”). IOS models hold the promise of aiding the 
war-fighter by providing a better toolkit for knowing the enemy.

From the tactical to the strategic levels, there is a need to forecast 
adversarial reasoning. IOS models can be used to provide guidance on the 
space of actions that the adversary might take and why, thereby reducing 
surprise. Moreover, these models can suggest what actions are the most 
probable and provide insight into the general order of actions. Such models, 
however, do not and should not be expected to provide guidance on exactly 
what action will be taken when (as we discuss later). The deployment of 
IOS models needs to be accompanied by training in their appropriate use 
and in the interpretation of the results generated.

Models for Understanding, Forecasting, and Shaping Societal Behavior

Increasing military involvement in military operations, peacemaking, 
and peacekeeping is creating a need for the military to understand, forecast, 
shape, and respond to the larger context of societal norms, expectations, 
perceptions, and behavior. Examples abound as to this need:

•	 Understanding the local society, its history, and its current over
lapping networks increases the likelihood that one might be able to 
identify those who would harbor terrorists or turn to terrorism.

•	 Understanding the local culture and its homogeneity, or lack 
thereof, is necessary for planning effective PSYOPS campaigns, 
and assessing the impact afterward.

•	 Shore leave has repercussions for the local population, including 
increasing the monetary inflow that can stabilize some local busi-
nesses while leading lead to an increase in corruption and a change 
in the power base.

IOS models, in general, hold the promise of enabling the identification 
of geographic locations where and periods when threats are likely to emerge 
as a function of current events and action (or inaction) by U.S. and coali-
tion forces. Two notable DARPA-sponsored programs have focused on the 
identification of potential global hot spots and the forecasting of their likely 
evolution over time: the Pre-Conflict Anticipation and Shaping (PCAS) pro-
gram (described later in this chapter), directed at forecasting the likelihood 
of a nation-state collapse (Popp et al., 2006), and the follow-on Integrated 
Crisis Early Warning System, which has as its goal “the development 
of state-of-the-art computational modeling capabilities that can monitor, 
assess, and forecast, in near-real time, a variety of phenomena associ-
ated with country instability” (see http://www.darpa.mil/ipto/solicitations/
open/07-10_PIP.pdf). 
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Multiagent models and system dynamic simulations that take social 
and cultural factors into account could be used to assess the likely conse-
quences of the COAs executed by the U.S. military and coalition forces on 
state stability. They could be used to assess the potential impact of a multi
pronged initiative with DIME, and to assess the consequences in PMESII. 
This is exactly the focus of an ongoing DARPA-sponsored program in Inte-
grated Battle Command (see http://www.darpa.mil/sto/solicitations/IBC/). 

IOS models could also be used for identifying what COAs will have the 
least negative or most positive effects on civilians and neutrals. In all cases, 
the value of such models and simulations could be enhanced if informa-
tion on the underlying social and organizational networks and available 
resources were taken into account and if the models were combined with 
effects-based operations models. Models could also be used to determine 
the effects of U.S. information operations activities designed to influence 
attitudes and behaviors of individuals in different cultures. In this case, the 
effectiveness of these information activities is likely to be enhanced by link-
ing social network models with psychological profile information, cultural 
models, and psychosocial models.

Models for Understanding Enemy Command and Control Structures 

Understanding enemy command and control structures through IOS 
behavioral models enables the identification of vulnerabilities and strengths 
before planning friendly activities. This was pointed out in a previous 
study on human behavioral modeling (National Research Council, 1998) 
but has only recently been acted on because of the post-9/11 focus on 
counterterrorism and the rapid development and dissemination of support-
ing tools. 

In particular, support tools, such as text and data mining facilities, are 
beginning to be used for extracting information from open sources (e.g., 
news articles, websites, etc.) to identify events and structures that enable 
the detection and recognition of terrorist and insurgent networks and orga-
nizational structures. Much of this work is classified, but significant insight 
can be gained from parallel efforts ongoing in the commercial world (see, 
for example, the growing conference on “text analytics” at http://www.
textanalyticsnews.com/usa/program.shtml).

However, the strength of these tools could be considerably increased if 
they were combined with social and dynamic network modeling techniques, 
to enable a model-based approach to text and data mining and information 
fusion. Such tools could then be used in an “alert” mode to identify what 
data should be collected, as well as in an “evaluate” mode to suggest the 
impact of various courses of action. Given an understanding of the enemy’s 
command and control structure, targets could be identified for disrupting 
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the enemy, and various courses of action developed to achieve those goals. 
COAs that are intended to demoralize, disrupt, or inhibit action or recruit-
ment on the part of the enemy could then be evaluated if behavioral models 
incorporated realistic affective, social, and cultural influences. These models 
could be made even more effective if they were placed in data-farming envi-
ronments so that the space of COAs could be more effectively mapped.

Models for Training and Mission Rehearsal

IOS behavior models have the potential for providing significant benefit 
to U.S. and coalition forces in training (of general skill sets) and mission 
rehearsal (for mission-specific expertise), based on years of experience of 
simulation-based training in more conventional areas (e.g., flight training, 
tank tactics training, etc.), the critical dependence of learning on perfor-
mance feedback and “after action review” insight, and, perhaps most 
importantly, the opportunity to learn from errors that might be devastat-
ingly fatal in the real world. Key uses of models for training include model-
based simulation of virtual actors (including simulated entities, such as 
teammates, adversaries, and noncombatants), games to provide immersive 
experiences, and models to preassess potential new training tools. Model-
based training simulations and systems can provide training that:

•	 supports a number of activities, such as teaching individuals how 
to be more culturally aware, training teams how to coordinate and 
fight as a unit, training commanders how to evaluate the organiza-
tional health of their battalion;

•	 enables live, large-scale war-gaming with truly dynamic enemies—
these training systems can be constructive or done using virtual 
reality or gaming systems; 

•	 takes into account social, cultural, or organizational factors and 
can be used for realistic training of individuals, teams, or organiza-
tions; and

•	 crosses operational activities and enables joint or coalition training.

Training at all levels, up to and including higher headquarters staff, is 
vital to ensuring successful joint and coalition operations. New demands 
are being placed on training and rehearsal systems that increase the need 
for modeling to support training. Effective training and rehearsal systems 
immerse the trainee in realistic scenarios, provide information about roles 
and responsibilities, enable the development of technical skills, and provide 
experience working in joint or coalition task forces, facing new, dynamic, 
and culturally distinct enemies. The problem is providing such an immersive 
training environment in less time, for less money, for more personnel, using 
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models and simulations that can be rapidly adapted to changing missions 
and new adversaries. 

The changing nature of military missions and the increased emphasis on 
peacekeeping, disaster relief, and nation-state building means that training 
systems are needed for more than conventional training in weapons usage, 
war-fighting tactics, and basic survival. Indeed, there is now a need for 
training in cultural awareness, crowd behavior, negotiation, management, 
and city planning. Training systems need to be more flexible to capture 
the changing nature of the enemy from nation-states to insurgents, from 
one monolithic actor to federations of loosely aligned tribes, and from 
large-scale weapons to improvised explosive devices. Finally, new training 
technologies are required due to changes in military staffing, such as fewer, 
more computer-savvy recruits, increased use of reserves, and just-in-time 
training. 

Massively multiplayer online games (MMOGs) can, in principle, pro-
vide such an immersive environment. The value of such systems for mis-
sion rehearsal will be increased if the cultural and social models embedded 
are more socially realistic than those in current games. Dynamic network 
models hold the promise of providing a dynamic adversary for war-gaming, 
and the value of such systems will be increased if links can be made between 
the network models and models of action, planning, and goal attainment. 

Training can be provided for teams and larger units by populating 
scenarios with socially and culturally realistic artificial actors as team mem-
bers, but there is a need for simulation infrastructure to rapidly develop 
socially realistic and culturally differentiated artificial actors. 

Training for future scenarios can be provided by using system dynamic 
and multiagent computational models that allow the user to look ahead and 
do what-if analysis of alternate scenarios, such as the impact of tsunamis 
or hurricanes on various regions of the world or the impact of avian flu 
on military personnel. The value of these systems will be increased if they 
move beyond military and economic factors to consider social, political, 
diplomatic, and information factors. 

Expert systems and cultural models can be used to increase cultural 
awareness and train military personnel in crowd control behavior. The 
value of these systems will be increased if they can be rapidly populated 
with data as new adversaries arise. 

In general, IOS behavioral models can be used effectively for improved 
training, but more realistic models of actors, groups, and nation-states are 
needed. A key aspect of the current training and rehearsal process is that, 
during training, military personnel are provided access to people (or their 
model-based surrogates) with whom they will be working in the field. For 
example, at joint war games, Air Force, Army, Navy, and Marine personnel 
meet, plan, and execute together. This increases their transactive knowledge 
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of who knows what and who can do what, which in turn improves group 
performance. If IOS models can help support this function, war games can 
be reduced in size, conducted more frequently, and tuned to specific indi-
viduals and organizations needing specific training or rehearsal.

Models for Military Systems Development, Evaluation, and Acquisition

DoD is in the midst of two revolutionary changes (Frost, 1998): a revo-
lution in military affairs (RMA) and a revolution in business affairs (RBA). 
The RMA involves the military requirements and concepts envisioned in 
light of the threat environment and advances in technology (Joint Chiefs 
of Staff, 2000). The RBA addresses how to leverage technology and com-
mercial business processes to the how-to-buy problem. The use of M&S 
has been recognized as a key facilitator to addressing military training and 
education and the acquisition of military systems (Office of the Secretary 
of Defense, 1996). For example, the Air Force’s Modeling and Simulation 
Strategic Plan (Johnson, 2004) spells out a number of points of focus to 
meeting the challenges of RMA and RBA by providing a persistent synthetic 
battlespace infrastructure to support the exploration, design, development, 
analysis, and testing of new war-fighting systems and concepts (as well as 
more conventional military training and mission rehearsal activities).

Inherent in the necessary M&S infrastructure to support system acqui-
sition is the requirement to provide realistic representations of battlespace 
entities (blue, red, and neutral), natural and cultural features (terrain, 
locale), and physics-based effects (sensor processing, missile flyout, etc.). 
Such an infrastructure must provide a framework to support the rapid 
integration of these synthetic representations across all simulation levels 
(i.e., campaign, mission, engagement, or engineering). In the Air Force, this 
M&S capability has direct relevance to important acquisition programs, 
such as the Joint Strike Fighter, the Multi-sensor Command and Control 
Constellation, the Joint Distributed Engineering Plant, and the Distributed 
Mission Operations/Mission Rehearsal initiative. The other services have 
their own acquisition programs in which M&S capabilities are directly 
relevant to effective acquisition. As a consequence, a substantive effort is 
needed to develop the requisite M&S components to address the evolving 
threat environment.

IOS behavior models that could support automated means to generate 
and adapt red strategies/tactics in line with asymmetric warfare can be a key 
enabling component for meeting the objectives needed to support acquisi-
tion. Key uses here are to preevaluate the value of new technology in a vari-
ety of scenarios that are both physically and culturally accurate, assess the 
need for particular skills in soldiers, and assess how generational changes in 
soldiers may lead them to need or utilize technologies differently from their 
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predecessors. Realistic IOS models could also be put to good use while sys-
tems are under development, especially as more acquisition programs adopt 
the “spiral development” paradigm, in which the requirements for each new 
spiral are determined not only by the evaluation results of the past spiral, 
but also by the changing battlespace requirements generated by an adaptive 
and resourceful adversary. (The counter-IED development work is an excel-
lent example of rapidly changing tactics and countertactics; see http://www.
nationaldefensemagazine.org/issues/2006/jan/adaptive_foe.htm.)

Models for Enabling Command and Control Weapons Systems

In the current network-centric operating environment (Alberts and 
Hayes, 2003), command and control (C2) organizations and the informa-
tion infrastructure that supports them are becoming increasingly important. 
One could say that C2 organizations, their information architectures, and 
their underlying communication infrastructures have in fact become the 
new weapons. This was underlined in 2004 when General Jumper, then 
Air Force chief of staff, officially designated the Air and Space Operations 
Center as a weapons system. And it has been formally recognized with the 
newly formed Cyber Command in the Air Force. As stated by the organiza-
tion’s first commander, General Elder: “The Air Force now recognizes that 
cyberspace ops is a potential center of gravity for the United States and, 
much like air and space superiority, cyberspace superiority is a prerequisite 
for effective operations in all warfighting domains” (Wait, 2007).

The Army and the Navy similarly recognize the leverage obtainable 
from effective C2 systems, especially given the Army’s commitment to the 
networked Future Combat System program� and the Navy’s effective inven-
tion of the term “network-centric warfare” through Admiral Cebrowski’s 
leadership,10 but it is fair to say that all three services have tended to focus 
on the hardware and software infrastructure (communications pipes, fusion 
algorithms, decision aids, visualization techniques, etc.), with less emphasis 
on the human and organizational component of effective C2.

What is becoming increasingly clear, especially in light of the current 
conflicts in Afghanistan and Iraq, is that there is a critical need for the rapid 
design and redesign of military units, including the architecture of their 
C2 systems, to meet changes in missions and to respond to innovations in 
enemy activities. Related to this is the need to be able to identify vulner-
abilities in current C2 structures. IOS models have significant potential 
for assessing, designing, and evaluating the impact of new technologies 
or new C2 procedures on potential vulnerabilities, strengths, shared situ-

� See http://www.army.mil/fcs/.
10 See http://www.oft.osd.mil/biographies/cebrowski_with_pic.cfm.
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ation awareness, work distribution, and adaptability to enhance friendly 
operational effectiveness, while defending against enemy actions, across a 
full spectrum of cultures, nations, and nonnation-state actors. Using such 
models has the potential for moving the military beyond logistics planning 
to organizational planning, facilitating improved recruitment strategies, and 
enabling just-in-time team design. 

Military personnel often remark that, as soon as they get to the field, 
the plan goes out the window. One way of building in flexibility (or resil-
ience) is to support the design and redesign of the various units to take into 
account changes in mission, changes in technology, attrition, rotation, or 
incorporation of joint and coalition forces. Many times such design needs 
to be made on the fly as the situation changes. In this case, the commander 
is faced with the problem of identifying experts quickly and incorporating 
them in a “tiger team.” A related problem is assessment of the unit’s orga-
nizational health, its vulnerabilities, its shared situation awareness, and its 
overall war-fighting effectiveness.

A traditional approach to organizational design has been to identify 
structures that are optimized to meet some organizational criteria. This 
approach is insufficiently flexible in many cases, as the military needs to 
operate in a responsive and adaptive mode. Criteria for designing adaptive 
units are under investigation, and emerging behavior modeling efforts are 
beginning to afford new possibilities for organizational design (Levchuk, Yu, 
Levchuk, and Pattipati, 2006, 2004; Pattipati, Meirina, Pete, Levchuk, and 
Kleinman, 2002; Neal Reilly, 2006; Levchuk, Levchuk, Meirina, Pattipati, 
and Kleinman, 2004; Levchuk, Levchuk, Luo, Pattipati, and Kleinman, 
2002a, 2002b; Entin, 1999).

IOS models, simulations, and assessment tools could be used to pre-
evaluate the impact of new technology on the unit, identifying potential 
ways in which the unit’s structure should change in response to this inser-
tion. Dynamic network models linked to various databases with streaming 
information on personnel could enable real-time assessment of shared situ-
ation awareness and organizational health. Text mining tools and shared 
mental model assessment tools could be used to improve information flow 
and rapidly process incoming data. IOS models of unit needs could be used 
to form a “smart” command center that could be used to push information 
to people only when they need it. Design tools and smart command center 
tools are well within the reach of current technology. The key problems are 
those of scalability, handling streaming data, and linkage of noninvasively 
collected data to dynamic network metrics of organizational health and 
text-mining evaluations of information flows.
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Representative Model-Addressable Problems in a Scenario Context

We now illustrate how different behavioral models might be used to 
address specific questions raised by the commander and his staff during 
the course of operations, how models might be used to train for particular 
skill sets and missions, and how models might be used to help specify an 
“optimal” organizational design for a given mission. The intent is not to be 
exhaustive but merely illustrative, with the goal of motivating a closer look 
at the use of detailed behavioral models in a range of military activities.

To orient our analysis and review of IOS modeling approaches, we 
developed scenario elements that are derivative of the one detailed in 
TRADOC PAM 525-3-90 O&O 22 JUL 2002 (U.S. Army, 2002), which 
describes a mission in the trans-Caucasus region. Three vignettes are devel-
oped to provide a construct for the purpose of addressing the potential of 
behavioral models supporting operations of a brigade combat team as part 
of a joint campaign. These vignettes center around

•	 tactical operations in entry operation (entry), 
•	 operational maneuver by air, combined arms operation for urban 

warfare (transition), and
•	 secure portion of a major urban area (JUO).

Details of the scenarios and vignettes are given in Appendix B. In 
conjunction with an Army subject matter expert, we have specified repre-
sentative model-addressable questions for portions of three vignettes. We 
think that these vignettes and the associated model-addressable questions 
only begin to scratch the surface in terms of providing suitable challenge 
problems to stimulate the modeling community and to provide a common 
reference frame for discussing alternative approaches to the same problem. 
In fact, we propose, in Chapter 11, that an initial effort in a large-scale, 
multiyear research program—focusing on comparing and integrating dif-
ferent disciplines, perspectives, and levels of detail—be dedicated to the 
definition of a number of well-defined and highly focused challenge prob-
lems that can serve as a common basis for comparing and contrasting dif-
ferent approaches. If the vignettes and questions presented here can serve 
as a launching point, some effort might be saved in the long term, but the 
primary purpose of presenting these in this study has been to focus the com-
mittee on relevant military problems and to provide the reader with some 
sense of the broad range of challenges that exist in the military domain.

Box 2-1 shows the resulting representative high-level model-addressable 
questions. Given these representative problems and issues, a number of 
more specific questions were generated, to illustrate the kinds of specific 
questions that might be asked during the unfolding of the vignettes.
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BOX 2-1 
Representative Model—Addressable Problems and  

Issues of Interest to the Commander

(“We” in this box refers to the commander and his forces.) 

Analysis and Forecasting for Planning

Disrupt terrorist networks. Fuse uncertain and partial information from multiple 
sources to identify the dynamic network structure of a terrorist organization. How 
can we best disrupt those networks?

•	 Tribal leader Muhkta is on the fence about whether or not to support the 
intervention. Which is likely to be the most effective way of gaining his 
support—overt recognition, overt financial reward, covert financial reward, 
covert protection of family, or a combination of methods?

•	 We need to disable/disrupt the clan of followers of Sheik Mustafa while our 
troops are moving toward the city. If we ensure he is disconnected from his 
clan during this phase of the operations, is it likely to degrade the clan’s 
decision making as related to their willingness to conduct offensive military 
operations?

•	 In order to reduce IED attacks, are the terrorist networks with their support 
base in our target city more vulnerable to selective attacks on their leadership 
or interruption of their recruitment programs?

•	 Abdul X is the leader of a terrorist network. Mohamed is on the network 
council and more radical than Abdul X. If Abdul X is killed, how likely is it that 
Mohamed will become the leader of the network?

Forecast adversary response to COAs. In an urban operation, forecast the likely 
response of local insurgents to friendly force movements, basing, and logistics. 
Identify likely counters to proposed COAs and identify early harbingers of those 
counters.

•	 What will impact the local economy the least: denial of transportation fuels or 
denial of electricity?

•	 The JTF can plan on placing its logistics support base either within the bounds 
of the city or in the adjacent countryside. Which population in the area, urban 
or rural, will be less hostile to the presence of the logistics base?

•	 To establish crowd control early in the urban environment, is controlling 
an area, like the civilian neighborhood, or a point of special interest, like a 
mosque, more likely to mitigate crowd behavior?

•	 In neighborhoods not committed to radicalism, what is the most influential 
means to insert forces: in combat vehicles or on foot?

•	 JTF wants to use disinformation to partially protect our intentions of moving 
from forward operating base (FOB) to the city. Is the most effective point of 
insertion of the disinformation the few public media outlets or the informal 
rumor mill/tribal network?
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Societal forecasting. Forecast the effects of alternative diplomatic, infrastructure, 
military, economic courses of action on attitudes and behaviors of residents in a 
region of interest. Assess the likelihood of state failure and identify actions that 
will lead to escalation of violence.

•	 Troops give a lot of meals ready to eat (MREs) to locals. Considering the items 
in MREs and the local culture, will MREs be a better giveaway than basic 
grains and cooking oil?

•	 Entry phase combat will be kept at the lowest level possible. Given local condi-
tions and the impacts of the blockade, which will the locals respond better to 
initially: engineers/civil works or medical response teams?

•	 Considering the effect of the blockade, which will have the psychological effect 
most supportive of our mission end state: overwhelming force or “helping hand” 
intervention?

•	 Which approach will least offend locals as we travel from the initial entry area 
to the city: keeping civilian vehicles in a separate convoy or infusing them into 
tactical convoys?

•	 Can we forecast the response by the local religious leaders to the presence of 
female soldiers on the streets of the city?

•	 A specific Mosque is known to be the headquarters of a particular militia. Joint 
forces will destroy the mosque in order to deny access by the militia. Which 
will produce the least negative impact in the neighborhood: announcing our 
intentions to destroy the mosque or destroying it unannounced?

•	 How do attitudes differ between the tribal regions of the country and the urban 
area we are targeting?

•	 What is the formal communication dynamic between the host national gov-
ernment (HNG) and the population? What is the informal communication dy-
namic? (How do people get information on a day-to-day basis—coffeehouses, 
religious structures, etc.?) How great is the delta between formal and informal 
communication dynamics?

•	 What are the expectations of the population about the government’s ability to 
provide services? 

•	 Is the HNG a government on the road to collapse?
•	 Are there indicators of popular support for the alternative power structure? Are 

they reflected in local media and among the local intelligentsia?

Training and Rehearsal

Crowd control training. Create an immersive virtual training environment in 
which soldiers can learn to take appropriate action based on the correct interpre-
tation of the behavior of small groups of citizens and understand the triggering 
mechanisms for violent responses by the crowd.

continued

BOX 2-1 Continued 
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•	 To effectively control crowds we need to know where the leaders are. In this 
setting, are crowd leaders more likely to be leading from the front, urging from 
the rear, or not on site? Given the answer, should we use information opera-
tions or force to control the crowds?

•	 Given the nature of the small villages along the route from our FOB to the city, 
is it likely there will be crowds along the route, are they likely to be friendly or 
hostile, and in either case will stopping to interact with them be likely to alter 
their feelings?

Design and Evaluation for Acquisition

Organizational design: force composition and command and control archi-
tecture. The Army is moving toward modular forces focused on joint and expedi-
tionary capabilities. These units of action will be rapidly reconfigured and equipped 
for specific mission requirements. The Navy is fielding expeditionary strike groups 
that include marine expeditionary units capable of amphibious operations at-
tached to Navy ships. The Navy and the Marines follow different doctrine and are 
in the process of defining flexible supporting and supported relationships that 
allow them to function effectively as a combined fighting unit.

•	 Develop a recommended force composition (systems, equipment, units and 
personnel) for a humanitarian assistance mission. 

•	 What command and control architecture will be most effective for this 
mission?

•	 What are the appropriate organizational coordination points for most effectively 
working with NGOs during the humanitarian assistance mission? 

•	 Is the force composition structure recently used for a humanitarian assistance 
mission appropriate for a disaster relief operation that requires immediate 
deployment?

•	 Are new roles needed to take advantage of the information-rich network-centric 
environment? For example, would an information commander/coordinator role 
result in more effective mission performance?

BOX 2-1 Continued 

OVERVIEW OF current dOd IOS MODELING efforts 

In this section we briefly review major IOS behavioral modeling efforts 
under way to address military questions such as those described above, 
pointing out some of the major challenges that confront these efforts.

The DMSO Master Plan for Modeling and Simulation

In 1995, DoD published a master plan for M&S, in an attempt to unify 
efforts across all services, identify needed areas of development (gaps), and 
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minimize duplication of efforts (overlaps). The plan was “the Department 
of Defense’s first step in directing, organizing, and concentrating its M&S 
capabilities and efforts on resolving commonly shared problems” (U.S. 
Department of Defense, 1995, p. i). The Defense Modeling and Simulation 
Office (DMSO) was given six major objectives under this plan, including 
“provide authoritative representations of human behavior” (U.S. Depart-
ment of Defense, 1995). The DoD M&S master plan also specified a set of 
more detailed subobjectives for achieving these goals, as well as a detailed 
timetable for initiating and concluding some of these activities. The lofty 
goals and aggressive timelines of the DMSO master plan have not been 
achieved, 10 years after they were first promulgated.11 A quick review 
of DMSO’s Modeling and Simulation Resource Repository (MSRR) at 
http://www.msrr.dmso.mil/ would appear to demonstrate this. The MSRR 
system is maintained by the Modeling and Simulation Information Analy-
sis Center (MSIAC). It includes five nodes representing the three services 
(Army, Navy, and Air Force), the DoD system, and the Defense Intelligence 
Agency and provides “retrieval of metadata descriptions of modeling and 
simulation resources” (Defense Modeling and Simulation Office, 2007), 
including models, simulations, frameworks/toolkits, background reference 
material, and the like. The following bullets summarize the results of a 
recent (December 2006) search of the three service nodes:

•	 The Army node (see http://www.msrr.army.mil/) indexes 926 models, 
simulations, and simulators. Of these, fewer than 20 relate to 
individual human cognition, behavior, or performance. Of those, 
four focus on human visual performance (e.g., VISEO), three on 
human-in-the-loop (HIL) simulators, one on anthropometry (Jack), 
and the remaining few on four distinct behavior models: IMPRINT, 
IUSS, MATREX, and OneSAF (more on these later). Of the same 
926 modeling resources, only three relate to group or organizational 
modeling: C3GRID (built on MATREX), a crowd model based on 
diffusion kinetics (RDEBBSM), and a software tool for building an 
organizational model (C3TRACE). Searching for models associ-
ated with the keywords “culture/cultural,” “economic,” “ethnic,” 

11 It is beyond the scope of this study to attempt to do a forensic analysis of DMSO per-
formance in this area. A number of factors may have contributed: a problem scope that was 
simply “too big” for the funding and personnel resources available to DMSO; a science and 
technology portfolio decision that emphasized simulation engineering issues over basic science 
and technology; a political/economic environment that pitted DMSO against the entrenched 
M&S agencies in the services (Army, Navy, Air Force) and other agencies; etc. But it certainly 
would be worth revisiting the office’s past history, should recommendations be made to reju-
venate the office or to create a new one with similar responsibilities.
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“political,” “religion/religious,” and “social” yielded no hits on 
the database.12

•	 The Air Force node (see http://afmsrr.afams.af.mil/) indexes 54 
models, 39 simulations, and 26 simulators. Of these, less than 
a dozen relate to individual human cognition, behavior, or per-
formance, and of these, two refer to HIL simulators, one to 
anthropometry (INTERMEDIATE), one to decision aiding (for 
target prioritization), and the remaining few on generic frame-
works (DIAS, FLAMES, ICET) or distinct behavior models (CART/
IMPRINT, JSAF, OMAR, and STELLA). Searching for models 
associated with the keywords “political” and “social” called up the 
DIAS generic framework and the IO suite for command and con-
trol warfare, both developed by the Air Force Agency for Model
ing and Simulation (AFAMS), but neither explicitly representing 
human behavior. Models associated with economic features were 
focused on acquisition, and no models were associated with the 
terms “culture/cultural,” “ethnic,” or “religion/religious.”

•	 The Navy node (see http://nmso.navy.mil/) indexes 832 models 
and simulations. Of these, fewer than a dozen relate to individual 
human cognition, behavior, or performance, with most focusing 
on HIL simulations or human visual performance. Only one dis-
tinct (cognitive) behavioral model is called out: the Air Defense 
Commander simulation (full name Autonomous Agent-Based 
Simulation of an AEGIS Cruiser Combat Information Center 
Performing Battle Group Air-Defense Commander Operations), 
which models small-team performance in C2 (Navy Modeling 
and Simulation Office, 2004). Searching for models associated 
with the keywords “culture/cultural,” “economic,” “ethnic,” 
“organization/organizational,” “political,” “religion/religious,” or 
“social” yielded no hits on the database.13

One might be led to conclude on the basis of these results that the M&S 
community is not active in developing models of individual and group 
behavior. This is not the case. Rather, MSIAC is simply not keeping pace 
with the explosive development and application of behavioral models that 

12 The term “economic” did identify two tools not related to human economic behaviors, 
and the “social” search term did identify the SPECTRUM facility at the National Simulation 
Center at Ft. Leavenworth, which claims to “use a subject matter expert developed database 
to describe the political, economic, and social characteristics of the region being simulated” for 
use in HIL war-gaming simulations. The SPECTRUM description was last updated in 1998.

13 The “organization/organizational” keyword did identify several organization-level trainers 
used by the Navy and dependent on HIL operation but not organization-level behavior 
models.
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started in the mid-1990s and continues to grow today, both inside DoD 
and in the behavioral research and computational modeling community. 
And no one else is keeping pace with the M&S effort either, even within 
DoD. There simply is no comprehensive archive or summary of all human 
behavioral models developed for or applied by DoD, although several 
organizations have specialized “snapshots” with associated information on 
their state of technical readiness, limitations, availability, etc. Clearly, an 
across-DoD survey, maintained in a regularly updated fashion, would be 
particularly valuable, especially if it went beyond a simple verbal descrip-
tion and attempted to describe each M&S resource in a common ontology 
or framework, so that comparisons could be made across models and 
simulations.

Selected Current DoD Behavioral Modeling Efforts

A complete survey of the state of IOS model development and appli-
cation (both inside and outside DoD but having potential for use in DoD 
applications) goes beyond the charge of this committee. We can, however, 
give a brief overview of some of the more visible efforts14 on the basis of 
surveys conducted outside MSIAC and on the basis of the committee’s 
knowledge of the domain. It is appropriate to note that our focus here is 
not on the traditional M&S tools used by the military operations research 
and training communities (e.g., AASPEM, CASTFOREM, CBS, CCTT, 
CSSTSS, EAAGLES, EADSIM, EAGLE, JANUS, JCATS, JCM, JWARS, 
MTWS, TACBRAWLER, TACSIM, WARSIM2000), which focus on the 
physical aspects of the battlefield and the associated sensor/weapon/C2 sys-
tems. Instead, it is on the complex behaviors generated by the individuals, 
teams, and organizations of people populating the battlespace.15 In fact, 
few IOS models are being used on a daily basis by war-fighters, military 
planners, or military trainers. Most existing models accredited16 for use by 
military personnel are large-scale models of physical systems that do not 
take social, cultural, organizational, or affective factors into account. Key 
exceptions are identified in Appendix Table 2-A1 at the end of this chap-
ter, which tabulates some of the major current efforts in this latter area of 

14 Many are classified or simply buried in organizational stovepipes, leading to significant 
overlap or duplicative activity.

15 A brief overview of these military simulations is given in National Research Council 
(1998, pp. 33–50).

16 Verification, validation, and accreditation is a well-defined DoD process; an overview of 
this overall “certification” process is given in the section entitled “Military Approaches to 
Verification and Validation” in Chapter 8. In simple terms, accreditation occurs when the 
accrediting agency (the owner of the simulation) places its stamp of approval on the valida-
tion results.
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militarily relevant IOS behavioral modeling. In the paragraphs that follow, 
we describe only a few of these activities to provide a general sense of the 
overall effort—since a full review is beyond the scope of this study.

OneSAF Family of Models and Simulations 

The OneSAF family of simulations includes One Semi-Automated Forces 
(OneSAF); OneSAF Objective System (OOS); OneSAF Testbed (OTB); Joint 
Semi-Automated Forces (JSAF); and ModSAF (Modular Semi-Automated 
Forces) and provides some capabilities for modeling human behaviors that 
vary by culture. Underlying this is the OneSAF Test Bed, which is a model 
derived from ModSAF (Parsons and Wittman, 2004). OneSAF has behavior 
representations that are effectively implemented in code and facilities that 
enable the user to rapidly develop instantiated models of new groups, com-
munities, etc., considering a set of social, economic, and political factors. 
Although OneSAF is more flexible and provides better culturally sensitive 
modeling than was previously possible, it still has limitations. One is that 
OneSAF is still under development but is nearing government acceptance 
testing for the initial operating capability. A second limitation is that it is 
not clear at this time how alternative models could be linked to or federated 
with OneSAF. Finally, the structure by which cultural variables are included 
in OneSAF may limit the type of cultural factors that can be included. 

Task Network Models and Tools

Task network models describe actors’ behaviors in terms of inter
dependent tasks to be accomplished in order to achieve an overall goal. 
These models have their foundations in the Navy’s PERT17 chart devel-
opment in the early 1950s and owe their popularity to the ease of con-
structing them and the clear visualization they afford in terms of task 
interdependencies and task completion progress. MicroSAINT18 popular-
ized their use in the 1970s in modeling human performance in tasks via 
task networks by (1) adding simple human performance parameters to each 
block in the network (the likelihood of correct task completion, time to 
complete, etc.); (2) making graphical task network construction easy to do 
by the nonspecialist; and (3) providing a discrete-event standalone simula-
tion environment for exercising the model over time.

Many task network models have been developed for simulating military 
tasks, and the basic MicroSAINT language has been extended by develop-

17 PERT stands for Program Evaluation Review Technique, a methodology closely related to 
the Critical Path Method used to identify bottlenecks in overall task progress.

18 See http://www.adeptscience.co.uk/products/mathsim/microsaint/.
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ment supported by ARL under the IMPRINT program, as well as by sub-
sequent extensions by the Air Force Research Laboratory (AFRL) under the 
CART program, to support embedding into other simulation environments. 
Several derivatives have been developed by the behavior modeling commu-
nity, including C3HPM, which builds on IMPRINT, and C3TRACE and 
HOS, which build directly on MicroSAINT. More sophisticated researchers, 
particularly from the ACT-R community, have made efforts to integrate 
MicroSAINT models with more traditional cognitive architectures.

Cognitive and Cognitive-Affective Architectures and Models

A wide variety of cognitive and cognitive-affective architectures and 
models are represented in Appendix Table 2-A1. Although their history may 
not be as long as the task network models (going back perhaps 25 years to 
the pioneering work of Anderson, 1983), they are remarkably diverse in their 
underlying structures, their associated computational implementations and 
development tools, and their applications, both military and nonmilitary. 
This includes the “pure cognitive” architectures/models, which tend to be 
standalone and used within their own communities (ACT‑R, CLARION, 
COGNET, EPIC, OMAR and D-OMAR, SAMPLE, and Soar); the “hybrid 
cognitive” architectures/models, which bridge the gap between communi-
ties by combining models (EPIC-ACT-R, IMPRINT-ACT-R, Soar-EPIC, and 
others); and the cognitive-affective architectures, which extend the pure 
cognitive into the affective domain (MAMID, MINDS, and PMFServe).

One major commonality among all of the architectures/models is that 
they were developed—initially at least—with the goal of modeling the 
individual human faced with dealing with some sort of cognitive task. 
That focus on the individual has been maintained while extensions have 
been made in many different directions (perception, motor control, affect, 
memory, multitasking, among others). It is only recently that significant 
effort has begun to be devoted to dealing with modeling groups of indi-
viduals, from small teams to large organizations. As described in the agent-
based modeling (ABM) section of Chapter 6, one of the primary barriers 
to representing the behaviors larger groups of individuals using cogni-
tive and cognitive-affective models is the computational constraints: These 
models tend to be very fine-grained, and running a large number of them 
on a single host quickly brings the simulation to a grinding halt. However, 
this is expected to be less of a problem as the hardware’s computational 
speed increases, and better use can also be made of parallelism across mul-
tiple platforms. But a more fundamental problem exists: the lack of social 
knowledge in most of these representations. Cognitive modelers are keenly 
aware of the need to incorporate mental models of the environment they are 
interacting with, but they seem to be less so inclined regarding the mental 
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models of the other agents they are interacting with, perhaps because of 
the infinite regress involved. This is clearly a needed direction for further 
research if this category of ABM is to succeed in modeling larger collections 
of cognitive and cognitive-affective agents.

Multiagent Systems

ABM environments and multiagent systems trade off the complexity 
of individual cognitive-affective agents for an increase in the sheer num-
ber of agents and a concomitant increase in the complexities in interagent 
interactions. These are described in more detail in Chapter 6, but it is worth 
commenting briefly on the three multiagent models highlighted in Appendix 
Table 2-A1 and how they have been extended and applied to DoD questions 
of interest. Construct is a multiagent network simulation framework that 
supports the modeling and analysis of dynamic agent networks that evolve 
over time as a function of agent-to-agent interactions, and it clearly has 
direct applicability to the growth of terrorist networks. CORES is a multi
agent environment that supports the inclusion of DIME/PMESII factors in 
the agent interactions, to support understanding of broader contextual fac-
tors in agent and network behaviors. BioWar combines multiagent models 
of social networks, disease models, and population demographics into a 
single integrated model of the impact of a biological warfare attack on a city. 
Additional multiagent models and frameworks developed at Carnegie Mellon 
University’s Center for Computational Analysis of Social and Organizational 
Systems include DyNet, NetWatch, OrgSim, and VISTA, and the reader is 
referred there for further information (see http://www.casos.cs.cmu.edu/).

For truly large-scale multiagent model development efforts, a number 
of communities are developing domain-free MAS frameworks and toolkits. 
These include SWARM, developed in the Center for the Study of Complex 
Systems (see http://www.cscs.umich.edu) at the University of Michigan; 
the Java-based REPAST agent simulation environment (North et al., 2005; 
Tatara et al., 2006); and MASON, another Java-based multiagent simula-
tion environment, developed at George Mason University (see http://cs.gmu.
edu/~eclab/projects/mason/). At the time of this writing, it is unclear what, 
if any, inroads have been made into the DoD M&S community.

Massively Multiplayer Online Gaming 

America’s Army is an MMOG developed by and for the Army (Zyda, 
Mayberry, McCree, and Davis, 2005). The game was designed as a recruit-
ing (Belanich, Sibley, and Orvis, 2004) and training (Farrell, Klimack, and 
Jacquet, 2003) tool to paint a realistic portrait of combat in the U.S. Army. 
The game falls into a first person shooter (FPS) game genre, and all the 
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game features are based on ���������������������������������������������       the �����������������������������������������      real world. However, it goes well beyond 
being an FPS game (Nieborg, 2004), since social and cultural factors are 
increasingly being embedded in both the scenarios and the attributes of the 
roles that the players can take on. Additional information on America’s 
Army is provided in Chapter 7. 

DIME/PMESII Models

A number of behavior modeling efforts aimed at understanding large-
scale behaviors—at the societal and nation-state levels—are under way to 
explore the effects that DIME actions will have across the full range of the 
PMESII context. These include DARPA’s IBC, PCAS, and ICEWS programs, 
the Air Force’s SROM effort, and JFCOM’s SEAS program.

The Integrated Battle Command (IBC) program (Allen, 2004) empha-
sizes linked and networked behavior models that can support military plan-
ning and decision making for dealing with asymmetric threats embedded 
in an urban environment. The approach clearly recognizes the importance 
of obtaining and maintaining a clear understanding of the complex socio
political context. In terms of planning and executing effects-based opera-
tions (McCrabb, 2001), this translates into the analysis of the potential 
effects that a given set of DIME actions will have across the full range of 
PMESII variables. The key to successfully executing such encompassing 
analyses lies in the development of the embedded behavior models repre-
senting the full range of PMESII variables and how they can be individually 
and collectively affected by specific DIME actions.

A conceptual representation19 of the model “space” is shown in Fig-
ure 2-3, in which the dimensions are the DIME dimensions, the PMESII 
dimensions, and the modeling paradigms themselves, this last shown as 
modeling “families.” As noted in the program description (Allen, 2004; see 
http://www.afcea.org/events/pastevents/documents/AFCEAIICPanel.ppt):

Each model in the family may represent its portion of the domain in a 
manner and level of fidelity quite different from other models. . . . The 
Modeling Paradigms include techniques such as: concept maps, social 
network models, influence diagrams, differential equations, causal models, 
Bayesian networks, Petri nets, event-based simulation, and agent based 

19 Clearly, this is not intended to represent modeling “reality” in any sense but is merely an 
attempt to illustrate (1) the concept of different modeling paradigms/families covering differ-
ent portions of the DIME/PMESII modeling space; (2) the potential for their interacting, e.g., 
outputs of one driving the inputs of another; and (3) the possibility of uncovering “unintended 
consequences” through these interactions. But it must be recognized that, fundamentally, the 
figure is merely an illustration of the concept of multiple models interacting at multiple levels 
and nothing more. 
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simulation. The need for a variety of modeling paradigms also stems from 
the fact that the different domains of knowledge do not lend themselves to 
being represented by one common paradigm such as an influence network. 
Also, human subject matter experts have preferences in the use of different 
paradigms and different paradigms fit different styles of thought.20

The figure also illustrates how different models in different families 
interact via their interconnections (inputs, outputs, and state interactions). 
An analyst may investigate the impact of a DIME action and a model may 
forecast a primary PMESII outcome, but that effect may also “stimulate 
another model that predicts an effect that stimulates another model and in 
a cascade manner, the family of models, in a symbiotic manner, may predict 
another effect. Such cascading can produce astonishing results because, while 
a human may grasp and master a single model, it is unlikely that a human 
can predict the complex interactions between models!” (Allen, 2004; see 
http://www.afcea.org/events/pastevents/documents/AFCEAIICPanel.ppt).

As noted earlier, DARPA has sponsored two other programs focused on 
the identification of potential global hot spots and the forecasting of their 
likely evolution over time: the PCAS program, directed at forecasting the 
likelihood of a nation-state collapse (Popp et al., 2006), and the follow-on 
Integrated Crisis Early Warning System, which has as its goal “the develop-
ment of state-of-the-art computational modeling capabilities that can monitor, 
assess, and forecast, in near-real time, a variety of phenomena associated with 
country instability.” The latter program is in its early stages of development 
(see http://www.darpa.mil/ipto/solicitations/open/07‑10_PIP.pdf).

The Air Force’s Stabilization and Reconstruction Operations Model 
(SROM) (Robbins, Deckro, and Wiley, 2005) analyzes the organizational 
hierarchy, dependencies, interdependencies, exogenous drivers, strengths, 
and weaknesses of a country’s PMESII systems using a complex set of 
interdependent system dynamics representations. SROM models a country 
system in a lumped-parameter fashion as a national model (NM), which 
is then defined in terms of its n regional submodels that interact with 
each other and the NM. Each regional submodel contains six functional 
submodels: the demographics submodel, the insurgent and coalition mili-
tary submodel, critical infrastructure, law enforcement, indigenous security 

20 The two assertions made here are based on the program manager’s long experience in the 
M&S world and generally match what the modeling community has long known, namely, 
that (1) different domains often call for different modeling paradigms (e.g., modeling a social 
network is probably better represented by network modeling methods, than, say, by an 
argumentation framework) and (2) different domain experts have different preferences for 
representing their knowledge to others (e.g., some may be more expressive with a declarative 
expert system approach while others may be more facile with a graphically based Bayesian 
network formalism).
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institutions, and public opinion. The utility of SROM has been demon-
strated using Operation Iraqi Freedom as a case study.

Simulation Frameworks and Tools

In addition to these domain-focused modeling efforts, there are many 
efforts devoted to the development of general-purpose frameworks that 
make the modeler’s job easier. As noted in Table 2-A1, these include the C2 
modeling framework C3GRID, the team/organizational modeling frame-
work DDD, the generic M&S frameworks FLAMES, ICET, and MATREX, 
the social network analysis tool ORA, and the collaboration decision aid 
framework SIAM. Many others exist in or are in development inside DoD, 
as well as outside in the academic and commercial worlds. Of particular 
note are the multiagent development and simulation environments com-
mented on earlier (e.g., MASON, REPAST, and SWARM).

Other Efforts

In addition to these large efforts, there are hundreds of development 
efforts either recently concluded or just under way, varying dramatically in 
scale and focus, to produce representative and useful IOS models for the 
military. At one end is the spectacularly unsuccessful and terminated Joint 
Simulation Systems (JSIMS) effort, which attempted to be all things to all 
people, serving as DoD’s general M&S environment. At the other is the 
IUSS/IWARS M&S program, which is successfully focusing on small-team 
behavior at the squad level. In between are efforts like the now concluded 
MIDAS effort of the National Aeronautics and Space Administration to 
build an “end-to-end” model of the human operator (of rotorcraft), and 
DARPA’s RAID program, aimed at forecasting adversary behavior in the 
urban environment. However, there is no general inventory of what models 
exist and at what level of technical readiness. As a result there is duplication 
of efforts and too little effort at making these existing models interoperable. 
Furthermore, there is a trend for well-educated military personnel with some 
computational training to develop small, special-purpose IOS models that 
meet specific needs. A little programming training, however, does not make 
a good modeler, especially when that modeler is unaware of the importance 
of cognitive, affective, organizational, social, and cultural factors.

Major Challenges for Development of IOS Models for  
Military Applications

The current status of IOS modeling in DoD is the result of the funding 
profile for M&S in the last 10-15 years. Beginning in 1995, DMSO began 
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centralizing funding and development efforts in M&S. The High Level 
Architecture (HLA) and the JSIMS systems are archetypes of efforts funded 
and managed by DMSO during that decade, with funding to other systems 
at the service level cut to focus on these centralized efforts. In the end, after 
spending some $1.8 billion in development funds, JSIMS was canceled and 
the services all had to try to recover from the loss of JSIMS plus the loss of 
development time, effort, and funding on service-specific M&S efforts. 

During this same decade, however, there was an increase in the fund-
ing of models at the basic and applied research levels. This led to the 
development of a large number of models that are particularly relevant 
to the military and may even be used at commands, but that are gener-
ally not yet accredited. Examples of tools that evolved in this period are 
SIAM, ORA, and SEAS. In addition, work in this period gave rise to the 
model-driven experimentation paradigm (MacMillan, Diedrich, Entin, and 
Serfaty, 2005). 

Interoperability Challenges

While some utility has been derived from HLA, its requirement that 
everything be statically defined ahead of time and its reliance on inter
operability at the source code change level mean that the interoperability 
of defense simulations and their ability to change as threats rapidly change 
are greatly diminished. Had a bit of time been spent in the mid-1990s to 
design a dynamically extensible, semantically interoperable simulation infra
structure, defense M&S interoperability would now be more advanced. 
Furthermore, such an effort would have paved the way for incorporation 
of some of the IOS models now emerging. 

Another difficulty with the centralized approach is that it assumes 
that modeling needs can be predefined. It is apparent that, as the military 
mission changes, M&S needs change, and new models are often needed 
immediately. Hence, an alternative distributed paradigm is needed that 
enables rapid access to new models and enables the military to make use of 
the increasing number of models that exist even when they were not devel-
oped expressly for military purposes. A possible alternative paradigm has a 
plug-and-play distributed infrastructure with data distributed across sets of 
servers with appropriate access controls; multiple models and simulations 
for different purposes with appropriate access control; and documentation, 
intelligent tools for aiding the user in determining which tools can be used 
with which data, and web enablement. In this way, any developer could 
place a model in the distributed system.
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Data Collection and Validation Challenges

As noted in the Urban Sunrise report (Air Force Research Laboratory, 
2004), most models to be used in real-world settings need to be tied to 
data. For example, models of insurgents often need as a basis data on the 
insurgency, such as the number of insurgents, modus operandi, sources of 
support, means of interaction, weapons, and location of activities. Data 
collection, however, is often done piecemeal by relying on subject matter 
experts to go out and collect data after a need for those data has been 
demonstrated, or opportunistically, as when a soldier, adversary, or civil-
ian provides unsolicited intelligence (e.g., when an insurgent group posts a 
video of an IED attack on the web). 

This means that new ways of thinking about validation are needed, and 
it means that the models need to operate with uncertain and incomplete 
data, but the science of model creation and validation with incomplete and 
uncertain data does not exist. The nature of the data that are, or can be, 
collected is often not consistent with the data requirements of the existing 
models. For example, a model may require data on who actually interacts 
with whom when all that is available is who is known to have participated 
in what events. 

Applications-focused tools do not exist, such as expert systems for 
identifying for the user what models in their arsenal can be used given 
their data. The data are streaming, and time and location information is 
critical for data to inform action. For example, knowing the location and 
time of IED attacks is critical to identifying courses of action to protect 
U.S. soldiers from future attacks. However, in many cases, databases do not 
contain the time and location data. Moreover, even when the data exist, 
many types of models cannot make use of that information. 

Because important data are classified, many models are developed in a 
vacuum, without access to the real data. Representative and unclassified data 
would be highly valuable and would get a wider range of model developers 
involved. However, the disadvantage is that the models are often tested and 
validated using proxy data that are conceptually different from, and may not 
even have the same data fields as, the classified data. This can result in erro-
neous assumptions of model validity at the classified level and in erroneous 
assumptions by the modelers about what needs to be modeled.

In addition, there are across-the-board needs for better modeling infra-
structure, methods to link models to streaming data, and improved model 
visualization systems. Finally, there is a need for socially intelligent tools for 
collecting and interpreting intelligence information, particularly on insur-
gents and terrorists. IOS model-based fusion and data collection manage-
ment techniques are needed. IOS models for identifying potential missing 
or erroneous data should also be developed.
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A key to successful IOS models in this area is the development of 
measures and procedures that are robust with respect to scale and missing 
data. For example, IOS models of the adversary may need to be able to 
scale to 107 (ten million) actors. Even when there are massive amounts of 
missing and erroneous data, IOS measures need to be robust, appropriate, 
and meaningful. Adversarial models need to be sensitive to cultural factors, 
particularly to alternative goals, preferences for actions, and gender roles. 

CONCLUSION

Current military missions and today’s operating environment have cre-
ated a pervasive need for models that can capture and forecast the behavior 
of humans acting in social units, ranging from small groups and teams to 
neighborhoods, cultural and ethnic groups, and entire societies. IOS models 
are needed to understand adversary and nonadversary behavior and to 
forecast the effects of alternative courses of action on that behavior. Today’s 
broader missions focus not just on COAs for conventional combat with 
well-identified adversaries, but also on COAs for influencing the attitudes 
and behaviors of noncombatants at levels of detail ranging from block-by-
block urban operations to the stability of nation-states. The COAs to be 
analyzed include not just military actions but the broader DIME/PMESII 
dimensions that may influence behavior. IOS models are also needed for 
training and rehearsal, to create realistic environments in which the mili-
tary may test planned COAs and learn new skills associated with cultural 
awareness, joint and coalition operations, and stability and support opera-
tions. IOS models are valuable for design, evaluation, and acquisition as 
well. They can support the evaluation of potential contributions of new 
technologies to effective operations as well as the design of command and 
control organizational architectures that are effective for rapidly changing 
missions and new environments.

Efforts are under way to meet the military’s needs for IOS models, but 
they are fragmented and uncoordinated, with no central direction, little 
information sharing, and no mechanisms to guard against duplication of 
effort in multiple locations. All of the current efforts face challenges for 
interoperability, with models developed from different perspectives unable 
to communicate in any meaningful way. Models also face data collection 
and validation challenges, with data collection efforts often piecemeal and 
unrelated to modeling requirements, and validation strategies frequently 
absent altogether.

The chapters in Part II review the state of the art in IOS modeling to 
evaluate the extent to which current approaches can meet military require-
ments as outlined above. On the basis of that review, we analyze where 
broad gaps exist and recommend a plan of action to fill those gaps.
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Appendix TABLE 2-A1  Selected IOS Models

Acronym
Acronym
Expansion Description Category

Sponsor/ 
Research Center Reference/Website

ACT-R Adaptive Control 
of Thought

A cognitive architecture in which a neural network 
activation system controls the activation of a rule-
based production system model for simulating and 
understanding detailed human cognition. ACT-R 
continues to evolve to perform the full range of 
human perceptual, cognitive, and motor tasks, 
supported largely only in the academic community. 
Has been hybridized with other models, notably 
IMPRINT and Soar.

Cognitive 
architecture and 
modeling framework

ACT-R Research 
Group at Carnegie 
Mellon University 

http://act-r.psy.cmu.edu/

ADC Air Defense 
Commander

Models the operations of an AEGIS Cruiser Combat 
Information Center (CIC) team performing air 
defense duties in a battle group using multiagent 
system (MAS) technology implemented in the Java 
programming language.

Model SPAWARSYSCOM http://www.movesinstitute.org/~shcalfee/
index.html 

America’s 
Army

  Massively multiplayer online game (MMOG), 
starting as a first-person shooter game and now 
evolving to more complex environments and tasks 
and used as a recruiting tool.

Real-time game 
environment

U.S. Army http://www.americasarmy.com/

BioWar Combines computational models of social 
networks, communication media, disease models, 
demographically accurate agent models, wind 
dispersion models, and a diagnostic error model into 
a single integrated model of the impact of a biological 
warfare attack on a city. BioWar moves beyond 
existing epidemiological models by accounting for the 
heterogeneity of social networks and the geographical 
distribution of people when forecasting disease 
outbreaks.

Hybrid model 
incorporating social 
networks, disease 
models, dispersion 
models

Carnegie Mellon 
University, DARPA, 
CDC, NSF

http://www.casos.cs.cmu.edu/projects/
biowar/index.html

C3GRID Command, 
Control, 
Communication 
Grid Model

Parametric C4ISR modeling capacity for network-
centric warfare. Provides the capability to simulate 
the common operating picture management for a 
given force structure at the platform level.

Network modeling 
tool

U.S. Army, 
RDECOM

http://www.msrr.army.mil/index.
cfm?RID=MNS_A_1001514

C3HPM C3 Human 
Performance Model

Provides high-resolution modeling of individual 
human operators in terms of task performance and 
human decision processes in the execution of combat 
tactics, techniques, and procedures. Built on top of 
IMPRINT and operates in the MATREX simulation 
environment.

Modeling framework Army Research 
Laboratory (ARL)

http://www.arl.army.mil/ARL-directorates/
HRED/imb/imprint/References.pdf
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Appendix TABLE 2-A1  Selected IOS Models

Acronym
Acronym
Expansion Description Category

Sponsor/ 
Research Center Reference/Website

ACT-R Adaptive Control 
of Thought

A cognitive architecture in which a neural network 
activation system controls the activation of a rule-
based production system model for simulating and 
understanding detailed human cognition. ACT-R 
continues to evolve to perform the full range of 
human perceptual, cognitive, and motor tasks, 
supported largely only in the academic community. 
Has been hybridized with other models, notably 
IMPRINT and Soar.

Cognitive 
architecture and 
modeling framework

ACT-R Research 
Group at Carnegie 
Mellon University 

http://act-r.psy.cmu.edu/

ADC Air Defense 
Commander

Models the operations of an AEGIS Cruiser Combat 
Information Center (CIC) team performing air 
defense duties in a battle group using multiagent 
system (MAS) technology implemented in the Java 
programming language.

Model SPAWARSYSCOM http://www.movesinstitute.org/~shcalfee/
index.html 

America’s 
Army

  Massively multiplayer online game (MMOG), 
starting as a first-person shooter game and now 
evolving to more complex environments and tasks 
and used as a recruiting tool.

Real-time game 
environment

U.S. Army http://www.americasarmy.com/

BioWar Combines computational models of social 
networks, communication media, disease models, 
demographically accurate agent models, wind 
dispersion models, and a diagnostic error model into 
a single integrated model of the impact of a biological 
warfare attack on a city. BioWar moves beyond 
existing epidemiological models by accounting for the 
heterogeneity of social networks and the geographical 
distribution of people when forecasting disease 
outbreaks.

Hybrid model 
incorporating social 
networks, disease 
models, dispersion 
models

Carnegie Mellon 
University, DARPA, 
CDC, NSF

http://www.casos.cs.cmu.edu/projects/
biowar/index.html

C3GRID Command, 
Control, 
Communication 
Grid Model

Parametric C4ISR modeling capacity for network-
centric warfare. Provides the capability to simulate 
the common operating picture management for a 
given force structure at the platform level.

Network modeling 
tool

U.S. Army, 
RDECOM

http://www.msrr.army.mil/index.
cfm?RID=MNS_A_1001514

C3HPM C3 Human 
Performance Model

Provides high-resolution modeling of individual 
human operators in terms of task performance and 
human decision processes in the execution of combat 
tactics, techniques, and procedures. Built on top of 
IMPRINT and operates in the MATREX simulation 
environment.

Modeling framework Army Research 
Laboratory (ARL)

http://www.arl.army.mil/ARL-directorates/
HRED/imb/imprint/References.pdf

continued
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Acronym
Acronym
Expansion Description Category

Sponsor/ 
Research Center Reference/Website

C3TRACE Command, 
Control, and 
Communications— 
Techniques for 
the Reliable 
Assessment of 
Concept Execution 

Network modeling tool to support the evaluation 
of different organizational structures and 
communications network topologies to evaluate 
overall C3 system performance. Built on top of 
MicroSAINT.

Modeling framework ARL www.hfes.org/web/BulletinPdf/
bulletin0405.pdf

CART Combat 
Automation 
Requirements 
Testbed

Network modeling tool initially applied to single-
pilot model operating JSF and subsequently applied 
to a nine-member time critical targeting (TCT) cell 
in an air operations center (AOC). Built on top of 
IMPRINT, it enabled one of the first instances of 
integrating MicroSAINT with an external world 
model simulation. 

Modeling framework USAF AFRL/HE http://www.maad.com/MaadWeb/
ongoing_projects/onprojma.htm#Combat

CLARION Connectionist 
Learning with 
Adoptive Rule 
Induction ON-line

Cognitive architecture for connectionist/neural 
representation of implicit (subsymbolic or neural 
network) knowledge and semantic representation 
of explicit (symbolic chunks and rules) knowledge. 
Provides for explicit representation of static 
knowledge as well as acquisition of subsymbolic 
knowledge through learning over time.

Cognitive 
architecture for 
individual entity 
modeling

Dept. of Cognitive 
Science, Rensselaer 
Polytechnic Institute; 
Army Research 
Institute (ARI)

http://www.cogsci.rpi.
edu/~rsun/clarion-ub.html

COGNET, 
iGEN

Cognition as a 
Network of Tasks 

COGNET is an executable cognitive architecture and 
iGEN is the associated development environment. 
Both have been applied in a number of DoD-
sponsored modeling exercises, most notably in the 
AFRL/HE AMBR air traffic control human behavior 
modeling and simulation program and in the Navy 
TADMUS antiaircraft defense modeling effort. Little 
or no technical literature appears to be available 
describing the technical details and therefore used 
little outside CHI Systems, its commercial developer.

Cognitive 
architecture and 
model development 
environment

USAF AFRL/HE and 
Navy SPAWAR

http://www.chisystems.com/

Construct A multiagent model of group and organizational 
behavior in which the agents communicate, learn, 
and make decisions in a continuous cycle, dependent 
on the perceptions and goals of the individual 
and the goals and culture of the group. When 
agents interact they communicate and learn both 
task knowledge and cognitive knowledge. These 
dynamic relationships are grounded in structuration 
theory, which is the notion of construction and 
reconstruction of the social system through human 
interaction based on rules and resources.

Multiagent dynamic 
network model

Carnegie Mellon 
University, DARPA, 
ONR

http://www.casos.cs.cmu.edu/projects/
construct/index.html

Appendix TABLE 2-A1  Continued
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Acronym
Acronym
Expansion Description Category

Sponsor/ 
Research Center Reference/Website

C3TRACE Command, 
Control, and 
Communications— 
Techniques for 
the Reliable 
Assessment of 
Concept Execution 

Network modeling tool to support the evaluation 
of different organizational structures and 
communications network topologies to evaluate 
overall C3 system performance. Built on top of 
MicroSAINT.

Modeling framework ARL www.hfes.org/web/BulletinPdf/
bulletin0405.pdf

CART Combat 
Automation 
Requirements 
Testbed

Network modeling tool initially applied to single-
pilot model operating JSF and subsequently applied 
to a nine-member time critical targeting (TCT) cell 
in an air operations center (AOC). Built on top of 
IMPRINT, it enabled one of the first instances of 
integrating MicroSAINT with an external world 
model simulation. 

Modeling framework USAF AFRL/HE http://www.maad.com/MaadWeb/
ongoing_projects/onprojma.htm#Combat

CLARION Connectionist 
Learning with 
Adoptive Rule 
Induction ON-line

Cognitive architecture for connectionist/neural 
representation of implicit (subsymbolic or neural 
network) knowledge and semantic representation 
of explicit (symbolic chunks and rules) knowledge. 
Provides for explicit representation of static 
knowledge as well as acquisition of subsymbolic 
knowledge through learning over time.

Cognitive 
architecture for 
individual entity 
modeling

Dept. of Cognitive 
Science, Rensselaer 
Polytechnic Institute; 
Army Research 
Institute (ARI)

http://www.cogsci.rpi.
edu/~rsun/clarion-ub.html

COGNET, 
iGEN

Cognition as a 
Network of Tasks 

COGNET is an executable cognitive architecture and 
iGEN is the associated development environment. 
Both have been applied in a number of DoD-
sponsored modeling exercises, most notably in the 
AFRL/HE AMBR air traffic control human behavior 
modeling and simulation program and in the Navy 
TADMUS antiaircraft defense modeling effort. Little 
or no technical literature appears to be available 
describing the technical details and therefore used 
little outside CHI Systems, its commercial developer.

Cognitive 
architecture and 
model development 
environment

USAF AFRL/HE and 
Navy SPAWAR

http://www.chisystems.com/

Construct A multiagent model of group and organizational 
behavior in which the agents communicate, learn, 
and make decisions in a continuous cycle, dependent 
on the perceptions and goals of the individual 
and the goals and culture of the group. When 
agents interact they communicate and learn both 
task knowledge and cognitive knowledge. These 
dynamic relationships are grounded in structuration 
theory, which is the notion of construction and 
reconstruction of the social system through human 
interaction based on rules and resources.

Multiagent dynamic 
network model

Carnegie Mellon 
University, DARPA, 
ONR

http://www.casos.cs.cmu.edu/projects/
construct/index.html

Appendix TABLE 2-A1  Continued
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Acronym
Acronym
Expansion Description Category

Sponsor/ 
Research Center Reference/Website

CORES Complex 
Organizational 
Reasoning System

A multiagent network simulation model that uses 
organizational, social, political, and economic 
dynamics to generate forecasts of the likely actions 
and responses of adversarial actors. Scenarios are 
represented in a framework consisting of actors, 
resources, goals, actions, effects, and relations. Based 
on these entities, the model generates forecasts of 
likely actions and responses of actors. Potential 
areas of application include military intelligence 
and learning, political and corporate negotiation, 
disaster relief and crisis management, and business 
intelligence.

Multiagent network 
model, incorporating 
DIME/PMESII 
factors

Carnegie Mellon 
University, DARPA, 
NSF

http://www.casos.cs.cmu.edu/ 
(Kowalchuck, Singh, and Carley, 2004)

DDD Distributed 
Dynamic 
Decision-making

Focuses on team functions that drive performance, 
such as communications and coordination. Model 
users can specify allocations of people, equipment, 
and material, and specify performance objectives/
constraints, such as job/mission objectives, timing, 
and coordination requirements. DDD models the 
resultant team/environment interactions based on 
empirically observed team/organization interactions 
and provides a simulation environment for 
calculating team performance metrics, based on a 
team performance model embedded in the simulator.

Team/organization 
performance 
modeling 
tool/environment

Aptima; AFOSR, 
AFRL, ARL, DOT, 
NASA, NavAir, 
Office of Naval 
Research (ONR) 

http://www.aptima.com/a-sim.php

DIAS Dynamic 
Information 
Architecture 
System

Object-oriented framework for integrating disparate 
multidisciplinary simulation models, supporting 
legacy code reuse, and modeling of cooperative 
behaviors of agents.

Generic simulation 
framework

Argonne National 
Lab, DIS Division

http://www.dis.anl.gov/DIAS/

EPIC Executive-Process/
Interactive Control

Cognitive modeling architecture for human 
information processing that accurately accounts for 
the detailed timing of parallel human perceptual, 
cognitive, and motor activity, in multitasking 
situations. Primarily an academic tool for researchers 
interested in fine-level details of perception and 
cognition. Applied to operator-centered design of 
undersea ship systems and many other systems.

Cognitive 
architecture for 
individual entity 
modeling

University of 
Michigan, ONR

http://www.eecs.umich.edu/~kieras/ 
epic.html

FLAMES Flexible Analysis 
Modeling and 
Exercise System 

A framework for developing constructive simulations 
and interfaces between constructive, virtual, and live 
simulations. It has applications that support scenario 
definition, scenario execution, scenario postprocessing 
and scenario visualization.

Generic framework USAF AFRL/MN and 
NAIC

http://www.ternion.com

Appendix TABLE 2-A1  Continued
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Acronym
Acronym
Expansion Description Category

Sponsor/ 
Research Center Reference/Website

CORES Complex 
Organizational 
Reasoning System

A multiagent network simulation model that uses 
organizational, social, political, and economic 
dynamics to generate forecasts of the likely actions 
and responses of adversarial actors. Scenarios are 
represented in a framework consisting of actors, 
resources, goals, actions, effects, and relations. Based 
on these entities, the model generates forecasts of 
likely actions and responses of actors. Potential 
areas of application include military intelligence 
and learning, political and corporate negotiation, 
disaster relief and crisis management, and business 
intelligence.

Multiagent network 
model, incorporating 
DIME/PMESII 
factors

Carnegie Mellon 
University, DARPA, 
NSF

http://www.casos.cs.cmu.edu/ 
(Kowalchuck, Singh, and Carley, 2004)

DDD Distributed 
Dynamic 
Decision-making

Focuses on team functions that drive performance, 
such as communications and coordination. Model 
users can specify allocations of people, equipment, 
and material, and specify performance objectives/
constraints, such as job/mission objectives, timing, 
and coordination requirements. DDD models the 
resultant team/environment interactions based on 
empirically observed team/organization interactions 
and provides a simulation environment for 
calculating team performance metrics, based on a 
team performance model embedded in the simulator.

Team/organization 
performance 
modeling 
tool/environment

Aptima; AFOSR, 
AFRL, ARL, DOT, 
NASA, NavAir, 
Office of Naval 
Research (ONR) 

http://www.aptima.com/a-sim.php

DIAS Dynamic 
Information 
Architecture 
System

Object-oriented framework for integrating disparate 
multidisciplinary simulation models, supporting 
legacy code reuse, and modeling of cooperative 
behaviors of agents.

Generic simulation 
framework

Argonne National 
Lab, DIS Division

http://www.dis.anl.gov/DIAS/

EPIC Executive-Process/
Interactive Control

Cognitive modeling architecture for human 
information processing that accurately accounts for 
the detailed timing of parallel human perceptual, 
cognitive, and motor activity, in multitasking 
situations. Primarily an academic tool for researchers 
interested in fine-level details of perception and 
cognition. Applied to operator-centered design of 
undersea ship systems and many other systems.

Cognitive 
architecture for 
individual entity 
modeling

University of 
Michigan, ONR

http://www.eecs.umich.edu/~kieras/ 
epic.html

FLAMES Flexible Analysis 
Modeling and 
Exercise System 

A framework for developing constructive simulations 
and interfaces between constructive, virtual, and live 
simulations. It has applications that support scenario 
definition, scenario execution, scenario postprocessing 
and scenario visualization.

Generic framework USAF AFRL/MN and 
NAIC

http://www.ternion.com
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Acronym
Acronym
Expansion Description Category

Sponsor/ 
Research Center Reference/Website

HOS Human Operator 
Simulator

HOS V is a MicroSAINT-based task-level simulation 
language for the individual human operator. Invokes 
micro models for primitives like perception, decision, 
and action. The output of HOS V consists of task 
performance timelines, errors, user-defined system 
performance measures, and component, person, and 
other resource utilization. Has been incorporated into 
COGNET to support modeling of low-level operator 
activities.

Language for 
individual operator 
task modeling

ARL http://www.dtic.mil/dticasd/ddsm/closed/
ddsm0023.html

IBC Integrated Battle 
Command

The IBC framework provides a means of integrating 
disparate environmental and IOS behavior models 
to support the analysis of the potential effects that 
a given set of DIME actions will have across the 
full range of PMESII variables, at the nation-state 
level. Each model in IBC may represent its portion 
of the domain in a manner and level of fidelity quite 
different from other models. Modeling paradigms 
include such techniques as concept maps, social 
network models, influence diagrams, differential 
equations, causal models, Bayesian networks, Petri 
nets, event-based simulation, and agent-based 
simulation. 

Framework for 
integrating different 
DIME/PMESII 
models

DARPA http://www.darpa.mil/sto/solicitations/IBC/
index.htm (Allen, 2004)

ICET Integrated Concept 
Evaluation Tool 

Addresses modeling, simulation, and analysis of 
advanced cross-weapons communications concepts. 
Built on top of FLAMES.

Generic framework USAF AFRL/MN and 
NAIC

http://www.ternion.com

ICEWS Integrated Crisis 
Early Warning 
System

Goal is “the development of state-of-the-art 
computational modeling capabilities that can 
monitor, assess, and forecast, in near-real time, 
a variety of phenomena associated with country 
instability.” This is a relatively recent start with no 
publications as of this date. 

Decision aid with 
embedded models 
of nation-state 
behaviors

DARPA IXO http://www.darpa.mil/ipto/solicitations/
open/07-10_PIP.pdf

IMPRINT Improved 
Performance 
Research 
Integration Tool

A stochastic task network modeling tool for the 
individual soldier. Task analysis is used as a starting 
point to assess the interaction of soldier and system 
performance. A network is constructed representing 
the flow and performance time and accuracy for 
operational and maintenance missions. Workload 
profiles for crew members are generated so the 
workload distribution and peaks and valleys can be 
examined. The underlying engine is the MicroSAINT 
task network modeling environment.

Human task 
modeling 
environment

ARL http://www.arl.army.mil/ARL-Directorates/
HRED/imb/imprint/imprint.htm

Appendix TABLE 2-A1  Continued
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Acronym
Acronym
Expansion Description Category

Sponsor/ 
Research Center Reference/Website

HOS Human Operator 
Simulator

HOS V is a MicroSAINT-based task-level simulation 
language for the individual human operator. Invokes 
micro models for primitives like perception, decision, 
and action. The output of HOS V consists of task 
performance timelines, errors, user-defined system 
performance measures, and component, person, and 
other resource utilization. Has been incorporated into 
COGNET to support modeling of low-level operator 
activities.

Language for 
individual operator 
task modeling

ARL http://www.dtic.mil/dticasd/ddsm/closed/
ddsm0023.html

IBC Integrated Battle 
Command

The IBC framework provides a means of integrating 
disparate environmental and IOS behavior models 
to support the analysis of the potential effects that 
a given set of DIME actions will have across the 
full range of PMESII variables, at the nation-state 
level. Each model in IBC may represent its portion 
of the domain in a manner and level of fidelity quite 
different from other models. Modeling paradigms 
include such techniques as concept maps, social 
network models, influence diagrams, differential 
equations, causal models, Bayesian networks, Petri 
nets, event-based simulation, and agent-based 
simulation. 

Framework for 
integrating different 
DIME/PMESII 
models

DARPA http://www.darpa.mil/sto/solicitations/IBC/
index.htm (Allen, 2004)

ICET Integrated Concept 
Evaluation Tool 

Addresses modeling, simulation, and analysis of 
advanced cross-weapons communications concepts. 
Built on top of FLAMES.

Generic framework USAF AFRL/MN and 
NAIC

http://www.ternion.com

ICEWS Integrated Crisis 
Early Warning 
System

Goal is “the development of state-of-the-art 
computational modeling capabilities that can 
monitor, assess, and forecast, in near-real time, 
a variety of phenomena associated with country 
instability.” This is a relatively recent start with no 
publications as of this date. 

Decision aid with 
embedded models 
of nation-state 
behaviors

DARPA IXO http://www.darpa.mil/ipto/solicitations/
open/07-10_PIP.pdf

IMPRINT Improved 
Performance 
Research 
Integration Tool

A stochastic task network modeling tool for the 
individual soldier. Task analysis is used as a starting 
point to assess the interaction of soldier and system 
performance. A network is constructed representing 
the flow and performance time and accuracy for 
operational and maintenance missions. Workload 
profiles for crew members are generated so the 
workload distribution and peaks and valleys can be 
examined. The underlying engine is the MicroSAINT 
task network modeling environment.

Human task 
modeling 
environment

ARL http://www.arl.army.mil/ARL-Directorates/
HRED/imb/imprint/imprint.htm
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Acronym
Acronym
Expansion Description Category

Sponsor/ 
Research Center Reference/Website

IUSS,
IWARS

Integrated Unit 
Simulation System, 
Infantry Warrior 
Simulation 

Constructive, force-on-force model for assessing the 
combat worth of systems and subsystems for both 
individuals and small-unit dismounted war-fighters 
in high-resolution combat operations. Early versions 
were labeled IUSS. Current version, IWARS, is being 
built on IUSS Version 4 and the AMSAA Infantry 
MOUT Simulation (AIMS) models.

Modeling framework 
and specific small 
unit models for 
infantry behaviors

Army Natick Soldier 
Center/AMSAA

http://nsc.natick.army.mil/media/fact/ss&t/
IWARS.PDF

JSAF Joint Semi-
Automated Force

With its roots in the DARPA Synthetic Theater of 
War (STOW) program and derived from ModSAF, 
the JSAF simulation provides entity-level simulation 
of air, ground, and maritime forces in support of 
command and staff training and mission rehearsal. 
The JSAF federation provides a distributed modeling 
and simulation (M&S) framework composed of 
multiple federates to represent a realistic synthetic 
environment; model C2, logistics, and weapon 
effects; provide automated reasoning of entities 
via simple task behaviors and more advanced pilot 
behavior modeling via TacAir Soar; and interface 
with simulation and real-world systems (e.g., DIS, 
HLA, C4I Gateways). Based on technology developed 
prior to OneSAF.

Computer-generated 
force (CGF) 
application for 
simulating a wide 
range of cross-service 
military entities 

Joint Forces 
Command (JFCOM) 
Training and Analysis 
Center

http://afmsrr.afams.af.mil/ 
index.cfm?RID=MDL_AF_1000066

JSIMS Joint Simulation 
Systems

A federation of service-unique models of service-
specific entities, based on a high-level architecture, 
common standards, and common protocols. JSIMS 
was going to be the primary M&S tool to support 
future joint and service training, education, doctrine 
development, and mission rehearsal for the Army, 
Air Force, Navy, DIA, DISA, NASM, TRANSCOM, 
and SOCOM. JSIMS was going to be progressively 
developed into a robust, interactive joint synthetic 
battlespace (JSB) for training strategic national 
joint tasks and joint and service tactical tasks in all 
phases of operations (mobilization, deployment, 
employment, sustainment, and redeployment). After 
nearly 7 years and $2 billion of investment, it was 
cancelled in 2004.

M&S environment 
for all DoD needs

JFCOM N/A
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Acronym
Acronym
Expansion Description Category

Sponsor/ 
Research Center Reference/Website

IUSS,
IWARS

Integrated Unit 
Simulation System, 
Infantry Warrior 
Simulation 

Constructive, force-on-force model for assessing the 
combat worth of systems and subsystems for both 
individuals and small-unit dismounted war-fighters 
in high-resolution combat operations. Early versions 
were labeled IUSS. Current version, IWARS, is being 
built on IUSS Version 4 and the AMSAA Infantry 
MOUT Simulation (AIMS) models.

Modeling framework 
and specific small 
unit models for 
infantry behaviors

Army Natick Soldier 
Center/AMSAA

http://nsc.natick.army.mil/media/fact/ss&t/
IWARS.PDF

JSAF Joint Semi-
Automated Force

With its roots in the DARPA Synthetic Theater of 
War (STOW) program and derived from ModSAF, 
the JSAF simulation provides entity-level simulation 
of air, ground, and maritime forces in support of 
command and staff training and mission rehearsal. 
The JSAF federation provides a distributed modeling 
and simulation (M&S) framework composed of 
multiple federates to represent a realistic synthetic 
environment; model C2, logistics, and weapon 
effects; provide automated reasoning of entities 
via simple task behaviors and more advanced pilot 
behavior modeling via TacAir Soar; and interface 
with simulation and real-world systems (e.g., DIS, 
HLA, C4I Gateways). Based on technology developed 
prior to OneSAF.

Computer-generated 
force (CGF) 
application for 
simulating a wide 
range of cross-service 
military entities 

Joint Forces 
Command (JFCOM) 
Training and Analysis 
Center

http://afmsrr.afams.af.mil/ 
index.cfm?RID=MDL_AF_1000066

JSIMS Joint Simulation 
Systems

A federation of service-unique models of service-
specific entities, based on a high-level architecture, 
common standards, and common protocols. JSIMS 
was going to be the primary M&S tool to support 
future joint and service training, education, doctrine 
development, and mission rehearsal for the Army, 
Air Force, Navy, DIA, DISA, NASM, TRANSCOM, 
and SOCOM. JSIMS was going to be progressively 
developed into a robust, interactive joint synthetic 
battlespace (JSB) for training strategic national 
joint tasks and joint and service tactical tasks in all 
phases of operations (mobilization, deployment, 
employment, sustainment, and redeployment). After 
nearly 7 years and $2 billion of investment, it was 
cancelled in 2004.

M&S environment 
for all DoD needs

JFCOM N/A
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Acronym
Acronym
Expansion Description Category

Sponsor/ 
Research Center Reference/Website

MAMID Methodology 
for Analysis 
and Modeling 
of Individual 
Differences

An integrated symbolic architecture, models high-
level decision making, with focus on the role of 
affective factors (emotions and traits). MAMID 
models the cognitive appraisal process to dynamically 
generate emotions in response to incoming stimuli 
and models the subsequent effects of these emotions 
on distinct stages of decision making. Its parametric 
methodology supports the modeling of multiple, 
interacting individual differences and facilitates the 
rapid creation of distinct agent profiles.

Cognitive 
architecture for 
individual entity 
modeling

Army Research 
Institute (ARI, 
NASA, AFOSR)

http://www.psychometrixassociates.com/
hudl_mamid.pdf

MATREX Modeling 
Architecture 
for Technology 
Research & 
Experimentation

The RDECOM-supported MATREX STO (science 
and technology objective) enables the integration 
of interoperable component engineering-level 
simulations and models that conform to a common 
architecture specification. MATREX is a framework, 
not a model, designed to integrate existing models 
into a robust representation of the battlespace 
(terrain, dynamic environmental effects, and physics-
based modeling). It will be used to support and 
augment testing and training in either human-in-the-
loop or constructive simulations. It will also support 
the integration of human behavioral models, such as 
IWARS, but does not support the direct construction 
of such models.

