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Preface and Workshop Rationale 
 
 

On September 26 and 27, 2005, the Committee on Applied and Theoretical Statistics of 
the National Research Council conducted a 2-day workshop that explored statistical inference on 
network data so as to stimulate further progress in this field. To encourage cross-fertilization of 
ideas, the workshop brought together a wide range of researchers who are dealing with network 
data in different contexts. The presentations focused on five major areas of research: network 
models, dynamic networks, data and measurement on networks, robustness and fragility of 
networks, and visualization and scalability of networks. 

Disciplines such as biology, social sciences, and telecommunications have created 
different kinds of statistical theory for inference on network data. The workshop was organized to 
draw together experts from the various domains and to facilitate the sharing of their statistical, 
mathematical, and computational toolkits.  The ubiquity of networks and network data created a 
challenging environment for the discovery of common problems and techniques. 

The overall goals of this report, which is produced only on a CD and not in printed form, 
are to improve communication among various communities working on problems associated with 
network data and to increase relevant activity within the statistical sciences community. Included 
in this report are the full and unedited text of the 18 workshop presentations, the agenda of the 
workshop and a list of attendees (Appendix A) and biographical sketches of the speakers 
(Appendix B). The presentations represent independent research efforts on the part of academia, 
the private sector, federally funded laboratories, and government agencies, and as such they 
provide a sampling rather than a comprehensive examination of the range of research and 
research challenges posed by massive data streams.  
            This proceedings represents the viewpoints of its authors only and should not be taken as 
a consensus report of the Board on Mathematical Sciences and Their Applications or the National 
Research Council.

 vii  



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

Contents 
 

 
Keynote Address, Day 1 

 
Network Complexity and Robustness  2 

John Doyle 
 

Network Models 
 
Neurons, Networks, and Noise: An Introduction      62 

Nancy Kopell 
 
Mixing Patterns and Community Structure in Networks     74 

Mark Newman 
 

Dimension Selection for Latent Space Models of Social Networks   97  
Peter Hoff 

 
Dynamic Networks 

 
Embedded Networked Sensing (Redux?)       121 

Deborah Estrin 
 

The Functional Organization of Mammalian Cells     146 
Ravi Iyengar 
 

Dynamic Network Analysis in Counterterrorism Research    169 
Kathleen M. Carley 
 

Data and Measurement 
 
Current Developments in a Cortically Controlled Brain-Machine Interface  189 

Nicho Hatsopoulos 
 

Some Implications of Path-Based Sampling on the Internet    207 
Eric D. Kolaczyk 

 
Network Data and Models           226 

Martina Morris 
 

The State of the Art in Social Network Analysis 
 
The State of the Art in Social Network Analysis 
 Stephen P. Borgatti                    255 
 
 
 

 
 

 ix  



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

Keynote Address, Day 2 
 
Variability, Homeostasis per Contents and Compensation in Rhythmic Motor Networks 271 

Eve Marder 
 

Dynamics and Resilience of Blood Flow in Cortical Microvessels   292 
David Kleinfeld 

 
Robustness and Fragility 

Robustness and Fragility        318 
Jean M. Carlson 
 

Stability and Degeneracy of Network Models               343 
Mark S. Handcock 
 

Visualization and Scalability 
 
Characterizing Brain Networks with Granger Causality      376 

Mingzhou Ding 
 

Visualization and Variation: Tracking Complex Networks Across Time and Space    396 
Jon Kleinberg 
 

Dependency Networks for Relational Data                425 
David Jensen 
 

Appendixes 
 
A   Workshop Agenda and List of Attendees       450 
 
B    Biographical Sketches of Workshop Speakers      455 
 

 x  



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

 
 
 
 
 
 
 
 
 

Keynote Address, Day 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 1 
 



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

Network Complexity and Robustness 
 

John Doyle, California Institute of Technology 
 
  

 DR. DOYLE:  I am going to try to set the stage for this meeting. The work that I am 

going to talk about is the result of a lot of collaborations.  I certainly won’t give justice to those 

people here. All the good ideas and all the good work that I am going to talk about is done with 

them, so when I say “we” I mean “they.”  A lot of them are here today; two of them have posters 

and Jean Carlson is going to talk later. Walter Willinger is here.  I am going to talk a lot about 

work with them. 

 There are buzzwords related to network complexity—network-centric, systems biology, 

pervasive, embedded. What I am interested in is the core theory challenges that underlie those 

common themes.  I am going to be a little narrow in my focus in the sense that I am going to 

concentrate on biological networks and technological networks:  I want to stick with stuff where 

we mostly know how the parts work, so that means not much social networks.  There is a 

remarkably common core of theoretical challenges, so from the math-stat side I think there are 

some really common themes here.  There has been recent dramatic progress in laying the 

foundation, yet there has also been amazingly, at the same time, a striking increase in what I 

would call unnecessary confusion. I will talk a little bit about both of these. 

 One of the common themes I am going to talk about is the fact that we see power laws all 

over.  I think a lot of people at this workshop are going to be talking about that, because it is a 

common trait across all advanced technology and biology.  Another common theme is that many 

of these systems in biology and advanced technology are robust yet fragile.  What I mean by that 

is they work really well most of the time but that they fail occasionally, and when they do fail it 

can be catastrophically.  We will hear more about that from other speakers and poster presenters.  

What I am going to do today, though, is talk about motivation for new theory and also education. 

We need to educate each other about even some fairly elementary aspects of statistics and 

mathematics.  To get this started on the broadest level possible, I am going to stick with stuff that 

only assumes the background provided by a Caltech undergraduate education.   

 Let’s start with some data. The figures below show the 20th century’s hundred largest 

disasters worldwide. What I have plotted here are three kinds of disasters: technological disasters 

in tens of billions of dollars, natural disasters in hundreds of billions of dollars (and natural 

disasters can be even bigger), and power outages over some period of time and tens of millions of 

customers.  What you see on a log-log chart are roughly straight lines with slopes of minus one.  
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Figure 2 shows the raw data.  I have just taken the event sizes and plotted them; the worst events 

are along the bottom, while the more common events are higher up and to the left.  The 

significance of this is that the worst event is orders of magnitude worse than the median event, 

which we are learning much more about this last year.  It also means that demonstrations of these 

behaviors (events of the type represented in the upper left corner of Figures 1 and 2) and reality 

(which includes the events toward the lower right) can be very different, both in scale and in 

character, with the more common behaviors being robust and the rare behavior displaying the 

great fragility of these systems. When we take and build our new network-centric embedded-

everywhere systems that some of us in this room are going to provide to all of us, they will 

degrade, and the reality may be much, much worse.  This is also an indication of robust yet 

fragile. The typical behavior is much smaller than the worst case, and the worst case is very, very 

bad.   

 
FIGURE 1   
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FIGURE 2  

 
 I am not going to focus so much on disasters.  Jean Carlson is going to talk about that 

tomorrow, but I do want to get some of the ideas behind these kinds of statistics. 

They are either all you study or you won’t study it at all, and there is not much conversation back 

and forth between those groups of people.  The reason you get straight lines is that logarithms of 

a power law give you straight lines, and that is the slope alpha.  That just describes the data, and I 

don’t assume any kind of model.  If I said I am going to think of this as samples from a stochastic 

process, that is a model.  What I have written down is just data and I have done no statistics on it. 

The fact that I have drawn a line there is just to help your eye visualize things.  One important 

thing to do is to look at data. One of the things that isn’t often done in papers is people don’t 

show you their data in a way that you can make judgments about the statistics they have made.  

We will see that there are lots of errors that arise because of this. 

 Power laws are really ubiquitous. Why is that and what do probability theory and 

statistics tell us about power laws?  Well, if I were to ask you why are Gaussians so ubiquitous 

you would say it is central limit theorem.  If I asked you why the exponential distribution is so 

popular or so common you would probably talk about the Markov properties or the 

marginalization properties, which are essentially, mathematically the same thing.  They both 

occur in situations of low variability, so expect to see Gaussians and exponentials all over the 
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place. 

 When it comes to systems with high variability, power laws actually have even more 

strong statistical properties than Gaussians or exponentials.  In fact, they have all that Gaussians 

and exponentials have, and even more.  They are in some sense—I think Walter Willinger coined 

this phrase—more normal than normal. We should not call Gaussians normal; we should call 

power laws normal.  They arise for no reason other than the way you measure data, and the way 

you look at the world will make them appear all over the place, provided there is high variability. 

 Much of science goes out of its way to get rid of high variability.  We study in our labs 

low-variability phenomena, but high variability is everywhere.  With the former, you get 

convergent moments, while the latter corresponds to divergent moments.  Typical notions of 

moments and mean and variance don’t mean anything.  We talk about the coefficient of variation 

in a Gaussian.  That is a well-defined concept in an exponential; it is actually 1.  In power laws, 

of course, it is divergent.  The issue is that power laws are not exceptional, but the really 

important issue is low versus high variability.  What about mechanisms?  We have large disasters 

because we have uncertain environments, we put assets at risk, and we only devote a certain 

amount of resources to ameliorating those risks, and thus sometimes those resources get 

overwhelmed.  So, large events are not really surprising.  If we were just to plot the large power 

outage of August 14, 2003, it is completely consistent with this data.  The ramifications of the 

attacks on September 11, 2001, as a technological disaster, are not off the map.  Hurricane 

Katrina is not off the map.  These are all more or less consistent with the largest event. Like I 

said, I am not going to discuss disasters very much.  High variability is much more fundamental 

and is very ubiquitous, particularly in highly engineered or evolved systems.  Power laws are 

more normal. They shouldn’t be thought of as signatures of any specific mechanisms any more 

than Gaussians are.  It also means that their statistical properties lead people to find them where 

they aren’t, through statistical errors.  They are very abundant in networks, and I will come back 

to try to talk about in biology, in particular, why they are everywhere in biology.  

 Because of all these properties, there are major errors that are not just isolated instances, 

but typical in high-impact journals in science, presumably because mathematicians and 

statisticians play little or no role in writing, reviewing, or on the editorial boards of these journals.  

One of these errors is variability in power laws.  They are badly misestimating the slope or 

basically, even more profoundly, misunderstanding where high variability comes from in the first 

place.  A typical mistake that is made, taking data that are actually exponential and plotting them 

in such a way that suggests a power law, is exemplified in the following series of figures.  I 

numerically generated random data with the little Matlab code shown, using Matlab’s random 
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number generator (actually a pseudo-random number generator).  I generated exponentially 

distributed data, and on Figure 3’s semi-log plot you see it is nearly a straight line.  I checked that 

I had written my Matlab program right, and that the Matlab random number generator works.  It 

is linear on a semi-log plot because, obviously, you take logs of an exponential and you get linear 

with slope -a.   

 

 
FIGURE 3  

 
 Instead of these rank plots you might think that we could just look at frequencies.  

Frequencies are obviously related to the rank as shown in Figure 4, even in this case where they 

are integers. You could write a little program to calculate the frequency plot and do a frequency 

plot and, lo and behold, a power law as shown in Figure 5, slope 1.5.  All of a sudden, I think I 

have a power law here.  In this case I know I don’t, but in some sense I have made a classic error.  

The idea is that I just plotted in a silly way—again, you are differentiating data—it is noisy and 

you are going to get problems.  I don’t want to belabor this point too much because it is well 

understood why this happens, there is no mystery about it; it is just a matter of proper education. 

The statistics community has to explain this to people. 
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FIGURE 5 
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FIGURE 7 

 
 
 We really have got to not do that.  You would think that it was an isolated instance but, in 

fact, it is almost always the case that you will see the plots on the right above are systematic 

errors. There are a bunch of networks that have been claimed to have power laws in them, and the 

data that was presented actually didn’t.   

 Figure 8 comes from a paper-on-protein interaction power law, an article from Nature.  I 

got the data and re-plotted it, but this is basically a plot that appears in a supplement.  The paper 

concluded that it is a power law with a slope 1.  It doesn’t even have finite mean or variance, if 

you think of it as a probability model.  What does it really have?  Roughly it has exponential.  

Again, just to comment, this is an undergraduate sort of error.  If a Caltech undergraduate did this 

they wouldn’t last long.  Of course, this is in Nature and in some sense—I have reviewed a few 

papers where I have said, no, you have got to plot it—they say, no, if we don’t plot it the way we 

do on the right, then the editors won’t accept them.  I said we have got to change that. 
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FIGURE 9 
 
 Figures 9-13 deal with an analogous error, from Science, does the power grid have a 

power law?  No, it’s almost a perfect exponential.  You can’t get a better exponential than that 

and yet it was called a power law.  You can ask, what about the World Wide Web?  Let’s re-plot 

to make sure of what they were doing. They did logarithmic binning. You might think that helps. 

In this case, it really might be a power law, but you get the wrong slope.  For a power law, slopes 

of 1.1 versus 1.7 are really different. You are off by orders of magnitude. So, once you get into 

power laws, the slopes are really important—again the point is, it doesn’t exactly look like a 

power law, the real data.  That is not the big deal.  The big deal is it does have high variability.  

The Web has high variability. In fact, when you look at the Internet, practically everything has 

high variability.  It is almost impossible to find something that doesn’t have high variability, 

although Internet routers provide an exception.  If you look at the router size frequency plot, you 

could come up with a power law whereas, in fact, it is clearly exponential in the tail because there 

is an excess of small-degree routers.  That is probably because, either at the edge of the network 

there are a lot of degree-one routers or, in fact, it is probably an artifact of the way the data was 

taken, and you have to check this, but it is certainly not a power law.  These errors are typical, but 

the big one, I think, is badly misunderstanding the origins of high variability, because high 
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variability is everywhere.   

 

 
 

FIGURE 10 
 

 
 

FIGURE 11 
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FIGURE 13 
 
 Is it even possible for a router topology to have high variability and no degree?  You 

could do it.  Figure 14 is a chart of Abilene, which is the Internet 2, and Figure 15 is actually a 

weather map taken on November 8.  There are a lot of Internet experts here; if you look at the 

Abilene weather map, you might find this picture quite peculiar.  If you ask why, it is because it is 

running at about 70 to 80 to 90 percent, in some places, saturation. You never see that. Why is 

that?  This is the day we broke the land speed record, and we were using this part of the network, 

and nobody even noticed. 
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FIGURE 14 
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FIGURE 15 
 
 Here is a little advertisement for the FAST protocol.  Figure 16 shows the topology.  

Everybody in the U.S. academic system uses this network, and it is typical of an ISP backbone. 

There are lots of these.  We are going to pull out that backbone and make a greatly compressed 

network out of it by just adding edge systems.  Yes, you can create a network that has a power 

law degree distribution, and the next slide shows such a power law.  But following that, Figure 16 

is another graph with exactly the same degree distribution. These couldn’t be more different, so 

the degree distribution of a network tells you almost nothing about it, particularly if it is high 

variability.  If it is high variability it gives you more possibility to do more and more bizarre 

things, and you can quantify the extent to which, in the space of graphs, these are at opposite 

extremes.  Again, they couldn’t be more different.  On the left we have a low-degree core and 

high-performance robustness, which is typical of the Internet. On the right-hand side you have got 

these high-degree hubs, horrible performance and robustness. If the Internet looked anything like 

the right, it wouldn’t work at all.  Of course it would fix our problem with spam, because you 

wouldn’t get e-mail; you wouldn’t get anything.  So, the Internet looks nothing like that, and yet, 

apparently, a lot of scientists think it does. Certainly no one in the Internet community does.  In 
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fact, there is high variability everywhere.   

 

 
 
 

FIGURE 16 
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FIGURE 17 
 
 I have shown you a bunch of cases.  You have to work pretty hard to find an example on 

the Internet or an example in biology that doesn’t have high variability.  Ironically, the weird 

thing is, it is like those with low variability have been found and then presented as having power 

laws—very strange.  Anyway, there are enormous sources of high variability, and it is connected 

with this issue of robust yet fragile, and I want to talk about that. 

 Everything I am going to say should appear obvious and trivial provided you remember 

what you studied as an undergrad either in biochemistry, molecular biology, or engineering 

textbooks.  I don’t know if everybody has had this undergraduate level, but I am going to assume 

only undergraduate level.  You have to continue to ignore what you read in high-impact journals 

on all these topics.  We have already seen that for power laws, but you have to temporarily ignore 

most of these things.  Maybe you can go back and think about it later.   

 Imagine that your undergraduate biochemistry and molecular biology textbook was just 

okay, and maybe like Internet for Dummies or whatever you read about the Internet.  Maybe other 

people will talk about it.  Figure 18 is a typical graph we get of a metabolism, where we have 
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enzymes and metabolites.  Again, I am going to hope that you know a little bit about this, because 

I will talk about it at a very simple level.  

 

 
 
 

FIGURE 18 
 
 In Figure 19, I zoom in on the center part of this, which is glycolysis.  Experts in the 

room will notice that I am doing a little weird thing like an abstract version of what bacteria do, 

and I am going to stick to bacteria since we know the most about them.   
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FIGURE 19 
 
 What is left out on a cartoon like this?  First of all, it is autocatalytic loops, which are 

fueling loops.  In this case you make ATP at the end, but you have to use it up at the beginning, 

and you will see that isn’t quite right, but it gets you the spirit.  There are also regulatory loops.  

Inserting them, we get a more complicated cartoon, shown in Figure 20.  Cartoons are useful, but 

you have to understand what this means.  Those lines mean very different things. They certainly 

wouldn’t be comparable, but the problem is if you put all the lines in this thing it would just be 

black with lines as in Figure 21. People don’t draw it that way simply because if you put all the 

action in you wouldn’t see anything but black lines everywhere, but you would know what is 

missing.   
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FIGURE 20 
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FIGURE 21 
 
 Now look at Figure 22:  The thing on the left can be modeled to some extent as a graph, 

but the item on the right cannot; there isn’t any sense in which this is a graph.  It is not even a 

bipartite graph.  You can’t think of it that way; it makes no sense.  An enormous amount of 

confusion results from trying to make this a graph; it is not a graph.  At the minimum, you could 

think about stoichiometry plus regulation.   
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FIGURE 22 
 
 Here is what I am talking about:  the change in concentrations of mass and energy in the 

cell is a product of a mass and energy balance matrix, which we usually know exactly, and a 

reaction flux component which we don’t know:  It depends on the concentrations.   

 
 
 

 

 
 
 

FIGURE 23 
 

 Figures 24-26 show elements need to be represented by these two terms.  The 

stoichiometry matrix could be represented as a bipartite graph or a matrix of integers.  Again, this 

is standard stuff.  The reaction flux has two components, and that is one of the things I want to 

talk about.  First of all, you have regulation of enzymes.  The enzyme levels themselves, which 

are the enzymatic reactions, are controlled by transcription, translation, and degradation.  On top 
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of that they had another layer of control, which is allosteric regulation of the enzymes themselves.  

Enzyme levels are controlled, and the enzymes themselves are controlled. The rates of the 

enzymes themselves are controlled also.  There are two layers of control, and you might talk 

about how those two layers of control relate to the two layers of control on the Internet, which is 

TCP and IP, why they are separated, and what they do.   

 

 
 
 

FIGURE 24 
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FIGURE 25 

 

 
FIGURE 26 
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 What I want to talk about is that these systems have universal organizational structures 

and architecture.  As shown on Figure 27, one of these we will call the bow tie, which is the flow 

of energy and materials, and another is the hour glass, which is the organization and control.  

These both coexist and we will see how they fit together.  I want to look at Figure 26 and talk 

about precursors and carriers, again, the standard terminology.  Precursors are those things 

connected by the blue lines, the basic building blocks for the cell, and the carriers are things like 

ATP, NADH, carriers of energy, redox and small moieties, again, standard terminology. 

 

 
 

FIGURE 27 
 
 Figures 28-32 illustrate how to map catabolism into this framework. What catabolism 

does is take whatever nutrients are available and break them down to make precursors and 

carriers.  Those are then fed into biosynthesis pathways to create the larger building blocks of the 

cell.  This is core metabolism. 
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FIGURE 28 
 

 
 

FIGURE 29 
 
 That core metabolism then feeds into the polymerization and complex assembly process 

by which all of these things are made into the parts of the cell, as shown in Figure 30 below.   
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FIGURE 30 
 
 Of course, if you are a bacterium you have to do taxis and transport to get those nutrients 

into catabolism, and then there are autocatalytic loops, because not only are those little 

autocatalytic loops inside for the carriers but, of course, you must make all the proteins that are 

the enzymes to drive metabolism, and then there are lots of regulations and controls on top of 

that.  So, schematically, we get the nested bow ties in Figure 31. 
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FIGURE 31 
 
 What is important about this is that you have huge variety at the edges and basically no 

variety in the middle.  What do I mean by that?  If you look at all the things that bacteria 

encounter in the environment, all the chemicals, all the ions and all the possibilities, you couldn’t 

list them all; it is basically infinite.  What do they eat?  Well, they eat nearly anything. I mean 

anything that has a reasonable redox status, some bug will eat it.  Since we have cultured only 1 

percent of all the bacteria in the world, we have no idea. They probably eat just about anything.  

They eat uranium, which is a cool thing to do, too. There is a huge variety in what they will eat. 