M&S environment 
for all Army needs

Army RDECOM N/A

MicroSAINT Microprocessor-
based Systems 
Analysis of 
Integrated 
Networks

A discrete-event network simulation language 
for developing task network models of humans 
performing well-defined sequential tasks. It combines 
the operator with the external world model entities 
(e.g., airplanes), making plug-in operator models 
difficult to implement. Many models have been 
developed for military simulations, and the basic 
language has been extended by development 
supported by ARL under the IMPRINT program 
and by subsequent extensions by AFRL under the 
CART program. The language is particularly popular 
with modelers having little background in human 
perceptual or cognitive processes because of its ease 
of use. More sophisticated researchers, particularly 
from the ACT-R community, have made efforts to 
integrate MicroSAINT models with more traditional 
cognitive architectures.

Simulation language 
and tools for 
developing task-
network models of 
human behavior

Micro Analysis and 
Design, ARL

http://www.maad.com/index.pl/ 
micro_saint
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Acronym
Acronym
Expansion Description Category

Sponsor/ 
Research Center Reference/Website

MAMID Methodology 
for Analysis 
and Modeling 
of Individual 
Differences

An integrated symbolic architecture, models high-
level decision making, with focus on the role of 
affective factors (emotions and traits). MAMID 
models the cognitive appraisal process to dynamically 
generate emotions in response to incoming stimuli 
and models the subsequent effects of these emotions 
on distinct stages of decision making. Its parametric 
methodology supports the modeling of multiple, 
interacting individual differences and facilitates the 
rapid creation of distinct agent profiles.

Cognitive 
architecture for 
individual entity 
modeling

Army Research 
Institute (ARI, 
NASA, AFOSR)

http://www.psychometrixassociates.com/
hudl_mamid.pdf

MATREX Modeling 
Architecture 
for Technology 
Research & 
Experimentation

The RDECOM-supported MATREX STO (science 
and technology objective) enables the integration 
of interoperable component engineering-level 
simulations and models that conform to a common 
architecture specification. MATREX is a framework, 
not a model, designed to integrate existing models 
into a robust representation of the battlespace 
(terrain, dynamic environmental effects, and physics-
based modeling). It will be used to support and 
augment testing and training in either human-in-the-
loop or constructive simulations. It will also support 
the integration of human behavioral models, such as 
IWARS, but does not support the direct construction 
of such models.

M&S environment 
for all Army needs

Army RDECOM N/A

MicroSAINT Microprocessor-
based Systems 
Analysis of 
Integrated 
Networks

A discrete-event network simulation language 
for developing task network models of humans 
performing well-defined sequential tasks. It combines 
the operator with the external world model entities 
(e.g., airplanes), making plug-in operator models 
difficult to implement. Many models have been 
developed for military simulations, and the basic 
language has been extended by development 
supported by ARL under the IMPRINT program 
and by subsequent extensions by AFRL under the 
CART program. The language is particularly popular 
with modelers having little background in human 
perceptual or cognitive processes because of its ease 
of use. More sophisticated researchers, particularly 
from the ACT-R community, have made efforts to 
integrate MicroSAINT models with more traditional 
cognitive architectures.

Simulation language 
and tools for 
developing task-
network models of 
human behavior

Micro Analysis and 
Design, ARL

http://www.maad.com/index.pl/ 
micro_saint
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Acronym
Acronym
Expansion Description Category

Sponsor/ 
Research Center Reference/Website

MIDAS Man-machine 
Integration Design 
and Analysis 
System

Developed to support helicopter cockpit design for 
the Army, with a primary focus on anthropometry, 
physical layout of instrumentation, and operator 
workload. Primitive sensory models drive a 
production rule system to drive activity selection 
effected by simple motor models of the operator’s 
limbs. A Z-scheduler handles rule collisions, but 
its psychological basis is unclear. MIDAS was a 
standalone system with a single instantiation at 
NASA Ames, and little public documentation is 
available regarding the detailed cognitive structures 
employed.

End-to-end 
workstation for the 
design of multicrew 
helicopter cockpits, 
with embedded 
operator models

Army Aeroflight 
Dynamics 
Laboratory, NASA 
Ames Research 
Center

http://caffeine.arc.nasa.gov/midas/ 
New_MIDAS_Design.html

MINDS Modeling 
Individual 
Differences and 
Stressors

The MINDS Behavior Moderator Engine (BME) 
has been developed as a plug-in for other cognitive 
architectures (e.g., ACT-R, OMAR, SAMPLE, Soar), 
as a means for generating personality- or stress-
based moderators that can moderate structures or 
parameters of the target cognitive architecture, to 
emulate, for example, the effect of fatigue level on 
perception or fear on cognitive task performance. 
MINDS has been integrated with the SAMPLE 
cognitive architecture and embedded in the IWARS 
simulation environment to model infantry squad 
leader decision making.

Generic behavior 
moderator engine 
for use in individual 
entity cognitive 
architectures

Army Natick Soldier 
Systems Center, ONR

(Neal Reilly, Bachman, Harper, Marotta, 
and Pfautz, 2007) 
(Neal Reilly, Harper, and Marotta, 2007) 

ModSAF Modular Semi-
Automated Forces

An outgrowth of the early semi-automated force 
(SAF) program to simulate red ground force 
entities (e.g., tanks) executing basic maneuvers and 
missions (attack, defend, etc.) while engaging blue 
forces commanding simulated ground force entities 
(e.g., tanks) in the simulation network (SIMNET) 
environment developed during the 1980s. The 
modular SAF (modSAF) was developed to support 
composable (red) SAF behaviors, to minimize 
recoding efforts needed for training under different 
battle conditions, tactics, etc. SAF behaviors can be 
operated by behind-the-scenes red entity operators.

Computer-
generated force 
(CGF) application 
for simulating 
maneuvering ground 
entities

Army Simulation, 
Training, and 
Instrumentation 
Command 
(STRICOM)

N/A
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Acronym
Acronym
Expansion Description Category

Sponsor/ 
Research Center Reference/Website

MIDAS Man-machine 
Integration Design 
and Analysis 
System

Developed to support helicopter cockpit design for 
the Army, with a primary focus on anthropometry, 
physical layout of instrumentation, and operator 
workload. Primitive sensory models drive a 
production rule system to drive activity selection 
effected by simple motor models of the operator’s 
limbs. A Z-scheduler handles rule collisions, but 
its psychological basis is unclear. MIDAS was a 
standalone system with a single instantiation at 
NASA Ames, and little public documentation is 
available regarding the detailed cognitive structures 
employed.

End-to-end 
workstation for the 
design of multicrew 
helicopter cockpits, 
with embedded 
operator models

Army Aeroflight 
Dynamics 
Laboratory, NASA 
Ames Research 
Center

http://caffeine.arc.nasa.gov/midas/ 
New_MIDAS_Design.html

MINDS Modeling 
Individual 
Differences and 
Stressors

The MINDS Behavior Moderator Engine (BME) 
has been developed as a plug-in for other cognitive 
architectures (e.g., ACT-R, OMAR, SAMPLE, Soar), 
as a means for generating personality- or stress-
based moderators that can moderate structures or 
parameters of the target cognitive architecture, to 
emulate, for example, the effect of fatigue level on 
perception or fear on cognitive task performance. 
MINDS has been integrated with the SAMPLE 
cognitive architecture and embedded in the IWARS 
simulation environment to model infantry squad 
leader decision making.

Generic behavior 
moderator engine 
for use in individual 
entity cognitive 
architectures

Army Natick Soldier 
Systems Center, ONR

(Neal Reilly, Bachman, Harper, Marotta, 
and Pfautz, 2007) 
(Neal Reilly, Harper, and Marotta, 2007) 

ModSAF Modular Semi-
Automated Forces

An outgrowth of the early semi-automated force 
(SAF) program to simulate red ground force 
entities (e.g., tanks) executing basic maneuvers and 
missions (attack, defend, etc.) while engaging blue 
forces commanding simulated ground force entities 
(e.g., tanks) in the simulation network (SIMNET) 
environment developed during the 1980s. The 
modular SAF (modSAF) was developed to support 
composable (red) SAF behaviors, to minimize 
recoding efforts needed for training under different 
battle conditions, tactics, etc. SAF behaviors can be 
operated by behind-the-scenes red entity operators.

Computer-
generated force 
(CGF) application 
for simulating 
maneuvering ground 
entities

Army Simulation, 
Training, and 
Instrumentation 
Command 
(STRICOM)

N/A
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Acronym
Acronym
Expansion Description Category

Sponsor/ 
Research Center Reference/Website

OMAR, 
D-OMAR

Operator Model 
Architecture, 
Distributed OMAR

OMAR is a cognitive architecture and simulation 
environment to develop models of human operators 
interacting with a variety of other operators and 
nonhuman entities. The basic components are a 
production rule-based cognitive processor driven by 
inputs from production memory, long-term memory, 
and working memory, this last driven by auditory 
and visual inputs. The architecture relies heavily on a 
centralized, synchronous production rule framework. 
An initial version was programmed in LISP, limiting 
its usability; a more recent version is implemented 
in Java. OMAR has been used in a number of 
simulations, including military air traffic control. 

Cognitive 
architecture for 
individual entity 
modeling

USAF AFRL/HE http://omar.bbn.com/manual/index.html, 
http://omar.bbn.com/

OneSAF, 
OOS, OTB

One Semi-
Automated Forces, 
OneSAF Objective 
System,  
OneSAF Testbed

OneSAF is a constructive modeling and simulation 
environment intended to replace entity-based 
simulations. OneSAF is designed for numerous 
M&S domain applications, including research, 
experimentation, training, COA analysis, and 
mission planning. OneSAF models automated 
and semi-automated behaviors for entities and 
units up to the brigade level and supports the full 
spectrum of military operations, including urban 
missions. Designed as an extensible architecture, 
the OneSAF distribution includes tools for creating 
new components and behaviors to meet future 
modeling and simulation requirements. OOS was 
the predecessor system for OneSAF. OTB was the 
predecessor program for developing new technologies 
for OOS, focusing on test, integration, and user 
feedback. ModSAF was an earlier predecessor of all 
the programs.

Computer-generated 
force (CGF) 
application for 
simulating a wide 
range of military 
entities 

Army’s Program 
Executive Office for 
Simulation, Training, 
and Instrumentation 
(PEO STRI) 

http://www.onesaf.org/,  
http://www.onesaf.net/

ORA Organizational 
Risk Analyzer

A risk assessment tool for locating individuals 
or groups that are potential risks given social, 
knowledge, and task network information. After 
building the network by connecting the nodes 
(people) via links (relationships) to other nodes 
(people), ORA conducts a form of social network 
analysis (SNA) to assess risk of individuals in the 
network. ORA is essentially a network development 
and analysis tool. 

Social network model 
building and analysis 
tool

ONR, DARPA, ARL, 
NSF, AFOSR

http://www.casos.cs.cmu.edu/projects/ora/
software.html
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Acronym
Acronym
Expansion Description Category

Sponsor/ 
Research Center Reference/Website

OMAR, 
D-OMAR

Operator Model 
Architecture, 
Distributed OMAR

OMAR is a cognitive architecture and simulation 
environment to develop models of human operators 
interacting with a variety of other operators and 
nonhuman entities. The basic components are a 
production rule-based cognitive processor driven by 
inputs from production memory, long-term memory, 
and working memory, this last driven by auditory 
and visual inputs. The architecture relies heavily on a 
centralized, synchronous production rule framework. 
An initial version was programmed in LISP, limiting 
its usability; a more recent version is implemented 
in Java. OMAR has been used in a number of 
simulations, including military air traffic control. 

Cognitive 
architecture for 
individual entity 
modeling

USAF AFRL/HE http://omar.bbn.com/manual/index.html, 
http://omar.bbn.com/

OneSAF, 
OOS, OTB

One Semi-
Automated Forces, 
OneSAF Objective 
System,  
OneSAF Testbed

OneSAF is a constructive modeling and simulation 
environment intended to replace entity-based 
simulations. OneSAF is designed for numerous 
M&S domain applications, including research, 
experimentation, training, COA analysis, and 
mission planning. OneSAF models automated 
and semi-automated behaviors for entities and 
units up to the brigade level and supports the full 
spectrum of military operations, including urban 
missions. Designed as an extensible architecture, 
the OneSAF distribution includes tools for creating 
new components and behaviors to meet future 
modeling and simulation requirements. OOS was 
the predecessor system for OneSAF. OTB was the 
predecessor program for developing new technologies 
for OOS, focusing on test, integration, and user 
feedback. ModSAF was an earlier predecessor of all 
the programs.

Computer-generated 
force (CGF) 
application for 
simulating a wide 
range of military 
entities 

Army’s Program 
Executive Office for 
Simulation, Training, 
and Instrumentation 
(PEO STRI) 

http://www.onesaf.org/,  
http://www.onesaf.net/

ORA Organizational 
Risk Analyzer

A risk assessment tool for locating individuals 
or groups that are potential risks given social, 
knowledge, and task network information. After 
building the network by connecting the nodes 
(people) via links (relationships) to other nodes 
(people), ORA conducts a form of social network 
analysis (SNA) to assess risk of individuals in the 
network. ORA is essentially a network development 
and analysis tool. 

Social network model 
building and analysis 
tool

ONR, DARPA, ARL, 
NSF, AFOSR

http://www.casos.cs.cmu.edu/projects/ora/
software.html
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Acronym
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PCAS Pre-Conflict 
Anticipation and 
Shaping

A recently concluded DARPA program to investigate 
the effectiveness of different computational social 
science approaches to support forecasting the 
likelihood of a nation-state failure (e.g., Sudan). 
The PCAS architecture consists of four modules for 
data collection, modeling, gaming/shaping tools, 
and decision support tools. Computational modeling 
approaches include system dynamics, multiagent 
systems, Bayesian influence models, diffusion models, 
and regression modes. 

Nation-state DIME/ 
PMESII modeling 
methodologies

DARPA/IXO (Popp et al., 2006)

PMFServ Performance 
Moderator 
Function Server

An integrated framework that permits one to 
examine the impacts of stress, culture, and emotion 
on decision making. PMFServ has been used to create 
and simulate the people and objects of a number 
of scenarios, including crowd scenes (civil unrest in 
the United States, urban conflict in the Mideast), 
asymmetric threat leaders and followers, the Black 
Hawk Down recreation in the UnrealTournament™ 
game engine, and world leader modeling in a 
diplomacy and strategy game. Over the past 5 years 
the instructor has been sponsored by DMSO, ONR, 
IDA, GM, Army, DARPA, JFCOM, and others.

Cognitive 
architecture for 
individual entity 
modeling and 
associated agent 
development 
environment

University of 
Pennsylvania, 
DMSO, ONR, IDA, 
U.S. Army, DARPA, 
JFCOM

http://www.seas.upenn.edu/~barryg/
HBMR.html

RAID Real-time 
Adversarial 
Intelligence and 
Decision-making

Supports real-time forecast analysis of probable 
enemy actions in urban operations against irregular. 
RAID leverages novel approximate game-theoretic 
and deception-sensitive algorithms to continuously 
identify and update forecasts of likely enemy actions 
while continuously estimating likely deceptions in the 
available battlefield information. Significant effort 
in the program is being applied to evaluating the 
program’s performance relative to that of human 
analysts unaided by RAID.

Decision aiding tool 
with game-theoretic 
model for adversary 
behavior forecasting

 DARPA IIXO http://dtsn.darpa.mil/IXO/ 
programs.asp?id=43  
(Kott and Ownby, 2005)

SAMPLE, 
GRADE

Situation 
Awareness Model 
for Person in the 
Loop Evaluation, 
Graphical Agent 
Development 
Environment

SAMPLE is a cognitive architecture comprised of 
modules for fuzzy rule-based perception, Bayesian 
belief network-based situation awareness, and 
production rule-based decision making. GRADE is an 
agent development environment for rapidly creating 
SAMPLE models for different domains/tasks. Both 
have been used with JSAF, IWARS, the EAAGLES air 
combat simulation, the FACET ATM simulation, and 
the UnrealTournament™ gaming engine.

Cognitive 
architecture for 
individual entity 
modeling and 
associated agent 
development 
environment

AFOSR, AFRL, 
ARL, DARPA, NRC, 
NSSC, ONR 

http://www.cra.com  
(Harper, Ton, Jacobs, Hess, and 
Zacharias, 2001)
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Acronym
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Sponsor/ 
Research Center Reference/Website

PCAS Pre-Conflict 
Anticipation and 
Shaping

A recently concluded DARPA program to investigate 
the effectiveness of different computational social 
science approaches to support forecasting the 
likelihood of a nation-state failure (e.g., Sudan). 
The PCAS architecture consists of four modules for 
data collection, modeling, gaming/shaping tools, 
and decision support tools. Computational modeling 
approaches include system dynamics, multiagent 
systems, Bayesian influence models, diffusion models, 
and regression modes. 

Nation-state DIME/ 
PMESII modeling 
methodologies

DARPA/IXO (Popp et al., 2006)

PMFServ Performance 
Moderator 
Function Server

An integrated framework that permits one to 
examine the impacts of stress, culture, and emotion 
on decision making. PMFServ has been used to create 
and simulate the people and objects of a number 
of scenarios, including crowd scenes (civil unrest in 
the United States, urban conflict in the Mideast), 
asymmetric threat leaders and followers, the Black 
Hawk Down recreation in the UnrealTournament™ 
game engine, and world leader modeling in a 
diplomacy and strategy game. Over the past 5 years 
the instructor has been sponsored by DMSO, ONR, 
IDA, GM, Army, DARPA, JFCOM, and others.

Cognitive 
architecture for 
individual entity 
modeling and 
associated agent 
development 
environment

University of 
Pennsylvania, 
DMSO, ONR, IDA, 
U.S. Army, DARPA, 
JFCOM

http://www.seas.upenn.edu/~barryg/
HBMR.html

RAID Real-time 
Adversarial 
Intelligence and 
Decision-making

Supports real-time forecast analysis of probable 
enemy actions in urban operations against irregular. 
RAID leverages novel approximate game-theoretic 
and deception-sensitive algorithms to continuously 
identify and update forecasts of likely enemy actions 
while continuously estimating likely deceptions in the 
available battlefield information. Significant effort 
in the program is being applied to evaluating the 
program’s performance relative to that of human 
analysts unaided by RAID.

Decision aiding tool 
with game-theoretic 
model for adversary 
behavior forecasting

 DARPA IIXO http://dtsn.darpa.mil/IXO/ 
programs.asp?id=43  
(Kott and Ownby, 2005)

SAMPLE, 
GRADE

Situation 
Awareness Model 
for Person in the 
Loop Evaluation, 
Graphical Agent 
Development 
Environment

SAMPLE is a cognitive architecture comprised of 
modules for fuzzy rule-based perception, Bayesian 
belief network-based situation awareness, and 
production rule-based decision making. GRADE is an 
agent development environment for rapidly creating 
SAMPLE models for different domains/tasks. Both 
have been used with JSAF, IWARS, the EAAGLES air 
combat simulation, the FACET ATM simulation, and 
the UnrealTournament™ gaming engine.

Cognitive 
architecture for 
individual entity 
modeling and 
associated agent 
development 
environment

AFOSR, AFRL, 
ARL, DARPA, NRC, 
NSSC, ONR 

http://www.cra.com  
(Harper, Ton, Jacobs, Hess, and 
Zacharias, 2001)
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Acronym
Acronym
Expansion Description Category

Sponsor/ 
Research Center Reference/Website

SEAS Synthetic 
Environments 
for Analysis and 
Simulation

An agent-based software development environment 
that incorporates seven behavioral primitives: 
initiate, search, decide, execute, communicate, 
update, terminate. No attempt is made to model 
fundamental cognitive or social behavioral models, 
but a capability is provided for representing entities 
at the individual, organizational, and institutional 
level. Developers claim that the SEAS environment 
integrates multiple theories from various disciplines 
to program behaviorally accurate agents, but little 
has been available in peer-reviewed journals to 
substantiate that claim. JFCOM has been a strong 
supporter, especially in the attempts to model large-
scale, nation-state-level projections (DIME/PMESII 
input-output forecasts) and COA assessments.

Software agent-
based development 
environment

Simulex, JFCOM http://www.simulexinc.
com/products/case_studies/#seas-vis

SIAM Situational 
Influence 
Assessment Model

A collaborative decision aiding tool to help multiple 
analysts and experts decompose and analyze complex 
problems. It consists of a user-friendly graphical 
interface that supports the development and 
exercising of influence networks, a utility function 
decision-theoretic approach that builds on belief 
networks. SIAM allows each factor or influencing 
relationship affecting a decision to be examined 
separately, yet it optimizes understanding of the 
overall impact of, and the interrelationships among, 
the contributing factors.

Visualization and 
decision aiding tool

SAIC http://www.saic.com/business/technologies/
license/it/siam.Pdf

Soar, 
Soar-EPIC

Simulation of 
Adaptive Resource,
Executive-Process/
Interactive Control

Soar is an operator modeling production rule system 
in which existing rules propose potential operators 
that might be used to solve the current goal or 
problem. It is focused on problem solving and has 
its roots in GOMS. Its lack of a perceptual front end 
and motor back end has motivated hybridization 
with EPIC to provide these services. Although its 
psychological basis is less well-developed than other 
research-oriented models, Soar has been applied to a 
number of military systems modeling efforts (notably 
TacAir Soar). 

Operator modeling 
production rule 
system

University of 
Michigan, SoarTech

http://sitemaker.umich.edu/soar/home, 
http://www.soartech.com

Appendix TABLE 2-A1  Continued



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

MILITARY MISSIONS AND HOW IOS MODELS CAN HELP	 81

Acronym
Acronym
Expansion Description Category

Sponsor/ 
Research Center Reference/Website

SEAS Synthetic 
Environments 
for Analysis and 
Simulation

An agent-based software development environment 
that incorporates seven behavioral primitives: 
initiate, search, decide, execute, communicate, 
update, terminate. No attempt is made to model 
fundamental cognitive or social behavioral models, 
but a capability is provided for representing entities 
at the individual, organizational, and institutional 
level. Developers claim that the SEAS environment 
integrates multiple theories from various disciplines 
to program behaviorally accurate agents, but little 
has been available in peer-reviewed journals to 
substantiate that claim. JFCOM has been a strong 
supporter, especially in the attempts to model large-
scale, nation-state-level projections (DIME/PMESII 
input-output forecasts) and COA assessments.

Software agent-
based development 
environment

Simulex, JFCOM http://www.simulexinc.
com/products/case_studies/#seas-vis

SIAM Situational 
Influence 
Assessment Model

A collaborative decision aiding tool to help multiple 
analysts and experts decompose and analyze complex 
problems. It consists of a user-friendly graphical 
interface that supports the development and 
exercising of influence networks, a utility function 
decision-theoretic approach that builds on belief 
networks. SIAM allows each factor or influencing 
relationship affecting a decision to be examined 
separately, yet it optimizes understanding of the 
overall impact of, and the interrelationships among, 
the contributing factors.

Visualization and 
decision aiding tool

SAIC http://www.saic.com/business/technologies/
license/it/siam.Pdf

Soar, 
Soar-EPIC

Simulation of 
Adaptive Resource,
Executive-Process/
Interactive Control

Soar is an operator modeling production rule system 
in which existing rules propose potential operators 
that might be used to solve the current goal or 
problem. It is focused on problem solving and has 
its roots in GOMS. Its lack of a perceptual front end 
and motor back end has motivated hybridization 
with EPIC to provide these services. Although its 
psychological basis is less well-developed than other 
research-oriented models, Soar has been applied to a 
number of military systems modeling efforts (notably 
TacAir Soar). 

Operator modeling 
production rule 
system

University of 
Michigan, SoarTech

http://sitemaker.umich.edu/soar/home, 
http://www.soartech.com
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Acronym
Acronym
Expansion Description Category

Sponsor/ 
Research Center Reference/Website

SPECTRUM Provides an environment with multicolored, 
multisided icons in an effort to simulate realistic 
situations that is conducive to MOOTW (SASO). 
SPECTRUM portrays the graphics and terrain of 
this environment and adds the human dimension, 
to account for the impact of economics, politics, 
regional populations, nongovernmental agencies 
(NGOs), and humanitarian relief agencies.

Sociocultural training 
system

National Simulation 
Center (NSC)

http://www.msrr.army.mil/

SROM Stabilization and 
Reconstruction 
Operations Model 

Analyzes the organizational hierarchy, dependencies, 
interdependencies, exogenous drivers, strengths, and 
weaknesses of a country’s PMESII systems using 
systems dynamics modeling techniques. SROM 
models a country in a holistic lumped parameter 
manner as a national submodel, which is then defined 
in terms of its n regions as a system of systems. 
Each regional submodel itself contains six functional 
submodels: demographics submodel, insurgent and 
coalition military submodel, critical infrastructure, 
law enforcement, indigenous security institutions, and 
public opinion. 

DIME/PMESII 
regional or nation-
state modeling 
environment

USAF AFRL/IF (Robbins, Deckro, and Wiley, 2005)

STELLA A simulation-based training environment to train 
soldiers in information operations. A cognitive model 
was constructed using Bayes inference nets and 
neural nets to guide combat models based on internal 
logic. At the time of this review, fuzzy set theory was 
being contemplated for modeling the propagation 
of rumors, and a mathematical submodel of IW was 
being developed using q-analysis and Boolean nets to 
study the structure and dynamics of IW. 

Information warfare 
training system

DISA, AFAMS http://www.disa.mil/ 
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Acronym
Acronym
Expansion Description Category

Sponsor/ 
Research Center Reference/Website

SPECTRUM Provides an environment with multicolored, 
multisided icons in an effort to simulate realistic 
situations that is conducive to MOOTW (SASO). 
SPECTRUM portrays the graphics and terrain of 
this environment and adds the human dimension, 
to account for the impact of economics, politics, 
regional populations, nongovernmental agencies 
(NGOs), and humanitarian relief agencies.

Sociocultural training 
system

National Simulation 
Center (NSC)

http://www.msrr.army.mil/

SROM Stabilization and 
Reconstruction 
Operations Model 

Analyzes the organizational hierarchy, dependencies, 
interdependencies, exogenous drivers, strengths, and 
weaknesses of a country’s PMESII systems using 
systems dynamics modeling techniques. SROM 
models a country in a holistic lumped parameter 
manner as a national submodel, which is then defined 
in terms of its n regions as a system of systems. 
Each regional submodel itself contains six functional 
submodels: demographics submodel, insurgent and 
coalition military submodel, critical infrastructure, 
law enforcement, indigenous security institutions, and 
public opinion. 

DIME/PMESII 
regional or nation-
state modeling 
environment

USAF AFRL/IF (Robbins, Deckro, and Wiley, 2005)

STELLA A simulation-based training environment to train 
soldiers in information operations. A cognitive model 
was constructed using Bayes inference nets and 
neural nets to guide combat models based on internal 
logic. At the time of this review, fuzzy set theory was 
being contemplated for modeling the propagation 
of rumors, and a mathematical submodel of IW was 
being developed using q-analysis and Boolean nets to 
study the structure and dynamics of IW. 

Information warfare 
training system

DISA, AFAMS http://www.disa.mil/ 
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Part II reviews the multitude of individual, organizational, and societal 
(IOS) modeling approaches, methods, and tools that are potentially 
useful for addressing the military modeling needs described in Chap-

ter 2. Models take many forms, ranging from loose conceptual models to 
precise mathematical models (Lave and March, 1975). They include agent-
based models, cognitive models, expert systems, dynamical systems, and 
input-output models. Here we survey and explore many different types of 
models relevant to our questions. We describe each, show their strengths 
and limitations, and discuss research and development efforts that could 
make the approaches more useful for addressing military modeling needs.

The diverse expertise of the committee members contributed greatly to 
the completeness of this review but also made it challenging to agree on an 
organizing framework for presenting the review results. Refined through 
multiple iterations, the organizing framework that we developed represents 
a significant product of the study.

Categories of Models: Initial Empirical Results

As a first step in organizing our review, we took an empirical approach 
to organizing the various terms and approaches used in IOS modeling. 
Using the methods of cultural domain analysis (see Chapter 3 for a descrip-
tion), we developed a perceptual map of the field of modeling based on 
committee members’ perceptions.

Part II 

State of the Art in  
Organizational Modeling
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Methodology

The first step in our investigation was to collect “free lists” of models 
from each member of the committee. Effectively, we asked, “What are all 
the kinds of models you can think of?” A large number of unique “kinds 
of models” were elicited with little overlap, implying that the domain itself 
lacks a high degree of cultural coherence. A total of 240 items were elicited, 
with approximately 35 items per member. Much of this lack of overlap was 
due to differences in the level of specificity for the kinds of models listed. 
For example, some of the items were specified at the level of named models, 
such as DyNet, EpiSims, NetWatch, etc., while others were at a very general 
level, such as conceptual models or verbal models. Aggregating across all 
lists, a master list of distinct terms was obtained after standardizing word 
forms. Also, an attempt was made to keep all items at the same level of 
specificity, in this case at a more general level.

The second step was to take the 38 most frequently mentioned items at 
a more general level of specificity and construct a pile-sorting task, in which 
each committee member was asked to sort the items into piles according to 
how similar the kinds of models are. They could use as many or as few piles 
as they wished. The task was conducted online using interview software 
that simulated cards and allowed the virtual cards to be placed into piles. 
When they were done, the program recorded the membership of each pile. 
Then, an aggregate proximity matrix X, whose rows and columns corre-
sponded to “kinds of models,” was constructed such that each cell Xij of 
the matrix recorded the number of respondents that placed the ith kind of 
model in the same pile as the jth kind of model.

The final step was to visualize this proximity matrix using a standard 
network visualization package called Netdraw (Borgatti, 2002). In this 
approach to visualization, a line is drawn to connect two items if the simi-
larity of the two items exceeds a certain user-defined threshold (DeJordy, 
Borgatti, Roussin, and Halgin, 2007; Johnson and Griffith, 1998).

Results

The resulting map is shown in Figure II-1. In the map, a line is drawn 
between two modeling techniques if at least 28 percent of the respondents 
placed the items together in the same pile. (A cutoff of 28 percent was 
chosen because above that level the main section of the network becomes 
disconnected.)

The results show three basic clusters of modeling techniques. The first 
cluster, at the top left of the map, consists of multiagent models in which 
the agents are connected to each other by social ties or interactions. In these 
models, the combination of agents and ties forms a single interconnected 
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and interdependent system. For convenience, we refer to the models in this 
cluster as the computational network models cluster (although it contains 
some models for which this would not be the ideal name).

The computational network models cluster is connected to the next 
cluster via the system dynamics node. This new cluster consists of low-level 
statistical and mathematical techniques that have broad application across 
many different settings. Although these techniques are often thought of as 
tools rather than models, statisticians would recognize that they do indeed 
constitute models. For convenience, we refer to this cluster as the math-
ematical systems models cluster.

At the bottom right of Figure II-1, there is another cluster of models 
focused on the cognition or culture of the agents. We call these the cogni-
tive models. The difference between these and the computational network 
models at the top of the map is one of emphasis rather than substance. 
The cognitive models are defined by their focus on the details of cognition. 
The objective of the cognitive models is to understand the patterns of who 
believes or chooses what. In contrast, the computational network models 
are defined by the processes that the modeler builds into the system and 
may not represent cognition at a detailed level. The outcomes of the com-
putational network models may well be the same as those of the cognitive 
models, and the processes of the cognitive models often involve the same 
multiagent interactions of the computational network models: it is only the 
focus of the investigation that is different. Finally, as noted at the bottom 
left, three model types—influence, behavioral, and conceptual—did not 
cluster with other types.

Four-Part Organizing Framework for Models

On the basis of the empirical clustering results described above and 
further discussion, the committee developed a four-part categorization 
for reviewing modeling approaches: (1) macro models, (2) micro models, 
(3) meso models, and (4) integrated, linked micro-meso-macro models. 
No single one of these approaches is the correct one, and the best model-
ing approach depends on the nature of the problem to be solved. It is a 
common theme throughout this book that models constitute “use-driven 
research” (Stokes, 1997) and cannot be developed or evaluated without an 
in-depth understanding of the uses to which they are to be put.

A macro model considers interactions between macro-level variables, 
such as unemployment, crime, education, poverty, and resources. Macro 
modeling approaches like system dynamics enable one to identify feedbacks 
and to see system-level effects without getting bogged down in details. 
At the other extreme, one can model the cognitive or affective processes 
of individual actors or at least their outcomes—individual decisions and 
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actions. These more micro modeling approaches include cognitive models 
from psychology, expert systems models, and rational choice models, which 
include game theory and decision theory.

Fifty years ago, this distinction between micro and macro would have 
been thought sufficient. One can look at the trees, or one can look at the 
forest. Over time, social scientists have come to appreciate the importance 
of the level in between—the meso level (Miller and Page, 2007). To com-
plete the metaphor, one can think of stands of aspen trees with a shared 
root system. The stand is a part of the forest, yet it does not function merely 
as the sum of its individual trees, given the sharing of resources. The social 
analog of a shared root system is social capital. People join movements, 
participate in riots, and support government in part based on the actions 
of their friends and peers. Predictions based on individual attributes can 
almost always be improved by adding in social factors. 

We highlight two types of meso models: network models and agent-
based models. Both modeling approaches have produced flurries of atten-
tion over the past decade. Network models allow one to formalize, measure, 
and test loose conceptions of social capital, centrality, and connectedness. 
Agent-based models allow one to include diverse, purposive agents who 
interact in space and time. As the name suggests, agent-based models origi-
nate with the agents, but these agents can self-organize, creating emergent 
meso-level structures that take on meaning and have predictive value.

The fourth category links micro, meso, and macro models. Agent-based 
models, and to some extent game theory and network models, achieve this 
double linkage. Yet only recently have researchers begun to create hybrid 
models that include agents who employ sophisticated psychological models 
and whose macro effects link to a system dynamics model. These hybrid 
models have great potential for addressing the needs identified in Chap-
ter 2. Thus, we make this linkage between levels explicit. Although we do 
not have a separate chapter on integrated models, agent-based models and 
network models are discussed in Chapter 6, and the challenges of achieving 
such multilevel model integration are discussed in Chapter 8. 

Part II guide

Chapter 3 discusses conceptual models and cultural models. Adequate 
conceptual models provide the foundation for development of computa-
tional and mathematical models. Cultural models occupy a special position 
in our review because our interest is in understanding people at multiple 
levels of aggregation. The questions that concern us require the ability to 
model individuals, teams, communities, and entire societies. At each of 
these levels, cultural factors are at work, so we first explain what we mean 
by culture and cultural effects.
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The discussion next turns to a review of formal modeling approaches 
(Chapters 4, 5, and 6) organized using the four-part framework described 
above. For each modeling approach we describe the current state of the 
art, the most common applications of the approach, and its strengths and 
limitations for the problems described in Chapter 2, and we provide sug-
gestions for further research and development.

In Chapter 7, we turn to online games as a methodology. Gaming, 
the creation of an environment in which real people can play against one 
another or against artificial players, can be thought of as a methodology, 
but as these gaming models apply many of the other types of models, and 
as they involve people interacting with the games, we set them apart. Online 
gaming environments are both consumers of models—to create artificial 
players and the social effects of player actions—and potential testbeds for 
generating data to develop and test models of the communications and 
actions of large numbers of individuals interacting in a simulated world.

Chapter 8 discusses important methodological issues that are common 
across many modeling approaches, including modeling frameworks, tools, 
and data, and it includes a discussion of model verification and validation. 
Model validation is a key issue for complex social models, and we argue 
for a “validation for action” approach that considers how the model is to 
be used rather than attempting to evaluate model accuracy or model fidelity 
without considering context of use. Chapter 9 summarizes the state of the 
art in IOS modeling and its applicability to the requirements and uses dis-
cussed in other chapters.
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3

Verbal Conceptual and Cultural Models

In this chapter we discuss models that are not instantiated in formal 
algorithms or software, but in words. Verbal conceptual models are 
presented first, followed by verbal cultural models.� These models are 

important for their attempts to apply theoretical constructs to the behavior 
of individuals and groups. The models and the terms and constructs they 
encompass may provide a foundation for some of the more applied and 
formal models discussed later. These models have been developed in the dis-
ciplines of social psychology, sociology, anthropology, and organizational 
behavior studies.

VERBAL Conceptual Models

What Are Verbal Conceptual Models? 

Verbal conceptual models characterize entities, variables, or events/
processes/mechanisms and the relations among them in words, not in equa-
tions or other mathematical or operational formulations. Although they 
may use mathematical terms—for example, Kurt Lewin’s statement that all 
behavior is a “function” of the person and the situation (1951)—the nature 

� Note that, in general, both conceptual models and cultural models can be articulated in 
formal logical, mathematical, algorithmic, or computational forms. Our focus in this chapter 
is on verbal representations of conceptual and cultural models, as an initial stepping stone to-
ward computational implementations in individual, organizational, and societal (IOS) models 
and simulations.
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and form of relations described in a verbal model are commonly under
specified compared with formal models. Verbal conceptual models include 
very general classifications or broad characterizations that provide the 
foundation for a new discipline, such as the brain-as-computer metaphor on 
which modern cognitive science was founded, and mid-level frameworks, 
such as “images” of organizations (Morgan, 1997) as machines, or organ-
isms, or brains. Typologies or taxonomies, such as a taxonomy of emotional 
states (Borgatti, 1994) or a typology of small groups (Arrow, McGrath, and 
Berdahl, 2000), are another form of verbal conceptual model. Most numer-
ous of all are the small-scale models that characterize relations among vari-
ables or processes relevant for understanding a specific phenomenon. The 
“progression of withdrawal” and “compensatory behaviors withdrawal” 
models, for example, are alternate models of job withdrawal (quitting and 
absenteeism) (Hanisch, 2000); another example is a two-variable model of 
how social norms emerge in a newly formed group, based on whether or 
not new members’ characterizations of the situation and the “scripts” they 
retrieve to guide behavior match (Bettenhausen and Murnighan, 1985).

The use of such terms as “theory,” “framework,” “model,” and 
“paradigm” in psychology and the social sciences is as informal as the 
models themselves.� One person’s conceptual model is another person’s 
theory or framework. In this chapter, we use the term “conceptual model” 
(and, for brevity, sometimes just “model”) as a way to group theories, 
frameworks, and paradigms into rough classification systems based on 
common features in structure (for example, dual process models, dynamic 
models, threshold models) or relevant domain (group development models, 
organizational withdrawal models, visual attention models). What verbal 
conceptual models have in common is that they tend to be “highly infor-
mal constructions, use the natural language system, are rich in metaphor, 
and use lavishly nuanced statements” (Davis, 2000, p. 218). If rendered as 
diagrams instead of in straight prose, they tend to be represented via two-
by-two tables, labeled boxes with arrows drawn between them, or perhaps 
a flowchart for a process model.

In psychology and the social sciences, theorizing about a problem typi-
cally begins with verbal conceptual models, which then may be elaborated 
and adjusted over time as relevant empirical data accumulate. Formal 
mathematical models, computational models, statistical models, etc. rely on 
verbal conceptual models to specify variables and relations among them, 
although a host of extra assumptions and plausible estimates are typically 
needed to translate a verbal theory into a workable implementation. Hence 

� This is also true in the behavior modeling and simulation community, which is why we 
attempted in Chapter 1 to identify and differentiate four levels of representation: theory, ar-
chitecture (here, framework), model, and simulation (here, paradigm).
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a computational model of emotional response relies on a conceptual tax-
onomy of emotional states (Ekman and Davidson, 1995), and a process 
simulation model of jury decision making, such as DISCUSS (Stasser, 1988), 
relies on the guiding metaphor of “interacting minds” engaged in “col-
lective information processing” (which represents the mind-as-computer 
metaphor generalized to groups-as-networked-computers).

State of the Art for Verbal Conceptual Models

Sophisticated verbal conceptual models (whose authors often call 
them theories) are typically more specific about the nature of relations 
among variables or about the nature of processes described than are ad hoc 
models or global metaphor models. They may also be more sophisticated in 
incorporating contingencies, dynamics, and multiple levels of analysis. For 
example, in the study of leadership effectiveness, a very simple model, the 
leadership grid (Blake and Mouton, 1982), proposes that leadership effec-
tiveness is explained by two dimensions—concern for people and concern 
for production—and the more a leader has of both, the better. This model 
focuses entirely on the leader (single level), entertains no contingencies, 
assumes linear additive components, and has no dynamic elements. A more 
sophisticated model, situational leadership theory (Hersey and Blanchard, 
1988), proposes that the optimal mix of task-oriented and relation-oriented 
behavior by leaders depends on the level of maturity and corresponding 
skill level of the subordinate, which is expected to change over time. In a 
heterogeneous group of members at different levels, effective leadership will 
require that the leader tailor her style to individual members and adjust that 
style as each member progresses through four successive levels of maturity 
and autonomy. This model incorporates three levels (individual, dyad, and 
group), contingencies (different levels of member development), and change 
over time.

Computational models are often used to model complex processes 
that unfold over time, so verbal conceptual models that include attention 
to dynamics are particularly useful as a resource for the implementation of 
more formal models. Verbal conceptual models of groups and organizations 
can be arrayed along a continuum of increasing complexity using the four 
different levels of complexity in time research of Ofori-Dankwa and Julian 
(2001).� First-level models focus on mean differences in, for example, how 
much time a process takes and assume stationarity (sometimes implicitly 
rather than explicitly). Second-level models add change as a possibility, so 
that the rate of a process may speed up or slow down across time. Third-

� The following summary is adapted from Arrow, Henry, Poole, Wheelan, and Moreland 
(2005, pp. 313–368).
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level models incorporate more than one hierarchical level of a system. For 
example, the rate of change at the member, small group, and organizational 
levels may be expected to differ systematically. Fourth-level models allow 
for multiple simultaneous and potentially nonstationary processes at dif-
ferent levels.

Zaheer, Albert, and Zaheer (1999) introduced the concept of “time-
scale completeness” for a process model. In essence, they define what a 
process model needs to specify to provide sufficient guidance in designing 
a research program. Although their focus was on empirical data collection, 
the same desiderata apply for implementing a verbal model in a compu-
tational form. A theory is time-scale complete if it specifies time scale for 
all of its variables, relationships, and boundary conditions. For example, it 
needs to specify the time needed for a complete instance of the phenomenon 
to occur, the nature and rate of change in variables, and the duration and 
sequence of any subphases in the process. Otherwise researchers cannot 
make theory-driven choices of observation, recording, and aggregation 
intervals, and the criteria for evidence either in support of or contrary to 
model predictions remain unclear.

Finally, state-of-the-art conceptual models allow for conceptual “dock-
ing” with other models by clarifying how the terms used relate to other, 
closely related (or synonymous) terms in the literature, and note where 
other models might “plug in” (for example, a structural model might 
refer to possible plug-in models that address processes or mechanisms not 
included in but relevant to the structural model) and clearly specifying 
boundary conditions.

Relevance to Modeling Requirements

One way to demonstrate the relevance of verbal models is to give an 
example of how a well-developed verbal conceptual model could be used 
for rapid cultural awareness training. The conceptual model is the cross-
cultural framework of Fiske (1991, 2000), which proposes that human 
beings in all cultures coordinate their social interactions using a mix of fun-
damental relational models: communal sharing, authority ranking, equal-
ity matching, and market pricing. The four models are organized sets of 
associated concepts and rules that serve as a generative grammar for think-
ing about and coordinating relationships.� When following the communal 
sharing model, people emphasize the common identity of group members 
and focus on what is good for the group as a whole. The preferred model 
of decision making is consensus and people pool resources and draw on the 
pool without keeping track of individual contributions and withdrawals. 

� The following summary is adapted from Arrow and Burns (2004, pp. 176–178).
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Prototypical contexts and domains in which this model is used are family 
and food. Families commonly share food resources freely, and people who 
are defined as the “in group” in a particular context (such as invited guests 
at a party) are expected to help themselves to whatever food and drink they 
want. Violations of the rules occur when out-group members attempt to 
access in-group resources (for example, someone crashes a party).

In relationships organized by the authority ranking model, people 
structure their interactions according to status, position, and dominance 
hierarchy. Military organizations commonly use this model, and personnel 
wear insignias of rank to signal status. How people behave is strongly 
governed by whether they have the higher or lower rank of the two people 
in a given interaction. In distributing resources, high-status members get 
more, and low-status members get less. Rank also comes with obligations: 
superiors are expected to provide for or take care of inferiors. Violations 
occur when lower status members are insubordinate, treating a higher 
ranked person as an equal, for example, or when higher status members 
abuse their rank and power and betray their obligations to lower status 
followers or dependents.

When a relationship is governed by the equality matching model, people 
reciprocate favors after some delay and maintain a balance between giving 
and receiving. This model is commonly applied among people who consider 
themselves to be of equal status, such as friends, classmates, or colleagues. 
People in equality matching relationships often respond to favors by saying 
“I owe you one” or “I’ll pay next time.” Note the difference from authority 
ranking, in which a lower status person responds to favors with gratitude 
and loyalty, rather than reciprocating in kind. If the relationship is using the 
equality matching model, however, the failure to reciprocate a favor (or to 
express one’s understanding of this obligation) would be a violation.

In market pricing relationships, people seek the best deal for themselves 
and expect that others will do the same. This model commonly governs 
trade and other social exchanges among strangers or acquaintances and 
is guided by the equity principle of proportionality—so that price, for 
example, should be proportional to value. Self-interested or selfish behavior 
is not a violation (it is expected), but cheating or stealing (which violates 
the equity rule) is.

Particular cultural implementations of these models organize social 
exchange, distribution, contribution, decision making, social influence, 
moral judgment, aggression, and conflict (Fiske, 1991). There is no prac-
tical limit, for example, to the types of objects or services that might be 
deemed appropriate or inappropriate to reciprocate the gift of a chicken or 
a radio. This sort of idiosyncratic and culturally specific content can be pro-
vided only by an informant who is very familiar with a culture. However, 
more important to practical application in a field situation is simply detect-
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ing whether the context in which a chicken is received is one that calls for 
gratitude and acknowledgment of an in-group bond (communal sharing), 
expression of deference and humility (authority ranking), reciprocation 
with a favor of roughly equal value (equality matching), or direct payment 
(market pricing). Mistakes involving specific cultural content (reciprocating 
with an odd sort of gift) may invoke humor or surprise; violation of rela-
tional models (paying someone for a gift, failing to reciprocate) are more 
likely to give offense and damage the relationship.

Major Limitations

The strengths of verbal models are also their weakness. Natural lan-
guage is a flexible and nuanced instrument in which one can express highly 
sophisticated ideas, including multiple overlapping metaphors and embed-
ded narratives. However, because natural language is an encompassing 
sea in which we all swim, shadings of meaning and idiosyncratic clouds 
of associations allow four people to encounter the “same” verbal model 
and understand it in four different ways. Some of the ambiguities and gaps 
that are common in verbal models may become evident when designing an 
experiment, and they are highlighted most sharply when one attempts to 
extract a set of formal relations from a natural language model.

In psychology and the social sciences, the grand metaphors of con-
ceptual models often govern the whole direction of a field, but meta-
phors always direct attention to some features and lead to the neglect of 
others. Once a broad conceptual framework such as this becomes perva-
sive, scholars tend to forget that a metaphor is involved. For example, the 
information-processing metaphor for the brain, and the researchers who 
focused on it, probably contributed to a pervasive neglect of research on 
emotional and social processes for the first several decades of cognitive sci-
ence.� Computers don’t have emotions and are not social beings. So if the 
mind is not simply like a computer in some ways (simile with boundary 
conditions), but is a biological computer (unreflective metaphor), the ways 
in which minds are decidedly not like computers get overlooked, even by 
researchers engaged in intensively social activities about which they have 
strong feelings. The same curious social blindness is evident in the early 
era of organizational research dominated by the organization-as-machine 
metaphor. The related notion that workers are cogs in the machine led 
researchers to study the impact of physical conditions, such as lighting, on 
worker productivity while completely ignoring the possible impact of one 
human being on another (Mayo, 1960).

� A small pocket of researchers clearly forged ahead in this important area; see, for example, 
Ortony et al. (1988).
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Verification and Validation Issues

Verbal conceptual models are sometimes specific enough that they can 
be tested and plausibly falsified, using empirical field studies or controlled 
experiments. For example, in studies of subjects from Bengali, Chinese, 
Korean, Vai (Liberia and Sierra Leone), and U.S. cultures (Fiske, 1992), 
Fiske and colleagues have used social cognition experiments to demonstrate 
that people organize acquaintances in memory according to the dominant 
model that organizes the relationship and that for many subjects this clas-
sification accounts for more variance in recall and substitution errors than 
such personal attributes as gender, race, and age.

In contrast to such well-developed conceptual frameworks, broad meta-
phors (brains as information-processing devices, organizations as cultures) 
are not really subject to verification or falsification. Whether or not they 
are used in a particular domain is likely to depend largely on face validity 
and established precedent. In evaluating the usefulness of a verbal model of 
this nature, the yardstick is often not how well supported the model is, but 
how much interesting research it inspires. Even when a verbal model seems, 
in principle, to be subject to falsification, the underspecification of relations 
and processes often means that a rather broad array of different outcomes 
can be presented as “consistent with” the theory. As Harris (1976) noted 
in “The Uncertain Connection Between Verbal Theories and Research 
Hypotheses in Social Psychology,” theoretical terms often are not defined, 
boundary conditions are unspecified, and, under various plausible interpre-
tations of assumptions or conditions, several well-known theories include 
internal contradictions and inconsistencies (as cited in Davis, 2000).

Future Research and Development Requirements

Verbal conceptual models can be highly influential and generative and 
do not require intensive funding or technology to develop, yet the develop-
ment of such models is often overlooked as a funding priority. The scarce 
resource in improving verbal theory is intellectual time and energy. Moti-
vation may also be an issue when grant funding is available primarily for 
doing (conducting experiments, writing code, designing games, collecting 
reams of data) and not for thinking. This can encourage the proliferation 
of low-level, poorly specified, ad hoc conceptual models that get spawned 
in discussion sections of journal articles to explain the results of a single 
set of studies and, if they survive, are later herded together in introduction 
sections of subsequent articles without actually being systematically inte-
grated into more comprehensive integrated models. That work is generally 
left for the writers of literature reviews who are trying to make sense of a 
mountain of facts and ideas and find a deeper order.
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Stronger theory is needed for domains that social scientists still don’t 
know how to think about and those in which numerous weak conceptions 
have not been integrated. Verbal conceptual models are essential building 
blocks for theory building. Bringing people together for conferences and 
funding edited books and special issues that explore themes and issues in 
depth are useful. Measurable advances in theory should also be specified as 
a valuable deliverable for grants. Think tanks could be funded for scholars 
to come together and work intensively for an extended period (three to 
six months) on theory development and integration for issues and areas in 
which it is increasingly clear not only that there are not enough data, but 
also that it is difficult to know how to conceptualize the problem. Of course 
this sort of conversation is going on in labs and institutes around the coun-
try, but the focus on generating data (at least in psychology) seems to eclipse 
or marginalize the systematic development and integration of theory that 
goes beyond the highly specific area in which people tend to do research.

Cultural Modeling

What Is Cultural Modeling?

The term “cultural modeling” encompasses two broadly different areas 
of research. One area is concerned with modeling growth and distribu-
tion of cultural phenomena, such as the evolution of norms or the diffu-
sion of beliefs. Research in this tradition typically treats culture (or, more 
accurately, some characteristic of culture) as an outcome and concentrates 
on the factors shaping those outcomes. This kind of cultural modeling is 
distinguished from other kinds of modeling surveyed in this volume only 
by the domain of study—namely, an element of culture. It does not imply 
a particular modeling technique. For example, the evolution of norms may 
be studied using a variety of methods, including multivariate statistics, 
agent-based models, system dynamics models, event history models, and so 
on. This kind of cultural modeling is discussed in several chapters in this 
volume and is not discussed further here.

The other kind of cultural modeling, which is discussed here, is con-
cerned with describing (and often formally representing) a group’s culture. 
Work in this tradition typically does not concern itself with how the culture 
came to be but rather with how it is distributed in the population and, in 
the best cases, what the consequences of having that culture might be. 

Finally, it is appropriate to note that perhaps the most fundamental 
verbal cultural models are those that are implicit in a region’s or society’s 
language and history. It is abundantly clear—from Laurence of Arabia’s 
exploits to today’s attempts to “democratize” Iraq—that deep and broad 
knowledge of the local history and language are still fundamental for the 
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kind of high-level understanding of societal dynamics that is the main focus 
of this report and of today’s military. This committee acknowledges the 
importance of both language and history as the foundational knowledge 
base for any cultural model development, and as perhaps the starting point 
for identifying “implicit” models embedded in the language and history—
models that can be built on in successive formalization efforts.

What Is Culture?

Culture can be defined in a number of different ways. Indeed, over 
200 scholarly definitions have been documented (Kroeber and Kluckhohn, 
1952). Researchers have defined culture in normative, historical, biological, 
cognitive, functional, structural, categorical, and symbolic terms. Defini-
tions typically make use of some combination of the following elements: 
beliefs, behaviors, values, customs, artifacts, organizational orientations, 
preferences, experiences, attitudes, meanings, hierarchies, religions, percep-
tions, conceptions, material objects, possessions, symbols, motives, tradi-
tions, strategies, ideals, rules, habits, reasoning, identities, conventions, 
customs, and institutions, among others. While definitions of cultures differ 
on which of these elements constitute culture, most view a group’s culture 
as an essential factor in problem solving, coping, and adapting to envi-
ronmental changes. In addition, they generally agree that culture is some-
thing possessed by groups (such as societies, organizations, occupations, 
teams) and that it is learned, transmitted, and shared (albeit imperfectly 
and unevenly). At the same time, scholars regard culture as being held in 
individual minds and do not consider it an oxymoron to talk about an 
individual’s culture.

State of the Art of Culture Models

There are four basic types of descriptive culture models popular today: 
cultural inventory models, dominant trait models, semantic models, and 
cultural domain models.

Cultural Inventory Models

Cultural inventory models are a way of describing cultures by list-
ing which of a list of traits they do or do not possess. Thus cultures are 
conceived of as distinctive bundles of features that can be represented as a 
string of 1s and 0s indicating the presence or absence of a trait. A number 
of anthropologists have undertaken a compilation of cultural traits across 
human societies. The best and most relevant example of such a compilation 
across cultures is the Standard Cross-Cultural Survey developed by George 
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Murdock and others. The database consists of 186 societies and 22 cultural 
categories involving almost 1,000 standard coded variables derived from 
ethnographic sources (Murdock and Morrow, 1970). Essentially, a team of 
researchers has combed through ethnographies written by anthropologists 
and coded the cultures described using a universal codebook. The ability 
to compare features across societies is critical for both developing models 
and testing theories concerning patterns of and associations among cultural 
traits, categories, and features. Table 3-1 provides examples of some of the 
22 cultural categories and associated variables and their codes.

For military purposes (McFate, 2005), many of these traits may be 
irrelevant, while others would need to be gathered, such as information on 
cultural gestures (e.g., meaning of certain hand gestures), cultural greeting 
etiquettes (e.g., rules for properly entering a village), cultural norms sur-
rounding conflict (e.g., cultural notions of courage, honor, and revenge), 
etc. Such a database would considerably improve the ability to interact in 
a satisfactory manner with natives and to accurately predict their reactions 
to stimuli.

The key difficulty with cultural inventories is obtaining the necessary 
data. Data need to be collected on an ongoing basis to ensure the quality 
and timeliness of information. Also, it is important to recognize cultural 
boundaries and subcultures. For example, a nation like China may form a 
single political unit but may contain many different cultures. Furthermore, 
collecting new cultural information can be particularly difficult during 
periods of conflict, which means that the data need to be collected on an 
ongoing basis regardless of whether it has immediate utility.

Another approach is the cultural classification system developed by 
Karabaich, which is intended to cover the possible group types that might 
be encountered in a military, business, or political context (Karabaich, 
2004). These group types are summarized in Table 3-2.

TABLE 3-1  Examples of Cultural Categories and Coded Variables from 
the Standard Cross-Cultural Survey 

Examples of Cultural 
Categories Examples of Labels for Variables Within Categories

Subsistence economy 
and supportive practices 

Marital residence
Matrilocal or uxorilocal—with wife’s kin
Avunculocal—with husband’s mother’s brother’s kin 
Patrilocal or virilocal—with husband’s kin 
Ambilocal—with either wife’s or husband’s kin 
Neolocal—separate from kin
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Examples of Cultural 
Categories Examples of Labels for Variables Within Categories

Political organization Political power—most important source
Direct subsistence production
Warfare wealth
Tribute or taxes
Slaves
Contributions of free citizens
Large landholdings
Political office
Foreign commerce
Capitalistic enterprises
Priestly services

Cultural complexity Fixity of residence
Nomadic 
Seminomadic 
Semisedentary
Sedentary, impermanent
Sedentary

Sexual attitude and 
practice

Frequency of premarital sex—male
Universal
Moderate
Occasional
Uncommon

Relative status of 
women

Mythical founders of the culture
All male
Both sexes, but the role of men more important
Both sexes, and the role of both sexes fairly equal
Both sexes, but female role more important, or solely female

Cultural theories of 
illness

Theories of soul loss
Absence of such a cause
Minor or relatively unimportant cause
An important auxiliary cause
Predominant cause recognized by the society

Female power and male 
dominance

Female economic control of products of own labor
Absent 
Present

Political decision 
making and conflict

Conflict between communities of the same society
Endemic: high physical violence, feuding, and/or raiding occur 

regularly 
Moderately high, often involving physical violence
Moderate: disputes may occur regularly but tendency to 

manage them in a more or less peaceful manner
Mild or rare

Nature of warfare Value of war: violence/war against nonmembers of the group
Enjoyed and considered to have high value
Considered to be a necessary evil
Consistently avoided, denounced, not engaged in

SOURCE: Adapted from Murdock and Morrow (1970).

TABLE 3-1  Continued
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TABLE 3-2  Summary of Karabaich Group Stereotype Taxonomy 

Group 
Stereotype Description

Social Shared interest, but no clear political agenda

Religious Shared beliefs and goals based on shared faith in particular dogma 

Economic Seek advances in their economic objectives

Professional Shared interests, problems, and objectives concerning their livelihood and 
profession 

Political Shared goals in addressing particular grievance or advance specific set of 
rights or benefits. Success requires interaction with existing societal/
governmental power structure and group works “within the system”

Militant Shared sense of threat to fundamental values, rights, or benefits and a desire 
to fight against the existing power structure that they blame. Group is 
willing to use violence and therefore generally operates in opposition to 
the power structure or without its overt support

Military Goal is to defend existing system by threat of or actual physical force. 
Individual members may have joined voluntarily, due to social pressure, 
or been forced

SOURCE: Hudlicka (2004, Table 5.1-1 from Psychometrix Technical Report 0412, p. 48).

Each group and its culture are characterized by a series of attributes, 
which were derived in part from Karabaich’s extensive experience in Army 
psychological operations and in part from the work of several political 
psychologists, most notably the work of Alexander George on operational 
codes (op-codes) (1979, 1998), who in turn built on the work of Leites. 
Op-codes capture the role of internal, subjective schemas (the operational 
codes) that guide individual (and group) behavior. They include values, 
beliefs, perceptions, and goals and jointly define what the group considers 
important, its view of the world, what motivates its behavior, and how 
it goes about accomplishing its goals. The assumption then is that these 
attributes will influence the individual members of the group in a manner 
similar to, but more powerful than, the influence of the national and ethnic 
groups to which the individual belongs. 

Table 3-3 shows a subset of the key attributes used to characterize 
groups, listing examples of the specific values for these attributes for three 
of the group categories: a political group, a religious group, and a militant 
group.
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TABLE 3-3  Examples of Group Stereotypes 

Group Categories

Attribute Political Religious Militant

Goals Influence Acceptance, 
validation, advance 
dogma

Protect livelihood and 
values, influence, defy 
authority

Goal scripts Propaganda, street 
demonstrations

Good works, 
proselytizing,
humanitarian/
education

Propaganda, attack 
symbols of power, 
attack infrastructure

Acceptable means Work within 
existing power 
structure

Work within 
existing power 
structure 

Work against existing 
power structure, 
violence

Historical data 
(past behavior)

Values/beliefs

World view Neutral Neutral/friendly Hostile

Demographics Heterogeneous Homogeneous in 
belief

Homogeneous in 
religion, ethnicity, or 
socioeconomic status

Motivation for 
joining

SOURCE: Hudlicka (2004, Table 5.1-2 from Psychometrix Technical Report 0412, pp. 48–49).

Dominant Trait Models

Dominant trait models are similar to cultural inventories but differ in 
the fundamental unit of analysis. Whereas cultural inventory models are 
based on ethnographic assessments of the culture as a whole, dominant trait 
models are based on individuals’ responses to survey questions about them-
selves. This approach is based on the concept of modal personality devel-
oped by the cultural and personality school of psychological anthropology 
(Benedict, 1934; LeVine, 1982; Hsu, 1972). In this approach, culture is 
seen as “personality writ large.” Cultures are described by the dominant 
psychological traits of the members of the culture. If certain traits are more 
prevalent in one society than another, the cultures are said to be different 
in this respect.
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Perhaps the most famous advocate of this approach in modern times is 
Hofstede, who has identified five dimensions of culture that he regards as 
fundamental and that are thought to vary widely across cultures. The five 
dimensions are power distance (degree of tolerance for uneven distribution 
of power), individualism-collectivism, femininity-masculinity (task versus 
process/people orientation), uncertainty avoidance, and short- versus long-
term orientation.

This trait set was recently augmented by Klein and colleagues and 
termed the “cultural lens” model (Klein, Pongonis, and Klein, 2000; Klein 
and McHugh, 2005). The cultural lens model adds several cognitively ori-
ented factors to the Hofstede dimensions, including counterfactual think-
ing versus hypothetical reasoning and dialectical reasoning. Other cultural 
trait sets have also been identified, including that of Schwartz, which con-
sists of conservatism (degree of preference for status quo and established 
order); intellectual autonomy (independence of intellectual pursuits); affec-
tive autonomy (desirability for individual’s positive affective experience); 
hierarchy (same as power distance); egalitarianism (similar to Hofstede’s 
collectivism); mastery (getting ahead through active self-assertion); and 
harmony (fitting into the environment) (Schwartz, 1999). 

Another trait-based approach focuses on the characteristic cognitive 
styles of a group’s members (Hudlicka, 2004; Hudlicka et al., 2004). For 
example, one of the more striking findings in cross-cultural cognition 
research is the recognition that the “fundamental attribution error” (Ross, 
1977) is in fact dependent on culture, and more common in Western, 
individualistic cultures, than Eastern, more group-oriented cultures. Funda-
mental attribution error refers to the individual’s tendency to attribute the 
behavior of others to individual dispositions rather than to environmental 
influences. Similarly, Western subjects exhibit a greater focus on isolated 
objects than Asian subjects, who attend more to the gestalt of the situation 
and the interrelationships among the objects.

Examples of findings from cross-cultural cognition research are listed in 
Tables 3-4 and 3-5. The tables follow the categorization of inference types 
of Peng, Ames, and Knowles (2001).

Finally, a large number of cross-cultural studies focus on emotion: its 
expression, recognition, and elicitation across cultures. The specific data 
of interest for a particular modeling effort depend on the objective of 
the model (a training system designed to teach cultural awareness should 
provide information about acceptable expressions of particular emotions; 
a decision aid designed to improve behavior prediction needs to represent 
emotion elicitors, etc.). As might be expected, there are significant com-
monalities across cultures in both emotion recognition and expression, 
particularly in the case of the more fundamental (basic) emotions, such 
as fear, anger, sadness, and happiness (Ekman and Davidson, 1995). For 
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TABLE 3-4  Findings Regarding Cultural Differences in Human Inference: 
Inductive Reasoning (ability to generalize from limited data) (Hudlicka, 
2004)

Category of 
Inference Findings

Covariation 
judgment
(identifying 
correlations 
between cues)

Ji, Peng, and Nisbett (2000)
Chinese versus Americans
Simple stimuli presented on computer screen
Chinese more confident about judgments
Chinese more correct in judgments
Chinese showed no primacy effect
Americans showing strong primacy effect
“East Asian cognition has been held to be relatively holistic; that is, 

attention is paid to the field as a whole. Western cognition, in contrast, 
has been held to be object focused and control oriented. In this study 
East Asians (mostly Chinese) and Americans were compared on 
detection of covariation and field dependence. The results showed 
the following: (a) Chinese participants reported stronger association 
between events, were more responsive to differences in covariation, 
and were more confident about their covariation judgments; (b) 
these cultural differences disappeared when participants believed 
they had some control over the covariation judgment task; (c) 
American participants made fewer mistakes on the Rod-and-Frame 
Test, indicating that they were less field dependent; (d) American 
performance and confidence, but not that of Asians, increased when 
participants were given manual control of the test”

Causal 
attribution 
(identifying 
causal 
relations 
between cues)
Social

Miller (1984)
Americans versus Hindu Indians
Fundamental attribution error evident in Americans
Hindu Indians attribute behavior to social roles, obligations, physical 

environment
Attributed to different beliefs regarding causality (content difference)
Morris, Nisbett, and Peng (1995) 
Americans versus Chinese
Fundamental attribution (mass murderers, computer animations of fish)
Americans attributed behavior to individual dispositions
Chinese attributed behavior to environment
Lee, Hallahan, and Herzog (1996)
Americans and Hong Kong Chinese
Sportswriters’ descriptions of events
American writers focus on individuals
Hong Kong writers focus on situational factors

Nisbett (2003); Jones and Harris (1967)
Americans and Koreans
Judgment of another person’s attitude
Americans assume due to disposition
Koreans assume due to contextual influences

continued
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Category of 
Inference Findings

Causal 
attribution
Physical

Asian folk physics is relational, emphasizing fields and force over distance
Western folk physics focuses on nature of object itself, rather than its 

relation to the environment
Peng et al. (2001, p. 252)

Peng and Knowles (2003) 
Chinese versus Americans
Force-over-distance explanations (aerodynamic, hydrodynamic, magnetic)
Americans referred more to nature of object
Chinese referred more to the field

Person 
perception

Chiu, Hong, and Dweck (1997)
Hong Kong Chinese versus Americans
Judgment of self as fixed versus changing
Americans assume fixed, enduring traits
Chinese assume changing self

Peng et al. (2001)
Chinese versus Americans
Type of information used in person perception judgments
Americans focused on evidence provided by target
Chinese focused on evidence provided about the target by others

Inference of 
mental states

Americans prefer “what you see is what you get” norm of authenticity
Asians would consider this impolite 
Knowles, Morris, Chiu, and Hong (2001)
Chinese versus Americans
Judgment of mental states (thoughts, feelings, desires)
Americans: focus on what “they say”
Chinese: focus on what “they don’t say”

Categorization General findings:
•	 Some categories are more stable across cultures than others. Examples of 

stable categories are: basic emotions, colors, basic shapes
•	 Westerners tend to categorize objects by color at an early age and by 

function later. Africans tend to use color throughout their life. (This 
finding may be related to formal education more than culture.)

•	 More cultural influence for goal-based categories than for environment-
based categories

•	 More salient categories for a given culture are more highly differentiated 
(culture directs attention)

•	 Culture determines types of features used in defining categories 
•	 Asians may be less attuned to categories in their inferences and 

category learning
•	 Some evidence that Asians tend to use relational features as basis for 

categorization
•	 Differences in “chronic accessibility” (less for Koreans than for Americans)
•	 Possible differences in category acquisition (exemplar based versus rule 

based)
•	 Self-descriptions (Americans in terms of fixed traits; Asians in terms of 

roles; more “socially diffused”)

SOURCE: Hudlicka (2004, Table 3.2.2-1 from Psychometrix Technical Report 0412, pp. 28–30).

TABLE 3-4  Continued
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TABLE 3-5  Findings Regarding Cultural Differences in Human Inference: 
Deductive Reasoning 

Category of 
Inference Findings

Syllogisms Luria (1931, Russia); Cole (1996, Africa) 
Subjects did not engage syllogistic problems at the theoretical level 

(i.e., if asked to deduce something based on a presented syllogism, 
they would frequently think out of the box and suggest that the 
experimenter go find out for himself; why would x be true, etc.)

Real-world (culturally relevant) grounding of topic makes a large 
difference in success on task 

Dialectical 
reasoning

Asians: changing nature of reality and enduring presence of 
contradictions versus Western: linear epistemology built on notions 
of truth, identity, and noncontradiction

Resolving contradiction: Chinese seek compromise; Americans seek 
exclusionary (either-or) truth and resolution (Peng and Nisbett, 1999)

Assumption in Eastern dialectical epistemology:
•	 Principle of change—everything is always in flux (thus x may not be 

identical with itself because it may change over time)
•	 Principle of contradiction—opposing qualities coexist
•	 Principle of holism—everything is linked to everything else and 

isolating phenomena may lead to misleading conclusions
•	 Folk wisdom: greater frequency and preference for dialectical 

(apparently contradictory proverbs) among Chinese than Americans

Social 
contradictions/
conflicts

Americans tended to blame one side versus Chinese tended to see fault 
in both

SOURCE: Hudlicka (2004, Table 3.2.2-2 from Psychometrix Technical Report 0412, p. 31).

behavior prediction, the most significant differences are those in emotion 
elicitation; that is, in the specific situations and stimuli triggering particular 
emotions. Variations were found both in the nature of the emotions elicited 
and the intensity of those emotions. Some of these findings are summarized 
in Table 3-6.

Semantic Models

Semantic models are not researcher-based models but rather the models 
that ordinary people use to understand their worlds. The models are often 
tacit, in the sense that individuals are not aware they have them. Anthro-
pologists discover the models by interviewing people and listening to their 
accounts of daily life. They typically consist of chains of prototypical events 
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TABLE 3-6  Differences in Emotion Elicitors Across Cultures: Summary 
of Findings

Situation Emotion Elicited

Birth of new family member More intense joy for Europeans/Americans than Japanese

Body-centered basic pleasures More intense joy for Europeans/Americans than Japanese

Achievement More intense joy for Europeans/Americans than Japanese; 
more fear for Americans

Death of loved one More frequent triggers of sadness for Europeans/Americans 
than Japanese

Physical separation from a 
loved one

More frequent triggers of sadness for Europeans/Americans 
than Japanese

World news More frequent triggers of sadness for Europeans/Americans 
than Japanese

Strangers More frequent trigger of anger for Japanese than for 
Europeans/Americans; more fear for Americans 

Novel situations More fear for Japanese

Negative developments in 
relationships

More sadness for Japanese than Europeans/Americans

SOURCE: Hudlicka (2004, Table 3.2.2-3 from Psychometrix Technical Report 0412, p. 33).

that constitute plans of action. D’Andrade defined these sorts of models 
as “a cognitive schema that is intersubjectively shared by a social group” 
(D’Andrade, 1989, p. 809). Semantic models are qualitative or conceptual 
rather than computational models.

As an example of a semantic model, Naomi Quinn (1987) has analyzed 
hundreds of hours of interviews to discover concepts underlying American 
marriage and to show how these concepts are tied together. She began 
by looking at patterns of speech and at the repetition of key words and 
phrases, paying particular attention to informants’ use of metaphors and 
the commonalities in their reasoning about marriage. For example, one 
of her informants said that “marriage is a manufactured product.” This 
metaphor paints marriage as something that has properties like strength 
and staying power and as something that requires work to produce. Some 
marriages are “put together well,” while others “fall apart” like so many 
cars or toys or washing machines (Quinn, 1987, p. 174).
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The objective is to look for metaphors in rhetoric and deduce the 
schemas, or underlying principles, that might produce patterns in those 
metaphors. Quinn found that people talk about their surprise at the breakup 
of a marriage by saying that they thought the couple’s marriage was “like 
the Rock of Gibraltar” or that they thought the marriage had been “nailed 
in cement.” People use these metaphors because they assume that their 
listeners know that cement and the Rock of Gibraltar are things that last 
forever (i.e., they are intersubjectively shared).

Quinn reasons that if schemas or scripts are what make it possible for 
people to fill in around the bare bones of a metaphor, then the metaphors 
must be surface phenomena and cannot themselves be the basis for shared 
understanding. Quinn found that the hundreds of metaphors in her corpus 
of texts fit into just eight linked classes that she calls lastingness, shared-
ness, compatibility, mutual benefit, difficulty, effort, success (or failure), and 
risk of failure. For example, Quinn’s informants often compared marriages 
(their own and those of others) to manufactured and durable products (“it 
was put together pretty good”) and to journeys (“we made it up as we went 
along; it was a sort of do-it-yourself project”). Quinn sees these metaphors, 
as well as references to marriage as “a lifetime proposition,” as exemplars 
of the overall expectation of lastingness in marriage.

Other examples of the search for cultural schemas in texts include a 
study of the reasoning that Americans apply to interpersonal problems 
(Holland, 1985), a study of ordinary Americans’ theories of home heat 
control (Kempton, 1987), and a study of what chemical plant workers and 
their neighbors think about the free enterprise system (Strauss, 1997). 

Cultural Domain Analysis

Cultural domain analysis refers to perspectives on and methods for 
analyzing culture drawn from cognitive anthropology (Borgatti and Everett, 
1992). A cultural domain is a collection of items that in some sense go 
together or are all examples of a kind of x (e.g., animals, plants). Such 
domains are often linguistic categories (e.g., semantic domains or concepts) 
in that there is a simple name for the set of items, like fruit or vegetables. 
What makes these domains cultural is that they are consensual. There is 
general agreement on the part of cultural actors regarding membership of 
most items in the domain. However, like all human things, the boundaries 
of a domain can be porous or fuzzy. There are items that are clearly in the 
domain, and items that are clearly outside, and many items that are in-
between. The general objective of this type of analysis and modeling is to 
understand the cultural domain, which means to know what items belong 
in it and how these items are perceived to relate to one another (i.e., the 
extent to which they are similar or different). The data are collected and 
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analyzed in a systematic manner using data collection techniques, such as 
pile sorts, sentence completion tasks, and triads tests (similar methods are 
referred to as repertory grid analysis in psychology; see Johnson and Weller, 
2002), and analytical methods, such as hierarchical clustering and multi-
dimensional scaling, to identify the conceptual organization and shared 
dimensions among concepts. Analysis of domain items can also include 
their attributes (e.g., diseases and their symptoms). A good example of a 
general principle stemming from this form of analysis comes from Stefflre 
(1972) in his proposition that people will behave similarly toward things 
they perceive as being similar.

The importance of this approach lies in the ability to quickly assess 
the nature of cultural beliefs and conceptions, albeit for a rather narrowly 
delineated set of cultural items. However, such an understanding can facili-
tate the ability to alter or change cultural beliefs and ultimately human 
behavior. These types of methods have been used in consumer research 
for both product development and marketing (Stefflre, 1972). Johnson, 
Griffith, and Murray (1987) and Murray, Griffith, and Johnson (1987), 
for example, have used this approach in changing people’s beliefs about 
underutilized fish species, leading to increased consumption of fish that 
were traditionally considered “trash” fish.

Another branch of cultural domain analysis is the cultural consensus 
model (CCM) of Romney, Weller, and Batchelder (1986). The model origi-
nated as a theoretical exploration of the formal conditions under which 
similarity of beliefs would imply cultural knowledge. It was shown that, 
in the context of a true/false questionnaire asking respondents to react to 
propositions of fact, the degree of knowledge of each respondent could be 
inferred when three conditions held. First, that a single culturally correct 
right answer exists that is valid for all respondents in the sample. Second, 
that conditional on the underlying cultural answer key, the responses of 
subjects are independent (i.e., when they did not know the answer to a 
question, their responses were uncorrelated). Third, that the questionnaire 
contained questions about only one domain of knowledge (that is, a single 
competence level for each person sufficed to characterize their probability 
of answering any question correctly). When these three conditions held, 
the model was capable of deriving both the culturally correct answer key 
and the cultural competence of each respondent. The model allows for a 
test of the degree to which cultural knowledge is shared, who has more 
or less of this cultural knowledge, and how it varies among a group of 
people in terms of, for example, gender, levels of human capital, and social 
class. It also allows for the construction of the culturally correct answers 
by working backward via Bayesian statistical techniques from the pat-
terns of agreement concerning a series of related cultural propositions or 
statements.
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This approach has a number of advantages in terms of understanding 
and modeling culture, particularly with respect to modeling aspects of intra-
cultural variation.� CCM has been used in a variety of contexts, but it has 
been applied practically to solving policy and management issues, model-
ing indigenous ecological knowledge, and understanding people’s cultural 
beliefs concerning various aspects of health and illness. It has recently been 
used to measure cultural consonance (i.e., the correspondence between 
cultural beliefs and actual behavior) that has been shown to correlate with 
health outcomes (e.g., low consonance is related to high blood pressure; see 
Dressler and Bindon [2000]).

The CCM approach can be used to empirically determine shared beliefs 
and knowledge that can be used in models incorporating cultural variables. 
In addition, the approach can also be used to more finely tune an under-
standing of cultural beliefs and their variation that may be patterned in 
terms of different social attributes (e.g., gender, age). Thus, cultural knowl-
edge (the correct cultural response) or individual cultural competency can 
be treated as either a dependent or an independent variable in a model at 
various levels of analysis.

Relevance to Modeling Requirements and Major Limitations

For the purposes of this study, a key limitation of all the models reviewed 
in this section is that they were not built for military purposes. The variables 
and dimensions they have focused on (such as power distance) have not been 
shown to be relevant for any given military situation. More generally, dif-
ferent aspects of culture are relevant for different situations, and as a result 
a new model must be built for each substantially different military purpose 
and for each group of people (who have distinct cultures).

Another limitation of these models is that they do not explicitly link 
culture and behavior and therefore do not provide direct guidance on how 
to intervene in a group in order to change the culture. A partial exception 
is cultural domain analysis, which posits that people behave similarly to 

� Understanding intercultural variations has benefited significantly from the approach taken 
by Heinrich et al. (2004), in which an economic “game” (such as the Ultimatum Game, Güth, 
Schmittberger, and Schwarze, 1982) is introduced across a number of different societies, and 
the resulting behaviors correlated (or “normalized”) with respect to the interaction pattern 
norms found in each society. As the authors note: “We draw two lessons from the experimental 
results: first, there is no society in which experimental behavior is even roughly consistent with 
the canonical model of purely self-interested actors; second, there is much more variation 
between groups than has been previously reported, and this variation correlates with differ-
ences in patterns of interaction found in everyday life” (p. 5). Clearly there are implications 
for war games, understanding cultural biases with respect to aggression across cultures, and 
anticipating adversary tactics for a range of Department of Defense IOS modelers.
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similar stimuli. As a result, it is possible to predict that people’s behavior 
toward a new course of action will be similar to their reactions toward 
other courses of action that are similar.

Another difficulty with predicting behavior is that the behavior of inter-
est to predict may often be that of individuals. However, some models, such 
as the semantic models, unless they were based on a single individual, are not 
intended to apply to any single individual. Other models, such as the trait-
based models of Hofstede, are based on individuals but then aggregated to 
the group level. Cultures are then described by the traits of the majority.

Data, Verification, and Validation Issues

Cultural inventory models rely on ethnographic observation and are 
therefore both time-consuming to develop and highly subjective. Having 
multiple independent observers helps ameliorate the subjectivity problem 
but is expensive.

Dominant trait models, such as the Hofstede dimensional models, 
can involve two sets of data. The first set of data is used to derive the 
dimensions. These can be validated by a number of different statistical 
methods, such as factor analysis. Once these are fixed, another set of data 
is obtained to score each new culture on the dimensions. These data have 
to be obtained from willing natives of the culture, and the data have to be 
updated over time because cultures change.

Future Research and Development Needs

In a certain sense, cultural models are critical for all the computational 
models discussed in this volume, because the cultural models provide the 
principles to be embedded in those models. For example, an agent-based 
model of crowd behavior needs to know the cultural rules for behavior that 
will govern the agents’ interactions.

The biggest limitation of cultural models at present is that existing 
models were not designed with military purposes in mind. As a result, a key 
research need is to develop models applicable to military needs. This would 
include semantic models of how natives think about land, nation, war, for-
eigners, and so on, as well as cultural inventory models that include relevant 
variables. Note that different models are needed for different cultures.

The semantic models are particularly powerful for military applica-
tions. However, they are currently not formal models, meaning that they 
are expressed verbally and not in ways that are immediately amenable to 
computational analysis. As a result, another key research direction is to 
develop formal ways of expressing semantic models that are simple enough 
to be used by field researchers and subject matter experts.
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4

Macro-Level Formal Models

This chapter presents modeling approaches for representing the 
behavior of humans in groups and organizations. It discusses system 
dynamics models first, followed by a discussion of several approaches 

to organizational modeling. 

System Dynamics Models

What Is System Dynamics Modeling?

System dynamics modeling is a method of modeling the dynamic 
behavior of complex systems by breaking down these systems into sim-
pler interconnected components (“blocks”) connected together via links or 
“wires” that connect one block’s outputs to another block’s inputs. This 
breaking down or recursive modeling continues until simple blocks can 
be defined in terms of well-understood interactions between the block’s 
inputs, outputs, and its “internal state.” Within any given block, this state 
is defined by the associated state variables, which are usually related by a 
set of differential equations that underlie the dynamics of that block.� 

To provide a quick illustration of the basic concepts involved, if 
one were to model the dynamics of two cars traveling down a straight 
road, one behind the other, one might specify four blocks: one for each car 
and one for each driver. Each car would have (a) two states: a speed and a 

� The use of differential equations reflects the history of system dynamics modeling and its 
roots in electrical and mechanical engineering and control systems theory.
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position/location down the road; (b) a single input (or control) of accelera-
tion, determined by the driver’s application of the gas or brake pedal; and 
(c) a single output, the position/location down the road.� Simple differential 
equations, based on the laws of physics (and the vehicle acceleration/braking 
dynamics) would then be used to define the relation of the input (control) 
of the driver’s use of the gas pedal or brake to the car’s output, the position 
down the road. The second car would be modeled similarly. The trailing 
car driver would be likewise modeled as a block, with perhaps two inputs, 
distance and closing speed to the front car, and a single output, gas/brake 
pedal usage. The differential equations or “control law” relating driver 
inputs to driver outputs would be specified by well-understood manual 
control dynamics (see, for example, McRuer and Krendel, 1974). The lead 
driver could be modeled in “open-loop” fashion, as a block with no input 
but with a randomly varying output of gas pedal pressure, leading to ran-
dom speed behavior. By specifying each individual block’s behavior (via the 
inputs, the outputs, and the differential equations underlying the internal 
dynamics) and by linking up the appropriate inputs to the appropriate 
outputs of the four-block system, one then has a general system dynamics 
representation of the dynamics of the two-car, two-driver “system.” 

The fundamental power of this approach lies in four areas:

1.	 System dynamics concepts are tightly bound to the twin notions 
of (1) the dynamic behavior of systems over time and (2) feedback 
and cross-connectivity between different elements of the system. 
Dynamic behavior can evolve simply because of a system’s internal 
dynamics and its initial conditions (e.g., a frictionless swing set to 
infinite harmonic oscillation by an initial offset from the vertical). 
But the dynamic behavior is considerably more interesting when 
it is driven by the dynamics of yet some other system (e.g., some-
one pumping the swing ever higher and eliciting nonlinear swing 
behaviors), through a cross-coupling or feedback loop involving 
real physics or abstract information. And when these loops are 
contaminated by noise (an erratic “pumper”), time delays (a slow-
to-respond pumper), and/or distortion in the form of frequency- or 
amplitude-selective feedback channels, then the opportunity exists 
for often unanticipated and sometime surprising behaviors across 
the system as a whole. These are often the characteristics of com-

� Two states suffice for a simple kinematic representation of the longitudinal (fore-aft) 
control of vehicle location; additional states would be added for finer grained representation 
of the situation if one were interested in modeling the effect of the detailed dynamics of the 
brake calipers, for example. The approach would be the same, however, via the introduction 
of yet another block placed between the driver’s brake pedal and the block representing the 
vehicle kinematics.
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plex human-machine and human-human systems that modelers are 
dealing with.

2.	 The use of blocks, which can be made up of subblocks ad infini-
tum, so that any level of detail can be examined in a given model, 
within practical computational limits. Literally millions of state 
variables can be introduced—in a structured manner—to allow 
the finest grained examination of the impact of very small com-
ponents (e.g., O-ring brake failure) on overall system behavior 
(e.g., a 20-car pileup on the Los Angeles freeway). In essence, this 
approach provides one means of modeling the “butterfly effect,” 
as an alternative to chaos theory, which models how small changes 
in the initial state (or initial conditions) of a nonlinear system can 
lead to large changes of the system state (or system trajectory) at 
some later point in time.� The systems dynamics approach takes 
a bottom-up building block approach, which is appealing in its 
dependence on well-understood domain-specific theory and laws,� 
whereas chaos theory takes a broader systems level view that, if 
more abstract, is well grounded mathematically.

3.	 The use of interconnected blocks ensures that the fundamentals of 
feedback are (nearly) always present. In the example above, the 
driving behavior of the lead driver clearly will affect the behavior 
of the trailing driver.� Thus, subtle interactions can be accounted 
for, as one element of the system accounts for and accommodates 
to others. It is often these feedback loops that give rise to unantici-
pated “emergent” behaviors (pilot-induced oscillations in aircraft 
handling, stock market crashes, etc.).

4.	 The use of blocks with “internals” that can be elaborated as the 
need arises. Generally, differential equations serve as the basis for 
a block’s dynamics, but it is straightforward to elaborate, via either 
the addition of subordinate blocks as just described or the addi-
tion of, for example, nonlinear characteristics (e.g., a limit on the 
acceleration obtainable via a fully pressed-down gas pedal in the 
above example). However, any such nonlinear additions often tend 

� The term “butterfly effect” was introduced by one of the pioneers of chaos theory, Edward 
Lorenz, in a paper given by him in 1972 to the American Association for the Advancement of 
Science in Washington, D.C., entitled Predictability: Does the Flap of a Butterfly’s Wings in 
Brazil Set Off a Tornado in Texas?

� See later comments on the limits to the system dynamics approach of building, from the 
ground up, models that seem plausible at each level, until they are actually run and compared 
with dramatically different real-world results.

� And to explore the impact of the trailing driver’s behavior on the lead driver’s, one would 
merely need to add in a rear-view mirror into the model of the lead driver, and postulate the 
dynamics of lead driver behavior as a function of, say, trailing driver tailgating activity, thus 
fully “closing the loop” between the two drivers. 
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to make the theoretical analysis of such systems intractable, so that 
system dynamics analysts must then rely on simulation execution 
and analysis in order to understand or predict system behavior.

A specialized version of system dynamics modeling, and the main focus 
of this section, focuses on a fairly explicit representation of the system 
states, called “stocks” (entities that accumulate or deplete over time) and 
their associated “flows” (the rates of change of stocks) (Forrester, 1968). In 
essence, Forrester� transformed the generic nth order differential equations 
characterizing general system dynamics theory into n first-order differential 
equations that are intuitively simple to understand and, via the associated 
programming language Dynamo, into a transparent graphic representa-
tion of the key interrelationships among variables (Richardson and Pugh, 
1981). Using Dynamo to implement these first-order relations, it becomes 
a relatively simple exercise in computational model development by the 
nonspecialist who may not have been schooled in differential equations 
and their specification or solution. Feedback and interconnections are intro-
duced by defining how the level of one stock controls the flow of another. 
Nonlinearity is introduced via simple limits on stock levels and flow rates.

A simple example is given in Box 4-1, which illustrates how two states 
(birth rate and death rate) define the flow of a third state (net growth rate). 
This is a simple open-loop example with no feedback, but it is not a diffi-
cult exercise to close the loop, for example, by postulating how population 
growth rate might influence economic growth rate, which could induce 
consumer confidence and, through that, cause birth rates to increase.

An example showing this level of loop closure is given in Figure 4-1, 
which illustrates one component of a larger system dynamics model of the 
spread of an epidemic (Sage and Armstrong, 2000). The three state vari-
ables (stocks) are X1, the population susceptible to infection (susceptible 
population), X2, the population that is actually infected (infected popula-
tion), and X3, the population that has developed an immunity to the infec-
tion (immune population). Note that boxes are used to represent these 
states graphically. The associated flows are LR (loss of immunity rate), IR 
(infection rate), and RR (recovery rate). Note that the valve symbols are 
used to indicate how the flows control the stock levels, via the following 
intuitive graphic analogy: flow into a block increases the stock level, while 

� Although Jay Forrester’s name is the one most closely associated with the system dynamics 
concept, his work owes much to the electrical engineering pioneers at Bell Laboratories work-
ing with feedback circuits and notions of system stability in the 1920s and 1930s (see, e.g., 
Black, 1977); the discipline of cybernetics developed at the Massachusetts Institute of Tech-
nology by Norbert Weiner and colleagues during the 1940s and 1950s (Weiner, 1948); and, 
more recently, practitioners who have done much to popularize its application to important 
problems in the social sciences, most notably Richardson and colleagues (see, e.g., Richardson 
and Pugh, 1981; Richardson, 1991). 
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BOX 4-1 
The Equation, Variables, and Mathematical Representations for 

Birth and Death Used in Population Modeling

Description of variables:
b(t) : Average birth rate per unit person in the population at time t
D(t) : Average death rate per unit person in the population at time t
mn(t) : Expected value

Mathematical representation of birth rate, death rate, and average rate of popula-
tion growth:
b(t)mn(t) : Total average birth rate 
D(t)mn(t) : Total average death rate
d t

dt
t t tn

n
µ β µ( ) = ( ) − ( )[ ] ( )∆ :

 
Average rate of population growth (the difference 

between the total average birth rate and death rate)
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FIGURE 4-1  Example of a system dynamics model that shows the partial system 
dynamics description for propagation of a potential epidemic. 
SOURCE: Adapted from Sage and Armstrong (2000, p. 235).
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flow out decreases it.� The diagram captures the following qualitative and, 
for the mathematically inclined, quantitative notions:�

•	 For the states:
—	 The susceptible population X1 will increase as the recovered 

lose immunity (LR) and decrease as the susceptibles become 
infected (IR). Or�

		  n	 d(X1)/dt = LR – IR
—	 The infected population X2 will increase as the susceptibles 

become infected (IR) and decrease as the infected recover (RR). 
Or

		  n	 d(X2)/dt = IR – RR
—	 The immune population X3 will increase as the infected recover 

(RR) and decrease as the immune lose immunity (LR). Or
		  n	 d(X3)/dt = RR – LR

•	 For the flows (not illustrated for simplicity):
—	 The infection rate (IR) increases both as the susceptibles (X1) 

increase and as the infected (X2) increases, due to the net-
worked nature of spreading infections. Or10

		  n	 IR = a*X1*X2
—	 The recovery rate (RR) is directly proportional to the infected 

(X2). Or
		  n	 RR = b*X2
—	 Likewise, the loss of immunity rate (LR) is directly propor-

tional to the infected (X3). Or
		  n	 LR = b*X3

Note the complete loop closure relating the three states, and the 
potential for continuing growth and decay of an infected population over 
time. Note also the potential for nonlinear behavior over time, because of 
the fundamental nonlinearity introduced via the infection rate equation 
(IR = a*X1*X2).

The structure of system dynamics models can be characterized by four 
hierarchical levels, as shown in Figure 4-2.11 All interactions and impacts 

� Not explicitly shown is how the flows are influenced by the stock levels.
� Note that in this set of equations and in subsequent sets, the asterisk (*) is not meant to 

represent a convolution operation or function composition, but rather a simple multiplication, 
in line with DYNAMO code conventions, as well as FORTRAN syntax, which was a popular 
computational language at the time of DYNAMO’s introduction.

� d( )/dt is used to denote the first-order derivative of the associated variable.
10 The constants (a,b,c) are chosen on the basis of underlying knowledge of dynamics of 

infection, recovery, etc.
11 This description borrows heavily from Sage and Armstrong (2000, p. 237). 
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in the system dynamics model take place inside a boundary. Within this 
boundary, variables are chosen to represent the key states that define overall 
system behavior. A derivative variable is chosen to control a flow into the 
state or level variable, which integrates or accumulates this level. Informa-
tion concerning the level is used to control the rate variable (state feedback 
to the same associated state). In other words, we define a rate variable as 
the time derivative of a level or state variable and determine rate variables 
as functions of level variables.

Some useful readings on system dynamics modeling methodology 
are Roberts, Anderson, Deal, Garet, and Shaffer (1983); Sterman (2000); 
Ogata (2003); and Karnopp, Margolis, and Rosenberg (2006). A more 
detailed description of system dynamics modeling and the equations it uses 
is available in Sage (1977) and Sage and Armstrong (2000). Comprehen-
sive approaches to modeling complex projects—including industrial and 
military—are described by Williams (2002).
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FIGURE 4-2  The four hierarchical levels of system dynamics modeling.
SOURCE: Sage and Armstrong (2000, p. 237).
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State of the Art in System Dynamics Modeling

Early History of System Dynamics

Jay W. Forrester created this focused version of system dynamics in 
the mid- to late 1950s at the Massachusetts Institute of Technology’s Sloan 
School of Management, basing it on the more traditional modeling used 
at the time, implementing differential equation models on analog com-
puters. Forrester brought these concepts to the digital domain, codified 
them in the stocks and flows paradigm described above, and used this 
approach to model highly complex systems such as organizations and 
the urban environment (Forrester, 1961; see also Forrester, 1969). This 
novel approach of developing computational dynamic models of hitherto 
unmodeled phenomena led to the founding of the System Dynamics Group 
at the Massachusetts Institute of Technology in the early 1960s (see http://
web.mit.edu/sdg/www/what_is_sd.html).

Forrester wrote several books on system dynamics methodology that 
provide the foundations of the field. The first was Industrial Dynamics 
(Forrester, 1961), providing a computational foundation for understand-
ing the dynamics of organizations and processes in industry. Forrester 
then published Urban Dynamics (1969), which was the first noncorporate 
application of system dynamics (Radzicki, 1997). Shortly thereafter For-
rester published World Dynamics (1971) in which he applied system 
dynamics methodology to the behavior of the highly interrelated forces of 
global dynamics (Sage and Armstrong, 2000). Forrester’s student, Dennis 
Meadows, and colleagues expanded on World Dynamics in The Limits to 
Growth (Meadows, Meadows, Randers, and Behrens, 1972) and a follow-
up, Beyond the Limits (1992) (Radzicki, 1997). The Malthusian projections 
that came from these early models not only alienated the growth-oriented 
policy makers of the West, but also brought severe criticism from many 
of the academics in the field (e.g., economists), because of the glaring mis-
match between model “predictions” and what was actually occurring on 
the world stage. This became more apparent as time went on, and it is fair 
to say that this failure to meet empirical validation standards considerably 
dampened the initial enthusiasm that met the system dynamics viewpoint 
toward understanding the complex interrelations of complex systems.12

12 However, system dynamics modeling has been applied to several other areas, including 
software project dynamics (Abdel-Hemid and Madnick, 1991), organizational learning (Senge, 
Kleiner, Roberts, Ross, and Smith, 1994; Morecroft and Sterman, 1994), agriculture (Elmahdi, 
Malano, and Khan, 2006), health care management (Rohleder, Bischak, and Baskin, 2007), 
and transportation (Springael, Kunsch, and Brans, 2002).
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More Recent Applications of System Dynamics Modeling

More recently, there has been a resurgence of interest in system dynamics 
modeling, most particularly in public policy and business areas. Sterman’s 
text on Business Dynamics (2000) presents a number of case studies that 
demonstrate successful applications across a number of areas, including 
global warming, the war on drugs, reengineering the supply chain of a 
major computer firm, developing a marketing strategy in the automobile 
industry, and planning process improvements in the petrochemicals indus-
try. The Department of Defense (DoD) has also taken a keen interest in this 
approach, particularly for modeling diplomatic, information, military, and 
economic (DIME) actions, and political, military, economic, social, infor-
mation, and infrastructure (PMESII) interactions. It is not our intent here to 
survey all of these efforts, but merely to provide a few illustrative examples 
to indicate the potential of system dynamics modeling in this area.

For example, Robbins’ Stabilization and Reconstruction Operations 
Model (SROM) (Robbins, Deckro, and Wiley, 2005) analyzes the orga-
nizational hierarchy, dependencies, interdependencies, exogenous drivers, 
strengths, and weaknesses of a country’s PMESII systems using a complex 
set of interdependent system dynamics representations. SROM models a 
country system in a holistic manner as a national model, which, as shown in 
Figure 4-3, is then defined in terms of its n regional submodels that interact 
with each other and the national model. Each regional submodule contains 
six functional submodels: the demographics submodel, the insurgent and 
coalition military submodel, critical infrastructure, law enforcement, indig-
enous security institutions, and public opinion. Each submodel is comprised 
of approximately 600 model parameters, 90 random variables, 80 states 
(stocks), and 190 rates of change (flows).
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FIGURE 4-3  Top-level nation SROM. 
SOURCE: Robbins et al. (2005, p. 19).
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FIGURE 4-4  SROM infrastructure model.
SOURCE: Robbins, Deckro, and Wiley (2005).

Figure 4-4 shows a portion of the critical infrastructure model of 
SROM. The model captures a sequence of influences among variables, start-
ing from the power supply at an electrical substation. The generated power 
is fed into an industrial water plant, which produces water consumed by 
oil field work. An oil field produces crude oil to be refined by a refinery. 
Finally, refined fuel is used to generate power, which in turn is supplied to 
various power substations, thus forming a closed loop.

SROM has been demonstrated in modeling and analysis of Iraqi recon-
struction and recruiting efforts (Robbins et al., 2005). Parameters were set 
to reflect prevailing conditions in Iraq on May 1, 2003, including

•	 Regional makeup (governorates)
•	 Regional population
•	 Population subgroup distribution
•	 Population support for coalition
•	 Oil and gas infrastructure
•	 Power infrastructure
•	 Transportation infrastructure
•	 Economic—regional gross domestic product

Robbins (2005) claims that the SROM allows analysts to more precisely 
investigate the multifaceted process that is nation building: “[Because] the 
complexities of nation-building involve many different but interrelated 
systems and institutions, understanding the significance of the dynamic 
relationships between these systems and institutions is paramount to 
operational success. The system dynamics model proposed in this study 
allows decision-makers and analysts to investigate different sets of decision 
approaches at a sub-national, regional level” (p. 135).

The Pre-Conflict Anticipation and Shaping (PCAS) program (Popp et 
al., 2006) was an attempt to evaluate alternative DIME/PMESII model-
ing efforts to predict nation-state collapse and to anticipate instabilities 
that might lead to conditions necessitating military intervention. One of 
the approaches, led by Nazli Choucri, developed a “state stability model” 
using a system dynamics approach; a high-level view of the model is given 
in Figure 4-5.
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 According to Popp (2005, p. 18), it “shows loads, demands and 
stresses on state and the causal dependencies; shows feedback loops, tipping 
points and unintended consequences; [and] shows the internal and lateral 
pressures that can lead to conflict.” By looking at the loads (demands) 
placed on the system (nation-state) and evaluating those demands in terms 
of the system’s capabilities, an assessment of stability can be made based 
on how much demands exceed capacity.

Finally, O’Brien’s Integrated Crisis Early Warning System (ICEWS) is 
a new program at DARPA/IPTO aimed at following on from the PCAS 
exploration just described. According to the announcement of the research 
program, its goal “is to develop a comprehensive, integrated, automated, 
generalizable, and validated system to monitor, assess, and forecast national, 
sub-national, and international crises in a way that supports decisions on 
how to allocate resources to mitigate them. ICEWS will provide Combat-
ant Commanders (COCOMs) with a powerful, systematic capability to 
anticipate and respond to stability challenges in the Area of Responsibility 
(AOR); allocate resources efficiently in accordance to the risks they are 
designed to mitigate; and track and measure the effectiveness of resource 
allocations toward end-state stability objectives, in near-real time” (see 

FIGURE 4-5  High-level view of system dynamics implementation of state stability 
model. 
SOURCE: Popp (2005).
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http://www.arpa.mil/ipto/solicitations/open/07-10_PIP.pdf [accessed July 
2007]).

Environments for System Dynamics Modeling

The earliest computer-based system dynamics simulations were created 
by Richard Bennett, who developed the SIMPLE (Simulation of Industrial 
Management Problems with Lots of Equations) compiler in 1958 (Forrester, 
1989). In 1959, Phyllis Fox and Alexander Pugh used the SIMPLE compiler 
to form the DYNAMO simulation package, which was used as the standard 
system dynamics language for over 30 years (Radzicki, 1997).

There are several computer-based simulators that are used to model 
system dynamics problems. The DYNAMO system dynamics simula-
tion language is described in Richardson and Pugh (1981) and a per-
sonal computer–based language, STELLA, is discussed in Richmond 
and Peterson (1992). Other software packages that are used for system 
dynamics modeling include Powersim, Vensim, MapSys, Simile, and Evo-
lución. The tradition of easy model development is also carried on via 
the Ptolemy systems modeling language developed by Buck, Ha, Lee, and 
Messerschmitt (1994).

Relevance, Limitations, and Future Directions

The relevance of the system dynamics approach to the problems 
addressed by this panel is manifest both by the early work by Forrester 
and colleagues in attempting to model organizations, cities, nations, and 
overall world dynamics and by the current resurgence in interest by DoD 
in retackling these very hard problems, in recognition of the “soft” nature 
of warfare now dominating current conflicts. The fundamental appeal of 
this methodology is due to the strengths noted earlier:

•	 System dynamics concepts provide a means of representing critical 
dynamic behavior of systems over time, as well as feedback, and 
cross-connectivity between different elements of the system. 

•	 The use of blocks that can be made up of subblocks ad infinitum, 
so that any level of detail can be examined. 

•	 The use of interconnected blocks that ensures that the funda
mentals of feedback are (usually) always present, enabling emer-
gent behavior.

•	 The use of blocks with internals that can be elaborated as the 
analysis need arises, in terms of both resolution and modeling 
fundamentals. 
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One of the major limitations of the system dynamics approach is that 
its strong grounding in a mathematical description of the organizational 
dynamics (namely, first-order differential equations) tends to preclude par-
ticipation by researchers and modelers who are more linguistically and 
semantically oriented, for example, those working in causal networks, 
expert systems, or the like. Attempting to bring these different communities 
together is not a trivial task, as evidenced by the experience of the PCAS 
program, and attempting to integrate across these different methodologies 
is likewise problematic, as described in Chapter 8.

Another limitation is verification and validation, since these models 
are particularly easy to build by making simple assumptions about struc-
tures, feedback path, and parameter values, without ever relying on “real” 
data.13 As noted by Sage and Armstrong with respect to the urban modeling 
effort of Forrester: “Forrester’s interest in modeling the city is a somewhat 
abstract one in that he does not fit the data and parameters for his city to 
any particular city. Effort is primarily directed at discovering the essential 
features of the city and expressing relationships between these features in 
mathematical terms as difference equations” (Sage and Armstrong, 2000, 
p. 253).

A system dynamics model must have both behavioral and structural 
validity (Quadrat-Ullah, 2005). Forrester and Senge (1980) presented some 
tests for determining if a model has structural validity:

•	 Boundary adequacy: whether the important concepts and struc-
tures for addressing the policy issue are endogenous to the model.

•	 Structure verification: whether the model structure is consistent 
with relevant descriptive knowledge of the system being modeled.

•	 Parameter verification: whether the parameters in the model are 
consistent with relevant descriptive and numerical knowledge of 
the system.

•	 Dimensional consistency: whether each equation in the model 
dimensionally corresponds to the real system.

•	 Extreme conditions: whether the model exhibits a logical behavior 
when selected parameters are assigned extreme values.

13 Or, as one of the report reviewers so aptly noted, “Expressing a social relationship as a 
differential equation (or any other kind of equation for that matter) does not make it so. There 
are such things as accounting identities, but mathematically exact descriptions of social or 
human processes generally do not exist.” We agree, but, of course, this is not a shortcoming 
that is specific to computational models built on system dynamics concepts; it is a general 
issue with any “model” that can be reduced to executable software. Adequate verification 
and validation is always a critical issue for any modeling paradigm, as we discuss at length 
in Chapter 8.
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Finally, there are a number of potential directions for future research 
and development (R&D) efforts, including bridging the gap to models 
and simulations that are not so formally mathematically defined, improv-
ing model composability from smaller component libraries (Davis and 
Anderson, 2004), and ensuring that the difficult problem of verification and 
validation does not outstep the progress being made in developing develop-
ment environments that are easy to use. 

Organizational Modeling

An organization consists of a number of individuals who must work 
together to achieve a goal. Corporations, governmental bureaus, religious 
organizations, the Armed Forces, divisions, squads, and teams are all orga-
nizations; they are everywhere and each of us can be members of many 
organizations. A fundamental aspect of an organization is that the orga-
nizational task requires the efforts of many individuals who must work 
together to accomplish this overall task. The big task is broken down into 
smaller subtasks or jobs which must then be coordinated in order to achieve 
the organizational goal. Each organization is the context or structure for 
the individuals to achieve their own smaller tasks. Individuals are linked 
through the organizational structure.

What Is Organizational Modeling?

Organization theory is a study of the structure, behavior, and perfor-
mance of the organization (Scott, 1998) in order to describe, explain, and 
predict. Basic questions include: Under what circumstances is decentraliza-
tion better than centralization? When should an organization be highly 
formalized with many rules and when should it be more informal? When 
should the information and communications follow the hierarchy, and 
when should there be many cross-hierarchy exchanges? When should tasks 
be grouped together by task specialization and when by purpose—all for 
better performance?

There are many ways to describe an organization. One generally thinks 
of an organization in terms of its task assignment and its hierarchy of 
command and control. Another more basic description is: Who does what, 
when, and where?—the four Ws of an organization. The “who” is the 
individual—the task assignment is the “what”—the “when” introduces 
the time of action—and the “where” is the location. This is a rather 
complete description of an organization, leaving out only the how (with 
what resources and knowledge) and the why (with what goals). Beyond a 
few individuals, it is difficult to think about an organization at this level, 
without the use of dynamic network analysis models, so we introduce 
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organizational properties, such as decentralization and formalization, or 
rules for how decisions are made and the information communicated, 
and the behavioral patterns or routines that are repeated. In information-
processing terms, the Ws take on a slightly different aspect: who talks to 
whom about what (communication networks, which may be hierarchical) 
and who decides what to do (decision making or command structure). In 
modern information-intensive organizations, the information-processing 
view of an organization is a frame for both describing an organization and 
designing it (Burton and Obel, 2004).

Organizational design is the complement of organization theory in 
which one specifies what the organization should be, beginning with the 
purpose of the organization and then specifying the tasks and coordination 
mechanisms or communications and decision-making structures. The focus 
goes beyond what is or has been to what might be and then what should be 
(Burton, 2003). A good design requires a good understanding of organiza-
tion theory, as the theory indicates what is feasible and not feasible in the 
circumstances. Organizational design can be the specification of what the 
organization should be: its hierarchy, its formalization, its decentralization, 
its communications, and its coordination and control mechanisms—an 
information-processing view. Or the term “organizational design” may 
describe the process of finding a good design and the issues of change or 
redesign. Organizational design is used both as a noun for what the design 
should be and as a verb for the process of determining the design. We dis-
cuss both below.

In the social and managerial sciences, the research on organizations 
is deeper in organization theory than organizational design, although the 
opposite tends to be true in engineering. In general, however, the focus has 
been on the “what is” description of organizations and explaining what has 
happened—to enhance understanding of how organizations behave. There 
are theories of bureaucracy, routines as rules and patterns, decentraliza-
tion, coordination, and control; all yield hypotheses for confirmation or 
rejection. For the most part, these hypotheses have been examined empiri-
cally. Researchers have used field data and, to a much lesser extent, lab 
experimental data to test the hypotheses and add to the understanding of 
organizations. In addition, some researchers take an ethnographic approach 
in which they gather more detailed data about an organization, describe it 
in great depth, and in doing so generate emergent hypotheses and theories. 
For both approaches, there is an emphasis on the data gathered from orga-
nizations using an inductive approach for understanding.

There has been a smaller effort on formal mathematical modeling of 
organizations using a deductive approach, in which the analysis of the 
models yields insights and hypotheses that can be tested using field or lab 
data. This includes optimization approaches, in which the structure of the 
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organization is optimized to meet the demands of the mission and tasks to 
be performed (Pattipati, Meirina, Pete, Levchuk, and Kleinman, 2002).

Simulation or computational models offer a third approach (Axelrod, 
1997). Simulation modeling is distinctively different from both approaches 
described above yet also has characteristics of both. First, a simulation 
model of an organization, which includes its structure and agents, generates 
behavioral and performance data on the organization, which can be ana-
lyzed as if they were field data.14 These are frequently called virtual experi-
ments. Agent-based models explicitly model both the agents or individuals 
and the decision-making structure of the organization, which includes the 
communication and authority links among the agents. In these experi-
ments, the simulation model parameters can be varied beyond what can 
be observed from field or lab data to explore what might be; for example, 
new structures and decision procedures can be created, and even the infor-
mation-processing characteristics of the agents (human or machine) can be 
varied. In both situations, the simulation models generate a larger set of 
possibilities from which to gain insight and understanding. Second, simu-
lation models can be similar to mathematical models, but they are more 
complex and not amenable to closed-form solutions. Here, the simulation 
model can be used to explore and generate hypotheses for further investiga-
tion in the field or lab.

Simulation models free one from the constraints of mathematical 
models in which closed-form equilibrium solutions are required. Simula-
tion models free one from the size and scale restrictions of lab experiments 
and from the limitations of field data, which necessarily are historical and 
limited to what did happen—not what could have happened. For action, we 
are interested in the alternatives available and what might happen—which 
is broader than what has happened in the past.

14 We emphasize “as if” for two reasons: First, the simulation-generated data can be processed 
and analyzed via the same methods and toolsets used for real-world data. This is clearly an 
advantage both in terms of economical reuse of methods and software already developed for 
real-world data, and in terms of ease of comparing processed and analyzed data collected 
from the two domains (simulated and real-world). This latter case is particularly important, 
since it is often impossible to compare, for example, single-time histories of organizational 
“state” recorded from real and virtual experiments (because of “noise,” for example), whereas 
it is possible to compare processed data, obtained from time- or ensemble-averaged statistics 
calculated over many “runs,” both virtual and real.

The second reason for the emphasis on “as if” is not so positive. Because simulation-
generated data can be made to look so much like real data, they are often confounded, and 
researchers can be led to overinterpret the results of a simulation, coming to conclusions as 
if they had been looking at real data generated by real-world experiments (or at real-world 
data generated by an experiment which grew out of a hypothesis created by a simulation-
based virtual experiment), rather than at data generated by a simulation that has not been 
adequately validated.
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State of the Art in Organizational Modeling

Here, we focus on simulation or computational organizational models. 
A number of books contain overviews and examples of many models in 
this area (Carley and Prietula, 1994; Carley and Gasser, 1999; Lomi and 
Larsen, 2001). Some models consider organization theory questions; others 
are more oriented to organizational design questions; and some can be used 
for both purposes. We begin with the theory models and then consider the 
design models, with comments when the models can be used both ways.

Organization Theory Models

There are numerous organization simulations or computational orga-
nizational models; here we review a few of them. Most, but not all, are 
agent-based models in which the organization is represented as agents that 
are linked together by communication or authority structures or both.

The earliest computational organizational model was a behavioral 
theory of the firm in which the organization was modeled in terms of goals, 
expectations, and choice (Cyert and March, 1963). Simple systems were 
used to demonstrate how nonrational behavior could generate behavior 
similar to that observed in real organizations. This was then extended in 
the now canonical model, the garbage can model of organizational choice 
(Cohen, March, and Olsen, 1972). This was a simple Fortran program in 
which basic matching and accumulation functions were combined to show 
how variations in the problem access, salience of problems, and energy of 
the participants altered the level of work and the quality of outcomes.

The Lin and Carley models look at organizations as networks of com-
munication linkages among agents, such that agents learn only from the 
information that they get from the outside world or that is provided to them 
by another agent in the organization (Lin and Carley, 2003; Lin, Zhao, 
Ismail, and Carley, 2006). Using these models, they investigated questions 
of crisis response. They conducted a “matched-set” validation experiment, 
in which they compared the behavior of 69 real-world organizations faced 
with industrial crises with the behavior of the simulated versions of those 
same 69 companies. Using what-if analysis, they were then able to show 
that the type of decision making employed by the organization—for exam-
ple, following standard operating procedures or following the dictates of 
historically based experience—often led organizations to false conclusions 
about their performance.

This work was generalized and extended to produce the OrgAhead 
model. OrgAhead is a multiagent model of organizational design and the 
examination of the impact of learning and strategic adaptation on that 
design (Carley and Svoboda, 1996). In this model, learning occurs at the 
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operational and structural levels, using experiential and expectation-based 
learning models. From a technical standpoint, the model uses simulated 
annealing15 to alter the communication and authority lines and number of 
agents. The agents are information-processing units with a simple learning 
component. OrgAhead can be thought of as an operationalized grounded 
theory. The basis for OrgAhead is the body of research, both empirical 
and theoretical, on organizational learning and organizational design. The 
model has built into it several theories of different aspects of organiza-
tional behavior. From the information-processing tradition comes a view of 
organizations as information processors composed of collections of intel-
ligent individuals, each of whom is boundedly rational and constrained in 
actions, access to information by the current organizational design (rules, 
procedures, authority structure, communication infrastructure, etc.), and 
his or her own cognitive capabilities. Organizations are seen as capable 
of changing their design (DiMaggio and Powell, 1983; Romanelli, 1991; 
Stinchcombe, 1965) and as needing to change if they are to adapt to 
changes in the environment or the available technology (Finne, 1991). Dif-
ferent organizational designs are seen as better suited to some environments 
or tasks than others (Hannan and Freeman, 1977; Lawrence and Lorsch, 
1967). Aspects of the model have been tuned to reflect the findings of 
various empirical studies related to these theories. The set of theories that 
are unified into a single computational theory of organizational behavior 
interact in complex fashions to determine the overall level of organizational 
performance.

Harrison and Carroll (1991) investigated the effect of turnover on 
organizational culture for different prototypical organizations and poli-
cies. Their model is stated as a set of mathematical functions, which are 
then simulated and yield data that are analyzed as if they were field data. 
The model is essentially a cultural diffusion model operating at the group 
level. On the basis of “virtual experiments” conducted with the model and 
a follow-on analysis of the resulting simulation-based data, they found 
that some employee turnover can help stabilize the culture of the organiza-
tion, suggesting that some previously held truths about turnover are not 
general.

An alternative information diffusion model is Construct, developed 
by Carley to examine the coevolution of structure and culture that results 
from individual information exchange and the formation and dissolution 

15 Simulated annealing is a technique to find a good solution to an optimization problem by try-
ing random variations of the current solution. A worse variation is accepted as the new solution 
with a probability that decreases as the computation proceeds. The slower the cooling schedule, 
or rate of decrease, the more likely the algorithm is to find an optimal or near-optimal solution 
(see http://www.nist.gov/dads/HTML/simulatedAnnealing.html [accessed August 2007]).
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of social networks (Carley, 1991). Construct has been used to examine the 
impact of new technologies on the workplace (Carley and Schreiber, 2002), 
performance under diverse leadership styles (Schreiber and Carley, 2004), 
and the emergence of organizational vulnerabilities (Carley, 2004).

NK models, originally suggested by Kauffman, are simple optimiza-
tion models, often operationalized using genetic algorithms, in which N 
is the number of actors and K is degree of connectedness among the 
actors (Kauffman and Weinberger, 1989). NK models have been applied to 
organization theory questions of adaptation (Levinthal, 1997), search and 
stability (Rivkin and Siggelkow, 2003), modularity and innovation (Ethiraj 
and Levinthal, 2004), imitation and benchmarking (Rivkin, 2000), and 
other basic questions about organizations. The explicit modeling of rugged 
landscapes permits one to understand the limitations of organization expla-
nations that implicitly assume smooth performance surfaces. It also yields 
greater insights into the persistence of variety among organizations.

The SimVision model (earlier called VDT) is a project organization 
model (Levitt, Thomsen, Kunz, Jin, and Nass, 1999) which explicitly 
models the project tasks (similar to a critical path method network) and the 
hierarchical organization structure. In essence, this model is the merger of 
Gantt chart technology with a limited information-processing model for the 
agents. The project tasks are linked by the project network, and each task 
is assigned directly to an agent in the hierarchy. SimVision has been used as 
a laboratory for organization experiments.16 For example, Carroll, Burton, 
Levitt, and Kiviniemi (2006) found that “fast tracking” or concurrent engi-
neering of projects quickly leads to increased coordination demands that do 
not reduce total project time; additional personnel can also increase project 
time as they require time to manage; and decentralization increases coordi-
nation demands. Earlier, Kim and Burton (2002) found that decentraliza-
tion reduces project time but may also decrease quality. Long, Burton, and 
Cardinal (2002) demonstrated that three simultaneous control approaches 
are better than any single control approach. These studies began with orga-
nizational questions and observations of real organizations as base models. 
The simulation experimental manipulations (“virtual experiments”) went 
beyond real-world observations to investigate plausible conditions of what 
could happen for a better understanding of potential outcomes. Field obser-

16 In the studies cited here it must be remembered that the conclusions drawn from analysis 
of the simulation-based data (in turn generated by virtual experiments in the simulation 
domain) are not to be confounded with conclusions drawn from an analysis of homologous 
real-world data. This is in keeping with our earlier footnote regarding how simulation-based 
data can be analyzed as if it were real-world data. It often can, but the fundamental issue 
still remains regarding the validity of applying the simulation-based conclusions to real-world 
organizational behavior. Naturally, the more validated the model, the more likely one is to be 
correct in cross-applying one’s conclusions. 
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vations and generalizations are limited in their applicability and should be 
used with caution in the design of future organizations. Simulation studies 
provide deeper insight into what is possible and what is desirable for 
organizational redesign and change. SimVision can also be applied as an 
organizational design model.

Organizational Design Models

The term “organizational design” is used both to mean the design of 
the organization and the process of design. The two meanings are different 
but closely related. In a special issue of Organization Science, Dunbar and 
Starbuck (2006) focus on the process of organizational design in its many 
facets. The articles give insight into how design can be accomplished and 
the challenges encountered.

SimVision was applied to investigate organization theory questions. 
But it was originally created as an organizational design tool to help 
project managers optimize projects and project management implemen-
tation (Levitt, 2004) This included avoiding unforeseen bottlenecks and 
finding options to compress project time. One of the insights is that project 
managers adapted quite well to minor variations from the normal base case 
but less well when there were large changes in requirements. The simula-
tions were extremely useful in helping project managers reframe the project 
and redesign the project.

Pattipati and colleagues (Pattipati et al., 2002; Levchuk, Levchuk, 
Luo, Pattipati, and Kleinman, 2002a, 2002b; Levchuk, Levchuk, Meirina, 
Pattipati, and Kleinman, 2004) have used multiobjective optimization 
algorithms to develop organizational designs optimized to meet mission 
requirements for military command and control organizations, focusing 
specifically on Joint Task Force command teams. These designs specify 
both structure and process by specifying roles in the organization defined 
in terms of control of resources, responsibility for tasks, and requirements 
for coordination. Designs are then tested in simulations of organizational 
performance and finally tested in field experiments in which military 
officers play the roles that were designed using the model. Studies have 
shown that optimized organizational designs based on the model result 
in performance that exceeds that observed under more traditional designs 
suggested by military subject matter experts (Entin, 1999). A key find-
ing of this work is that sufficient training is essential for the officers to 
function effectively in the innovative organizational structures developed 
using the model.

Carroll, Gormley, Bilardo, Burton, and Woodman (2006) describe 
an organizational design process at the National Aeronautics and Space 
Administration (NASA), where SimVision and other organizational design 
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tools were used as decision aids in creating a new organization. The chal-
lenge was to create an organization that had multiple functional experts, 
was geographically disperse, and had severe resource constraints in which 
project time and quality were paramount. The design team began with the 
construction of the design structure matrix; it gave a good beginning but 
generated questions as well as answers. Next, they used OrgCon—an expert 
system organizational diagnosis and design tool—to model the proposed 
organization at a high level in terms of structural properties, such as formal-
ization and decentralization. One purpose of this modeling was to identify 
“misfits” (Burton and Obel, 2004) that suggested a need for change; they 
found few of them. But many questions remained. Then they created a 
SimVision of the proposed design to obtain greater detail and better under-
standing of how the organization would actually work. Using variations 
in the design, they confirmed that the design developed with the aid of the 
tools was reasonable. Perhaps most importantly, the usual organizational 
design approach would have resulted in an organization that would have 
failed to meet the goals and would have incurred delays and unanticipated 
costs. The results indicate that the tools can make a difference and lead 
to better designs; furthermore, the theory-based notion of organizational 
misfits aids in the process. It can be a bridge between theory and design 
and theory and practice, as managers find the identification of misfits and 
their correction both intuitive and practical. NASA had been accustomed 
to using simulations in engineering design but not in organizational design. 
Nonetheless, the culture was amenable to the application of such tools for 
organizational design.

Similarly, OrgAhead was built to explore the relative effectiveness of 
different organizational designs. For example, it was used to determine 
the adaptability and performance characteristics of different designs under 
consideration by the Naval Strategic Studies Group. Construct, referred to 
earlier, has also been used to evaluate various organizational designs under 
different turnover regimes. Moreover, when data are collected on the who, 
what, where, and how of organizations, such data can first be assessed for 
points of vulnerability in ORA and then Construct can be applied to the 
same empirical description of the real organization to forecast its behavior 
in terms of information diffusion and performance with or without turn-
over (Carley, Diesner, Reminga, and Tsvetovat, 2005).

Levis and Wagenhals (2000) and the subsequent work with Shin, Kim, 
Bienvenu, and Shin led to the development of a Petri net model for design-
ing and assessing organizational architectures (Bienvenu, Shin, and Levis, 
2000; Wagenhals, Shin, Kim, and Levis, 2000). Modeling agents, their 
resources, and the decision process, this overall approach makes possible 
the fine tuning of detailed designs of core groups in organizations. This 
approach has been used consistently to evaluate command and control 
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structures. The key advantage of this approach is that designs can be opti-
mized to the specific communication and timing requirements.

Relevance, Limitations, and Future Directions

The relevance of organizational models to the requirements outlined in 
Chapter 2 is obvious. Representative tasks, such as designing effective orga-
nizations and disrupting adversary organizations, are clear candidates for 
the use of such models. If it were possible to accurately assess the probable 
effectiveness of various organizational options before implementing them, 
much effort could be saved and many potentially catastrophic mistakes 
avoided. 

Limitations of such models as they now exist include requirements for 
data that may be totally unavailable or unavailable in appropriate formats 
and structures, the need for culturally appropriate information on which 
to base assumptions and algorithms, especially for non-Western organiza-
tions, and technical issues requiring further development and refinement of 
the models themselves. 

R&D requirements include better methods for obtaining and using 
organizational performance data to provide leaders and managers with 
better tools for restructuring their organizations as necessary. The vast 
majority of current model-based organizational design methods are static. 
That is, they use prior performance data about the organization to develop 
future designs, but they do not use “streaming” performance data as it 
comes in to understand or modify the organization’s structure and processes 
in real time. Organizational models that could accept and use real-time data 
could provide a tool for making organizations more flexible and able to 
adapt to changing conditions and missions more quickly.

An additional area in need of research is the ability to combine models 
at different levels of granularity and detail to represent large organiza-
tions, as well as the advantages and drawbacks of including more or less 
detail. Including detail for all of the individuals in a large organization can 
quickly lead to intractable size and computational infeasibility, but system-
level models may not be able to represent the detail that leads to emergent 
behavior. For example, system dynamics models could be developed at the 
level of the entire organization, with individual agents developed to repre-
sent key individuals or groups in the organization. Data could flow in both 
directions between the detailed agent-based models and the organization-
level system model. Challenges and existing approaches for developing such 
integrated multilevel models are discussed in Chapter 8. 

Finally, innovative experimentation approaches are needed to advance 
the state of the art in organizational modeling. Systematic controlled experi-
ments are not feasible for organizations of any size—team experiments 
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rarely include more than six to eight team members. However, the devel-
opment of agents that can represent the behaviors of members of the 
organization in a realistic way opens the door for “hybrid” experiments 
in which most roles in the organizations are played by agents, with only a 
few played by live subjects. Research is needed on the best ways to use this 
hybrid experimentation capability to advance organizational science: the 
types of questions that can best be addressed in such experiments, the best 
ways to “control” such experiments in the classical sense of experimental 
control, the level of fidelity needed in the agents, and the statistical tech-
niques needed for analysis of the results. 
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Micro-Level Formal Models

In this chapter we discuss several micro-level formal models of human 
behavior, models that most often are concerned with the behavior 
of individuals. We begin with cognitive architectures, followed by 

cognitive-affective models that consider the effect of human emotions 
on cognition and behavior, as well as of behavior on emotions. We then 
discuss expert systems, a legacy modeling approach that provides a frame-
work for representing human expertise, and that now is often used as a 
programming paradigm in decision aiding systems. Finally we discuss 
decision theory and game theory and their limited applicability to indi-
vidual, organizational, and societal modeling in general.

For each model or approach, we follow the same discussion framework 
as in Chapters 3 and 4: we present the current state of the art, the most 
common applications of the approach, its strengths and limitations for the 
problems described in Chapter 2, and suggestions for further research and 
development.

Cognitive Architectures

Cognitive architectures are simulation-based models of human cog-
nition. Their distinguishing feature is the broad focus on modeling the 
full sequence of information processing (stimulus-to-behavior) mediating 
adaptive, intelligent behavior. Cognitive architectures are built both for 
basic research and for applied purposes. Different architectures typically 
emphasize distinct aspects of human cognition (e.g., memory, multitasking, 
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attention, learning, etc.), depending on their research objectives or applica-
tion goals.�

Typically, cognitive architectures are used to model individual cogni-
tion. Less often, the applicability of this approach for modeling collective 
behavior has also been explored, that is, using a cognitive architecture 
to model the behavior of a group, team, or organization. The utility and 
appropriateness of this approach to modeling group cognition has yet to 
be demonstrated, however,� and so we have restricted our discussion here 
to covering the use of individual cognitive architectures to the modeling of 
individual behavior.

Cognitive architectures have their roots in the early artificial intelligence 
(AI) models of human problem solving developed in the 1950s. These mod-
els combined a number of key ideas emerging from observations of human 
problem solving and behavior, including symbolic processing, hierarchical 
organization of goals, problem spaces, rule- and heuristic-based behavior, 
and parallel and distributed representation and computation.

A number of cognitive models were developed in the 1970s and 
1980s, such as the Model Human Processor (MHP) and Goals, Operators, 
Methods, and Selection rules (GOMS) (Card, Moran, and Newell, 1986), 
focusing on modeling a single function in the context of a single task and 
most often applied to models of human-computer interaction and, in par-
ticular, to the design and evaluation of user interfaces. Although limited in 
scope, these models provided the necessary methodological foundations for 
the more broadly scoped cognitive architectures of today, by demonstrating 
the feasibility and benefits of computational cognitive models, primarily in 
the context of human-computer interface design.

What Are Cognitive Architectures?

Cognitive architectures are computational, simulation models of 
human information processing and behavior. Cognitive architectures are 
also referred to as agent architectures, computational cognitive models, and 
human behavior models.� These simulation-based models aim to implement 

� Indeed, this report’s focus on models and simulations that can contribute to some element 
of improving forecasting or explanation in a Department of Defense context may limit the 
ultimate utility of applying some of the models described herein (and elsewhere in the report) 
in a broader nonmilitary context. Some researchers may argue that this is not the case because 
of inherent model generality, but this general issue goes beyond the original scope of the study 
and clearly deserves further study.

� Researchers are beginning to suggest future work in this area; see, for example, MacMillan 
(2007). 

� Specific connotations may exist with each of these terms regarding the motivation and use 
of the cognitive architecture.
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some version of a unified theory of cognition (Newell, 1990) by modeling 
the entire end-to-end human information-processing sequence, beginning 
with the current set of stimuli and ending with a specific behavior. 

Cognitive architectures are typically classified into three broad cat-
egories, depending on their approach to knowledge representation and 
inferencing: symbolic, subsymbolic (also referred to as parallel-distributed), 
or hybrid (combining elements of the former two). Symbolic architectures 
use one or more propositional knowledge representation formalisms, such 
as rules, belief nets, or semantic nets. Subsymbolic, parallel-distributed 
architectures typically use some type of a connectionist representation and 
inferencing (e.g., recurrent neural networks), in which the mapping between 
conceptual entities and the representation is not one-to-one, because the 
knowledge is distributed over multiple representational elements (e.g., 
nodes within the network). Hybrid architectures use elements of both rep-
resentational formalisms and are becoming increasingly common, as the 
benefits of the combined symbolic-subsymbolic knowledge representation 
and inferencing are recognized. 

The specific functions represented in a particular architecture depend on 
its objective, level of resolution, and theoretical underpinnings. These also 
determine the specific modules that make up a given architecture. In most 
symbolic architectures, the modules and process structure correspond to (a 
subset of) the functions comprising human information processing. Most 
architectures thus contain some subset of the following broad cognitive and 
perceptual processes: attention, situation assessment, goal management, 
planning, metacognition, learning, action selection, and necessarily some 
form of memory (or memories), such as sensory, working, and long-term. 

Thus, for example, an architecture attempting to model recognition-
primed decision making (RPD) would have a module dedicated to situation 
assessment, since that is a core component of the RPD theory (Klein, 1997); 
an architecture focusing on models of learning would have corresponding 
modules responsible for such functions as credit assignment and creation of 
new schemas in memory. It should be noted here that most existing cogni-
tive architectures are not capable of learning (Morrison, 2003). While some 
architectures, such as Soar, do contain elements of learning (e.g., creation 
of new operators by combining existing operators), typically, there is no 
direct learning resulting from the agent’s interactions with the environment. 
However, the cognitive modeling community is beginning to recognize the 
limitations of human-constructed long-term memories in these models, and 
researchers are beginning to address the problem of automatic knowledge 
acquisition and learning in cognitive architectures (e.g., Anderson et al., 
2003; Langley and Choi, 2006).

Depending on the architecture’s control structure, the modules may 
execute in a fixed sequence, or in parallel, or anywhere between these two 
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extremes. Figure 5-1 illustrates the module structure of a notional sequen-
tial cognitive architecture, frequently referred to as a “see-think-do” control 
structure. An alternative to this sequential approach is a parallel-distributed 
control structure, in which a number of parallel processes access a com-
mon memory structure (frequently referred to as a blackboard and hence 
the term “blackboard architectures,” Corkill, 1991). As with the sequential 
architectures, the specific processes represented, as well as the structure of 
the memory blackboard, depend on the architecture objectives, the level 
of resolution, and theoretical foundations. Figure 5-2 shows an example 
of a blackboard architecture, illustrating examples of possible associated 
processes. Historically, cognitive architectures have focused on the middle 
stage of the see-think-do metaphor, frequently simplifying the perceptual 
input and motor output components. However, as cognitive architectures 
expand in model complexity and desired functionality (e.g., operating in a 
real-world environment), they increasingly incorporate sensory and motor 
models to become full-fledged agent architectures, capable of autonomous, 
intelligent, and adaptive behavior in a real or a simulated world. 

Cognitive architectures thus contrast with the more narrowly scoped 
cognitive models (also referred to as micro models of cognition), which 
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focus on a single function, such as attention, visual search, visual percep-
tion, language acquisition, or memory recall and retrieval, and implement 
micro theories of cognition, rather than unified theories of cognition. 

This figure shows a high-level view of a parallel-distributed cognitive 
architecture, which represents an alternative to the sequential see-think-
do model. In parallel-distributed models, processing occurs in multiple, 
concurrent processes, and coordination among these processes is achieved 
through the intermediate results posted on the blackboard, which represents 
the architecture memory. The structure of the blackboard varies, depend-
ing on a particular architecture, to represent the desired types of distinct 
memories. 

State of the Art 

A large number of cognitive architectures have been developed in both 
academic and industrial settings, and new architectures are rapidly emerg-
ing due to increasing demand, particularly in human-computer interaction 
(HCI) and decision support contexts, with emphasis on training, decision 
aiding, interactive gaming, and virtual environments. Three recent reviews 
provide a comprehensive catalogue of a number of established or commer-
cially available cognitive architectures: a report focusing on U.S.-developed 
systems (Andre, Klesen, Gebhard, Allen, and Rist, 2000, pp. 51–111), a 
supplementary report focusing on systems developed in Europe, primarily 
in the United Kingdom (Ritter et al., 2003), and a review by Morrison that 
covers architectures in both the United States and Europe and includes some 
of the lesser known systems (Morrison, 2003). All three reviews provide 
detailed descriptions of the architectures in terms of the cognitive processes 
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modeled, their historical context, applications, and implementation lan-
guages and any validation studies. A large number of research-oriented 
architectures also exist in laboratories around the world. The best sources 
for information regarding these architectures are conferences and work-
shops, such as the International Conference on Cognitive Modeling, the 
annual meeting of the Cognitive Science Society, symposia and conferences 
of the American Association for Artificial Intelligence, Autonomous Agents 
and Multi-Agent Systems, Human Factors, and BRIMS. See Table 2-1 for 
an overview of cognitive architectures used in military contexts. 

Existing cognitive architectures are being used to support research on 
both human cognition and, more recently, emotion (see the next section 
on cognitive-affective models). They are also used in applied settings to 
control the behavior of synthetic agents and robots in a variety of contexts, 
including gaming and virtual reality environments, to enable user modeling 
in adaptive systems, and as replacements for human users and subjects for 
training, assessment, and system design purposes. 

It is beyond the scope of this chapter to describe in detail the large 
number of architectures that have been developed over the past 25 years. 
The three reviews mentioned above are excellent sources of in-depth infor-
mation regarding a number of architectures that are sufficiently estab-
lished to be included in comprehensive reviews. Below we briefly discuss 
a subset of these, to provide a sense of the breadth of theoretical ori-
entations, representational formalisms and modeling methodologies, and 
applications.

It should be noted that each architecture elaborates a particular sub-
set of cognitive processing and that the architectures vary in their ease of 
transition to other domains and ease of use. These factors must be taken 
into consideration when a particular architecture is being considered as a 
modeling tool for a specific problem in a particular domain. For example, 
ACT-R’s focus is on relatively low-level processing, and is particularly con-
cerned with memory modeling. EPIC emphasizes models of multitasking. 
Soar emphasizes a particular model of learning, cast in relatively high-level 
symbolic terms. Thus, before a particular architecture is adopted for a spe-
cific modeling effort, it is necessary to carefully assess its ability to model 
the processes of interest at the desired level of resolution.

The most established architectures in the United States are ACT-R and 
Soar, each having a large and active academic research community, with 
annual workshops and tutorials, and each having an increasing presence 
in industry, primarily the defense industry. These are described below, 
followed by several other prominent architectures.
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ACT-R

The historical focus of ACT-R (Atomic Components of Thought or 
Adaptive Character of Thought) has been on basic research in cognition 
and modeling of a variety of fundamental psychological processes, such as 
learning and memory (e.g., priming) (Anderson, 1983, 1990, 1993). ACT-R 
combines a semantic net representation with rule-based representation to 
support declarative and procedural memory representation and associated 
inferencing. ACT-R is probably the cognitive architecture that is “best 
grounded in the experimental research literature” (Morrison, 2003, p. 24). 
Primary early applications were tutoring in mathematics and computer pro-
gramming (see www.carnegielearning.com). Gradually, ACT-R evolved into 
a full-fledged cognitive architecture, with increasing emphasis on sensory 
and motor components and applications in military settings (e.g., modeling 
adversary behavior in military operations on urban terrain, MOUT, tactical 
action officers in submarines, radar operators on ships; Andre et al., 2000; 
Anderson et al., 2004).

Soar

Soar (State, Operator, and Results) development was initially motivated 
by the desire to demonstrate the ability of generalized problem spaces, rules, 
and heuristic search capabilities to solve a wide range of problems and by 
the desire to develop an implementation of the unified theory of cognition 
of Newell (1990). Soar uses production rules to implement this problem-
solving paradigm, via application of “operators” to states within a problem 
space. Soar represents all three types of long-term memory (declarative, 
procedural, and episodic) in terms of rules. A distinguishing feature of Soar 
is its ability to form new operators (rules) from existing operators (rules), 
when it reaches an impasse in its problem solving (impasse being defined 
as either no applicable operators selected or conflict among operators). It 
is thus one of the few architectures that explicitly addresses learning, albeit 
in the limited context of combining existing elements within its own knowl-
edge base, rather than the bona fide acquisition of new knowledge from its 
interaction with the environment. Soar models both reactive and delibera-
tive reasoning and is capable of planning (Hill, Chen, Gratch, Rosenbloom, 
and Tambe, 1998).

While Soar was in part motivated by theoretical considerations, par-
ticularly Newell’s unified theory of cognition, the architecture has become 
a more traditional AI system, in its increasing emphasis on performance, 
rather than accurate emulation of human information processing. A fre-
quent criticism of Soar is its large number of free variables, which enables 
a large number of specific models to match empirical data, thereby making 
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it difficult to unequivocally establish the validity of a given model. This is 
the case with most computational cognitive architectures.

Soar’s capabilities progressed from simple toy tasks (puzzles), through 
expert systems applications (medical diagnosis, software design), to archi-
tectures capable of controlling autonomous agents. Soar represents the more 
extensively applied cognitive architecture and includes a number of training 
installations or exercises in which it has replaced human role players or 
autonomous air entities: TacAir-Soar at the Air Force Research Laboratory 
(AFRL) training laboratory and at Williams Air Force Base (fixed-wing 
missions), Joint Forces Command (JFCOM) J9 exercises, MOUTBot (sol-
dier models) VIRTE MOUT at the Office for Naval Research, JCATS at the 
Defense Modeling and Simulation Office; SOFSoar at JFCOM, RWA-Soar 
(rotary wing missions), STEVE for training simulations, and Quakebot for 
interactive computer games (Jones et al., 1999; Laird, 2000). The applica-
tions in the military are being developed by Soar Technology, Inc. (http://
www.soartech.com). Soar also serves as the core technology at the Institute 
for Creative Technologies at the University of Southern California, where 
it acts as an agent architecture, controlling synthetic characters in virtual 
environments, primarily applied to training and game-based training envi-
ronments. Soar has also been applied in a nondefense context, to develop 
a decision support system for businesses (KB Agent, developed by ExpLore 
Reasoning Systems, Inc.).

While the emphasis in Soar applications has been on individual models, 
it has also been applied in modeling multiagent environments, in which 
explicit representations exist of shared structures among team members 
(e.g., goals, plans). The STEAM model (Shell for TEAMwork) (1996) 
implements these enhancements and has been applied to military simula-
tions (models of helicopter pilots) and to modeling soccer players in the 
RoboCup competition (Tambe et al., 1999).

EPIC

EPIC (Executive-Process/Interactive Control), developed from the MHP 
(Card et al., 1986), focuses on models of human behavior in multitasking 
contexts, in human-computer interaction. A distinguishing feature is its 
emphasis on integrating cognition with perceptual and motor processes. 
EPIC’s sensorimotor capabilities have motivated its inclusion in some Soar 
models, to provide an interface with the real world. EPIC uses production 
rules to represent both its long-term memory and the control of processing 
within the architecture. It is primarily focused on research and is a good 
example of a more constrained architecture with a strong focus on valida-
tion against human performance data. Recently EPIC has also been used in 
more applied settings, for the design of undersea ship systems.
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COGNET 

COGNET (COGnition as a Network of Tasks) architecture was devel-
oped by CHI Systems and combines several knowledge representation 
formalisms in a blackboard-oriented framework. It was initially applied 
in user interface design (Zachary, Jones, and Taylor, 2002) but has been 
expanded to include models of multitasking in the context of air traffic con-
trol (Zachary, Santarelli, Ryder, Stokes, and Scolaro, 2001) and intelligent 
tutoring (Zachary et al., 1999). COGNET has an associated development 
environment iGEN, which is commercially available from CHI Systems.

OMAR 

OMAR (Operator Model Architecture) is a task-goal network model 
with a focus on multitasking developed by BBN, Inc. (Deutsch, Cramer, 
Keith, and Freeman, 1999), from an earlier conceptual prototype, the 
CHAOS model (Hudlicka, Adams, and Feehrer, 1992). OMAR and its 
later distributed version, D-OMAR, have been used to model air traffic 
control and pilot error (Deutsch et al., 1999; Deutsch and Pew, 2001). It 
was one of the systems participating in the AMBR (Agent-based Modeling 
and Behavior Representation) validation project, in which its performance 
was compared with other cognitive architectures and with human subjects 
in the context of air traffic control (Gluck and Pew, 2005). Recent versions 
of OMAR were expanded with models of auditory and visual inputs, and 
the system was reimplemented in Java (from the original LISP version), to 
improve performance. 

MIDAS

MIDAS (Man-machine Integrated Design and Analysis System) uses 
a goal-task network model to model simple, reactive decision making. It 
includes sensory inputs (visual and auditory) and simple motor outputs and 
has been applied in human-computer interaction to model pilot behavior in 
support of cockpit design (Corker and Smith, 1992; Corker, Gore, Fleming, 
and Lane, 2000; Laughery and Corker, 1997), air traffic control, the design 
of emergency communication systems, and the design of automation sys-
tems for nuclear power plants. MIDAS is also capable of modeling multiple, 
interacting agents.

SAMPLE

SAMPLE (Situation Awareness Model for Pilot-in-the-Loop Evalua-
tion) is a sequential hybrid model developed by Charles River Analytics, 
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using several knowledge representational mechanisms, including fuzzy logic 
and belief nets and rules. It has been applied to model air traffic control, 
pilot behavior, unmanned aerial vehicles, and soldier behavior in MOUT 
operations (Zacharias, Miao, Illgen, and Yara, 1995; Harper, Ton, Jacobs, 
Hess, and Zacharias, 2001). SAMPLE implements the recognition-primed 
decision-making model (Klein, 1997) and does not include complex plan-
ning. Sensorimotor components are represented at highly abstracted levels. 
SAMPLE has a drag-and-drop development environment GRADE, for rapid 
application prototyping, and is available commercially.

APEX

APEX is an architecture supporting the creation of intelligent, autono-
mous systems and serves also as a development environment. One of its 
goals is to reduce the effort required to develop agent architectures. Its 
primary applications are in human-computer interaction, to help design 
user interfaces and human-machine systems (Freed, Dahlman, Dalal, and 
Harris, 2002), and it has been applied in air traffic control.

Other Architectures 

Several other architectures should be mentioned briefly. D-COG 
(Distributed Cognition) was developed at AFRL (Eggleston, Young, and 
McCreight, 2000) to model complex adaptive behavior. It was one of the 
architectures evaluated in the AMBR experiment (see Validation below). 
BRAHMS (Business Redesign Agent-Based Holistic Modeling System) is 
an environment developed by the National Aeronautics and Space Admin-
istration (NASA) for modeling multiple, interacting entities (Sierhuis and 
Clancey, 1997; Sierhuis, 2001) and emphasizes the interaction among 
entities rather than individual cognition.

Several well-established cognitive architectures have been developed in 
Europe. COGENT (Cognitive Objects within a Graphical EnviroNmentT) 
is a development environment for construction cognitive models developed 
by Cooper and colleagues (Cooper, Yule, and Sutton, 1998; Cooper, 2002). 
It supports the construction of cognitive architecture from individual, inde-
pendent “modules,” each responsible for a particular cognitive (or percep-
tual) function, and includes explicit support for systematic evaluation of 
the resulting models. COGENT offers a number of representational formal-
isms, including connectionist formalisms supporting the representation of 
distributed, subsymbolic knowledge. It has been applied to model medical 
diagnosis, models of memory, and models of concept learning. 

The architectures outlined above are primarily symbolic and represent 
the most common approach to the development of integrated cognitive 
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architectures. There are also examples of architectures that use connec-
tionist formalisms, either exclusively or in combination with symbolic 
representations. We briefly mention two of these below. An example of the 
former is the ART (Adaptive Resonance Theory) architecture, developed 
by Grossberg (1999, 2000). ART emphasizes learning and parallel process-
ing, both being key benefits of connectionist formalisms. An example of a 
hybrid connectionist-symbolic architecture is CLARION (Connectionist 
Learning with Adaptive Rule Indication On-Line), developed to support 
research in combined representations of symbolic knowledge (via rules) and 
subsymbolic knowledge (via connectionist networks) and inductive learning 
(Sun, 2003, 2005).

Current Trends

Several current trends in cognitive architecture development promise 
to contribute to more efficient development of these complex simulation 
systems, as well as more effective applications: 

•	 Efforts to incorporate individual differences and behavior mod-
erators, such as personalities and emotions, both to support basic 
research and to produce more realistic and robust agents (see next 
section).

•	 Efforts to provide broadly scoped end-to-end architectures, with 
increasing emphasis on sensory and motor processes, to enable the 
associated synthetic agent or robot to function in a virtual or actual 
environment (e.g., variety of Soar-based agents being developed at 
the Institute for Creative Technologies).

•	 Use of shared ontologies to facilitate the labor-intensive effort of 
cognitive task analysis and domain-specific model construction.

•	 Use of development environments to facilitate cognitive architec-
ture construction, which may include automatic KA/KE facilities, 
visualizations, and model performance assessment and analysis 
tools.

•	 Increasing emphasis on empirical validation, frequently with respect 
to human performance data, and the development of validation 
methodologies and metrics (e.g., Gluck and Pew, 2005).

Verification and Validation Issues

As stated above, verification refers to ensuring that the architecture 
functions as intended, that is, that the model has been implemented accord-
ing to the specifications. Validation refers to the degree to which the model 
specifications reflect the reality, at the desired level of resolution. We focus 
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here on model validation and, more broadly, on model evaluation. While 
there is increasing emphasis on validation of cognitive architectures, vali-
dation remains one of the most challenging aspects of cognitive architec-
ture research and development. “HBR [human behavior representation] 
validation is a difficult and costly process [and] most in the community 
would probably agree that validation is rarely, if ever done” (Campbell 
and Bolton, 2005, p. 365). Campbell goes on to point out that there is not 
a general agreement on exactly what constitutes an appropriate validation 
of a cognitive architecture. Since cognitive architectures are developed for 
a wide variety of reasons, there is a correspondingly wide set of validation 
(and evaluation) objectives and metrics and associated methods. Lack of 
established benchmark problems and criteria exacerbates this problem. It 
is interesting to note that a set of recommendations for model accreditation 
and validation was made in the 1998 National Research Council report 
on modeling human and organizational behavior, but these have yet to be 
implemented. The same report also emphasizes that a general validation of 
these complex models is not possible, and the models must be evaluated in 
the specific context for which they were developed. 

Within these constraints, several approaches exist for cognitive architec-
ture validation, varying in the data requirements, time, and effort required 
and the quality of the validation results. We list these below, in order of 
decreasing overall quality.

•	 Comparative empirical studies: the architecture’s performance is 
compared with human performance on the same task and in the 
same context. Both outcome and process measures can be used: the 
former include time, mean time between errors, accuracy and error 
types, and behavioral choices. The latter include assessments of 
internal and intermediate states, such as emotions, workload, situa-
tion assessments, etc. The empirical data used can be obtained from 
a variety of sources. The ideal sources are parallel empirical studies, 
conducted in the same task context as the model development. 
As these types of studies become more common, guidelines are 
emerging regarding the methods (and criteria) for establishing the 
goodness of fit between the human and the model performance. 

•	 Performance-based evaluation: the architecture’s effectiveness is 
assessed with respect to selected performance criteria, which are 
defined on the basis of the architecture’s role and objectives (e.g., 
improved training, degree of agent realism, improved prediction of 
the modeled decision maker’s behavior, more robust and effective 
behavior).

•	 Heuristic evaluation: the architecture performance is evaluated by 
a panel of experts (or users). This is the weakest form of validation 
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but is frequently used because of resource limitations. Even with 
this weak method of validation, certain principles must be followed 
(e.g., judgments must be collected from individuals who were not 
involved in system development, data should be collected indepen-
dently). When these guidelines are not followed, this approach is 
sometimes referred to as BOGSAT: “bunch of guys sitting around 
a table”—clearly to be avoided (National Research Council, 2003; 
Campbell and Bolton, 2005).

Validation studies also vary with respect to the scope of the validated 
components. The architecture may be evaluated as a whole or selected 
modules or submodules may be evaluated. Table 3.1 in the 1998 NRC 
report on human behavior modeling (National Research Council, 1998, 
p. 104) provides a useful summary of validation studies performed prior to 
1998. A word of caution is in order, however, since not all the validation 
studies use the same criteria; in other words, a fully validated model using 
a panel of experts does not reflect the same degree of validity as a partially 
validated model using actual human performance data. 

To date, none of the existing cognitive architectures has been fully vali-
dated against generalized human performance. There are, however, a number 
of task-specific validation studies for many of the established architectures 
and a larger number of validation studies for single-process cognitive models 
(e.g., models of memory retrieval, visual attention models, GOMS-based 
models of user performance on specific tasks using a particular interface). 
The GOMS family of models has proved to be particularly useful in HCI, 
in which they have been used to evaluate and select from candidate designs, 
often saving large amounts of money (e.g., Gray, John, and Atwood, 1993; 
see also Olson and Olson, 1990). One of the earliest examples of a cognitive 
architecture validated against human performance is EPIC, which success-
fully predicted multitasking performance in telephone operators (Kieras, 
Wood, and Meyer, 1997). Validation against empirical data continues to be 
a focus of EPIC research. 

As cognitive architectures proliferate in mission-critical contexts, more 
opportunities exist for their validation in complex task settings. For exam-
ple, Purtee and colleagues (Purtee, Krusmark, Gluck, Kotte, and Lefebvre, 
2003) validated an ACT-R model controlling unmanned aerial vehicle 
operation, using verbal human data and protocol analysis. Andre et al. 
(2000) discuss validation studies of ACT-R, Soar, COGNET, and MIDAS. 
In general, three factors hinder systematic cognitive architecture validation 
studies:

1.	 Lack of established validation metrics and associated methods, 
including benchmark problems, and an understanding of when to 
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apply which metric, using a particular method, in a specific task 
context. Different validation criteria are appropriate for different 
system objectives and operational characteristics. Currently, how-
ever, no systematic taxonomy exists of either the system objectives 
or the operational contexts. 

2.	 Frequent confusion between verification—Does the system do what 
it was programmed to do?—and validation—Does the system accu-
rately represent the modeled system? (Campbell and Bolton, 2005). 
Verification studies are often presented as proofs of model validity, 
with the architecture developers showing how the system generates 
behavior that is consistent with the behavior of human agents in 
some limited context. Such studies are almost meaningless, how-
ever, in establishing the model validity. 

3.	 The extensive effort required to conduct studies comparing human 
and cognitive architecture performance on a given task. These 
studies require first the development of a simulation environment 
for the particular task (e.g., air traffic control), and the develop-
ment of the human-task and cognitive-architecture-task interfaces, 
to enable both the humans and the architecture to perform the 
task. In addition, the system must support human subject per-
formance tracking and data collection. Given the general lack of 
interoperability among cognitive architectures, establishing these 
interfaces is a labor-intensive endeavor, and only one case exists in 
which several architectures were systematically compared with a 
set of benchmark problems: the AMBR project. The AMBR project 
represents the more promising validation approach: the systematic 
comparison of the cognitive architecture performance on a par-
ticular task with human performance on the same task and under 
identical circumstances (Gluck and Pew, 2005). 

Relevance, Limitations, and Future Directions 

Relevance

Cognitive architectures are built both for basic research and for applied 
purposes. Research architectures aim to develop a model of some aspect 
of human information processing, to enhance understanding of these phe-
nomena by identifying the mediating structures and mechanisms. Specific 
applications of cognitive architectures include the control of autonomous 
synthetic agents and robots in a variety of settings, including operational 
systems in hostile or adverse environments, control of synthetic characters 
and agents in virtual reality environments, stand-ins for humans to enhance 
realism and believability in simulation-based training and assessment envi-
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ronments, and as alternatives to human subjects in empirical studies sup-
porting human factors analyses (e.g., user interface design and operation, 
task allocation between human and machine, risk assessment and reduc-
tion, personnel-task matching). Recent advances in gaming technologies 
and the proliferation of games into a variety of settings, including military 
training, enable the integration of interactive gaming, virtual environments, 
and cognitive architectures to create immersive environments with increas-
ing levels of realism. Such environments are increasingly being used in 
training, assessment, rehabilitation, and human factors analyses. 

Cognitive architectures can also be used for behavior prediction in a 
variety of settings, both individual and team, and across a range of task 
types and contexts. While some success has been achieved in predict-
ing simple behavior in highly constrained task contexts, primarily HCI 
contexts (e.g., EPIC has generated accurate prediction of reaction times 
in simple dual-task contexts; Kieras et al., 1997), forecasting individual 
behavior is complex, under-constrained contexts is difficult, and often 
impossible. In spite of recent attempts (e.g., Silverman, Bharathy, and Nye, 
2007), “it is currently not within the state of the art to develop a model 
of a particular person, or to predict the likelihood of a single-act at a par-
ticular point in time. Instead, the predictive value of cognitive architectures 
lies more in their ability to generate probabilistic distributions of a range 
of possible behaviors that a particular type of individual might exhibit in 
given circumstances, rather than to generate predictions of the likelihood 
of single acts by particular individuals” (Hudlicka, 2006b, p. 14). 

The increasing emphasis on complex cognitive processes in military 
modeling is creating a broad range of applications for cognitive architec-
tures modeling individual entities. Both the research and the applied cogni-
tive architectures are relevant. Cognitive architectures are relevant for three 
of the core areas in military modeling: analysis and forecasting in planning, 
simulation for training and rehearsal, and design and evaluation for acquisi-
tion. These architectures are critical components of specific modeling and 
simulation applications: disruption of terrorist networks, prediction of 
adversaries responses to specific courses of action, prediction of societal 
reactions to specific events, crowd behavior modeling and crowd control 
training, and organizational design. 

These modeling needs, along with the increasing transitions to teams 
and nontraditional warfare, also highlight the increasing importance of 
modeling individual motivation and behavior variability, via explicit focus 
on models of emotion and personality traits. Both of these are addressed in 
the emerging cognitive-affective architectures, discussed in the next major 
section.
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Major Limitations

While there have been great theoretical, methodological, and tech-
nological advances in the development of cognitive architectures, many 
limitations remain.

The most critical one is in the area of validation. This includes a lack 
of established validation criteria and methodologies, frequent confusion 
between verification and validation, lack of methods for validating archi-
tecture memory and knowledge bases, and the lack of any fully validated, 
domain-independent cognitive architectures. Currently no validated cogni-
tive architecture exists and systematic validation efforts, including valida-
tion methods and appropriate metrics, are just beginning to emerge (e.g., 
Gluck and Pew, 2005). 

Another limitation is the time and effort required to develop a cogni-
tive architecture and the associated bottleneck of knowledge engineering 
required for these models. As discussed above, the instantiation of an archi-
tecture in a new domain requires large amounts of human performance 
and task data, as well as information about the nature of internal problem 
solving and decision making. Whether obtained from empirical studies 
or from cognitive task analyses and knowledge elicitation interviews, the 
process of obtaining the necessary human data is highly labor-intensive and 
represents a major bottleneck in the development of cognitive architectures 
capable of emulating human problem solving, decision making, and perfor-
mance. In addition, once built, the resulting long-term memories typically 
require extensive tuning to produce the desired behavior and match human 
performance data. 

Even with the required tuning, cognitive architectures exhibit the 
“brittleness” problem that plagues expert systems—that is, a lack of grace-
ful degradation when limits of the domain knowledge (the model’s long-
term memory) are reached. This is one of the factors that limit the scope 
and degree of realism, and it applies equally to nonlearning systems and 
architectures with limited learning capabilities, such as Soar. 

Some researchers question whether the process of “manual” long-
term memory construction can ever produce long-term memories capable 
of supporting robust performance, as is the case in biological agents. It is 
possible that long-term memories may need to be automatically constructed 
(learned) from ongoing, long-term interaction with the environment, as is 
the case with intelligent biological agents, including humans (Mathews, 
2006), to produce robust knowledge bases capable of matching human per-
formance and to enable the accurate representation of a range of behavior 
moderators, including emotions and personalities.

Regardless of a theoretical position on this matter, it is becoming 
apparent that automated construction of cognitive architecture memories 
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or knowledge bases may be the most pragmatic solution to the difficult and 
labor-intensive task of knowledge base development. 

A related challenge is posed by the differences in representational reso-
lution between the cognitive architecture representational capabilities and 
needs on one hand, and the empirical methods available for knowledge 
extraction on the other. Computational models offer a higher degree of 
representational resolution for the internal processes than currently avail-
able human empirical data. In other words, while it is now possible to build 
detailed models of situation assessment, planning, learning, metacognition, 
and similarly complex cognitive processes, one cannot unequivocally iden-
tify the internal mechanisms and structures that mediate these functions in 
biological agents. This state of affairs has serious implications for model 
validation, discussed below.