 What are these final building blocks?  There are about 100, and they are the same in 

every organism on the planet, every cell on the planet, exactly the same, but there are only about 

20 in the middle, again, the same in every cell on the planet, and those are the precursors and the 

carriers, about 12.  Again, it depends on how you count.  I am counting AMP, ADP and ATP all 

as the same.  It is like a little charged up battery, so that is how I am counting.  If you want to 

count every one of them, you will get 30 or 40, but it is a small number.   When you go on to this 

side again you get an almost unlimited number of macromolecules.  I am grossly underestimating, 

but in a given cell you will have on the order of a million distinct macromolecules that are 

produced by the polymerization and complex assembly.  What you have is this huge variety.  If 

you go and look at almost any kind of data from these systems—time constants rates, molecular 
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constants, fluxes, variable, everything you look at—you’ll find a huge variability, variability over 

orders of magnitude.  If you take this data in a particular way you are likely to get power laws, 

again, simply for the same reason that, if there was low variability, you would likely find 

Gaussians.  

 
 

  
 

FIGURE 32 
 
 There is a very limited critical point of homogeneity.  It is homogeneity within the cell, 

and within every cell on the planet, so this critical point of homogeneity is essential.  What you 

get is this nest of bow ties.  We have this big bow tie and inside it you have little bow ties, and 

you have also regulation and control on top of it.  The question is why?  Why this structure?  

What is it about this?  What does it confer?  Since every cell on the planet has the same 

architecture, you could say it is just an evolution accident or it is an organizational principle.  

Which is it?  What do you compare it with?  Hopefully, we will find something on Mars that will 

have different handedness, and then we know that it didn’t have common descent and then we 

can actually compare them.  But in the meantime, we don’t have much to compare.  What to 

compare with and how to study it?  I think what you compare it with is technology.  How do you 
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study it?  You use math, which is why we are here, I assume.  It turns out we build everything this 

way, so if we look at manufacturing, this is how we build everything. We collect and import raw 

materials, you make common currencies and building blocks, and you undergo complex 

assembly. 

 As an example of an engineered system, let’s look at power production, as shown in 

Figure 33 and Figure 34, the bowtie figure abstracted from it.  There is a huge number of ways 

we make power and lots of ways we consume power, at least in the United States.  When I come 

to the East Coast I don’t have to worry about whether my laptop will work.  It works because you 

have this common carrier providing power.  If you go to Europe, power is carried in a little 

different way. Gasoline is a common carrier, ATP, glucose, proton motive force.  This is the way 

we build buildings.  There is a huge variety of things you can make stuff from, a huge variety of 

ways you can do it, and in the middle there is more or less a standard set of tools.   

 

 
 

FIGURE 33 
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FIGURE 34 
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FIGURE 35 
 
 With the engineered system, we can go back and see how it used to be.  What we look 

back and see is the evolution of protocols, getting a glimpse of evolving evolvability.  

Evolvability is the robustness of lineages to large changes in long time scales.  I want to think of 

robustness and evolvability as just a continuum.  We will see there is no conflict between them.  

The idea that a system being very robust makes it not evolvable is an error. The problem is that 

all this stuff in the middle is usually hidden from the user. The user sees the hardware and they 

see the applications, but they don’t see the protocols in between.  It is easy to make up all sorts of 

nonsense about how it works.  This is a universal architecture only in advanced technologies. It 

has only been since the industrial revolution that we did things this way. 

 In biology you get extreme heterogeneity; it is self dissimilar; it looks different at every 

scale.  If you zoom in on the middle, the core is highly efficient, but the edges is where you get 

robustness and flexibility because that is where the uncertainty is.  This is shown schematically in 

Figure 36.  If you look at the core you get highly efficient, very special purpose enzymes that are 

controlled by competitive inhibition and allostery, and small metabolites.  It is like this machine 

is sitting there and the metabolites are running through it—a big machine, little metabolites.  At 
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the edges it is exactly the opposite: you get robustness and flexibility, but you have general 

purpose polymerases, and they are controlled entirely differently, usually by regulated 

recruitment.  So, you have an entirely different control mechanism, very different styles, and 

again, this is all standard undergraduate biochemistry, but it is an important observation.  If you 

think about the distinction between this and riveting, you have a machine that sits on the floor and 

makes rivets.  It just sits there and spits out rivets; it doesn’t move and you control it by a knob on 

the back.  Once you take the rivets and you want to rivet an airplane, you now take the rivet gun 

and move around on the airplane. You take the rivet to the system.  It is very much similar to core 

metabolism versus complex molecular assembly.  Again, there are these universal arcs. 

 

 
 

FIGURE 36 
 
 Figure 32 isn’t to scale.  To show its high variability you may ask how would I scale it?  

We could scale it by flows.  We could scale it by whatever. Suppose we scale it by the genome.  

We can think of this as a gene network, and it holds for e. coli with its 4,400 genes (see Figure 

37, which is not exactly up to date).  About half of those e. coli genes have known function.  Of 

the ones with known function, about 10 percent are called essential.  Again, I am using the 

biological notion of essential, which just means if you take out that gene, you can’t keep it alive 
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on life support no matter what.  If you scale up that way it turns out the whole genome, to a first 

approximation, is regulation and control.  This is a radically different scaling than I started out 

with.  All the complexity is down here at the bottom.  That is not unusual.  

 

 
 

FIGURE 37 
 
 In technology it is the same way.  If you take a modern car, a modern high end Lexus, 

Mercedes or so on, essentially all the complexity is in these elaborate control systems.  If you 

knock one of those out what you lose is robustness, not minimal functionality.  For example, 

brakes are not essential.  If you remove the brakes from a car the car will still move, particularly 

in a laboratory environment.  What will happen if you take it out on the road?  You are more 

likely to crash.  There is a standard joke about the biochemist and the geneticist and their brakes.   

This is not because brakes are redundant; brakes and seat belts are not redundant.  In some sense 

they are, but no engineer would think of them as redundant.  They are layered control systems 

and that is the same story with cells.  These non-essential knockouts aren’t due to redundancy. 

That is a fiction.  If you knock out this stuff you lose robustness not minimal functionality, and 

then there are a few things in here that, if you knock out, they are often lethal.  If redundancy was 
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a strategy that bacteria adopted for robustness where would they put it?  In the core, but they 

don’t, for the most part, so that is not the explanation.  The explanation is straightforward, straight 

out of standard undergraduate biochemistry.  This supplies materials and energy; this supplies 

robustness.  Robustness contributes to complexity much more than the basic functionality so we 

have to understand this bottom part. We can’t just look at the stoichiometry if we want to 

understand this. 

 

 
 
 

FIGURE 38 

 36 
 



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

 
 

FIGURE 39 
 
 We are familiar with the idea that we have this exploding internal complexity, even 

though it is supposed to appear very simple.  Our cars appear simpler. It used to be if you wanted 

to be a driver you had to be a mechanic. Then you could be a mechanic as an option.  Now you 

can’t be a mechanic. You can’t fix your own car.  In fact, the mechanic can’t fix your car without 

a bank of computers.  So, these systems have become much more robust.  Your modern high-end 

luxury vehicle that has all of these control systems will almost never have a mechanical failure.  

How does it fail?  The answer is software.  Mercedes Benz automobiles now have terrible 

maintenance records, but they have eliminated mechanical failures. They have replaced them with 

software errors, and now they have worse performance than ever.  Imagine that some day all our 

cars on the freeway turn left.  That is why we call it robust yet fragile. They are extremely robust 

most of the time but when they fail they fail big time.  What is the nightmare?  The possibility is 

that we will never sort this out and biology might just accumulate the parts list and never really 

understand how it works.  In technology we might build these increasingly complex systems and 

it will have increasingly arcane failures.  Apparently, nothing in the sort of orthodox view of 

complexity says this won’t happen.  I believe it won’t happen if we do the math right, but we 
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need new math to do this right.  

 What are the greatest fragilities of this architecture?  It is hijacking, because the presence 

of common parts makes it easier to develop the ability to hijack.  If you have a common user 

interface anybody can come in and hijack it.  I can come in, plug in, and steal your energy. 

Viruses come and plug right in, and they don’t have to worry about which e. coli they are in. 

They are all the same with respect to this; viruses only have to worry about the immune systems.  

So, what you see is that these things have very characteristic fragilities. 

 Let me briefly talk about eukaryotes.  In fact, let’s talk about us for a minute. I don’t 

know much about them but since we are staying at the undergraduate level I am probably okay.  

There are plenty of people in the room to fix all the things I say wrong.  What is the fragility of us 

as a whole?  It is obesity and diabetes.  At a physiological level we have a bow tie architecture 

with glucose and oxygen sitting in the middle, as shown in Figure 40 below. 

 

 
 
                                                                 FIGURE 40 
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Robust Yet Fragile
Human complexity

☺ Efficient, flexible metabolism
☺ Complex development and
☺ Immune systems
☺ Regeneration & renewal 
� Complex societies
á Advanced technologies

/ Obesity and diabetes
/ Rich parasite ecosystem 
/ Inflammation, Auto-Im.
/ Cancer
1 Epidemics, war, …
0Catastrophic failures

• Evolved mechanisms for robustness allow for, even 
facilitate, novel, severe fragilities elsewhere (often 
involving hijacking/exploiting the same mechanism)

• Universal challenge: Understand/manage/overcome this 
robustness/complexity/fragility spiral

 
 
                                                        FIGURE 41 
 
 What happens is if you look at all the problems on the right (Figure 41), they are the 

direct consequences of mechanisms on the left.  So, we have efficient flexible metabolism, great 

500,000 years ago when you are starving between trips to hunting or whatever.  You put that in a 

modern environment and you are not running around any more and you get obesity and diabetes. 

You need complex development in order to create us.  That makes a rich parasitic ecosystem.  

You then have an immune system, so now you have horrible autoimmune diseases, some of the 

worst diseases.  One form of diabetes is caused by autoimmune disease.  You need regeneration 

and renewal in the adult and that, of course, can get hijacked.  Hijacking is the greatest fragility. 

You get cancer; you get complex societies and we have epidemics. Perhaps others will talk about 

that.  It looks like robustness and fragility are a conserved quantity in the sense that when you try 

to make something more robust, you make something else more fragile, and that is actually true.  

If I have time I may say something about it. Again, there is an undergraduate-level story that you 

can talk about, that there is a conservation law for robustness and fragility. 

 Let’s look a little bit at transcripts for regulation for just a second. Some of my favorite 

work is this work on network motifs by Uri Alon and his co-workers.  What is a motif?  Figure 42 

shows a transcriptional regulatory motif for heat shock. What you have is the gene which codes 

for the alternative signal factor that then regulates a bunch of operons.  I am going to focus on an 

abstract version of an operon.  What does this do?  Typically, your proteins are supposed to be 

 39 
 



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

folded, and this is a reason why you have fevers, because your body is trying to unfold the 

proteins in the bacteria that are attacking you.  That is probably not all there is to it but, as I said, 

there are people here who can fix the things I say wrong.  What is happening is you have 

chaperons that both fold nascent proteins and refold unfolded proteins, and you also have 

proteases that degrade particular aggregates and then they can be reused.  This is a system and if 

this is all you had, you could survive heat shock provided you made enough of these things.  

 

 
 

FIGURE 42 
 
 That is not how e. coli does it; what e. coli does is builds elaborate control systems, as 

shown next. First of all, the RNA itself is sensitive to heat; it unfolds and is transcribed more 

rapidly under the presence of heat.  That makes more sigma 32 that makes more chaperons.  In 

addition, the chaperons sequester the sigma 32.  It has hydrophobic residues so it looks like an 

unfolded protein.  If the chaperons suddenly get busy having to fold unfolded proteins, the sigma 

32 is free to go make more, a negative feedback loop, a very cleverly designed one, and then 

there is an additional feedback loop associated with degradation.  So, there is an elaborate control 

system that is involved in protein protein interactions.  What you see here are two layers of 
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control. There is the transcription regulation on the left, and there is this protein-protein 

interaction, which allosteric regulation of enzymes is a similar thing on the right.  You have got 

these reaction fluxes, regulation enzymes, and then you have got this two level control, allosteric 

regulation of enzymes. 

 

 
 

FIGURE 43 
 

 What I want to do is compare that with the Internet.  Hopefully, you are familiar with the 

Internet hourglass shown below.  You have a huge variety of applications and a huge variety of 

linked technologies, but they all run IP under everything, IP on everything.     
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FIGURE 44 
 
 You have this common core that is universal, every computer on the planet, more or less. 

What is universal about this?  How does it compare with biology?  Well, you have a huge variety 

of components. Think of all the different things you could build a bacteria from. It is an almost 

unlimited list.  Then there is a huge variety of environments in which bacteria can live.  The same 

thing is true for the Internet, a huge variety of applications at the top and a huge variety of 

different physical components at the bottom.  If you are going to build architecture you have got 

to deal with enormous uncertainty at both edges.  Again, it’s similar to the bow tie, but now we 

are talking about it a little bit differently:  it is the control system and not the flow of material and 

energy.   

 If you are bacteria you pick a genome, or you go to the Cisco Systems catalog and you 

make your network.  You now have a physical network, but it doesn’t work because it doesn’t do 

anything yet.  What does it need?  It needs this feedback control system or it doesn’t work.  Then, 

it is interesting. 
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FIGURE 45 
 
 There is huge variety everywhere except in the feedback control.  This architecture fits 

every cell on the planet, every computer on the planet.  You have got the hardware at the bottom:  

routers, links, servers, or DNA, genes, enzymes.  You pick a raw physical network or you pick a 

raw genome.  Then to turn it into a network you need to have routes on it so you have an IP route 

rerouting.  It has two things:  it has a feedback control system that deals with uncertainty below it.  

You put it together, you run IP on it, and it gives you routes.  It now makes you a very robust 

network to whatever is going on at the lower levels.  If you had a very benign environment that is 

all you would need. You simply run your applications right on top of IP; you don’t need anything 

else.  On the biology side you need transcriptional regulation to create the enzyme levels that are 

necessary to run the cell.  In a benign environment this is all you would need.   

 In fact, though, you are usually in an uncertain environment with complicated 

applications coming and going, supply and demand of nutrients and products and, as a 

consequence, on the Internet you need TCP, which gives you robustness of supply and demand 

and packet losses, you do congestion control and it activates re-transmission of lost packets.  The 

resulting comparison is shown on Figure 46.  On the right-hand side you have allosteric 

regulation, all that post-translational modification, all the different things that you do in protein-
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protein interactions and regulation.  This all happens in the cytoplasm.  It makes you robust to 

changes in supply and demand in a much shorter time scale. What you see is a layer of control 

that gives you primarily robustness to what is below a layer of control that gives you robustness 

to what is above, and you stick those two together, and you get a very robust plug-and-play 

modularity.   

 

 
 

FIGURE 46 
 
 It isn’t an accident that TCP and IP are separate and do different things, and it is not an 

accident that we have—I have used allosteric controls as a stand in for all the different ways that 

you can do modifications of proteins, again, hidden from the user.  We don’t know all that is 

going on. When you use your computer, you don’t see this going on. Again, it is easy to make up 

fantastic stories about these.  What is important about this is you have a vertical decomposition of 

this protocol stack. Each layer independently follows the rules, and if everybody else does good 

enough it works.  The Internet does it this way and so does biology.  Also, what you have is a 

horizontal decomposition.  Each level of decentralized and asynchronous, so there is no 

centralized control.  It all runs based on these protocols, so you get this bow tie picture.  
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FIGURE 47 
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FIGURE 48 
 
 Where does the protein and hourglass fit together?  It is the regulation and control that are 

organized as an hourglass.  If you are thinking about this, how does this relate to the Internet?  

The cell metabolism is an application that runs on this bow tie architecture—it is the bow tie 

architecture that runs on this hourglass.  They sit together in the same cell.  Right now we don’t 

do a lot of this in technology. We keep these things fairly separate. We are starting to build 

control systems that run on top of IP networks.  Something I thought I would never work on is a 

disaster, but it is going to happen whether I like it or not. We are going to have to make it work.  

What this does is gives you robustness on every time scale. Again, there is no trade off in these 

architectures between robustness in the short run and robustness in the long run. 
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FIGURE 49 
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FIGURE 50 
 

  Viruses and worms: What is the worst form of spam?  It is the spam that looks like real 

e-mail.  So for the worst attack on a complex system, how does a virus get into a cell or into our 

network?  It has to look okay and it gets through.  Those are the attacks that we need to worry 

about most and on the Internet file transfers you have got navigation, you have got congestion 

control, and you have ack-based re-transmission.  On a little broader time scale, if routers fail you 

can reroute around failures, you can do hop swaps and rebooting of hardware.  On longer time 

scales you can rearrange the components. On the longest time scale you can bring in entirely new 

applications and hardware, and it plugs right in. So, on every time scale you get enormous 

robustness created by this architecture.  You also get fragility on every time scale. If the end 

systems don’t run the congestion control there is nothing to prevent the whole network from 

collapsing. If everybody turns off TCP tomorrow we are dead.  The worst thing is fail-on of 

components, not things failing off.  If you take a sledgehammer to the Internet nothing happens; it 

is not a big deal.  If you fail-on, or hijack, that is the worst thing that can happen. Distributed 

denial of service is an example, black holing, and other fail-on cascades.  So things failing on are 

the worst things.  In fact, the worst thing is to nearly obey the protocols and deviate subtly. What 

does that do?  Suppose a nutrient fluctuates?  All you have to do is control the pathway that feeds 
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the core and everything else works. You don’t have to do control except locally.  That is why 

these centralized control schemes work.  A new nutrient comes in, the whole regulatory apparatus 

comes in, it comes over here, kicks in transcription, translation, makes a new protein, all of a 

sudden, that comes back, that is all regulated and control, you have got a solid catalytic feedback, 

you make a new pathway and you eat that nutrient. Nothing else had to change.  If you lose a 

router it is no big deal. You have all these regulatory mechanisms to protect you with that. You 

are going to incorporate new components.  

 Suppose you need a pathway but it isn’t there. You are a bug and somebody is dosing you 

with antibiotics, and you want to consume it and you can’t; this is no big deal.  If somebody else 

has it, you can grab it and stick it in so bacteria can do this.  This is why it can acquire antibiotic 

resistance on such a fast time scale.  We can’t do this; we have this lineage problem.  If we could 

do this, I know I would look like some combination of Michael Jordan and Lance Armstrong, not 

like this.  We can’t; we are stuck with the genes our parents give us and we can’t go grab more, 

although I guess you guys are working on it.  On longer time scales the idea is that you can create 

copies and then evolve them, and they work the whole time. They work the whole time because 

they run the same protocols. It makes it easy to evolve.  Also, they are fragile on time scales. The 

fluctuations of demand and supply can actually exceed regulatory capabilities so you have heard 

of glycolytic oscillations.  You can actually kill bacteria by simply fluctuating the amount of 

glucose in its environment, and it is killed because its control system reacts improperly and, 

again, in well known ways.   

 On the short term we have failed on components. You get indiscriminate kinases, loss of 

suppression, and loss of tumor suppression.  Again, the worst thing is fail-on. The worst thing for 

kinase is not to stop phosphorylating its target, but to phosphorylate targets that it is not supposed 

to. That is a major cause of cancer.  Failing on is a much bigger problem in these systems. In fact, 

this hijacking that we talked about, that is diabetes and obesity.  It turns out the same mechanisms 

responsible for robustness and most perturbation allows possible extreme fragility failures.  So, 

what we are seeing is extreme variabilities in all the measurable quantities, but also this extreme 

variability and robustness and fragility, and it is created by these architectures.  High variability 

everywhere and, of course, once there is high variability, you can find power laws if you are 

looking.  These are universal organization structures and architectures. 

 I have a whole story on signal transduction.  Time is getting late, and I knew that was 

going to be the case so I put it at the end.  What I talked about was the theoretical foundations a 

little bit.  We want to get into some discussion, but let me just do a little bit of math staying at the 

undergraduate level.  What are the theoretical foundations for studying these kinds of systems?  
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They are the most rigorous theories we have around; the most sophisticated and applicable 

theories come out of computation, computer science, control theory, and information theory.  

Those subjects have become fragmented and isolated. The weird thing was when I started 

working on the Internet I realized here was the biggest communication network ever built, and it 

doesn’t use anything from Shannon, more or less, at the core, the TCP/IP.  And that the people 

who work on TCP/IP and the people who work on forward error correction never talk to each 

other.  It makes some sense to me, but we have got to get that all back together.  There have been 

attempts to create new sciences, and they have pretty much been failures.  The problem is we 

don’t need new sciences; we need new mathematics; we need integrated mathematics. 

 Recent progress has really been spectacular.  I want to give you an undergraduate 

example of the kind of progress, and I will try to do this very quickly and, again, it will assume 

that you have a background on the topic I am talking about.  The standard Shannon story—

actually, this is the way Shannon first presented it, which is not the way it is usually presented in 

textbooks, if you go back and look at his original papers—supposes you have a disturbance that is 

going to create some error, and you have a process of encoding and delay through a channel with 

capacity C, then decode. Then you are going to try to construct a signal to cancel that disturbance. 