While extensive human performance data exist at the periphery of 
human problem solving and performance—that is, sensory and motor data 
that define the model inputs and outputs—these are more suitable for black 
box input-output models. Cognitive architectures enable, and frequently 
require, the specification of the detailed nature of internal mental pro-
cesses, at a level of resolution that is currently not matched by the ability to 
obtain the required data. The data required to represent the internal mental 
structures and processes (e.g., situations, expectations, goals, beliefs) can 
be obtained only via indirect inference from observable behavioral data or 
self-reports. It should also be noted here that the current enthusiasm for in 
vivo brain imaging techniques (such as fMRI or PET scans) being able to 
provide these data at the required level of resolution is considered prema-
ture by many neuroscientists.

A more pragmatic limitation is the lack of established domain ontolo-
gies, standardized modeling languages, and scenario and data repositories, 
which further hinder the architecture development process. Similarly, the 
lack of model standardization and the lack of interoperability limit the 
ability to exchange components across architectures and research groups. 
Both of these contribute to the fragmented state of affairs in architec-
ture development, as well as the lack of established benchmark problems, 
against which different architectures could be compared, both to establish 
their validity and to facilitate systematic comparisons of the capabilities of 
different architectures.

Another factor limiting the realism and fidelity of cognitive architec-
tures, as well as the believability of the associated agents, is the lack of 
models of many mental processes that influence human perception, cogni-
tion, and behavior and give rise to the type of variability and adaptability 
observed in humans. This is discussed further in the next section. 

Performance can also be an issue, particularly in applied agent 
and robotic systems that require real-time responses. New hardware and 
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non–von Neumann machine architectures are likely to contribute to solving 
this problem in the future (Martínez, Gomes, and Linderman, 2005).

Last is a limitation that is particularly appropriate in the context of this 
study: the relative lack of interactions and collaboration among the research 
communities centered on particular architectures. The two most established 
architecture communities, Soar and ACT-R, have until very recently domi-
nated the market (as evidenced by the ICCM biennial conference). Newcomer 
architectures often have a difficult time getting established and recognized, 
and potentially productive interactions among architectures with complemen-
tary strengths are not exploited. Morrison highlights this issue when discuss-
ing the BRAHMS architecture (Sierhuis, 2001), noting that its focus on social 
interaction and the focus of Soar and ACT-R on detailed models of cognition 
would make for an ideal collaboration, which has not occurred (Morrison, 
2003, p. 39). The “everyone in his or her own sandbox” phenomenon is a 
common social one. However, it is important to recognize to what extent this 
situation limits the continued development of these important models and 
the successful addressing of the limitations outlined above. The development 
of standardized problem sets for architecture comparison would go a long 
way toward addressing this situation, as would the development of shared 
memories and domain ontologies. A concerted effort to promote long-term 
collaborations among different research groups is probably the single most 
critical element in advancing the state of the art. 

Future Directions

Expanding on the earlier discussions, we briefly list the main points 
and augment them with additional suggestions resulting from a recent 
workshop that brought together researchers from the cognitive science and 
architecture-development communities (Martínez et al., 2005).

•	 Facilitate architecture development: via the use of standardized 
domain representation languages (e.g., human modeling markup 
languages), interchangeable plug-and-play components of generic 
architectures, and construction of cognitive architecture develop-
ment environments. 

•	 Facilitate architecture instantiation: via shared domain ontologies 
and human performance data repositories. 

•	 Facilitate knowledge base development: via the use of automatic 
knowledge acquisition methods and machine learning, to eliminate 
the need for labor-intensive knowledge engineering.

•	 Enhance model explanation capabilities: via the development of 
visualization and explanation tools that support the understanding 
of the complex processing in a cognitive architecture. 
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•	 Address the brittleness problem: via a combination of hybrid 
knowledge representation approaches (symbolic and connection-
ist), learning and automatic knowledge acquisition to develop 
architecture knowledge bases, and the representation of common-
sense knowledge.

•	 Enhance realism: by integrating architectures with embodied 
agents, either synthetic agents in virtual environments or robots, 
and by including emotion, personality, and cultural factors to pro-
duce the type of behavioral patterns and variabilities characteristic 
of human behavior.

•	 Validation: develop validation methods, metrics, accreditation pro-
cedures, and environments facilitating the comparison of model 
performance with human data and with other architectures in a set 
of well-defined benchmark problems. Support the development of 
such validation suites, in terms of shared simulation environments 
and benchmark test suites, broadly available to researchers and 
model developers. Support validation of the system as a whole, 
but also component validation, such as function-based or module-
based validation.

•	 Explore new modeling formalisms: explore the applicability of addi-
tional representational and inferencing mechanisms to enhance cog-
nitive architecture performance, including nonsymbolic approaches 
such as chaos theory, and learning methods, such as genetic 
algorithms. 

•	 Models of groups and teams: apply cognitive architectures to mod-
els of groups and teams, in which the decision-making processes 
of the entity of interest can be sufficiently abstracted to enable the 
development of a cognitive architecture model representing the 
group as a whole.

•	 Context and task models: enhance the understanding of model 
limitations by specifying the range of tasks and operational con-
texts for which a particular model is applicable and defining task 
and context taxonomies. Identify situations in which behavior 
can or cannot be predicted with varying degrees of specificity and 
accuracy. 

Affective Models and Cognitive-Affective 
Architectures

Computational models of emotion represent a relatively recent devel-
opment in computational models of mental phenomena. This develop-
ment follows a rapid growth in emotion research in both psychology and 
neuroscience over the past 15 years. Although computational approach 
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to emotion research represents a recent development, the recognition of 
the importance of emotion in decision making and individual and social 
behavior is not new (e.g., Simon, 1967), nor is the recognition that under-
standing emotion is critical for understanding cognition and adaptive 
behavior in general (Norman, 1981).

Like architectures focused on cognition, cognitive-affective architec-
tures are simulation-based models of human information processing. In 
contrast to purely cognitive architectures, cognitive-affective architectures 
also include some aspects of affective processing. Like their purely cognitive 
counterparts, cognitive-affective architectures are used for both research 
and applied purposes. In addition to the objectives discussed for cognitive 
architectures, these models also serve to explore the nature of affective 
processes, the mechanisms of cognition-emotion interaction, and, in more 
applied contexts, to enhance the realism, believability, and effectiveness 
of synthetic agents and robots. Given the critical role of emotion in inter
personal communication, these architectures are thus particularly relevant 
for organizational modeling (Hudlicka and Zacharias, 2005).

In spite of their relatively recent appearance in cognitive science and 
AI research, significant progress has been made in computational emotion 
modeling and cognitive-affective architectures, particularly in the more 
applied areas of synthetic and believable agents (e.g., Dautenhahn, Bond, 
Cañamero, and Edmonds, 2002; de Rosis, Pelachaud, Poggi, Carofiglio, 
and De Carolis, 2003; Prada, 2005). 

What Are Cognitive-Affective Architectures?

Cognitive-affective architectures are computational simulation models 
of particular affective phenomena (e.g., effects of emotions on behavior), 
some aspects of affective information processing (e.g., generation of emo-
tion via cognitive appraisal of the current situation), and associated affec-
tive factors (i.e., specific emotions, moods, or affective personality traits). 
The process modeled most frequently is the generation of emotion via 
cognitive appraisal and the effects of emotion on behavior (e.g., Bates, 
Loyall, and Reilly, 1992; Gratch and Marsella, 2004b; Reilly, 2006). Less 
frequently, these architectures also include models of emotion effects on 
perception and cognition (Hudlicka, 1998, 2002a, 2002b, 2007b; Ritter, 
Avramides, and Councill, 2002). 

The affective factors modeled in cognitive-affective architectures include 
both transient states and more permanent traits. The states include short-
lasting emotions, such as joy, fear, anger, and sadness, as well as longer 
lasting moods (e.g., fearful, happy, sad). Traits include affective personal-
ity traits, such as emotional stability and extraversion of the five-factor 
personality model (Costa and McCrae, 1992). Some models also include 
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mental states that have both cognitive and affective components, such as 
attitudes.

It is beyond the scope of this section to discuss the extensive literature 
in emotion research in psychology and neuroscience, both theoretical and 
empirical, which serves as the basis for computational emotion models. 
The reader is referred to the excellent recent handbooks on research in 
emotion and the affective sciences (Ekman and Davidson, 1995; Lewis and 
Haviland-Jones, 2000; Scherer, Schorr, and Johnstone, 2001; Davidson, 
Scherer, and Goldsmith, 2003).

Briefly, however, we define emotions at the most abstract level as 
mental states that involve evaluations of current situations (internal or 
external; past, present, or future) with respect to the agent’s goals, beliefs, 
values, and standards. Note that this evaluation does not imply conscious, 
deliberative cognitive processes. A key aspect of emotions, and affective 
factors in general, is their multimodal nature. These complex phenomena 
involve physiological components associated with changes in the autonomic 
nervous system processes (e.g., heart rate, blood pressure, galvanic skin 
response); cognitive components (e.g., changes in attention and working 
memory properties); behavioral components associated with the expression 
of emotions, moods, and traits (e.g., facial expressions, effects on speech, 
gestures, posture, behavioral choices); and subjective components (e.g., 
idiosyncratic individual feelings associated with particular emotions and 
moods). It is critical to keep in mind this multimodal nature of emotions, 
since many misunderstandings of these complex phenomena can be traced 
to a focus on only a subset of these modalities—for example, misleading 
questions such as “Is emotion a thought or a feeling?” It is both and more. 
Izard (1993) provides a framework for integrating the multiple modalities 
of emotion, in the context of emotion generation.

Emotions play a number of critical roles in biological agents, both 
intrapsychic and interpersonal. Examples of the former include goal man-
agement, reallocation of resources, rapid activation of fixed behavior rep-
ertoires, all designed to enhance adaptive behavior (Hudlicka, 2003a). 
Examples of the latter include mediation of attachment behaviors and 
communicative and expressive functions of emotion (e.g., rapid communi-
cation of behavioral intent to facilitate coordination). See Hudlicka (2007a, 
2007b) for a more in-depth discussion of emotion research background 
from a computational perspective. 

Emotion research in psychology and neuroscience provides strong evi-
dence that cognitive and affective processes function in parallel and in a 
closely coupled manner (e.g., LeDoux, 1998; Phelps and LeDoux, 2005). 
Most modern theories of emotion therefore consider cognition to be an 
important component of affective processing, and vice versa. This, along 
with a definition of cognition that includes both conscious/deliberative 
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and unconscious/automatic processing, makes earlier debates regarding the 
primacy of cognition (Lazarus, 1984) versus primacy of emotion (Lazarus, 
1984; Zajonc, 1984) in the generation of emotion a matter of semantics. 
The current consensus regarding this issue is that these debates were largely 
a result of terminological vagueness and misunderstanding regarding exactly 
what constitutes cognitive processes. 

Cognitive-affective architectures share a number of features with 
the cognitive architectures discussed above. Like their cognitive counter-
parts, emotion models can be standalone models of particular aspects 
of emotions, particular affective processes, or affect-related phenomena. 
Cognitive-affective architectures are most frequently symbolic, but they 
can also contain connectionist components and thus be characterized as 
hybrid architectures. Purely connectionist approaches are used only for 
limited-scope models of single phenomena, rather than for entire archi-
tectures. The specific constructs and processes represented in a particular 
cognitive-affective architecture depend on its objective, level of resolution, 
the specific processes modeled and their theoretical underpinnings, and any 
particular application, as well as the particular implementation approaches. 
Like their purely cognitive counterparts, cognitive-affective architectures 
typically include modules and functions that correspond to specific func-
tions identified in biological agents, for example, emotion generation via 
cognitive appraisal, and generation of facial expressions.

Given the broad range of proposed roles and characteristics of emo-
tions, a systematic description of the variety of existing models addressing 
these phenomena can be challenging. Below we structure the description 
of existing models in terms of a categorization of core affective processes 
proposed by Hudlicka (2007b)—processes mediating emotion generation, 
and those mediating emotion effects on cognition and behavior. Hudlicka 
further suggests that “the mechanism mediating these two fundamental 
processes then enables the variety of emotion roles identified in biological 
agents, such as resource re-allocation, goal management, etc.” (Hudlicka, 
2007a). 

The majority of existing cognitive-affective architectures focus on the 
generation of emotions, most frequently via cognitive interpretive processes, 
termed cognitive appraisal. The state-of-the-art section below discusses 
examples of these models and architectures. In the majority of these archi-
tectures the outcomes of the generated emotions, the emotion effects, are 
typically limited to influences on observable behavior. This includes spe-
cific behavioral choices by synthetic agents or robots, as well as “emotion 
expression” in terms of distinct facial expressions, speech, and gestures 
and movement (e.g., Andre et al., 2000; Paiva, 2000; de Rosis et al., 2003; 
Breazeal and Brooks, 2005). A few cognitive-affective architectures focus 
also, or instead, on modeling the effects of emotions on the perceptual 
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and cognitive processes that mediate decision making and action selection, 
problem solving, and learning (e.g., the MAMID architecture—Ritter et al., 
2002; Bach, 2007; Hudlicka, 2007a, 2003a, 1998). Figure 5-3 illustrates 
an example of a cognitive-affective architecture with a dedicated affect 
appraiser module for emotion generation, a number of cognitive modules 
for the cognitive and perceptual functions supporting the necessary inter-
pretive processes, and a range of modulating parameters that implement the 
effects of emotions on cognitive processing. 

Given the tight integration between cognitive and affective informa-
tion processing, it follows that cognitive-affective architectures necessarily 
include purely cognitive processes, such as attention, planning, situation 
assessment, action selection, and different types of memories (working 
memory and long-term memories). These functions are necessary to pro-
vide the cognitive infrastructure in which the affective processes can be 
modeled. Thus, for example, cognitive appraisal necessarily requires rep-
resentation of the actual current state of the world and self (referred to as 
“situation assessment” or sometimes “beliefs”), and the desired state of the 
world (referred to as “goals” or “desires”). Cognitive appraisal models also 
require knowledge about the mappings among specific stimuli (elicitors) 
and the resulting emotions (e.g., a large, rapidly approaching unknown 
object is likely to induce fear). More complex models of appraisal may also 
require the representation and generation of expectations and the agent’s 
own abilities to cope with a particular situation. Depending on a particular 
research objective or application, specific cognitive processes of interest 
may need to be represented (e.g., learning, planning). Depending on the 
particular implementation approach, there may or may not be a one-to-
one correspondence between the modeled process (e.g., appraisal) and an 
architecture module (e.g., appraisal module). 

As with cognitive architectures, cognitive-affective architectures aim 
to be domain-independent, and their instantiation in a particular domain 
requires the specification and development of domain-specific long-term 
memories that contain the problem-solving knowledge required to perform 
a particular task.

Applications and Benefits of Cognitive-Affective Architectures

The applications and benefits of cognitive-affective architectures are 
similar to those of purely cognitive architectures, in both the theoretical 
and the applied realms. In addition, there are further categories of benefits, 
which follow from the primary roles of emotion in biological agents, as out-
lined above. The intrapsychic roles of emotion, such as goal management, 
rapid resource reallocation, and coordination across multiple cognitive 
functions, enable more robust and effective autonomous behavior by facili-
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FIGURE 5-3  MAMID, a cognitive-affective architecture and its modulating parameters. 
Part A illustrates the modules, data flow, and mental constructs that mediate emotion 
generation via cognitive appraisal and decision making. Part B illustrates how the effects 
of emotions, personality traits and other individual differences are translated into archi-
tecture parameters that control processing in the individual modules. 
SOURCE: Adapted from Hudlicka (2003a).
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tating agent adaptive behavior in complex, uncertain environments (e.g., 
Velásquez, 1999; Scheutz, 2004; Scheutz and Schermerhorn, 2004; Scheutz, 
Schermerhorn, Kramer, and Middendorff, 2006; Bach, 2007). The rationale 
for using emotion to enhance agent autonomy rests on the assumption that 
since emotions mediate critical adaptive mechanisms in biological agents 
(e.g., goal monitoring and management, reward and punishment processes, 
resource reallocation), they are likely to enhance adaptive behavior in syn-
thetic agents and robots.

The interpersonal roles of emotion, such as communication of internal 
mental states and behavioral intent, help improve human-machine inter-
action by enhancing the synthetic agents’ realism and believability. The 
integration of emotions into purely cognitive architectures also enables 
affective expressiveness and behavioral variability that begins to resem-
ble human behavior and thus enhances agent realism and believability, 
thereby promoting more engaging human-machine interactions. Examples 
of these applications include work in pedagogical applications (Prada, 
2005; Prendinger and Ishizuka, 2005; Zoll, Enz, Schaub, Paiva, and Aylett, 
2006), adviser and recommender systems (e.g., de Rosis et al., 2003), and 
training (Gratch and Marsella, 2004b). As mentioned above, models of the 
interpersonal role of emotions are particularly critical in organizational 
modeling, in which explicit models of social interactions must be repre-
sented. Augmenting purely cognitive architectures and models with emotion 
also enables more accurate and realistic modeling of users in a variety of 
training and tutoring applications. 

 Finally, since emotions play critical roles in biological agents, any com-
putational model of biological information processing must necessarily take 
into consideration affective factors. This view reflects the current consensus 
in the neurosciences: to understand cognition one must also understand 
emotion (e.g., Phelps and LeDoux, 2005). Representation of emotion is 
thus necessary to develop realistic models of human information processing 
and behavior, whether for research or applied purposes. 

The results of the theoretically motivated models of cognition-
emotion interactions have a range of practical applications that include 
the following: 

•	 Improved pedagogical strategies in education and training.
•	 Design of more effective and safer human-computer systems 

through improved human-machine function allocation, task design, 
and user interface design.

•	 Improved decision making and performance through the develop-
ment of affect- and workload-adaptive decision support systems.

•	 More effective personnel selection for both team and individual 
tasks.
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•	 More realistic models of social groups, teams, and larger 
organizations.

•	 Assessment and treatment for a range of affective and cognitive-
affective disorders.

Like their purely cognitive counterparts, cognitive-affective architec-
tures can also be used for behavior prediction in a variety of settings, both 
individual and team, and across a range of contexts, ranging from simple 
task behavior prediction to adversary modeling for a variety of purposes, 
including counterterrorism. Since they include affective factors, which are 
considered to be key sources of human behavioral variability and an essen-
tial component of motivation, it can be argued that these models are 
superior to purely cognitive architectures regarding behavior prediction. 
The caveat mentioned in the cognitive architecture section regarding the 
current limits in individual behavior prediction also applies to cognitive-
affective architectures. Perhaps more so, since the behavioral variability 
and emotion-induced individual idiosyncrasies make accurate prediction of 
single acts virtually impossible. However, the addition of emotion to purely 
cognitive models does enable more realistic modeling and prediction of the 
possible ranges of behavior, due to varying individual personalities, emo-
tions and moods, and consequent variabilities in interpretative processes, 
motivation, and behavioral expression (Hudlicka, 2007a). 

State of the Art 

Existing emotion models and cognitive-affective architectures are being 
used both as research platforms, to investigate the mechanisms and social 
roles of emotions, and in a wide range of applications to enhance agent and 
robot behavior and HCI. The latter are primarily in the form of cognitive-
affective user models and cognitive-affective agents, used to enhance some 
aspect of HCI in training, education, and gaming environments. The major-
ity of emotion models have been developed in academia, with some in 
industry research laboratories. The recent emergence of gaming and virtual 
environments has been a key factor in stimulating an interest in applied 
models of emotion and affective factors (e.g., personalities). No compre-
hensive review of emotion models and cognitive-affective architectures 
currently exists, analogous to the reviews of cognitive architectures (i.e., 
National Research Council, 1998; Morrison, 2003; Ritter et al., 2003). An 
earlier review by Hudlicka and Fellous (1996) provides descriptions of sev-
eral older models, a more recent review of some cognitive-affective models 
can be found in Bach (2007), and Hudlicka (in preparation) will include an 
overview of existing emotion models and cognitive-affective architectures. 
Mellers, Schwartz and Cooke (1998) provide a review of some models of 
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emotion effects on decision making but focus on more traditional, decision-
theoretic models rather than cognitive architecture models.

This section provides a brief overview of the state of the art in emo-
tion modeling, not an exhaustive catalogue of the large number of exist-
ing models. Cognitive-affective architecture structures are most frequently 
developed de novo (e.g., Velásquez, 1999; Breazeal and Brooks, 2005; 
Sloman, Chrisley, and Scheutz, 2005; Bach, 2007), although frequently 
following an established structure used for cognitive or agent architectures 
(e.g., the Belief-Desire-Intention agent architecture is often used as a start-
ing point), or a particular model of information processing (e.g., RPD; 
Hudlicka, 2007b). In some cases, emotions are integrated into existing 
established architectures. For example, the Soar cognitive architecture has 
served as a framework for the implementation of several models of appraisal 
and emotion effects on behavior (e.g., Henninger, Jones, and Chown, 2003; 
Gratch and Marsella, 2004a). ACT-R has been used to model effects of 
emotion on cognition (Belavkin, 2001; Ritter et al., 2002).

Given the complexity of affective phenomena, the wide range of roles 
that emotions play in adaptive behavior and social interactions, and the lack 
of understanding of these processes, it is challenging to present the wide range 
of models in a systematic manner. Below we follow Hudlicka’s approach 
(2006a, 2007a) and divide the discussion of existing models into two catego-
ries, based on the fundamental affective processes emphasized in the model: 
emotion generation via appraisal, and emotion effects on perception, cogni-
tion, and behavior (Hudlicka, 2008). We conclude the section with a brief 
discussion of two broadly scoped cognitive-affective architectures.

Models of Cognitive Appraisal

Cognitive appraisal is the dominant theory of emotion generation and 
the most frequently modeled aspect of emotion. A few architectures aim 
to incorporate additional modalities into the appraisal process (e.g., the 
“somatic marker” hypothesis: Damasio, 1994; Breazeal and Brooks, 2005; 
Stocco and Fum, 2005), and other noncognitive components (Velásquez, 
1999). In computational terms, the objective of appraisal is to map the 
emotion elicitors (stimuli relevant for the generation of emotion) to the 
resulting emotion(s). This mapping may be either direct or via an inter-
mediate stage of domain-independent appraisal dimensions (Scherer et al., 
2001), which include novelty, valence, goal relevance and goal congruence, 
responsible agent, coping, and individual and social norms. The specific 
elicitors may also be mapped onto a set of two or three dimensions that can 
be used to characterize emotions; typically these are valence and arousal. 
These mappings are determined in the context of a specific set of the agent’s 
goals and beliefs. 
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Different models of appraisal vary in the following: theoretical founda-
tions used as basis for the computational model (different theories vary in 
the degree of elaboration of the processes involved, stages of processing, 
specific functions included); specific methods used to implement the elicitor-
to-emotion mapping (e.g., rules, vector spaces, decision-theoretic formula-
tions, belief nets); the degree to which goals and beliefs are represented 
explicitly by the model and the complexity of their representation and 
relationships; the capability of the model to generalize across ambiguous 
triggers, reason under uncertainty, and to perform approximate matches; 
whether domain-specific triggers are mapped directly onto the emotions 
or whether this mapping is performed via a domain-independent “layer” 
of appraisal dimensions (e.g., novelty, valence, goal congruence, etc.); the 
specific triggers, appraisal dimensions, emotions, or affective dimensions 
represented in the model; the ability to represent appraisal idiosyncrasies 
in terms of variability of the matching functions from elicitors to emotions; 
and whether the model exists in isolation or integrated in an overall archi-
tecture (Hudlicka, 2007a, 2007b). 

 The OCC model of appraisal (Ortony et al., 1988) remains the most 
widely used theoretical basis for computational appraisal models. The 
OCC model defines an elaborate taxonomy of emotion triggers and clusters 
them in terms of three broad categories: event-based emotions, reflecting 
desirability (or lack thereof) of an event with respect to the agent’s current 
goals; attribution emotions, reflecting praiseworthiness (or lack thereof) 
of an event or situation with respect to the agent’s values; and attraction 
emotions, reflecting the degree of like or dislike of an entity. Models of the 
appraisal using the OCC theory include the Affective Reasoner (Bates et al., 
1992, the first implementation of the OCC theory), the EM (Reilly, 2006), 
the personality and emotion model of Andre et al. (2000), and the work of 
Paiva and colleagues (Martinho, Machado, and Paiva, 2000), all of which 
have been used to enhance the believability of synthetic agents.

Recently, the appraisal theories of Scherer (Sander, Grandjean, and 
Scherer, 2005; Scherer et al., 2001) and Smith and colleagues (Smith 
and Kirby, 2001) have begun to be used as theoretical bases for model-
ing. Scherer’s theories provide an elaborate description of the domain-
independent appraisal variables of novelty, valence, goal congruence, and 
coping potential, whose values are extracted from the domain-dependent 
stimuli. The theories of Smith and colleagues, based on the previous work 
of Arnold and Lazarus, are similar but emphasize the role and mechanisms 
of coping. Both theories reflect a trend toward more process-oriented theo-
ries, which lend themselves to computational implementations by providing 
more detailed descriptions of the mechanisms of the appraisal processes. 
These theories have recently served as basis for several computational 
models, including EMA (Gratch and Marsella, 2004a).
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Increasingly, theoretical bases for particular appraisal models combine 
elements of multiple theories and approaches. Examples of these architec-
tures include MAMID (see Figure 5-4) (Hudlicka and Canamero, 2004), 
which combines elements of the Scherer and Smith models of appraisal; 
the EMA architecture (Gratch and Marsella, 2004a), which combines ele-
ments of the Scherer, Smith and Lazarus, and OCC models of appraisal; the 
architecture for the robot KISMET (Breazeal and Brooks, 2005), which uses 
elements of somatic marker hypotheses and a three-dimensional model of 
the emotion space (arousal, valence, and dominance); and the robot Yuppy 
(Velásquez, 1999), which uses emotion as a core component of the robot 
control system and integrates both cognitive and noncognitive triggers in 
the emotion generation process. 

Another promising trend in computational models of appraisal is the 
attempt to develop abstract formalisms, in which different theories can be 
compared. The work of Broekens and DeGroot represents an example of 
this trend (Broekens and DeGroot, 2006).

A number of appraisal models have been developed in the past decade 
and it is beyond the scope of this section to describe all of them. The inter-
ested reader is referred to the following recent publications which include 
descriptions of a number of cognitive-affective architectures and a variety 
of approaches to the implementation of emotion generation via appraisal 
(Dautenhahn et al., 2002; Trappl, Petta, and Payr, 2003; Hudlicka and 
Canamero, 2004; Fellous and Arbib, 2005).

5-4.eps
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FIGURE 5-4  Affect appraiser module of the MAMID cognitive-affective architecture. 
SOURCE: Hudlicka (2005).
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In general, several trends are evident in recent models of appraisal. 
First, there is increased complexity and fidelity (one hopes) of the emotion 
dynamics (i.e., the functions calculating emotion intensity and decay rates). 
Second, increased effort is made to integrate multiple emotions and to model 
appraisal as an evolving, dynamic process. Third, modelers are recognizing 
the need to differentiate among emotion states based on their duration and 
to model both emotions (lasting seconds and minutes) and longer lasting 
moods, as well as stable personality dispositions (traits). Fourth, increasing 
attempts are made by psychologists to develop more mechanism-oriented 
theories of appraisal. These so-called process models then provide more of 
the details necessary to develop computational versions, and can in turn 
benefit from the empirical hypotheses generated by computational models. 
Fifth, attempts are made to identify domain-independent appraisal dimen-
sions as the intervening variables between domain-specific situations and the 
resulting emotions. While early models provided primarily domain-specific 
triggers and mapped these directly to specific emotions, more recent models 
interpose an intermediate step, whereby more abstract appraisal dimensions 
are first identified, such as relevance, novelty, unexpectedness, desirability, 
and ego involvement, which are then linked to specific emotions. 

Models of Emotion Effects on Cognition and  
Cognitive-Affective Interactions

Architectures that focus on appraisal typically link the resulting emo-
tion to specific behavioral results, most often to facial expressions, gestures, 
speech, or behavioral choices by the associated agents. The effective and 
realistic expression of emotion by synthetic agents represents a consider-
able technological challenge. Much progress has been made in this area in 
the social agent and robot research community. It is beyond the scope of 
this section to address the theoretical, methodological, and technical chal-
lenges. A recent book provides an overview of the methods and challenges 
(Prendinger and Ishizuka, 2003), and a brief overview of the state of the 
art is provided by Gratch and colleagues (Gratch, Rickel, Cassell, Petajan, 
and Badler, 2002). We focus here on an aspect of affective processing that 
remains underemphasized on cognitive-affective architectures: models of 
the effects of emotion on perception, cognition, and the appraisal processes 
themselves. 

One of the earliest models in this category was the work of Araujo 
(1991, 1993), who implemented a connectionist (recurrent associative net-
work) model of two phenomena in cognitive-affective interaction: the effect 
of emotional state on performance and the effect of emotional state on 
memory and recall, based on neuroscience data. The model represented two 
separate but interacting systems mediating cognitive and affective process-
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ing, each with different characteristics: fast processing of survival-related 
stimuli in the affective system, yielding approach/avoidance output, and 
slower, differentiated processing in the cognitive system. 

MAMID (Hudlicka, 1998, 2002b, 2003a) represents an example of a 
cognitive-affective architecture whose primary focus is the modeling of the 
multiple, interacting effects of emotions and affective traits on perception, 
cognitions, and behavior. MAMID is a domain-independent architecture 
that implements a generic methodology for modeling a broad range of 
individual differences (also referred to as behavior moderators), in terms of 
a series of external parameters that control processing within the individual 
modules (see Figure 5-2). MAMID dynamically generates emotions via the 
affect appraiser module (see Figure 5-4). The resulting configuration of emo-
tions (and prespecified personality traits) are translated into specific values 
of the architecture parameters, which then control aspects of fundamental 
processes within the architecture—speed, capacity, and specific content 
bias (e.g., bias for processing threatening information). MAMID’s primary 
purpose is to elucidate the mechanisms mediating emotion-cognition inter-
action, with particular emphasis on the effects of emotions on the cognitive 
appraisal process itself and on emotion regulation. 

Two other examples of parameter-based models of emotion effects are 
the work of Ritter and colleagues (Ritter and Avraamides, 2000; Ritter et 
al., 2002) and the MicroPsi architecture (Bach, 2007). Ritter follows the 
model proposed by Hudlicka and applies it to the modeling of emotion 
effects in the ACT-R architecture. The focus is on models of stress, and the 
parameters modeling these effects influence the ACT-R rule selection and 
conflict resolution algorithms (Ritter, Reifers, Klein, and Schoelles, 2007). 
In addition to the traits, states, and cognitive individual differences modeled 
in MAMID, Ritter also includes such factors as fatigue. 

The MicroPsi architecture uses four parameters to model emotion 
effects: arousal, which determines degree of action readiness; resolution 
level, which influences the degree of elaboration of perceptual and memory 
processes; selection threshold, which influences the extent to which an agent 
persists in its current activity (versus changing its goals and behavior); and 
sampling rate/securing behavior, which controls the agent’s orienting and 
novelty-seeking behavior. The MicroPsi architecture controls the behavior 
of simple agents in simulated environments, focusing on navigation and 
searching for objects of interest (e.g., food sources).

Several agent and robot cognitive-affective architectures also model some 
aspects of emotion-cognition interaction. For example, the Yuppy robot’s 
attention and perceptual processes are influenced by emotions and display 
differences in orienting response and perceptual biases (Velásquez, 1999). 

Several attempts have been made to model emotion effects on decision 
making in the context of decision-theoretic models, which need to be aug-
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mented to allow for variability of the utility functions as a function of the 
current emotion or mood. Busemeyer, Dimperio, and Jessup (2007) have 
developed an augmented decision-theoretic formalism to model the affec-
tive and motivational dynamics over time, termed “decision field theory” 
(DFT). Specifically, DFT models both the changing goals and differences 
in the time required to meet particular goals as a result of specific action. 
DFT currently models affective states in terms of valence (positive/negative). 
Behavioral alternatives are evaluated in terms of the anticipated valence 
that would be generated, and the alternative that generates the most posi-
tive valence is selected. The work of Lisetti and Gmytrasiewicz (2002) 
provides another example of augmenting older utility models with affective 
factors.

Work in modeling behavior moderators (termed “performance modera-
tor functions” or PMFs) represents another attempt to model the effects of 
personalities on behavior (Silverman, Johns, Cornwell, and O’Brien, 2006; 
Silverman et al., 2007). The PMF-based models combine a variety of theo-
retical models, including the OCC appraisal model and decision-theoretic 
formalisms, and apply the resulting models to simulations of individual and 
group behavior. 

Cognitive-Affective Architectures

Several cognitive-affective architectures have already been mentioned 
in the context of controlling agent or robot behavior and are described 
above in the context of either emotion generation or emotion effects on 
cognition and behavior (Velásquez, 1999; Breazeal and Brooks, 2005; Bach, 
2007). Here we highlight two additional cognitive-affective architectures 
that aim to provide a broad model of intelligent behavior and integrate both 
cognitive and affective processing: the implemented Cog_Aff architecture 
(Sloman, 2003; Sloman et al., 2005) and a design for a cognitive-affective 
architecture proposed by Ortony, Norman, and Revelle (2005). Both archi-
tectures share a number of features, and it is interesting to note that while 
developed independently, there is a degree of convergence in the design. 

Both models propose three levels of functioning, with a reactive 
stimulus-response layer mediating simple, hardwired behaviors; an inter-
mediate level handling simple and routine, but learned, behavior (termed 
“deliberative” by Sloman and “routine” by Ortony); and a third level han-
dling complex reasoning and problem solving (termed “meta-management” 
by Sloman and “reflective” by Ortony). Processing occurs in parallel at all 
three layers—complex feedback mechanisms among the layers coordinating 
the independent processes and influencing the final outcome. Both models 
also propose different degrees of complexity in the affective reactions aris-
ing at each level, with the reactive level generating rather undifferentiated 



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

MICRO-LEVEL FORMAL MODELS	 181

affective states corresponding to positive and negative valence; the middle 
level generating simple, primary emotions such as fear, joy, sadness, and 
anger; and the top level generating both complex versions of the primary 
emotions, as well as complex emotions requiring explicit representations 
of the self and having a strong cognitive component (e.g., shame, pride, 
guilt). Existing agent and robot architectures typically implement a subset 
of these, usually just one level, although increasingly multilevel processing 
is being implemented; for example, the FearNot! agent implements both a 
reactive and deliberative level of processing in emotion generation (Paiva 
et al., 2005).

Relevance to Modeling Requirements

Cognitive-affective architectures are relevant for three core areas in 
military modeling: analysis and forecasting in planning, simulation for 
training and rehearsal, and design and evaluation for acquisition. In addi-
tion, the ability of cognitive-affective agents to enhance autonomous behav-
ior is also critical for such applications as unmanned vehicle control. As 
mentioned above, cognitive-affective architectures are particularly relevant 
for modeling team and organization behavior, in which the emotion not 
only influences individual behavior, but also plays a key role in inter-
personal interactions. The extensive existing work in social agents (e.g., 
Dautenhahn et al., 2002; de Rosis et al., 2003) is directly relevant here. One 
can envision integration of existing social network models with aspects of 
cognitive-affective architectures to improve the validity and utility of larger 
organizational models. 

Of particular importance in the case of cognitive-affective architectures 
are training and assessment systems, in which the addition of affective fac-
tors increases the effectiveness of the training system by enhancing the real-
ism of any social aspects of the training environment. A critical role is also 
played by affect-adaptive systems, capable of assessing the user’s (trainee’s) 
emotional state and adapting the pedagogical strategies accordingly. This 
is also a critical factor in operational decision support systems. One may 
wonder whether incidents such as the downing of an Iranian airliner by 
the U.S.S. Vincennes would have happened if an affect-adaptive decision-
support system had been in place. The potential for reducing accidents via 
the use of such systems needs to be explored (e.g., see Hudlicka, 2002a).

Finally, the application of these models to behavior prediction, in both 
friendly and adversary situations, is also critical. Given the importance of 
emotion in motivation and behavior control, one can argue that any models 
attempting prediction must in fact include affective factors, while keeping 
in mind the general limitations of predictions of individual behavior already 
discussed. These applications include those outlined in Chapter 9: disrup-
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tion of terrorist networks, prediction of adversaries to specific courses of 
action, prediction of societal reactions to specific events, crowd behavior 
modeling and crowd control training, and organizational design.

Major Limitations

Emotion models and cognitive-affective architectures have the same 
limitations as their cognitive counterparts, already discussed in the cognitive 
architecture section, exacerbated by the difficulties associated with model-
ing the transient, idiosyncratic, and poorly understood affective processes. 
These include lack of underlying theory to support model development, dif-
ficulties in obtaining required data, brittleness, the labor-intensive nature of 
model development, and lack of validation. The issue of data is particularly 
critical: while increasing amounts of empirical data are available about 
affective effects at the periphery (attention and behavior), the effects of 
emotions on the internal cognitive states (e.g., situation assessment, learn-
ing, goal management) are difficult to assess unequivocally. Furthermore, it 
is unlikely that the exact nature of these internal states can be identified to 
the extent required for process-level models in the near future.

As with cognitive architectures, the most critical limitation is architec-
ture and model validation, although progress is being made in this area. 
This includes the same issues already discussed with respect to cognitive 
architectures: lack of established validation criteria and methodologies, 
frequent confusion between verification and validation, and the lack of a 
fully validated, domain-independent cognitive-affective architecture. These 
issues are discussed in more detail below.

Verification and Validation Issues 

In spite of the challenges associated with validation of emotion models 
and cognitive-affective architectures, progress is being made in this area. A 
promising trend in emotion modeling is the increasing emphasis on includ-
ing evaluation and validation studies in publications. As is the case with 
cognitive architectures, no existing emotion models or cognitive-affective 
architectures have been validated across multiple contexts or a broad range 
of metrics. However, some important evaluation and validation approaches 
and studies exist. 

First, it is important to make the distinction between evaluation and 
validation. Given the increasing proliferation of cognitive-affective archi-
tectures in synthetic agents, there is increasing emphasis on evaluating the 
effectiveness of the resulting models in improving HCI. These evaluation 
studies do not necessarily address model validity or, if they do, they focus 
on limited black box validation approaches. They are nevertheless critical 
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in establishing the need for, and effectiveness of, augmenting synthetic 
agents with affective processes, for particular purposes and applications—
enhancing agent likeability, realism, believability, empathy, etc. Examples 
of these types of evaluation studies include the work of Prendinger and 
Ishizuka (2005) in evaluating the effectiveness of a synthetic agent capable 
of limited emotion recognition in reducing user frustration. Results of these 
studies indicate that users experience less stress and perceive the task as less 
difficult when provided with “empathic” feedback from the synthetic agent. 
Additional examples of this approach to agent evaluation include the work 
of de Rosis et al. (2003). Studies have also addressed the degree to which 
a social agent can improve human performance in a mixed human-robot 
team. Scheutz and colleagues (2006) have demonstrated improved effec-
tiveness of human team members’ performance as a robot team-member 
“expresses” emotions.

Some evaluation studies also focus on assessing the degree to which 
cognitive-affective agents are better able to negotiate complex, novel, and 
uncertain environments than purely cognitive agents. Examples of these 
studies include work by Hille (1999), cited in Bach (2007).

In addition to these evaluation studies, attempts are beginning to vali-
date the underlying models themselves. As is the case with cognitive archi-
tectures, these validation studies are performed via a range of methods, 
including the weaker heuristic and qualitative evaluations and increas-
ingly focusing on comparisons with human data. Examples of these efforts 
include evaluation of MAMID’s parameter-based model of emotion effects, 
which used a heuristic evaluation approach to evaluate the model’s ability to 
match human data at a qualitative level; establishing the validity of an aug-
mented ACT-R architecture to model effects of stress on subtraction, using 
data from existing empirical studies (Ritter et al., 2002); and recent work 
by Gratch and Marsella (2004a) establishing a correspondence between 
aggregated empirical data from coping questionnaires and a model of emo-
tion generation and coping implemented in the EMA architecture. The key 
challenge in these validation studies is the selection of the most appropriate 
dataset. This refers to selecting data from a comparable context, as well as 
selecting the appropriate method and degree of data aggregation. It is not 
clear to what extent comparison of performance at the aggregated level can 
be used to reflect model validity when such highly variable phenomena as 
emotions are considered.

The cognitive-affective architecture validation has not yet reached the 
stage of systematic comparisons that is beginning to be used for their 
cognitive counterparts, such as the AMBR project (Gluck and Pew, 2005). 
However, given the recent emphasis on validation in the computational 
emotion research community, such studies are likely to be taking place in 
the near future.
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Future Research and Development Requirements

Future research and development requirements for cognitive-affective 
architectures are similar to those for cognitive architectures. Additional 
requirements reflect the challenges in building these architectures men-
tioned throughout the text, as well as the major limitations discussed—that 
is, issues related to a lack of underlying theory regarding emotion and 
emotion-cognition interactions to support model development, difficulties 
in obtaining required data for these transient and multimodal processes, 
brittleness, labor-intensive nature of model development, and lack of vali-
dation. In addition, there are technical (and theoretical) issues associated 
with accurate recognition of emotion in humans in affect-adaptive appli-
cations in training and gaming, as well as issues in realistic generation of 
affective behaviors (e.g., facial expressions, effects on natural language 
generation and speech). These represent important issues in the develop-
ment of cognitive-affective agents and robots capable of social interaction. 
Some of these issues are discussed in a recent review of requirements for 
modeling synthetic agents (Gratch et al., 2002).

The very nature of emotion and affective processes as complex, 
multiple-modality phenomena makes modeling affective processes and 
cognitive-affective architecture more challenging than modeling purely cog-
nitive architectures. It is not clear to what extent the types of abstractions 
typically made in these models (e.g., using sequential processes to model 
inherently parallel and distributed phenomena, abstracting an identified 
function as a single module within an architecture) hold when it comes to 
modeling the multimodal nature of affective processes. Cognitive-affective 
architecture development trends may also experience a more pronounced 
split between the research-oriented and the application-oriented archi-
tectures. Due to the increasing demand for more realistic and believable 
agents enabled by incorporating affective factors into agent architectures, 
the future developments in these models are likely to be driven by practical 
considerations for rapidly developing such agents for such applications as 
interactive gaming. This is likely to contribute to emerging standards for 
affective markup languages and other tools to facilitate rapid development 
of largely black box models of these phenomena. 

Expert Systems

A key feature that differentiates expert systems (ESs) from more tradi-
tional software programs is the explicit representation of knowledge, stored 
in knowledge bases that are distinct from the inferencing mechanisms that 
control how the knowledge is used. This feature facilitates the editing of 
the knowledge base to accommodate additional or changing task knowl-
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edge and provides flexibility in how the knowledge embedded in the system 
can be used (e.g., to answer previously unanticipated questions about the 
problem). 

ESs have increasingly become integrated with more traditional software 
development. Yet it would be a mistake to think of them as simply another 
programming paradigm, analogous, for example, to object-oriented pro-
gramming, since a number of important factors distinguish ESs from these 
lower-level paradigms, including the architectures of these systems, the 
emphasis on explicit representation of knowledge and the associated knowl-
edge representation formalisms, separation of knowledge and control, and 
the frequent use of human expertise and heuristics. These factors also make 
ESs well suited for modeling both individual and organizational behavior 
(see Hudlicka and Zacharias, 2005, for a discussion of how expert systems 
can be used in these contexts).

ESs should not be confused with cognitive architectures. ESs and cogni-
tive architectures are different in both their objectives and their architec-
tures. The objective of an ES is to solve a particular problem, frequently 
by simulating human expertise and the use of heuristics. The objective of 
cognitive architectures is to emulate human perceptual and decision-making 
capabilities, frequently in the context of basic research aimed at advancing 
understanding of these processes, or to control the behavior of synthetic 
agents or robots.� ES architectures are typically much simpler than cogni-
tive architectures, the latter typically containing modules that correspond to 
functional components of the decision-making process (e.g., situation assess-
ment, goal selection) or the mind (e.g., attention, long-term memory).

What Is an Expert System?

ESs are software programs that aim to simulate the decision making 
and problem solving of human experts on highly specialized tasks, such 
as medical diagnosis or mechanical system troubleshooting. ESs achieve 
their “expert” performance by applying large amounts of domain-specific 
knowledge to a particular problem. They are therefore also known as 
knowledge-based systems.

Three essential components define ESs: 

1.	 Knowledge base: an explicit representation of domain and 
problem-solving knowledge for a particular task. This knowl-

� To the extent that some systems may contain elements of both ESs and cognitive archi-
tectures (e.g., knowledge bases, rule-based problem solving, characteristics of the working 
memory), they may be considered to partially fall within both categories (e.g., Soar; Hill et 
al., 1998).
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edge is typically represented in a modular, symbolic format, such 
as rules, frames (objects), logical propositions, semantic nets, 
constraints, or cases, and includes factual knowledge as well as 
heuristics used by human experts. For example, “IF (patient has 
high fever) AND (patient is covered with red spots) AND (patient 
is a child not vaccinated against chicken pox) THEN (patient has 
chicken pox w/ probability 80%).” A typical rule base can con-
tain thousands of rules.

2.	 Working memory: the component containing the specific data rep-
resenting the current problem at hand (e.g., the current case), along 
with particular goals to satisfy or specific constraints. The data 
must be in a format that is compatible with the knowledge base 
format (e.g., “Patient’s fever is 104,” “Patient is covered w/ red 
spots,” “Patient is 6 years old,” “Patient has not had the chicken 
pox vaccine”).

3.	 Inference engine: an inferencing mechanism capable of combining 
the existing knowledge with the current data to derive conclusions 
of interest and thereby solve the problem at hand (e.g., derive a 
diagnosis or interpretation of the data in the framework of the 
knowledge provided). In the example above, a forward-chaining 
rule interpretation mechanism would derive that there is a 80 per-
cent chance of the patient’s having chicken pox. Other inferencing 
mechanisms include theorem proving for knowledge bases using 
predicate calculus or case-based reasoning for cases. 

ESs may also include one or more of the following components:

•	 A (graphical) user interface and intelligent front end to facilitate the 
developers’ and end users’ interaction with the ES during develop-
ment, refinement, and use.

•	 Explanation capabilities to explain the inferencing chains to the 
end user, to ensure that the reasoning process is transparent and 
that the final conclusions are accepted by the users.

•	 Knowledge acquisition capabilities to facilitate the acquisition 
(from existing technical materials) or the elicitation (from human 
experts) of the necessary knowledge and its modification during the 
knowledge base refinement stage.

•	 Learning capabilities to help acquire additional knowledge from 
patterns identified as the system performs its tasks.

ESs have been developed for a range of problem types (e.g., diagnosis, 
design) across a variety of domains, including medicine, computer engineer-
ing, process control, banking, law enforcement, and others. ESs are useful 
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as decision aids, for training purposes, and to capture knowledge and pre-
serve expertise in a particular area.

ESs can be developed using any computer programming language, 
typically a language that facilitates symbolic representation and inferenc-
ing, such as LISP. However, the use of ES shells is more common. Shells 
are development environments that facilitate ES development by providing 
system components and templates for structuring the necessary knowl-
edge, thereby facilitating the knowledge engineering required to obtain the 
necessary knowledge from the expert(s) and encode it within a particu-
lar representational formalism. Shells also help maintain and modify the 
knowledge base and may provide a range of additional functionalities, such 
as a graphical user interface and explanation facilities.

Specific ESs differ along a number of dimensions. Most important are 
the domain represented and the type of problems the system can solve. 
Additional differences include the following: 

•	 Representational formalism used to encode the task knowledge 
(e.g., rules, frames, procedural knowledge sources, predicate 
calculus). 

•	 Reasoning mechanisms implemented within the inference engine 
and the type of control implemented by the inference engine (e.g., 
forward versus backward chaining, implemented in rule-based ESs; 
mixed or opportunistic, implemented in blackboard systems).

•	 Type of knowledge represented (e.g., deep versus shallow domain 
knowledge).

•	 Source of the knowledge (e.g., acquisition from existing technical 
materials or elicitation from human experts). 

•	 Type of problem-solving (control) knowledge used to help deter-
mine which of several competing pieces of knowledge should be 
used at a given point in the inferencing.

•	 Management of uncertainty in both the knowledge representation 
and the reasoning (e.g., use of representational mechanisms inher-
ently capable of representing uncertainty, such as Bayesian belief 
nets, explicitly representing uncertainty in terms of certainty fac-
tors, using fuzzy logic). 

•	 Knowledge about the structure of the ES itself (meta-knowledge). 
•	 Degree to which intermediate results are available for explanatory 

purposes (e.g., unstructured versus highly structured, allowing the 
tracing of the inferencing processes). 

•	 Ability to learn additional knowledge or to acquire knowledge 
automatically.
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State of the Art 

ESs represent one of the more successful applications of AI and are 
used extensively in multiple types of industrial and government applica-
tions in the United States and abroad, particularly in Asia. ESs have been 
applied to a range of problem types and across a broad range of domains. 
The generic problem types (Chandrasekaran, 1986) include diagnosis and 
troubleshooting, data interpretation, design, and prediction and induction. 
Some domains spanning the time from early ESs to the present include

•	 Medicine, including diagnosis (e.g., web-based self-diagnosis pro-
grams), medication management systems (Hagland, 2003), medical 
emergency management, and toxicology (the DEREK system in 
England provides in silico testing of the adverse effects of chemicals 
and drugs, thereby avoiding live animal testing—Buckle, 2004).

•	 Image interpretation, such as the TriPath FocalPoint system, 
which screens about 10 percent of Pap smear slides in the United 
States).

•	 Chemistry, including interpretation of spectroscopic data. 
•	 Computer engineering, including the early XCON system for con-

figuring computers (Barker, O’Connor, Bachant, and Soloway, 
1989) and software development and database design. 

•	 The oil industry, including identification of promising wells for oil 
drilling (Cannon et al., 1989).

•	 Agriculture and land management, including interpretation of sat-
ellite images, hurricane damage assessment (Drake, 1996). 

•	 Real-time process control, including system monitoring and per-
formance optimization in power plants, such as a Japanese steel 
plant that uses an expert system SAFIA to control the operation of 
a blast furnace (Feigenbaum et al., 1993).

•	 Manufacturing, troubleshooting, maintenance, and performance 
optimization for a variety of electromechanical systems and tele-
communication networks, for example, NASA’s space shuttle engine 
diagnosis (Marsh, 1988).

•	 Law enforcement and homeland security, for example, PortBlue 
(http://www.portblue.com/pub/solutions-law-enforcement).

•	 Training and tutoring in various subjects, for example, the MITRE 
Corporation’s F-16 Maintenance Skills Tutor used to train Air 
Force technicians (Marsh, 1999).

•	 The automotive industry, for example, diagnosis (Gelgele and 
Wang, 1998).

•	 Financial advising and insurance underwriting analysis (Pandey, 
Ng, and Lim, 2000).
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•	 Route planning and scheduling (Nuortio et al., 2006; Sheng et al., 
2006).

•	 Contract administration and management (Trimble, Allwood, and 
Harris, 2002). 

•	 Organizational design (Burton and Obel, 2004).

Terms such as “knowledge technology,” “hybrid intelligent systems,” 
and “business-process reengineering” frequently indicate the use of ES 
technologies (Liebowitz, 1997). A number of recent advances in ES devel-
opment contribute toward more rapid development, flexibility and exten-
sibility, improved performance, enhanced interaction with human users, 
and more natural integration in the work flow. We discuss the most critical 
ones below.

Expert System Shells and Development Environments

A wide variety of shells are now available, which greatly speed up the 
development of ESs. The shells facilitate the knowledge engineering process 
required to build and maintain the knowledge bases by providing knowl-
edge templates required for particular tasks. By enforcing consistency, these 
templates reduce common knowledge-base errors. The shells vary along 
a number of dimensions, including overall complexity, number and type 
of knowledge representation formalisms supported, number and types of 
problem-solving tasks supported, ease of knowledge base development and 
maintenance, degree of automatic knowledge engineering supported, and 
cost. A number of freeware shells are available, ranging from general rule-
based languages, such as NASA’s CLIPS, to specialized shells. The costs of 
commercial shells range from $50 to over $100,000. Increasingly, shells are 
tailored for a particular type of problem (e.g., diagnosis, design, scheduling, 
real-time control, planning) to support more efficient knowledge engineer-
ing and performance.

Automatic Knowledge Acquisition and Learning

Knowledge acquisition is the major bottleneck in building ESs. To 
help address this problem, a number of automatic knowledge engineering 
tools have been developed, some of which use established domain ontolo-
gies (Puerta et al., 1993), and researchers are exploring the application of 
machine learning methods to the automatic development of knowledge 
bases from training cases. In some cases, the learning methods may involve 
the use of additional representational and inferencing schemes, such as con-
nectionist approaches or artificial neural nets.
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Hybrid and Embedded Systems

Frequently, the most successfully deployed ESs are those that are inte-
grated as components of larger, conventional systems. These embedded 
systems represent an important trend in which multiple methodologies or 
representations and inferencing mechanisms are applied to the solution 
of a particular problem. Examples of technologies that may augment an 
ES include fuzzy logic, neural networks, case-based reasoning, database 
management systems, genetic algorithms, chaos theory, statistical analysis, 
and data mining.

Representing and Reasoning Under Uncertainty

An essential aspect of expert reasoning is the ability to manage uncer-
tainty. ESs must therefore be able to represent uncertainty in the facts and 
the knowledge and propagate uncertainties through the inferencing process. 
Early approaches included rather ad hoc “certainty factors,” associated 
with rules. More recently, formalisms capable of integrating uncertainty 
representation and inferencing have become popular. These include multi-
valued fuzzy logic (Zadeh, 1965), and Bayesian belief nets (BBNs) (Pearl, 
1986). BBNs especially have found extensive use in the development of 
“soft” ES-based decision-aiding systems in the DoD because of their intui-
tive graphical representation of causality and their ability to “reason” in the 
face of sometimes vague rules and often uncertain information.

Relevance, Limitations, and Future Directions 

Relevance

From the list of current applications of ESs above, it is clear that those 
dealing with human individual or social behavior could be useful in many 
ways. ESs might be used with knowledge bases comprising profiles of 
individuals (e.g., political or military leaders) or groups to support what-if 
exercises estimating the probability of various behaviors, given different 
courses of action. They might be applicable to diagnosis of the intentions 
of adversaries, given knowledge of those adversaries’ former behavior and 
current intelligence information. They might also be applicable to orga-
nizational design problems. Because of the ability to support the capture 
and direct representation of knowledgeable experts in DoD (e.g., strategic 
planners, counterintelligence specialists, psychological operations officers, 
etc.), ES-based assessment tools and decision aids are likely to continue to 
be developed for specialized DoD applications in all of these areas. This 
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will be driven by the many benefits afforded by ESs already demonstrated 
in other domains, including:

•	 Improved quality and consistency of solutions, because of the 
ability to explicitly store and retain expertise over time and sit-
uation, ensuring permanence, the capturing and distribution of 
critical knowledge throughout an organization (Stylianou, Madey, 
and Smith, 1992).

•	 Increased availability of limited expertise, reduced down time, 
and increased reliability of human-system decision-making 
performance.

•	 Improved training via ES-based tutoring systems supporting situa-
tion assessment, planning, and decision making in understanding 
individual, group, and organizational behaviors.

•	 Extensibility and flexibility, the ability to explain its reasoning, and 
the ability to handle uncertainty in data and knowledge (Georgeff 
and Firschein, 1985; Giarratano and Riley, 1998).

Major Limitations

In spite of the successes and the potential for the future, some researchers 
have expressed the opinion that the idea of ESs is futile (Dreyfus and 
Dreyfus, 2004) and that such systems are doomed to perpetual mediocre 
performance simply by virtue of the fact that they are not human. This may 
well be true, but one must remember that their aim is to perform routine, 
well-established tasks, not to behave like Renaissance men. Perhaps the best 
solution to this problem is to have the system simply recognize the limits 
of its expertise and refer the problem to another ES. Nonetheless, several 
limitations contribute to this pessimistic view of ES potential.

One major limitation of ESs is the rapid degradation of their perfor-
mance once the limits of their expertise (knowledge base) are reached. This 
is referred to as the brittleness problem. Unlike human experts, who display 
“graceful degradation” in their performance when faced with an unknown 
problem (by drawing on their large amounts of stored knowledge and 
general problem-solving methods), ESs can function well only within the 
very narrow scope of the specific task for which their knowledge base was 
developed. ESs thus resemble idiot savants: They may match or exceed the 
performance of human experts in a very narrow area of expertise, but they 
cannot perform simple tasks outside this area of expertise.

Another limitation is the extensive effort required to build the neces-
sary knowledge bases and to maintain consistency when the knowledge 
base is modified. Ideally, the developer or user could add, delete, or modify 
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the knowledge base as desired, taking advantage of its symbolic, modular 
structure, and the system would still derive the correct conclusions using 
the preexisting inference mechanism. In practice, this is not always the case. 
Frequently, when a particular piece of knowledge is added, deleted, or mod-
ified, the dependencies in the knowledge base cause unintended inferences, 
requiring further modification of the knowledge base (tweaking) and, less 
frequently, changes in the inference engine control algorithms. The main 
approaches addressing this problem are automatic knowledge engineering 
tools, shared ontologies, and standardized domain languages.

Finally, one of the major limitations is the difficulty in deciding whether 
an ES-based system is the most appropriate solution to the problem at hand, 
given the costs and effort often required for ES development. Depending on 
the task difficulty and problem stability, access to appropriate experts, and 
use of appropriate tools, the required time may range from weeks to many 
person-years. It is therefore critical that ES technology is applied appropri-
ately. Several characteristics of the problem help determine whether an ES 
is the appropriate solution:

•	 Stability or persistence of the problem: Is the problem likely to exist 
long enough to justify the investment required to develop an ES?

•	 Appropriate problem complexity: Is the problem sufficiently dif-
ficult to warrant the development of an ES, yet sufficiently routine 
that the necessary knowledge and procedures can be obtained and 
encoded within the ES formalisms? It has been said that ESs are 
appropriate for tasks that would take an expert an hour or two 
(Bobrow, Mittal, and Stefik, 1986).

•	 Appropriate problem familiarity: Is the problem sufficiently familiar 
and can a sequence of steps be defined for solving it? ESs are not 
suitable for situations in which each problem is unique and novel 
methods must be developed to solve each problem. They are appro-
priate for automating tasks that are fairly routine and mundane, 
not exotic and rare (Bobrow et al., 1986).

•	 Availability of the necessary knowledge: Is the required knowledge 
available, either from technical materials or from human experts? 
Are the experts capable of articulating the necessary knowledge 
and are they available as necessary throughout the system develop-
ment process, including evaluation and validation?

•	 Availability of test cases: Are sufficient test cases available to sup-
port a systematic evaluation and validation process?

•	 Type of knowledge: Is the knowledge highly task-specific or is a 
high degree of commonsense knowledge required? ESs are appro-
priate for problems that can be solved with highly domain-specific 
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knowledge, rather than the creative application of a broad range 
of commonsense knowledge.

It is critical to understand that ESs do not perform magic. ESs can solve 
only problems for which well-defined solutions already exist and the neces-
sary knowledge can be obtained and encoded in the knowledge base.

Future Research and Development Requirements 

To ensure continued use of ES technologies, the limitations outlined 
above need to be addressed. 

To address the general issue of the narrow scope of applicability, effort 
needs to be devoted to developing technologies and systems that can rec-
ognize the limits of expertise and, when exceeded, refer the problem to 
another ES. This attempt at “self-awareness” is the underlying motivation 
of the emerging multiagent systems in ES research. 

To address the issue of brittleness, one can pursue several strategies, 
including the development of:

•	 An ability of the ES to automatically acquire additional knowledge 
or problem-solving strategies by automatic knowledge acquisition 
and learning.

•	 An ability to represent large amounts of commonsense knowledge.
•	 An ability to draw on deep models of the domain and reason from 

first principles about an unfamiliar problem.

To address the issue of the extensive effort needed to build and maintain 
ESs, guidelines need to be developed to determine if an ES-based solution is 
appropriate to the problem at hand. In addition, effort needs to be put into 
the development of shared ontologies, standardized domain languages, and 
automatic knowledge engineering tools.

Finally, effort needs to be invested in developing methods for dealing 
with uncertainty and for addressing verification and validation to ensure 
consistency and correctness of the knowledge bases underlying ESs.

Decision Theory and Game Theory

Overview

This section provides a brief overview of decision theory and game 
theory and their relevance to the individual and organizational modeling 
problem. In the earlier sections of this chapter we discussed many of the 
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ongoing efforts in developing cognitive architectures and affective models 
to support the understanding of individual behavior within a psychological 
and situational context, and, in Chapter 3, the importance of culture as 
a means of providing social context and as a determinant of both indi-
vidual and group behavior. And, as we have discussed, even these multi
dimensional approaches often prove too stark to capture the rich variety 
of individual human and collective group behavior that we observe out in 
the real world.

Hence, one cannot but be surprised when one looks at the formal 
modeling literature in economics and political science. Most of that lit-
erature ignores culture entirely and only recently have cognitive models 
become part of the mainstream in these areas (Camerer, 2003). Instead, the 
standard assumption in these disciplines is that people maximize their pay-
offs. Payoff maximizing behavior is not to be confused with self-interested 
behavior. A person can be both payoff maximizing and altruistic at the 
same time. Knowing payoffs requires an understanding of the motivations 
of the other players. That may not always be possible. Nevertheless, game 
theory and decision theory can handle this type of uncertainty as we discuss 
below.

Those outside economics and political science criticize the rational 
choice assumption, that is, the assumption of payoff maximizing behavior, 
on the grounds that it lacks descriptive accuracy. People don’t make optimal 
decisions given a payoff function. Sometimes people make mistakes. Some-
times they don’t have well-defined payoffs. That is true. Nevertheless, the 
assumption of optimizing behavior has several reasons to recommend it, at 
least as a baseline model. First, it is well defined, which means that analyti-
cally tractable models can be built. These models may not be 100 percent 
accurate, but they serve as gold standards against which models with 
relaxations in this assumption can be tested. Second, it enables prescriptive 
reasoning. Thus, using this model we can assess what people should do 
and then use this to generate hypotheses against which to compare actual 
behavior and identify the sources of deviation.� Third, some theoreticians 
argue that even though people do not optimize initially, they should head 
in that direction over time, particularly as the fallacy of their behavior is 
pointed out. In this way, the model becomes a forecaster of ultimate behav-
ior. Fourth, under special circumstances, there is some empirical evidence 
that people may act as if they optimize. The empirical evidence is strongest 
when the stakes are large and when the situation is repeated or familiar. 

� Often factors that are not typically thought of as rational, including religious and political 
beliefs, have major motivating effects on behavior. Ignorance—of the actual situation, the 
relative costs and payoffs of carrying out a decision, and other factors—may contribute to 
choices and behavior as well.



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

MICRO-LEVEL FORMAL MODELS	 195

In general, to measure cognitive and cultural effects, a benchmark is 
needed for behavior (in the absence of those effects).� The two most widely 
used benchmarks are that people behave randomly and that people behave 
optimally. Myerson (1999) argues that rationality (i.e., acting optimally, 
given imperfect and/or incomplete information available to them) makes 
more sense. Many economists and game theorists use the optimal behavior 
assumption. However, for much of the social, statistical, and computer sci-
ences and for the network models and link analysis models discussed later 
in Chapter 6, the random behavior assumption is used as the baseline. 

We can distinguish between two types of models within the rational 
actor paradigm: decision theory models and game theory models. In a deci-
sion theory model, the payoff to a person or group’s action does not depend 
on the actions of others (Raiffa, 1997). In a game theory model, payoffs 
depend both on the person or group’s own action and on the actions of the 
other players (Bierman and Fernandez, 1998). We call the former insulated 
actions and the latter interdependent actions. This distinction creates a 
demarcation line between decision theory and game theory. Two highly sim-
plified examples illustrate the difference. A military commander confronted 
with the problem of how to assign troops to responsibilities during peace-
time faces a decision problem. That same commander allocating troops in 
the heat of battle often plays a game—the payoffs from the commander’s 
action depend on the actions of the adversary.

What Are Decision Theory Models?

In decision theory models, the actor chooses from among a set of pos-
sible actions in order to satisfy some objective. In many situations that 
objective is to maximize a payoff function. Without uncertainty, decision 
theory models are not very interesting: the actor chooses the action with 
the highest payoff. The payoff depends on the action as well as on the state. 
The state literally means the state of the world—the set of factors that are 
payoff relevant. A country’s oil reserves, its military strength, and its cash 
reserves would all be part of its state. Formally, we write the payoff as a 
function, f(a|s), of the action, a, conditional on the state, s. In other situ-
ations, an actor’s objective might be to minimize regret. The concept of 
regret can be formalized as the difference between what the agent receives 
and what the agent could have received with perfect information.

In a decision theory model, an agent has beliefs over the set of possible 
states. Formally, beliefs represent what someone thinks is likely to be true 
either at present or in the future. These beliefs are captured in a probability 

� Many would say there is no such thing: all behavior occurs in a cognitive and cultural 
environment. 
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distribution over the possible outcomes. The expected payoff of an action 
equals the payoff of the action in each state multiplied by the probability 
of that state occurring as a result of the action taken. Consider a military 
commander who must decide whether or not to enter a hostile village.� The 
commander has three options: to enter with firepower, to enter with a small 
group and attempt to negotiate, or to enter the village with food and medi-
cal supplies. We define these as actions: attack, negotiate, and supply. The 
value of each of these actions depends on the hostility level of the village 
leaders. The village leadership might be hostile, moderate, or accepting. The 
leadership’s attitude can be thought of as the state. We assume that payoffs 
to the military commander equal the number of lives lost, making lower 
payoffs better. We further assume that the military commander can make 
accurate assessments of the number of lives lost by following each action 
conditional on each state and that those are shown in Table 5-1.

This scenario illustrates why some consider decision theory a useful 
modeling tool and the reasons why decision theory ends up being not that 
useful in practice. First, the decision theorist must be able to specify the 
complete set of states and the consequences of the actions. Such information 
is generally not known by the military commander, and the time to gather 
such information may inhibit rapid response. For military actions, time
liness is often at least as important as accuracy. Second, the decision theorist 
needs to assume that the military commander knows the probability distri-
bution over the attitudes of the village leadership—that the commander has 
accurate beliefs. In general, the commander does not have such informa-
tion; that is, the commander and his staff do not have well-founded beliefs 
over all of the states.�

Finally, the decision theorist needs to assume that only first-order 
effects are critical; that is, the second-order effects of the actions are neg-
ligible. However, as most commanders will tell you, there are unintended 
consequences of actions (second-order effects) that are often more critical 
than the first-order effects. For example, a second-order effect of putting 
in to port in a city and enabling shore leave is an increase in money in 
the city and a consequent increase in corruption. To deal with this, the 
decision theorist has to make the model more complex so that it captures 
these second-order effects. The problem here is that these effects are not 
known a priori. There is simply insufficient understanding to predict the 
consequences of any action on any population or actor, especially given the 
influence of group think and social influence on behaviors.

� We consider an expanded version of this scenario later in our discussion of model verifica-
tion and validation. 

� In fact, assessing the attitudes of the population correctly is a key challenge facing today’s 
military and requires a multidisciplinary approach not including decision theory. 
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TABLE 5-1  Number of Lives Lost Depending on State and Action

State/Action Negotiate Attack Supply

Hostile leaders p = 0.25 20 16 6
Moderate leaders p = 0.25 10   8 6
Accepting leader p = 0.5   2   4 6

If, however, we were to assume that these many obstacles could be 
somehow overcome, then decision theory might still be a useful tool. For 
example, one can assume that the probability of an accepting leadership 
equals one-half and that the probability of each of the other types equals 
one-fourth. Given these assumptions, entering with food and medical sup-
plies is the best action. It results in a loss of only six lives regardless of the 
leadership type, whereas both negotiating and attacking result in expected 
losses of eight and a half and eight lives, respectively.� Let a denote the 
probability of an accepting leadership, m denote the probability of a mod-
erate leadership, and h the probability of a hostile leadership. These prob-
abilities must sum to one. With a little effort, it can be shown that attacking 
is not optimal for any beliefs. Thus, the question is whether to supply or to 
negotiate with the village leader.

An important caveat is that, were it possible to overcome the obstacles 
to applying decision theory, the commander would still need computational 
support to correctly apply a decision theory model. That is, the scenario 
assumes that people think in Bayesian terms and that they do not make mis-
takes when computing probabilities. Ample evidence suggests that people 
are not Bayesian and that they’re particularly bad at computing conditional 
probabilities and at estimating very low-probability events (Camerer, 2003). 
Thus, even if the commander could get the requisite information and knew 
all the probabilities, the commander would still not find the answer that 
decision theory would suggest. Many decision aids being developed cur-
rently are designed to overcome these two limitations and provide for the 
commander a “recommendation” based on decision theoretic reasoning. 
However, as noted, the recommendation will be faulty if the assumptions of 
knowing all states, all responses, and the probabilities are not met. At the 
current time, little is known about how to put confidence intervals around 
such recommendations.

Another potential role for decision theory is in determining the value 
of perfect or improved information. Suppose that the military commander 

� We arrive at these numbers by taking the probability of each type of leader by the number 
of lives lost. In the case of the attack strategy, we multiply 16 by 0.25, 8 by 0.25, and 4 by 
0.5 to get the expected value. 
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has beliefs about the village leadership based on incomplete information 
but that he can become perfectly informed at some cost. To be specific, 
suppose that at the cost of four lives the military commander can find out 
the attitude of the village leadership. Returning to the initial assumption 
about beliefs that the leadership was accepting half of the time, one can 
show that the cost of gathering the information exceeds its value. The 
information changes the military leader’s action only when it reveals the 
leadership to be accepting. In that instance, the leader should negotiate 
rather than bring supplies. This action saves four lives. However, the pos-
sibility of saving four lives half of the time would not be worth the certain 
cost of four lives. Thus, the value of the information is less than the cost. 
In practice, however, there are several problems with this argument. First, 
it is often as difficult to determine the cost of information as it is to assess 
the probabilities. Second, the cost of information and the impact of the 
decisions may not be measurable in commensurate ways. That is, while an 
action may save lives, it may not cost lives to gather information; rather it 
may be an issue of time, purchasing surveillance cameras, etc. If this is the 
case, another limitation arises to the decision approach—that of converting 
all outcomes into the same currency.

In theory, decision theory can also be used to model the decisions of 
an adversary. However, to use decision theory effectively, one needs to 
know the adversary’s beliefs over the relevant states of the world. One 
of the key difficulties in adversarial modeling in general is understand-
ing the adversary’s beliefs, capabilities, available resources, etc. If these 
were known, behavior modeling would not be as difficult as it is. Since 
the adversary tends to operate in a deceptive framework, hiding actions, 
and is adaptive with beliefs and attitudes that change in practice, deci-
sion theoretic models of the adversary tend not to be that valuable. In 
fact, historic models of this type tended to assume that the adversary had 
beliefs similar to those held by one’s own forces, similar ways of engag-
ing in battle, etc. Basing decisions on “mirror beliefs” can readily lead to 
disastrous consequences.

Even if the adversary’s beliefs were known, the model is incomplete, 
because the adversary’s attitude toward risk must also be known. Current 
models do not take into account the adversary’s goals or strategies but take 
them as fixed. To model strategic adversaries, game theory is used, which 
we cover next. In our earlier discussion of cultural and cognitive models, 
we noted that people and cultures differ in how they respond in uncertain 
environments. Substantial evidence shows that people exhibit uncertainty 
aversion (Ellsberg, 1961). People prefer to take risks with known odds 
than risks with unknown odds. They will even take actions that appear 
unreasonable—from a rational choice perspective—in order to avoid uncer-
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tainty (Bewley, 1986). However, the extent to which they act in this way 
may be a function of the culture, and the relation of culture to risk-taking 
still needs exploration. A second aspect of risk that is typically overlooked 
in decision theory is the role of emotions. The emotional state of the actors 
can alter dramatically, and possibly in complex, nonlinear ways, their risk-
taking behavior.

A second branch of decision theory, multiattribute decision theory, 
takes a more normative approach. It considers how to make good decisions 
when those decisions influence multiple dimensions. A military action has 
military, economic, political, and social implications. Rarely will one action 
be dominant, that is, lead to a better outcome on every outcome dimen-
sion. Thus, decision makers must come up with some process that either 
explicitly or implicitly assigns weights to the various outcome dimensions 
(Edwards and Barron, 1994). Multiattribute decision theory suffers from all 
the limitations already discussed. Nevertheless, a multiattribute approach 
is part of the most sophisticated of the agent-based models discussed in 
Chapter 6. In these multiattribute decision models, the actors in the models 
pursue multiple but simple and very well-defined goals. We must be careful 
not to be overconfident in our predictions, a point we discuss at length in 
our analysis of voting models in Chapter 6.

What Are Game Theory Models?

In a game theory model, as in decision theory, one assumes that each 
actor has a payoff function. And the same caveats apply as with decision 
theory: it may be impossible to know this function or take too much time to 
determine it. In game theory, an actor’s payoff depends not only on his own 
action, a, but also on the action of other actors, and this action is called o. 
For this reason, the actors are referred to as players, and the payoff function 
is written formally as f(a,o).

One can differentiate between games in several ways. Games can be 
sequential, like chess, or simultaneous, like rock, paper, scissors. This dis-
tinction is important because in some games advantages accrue to either 
the second mover or to the first mover. Games can also be one shot or 
repeated. In a standard repeated game, the same game is played in every 
period. Repeated games can be finitely or infinitely repeated; in the latter, 
cooperation is easier to sustain as the future always casts a shadow; that 
is, there are always more rounds to play that can create incentives. Games 
can be zero-sum or nonzero-sum. In a zero-sum game, for every winner 
there is a loser. In a nonzero-sum game, it’s possible for the total payoff to 
all players to increase or decrease. Negotiation is often improperly seen as 
zero-sum, when in fact bargains can be reached that benefit both parties 
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(win-win).10 Below we discuss Colonel Blotto, a zero-sum game, and show 
how the competitive nature of such games makes predictions difficult. 

Game theorists distinguish between two types of uncertainty. In games 
of imperfect information, the players do not know the actions of the other 
players, even if those actions have happened in the past. For example, a 
military might not know where an adversary has stored its weapons. In con-
trast, in games of incomplete information, players do not know the state of 
the world. For example, the military might not know how many weapons 
the adversary possesses. The state of the world most often influences pay-
offs, but it can also change the set of possible actions. The distinction 
between these two types of uncertainty is of more than academic interest. 
Problems due to incomplete information can be overcome by gathering 
data about preferences, capabilities, and relevant environmental features. 
Problems due to imperfect information require observation of the other 
players. Alternatively, such problems can be overcome by changing the rules 
of the game, for example, by creating new rules that reduce the amount of 
imperfect information. A problem for the commander, however, is that he 
may not know what he doesn’t know. Adversaries may act deceptively and 
provide evidence that makes it appear that information is more complete or 
perfect than it is, thus limiting further the value of game theoretic models.

Game theory distinguishes between actions (what the players do), and 
strategies (the rules they use to decide what to do). For example, in a 
repeated prisoners’ dilemma, in which players must either cooperate or 
defect in each period, a player’s action is either to cooperate or to defect, 
but the player’s strategy is the rule used to decide what action to take 
based on the past history of plays. A player might use the strategy tit for 
tat, mimicking the action of the other player in the previous play of the 
game. This distinction hides an important assumption of game theory—that 
the actors are assumed to always act strategically and not just to be reac-
tive. However, heightened emotional states, exhaustion, religious fervor, a 
reduction in basic needs (no water or food or shelter), and countless other 
conditions can actually all lead the players to simply react rather than to 
behave strategically.

When one thinks of a game, be it football or chess, one thinks of 
sequences of moves, of ebbs and flows. Game theory focuses instead on 
equilibria. In what follows, we assume that the game has only two players, 
even though these models can handle any number of players. Normally, an 
equilibrium is written in terms of strategies. Here we simplify the definition 

10 A key limitation of game theory arises because of these different types of games: in prac-
tice, one must know what type of game is being played; however, the commander often does 
not have the information to make that determination, and assuming the wrong type of game 
can lead to suboptimal and indeed disastrous results.
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and write it with respect to actions. In this formulation, an equilibrium 
(a*,o*) consists of an action for each player such that each action is optimal 
given the action of the other player. We write this as follows:

The actions (a*,o*) are an equilibrium if a* optimizes f(⋅,o*) and o* 
optimizes f(a*,⋅) 

Equilibria in which both players take single actions are called pure 
strategy equilibria. Often pure strategies fail to exist, and players must 
randomize their strategies across multiple actions. Each player still takes 
only a single action but chooses that action from a set of possible actions 
so as to confuse the other player. For example, an attack might be either 
by land or by sea. These equilibria are called mixed strategy equilibria. 
In general, pure strategy equilibria need not exist, but under some fairly 
mild conditions some type of equilibrium always exists. These mild condi-
tions are mathematical assumptions about continuous payoff functions 
and the like. 

Although one thinks of equilibria as places of rest, they can include 
finite punishment regimes, in which one player punishes the other for a 
fixed period of time, and bubbles, in which everyone is overly optimistic 
about the future (Blanchard and Watson, 1982; Green and Porter, 1984). 

Game theorists use equilibrium as their solution concept. It’s what 
they think the outcome of a game will be. However, equilibrium is a very 
strong assumption. Most social systems don’t reach equilibrium. Natural 
disasters, scientific advances, belief changes, learning, external political 
coups, etc., all lead to adaptations that inhibit equilibrium from being 
reached. Understanding what behavior will be at equilibrium does not help 
the commander understand the ebbs, flows, and adaptations with which 
he is faced. Equilibrium as a solution concept for games has been justified 
on either of two grounds. First, optimizing players would locate equilibria. 
However, as we discussed, there is little evidence that the players actually 
optimize. Second, at least in some cases, agents who learn can locate equi-
libria. However, this tends to be true only for highly simplistic games, and 
generally those in which each individual game has only two players, even 
if many play in the overall tournament. Thus, a key difference between 
game theory models and nongame-theoretic agent-based models, which we 
discuss later, is what is assumed about behavior. Game theorists assume 
that behavior somehow gets the players to equilibrium, whereas, in most 
agent-based models, equilibrium is never reached and behavior is the result 
of various processes—cognitive, social, political, cultural, and so on.

Most game theory models assume two-person games. However, in most 
realistic situations, the adversary is not a single entity. In Iraq and Bosnia, 
for example, the adversary consists of sets of groups that come together and 
break apart, with varying strengths of alliances. Then there are coalition 
partners, nongovernment organizations, the population that might harbor 
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insurgents or terrorists or not, and so on. In other words, there are multiple 
actors with ever-changing agendas.11 

Relevance, Limitations, and Future Directions 

Relevance

Decision theory and game theory can play four roles in constructing 
behavioral models: 

1.	 They oblige us to define the actors, their possible actions and strate-
gies, the states of the world, and payoffs.

2.	 They force us to think through what optimal behavior would be 
given our assumptions.

3.	 They enable us to gain a quick and powerful understanding of the 
primary incentives and their implications.

4.	 They provide simplistic, often mathematically tractable models 
against which deviations that engender greater realism can be 
assessed. 