(see Figure 51).  That is treating communications like a control problem. This is actually how 

Shannon first thought about it.  He said the entropy reduction is limited by the channel capacity, 

standard story, and the other big result is that, if the delay of a disturbance is long enough—if the 

delay goes to infinity—and the entropy of the disturbance is less than the channel capacity, then 

you can make the error zero. These are the big results in Shannon. 
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FIGURE 51 
 
 Hard bounds:  The bounds are achievable under certain assumptions, and there is a 

decomposition theorem that is well known in coding theory about how to achieve that.  In control 

theory there is the corresponding thing which is a little bit less known, and I am beginning to 

realize the reason it is less well known is because people like me teach this stuff really badly. So, 

everybody takes their undergraduate course in controls.  How many people took an undergraduate 

course in controls?  It is always the course you hated most.  I don’t understand this, and it is a 

pathology and a virus that I have.  We have got to get it out of some of this stuff. 
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FIGURE 52 
   
 Anyway, control theory has a similar thing. You take D and E, you take the transforms 

and you can define this thing called a sensitivity function.  If you think of the other thing as a 

conservation law based on channel capacity, you can’t exceed channel capacity here.  You have 

another conservation law that says that the total sensitivity is conserved.  So, I have this demo, 

shown in the following illustration. It is harder to move the tip of the pointer around if it is up 

than if it is down. If I want to go around here, I can move it around real easy—same parts but way 

harder. This theorem tells us why.  It turns out that there is an instability it adds to the problem, 

and it turns out that the instability gets worse as it gets shorter, and eventually I can’t do it at all, 

and you can do the experiment yourself at home.  You can check out this theorem at home—same 

thing, hard bounds, achievable solution, decomposable.   
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FIGURE 53 

 
 These two things have been sitting staring at us for 60 years, which is a total 

embarrassment.  What happens if you stick them together?  What would be the best thing that 

could possibly be true?  You just stick them together?  There is the cost of stabilization, there are 

the benefits of remote sensing and there is a need for low latency. That can’t possibly be right, 

because it is so obvious you would have thought some undergraduate would have done it 50 years 

ago.  The other weird thing is Shannon worked for Bode at Bell Labs.  They actually sat and 

talked about this stuff together.  Not only that but it is a hard bound; it is achievable under certain 

assumptions, with the usual, you first prove it for the added Gaussian case, and then the solution 

is decomposable under certain assumptions.  It is possible to unify these things, and there are 

actually some undergraduate results that come out right away.  This hasn’t been published yet, 

but it is going to appear at the next conference on decision and control; it has been submitted to 

IEEE Transactions on Control, and so on. 
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FIGURE 54 
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FIGURE 55 
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FIGURE 56 

 
 Here is a claim or probably, more properly, irresponsible speculation. A lot of the 

complexity we see in biology is dominated by dealing with this trade off, and the deal for techno-

networks.  We are starting to use communication networks to do control. Biology already does 

that. Biology is latency driven everywhere.  What does the Internet manage?  Really latency.  We 

need to have a latency theory of communications.  Go to the FAST web site and read about this. 

This is pretty cool.  It is a case where a very interesting new theory was done, global stability 

with arbitrary numbers, arbitrary areas and delays so you get very great robustness, global 

stability of a nonlinear system in the presence of time delays. I never thought I would see this. If I 

had to do it, I wouldn’t.  I have good students who did this.  One of the co-authors of the paper is 

here, Lun Li, and you can talk to her about it.  She, I think, actually understands it.  Anyway, it 

has been very practical and it has led to the theory of new protocols that, again, here this is macho 

stuff; this is breaking the world record. 

 What is the theory?  The way you connect these things is it is really a constrained 

optimization problem.  It starts out as constrained optimization, but then you really have to redo 

optimization theory to get it to work in this layer decomposition way.  There is actually a 

coherent theory for the first time of these layered, decentralized, asynchronous protocols.  It is a 
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nascent theory. That little theorem I showed you before is an example of the kind of unified 

theory that is now coming along, but it is very much in its beginnings because we had these 

stovepipe areas chugging along for 50 years with the smartest people I know cranking out 

theorems in an isolated way.  We have to go back 50 years and start putting them back together 

again.  It looks doable and as I tried to show you, we are going to have to think about high 

variability all over the place.  The high-variability statistics is going to be a dominant issue, and it 

is not necessarily a bad thing. In our disaster world it is a bad thing, but a lot of times this high 

variability can be exploited.  TCP exploits at a huge amount.  My cell phone story, if that wasn’t 

there, TCP wouldn’t work.  So, it is a situation where we have got to be able to learn to exploit 

that more systematically.  I think you are probably going to hear about bits and pieces of this 

from others throughout the next couple of days. I will stop and see if you have any quick 

questions. 

 

QUESTIONS AND ANSWERS 
 

 QUESTION:  A very quick question. In your earlier plot you showed for the power law, 

you said that apparently it is not power law, but more like exponential.  It looks like it is a better 

fit with the power law than exponential.  How do you explain that? 

 DR. DOYLE:  It is a statistical error. So, it is a case where you simply are making a 

mistake. Again, I didn’t really explain the details. This is a standard thing. The idea is that the 

thing on the right was a differentiated version of the thing on the left. The simple way of thinking 

about it is, you differentiate it and you create all this noise. There are two advantages to the 

picture on the left, the rank plot. First of all, I show you the data in its raw form, and you can say 

whether or not you think it is a power law.  There are no statistics done. I show you the raw data. 

Then you can do a little bit of statistics by just sort of eyeballing the straight line. The idea is that 

you shouldn't think of a straight line it has to fit. The idea is that we use mean and variance to 

describe all sorts of low-variability phenomena. We know it isn’t really Gaussian and we don’t 

check the other moments.  We need similarly to find better ways, in a broader sense, to describe 

high-variability data.  All of a sudden you get means of 1 and variances of 100—it is not a useful 

statistic, it doesn't convert.  You take the data over again.  Means and variances don’t mean 

anything in this high-variability world.  What you need to do robust statistics is a solvable power 

law, but you would want to use that even when it wasn't a power law, just like you use mean and 

variance, so there are robust ways to do this. 

 This is all decades old statistics, and we don't teach it very well.  That is one of the 
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challenges that we need to do a better job, just of teaching these things.  The problem is science 

has so focused on getting rid of high variability. High variability was thought to be a bad thing, 

like you are doing bad experiments.  As Jean will point out, high variability exists all over in 

nature. In the laboratory, it only exists in very exotic circumstances, so it is associated with 

exotica. 

 DR. HANDCOCK: I would like to pick up on that question a little bit, about the 

identification and characterization of power laws.  I think one issue that needs to be discussed, or 

at least I would like to hear some discussion more of, is the case where statisticians in particular 

have looked at questions for a long period of time, but they haven’t really been used, that 

knowledge has not been used in other areas of science. 

 DR. DOYLE:  That is absolutely right, it has not been used. 

 DR. HANDCOCK:  In this area, I think it is particularly important. Clearly, statisticians 

have had a lot to say about curve fitting and other issues like that, but what I am most reminded 

of is the recurrence of these debates.  The classic example to my mind is Morris Kendell’s 1961 

address to the Royal Statistical Society, where he essentially lambastes previous work done in a 

half a century before that time on essentially very similar questions here. 

 DR. DOYLE:  This is a very old story, a very old story. 

 DR. HANDCOCK:  I would like to hear people say more, how can the work of 

statisticians be more recognized and just routinely used by other sciences, to avoid occurrences of 

this kind? 

 DR. DOYLE:  I will tell you that my experience has been to give them good software 

tools do it right and make it easy for them to do it right.  If you go to Matlab and get the stat tool 

box, it’s all low variability. So, my experience has certainly been, if we want to get good, new 

robust control theory into the hands of people, you make software. 

 If you want to get biologists to be able to share models, you have to have a systems 

biology mark-up language, you have to make software. So, you have to turn your theories into 

software, and it has got to be usable, it has got to be user friendly. So, we use Matlab and call the 

SVD, and how many of us know actually how the SVD works, sort of? 

 Well, you don’t need to. The point is, if you do it right, you need to know what it does, 

but you don’t need to know exactly how it does it.  We need to do the same thing for high-

variability statistics.  It is one thing to lambaste everybody about it.  It is another thing to try to 

create the tools, and show people, teach people.  This is the thing we have got to do, we have got 

to teach people.  There are people out there who are discovering this high-variability data 

everywhere. We are going to hear a lot about it in the next two days, and it is everywhere.  The 
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irony is, because of its strong statistical properties, you end up finding it where it isn’t, and the 

stats community can make a lot of contribution. The problem is that I am not sure anybody 

studies this any more. It is this old, old topic, old classical stability laws; it was hot in the 1920s, 

it was hot in the 1950s, and maybe it will come back. I think it should come back. 

 DR. KLEINFELD:  Implicit in your talk was this notion that in engineering systems 

things are components, and also implicit in your talk and sort of in the world is that, the way 

biology seems to design things, they are very much in modules. Is there some sort of theorem that 

says that one should really build things in modules, like some complexity diverges or . . . 

 DR. DOYLE:  Yes and no. I would say we have nascent, little toy theorems that suggest 

that these architectures—here the point is, you don’t have modules unless you have protocols.  If 

you look around, you discover the modules first, you see them, you see the parts, but they are 

meaningless unless there are protocols. None of this stuff would work or hook together unless 

they had protocols. What we can prove now is that some of these protocols are optimal in the 

sense that they are as good as they can be. 

 For example, TCP properly run achieves a global utility sharing, that is fair sharing 

among all the users that use it. What that says is that you can get the same performance as if you 

had a centralized non-modular solution, but you can get it with a protocol that is both robust and 

evolvable. Now, is there any other way to do it?  We don't know. You prove that this is optimal 

and that this is robust.  So, there is a lot more work to be done. I mean, it is only the last few years 

that we have even had a coherent theory of how TCP/IP works. So, this is quite a new area.  I 

think that is an important question. How much further can we go in proving properties?  What we 

need to design now, as engineers, we need to design protocols. We need to design protocols that 

are going to run our world, and we need to do them and make them robust and verifiable, and 

scalable.  Now we don’t do that very well. 

 In biology, what we are doing is reverse engineering the protocols that evolution has 

come up with. Unfortunately, the good news is, it looks like it uses more or less the same 

protocols.  So, it is not going to be incomprehensible.  It could just be this infinite parts list.  If we 

just made a parts list of everything on the Internet, it would be completely bewildering, we would 

never make any sense of it.  Because we know the architecture, and because we know the 

protocols, we know what everything is doing. We have got to do the same thing with biology. 
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Neurons, Networks, and Noise: An Introduction 
 

Nancy Kopell, Boston University 
 

 

 DR. KOPELL:  As Emery said, my background is dynamical systems in neuroscience, but in a 

sense I am here to lobby for more work at the interface between sophisticated dynamical systems and 

sophisticated statistics because I think that is a major underdeveloped area.  I have more questions than I 

have answers for that. 

 

 

 
FIGURE 1 

 

 My assignment from Emery was to talk about what people study when they study networks of 

neurons.  Generally, as shown in Figure 1, they start with the Hodgkin-Huxley equations or variations of 

them, which describe the electrical activity of a neuron or even a tiny piece of a neuron.  One can even 

think of a neuron spread out in space, itself; a single neuron as a network. These equations come from 

electrical circuit theory, and the major equation there is conservation of current, so it is talking about ionic 

currents that are going across the cell membrane and through little channels. 

 Each ionic current is given by Ohm’s law, E = IR.  That is nice and undergraduate.  The ionic 

current I ion shown in Figure 1 is the electromotor force divided by the resistance but, in the neural world, 

they are very optimistic: they don’t speak of resistance, they speak of conductance, which is 1 over 
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resistance, and that is how we define I ion in Figure 1.  What makes this a little bit more complicated than 

standard undergraduate electrical circuit theory is that this conductance is not a constant, but rather it is a 

product of so-called gating variables, which talk about how these pores in the membrane open and close, 

and these gating variables themselves are dynamic variables that depend on the voltage.  The voltage 

depends on the gates and the gates depend on the voltage.  It is all highly nonlinear.  There are many 

characteristic time scales in there.  Even when you are talking about a bit of a single neuron, you are 

talking potentially about a very large number of dimensions.  Now, we hook cells up via a large number 

of synapses, which I will tell you about in a minute, and one can have an extremely large network to be 

dealing with.  On top of all this is something that I am not going to describe but that I am hoping that Eve 

Marder will. That has to do with the layers of control that were talked about so wonderfully in the first 

lecture. That is, on top of all of this, there are neuromodulators, which you can think of as changing on a 

longer time scale all of the parameters that are in here, and which are themselves changed by the activity.   

 

 

 

 

 
FIGURE 2 

  

 How do you hook up two cells? How do you hook up many cells?  There are many ways that 

neurons talk to one another.  The major way is via so-called synapses.  Here I am talking about two kinds 
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of synapses, chemical and electrical.  To begin with, just think about a pair of cells.  When the 

presynaptic cell spikes it unleashes a set of events that leads to another current in the post-synaptic cell.  

Once again, this other current is conductance times the driving force.  For chemical synapses, this driving 

force is the difference between the voltage of the post-synaptic cell and something that has to do with the 

nature of the synapse, as shown in Figure 2.  Very crudely, one can think of the synapses as being either 

excitatory or inhibitory, and that will determine the sign of what this driving force is.  For an excitatory 

synapse the current will drive the cell to a higher voltage, which will make it more likely for the cell to be 

able to produce an action potential and, for an inhibitory one, it does the opposite.  There are also 

electrical synapses which depend on the difference in the voltages between the post-synaptic and pre-

synaptic cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3 

 

 Figure 2 gives just a sense of how things are hooked up in these networks.  The way to think of it 

is that all of these currents get added to the equation for conservation of current, so it is electrical circuits 

with bells and whistles.  This can get extremely complicated.  There is a fair amount of work in the 

literature in which people say they can’t handle it and go to something a little bit simpler. The standard 

simpler thing that people work with is the so-called integrate-and-fire neuron in which most of what I said 

is ignored. You still have the conservation of current; dv/dt is something that looks linear but it isn’t.  The 

reason that it isn’t linear is that there is a threshold in there. It is a voltage built up to some predetermined 
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spot that the person working with this decides. One pretends that there is an action potential which 

happens, a spike, and then the cell gets reset to another voltage value.  The graph in Figure 3 shows how 

the voltage builds up and then decays in an action potential.  This is the simplest kind of caricature with 

which people work. There are other kinds of caricatures in which the voltage isn’t just put in by hand, but 

it is in the equations and a trajectory decays back to rest if it doesn’t reach this threshold and, if it does 

reach threshold it goes on and produces this action potential. 

 Once you have a network like this, there are general questions that everybody in the field wants to 

know. What are the dynamics of these networks?  They can be local, in which cells are connected to all or 

a lot of the cells in the whole network. They can be spatially extended, as they would be in a neural tissue. 

They can be deterministic, or they can have noise associated with them, and they can have inputs that can 

be with or without spatiotemporal structure.  In the study of these networks without inputs, what one 

thinks about basically is the background activity of a particular part of the nervous system.  When we 

think about putting inputs in, we are thinking about, given the dynamics of the network and the absence 

of inputs, given that background activity, how it is going to process things that actually do have structure?   

 Where does statistics come into all of this?  Well, data are noisy.  One builds these nice nonlinear 

deterministic models which are extremely complicated.  How do you begin to compare what you see in 

the dynamical systems with what you can get out?  In general people mostly make qualitative 

comparisons.  What one would like is to be able to compare on a much deeper level what is going on. 

That is why I say I am here to lobby for a combination of dynamical systems and statistics.  I want to give 

you a couple of examples of this, and it comes from the things I am most interested in at the moment, 

which have to do with rhythms in the nervous system that are found in electrical activity of the brain and 

can be seen in EEGs and MEGs.  What I am interested in is how those rhythms are used in cognition.  

That is much too large a question to be able to talk about here, but what I plan to do is give you some 

examples that I think will illustrate some of the statistical issues that come up.   

 I have two examples. The first one is a real baby example; it is two cells. To think about how you 

can get rhythms in a complicated situation, you have to think about coherence and what creates 

coherence.  The simplest situation about coherence has to do with two cells, and that is what I am starting 

with.  There are various mathematical ways of thinking about coherence of cells; I am using one in Figure 

4 that I think is especially well adapted to statistics.  Assume you have a neuron, and its parameters are 

such that it would like to keep spiking periodically if nothing else happens.  Now, it gets some input in 

the form of another spike, and that input does something. One of the things that it does is to change the 

timing of the cell that receives that input.  One can describe what these inputs are doing in terms of the so-

called spike-time response curve.  What the schematic in Figure 4 is telling is that if the input comes in, 

say, 60 milliseconds after the receiving cell has spiked, there will be a negative advance or delay.  If the 
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input comes much later in the cycle, the receiving cell will spike considerably sooner than it would have.   

 If you have such a spike-time response curve, with a little bit of algebra—this is even high 

school—you can figure out, if you have two cells that are put together, that are talking to one another, 

what will those two-cell networks do?  The mathematics that describe what it will do is called a spike-

time difference map, which maps the timing difference between the two cells at a given cycle onto the 

timing difference between them at the next cycle, so that you can see if they will synchronize.  It is simple 

algebra that takes you from one to another to get that map.  Once you have such a map it turns out to be 

standard 1-dimensional map theory to tell us whether the cells will synchronize or not, and starting from 

what initial conditions.  It is the zeroes of this that are telling you the phase lag at which you will have 

synchronization, and the slopes are telling you something about whether or not that steady state is going 

to be stable or not.  It turns out for the example in Figure 4 that there is stable synchrony and stable anti- 

phase. 

 

∆ ∆
∆ ∆ ∆ ∆ ∆

∆ ∆

 
 

FIGURE 4 Acker, C.D., Kopell, N., and White, J.A. 2003. Synchronization of strongly coupled excitatory 
neurons:  Relating network behavior to biophysics, Journal of Computational Neuroscience 15:71-90. 
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 Let’s add some statistics to it. The really nice thing about spike-time response curves is that you 

can actually measure them in the lab using something called a dynamic clamp, which is a hybrid network 

between real biological cells and in silico. You can take a real biological cell—Eve Marder is an expert 

and one of the people who first developed this technique—and you can inject into it a given signal at a 

given time that you want, and you can see what that cell does. You can measure it and, not surprisingly, 

you get something or other, but it is awfully noisy and, depending on the signal that you have, you will 

get something else. 

 

 

 

 
FIGURE 5 Netoff, T.I., Banks, M.I., Dorval, A.D., Acker, C.D., Haas, J.S., Kopell, N., and White, J.A. 
2005. Synchronization in hybrid neutronal networks of the hippocampal formation, Journal of 
Neurophysiology 93:1197-1208. 
  

 Here is the question:  What can you read from that stochastic spike-time response curve shown in 

Figure 5?  When you have a spike-time response curve, before you create the spike-time difference map, 

can you read off whether it will synchronize or go into anti-phase?  By synchrony I mean zero phase.  For 

the particular deterministic spike-time response curve in Figure 5 it turns out that, if you hook up two 

identical cells with that, they will synchronize, not go into anti-phase. Is there any more information that 
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is in the scatter?  The answer is yes; namely, if instead of modeling this as something that is fit, you make 

it random with a Gaussian distribution whose variance is the measured variance here. You can predict 

what will happen statistically to the network when you actually hook up these two cells to real cells with 

the dynamic clamp.  When cell fires you look up the spike-time response curve and realize it should 

advance this much with a certain random amount, and you make the other cell fire at that, and you keep 

doing that.  That gives you the outlines of what is here. You can then take the two cells and, with the 

dynamic clamp, inject (whenever one cell fires) a certain current into the other cell corresponding to the 

synapse, and it will do something with that, according to its spike-time response curve. You see that the 

histogram of phase differences, with different ways of connecting those same two cells, turns out to match 

very well the predictions from the stochastic phase response curves, or spike-time response curves.  The 

punch line of this example is that when one takes into account the statistical structure that is in the data 

here, you actually can make much better predictions about what the network will be doing than if you 

simply take the fit of it and you do the mathematics with that. The deterministic fit predicts just that 

things will synchronize, which will be a spike over here and nothing else, whereas using the extra 

structure here is giving you the whole histogram of all of the phase differences. 

 That is a simple example of putting together dynamical systems and statistics.  Now I am getting 

to one where the questions get a lot more complex, and it is a lot less under control, and it is where I think 

there is room for a huge amount of work from other people.  There are many questions you can ask about 

these very large networks, but one question I am very interested in concerns the formation of so-called 

neural ensembles.  I am definitely not using the word cell assembly, which many of you may be more 

familiar with. Cell assembly, in the literature, means a set of cells that are wired up together for whatever 

reason, and tend to fire together. By neural ensemble, I mean a set of cells, whether or not they happen to 

be wired up together, that are firing, at least temporarily, almost synchronously with one another.  So, it is 

a more general notion than cell assembly.  It is widely believed, although not universal, that this kind of 

neural ensemble is extremely important for the functioning of the brain and cognition.  Among other 

reasons for the importance of synchrony is the idea that this synchrony temporarily tags the cells as 

working on the same issue, that they are related now for this input, for this particular cognitive task, as 

noted in Figure 6. 