To see these four roles in an example, consider the Colonel Blotto 
game, which can be used to model military strategy and the actions of 
terrorist groups. Colonel Blotto is a simultaneous zero-sum game. Two 
players allocate fixed resources to a finite number of fronts. Whichever 
player allocates more resources to a front wins that front. A player’s payoff 
equals the number of fronts it wins. In trench warfare, a front might liter-
ally represent a wall of troops. In using Colonel Blotto to model terrorism, 
one can think of a front as a potential target. This second, more modern 
application of Blotto is used here.

The two players would be the terrorist organization and the host coun-
try. Their possible actions would not necessarily be easy to characterize, but 
subject matter experts might be able to identify the set of potential targets. 
In the standard Blotto game, all fronts are of equal value. In a real-world 
scenario, that would not be true. Nevertheless, we might start by assum-
ing that all targets take on equal value. If we assume that the host country 
can prevent terrorist acts on a target if they have sufficient resources, then 
the payoffs in the real world are approximated by Blotto. Already we see 
the value in using game theory in that it forced us to define the targets and 
their relative payoffs.

11 Computational game theory does allow for more complex multiplayer games. However, 
the line between agent-based models and computational multiplayer game models is more a 
matter of theoretical intent than methodology.
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Next, we can use game theory to solve for optimal behavior. In Blotto, 
a player tries to mismatch the actions of its opponent. Blotto can be thought 
of as a higher dimensional rock, paper, and scissors game. The equilibrium 
to both games is for both players to play mixed strategies: to randomly 
choose from among several actions. This solution provides a valuable 
insight: A smart player would randomize, making it impossible to know 
what action it will take. Formal analyses of Blotto reveal a second insight: 
If one player has more resources than the other, it does not necessarily win. 
To see why, suppose that the terrorist group has 5 units of the resource and 
that the host country has 20 units in an environment with 5 targets. If the 
host country evenly allocates its resources across the targets (as shown in 
Table 5-2), the terrorist group can win a front by putting all of its resources 
on one target.

Even though the terrorists win on only one front and the host country 
would officially be declared the winner of the game, most countries would 
not see this outcome as a win. They want to avoid any terrorist attacks. 
Blotto shows why that outcome is difficult to achieve. 

Given that no pure strategy can win with certainty, the host country 
must still play a mixed strategy. In fact, if we assume that the host country 
wins ties, its optimal strategy in this case would be to assign five units to 
each of four targets and leave one target completely exposed. Thus, 20 per-
cent of the time, the terrorist group succeeds and the host country has no 
resources allocated to the target despite having a four to one advantage in 
resources and behaving optimally. Counterintuitive results like this are a 
hallmark of game theory models. Often what we think is optimal won’t be, 
when we think through all of the implications of actions. We might note 
that leaving a target uncovered might be politically infeasible. If so, that can 
be handled by changing the host country’s payoff function. 

In principle, we can use this model as a basis for a more elaborate and 
realistic model. Such a model could include more general payoffs, it could 
include externalities between the targets—perhaps resources at one target 
also partially guard another target—and it could make the game repeated. 
In that repeated game model, we might also restrict the ability of players 
to allocate resources. If so, we have a situation quite different from that 

TABLE 5-2  Example of Allocation of Resources for the Host Country 
and Terrorist That Results in the Terrorist Winning on the Target 2 Front

Player Target 1 Target 2 Target 3 Target 4 Target 5

Host country 4 4 4 4 4
Terrorist 0 5 0 0 0
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described by Colonel Blotto but nevertheless informed by Colonel Blotto. 
However, as we have noted, the severe limitations of decision theory and 
game theory make this move to a more elaborate and realistic model 
impractical and not as trivial a step as the formal theorists might wish.

Game theory has been of moderate use in analyzing institutions. The 
game theoretic approach consists of four steps (Diermeier and Krehbiel, 
2003):

1.	 Assume behavior.
2.	 Define the game generated by the institution.
3.	 Deduce the equilibria. 
4.	 Compare the regularities to data.

If behavior is assumed to be optimizing, then equilibrium is achieved 
and institutions can be thought of as equivalent to equilibria. To compare 
two institutions, we need only compare their equilibria: the better the equi-
librium (e.g., the greater utility to the relevant actors), the better the institu-
tion, and the more the actors will prefer it. The institutions as equilibrium 
approach proves powerful. If we want to compare a parliament with an 
open rule system, in which anyone can make a proposal, with a closed rule 
system, in which amendments are not allowed, or to compare a parliamen-
tary system with a presidential system, we construct models of the two 
types of institution and compare their equilibria using game theory (Baron 
and Ferejohn, 1989). The institutions as equilibrium approach of game 
theory can be extended to include the game over institutions. In this game, 
the players first decide which institution to use. This meta-institutional 
game can explain not only how institutions perform but also why they may 
have been chosen in the first place. For example, we might use such a model 
to explain why a military leader chooses an open rule system even though 
that system allows greater voice to members of his cabinet. However, as 
noted, the assumptions that need to be made here are highly unrealistic, 
hence calling the entire approach into question.

When we expand game theory to include learning models, then we can 
capture some forms of cultural transference. Many game theorists think of 
culture as beliefs. That characterization provides some leverage, but it is 
far from adequate. More recent work considers cultural learning in which 
players learn from one another (Gintis, 2000). They can even learn from 
the other games that they play (Bednar and Page, 2007). Game theoretic 
models can also be expanded to include networks that can evolve over time. 
In sum, game theoretic models can include cultural forces, but those forces 
must be well defined and analytically tractable. The movement to expand 
game theory by taking networks and culture into account is promising. 
However, the research here is in its infancy.
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Major Limitations

Decision theory models and game theory models tend to be overly sim-
plistic, with few “moving parts” and with assumptions made with regard 
to the player behavioral characteristics that can be driven more by ease of 
solution criteria rather than fidelity of representation. Otherwise, the models 
become difficult or impossible to solve. For example, most game theory 
models assume either two players or an infinite number of players. The 
real world often takes place in the space in between, except for extremely 
artificial situations (e.g., chess games, two-candidate political races, etc.). 
Decision theory and game theory models require data about actors that 
often cannot be gathered with any reliability or within a reasonable amount 
of time determined by the decision window of the commander.

A further problem with game theory models is that they produce mul-
tiple equilibria. The Folk Theorem result states that, for repeated games, 
almost any outcome can be supported as an equilibrium. To overcome this 
problem of multiple equilibria, game theorists rely on refinements, such as 
symmetry. An equilibrium is symmetric if both players get the same payoff. 
Or they invoke Pareto efficiency: an equilibrium is Pareto efficient if no 
other equilibrium makes every player better off. Game theoretic models 
also often ignore the stability and attainability of the equilibria that they 
predict. Although recently game theorists have begun to study learning 
models, they tend to consider simple two-person games and not the more 
complex, multiplayer situations characteristic of the real world.

Future Research and Development Requirements

The potential for decision theory and game theory hinges on their 
ability to capture the complexities of real people and the real world. A 
concern with realism would seem to undercut the mathematical strength 
of these two approaches: their ability to cut to the heart of a situation. 
Nevertheless, the few degrees of freedom that these models allow can be 
tugged in the direction of greater realism with potentially large benefits. 
In decision theory, we can look to cultural and cognitive explanations to 
explain beliefs. We can also look to culture as a determinant of what is pos-
sible: some actions may be unlikely to occur in some cultures. Therefore, we 
can rule those actions out. However, as decision theory and game theoretic 
models become more nuanced to include cultural factors, they become 
less mathematically tractable, require increased data or more unrealistic 
assumptions, and require more effort for validation.

As already mentioned, game theorists have begun including culture in 
the form of beliefs, networks, and behaviors. This can also be accomplished 
less formally. For example, Calvert and Johnson (1999) argue for culture 
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as a means of coordinating on an equilibrium. By coordination, they mean 
selection of one equilibrium from among many. In their approach, game 
theory becomes a preliminary tool: it defines the set of possible outcomes. 
Detailed historical and cultural knowledge from subject matter experts then 
selects from among those equilibria.
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Meso-Level Formal Models

In this chapter we describe and discuss formal models of human behavior 
at a level of aggregation and detail between the micro and macro levels. 
Such models are often referred to as meso-level models. Typically the 

models represent interactions and influences among individuals in groups 
and cover both individual and group phenomena and their interactions. 
These models include several voting and social decision models, social net-
work models, link analysis, and agent-based modeling (ABM). The models 
have been developed in varied disciplines, including social psychology, 
sociology, anthropology, economics, and computer and communications 
sciences.

Voting and Social Decision Models

Understanding and predicting social phenomena requires good models 
of individuals and groups. The behavior of a group can differ from that of 
the individuals that comprise it. A science of aggregation is needed to model 
the behavior and actions of collections of people. There is a need to know 
how individual beliefs, goals, and skills combine on various tasks, such as 
problem solving and decision making. This section covers voting models 
that assume people reveal their true preferences, game theory models that 
assume people vote strategically, and social psychological models that con-
sider how individual preferences might change in a group setting.
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What Are Voting Models?

The research and models from voting theory provide a natural place to 
begin an investigation into aggregation for both pragmatic and conceptual 
reasons.� Governments, terrorist groups, and alliances all make decisions 
by “voting.” Some follow formal voting rules and procedures and others 
informally aggregate competing desires. Thus, our use of the term “vot-
ing” goes well beyond formal (e.g., electoral) registering of a preference to 
much less formal situations in which a preference is exercised or a decision 
is made with input from multiple individuals.

Conceptually, voting models are valuable for three reasons: (1) a sub-
stantial body of theory exists, (2) that theory shows no shortage of counter-
intuitive results, thus highlighting the challenges of aggregation, and (3) the 
theory highlights a key point: to model groups well, one must be able to 
model individuals and the interactions between them. 

State of the Art in Social Decision Modeling

We first describe the basics of preference theory. We then discuss results 
from social choice theory that reveal the problems created by aggregation 
as well as briefly comment on game theoretic models of strategic voting. 
The distinction between social choice theory and game theory hinges on 
behavioral assumptions. Social choice theory assumes that people truthfully 
reveal their preferences. Game theory does not. It assumes that people act 
strategically, which may or may not lead them to reveal their true prefer-
ences. The game theory models also enable one to understand how and why 
various institutional rules matter. We also discuss research from psychology 
that addresses how choices are made in a group context. 

Preference Theory

Preferences capture how much people value or desire things. They dif-
fer from choices, which are what people select. Modelers define preferences 
over a set of alternatives. These alternatives can be outcomes, or they can 
be policies that produce outcomes (Page, 2007). Preferences impose an 
ordering over the alternatives. It is customary to write the preferences of 
someone who prefers apples (A) to bananas (B) as follows: A > B. Most 
modelers make two assumptions about individual preferences: that a person 
can compare any two alternatives (completeness) and that a person does 
not exhibit any preference cycles or internal contradictions (transitivity). 

� We might have alternatively considered models of riots or collective ecosystem mainte-
nance, but the related literature is not as deep or well thought out. 
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If a person claimed to prefer apples (A) to bananas (B), and bananas to 
coconuts (C), and then claimed to prefer coconuts to apples, one might 
think that person was irrational. Formally, it would be said that the person 
exhibits a preference cycle in which A > B > C, but C > A. When individual 
preferences satisfy both completeness and transitivity (i.e., A > B > C and 
A > C), then they are called rational.

If a person has rational preferences and if the modeler rules out indif-
ference, then that person’s preferences can be written as an ordered list from 
the most to the least preferred alternative. Given a set of five alternatives, 
A, B, C, D, and E, one person’s preferences might be written A > B > C > 
D > E, and another person’s might be written E > D > C > B > A. 

This construction does not represent strengths of preferences. One per-
son might strongly prefer A to B and strongly prefer B to C. Another person 
might have the same preference ordering but strongly prefer A to B and only 
weakly prefer B to C. To capture these relative strengths, one can assign pay-
offs or utilities to each alternative. Payoffs are not considered here because 
comparing these utilities across people is considered a dubious practice. 

Social Choice Theory

If the members of a group have identical preferences, then aggregating 
those preferences is straightforward. One can think of the group as one big 
individual—and for some groups that may not be a bad assumption. The 
aggregation of preferences becomes problematic when the group members’ 
preferences are diverse. Preference diversity can be fundamental (people 
want different outcomes) or instrumental (people want the same outcomes 
but differ over the means to achieve them). In what follows, that distinction 
is ignored, but it becomes important when thinking about linking models. 
If voting models are to be linked with cognitive models, then the source of 
preference diversity is important to define because information can reduce 
instrumental preference diversity but has little effect on fundamental prefer-
ence diversity. 

A collection of individuals with rational preferences may fail to have 
rational preferences as a group. We give an example and then state a gen-
eral theorem. 

In this example, three military leaders have preferences over which city 
to use as a base of operations. The three candidate cities are Paris, London, 
and Berlin. The leaders are denoted L1, L2, and L3. Their preferences are 
as follows:

Leader L1: Paris > London > Berlin
Leader L2: London > Berlin > Paris
Leader L3: Berlin > Paris > London 
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Were these three leaders to vote on their choice between each pair of 
cities, London defeats Berlin two votes to one, Berlin defeats Paris two 
votes to one, and Paris defeats London two votes to one. Thus, the collec-
tive preferences exhibit a cycle. Although the collective consists of rational 
individuals, the collective is not rational. In theoretical terms, the property 
of rationality does not aggregate.

The possibility of a cycle is not an artifact of majority rule voting. 
Kenneth Arrow proved that any rule for aggregating preference orderings 
that is not a dictator produces cycles (Arrow, 1951). It requires only that 
preferences are diverse, rankings between two alternatives do not depend 
on a third irrelevant alternative, and rankings reflect unanimity—if every-
one prefers A to B, then so does the collective. 

Arrow’s theorem does not imply that cycles are unavoidable, only that 
if one wants to avoid cycles, one has to sacrifice one of the other conditions 
of his claim—appoint a dictator, sacrifice unanimity, or violate indepen-
dence of irrelevant alternatives. In general, as argued by Donald Saari, pref-
erence cycles are more a function of the voting system than the voter. He 
suggests that voting paradoxes arise when the voting system fails to respect 
the natural cancellations of votes and so generates preference cycles (Saari, 
2001). For example, one such voting system or scoring rule, the Borda rule 
(Marchant, 2000), does not create cycles. Under the Borda rule with three 
alternatives, a person’s top choice gets three points, her second gets two 
points, and her third gets only one point. Each alternative gets a score, 
making cycles impossible. Borda rule can, however, result in a tie, which 
is what would occur in the example of voting over cities. A tie isn’t neces-
sarily a bad thing. It reflects equal support for each alternative. Borda rule 
may thus seem to be better than majority rule, but we must keep Arrow’s 
theorem in mind. Borda rule must violate one of his conditions, and, in 
fact, Borda does not satisfy independence of irrelevant alternatives. In the 
example above, a fourth, irrelevant city could be introduced and change the 
outcome under Borda rule. The fact that by introducing irrelevant alterna-
tives someone could change the outcome argues against using Borda rule. 
The debate thus moves from a discussion of the voter to a discussion of the 
scoring rules (Saari, 2006).

Given that regardless of the voting rule individual agents may fail to 
reach a stable aggregation, organizational and institutional structures take 
on great importance. The rules for how a group makes decisions can have 
large effects on outcomes. For example, if someone has the power to set 
the agenda, then that person may have substantial power. Thus, even if an 
organization is democratic in principle, it may not be democratic in prac-
tice, especially if one person controls the agenda. 
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Strategic Voting

In aggregating preferences, it can be assumed either that people vote 
sincerely or that they vote strategically. Strategic voting occurs even in large 
groups in mature democracies; people vote for candidates who they think 
can win rather than the candidates whom they most prefer. Alan Gibbard 
and Mark Satterthwaite have shown this incentive to misrepresent to be 
universal (e.g., Satterthwaite, 1975). 

Why does strategic voting further complicate matters? We have shown 
that rational individual preferences need not aggregate into a rational col-
lective preference. Thus, it may not be possible to discern what a group 
would decide even if one knew the preferences of every member of that 
group. Given that people have incentives to misrepresent their preferences, 
they wouldn’t reveal their true preferences anyway. Thus, one must discern 
how people’s true preferences get mapped into their actions—in this case, 
their votes. And that requires a model of individual behavior in groups.

The possibility of coalitions further complicates the analysis of vot-
ing models. Subgroups may have an incentive to form a coalition to steer 
outcomes toward desired ends. This is seen in parliamentary systems, with 
Israel as an example. It may not be possible to predict which coalitions will 
form: politics makes strange bedfellows, and predicting those bedfellows 
can be difficult. 

In a group setting, social influence dynamics can muddy the picture 
even further, as people may change their preferences to align with the real or 
the inferred preferences of others. Concern for the preferences of others and 
for one’s own standing in a group creates more indeterminacy in collective 
decisions. A striking example of such social influence effects is provided by 
the Abilene paradox, in which each person privately prefers X but believes 
that others prefer Z. If all group members revealed their true preferences, 
the group would clearly choose X. However, the desire to conform to what 
is (incorrectly) perceived to be the normative opinion can lead a member 
to suggest Z and others to agree (Harvey, 1974).

While this counterintuitive outcome is probably rare in practice, it 
highlights the importance of realizing that social influence is not sim-
ply a matter of one person seeking to change the preference of another. 
People also actively seek to align their preferences with important others. 
Both computational models and empirical studies have demonstrated that 
the impact of others on individual preferences tends to create uniformity 
of preferences among people who are closely connected. Dynamic social 
impact theory (Latané, 1996) predicts that people will change their prefer-
ences to match those of others, with the impact based on both the strength 
(status) and the immediacy (social closeness) of others. The result is emerg-
ing pockets of uniform attitudes based on social network clusters. Research 
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on minority influence (e.g., Nemeth, 1986) also shows that the views of a 
cohesive minority, when clearly and consistently stated, can also change 
the opinions of majority members. Hence, knowing what the majority of 
individuals prefer at time 1 may not allow one to predict confidently what 
a group will choose at time 2. 

Relevance, Limitations, and Future Directions for Social Decision Models

While voting models per se, especially those that compare specific vot-
ing rules like Borda and majority rule, may seem more relevant to political 
science than to the situations that concern us here, the insights that can be 
drawn from these models are of critical importance. Two of the main rec-
ommendations of this report are that modelers should recognize diversity of 
background, activity, and preferences and that they should embrace uncer-
tainty. Nowhere does that advice ring more clearly and loudly than in under-
standing the link from individual incentives to group behavior. Moreover, 
one can link diversity of background, activity, and preferences and uncer-
tainty about all three into a general insight: the more diverse the members 
of a group in their general makeup (their background), their preferences, 
and their actions, the more uncertain one should be about their collective 
decisions and actions. For example, models that attempt to make predictions 
about the attitudes and behaviors of a group of noncombatant civilians 
must consider the diversity of that group in terms of the sociocultural-
ethnographic-economic background, preferences, and available actions. The 
more diverse the group on any of these three dimensions, the less certain the 
predictions. At a very practical level, the implication of recognizing diversity 
is to make the models more complex. Another practical implication is that 
model results should often be characterized in terms of how the diversity 
of the population being modeled impacts the results (e.g., show entropy or 
diversity indices to characterize the initial population and show how out-
comes change as the initial population varies on this metric).

Even if group models cannot be expected to make point predictions, 
they can provide a way to predict sets of possible outcomes. If one has 
even crude approximations of preferences, possible coalitions, and a set of 
possible voting rules, he can write game theoretic or agent-based models, 
and those models can provide some guidance for what might happen and, 
equally important, what probably will not happen. For a recent survey of 
these methods, see Kollman and Page (2006).

The ability to apply voting theory depends on data, knowledge, and 
theory. For many of the problems relevant to this study, one would not have 
information about individual-level preferences. And, even if one did have 
access, the theory tells us that it is not possible to predict outcomes with 
certainty from that data. Equally important, one may not have knowledge 
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of the voting rules. And, as discussed above, the voting rule has a substantial 
influence on the outcome. Thus, even with information about preferences, 
one would also need to know something about the process of preference 
aggregation in the group of interest. Finally, to apply these models, one 
needs models of how people behave in groups. Are the group members 
strategic? Do coalitions form, and who belongs to those coalitions? 

Imagine a model that includes the actions of a terrorist organization or 
of a nascent nation-state. One could make a black box assumption about 
how that organization or government acts. In other words, one could treat 
the group as an individual, presumably an individual who is the average of 
the group members.

The voting models reveal the problems with that approach. Groups do 
not make choices as though they were a single individual. The natural way 
to improve the model would be to make the black box transparent and to 
allow for multiple characterizations of the collective decision-making pro-
cesses that produce those outcomes. This will require data, knowledge, and 
models of the group of interest, but the potential payoff is large, as it will 
provide a more accurate assessment of the likely distribution of behaviors 
over the set of possible actions. 

Finally, empirical voting studies demonstrate that humans do not act in 
a strictly rational or strategic manner, hence calling into question the formal 
mathematical “rational” and “strategic” voting models. Summaries of the 
empirical literature point to the social rather than rational nature of vot-
ing behavior; for example, people vote primarily along ethnocultural lines 
rather than according to their economic interests and display widespread 
voter ignorance (Friedman, 2005). As another example, research on the 
“voter participation paradox”—in which it is asked why people vote at 
all, as each individual has virtually zero probability of affecting the out-
come (Converse, 1964; Green and Shapiro, 1994)— both demonstrate this 
lack of rationality and suggests that there are huge variations in individual 
behavior. Turnout depends on a number of social factors, including the size 
of the electorate (as the size of the electorate grows, fewer voters turn out), 
the closeness of the competition (the closer it is, the higher the turnout), 
and the presence of an underdog (more turnout). This empirical work sug-
gests both that the formal models and simplistic game theoretic models 
are inadequate and that the more detailed and nuanced behaviors possible 
in agent-based models (ABMs) are better at capturing the complexities of 
voting behavior.

Social Network Models

Networks are ubiquitous, and many techniques have been developed 
for analyzing, predicting, and understanding the world in terms of the set 
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of connections among entities—a network. As the focus here is on social 
and behavioral modeling, we limit our discussion of network modeling 
techniques to those that have been and are being used to address individual, 
social, organizational, political, or cultural issues, rather than, say, gene 
interaction networks or computer networks. For a review of the field of net-
work analysis, see Freeman (2004), and for the methodology, see Freeman, 
White, and Romney (1991) and Wasserman and Faust (1994). 

What Are Social Network Models?

Social network models view groups as consisting of a set of nodes 
(the members of the group) and a set of ties that connect them, which link 
together to form a network. The ties are often seen as pipes or roads along 
which various kinds of traffic flow, such as informational and material 
resources, as well as influences and coordination. Thus, a key aspect of net-
work modeling is concerned with predicting (and controlling) what flows 
to whom at what time. Ties are also seen as providing a kind of underlying 
structure or topology that has effects on the performance of the group or 
individuals. A fundamental proposition of social network models is that a 
node’s position in the network (in conjunction with its attributes) deter-
mines the opportunities for and constraints on action that it will encounter. 
A group-level corollary of this proposition is that the network structure of a 
group (together with other attributes of the group), determines the perfor-
mance or outcomes of the group. Thus, network models differ from other 
models in placing less emphasis on characteristics of the nodes and more 
emphasis on the structure of connections between the nodes.

Social network analysis (SNA) has received a great deal of attention 
since the terrorist attacks of September 11, 2001 (Borgatti and Foster, 
2003). Phrases for fighting terrorism, such as “disconnect the dots” and 
“it takes a network to fight a network,” and for doing business, such as 
“it’s not who you know but who or what who you know knows” and “are 
you networking?” have appealed to the imagination and raised awareness 
of this area. In addition, there have been successful applications of this 
approach. For example, social network information was used to locate 
Saddam Hussein, and several SNA tools have been used in various criminal 
investigations. Social network information is used in popular social net-
working web services, like Friendster, to help students vet their dates.

Traditionally, most SNA has focused on the analysis of relatively simple 
datasets involving a small number of social relations (often of just one kind) 
connecting a set of persons in some kind of group at a single point in time. 
Analysts in this area use computational techniques primarily to statistically 
analyze these networks. This area has a long tradition, predating World War 
II. It emerged from the social sciences, particularly from social psychology, 
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anthropology, and sociology, and has now spread to organization science, 
economics, physics, and computer science.

More recent work has focused on more complex networks involving 
large numbers of nodes of differing types (see section on Multimode Net-
works below). For example, Carley (2003) has developed social network 
metrics that take into account not only relations among individuals, but 
also relations among tasks, relations among items of knowledge, assign-
ments of tasks to individuals, relations of knowledge to individuals and 
other relationships.

In addition, a key research interest today is in understanding network 
dynamics, both in the sense of how networks change over time (especially 
in response to attacks) and in the sense of how things flow over the network 
links. Carley (2003) has used multiagent models in a network context to 
predict and reason about change in social and other networks.

State of the Art in Social Network Models

In this section, we lay out the key concepts of SNA, starting with a 
discussion of the nature of the data and followed by an outline of the key 
analytical constructs, namely cohesion, centrality, equivalence, and cluster-
ing. The section ends with a discussion of network evolution.

Nodes and Ties

The set of actors or agents that form the nodes of a network can 
consist of either individuals or collectives, such as organizations, cities, or 
countries. Nodes are assumed to possess characteristics that define their 
goals and affect their ability to achieve and exploit their network positions. 
These characteristics are modeled as a set of categorical and/or continuous 
attributes.

In general, relations among nodes are modeled as dyadic 2-tuples (called 
ties, links, or edges) that bind exactly two nodes to each other. Therefore, 
a conversation among three people A, B, and C is typically modeled as 
three separate dyadic interactions consisting of A with B, B with C, and A 
with C. For the most part, the ties modeled among nodes typically belong 
to a general class known as social relations. These include such things as 
acquaintance (e.g., knows), kinship (e.g., brother of, father of), other social 
roles (e.g., friend of, teacher of), and affective relations (e.g., likes, dislikes). 
Each type of tie can be further characterized by relevant characteristics or 
attributes. For example, a friendship tie can be characterized in terms of 
intensity, closeness, and duration.

In addition, network modelers often represent interactions over time—
such as in-person meetings, communication, or fighting—as ties. Hence a tie 
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is considered to exist between two nodes if at least one interaction between 
them is observed during a given period. The actual number of interactions 
may be recorded as an attribute of this tie. Interactions are inherently 
transitory and evanescent but are often seen as revealing the presence of 
underlying social relations. 

Interactions, such as conversations, provide the mechanism by which 
things flow through social relations, as when an actor transmits informa-
tion to a friend through communication or when a person infects another 
with a disease via personal contact. Thus flows represent a third category 
of tie that a network modeler can choose to model. Typical flows of interest 
have been information, ideas, infections, material goods (such as guns and 
money), and such intangibles as energy and motivation. These are often 
referred to by network analysts as “tokens.”

Multimode Networks

When a categorical variable exists that distinguishes between different 
types of nodes, and, in addition, ties exist only between nodes of different 
types (and not within types), the resulting networks are referred as k-node 
networks or, in graph theory, as k-partite graphs, where k refers to the 
number of distinct types of nodes. These kinds of data typically arise in the 
context of recording affiliations between individuals and groups or events. 
For example, Davis, Gardner, and Gardner (1941) recorded which women 
attended which social events in a given season. Ties exist between women 
and events, but not among women and not among events. Similarly, it is 
common to record for each person in a group the organizations to which 
they belong(ed). And in organizational analysis, one can collect the number 
of hours that each person worked on various tasks or projects.

Multinode networks can be analyzed directly or converted into simple 
1-node networks by deriving co-occurrence indices. For example, a 2-node 
women-by-events network can be converted into a 1-node women-by-
women network in which a tie between each pair of women is characterized 
by the number of events they attended in common.

With multiple nodes, it is possible to represent the system as a whole 
as a meta-matrix (Carley, 2003). The meta-matrix is a conceptual device 
for identifying the set of networks within and among nodes of multiple 
classes. For example, given the three classes of nodes—people, knowledge, 
and activities—the set of subnetworks possible is shown in Table 6-1. The 
second key concept is the entity ontology—for network analysis, this is the 
set of categories that defines the node classes and the link classes among the 
nodes used in a particular study. The table illustrates a particular ontology; 
other ontologies are needed for other applications.
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TABLE 6-1  Illustrative Meta-Matrix

People Knowledge Activities

People Social network Knowledge network Activity network
Knowledge Information network Needs network
Activities Precedence network

Cohesion Models

A fundamental concept in network modeling is cohesion. Cohesion 
refers to the connectedness or structural integrity of a network, and it 
is often interpreted in terms of the network’s potential for coordinating 
among its members or exploiting knowledge that is distributed across the 
network.

One aspect of network cohesion is density, which refers to the propor-
tion of pairs of nodes that have a direct tie (i.e., are not dependent on an 
intermediary). A high density implies that, on average, each node is directly 
connected with many others. If the ties represent something like trust rela-
tions, this indicates a group in which information can flow quite freely.

Another aspect of cohesion is the average path distance, also known as 
characteristic path length. Path distance refers to the number of links in the 
shortest path between two nodes. A network with low average distance is 
one in which the lengths of the shortest paths between pairs of nodes are 
quite small, so that things flowing through the network can reach any or all 
nodes comparatively quickly. In the case of viruses or other infections, this 
is a measure of the vulnerability of the network to disease. In the case of 
the spread of best practices, it can be seen as a determinant of the potential 
performance of a continuously adapting system.

Centrality Models

A frequent analytical strategy in network modeling has been the iden-
tification of key players who are disproportionately important due to their 
structural position in the network (Borgatti and Everett, 2006). The struc-
tural importance of a node in a network is conceptualized as its centrality. 
One way to think about centrality is in terms of a node’s direct or indirect 
contribution to the cohesion or structural integrity of the network. For 
example, degree centrality is defined as the number of ties that a node has. 
If the total number of ties in the network is a measure of the cohesion of the 
network, then clearly degree centrality can be seen as each node’s “share” 
of the total cohesion. In this sense, the centrality measure implies a model 
of the sources of cohesion.
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Other well-known aspects of centrality include closeness centrality, 
betweenness centrality, and eigenvector centrality. If the graph theoretic dis-
tance between two nodes in a network is defined as the length of the short-
est path from one to the other, then closeness centrality is defined as the 
sum of distances from a node to all other nodes. To the extent that social 
ties among network members constitute pipes that transfer such traffic as 
information or influence, closeness centrality gives the average time until 
the arrival of something flowing along the shortest paths. Betweenness cen-
trality is the share of all shortest paths in the network that pass through a 
given node. High betweenness nodes are a kind of glue holding the network 
together; deleting nodes with high betweenness from a network tends to 
disconnect the network or make all paths much longer. Eigenvector cen-
trality can be described, in simplified terms, as the extent to which a node 
is connected to many nodes that are themselves well-connected—a kind of 
turbocharged version of degree centrality.

Another way to think about centrality is in terms of the exploitability 
of a node position. This is the perspective taken by social capital theorists, 
who see a node’s position in the network as a kind of capital that the node 
can exploit for personal advancement or achievement. For example, a node 
with excellent closeness centrality is a short distance from other nodes in 
the network and is therefore well-positioned to hear information flowing 
through the network early, when it still confers a competitive advantage. A 
node with high betweenness centrality is in a position to make demands on 
others because these others need the central node in order to connect with 
others in an efficient manner.

Finally, centrality can also be thought of as providing expected values 
for certain node outcomes in a particular flow process. For example, the 
formula that defines betweenness centrality gives exact estimates of the 
expected number of times that something flows over a node in a process 
in which tokens travel exclusively along shortest paths. Similarly, closeness 
centrality gives the expected values of the time to first arrival of a token 
flowing through a network, again using exclusively shortest paths. Degree 
centrality gives the frequency of arrival of a token in a process in which 
tokens travel along unrestricted random walks through the network. Thus, 
definitions of centrality carry with them a model of how things flow in a 
network.

Equivalence Models

Equivalence modeling refers to the branch of network modeling con-
cerned with detecting nodes that play similar structural roles in the net-
work (Borgatti and Everett, 1992). The simplest equivalence model is that 
of structural equivalence. A pair of nodes is structurally equivalent to the 
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extent that they are connected (and not connected) to precisely the same 
third parties, regardless of whether they are tied to each other. Structurally 
equivalent nodes are structurally indistinguishable and substitutable. A 
fundamental claim in this kind of modeling is that, by virtue of being struc-
turally isomorphic, structurally equivalent nodes will tend to have similar 
outcomes. Structural equivalence can also be seen as providing a formal 
definition for concepts of node environment and niche. 

Another equivalence model is called regular equivalence. This is a 
recursive model in which two nodes are regularly equivalent to the extent 
that they are connected to regularly equivalent third parties (but not neces-
sarily the same third parties). Thus, two nodes do not have to have any 
contacts in common to be seen as equivalent, and indeed they can belong to 
entirely separate groups. As a result, the model can detect that both leaders 
of wholly unrelated organizations are playing the same role vis-à-vis their 
respective groups. Thus, it is a better model for the concept of social role 
than is structural equivalence. For example, given a network defined as 
the set of observed relationships among all people working in a hospital, 
regular equivalence can detect that two doctors of different patients are 
both playing the same role (i.e., doctor), whereas structural equivalence 
can detect only that two doctors of the same patients are playing the same 
role. The importance of regular equivalence is that it can discover latent or 
emergent social roles that have not been named and that the members of 
the network are themselves unaware of. However, the recursiveness of the 
definition, in which one needs to know the extent of regular equivalence 
between all other pairs of nodes in the network in order to calculate the 
regular equivalence of a given pair, makes this model computationally much 
more difficult than structural equivalence.

Cohesive Subgroup Models

An active area in network modeling is the identification of cohesive 
subsets—dense regions of a network that have more ties within than to the 
rest of the network—that operate as units. The fundamental assumption in 
this work is that members of a cohesive subset will have more in common 
with each other than with nodes outside the subset (Borgatti, Everett, and 
Shirey, 1990). This occurs both because nodes with common attributes 
will tend to seek each other out, forming the cohesive subsets in the first 
place, and because members of cohesive subsets have disproportionate 
influence on each other, creating homogeneity within the group. Thus the 
homogeneity of cohesive subsets results both from selection processes (simi-
lar nodes joining together) and from influence processes (interacting nodes 
becoming similar to each other).
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Network Evolution

Because social network modeling is a relatively young field that until 
recently had to fight for legitimacy, it is natural that it has concentrated on 
the impact of network variables on non-network or “traditional” outcome 
variables, such as career success or team performance. However, as interest 
in networks has increased, so has research on the antecedents of network 
structure—in short, network evolution—and the antecedents of a node’s 
position within network structures (e.g., why some nodes become more 
central than others) or of the emergent structural properties of the whole 
network (e.g., why some network structures are more robust than others). 

Empirical research has demonstrated several key factors that deter-
mine who has ties with whom in a variety of networks. People who are 
physically near each other tend to communicate more, even in an age of 
asynchronous electronic communication. This effect of proximity (some-
times called propinquity) is a special case of a more general principle 
known as homophily—the tendency for individuals to have ties of various 
kinds with people who are like them on socially, culturally, or politically 
significant variables, such as geographic location, race, gender, age, social 
class, religion, culture, language, organizational affiliation, centrality, etc. 
Thus, these variables form the grist of most simulation models of net-
work change. However, it should be noted that heterophilous mechanisms 
(in which opposites attract) also exist. Sexual relations, for example, are 
overwhelmingly heterophilous with respect to gender. In addition, most 
nonreciprocal relations such as “seeks advice from” or “gives orders to” 
are heterophilous, so that less knowledgeable people seek advice from more 
knowledgeable people rather than from those equally knowledgeable.

An important factor with elements of both homophily and heterophily 
is the activity focus. Common activities bring together people with similar 
interests, such as a bowling league or a political action group, creating 
homophilous linkages. However, as Alexis de Tocqueville noted as far back 
as 1835 (de Toqueville, 1835), these foci also tend to bring together people 
from different walks of life, creating heterophilous linkages across social 
boundaries.

Another important factor—not unrelated to homophily—is the tran-
sitivity induced by such mechanisms as cognitive dissonance (Festinger, 
1957) or balance (Heider, 1988). For example, if node A likes node B, and 
node B likes node C, then in many circumstances node A experiences some 
pressure to at least not dislike node C, thus increasing the probability of a 
tie forming between A and C.

Finally, there are status-based mechanisms that are neither homophilous 
nor heterophilous in which nodes are sorted by status, and all nodes pre-
fer to interact with high-status nodes. In such cases, the high-status nodes 
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exhibit homophily, because they prefer each other, while the low-status 
nodes exhibit heterophily, because they prefer high-status nodes. The model 
of preferential attachment developed to explain the pattern of which web-
sites link to which other websites is a kind of status model. In preferential 
attachment, new websites link to existing websites with a probability pro-
portional to the number of links the existing website already has, creating 
a situation in which, in terms of incoming ties, the rich get richer.

In recent years, a number of researchers have modeled network change 
using simulation methods, typically variations of ABM (Zeggelink, 1994; 
Snijders, 2001; Carley, 2003). For example, in a stream of research she 
refers to as “dynamic network analysis,” Carley (2003) defines a subclass 
of ABMs that have multiple agents who dynamically form a network that 
evolves as the agents themselves learn and adapt. Agents take action on the 
basis of what they know, whom they know, and their own internal cogni-
tive architecture, possible actions, and other factors. These models have 
been used to explore information diffusion, the impact of new technology, 
the evolution of networks, and the impact of interventions (e.g., to analyze 
the relative impact of different courses of action on terrorist groups). Key 
features are that there can easily be thousands of actors, with the exact 
number of actors limited only by storage space on the computer. The 
cognitive/communicative complexity of the model is limited by available 
computational capacity and processing time.

Relevance, Limitations, and Future Directions 

Social network models and dynamic network analysis models can be 
used to identify key actors or groups. They are useful in understanding 
terrorist networks and in analyzing the criticality of nodes in those net-
works. They are also useful in locating individuals: As mentioned, Saddam 
Hussein was located through an SNA of his contacts. Dynamic network 
analysis models can also be used to illustrate how the isolation of particular 
actors or groups will disrupt the flow of information or goods and services 
in both the short and long term dynamically. They can be used to show how 
groups or networks are likely to evolve under different conditions, techno-
logical environments, etc. For example, the Construct model (a combined 
dynamic network and ABM) was used to contrast the effect of removing 
the top leader of al-Qaeda (bin Laden) and of Hamas (then Yassin) (Carley, 
2004) and suggested that, for Hamas, performance would improve tem-
porarily and the next leader would be Rantissi; in contrast, for al-Qaeda, 
performance would decrease and the next leader was indeterminate. In 
addition, they can be used to examine the impact of changes in recruit-
ment on organizational performance, the effects of policing policies on civil 
unrest, the effect of technology and information sharing on organizational 
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performance, the effect of detection technologies on information flow, etc. 
Dynamic network analysis models can also be used to create dynamic war-
gaming scenarios by predicting the effects of courses of action on enemy 
and noncombatant behavior. 

Early work in social network modeling was mostly based on a branch 
of discrete mathematics known as graph theory. As a result, the models 
were fundamentally deterministic in character. These deterministic models 
do not lend themselves to prediction of populations (in which there tends to 
be a probabilistic distribution of behaviors and outcomes) nor of complex 
systems (see System Dynamics, Chapter 4). In these models, probabilistic 
thinking came into play only in relating deterministic variables to each 
other statistically. More recently, however, the field has begun to incor-
porate stochastic thinking at a more fundamental level. For example, the 
exponential random graph models (also known as P* models) seek to model 
networks in terms of their latent tendencies to form micro structures, such 
as transitive triples or starlike subgraphs (called “motifs” in the physics 
literature) (Milo et al., 2002). By estimating a parameter for each kind 
of micro subgraph, the models can achieve a parsimonious description of 
the network in terms of a string of estimated parameter values, together 
with standard errors. This begins to make it possible to compare networks 
statistically with each other or with theory. 

Stochastic models also facilitate comparison of networks over time and 
indeed enable the estimation of rates of change in model parameters. In the 
long term, this line of work promises to yield continuous time models of 
network evolution, as opposed to current approaches to longitudinal analy-
sis, which are limited to comparing snapshots of the network at discrete 
intervals in time.

Similarly, most network models that are based on graph theory (and 
most are) are designed for binary data (i.e., a tie exists or it doesn’t). Vali-
dation of and extension of the metrics for nonbinary data is an ongoing 
research area that will eventually enable the capture of a wider range of 
social phenomena.

Finally, most standard social network tools available on the web, in 
practice, are limited in their ability to handle more than 100,000 nodes with 
the exception of ORA (Carley et al., 2007). Visualization routines in gen-
eral tend to be underdeveloped and work best with small datasets; however, 
for most military users, the goal is not to be able to visualize millions of 
nodes, but to have good preprocessing systems that subselect just the small 
portion of the network to view. From a military standpoint, many of the 
existing tools, because they are oriented around metrics, are too complex 
for the average soldier to use and contain little guidance on when to use 
which metric. Finally, much military data are multimode and multilink, and 
as a result they are cumbersome to process with most social network tools, 
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with the exception of ORA. Rarely in military applications is it the case that 
the social network exists separate from, and needs to be assessed separately 
from, other types of networks, such as the activity network.

All this being said, of the modeling tools described in this chapter, 
network models have had, to date, the biggest impact on military decision 
making. In particular, dynamic network tools that take into account the 
meta-matrix or that link to ABMs have been used to identify vulnerabili-
ties in insurgent and terror networks, characterize political elites and track 
changes, identify local opinion leaders, and assess changes in beliefs and 
social influence. The most promising future directions involve linking these 
network approaches to other approaches, such as strategic reasoning à la 
game theory, or forecasting via ABMs, or geospatial identification by com-
bining networks and map-based techniques. For example, placing network 
analysis in decision contexts enables reasoning about organizational change 
(Butts and Carley, 2006), while combining networks with spatial reasoning 
is facilitating analysis of the movement of terror groups to new locations of 
activity (Moon and Carley, 2007).

Link Analysis

Link analysis or link mining is related to SNA but has emerged as a 
distinct field centered on discovering patterns by looking at the relations 
among entities (see Getoor and Diehl, 2005, for a survey). Much of the 
work focuses on anomaly detection and link identification.

What Is Link Analysis?

Link analysis has emerged largely from computer science and forensics, 
with particular attention to work in machine learning. Historically, the 
term “link analysis” was used, particularly in the law enforcement area, to 
refer to approaches that let the analyst display and reason about the links 
between multiple types of nodes.

Modern link analysis is a new subfield largely centered in computer sci-
ence and statistics. Researchers and analysts in this area use computational 
techniques to locate patterns and subgroups based on a given set of infor-
mation about paths, in which a path consists of a series of links that may 
connect nodes of different types, such as Joe + hamburgers + McDonald’s. 
Extraction of links often requires massive data preprocessing or restruc-
turing of databases (Goldberg and Wong, 1998). Given a set of paths, 
advanced data-processing techniques are combined with machine learning 
to enable rapid database transformation and pattern extraction. Key ques-
tions often addressed are what paths are anomalies and what patterns can 
be inferred. Thus, much of the work in this area has focused on the iden-
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tification and recognition of patterns, data mining, and node identification 
and deidentification. Inferred patterns are then used to infer the “cause” of 
the pattern or to make predictions about future links.

The main feature that distinguishes “social networks” from “link 
analysis” in general and from “link prediction” in particular is the richness 
of the phenomena that are being explored and modeled. In social networks, 
the focus is often on producing qualitative and quantitative assessment 
about various items, such as leadership or influence or performance, test-
ing, and estimation, whereas in link analysis the focus is on predicting 
quantities, such as the number of nurses who work at the hospital and 
give blood. Therefore, in social networks, the goal is to produce realistic 
models based on believed and theoretically grounded assumptions, a good 
descriptive model is looked for, and the researcher worries about how to 
do inferences. Parameter values encode semantics of interest in a specific 
application, and the research asks what the estimated values are and how 
much can one believe such estimates. It is only at the last stage that the social 
network theorist worries about predictions. Good description is thought to 
yield good prediction. 

In contrast, in link analysis, the richness of a model is often sacrificed to 
statistical or computational efficiency. The prediction task, not necessarily 
the link prediction task, is the key focus. Accurate predictions and a quick 
black box that produces them are often viewed favorably in the literature. 
The analysis and comparison of various link analysis approaches are typi-
cally weak; that is, little is done to compare the methods other than to com-
pare speed. Furthermore, it is hard to make a case about why one should 
believe the guesses they produce other than on statistical grounds. In a sense 
there is no science that backs such predictions up, no theory for why these 
anomalies exist. Breiman (2001) discusses the differences between statistical 
and data mining approaches to analysis. These same differences apply to 
networks science (statistical) and link analysis (data mining). 

State of the Art 

Link analysis tools result in a mathematical representation of the rela-
tion of different entities to each other vis-à-vis some problem. This math-
ematical representation or “model” of the underlying social behavior is 
discovered from the data and can then be utilized in other types of models, 
such as multiagent systems, to characterize a type of behavior.

In modern link analysis, there are three fundamental concepts and two 
more general related concepts. First, there is the notion of similarity or 
distance among nodes. This distance is typically used to infer connectivity 
under the assumption that nodes that are similar or close will connect with 
other nodes in a similar fashion. Such a notion can derive from a formal 
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(probabilistic) model or from other theoretical concerns and so is more 
deterministic. Link analysis algorithms can generally be categorized by their 
approach to similarity, or distance, and can be further divided by whether 
that distance is model based or algorithm based, and whether that distance 
is explicit or implicit. 

The second core concept is that of groups or clusters of elements of a 
network (typically of nodes) and the way both single elements and groups 
of them interact with one another. The idea of groups is central to most 
other link analysis papers. The third key concept is the link function, which 
translates similarity into the presence, absence, or weight of a link. Key 
differences in link analysis algorithms are often expressed in terms of dif-
ferences in the link function. Less central ideas include types of nodes and 
links and, of course, time. 

In modern link analysis the analysis is done on the data itself, rather 
than on the network that has been inferred from the data. This avoids 
errors from the inference itself and from the relationship model that is 
being fitted. In addition, by assuming conditional independence of links, 
link analysts can leverage general statistical machinery. This provides an 
elegant way to deal with missing data—any data one has are just a tiny 
snapshot of a rich distribution. Link analysis also deals easily with “rich 
links,” like multiparty links or multiple links between the same entities. In 
contrast, many of the social network tools have been developed with the 
“one dyad, one link” approach.

In link analyses, the paths typically include nodes of multiple types, 
such as people and events and resources. In contrast, in a typical social net-
work, the nodes are generally all of the same type or at most of two types. 
Each of the paths in link analysis is a single observation, hence temporal 
information on when a path occurred is available. In link analysis, no effort 
is made to take the paths and form the implicit networks. No assumptions 
are made about the completeness of the underlying network. In contrast, 
the social network modeler starts with a network and typically does not 
preserve path information, in the sense of information about observed tem-
poral trajectories. Furthermore, social networks assume that the links are 
not independent events, whereas much of the work in link analysis assumes 
that each instance of a link is an independent event but subject to parameters 
that can be deduced. Finally, link analysis as a theory of anomaly detection 
is agnostic about the types of links and nodes that form the paths, whereas 
social network modeling has historically focused on networks in which the 
nodes are information-processing entities, such as people, organizations, or 
groups, and the links are the various factors by which they are connected, 
such as friendship, mentoring, financial transactions, or marriage.

There are a growing number of link analysis tools, many of which are 
available on the web. Illustrative tools include GDA (Kubica et al., 2002; 
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Kubica, Moore, and Schneider, 2003), PROXIMITY (Jensen and Neville, 
2002), and PRMs (an extension of Bayesian Nets) ������������������� (Getoor, Friedman, 
Koller, and Taskar, 2001, 2002; Taskar, Abbeel, and Koller, 2002; Taskar, 
Wong, and Koller, 2003)���������������������������������������������������         . Common tools exist for doing a variety of tasks, 
including extracting of links from databases (Goldberg and Senator, 1998) 
and texts (Lee, 1998) and analysis of the extracted links (Chen and Lynch, 
1992; Hauck, Atabakhsh, Ongvasith, Gupta, and Chen, 2002).

Relevance, Limitations, and Future Directions

Link analysis has widespread military applications in the creation of 
actionable intelligence from large diverse data sources and in the develop-
ment of network models—such as terrorist network models—from partial 
and incomplete transaction data. Modern link analysis has focused on 
anomaly detection in large datasets.

For many of the techniques that rely on machine learning, a key issue 
is having sufficient data with appropriate distributions so that the model 
can be “trained.” In general, link analysis tools require a large quantity of 
labeled data that have been preextracted. A second key limitation of this 
approach is that many of the tools assume that the data exist in a file or 
database and cannot handle streaming data as they arrive or data that are 
“out of order” in terms of the entity classes. Third, many of the current 
nonproprietary methods do not scale well, greatly reducing the size of the 
datasets that can be handled. A fourth related limitation is that the models 
that are discovered when using a link analytic approach inherently assume 
that “tomorrow is like today.” Hence using these models to predict future 
behavior may be limiting. Fifth, to be useful, these models need to be 
expanded to handle streaming data. This is work in progress and Bayesian 
updating rules are being developed for an increasing number of models. 
A final limitation of link analysis is that the models that result, although 
fitting strong mathematically based theory, may not be reasonable from a 
social or behavioral perspective. For example, knowledge discovery rou-
tines for finding groups will find groups that meet some predefined statisti-
cal requirement; however, these groups may not match the definition of a 
group in empirically grounded social theory or even the everyday sense of 
what constitutes a group.

While link analysis is generally useful for locating patterns and discern-
ing structure, it is very limited in its ability to analyze downstream effects. 
For example, using link analysis to answer such questions as who has the 
most connections (degree centrality) can be done in only the most rudi-
mentary way when links are viewed as independent. Consider the question, 
“Is Mustafa important because of the number of communications that go 
through him, or because his communications are the only ones connect-
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ing different sectors of a terrorist group?” Using SNA, this question can 
be addressed directly and easily with existing and well-validated metrics. 
When a link analysis approach is taken, in which links are viewed one at a 
time and treated as independent, a special-purpose and extremely complex 
model would need to be constructed.

In principle, link analytic tools can be used to locate and construct 
the networks, and then social network or dynamic network metrics can be 
applied for predictive purposes. This is a promising direction for creating 
actionable intelligence. However, current link analytic models always use 
customized representations of the underlying network, making it difficult 
to transfer their results to other tools designed for prediction. A general-
ized standard for representing the underlying network is needed. Advances 
in this direction include graphml and dynetml (Tsvetovat, Reminga, and 
Carley, 2004), which are XML languages for dealing with network data; 
however, both of these are insufficient to meet the needs for which link 
analysis results are used.

An important issue for network modeling is the robustness of the 
models in the face of errors in the data. This is particularly an issue for 
hidden or stigmatized populations (e.g., criminals, terrorists) and for illicit 
or private relations (covert operations, political influence, etc.). To date, 
very little work has been done to assess the robustness of different network 
models in the face of different kinds of errors in the data, such as missing 
ties, missing nodes, gratuitous ties, and gratuitous nodes (as when a person 
who uses two different names is mistakenly entered as two different nodes). 
Similarly, few network models provide standard errors or confidence inter-
vals for their outputs. Thus, it is simply unknown how much error in the 
data can be tolerated or whether a network model of flawed data does more 
harm than good.

Another increasingly important issue for network modeling is the 
bounding of empirical networks—that is, determining which nodes to 
include and which ones to exclude. Part of the conceptual base of network 
modeling is the interdependence of nodes. This creates a problem for artifi-
cially bounding the networks that one wishes to model. One can arbitrarily 
choose to model the members of an organization or the residents of a vil-
lage, but this does not stop the nodes from having ties with people outside 
the sample frame. To the extent that these unobserved ties affect what 
happens to the nodes, the models will fail to predict outcomes of interest. 
This problem cannot be eliminated, but it can be ameliorated by including 
larger chunks of the human network in the analysis, particularly chunks 
that correspond to natural boundaries. For example, if the computational 
and data collection issues can be overcome, modeling an entire village or 
other geopolitical unit is clearly preferable to arbitrarily modeling half of 
the village because of practical limitations. What is needed is investigation 
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into the consequences of the different ways of bounding networks and into 
alternative ways of framing research issues to get around the boundary 
specification problem.

A major area for future research is the study of models and algorithms 
to recover and/or discover link connectivity patterns, rather than node con-
nectivity patterns (in the sense of Milo et al., 2002). This has potential for 
application, for example, to network privacy (reidentification, deidentifica-
tion), to subgraph matching, and to motif discovery. Of primary impor-
tance for real-world applications is the development of fast approximation 
algorithms that replicate the solution of successful algorithms for solving 
various problems, thus addressing the scalability issue that typically bur-
dens algorithms that involve counting links in various ways. Another area 
that requires investigation is how to connect models of static and dynamic 
networks to observations and measurements. This is a general issue for all 
modeling techniques, and its implication for the broader impact of research 
is far-reaching and would include as a subtopic the integration of informa-
tion from multiple sources, à la metamatrix, to support the discovery of 
interesting patterns. 

In addition, any simultaneous advances in automated data collection 
and computational algorithms for very large networks would significantly 
improve the usefulness of link analysis for the problems at hand. It is already 
possible to construct communication networks based on telephone logs, 
e-mails, etc. However, the degree to which one can infer different kinds of 
social relations—such as trust, kinship, aid, conflict, etc.—from these data 
is still unknown, nor are alternative data currently available. Much of social 
network research has been based on survey research methodology, which is 
not applicable in the case of unwilling actors, such as enemies.

Agent-Based Modeling of Social Systems

The social and organizational sciences seek to understand not only how 
individuals behave but also how interactions among individuals generate 
macro-level outcomes. Understanding a social system requires more than 
understanding the individuals in it. It also requires understanding how 
the individuals interact with each other and how the results can be more 
than the sum of the parts. Agent-based modeling is well suited for this 
objective.�

� Several research communities are currently exploring methodological approaches closely 
related to agent-based modeling under a variety of other names. Examples include multiagent-
based systems, agent-based computational economics, agent-based social simulation, multi
agent systems, and individual-based modeling. A sample of introductory readings from these 
various research communities can be accessed online at http://www.econ.iastate.edu/tesfatsi/
aintro.htm. 
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What Is Agent-Based Modeling?

Agent-based modeling is the computational study of systems that are 
complex in the following sense: (1) the systems are composed of multiple 
interacting entities and (2) the systems exhibit emergent properties—that is, 
properties arising from entity interactions that cannot be deduced simply by 
averaging or summing the properties of the entities themselves.

What distinguishes agent-based modeling from general complex sys-
tems modeling, however, is the form of the entities that make up the system. 
A system can be complex even if its constituent entities are homogeneous 
units, such as CO2 molecules. In contrast, the constituent entities of an 
ABM are heterogeneous “agents” with internal states that can vary over 
time in response to internal deliberations as well as external forces, thus 
admitting the exploration of systems of heterogeneous agents with a range 
of social and learning capabilities.

More precisely, the agents in an ABM can represent people (e.g., con-
sumers, sellers, voters). They can also represent social groupings (e.g., 
families, firms, communities, government agencies, nations), biological enti-
ties (e.g., livestock, crops, forests), and even physical systems (e.g., weather, 
geography, transmission grids). When the interaction network formed by 
agents is contingent on past experience, and especially when the behaviors 
of agents in this interaction network continually adapt to past experiences, 
standard mathematical and statistical tools typically have only limited abil-
ity to derive the dynamic consequences. In this case, agent-based modeling 
might be the only practical method of analysis.

Agent-based modeling is a general-purpose technology. On one hand, 
the only constraints are the modeler’s purpose, imagination, and ability to 
encode. A modeler is free to make assumptions believed to be most relevant 
and realistic for an issue of interest. On the other hand, the realism of the 
resulting model will depend strongly on the extent to which the modeler’s 
assumptions are driven by data. In general, the more tightly a model has 
been constrained by real-world data, the smaller the space of possible 
outcomes.

As detailed by Axelrod (1997, pp. 206–221), simulation in general, 
and agent-based modeling in particular, is a third way of doing science 
in addition to deduction and induction. Scientists use deduction to derive 
theorems from assumptions and induction to find patterns in empirical 
data. Simulation, like deduction, starts with a rigorously specified set of 
assumptions regarding an actual or proposed system of interest, but, unlike 
deduction, simulation does not prove theorems with generality. Instead, 
simulation generates data suitable for analysis by induction. In contrast 
to typical induction, however, the simulated data come from controlled 
experiments rather than from direct measurements of the real world. Con-
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sequently, simulation differs from standard deduction and induction in both 
its implementation and its goals. Simulation permits increased understand-
ing of systems through controlled computational experiments. In particular, 
agent-based modeling can be used to investigate how macro-level effects 
and social behaviors arise from the micro processes of interactions among 
many agents. 

A general phenomenon exhibited by ABMs is large events. The logic 
of the central limit theorem states that the sum of a collection of random 
events produces a bell curve. In such cases, deviations from the mean, large 
or small, are rare. In ABMs, random effects can accumulate. These accumu-
lations can be more than additive or even multiplicative. The result can be 
huge cascades: forest fires, riots, stock market crashes, epidemics, and even 
the collapse of governments. Moreover, ABMs can be used to estimate the 
probability of such extreme events (Gladwell, 2000).

In summary, agent-based modeling applied to social, cultural, and orga-
nizational processes uses concepts and tools from social science and com-
puter science. It represents a methodological approach that could ultimately 
permit three important developments: (1) the rigorous testing, refinement, 
and extension of existing theories that have proved to be difficult to for-
mulate and evaluate using standard mathematical and statistical tools; (2) a 
deeper, more integrated understanding of fundamental causal mechanisms 
in multiagent systems, whose study is currently hampered by artificial dis-
ciplinary boundaries; and (3) a tool for exploration and evaluation of the 
potential impact of course of action and policy alternatives.

State of the Art 

The goals pursued by ABM researchers take six general forms: empiri-
cal description, empirical prediction, normative analysis, behavioral under-
standing, heuristic understanding, and methodological advancement.

Researchers pursuing empirical description ask: Why have particular 
macro-level structures and social behaviors evolved and persisted, even 
when there is little top-down control? Examples include trade networks, 
socially accepted monies, mutual cooperation based on reciprocity, and 
social norms. Agent-based modelers seek causal explanations grounded in 
the repeated interactions of agents operating in specified environments. In 
particular, they ask whether particular types of observed macro-level regu-
larities can be reliably generated from particular types of ABMs.

ABM researchers interested in empirical prediction ask: If this history 
of events were to take place, what would be the likely future consequences? 
These types of questions can be pursued in the context of ABM frameworks 
in which the modeler builds in scenarios of interest, introduces agents with 
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realistic degrees of adaptability, and then tests to see how the agents react 
over time as the scenarios unfold.

A third goal is normative analysis: How can ABMs be used as laborato-
ries for the discovery of good rules of operation? ABM researchers pursuing 
this objective are interested in evaluating whether policies and institutional 
arrangements proposed for various types of social systems result in desir-
able system performance over time. Examples include the design of auction 
systems, voting rules, and law enforcement practices.

A fourth goal is the understanding of diverse behaviors. The perfor-
mance of markets, democracies, and even traffic laws varies around the 
globe. We chalk up these differences to cultural or behavioral differences, 
but we lack a calculus of culture. We do not know whether or not slight 
variations in behavioral rules will result over time in widely divergent out-
comes. ABM can help to illuminate the accumulation of effects from diverse 
behavioral rules and the extent to which slight variations in behavioral rules 
have substantial effects.

This goal overlaps with both the empirical goal of prediction and the 
normative goal of good operational design, yet it is distinct from each. 
It necessitates a fundamental shift in how one looks at social systems. 
Standard models typically focus on the means of variables—the average 
expected outcomes. Yet often in agent-based modeling, the tail of the dis-
tribution wags the dog, so to speak. For example, to predict the likelihood 
of a riot, what matters most is not the average level of civil unrest among 
a population but the percentage of people enraged enough to trigger a riot 
through disruptive behavior that others will then mimic.

A fifth goal is heuristic understanding: How can greater insight be 
attained about the fundamental causal mechanisms in social systems? Even 
if the assumptions used to model a social system are simple, the con-
sequences can be far from obvious if the system is composed of many 
interacting agents. The macro-level effects of interacting agents are often 
surprising because it can be hard to anticipate the full consequences of 
even simple forms of interaction. For example, one of the earliest and 
most elegant ABMs—the city segregation (or “tipping”) model developed 
by Nobel laureate Thomas Schelling (1978, pp. 147–155)—demonstrates 
how residential segregation can emerge from individual choices even when 
everyone is fairly tolerant.

A sixth goal is methodological advancement: How best can ABM 
researchers be provided with the methods and tools they need to under-
take the rigorous study of social systems through controlled computational 
experiments? How best can they examine the compatibility of experi-
mentally generated theories with real-world data? ABM researchers are 
exploring a variety of ways to address these issues, ranging from careful 
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consideration of methodological principles to the practical development of 
programming, visualization, and validation tools.

Perhaps the most provocative consequence of these methodological 
advancements is in the area of nonequilibrium science. Much of existing 
social science research, particularly research relating to organizations and 
institutions, is predicated on an assumption that systems are in equilib-
rium. This allows one to compare modeled systems by the equilibria they 
implement. In contrast, the real world routinely exhibits a wide variety of 
nonequilibrium phenomena, such as abrupt transitions, crashes, and path 
dependencies. Agent-based modeling permits researchers to study out-of-
equilibrium behaviors, hence it should ultimately help them to understand, 
evaluate, and characterize these phenomena (Arthur, 2006; Page, 2008). 

ABM Structural Properties

ABMs can be structurally specified in widely diverse ways. Five dis-
tinguishing structural properties of particular interest are as follows: the 
number of agents, the basic manner in which agents are represented, the 
cognitive sophistication of the agents, the social sophistication of the agents, 
and whether or not the agents are situated in a relational or spatial grid. 

Table 6-2 illustrates how these five structural properties differ across 
four classes of models currently used by ABM researchers: cognitive ABMs; 
dynamic network ABMs; cellular automaton ABMs; and rule-based ABMs. 

The table must be interpreted with some care. One caveat is that, 
in each model class, the actual level of realism depends on the degree to 
which agent attributes are based on actual data and the degree to which 
agent behavioral rules faithfully represent real-world processes. Another 
caveat is that, in principle, ABMs are ubiquitously applicable to problems 
that involve two or more agents whose behavior depends, at least in part, 

TABLE 6-2  Structural Differences Commonly Exhibited by Agent-Based 
Models

Model
Number of 
Agents

Agent 
Representation 

Cognitive 
Sophistication

Social 
Sophistication

Grid 
Based

Cognitive Few Rules High Low No

Dynamic-
network

Many Equations + 
rules

Moderate High No

Cellular 
automata

Few to many Equations or 
rules

Low Low Yes

Rule-based Few to many Rules Low Low Often
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on each other. Thus, differences commonly exhibited in current use do not 
necessarily reflect fundamental differences in capabilities. For example, the 
fact that cognitive ABMs currently tend to comprise relatively few highly 
sophisticated cognitive agents is due to processing power limitations and 
not to modeling or coding limitations per se.

We now consider the ABM structural properties in greater depth.

Number of Agents and Cognitive Sophistication

As a general rule, the cognitive sophistication of the agents in an ABM 
is inversely proportional to the number of agents. On one hand, a model 
could comprise from 2 to 10 very cognitively sophisticated agents doing very 
in-depth knowledge-intensive tasks. In such a model, interactions among 
agents would typically be prescribed by protocols for interaction and by 
hierarchical precedents regarding who does what. Such models are more 
common in computer science and engineering; illustrative models are those 
involving BRAHMS, Soar, ACT-R, or Neural Networks (see Chapter 5). 
Models of this type are valuable for studying aspects of small team behavior, 
including modeling small adversarial teams. However, they are generally not 
appropriate for more societal or cultural issues, such as state failure, crowd 
control, or adaptation in terrorist networks. 

On the other hand, an ABM could comprise tens of thousands or mil-
lions of cognitively simplistic agents doing relatively simple tasks. In this 
case, interactions among agents would be the result of the agents meeting 
and greeting each other, trying to occupy the same space, or exchanging or 
consuming resources. Such models are more common in biology, physics, 
and the social and organizational sciences; illustrative models are those 
involving SWARM, REPAST, or MASON. Such models are often used to 
examine whether the complexity of real-world social processes can arise 
from agent interactions rather than from the complexity of individual 
agents. Models of this type are valuable for academic research, suggesting 
possible scenarios, providing very high-level guidance, and studying migra-
tion and crowd control. 

Mid-range models often are comprised of 10 to 10,000 agents with 
moderately sophisticated learning capabilities. Such models are often written 
directly in high-level languages like C++ for reasons of processing speed. In 
this case, interactions among agents are the result of deliberate decision-
making and learning processes that are strongly informed by empirical data. 
Agent behavior can be quite detailed, such as a detailed mapping of activi-
ties taken in a day and the influence of a bioattack on those activities. Such 
models are increasingly used in such application areas as epidemiology, 
state failure assessment, crowd control, organizational design, adversarial 
modeling, and counterterrorism. Models of this type, particularly when 
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they are strongly tied to data and employ socially sophisticated agents, can 
provide actionable intelligence in the areas listed. 

Social Sophistication

As a general rule, the social sophistication of an ABM varies with 
the number of agents, with the level of sophistication being highest for 
mid-size populations and lowest for models with only a few agents or 
with millions of agents. Realistic social behavior requires a certain level of 
cognitive sophistication (Carley and Newell, 1994). However, many social 
issues do not emerge as relevant until intermediate-sized social groupings 
are considered. 

Typically, models with either a few agents or with millions of agents 
impose assumptions that limit the use of such models for examining social 
issues. For example, in ABMs with only a few cognitively sophisticated 
agents, social factors are typically either ignored or prescribed in terms 
of a communication and command hierarchy, implying that the structure 
governing social behavior is time invariant. For example, in models com-
prising millions of cognitively simplistic agents, real social networks are 
typically not modeled. Instead, agents are differentiated using from two to 
five sociodemographic dimensions and “network” links are characterized 
by nearness in a grid. As such, these models are insufficient for modeling 
terrorist networks. This high level of simplification means that such models 
rarely generate actionable intelligence.� 

Agents in Grids

In many models, particularly those comprising large numbers of cog-
nitively simplistic agents, the agents are generally constrained to interact 
within some form of grid structure. There are two main ways in which 
agents are laid out in grids: relational and spatial. In a relational approach, 
each grid cell represents an agent, and the attributes and actions of this 
agent are determined in part by the attributes and actions of agents in 
nearby cells. In contrast, in a spatial approach, each grid cell is a location 
that agents move through (right-left, up-down). Agents consume or leave 
resources in the cells they occupy, and they interact with the agents they 
meet in the same or neighboring cells.

The classic example of an ABM using a grid is John Conway’s Game 
of Life (see Gardner, 1970). Today, many grid-based ABMs are barely more 

� See http://www.econ.iastate.edu/tesfatsi/anetwork for annotated pointers to ABM research 
on the formation and evolution of social networks.
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complex than the original Game of Life, although modern systems use a 
doughnut-shaped grid (torus) rather than a rectangular grid to avoid edge 
effects. Grid-based modeling facilitates rapid model development and is 
supported by agent-based modeling toolkits such as SWARM, REPAST, 
and Netlogo. However, it is not adequate to support the realistic modeling 
of four-dimensional social behavior (in space and time) or to capture social 
network effects in any great depth.

In particular, then, ABM frameworks with grid layouts are currently of 
limited utility for modeling military situations requiring high levels of real-
ism. Space-time action sequences and sophisticated social network effects 
are important factors that need to be carefully accounted for in a variety of 
military models. For example, they are needed if one is to build a model of 
adversarial behavior in an urban setting in which an adversary can move 
from subways to rooftops and can receive shelter from friends.

ABM and Learning

In ABMs, the agents learn. A major issue is how to model the minds of 
the cognitive agents who populate ABM frameworks.� Should these minds 
be viewed as logic machines for planning and reasoning with appended data 
filing cabinets, the traditional artificial intelligence view (Franklin, 1995), 
or should these minds be viewed as controllers for embodied activity in 
keeping with the artificial life view (Clark, 1997)?

On one hand, as with any simulation system, if the purpose of an ABM 
framework is to determine an optimal design for a fully automated process, 
there is no particular reason why agent cognition should mimic that of real 
people. Indeed, this could be positively detrimental to good process perfor-
mance. On the other hand, if the purpose is to replicate and forecast human 
social behavior, then mimicry of real human behavior might be essential to 
ensure predictive content.

As detailed in Brenner (2006), ABM researchers are increasingly mov-
ing away from the unconsidered adoption of off-the-shelf machine learning 
representations, such as conventionally specified genetic algorithms and 
reinforcement learning algorithms. Some ABM researchers are systemati-
cally investigating the performance of alternative learning representations 
in various multiagent decision contexts. Others are attempting to calibrate 
their learning representations to empirical decision-making data and human 
subject experimental data.

� See http://www.econ.iastate.edu/tesfatsi/aemind.htm for annotated pointers to ABM research 
on agent learning representation.
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ABM and Social Networks

Social networks comprise one of the more active research areas in 
agent-based modeling.� One critical issue is the manner in which social 
networks are determined through deliberative choice of partners as well as 
by chance and necessity. For example, in economics a key concern has been 
the emergence of trade networks among collections of buyers and sellers 
who determine their trade partners adaptively, on the basis of past experi-
ences with these partners (Tesfatsion, 1997).

A second critical issue concerns the management of a social network for 
a common (team) goal when participant agents have different motivations 
for when and how to interact. An example would be the optimal organiza-
tion of a corporate enterprise comprising multiple divisions.

A third critical issue concerns the disruption of harmful social net-
works. For example, research on terrorist networks suggests that they are 
difficult to destabilize when they have a cellular organization, with partici-
pant agents in communication only on a need-to-know or similarity basis.

For each of these issues, it is important to consider the extent to which 
social networks affect the ability to predict social and cultural outcomes 
with accuracy based on observable structural conditions and institutional 
arrangements. More precisely, to what extent and with what fidelity does a 
modeler need to capture social network effects together with structural and 
institutional effects in order to achieve satisfactory predictive power?

For illustration, consider the case of markets. Some types of markets 
can be expected to display only weak social interaction effects, for example, 
pool-based wholesale electric power markets under the strong control of 
a system operator. In this case, the structural aspects of the market (e.g., 
numbers of buyers and sellers, costs, capacities) and the institutional aspects 
of the market (e.g., the legal contractual arrangements governing market 
participation) will presumably be the primary determinants of market out-
comes. Other types of markets can be expected to display strong social 
interaction effects. This is true for labor markets, in which work contracts 
are highly incomplete and outcomes are strongly dependent on work site 
interactions between workers and employers. For such a market, given any 
single structural and institutional starting point, there will presumably be a 
wide variety of possible outcomes based partly on random social interaction 
effects.

As another example, consider modeling of state failure. A model that 
examines only the social network among the various stakeholders will 
not be able to predict state failure with accuracy, nor will a model that 

� See http://www.econ.iastate.edu/tesfatsi/anetwork.htm for annotated pointers to ABM 
research on interaction networks. See, also, the volume of readings edited by Breiger et al. 
(National Research Council, 2003) and the surveys by Vriend (2006) and Wilhite (2006).
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examines only the resources or actions available to the different participant 
actors. However, by combining these considerations into a single model in 
which agents are encouraged or discouraged from taking actions by those 
to whom they are linked, state failure can be better predicted.

In summary, applications that require the generation of actionable intel-
ligence in social situations will generally require careful consideration of 
social network effects along with structural and institutional effects.

ABM Development Issues

A computational laboratory (CL) is a framework that permits the study 
of complex systems by means of controlled, replicable, computational 
experiments using an integrated array of specialized software tools.� In par-
ticular, CLs providing a variety of agent-based tools facilitate the integrated 
development of ABMs.

A number of critical issues arise regarding the development of CLs 
for ABM applications. For example, should a separate CL be constructed 
for each application, or should researchers strive for general multifaceted 
platforms? How can experimental findings be effectively communicated to 
other researchers by means of descriptive statistics and graphical visualiza-
tions without information overload? How might these findings be verified 
and validated by comparisons with output and data obtained from other 
sources? How might they tell researchers to look at existing data in different, 
more dynamic ways? A particularly important unresolved issue is the need 
to ensure that findings from CL experiments reflect fundamental aspects 
of a considered problem and not simply the peculiarities of the particular 
hardware or software platform used to implement the experiments.

CLs clearly ease the entry barrier for researchers wishing to use ABM 
in various problem applications. However, it is important to keep in mind 
that the use of such integrated development environments permits even 
novice simulators to build seemingly powerful ABMs in the course of a few 
months. As a result, we are now seeing thousands of small systems being 
built by individuals or small teams with little or no training in simulation, 
and the models are being used to inform critical decision making and 
policy. In the absence of any accepted criteria for validation (see discussion 
below and in Chapter 8), it is impossible to judge whether these models are 
adequate for their intended purposes.

On the positive side, the use of ABMs enables the analyst to systemati-
cally consider the interaction among more factors and so base decisions on 

� See http://www.econ.iastate.edu/tesfatsi/acomplab.htm for annotated pointers to ABM 
research on CLs. See also Dibble (2006) for a detailed discussion of CL use for spatial agent-
based modeling. 
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a more thorough analysis. On the negative side, the development of ABMs 
by those not trained in simulation means that the results of the models are 
often misinterpreted and classic mistakes are often made, which cause the 
results from the models to reflect incorrect simulation practices rather than 
interactions among the modeled factors.

In summary, great care must be taken in the development of ABM 
frameworks. Although CLs permit rapid individual development of 
ABM frameworks, detailed, sophisticated ABM frameworks that produce 
actionable results often need to be developed by a team working collec-
tively for three to five years. It makes sense to use separate teams for data 
gathering, validation, and usability testing, as each of these areas requires 
different types of scientific skills. In addition, the team building the model 
often needs to employ many of the same techniques for development that 
are used in system engineering.

Relevance, Limitations, and Future Directions 

Military operations intrinsically involve military engagements with 
rival forces, and forces intrinsically involve equipment and human partici-
pants in dynamic motion over geographic terrains. Stated more abstractly, 
military operations are complex dynamic processes involving multiple, 
heterogeneous, strategically interacting agents operating through time over 
spatial landscapes.

Framed in this way, the modeling of military operations is seen to 
be precisely the type of modeling challenge that agent-based modeling is 
designed to address. What, specifically, are its key advantages for military 
applications?

First and foremost, agent-based modeling provides flexibility. Agents 
can be modeled as autonomously driven entities operating on their own 
time scales in fulfillment of individual or group goals. Their methods of 
operation can be constrained by idiosyncratic personal and cultural con-
siderations. They can be equipped with social communication capabilities 
permitting adaptive information acquisition and transmission. They can 
survive or not depending on their ability both to secure life-sustaining 
resources and to manage or prevent life-threatening situations.

In particular, agents in ABM virtual worlds can be designed to live in 
their world with the same degree of flexibility as their real-world counter-
parts. System behaviors emerge from the bottom up, through the decen-
tralized actions of autonomous agents situated in space and time. This 
contrasts with a command and control approach to modeling in which 
outcomes are enforced from the top down. A top-down approach requires 
that every contingency be anticipated. A bottom-up approach need not 
anticipate all contingencies, but it must have a sufficiently rich behavioral 
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repertoire at the individual level so that the system can respond to whatever 
situation arises. This is precisely the type of modeling flexibility that agent-
based modeling provides.

Also, agent-based modeling is particularly well suited for studying 
information diffusion and the evolution of norms, trust, and reputation. 
The classical game theory approach to these issues seeks to explain behavior 
on the basis of individual rationality considerations, such as explaining the 
evolution of norms in terms of anticipations of future reciprocity (Gintis, 
2000). In contrast, the ABM approach tends to place equal or greater stress 
on peer emulation, parental mimicry, and other socialization forces thought 
to underlie the transmission of culture.� 

 ABMs have been used to evaluate the likelihood that the general 
attitudes of the population would become more pro or con regarding the 
United States in the face of elections and changes in leadership. ABMs have 
also been used to forecast state failure, regime change, and the emergence 
of corruption in various nation-states (Popp et al., 2006).

In summary, the issue is not whether agent-based modeling is relevant 
for modern military operations: it clearly is. The issue is whether it has 
reached a sufficient stage of development to provide practical support for 
military operations. 

Major Limitations 

ABM frameworks as currently constructed have limitations that could 
affect their ability to meet critical military needs. This section discusses 
some of these limitations.

Degree of Realism

The value of any simulation, including any ABM simulation, is partly 
tied to the level of realism in the model. Any simulation system is a model and 
so should be less complex than the real world. However, oversimplification 
results in models so high level or so incorrect that the results can be misinter-
preted and so should not be used for policy setting or decision making. The 
rule of thumb is to make the model only as complicated as it needs to be to 
address the issue of concern and to achieve the necessary level of fidelity.

Adding more rules or equations that increase the realism of the result-
ing model should presumably increase its usefulness for decision making. 
Yet opponents often argue that the more equations or rules, the worse the 

� See http://www.econ.iastate.edu/tesfatsi/asocnorm.htm for annotated pointers to ABM 
research on the evolution of social norms. See also Young (2006) for a proposed ABM meth-
odology for studying the long-run evolution of social norms.
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model. Arguments include appeals to parsimony, Occam’s razor, under-
standability, and so on. A typical argument is that, as the model increases 
in complexity (number of variables and rules/equations), it becomes increas-
ingly likely that the model can be made to fit any possible outcome. (“Over-
fitting” is discussed further in Chapter 9.)

This argument derives from econometrics, in which, as the ratio of 
parameters to data increases, ultimately the data can be completely and per-
fectly modeled. This argument, however, is not directly applicable to ABMs. 
In them the addition of new rules and equations serves to increase the 
number of outcomes or dependent variables (data) that can be generated; 
the data are not given a priori as in econometrics. Moreover, the addition of 
empirically based rules and equations can increase the plausibility of these 
generated outcomes by reducing the possibility of implausible results.

The realism of ABMs can be increased, and their military value 
increased, as they are linked to real data. Most groups that build them 
have contrasted, at best, the results of one dependent variable with real 
data. Only a few agent-based models, such as some recently created for 
the Defense Advanced Research Projects Agency or the BioWar system, use 
massive amounts of real data to set the input specifications of the models 
and other data to validate the system. In general, this requires the linking 
of the models to database systems. The key technical challenge here is that, 
as the ontology in the database changes, the model needs to be augmented. 
There are currently no tools to facilitate such changes. A second challenge 
is that, for validation, it is important to have the model produce data in the 
same form as the real data, that is, to create a comparable database. There 
are currently no standardized tools for doing statistical comparison of data 
in two identically structured databases.