 Cell assemblies tend to change rapidly in time.  So, cells would be firing together for perhaps a 

fraction of a second, and then on to another cell assembly.  Think of it like a dance.  These kinds of 

subsets are also important as a substrate for plasticity because, when cells do fire together there is a 

chance for them to really wire together and become what is known as a cell assembly.  Lots of people 

believe that this kind of synchronous activity is extremely important.  There is a smaller group, which 

includes me, that believes the so-called gamma rhythms in the brain are important for the creation of 
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those neural ensembles. The gamma rhythm is the part of the EEG spectrum that is roughly 30 to 90 

hertz, depending on who you speak to and the phases of the moon. This is all very contentious. There is a 

huge amount to be said about gamma rhythms and where they come from and why people think it is 

important to early sensory processing, to motor control, and to general cognitive processing. 

 

 
FIGURE 6 Whittington et al. 1997. Pyramidal-interneuron network gamma, with Heterogeneity, Journal 
Physiology. 

 

 Since I have less than four minutes left I am going to cut to the chase and give you a sense of 

where the statistical issues come from.  To give you background on what we are putting the noise on, I am 

going to start with, as I did in the other example, something that has no noise whatsoever in it.  This is 

one way of creating a gamma rhythm known as pyramidal interneuron network gamma shown in Figure 

6.  Pyramidal cells are excitatory; these interneurons are inhibitory; I am making a network out of the 

kinds of things I showed you right at the beginning. The simplest way to do this is with one excitatory cell 

and one inhibitory cell.  The excitatory cell fires and makes the inhibitory cell fire.  The inhibitory cell 

fires and inhibits the excitatory cell, which just stays silent until the inhibition wears off. 
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FIGURE 7 

 

 If you have a large network of this—and the example that leads to Figure 7 is not that large, it is 

160 pyramidal cells, 40 inhibitory cells—it self-organizes to create this gamma rhythm.  Exactly how that 

happens involves mathematics and probability theory when there is heterogeneity like this. That 

mathematics has been worked out by Christian Borgers and me. It is not the essence of what I want to say 

so I am going to go on from there.  Roughly, the most important part is that the common inhibition leads 

to this self organization.  Now, we add in some noise and I am going to put that noise on top of a slightly 

different parameter regime in which the E cells don’t fire very much and they really need this drive in 

order to fire.  You can then get a kind of gamma rhythm in which excitatory cells are firing very sparsely. 

These graphs in Figure 7 are raster plots.  You can see that any given E cell is firing very sparsely. 

 You still have a population rhythm, and in our hands at least, it requires a lot of noise to make it 

happen.  There seems to be a lot of noise in the physiological situations that correspond to this. One can 

produce this in slice, and many of us including this gang believe it is this kind of activity that is associated 

with a kind of background attention, a kind of vigilance that enables you to take inputs that are at low 

level and be able to perceive them much better than if this background activity were completely 
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asynchronous.  It is related to the kind of activity that I was talking about before.  Now if there is input 

into a subset of the excitatory cells here, it will create a cell assembly in which the cells that are involved 

are producing a kind of PING rhythm and everything else here is more or less suppressed. 

 In the larger story that I am not telling, this corresponds to inputs to a specific set of cells that are 

doing neural computations and that are responding in the presence of this kind of background activity. 

What are some of the issues here?  I think there are a huge number, but I will just mention three. 

 First there is the question of whether there really are cell assemblies of this sort, and gamma 

rhythms associated with them.  In a recent conversation that I had with Uri Eden, who works with Emery 

Brown, I found he is coming up with a way of being able to decide that question.  You look at an animal 

that is behaving, say, running down a track, and you are looking at a place cell in the hippocampus that is 

supposed to be firing when a cell is in a particular spot on a maze.  The question is, if you look at the 

relationship between where the cell is, can you make an association with some covariate, which in this 

case would be where the cell is, and when the cell is producing these gamma rhythms, or is having its 

firing related to a potential field potential that is producing local gamma rhythms? You can potentially see 

with statistics whether or not this gamma rhythm is actually encoding when the cells are doing what they 

are supposed to be doing. You would expect to see more gamma rhythms when the cells are actually 

firing in their correct positions, and Eden believes he has a new way of thinking about that.  This has to 

do with looking at data and also with looking at the models themselves.  The persistent vigilance models 

are generally large networks, their outputs are very complicated, and it is very hard to be able to change a 

lot of parameters and say what the network is actually doing. 

 A second major issue for which one needs statistics is to find the appropriate statistics to be able 

to actually describe what the network is doing.  For instance, how does the firing of the cells depend on 

parameters of the system and this extra layer of control that I mentioned in neuromodulation?  What 

happens when you add inputs to all of this?  How do statistics of firing and network connectivity affect 

the response to inputs?  At the moment, we don’t have any statistics like this other than the standard off-

the-shelf, and that doesn’t do it. 

 The final major question is one that confuses me the most, and that has to do with plasticity and 

the so-called statistics of experience, in which one needs to use statistics to begin with, even before you 

phrase what the question is.  The point is that for real animals living in the real world there are natural 

inputs, both auditory and visual, which make some cell ensembles more likely.  It is not just the kind of 

thing that an experimenter would give to an animal. This makes some cell assemblies much more likely to 

occur than others, and one of the things we would like to know is what does that do to the creation of cell 

assemblies, what does that do to network connectivity, and what would that do to the response to inputs. 

In a sense the input to this theory is the statistics of experience, and the output of the theory is statistical, 
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but it is all through dynamical systems models that would tell you how one converts to the other.   

 

 

QUESTIONS AND ANSWERS 

 
 QUESTION:  One question is, usually at a single unit firing level, the rhythm is not very 

obvious. 

 DR. KOPELL:  One should be looking at the correlation between the single unit  

and the local field potential. 

 QUESTION:  Like in a network model, how to go about from the single unit that is the basic 

building block, to a local field potential kind of measurement?  Can that be done within the same 

mathematical network? 

 DR. KOPELL:  Yes, but once again, that is contentious. The physics of what the local field 

potential is actually measuring is still not wholly agreed upon by everyone.  So, people do this, but it is 

not clear how correct it is. 

 DR. KLEINFELD:  Nancy, where do you think all this noise is from? 

 DR. KOPELL:  Some of it is noise that is generated in the channels. 

 DR. KLEINFELD:  Shouldn’t that fall sort of like √N? 

 DR. KOPELL:  Again, there is the issue of high variability versus low variability, and there is 

the question of how many inputs are averaged before one gets the output.  When you are thinking in terms 

of the square root of N, you are sort of assuming all of this noise will cancel out.  I think it doesn’t, and 

there seem to be major noise generating networks, at least within axons, of some pyramidal cells, that will 

actively work to produce this noise.  It is presumably doing something really important here. I don't think 

the noise is something that should be treated as something that will be averaged out. 

 DR. KLEINFELD:  There is this textbook notion of 104 inputs per cell, and then these 

tremendously strong sort of depression schedules for synapses, and then there are results from people like 

Alex Thompson that suggest that a couple of synapses have large PSDs, like 10 millivolts instead of 

hundred of microvolts.  Just to put closure on what you are saying, is that what you are thinking, the very 

large number of inputs to itself is really a few preferred inputs that are dominating the drive to a neuron, 

and it is because of these small numbers that you get the high variability? 

 DR. KOPELL: That is certainly consistent with this, yes. 
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Mixing Patterns and Community Structure in Networks 
 

Mark Newman, University of Michigan and Santa Fe Institute 
 
 

 DR. NEWMAN:  I am going to be talking mostly about social networks because that is 

mostly what I know about.  I hope that some of the ideas I talk about will be applicable to some 

of the other kinds of networks that some of the others of you work on. 

 First, I want to mention some of my collaborators, one of whom, Aaron Clauset, is in the 

audience.  The others are Michelle Girvan, Cris Moore, and Juyong Park. 

 

 

 
FIGURE 1 

 

 The story I am going to tell you starts with an old idea from network analysis.  We 

believe that many of the networks we study divide up naturally into groups. 

 Suppose I am talking about a social network.  I will assume that you know what a social 

network is.  It is a network where the nodes are, for example, people and they are connected 

together by some social interaction such as they’re friends, or they have business 

acquaintanceships, or they have been in close physical proximity recently.  Choose the definition 

that is relevant to your particular problem.  So, you have a network of vertices and edges as 

shown in Figure 1, and we are going to assume that it divides up naturally into communities, 

groups, clusters, or whatever you would like to call them.  First of all, one thing that we might be 

interested in doing is finding those groups, if they exist in the first place, and if they do exist, 

determine what kind of groups they are.  For example you could be interested in a social network 

and be looking at groups of people in a network.  You could be interested in the World Wide 

Web, and be looking for groups of related Web pages. You could be looking at a metabolic 
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network and be looking for functional clusters of nodes.  There are a variety of situations in 

which you might be interested in this. 

 Finding groups in networks is an old problem.  It is something that computer scientists, in 

particular, have looked at for many decades.  But there is a difference between what we want to 

do with social networks, for example, and what computer scientists have traditionally done.  First 

of all, in the computer science problems, traditionally when you are looking for the groups in 

networks, there are some additional constraints that we don’t have, such as you know how many 

groups you want beforehand.  A standard computer science problem might be that you have a 

bunch of tasks and you want to divide them up over many processors on a computer, and you 

know how many processors you have.  You know how many groups you want to divide them 

into.  Very often you might want the groups to be of roughly equal sizes. That is a typical 

constraint in the kinds of algorithms that computer scientists look at because, for example, you 

want to load balance between many processors in a computer.  In the problems we are looking at 

that is not often true.   

 What is more, there is a fundamental philosophical difference compared to the traditional 

approach of partitioning a computer network, in that we are assuming here that the social 

networks we are looking at naturally divide into these groups somehow.  In the kinds of problems 

you want to solve in computer science, often you are just given the network and you want to find 

whatever the best division of it is into groups, such that you have a bunch of these tightly knit 

groups, and there are lots of connections within the groups, and only a few connections between 

the groups, and you do the best you can with whatever network you are given.  We are taking a 

slightly different point of view here, and assuming from the outset that there is some good 

division for some good sociological reason, for example, that your social network naturally 

divides up into these groups, and we would like to find the natural divisions of the network.  And 

those natural divisions might involve dividing it into some small groups and some large groups, 

and you don’t know how many groups there will be beforehand, and so forth.   

 There are old algorithms for doing this from computer science, like the one shown in 

Figure 2, which you might be familiar with, the so-called Kernighan-Lin algorithm from the 

1970s.  In this algorithm, if you want to divide a network into two parts, you can start by dividing 

it any way you like, essentially at random, and then you repeatedly swap pairs of vertices between 

the two parts in an effort to reduce the number of edges that run between the left-hand group and 

the right-hand group in Figure 2.  You continue doing that until you can’t improve things any 

more, and then you stop.  This is typical of the kinds of things that traditional algorithms do.  It 

works very well but it has some constraints.  First of all, you need to know the sizes of the groups 
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you want beforehand, because when you swap two vertices, you don’t change the size of the 

groups.  Each group gets one vertex and loses one vertex. 

 

 

 
FIGURE 2 

 

 Furthermore, the Kernighan-Lin alg  bisects.  It starts off with two groups, and 

 ends up with two groups.  If you want more than two groups, then you would have to do this 

he 

g 

 

 

orithm only

it

repeatedly, repeatedly bisect, divide into two, and then divide the two into two, and so forth.  

However, there is no guarantee that the best division into three groups is given by finding first t

best division into two and then dividing one or the other of those two groups.   

 Something that I like better is shown in Figure 3, spectral partitioning, a rather elegant 

method that is based on matrix-algebra-type ideas.  This is also something that has been worked 

on since the 1970s. In this approach, we take the so-called graph Laplacian, a matrix representin

the network in which the degrees of the vertices are down the diagonal.  The degree of a vertex is

how many connections it has.  There is a -1 off the diagonal in each position corresponding to an 

edge in the network.  Minus 1 here means that there is an edge between vertex 2 and vertex 1.  

This is a symmetric matrix in an undirected network, and it has an eigenvector of all 1s with an 

eigenvalue of 0.   
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FIGURE 3 

 If you have a block diagonal matrix, like the one shown in Figure 4, one that divides 

omplet

 

 

c ely into two separate communities with no connections between them, then it has two 

eigenvectors with eigenvalue 0, one with all the 1s corresponding to the first block and one with 

all the 1s corresponding to the second block.  And, of course, any linear combination of those two 

is also an eigenvector with eigenvalue 0. 

 

 
FIGURE 4 

 If you have a network that is approximately block diagonal, that is precisely the sort of 
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thing we are talking about—in other words, it has two communities, two separate groups, but the

are not quite separate, there are a few connections between them, so we have a few off diagonals 

here and here.  Then, as shown in Figure 5, you still have one eigenvector with eigenvalue 0, and 

the second one is slightly perturbed and has a slightly positive eigenvalue.  You can prove that it 

is always positive.  By looking at the properties of that second eigenvector you can deduce what 

those two blocks must have been.  It is actually very simple.  You just look at the signs of the 

elements of those eigenvectors and assign vertices to the two groups according to their sign.  T

gives a very nice and principled way of bisecting a network into two groups.  In this case, you 

don’t have to specify what the size of the two groups is. You just find—if your matrix really is 

approximately block diagonal with two blocks—what those blocks are.  But this algorithm only 

bisects, and it is a rather slow algorithm, since it involves finding the leading eigenvectors of the 

matrix.  Typically for large networks you do this by the Lanczos method because it is a sparse 

matrix, but it is still a pretty slow thing to do. 

 

y 

his 

 
FIGURE 5 

 

Looking particularly at social networks, but potentially for other networks, we have been 

inking

d we looked at; this is work that I did with Michelle Girvan, 

en 

 

th  about other methods of solving this problem for the kinds of networks we are looking at.  

Many people have worked on this in the last decade or so.  I am going to tell you about some stuff 

that we have done, just because I was involved in it and I like it, but of course it is certainly not 

the only thing that has been done. 

 Figure 6 shows one metho

who is at the Santa Fe Institute.  Suppose you have a network like the one in Figure 1, and it 

divides into groups where there are many edges within the groups and only a few edges betwe

the groups.  The idea is going to be, suppose I live within one of the dotted circles and I want to 
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drive to a node within one of the others.  I would then go along one of the edges within my circle

to get to the edge that connects the groups, which is like a bridge.  In fact, if I lived anywhere 

within my dotted circle and I wanted to drive anywhere within another circle, I am going to en

up going over that bridge.  If you live in San Francisco and you want to get to the East Bay, you 

would go over the Bay Bridge, and that is the way you have to go.  That means there is a lot of 

traffic on the Bay Bridge because everybody goes that way.  These bridges between communitie

are things that are going to have a lot of traffic if we consider, in some simulation kind of a way, 

traffic moving around from every part of the network to every other part of the network.  A 

simple concept that captures this idea of betweenness was first formulated by Lin Freeman, w

is also here somewhere.   

 So, the idea here i

 

d 

s 

ho 

s that we find the shortest path between every vertex in the network and 

very ot

en 

e her vertex in the network, and then we count how many of those shortest paths go along 

each edge in the network.  This is like a primitive measure of how much traffic will be flowing 

along each edge of the network.  Then, because some of these edges are the few edges that lie 

between the communities, those ones are going to get a lot of traffic.  We identify the edges 

between the communities as those with the highest value of this betweenness measure, and th

we remove them from the network.  Once you remove them and those edges there are gone, you 

are left with the three clumps, and these are your communities. 

 
 

 
FIGURE 6 

 

It is a little bit more complicated than that in practice. The principal problem is if you 

um 

 

 

have two edges between two communities, like the two at the top in Figure 1, then there is no 

guarantee that they will both get a high value of betweenness.  It is certainly the case that the s

of the number of paths that go along one and the number of paths that go along the other should 

be high but, under certain circumstances, it is entirely possible that one of them could be high and
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one of them could be low.  If you remove the edges with the high betweenness, you wouldn’t 

remove all the ones that connect groups, only some of them.  In order to get around that, you h

to find the edge with the highest betweenness, remove it, and recalculate this betweenness 

measure—this traffic flow measure.  If I remove one edge and recalculate, any traffic that 

previously had to go along that edge will now go along the other bridge instead.  So, even i

didn’t have a high count before, it does have a high count now.  It is crucial that you do this 

recalculation step at each step of the algorithm, and that slows things down a bit.  That is the 

primary disadvantage of this method.  In fact it takes a moderately long time to do the calcula

 We did come up with a nice way of speeding up the calculation.  Naively you would 

ave 

f it 

tion.   

n 

y 

his works quite well and I will give you some examples.  Some of these are whimsical 

xampl  

d 

y it 

n 

  The 

t it 

expect this to be an O(n4) calculation.  But some of the calculations can be reused, and you ca

get it down to an O(n3) calculation, but that is still prohibitively slow for very large networks.  

You couldn’t do this on the World Wide Web graph or something like that, but it could typicall

be done on the sizes of social networks we are looking at.  It works up to tens of thousands of 

vertices. 

 T

e es, but there is a reason for that.  Figure 7 shows a famous network from the social science

literature. At the top is a network from a study done in the 1970s of a karate club at a U.S. 

university.  The vertices represent students in this club who were practicing their karate, an

connections between them represent friendships as determined by direct observation of the 

members of the club by a sociologist who was working with them.  This is an interesting 

example.  The sociologist, Wayne Zachary, studied this club for two years and fortuitousl

turned out during the course of these two years that a dispute arose between two factions withi

the club, and eventually the club split in two and one half went off and formed their own club.  

  The theory is that you should be able to spot that coming split in this network, even 

though this network here was constructed before the split occurred.  In fact, you can do that. 

white circles and the gray squares represent the factions as they were after the split.  All we did 

was to take this network and feed it through our algorithm. The output of the algorithm is a so-

called dendrogram, which is a tree as shown in (b) in Figure 7.  It doesn’t matter too much wha

indicates.  The main thing to notice is that it splits the network into two groups, and the coding of 

the circles and the squares is the same as in the network in (a).  You can see that it has very neatly 

found the group of the squares and the group of circles.  There is only one error over there, vertex 

number three, which is the one right in the middle there, on the boundary between the two 

factions.   Maybe it is understandable why it got that one wrong. 
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FIGURE 7 

 

This is a network that was derived from observations made before the split, and yet 

learly t  

 

nother example.  I am at the University of Michigan, and so I need to 

ge 

h 

eason, 

 

 

c he network has in it information about what is going to happen in the future when the

thing does split up.  In a way, it is predicting what is going to happen, although it is predicting 

after we knew what the answer already was.  Obviously, we wouldn’t have put this example up

here if it didn’t work.   

 Figure 8 gives a

have an example about football.  This is a picture—one of these dendrograms, one of these 

trees—that shows what happens when you feed the schedule of games for division 1-A colle

football into our algorithm.  As you might know, college football is played in conferences, whic

are groups of schools that play together on a regular basis.  If you feed the schedule in, it picks 

out the conferences very nicely. They are color coded by the different shapes and colors in this 

figure.  The groups that the algorithm finds, as you can see, pretty much correspond to the 

conferences.  In a way, this is a silly example but we look at examples like this for a good r

which is they are cases where we think we know what the answers should be.  You want to have 

applications to real world networks to show that this really is working, but you also want, when 

you are developing algorithms, to apply it to something where you can tell, after you did it, 

whether it is actually giving a sensible answer.  This algorithm is always going to give some
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answer.  If you plug in some network and it spits out an answer and you can’t tell whether it i

sensible, then it didn’t really get you anywhere.  Many of the examples we look at when we are

developing the algorithm are ones where we think we know what it ought to be doing before we 

start. 

 

s 

 

 
FIGURE 8 

 Figure 9 gives one more example.  In this case this is a food web, a non-social network 

xample

to 

 

e , a food web of marine organisms in the Chesapeake Bay.  The interesting thing about 

what happens when we feed this one into the algorithm is that it appears to split the food web in

the pelagic organisms, the ones that live in the upper layers of the water, and the benthic ones, the 

ones that live in the mud down at the bottom.  It appears to be indicating that this ecosystem is 

divided into two weakly interacting systems with not very much going on between them, so it 

certainly does have applications other than the social networks. 
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FIGURE 9 

 

 One of the differences between what we do and what computer scientists do is to know 

whether the solution that we got to a problem is actually a good one.  We don’t want to just get 

the best solution, whatever it is, we also want to know if the solution we got is no good; in other 

words, if there wasn’t really any community structure there in the network in the first place.  To 

do that, we use a measure that we call modularity.  The idea with modularity is basically to 

measure what fraction of the edges in our network fall within the groups that we find.  What we 

would like is that most of the edges are within groups, and only a few of them between groups.  

However, if you only use that, it is not a good measure of what we want, because then you could 

put all the vertices in a single group together, and all the edges would be within that group, and 

you would get this 100 percent modularity, but that is obviously a trivial result, it is not a good 

division of the network.  What we use instead is the fraction of edges that fall within the groups 

minus the expected fraction of edges that would fall within those groups. 

 I can write down exactly how we calculate that if you like, but the basic idea you can see 

by examining that trivial partition.  If I put all the vertices in one group together, then all the 

edges would be within that one group, but it is also expected that all the edges will be in that one 

group.  Thus, you get 100 percent minus 100 percent, so the measure defined in the previous 
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paragraph is 0 rather than a high score.  So we think of modularity as something which is high if 

the number of edges within groups is much greater than we would expect on the basis of chance.  