Model Trade-Offs

ABMs using cognitively sophisticated agents tend to require the use of 
knowledge engineering techniques. Such models tend to be special purpose 
and permit minimal reuse. The key value of such models is to take the place 
of human teams in war-gaming situations, equipment testing, and design 
situations and to evaluate processes that facilitate team behavior. In general, 
these models use various cognitive architectures with multiagent components 
added and so are often limited to only a small number of agents. Their 
strength is looking at detailed task-related behavior. As previously noted, 
such models tend to use predefined social interactions. This limits their use 
in war games because the ABMs do not exhibit a full range of adaptive 
interaction but model only limited task-based communications and actions.

The typical grid-based ABMs, with millions of cognitively unsophisti-
cated agents, are generally useful only for high-level explorations of gen-
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eral concepts. They are valuable for starting groups to think outside the 
box and for provoking discussions. These models are rarely sophisticated 
enough to be used as an adaptive adversary in war-gaming or for evaluating 
task-based behavior. The strength of these models is their ability to look 
at population-level trends resulting from local action. As such, they show 
promise in such areas as marketing, impact of psychological operations, 
information diffusion studies, and disease transmission studies. Rarely do 
such models generate actionable intelligence.

Now consider dynamic network ABMs tied to empirical data. Such 
models utilize agents with moderate levels of cognitive sophistication and 
high levels of social sophistication. This results in models that can be used 
for war-gaming to look at adaptive adversaries. Given current technology, 
this combination results in models that can handle more agents but that run 
more slowly. The strength of these models lies in representing and reasoning 
about fairly large-scale units, such as the army’s unit of action, cities at 20 
percent population, or terrorist networks. The added cognitive and social 
sophistication inherent in these models makes it possible to produce action-
able results. However, getting a model to the point of producing actionable 
results takes a multiperson, multiyear data collection effort on top of a 
multiyear model development effort.

Modeling of Actions

One of the key factors limiting ABMs from a military perspective is the 
modeling of actions. Currently actions can be modeled at a very high level 
(pro-con, hostile, friendly, or neutral) or at a very detailed level (fire a par-
ticular weapon). There is neither a middle ground nor a hierarchy relating 
actions at one level to another. Therefore, efforts to model actions tend to 
be either very generic or single use. A basic ontology of actions is needed 
for the state of the art to advance.

Research and Development Requirements

Several requirements can be identified for the further development of 
ABMs that could be of use in military settings. The next section discusses 
tool development, data farming, linkages of agent-based modeling to other 
modeling efforts, and the development of the human resources and exper-
tise needed to support ABM development.

Tool Development

Key advances and applicability to military modeling require agent-
based modeling and network analysis techniques to be integrated into tool 
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chains. For example, pattern discovery techniques can be used to derive 
equations from historical data that can then be used in ABMs to evolve 
future systems. ABM techniques can be used to evaluate courses of action 
and to suggest areas for further data collection. Combining these techniques 
will enable new types of problems to be solved; for example, combining 
social network metrics with pattern discovery techniques is the key to build-
ing an understanding of how networks grow and evolve.

This is not to suggest that the military should move to large integrated 
behavioral models—quite the contrary. What is needed is increased inter
operability of the tools. The development of ABM CLs and the explosion 
of network analytic tools are putting social behavioral modeling into the 
hands of the masses. Moreover, these trends are leading to the development 
of many small, single-purpose tools. This should be taken advantage of by 
encouraging interoperability (this is also discussed further in Chapter 8).

It is important to note that it would not be feasible to require all tools 
to be written in a single language or to require the use of a single frame-
work; rather, the solution needs to enable the integration of models not 
only from diverse domains but also in diverse languages. Multiple models, 
visualization tools, and the like should be available to address diverse prob-
lems, but in such a way that data (real and virtual) can be shared easily 
among the various tools.

There are a variety of things needed to support such interoperability. 
Standards for the interchange of relational data need to be developed. 
Behavioral modeling tools need to be web enabled, and XML input-output 
(IO) languages need to be developed. A uniform vocabulary for describ-
ing relational data also needs to be developed; this is particularly critical 
because the tools and metrics are coming out of at least 20 different scientific 
fields.�

For defense and intelligence applications, common platforms and data 
sharing standards need to be explored and developed so that tools written 
in the unclassified realm can be rapidly moved, without complete redesign, 
to the classified realm. Enabling interoperability and providing a platform 
and common ontologies for these tools will enable novel problems to be 
more rapidly addressed by regrouping existing models. It will also enable 
various subject matter experts to interact through the interaction of their 
models. In turn, this will enable a broader approach to problems, reduce 
the likelihood of biased solutions, and facilitate rapid development and 
deployment.

� These fields include anthropology, sociology, psychology, organization science, marketing, 
physics, electrical engineering, geology, ecology, economics, biology, bioinformatics, health 
services, forensics, artificial intelligence, robotics, computer science, mathematics, statistics, 
information systems, medicine, civil engineering, communication, and rhetoric.
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Current tools are either very data-greedy or become more valuable as 
they are linked to real data. However, there is a dearth of relevant data 
currently available in clean preprocessed form. Thus, to reduce the time 
analysts spend on data collection and to increase the time they spend on 
analysis, automated and semiautomated tools for data gathering, cleaning, 
and sharing are needed. Such tools should include natural language process-
ing tools for extracting relational data from audio and text sources, “web-
scraping” tools, automatic ontology generators, and visual interpretation 
tools to extract network data from photographs and visual images.

Appropriate subtools for node identification, entity extraction, thesau-
rus creation, and other functions are also needed. The development and 
availability of these tools in an interoperable environment are critical for 
providing masses of data that can be used for model tuning and validation. 
Moreover, these tools reduce time spent on data collection and thereby 
free the analysts’ time for analysis. More rapid data collection would also 
mean the availability of more datasets for doing meta-analyses, thereby 
enabling improvements in the theoretical foundations of the field and in 
the understanding of social behaviors. Finally, these tools are essential for 
providing the wealth of data needed by social behavioral models to make 
reasonable forecasts or to provide reasonably accurate analyses of situa-
tions and organizations.

Improved speed for many of the algorithms could be provided by 
computer architectures designed for relational data or by the use of special 
integrated circuits with embedded versions of the less scalable algorithms. 
Note this would enable a speed savings beyond that afforded by the use 
of current vector technology. Such technology would facilitate faster pro-
cessing and enable more real-time solutions, particularly for large-scale 
networks.

To reduce the “art” aspect of interpretation in this field, a living archive 
of collected network data is needed, replete with information on metrics 
for the nodes in each dataset. Such an archive could be used to set context 
information. For example, such information could be used to evaluate 
whether the density of particular networks is exceptionally high or low 
or to identify exceptional values of connectedness of individuals. Such an 
archive would facilitate meta-analysis and comparative analysis. This is 
critical for improving the theoretical foundations of the field as well as for 
the understanding of social behavior.

Forecasting and Possibility Analysis

Of the models described here, those that have shown the most promise 
in terms of forecasting are the voting models, the dynamic network models 
(that combine agent-based technology and meta-matrix of relations), and 
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the social influence models. These models have had limited success in 
forecasting voting outcomes, changes in beliefs and attitudes at the macro 
level, and identifying emergent new leaders. For other modeling techniques, 
including the ABM and system dynamic techniques for complexity model-
ing, the models are best at providing insight into the space of possibilities, 
that is, demonstrating what possible futures might exist and their relative 
likelihood. However, for these models to provide an adequate map of the 
possibilities (a reasonable response surface), the models need to be run a 
vast number of times under diverse scenarios; hence, as is discussed in the 
next section, there is a need for placing these models in a data farming 
environment.

One question that arises is: How can these models be made more pre-
dictive? This topic, in and of itself, is quite complex and a full treatment is 
beyond the scope of this study. However, several factors are worth noting. 
As more of these models are placed in data farming environments, statistical 
tools are developed for mining the vast data so generated, and repositories 
of meta-matrices are developed and shared with scientists for testing and 
validating, one can expect that many of these models will become more 
reliable in their forecasts. However, there will still be many classes of social 
phenomena for which prediction, of the form used in engineering and 
physics, will simply not be possible due to the lack of stationarity in the 
underlying social processes, the paucity of data, and the lack of continuity 
in key variables. 

A second question often arises regarding the concern that, if the models 
are truly predictive, the mere act of making a prediction public will cause 
actors to change their behaviors and so alter the outcome. While this issue 
is addressed in other sections of this report, several key factors directly 
related to the nature of the models described here are worth mentioning. 
For most of the models described here, other than the simple voting models, 
making the models transparent to the public (so that others can infer the 
predictions) or making the predictions themselves public is not likely to 
invalidate the predictions. There are three basic reasons for this: lack of 
temporal forecasting, level of specificity, and hyper-confluence. Temporal 
forecasting tends to be weak and predictions are often vague in terms of 
when something will occur; rather than point predictions, most predictions 
are of the form “A will likely occur after B” or “at some time in the future 
more than two weeks but less than two years from now.” Most models 
produce rather general results, such as that a state will fail, civil violence 
is likely to erupt, or corruption will increase, rather than the more specific 
“the state will fail due to a regime change where General X takes over” or 
“civil violence will take the form of riots in these five cities” or “corruption 
will increase the most in the area of infrastructure development in county 
X.” Finally, most models generate a prediction due to hyper-confluence, 
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that is, the strongest predictions are those for which there are a large num-
ber of interconnected causes that weave together in complex ways. But 
single actors can best counter a specific event that is likely to occur at a 
specific time with only one or two actions or activities. Even with sufficient 
research funding, improved theory, and available data to overcome the 
issues of vague temporal forecasting and lack of specificity; the problem of 
hyper-confluence will remain. That is one of the key reasons why social and 
behavioral models need to be driven by the science of the possible, rather 
than the traditional science of point predictions involved in traditional 
physical science and engineering models.

Data Farming

ABMs designed for applied settings need to be placed in data farming 
environments. These environments need to be augmented with special-
purpose tools for running massive virtual experiments. These tools should 
enable improved visualization and analysis and facilitate the development 
of semiautomated response surface generators. Current data farming tools 
often are cumbersome to use, require code modification of the ABM, and 
are limited by the processor speed and storage capabilities of the machines 
that they run on.

In order for ABM frameworks to run routinely in data farming environ-
ments, more flexible environments need to be developed and made easily 
available to researchers. Moreover, ABM frameworks need to be developed 
with wrappers,� so that they can be placed in these environments. Standard-
ized IO formats need to be developed. By routinely placing ABM frame-
works in a data farming environment, a better understanding of the space 
of possibilities predicted by the frameworks will be derived. This will enable 
ABM frameworks to better support policy and decision making.

Currently, when ABM frameworks are used to inform policy and criti-
cal decisions, they are typically run only a few times in carefully controlled 
computational experiments. While this approach enables the analyst to 
explore more possibilities more systematically than not using a simulation, 
it still leaves open the possibility that errors might be made if the results are 
generalized beyond the scope of the experiment. By placing ABM frame-
works in a data farming environment, the number of computational experi-
ments conducted, the space of possibilities examined, and the scope of 

� “A wrapper is a software layer used to change the interface of a component or to give 
new properties, such as fault tolerance or security, to the interaction between components. 
Software wrappers are often used to glue existing subsystems into a larger system with new 
properties and functions. The wrappers know the protocols needed to make the subsystems 
work together, even if they were not originally designed for a common purpose” (Webber, 
1997, p. 1).
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analyzed conditions can be expanded, often by several orders of magnitude, 
thus providing a stronger basis for decision making. Furthermore, once an 
ABM framework has been validated, the response surface equivalent can 
be used as a “rapid” model in training situations in which the users do not 
have time to wait for an ABM experiment to finish running.

Cross-Disciplinary Initiatives

Another avenue that may promote major breakthroughs is the linkage 
of ABM social behavioral modeling to gaming environments, particularly 
online multiplayer games such as Everquest and America’s Army (see Chap-
ter 7). Research initiatives that explore the link of ABM social behavioral 
modeling to gaming tools may be valuable. Possible research areas include 
using agent-based modeling to explore the realism of the social behaviors 
exhibited in gaming models; using it to provide flexible opponents or to 
make the apparent number of game players larger and so force players to 
think about group scale issues; and using agent-based modeling to track and 
analyze game behaviors using dynamic network analysis techniques. Key 
benefits here would be improved training tools and visual what-if scenario 
evaluation.

As previously noted, additional ABM development needs to be done in 
a number of areas. These include attachment of ABM frameworks to data 
streams, improved ABM visualization, metric ABM robustness studies, and 
so on. Moving ahead in these areas will require linking social networks to 
other types of data, such as location and event information, and linking 
diffusion theory to other forms of theory, such as action and cultural theory. 
This will require the funding of both basic and applied research. It will also 
require an increased recognition for, and acceptance of, applied social sci-
ence research in universities.

Currently there are a number of funded research efforts in the areas 
of cultural modeling, geospatial link analysis, and adversarial modeling, 
all of which are supporting work along these lines. A key to much of this 
work is that it combines dynamic network analysis with geospatial rea-
soning or anthropological data-gathering techniques. Much of this work 
is applied, directed at providing usable systems in several years. This is a 
positive development, particularly when such modeling efforts are based on 
strong empirical and theoretical foundations. However, there is still a huge 
amount of basic research to be done in such areas as the development of an 
ontology for tasks, a unified model of culture, or even a shared definition 
of culture. Relatively little research funding is being directed to the basic 
research questions in this area.

The key here is not simply to invest in the social sciences but to invest 
in the mathematical and computational social sciences to engender the 
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development of work that will support defense needs. The benefit will be an 
improved understanding of basic social and cultural phenomena. Another 
benefit will be a decrease in the development of misleading models that 
appear to be social but that are not theoretically or empirically sound.

At the same time, most of the research community, particularly in the 
social sciences, is not focusing on strongly applied problems. The mere idea 
of hard deliverables, while accepted as common practice in engineering 
and computer science, is contrary to the basic culture of most social sci-
ence departments. Thus, while there is a strong need for quantitative social 
science modeling on defense issues, there is a dearth of social scientists 
involved in and trained to do applied work.

Building Expertise

The lack of highly trained professionals is a key difficulty in this area. 
Universities need to expand their undergraduate social science curricula 
to include more of the mathematical and computational social sciences. 
In particular, undergraduate courses should be routinely taught that cover 
SNA and agent-based modeling, and that permit the mastery of ABM 
programming tools. Universities need to encourage and facilitate applied 
research. New curricula are needed that have an engineering style but 
that are focused on social and policy applications. Master’s programs that 
combine social and computational science need to be developed. Military 
universities, such as West Point and the Naval Postgraduate School, should 
also offer social network courses and possibly ABM courses, particularly 
those for evolving networks, and they should integrate dynamic network 
measures of shared situation awareness, leadership, and power into the 
standard curriculum.

The development of these curricula and degree programs is vital to 
the nation’s intellectual strength in order to remain at the forefront in this 
area. The clear benefit of these programs will be a stronger workforce 
of computational social analysts capable of developing and using social 
behavioral models.

Analysts engaging in ABM but trained in computer science, engineer-
ing, or physics should work in teams with social scientists to avoid duplicat-
ing work already done or making commonsense assumptions about social 
processes that have no empirical bases. Corporations need to provide time 
and resources for selected personnel to become jointly trained in computer 
and social science, either by increasing the number of personnel sent to 
master’s programs, bringing in relevant faculty to teach short courses, or 
engaging in more joint research with universities as equal partners (in which 
the university provides the missing skill, social or computational). The key 
advantage of teaming is that it will enable improved model development 
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and will serve as a stop-gap until more computational social analysts are 
trained.

Expected Outcomes

Across the board, success in the activities outlined above would facili-
tate the rapid development and deployment of agent-based modeling. The 
advantage is that it enables systematic reasoning about various courses of 
action in a wide range of complex environments. More courses of action 
could be evaluated in less time and more systematically than is done with 
conventional table-top war-gaming or current non-computer-assisted analy-
sis of relational data. The dynamic social network and ABM tools outlined 
above reduce the time spent on data processing and increase time spent 
on analysis and interpretation. They would facilitate what-if analysis and 
could ultimately support near-real-time what-if analysis in the field. This 
would be a valuable force multiplier.

In summary, the activities listed above would increase the maturity 
of the modeling field, improve scientific theory, facilitate rapid linking of 
computational models to empirical data, particularly network data in a 
unified reasoning framework to solve novel problems, and encourage new 
discoveries. These activities would also promote the development of a new 
science that combines computation and society, just as the previous join-
ing of computer science, design, and psychology led to the new science of 
human-computer interaction.
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7

Games

This chapter deals with massively multiplayer online games (MMOGs) 
as a tool for social and organizational modeling. An MMOG is 
a type of computer game that enables hundreds or thousands of 

players to simultaneously interact in a game world to which they are con-
nected via the Internet. Typically this kind of game is played in an online, 
multiplayer-only persistent world (Wikipedia, 2007).� These games are a 
different kind of animal from the models and modeling approaches previ-
ously discussed.� MMOGs are simultaneously tools that allow players to 
interact with behavioral models, frameworks for building such models, and 
laboratories in which these models can be tested.

What are Massively Multiplayer Online Games?

Games, particularly videogames, are a recent addition to the modeling 
and simulation (M&S) tool suite. A videogame is defined as a mental contest, 

� In this chapter, the committee makes references to online communities and game manufac-
turers. Because of the nature of the games world, scholarly references are not often available, 
nor are they the most up-to-date or accurate sources of information. 

� They are also not to be confused with “game theory,” a mature research area with strong 
mathematical foundations established by von Neumann and Morgenstern (1944), but, as 
noted in Chapter 5, having significant constraints for application to real-world problems, the 
most notable for this context being the massiveness of the multiplayer community-inhabiting 
MMOGs; few game theory studies consider more than a handful of independent players or 
“agents” (Moss, 2001). There are a number of other limitations to the game theory approach, 
discussed extensively in Chapter 5.
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according to certain rules, played with a computer, for entertainment. In the 
Department of Defense (DoD), the term used is “serious game,” which we 
define in this report as a mental contest, according to certain rules, played 
with a computer, that uses entertainment to further government or corporate 
training, education, health, public policy, and strategic communication objec-
tives. An early examination of the potential for using games for modeling, 
simulation, and analysis originates in the report Modeling and Simulation: 
Linking Entertainment and Defense (National Research Council, 1997). 

Games are an interaction medium, a set of engaging and immersive 
models, and an interactive laboratory with which models and simulations 
can engage. As an interaction medium, games provide a way for humans to 
provide input and receive feedback in real time, participating in a running 
simulation. If the game is immersive enough, this running simulation will 
fully engage the attention of the game player, and that player will focus 
on game play to the neglect of the external world. The most commercially 
successful interactive games cyclically increase the adrenaline levels of the 
player, while demanding little in the way of mental focus. Games that 
demand great mental focus do poorly in the market and typically lose 
player interest. M&S systems that are embedded in such an interaction 
paradigm need to take this into account if the expectation is to make the 
M&S system as engaging as a commercial game. The desired outcome for 
this paradigm is that the M&S system will be so engaging that soldiers will 
continue to work with the simulation during personal time. Many train-
ing simulations derived from the game America’s Army (described in more 
detail below) and similar games belong to this category (Zyda, Mayberry, 
McCree, and Davis, 2005).

Games also contain a set of engaging and immersive models, models 
that look very interesting from the perspective of DoD. For example, a 
large number of meetings start out with the phrase “if only we could build 
an engaging game like SimCity”—that is, SimNavy for the Navy, SimAir 
for the Air Force, etc. (Zyda et al., 1998). There are many problems with 
such statements. The purpose for which the personal computer (PC) game 
SimCity � and The Sims,� its direct descendent, was written to entertain 

� SimCity is a PC game in which the user controls several elements of managing a city, such 
as allocation of funding, distribution of community resources (police and fire stations, schools, 
etc.), and community layout. Maxis (now Electronic Arts Inc.) released the first version of 
SimCity in 1989. SimCity was the first game in the Sims franchise, and was the inspiration 
for other nonviolent open-ended games, such as Sid Meier’s Civilization (Electronic Arts Inc., 
2006b). SimCity is partly based on Jay Forrester’s urban planning model, which is described 
in Chapter 4 (Electronic Arts Inc., 2007).

� The Sims is a PC game in which the user controls individual characters (Sims) in a “virtual 
dollhouse.” The user is responsible for managing day-to-day needs of the Sims, such as their 
need for fun, hygiene, food, rest, and social activity.
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and engage the game player. No real attempt was made in that game or its 
successors to accurately model the real world, nor was there any attempt 
to verify, validate, or accredit (VV&A) the results of that game—it is pure 
entertainment. It does, however, suggest a way in which one can develop 
potential outcomes or possibility spaces that can then be considered for 
further analysis. Probably the most interesting aspect of games like SimCity 
(http://simcity3000unlimited.ea.com/us/guide/), The Sims (http://thesims.
ea.com/), and Civilization IV (http://www.2kgames.com/civ4/home.htm) is 
that these games were built for relatively small amounts of money and on 
schedule, and they still perform as extremely successful entertainment. DoD 
M&S programs with budgets two orders of magnitude larger have failed to 
deliver even a tenth of the capability to create a space of potential outcomes 
for consideration (Bennington, 1995).

Games are also an interactive laboratory with which models and simu-
lations can engage. They can play the role in social and organizational 
modeling that linear accelerators play in particle physics—testbeds built and 
used to perform experiments and analyze results (Carley, Moon, Schneider, 
and Shigiltchoff, 2005). Like linear accelerators, MMOGs are expensive 
to build. The costs of successful immersive game development run from 
$8 million for the first two years of game development for a Spartan effort 
like America’s Army to more than $100 million to develop an MMOG and 
its infrastructure. 

To use a game as an interactive laboratory, it must be built or acquired 
before experiments can be performed with it. If the intention is to connect 
a social model to an MMOG for validation or improvement of the social 
model, money is needed either to build the MMOG or to acquire the use of 
it and the tools and permissions that allow its modification from a willing 
game development partner. Note, however, that the entire FY 2008 esti-
mated budget of the Defense Advanced Research Projects Agency, $3.085 
billion (see http://www.darpa.mil/body/budg.html [accessed July 2007]), 
is comparable to the current cash assets of a gaming giant like Electronic 
Arts (see http://finance.yahoo.com/q/bs?s=ERTSandannual [accessed July 
2007]), plus the expected revenue of $1 to $1.5 billion from an operating 
MMOG.� The size of the financial stakes for MMOG game companies 
means that getting the attention of a game development partner may rely 
more on personal connections or a fully funded joint basic research agenda 
than on any financial incentives that DoD could offer.

� Consider the single MMOG World of Warcraft with an estimated 8 million+ players paying 
$12.99 a month, for annual revenues of approximately $1.2 billion.
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State of the Art 

Our review of the state of the art in MMOGs considers the three roles 
of games separately—games as an interaction medium, games as a set of 
models, and games as interactive laboratories.

Games as an Interaction Medium

Games as an interactive medium are always changing and improving. 
The drivers for innovation in the game industry are new technology for 
making the games ever more immersive and interactive, as well as industry 
competition and emulation. The driver for many years has been the increas-
ing graphics speeds for PCs and consoles. That drive has made photorealism 
one of the major pushes for interactive games. Soundscape complexity has 
also made games more immersive as PCs and consoles have improved their 
sound support capabilities. The first Dolby 5.1 certified game, America’s 
Army, was developed in 2002, and now this feature is included in almost 
all games. 

We are near the point of diminishing return for graphics improve-
ments, and people are now focusing on “fully interactive worlds.” The 
best example of the fully interactive world style is Rockstar’s Grand Theft 
Auto: San Andreas (GTA-SA). While the story line may lack redeeming 
social value, the game is so popular because the game player can interact 
with everything in the game’s world in a nonlinear fashion. This means that 
the player can navigate the world and do whatever comes to mind, without 
being constrained to a single story path, as in many games. The fact that 
there are missions to complete in GTA-SA is perhaps unimportant. It is 
the journey and the accompanying interaction that immerse and retain the 
player. If one wanted to have one game as representative of state of the art, 
then GTA-SA is that game with its fully interactive world paradigm, but 
the number of games attempting to copy that paradigm is quite large; the 
most notable is the Godfather game of Electronic Arts.

Games as a Set of Engaging and Immersive Models

The games Sims 2, by Electronic Arts Inc., and Civilization IV, by 
Firaxis, represent the state of the art with respect to games as a set of 
engaging and immersive models. Sims 2 is a game that allows the player 
to create virtual characters, or Sims, and then direct them over a virtual 
lifetime. Settable parameters include gene mix across generations, life goals, 
popularity, fortune, family, romance, knowledge, financial status, and life-
style. Sims can be pushed to extremes “from getting busted to seeing a 
ghost, from marrying an alien to writing a great novel” (Electronic Arts 



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

GAMES	 265

Inc., 2006a). The game allows the player to fulfill dreams, to try extremes, 
and to basically explore potential outcomes and possibility spaces. 

Civilization IV is a game that allows the player to create a civilization 
from its inception to its pinnacle and eventual demise. Players can choose 
peace and growth or choose a war footing, all from an easy-to-use interface. 
Civilization IV comes with a stream of easy-to-use modification tools that 
allow players to create and integrate their own interests into the game. As 
in Sims 2, Civilization IV allows the player to explore possibility spaces 
and potential outcomes. It is that capability that makes the modeling and 
simulation of these games very interesting to DoD and to the Department 
of Homeland Security. The question is often asked, “How do we connect 
these games, with near-zero modification, to real news feeds so that we can 
compare their ‘predictions’ against what subsequently happens in the real 
world?” Of course, these games are written to explore potential outcomes 
and not to be predictive, but there is a continual quest to achieve predic-
tions, as in the film “Minority Report.” 

Games as an Interactive Laboratory 

MMOGs as interactive laboratories provide a state-of-the-art capability 
with respect to DoD goals. The idea is, for example, that if it were pos-
sible to test models of what causes insurgencies against large groups of real 
online people, one could then understand and run the models backward to 
change the conditions so that the insurgencies do not happen. This is a tall 
order, built on several premises. The first premise is that models exist of 
the cause of insurgencies, and there is no way to test those models in real 
life. An additional premise is that if one could test and prove those models 
against real people in MMOGS, one would then have greater confidence 
in deploying the ideas embodied in the models in real life. The interesting 
point of such discussions is the desire to test social models using existing 
MMOGs rather than having DoD create its own testbed, thereby saving 
$100 million of testbed development costs that could be used to create 
models.

To consider the top 10 MMOGs, how relevant or close to the problem 
are they? World of Warcraft, City of Heroes, City of Villains, Final Fantasy 
XI, Eve Online, Guild Wars, RuneScape, Everquest 2, Maple Story, Dark 
Age of Camelot, and Lineage 2 were the top 10 MMOGs listed by one site as 
of July 2007 (see http://www.the-top-tens.com/lists/top-ten-mmorpg-games.
asp [accessed July 2007]). Although their visuals are far from realistic, 
and their stories are mostly about worlds that don’t exist and quests not 
linked to real life, the stories are all about the fights between good and 
evil, not unlike today’s global war on terrorism. So the thought is to take 
one or more of these MMOGs, modify the story a bit, put in links to the 
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predictive models to be tested, and then see if one can begin the process of 
predicting player behavior in the MMOG with connected systems. If that 
can be done, then perhaps it will be possible to run the models backward 
to stop insurgencies before they form or interdict them earlier before they 
gain strength.

Relevance, Limitations, and Future Directions 

This section explores how MMOGs can be used to address DoD prob-
lems, the limitations on that use, and the next steps needed to address those 
limitations. The discussion is organized around the three major capabili-
ties offered by MMOGs: an interaction medium, a set of models, and an 
interactive laboratory.

Games as an Interaction Medium

Interactive games are great interfaces to models and simulations, 
because designers have created an interface typically more intuitive than 
that in comparable DoD-developed M&S systems. Interactive games typi-
cally require no reading of manuals and have the player up and running in 
three minutes or less. The corresponding time is typically months for com-
parable DoD M&S systems. So if the goal is to put models and simulations 
into the largest number of hands possible, then an interactive game interface 
is the right way to go. An additional advantage of interactive games is that 
their development and modification tools are easier to use than the simula-
tion setup tools used by DoD. If defense simulations were as easy to set 
up as games, modelers’ ability to explore possibility spaces and potential 
outcomes would be dramatically increased.

Games as an interaction medium are limited, at the moment, to games 
designed and implemented by the game development industry for entertain-
ment purposes. For DoD use, those games must either be used as they are 
or modified with available tools. An additional limiting factor is that DoD 
does not typically have access to personnel skilled in game development.

Interactive games, their supporting hardware infrastructures, their sup-
porting software, and their input devices are under constant pressure to 
innovate and evolve. The biggest change coming in the next few years will 
be in the underlying models of human and organizational behavior, par-
ticularly with respect to the modeling, display, and input of human emotion 
into the interactive game. Think of this as adding to the communication 
modalities already employed in games: visual display, auditory display, 
haptic display, and (coming soon) two-way emotional communication and 
display. Low-cost sensors that read parts of the human emotional state have 
already been designed for use as game input devices. These sensors provide 
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virtual sensors indicating mental focus, adrenaline, surprise/response, and 
relaxation, along with physiological measures of heart rate, blink rate, 
breathing rate, and oxygen level in the blood. Software using these mea-
sures is already under development for use in evaluating games before they 
are shipped to determine what does or does not work in the produced game. 
Experiments are under way to determine how to use emotional inputs in 
games, including how to display appropriate emotions back to the player 
based on his/her personal state.

Games as a Set of Engaging and Immersive Models

The set of models inside engaging and immersive commercial games 
are proprietary and somewhat of a black box. We (DoD and its modeling 
researchers) cannot look at those models or modify them, other than the 
parameters exposed from the game’s interface or provided via modification 
tools. We cannot VV&A those models—but we probably haven’t really 
been able to achieve real VV&A with defense models and simulations, 
either (see Validation, Chapter 8). What we do know is that games like 
The Sims 2 and Civilization IV look quite capable for use in defense prob-
lems, if only we could modify them, even slightly, for defense purposes. It 
would be interesting to know whether one could explore more of the space 
of potential insurgency outcomes with Civilization IV, developed at a cost 
of some $20 million, than with JSIMS, developed at a cost of $1.8 billion. 
Could modelers do that exploration with just the available Civilization IV 
modification tools?

Likewise it should be possible to run experiments in virtual worlds simi-
lar to Second Life (http://www.secondlife.com), perhaps with a somewhat 
less benign set of rules, which would have military and strategic applica-
tions. For example, imagine Second Life with sovereign state entities, some 
of which were motivated to expand and dominate other regions of the game 
space. What would be the behavioral/organizational reactions of the other 
players? It is likely that genuine social experiments could be undertaken in 
settings like this, at a cost far below JSIMS. As another example, the popular 
board game Diplomacy is already available for online play (see http://www.
diplom.org/index.py); it ought to be possible to modify it to bring it up to 
date in terms of state actors and allow for multiplayer states with their own 
internal decision-making processes, political parties, cultures, etc. Of course, 
there would be issues that would need to be thought through, such as access 
to the online games by hostiles, the potential for abuse of human subjects by 
traumatizing their avatars, and how to make the costs and benefits “real” 
(so that the players are not casual about starting virtual wars, for example). 
However, it seems clear that the potential gains are large enough to warrant 
some real effort devoted to overcoming these obstacles.
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Since the models inside games are typically proprietary and not pre-
cisely what DoD requires, this mismatch makes it hard for DoD to accept 
and utilize such models. If DoD were to establish its own serious game 
development studio, this limitation could be overcome. 

Also, since games are typically designed for entertainment, they often 
provide a misrepresentation of reality—for example, compressed time, 
inaccurate social networks, and missing cultural factors. If games are to be 
used for training, then greater attention needs to be paid to which aspects of 
reality need to be more carefully characterized in the games. This requires 
basic research on what factors are needed for what purpose, the inclusion 
of facts about social and cultural behavior, and the inclusion of social and 
organizational scientists as members of the game development team.

Games as an Interactive Laboratory 

MMOGs are proprietary and written for a particular entertainment 
purpose, with rules very much unlike those found in real life. Players get 
to be heroes, villains, and superheroes in MMOGs and are often able to 
transport their virtual characters across large terrains without apparent cost 
in time or physics. So while it looks as if modelers might be able to do some 
experiments with MMOGs relevant to DoD concerns, there are definitely 
issues in the details.

MMOGs as interactive laboratories are limited in their use for DoD 
purposes because they were built for entertainment. For MMOGs to 
become widely used in DoD, DoD may need to establish its own studio to 
build such an MMOG, using a mix of game industry veterans and defense 
M&S personnel. A vision for what this might look like is the collection 
of art resources and animations from the America’s Army game ported 
to a larger, more open platform (U.S. Army, 2007). Right now, America’s 
Army is built on the Epicgames Unreal-2 game engine, an engine limited 
to small squad-on-squad play (32 players total) and small areas of terrain 
(1 km × 1 km). In addition, access to the art resources and code from 
America’s Army has been restricted to DoD due to proprietary game engine 
license issues and close control of those resources by the Army project 
management team. Good small training systems have been built using 
the America’s Army material (see http://info.americasarmy.com), but in 
general, the close hold of the source code and game resources has made it 
difficult for DoD scientists desiring to use that material to be able to build 
the additions and extensions necessary to carry out their research. As DoD 
moves to the larger realm of MMOGs for social model experimentation 
and to a game engine capable of handling much larger terrains of concern, 
the openness and accessibility challenge needs to be solved for the greater 
DoD good. 
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Funding a specialized MMOG game studio outside the government 
would be one approach to the challenge, perhaps within the environment 
afforded by a specialized cross-departmental university center, such as 
the Entertainment Technology Center at Carnegie Mellon University (see 
http://www.etc.cmu.edu/) or as a university-affiliated research center but 
with more internal development capability than seen at labs like the highly 
successful Institute for Creative Technologies at the University of Southern 
California. There are many applications for which this MMOG will be of 
value. A particular MMOG that would have great applicability is one that 
implemented the various alternative futures as described in the report Map-
ping the Global Future (National Intelligence Council, 2004). Understand-
ing those potential outcomes and being able to roll back to a state in which 
the potential outcome does not happen would be a great tool for designing 
better national policies.
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8

Common Challenges in IOS Modeling

This chapter discusses broad issues and challenges that are encoun-
tered across the range of individual, organizational, and societal 
(IOS) modeling approaches and methods, highlighting problems 

that need to be solved for these modeling approaches to be most useful 
for the military’s needs. We first describe issues of integration and inter
operability, the challenges that confront modelers and simulation develop-
ers when they attempt to integrate multiple models and simulations, with 
the goal of making them interoperable—that is, able to use output from 
one model as input for another. Next we describe some of the challenges 
(and potential benefits) of developing and using modeling frameworks 
and tools that facilitate the development of IOS models. We then describe 
issues of model verification, validation, and accreditation (VV&A), issues 
that are especially challenging for the modeling of human behavior. Finally, 
we discuss some of the challenges posed by the data requirements of IOS 
models in light of the realities of the data and information available to 
model developers and users. In each section we note some potential solu-
tions to the challenges.

Integration and Interoperability

In this section, we discuss the issues that confront modelers attempting 
to integrate models developed with different internal structures, at different 
levels of granularity, or with inconsistent inputs and outputs. The nature of 
the challenges requires that the discussion be quite technically sophisticated 
and use terminology and concepts that may be unfamiliar to many readers. 



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

272	 BEHAVIORAL MODELING AND SIMULATION

We have tried to define some of the terms in footnotes, but a simplified 
discussion would not do justice to the subject matter.

Model Interoperability: Incompatibilities and Functionality Gaps�

There are several fundamental issues (and associated hard problems) 
that need to be addressed in undertaking the development of an inter
operable framework of IOS models. First and foremost is the problem of 
making existing or even new models interoperable, as these are developed 
independently (i.e., with no coordination) by different software design 
and development teams, in consultation with domain experts having vari-
ous levels of skills and expertise. A very common approach is to build a 
wrapper around an existing model, thus converting it to an input-output 
(I-O) black box, or to provide an intelligent agent operating autonomously, 
which communicates with other models in the network. But this approach 
is likely to introduce other types of gaps and incompatibilities between 
models, some of which are identified in Table 8-1 and illustrated in Fig-
ure 8-1. We discuss here the need to identify an overall methodology to fill 
these gaps, including various intelligent automated techniques, processes, 
and guidelines, as well as aid from human subject matter experts and ana-
lysts whenever needed.

Interface Incompatibility

The first problem shown in Figure 8-1 (in the top row) concerns inter-
face incompatibility between two models that either already exist or are 
being developed independently. If we intend to feed output from model A 
about a certain object X as input to model B, then some mismatch between 
the output and input may occur in terms of the assumptions about the 
numbers and types of X’s attributes. This is often straightforward but 
tedious to deal with, often merely involving translation from one descrip-
tive framework to another (e.g., from numerical values—1, 2, 3, . . . —to 
“fuzzy” values—low, medium, high, . . .). A bigger problem ensues when 
different levels of resolution are used to represent the same object in two 
different models. If model A provides a high-resolution object representa-
tion of X (e.g., a map, enemy force estimates) for model B, and model B 
needs a low-resolution representation (e.g., latitude/longitude of enemy 
center of gravity), then some aggregation process must be conducted, usu-

� Much of the work described in this section on model integration and interoperability was 
performed by John Langton and Subrata Das at Charles River Analytics with support from the 
Air Force Research Laboratory, Information Directorate (AFRL/IF) under contract FA8750-
06-C-0076, and adapted from Langton and Das (2007).
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TABLE 8-1  Gaps and Incompatibilities Between IOS Models

Type Definition

Interface Mismatch between the data types of different models or outputs of one 
model and inputs of another, e.g., real number vs. Boolean

Ontological Different relationship structures, naming schemes, etc., in ontologies for 
different models

Formalism Different logic and inferencing mechanisms and procedures for different 
models

Subdomain 
gaps

Differing domains and dynamics between PMESII model dimensions, e.g., 
economic vs. social

SOURCE: Langton and Das (2007).
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FIGURE 8-1  Illustration of gaps and incompatibilities between IOS models.
SOURCE: Langton and Das (2007).

ally based on one approximation method or another. The reverse process 
is much more difficult, going from a low-resolution output to a high-
resolution input, since, in effect, missing input attributes have to be inferred 
or approximated and filled in. A number of approaches can be used to 
resolve the interface incompatibility. These are described in the section on 
interoperability recommendations below.
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Ontological Incompatibility

The second problem illustrated in the figure is ontological incompatibility 
between models, which arises due to differing vocabularies and expressive 
power in their respective ontologies.� Different teams of engineers and subject 
matter experts with a diverse range of expertise, knowledge, and cognitive 
capabilities independently creating models will inevitably develop and use dif-
ferent underlying ontologies, which in turn will give rise to incompatibilities 
across models. Initially, one might suggest the development of a common 
ontology for the set of all possible models; however, many failed efforts in 
this direction make it clear that developing a universal ontological standard 
for model creation is impractical, if not theoretically impossible. Moreover, 
if models are to be built rapidly, analysts should ideally be free to use a 
model-building environment of their own choosing without assistance from 
knowledge engineers. The analysts should not be constrained by a predefined 
ontology to express their knowledge, which usually inhibits their expressive 
flow. Hence, rather than proposing to develop a common ontology for the 
model space, one approach is to focus on facilitating better mapping capa-
bilities between differing ontologies. For example, there are tools that can 
map ontological terms from one domain to another by solving the problems 
of synonymy and polysemy;� these clearly offer hope for translating differ-
ing ontologies used in the models. In some cases of incompatibility between 
the underlying ontological structures of the models (e.g., semantic networks 
versus logical expressions), one domain can be mapped to another by pro-
viding a more expressive ontological structure for one of the models (e.g., 
semantic networks can be mapped to first-order logical sentences). Therefore, 
some parts of the ontological incompatibility problem can be addressed via 
automated techniques. A number of approaches can be used to resolve the 
ontological incompatibility, described below.

Formalism Incompatibility

While ontological incompatibility creates problems due to multiple 
ways of designating an entity, the formalism incompatibility shown in 
Figure 8-1 is concerned with multiple ways of instantiating the object entity 

� An ontology, for the purposes discussed here, is “a systematic arrangement of all of the 
important categories of objects or concepts which exist in some field of discourse, showing 
the relations between them. When complete, an ontology is a categorization of all of the 
concepts in some field of knowledge, including the objects and all of the properties, relations, 
and functions needed to define the objects and specify their actions” (http://www.answers.
com/ [accessed July 2007]).

� Synonymy refers to one referent (concept) with several words that can denote it (plain English 
examples: big, large); polysemy refers to one word denoting multiple referents (plain 
English examples: break; park).
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computationally represented in the model. For example, uncertainty can 
be expressed not only in terms of probability values, but also via various 
other formalisms, such as certainty factors, the Dempster-Shafer measure 
of beliefs (Shafer, 1976), and numerous other qualitative dictionaries. These 
are fundamentally incompatible with each other, both in terms of their 
underlying conceptual representation of uncertainty and probabilistic rea-
soning, and in the sense of having different types of scales. Conversion 
between two such formalisms often requires deep understanding of the 
models and their formalisms, thus breaking the simple I-O black box idea 
of encapsulation. Specialization of formalism is often appropriate to map 
one approach to another. For example, probability theory is a special 
case of Dempster-Shafer theory that allows beliefs to be expressed only 
on singleton sets, facilitating development of a mapping from probability 
models into Dempster-Shafer models. 

Subdomain Gaps

If one wants to feed the output from a model in one domain to 
another, it will require an analyst or domain expert with knowledge of 
both domains to bridge the subdomain gaps. This is due not only to the 
ontological gaps between the domains being considered, but also to differ-
ing dynamics between the domains. Addressing this problem requires the 
skills of experts from the respective domains or ideally ones who are expert 
in both domains. 

A number of approaches can be proposed to bridge such gaps, by high-
lighting possible correspondences between concepts and variables across 
domains, described below. Recommendations are also made for more compre-
hensive approaches that could be part of a long-term development effort.

Figure 8-2 provides an illustration of model interoperability—focusing 
on political, military, economic, social, information, and infrastructure 
(PMESII)-related issues—with interactions among three layered models: 
one focusing on the social structure, one on the community infrastructure, 
and a third on the underlying information models, respectively from top 
to bottom.

 The infrastructure model in the middle models a stabilization and 
reconstruction operations (SRO) model, developed by the AFRL/IF, 
(Robbins, Deckro, and Wiley, 2005) using a system dynamics modeling 
approach (see Chapter 4), and captures a sequence of influences among 
variables, starting from the power supply at an electrical power substation. 
The generated power is fed into an industrial water plant, which produces 
water consumed by oil field work. An oil field produces crude oil to be 
refined by a refinery. Refined fuel is used to generate power, which in turn is 
supplied to various power substations, thus forming a loop. It is especially 
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difficult to reason with these types of graphs, containing such loops span-
ning many variables, as it creates an additional burden for discounting the 
variables’ self-influence.

The social model at the top of the figure captures the impact of these 
infrastructure-related variables on the society, using influence modeling 
technology (see Chapter 6). The model specifically captures the influence 
of the four variables of power, drinking water, refined fuel, and sufficient 
food supply on a variable representing the level of anger of the population 
in a town aligned with coalition forces. The dynamics of the social model 
are that short supply in any one of these three consumable products will 
increase the level of anger among the local population. In fact, if a terrorist 
organization became aware of the mid-layer SRO model sequence in the 
infrastructure, then the power substation would assume heightened impor-
tance in the eyes of the terrorist strategists: an attack on a substation would 
not only cripple other services in the loop, but would also drive the senti-
ment of the local population against the coalition. Note that the diamond 
box represents the expected mission utility in line with the level of anger. 
The utility (although difficult to quantify here) should go up when the anger 
level is down and vice versa.

The behavioral information model at the bottom of the figure illus-
trates how a model of a terrorist leader can be built using a concept graph 
approach (Sowa, 1984) in which concepts are represented by rectangles 
(e.g., [Person: Leader X] and [Behavior: Aggressive]), and conceptual rela-
tions are represented by circles (e.g., has Attributes) and soft-cornered 
rectangles (e.g., Leads, Causes). An analyst can query such a model to 
determine who the terrorist leader is and the nature of the leader based 
on various observable intelligence. Such a leader X, who leads the terror-
ist group A, can possess different types of behavior attributes, including 
aggressive, diplomatic, quick to anger, etc. If the leader is quick to anger 
and there are some stimuli to make the leader angry, then an attack on 
friendly targets may be imminent. One such stimulus would be coalition 
forces stopping the supply of oil to the region, as indicated by the link to 
the SRO model above.

The key issue here is the interoperability among the models. Note 
that although an I-O connection has been made between the two variables 
Oil Refinery and Refined Fuel of the top two models, they are ontologi-
cally incompatible as defined earlier. However, they can be made compat-
ible by recognizing that the term “Oil” is synonymous with “Fuel,” and 
“Refined” and “Refinery” have a common base word. Another difficult 
compatibility problem is illustrated by the fact that there is no input for the 
variable Sufficient Food Supply in the social model, illustrating the inter-
face incompatibility described earlier. One can envision, however, that this 
“sufficiency” concept could be automatically computed from the supply of 
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food previously recorded in available databases to bridge this last gap. A 
number of recommendations for resolving specific model incompatibilities 
and functionality gaps are provided below. More general approaches to 
resolving more than one of these gaps simultaneously are a current area of 
study (Langton and Das, 2007). 

Recommendations for Resolving Gaps in Model Interoperability

A number of approaches can be taken to maintain, adapt, and integrate 
diverse models in the context of the interoperability gaps just defined. 

Dealing with Interface Incompatibility

Interface incompatibility generally refers to two or more models having 
different types of data for their inputs and outputs and thus not being able 
to interoperate without some form of data conversion. There are at least 
three types of interface incompatibilities: 

1.	 I-O format incompatibilities: string versus binary, real versus integer, 
fixed versus floating point, numeric versus Boolean, incompatible 
scale, incompatible zero point, date-time format, color format. 

2.	 Logical incompatibilities: number of I-O points (e.g., three out-
puts versus four inputs—RGB to CMYK is a trivial example), I-O 
timing (e.g., fast output versus slow input).

3.	 Model persistence format incompatibilities: XML versus YAML, 
OWL versus RDF, etc.

One way to deal with these issues is via a development interface that 
provides a basic set of translation functions that can learn from user 
interaction over time. A graphic user interface (GUI) would allow users 
to explicitly modify, add, and remove interface translation functions, as 
illustrated in Figure 8-3. Users could also specify these translation functions 
within an ontology or the XML schema of a model, based on specifica-
tions derived, for example, from an evolved, global ontology. A full-scope 
GUI would then allow users to explicitly modify, add, and remove inter-
face translation functions. A number of potential translation functions 
are described below in the context of the type of incompatibilities each 
addresses.

Dealing with I-O Format Incompatibilities

Many interface incompatibilities fall within this category, and most 
solutions can be resolved by some combination of the following:
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•	 Normalization: mapping any value to lie between 0 and 1 relative 
to its minimum and maximum possible values.

•	 Weighting: scaling a value, typically in relation to other values.
•	 Fuzzification: randomly generating a number to lie within some con-

straining interval (e.g., some random number between 0.3 and 0.6).
•	 Discretization: “binning” values according to their range and a range 

they must fall within—somewhat like rounding—sometimes taking 
their distribution into account (e.g., 0.5 within a range between 
0 and 1 can be discretized to 1 for a range of only 0 or 1).

XML schemas often exist to support model file persistence. These 
schemas define the elements of a model along with the possible values 
they can take on. XSLT can then be used along with a number of standard 
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translation functions for integrating inputs and outputs of two models on 
relevant nodes or links. These functions can also be adapted according to 
user interaction over time.

Dealing with Logical Incompatibilities

In some cases, one model may have more outputs than another’s inputs 
or vice versa. When integrating models, we therefore need methods for 
addressing these situations. For an overabundance of values, we can simply 
use some form of aggregation. Again, a model schema or ontology can 
specify how this aggregation should be performed, or the user could specify 
this through the above-mentioned GUI. In the case in which we have only 
one value but must map to more than one, we can simply duplicate the 
value or partition it according to any context provided in the model schema 
or ontology. 

In some cases, the sample rate of inputs and outputs may differ. One 
way of dealing with this is through smoothing and resampling.

Dealing with Model Persistence Format Incompatibilities

In essence, this issue really mirrors the greater task of integrating 
models. The existence of a standard schema or ontology for different 
models would immediately resolve this issue. However, we cannot now 
depend on such a standard or on adherence to it. A partial solution may 
be to evolve or derive a standard schema or ontology. In either case, most 
effective solutions will entail the use of XML and XSLT for the translation 
of one model format to another. 

Dealing with Ontological Incompatibility

Ontological incompatibility refers to two models having different struc-
tures, including the entities they specify and the relationships between 
them. For instance, a rules system model may have several pairs of nodes 
connected by one link (precedent and consequent), whereas a Bayesian net 
typically has more of a tree structure. Nodes can have different names, 
graphs can be directed or undirected, and two models representing the same 
system can be at different resolutions and thus include a different number 
of nodes and links. The principal issue of this incompatibility is determin-
ing which entities, nodes, or links in different models should map to one 
another for interoperation.

Syntactic heuristics: The labels and descriptions of nodes and links in 
differing models can be compared on the basis of their raw string content. 
If these string components match, then the nodes or links may be a match 
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as well. For instance, “runway16” may map to “runway.” A threshold for 
how many characters must match to infer a string match must be specified. 
This type of matching can also include matching nodes/links based on the 
range, cardinality,� and other attributes of their possible values.

Semantic heuristics: Nodes and links from different models can be 
compared on the basis of the semantics of their labels, descriptions, and 
any other textual metadata specified in an XML file, XML schema, or 
ontology. Elements from different models that have a semantic similarity can 
then be mapped to one another for model integration. For instance, a node 
with the name “airport” in one model may be mapped to a node with the 
name “runway” in another model on the basis of the semantic similarity of 
their labels. Semantic similarity is determined by the relations between two 
words as derived from statistical usage, ontologies, thesauruses, dictionaries, 
etc. There are both service-oriented architectures and application program 
interface specifications for this purpose, including WordNet (Al-Halimi and 
Kazman, 1998) and Lexical Freenet (Beeferman, 1998). 

Relation mapping: Relation mapping can be used to address ontologi-
cal incompatibility by mapping nodes from one model to nodes of another 
based on their relations (how they are connected) within their individual 
models. With this information, we can then suggest potential mappings 
between nodes of different models based on the similarity of their relations 
within their respective models. Consider the nodes α of model A and β of 
model B. Although these nodes may have very different names, they may 
have very similar relations. For example, both could influence five other 
nodes and be influenced by four other nodes. Based on their similarity, we 
may be able to deduce that these nodes can be mapped together for model 
integration. It is important to note that relations encompassing a node are 
not merely all of its incoming and outgoing links; they also include features 
identifying how the node affects any other nodes in the model. While this 
approach should rarely be used to draw links automatically, it could be used 
to make effective recommendations.

Model node aggregation: Model aggregation can be used to address 
ontological incompatibility by identifying how sets of nodes in different 
models with differing cardinalities may be mapped to one another. It may 
be the case that a node α in model A maps to a subset of nodes N in model 
B, resulting in incompatible ontologies. For example, consider α to be the 
node airport and N to be the subset of nodes runway, plane, radar, and air 
traffic control. The question is, which nodes should airport be mapped to 
for model integration? We can use the semantic similarity of the labels on 
the nodes of N (e.g., interfacing with WordNet for ontological inference) 

� In mathematics, the cardinality of a set is a measure of the “number of elements of the set” 
(Wikipedia, see http://en.wikipedia.org/wiki/Cardinality [accessed Feb. 2008]).
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to aggregate N into one meta-node: airport′. Using semantic similarity 
between airport and the constituent nodes of airport′, we can then infer 
that these two entities should be mapped for model integration. More spe-
cifically, the inputs to airport could potentially be mapped as inputs to all 
nodes of airport′. 

We can also infer the pairing of airport and airport′ using relation map-
ping. To continue the example, consider relations between airport and the 
other nodes of model A, and airport′ and any remaining nodes of model B. 
If their relations are similar, then airport could be a candidate for integrat-
ing with all of the nodes of airport′. For instance, both airport and airport′ 
could be connected to the nodes passenger, ticket, and pilot. With ontologi-
cal inference, we can see that the relations of airport and airport′ are similar 
within their respective models (even though the relations of airport are not 
similar to the relations of any of the constituent nodes of airport′). We can 
then deduce that these nodes should be mapped for model integration.

Dealing with Formalism Incompatibility

Established formalism mappings. There has been a great deal of research 
on mapping between different algorithm formalisms, and there are a 
number of established standards. Table 8-2 shows a matrix in which the 
following illustrative formalisms appear in the outer cells of both the 
X and Y axis: Bayesian probability, Dempster-Shafer, fuzzy logic, pos-
sibilistic theory, certainty factor, and symbolic dictionary. Each internal 
cell denotes the mechanism used for mapping between associated for-
malisms on the outer cells of the X (to) and Y (from) axes. Note that 
the mechanism for mapping from X to Y may not necessarily be the 
same mechanism used for mapping from Y to X. Shaded cells represent 
established mechanisms for mapping between different formalisms, while 
nonshaded cells represent potential mapping approaches. In other words, 
there are known and established algorithms for mapping between the 
formalisms that are joined by a shaded cell.

Using XML schemas and ontologies for formalism mapping. Ontologies can 
explicitly identify mappings between formalisms in the attributes of links 
within a model. For such formalisms as Bayesian networks and argumenta-
tion networks, relations correlate with the links between nodes. We can add 
an attribute to each link in a Bayesian network XML schema, declaring a 
“causes” relationship between a parent and child node it connects. Further-
more, we can specify that types of links declaring a “causes” relationship 
should be mapped to the “entails” relationship of a rule-based model. When 
mapping from a Bayesian network model to a rule-based model, we can then 
infer from the ontology that a “cloudy” node in a Bayesian network that 
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“causes” a “rain” node should be mapped to a rule that has the variable 
“cloudy” as a precedent and “rain” as a consequent.

Subdomain Gaps

Subdomain gaps can be addressed by learning ontologies and ontological 
evolution in which the relationships between models are implicitly speci-
fied as models are built. Mixed initiative approaches can also be used to 
address all of the interoperability gaps, including differences in subdomains. 
For example, the system might offer suggestions about what nodes or links 
should be related between two models. The user could then accept, edit, 
or ignore these suggestions. One simple mixed initiative approach would 
be reinforcement learning (Kaelbling, Littman, and Moore, 1996) guided 
by these user selections. If a user accepts a suggestion, the system could 
increase the number of related suggestions. If a user rejects a suggestion, 
then the system should learn not to make similar suggestions in the future. 
Even devoid of other heuristics, this approach would allow the storage of 
historical information as to what input and output types the user typically 
maps together and offer these mappings as suggestions for subsequent 
model integration efforts.

In summary, there are no currently agreed-upon and widely used stan-
dards for model integration and interoperability. The field of IOS modeling 
is fragmented, with models being developed from different perspectives, at 
different levels of detail, and using different theoretical frameworks and 
architectures. To address these issues, we suggest improvements in “transla-
tion” interfaces, schemas, or ontologies that could guide integration, as well 
as mixed initiative efforts in which model developers and users from differ-
ent perspectives work together to create models. Architectures and standards 
for that would support the development of integrated interoperable feder-
ated models identified as a key area for future research in Chapter 11.

frameworks and toolkits

General Issues and Requirements�

Earlier chapters have described many IOS modeling and analysis tech-
niques, but it is generally accepted that no single approach or model-

� Much of the work described in this section was performed by Karen A. Harper, Jonathan 
D. Pfautz, Chen Ling, Sofya Tenenbaum, David Koelle, and Marc Sageman, with support 
from the Air Force Research Laboratory, Human Effectiveness Directorate (AFRL/HE) under 
contract FA8650-06-C-6731, and by Karen A. Harper and John Bachman with support from 
the AFRL/IF under contract FA8750-06-C-0078, to Charles River Analytics.
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ing formalism can or should be applied to capture all of the complex 
dynamics of modern military missions and activities. The previous section 
has described some of the fundamental modeling issues that arise when we 
consider linking up or “federating” different models, and it is clear that 
considerable progress will have to be made at the conceptual level before 
such activities become commonplace in the IOS modeling and simulation 
(M&S) community. In the meantime, there has been and continues to be 
progress in the development of more specialized (and therefore less globally 
encompassing) frameworks and toolkits that attempt to address some of 
the more practical issues of model development, verification and validation 
(V&V; see following section for more complete discussion), and integration 
across modeling concepts and instantiated simulations. In general, these 
efforts attempt to provide an integrated development environment (IDE) 
that enables 

•	 the development of simpler, more focused submodels to represent 
specific features of the behavior of interest to the analyst, using the 
most appropriate tools for modeling those features;

•	 the straightforward integration of those submodels into a cohesive 
and sophisticated representation of the overall operational environ-
ment; and

•	 the effective accounting of the complex interdependencies between 
modeled variables within the integrated system. 

Most of the work in developing frameworks and tools has occurred 
in the individual “stovepipes”—some refer to these as “cylinders of 
excellence”—that characterize each modeling community. Perhaps the best 
funded over the longest development history is the OneSAF System (One 
Semi-Automated Forces; see Chapter 2) of the Department of Defense 
(DoD). OneSAF is an M&S environment with a strong Army legacy that 
models combined arms tactical operations up to the battalion and brigade 
level, at variable levels of resolution (“entity”) from the individual soldier 
on up. A key driver in its development was to ensure “composability,” 
which is another way to say that the associated development environment 
provides for user-specifiable systems, entities, units, and associated behav-
iors (with variable “dial-in” levels of fidelity). This is accomplished via a 
Product Line Architectural Framework, illustrated in Figure 8-4, a layered 
architectural approach that allows for “plug-and-play” modules at many 
different levels and via a model-developer suite of GUIs that provide the 
following functionalities to the M&S developer:

•	 System composer: High-level control and testing of the overall 
simulation.
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•	 Entity composer: Specification of hardware components (weapons, 
sensors, etc.).

•	 Unit composer: Specification of the organizational structure.
•	 Behavior composer: Specification of the entity behaviors in terms 

of a task-network branching structure comprised of conditional 
branch points and behavior primitives (this is the heart of the 
OneSAF behavior model).

•	 Management and control tool: High-level control of the mission 
objectives, order of battle, route plans, etc.

OneSAF’s capabilities are impressive, buts its focus on the ground war, 
its limited repertoire due to prescripted behavior primitives, its inability to 
model deep cognitive or social interactions, and its narrow focus on mili-
tary missions (in contrast to more encompassing PMESII considerations) 
all point to the need for further model development in this area. Its focus 
on bringing the modeling out of the hands of the programmers and into the 
hands of the analysts and users, via a focused effort on IDE development, is 
commendable and should serve as a model for parallel efforts now ongoing 
in other M&S communities.

Another modeling community working on IDEs is the group of 
researchers and model developers focusing on the behavior of the indi-
vidual human, often based on the framework of the particular cognitive 
architecture underlying the model (see Chapter 5 for additional discus-
sion). Table 8-3 provides a sampling of some of the individual behavior 
models discussed earlier, along with their associated IDEs. As can be seen, 
the IDEs are very specific to each cognitive modeling paradigm; can range 
from highly generic programming language development environments 
(e.g., CLOS) to very specific model development environments (e.g., iGEN); 
assume varying levels of expertise on the part of the model developer, from 
general programming expertise to “drag-and-drop” graphic construction 
skills; and provide a range of developer support, from little beyond the 
basic programming IDE to extensive debugging, logging, and visualization. 
Again, this is not meant to be a survey of such IDEs, but rather an illustra-
tion of the variety of IDEs in use by the development community.

Yet another modeling community engaged in developing frameworks 
and toolkits is the widespread and diverse group of researchers, model 
developers, and applications specialists focusing on group and organiza-
tional models. One of the best clearinghouses for gaining an overview of 
available models and tools is maintained by the Computational Analysis of 
Social and Organizational Systems Center at Carnegie Mellon University. 
Although there exists some conflation of models and the associated IDEs for 
their development, the site provides useful pointers to a number of model 
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TABLE 8-3  Selected Cognitive Architectures and Their Development 
Environments

Model
Development 
Environment Comment

ACT-R 6.0 No formalized 
development 
environment, since 
model developers 
work directly with 
the different ACT-R 
frameworks: LISP 
ACT-R, Python 
ACT-R, and 
jACT-R

•	 LISP ACT-R is the “baseline” version and requires 
a knowledge of LISP programming

•	 Python ACT-R makes ACT-R available to a wider 
audience (i.e., non-LISP programmers)

•	 jACT-R is a Java version
•	 All have associated programming IDEs but require 

programming skills—and theoretical knowledge of 
the underlying cognitive architecture constructs—
significantly beyond drag-and-drop model-building 
activity

COGNET iGEN •	 Workbench-based development environment with a 
collection of high-level agent-building tools

•	 GUI for defining program logic and knowledge, 
without programming 

•	 Application program interface for integration of 
iGEN cognitive agents within existing applications 
using standard languages/protocols

D-OMAR OmarL, OmarJ •	 OmarL is a LISP-based environment for knowledge 
representation and the definition of agents and 
their behaviors. The languages are extensions of 
the Common LISP Object System (CLOS)

•	 OmarJ is a Java-based agent development 
environment that provides tools for creating 
and managing systems of agents operating in 
a distributed computing environment. OmarJ 
provides most of the features of OmarL with an 
improved external communication layer that uses 
Jini for internode communication and the ability to 
break out of simulation mode and run agents in a 
non-time-controlled environment

EPIC •	 IDEs associated with original LISP version of EPIC 
and with current C++ version

SAMPLE AgentWorks™ AgentWorks™ consists of:
•	 Perceptual, cognitive, and communications modules 

including neural networks, fuzzy logic, Bayesian 
belief networks, expert systems, and argumentation 
engines

•	 Advanced processing capabilities supporting 
planning, learning, and distributed applications

•	 Enhanced usability components for construction, 
validation, and visualization of agent processes

Soar SDB •	 Soar Debugger (SDB) is an XDB-like debugger 
for the Soar programming language, including 
functionality, such as deep structure inspection, 
watches, and breakpoints and a graphical interface 
to common Soar commands
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development tools and frameworks at Carnegie Mellon and elsewhere, as 
illustrated by:

•	 Construct (http://www.casos.cs.cmu.edu/projects/construct/info.
html), a multiagent model development environment

•	 OrgAhead (http://www.casos.cs.cmu.edu/projects/OrgAhead), an 
organizational structure analysis tool

•	 DyNet (http://www.casos.cs.cmu.edu/projects/DyNet)
•	 BRAHMS Composer (http://www.agentisolutions.com/products/

composer.htm), the IDE for BRAHMS, an agent-based organiza-
tional modeling framework

•	 SimVision (http://www.epm.cc/solutions/simvision.htm), a bundled 
software environment and methodology for organizational design

•	 CONNECT (http://www.cra.com), a social network analysis tool 
for organizational modeling and simulation

•	 DDD (Distributed Dynamic Decision-making; http://www.aptima.
com/a-sim.php), a simulation building and execution environment 
for predicting and assessing team performance

A quick perusal of these tools (and others) makes it clear that, like 
the cognitive modeling frameworks described earlier, the associated IDEs 
run the gamut in sophistication, from those demanding high levels of user 
expertise in the underlying theory and the associated modeling language, to 
those stressing ease of use, but imposing limited applicability for selected 
domains. Considerable work is still needed to bring these highly special-
ized models out to the general user community, via IDEs that provide wide 
applicability as well as usability.

In the general area of developing representations for “soft” problems in 
IOS behavior,� such as modeling the evolution of a terrorist organization or 
understanding the multiple possible paths in nation-state rebuilding—and 
the interplay of critical diplomatic, information, military, and economic 
(DIME) and PMESII variables—little has been accomplished in the way 
of developing associated IDEs to support the DIME/PMESII M&S com-
munity. This is primarily due to the fact that such nascent modeling efforts 
are still grappling with the conceptual underpinnings of representation; 
considerations of model development infrastructure and user- (developer-) 
friendliness are still considered a secondary objective. However, the lack 
of such environments may actually be hampering conceptual development, 

� Soft in the sense of heavily driven by human and social rules of behavior, as opposed to 
more readily modeled problems that are well constrained by generally accepted physical, 
economic, or doctrinal factors.
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because unwieldy development environments slow the “test-and-evaluate” 
spiral cycles that must inevitably occur in this field.

As noted earlier, modeling of military activities in which IOS behaviors 
dominate outcomes (e.g., asymmetric threats embedded in urban environ-
ments) demands a clear understanding of the complex sociopolitical con-
text. This translates to the analysis of the potential effects that a given set of 
DIME actions will have across the full range of the PMESII context. Within 
the context of the Integrated Battle Command program of the Defense 
Advanced Research Projects Agency (http://www.darpa.mil/sto/solicitations/
IBC/), these analyses are viewed in two ways, as shown in Figure 8-5. From 
left to right, the figure shows a causal analysis in which, given a set of pos-
sible DIME actions to be taken, a system of complex and integrated behav-
ior models is used to predict the potential effects those DIME actions may 
have across the PMESII dimensions. From right to left, the figure shows a 
diagnostic analysis in which, given a set of desired PMESII effects in the 
operational domain, the same system of integrated behavior models is used 
to identify the candidate sets of DIME actions that might be applied to 
achieve those desired effects. By conducting both types of analyses—ones 
that move well beyond the limits of conventional military “metal-on-metal” 
modeling embodied by OneSAF, for example—commanders will be able 
to develop significantly deeper insight into the dynamics of the big picture 
operational context (see additional discussion later in this section).

The key to successfully executing such encompassing analyses lies in 
the development of the embedded behavior models representing the full 
range of PMESII variables and how they can be individually and collectively 
affected by specific DIME actions. For example, as described earlier in this 
chapter, the SRO model (Robbins et al., 2005) analyzes the organizational 
hierarchy, dependencies, interdependencies, exogenous drivers, strengths, 
and weaknesses of a country’s PMESII systems using a complex set of 
interdependent system dynamics representations. While approaches like 
this have demonstrated some success in modeling subcomponents of the 
PMESII environment, it is generally accepted that no single approach or 
modeling formalism can or should be applied to capture all of the complex 
dynamics of modern asymmetric warfare; in other words, it is not necessary 
to stick with a single modeling formalism (e.g., system dynamics model-
ing) to model something as complex as a nation-state undergoing political 
upheaval, foreign intervention, or civil war.�

A better approach is to provide for an IDE that enables the intercon-
nection of disparate modeling methods representing DIME/PMESII features 
using the most appropriate method to model those features. A key issue 

� A brief overview of potentially useful modeling paradigms for DIME/PMESII modeling and 
analysis issues is given in Appendix C.
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is providing compatibility across models and their underlying modeling 
formalisms, such as the models described in Chapters 4 through 6 and the 
generic formalisms presented in Table 8-2. As noted above, this is a con-
ceptually difficult problem to solve theoretically, but some progress can be 
made with the development of sufficiently flexible IDEs.

IDE Development Goals and Examples

An ideal IOS IDE, especially one targeted for the complex task of devel-
oping DIME/PMESII models, would include

•	 an intuitive graphical model development environment support-
ing the specification of heterogeneous submodels using a variety 
of modeling formalisms (Bayesian reasoning, fuzzy logic, system 
dynamics models, rule-based expert systems, etc.).

•	 a suite of model integration tools enabling user-driven sharing of 
data and information among constituent DIME/PMESII models.

•	 a suite of model V&V tools enabling user-driven verification of 
individual and integrated DIME/PMESII model behavior as well 
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as the large-scale data collection required to support validation of 
model behavior against empirical data.

•	 a model analysis infrastructure that enables user-driven causal and 
diagnostic reasoning within the integrated modeling framework 
using sampling techniques and sensitivity analysis, respectively.

•	 a suite of multiresolution modeling tools and supporting infra-
structure to support the user-driven specification of DIME/PMESII 
submodels at multiple levels of modeling fidelity.

•	 a model management infrastructure that enables the capture, dis-
tribution, and maintenance of large libraries of DIME/PMESII 
submodels.

We describe here an exemplar effort in developing such an IDE—the 
Human and System Modeling and Analysis Toolkit (HASMAT) developed for 
AFRL/HE (Bachman and Harper, 2007; Harper et al., 2007)—and describe 
two specific modeling efforts conducted with this framework, to illustrate 
how nonconventional modeling problems—specifically counterterrorism and 
military recruiting—can be addressed within such frameworks. HASMAT is 
intended to be representative of efforts under way to develop frameworks 
in this area. We close with a description of generic DIME/PMESII analysis 
capabilities that also need to be part of such frameworks.

Human and System Modeling and Analysis Toolkit

HASMAT is designed to support predictive analysis of behavioral 
and organizational dynamics by integrating existing and mature technolo-
gies. The HASMAT functional system architecture is shown in Figure 8-6. 
HASMAT is used by a modeler to create a model representing human 
behavior at multiple levels, from societal behavior down to individual cog-
nitive decision-making behavior. To create these models, the modeler can 
use a variety of modeling methods (e.g., social network modeling, Bayesian 
belief networks, rule-based systems, fuzzy logic, case-based reasoning). The 
modeler can also use a number of different methods for model integration, 
defining ontologies, data schemas, and mappings between individual model
ing components or between a model and an external environment (e.g., a 
decision aid, a simulation, a real-world data source). A modeler also has 
access to tools for model management, including version control methods 
for existing or newly created models, and libraries of models and model 
templates that can be adapted to a particular domain or situation. All of 
these capabilities are accessed via the modeler interfaces, which provide 
GUIs to specific toolkit features. All of these components are integrated 
into a software system architecture designed to support reconfigurability, 
integration, and incorporation of new capabilities.
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FIGURE 8-6  HASMAT system architecture. 
SOURCE: Harper et al. (2007).

Figure 8-7 provides an overview design vision for the PMESII model 
analysis tools designed in the HASMAT environment. In the upper left of 
the graphic is shown a simple selection tool for the analyst to select from 
among the range of available models defining the PMESII environment 
for execution and analysis. The selection of a specific model results in the 
input fields for that model being captured from the selected model (via its 
XML schema-based I-O specification) and populating the tabular input sets 
shown on the left. On the right side of the figure are displayed the outputs 
of the model’s execution, in this case, showing the national and regional 
SRO model outputs. This could be generalized as other potential represen-
tative structures, including a map-based overview of the model-generated 
results. As the user selects specific outputs in the callout datasets, the 
overview map shows the comparison of that value set across the modeled 
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regions through fill color. As the user drags the timeline back and forth, 
the output datasets will display the values as described for that point in 
time. Finally, in the lower right, the analyst is also provided with graphical 
displays of selected model outputs in time-series data plots, a feature that 
allows for easier access to trend data throughout a model run for more 
detailed analysis. As the user manipulates the timeline, these data plots shift 
a marker to identify the value at the selected time.

Modeling Terrorist Network Evolution

Figure 8-8 illustrates the software integration strategy that was used to 
generate a HASMAT-based modeling framework of terrorist organization 
activity (Harper et al., 2007). The model constructed within the integrated 
HASMAT framework consists of a social network representation of an 
organization or loosely connected set of groups or individuals of interest 
to the counterterrorism analyst. Each node within the social network can 
represent an individual (e.g., a key leader in the community of interest that 
has been the target of specific intelligence-gathering activities), a group (e.g., 
a set of individuals representing a cohesive entity in the community of inter-
est), or an event. The links within the social network represent relationships 
between nodes in the modeled community, in which these relationships are 
defined at the outset by known intelligence (e.g., individual X is a known 
leader of group Y). This social network representation enables the analyst 
to build up the network over time based on intelligence products.

In typical social network analysis applications, this static representa-
tion would be used and analyzed to infer structural elements or features of 
the organization that, for example, might be exploited by counterterrorism 
specialists to capture further intelligence or to infiltrate a known group of 
interest. In HASMAT, however, this social network topology provides only 
the first step of the modeling capability. In HASMAT, each node of the 
social network is then populated by a “behavioral agent” representing the 
dynamic behavior of the modeled individual or group. These agents can 
be configured by the analyst based on gathered intelligence information. 
Thus, these agents are not static representations of individual or group 
“profiles,” although they do contain representations of such information. 
Instead, they provide dynamic simulations of behavioral responses of the 
modeled individuals or groups within the social network to events and 
actions that are “injected” into these models based on evolving simulations 
of the social network dynamics. For example, an agent representing a given 
individual can “react” to incoming information (e.g., the invasion of Iraq 
by U.S. forces, the introduction of a new leader into a group of interest) 
and generate new events that propagate out to the social network (e.g., the 
establishment of new or strengthening/weakening of existing relationships 
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within the network). The result is an emergent, evolving representation of 
the organizational dynamics of the modeled community, driven by modeled 
reactive behaviors of individuals and groups. 

Finally, at the bottom of Figure 8-8, we show the supporting model-
ing technologies that are assembled by the model developer (the analyst, 
a third-party social scientist, etc.) to provide the detailed representations 
of modeled individual and group behaviors. These detailed components 
capture and generate the simulated responses of a modeled individual or 
group based on injected or simulated stimuli. These simulated responses 
are then pushed back up to the social network representation as “change 
events” within the social network itself. Such change events include the 
generation of new links (i.e., relationships), the deletion of existing links, 
the adjustment of profile characteristics of the modeled node (e.g., an 
increase or decrease in an individual’s radicalism), and the adjustment of a 
link attribute (e.g., strength or nature of a relationship).

This modeling framework was then used to model the well-documented 
terrorist activity leading up to the 2004 Madrid train bombings (Sageman, 
2004, 2006; Harper et al., 2007), including organizational relationships 
among individuals associated with the attacks and their evolution over time 
(Telvick, 2007). Many interesting dynamics were seen in the data and mod-
eled in the HASMAT environment. One goal of the effort was to model the 
outcomes that a group can take—it can talk or boast about operations, or it 
can actually take action. There are many factors that contribute to the final 
shift to action, including how much they have boasted of action so far, the 
easy access to weapons, the required skills, an external missive or deadline, 
and past criminal history—a predisposition to act. This and several other 
model outcomes were compared with the available data to assess model 
fidelity to the real world, to support rapid spirals of hypothesizing, develop-
ing, and validating, in an effort to understand the underlying dynamics of the 
terrorist network’s behavior in terms of fundamental behavioral “primitives” 
(Harper et al., 2007). Without the rapid development environment afforded 
by HASMAT (and similar IDEs now beginning to be used in the community), 
these rapid spirals and exploration of possibilities would not be possible.

Modeling Iraqi Recruiting Activity

A similar software integration strategy was applied to generate a 
HASMAT-based modeling framework of Iraqi recruiting and training 
activity (Bachman and Harper, 2007). The SRO model (Robbins et al., 
2005) was constructed within the integrated HASMAT framework, consist-
ing of a system dynamics model representation of key PMESII components 
of Iraq, including demographics, coalition and insurgent activities, criti-
cal infrastructure, etc. This allowed for full communication between two 
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heterogeneous modeling environments and the development of specialized 
models that were best served by the system dynamics paradigm (e.g., SRO 
model), or by a suite of computational intelligence components (e.g., agents 
that incorporate fuzzy logic, belief networks, expert systems). 

A major objective of the development effort, besides developing a 
framework for integrating heterogeneous modeling paradigms, was to 
provide the analyst with an aggregated, accessible view of model results 
that could be used to support decision making by a commander or other 
decision maker. Such a tool would allow the commander’s staff to easily 
generate model inputs (representing DIME actions that could be taken) 
and monitor model responses over time in a presentation framework that 
would be more intuitive than the PMESII IDE itself. For example, in the 
context of the recruiting and training SRO model, the analyst might specify 
a specific allocation of troops to support recruiting and training of specific 
capabilities in a given region of Iraq. The models would then be executed 
against this input set, and the analyst could monitor the overall effects 
on high-level PMESII variables (unemployment, economic stability, crime 
rates, etc.) in an intuitive graphical interface. This would insulate the ana-
lyst from the detailed outputs and implementation details that would be of 
interest to the model developer, while providing the analyst with intuitive 
and targeted real-time decision support leveraging the models constructed 
using the HASMAT framework.

Advanced Analysis Capabilities 

Making predictions using DIME/PMESII models requires two types 
of what-if analysis, depicted in Figure 8-5 earlier in this chapter. The first 
type, causal reasoning, enables analysis from causes to effects. This allows 
the user to consider the effects of potential DIME actions on the PMESII 
models under consideration. The second type, diagnostic reasoning, enables 
reasoning from effects to causes. This allows the user to specify the desired 
(or actual) PMESII effects and determine the DIME actions that are most 
likely to achieve this result while minimizing undesirable second- or third-
order effects. Supporting these two types of reasoning using PMESII models 
requires specific statistical sampling and analysis techniques.

Causal reasoning. In this type of analysis, the user specifies a set of DIME 
actions and the analysis indicates how these actions would influence the 
given PMESII models. Due to the nonlinearity of the systems being modeled 
and the incompleteness of information about system state, it is unreason-
able to expect that PMESII models will provide high-fidelity predictive 
capabilities. Instead, the predictive value of the models lies in their ability 
to generate the distribution of plausible outcomes across multiple courses of 
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action. One approach to this is to use Monte Carlo sampling, which refers 
to a family of algorithms that approximate a function f by calculating f(x), 
for a randomly chosen x, over many iterations. Sampling is a useful approx-
imation technique in cases in which the function to be computed is difficult 
or impossible to calculate exactly. For complex nonlinear models such as 
PMESII models, randomized sampling provides an effective approach to 
approximating model outputs because it is independent of the underlying 
formalisms being used by the model.

Sampling can be used to analyze any model that incorporates both (1) a 
representation of the cause-effect relationships between model elements and 
(2) a specification of the relative likelihoods of inputs or initial states of 
model elements for which such conditions are not explicitly specified by the 
user. The first condition requires only that the model being sampled have 
some predictive capability. For example, hidden Markov models, belief 
networks, neural networks, and rule bases all meet this condition; a purely 
analytical tool such as a topic tree or a concept map does not. The second 
condition requires that the model specify a distribution of initial conditions 
for model elements, including the likelihood that various actions (either 
blue or red) will be observed. This allows the sampling algorithm to select 
random inputs according to a plausible distribution.

Given that the DIME/PMESII models in the system meet these two 
criteria, a user would perform a causal analysis using the analysis sampling 
tool in the following manner:

1.	 Specify conditions. The user first specifies the set of assumptions 
to be evaluated by the analysis; this includes not only the DIME 
actions of interest but also assumptions about the state of hidden 
variables in the models. The user also specifies the number of itera-
tions to be performed by the sampling algorithm.

2.	 Select data collection parameters. The user then selects the elements 
in the models for which state data will be collected.

3.	 Begin the simulation. The IDE samples the PMESII models repeat-
edly. At each iteration, the states of variables not explicitly set 
in step 1 are randomized to permissible states given information 
about the relative likelihood of the initial states of the variable. The 
effects of the model inputs are propagated through the model, and 
the framework collects system state data for the variables selected 
by the user in step 2. 

4.	 View collected data. The user then views the data collected in 
step 3, viewing the relative frequencies of various outcomes.

The envisioned IDE would allow the model analyst to specify initial con-
ditions for input variables and view the resulting simulation data in a graphi-
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cal format for analysis. By performing this type of simulation-based analysis 
for multiple DIME actions, the user would be able to determine which actions 
result in a greater likelihood of achieving the desired effects as well as which 
actions result in a greater likelihood of causing undesired effects. 

Means-ends and sensitivity analysis. The second type of reasoning of inter-
est to a DIME/PMESII modeler is means-ends analysis: for a given effect or 
system state, what are the actions that can be taken to achieve the desired 
state? This type of analysis is very difficult to do using heterogeneous 
models and is an area in need of further work. Outlined here are some 
potential approaches to supporting this type of analysis.

One approach would be to perform a forward-chaining analysis for 
each set of actions under consideration; the set of actions most likely to 
achieve the desired result could be selected empirically based on the results 
of each analysis. Such an approach is clumsy and inefficient, however, since 
the forward-chaining reasoning process is itself computationally expensive. 
Also, performing a brute-force means-ends analysis in this fashion, with the 
large number of action sets that are likely to be possible, would quickly 
become prohibitively complex and computationally expensive.

One solution is to reduce the search space of possible actions or input 
states using a technique known as sensitivity analysis. Sensitivity analysis 
computes, typically using black box sampling techniques, how variability 
in the output of a model depends on variation in its inputs. Because it uses 
sampling, sensitivity analysis can also be applied to any type of model formal-
ism: only the inputs and outputs are observed. In the case of reasoning using 
DIME/PMESII models, we can use sensitivity analysis to determine which 
actions or input variables are most relevant in determining the outcome or 
effect in which we are interested. Once we have identified a subset of relevant 
actions, we can then perform brute-force means-ends analysis in the manner 
described above to determine the optimal combination of those actions.

To illustrate this process further, consider the following example. 
Suppose a group of modelers have developed a network of DIME/PMESII 
models specifying the interrelationships between the economic and political 
elements of a particular country. A user of the envisioned framework wishes 
to use the aggregated model to gain insight into the types of actions that can 
be taken to boost public confidence in the existing government. Because of 
the complexity of the model and the number of possible inputs and actions, 
the user performs a sensitivity analysis and determines that the factors 
most critical in determining public confidence are the supply of electricity, 
the visibility of police in the community, and the price of gasoline. Having 
identified this subset of factors, the user performs a brute-force means-
ends analysis and determines that public confidence can be maximized by 
increasing electricity supply by 20 percent, maintaining the current high 
level of police forces, and reducing taxes on gasoline by 3 percent.
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Because sensitivity analysis determines the variability of model output 
according to its inputs, it can provide results of interest other than just the 
relevance of an input. For example, the rate of change of model output as a 
result of input may be of even greater significance for a model user in select-
ing an optimal course of action. For example, if the model indicates a strong 
nonlinearity or “tipping point” in the output variable under consideration, 
this would indicate the importance of gathering additional information to 
determine how close to this tipping point the system being modeled actually 
is. Or the model may indicate that the results of an action on an output 
variable may be highly variable, with a large standard deviation; this would 
indicate a higher risk associated with the action, especially in cases in which 
the impact of the actions being taken is difficult to control.

In summary, a variety of frameworks and toolkits are in development, 
although the choices for IOS models are much more limited than for cog-
nitive models of individuals, for which there are a number of well-known, 
tested, alternative architectures in widespread use. It is a recommendation 
of the report (see Chapter 11) that diverse frameworks for IOS models be 
supported and further developed—it is too early to tell which approaches 
will be most useful for different purposes.

Verification, validation, and accreditation

In this section we describe some of the significant issues involved in 
the VV&A of IOS models: the ways in which they differ from physics-
based models, the special challenges of forecasting human behavior, given 
the huge number of variables that can combine to determine it, and other 
thorny issues. We introduce the term “action model” and argue that mili-
tary requirements for IOS models often include models for action as well as 
for understanding and exploration, and that the validation of such models 
cannot be done without a clear specification of the purpose for which the 
model is being developed. We also discuss the ways in which the military 
approaches VV&A and provide some examples of VV&A issues specific 
to various model types discussed in previous chapters. Finally, we make 
recommendations for dealing with IOS VV&A challenges. 

General Issues: Validation for Use 

All models are wrong, but some are useful. 
G.E.P. Box (1979)

V&V are challenging issues for social science M&S. As generally 
understood, verification is the “process of determining that a model imple-
mentation accurately represents the developer’s conceptual description and 
specifications.” Validation is the “process of determining the degree to 
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which a model is an accurate representation of the real world from the 
perspective of the intended uses of the model” (ITT Research Institute, 
2001, p. 10). Stated more intuitively (ITT Research Institute, 2001, p. 10), 
verification asks “Did I build it right?” Validation asks “Did I build the 
right thing?” 

In building it right, there are two elements: the degree of real-world 
representation and the intended uses of the model. They are related but are 
not the same thing. A realistic representation may not meet the intended 
use. It is a frequent error to put primary emphasis on a realistic represen-
tation, assuming it will meet the purpose. The result is an unending quest 
for realism without considering the intended use or purpose of the model. 
When one begins with the intended use or purpose, then the degree of real-
world representation follows. Depending on the type of understanding that 
is needed or the action that might be taken, we can determine the degree 
of realism required. Here we develop an action approach to validation that 
begins with the model purpose—to take action. 

V&V are necessary to support the goal of building and applying pur-
poseful models and model simulations for understanding and exploration 
as well as for real-world actions. Research program managers frequently 
see V&V as a drain on resources. In contrast, practitioners or model users 
typically view the V&V process as a worthy investment of time and effort, 
since it can prevent the costly consequences of using incorrect models and 
simulations. If the intended use is not fully considered, then the model is not 
as useful as it might be. When the intended purpose is to take action—to 
do something—not just to understand or describe the world, the degree 
of realism needed is determined by the actions that can be taken in the 
situation. 

This section stresses validation issues. Validation can be approached 
in two different ways within the larger V&V process. The first way is to 
begin with verification, proceed to validation, and then to the intended 
purpose. This ordering of concerns may result in a model that is verified 
and validated yet fails to be useful for its intended purpose. The second 
and recommended way is to begin with the intended purpose, proceed with 
verification, and then to validation in relation to intended purpose (Burton 
and Obel, 1995; U.S. Department of Defense, 1995). 

First and foremost, without a prior specification of intended purpose, 
there are no clear-cut a priori criteria for deciding which features of a phe-
nomenon to stress in its modeled representation. Indeed, multiple models 
that represent different aspects of a given phenomenon might be desirable 
and even necessary to achieve different purposes. For example, given a 
potentially unstable situation, a model constructed to describe the situation 
will in general differ substantially from a model constructed to guide the 
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selection of an intervention action to stabilize the situation. That is, a model 
for understanding may not be a good model for action.

Moreover, each model purpose entails its own unique model validation 
requirements. In particular, the model purpose determines the appropri-
ate trade-off between predictive accuracy, the appropriate formulation 
of dynamic processes, and the appropriate treatment of idiosyncratic and 
stochastic elements of real-world processes.

For example, models are frequently criticized for lack of realism—that 
is, not describing the world as it is observed or leaving out some aspect—
but realism to what purpose? The continued addition of realistic features 
makes the implications of a model more difficult to understand, requiring 
increasingly sophisticated statistical and analytical techniques. Eventually, 
the continued addition of realism will result in a model’s exhibiting such 
complexity that it has all of the interpretation problems of the real world 
itself, problems that presumably motivated the modeling effort in the first 
place. Extreme realism might also require an impractical amount of data 
to build the model or to specify parameter values and run the model. Con-
sequently, if a simple model serves the intended purpose, then it should be 
preferred. Action models require some degree of realism for action, but real-
ism is not a good test for action models. For action models, the purpose is 
to support decisions to take action—particularly when there is considerable 
uncertainty about the world.

As stressed by Marks (2006), the assertion that a model is validated 
when it is determined to be useful for its intended purpose is vacuous 
until “purpose” is defined. The purpose of a model could be to explain an 
observed phenomenon, to forecast a range of future phenomena that might 
occur without an intervention, or to guide the taking of actions in some 
specific problem context. For example, purposes might include behavioral 
description, behavioral explanation, behavioral prediction, exploration, 
normative advice and implications, training, and decision making (Burton 
and Obel, 1995). A different model would typically be required to meet 
each of these different purposes. 

The first type of model purpose—explanation—requires what might be 
termed an understanding approach to validation. The latter type of model 
purpose—guidance for action—requires what might be termed an action 
approach to validation. Both purposes typically involve forecasting. The 
next section briefly reviews the understanding and exploration approach, 
commonly adopted in academic research. Following that, the next section 
elaborates the action approach, in which the purpose is to take action or 
intervene. 
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Validation for Understanding and Exploration

Consider first the case in which validation is undertaken for the purpose 
of explanation or of understanding the system that is modeled in order to 
gain new insights. Intervention is not the purpose here. Ideally, an explana-
tion of a phenomenon would entail a complete understanding of both the 
necessary and sufficient conditions for its occurrence. In practice, compromise 
is essential. Any model will fall short of a complete understanding. There is 
no limit to further refinement for a more complete understanding. 

As stressed by Haefner (2005), one possibility is that a model of a given 
phenomenon is incomplete in the sense that it is not capable of explaining 
all aspects of the phenomenon deemed to be important for an intended pur-
pose. At the other end of the spectrum, multiple distinct models could offer 
different competing explanations for a given phenomenon, none of which 
could reliably be eliminated on the basis of currently available empirical 
evidence (observational equivalence). 

An intermediate possibility stressed by Epstein (2006) is that a model 
has been constructed that is capable of reliably generating a particular 
phenomenon of interest (generative sufficiency). Such a model offers one 
candidate explanation for the phenomenon. Intensive experimentation 
could then be used to judge the robustness of the generative explanation 
to perturbations in the model specifications (Judd, 2006). If this process 
could somehow identify the entire class of models capable of generating 
the phenomenon, then the ideal but elusive goal of necessary and sufficient 
explanation would be achieved.

Consider next the case in which the purpose of validation is forecasting 
to identify a range of possible outcomes and estimate the likelihood of each. 
As Marks (2006) notes, this is a simpler purpose than explanation, in that 
only sufficient conditions for the occurrence of a phenomenon are sought. 
That is, one wants a model capable of generating reliable forecasts of out-
comes (or outcome distributions) under various possible circumstances in 
some specified problem domain of interest. Whether this model is capable 
of elucidating all possible circumstances under which these outcomes would 
occur is not an issue of concern. 

However, what is of concern for forecasting is whether a model is 
inaccurate. Does the model predict outcomes with misleading likelihoods? 
In particular, does the model predict outcomes that could never actually be 
observed? Prediction is a very important element of the action approach, 
as we explain below. 

An important use of models is for exploration and the generation of 
nonobvious insights into complex phenomena that could not have been 
obtained without the model. A classic example is Schelling’s (1971) tipping 
point model, which showed that neighborhood segregation could occur 



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

COMMON CHALLENGES IN IOS MODELING	 305

even if most people are racially tolerant. In these cases, the focus is not 
so much on the “accuracy” of the model, but on “unexpected” results. 
However, these models are also driven by their purpose—to provide new 
and important insights, where “new” and “important” are in the eye of the 
beholder—and their validity cannot be assessed without a deep understand-
ing of that purpose.

Validation for Action

There are many aspects of an action model. An action model needs 
to relate actions of interest to outcomes of interest. The model does not 
necessarily need to reveal deep understanding. However, an action model 
must be timely and accurate relative to its purpose. For example, a model 
that predicts a hurricane’s landfall is useful only if it provides predictions 
that are timely enough to allow for evacuation in advance of landfall and 
accurate enough to be taken seriously by those who need to evacuate. An 
action model is context specific in terms of available resources that help 
define what is feasible at this time and this place. In the illustration to 
follow, these issues are fundamental. 

Validation for action begins with the purpose of the model. Prediction 
without and with intervention is an important element of an action model. 
Consider, now, an action model whose intended use is to provide guid-
ance for the taking of actions in an uncertain environment. The validation 
process for an action model is necessarily different, but it does incorporate 
aspects from the validation processes described in the previous section for 
explanatory and exploratory models. In particular, prediction is important 
to action.

Specifically, the validation process for an action model must include a 
careful consideration of the modeled action choices, including no interven-
tion. For example, have these action choices been specified in a suitably 
realistic or feasible way? And have enough action choices been included in 
the action domains of decision makers to permit them to display a realis-
tic degree of flexibility in the face of changing and possibly unanticipated 
conditions? Appropriate modeling of action choices will not eliminate the 
uncertainty inherent in a situation, but it should help to clarify the possible 
action alternatives and hence provide useful guidance regarding the best 
action to take. 

We start by considering the validation of a simple forecasting model 
with no action domain. This model is then generalized to an action model, 
and the implications for validation are considered. 

A simple forecasting model with no action domain. The simplest situa-
tion is one of pure prediction in which there is no action to be taken. As 
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an illustration, consider a corn farmer who lives in an area where it might 
rain or not and who wishes to predict the weather. This weather prediction 
problem for this corn farmer prediction model can be parsed into a number 
of distinct modeling issues. 

First, what exact form could a weather prediction take? For example, 
the farmer could focus solely on rain, or he could also take sunlight into 
account. If the focus is solely on rain, the farmer could consider a simple 
probability distribution consisting of probability assessments for rain or 
no rain, or he could consider a more sophisticated probability distribution 
consisting of probabilities spanning the range of possibilities from no rain 
to a great deal of rain. The farmer might also choose to collapse this prob-
ability distribution into a simple prediction (forecast) concerning whether 
it will rain or not. 

Alternatively, it could be that the farmer ultimately cares only about 
his corn yield, and he cares about the weather only to the extent that he 
believes the weather affects his corn yield. The farmer might express this 
belief by postulating an if-then relationship between weather and corn yield 
of the form “if A, then B.” The contingency condition A might be either 
“rain” or “no rain” and the result B might then be a specific conditional 
probability distribution Prob(b|A) for the corn yield b conditional on the 
realization of A. For example, it could be that the contingency condition 
“rain” is postulated to result in a two-thirds chance of a high yield and a 
one-third chance of a low yield, whereas the contingency condition “no 
rain” is postulated to result in a 50-50 chance of a high or low yield. 

If-then relationships permit the formation of compound predictions. 
For example, continuing with the above illustration, constructing a corn 
yield prediction requires the farmer to assess and compound the uncertainty 
arising from two distinct types of events: the weather A, and the corn yield 
b conditional on the weather A. By the Bayes rule, the joint probability 
Prob(A∩b) that a specific weather event A and a corn yield b both occur 
is given by Prob(A)Prob(b|A). Each probability assessment—Prob(A) and 
Prob(b|A)—requires its own form of validation. 

Second, what exact form should a weather prediction take, given the 
purpose that drives the corn prediction model? If the farmer wants only a 
rain forecast, then a simple assessment of the probability of rain versus no 
rain might suffice. If the farmer wants a more sophisticated understand-
ing of the weather, he might assess a finer range of probabilities spanning 
a range of rainfall amounts. If he is interested in constructing a com-
pound prediction of corn yield, then the fineness of his weather probability 
assessments will presumably depend on the postulated impact of different 
weather events A on corn yield b; there is no need to separately assess the 
probability of no rain and very light rain if both events are postulated to 
have the same effect on yield. Moreover, in addition to forming probability 
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assessments Prob(A) for weather events A, he will need to assess the con-
ditional probability Prob(b|A) of each possible corn yield b conditional on 
each possible weather event A. 

Third, if an outcome is inherently uncertain, then point predictions 
regarding this outcome cannot be made with certainty. In the simple predic-
tion model at hand, there is no way to eliminate the inherent uncertainty 
about the weather, nor should there be. A model cannot eliminate the 
inherent unknown of whether it will rain or not. A model describes what a 
modeler thinks he knows, but it also highlights what he does not know. A 
farmer might be able to say with confidence that the probability of rain is 
0.3. Or, more generally, he might be able to provide a complete description 
of all possible rain events A in terms of probability assessments P(A) or by 
means of a nested sequence of confidence intervals. But he cannot say for 
sure whether it will rain or not. 

To be valid for situations with inherent uncertainties, a model should 
reflect honestly what is knowable and capture well what is known. It is 
misleading at best, and quite possibly damaging, to use point estimates as 
if it is known with certainty what will happen. It is inappropriate to build 
more into a model than is knowable for the situation. 

The corn farmer prediction model at hand is a pure prediction model; 
the farmer is not faced with the need to choose an action. The following 
section considers the implications for validation when this simple model is 
generalized to include action choices for the farmer.

A simple illustrative action model. Consider, now, a corn farmer action 
model that represents a simple extension of the previous corn farmer pre-
diction model. The corn farmer now has the option of adding fertilizer to 
his field or not. Consequently, the farmer’s action domain consists of two 
possible action choices: add fertilizer to the field or do not add fertilizer to 
the field. (This action validation model is based on a decision theory model, 
similar to those discussed in Chapter 5.)

Some structural aspects of the farmer’s problem are assumed to remain 
the same: the probability that it will rain or not (which assumes the weather 
is independent of the farmer’s action choice) and the possible corn yields 
realized under rain or no rain in the absence of fertilization. However, the 
impacts of fertilization on corn yield—for example, bushels per acre—when 
it rains and when it does not rain must now also be considered. Specifically, 
as depicted in Table 8-4, the farmer needs to specify what the corn yield 
would be under rain and no rain should he choose to add fertilizer to his 
field or not. This results in four distinct “compound” contingency condi-
tions (combined weather and action states) that could impact corn yield.

As Table 8-4 shows, the corn farmer action model has the same general 
framing as the corn farmer prediction model, except that the if-then rela-
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tionships must now be generalized to indicate what will happen for various 
actions or interventions inserted into the natural order of things.

An important point to stress is that the validation of an action model 
does not necessarily require the model to generate highly accurate predic-
tions. For example, for the problem at hand, the corn farmer might be able 
to deduce that the addition of fertilizer to his field will profitably increase 
his corn yield whether or not it rains, because of a government support 
program that reimburses farmers for all of their fertilizer costs—that is, 
fertilizer is free. In this case the farmer’s best (most profitable) action 
choice is clear; he should choose to fertilize his field. He does not need to 
predict with high accuracy the probability of rain, the probable effects of 
rain on his resulting corn yield, or the price of corn in order to take the 
best action. 

In short, the validation process for action models is sharply distinct from 
the validation processes for explanatory, purely predictive, and exploratory 
models. The primary focus is on taking the best action rather than on the 
realism of the model or the ability of the model to generate accurate predic-
tions. On one hand, a purely predictive model might not say much about 
which action to take—a rain forecast by itself does not tell us whether to 
fertilize or not. On the other hand, good understanding and predictive 
power could be essential requirements for achieving a useful action model. 
A good understanding of weather and how weather affects crop yield under 
different fertilization conditions could be essential for deciding whether to 
fertilize or not.

We now illustrate a more involved situation, in which the validity of 
an action model depends critically on the model’s descriptive and predic-
tive accuracy. 

A more complicated action model. Consider a more complicated action 
model involving the following hypothetical decision: Should a military force 
enter a potentially hostile village in order to establish a relationship with 
the local militia leaders, and if so, which entry mode should be chosen? 

TABLE 8-4  Contingency Table for the Corn Farmer Action Model

Outcome

Action Rain No rain

Add fertilizer What will be the yield with 
rain and fertilizer?

What will be the yield with  
no rain and with fertilizer?

Do not add fertilizer What will be the yield with 
rain and no fertilizer?

What will be the yield with  
no rain and no fertilizer?
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The outcome resulting from each possible choice of a village entry mode 
depends on the degree of hostility of the mayor and the presence (or not) of 
a local resistance group. The purpose or goal is simply to occupy important 
terrain and minimize casualties—those of both the military force and the 
villagers. 

This village deployment action model could be entirely framed in terms 
of if-then relationships connecting compound contingency conditions to 
ultimate outcomes, in which each compound contingency condition involves 
a village entry choice together with a mayor hostility level and the presence 
or absence of a local resistance group. To focus attention on action choice, 
however, it is useful to separate out the entry choice from the latter two 
nonaction contingency condition aspects. In particular, it is useful to think 
of these nonaction contingency condition aspects as constituting a scenario 
conditioning the choice of an action. The contingency table for this model 
is depicted in Table 8-5. Note that only three of the four possible scenarios 
are depicted for ease of exposition.

Validation of this village deployment action model involves three criti-
cal considerations. First, how appropriate is the action domain listed down 
the left-hand side of the table for the problem at hand? The action domain 
is the set of possible actions that can reasonably be taken in this situation. 
There are two possible kinds of errors here. The action domain might be 
poorly specified. For example, are the village entry choices in the table truly 
relevant and feasible given the available resources, the situation constraints, 
and the time available to take action? Alternatively, the action domain 
might be incompletely specified. For example, the village entry choices in 
the table are classified only by degree of armament, ignoring possibly criti-
cal timing issues (e.g., enter at dawn versus enter at night). In addition, 
other ways to enter the village (e.g., with an initial leaflet drop or bombard-
ment) might be feasible.

Second, are the scenarios listed along the top in Table 8-5 appropriately 
specified for the situation at hand? The scenarios are the set of possible 
conditions that might arise that we do not control or determine. In par-
ticular, are the contingency condition aspects that form the basis for these 
scenarios both reasonably accurate and reasonably complete? For example, 
it might be the case that the initial attitude of the mayor and the existence 
(or not) of a resistance cell are not the only important aspects to consider 
for the characterization of the initial conditions. Another attribute of equal 
or greater importance might be whether the civilians (i.e., the inhabitants 
of the village) are religious or not. 

Even assuming the initial attitude of the mayor and the existence (or 
not) of the resistance cell are correctly identified as the two most important 
aspects to consider in conjunction with village entry mode, only three of the 
four possible combinations of these two aspects are analyzed for the village 
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in the table. A fourth possible combination—a nonhostile mayor together 
with the existence of a resistance cell—is not considered. By excluding 
this fourth combination, the modeler is effectively concluding either that 
it is impossible or that it is so improbable that it is not worthwhile to 
consider. 

Third, are the if-then relationships mapping the contingency conditions 
(scenario-action pairs) into possible outcomes appropriately specified and 
explained? The cells in Tables 8-4 and 8-5 contain the outcomes for the 
scenario-action pairs. In the corn farmer action model, it is assumed that 

TABLE 8-5  Contingency Table for Village Deployment Action Model

Action 

Outcome When 
the Mayor Is Hostile 
and There Is a 
Resistance Cell

Outcome When the 
Mayor Is Hostile 
and There Is No 
Resistance Cell

Outcome When the 
Mayor Is Not Hostile 
and There Is No 
Resistance Cell

Do not enter  [None] [None] [None]

Enter with 
firepower 
evident; return 
defensive fire 
only after 
receiving 
sporadic gunfire 
from snipers

The mayor does 
nothing to stop active 
resistance; fire is 
returned; it is likely 
that a few civilians 
are killed; one or two 
soldiers are wounded

The mayor 
will organize a 
demonstration; a few 
civilians are roughed 
up; no casualties

The mayor attempts 
to negotiate while 
the citizens resist 
passively; a few 
civilians are detained; 
no casualties

Enter with 
firepower 
evident

The above with a 
lower probability of 
killing villagers

Do not know Same as above

Enter with 
small group to 
negotiate

The mayor negotiates 
and there is a high 
probability that the 
small group will 
be held captive; no 
casualties; no terrain 
occupied

The mayor negotiates 
in the town square 
and finally lets the 
small group go; no 
casualties; no terrain 
occupied

The mayor negotiates 
for food and 
medical supplies; no 
casualties; no terrain 
occupied

Enter with food 
and medical 
supplies

The mayor forbids 
the distribution of the 
food and medicine 
and the cell initiates 
an exchange of fire; 
no casualties; terrain 
occupied

The mayor forbids 
the distribution of the 
food and medicine 
and demands that the 
troops leave the area; 
no casualties

The mayor is 
welcoming and 
negotiates for more 
food and medicine; 
no casualties; terrain 
occupied
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fertilizer (or not) and rain (or not) are the only two unknown conditions 
of importance and that corn yield is the only important outcome variable. 
For the village deployment action model, however, the if-then relationships 
mapping the contingency conditions into possible outcomes are inherently 
much more complicated. 

Specifically, as seen in Table 8-5, the village deployment action model 
is assumed to have three important aspects making up each contingency 
condition: the village entry mode, the village mayor’s initial hostility level, 
and the existence (or not) of a local resistance cell. Given any particular 
combination of the latter two aspects, the military chooses a village entry 
mode. Given any particular combination of these three aspects, there is then 
a response by the mayor and a response by the resistance cell (if present). 
The overall combination of all of these events then determines an ultimate 
effect on civilians and the mission of entering the village. Also, the if-then 
relationships connecting contingency conditions to possible outcomes in 
Table 8-5 might not be appropriately specified. For example, it is assumed 
that a definite outcome results under each possible contingency condition 
when, in fact, a great deal of residual outcome uncertainty might remain 
(e.g., the level of civilian losses might still be uncertain). Moreover, these 
outcomes might be incompletely specified (e.g., the casualty rate among 
soldiers is currently ignored in some cells).

A template for validating action models. As developed above, the valida-
tion of an action model should begin with the purpose of action—not the 
model itself. One cannot assess the validity of an action model without first 
knowing its purpose. Next, the validation of an action model will typically 
be demanding, involving specification of an action domain, scenarios, and 
if-then relationships. The best approach to follow for carrying out this 
validation will depend on the purpose of the model. 

In brief, validation should establish the purpose of the model, list the 
possible actions or interventions for the purpose, specify the scenarios 
that depict the uncertainties or unknowns that are inherent and cannot be 
eliminated, and develop the if-then relations between the possible actions 
and the possible uncertainties—that is, predict the outcomes, which might 
be multidimensional and uncertain as well.

The validation of an action model is a challenge that does not lend 
itself to a well-specified set of detailed procedures; the action model gives a 
template for which the details must be filled in. Nevertheless, the examples 
presented in the previous sections suggest a reasonable order of concerns, 
which is summarized below. 

Before an action model can be validated, the purpose must be specified. 
One cannot proceed with the validation without this specification. In the 
corn farmer example, the purpose of the farmer is to make a high profit. In 
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the military force example, the purpose of the military force is to occupy 
the village with a minimum of casualties.

First, is the action domain appropriately specified for the situation with 
regard to an operational specification of each action and the completeness 
of the possible actions? For the farmer example, is to fertilize or not an 
appropriately complete specification of the farmer’s possible actions? For 
the military force example, are the four ways to enter the village an appro-
priately complete specification of the force’s possible actions? 

Second, are the considered scenarios appropriately specified? Are rain 
and no rain the appropriate scenarios for the farmer? Are the mayor’s and 
resistance cell’s actions appropriate? Does the range of considered scenarios 
cover the range of situations in which actions might actually have to be 
taken? 

Third, is each if-then relationship connecting a contingency condition 
to a possible range of outcomes specified with an appropriate level of real-
ism and prediction? For the farmer, the corn yield is important, as is the 
price. For the military force, the mayor’s reaction and then the resulting 
effect on the occupation and casualties are important. 

The specifications of these three key model features (action domain, 
scenarios, and if-then relationships) are interdependent, and all three aspects 
need to be carefully considered for the overall validation of the model. 
Each presents a different problem for the modeler. The specification of an 
appropriate action domain requires a deep understanding of what actions 
are feasible and reasonable for a situation. The specification of appropriate 
scenarios requires a deep understanding of what is likely to be known and 
not known (and what is knowable) about a situation at hand. The speci-
fication of appropriate if-then relationships requires a deep understanding 
of the causal structure connecting contingent conditions (scenario-action 
pairs) to potential outcomes.

The specification and validation of if-then relationships is particu-
larly difficult for systems involving multiple interacting human beings with 
capabilities for learning and social communication. The largest source of 
uncertainty in social systems is behavioral uncertainty, that is, uncertainty 
regarding what other people will do. It is for this reason that the “then” 
parts of the if-then relationships postulated for social systems will gener-
ally have to be in the form of multidimensional subjective probability 
assessments giving likelihoods for a range of possible outcomes. These 
probability assessments will inherently be subjective judgments based on 
an understanding of individual and group behavior gleaned from observa-
tions, surveys, human subject experiments, and biological and physical 
considerations. 

There are a number of common errors that are to be avoided. It is a 
frequent error to develop a simple predictive model that assumes no action 
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or intervention and that does not explicitly specify the scenarios. The pos-
sible mistakes are, first, that the model might be used for action or interven-
tion without consideration of the critical outcomes; second, the model does 
not specify the scenarios, and it is easy to assume inappropriately that the 
model applies to all scenarios. Without a specification of the actions and 
the scenarios, a model is quite limited. 

The uncertainty inherent in most action models involving individuals 
and organizations makes validation difficult. Inability to conduct repeated 
experiments is a key issue. We can observe rainfall and corn yield over 
many years. Consequently, statistical averages might be both available and 
useful for a corn farmer contemplating these types of events. However, the 
general lack of repeated experience for those contemplating the entry of a 
village might make it impossible to use simple descriptive statistics based on 
averaging. At best, there will be a range of possible outcomes with subjec-
tive estimates about what will occur. Because the largest source of uncer-
tainty in social systems is behavioral uncertainty, the if-then relationships 
postulated for social systems will typically have to be stochastic, giving a 
range of possible outcomes for each contingency condition together with a 
probability assessment for each outcome.� 

Military Approaches to Verification, Validation, and Accreditation

The Defense Modeling and Simulation Office (DMSO) has devoted 
considerable effort to the development of definitions, processes, and tools 
for V&V of models and simulations; formal definitions of terms and con-
cepts are given in DoD Directive 5000.59-M, Glossary of Modeling and 
Simulation Terms. Additional information and a larger glossary can be 
found at the website devoted to VV&A, the DoD VV&A Recommended 
Practices Guide (http://vva.dmso.mil/).

A simplified sketch of how VV&A is interrelated to the overall process 
of M&S development is given in Figure 8-9.� Ideally, the M&S process 
begins with the development of a conceptual model, proceeds to the design 
and implementation of a simulation of that model, and ends with testing 
and evaluation, allowing for “spirals” of iterative design-development-
testing over time. In parallel, the VV&A process begins with validation of 
the conceptual design, verification that the design and its implementation 
properly instantiate the conceptual model, and validation of the test results. 

� For a more detailed discussion of model validation for social systems, see Carley and 
Svoboda (1996), Fagiolo, Windrum, and Moneta (2006), and the extensive resources available 
at http://www.econ.iastate.edu/tesfatsi/empvalid.htm.

� The figure shows the process for new M&S development; the process for VV&A of existing 
M&S systems is considerably more complicated (http://vva.dmso.mil/Role/VVAgentLegacy/
default.htm).
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In effect, the validation tasks focus on ensuring that the model adequately 
represents that portion of the real world being modeled, and the verifica-
tion tasks focus on ensuring that the simulation adequately implements the 
model. Accreditation is shown as the last step in the process, the point at 
which the accrediting agency (the owner of the simulation) places its stamp 
of approval on the validation results. 

The traditional focus for DMSO M&S development has been the 
physical battlespace environment (terrain, ocean, atmosphere, etc.), with 
an emphasis on conventional warfare. Simulation and VV&A of the enti-
ties that populate the environment has typically been left to the separate 
services or “accrediting” agencies: the Air Force has been responsible for 
development and VV&A of F-16E aircraft, the Army for Bradley Fighting 
Vehicles, etc.

It is also fair to note that the great preponderance of M&S entity devel-
opment has been devoted to “platform” entities, not the human decision 
makers who “drive” those entities, either at a one-on-one level (e.g., the pilot 
of an F-16E) or at a higher command and control level (e.g., the Joint Force 
Air Component Commander). As a result, corresponding VV&A efforts 
have been equally unbalanced, with the majority of the effort devoted to 
the VV&A of systems for which there is a strong conceptual model (e.g., a 
behavioral law for platform kinematics, such as “distance equals speed mul-
tiplied by time”) and a well-understood protocol for validating that model 
against the real-world behavior of the entity being modeled (e.g., measuring 
time, speed, and distance of the moving platform in the field). VV&A of 
IOS models is particularly problematic, because of both the lack of clear 
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and generally accepted conceptual models and the difficulty of conducting 
“clean” human-in-the-loop experiments, unconfounded by large individual 
differences across individuals, inadequate experimental controls over vari-
ables that subtly influence human behaviors, learning and adaptation over 
repeated experimental trials by individual experimental subjects, etc.

These shortcomings were identified in an earlier National Research 
Council (NRC) study, which noted as its primary conclusion that the M&S 
community should adopt a general framework for developing and accredit-
ing models over three time horizons (National Research Council, 1998):

•	 Short term 
o	 Collect and disseminate human performance data.
o	 Support incremental improvement for selected models.
o	 Create accreditation procedures for human behavior modeling.

•	 Mid-term	
o	 Extend task analysis efforts—for example, STRICOM’s Common 

Model of the Mission Space.
o	 Support sustained human behavior modeling development 

in focused domains (e.g., AFRL’s Agent-Based Modeling and 
Behavior Representation (AMBR) Air Traffic Control Testbed).

•	 Long term 
o	 Support theory development and basic research.

At the time that the earlier report was written, the focus of most DoD 
M&S was on conventional platform-dominated nonurban warfare. The 
report was similarly focused. It is now clear that considerably more empha-
sis has to be given to the development of models that span the space from 
the individual decision maker, to small groups, to urban populations, and 
even to entire national and transnational populations. As noted in Chapter 
5, we need to account not only for “nominal” human behaviors, but also 
for those colored by individual differences (e.g., personality traits) and 
ethnic/religious/cultural influences. And, since no individual operates in a 
vacuum, we also need to account for the influences of the organizational 
structures and social networks mediating human intercourse.

This is a tall order for the M&S community, but efforts have started. Since 
the 1998 NRC study, the Air Force has initiated a number of programs:

•	 AFRL/HE workshops on Adversarial Modeling (2002), Cognitive 
Engineering (2002), Cognitive Modeling, Science, and Engineering 
(2003), and Representing Personality and Culture (2003). 

•	 The Aeronautical Systems Center Engineering Directorate’s 
SAMPLE program to develop agent-based pilot models to populate 
the SIMAF engagement simulation.
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•	 The AFRL/HE AMBR Program, directed at developing intelligent 
agents to mimic human behaviors.

•	 A nascent effort in modeling human behavior by the Behavioral 
Research Branch of the National Air and Space Information 
Center.

The other services have likewise started comparable efforts in this area, 
most notably the Office of Naval Research’s Affordable Human Behavior 
Modeling Program, having the following major goals (see http://www.onr.
navy.mil/sci_tech/34/342/training_afford.asp):

•	 Reducing the time-consuming knowledge engineering needed to 
define the fundamental behaviors to be modeled for a particular 
operator in a given military role. 

•	 Reducing the M&S construction effort (model concept design and 
simulation development) required to develop simulations of the 
desired human behaviors.

•	 Identifying processes to ensure reusability of models and model 
components.

•	 Developing improved V&V techniques for the developed models.
This is one of the few programs that directly addresses V&V issues.

Another major finding of the NRC report on human behavior model-
ing (National Research Council, 1998) was that substantial effort needs to 
be invested in the development and VV&A of larger scale models that go 
beyond the representation of individual humans, to begin to address col-
lections of individuals, from small teams, to groups, crowds, urban popu-
lations, and even nation-states. This was echoed by the DMSO-sponsored 
conference on organizational simulation held in 2003 (Rouse and Boff, 
2005), which attempted to address qualitative and quantitative changes 
in the fundamental M&S issues associated with modeling larger groups of 
individuals. Although a number of novel and disparate approaches were 
proposed and described, only a very small fraction of the proceedings 
directly addressed critical VV&A issues for this class of behavioral models, 
such as:

•	 What constitutes behavior prediction/forecasting for multiple inter-
acting simulated human entities? Should we relax our need for 
prediction accuracy and instead be satisfied with robustness in 
anticipating the range of future possibilities? 

•	 How does one go about validating a conceptual model when the 
model is still being formulated? Are there different levels of valida-
tion that apply?
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•	 How does one verify the resulting model simulation, when so many 
of the interesting qualities of behavior reflect idiosyncratic and 
stochastic activities that change over time due to learning by the 
individual and socialization by the group?

•	 Who should be the accrediting agency?

There are, however, a number of ongoing efforts aimed at advancing 
the application of large-scale organizational modeling to DoD questions of 
interest, most notably the Joint Forces Command’s Urban Resolve Program, 
which focuses on urban operations and how M&S can be used to explore 
and define urban operations war-fighting capabilities for the future joint 
force commander. The first phase focuses on intelligence, surveillance, and 
reconnaissance operations in the urban environment, using a high-entity 
count simulation of Jakarta built on top of JWARS, which, in turn, is built 
on top of the existing OneSAF simulation framework (see Chapter 2). 
Although the development plan for JWARS originally included a detailed 
VV&A plan for conventional warfare scenarios,10 it is unclear whether 
V&V efforts for Urban Resolve went any further than the “looks ok” test. 
This is not atypical of large-scale simulations in general.

Finally, we note that AFRL/HE has begun the process of attempting to 
formalize the VV&A process for individual human performance models, 
cognitive models, and group representations developed or “owned” by the 
directorate, via the publication of the AFRL/HE Instruction 16-03 (Brinkley, 
2003). We believe this is a good start in this particularly difficult area.

Validation Issues Specific to Individual Modeling Approaches

In this section we review the validation challenges and approaches that 
are specific to various modeling approaches used for IOS models.

Validation of Conceptual Models

Verbal conceptual models are sometimes specific enough that they can 
be tested and plausibly falsified, using empirical field studies or controlled 
experiments. For example, Fiske and colleagues have used social cognition 
experiments to demonstrate that people organize acquaintances in memory 
according to the dominant model that organizes the relationship, in studies 
of subjects from Bengali, Chinese, Korean, Vai (Liberia and Sierra Leone), 
and U.S. cultures (Fiske, 1992), and that for many subjects this classifica-

10 This information is based on the program overview at http://www.msiac.dmso.mil/ 
spug_documents/JWARS_Overview_Brief.ppt.
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tion accounts for more variance in recall and substitution errors than per-
sonal attributes, such as gender, race, and age.

In contrast to such well-developed conceptual frameworks, broad 
metaphors (brains as information-processing devices, organizations as 
cultures) are not really subject to verification or falsification. Whether or 
not they are used in a particular domain is likely to depend largely on face 
validity and established precedent. In evaluating the usefulness of a broad 
conceptual model, the yardstick is often not how well supported the model 
is, but how much interesting research it inspires. Even when a verbal model 
seems, in principle, to be subject to falsification, the underspecification of 
relations and processes often means that a rather broad array of different 
outcomes can be presented as consistent with the theory. As Harris (1976) 
noted in his paper entitled “The Uncertain Connection Between Verbal 
Theories and Research Hypotheses in Social Psychology,” theoretical terms 
often are not defined, boundary conditions are unspecified and, under 
various plausible interpretations of assumptions or conditions, several 
well-known theories include internal contradictions and inconsistencies 
(cited in Davis, 2000).

Validation of Cultural Models

Cultural inventory models rely on ethnographic observation and are 
therefore both time-consuming to develop and highly subjective. Having 
multiple independent observers helps ameliorate the subjectivity problem, 
but it is expensive.

Dominant trait models, such as the Hofstede dimensional models, can 
involve two sets of data. The first set is used to derive the dimensions. 
These can be validated by a number of different statistical methods, such 
as factor analysis. Once these are fixed, another set of data is obtained to 
score each new culture on the dimensions. These data have to be obtained 
from willing natives of the culture, and the data have to be updated over 
time because cultures change.

Validation of Cognitive Models

While there is increasing emphasis on validation of cognitive architec-
tures, validation remains one of the most challenging aspects of cognitive 
architecture research and development. “[Human behavioral representa-
tion] validation is a difficult and costly process [and] most in the commu-
nity would probably agree that validation is rarely, if ever done” (Campbell 
and Bolton, 2005, p. 365). Campbell goes on to point out that there is no 
general agreement on exactly what constitutes an appropriate validation 
of a cognitive architecture. Since cognitive architectures are developed for 
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a wide variety of reasons, there is a correspondingly wide set of validation 
(and evaluation) objectives and metrics and associated methods. Lack of 
established benchmark problems and criteria exacerbates this problem. 

Validation of Cognitive-Affective Architectures

In spite of the challenges associated with validation of emotion models 
and cognitive-affective architectures, progress is being made in the area. 
A promising trend in emotion modeling is the increasing emphasis on 
including evaluation and validation studies in publications. As is the case 
with cognitive architectures, no existing emotion models or cognitive-
affective architectures have been validated across multiple contexts and a 
broad range of metrics. However, some important evaluation and valida-
tion approaches and studies exist and are discussed in detail in Chapter 5. 
Cognitive-affective architecture validation has not yet reached the stage 
of systematic comparisons that is beginning to be used for their cognitive 
counterparts. However, given the recent emphasis on validation in the 
computational emotion research community, such studies are likely to be 
taking place in the near future.

Validation of Agent-Based Models

Agent-based models (ABMs) are computational frameworks that permit 
the theoretical exploration of complex processes through controlled repli-
cable experiments (see Chapter 6). In principle, these experiments could be 
run entirely with artificially generated initial conditions, parameter values, 
and functional forms. Nevertheless, their ultimate usefulness depends on 
the extent to which they prove capable of shedding light on real-world 
systems, that is, their ability to enhance understanding and guide decisions 
and actions.

When validation of ABM frameworks is attempted, the validation 
is generally restricted to small areas of performance. A typical approach 
to validation is to run an experiment using an ABM framework, collect 
data from this experiment, statistically analyze the results to generate the 
response surface, and then contrast the response surface with real data. It 
is easy, even with only a few variables, to generate such a quantity of data 
from an ABM framework that there are no existing data with which to 
compare them, no existing statistical package can handle them, and most 
desktops cannot store them. Therefore, typically only small portions of the 
overall response surface can be estimated at once. The size of the analyzed 
response surface is thus often dictated by the user’s interests and the critical 
policy or decision-making questions at issue (i.e., the action domain and the 
scenarios relevant to that domain, as discussed above).
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ABM researchers have recently begun to explore promising new 
approaches to validation. For example, a number of them are now advo-
cating iterative participatory modeling (IPM) as an effective way to incre-
mentally achieve validation of the structural, institutional, and behavioral 
aspects of the complex systems they study. For an introductory exposition 
of IPM, see Barreteau (2003). The essential idea is to have multidisciplinary 
researchers join with stakeholders in a repeated looping through a four-
stage modeling process: (1) field study and data analysis, (2) scenario 
discussion and role-playing games, (3) ABM development and implementa-
tion, and (4) intensive computational experiments.

The new aspect of IPM relative to more traditional participatory model-
ing approaches is the emphasis on modeling as an open-ended collaborative 
learning process. The modeling objective is to help stakeholders manage 
complex problems over time through a continuous learning process rather 
than to attempt the delivery of a definitive problem solution.

In addition, ABM researchers are also beginning to explore the poten-
tial benefits of conducting parallel experiments with real and computational 
agents for achieving improved validation of their behavioral assumptions.11 
A critical concern is how to attain sufficiently parallel experimental designs 
so that information drawn from one design can usefully inform the other.

Recommendations for Developing and Validating IOS Models 

We have argued that IOS models should be validated beginning with 
the purpose and then considering the action set, scenarios, and if-then 
relations in the specific situation. The committee makes a number of sug-
gestions for modeling and simulations that will facilitate the validation of 
a specific model. 

Check with Multiple Experts

Four different experts should examine an IOS model: the users of the 
model, the scenario experts, the if-then or domain experts, and the modelers 
themselves. Modelers cannot examine a model by themselves; they tend to 
focus on the verification with less emphasis on the purpose of the model. 
For an action model, the user is very important to check the relevance and 
feasibility of the action set. The scenario expert should examine the uncer-
tainties and unknowns. Domain experts are particularly knowledgeable 
about the if-then relationships. However, their knowledge is not necessarily 

11 See http://www.econ.iastate.edu/tesfatsi/aexper.htm for annotated pointers to ABM 
research on parallel experiments with real and computational agents; see also the survey by 
Duffy (2006).
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framed in this manner, so some adjustment may be required. For example, 
domain experts know about “what is” and “what has been” but may be 
less certain about “what might be” outcomes. However, they are likely 
to point out errors in the models for what might be and limits of what is 
known. Each expert can contribute to the validation of an action model. 
It is unlikely that any single expert can ensure a valid action model alone. 
The structure and content of the model provide a template for a procedure 
by which multiple experts can validate different aspects of an integrated 
action model.

Keep the Model as Simple as Possible for Its Purpose

An IOS model does not have to be complex. Parsimonious models are 
preferred. The corn farmer action model is simple and does not capture the 
complexity of weather forecasting or the chemistry of fertilizers. But it is 
understandable and permits the farmer to make a decision and take action. 
Action models that are intuitively understandable to decision makers (trans-
parent) are preferred. An action model that is disconnected from a deci-
sion maker’s intuition and from concepts he or she is familiar with does 
not permit interplay between the decision maker and the model. In short, 
complicated, nonintuitive action models require decision makers to accept 
the implications of the models on blind faith. Action models should aid 
decision makers, not replace them.

Examine “What Might Be” as Well as “What Is”

“What is” should mimic the real world within limits. “What is” models 
are a basis for “what might be.” A model that has little or no correspon-
dence with the real world is not likely to be relevant for what might happen. 
What might be is very important for action models—particularly in new 
situations (Burton, 2003). Many of the relevant action-scenario combina-
tions have not been observed in the past. So the model must be relevant for 
action beyond what is or what has been to new situations. For example, 
it would be desirable if the illustrative village deployment action model 
could be used reliably in other similar situations, say for the withdrawal 
from a village as well as entry. But it is not likely that the model could 
be used to help plan an action to disarm a resistance cell. Presumably 
this would require a more detailed model of the functioning of the cell. 
Whether it would be desirable to develop one model to handle both entry 
and cell disarmament or two separate models would presumably depend 
on economies of scope—Is there anything to be gained by considering both 
issues jointly?—and on computational implementation costs. IOS models 
should be developed and examined beyond what is to what might be. At 
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the same time, it is important to examine the limits of the model and not 
use it in situations in which it might be inappropriate. As suggested above, 
simplicity is desirable, but it must be balanced so that the action model is 
useful for its purpose.

IOS models are likely to forecast a range of possible outcomes, some 
more likely than others, and to incorporate many factors that are highly 
uncertain and, indeed, unknowable at the time the model is developed. 
How then can such models be validated? Popper, Lempert, and Bankes 
(2005) argue that models used to explore policy alternatives for an uncer-
tain future should not be expected to yield predictions that can be tested but 
rather should be used to explore and compare possible outcomes under a 
variety of possibilities in order to select strategies that are robust—yielding 
the best overall results across a variety of possible futures.

Postevent outcomes can also be used to evaluate models, although 
models are not necessarily incorrect if the actual outcome that occurred 
was not the one forecast to be most likely. Unlikely events do occur, and 
many IOS applications do not permit the replication that would generate 
a distribution of actual outcomes. A very useful approach would be to 
develop multiple models that take different perspectives and use different 
theories and data, merge their predictions to create zones of likelihood, and 
compare their forecasts with the actual outcomes (see Docking below). As 
with other validation approaches, the value of the model’s results depends 
on its intended use, so the degree to which forecasts need to correspond to 
reality will depend on the model’s purpose.

Use Model Touching for Validation

Model touching is comparison or juxtaposition of models. There are 
many ways to bring models together. Here is a list:

•	 Bring experts (as described above) together to develop and examine 
the model.

•	 Compare the action model with qualitative studies for the situation 
or domain.

•	 Check with other studies that might be empirically based on data 
from the field or from experiments.

•	 Compare with computational models that are based on field data.

Docking. Docking is the bringing together of two models—a metaphor 
borrowed from space exploration. More precisely, docking is an evaluation 
of the extent to which two or more different models of the same action 
situation can be cross-calibrated so that they yield the same outcome (or 
outcome probability distribution) given the same contingency condition 
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(Axtell, Axelrod, Epstein, and Cohen, 1996). Docking goes beyond model 
touching to compare in more detail. It can provide a better understanding 
of the true connections relating the three key elements of an action model: 
the actions, the scenarios, and the possible outcomes resulting under each 
contingency condition (scenario-action pair). Docking gives confirmation 
that we have a reasonable understanding of an action situation, and that 
our conclusions are being driven by the intrinsic nature of the action situ-
ation and not by idiosyncratic aspects of the model implementation. One 
possible approach is to compare how different models perform under the 
same benchmark action-scenario combination, which can provide insight 
into how different models define actions and how they structure if-then 
relationships. That is, for an action model, take the same action possibili-
ties and the same unknown scenarios, then develop two separate if-then 
relationship models. Develop and compare the outcome tables for the two 
models. Are the outcomes the same? If not, why? One must go behind the 
model outcomes and examine the details of the models to understand their 
differences. Individuals who are expert in the subject are critical in judging 
the models and their value. Docking should involve experts throughout 
the process, as discussed above. Docking of multiple modeling approaches 
against common benchmark problems using a panel of expert judges has 
recently been used to provide considerable insight into individual cognitive 
performance models (Gluck and Pew, 2005).

At this time, there is a need to develop benchmark scenario-action situ-
ations that can be used to dock two or more models. This effort will involve 
action, scenario, and if-then experts. With these benchmarks, docking 
studies can add greatly to the development of action models.

Given the current state of the art, the participation of experts in the 
docking process is essential. The next best step in validation is to support 
docking studies among experts who develop computation-based models. 
Automated machine docking of two or more models is a very high-risk 
endeavor at present. At a later stage of understanding, we may be able to 
develop a computationally based approach to the docking of models. But 
for now, experts and their judgment are mandatory.

Triangulation. Triangulation goes beyond docking and involves examining 
the same action domain using an action model, an expert group using a 
qualitative approach, and reference to quantitative studies in the domain. 
An action model validated using multiple approaches is more likely to help 
the decision maker take actions that meet the purpose. However, a large 
number of triangulations are often possible. We do not know a priori what 
the best triangulation is for a given situation, but it is quite likely that a 
good triangulation will be situation dependent. 
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Exploratory testing of robustness. Miller (1998) proposes active nonlinear 
tests for complex models to validate the model’s structure and robustness. 
In this approach, automatic nonlinear search algorithms probe for extreme 
outcomes that could occur within the set of reasonable model perturba-
tions. This multivariate sensitivity technique can find places where a com-
plex model “breaks,” that is, produces results that are outside a range of 
reasonable predictions.

In summary, universal rules about what is the appropriate procedure 
for validating IOS models are not possible. However, we recommend the 
validation of models through a three-part triangulation process, based 
on the purpose of the model. Validation should involve (1) participation 
by multiple experts who can provide different perspectives on the action 
domain, the scenarios, and the if-then rules incorporated in the model; 
(2) docking of similar computational models against one another; (3) com-
parison to qualitative and theoretical studies and previous quantitative 
results and exploratory testing for a range of outcomes. A good heuristic 
would be to begin with the experts as discussed above and move as quickly 
as possible to docking studies and exploratory testing.

DATA Issues and challenges

Data can be used in two different ways in modeling. When models 
are developed inductively from data, the quality of the data is extremely 
important. In that case the data are broader in scope and limited only in a 
very general manner. For example, an anthropologist sees different things 
than an engineer in the same situation. For existing models, the data are 
prescribed by the model, and the quality of data is extremely important. 
Here again, the data yield values for the model parameters and make the 
model specific to a given situation and problem. The data requirements are 
driven by different modeling needs. For each situation, quality data are 
needed and are important to the usefulness of the model. 

This means that even the most promising, sophisticated, and elegant 
models may be severely limited or hampered by specific data needs and 
requirements. Thus, data issues are an essential component for assessing 
the ultimate success for model development, validation, and applications. 
A number of potential data factors need to be considered in the course of 
conceptualizing and developing models. These include but are not limited 
to the following. 

•	 Primary/secondary: Data may already exist (secondary) or may 
need to be collected (primary). Obviously, models using secondary 
source data have some advantages because they require little or no 
data collection. However, models using such forms of data may 
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be limited by the nature and quality of the data that exist. This 
might mean the model will be constrained by the type of data avail-
able, and such constraints may limit the model’s ability to address 
important issues and problems. Models using primary sources of 
data have more flexibility, given that they can determine exactly 
what type of data needs to be collected. However, primary data 
collection involves its own set of limitations that are reflected in 
the factors described below. 

•	 Observable/nonobservable: Some data are directly observable, 
and this may facilitate ease of collection. Phenomena that are not 
directly observable may require more extensive efforts to uncover 
the necessary information (e.g., face-to-face interviews). 

•	 Distant/close: Some forms of data can be collected at a distance. 
This may involve the use of technology, such as cell phones or video 
links. However, other types of data require actually being there on 
the ground, as for face-to-face contact or interviews with subjects, 
respondents, or informants.

•	 Representative/nonrepresentative: Often model assumptions require 
data to be collected or compiled in some specific manner. The best 
example of this is the explicit assumptions underlying classical 
parametric statistical models that require random samples from 
a population. There are other models that simply require units 
of analysis to be representative of a given theoretically important 
category of some type, and it may be the case that any unit of 
analysis fitting the categorical criteria will suffice. An important 
consideration is the extent to which units of analysis used in the 
model need to be derived by either probabilistic or nonprobabilistic 
methods (see Johnson, 1990). 

•	 Passive/active: This is related to some of the factors above in that 
some data can be collected casually or on the fly. Such data may still 
require being there but may require only documenting or record-
ing naturally occurring events, conversations, or interactions. In 
contrast, more direct and active methods of data collection may 
be necessary and will involve, for example, actually interviewing 
individuals at events or interviewing them about given conversa-
tions or interactions. 

•	 Tacit/explicit: Some forms of data require little interpretation or 
reading between the lines. Other types of data are implicit, and 
there is a need to make them more explicit. This is particularly 
true for some forms of human knowledge that are often tacit and 
may require specific types of elicitation interviewing techniques to 
extract the requisite information to be used in the model (Johnson 
and Weller, 2002).
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There are certainly other important factors to be considered in terms 
of relating models to various data requirements. However, the factors 
described above potentially reflect impediments to the utility and validity of 
any proposed model. If, for example, models require data involving forms 
that are tacit, active, representative, close, nonobservable, and, of course, 
primary, then the data may be costly to obtain and may limit the models’ 
potential effectiveness given the data constraints. But this does not address 
in any way issues of data quality concerning reliability and validity. We can 
consider the factors above to reflect elements of how hard data might be 
to collect or obtain. Although some of these factors are related to issues of 
reliability and validity, they are not necessarily one and the same. Often the 
data that are the most difficult to collect (i.e., on-the-ground face-to-face 
interviews) are the data that have the most reliability and validity, whereas 
data that are the easiest to obtain (i.e., secondary source data) may be the 
most problematic. The extent to which one trusts the data will ultimately 
determine the extent to which one trusts model outcomes or predictions. 

In summary, even though quality data are extremely important, the 
operationalization of quality is different for the different demands of the 
model. One implication is that we need better quality data. Another impli-
cation is that we need a better understanding of how we can model, 
describe, predict, and explain with less than quality data. This further sug-
gests that a better notion is needed of what is meant by quality data for the 
various models and needs.
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9

State of the Art with Respect to Military 
Needs

In this section we review the state of the art in individual, organizational, 
and societal modeling against the military modeling needs outlined in 
Chapter 2 and discuss the major shortfalls in meeting those needs. The 

five representative problems described in Chapter 2 are used as a structure 
to organize the review.

Disrupt Terrorist Networks

One potential use of cultural and organizational models is to fuse par-
tial and uncertain information from multiple sources to develop a model of 
the network structure of a terrorist organization and to use that model to 
evaluate alternative strategies for disrupting that organization, for example, 
through disconnecting leaders or interrupting recruiting. This goal can be 
supported by many of the modeling approaches described earlier, and each 
has its own limitations for attacking the problem. Table 9-1 summarizes the 
capabilities that would provide advantages for each modeling approach and 
the major limitations of the approach in addressing this problem. 

Network models provide a promising approach for this problem, but 
a general limitation across the network modeling approaches is the lack 
of data for model development. Lack of data is the primary challenge 
for using models to understand and disrupt terrorist networks. The data 
availability problem is compounded by the classification levels for existing 
data, the control of those classified data by multiple organizations, and 
the inconsistencies in data structure and content. For example, the same 
individual may be identified by different names in multiple databases. The 



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

330	 BEHAVIORAL MODELING AND SIMULATION

TABLE 9-1  Modeling Approaches and Limitations for Disrupting 
Terrorist Networks

Problem 1: Disrupt a terrorist network.
How can we fuse uncertain and partial information from multiple sources to identify the 
dynamic network structure of a terrorist organization? How can we then best disrupt this 
network?

Advantages of Approach Major Limitations

Conceptual models indicate how removal 
of a leader will affect the network.

Need ethnographic data on terrorists to see if 
models apply in the specific culture.

Cognitive/affective models could predict 
reactions of members of network if leader 
is removed.

Extensive time and effort are required to 
develop specific models from open sources.

Organizational models of existing network 
could predict impact of changes in network 
on performance.

Data are not available. Existing data are in 
multiple databases controlled by different 
organizations, with inconsistent structures 
and contents.

Link analysis could identify network. 
Social network analysis models can predict 
how changes in leadership will affect 
network structure and change power and 
centrality.

Link data are difficult to acquire.

Dynamic network analysis models could 
predict who the emergent leader will be if 
current leader is removed.

Requires resource and activity data, which 
are very difficult to acquire.

System dynamics models could predict 
whether change in leadership might lead to 
an increase in violence in the community.

High-level model would not predict for 
individuals.

Model could be tested in massively 
multiplayer online games (MMOGs).

Behaviors in the MMOG might not resemble 
those in the real world.

All approaches could make 
recommendations for action.

No facility for rapid development of models 
or provision of easy-to-understand guidance 
to war-fighters.

more specific the predictions that could be made by the model, the more 
data are required. A way to mitigate this problem (see Chapter 11) would 
be to make unclassified representative databases more widely available for 
model development and evaluation.

There is an additional challenge in how to test and validate these 
models and how to clearly communicate the uncertainty surrounding model 
forecasts. If models could be developed more quickly and easily and in 
closer collaboration with both subject matter experts and the ultimate 
users, they could be a more useful thinking tool for decision makers.
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FORECAST Adversary Response to courses of action

Models could be used to forecast the responses of adversaries to friendly 
force actions over a range of responses, with estimates of the likelihood of 
each. This is especially needed in urban operations and operations other 
than war in an asymmetric warfare environment in which conventional 
methods for predicting adversary behavior are often not relevant. For 
example, what are the likely reactions of both noncombatants and local 
insurgents to friendly force movements, and can those reactions be affected 
by the diffusion of information or disinformation? Table 9-2 summarizes the 
contributions that could be made by models and their major limitations.

In the example of forecasting enemy response to a disinformation 
campaign about troop movements, network models are clearly applicable 
conceptually—the limitations are in the details that would make the model 
useful for a specific cultural context. First, we lack theory regarding cultural 
differences in the believability of a message as a function of its source. Multi
agent models could predict information diffusion patterns, but they would 
require data on transmission links (media channels, literacy rates, etc.) that 
are specific to the location and culture being modeled as well as ways to 
predict the believability of the message when received. Finally, there are 
no well-defined outcome variables for assessing the validity of the model’s 

TABLE 9-2  Modeling Approaches and Limitations for Forecasting 
Enemy Response to Disinformation

Problem 2: Forecast adversary response to blue actions.
Predict the likely response of noncombatants and local insurgents to friendly force 
movements, basing, logistics, and courses of action. Can disinformation be used to partially 
protect our intentions? What is the most effective point of insertion of the disinformation?

Advantages of Approach Major Limitations

Persuasion theory suggests the need to 
disconnect message from the source.
Research exists on direction of change in 
message with diffusion.

No models for how individuals are likely 
to transform/distort messages as a result of 
cultural and cognitive factors.
There are no individual models to predict 
interpretation or believability of messages, 
especially taking cultural factors into account.

Use multiagent model of networks to 
decide where to drop information into 
rumor mill (e.g., viral marketing).

Multiagent models would require models 
of culture and technology to estimate speed 
of transition. Need to link multiple types of 
models together.

Use model to maximize predicted diffusion 
of information.

Straightforward conceptually but there is a 
lack of empirical country-specific data.



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

332	 BEHAVIORAL MODELING AND SIMULATION

predictions. Clearly the uses to which the model is to be put, including the 
details of the cultures and location of interest, must drive both its structure 
and content. As in the previous example, the major recommended mitiga-
tion strategies (see Chapter 11) include the development and dissemination 
of detailed datasets and the development of a close collaborative relation-
ship between model developers, subject matter experts, and model users.

Societal FORECASTING

There is an urgent need for models that can forecast attitudes and 
behaviors at a societal level as a function of alternative courses of action 
particularly for diplomatic, information, military, and economic (DIME) 
campaigns. For example, models are needed that can forecast the stability 
of civilian governments and the incidence of violence as a function of these 
DIME factors. Table 9-3 summarizes the possible contributions and limita-
tions of models for this goal.

Agent-based models (ABMs) on a large scale appear very promising 
for modeling societal behaviors and forecasting responses to diverse DIME 
courses of action (COAs). However, there are a number of limitations that 
currently constrain what can be done with these models. First, such models 
are time-consuming to build and often require data collection on a massive 
level. Second, computational power limits the cognitive complexity that 
can be built into individual agents if tens of thousands of agents are to be 
included in the model. Third, predicting the response to integrated DIME 
COAs requires multidisciplinary expertise in military planning, economics, 
and political science. The need to integrate models across disciplines is the 
primary challenge faced in this problem area. Theories and models in these 
diverse disciplines are not currently integrated, and experts in these areas 
often have little opportunity or incentive to collaborate. Hybrid federated 
models that combine different models at different levels of detail for differ-
ent factors offer considerable promise for tackling large-scale societal pre-
diction, but these models are more an idea than a reality at present and will 
require the multidisciplinary development of architectures and standards 
for federation. To mitigate these limitations, Chapter 11 recommends an 
extensive multidisciplinary research program focused around common chal-
lenge problems and datasets. Finally, as with other models, the predictions 
of these models will have a high degree of uncertainty. Model development 
must include collaboration between end users and diverse subject matter 
experts to ensure that the predictions provided are relevant and that their 
limitations are well understood.
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TABLE 9-3  Modeling Approaches and Limitations for Societal Forecasting

Problem 3: Societal prediction.
Forecast the effects of alternative diplomatic, information, military, and economic (DIME) 
courses of action on the attitudes and behaviors of residents in areas of interest.

Advantages of Approach Major Limitations

System dynamics models can predict the 
effects of changes in DIME factors on 
outcome variables of interest, such as level 
of violence.

Sufficient theory is lacking to identify the key 
variables to be included in the model and to 
specify the connecting links between actions 
and outcomes.

ABMs that capture resource use and 
economic interactions as well as social 
links can predict the effects of economic 
factors within a social and cultural 
context. 

ABMs need both theory and data to make 
useful predictions. Large-scale societal ABMs 
are time-consuming and costly to develop.

ABMs can include tens of thousands of 
agents to capture complex interactions at 
the societal level.

Agents must be cognitively simplistic to make 
large-scale ABMs computationally feasible.

Historical data can be used to develop 
ABMs that predict societal effects. 

Prediction of the future, not the past, will 
involve inherent uncertainty.

Federated models could integrate multiple 
types of models at different levels of detail 
to capture diverse DIME factors.

There is a lack of infrastructure, 
architectures, and standards for federated 
models. DIME factors are studied by different 
disciplines and few integrated models exist 
that attempt to combine them. There is little 
theory or data on how DIME factors interact.

MMOGs can provide an environment for 
data collection on a large scale to support 
model development and testing.

The environment created by the MMOG may 
not reproduce the key elements of a real-
world society. 

Crowd Control Training

Virtual training environments offer an opportunity for troops involved 
in peacekeeping operations to learn best practices for crowd control. Such 
training will require models of noncombatants that respond to trainee 
actions in a way that is realistic and appropriate for a specific location 
and cultural environment. Table 9-4 summarizes the state of the art in this 
area.

The development of models for crowd control training is perhaps the 
most advanced of the five representative problems considered. This can be 
done now. The only major issue is whether the models can produce behav-
ior that is close enough to that of a real crowd in a specific environment to 
provide useful training. The extent to which cultural factors create differ-
ences in crowd behavior in different locations deserves further study, but 
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TABLE 9-4  Modeling Approaches and Limitations for Crowd Control 
Training

Problem 4: Crowd control training.
Use models of crowd behavior to create a virtual training environment in which soldiers can 
learn to take the appropriate action.

Advantages of Approach Major Limitations

Cultural models can provide theory on 
how crowd members in a specific culture 
are likely to react to different actions.

Theory linking attitudes and behaviors may 
not be specific enough for the environment 
for which training is needed.

Cognitive and affective models can 
represent individual reactions to soldier 
behavior.

Individuals may react differently as part of 
a crowd than they would alone. The effects 
of cultural context on behavior are not fully 
understood.

ABMs can capture the interactions among 
crowd members that cause them to act 
collectively in ways in which they might 
not have acted individually.

Cultural variability in crowd dynamics is not 
completely understood.

MMOGs can provide an interactive 
environment for quickly testing model 
behavior as well as an environment for the 
training.

Model behavior should be reviewed by 
subject matter experts for believability.

crowd behavior models can be implemented in virtual environments, such 
as MMOGs, and their behavior can be reviewed by subject matter experts 
in a specific culture to ensure that they are not behaving in unrealistic ways 
that would result in negative training.

Organizational Design: Force Composition and 
Command and Control Architecture

Because of the rapid changes in mission requirements, the military 
services are moving toward modular expeditionary forces that are readily 
reconfigurable for different types of missions. Making the best use of these 
modular forces requires not only a recommended force composition (sys-
tems, equipment, units, and personnel) but also a command and control 
(C2) architecture that is most effective for the force as constituted. The best 
force composition and C2 architecture for a conventional military opera-
tion may be quite different from that for a peacekeeping or disaster relief 
mission. Table 9-5 summarizes how organizational models could help in 
this process.
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Models have proven to be a useful tool for understanding, designing, 
and testing organizations. Although people rarely think about “designing” 
organizations in a systematic way, the military faces the need to do just that 
as it develops new flexible, adaptive structures for rapidly changing mis-
sions. One example of an attempt at systematic organizational design based 
on modeling is the recent effort at the National Aeronautics and Space 
Administration (Carroll, Gormley, Bilardo, Burton, and Woodman, 2006), 
using an ABM and a heuristic rule-based model. Modeling and simulation 
can be used to develop and adapt force composition for changing mis-
sions and to suggest the best C2 structure for accomplishing the mission. 
The best C2 architecture is especially challenging for coalition operations, 
in which different types of forces may be involved, and for peacekeeping 
and disaster relief operations, which require close coordination with non
government organizations. The major limitation for this work is the need 
for detailed information on the tasks to be accomplished in the mission and 
the resources required to accomplish those tasks. The recommended miti-
gation strategy (see Chapter 11) is the development of common challenge 
problems and datasets and the use of collaborative workshops to ensure 
that that operational users and modelers have a shared understanding of 
what can be done through modeling.

TABLE 9-5  Modeling Approaches and Limitations for Organizational 
Design

Problem 5: Organizational design: Force composition and command and control architecture.
Use organizational models to develop optimal force composition packages and C2 
architectures for different mission types.

Advantages of Approach Major Limitations

Use organizational models to develop the 
force composition, structure, and processes 
that are predicted to best meet mission 
requirements. Simulate organizational 
performance for different structures in 
different mission scenarios.

Requires detailed data on the tasks to be 
performed in the mission and the resources 
available.

Use simulation and ABMs to identify the 
points in the mission and the organization 
at which the most intensive cooperation 
will be required, the points of maximum 
workload, and the potential information 
bottlenecks.

Requires detailed data on task information 
and workload requirements.

Use MMOGs as a testbed for 
organizational structures.

May be difficult to replicate realistic mission 
tasks and conditions.
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ADDRESSING UNMET  
MODELING NEEDS
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10

Pitfalls, Lessons Learned, and  
Future Needs

Chapters 3 though 9 summarized the state of the extensive work 
under way to develop a variety of individual, organizational, and 
societal (IOS) human behavioral models and how that work both 

contributes and falls short in solving representative military problems. In 
this chapter we take a step back from this detail and summarize the find-
ings of the committee in the form of lessons learned and future needs if IOS 
models are to live up to their potential for delivering useful results.

Given that most IOS models are in early phases of development, a clear 
set of best practices has not yet emerged. We can, however, identify some 
lessons to be learned from the initial approaches that have been taken and 
some of the pitfalls that have occurred on the road toward developing 
effective IOS models. Awareness of these pitfalls should help those develop-
ing models to avoid wasting valuable time and effort relearning the same 
lessons. Avoiding these pitfalls will therefore improve the probability of 
success for new initiatives.

When particular programs or efforts are mentioned as examples, this is 
not meant to suggest that those involved made choices that were known to 
be wrong at the time; in fact, many of the authors of this report have fallen 
into one or more of these pitfalls in our own modeling efforts. Hindsight 
often brings clarity, revealing that choices that seemed reasonable at the 
time have had undesirable results. Our goal is to support the field in gain-
ing maximum benefit from the “tuition paid” thus far in intellectual effort, 
hard work, and taxpayer money. For each pitfall we summarize the lessons 
learned, and on the basis of those lessons we identify the key needs to be 



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

340	 BEHAVIORAL MODELING AND SIMULATION

met in order to move forward. Chapter 11 then presents our recommended 
plan to meet those needs.

Pitfalls in Matching the Model to the Real World

The following problems are created either by inattention to the real 
world being modeled or by unrealistic expectations about how much of the 
world can be modeled and how close a match between model and world 
is feasible. 

Model-Problem Mismatch 

Modelers should choose variables based on what theory and experience 
suggest will be most useful in characterizing the problem of interest. Poor 
characterization of the specific domain of problems to be addressed, failure 
to attend appropriately to the dictates of the problem domain, or failure 
to consult theory to assess which IOS variables are most likely to matter 
can lead to serious model-problem mismatches. Practical considerations of 
availability, for example, can lead modelers to select “off the rack” com-
ponents just because they are available, even if they are inappropriate to 
the problem at hand. 

For example, using the Hofstede dimensions (see Cultural Models in 
Chapter 3) as generic representations of culture is inappropriate unless 
there are good theoretical reasons to believe that the specific dimensions 
chosen are relevant for behaviors that are important to the application. 
When modeling adversarial reasoning, specific cultural variations in infer-
ence and dialectical reasoning may well be informative, while Hofstede 
dimensions such as masculinity-femininity are generally irrelevant. 

Another source of poor choices is the pull of familiarity. Those versed 
in game theory are often attracted to representations of culture as a dis-
tribution of strategies for playing stylized games, such as the prisoners’ 
dilemma (see Game Theory in Chapter 5). For some applications, such 
as predicting the adversarial responses of enemy organizations to courses 
of action, game theory approaches to culture may be a good match. For 
other applications, such as predicting broader societal reactions, game 
theory approaches to cultures can lead to such problems as characterizing 
cultures as necessarily moving toward or existing in an equilibrium state or 
assuming that conflict involves two parties. In reality, cultures are rarely in 
equilibrium; changes in technology, resources, and migration all impact cul-
ture; and the implications of conflict for a particular society rarely involve 
just two parties. This particular model-problem mismatch has resulted in 
misleading policy advice and a tendency to overlook major shifts in culture, 
resulting in policy makers and commanders being surprised by emergent 
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factors in the situations they face (see also Illusions of Permanence in this 
chapter). 

Another example of this pitfall comes from network research. Over the 
years, network researchers have used the same network properties (e.g., 
betweenness, centrality) as independent variables in a wide variety of dif-
ferent contexts (see Network Models in Chapter 6). Yet there is little reason 
to believe that these properties are relevant for all applications for which 
network analysis may be informative. Even when correlations are found, it 
is difficult to design effective interventions and changes to a system because 
the variables are not necessarily explanatory. The key network properties 
relevant to prediction and control of any particular problem domain should 
generally be derived from the problem itself (Borgatti and Everett, 2006). 

Lessons Learned and Future Needs: The modeler should tie model 
choices to the application, which assumes that the application domain and 
the class of problems to be addressed are clearly specified. Subject matter 
experts in the application domain should lead or be represented on model-
ing teams, or at the very least they should be extensively consulted regard-
ing the appropriate choice of variables and assumptions for a particular 
problem domain.

In general, a tighter connection is needed between model developers 
and the operational personnel who will use the models being developed. 
Shared understanding between developers and users should result in a clear 
specification of model purpose. Better communication—including sharing 
of both theory and data—is also needed across the many disciplines that 
may contribute to model specification. Based on the purpose of the model 
and the application domain, more collaborative cross-disciplinary efforts 
in an integrated community of interest are needed to ensure that model 
developers do not simply rely on the set of variables with which they are 
most familiar.

All-Purpose Models That Ultimately Serve No Purpose

Universal scope or “Swiss army knife” models attempt to solve, via 
large-scale software development, an entire set of wide-ranging concerns. 
In most cases, attempting to build universal scope models for the Depart-
ment of Defense (DoD) has led to failure, to the loss of years of modeling 
and simulation effort, and to the expenditure of large amounts of money. 
The classic universal scope model, JSIMS (2 to 5 million lines of code and 
6 years to develop), had the following scope (Bennington, 1995, p. 805):

The mission of JSIMS is to develop a Joint Simulation System that will 
provide readily available, operationally valid synthetic environments for 
use by the CINCs, their components, other joint organizations and the 
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Services. JSIMS has five major objectives: integrate the range of missions 
of the Armed Forces within a common modeling and simulation (M&S) 
framework that includes live, virtual, and constructive M&S capabili-
ties: provide a training environment which will also accommodate space, 
transportation and intelligence requirements: establish a common simula-
tion support structure which enables harmonious sharing of simulation 
resources, processes, and results among users; enable simulation users to 
readily create or access a simulation environment which supports their 
requirements: and enable joint simulation users to interact freely with 
elements of their command structure, supporting/supported organizations 
and other simulation centers or users. While the initial focus of JSIMS is 
joint planning and training activities, as the system matures, JSIMS will 
be available to the DoD community at large for the analysis of doctrine, 
organization, system and material alternatives.

With such a large and broad scope, the likelihood for successful imple-
mentation was, in retrospect, near zero. JSIMS ran from December 1995 
to December 2002, at a development cost of $1.8 billion. In the end, DoD 
decided to fall back to smaller scale models and attempt to make those 
models interoperable (Office of the Secretary of Defense, 2004).

Interoperability concerns in DoD also fell prey to the universal scope 
model syndrome with the high-level architecture (U.S. Department of 
Defense, 1996). In 1996, DoD decided that a big bang, Swiss army knife 
solution to the interoperability of models and simulations was the way for-
ward for defense models and simulations. Instead of building an architec-
ture that was dynamically extensible and semantically interoperable,� DoD 
built a monolithic, black box piece of software that required everything to 
be defined ahead of time statically. 

The consequence is that, to make modeling and simulation (M&S) 
systems interoperable, the source codes of the systems must be modified 
and their definition files updated. For any subsequent M&S system to be 
integrated, the source code for all systems must be modified along with 
their definitional files.

In retrospect, it is temptingly easy to build static interoperability solu-
tions if most of the information transferred is physics-based. As one moves 
into the realm of modeling human and organizational behavior and begins 
to include cultural, network, emotional, cognitive, and psychological mod-
els, one needs to build models as encapsulated smaller model components 
that can be dynamically linked together rather than trying to create one 
large source code component (Pratt and Henninger, 2002).

� Dynamically extensible means that the structure of the model allows new components to 
be added without rewriting the source code. Semantically interoperable means that the lan-
guage of the two models permits them to be put together in a meaningful and theoretically 
consistent way. 
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Lessons Learned and Future Needs: Monolithic, static approaches 
are inappropriate to IOS modeling. Flexible, adaptable components and 
semantically interoperable models will potentially do much to avoid this 
pitfall. In order for this to happen, advances are needed in federated model 
standards and architectures in order to allow different types of IOS models, 
at different levels of detail, to interoperate in meaningful ways.

Verification, Validation, and Accreditation 

The DoD M&S community has always lived with the specter of veri-
fication, validation, and accreditation (VV&A). We say specter because 
sometimes VV&A of a model is used to shut down further discussion and 
consideration of it, particularly if it has not yet gone through a VV&A 
process. VV&A is an important issue in IOS modeling, as in other types of 
modeling (see Burton, 2003, and Chapter 8 for an extended discussion of 
VV&A issues). With respect to the modeling of human and organizational 
behavior, however, rigorous VV&A (as it has been defined for validation of 
models of physical systems) is difficult if not impossible to fully achieve. 

VV&A for a model means the developers have verified that the model 
implements processes as intended, they have validated the model against 
empirical data, and they have accredited the model for use for particular cir-
cumstances, usually for a particular service requirement. Early M&S efforts 
usually modeled physical properties exclusively, so verification consisted of 
being able to look at the source code and say, “yes, the source appears to 
implement the mathematics of the physical model.” For IOS models, there 
is no easy path to verification. One can look at the source code but cannot 
say “yes, the source appears to implement the mathematics of the human 
or organizational model” because the techniques typically used for such 
models are code-based and not closed-form mathematics. 