What we can do is take one of these dendograms, which represents the order in which the 

network gets split into smaller and smaller pieces as we remove the edges, and plot this 

modularity against it, as shown in Figure 10.  What we typically find is that the modularity has a 

peak somewhere and then it falls off, and this peak indicates where the best split would be in this 

modularity sense, the best split in terms of getting most of the edges within groups.  That is 

shown by the red line in Figure 10.  The value there at the peak indicates how good a split it is.  

This is a measure that goes strictly from 0 to 1.  It is about 50 percent modularity in Figure 10, 

which is pretty good.  We usually find that there is something significant going on if it is 

anywhere above about 30 percent, and the highest values we have seen in real networks are about 

80 percent.  

 

 

 
FIGURE 10 

 

 Figure 11 shows what happens if you apply this method to the karate club network.  It 

actually finds two different things.  It has a peak for the split into two groups that I talked about 

before, the one we know about.  It has another peak for a split into five groups, and it looks like 

that second peak is actually a little bit higher.  Maybe there is some other smaller-scale structure 

going on there in the networks that we didn’t know about before.   
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FIGURE 11 

 

 Once you have this modularity, it allows you to say what the division of a network into 

groups is.  Now I can draw a picture like Figure 12, where I have taken a network and have 

colored the groups by whatever corresponds to this maximum modularity.  This particular one is a 

network of collaborations, meaning co-authorships, between scientists at the Santa Fe Institute.  

The colors here correspond rather nicely to subject divisions within the institute, so it looks as 

though it is giving something sensible. 

 

 
FIGURE 12 
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 Figure 13 is a fun network. This one is characters from Victor Hugo’s lengthy and rather 

boring novel, Les Miserables.  It is a very big, thick book and has a lot of characters, and what I 

have done is joined up any two characters that were in the same scene at any point during the 

novel.  This is another one of those examples where you think you know what should be 

happening. We know the plot of the novel, and so you can look at this and see if it is giving 

sensible results.  There are well-known groups of characters that are getting lumped together here. 

 

 
FIGURE 13 

 

 Figure 14 is another example, taking it one step further.  Suppose I am given a network 

like the one shown in (a).  Again, this is a collaboration network of who has written papers with 

whom.  In this case, it is people in the physics community who work on networks, so it is a 

network of network people.  If you were just given that, you can’t pick out that much structure.  If 

you feed it into this algorithm that finds the groups in the network, then you begin to see some 

structure.  It turns out that the groups it finds, indicated by the colors in (b), pretty much 

correspond to known groups of collaborators at known institutions. Taking it one step further, you 

can take this and make this meta network shown in (c), where there is a circle corresponding to 

each of the groups in (b), and the edges between them represent which groups have collaborated 

with which other groups.  I have even made the sizes of the circles and the sizes of the edges 
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represent the number of people and the number of collaborations.  I think that this is the sort of 

thing that could be very useful for analyzing these very large network data sets that we are getting 

now. 

 

 
FIGURE 14 

 

 We are getting these data sets that are so big that there is no way you can draw a picture 

on the screen.   In this case you can, but we are getting ones with millions of points now, and it 

would be very nice to have an automated way to coarse grain it and get the big picture that you 

see in panel (c) of Figure 14.  Then, if you want to know the details, you can zoom in on one of 

those circles and see what the smaller-scale structure is.  In theory, you can do this repeatedly and 

have several layers of this so that you can visualize things more readily, seeing the biggest 

structure, and the middle-scale structure, and the small-scale structure all separately when you 

couldn’t plot the whole network on the page because it would all just come out looking like a 

mess. 
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 In the last few minutes I want to tie in this idea of group structure with another topic, the 

network of friendships between school children.  Our data are taken from something called the 

U.S. National Longitudinal Study of Adolescent Health, the AdHealth study.  Jim Moody, who is 

here, is heavily involved in this.  When the data for friendships in a particular high school are 

plotted, it shows clearly two groups of kids in the school, the white kids and the black kids, and 

the network of friendships is quite heavily divided along race lines.  This is not a surprise to 

sociologists; this is something that people have known about for decades.  What is happening is 

very clear when you draw these network pictures. This is the phenomenon that they call 

homophily or assortative mixing, that people tend to associate with other people that they 

perceive as being similar to themselves in some way.  It could be race, it could be educational 

level, income, nationality, what language you speak, what age you are, almost anything.  

Practically, you name it, people associate according to that.  You can also have disassortative 

mixing, which is when people associate with people that are different from themselves in some 

way.   

 Here are some examples.  Figure 15 shows a matrix of couples that I took from a paper 

by Martina Morris, who I also saw here.  This is from a study that was done in San Francisco, and 

they interviewed a lot of couples and tabulated what ethnic groups they came from.  You can see 

that the fraction down the diagonal represents people who are in a couple with somebody from 

the same ethnic group as them.  It is much larger than the fractions off the diagonal.   

 

 

 

    
FIGURE 15 

 

 Figure 16 is a picture of the ages of husbands and wives from the National Survey of 
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Family Growth, showing their age at the time they got married.  What you should pick out from 

this is that most of the dots fall along the diagonal, indicating that people tend to marry people 

about the same age as them.  Of course, marriage is not really a network.  I assume people are 

only married to one person at a time.  I am using it here as a proxy for friendship.  People become 

friends before they get married.  

 

   
FIGURE 16 

 

 I am going to look at one type of assortative mixing.  People tend to associate with other 

people like themselves.  One way in which they can do that is if people who have many 

connections in the network tend to be connected to other people with many connections: 

gregarious people hanging out with other gregarious people and the hermits with other hermits.  

That would be assortative by degree.  Remember, degree is how many connections you have. 

 In social networks, the gregarious people are hanging out with the gregarious people, and 

for all the other kinds of networks, at least the ones I have looked at, you have disassortative 

mixing, where the high-degree nodes are connected to the low-degree nodes.  This could be a bad 

thing, for example, if you were concerned about the spread of disease.  Certainly it is a bad thing 

if a person with many connections gets a disease, because they could pass it on to many other 

people.  It is even worse if the people that they are connected to are, themselves, people with 

many connections, because then it spreads very easily amongst the people with many connections 

and, hence, could be much worse than if those people had fewer connections. 

 It is very easy to spot the difference between these two types of networks. Networks that 
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are assortative by degree tend to get all the people with large numbers of connections stuck 

together, and they form a big clump in the center of the network with a sort of peripheral ring of 

lower-connected people around them.  This is shown on the left in Figure 17.  In the 

disassortative case, you tend to get star-like structures, where you have a person with many 

connections connected to a bunch of people with only a few connections.  These things are very 

distinctive. You start to be able to spot them; you just draw a picture of the network on the page 

and see that it is a disassortative network: it has these star-like structures in it.   

                          This has practical repercussions.  I just mentioned the one about disease.  Figure 18 

shows an analytic calculation that represents the same kind of thing.  What it is representing 

basically is that disease spreads more easily if the network is assortative than if it is 

disassortative, and sadly, we find that most social networks are assortative.  So, that could be a 

bad thing. 

 

 

 
FIGURE 17 
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FIGURE 18 

 

 Here is another example, dealing with the robustness of networks.  One thing people have 

been interested in the context of the spread of disease is how robust the network is.  If I want to 

break a network up so that it is not connected any more, how should I do that?  Which nodes in 

the network should I look to first?  For example, you might imagine that you had a vaccination 

campaign, and you wanted to vaccinate certain people against a disease.  Who should you 

vaccinate against the flu?  Usually they vaccinate old people but, in a way, that is crazy because 

in many cases old people hardly talk to anybody, so they are unlikely to pass the disease on.  You 

vaccinate them to prevent them from getting the disease, but you don’t have the knock-on effect 

of preventing the people that they would have infected from getting the disease because there 

were no such people.  Rather, you should be targeting school children or people who have many 

contacts.  Not only can you protect them, but they are likely to spread it to other people and you 

can protect the people they would spread it on to.   

 So, the question is who should be targeted?  Figure 19 shows on the vertical axis the size 

of the largest component.  Roughly speaking, that is the maximum number of people that can 

catch this disease in the worst possible case.  For the horizontal axis I am removing vertices, and 

removing precisely the ones that have the most connections, so I am trying to get the ones that 
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will pass the disease on to the most people.  In the assortative cases, we have to remove a much 

larger fraction of the vertices—preventing the spreading by our vaccination campaign—before 

the size of the epidemic goes to zero, while well-targeted vaccination can have more impact in the 

disassortative case. Again, unfortunately, the assortative case, which is common in real social 

networks, is much more robust to the removal of these vertices.  The hand-waving explanation for 

that is they are all clumped together in this big clump in the middle, and you are removing a lot of 

people from the same spot, all in the middle of the network, and you are leaving the rest of the 

network untouched.  Because they all clump together, you are attacking one local bit of social 

space and not all the rest of it. 

 

 
FIGURE 19 

 

 To tie this in with what I started to talk about at the beginning, I believe these two things 

could be connected.  It is an interesting pattern that you have with disassortative non-social 

networks and assortative social networks. How could that be?  There are two sides to the answer 

to that question, and I will give you one of them.  How could you get assortativity in social 

networks?  I believe that it comes from this idea of community structure.  This is my explanation.  

If you have people in a bunch of different groups, as in Figure 20—here the groups are not 

connected together at all, but I will change that in a moment—then someone in a small group can 

only have a few friends because they are in the small group. What is more, the people they are 

connected to can only have a few friends because they are in the same small group.  If you are in 

a large group, then you can have lots of friends, and your friends can have lots of friends.  Just by 
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virtue of the fact of being divided into groups of varying sizes, you can get this assortative mixing 

by degree, the people in those small groups with other people in small groups, and the same for 

large groups.   

 

 
FIGURE 20 

 

 You can actually make a slightly more sophisticated model of this as follows:  Figure 21 

shows a bunch of people, A through K, and groups 1 through 4 that they belong to.  This is the 

so-called bipartite graph, which I am going to project down onto just the people.  In panel (b) you 

see just the people, and an edge between two people if they share a group in (a).  Then I am going 

to put in just some fraction of those edges, because I am assuming that not everybody knows 

everybody else in the same group.  Just because you are in a group together doesn’t mean you 

know everybody in that group, so only some fraction of the edges are present here.  This makes a 

simple model of what I showed on Figure 20, and this is actually something that we know how to 

do mathematically—take a bipartite graph, do a one-mode projection onto just one half of the 

bipartite graph, and then take out some fraction of the edges.  In physics that is what we would 

call bond percolation.  We know how to do each of those steps analytically, and we can solve this 

model and prove that it does always give you positive correlation between the degrees. 

 In theory that could explain how you get this positive correlation in social networks.  I 

don’t have time to talk about the negative half.  I would be happy to answer any questions, but I 

have run out of time and I will stop talking now. Thank you very much. 
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FIGURE 21 

 

 

 

QUESTIONS AND ANSWERS 

 
 DR. BLEI:  I have a quick question. Your modularity measure, where did that 

expectation come from?  I must have missed it. 

 DR. NEWMAN:  The expected number of connections?  Basically what we do is, 

calculate the expected number conditional on the degree sequence of the network and nothing 

else.  You make a model in which you say, I know the assignment of the vertices to the groups, 

and I know the degree of each vertex, and then, based only on that, it is actually relatively 

straightforward to just calculate what the expected number of edges would be in them. 

 One could certainly use a more sophisticated model if you knew other information about 

the network, such as correlations between the degrees of vertices, but in that particular measure 

that we looked at, we did not do that. So, it was only conditional on group membership and the 

degrees. 

 DR. HANDCOCK:  Obviously, looking at clustering as a canonical problem in social 

networks, my question is, how does your method compare to other algorithmic methods such as 

block modeling, generalized block modeling, and also model-based methods such as Nowicki and 

Snijders’s method. 
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 DR. NEWMAN:  That is a good question. So, there are a lot of methods that have been 

used in sociology before, some of which worked quite well.  For me, the advantage of our method 

over some of these algorithmic methods is not necessarily how well they work but sort of the 

transparency of the rationale.  I feel like there is sort of a principle for why this thing should 

work. So, it is clear, for example, if this might not be the appropriate method for your problem, or 

why it might not work in a particular case. I think that it is important to understand those kinds of 

things when you are doing statistics on networks, because you don’t want to be sort of plugging 

the things into a block box.   You want a nice simple method so you can see whether you think it 

will work.  However, there are, of course, other very simple methods that have been proposed by 

sociologists that work well, like standard hierarchical clustering method, you have to propose 

some measure of similarity between vertices before you can do the hierarchical clustering of 

them, and of course, other very simple methods that have been proposed by sociologists that work 

well, like standard hierarchical clustering methods. I think those have many of the same 

advantages as ours does, but they work in very different ways.  For example, in your typical 

additive hierarchical clustering method, you have to propose some measure of similarity between 

vertices before you can do the hierarchical clustering of them, and of course the results that you 

are going to get out depend on the particular similarity measure that you propose and then, again, 

the good think about that is that it allows you to see whether that would be appropriate for your 

problem or not.  The bad thing is that it might not be, because you have to make some choice 

there about the things you are doing.                                                                                                                                  

 I would say that our method is doing many of the same things that these other methods 

are doing, and those other methods might be more appropriate, indeed, for some problems, but we 

also think our method is more appropriate for some other ones.  As I mentioned many people 

have worked on this and there are many other interesting methods, some of which I really like, 

that have been proposed recently, which I didn’t have time to talk about. 

 DR. BROWN:  Let’s take one final question. 

 DR. FEINBERG:  The stories you told for the examples, which is the rationale in your 

answer to Mark, don’t quite get at a dimension that was part of the story.  That is, are these 

models really generating the graph or a re they simply observational descriptive models for the 

graph the way it appears?  When you told the story about how you might create the graph and 

build bridges, that has a dynamic generative characteristic, but that is not what you did. 

 DR. NEWMAN:  No, it is not.  One could imagine doing that kind of thing.  In some 

sense, this last model that I mentioned here is doing that kind of thing.  No, we didn’t do any of 

those sorts of things.  I think that there is definitely room for doing these sorts of things here.   
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 One could, in theory, generate a network like this and then ask, how well does the 

network generated fit the real world data?  That would be the forward problem, and we are not 

doing that in most of the cases we were talking about.  You are absolutely right; we are really 

doing the backward problem. 
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 DR. HOFF:  I am going to talk about estimating parameters in generative models of 

social networks and statistical models for relational data.  What I mean by relational data is data 

where you have data in an array, a 2-dimensional array, and you have row objects and column 

objects.  The row objects could be a variety of things. They could be tumor tissue samples, and 

the columns could be genes or proteins that are being expressed.  The rows could be countries, 

and the columns could also be countries and you are measuring interactions between countries, 

and I am going to have a data analysis example of that. 

 

 

 
FIGURE 1 

 

 In social network analysis the row labels are the same as the column labels, where we are 

measuring relationships between these nodes.  I am going to use the old workhorse of 

multivariate analysis, the singular value decomposition, to analyze these types of data.  Just a 

notation here: suppose we have measurements as shown in Figure 1, where yi,j is the measurement 

in the i-th row and the j-th column; we could think of it as the measurement of the relationship 
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between row object i and column object j.  In a social network data set these are typically 1 and 0 

indicating the presence of a tie or not.  Often when we are analyzing data sets what do we want to 

do?  We want to look at patterns in the data set, perhaps relate the network data to some 

explanatory variables, these x’s on the right in Figure 1, and perhaps make predictions and so on.  

 Let’s start off with a very naive strawman model. Consider what you might first do if you 

saw these data.  You might say, binary data:  I am going to fit a logistic regression relating these 

explanatory variables to my network observations.  You model the log odds of there being a tie 

between two nodes as βTxi,j. So, β is measuring the relationship between these variables.  A model 

like this can provide a measure of the association between X and Y, via regression coefficients 

and standard errors.  You can also make predictions of missing or future observations.  A lot of 

times you might have missing data in there and you want to predict what those data are from the 

observed data.  Often what you want to do after this is to know what sort of patterns there might 

be after controlling for these explanatory variables.  The very naive logistic regression model says 

you have all these data, and I am going to model these data as being independent, and the log 

odds of each tie is given by this βTxi,j. 

 This type of model does not recognize some very obvious things that we know might be 

present from multivariate analysis.  It doesn’t recognize that yi,j and yi,k have something in 

common. That is, they have the row object in common. They have the sender of the tie in 

common.  This model ignores potential within-node homogeneity, so its node i or row i has some 

characteristic about it.  That characteristic might play a role in all of its relationships in that whole 

row.  Similarly, you might have homogeneity within a column.  The flip side of homogeneity 

within a node is across-node heterogeneity.  Those are two sides of the same coin.  This is 

summarized in Figure 2. 
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FIGURE 2 

 

 Models that ignore this type of homogeneity can wreak havoc with our inferential goals. 

If we have this type of heterogeneity, the yi,j
’s are not statistically independent, so parameter 

estimates and confidence intervals for these coefficients are suspect.  More importantly, if we are 

trying to make predictions, a type of model like this will have very bad predictive performance.  

Because we know that potentially yi,j may give more information about, say, yi,k than does some 

observation from something in a different row and a different column.  We would like to have 

models which have this sort of possibility for within-node or within-row or within-column 

homophily, as was talked about in the previous talk.  I guess Mark lifted an overhead from 

Martina’s talk; I am going to lift an overhead from Mark Handcock’s paper.  Figure 3 shows a 

network and how within-node homogeneity or across-node heterogeneity might be manifested in 

this network.  One of the first things we might observe is that some of these nodes have just one 

ingoing or one outgoing tie, whereas some other nodes have many, many, many ties. 
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FIGURE 3 

 

 The first thing we might want to do to model this type of heterogeneity is to add 

something to our logistic regression model, and this is perhaps the first sort of random effect or 

latent variable model that is used for these types of data.  We want to add some parameter to 

model, say, the out-degree of node i and the in-degree node j, or the expansiveness of object i and 

the sort of popularity of node j.  If you include these in your model, you can fit these parameters, 

and almost every data set that I have ever played around with, when you do this, it dramatically 

improves the fit of the model, both within sample and out of sample.  It dramatically improves 

how well you are fitting the data, but also if you try to do a measure about a sample prediction 

using cross validation, you see that adding these parameters tends to dramatically improve the fit.  

That’s the obvious thing that a statistician would do as a first pass, but in network data there is 

just an additive structure on this log odd scale. There is probably a lot more going on, and we 

know this from studying the sociology of these social networks. 

 Some of the other types of things we see that could be caused by within node 

homogeneity, as was discussed in the previous talk, you can imagine that there are a bunch of 

nodes, and they all have similar characteristics, which you don’t observe. 

 What you do observe in the network is that maybe all these nodes are connecting to one 

another. You might imagine that you have these clusters of nodes, and perhaps that was caused by 

the fact that a bunch of nodes have some sort of common characteristics that they are clustering 

upon.  We see these things called transitivity. Transitivity is the concept that, if one node ties to 
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another node, if node i ties to node j, and node j ties to node k, then more often than not there is a 

tie between i and k. 

 Those are the sorts of possibilities we want to allow for in our models of network data or 

relational data.  How might we incorporate this in a statistical model?  Well, these things can’t be 

represented by row and column effects.  So, maybe we need something more complicated than 

that.  You might say, let’s just fit an interaction term.  That is what a statistician might think, 

looking at these data.  You have row effects, column effects, and any deviations from that would 

be fit with an interaction.  You don’t have enough data to fit a single separate parameter for every 

cell in the array.  What people have done, or at least these few people here, is try to come up with 

reduced-rank models for these interactions, trying to simplify this interaction. 

 
 

 
FIGURE 4 

 

 One such model is the sort of stochastic block structure or latent class model by Nowicki 

and Snijders, and this was the idea that was mentioned before, that maybe nodes belong to some 

class, and nodes form ties with people in the same class or category preferentially.  This is shown 

in Figure 4.  The important thing to realize in these types of models is that this class variable is 

not observed.  You see these data, and then you try to use the concept of a latent class variable to 

model the structure that you see.  If you see a network and there are lots of clusters, you can 

represent that cluster structure with the latent class model.  These models can describe the 
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patterns that you see in the network. You don’t see the class a priori. 

 Another model is to imagine that these nodes are lying in some unobserved latent social 

space, and that ties are formed preferentially between nodes that are close by one another.  This 

type of structure can actually represent statistically the sort of transitivity we saw earlier and the 

clustering we saw earlier.  More recently I have grown quite fond of a different way to represent a 

similar idea, which is through latent interproduct models.  The idea here is that every row has a 

set of characteristics as a row, every column has a set of characteristics as a column, and that the 

relationship between a row and a column are strong, if the row and column latent characteristics 

match or line up.  This is that type of model. This is a model that I used as a symmetric model, 

and it is useful for relationships that are kind of positive in a symmetric way. 

 
 

 
FIGURE 5 

 

 This is all leading to what I am going to talk about now, the singular value 

decomposition, coming up with a model-based approach for the singular value decomposition, 

and incorporating it into network models.  As sketched in Figure 5, the idea here is that we are 

going to try to represent this structure in a way that there is some sort of network interpretation to 

the model—so that we can actually estimate the parameters in that way.  Many of you are familiar 

with the singular value decomposition. It basically is just that any matrix has a decomposition 

into a set of what are called, say, left singular vectors, which I am denoting U, right singular 
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vectors, which I am denoting V, and they have weights. So, this matrix D is a diagonal matrix of 

positive elements.  You can write the i,j-th element of this matrix as Ui T Vj with some weights, 

given by D.  The idea is this type of model, this sort of decomposition has been used for relational 

data for many decades.  There is a large literature based on it.  The basic idea is that this γi,j is 

some measurement of the relationship between i and j, and we are decomposing that relationship 

into saying there are some row effects for unit i, some column effects for unit j, and the 

relationship is strong if those two vectors are in the same direction, if they are similar in that way. 

 The nuts and bolts here, K is the rank of this matrix of gammas. The Us and the Vs are 

typically constrained to be orthogonal matrices and orthonormal matrices. 

 The interpretation here, again, is that for each of the rows we have latent row 

characteristics, for each of the columns we have latent column characteristics. 

 The model says, let’s try to represent the relationship between these nodes using these 

latent characteristics.  I want to point out that this sort of representation can represent the types of 

structures that we see in social networks.  It can represent heterogeneity of out-degrees and 

heterogeneity of in-degrees.  It can represent transitivity and it can represent clustering, and it is a 

well known mathematical beast, so it is nice in that way. 

 I want to point out this earlier model we talked about here in Figure 6, this having row 

and column effects.  This is just a very simple special case of a rank-2 matrix.  The singular value 

decomposition is more general than that.   

 

 
FIGURE 6 
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FIGURE 7 

 

 Figure 7 shows how I spent my summer vacation. If you have a data matrix Y, it is well 

known how to decompose this matrix Y into a set of left singular values, right singular values, 

and so on.  I didn’t want to just do that decomposition. I need to incorporate the singular value 

decomposition in a statistical model, and I also want to figure out what the dimension is and what 

an appropriate dimension is.  Can we represent things with a rank 2 matrix, do we need rank 3 

matrix and so on? 

 Here is a set up.  We observed there is some data matrix Y and it is equal to some rank X 

mean matrix.  Remember, any rank X matrix has a decomposition of this form, plus Gaussian 

noise.  The idea is that we get to observe this Y. We know that Y is equal to some mean matrix 

plus noise, and we would like to make inference on what the mean matrix is.  In other words, we 

want to make inference on what the Us are, the Vs are, and the singular value Ds are.  That is 

actually not too hard of a problem. The really hard problem was figuring out the dimensions.  If 

any of you have worked with trying to make inference on the dimension of a model you know 

that is kind of hard. 
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FIGURE 8 

 

 I know that there are statisticians in the audience, so very quickly I am going to do a little 

statistics. We are going to use the tools of Bayesian inference to estimate these parameters.  

Figure 8 says just a little bit about the prior distribution for U, and it is going to be the same as the 

prior distribution for V.  Remember, U is this vector of latent characteristics for the rows. We are 

constraining in our model the U and V to be orthonormal matrixes.  How do we come up with a 

prior distribution for an orthonomal matrix?  Here is one way to do it.  In many cases the first 

thing you think of turns out to be the thing you want.  Remember, we are saying that U is an 

orthonomal matrix, and that means that the columns of U are all unit vectors and are all 

orthogonal to each other.  How do we generate such a thing?  What we can do first is sample—

each column is a point on the sphere; it is a point on the N-dimensional sphere.  We sample the 

first one, z1, uniformly from the N-dimensional sphere, and we set the first column of U equal to 

that vector.  U2 has to be orthogonal to U1.  What we can do is sample z2 uniformly from the 

(N-1)-dimensional sphere, and then use the null space of U1, multiply that by z2, and you get 

something that is a point on the sphere, and it is orthogonal to z1, and so on.  You keep doing that 

and finally you have created your orthonormal matrix.  The result is that you can find out the 

characteristic function of this thing, and it turns out to be the uniform distribution on the set of 

orthonormal matrices, which is called the Steifel manifold.   

 More importantly, this probability distribution is exchangeable, which basically means 

that the distribution of column j, given the other columns, is the same as the distribution of Uk, 

given the first k-1 vectors.  This is going to be a tool which allows us to do parameter estimation. 
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There is a lot of really interesting multivariate analysis which goes on here under the hood, which 

I am going to gloss over.  Basically, the conditional distribution of the jth column, given the others 

has to be orthogonal to all the others, but it is uniform to the space that is orthogonal to the others.  

So, you get that Uj, given the others, is equal to a random point on the )1( +− Km -dimensional 

sphere, times the null space of the others.   

 Figure 9 shows more of the math.  I tried to make it more transparent by using colors.  

How the inference usually works is that we have the data, we have Y. We have the prior 

distributions for all the parameters of interest, and then we combine those to get the posterior 

distribution of the parameters we want.  We want to know what the probability distribution is for 

the unknown parameters, the U, the V, and D, given the data Y. 

 Actually, as long as we can find the conditional distribution of each object, given all the 

other objects, we can make parameter estimation.  The result is that everything works out very 

nicely and you get the posterior distribution the jth column.  Suppose you are interested in the jth 

column of the latent row characteristics.  The posterior distribution is proportional to the prior 

distribution times the probability of the data given the jth column, as shown in Figure 9.  This is 

just through the Gaussian model for Y. Remember the prior says that the jth column has to be 

orthogonal to the other columns.  It is orthogonal to all the other columns, but then it has some 

non-uniform distribution about where that lies. I would be happy to go over this in more detail 

later.  
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FIGURE 9 

  

 The hardest part of all this was trying to evaluate the dimension. As I said before, we 

were saying with this model that basically each row has some latent characteristics, each column 

has some latent characteristic, and that is going to be our model for how these things interact.  We 

know that if we have an N×N matrix, we don’t want to say that each person has a vector of N 

characteristics, and that model is saturated. There is going to be too much noise and variability 

there.  Also, we might think that we need more than one or two dimensions, so we would like to 

evaluate the dimension of the latent characteristics and select a model in a principled way. 

 Basically, the problem reduces down to this problem shown in Figure 10.  This problem 

is asking, is Y equal to a rank 1 matrix plus noise, or is Y equal to, say, a rank 0 matrix plus 

noise?  Trust me, if you can answer this problem you can address the problem of what the 

dimension is.  If you know how to go from zero to one you know how to basically go from k to 

k+1.  You need to evaluate the relative probabilities of model 1 to model 0, and that essentially 

boils down to the hard part of evaluating the probability of the data under model one relative to 

model zero.  Basically, you have to do some really complicated integration to do this, but it is fun 

for some people.  
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FIGURE 10 

 

 I had knee surgery this summer, and I think this problem wouldn’t have gotten done if I 

hadn’t had the surgery.  After the surgery I had to spend every day lying in my backyard with a 

pad of paper. I couldn’t go out and do fun things; I had to sit there and do integrals.  The hard part 

is you have to integrate the expression at the bottom of Figure 10.  Basically we are saying the 

probability of the data under model 1, you can actually write it as the probability of the data under 

model 0, and then a part that sees whether or not adding these vectors will contribute to 

explaining the variation in Y.  You have to integrate these over the uniform distribution on the 

sphere for U and V, and that is difficult, involves some Bessel functions and stuff like that. 

 I am now going to show how this might actually work in practice. For those of you who 

have taken some multivariate data and said, ah, I have genes on this thing on the rows and I have 

tumors on the columns, and I want to see the effects going on here, maybe you have looked at the 

singular value decomposition of your data to try to sort out what is going on in the data.  If you 

have ever looked at plots like Figure 11, basically we decomposed the matrix and looked at the 

singular values.  The singular values are saying how much variation there is in the matrix in each 

dimension.  If you had a data matrix Y and it was just equal to noise, and if you have played 

around with these things, you know that it is going to look like a decaying graph. 
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FIGURE 11 

 

 I simulated some data using some rank k.  Does anybody want to hazard a guess as to 

what the rank of my mean matrix was?  It probably wasn’t zero. I have a vote for four. That 

seems to be popular. Why might it be four?  If you have played around with these things you 

know that you are looking for gaps in the magnitude from one singular value to the next.  You 

know it is definitely more than zero. In Figure 11 you can see a big gap between 1 and 2, so it is 

at least 1, but then there is this big gap between 3 and 4, and then there is another little gap 

between 4 and 5, and then it seems to be monotonically going down.  So 4 is a really good guess; 

the actual answer is 5, as shown in Figure 12.  This goes to show you how well our eye is at doing 

these things.   
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FIGURE 12 

 

 Figure 13 shows the actual singular values that I used to generate the data matrix.  Four is 

a fair guess because the fifth non-zero singular value is smaller than the others.  I used the 

Bayesian machinery.  You can get a posterior distribution for the mean matrix, and then you can 

look at the posterior mean of all the singular values.  If you add up all the blue, it is measuring the 

total amount of variation that the model picked up in the data.  Here is a posterior distribution on 

the rank of a matrix.  This should say that Bayesian methods are good, because you had your 

intuition about what the rank was, and the Bayesian estimate matched up to that to a great degree.  

The posterior distribution says there is a very good chance that there are four or more dimensions 

to this mean matrix.  The two highest probability ranks are four and five, as you might expect. 
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FIGURE 13 

 

 One other thing about doing Bayesian inference, if you do the singular value 

decomposition—here is my little plug for Bayesian analysis—suppose I told you the rank was 5, 

what is your least-squares estimate of the mean matrix, given that you know the rank is 5?  Well, 

the least-squares estimate is actually the first five singular values and singular vectors, so you 

would just be taking the top of the green bars for the first singular values there.  If you take the 

true matrix that was used to generate the data, tab all those entries, and plot them against the 

least-squares estimate, you get the green pattern shown on the right side of Figure 14. 
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FIGURE 14 

 

 If you take the Bayesian estimate you get something with a much lower mean square.  

What is happening here is the singular value decomposition is taking our data matrix Y and it is 

looking at the projections onto these subspaces.  Data matrix Y is equal to the mean matrix plus 

error so the singular value decomposition is projecting all the error as well onto the subspace.  It 

is probably best to point out that looking at the range of the truth is –3 to 3, and the range of the 

singular value decomposition is essentially –4 to 4.  That is not atypical of these types of 

problems that sort of a least-squares estimate overestimates the variability in the matrix.  

 The reason why I went through all that work was because I wanted to embed the concept 

of the singular value decomposition model into more complicated models for social networks.  I 

wanted to incorporate this into very general models for all sorts of relational data, not just 

Gaussian data, not just binary data, but data of all sorts.  The way I do that is with a generalized 

linear model.  Figure 15 shows the general model for relational data.  We have a sociomatrix Y.  

All of this generalizes to the case where Y is an n x m matrix; it doesn’t have to be a square 

matrix. 
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FIGURE 15 

 

 We have a set of explanatory variables X, and our model, relating X to Y, is as follows: 

we have what we call a predictor, θ, and it is equal to a regression part plus a latent structure part.  

This latent structure part is just this model that we talked about, the singular value decomposition 

model.  The generalized linear model is not that our observed data is equal to X β + Z, but some 

function of the mean is equal to X β + Z.  Some function of the mean of yi,j is equal to the 

regression part, a latent structure part, and lack of fit.  In this context, you can fit binary data 

where you model the log odds of the observations as being equal to the structure.  If you have 

count data you might model things on the log scale and, if it is continuous, you might model it on 

the additive scale, using the identity link.   

 I should point out that a lot of data that people have been talking about is skewed data. I 

wouldn’t call it high-variability data, but I would call it skewed data.  You have not just the first 

and second moments there, you have the third and fourth moments, and those are really the things 

that can actually represent that skewed structure.  That can also be incorporated in here, although 

with more difficulty.  You have to decide on what scale you are making the measurements.  

Actually, you could do continuous data and use a log link to model skewed data. 

 An example of what I am going to show in the next two slides is some international 

conflict data.  The model for how this really is generated is debatable, but it is a very nice data set 

because we can see the structure.  Mark pointed this out in the last talk.  It is good to work on 
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problems where you can tell if the answer makes sense or not.  I have some colleagues in political 

science who are interested in modeling conflicts between nations.  The data is from Mike Ward 

and Xun Cao, and what they measure is the number of militarized disputes initiated by i with 

target j over a 10-year period.  This involves actual militarized disputes and conflicts as well as 

threats and a bunch of other things that they have recorded.  They want to relate these to a bunch 

of covariates, so they have a bunch of theories about what causes nations to have conflicts with 

others and what things might ameliorate conflicts.  There is this concept of democratic peace that 

democratic nations don’t have conflicts with each other.  There is this idea that trade inhibits 

conflicts and so on.  They like to evaluate these things and look at the structure that is left 

unexplained by these covariates.  Figure 16 provides an overview. 

 

 
FIGURE 16 

  

 We fit this into our model. We say that we are going to model the mean of each 

observation on the log scale with this regression part plus this latent structure.  I was very happy 

to see the posterior distribution on the number of dimensions of the latent structure as shown in 

Figure 17.  Why was I happy?  It’s because it is easy to plot 2-dimensional latent structures.  You 

can plot 3-dimensional latent structure, but this k could have been anywhere between 0 to perhaps 

130.  If the dimension of the latent structure was 73, I wouldn’t be able to give you a very good 
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picture at the end of what is going on, or you could look at the first few dimensions of the latent 

structure.  I should also point out that if you play with these data enough, you know that there is 

no way that the mean structure has dimension less than two.  There are lots of countries that are 

very active in conflict, and a lot of countries that are attacked a lot; you know that you are going 

to have row and column effects, and that is a 2-dimensional structure.  Therefore, you know the 

dimension has got to be at least two.  

 

 

 
FIGURE 17 

 

 The right half of Figure 17 shows some confidence intervals on the regression 

parameters.  There are some obvious things to point out. As distance increases, the amount of 

conflict decreases. People have conflicts with countries that are near them, and population plays a 

big role.  Populations of countries that are in conflicts tend to be higher than average. 
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FIGURE 18 

 

 Figure 18 shows the latent structure. I will finish by explaining this plot. Recall the 

model.  The model for each country has a 2-dimensional vector of characteristics as an attacker 

and a 2-dimensional vector of characteristics as a target, so that each one of these countries has a 

vector as an aggressor.  What I have done here is plot the direction of each country’s vector in red 

and that is this outer circle here.  The magnitude of their plotting character is the magnitude of 

their vector in that direction.  The inner circle is the direction of each country’s 2-dimensional 

latent vector as a target.  Then I have drawn these green lines indicating the strength of the 

number of conflicts between the countries.  So, you see somewhat obvious things because we 

know the names of the rows and the names of the columns.  Those are the main structures there. 

 Here is where I see if I made myself clear.  If there wasn’t any latent structure, can 

anybody guess what this plot would look like, or what would be different about this plot?  Where 

would the green line be?  If there were no two dimensional latent structure, there would be no 

relationship between the actual links, or attacks between the countries, and their position in this 

circle.  All you would see is a bunch of green lines scattered all over the place like that so you can 

see how these positions really do pick up the structure that is there. 

 To summarize, my point is that singular value decomposition is a well-known tool in 

multivariate analysis that has been used for a long time, and there is a huge literature based on it, 

sort of in the additive case in the psychometric literature in lots of fields.  It is something that is 
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well understood, although apparently the problem of identifying the dimension of the mean 

matrix has been left unsolved, at least in a Bayesian context, and actually in a non-Bayesian 

context it is also unsolved. 

 Using this framework, the idea is that we can use this natural singular value 

decomposition model that we are familiar with, and incorporate it into different types of data 

structures, along with regression effects and other things that we use when we are doing statistical 

modeling.  That is the main point of the talk.  

 

 

QUESTIONS AND ANSWERS 

 

 QUESTION: One quick question. Could you just say a couple of words on what you are 

thinking about here with the time series extensions, the dynamic extensions, because that is 

something that is sort of natural to the topics we are going to be covering. 

 DR. HOFF:  I have always known that I should spend more time in the dynamic aspect 

of networks, but every time I gave a talk on latent variable models, everybody always asked, what 

is the dimension?  So, I had to spend time doing the dimension first. 

 Now that that is done, there are a number of ways that you can do dynamic network 

inference for these things, or incorporate these ideas.  One way is to have a time-series model for 

the latent characteristics, as a Markov model or something like that, and actually David Banks 

and Eric Vance are working on stuff like that.  Again, I have some other ideas about how to set 

these things up in a general autoregressive structure. Their ideas are kind of interesting, they have 

a behavioral slant on things.  They are using ideas from social networks like, I am at this location 

in the social space, and I form a tie with this person, and I should move at the next time step, in 

this other direction.  There are sort of dynamical models, people starting to work on these things 

with these ideas here. 

 DR. BLEI:  Your latent variables seem to model the connections between rows and 

columns that happen outside of the covariates.  I can imagine, say, with countries, that two 

countries that don’t get along, that the covariates explain that, that their latent positions would be 

far apart.  Is there some way to deal with that? 

 DR. HOFF:  In one sense, you could use this sort of approach with a slight modification 

to actually let the latent variables model the variation that is unexplained by those covariates. In a 

sense, that might be the goal. 
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 DR. BLEI:  You could actually model those jointly with the connection. 

 DR. HOFF:  Yes, depending on what your goal is, you could to it in a variety of 

different ways.  For example, you might want to leave that variable out of it.  I mean, if you know 

what the variable is, you might leave the variable out of the model, fit the latent characteristics, 

and then plot, say, the latent characteristics versus that variable. It depends on what you are trying 

to get out. One issue with including things in a model is, you are saying what the scale is, or 

saying it is additive.  In a lot of cases it is not. It is like multiplicative.  There can be an advantage 

to leaving it out and then plotting it versus the latent characteristics later.  You could do what I 

just said, try to—the way I have the model set up, you can constrain the latent characteristics to 

be orthogonal to things, and you could actually restrict them to be orthogonal to sort of the design 

structure of the regression and say, yes, it is the left-over variation.  It depends on what issue you 

are trying to address at the moment. 

 DR. BLEI:  One last question.  A lot of these networks like the Internet are very sparsely 

connected, and I imagine that if you tried to fit a model that was just overrun with zeroes, say a 

logistic regression, you would end up just fitting the zeroes and you might not get anything 

interesting out of it.  Have you had that issue? 

 DR. HOFF:  Yes and no. Actually, the networks that I have been modeling, these 

conflict networks that my political science colleagues fit, are extremely sparse.  So, actually we 

do that.  One thing he likes to show to political science crowds is that he fits this logistic 

regression without any sort of latent variables, and then you make a prediction on where the 

conflicts are.  Well, your best bet is to just predict no conflict and that is it, and you just predict 

all zeroes. So, the r2 is very bad for these types of models.  The benefit from doing something like 

this is, yes, you do predict mostly zeroes, but you can identify sort of those actors in the system 

that are active, and they get sort of big, latent vectors, and then you can sort of see what is going 

on there.  So, you still predict mostly zeroes for most of the countries, but then you actually do 

pick up these things that are not sparse, you pick up the activity, and the fit is a lot better. 

 DR. BANKS:  Do you have any thoughts on how to robustify this kind of analysis? 

 DR. HOFF:  Against what? 

 DR. BANKS:  In this business you can wind up with one or two atypical actors that don’t 

quite follow the model that you specified for everybody else but, because of the interactivity, they 

influence so many other things that it gets really hard. 

 DR. HOFF:  This type of approach actually can pick those things up pretty well, because 

it is fitting characteristics for each node.  If it is true that there is a node that is sort of an outlier, it 

will have characteristics that are estimated as being way out there and they are very large and are 
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very active, without influencing too much the rest of the network.  Actually, that sort of outlying 

stuff fit well with this type of structure.  What is harder is when you have it not as a node that is 

very active.  It is that a couple of pairs are outliers and you might get into trouble.  Because of the 

nature of the model and where it fits, it is fitting these parameters for each node. You are very 

robust against outlying nodes. 
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Embedded Networked Sensing (Redux?) 
 

Deborah Estrin, University of California at Los Angeles 
 

 
 

FIGURE 1 
 

 
 DR. ESTRIN:  When I looked at the audience and I didn’t recognize most of you, I 

added a question mark in my title, because maybe this isn’t something that you have heard 

discussed, or perhaps not by me. 
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FIGURE 2 

  

 Let me start off with some caveats. The first of this is that I don’t know if embedded 

network sensing or sensor networks are that interesting as networks.  I do know that they are very 

interesting systems and data sources, and through this talk, recognize that I am an engineer so, 

most of what I focus on is the design of new and, hopefully, useful functionality and unlike the 

other examples here—power networks, communication networks, social networks, even, 

biological networks, neural networks— these networks are just now beginning to be prototyped. 

 There are things that can retrospectively be called sensor networks that have been around 

for a long time, like our seismic grids.  Sensor networks of the type I am talking about are 

relatively new.  We have a science and technology center at the National Science Foundation 

Science and Technology Center.  It started three years ago and the purpose was to develop this 

technology, and there are lots of active programs all over the country and the world of people 

developing this technology. 