Historically, models of physical phenomena have been validated by 
comparing the results of running the models with observations from the real 
world. If one builds a model of a tank being hit by a particular weapon, one 
can go out into the field and shoot that particular weapon at a tank and say 
“yes, the model is close to the results of the real world” and stamp the model 
as validated. For IOS models, it is typically not possible to validate the 
model against the real world in this way. For example, suppose one builds 
a network model of insurgency formation. One cannot then take real-world 
inputs into such a model so as to predict precisely what will happen next, 
as in the film “Minority Report.” At best, it is possible to run the model 
against historical data and see how well the model accounts for the observed 
events. Perhaps, at the end of such a validation, it will be possible to state 
that the model provides a possibility space or set of potential outcomes that 
are useful to consider in the analysis of the next course of action. Valid IOS 
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models do not predict exactly what will happen in the future (see also Illu-
sions of Permanence in this chapter) but rather provide a set of potential 
outcomes to consider. So when writing up the model usage document for 
such a model, it is feasible to state something like “this model is useful for 
analyzing situations that have the following characteristics and will provide 
outputs that allow you to consider the set of things that may happen within 
the following limits.” Of course, this assumes valid inputs: data that are 
reasonably accurate, acceptably complete, and that match the requirements 
of the model (see Chapter 8 for a more detailed discussion of data issues).

Accreditation is the final step in the VV&A process. Basically accredita-
tion means that a sponsoring organization is willing to bless the model for a 
particular use, which generally occurs after someone has verified the model 
to an acceptable degree and some validation has been performed. Model 
accreditation is usually specific to a service office or the Office of the Sec-
retary of Defense, and accreditation means that the office has determined 
that the model is sufficiently robust for some operational deployment. 
Many physics-based models have been accredited but, as far as the com-
mittee knows, no models of human and organizational behavior have been 
accredited. Such models are perhaps too new to have yet made it through 
the accreditation paperwork process. However, we think that accreditation 
decisions for IOS models should be based on a better understanding and 
explication of the limitations and usages for such models, as well as a set 
of VV&A requirements that are appropriately tailored to the special nature 
of such models. 

Lessons Learned and Future Needs: Failure to appreciate the extent 
to which IOS models differ from physical models has led to inappropriate 
expectations regarding VV&A for IOS models. Rather than trying to apply 
an inappropriate VV&A process, an IOS model needs to be deployed with 
a strong set of guidelines that describe the limitations of the model and that 
remind users that the purpose of the model is not definite point predictions 
but rather indications regarding what possible outcomes will likely result 
from any particular course of action. 

Better standards are needed for IOS models, including appropriate 
VV&A guidelines. This report recommends an action validation approach 
(see Chapter 8) that requires a clear specification of the purpose of the 
model and validates the usefulness of the answers provided by the model 
against that purpose. We also recommend triangulation, in which mod-
els are reviewed by multiple types of experts, compared with qualitative 
and theoretical studies as well as quantitative results, and similar models 
are compared with each other (docking). Appropriate IOS model valida-
tion approaches need to be further developed and promulgated among 
model developers, users, and funding agencies through a widespread multi
disciplinary community of interest.
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Problems in Designing the Internal Structure  
of a Model

The following tactical design pitfalls are sometimes generated by 
unwarranted assumptions about the nature of the social, organizational, 
cultural, and individual behavior domain and sometimes by a failure to 
deliberately and thoughtfully match the scope of the model to the scope of 
the phenomena to be modeled. These pitfalls reveal the challenge of making 
wise choices of simplifying assumptions about the highly complex domain 
of IOS structure and behavior. 

Pitfall of Unvalidated Universal Laws

Modelers who are accustomed to dealing with physical objects that 
behave according to well-known physical laws are especially prone to 
this pitfall. Comparable universal laws of human behavior and social 
structures have yet to be discovered, codified, and supported by empirical 
data. Even should they be discovered, it is unlikely that they could be rep-
resented as closed-form equations. Furthermore, human behavior involves 
freedom of choice, and the results of the model themselves, if widely 
publicized, might affect those very behaviors that they were intended to 
forecast. Modelers fall into this pit when they model particular structures 
or processes in fixed form because they mistakenly believe that these struc-
tures are universal. As an example, some modelers have subscribed to the 
notion that all evolved networks are scale-free (i.e., they have a degree 
distribution that is well described by a power law). However, because the 
behavioral capabilities of nodes in a network make a demonstrable differ-
ence (people networks are different from gene networks), the data do not 
support the assumption of abstract commonalities across all networks. 
While the assumption of a scale-free network may well be warranted for 
particular types of networks and nodes, building this assumption in as 
a fixed feature of the model will limit its application in ways that may 
not be recognized by end users. Instead, the network structure should be 
treated as a model parameter.

Lessons Learned and Future Needs: Beware of assumptions that any 
particular structure or process is universal in any IOS domain. Consult with 
subject matter experts to be sure empirical data provide very strong sup-
port for any such claims before relying on them in designing a model. Set 
up the model so that users are explicitly reminded that they are making an 
assumption when they select a particular structure or process to represent a 
domain. A better integrated multidisciplinary community of interest in IOS 
modeling, with greater availability of empirical data and more extensive 
docking of alternative models around common applications, could protect 
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against the unthinking and mistaken assumption that universal laws from 
other domains apply to IOS models.

One-Dimensional Models

Modelers should beware of inappropriately limiting themselves to a 
single independent variable and using it to account for an array of differ-
ent processes and outcomes. For example, there is a tendency in network 
research to focus exclusively on structure as represented by a few network 
variables, while completely ignoring other information that is available 
about the nodes, the processes that are going on, and other contextual 
factors. Such models ignore possible influences, for example, the possibil-
ity that the behavior of the nodes not only is influenced by the network 
structure, but also can alter that structure. Modelers may encounter this 
pitfall when operating under the sway of a strong structuralist position that 
views (network) structure as far more important than other variables, like 
culture or psychology. As a result, we often see standalone network models 
that do not incorporate cognitive, cultural, or other processes. Another 
example of a heavily structuralist approach that ignores process would be 
a model that uses Hofstede’s Big Five personality structure (see Cultural 
Models in Chapter 3) as the sole predictor for a broad array of cognitive 
and behavioral outputs.

We think the relative importance of structure should instead be treated 
as an empirical question, which can of course be investigated only in models 
that include more than one input variable.

In any modeling enterprise, simplifying assumptions are necessary, 
and parsimony is an important scientific principle. However, the emphasis 
should be on parsimony for a purpose—for example, to conduct a focused 
investigation of whether a particular input variable is plausibly related to 
an array of different outputs. The decision to exclude other candidate input 
variables should be based on careful deliberation rather than on unexam-
ined assumptions. 

Lessons Learned and Future Needs: Focus is good; myopia is unwise. 
Better methods are needed to decide which variables are relevant for inclu-
sion in a model. The specification of the variables to be included in a model 
should be based on a clear specification of the purpose of the model and, 
depending on that purpose, should take into consideration the judgment of 
multiple subject matter experts, theories drawn from multiple disciplines, 
empirical data if they exist, and prior work on similar problems. Com-
parative studies are needed that address the same problem from multiple 
perspectives to determine which set of variables offers the most useful 
results.
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Kitchen Sink Models 

IOS modelers who appreciate the complex nature of human and organi-
zational behavior and who wish to avoid the pitfall just described may back 
themselves into a different pit by adding variables to a model in a hodge-
podge fashion. Modelers may be especially vulnerable to this pitfall if they 
are operating outside their area of expertise (for example, people with no 
training in anthropology or cultural psychology attempting to model cul-
ture), or not relying on strong theory for guidance. Modelers who are not 
well versed in a field will have little basis for choosing appropriate variables 
and will be especially vulnerable to suggestions to add this or that variable 
to increase realism. Sometimes the addition of variables is motivated by a 
desire to improve prediction by adding features and variables so that model 
output more closely matches a particular set of cases for which the modeler 
has data. This is actually postdiction (see Dibble, 2006, and Gauch, 2003, 
on postdictive versus predictive accuracy). The kitchen sink tactic is based 
on a misconception about the relation between model features and variables 
and about the model’s ultimate usefulness for providing information about 
behavior in cases beyond those used for testing.

Agent-based models of human and organizational dynamics are often 
suggested as an effective way to approach the IOS domain. However, the 
costs of developing, verifying, calibrating, and running complicated agent-
based models can be extraordinarily high in relation to our ability to trust 
what we learn from them. Such a model may have so many degrees of free-
dom that it often overfits to sample outcomes at the expense of providing 
an accurate characterization of the full population of potential outcomes 
that are important for effective insights and decisions. Predictive models 
are useful to the extent that they provide trustworthy insights and guidance 
about a particular population of potential outcomes. 

A related pitfall is pouring energy into model development, with endless 
tuning and adjustments, and never using the model in a rigorous fashion to 
generate insights, answers, or predictions about the probability of differ-
ent plausible outcomes. What matters most is what new information can 
be learned from the model and to what degree and under what conditions 
what is learned can be trusted. In computational laboratories, research, 
developing, testing, refining, and calibrating a useful and trustworthy model 
should represent a modest fraction of the time, effort, and expense of put-
ting the model through its paces to answer the important questions that 
motivated its development. Answers and insights are the ultimate goal, not 
the model itself.

Lessons Learned and Future Needs: Models can become unwieldy when 
weighed down by a proliferation of features and variables. Strong theory 
and a clear specification of purpose should guide subject matter experts in 
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the choice of features and variables to be included and excluded, based on 
the specific questions and problems to be addressed. Model development 
should not become an end in itself. As with the extreme parsimony pitfall of 
one-dimensional models, better methods, including comparative studies of 
alternative models for a common problem, are needed to determine which 
variables should be included in a model to generate the most useful results.

Pitfalls in Dealing with Uncertainty and Adaptation

The problems in this section are based on unrealistic expectations of 
how much uncertainty reduction is plausible in modeling human and orga-
nizational behavior, as well as on poor choices in handling the changing 
nature of human structures and processes.

Unrealistic Expectations 

A validated model of weapons delivery could be reasonably expected 
to predict the exact location where a bomb will fall when dropped from a 
specific height and location from an aircraft traveling at a specified speed 
and heading, with specified wind conditions, along with a trustworthy esti-
mate of error in prediction based on likely measurement errors. Plugging in 
the numbers for the specified variables will supply the user with the desired 
prediction. It is, however, unrealistic to expect comparable model outputs 
when the outcome to be predicted is behavior by a human, an organization, 
a nation-state, or other social entity. We illustrate this problem using the 
behavior of an individual person, but the caveat also applies to predicting 
the actions of particular governments or other specific organizations. 

Models that purport to specify the exact actions of any given individual 
human being after plugging in a list of values (for example, nationality, 
group membership, gender—for a nation, this might be values on a look-up 
table of cultural traits, estimated military strength, and known alliances) 
are misleading and seriously incomplete. 

Unrealistic expectations are often based on a misconception about what 
sort of prediction a human behavior model can actually produce. In most 
situations of interest, there is a range of plausible behaviors, and within the 
same situation, different people will behave differently, and the same person 
may also behave differently at different times. Rather than generating a 
single definitive prediction of behavior, a good human behavior model will 
instead identify the space of possible outcomes, give probability assessments 
for these behaviors, and specify some of the factors that could alter these 
probability assessments. 

 This pitfall does not necessarily apply to targeted profiling of a particu-
lar identified individual, when highly specific idiographic information about 
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that individual and a specified context for behavior are available. The data 
demands of such models are typically very high, however, and it remains 
plausible that even a very carefully profiled individual will do something 
completely unexpected. Hence, even for such profiles, predictions that are 
couched in terms of probabilities are more complete. For example, “John 
Doe is likely to do X, with probability estimate of 60 percent, but may 
do Y or Z instead (model estimate of 10 percent each) or take some other 
action not covered by the model (20 percent)” is a more informative and 
less misleading guide to planning and action than a point prediction: “John 
Doe will do X.”

Unrealistic expectations can lead developers to reject a model as useless 
if postdictive accuracy is not very high. Yet any model that aids in deci-
sion making and understanding and that measurably reduces uncertainty 
can have practical value. The primary contributions of some models are to 
suggest the space of possible outcomes, reduce the likelihood of surprise, 
and support systematic analysis. Bronowski (1953) discusses criteria for 
determining the usefulness of what one might learn. Users do need to know 
that they can trust what they are learning from the model, but it may be 
possible to support and test such trust without necessarily expecting the 
model to replicate observed outcomes in the real world, especially when 
modeling phenomena that are rare, infrequent, or otherwise nearly impos-
sible to observe and compare with the model. For example, Cronbach and 
Glaser (1965) produced results that were useful for personnel selection and 
placement because they represented an improvement over the systems that 
were then in place. It was not the validity coefficient of the results that mat-
tered, but the meaningful gain in prediction that they represented.

Lessons Learned and Future Needs: When actions must be taken in 
social situations, IOS models can potentially be used to highlight the range 
of possible outcomes associated with each considered course of action, 
together with probability assessments clarifying the likelihood of these pos-
sible outcomes. Point predictions are generally misleading and incomplete. 
The value of IOS models should be measured in terms of the reduction of 
uncertainty they achieve. Better methods are needed to define the inherent 
uncertainty in model results and communicate that uncertainty more clearly 
to users.

Illusions of Permanence

All models include variables, adjustable parameters, and constants. Even 
when a goal of modeling is to guide the choice of intervention intended to 
change structure and behavior (for example, to change organizational struc-
ture or culture), which implies that the target of intervention is mutable, the 
feature to be modified is sometimes modeled as fixed. This strategy appears 
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in models of culture (with culture treated as a static set of attributes) and 
in many social network models (with the network treated as fixed). This 
misleading approach encourages users of the model to overlook how the 
modeled structure may be changing in ways that dramatically alter the 
impact of an intervention and also forecloses the modeling of how a system 
or structure adapts and adjusts after an intervention. 

For example, using a model of terrorist networks to guide decision 
making about which members of a network to target for removal can 
mislead users if the network is modeled as a fixed structure from which 
nodes will be deleted, rather than as a dynamic network with a trajec-
tory of change that will be altered by the deletion of a node, in ways that 
could either weaken or strengthen the effectiveness of the network. Models 
used to characterize adversary choices (e.g., game theory models) should 
explicitly allow the strategy of the adversary to change in response to (or 
in anticipation of) one’s own strategy choices. 

 Lessons Learned and Future Needs: When feasible, treat IOS structures 
as variables or as parameters that can be adjusted, rather than as hard-
coded fixed attributes that can be altered only by rewriting the source code. 
Parameters and assumptions will change as a situation evolves, including 
adversary knowledge of the assumptions. Better methods are needed to 
build variability over time into models and to communicate the model 
results (with their accompanying uncertainty) to users.

Problems in Combining Components and  
Federating Models

The last three pitfalls we discuss arise from the way in which linkages 
within and across levels of analysis change the nature of system operation. 
They arise when creating multilevel models and when linking together more 
specialized models of behavior into a federation of models.

 Moving from Individual to Collective Action 

Social entities such as groups, organizations, and societies are made up 
of social beings. Yet many individual-based models do not include social 
capacities. Merely assembling such agents together into a group model 
will not enable the understanding of teams, the prediction of collective 
actions, or coordinated group decisions. To model the most rudimentary 
forms of social behavior, agents need the means to track the behavior of 
other agents and rules for adjusting their own attitudes or behavior accord-
ingly. Depending on the application, the rules can be quite simple. Traffic 
models, for example, can model the interactive behavior of a collection of 
agents effectively by assuming that each agent acts to pursue an individual 
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goal (getting to a destination in a reasonable time without colliding with 
others) and chooses among possible actions based on the presence, position, 
and density of other agents, who are also trying to get to their preferred 
destinations. 

Collective action, however, such as group decision making, requires 
further rule structures that specify how agents communicate and coordinate 
their preferences (see Voting and Social Decision Models in Chapter 6). 
Models that represent changes in attitude or behavior based on social influ-
ence need to incorporate rules for how social influence operates. 

In deciding what social capacities need to be explicitly modeled, rel-
evant theory should be consulted. In modeling crowds, for example, social 
science theories (see Conceptual Models in Chapter 3) suggest that changes 
in behavior are driven either by a weakening of normative regulation or 
by emergent norms that become salient to crowd members. While flocking 
models of crowds that treat human beings as analogous to birds and fish 
may well be useful in capturing some aspects of crowd behavior (particu-
larly a crowd in flight), such models are unlikely to be adequate to inform 
interventions designed to strengthen social structures that help prevent a 
crowd from becoming a mob. Moreover, a flock of birds is not the same 
as one big bird; crowds of people do not necessarily behave like one big 
person. Models of large organizations should draw on the extensive existing 
theory and research on how organizational levels are defined and how they 
relate to each other (Klein and Kozlowski, 2000).

Lessons Learned and Future Needs: For social dynamics to operate 
in multiagent systems, social capacities of agents, such as communica-
tion, must be explicitly modeled. For collective action, collective struc-
tures such as rules, norms, and social decision schemes are needed. More 
work is needed to determine the level of detail at which individuals and 
groups need to be modeled in order to provide useful results. Comparative 
studies are needed that examine the contribution of models at different 
levels of granularity to a common challenge problem, and better methods 
are needed to link models of individuals to models of larger groups and 
organizations.

Using Collective Attributes to Predict Individual Action 

Just as modeling problems arise in moving from the individual to 
the collective, inferences made in the opposite direction also pose special 
problems. Incorporating cultural information in models of human behavior 
is a positive step toward explicitly modeling the heterogeneity of people. 
Modelers need to keep in mind that modeling people from the same culture 
as homogeneous is also a simplifying assumption. First, the boundaries of 
nation-states are not necessarily the appropriate cultural boundary. In rela-
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tively homogeneous nations, such as Japan, the nation-state boundary may 
well be a good choice. For multiethnic countries, such as Iraq and Afghani-
stan, tribal boundaries based on ethnic identities, such as Kurd or Pashtun, 
may be more appropriate. Second, people in the same group also exhibit 
considerable variability. The extent to which shared culture results in more 
or less homogeneous behavior depends strongly on the situation and the 
type of behavior involved. Third, people have multiple social identities 
and belong to multiple groups of different sizes, all of which have cultural 
norms and practices that shape behavior. Membership in a group such as 
the military, for example, may influence individual behavior more power-
fully than membership in a national and ethnic group, so that soldiers in 
two countries may behave more similarly in a large variety of domains than 
soldiers in either country compared with civilians belonging to the same 
nation and ethnic group. Finally, one must also be aware that characteristics 
of a higher level of unit of analysis (macro indices) may not be characteristic 
of behavior at a lower level of analysis (individuals at the micro level). For 
example, members of a rioting crowd may smash windows, set vehicles 
alight, and violently attack innocent bystanders even if hardly any of the 
individuals involved would behave that way on their own. 

Lessons Learned and Future Needs: Be aware of the limits and bound-
ary conditions that apply in predicting individual behavior from informa-
tion about groups, organizations, and cultures. Behaviors vary in how 
strongly they are regulated by cultural norms; people belong to multiple 
groups, all of which have cultural features; and the unit boundary used for 
modeling may not be the most appropriate one (see Cultural Modeling in 
Chapter 3). Better methods are needed to represent variable and shifting 
cultural identities, and comparative studies are needed to assess the benefits 
of modeling cultural affinities dynamically in providing useful results for a 
representative challenge problem.

Assemblage of Parts

Recognizing the problems inherent in universal scope models (see 
above), many in the modeling community have embraced the goal of linking 
together component models (which may focus, for example, on a specific 
aspect of human affect or on culture) to create a more comprehensive IOS 
model. The logic is for subject matter experts to build the parts separately 
and eventually snap the component models together to yield the complex 
behavior of the whole. 

The need for creating such federated models is a fundamental challenge. 
It is not possible to build a large universal model without a federation of 
models. So the challenge is to develop systematic ways to federate models 
so that the federated result is valid for its own purpose. 
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Good federated models require (1) an understanding of the purpose 
of the federated model, which might require a deep understanding of the 
problem domain; (2) a good understanding of the individual federated 
components; and (3) assessment of the validity and limitations of the rela-
tionships between the individual federated components and the resulting 
federated model. 

In creating such federated models, modelers need to be aware that 
straightforward snap-together assembly will yield sensible results only when 
assumptions of additivity and functional independence are tenable, and 
they often are not. Complex system analysis has shown repeatedly that the 
connections among the federated components are themselves components 
to be modeled. The nature of these connections is part of the structure that 
yields the behavior of the whole. Moreover, the internal structures of the 
federated components might themselves need to change dramatically when 
an additional component is connected into the federated model. 

An example from cognitive modeling will help illustrate the problem. In 
the early days of cognitive science, many believed that it would be possible 
to simply piece together separate models of reasoning, auditory processing, 
visual processing, memory, etc., to build a reasonable model of the human. 
However, it became clear that due to complex interactions, a more holistic 
approach was needed. Separate models could be connected together as 
components of a federated model only if the connections themselves were 
included as part of the federated model and if the internal structures of the 
components were adapted to the presence of these connections. 

The same is true for complex social modeling. Along with models 
of individuals, the nature of links among the actors and the connections 
of individuals with larger level units, such as groups and organizations, 
need to be modeled to yield adequate models of both individual behavior 
in social context and the behavior of social entities, such as groups and 
nation-states. 

As the complexity of models and federations of models grows, it may 
create the need for “wrappers” that help human beings understand the 
implications and dynamics of the models. New analytic components, per-
spectives, and tools will be needed to support understanding and use. The 
complex interactions that are typical of social science models, as discussed 
above, will make this a challenging area for research.

Federation also has implications for the VV&A process (see Chapter 8). 
A federated model formed by combining two models that have previously 
been individually validated should not be automatically viewed as vali-
dated; the federated model must be validated on its own (Burton, 2003). 

Lessons Learned and Future Needs: When linking component models, 
appropriate theory needs to guide the modeling of the linkages as a new 
component in the resulting federation of models. Systems of systems theory 
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(see Systems Analysis in Chapter 4) can help guide the process of federation, 
and standards are needed for validating the federation itself. Standards, 
guidelines, methods, and architectures are needed to improve the state of 
the art in model federation, addressing semantic interoperability issues that 
go beyond simple syntactic interoperability. Issues to be addressed include 
the compatibility of definitions and levels of abstraction, time scale resolu-
tion, and treatment of uncertainty in the models to be federated.

Summary of Future Needs

Social, cultural, and organizational modeling is a complex, emerging 
science with roots in many different disciplines: psychology, sociology, eco-
nomics, anthropology, systems theory, and computer science, among oth-
ers. The advancement of a scientific field typically requires that researchers 
maintain awareness of each other’s work and build on each other’s results. 
The multidisciplinary nature of IOS modeling, however, has created a frag-
mented field with researchers in different disciplines often unaware of each 
other’s relevant work and failing to make use of relevant existing theory 
and data. In order for the field to advance, researchers need better frame-
works and forums in which to compare, discuss, and evaluate their results. 
The field currently features a multitude of complex models created using 
different data and different theories to address different problems, making 
comparative analysis nearly impossible. Common datasets and challenge 
problems are needed in order to learn which modeling approaches and sets 
of variables are most useful for specific types of problems.

It seems clear that no single model or approach will meet everyone’s 
needs. There is no single right model and probably will never be. The com-
mittee thinks that a federated modeling approach, in which different models 
at different levels are linked together and component submodels can be 
swapped in and out, are promising for attacking complex IOS modeling 
problems. Considerable research needs to be done to make this federated 
vision a reality, however. Standards, architectures, methods, and tools are 
needed to lower the barriers for developing, linking, and validating feder-
ated models.

Different modeling purposes require different types of models. In the 
committee’s judgment, the purpose of the model should drive the appropri-
ate variables to be included in the model. To do this successfully requires 
a clear specification of model purpose and criteria for usefulness for that 
purpose, which in turn requires that model developers work closely with 
the eventual users of the model.

The committee also recommends validation for action, in which the 
purpose of the model drives its validation criteria. IOS models cannot be 
validated “in general”—they must be validated for a specific use. Research 
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is needed with a cross-disciplinary community of interest to establish and 
promulgate accepted standards for validation of IOS models. Triangulation 
methods that combine expert judgment, qualitative results and theoretical 
work, and quantitative results should be further refined and more widely 
used. Common challenge problems and datasets are needed to facilitate 
docking of models for comparative purposes.

Finally, models of human beings and their individual and collective 
behaviors must necessarily include a large amount of inherent uncertainty. 
This uncertainty is not a flaw of the model and cannot be designed out of 
the model. Human behavior is dynamic and adaptive over time, and it is 
impossible at the moment (and into the foreseeable future) to make exact 
predictions about that behavior. What is needed are ways to estimate the 
probability of plausible outcomes and express those estimates in ways that 
are clear and meaningful to model users, who can then judge whether the 
results meet their needs. It is important also to avoid raising expectations 
about the capabilities of IOS models beyond what they can realistically 
deliver.
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Recommendations for Military-
Sponsored Modeling Research

This report has reviewed the state of the art in individual, organi-
zational, and societal (IOS) modeling and the ability of current 
modeling approaches to meet military needs; assessed the common 

pitfalls and problems associated with this type of modeling; and pointed 
out areas in which additional work is needed. This chapter summarizes the 
committee’s recommendations for advancing behavioral modeling capabili-
ties to meet the military’s current and anticipated needs.

There are many challenges in advancing the science of human behav-
ioral modeling. The theory on which to base the models is often fragmented 
and incomplete, failing to specify key links that are needed to answer the 
questions of interest. Data for testing theories and models (or for deriving 
empirically based models) are also sparse and often lacking in detail for 
exactly those factors that are critical for the model. Because of the scale of 
many behavioral models, it is rarely possible to generate useful data from 
controlled laboratory experimentation (as, for example, is often possible for 
models of individual cognition and behavior). Furthermore, there are often 
no well-defined criteria for success in these modeling efforts and no widely 
accepted definitions and methods for validation of IOS models. Finally, the 
research and development efforts are being conducted in many different 
disciplines. Modelers currently use different types of data, at different levels 
of detail, to model different types of behavior in order to answer differ-
ent kinds of questions. Little effort is devoted at present to comparison or 
integration of models from different perspectives. 

How, then, can this fragmented field best advance? Our recommenda-
tions focus on cross-disciplinary information exchange and the compari-
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son and integration of models, structured around well-defined challenge 
problems and common datasets, with independent research thrusts recom-
mended for those issues that are most critical.

Recommendations fall into three broad categories: (1) large-scale, inte-
grated cross-disciplinary research programs, focused around representative 
challenge problems and common datasets; (2) research in six independent 
areas that will advance the capabilities to address these integrated problems; 
and (3) multidisciplinary conferences, workshops, and other information 
exchange forums, with attendees to include not only model developers but 
also government program managers and military decision makers.

Integrated Cross-Disciplinary Research Programs

We suggest the funding of multiple large-scale, multiyear research pro-
grams that focus on comparing and, if appropriate, integrating models from 
different disciplines, different perspectives, and different levels of detail. 
This funding would provide incentives for researchers in diverse disciplines 
to work together on military-relevant problems. The goal would not be to 
pick the best model but rather to create a level playing field on which the 
capabilities of different approaches could be compared and the strengths 
of each assessed (see Gluck and Pew, 2005, for a description of a similar 
research program conducted for individual cognitive models). The ultimate 
goal is to move IOS modeling science forward through the process of com-
parison, docking, and integration. 

It is essential for all participants in each program to focus on the same 
well-defined challenge problem instantiated in a common testbed and to 
use a common program dataset. At the heart of each program would be 
a representative problem that is critical for military operations, defined in 
detail. The five representative problems described in Chapter 2 provide a 
possible starting point for choosing the problems to be addressed.

The definition of challenge problems is a difficult but essential step for 
the recommended IOS modeling research program, and it should be the first 
step in such a program. Initial grants should fund challenge problem devel-
opment, and continuation of the program should be contingent on success 
in defining these problems. Operational users must be involved in defin-
ing the challenge problems, and the criteria for modeling success should 
be clearly specified as part of problem definition. What type of model 
results—discovery, understanding, or forecasting—will be relevant for the 
problems being defined? What actions may be taken based on the model 
results? Criteria for model usefulness in the challenge problems should be 
clearly defined up front.

The research teams for these efforts should be multidisciplinary, and the 
program team should also include military users with operational experi-
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ence in the domain for which the models are to be developed. These users 
will be ultimate judges of whether model results are useful (which we argue 
is the ultimate criterion for validation; see Chapter 8) and will provide 
advice on how the model results can best be presented for immediate com-
prehension and relevance. The use of a common challenge problem and 
a common testbed will facilitate the docking of the different models for 
purposes of comparison.

These integrated programs will encourage mutual education between 
modelers and operational users. Researchers will learn about the military 
domain and about user expectations. Users will learn about the scientific 
limitations to understanding of the basics of human behavior and what is 
feasible to represent in models (and implement in usable simulations) and 
will develop an understanding of the level of uncertainty associated with 
model forecasts or predictions. Results should be presented at workshops 
for program participants and other interested parties and at public confer-
ences, published in the open literature for the research community at large, 
and presented “up the chain” to the program managers who rely on these 
models for operational, training, and mission rehearsal uses.

Independent Research Thrusts

In support of the integrated programs we recommend, we have identi-
fied six independent areas in which research is needed. Progress in each of 
these areas could increase the ability to develop the integrated modeling 
capabilities that are needed to address military problems. In each area, we 
suggest the funding of multiple research teams approaching the work from 
multiple perspectives, with periodic workshops for researchers to exchange 
results. We also suggest that operational users as well as government pro-
gram managers participate in these workshops to draw on their areas of 
expertise and to gain better insight as to model capabilities and limita-
tions. The funding structure of the programs should support and enable 
the participation of individual researchers or smaller laboratories in both 
academic institutions and industry and not be limited to large institutions, 
as is often the case in collaborative projects supported by the Department 
of Defense (DoD). 

Thrust 1: Theory Development

Models should be conceptually correct and grounded in the underlying 
fundamentals of what is known about individual human and group social 
behavior. However, current theory in this area does not answer all of the 
questions needed to structure models that address relevant issues. Basic 
research is needed for theory development, especially for the low-level social 
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behaviors (e.g., choosing friends) that are the building blocks for larger scale 
social behavioral patterns (e.g., joining a terrorist group). Since affective 
states and traits represent a key component of individual motivation and play 
a critical role in interpersonal behavior and group and organizational deci-
sion making, basic research in emotion and emotion-cognition interactions 
should be emphasized. This theory development work must involve multiple 
disciplines and perspectives with periodic workshops to exchange results.

Theory development challenge problems should be defined to guide 
the work, but these can be nonmilitary and need not involve the level of 
military detail necessary for the integrated problems discussed above. A 
series of workshops should be conducted with researchers to identify key 
theory gaps. We recommend working backward from a set of operational 
problems (as defined for the integrated programs) to identify areas in which 
lack of theory is impeding modeling progress. These theory gaps can be 
used to define theory challenge problems.

Academic institutions are key players for theory development, but 
they need information, incentives, and funding to address these theoretical 
issues. There is a need to educate academic researchers in military domains, 
establish conferences and journals in which their results can be presented, 
provide postdoctoral support, and provide funding that allows researchers 
to spend time learning about military domains in depth. Funding for gradu-
ate students is a key part of this thrust as a cost-effective way to bring about 
shared understanding and progress.

Thrust 2: Uncertainty, Dynamic Adaptability, and Rational Behavior

Models must deal with the inherent uncertainty (nondeterminism) and 
the dynamic adaptation (nonstationarity) that characterizes human behav-
ior. Models must also be capable of modeling both rational and nonrational 
behavior. 

Basic research is needed in each of these areas. Issues include

•	 How should models capture the “uncertainty-in-the-small” associ-
ated with individuals and small groups? How can model structures 
and parameters capture this variability, and how much of this vari-
ability must be included for the purposes of the model?

•	 How should models capture the “uncertainty-in-the-large” associ-
ated with populations and variations in population distributions? 
For example, to what extent should models be based on mean val-
ues versus capturing effects from the tails of a distribution? How 
much variability must be included for the purposes of the model?

•	 How can models capture adaptation and learning over time and 
in response to actions by others? For example, models of cultural 
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groups often assume that cultural identity is static and unitary. In 
fact, people have multiple overlapping identities and allegiances 
that vary in their influences over behavior. How can these be cap-
tured in a model, and how can one estimate the effects of actions 
and events on the primacy of these multiple allegiances as they 
affect decisions and actions?

•	 What are the factors that contribute to rational, adaptive behavior 
and what factors induce behavior that appears nonrational? His-
torically, emotions and affective factors have often been adduced to 
explain irrationality, but recent research in psychology and neuro-
science has demonstrated that emotions also play a critical role in 
rational, adaptive behavior. Likewise, behaviors viewed as purely 
cognitive—including habit, bounded rationality, the range of beliefs 
unfamiliar to the observer, and ignorance, as well as behaviors with 
strong cognitive and affective components, such as fanaticism—can 
lead to what appears to be irrational behavior. Models of both 
rational and irrational behavior must therefore capture all the key 
factors—cognitive, affective, cultural, and contextual—that motivate 
and shape behavior of specific individuals in specific situations. 

Better techniques are needed for understanding the implications of 
diversity and variability for model-based sensitivity analysis. Combinatorial 
explosion of possible combinations of parameters is a challenge, and better 
automated technology is needed to put the model through its paces to 
explore the parameter space effectively and produce robust results.

Thrust 3: Data Collection Methods 

The difficulty of obtaining data is an ongoing challenge for IOS model-
ing. Research is needed to develop better data collection processes through 
field studies, experiments, and potentially by using massively multiplayer 
online games (MMOGs).

Although a variety of ethnographic data collection techniques are cur-
rently in use, they need to be better tailored to the needs of IOS models. For 
field data collection, it is necessary to bring modelers and data collectors 
together to develop data ontologies, joint specifications, and data collection 
methodologies and tools that are specifically tuned to IOS models. 

MMOGs are an untapped resource for collecting social and behavioral 
data on a large scale. We recommend the creation of an MMOG facility 
that could serve as a testbed for exploratory research and model testing and 
the funding of basic research to determine if MMOGs can be used to test, 
verify, and validate IOS models. We recommend that funding be put into 
developing the science of MMOGs rather than in developing additional 



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

RECOMMENDATIONS FOR MILITARY-SPONSORED MODELING RESEARCH	 361

artificial worlds. The research agenda for this facility should be developed 
through workshops that convene both IOS modeling scientists and game 
experts. Note that funding MMOGs is a risky endeavor, with no guarantee 
that games that are useful for research purposes will find the widespread 
interest necessary for extensive data generation, but we think that the 
potential benefits outweigh the risks.

Given the critical role of emotions and affective personality factors 
in organizational decision making and behavior, it is also important to 
enhance the current methods for collecting affective data. Emotions and 
moods are notoriously difficult to assess accurately, particularly in natural-
istic and field settings. Yet recent progress has been made in using multi-
modal approaches to affect assessment, including physiological monitoring 
and indirect assessment of these transient states via diagnostic tasks and 
performance tracking. We recommend that funding be allocated to the con-
tinued refinement of these methods and to the development of standardized 
assessment instruments, particularly in naturalistic settings.

Thrust 4: Federated Models

It is a fundamental conclusion of the committee that no single model-
ing approach can provide all the capabilities needed by DoD. We recom-
mend a federated approach in which modeling components are created 
to be interoperable across levels of aggregation and detail. For example, 
a federated model might include a detailed representation of a few key 
individuals, linked to group-level models of different cultural groups and 
terrorist organizations, linked to geographic sector–level models of the level 
of unrest in a city. This approach is flexible and extensible, allowing the 
addition or subtraction of models at different levels of detail as needed for 
the problem to be addressed.

Combining model components to create federated models in the 
sense being recommended is not simply a matter of specifying and using 
interface-level syntactic compatibility protocols. It requires deep semantic 
interoperability (i.e., theoretical consistency). To create semantic inter
operability, it is necessary to recognize that the links among components 
are themselves elements of the model. Components created at different 
levels of detail and for different purposes do not simply snap together to 
produce meaningful results.

Assuming that the interface protocol issues will be solved by others 
(e.g., enterprise database developers), research is needed to answer the 
following questions:

•	 What is the best way to ensure that the models being federated 
embrace compatible assumptions regarding concept abstractions, 
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entity resolution, time scale resolution (tempo), uncertainty, adapt-
ability, docking standards, input-output semantics, etc.?

•	 How should the components of the federated model be encapsu-
lated, and which elements must be exposed to other components?

•	 How should specific classes of models be linked (e.g., cognitive 
models to social network models)?

•	 How can developers ensure dynamic extensibility?

These issues are not unique to IOS modeling. In addressing them, IOS 
modelers should maintain awareness of research and development in model 
federation in the larger modeling and simulation community.

Thrust 5: Validation and Usefulness

Current verification, validation, and accreditation (VV&A) concepts 
and practices were developed for the physical sciences, and we argue that 
different approaches are needed for IOS models. Specifically, we recom-
mend the use of a “validation for action” approach that assesses the use-
fulness of a model for the specific purposes for which it was developed. 
Although promising work has been done in testing IOS models through 
triangulation among multiple types of expertise and multiple data sources, 
and some work has been done in docking different models for comparison, 
these approaches are not widespread. We recommend organizing a national 
workshop to agree on appropriate processes for VV&A of IOS models 
and to outline a roadmap for developing improved VV&A processes and 
standards. On the basis of the results of this workshop, we recommend 
that a DoD-wide authority develop and disseminate VV&A processes and 
standards for IOS models. These standards should be developed de novo, 
not as an adjunct to conventional VV&A standards.

Basing model validation on the usefulness of the model for specific 
problems requires that model purposes be clearly stated by model users and 
clearly understood by model developers. This is an area in which mutual 
education is needed. We suggest that, as part of developing a VV&A stan-
dard for IOS models, clear guidelines be developed for specifying model 
purpose.

Thrust 6: Tools and Infrastructure for Model Building

It is important to reduce the barrier to entry for developing models, 
modeling tools, frameworks, and testbeds. Scientists should be able to build 
and validate models without the large overhead currently associated with 
many DoD modeling and simulation investments. It should be possible to 
tailor existing models easily for specific purposes.
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Sharing of IOS modeling knowledge across disciplines, as facilitated 
by the conferences and workshops recommended below, will support this 
goal. Work is also needed to develop an infrastructure for IOS modelers, 
including a national network of possible collaborators, common databases 
for model development and testing, and frameworks and toolkits for rapid 
model development. There is also a need for web-based repositories of 
information about existing models and, later, model components.

To facilitate the development and use of shared ontologies and model 
components, funding must also be allocated to the refinement of existing 
markup and modeling languages, as well as the development of new lan-
guages for particular domains or tasks. 

The limited data that exist for IOS models are often not accessible to 
model developers. We recommend the funding of national web-accessible 
data repositories that are open to researchers who seek to inform and test 
models. For militarily relevant domains in which some data are classified, 
we recommend an investment in automated tools to sanitize potentially 
sensitive military data.

Often, the IOS models themselves are not readily accessible or even 
known to researchers or practitioners. Researchers are often unaware of 
efforts under way in DoD that are not reported on in conventional confer-
ences and journals, and military developers are likewise unaware of progress 
being made in the research community. Or if they are, the typical user can 
face great difficulty in assessing the applicability of one approach or model 
over another, given their particular problem at hand. The occasional studies 
that attempt to survey the community and categorize development efforts 
and associated models, such as this one (see, e.g., Table 2-1 and Table 8-3) 
and its predecessor study (National Research Council, 1998), take small 
steps in this direction, but they are not meant to be exhaustive surveys and 
are only snapshots in time, become stale rather quickly, and fail to offer 
easy electronic access directly to the rich and evolving world of IOS models 
and associated simulations.

We therefore recommend the development and maintenance of an 
online web-based catalog of general approaches, models, simulations, and 
tools. The notion is to develop something along the lines of the Defense 
Modeling and Simulation Office’s (DMSO’s) Modeling and Simulation 
Resource Repository (MSRR) at http://www.msrr.dmso.mil/, maintained 
by the Modeling and Simulation Information Analysis Center, or the clear-
inghouse at Carnegie Mellon’s CASOS site (see http://www.casos.cs.cmu.
edu). But to be effective, the envisioned site needs careful consideration in 
terms of the following:

•	 Organization: The model ontology and site structure need to be 
carefully thought out, both from the researcher’s perspective (e.g., 
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foundational concepts underlying the particular model in the repos-
itory) and from the user’s perspective (domain of application, limi-
tations, simulation requirements, etc.).

•	 Content: Considerations need to be given to what is maintained on 
the site, ranging from simple descriptive abstracts to full-fledged 
downloadable simulations and “read me first” instructions.

•	 Currency: Once set up, the maintainers must devote effort to con-
stantly updating the site, by tracking changes to existing models, 
adding new models that arise on the scene, and, certainly of equal 
importance, removing defunct models, or at least moving them to 
the archival section of the site to support historical surveys and 
the like. Failure to maintain currency will be the death knell of the 
repository, as it is with most websites today. One approach that 
should be considered is a Wikipedia-based model.

•	 Usability: The site design needs to ensure ease of use for all autho-
rized visitors, including contributors, users, and occasional viewers. 
Procedures need to be in place to vet content modifications or addi-
tions, to support ease of navigation and internally searching for 
what the user is seeking, and to keep the site fresh and attractive 
to the larger community.

It is clear that this cannot be a one-time effort like DMSO’s MSRR, nor 
an unfunded academic effort like Carnegie Mellon’s CASOS site. It needs 
significant startup funding and continued support over its lifetime. 

Multidisciplinary Conferences and Workshops

A number of the issues and problems identified by the panel were 
the results of the failure of different disciplines to exchange information, 
or they resulted from misunderstandings among government funders of 
model development efforts, military users of models, and model developers. 
Because of the diversity of this group, there is no natural forum for them 
to exchange information, as there would be in conferences and journals for 
members of the same academic discipline or professional group. We there-
fore recommend the organization of special-purpose workshops around the 
integrated research programs recommended above as well as workshops for 
the independent research thrusts described above.

IOS modelers who are interested in working on military-relevant prob-
lems need to be educated on:

•	 The nature of the military decisions for which models are relevant 
and of the operational situations in which the decisions must be 
made.
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•	 Desired model functionality.
•	 The most useful form(s) for presenting model results.
•	 The value of work performed by others outside their discipline.
•	 Feasible and appropriate VV&A approaches for IOS models.

Operational users and managers need to be educated on:

•	 The value of multidisciplinary approaches and the need for review 
of models from multiple perspectives.

•	 The inherent uncertainty associated with IOS model predictions.
•	 The value of models for sensitivity and trade-off analysis (versus 

the one right answer).
•	 The design of virtual experiments to assess results over a range of 

conditions.
•	 Reasonable definitions of validation for IOS models, feasible 

approaches for VV&A testing, and why these approaches differ 
from those used for physics-based models.

The recommended workshops should involve model developers, opera-
tional military users of the models, and government personnel who make 
funding decisions regarding model development. Issues to be discussed 
include methods for clearly specifying model purpose, criteria for judging 
the usefulness of models (i.e., what does it mean to validate a model), rea-
sonable expectations for the certainty of model predictions, and methods 
for most clearly communicating model results.

Roadmap for recommended research

The committee’s recommendations are based on the concept of use-
driven research. As defined by Stokes (1997), use-driven research combines 
elements from both basic and applied research. Like applied research, 
use-driven research seeks to solve a practical problem—in this case, the 
development of IOS models that can serve military purposes. But, like 
basic research, it also asks “why” in a fundamental way—Why do some 
methods work and others not work? What are the principles that underlie 
success or failure?

Figure 11-1 illustrates the major elements of a use-driven research 
program for IOS modeling. The process starts with challenge problem defi-
nition, which includes a clear specification of the use to which a model is 
to be put. This specification should be based on the needs of the model 
users, expressed in terms that are meaningful to the IOS modeling com-
munity. The challenge problem definition step is critical, and the funding 
of the remainder of the program should be contingent on its success. The 
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11-1.eps
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Is new theory needed?

FIGURE 11-1  Elements of use-driven research for IOS modeling.

purpose of the model drives the theory to be applied, the data to be used, 
and the model development. Model development is made easier by model-
ing tools and infrastructure and relies on federation standards to ensure 
the interoperability of model components. Once the model is developed 
it is validated by asking the question: Is the model useful for its intended 
purpose? 

As shown in Figure 11-1, the problem specification and model develop-
ment process is cyclical. Based on the answers to the question “Is the model 
useful?” new models may need to be developed, new theory and new data 
(and new types of data) may be needed, and new interoperability standards, 
tools, and infrastructure may be required. Depending on the results, the 
problem itself may need to be redefined, clarified, or expanded.

Figure 11-1 lays out the areas in which research and development are 
needed for IOS modeling and shows how they are interdependent. Fig-
ure 11-2 organizes the suggested research areas into a roadmap that shows 
lines of activity and the interrelationships among them, repeating yearly in 
a cyclical fashion to advance the state of the art in meeting military IOS 
modeling needs.

As in all use-driven research, the recommended activities start with 
a clear definition of the purposes to which IOS models are to be put. We 
recommend that the initial activity for the program (the first six months) be 
spent on developing a clear definition for selected representative challenge 
problems (the problems listed at the end of Chapter 2 can provide a starting 
point) in close collaboration with operational military users. Concurrent 
with problem definition, the first six months should be spent in developing 
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datasets for these challenge problems. The challenge problems will provide 
common themes that tie together the diverse research and model develop-
ment efforts.

There is currently no single approach that is clearly dominant for IOS 
modeling. Our recommendation is to select and fund a number of modeling 
teams that take different approaches for each challenge problem. In addi-
tion to the modeling teams, we recommend a series of specialized research 
thrusts focused on theory development, data collection methods, federation 
standards, and the development of infrastructure and tools. These thrusts 
will be aware of the challenge problems and will use the problems to focus 
their research, but their charter is broader and covers the entire field of 
IOS modeling. 

The modeling teams and the research thrusts will come together in a 
conference at month 6, to learn about the challenge problems and the data-
sets associated with each problem. Conferences that involve the entire pro-
gram will be scheduled yearly, with workshops for the individual research 
thrusts at the intervening 6-month intervals. The yearly conferences will 
also provide the forum for the presentation of new challenge problems, 
based on the results obtained in the prior year.

At the end of year 1, the models that have been developed for the 
challenge problems will be presented and discussed at a validation work-
shop, and docking and comparison activities will follow during the next 
6 months, with results to be reported to the whole program at the yearly 
conference. These validation workshops should involve representative 
model users for each challenge problem. These users will assess the extent 
to which model results are useful for their intended purpose, as defined 
in the challenge problems. This process will repeat in subsequent years. 
As shown in Figure 11-1, the intention is that the results of the validation 
effort will inform all of the research thrusts as well as model development 
for the next cycle.

Although not shown in the timeline, it is assumed that a concurrent 
effort will be focused on the development and maintenance of an online 
web-based catalog of general approaches, models, simulations, and tools, as 
described earlier. This will serve not only as a repository of current theories 
and models, but also as a common record of the results of the execution 
of the roadmap.

The roadmap structure proposed in Figure 11-2 is intended to provide 
the field of IOS modeling with the common ground and forums for sharing 
information that will allow it to advance in a systematic way. Develop-
ment and testing of models against a common set of challenge problems 
will avoid the current proliferation of specialized models for specialized 
purposes with no common framework for comparison and validation and 
therefore no foundation for scientific progress. Figure 11-2 shows the 
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research cycle repeating over a four-year period, but we recommend that 
the program continue well beyond four years, with each year assessing the 
progress that has been made and increasing the complexity of the challenge 
problems based on the increasing capability of the modeling technology. 
New participants should be added to the funded programs and conferences 
each year, as new approaches and tools are developed and tested.
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Appendix A

Acronyms and Abbreviations

Models, Modeling Tools, Frameworks

AASPEM	 Advanced Air-to-air System Performance Evaluation 
Model

ACT-R	 Adaptive Control of Thought–Rational
ADC	 Air Defense Commander
AMBR	 Agent-Based Modeling and Behavior Representation

BioWar	 Biological Warfare agent-based model (ABM)
BNet	 family of Belief Network tools
BRAHMS	 Multiagent modeling and simulation environment 

C3GRID	 Command, Control, and Communications (C3) on 
Grid model

C3HPM	 C3 Human Performance Model
C3TRACE	 C3 Techniques for the Reliable Assessment of Concept 

Execution
CART	 Combat Automations Requirements Testbed
CASTFOREM	 Combined Arms and Support Task Force Evaluation 

Model
CBS	 Corps Battle Simulation
CCTT	 Close Combat Tactical Trainer
CLARION	 Connectionist Learning with Adaptive Rule Induction 

ON-line
CLIPS	 C Language Integrated Production System
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CLOS	 Common LISP Object System
Cmap	 Concept Map tools
COGENT	 Cognitive Objects within a Graphical EnviroNmentT
COGNET	 Cognition as a Network of Tasks
CONNECT	 A social network analysis tool for organizational 

modeling and simulation
Construct	 A multiagent dynamic network model
CORES	 Complex Organizational Reasoning System
CSSTSS	 Combat Service Support Training Simulation System

DDD	 Distributed Dynamic Decision-making
DIAS	 Dynamic Information Architecture System
DISCUSS	 A process simulation model of jury decision making
D-OMAR	 Distributed OMAR (Operator Model Architecture)
DyNet	 Dynamic Network (M&S tool)

EAAGLES	 Enhanced Air-to-Air and Air-to-Ground Linked 
Environment Simulation

EADSIM	 Extended Air Defense Simulation
EAGLE	 Air-to-air combat simulation model
EMA	 A computational appraisal model
EPIC	 Executive Process/Interactive Control

FLAMES	 Flexible Analysis Modeling and Exercise System

GRADE	 Graphical Agent Development Environment
Graphvix	 Graph Visualization Software
GTA-SA	 Grand Theft Auto: San Andreas (a game)

HASMAT	 Human and System Modeling and Analysis Toolkit 
HLA	 High-Level Architecture
HOS	 Human Operator Simulator

IBC	 Integrated Battle Command
ICET	 Integrated Concept Evaluation Tool
ICEWS	 Integrated Crisis Early Warning System
IDE	 Integrated Development Environment
iGEN	 COGNET
IMPRINT	 Improved Performance Research Integration Tool
INTERMEDIATE	 An anthropometry model
IUSS	 Integrated Unit Simulation System
IWARS	 Infantry Warrior Simulation
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Jack	 An anthropometric model for system design
JANUS	 Physics-based ground combat simulator
JCATS	 Joint Conflict and Tactical Simulation
JCM	 Joint Conflict Model
JSAF	 Joint Semi-Automated Forces 
JSIMS	 Joint Simulation Systems
JWARS	 Joint Warfighting Simulation 

MAMID	 Methodology for Analysis and Modeling of Individual 
Differences

MASON	����������������������������������    Multi-Agent Simulator of Networks� 
MATREX	 Modeling Architecture for Technology Research and 

Experimentation
MicroPsi	 Agent architecture founded on Psi theory
MicroSAINT	 Microprocessor-based Systems Analysis of Integrated 

Networks
MIDAS	 Man-machine Integration Design and Analysis System
MINDS	 Modeling Individual Differences and Stressors
ModSAF	 Modular Semi-Automated Forces
MTWS	 Marine Tactical Warfare Simulation 

NetLogo	 A cross-platform multiagent programmable modeling 
environment

NetWatch	 A multiagent model/framework
NM	 SROM National Model

OCC	 Ortony, Clore, and Collins emotion appraisal model
OCCAM	 Organizational and Cultural Criteria for Adversary 

Modeling
OMAR/D-OMAR	 Operator Model Architecture/Distributed OMAR
OneSAF	 One Semi-Automated Forces
OOS	 OneSAF Objective System
ORA	 Organizational Risk Analyzer
OrgAhead	 Computational Model of Organizational Learning and 

Decision Making 
OrgSim	 A multiagent model/framework
OTB	 OneSAF Testbed

PCAS	 Pre-Conflict Anticipation and Shaping
PMFServ	 Performance Moderator Function Server
PRISM	 Platform for the Representation of and Inference over 

Situation-theoretic Models
Ptolemy	 System Dynamics Modeling Framework 
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RAID	 Real-time Adversarial Intelligence and 
Decision-making

RDEBBSM	 Crowd model based on diffusion kinetics
REPAST	 Java-based framework for agent-based socioeconomic 

modeling

SAMPLE	 Situation Awareness Model for Person-in-the-Loop 
Evaluation

SEAS	 Synthetic Environments for Analysis and Simulation
SIAM	 Situational Influence Assessment Model 
Soar	 Simulation of Adaptive Response 
SPECTRUM	 A sociocultural training system
SROM 	 Stabilization and Reconstruction Operations Model
STELLA	 A simulation-based training environment for 

Information Operations, also a graphically oriented 
front end for the development of System Dynamics 
models 

SWARM	 Framework for agent- and individual-based modelers

TACBRAWLER	 Tactical Air Combat Simulator 
TACSIM	 Tactical Simulation System 

VISEO	 Visible/Electro-Optical Detection Analysis System
VISTA	������������������������������������     Visualization of Threats and Attacks

WARSIM2000	 Warfare Simulation 2000 

XCON	 The eXpert CONfigurer program
Xerion	 neural network simulator (also known as the 

University of Toronto simulator [UTS])

Other Abbreviations and Acronyms

ABM	 Agent-based models
AFAMS	 Air Force Agency for Modeling and Simulation
AFOSR	 Air Force Office of Scientific Research
AFRL	 Air Force Research Laboratory
AI	 Artificial intelligence
API	 Application Programming Interface
ARI	 Army Research Institute for the Behavioral Sciences
ARL	 Army Research Laboratory
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BBN	 Bayesian Belief Network; also Bolt, Beranek, and 
Newman, Inc.

BCT	 Brigade combat team
BDA	 Battle damage assessment
BDI	 Belief, desire, intention
BLOS	 Beyond line of sight

C2	 Command and Control
C3	 Command, Control, and Communications
C4ISR	 Command, Control, Communications, Computers, 

Intelligence, Surveillance, and Reconnaissance
CA	 Civil Affairs
CASOS	 Center for Computational Analysis of Social and 

Organizational Systems, 
located at Carnegie Mellon University 

CCM	 Cultural consensus model
CIC	 Combat Information Center
CL	 Computational laboratory
CMO	 Civil Military Operations
CMYK	 Cyan, magenta, yellow, black
CNO	 Computer Network Operations
COA	 Course of action
Cog-Aff	 Cognitive-affective 
COP	 Constraint Optimization Problem
COTS	 Commercial off the shelf
CPE	 Commander’s Predictive Environment 
CPM	 Critical Path Method

DARPA	 Defense Advanced Research Projects Agency
D-COG	 Distributed Cognition 
DFT	 Decision Field Theory
DIME	 Diplomatic, information, military, and economic
DMO/MR	 Distributed Mission Operations/Mission Rehearsal
DMSO	 Defense Modeling and Simulation Office
DoD	 Department of Defense
DSM	 Design Structure Matrix

EBO/EBP	 Effects-Based Operations/Effects-Based Planning
EM	 A model of appraisal using OCC (see below) theory
ERGM	 Exponential Random Graph Model
ES	 Expert system
EW	 Electronic warfare
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FCS	 Future combat system
FHA	 Federal Housing Administration 
FOB	 Forward operating base
FPS	 First person shooter (game)

GIG	 Global information grid
GOTS	 Government off the shelf
GUI	 Graphical user interface

HBR	 Human behavior representation
HIL	 Human in the loop

ICCS	 International Conference on Complex Systems
IDE	 Integrated development environment
IED	 Improvised explosive device
INTEL	 Intelligence
IO 	 Influence operations; also information operations
IOS	 Individual, organizational, and societal

JDEP	 Joint Distributed Engineering Plant
JFCOM	 Joint Forces Command
JSF	 Joint Strike Fighter
JUO	 Joint Urban Operations

LISP	 List Processing (programming language)
LOS	 Line of sight 

M&S	 Modeling and simulation
MAD	 Mutually assured destruction
MAS	 Multiagent systems
MC2C	 Multisensor Command and Control Constellation
MCO	 Major combat operations
MI	 Military intelligence
MMOG	 Massively multiplayer online game
MOOTW	 Military operations other than war
MOUT	 Military operations on urban terrain
MP	 Military police
MSIAC	 Modeling and Simulation Information Analysis Center
MSRR	 Modeling and Simulation Resource Repository (at 

DMSO)
MUO	 Major urban operations

NGO	 Nongovernmental organization
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NLOS	 Nonline of sight
NMSO	 Navy Modeling and Simulation Office
NRC	 National Research Council

ONR	 Office of Naval Research
OPS	 Operations
OPSEC	 Operations Security
OR	 Operations Research
OSD	 Office of the Secretary of Defense

PERT	 Program Evaluation and Review Technique
PMESII	 Political, military, economic, social, information, and 

infrastructure
PSYOP	 Psychological Operations

QDR	 Quadrennial Defense Review

R&D	 Research and development
R&S	 Reconnaissance and surveillance
RBA	 Revolution in business affairs
RGB	 Red, green, blue
RMA	 Revolution in Military Affairs
RPD	 Recognition-primed Decision Making
RPG	 Rocket-propelled grenade

S&T	 Science and Technology
SAB	 (U.S. Air Force) Scientific Advisory Board, also USAF 

SAB
SAFIA	 Expert system for controlling blast furnace operations
SASO	 Stability and Support Operations
SCCS	 Standard Cross-Cultural Survey
SDB	 Soar DeBugger
SNA	 Social network analysis
SOA	 State of the art
SSC	 (U.S. Army) Soldier Systems Center
STEAM	 Shell for TEAMwork

UA	 Unit of action
USECT	 Understand, shape, engage, consolidate, and transition

VV&A	 Verification. validation, and accreditation
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WMD	 Weapons of mass destruction

XML	 Extensible Markup Language
XSLT	 XSL Transformations
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Appendix B

Exemplary Scenarios and Vignettes to 
Illustrate Potential Model Uses

To support the analysis effort and focus subsequent discussions of 
potential model utility, we present here a detailed scenario describ-
ing key operational aspects of a real-life scenario containing many of 

the Quadrennial Defense Review (U.S. Department of Defense, 2006) and 
Joint Urban Operations (JUO) considerations posed earlier. Researchers 
and model developers might believe that there are any number of scenarios 
available on which one might build one’s analyses, but this is not the case. 
It is very difficult to find one that embraces all of the likely future combat 
conditions, since official publications state that realistic scenarios must 
include

•	 modernized industrial age forces with high-tech systems and more 
primitive paramilitary and insurgent forces;

•	 complex terrain and urban environments;
•	 failed states (the norm) with the internal society fractured and 

crime rampant;
•	 international interest/involvement in the region with nongovernmen-

tal organizations or information operations (IOs) engaged;
•	 national will at issue;
•	 use of IOs including media-mediated psychological operations 

(PSYOPS) and computer network operations;
•	 soft influences ongoing in parallel, including diplomatic, infrastruc-

ture, military, and economic activities;
•	 time criticality; and
•	 potential for inclusion of diverse missions.
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General Setting and  
Friendly Force Organizational Structure

The scenario elements included here are derivative of the one detailed 
in TRADOC PAM 525-3-90 O&O 22 JUL 2002 (U.S. Army, 2002) and 
include all these aspects. For purposes of this study, three vignettes have 
been extracted and distilled. The three vignettes provide a construct for the 
purpose of addressing potential of behavioral models supporting a brigade 
combat team (BCT) as part of a joint campaign. As stated in the TRADOC 
pamphlet: “They are presented for illustrative purposes only and are cast 
incidentally in the trans-Caucasus region to account for the realistic, tough 
range of variables and conditions, as well as the difficulty of the tactical 
dilemmas presented” (U.S. Army, 2002, p. F-1). The pamphlet, in its seven 
sections, provides a very detailed mission operational setting in the trans-
Caucasus region (see Figure B-1). It includes three relevant vignettes:

FIGURE B-1  Trans-Caucasus region for TRADOC PAM 525-3-90 scenario. 
SOURCE: U.S. Army (2002, p. F-1).
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Damāvand

Ararat

Europe, 5633 m)
(highest point in 

Europe, -28 m)
(lowest point in 

+

+

+

 Gora El'brus

Tehran

-

-
Qazvin-

--

-

-

Z
A

G
R

O
S

M
O

U
N

T
A

T
A

U

R
U

S
M O U N T A

I N

S

C A U C A S U S
M O U N T A I N S

S    Y    R    I    A    N 

D    E    S   E    R    T 

D O G U K A R A D E N I Z
D A G L A R I

ELBURZ MTS.

K O



Copyright © National Academy of Sciences. All rights reserved.

Behavioral Modeling and Simulation:  From Individuals to Societies
http://www.nap.edu/catalog/12169.html

APPENDIX B	 383

1.	 tactical operations in entry operation (Entry), 
2.	 operational maneuver by air, combined arms operation for urban 

warfare (Transition), and 
3.	 secure portion of a major urban area (JUO).

The design purpose of these vignettes is to develop requirements, seek 
new tactical concepts, and seek new organizational design principles. The 
pamphlet emphasizes joint operations, and it explicitly describes new tacti-
cal principles based on development of the situation in and out of contact 
with the enemy. In addition, the trans-Caucasus region includes long-
standing fault lines of bitter ethnic rivalry dating back millennia and thus 
supports strong components of scenario design for purposes of assessing 
particular behavioral model applications with religious, political, social, 
economic, and cultural impacts. 

The nature of these “soft” regional factors emphasizes the need to appre-
ciate and leverage political and informational domains to advantage. 

The BCT will be the basic building block of future combat forces (U.S. 
Army, 2002). It will have the capability to command and control up to six 
maneuver battalions, will be able to employ a range of supporting capabili-
ties, and will be able to perform a variety of missions, including reinforcing 
fires, engineers, military police air defense, PSYOPS, civil affairs, etc. The 
BCT will not be a fixed organization but “must be absolutely superior in 
complex situations where sophisticated political and informational skills 
are required in small unit leadership. Adversaries will leverage information, 
the media, and ethnic and religious fractures to maximum advantage” (U.S. 
Army, 2002, p. 21).

The BCT must have the ability to see, understand and act first, then 
finish decisively. Mid-grade and junior leaders must effectively recognize 
and solve problems in complex situations with political and informational 
dimensions. In the past, uncertainty about enemy and friendly conditions 
on the battlefield often dictated cautious movements, expenditure of time 
and resources to develop the situation, followed by initiation of decisive 
action at times and places not necessarily of the commander’s choosing. The 
BCT will not be constrained in this way. Future commanders will develop 
the situation before making contact, maneuver to positions of advantage 
largely out of contact, and, when ready, initiate decisive action with initia-
tive, speed, and agility.

The supporting 81-person military intelligence (MI) unit, organized as 
illustrated in Figure B-2, is an important component of the BCT. It is the 
primary focal point for management and analysis of information pulled 
from the full spectrum of intelligence, surveillance, and reconnaissance 
(ISR) resources. The MI company provides all of the brigade’s timely, rel-
evant, accurate, and synchronized intelligence, emitter mapping, electronic 
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FIGURE B-2  Military intelligence unit organization. 
SOURCE: U.S. Army (2002, p. 32).

attack, targeting information, and battle damage assessment support dur-
ing the planning and execution of multiple, simultaneous decisive actions 
by means of information and intelligence collection, analysis, processing, 
integration, and dissemination. The purpose of this organization is analysis, 
fusion, and integration of ISR from external sources, organic UA R&S, 
combat battalion reconnaissance detachments, and troops in contact.

The MI unit has available to it ISR assets that are either organic (effec-
tively owned and operated by the unit) or nonorganic (loaned to them for 
temporary use by sister or higher echelon units). The reliance on these two 
classes of assets changes over the course of an engagement, as illustrated 
in Figure B-3.

Three Phases of the Scenario

This scenario develops vignettes occurring during three phases of the 
scenario: 

1.	 Entry: Combat forces enter the area of operations, Azerbaijan, and 
establish Forward Operating Base (FOB) Alpha.

2.	 Transition: Combat forces depart FOB and maneuver to Baku.
3.	 Major urban operations: Combat forces attack to seize Baku city 

center to facilitate its return to the host nation’s control.

These vignettes are scaled back to depict only one BCT employed in 
combat operations. In this scenario, the BCT will conduct tactical opera-
tions in three distinct phases.
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Entry operations: The BCT uses military and commercial strategic 
lift to arrive in FOB Alpha ready to fight, fully synchronized with other 
elements of the joint force. For example, the BCT will have access to net-
worked fires or “NetFires”� as soon as it touches down in the FOB. 

This is a fundamental change in current approaches to deploying forces 
to theaters of operation. The future intent is also for intelligence already 
available from national and theater assets, as well as information on friendly 
forces, weather, and geospatial products provided through the global infor-
mation grid, routed through the combat information centers, to be pushed 
directly to the BCT, allowing the commanders to do planning and rehearsals 
en route. When the FOB is secure, the BCT will enter the transition phase, 
a movement to contact, prior to entering their objective area, Baku.

Transition operations: Until recently, the operational significance of 
transition operations was underestimated. This attitude has changed: 
“Transitions—going from offense to defense and back again, projecting 
power through airheads and beachheads, transitioning from peacekeeping 
to warfighting and back again—sap operational momentum. Mastering 
transitions is key to winning decisively. Forces that can do so provide 
strategic flexibility to the National Command Authorities, who need as 
many options as possible in a crisis” (U.S. Army white paper, Concepts 
for the Objective Force, [quoted in U.S. Army, 2002, p. 61]). Operational 

� “NetFires will enable the dynamic application of lethal and nonlethal destructive and sup-
pressive effects. It will be integrated fully from the theater level to the tactical platform level, 
allowing the commander to establish, alter and terminate linkages between sensors and line-
of-sight (LOS), beyond-line-of-sight (BLOS), non-line-of-sight (NLOS) division/corps and joint 
systems to achieve a wide set of lethal and nonlethal effects” (Haithcock, 2006, p. 25).

B-3.eps
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FIGURE B-3  Reliance on organic and nonorganic ISR assets over time. 
SOURCE: U.S. Army (2002, p. 89).
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transitions are required as the force shifts from deployment operations, to 
smaller scale contingencies, to major combat operations. The transition 
from securing the FOB to the movement to contact at Baku will provide 
the enemy 304th Brigade with time and space to recover and attempt to 
exploit BCT vulnerabilities.

The BCT will plan and rehearse carefully to eliminate these dangerous 
transition areas. Because of its ability to keep situational understanding 
during a tactical operation, the BCT can transition immediately and aggres-
sively to movement to contact. The BCT will initiate a series of deliberate 
attacks against a moving enemy under hasty conditions. Such an operation 
is graphically depicted in Figure B-4. 

The enemy 304th Brigade will marshal all the resources available in the 
locale and use every means possible to disrupt, attrite, and destroy elements 
of the BCT. Hasty and deliberate attacks resembling cold war maneuvers, 
crowds laced with suicide bombers, attacks by fire, mines, and improvised 
explosive devices will be used by the enemy at every possible opportunity. 

B-4.eps
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FIGURE B-4  BCT attack against a moving enemy. 
SOURCE: U.S. Army (2002, p. 63).
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During this phase the BCT will use three primary tenets—speed, preci-
sion, and knowledge—to successfully complete the transition in preparation 
for major urban operations (MUOs).

Major urban operations: The brigade’s mission is to seize Baku city 
center in order to facilitate its return to host nation control. It will have 
made some preparation for MUO during the movement to contact and 
transition phases, but the less built-up areas encountered en route to Baku 
will bear very little resemblance to Baku itself. 

Baku is a third-world city of 2 million composed of massed and heavy-
clad framed buildings, which are dispersed in circular street patterns. Cur-
rently, the enemy is occupying company strong point defenses within the 
city, and they have activated terrorist cells and other paramilitary units to 
control critical areas. The Baku city center with BCT objectives is shown 
in Figure B-5.

Insurgent clans and terrorists will move to reinforce elements of the 
enemy 304th Brigade. The clans will “pile on” to join in the attrition of 

B-5.eps
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FIGURE B-5  Baku city center. 
SOURCE: U.S. Army (2002, p. F-19).
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the BCT. In accordance with joint doctrine, “Close assault is a central 
aspect of urban engagements, both due to the nature of the terrain and 
enemy as well as the need to minimize collateral damage and preserve 
critical infrastructure. Small unit effectiveness and empowered leadership 
are critical to the success of these operations. Close urban assault has a 
significant dismounted character, requiring a robust infantry capability to 
engage and sustain the urban fight. . . . These units will exploit handheld 
and unmanned ISR tools and the common operational picture (COP). Tar-
get acquisition and engagement is difficult in the close confines of the urban 
environment. Fleeting targets can be acquired and killed using the BCT ISR 
capabilities and advanced weapons systems . . . The BCT must be able to 
sustain operational momentum through multiple battles by cycling forces 
in and out of contact” (U.S. Army, 2002, pp. E-2–E-3).
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Appendix C

Candidate DIME/PMESII Modeling 
Paradigms

A variety of modeling formalisms could be considered for DIME/
PMESII modeling efforts. We review some of them here.

Table C-1 compares selected modeling techniques by tabulat-
ing them against key characteristics which ultimately determine modeling 
utility. In the remainder of this appendix, we define the characteristics, and 
provide a very brief overview of each modeling formalism.

Expressivity of a modeling paradigm refers to its ability to capture 
and express an analyst’s knowledge in terms of the constructs the para-
digm offers. The expressivity of a concept graph is very high as it keeps 
the phrases used by the analysts intact in the model. In contrast, a neural 
network model is only able to keep the input-output relationships in the 
model. More expressive models are better able to capture the richness of 
PMESII domains and are typically easier to build, use, and understand by 
the modeler.

The executable feature of a modeling technique refers to whether some 
useful information that is implicit in a model (e.g., degree of influence of 
one variable onto another) can be derived from the model via some kind 
of inferencing algorithm. A causal graph, for example, is an executable 
paradigm as it offers propagation algorithms, and so also is a trained neural 
network. In contrast, the concept-mapping model does not have such an 
algorithm. Nonexecutable modeling techniques are useful for visualizing 
complex models for human understanding and analysis; executable models 
are useful for providing automated analysis of the models.

Reasoning of a modeling paradigm refers to the paradigm’s ability to 
detect the direction of influence (not just connection) of one variable to 
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another. A belief network propagation algorithm, for example, incorporates 
both deductive and abductive reasoning, and thus is able to detect both 
forward and backward influences. On the other hand, the standard back 
propagation neural-network modeling paradigm is limited only to forward 
reasoning. Different modeling tasks require different kinds of reasoning. 
It is sometimes useful to be able to look at a state and reason about likely 
future outcomes (forward reasoning). For instance, one might want to 
attempt to predict the likelihood of social unrest by evaluating the current 
social, political, and economic state of affairs. Other times it is useful to 
look at externally available information and diagnose the likely underlying 
causes (backward reasoning). For instance, one might want to reason from 
observed social unrest back to the likely underlying political, economic, 
and social causes in order to properly address the causes of the unrest. For 
these reasons, it is important to support both forms of reasoning with the 
modeling tools we provide.

Adaptability of a modeling paradigm refers to automatic adjustments 
by models, which are necessary to take into account new observations. It is 
hard to adjust structures of graphical models as they are built in consulta-
tion with subject matter experts. But the strength of relationships among 
a set of variables within a model (e.g., probabilities in a belief network 
model or activation levels within a neural model) can be adjusted based 
on observations without changing their structure. Having models that can 
easily be adapted to represent new concepts and incorporate new data are 
generally preferable.

Tools of a modeling paradigm refers to the currently available software 
tools implementing the paradigm, that is, whether such a tool is commercial 
off the shelf (COTS), government off the shelf (GOTS), open source, or 
freely available for research/commercial purposes. 

We now briefly describe the different modeling techniques shown in 
the table.

Concept Maps

Concept maps are a result of research into human learning and knowl-
edge construction (Novak, 1998). In concept maps, the primary elements 
of knowledge are concepts, and relationships between concepts are propo-
sitions. Concept maps are a graphical two-dimensional display of con-
cepts, connected by directed arcs encoding brief relationships (e.g., linking 
phrases) between pairs of concepts forming propositions. Each concept 
node is labeled with a noun, adjective, or short phrase, and each edge is 
labeled with verbs or verb phrases describing the relation between the con-
nected concepts. Concepts maps are highly effective in quickly capturing 
domain knowledge along DIME/PMESII dimensions.
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A popular tool for concept mapping is the CmapTools (Canas et al., 
2004) package developed at the Institute for Human and Machine Cogni-
tion (see http://www.ihmc.us). The package is freely available for both 
commercial and noncommercial use, and has many advantages over using 
sticky notes or a more general diagramming tool (e.g., it can record the 
entire mapmaking process). There are also COTS tools that can be used, 
such as Banxia’s Knowledge Explorer.

Concept Graphs

Concept graphs are a formal system of logic based on the existential 
graphs of C.S. Peirce and semantic networks. Concept graphs explicitly 
represent entities/concepts and relationships between entities as nodes in 
a directed graph. They are mathematically precise and computationally 
tractable structures, which have a graphic representation that is humanly 
readable. For this reason, concept graphs have been used in a variety of 
applications for computer linguistics, knowledge representation, informa-
tion retrieval, and database design. Their ease of use and generality make 
them immediately useful for modeling a wide variety of domains, including 
PMESII domains.

Figure C-1 is an example concept graph encoding a generic behavioral 
model of a terrorist leader. 

Social Networks 

Social networks are similar to concept graphs, but they represent social 
structures. The nodes of the social network typically represent individuals 
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FIGURE C-1  Concept graph model for terrorist leader behavior.
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and the links between them represent social relationships. Social network 
analysis (SNA) provides tools for reasoning about social networks, their 
strengths and weaknesses, the structural roles played by particular indi
viduals, and their dynamics over time. Because of the focus on the analysis 
of social structures, SNA is directly applicable to a range of PMESII model-
ing tasks.

SNA tools can be extended in a number of directions. For example, 
one can build on traditional SNA functionality by providing additional 
representational and analytic power by having nodes representing not only 
individuals, but also arbitrary entities, especially including groups. Links 
can be similarly extended to represent not only individual-to-individual 
relationships, but also individual-to-group relationships (e.g., member-of) 
and group-to-group relationships (e.g., rival political party). By providing 
built-in Bayesian and rule-based reasoning capabilities, one could enable 
automated analysis of the graph. For instance, a Bayesian network might 
represent that members of a group might have a high probability of hold-
ing views that are promoted by that group, where the group, the indi-
vidual, and the ideology are all represented in the network as nodes with 
appropriate links between them. In this case, an enhanced SNA tool could 
automatically create a new believes link between the individual and the 
ideology and annotate it with a particular probability.

Causal Graphs

A causal graph (e.g., a belief network) (Jensen, 1996) is a graphical, 
probabilistic knowledge representation of a collection of variables describ-
ing some domain. The strength of causal graphs are their ability to repre-
sent both the causal structure of a domain and the probabilistic elements of 
those causal relationships (X causes Y with some probability), thus enabling 
the modeling of both qualitative and quantitative details of the model. 
In addition, the ability of causal graphs to handle both forward (causal) 
reasoning and backward (diagnostic or abductive) reasoning makes them 
especially well suited to domains with many sources of data, some of which 
are uncertain, unreliable, or potentially missing. Many PMESII modeling 
problems fall within such a scope.

Influence diagrams are a specialization of causal networks, augmented 
with decision variables and utility functions to solve decision problems. 
Decision trees are specialized influence diagrams that help to choose 
between options by projecting likely outcomes as utilities. Such extensions 
to causal graphs make it possible to also reason about the costs and ben-
efits of possible decisions. This functionality can be used to both support 
intelligent decision making and to model likely decisions on the part of the 
entities being modeled.
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Bayesian reasoning tools, such as those provided by Microsoft (MSBN; 
see http://research.microsoft.com/research/dtg/#bayesian), Norsys (Netica; 
see http://www.norsys.com/index.html), and Charles River Analytics (BNet; 
see http://www.cra.com), can support construction and reasoning with 
causal graphs. There are also other existing COTS solutions to model-
ing influence diagrams and decision trees, such as C4.5 (see http://www.
rulequest.com/Personal/).

System Dynamics Models

As described in Chapter 4, system dynamics models, such as the 
Stabilization and Reconstruction Operations Model (SROM) (Robbins et 
al., 2005) can be used to analyze the organizational hierarchy, dependen-
cies, interdependencies, exogenous drivers, strengths, and weaknesses of a 
country’s PMESII systems to enable more efficient resource expenditure. 
SROM models PMESII systems at the national and regional levels, includ-
ing the interactions between regions. They also take into account demo-
graphic data, insurgent and coalition military, critical infrastructure, law 
enforcement, indigenous security institutions, and public opinion.

The SROM models developed by the AFRL/IF NO’EM group were built 
using the Ptolemy heterogeneous modeling software (see http://ptolemy.
berkeley.edu), which is developed and supported by the Electrical Engi-
neering and Computer Science department of the University of California, 
Berkeley. While developed primarily for modeling of real-time embedded 
systems, its heterogeneous processing model makes it an effective tool for 
integrating a variety of data processing algorithms.

Neural Networks

A neural network is a nonlinear information-processing paradigm that 
models complex systems with a large number of highly interconnected 
processing elements (a.k.a. neurons or nodes), arranged in multiple layers, 
working in unison to solve specific problems. Neural networks offer some 
of the most versatile ways of mapping or classifying a nonlinear process 
or relationship. Neural networks have been successfully used in diverse 
paradigms, such as recognition of speakers in communications, diagnosis 
of hepatitis, recovery of telecommunications from faulty software, inter-
pretation of multimeaning Chinese words, undersea mine detection, texture 
analysis, three-dimensional object recognition, hand-written word recogni-
tion, and facial recognition. Neural networks would be useful in building 
PMESII models for those domains that have highly complex nonlinear 
relationships between input and output variables. 
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 A large number of neural network construction kits and runtime 
engines exist, including the Xerion tool from the University of Toronto (see 
http://www.cs.toronto.edu/~xerion/) and the NeuroSolutions tools from 
NeuroSolutions (see http://www.nd.com/products/nsv3.htm). 

Situation Theory

Situation theory models information processing and flow, that is, how 
an agent extracts information from the world and how it is subsequently 
transferred between agents. Situation theory provides a paradigm for 
describing the world, an ontology for representing it, and a suite of infer-
ences for reasoning about it. Situation theory is unique in that it places 
situations alongside individuals, relations, and locations as first-class mem-
bers of its ontology. Situations provide partial descriptions of the world 
in terms of the features individuated by some agent. They are defined in 
terms of the relationships they support; that is, they represent relationships 
between relationships. Situations provide a powerful representation of 
complex events spread over both space and time and, therefore, serve as a 
natural representation of a variety of PMESII models. Situation theory has 
been applied to a variety of fields including natural language understanding 
(Barwise and Perry, 1983), information visualization (Lewis, 1991), coop-
erative social interaction (Devlin and Rosenberg, 1991), and both Level 2 
(Steinberg and Bowman, 2004) and Level 3 (Steinberg, 2005) data fusion. 
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