 As I said here, statements that begin sensor networks are, or more sensor networks, 

should always be called somewhat to question, because there aren’t very many sensor networks, 

which makes it difficult to talk about statistics on or of these things.  One thing is that there 

clearly want to be statistics in these networks, as I hope will become clearer, in the sense that 

there are statistics in image processing, and there are statistics in a lot of visualization and data 

analyses and things that we do.  This is a little bit of a mind shift from some of what I heard this 

morning, and I hope it will be of some use.  If not, Rob knew all this when he invited me.  So, 
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you can talk to him about it. 

 

FIGURE 3 

  

 

 

 

 

 

 

 

 

FIGURE 3 

 

 Why embedded sensing?  Remote sensing has been around for a long time, and generates 

lots of very interesting data that continues to be a real interesting source of information for 

scientists, and a source of interesting algorithmic challenges.  In situ sensing is a complement to 

that, where, as everyone knows, a pixel in a remote sensing image represents an average over a 

very large area.   

 

 

 

 
FIGURE 4 
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 There are many phenomena, particularly biological phenomena, that simply the average 

over a large area isn’t what you are interested in.  What you are interested in is the particulars at 

the variations within that larger region.  When that is the case you actually want to be able to 

embed sensing up close to the phenomenon, with the hope that it will reveal things that we were 

previously unable to observe.  For us that means that embedded network sensing or sensor 

networks—I use that term, embedded network sensing—you already get a little bit of a clue that I 

don’t think it is so much about the network. 

 
 

 
FIGURE 5 

  

 It is important that it is networked, if that is actually a verb or an adjective or whatever.  

It is important that you have collections of these things that are networked. That is an important 

part of the system.  What is really important about it is that this is a sensing system and a network 

system, more so than the details of the communications network.  In any case, where this 

technology has been most relevant is where you actually have a lot of spatial variability and 

heterogeneity.  If you don’t have variability, you don’t need to have embedded sensing because 

you can take a measurement at a single point, or take an average, and you learn a fair amount 

from that.  If you don’t have heterogeneity, you can develop fairly good models that will allow 

you to estimate a value at a point where you are not actually measuring.  So, embedded sensing is 

important where you can’t do a good job of that estimation until you understand the system 

better. 

 In many contexts where we are building this apparatus, this instrumentation for people 
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now, it is for contexts in which they are trying to develop their science.  It might not be that they 

end up deploying long lived permanent system places, rather, they are trying to develop a model 

for the physical phenomenon that they are studying.  They need an instrument that gives them this 

level of spatial resolution and then, from that, they will develop appropriate models and won’t 

necessarily need to monitor continuously in all places.  In many places early on these systems are 

of interest to scientists to develop better models and, as the technology matures, we expect it to be 

increasingly used for then the more engineering side of that problem.  Initially, you have 

scientists who need to study what is going on with the run off that is increasing the nitrate levels 

in urban streams, that is leading to larger amounts of algal formation and things like that, 

understanding that whole dynamic, because it is actually a fairly complex problem, the same kind 

of story in the soils.  Right now we are building instruments for scientists to be able to understand 

and model those processes. 

 For the longer term the regulatory agencies will have models and know what levels of run 

off you are allowed to have from agriculture and from urban, and they will want to be able to put 

up systems that monitor for those threshold levels.  When we talk about center networks, we are 

talking about both the design of those instruments initially to develop very detailed data sets, and 

in the longer term the ability to put out systems that last for long periods of time.   

 Embedded network sensing is the embedding of large numbers of distributed devices, and 

what we mean by large has changed over time.  These get deployed spatially, in a spatially dense 

manner, and in a temporally dense manner, meaning you are able to take measurements 

continuously, although there are many interesting systems where you might do this over a short 

period of time, go out and do a survey to develop a model, and you don’t necessarily need the 

system to be there and live for a very long period of time.  Very important to these systems, as I 

will be describing is that the devices are networked, and you are not simply putting out a lot of 

wireless sensors and streaming all the data back to a single location. 
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FIGURE 6 

  

 The fact is that there is a tremendous amount of potential data, and there are many 

modalities that you end up deploying that causes these systems to be fairly interesting, even when 

we are not talking about tens of thousands, or necessarily even thousands of individual devices.  

Most of the examples I will be describing are from things we are doing now with scientists, 

although the expectation is that, over time, the engineering enterprise, and even health-related 

applications will end up dominating. 

 

 

 
FIGURE 7 
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 The systems that we are building are ones that—our goal is to have them be 

programmable, autonomous—although I will talk about interactive systems as well—distributed 

observatories that, for now, address largely compelling science and environmental engineering 

issues.  Where we are right now, sort of three, five, 10, depending on how many years into this, 

when you think it all began, is that we have really first generation technology, basic hardware and 

software, that lets you go out and deploy a demonstration sensor network. 

 

 

 
FIGURE 8 

  

 In particular, we have mature first generation examples of basic routing, of reliable 

transport, time synchronization, energy harvesting.  Many of these nodes are operating based on 

batteries without any form of continuous recharge of that battery although, as I will be describing, 

in all the systems we deploy, we have some nodes that are larger and more capable, but energy 

harvesting largely refers to solar.  We have basic forms of in-network processing, tasking and 

filtering.  To some extent the systems are programmable in the sense that you can pose different 

queries to them, and have them trigger based on different thresholds and temporal patterns.  We 

have basic tools for putting these systems together and doing development simulation testing.  

The things that aren’t in bold are things that are still not very mature, things like localization. 

What we mean by that is, when you are doing your data collection on a node, you actually want 

to time stamp each of those data points.  You also want to know where it is collected in three 
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spaces. 

 One of the problems that I remember in the early days, one of the things I would say is 

that, obviously, we are not going to be able to deploy these systems without some form of 

automated localization of the nodes, meaning a node has to know where it is in three space, so 

that it can appropriately stamp its data.  Fortunately, I was wrong in the sense of identifying that 

as something that would be a non-starter if we didn’t achieve it, because doing automated 

localization is as hard as all the others.  You have to solve all the sensor network problems in 

order to do automated localization. 

 Although I was wrong about that, sometimes two wrongs make a right, because I was 

also wrong about the numbers and the rate at which we would very rapidly be deploying huge 

numbers of these things.  Two wrongs make a right in the sense that the numbers of these things 

are still in the hundreds when you are doing a deployment.  Going out with the GPS device, and 

identifying where this thing is, and configuring its location, the localization problem isn’t what is 

stopping us from going to bigger numbers.  That is not the biggest thing in our way, but it is a 

very interesting problem to work on.  That is why I don’t have that in bold because localization, 

while one of the most interesting problems, still isn’t one that has an off the shelf solution, 

although we are getting nice results from MIT and other places. It is getting closer to that. 

 

 

 
 

FIGURE 9 

 

 128 
 



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

 This is where we are, and a little slide on how we got there—Lots of work over time that 

was pretty small and scattered at the beginning, and then started to build up steam.  One of the 

contexts in which it did that actually was with an NRC report.  It seems appropriate to mention 

here, in about 2000, our Embedded Everywhere report.  Then, various DARPA programs, while 

DARPA was still functional in this arena, and now lots of NSF programs in the area, and 

interesting conferences to go to and venues for people to publish, possibly too many venues for 

people to publish. 

 I said before that our price to earnings ratio in terms of numbers of papers to numbers of 

deployment is a little frightening at times, so that is where we are.  It is a field that seems to have 

captured people’s imaginations.  People are doing prototyping of a small amount of industry 

activity, actually growing in the area.  When I look back at what our early themes were, and what 

the themes were in terms of the problems to solve, this summarizes what I think are the primary 

changes.  First of all, early themes, we talked a lot about the thousands—actually, I think I even 

had slides early on that said tens of thousands—of small devices, and the focus was absolutely on 

minimizing what every individual node, what each individual node had to do, and exploiting 

those large numbers, and making sure that the system was completely self configuring because, 

obviously, at that scale, you have to make the system self configuring.  Hopefully, all of those 

will come back as being key problems to solve. They just aren’t necessarily the first problems to 

solve and, since I am in the business of actually building and deploying these things, it doesn’t 

help me to solve future problems before the current ones.   

 

 
FIGURE 10 
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 Our focus has been, and has turned to, systems that are much more heterogeneous, and I 

will talk about a few types of heterogeneity, and particularly the capability of the nodes, having 

mobility in the system, and then the types of sensing that we do.  Also, our systems that we are 

finding very interesting to design and use early on are not fully autonomous in many of the cases.  

They are interactive systems where you are providing a surround sound three dimension or N 

dimensional, when you think of all the different sensor modalities, view to the scientists.  It is the 

ability of the scientists to actually be able to be in the field and combine their human 

observations, but also their ability to collect physical samples, or go around with more detailed 

analytical instruments, that is providing a very rich problem domain for us.  I mention it here in 

particular because there are lots of interesting statistical tools that scientists want to be carrying 

around with them in the field.  That is probably when I come back to why I put that in the title.  It 

is because there is this shift from very large numbers of the smallest devices, in our experience, to 

a more heterogeneous collection of devices, and a shift from a focus on the fully autonomous to 

interactive systems.  

 
 

 
FIGURE 11 

 

 Let me say a little bit more about each of those things.  First of all, what is important 

about this heterogeneity, and what are we doing to design for it, and what, if anything, would it 

have to do with, if you are somebody in statistics interested in this technology.  All of our 

deployed systems and all the systems I know of contain several classes of nodes.  At the smallest 

level you have little micro controller based devices that fit micro controllers that operate off of 
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coin cell batteries, and have on them a little bit of processing, memory, a low band width wireless 

and an interface to sensors, things like basic micro climate sensors and, for soil, a whole array of 

relatively low sampling rate chemical and physical sensors. 

 That is one class of device we put out there but, with every such collection of modes, we 

always put out what we refer to as a micro server, or a master node, and usually several of those.  

These devices are very similar to what you have in your PDA or old lap tops. It is an embedded 

PC, it is a 32-bit device, runs linux, has your WiFi, has got relatively high band width 

communications on it.  As a result of all of that, currently at least, it needs to be connected to 

some sort of energy supply, be it a solar panel, which is the case for us most of the time.  You can 

think of that as just being a gate way.  So, many systems that do exist, of the systems that do 

exist, you tend to have those 32-bit devices acting as gateways. 

 

 
FIGURE 12 

 

 It turns out increasingly as we are doing more interesting things on the motes themselves, 

that those micro servers serve a more interesting role than that.  Let me give you an example.  In 

the old day we used to talk about doing a lot of in-network and aggregation among this large 

collection of motes, about the data that they were collecting as they were hopping it back to the 

edge of the network.  Well, there are a few things. First of all, not surprisingly, you can go to P.R. 

Kumar’s paper and other things, about the scaling limitations of wireless networks.  It turns out 

that we don’t build really deep multi-hop wireless networks. We build networks that the data hops 

maybe three or four of these low band-width wireless hops, before they get to an Internet 
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connected point.  Secondly, it turns out that putting in any communications and having these 

devices listen to one another interferes with them doing aggressive duty cycling, because you 

want these small battery operated devices to be able to go to sleep as much as they can and have 

pretty deterministic schedules.  If you add onto that job, you know, route things for your neighbor 

or aggregate your neighbor’s data coming from any direction and know where your neighbors 

are, and choose a leader and then be the aggregation point, when you add on all of that stuff, it 

ends up interfering with their ability of doing the simple job of collect the data, do some local 

processing in terms of doing temporal compression, look for patterns or something like that.  I 

send that data upstream when I see something, or if it matches a query.  We found over time that 

it became easier for us to design systems where what the little nodes are doing is very simple.  It 

is programmable. You can adapt the thresholds and adapt the little local analysis that it is doing, 

but it is not a node that is trying to have a view of what is going on across the network.  Rather, 

the micro server that you have embedded out there is the natural point that is seeing the data 

coming from the different distributed points, and it is a natural place where you can adjust the 

ambient levels, where you can adjust the thresholds, and where you can effect what is more of a 

collective behavior.  The micro servers in the network form that is more of a peer to peer, sort of 

any to any network, because they have the resources to do that, but in these clouds of motes, they 

tend to be doing very simple tree forwarding, localized processing, just based on an individual 

node and passing that data forward, with the rich interface in terms of what a micro server can tell 

a mote to do.  That is interesting because we are starting to put more interesting sensors on our 

motes themselves—and I will describe one in a little bit—such as image sensors or acoustic 

sensors—so the image and acoustic sensors, we are not actually wanting to get an image feed or 

an acoustic feed.  We are actually programming those nodes to look for particular image or 

acoustic patterns.  Those patterns that we want them to look for, change in color histogram, 

significant change in geometry or size are things that are very sensitive to ambient conditions. 

 It is hard to have a simple algorithm running on this eight bit micro controller that works 

under all conditions. You need that larger device there that is seeing what ambient levels are, and 

what the general conditions are, to address that simple local rule that the device is doing.  So, that 

is something that we are just beginning to do, both in the acoustic and image realm, and it is an 

interesting design problem and an interesting context in which to design algorithms, things that 

are like image processing problems, but in this interesting sort of heterogeneous, distributed 

architecture. 
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FIGURE 13 

 

 I am going to go back for a moment. One of the shifts here is that it is when you take this 

heterogeneous collection of devices and you decide, both at design time and at run time what 

should be done where, who should be doing the processing and the adaptation, we take this 

perspective now that it is really about this whole system optimization, not just looking at an 

individual node and seeing how to optimize its particular energy usage. 

 
 

 
 

FIGURE 14 
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 The second form of heterogeneity that I want to mention that has become very important 

to us is related to mobility.  This is part of a project that is headed up by Bill Kaiser.  Something 

that I neglected to mention earlier is that Bill Kaiser and Greg Potti are really the folks who I 

consider as being the inventors of wireless internet working technology.  Back around 1996 they 

had a first DARPA project. I wasn’t at UCLA or anyway involved, but they had a first DARPA 

project where they had this effort of combining computation, sensing and communication, and 

having the devices coordinate to do in-network processing, to make the system long lived.  These 

same folks, with a collection of other collaborators, had another excellent insight a couple of 

years ago, which is that we always wanted to be able to include mobility in these systems. 

 Static sensors are static. You are stuck on this manifold on which you place the sensors. 

Those are the only points at which you are able to do your measurements.  In some sense, you are 

always under-sampling.  You are just destined to always under sample, particularly in this mode 

in which we are trying to create models of phenomena that the scientists don’t yet understand, so 

they don’t even know at what point—they don’t have a characterization to be able to say whether 

they are adequately sampling the system.  Being able to move things around has always been very 

attractive but, just like the localization problem; robotics is every bit as hard as sensor 

networking.  Looking to robotics to solve our problems, regular robotics where you navigate 

around on a surface, looking to robotics to solve our problem in the near term wasn’t a very 

effective approach. Theoretically it was a good idea, but practically, it wasn’t. 

 The insight that Greg Potti and Bill Kaiser had was that the way you move around more 

easily and the way you navigate more easily is by using infrastructure, be it roads or rails or what 

have you.  They put the robots up on aerial cables, and the robotic devices are still robots and 

they are autonomously moving around, but they are elevated above these complex environments 

in which we tend to deploy things, and they can also lower and elevate sensing and sampling 

devices. 

 If you put up multiple cables, you start to get the ability to actually sense and sample in a 

3-D volume, and you are not just stuck on the manifold on which you have placed your sensors.  

We actually use mobility and articulation at many levels.  At this relatively coarse grained level, 

we use it in aquatic environments with a robotic boat, a little robo-duck thing that we have that 

goes around and does automated sample collection.   In fact, there are things that you still can’t 

sense in situ, and it will be a long time before you can actually do in situ biological sensing.  

What you have to do is do triggered sample collection where you are able to carefully identify the 

exact location, time and physical conditions under which a sample was collected, but then you 
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have to go and do the analysis back in the lab to identify what organisms are actually there. 

 We use articulation in many contexts, this one of mobility is key.  What is interesting 

about this particular capability—it might sound a gimmick, but aside from being a gimmick—is it 

has that quality to it, the news stations like to pick it up as Tarzan robot or something like that.  It 

has that appeal but it turns out to be far more than a gimmick than I had expected it to be.  What 

has happened with our scientists is that this has allowed them not to have to leave behind their 

higher end imaging, spectroscopy and other instrumentation that otherwise you are not going to 

attach to mote any time.  You also don’t want to stick it in one place.  The ability to combine 

these higher end imaging and data collection tools with a statically deployed, simpler sensor ray, 

has turned out to be of great interest to them, and this is being used by folks who are studying, as 

I used the example before, of nitrate run off into streams.  This is being used not just above 

ground, but actually to study what is going on inside in the stream as well.  It is suspended over 

the stream, and this hydrolab sensor does a traversal along the base of the stream, and at various 

elevations.  So, we have several fielded systems, and the difference between the top and the 

bottom is that we have pictures of the real ones at the, and the bottom is depictions of bigger 

things that we want to do, but they are Power Point because they are not real yet. 

 
 

 
FIGURE 15 

 

 This is an example—this is Media Creek out in Thousand Oaks, not far from Los 

Angeles.  You can’t see it very well, but there is an NMS deployment that is traversing the 

stream, and that cylindric object is a hydrolab which contains a number of different sensors in it.  
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We started to do some very interesting things such as trying to deal with the problem of 

calibration.  The Achilles heel of sensor networks is and will be calibration, and we are not going 

to be able to solve it with gross over-deployment, as we thought initially, because it is very hard 

to over-deploy in this context, both due to cost and practicality.  As you get into these 

applications, all of these sensors have a tremendous amount of drift to them. You are largely 

taking sensors that were used for analytical instruments, where a human being would go out and 

do measurements, but would therefore be regularly servicing the sensor.  We now have a regime 

in place, because this is being actively used.  This isn’t just a bunch of computer scientists and 

electrical engineers and mechanical engineers who are trying to do this.  We do this with a public 

health faculty member and a graduate student who is trying to get a thesis out of this and actually 

needs usable data. 

 One of the things that we have come up with is a calibration procedure, whereby this 

robotic device comes up and dips itself into some fresh water to clean itself off, dips itself into a 

known solution of nitrate level to do a calibration level, dips itself back, and then continues on its 

run.  That is a low level mechanism, but it is something that it is  hard to figure out how you are 

going to solve this problem without some form of automated actuation. 

 
 
 

 
FIGURE 16 

 

 Moving on, these systems actually being more fully three dimensional is one important 

point.  The other very important point is that it is through these systems that we discovered just 

how many interesting problems there are to address through portable and rapid deployment 
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systems.  Initially, when we talked about these sorts of systems, we were always talking about 

very long lived permanent systems, and how you could put them out there, have them be fully 

autonomous and last the longest period of time.  That is still of great interest, but it turns out that 

we skipped this and have come back to a capability that is of tremendous interest to scientists and 

engineers, which is the ability to go out and do a three hour, three day or three week detailed 

survey and study on some location.  If you are focused just on that very long lived system, you 

leave behind a lot of higher end capability that is very powerful. 

 The last form of heterogeneity that I wanted to mention, and again, I chose these things—

I forgot to say something.  In this robotic context, one of the reasons I chose to say this, aside 

from its importance in center networks, is because there is a lot of opportunity for doing statistics 

in the network here.  You don’t want to just—if you have a phenomenon that have temporal 

variability to it, that is faster than your ability to do just a standard raster scan, what you want to 

do is adaptor sampling.  So, there are very interesting algorithms to be designed here, where the 

system itself, based on what it is observing, spends more time in places where there is more 

spatial variability. We do both adaptive sampling and we triggered sampling where you have 

some static nodes that are temporally continuous, doing their measurements, and that can then 

give indications to the robotic node as to where there might be interesting phenomena to come 

and do more observations of.  There are all kinds of interesting resource contention problems and 

lots of algorithms to be designed there. 

 
 

 
FIGURE 17 

 

 137 
 



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

  

 The third example, and last example of heterogeneity I bring up both because I think it is 

cool and interesting, and is going to expand the utility of these networks and because I think there 

are interesting statistical techniques and algorithms to be designed here, and that is when we 

begin to make use of imagers as sensors in these networks.  Occasionally, you might pull back a 

full frame to look at an image, but the main point here is to enable us to do observations that can 

currently be observed in the optical domain.  Many of my customers or my colleagues on this are 

biologists and, in general, all I can give them off the shelf are physical and chemical sensors.  In 

some sense, these imagers can act as biological sensors, because you can observe phenomenology 

events, blooming events, major changes in color histograms, and in size and shape of objects.   

 

 

 
FIGURE 18 

 

 Yet web cams and phone cameras, which are all over the place are not embeddable, 

because they largely collect rather high data rate images and continuously send them back.  What 

you need is to take that little camera off your cell phone and put it on a small low powered device 

and program into it simple computations that can allow it to quickly, or not so quickly, locally 

analyze those images.  We are not talking about taking images continuously we are talking about 

many times a day because these are phenomena that are not that rapid. The same sort of thing 

applies in the acoustic realm, and this is actually one of those technologies, both on the image and 

the acoustic side, where we start to see or can think about at least fun, if I am not sure how 

serious applications are in the consumer realm.  You can imagine leaving behind, in places or 
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with people that you care about, something that is going to grab an optical or an acoustic 

snapshot, not necessarily privacy invasive, because it is not able to—the band width of that radio 

is small because the battery is small and you have to be low energy, but you can leave behind, 

near your kid or your pet or your parents, depending on where you are in the life cycle, 

 
 

 
FIGURE 19 

 

something that gives you some indication, or your favorite restaurant or cafe where you happen to 

work or, in my case, in my office, where there is construction outside, and I want to know how 

noisy is it in my office.  This is a frivolous thing, but the ability to velcro onto the wall little 

acoustic and image activity level indicators starts to give us some interesting things with which to 

play.  It certainly gives us something that we want to be able to program with very tightly crafted 

analyses.  If you put these on a graph where you have high position cameras, or clusters of web 

cams, we are talking about down here where we have really small image sizes, really low 

algorithmic complexity, but the potential of putting out multiple of these things you can actually 

deal with things like occlusion and multiple perspectives pretty easily. One of the things that we 

have to our advantage here is that we are talking about putting these things in well defined 

environments where you know what you are looking for.  They don’t have to solve high end 

vision problems, and you can have a lot of the information about all sorts of priors and things you 

need for these things to be able to work well. 
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FIGURE 20 

 

 The last thing that I wanted to mention, which could just be called another form of 

heterogeneity in these systems, is what I referred to before separately as this issue of moving 

from completely autonomous to interactive systems, is that last sort of tier in our system which is 

actually the user.  In retrospect, this is completely obvious.  You know, artificial intelligence went 

through this as well.  Looking for complete autonomous intelligence isn’t what produced the 

useful technology that AI has produced.  It is starting to look at expert systems and all sorts of 

interactive systems that act as decision making aids to human beings.  The same thing applies 

here.  We have no excuse for having made the same mistakes.  That being said, again we are 
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FIGURE 21 

 

finding that our scientist customers are finding it very useful to look at these systems as systems 

that allow them to interact with their experiments and their set ups and their measurements 

interactively, sort of converting this, if you will, their experimental modes form being batched to 

interactive.  Now what we are trying to put them with is the ability to go out there in the field, 

have access to their various GIS models and data, to remote sensing data, to their statistical 

models, to their statistical models.  What they get back are these points of measurement  

 
 

 
FIGURE 22 
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that they can start to combine into their analysis, what they are going to ultimately do 

with the data anyway, and identify where else might they need to deploy, what physical 

samples might they need to collect to actually be able to say anything with any certainty 

about the phenomenon they are studying.  This turns out to be an interesting requirement 

for them.  I don’t know how much research there is to do, but there is definitely system 

building they need for equipping them with pretty nice statistical tool kits that they can 

take out into the field.  Obviously, this in situ data by itself, these points that I say we are 

always under-sampling, are not most valuable by themselves. They are most valuable in 

the context of other data and models that the scientists have. 

 
 

 
FIGURE 23 

 

 In conclusion, we have been working with lots of individual and small groups of 

scientists and then, over this past year, things have been getting a little more interesting in the 

context of planning for what are really continental scale observatories and, in particular, the 

national ecological observatory network, whose planning is well underway.  Cleaner is another 

one for environmental engineers, where it really is a multi-scale, multi-modal sensor network that 

is being planned. 
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FIGURE 24 

 

 Again, as you can see, we are back to cartoons; therefore you know these things aren’t 

real but you have a very large community of serious scientists defining how this technology needs 

to play out to serve them.  Obviously this has lots of relevance to other issues, and there are lots 

of interesting problems to be solved in here, and lots of statistics gathered throughout it, at least 

from an engineer’s perspective.  There are lots of places to follow up such as conferences in the 

field. 

 How important are statistics to sensor networks?  My answer is, Mark Hansen is a co-PI 

on our SENS center renewal, and that speaks to the point, because statistics, and Mark in 

particular, have become quite central.  There are lots of planned observatories. You can Google 

(“NEON, Cleaner, GEOSS”) and there is lots of work going on around the country. 
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FIGURE 25 

 

 

QUESTIONS AND ANSWERS 

 

 DR. BANKS:  Thank you very much, Deborah. We have time for a few questions while 

Ravi gets set up. 

 DR. KLEINFELD:  Part way through the talk you mentioned static sensors, the problem 

with undersampling, and the need for mobile sensors.  You talked about a lot of things you were 

sensing—temperature, flora, fauna—but what are the scales?  At what point do you know you are 

no longer undersampling?  What are the physical scales for temperature, and the physical scales 

for observing? 

 DR. ESTRIN:  Obviously, that all depends on the question.  I can give you specific 

answers.  For the ecologist it depends on who was asking that question about micro climates and 

how changes in forest canopy will end up changing the life structure and the micro climates that 

the ground plant species will end up experiencing, there the relevant scales are cubic meters.  Am 

I answering the question? 

 DR. KLEINFELD:  Yes. 

 DR. ESTRIN:  If you are talking about, for example, our aquatic system, there, for 

example, these algal blooms, one of the things they are trying to understand is how, with different 

thermal climes, what it is the combination of light, temperature and current conditions that causes 

this base transition from small numbers of these algae to one of these algal blooms in the ocean or 
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in streams.  There, you are actually talking about what could be smaller scale than even a cubic 

meter.  So, it is very important to send this robotic sample collector around that can get to 

sampling on even smaller spatial scales than that.  For the most part, a cubic meter is about as 

small we get to in terms of being willing to accept a similar measurement within that volume.  Of 

course we are not going to have uniformity with cubic meters.  You are talking about some 

experimental design that is not uniform.  
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The Functional Organization of Mammalian Cells 
 

Ravi Iyengar, Mount Sinai School of Medicine 
 

 
FIGURE 1 

 
 DR. IYENGAR:  I should tell you a little bit about my background because much of 

what I am going to tell you probably won’t sound like the language that we all heard this 

morning.  I majored in chemistry and am a biochemist by training.  I have spent most of my 

research career purifying and characterizing proteins that work on cell signaling pathways.  Since 

many of these pathways interact with one another, the interacting pathways are called signaling 

networks. I come from a biology background, and I am trying to use network analysis to 

understand cellular functions such as those shown in Figures 1 and 2. 

 
FIGURE 2 

 

 What I hope to convince you of is that graph theory-based statistical analysis of networks 

turns out to be a very powerful tool to understand how things are put together within a cell. We 

are still at the beginning stages of developing such an understanding.  Our long-term goal is the 
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functional organization of mammalian cells.   The system we are focused on is the neuron, and 

we want to understand the function of biochemical networks that control how the behavior of 

neurons changes in an activity dependent manner. Function is manifested in a very tightly 

regulated manner.   There is continuous regulation of the intracellular processes, and this 

regulation, in turn, allows for many different events to occur in a coordinated way.  I have been 

studying signaling systems for 25 years.  Over this time, the numbers of signaling molecules have 

greatly increased. Proteins of the extracellular matrix which, when I was in graduate school, 

where thought to be proteinaceous glue that held cells together, have now been shown to be 

signaling molecules that tell cells about their immediate environment on an ongoing basis. 

 Almost no component in living organisms is really inert. They exist because they 

communicate constantly with other components, and this constant communications allow the 

components to work together. This constant communication is an important feature of the living 

cell.  Underlying all of these analyses is the notion that all live processes arise from interacting 

components.  These components are mostly proteins.  But cell regulatory networks are not made 

up of just proteins, because within all our cells, as Dr. Kopell talked about it, ions are important 

constituents. Along with proteins and ions, nucleotides, sugars and lipids, all come together to 

form a multifunctional network. So we can approach the problem with the hypothesis that 

phenotypic behavior that arises from interactions between cellular components. Here my focus is 

on single neurons. Although networks between neurons are very important for information 

processing, quite a bit of information processing actually goes on within single neurons. One of 

the nicest examples of physiological consequences of information processing in single neurons  

comes from the work of Wendy Suzuki and Emery Brown and others, who published a paper in 

Science showing that, in live monkeys, during the learning process, there are changes in spike 

frequency of individual neurons that correlate with learning.  

 
FIGURE 3 
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 Signaling pathways has been studied for 50 years.  This particular signaling pathway, the 

cAMP pathway which I have studied for a very long time, is a well characterized one. The most 

famous example of this pathway is adrenaline—“fight or flight” response.  When adrenaline 

binds to its receptor, it initiates a series of steps.  The steps eventually lead to change in activity 

of the enzyme that mobilizes glucose.  The glucose released into the blood provides energy to run 

or to fight.   The cAMP pathway is shown in Figure 3. As you can see, the cartoon in Figure 3 

encompasses two sorts of information. One is the underlying chemical reactions, which are 

protein-protein interactions and the ligand-protein interactions. There are also arrows (activating 

interactions) and plungers (inhibitory interactions) and dumbbells (neutral interactions) that can 

be used for defining the edges that allow the nodes to come together to form a network. Such 

networks with direction-defined edges are called directed graphs. The overall organization of the 

hippocampal neuron is summarized in Figure 4.  The  organization indicates that that receptors 

that receive extracellular signals regulate the levels and/or activity of the upstream signaling 

molecules such as Calcium, cyclic AMP, and small GTPases that in turn regulate the activity of 

the key protein kinases. The change in activity of the protein kinases modulate the activity of the 

various cellular machines in a coordinated manner. This change in activity of the cellular 

machines results in changes in phenotypic behavior. 

 
FIGURE 4 

 This minimal view of cellular organization has been developed from a large number of 

studies from many investigators.  The NIH funding for basic research over the past 50 years has 

allowed for the collection of a lot of information on binary interactions in many systems.  It has 

been possible, in the last 10 years or so to put this information together and this synthesis gives 

the high-level schematic representation of what a hippocampal neuron might look like as is 

shown in Figure 4. 
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FIGURE 5 

  

 Such an abstracted representation can be used to depict many different mammalian cell 

types. Three examples are shown in Figure 5. Neurons, T cells and pancreatic beta-cells. If we 

are studying electrical properties of neurons and how they change in an activity dependent 

manner, one might focus on early biochemical modifications such as phosphorylation of 

channels.   With signals flowing through the network one can modify a channel, regulate gene 

expression, and move components around the cell and so on. This minimal view can be expanded 

to depict many cellular components and interactions as shown in Figure 6.  

 
 FIGURE 6 

 

 This brings one to a complex picture.   Often these complex diagrams are considered to 

have minimal value because people question just what can be learnt from these diagrams. 

Actually, the map in Figure 6 has just a few hundred components. It has about 250 nodes but one 

can make this even bigger.  People are struggling to understand how such complex systems can 

be tackled to make some sense of the functionally relevant organization. This question and 
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approach we use are shown in Figure 7.  

 
FIGURE 7 

  

 John Doyle in his talk also asked this question: how does one make sense of the extensive 

parts list? The reasoning we use to answer this question is based on the assumption that you can 

make sense of the function of complex systems by understanding the underlying regulatory 

patterns that these systems possess.  These patterns are likely to be dynamic. I will explain our 

use of the term dynamics that in a minute.  First, let us focus on what does the word pattern 

means within the context of cellular networks. This is where I found the papers of Uri Alon and 

his colleagues on motifs as building blocks of networks relevant.  We have used the approach of 

Milo, Alon and colleagues to define the configuration of motifs as the connectivity propagates 

through the cellular network to identify patterns. This approach turns out to be a very useful way 

of understanding the regulatory capability of the cellular network. The occurrence of motifs does 

not mean that regulation occurs, but that the capability for regulation exists. In an experimental 

sense these analyses gives us a set of initial ideas and hypotheses that we can go and test in the 

laboratory.  All of what I am going to describe is the work of one graduate student.  We have 15 

co-authors on the 2005 paper in Science that is cited in Figure 8.  Most of the others have made 

valuable contributions in curating and validating the interaction data set for the construction of 

the network. All of the analysis has been done by one graduate student, Avi Maayan. The sort of 

biology area that I come from, everybody keeps saying, the days of individual laboratories are 

finished, you need  this massive network biology.  In reality, when one gets one smart graduate 

student who challenges your way of thinking, brings something new to the lab it is possible to 

make real progress, as has been the case here.   
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FIGURE 8 

 

 Cellular networks can be represented as graphs at varying levels of detail.  The various 

representations are shown in Figure 9. 

 

 

 

 

 

 

 

 

 

    FIGURE 9  

 

 Graphs consisting of nodes that are cellular components such as proteins, small 

molecules such as metabolites and ions are connected by edges that are chemical interactions 

between nodes.  These graphs can be undirected (B), directed (C), directed with weighted nodes 

and conditional edges (D) and directed with spatially specified nodes and edges (E). In the 

analysis described here we have used directed graphs (Type C, Figure 9) which are these directed 

graphs.  They are directed in two ways. There are edges that are positive—that means that A 

stimulates B—and negative—that means A inhibits B.  Then there are these neutral edges, that 

important for cellular networks because they represent interactions with anchors and scaffolds.  In 

this representation we have not actually dealt with space in an explicit way, however these neutral 
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edges give the initial incorporation of spatial information into these networks.  In this 

representation we have made a simplification, which I should state up front.  We treated these 

three classes of edges as independent interactions.  In reality, what happens in cells is, when two  

components come together in a spatially restricted manner they interact, that means there may be 

an active scaffold protein C that binds both A and B allowing for the A → B interaction. A to B 

edge exists because the A to and B to C edges are operational. We have not incorporated such 

conditionality between the edges themselves and hence type C graphs are simplified 

representation of biological systems. Type E graph would be the case where one would actually 

incorporate spatial constraints for the same components when they are in different dynamic 

compartments, interacting different sets of components.  There is also the issue of weighting the 

links.  Such weighting is needed to represent the levels of changes in activity of the components 

leading to differing interactions.  These complexities have to be dealt with the underlying 

assumption that all of biology is a continuum.  It is a question of when one needs to move to 

weighted nodes and edges to capture the behavior of the system.  For the initial analysis we have 

assumed that Type C graphs will suffice.  

 We constructed a network in silico using a function-based approach.  For this we have 

focused on binary interactions since the validity of these interactions is clear from the biological 

literature.  From lots of studies in biochemistry, cell biology, and physiology people have shown 

that A interacts with B, and there is a consequence to that interaction.  These are well-

characterized interactions and there is a vast literature on such binary interactions from the 

literature we have identified that A talks to B, B talks to C and C talks to D to build the network. 

The approach we have used is shown below in Figure 10. 

 
FIGURE 10 

 

 In many cases, because groups have studied input-output relationships, it is also possible 
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to constrain the network from the published data.  Starting from A, one can get to D, or starting 

from B one can get to F.  Such distal relationships are not always known and there is some 

ambiguity about pathways within networks.  What we did was to use a function based approach 

to identify direct interactions and develop a network as a series of binary interactions. For this we 

searched the primary literature.  That is a daunting task, so initially we developed a natural 

language processing program to pull out the papers.  We then decided that we could not use the 

papers directly so, I recruited everybody else in my laboratory to actually read, verify and sort the 

literature. So we are reasonably confident about the validity of our network. In almost all cases, 

we searched for input-output relationships to constrain the connectivity relationships with respect 

to function and we have a database with all the primary papers and the references that go to make 

up these interactions. What one can do by this process is to generate a large series of subgraphs as 

is shown in Figure 11. This is one for calcenurin an important cellular enzyme that is a 

phosphatase. 

 
    FIGURE 11 

 

 In this subgraph, calcenurin, is activated by calmodulin. Activation is represented by the 

green arrow. Calcenurin is anchored by AKAP. This means calcenurin is held in a certain 

location because of this protein, and that is that shown by the blue dumbbell.  Activated 

calcenurin in turn can either activate (green arrow) the transcription factor NFAT, or inhibit (red 

plunger) another transcription factor CREB.  You can construct a huge number of these 

subgraphs and put them all together, and use them to define how a CA1 neuron might work. 
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FIGURE 12 

 

 Functionally, as shown in Figure 12, a CA1 neuron changes activity in response to 

stimulation, and this change can be either long or short term.  These changes in activity arise from 

changes in behavior of its components.  This is now well documented.  A list of changes in 

activity and the cellular components associated with these changes are shown in Figure 13.  

 
FIGURE 13 

 

 There are groups who study changes in the activity of channels, and the NMDA 

receptors. Others study changes in gene expression and translation, and actually even the way the 

spines are formed. Karel Svoboda from Cold Spring Harbor Laboratory, has been studying how 

the morphology of the connections change as the stimulus propagates.    There are other groups 

who have characterized in detail the components that underlie these functional changes. One can 

put the data from these two groups of investigators together and make a functional network such 

one shown in Figure 14.  
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FIGURE 14 

 

 For this network we know the underlying biochemistry of all of reactions we don’t use 

this information in the graph theory analysis.  Overall we have a system of some 546 components 

and nearly 1,300 edges.  You can parse these nodes out in these functions, as shown in Figures 14 

and 15. 

 
FIGURE 15 

 

 Figure 15 is a modified Pajek diagram of the CA1 neuron network with triangles as nodes 

and the size of the triangles indicative of the density of associated edges. The characteristics of 

the network are summarized below in Figure 16. 
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FIGURE 16 

 

 This is largely a scale-free, small-world network.  The characteristic path length is 4.22.  

The clustering coefficient is 0.1, indicating that the network is quite highly clustered as compared 

to a randomized network. The clustering coefficient has turned out to be one of the most 

informative parameters in understanding the cellular space, because it becomes an estimate for 

things are put together by anchors and scaffolds.  Neurons, especially, have substantial geometry 

and components are not evenly distributed within the cell.  Understanding how things are in close 

proximity to one another that becomes very useful for understanding local function. 

 
FIGURE 17 

 

 We used the Uri Alon’s Pathfinder program to characterize the various types of motifs 

that are present in this network.  Motifs are groups of nodes that act as a unit and have the ability 

to process information to alter input-output relationships.  In cell signaling systems information 

transfer occurs through chemical reactions. Typically information processing by motifs involves 

changing the input/output relationship such that there is a change in the amplitude of the output 
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signal. There can be a change in the duration of the output signal or the signal can move to a 

different location within the cell.  In many cases, signaling networks produce each of these effects 

to varying degrees.  

 There are many of these motifs that when organized together gives rise to signal 

processing.  The various configurations of the motif are given in Figure 17.   I want to draw your 

attention to the feedforward motif, which is motif number 44.  I really like this motif since it 

gives you two for the price of one.  One, it allows for redundancy of pathways, which is very 

important in  these systems to ensure reliability of signal flow, and two, it essentially works as a 

positive feedback loop that allows for persistence of  the output signal, which almost always 

alters the interpretation of the signal for the mounting of functional responses.  Another 

noteworthy motif is the bifan motif, which give rise to local interconnectivity and signal 

integration.  The minimal size of these motifs is three or four nodes. We have found that motifs 

with five and six nodes arise from juxtapositions of the smaller ones.   

 

 
FIGURE 18 

 

  To understand how signal flows through this network we conducted a type of Boolean 

dynamic analysis which we have termed pseudodynamic analysis, as outlined in Figure 18.   We 

used the adjective pseudo to signify that although the analysis represents the dynamics of the 

underlying coupled chemical reactions, the values of the links are all equal and hence do not 

capture the different reactions rates for the different equations. This simplifying assumption is 

largely valid because inside the cell, past the membrane receptors, and not quite at the level of 

gene expression, the reactions rates are largely similar for 80-85 percent of the reactions.  The 

term pseudodynamics is similar to the term “apparent Kd” in biochemistry and pharmacology. 

Although rigorous measurements for Kd determination require equilibrium dialysis, most of us 
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often used steady state methods to determine Ki from which  apparent Kds can be calculated.  

Such a simplified approach can also be used to study propagation of signal from the receptor into 

the cellular network.   

 
FIGURE 19 

 

   We looked at connectivity propagation going forward from the receptor. Each step 

signifies the formation of a link (edge) and represents a direct interaction.  Such direct 

interactions may represent a single chemical reaction for noncovalent reversible binding 

interactions or 2-4 chemical reactions when the interaction is enzymatic. The numbers of links 

engaged as signal propagates from a many ligands that regulate the hippocampal neuron is shown 

in Figure 19.  This is a complex plot with many ligands that affect the hippocampal neurons.  At 

one end is the major neurotransmitter, glutamate.  Signals from glutamate rapidly branch out and 

by 8 steps engage most of the network.  At the other end is the fas ligand that causes apoptosis in 

neurons.  Fas takes nearly 12 steps to engage most of the network. 

 By the time we reach 10 or more steps, we can get about 1,000 links engaged, indicating 

that most of the network becomes interconnected.  We then counted the number of links it takes 

going from ligand binding to a receptor to get to a component that produces a functional effects 

such as a channel or a transcription factor that turns on a gene.  Eight is the average number for 

going from receptor to effector.  When we are tracking paths from ligand-receptor interactions to 

channels or transcription factors we can identify the regulatory motifs that emerge as connectivity 

propagates through the network.  This is shown for three important ligands for the hippocampal 

neuron: glutamate, norepinephrine and BDNF in Figure 20. 
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FIGURE 20 

   

 We counted feedback loops, sizes three and four, we then counted size three and four 

feedforward motifs.  One thing we see is that, there are a lot more feed forward motifs than 

feedback loops in the cells. I think this represents the molecular basis for redundancy.   

Feedforward loops can arise from the presence of isoforms. The higher we go up in the 

evolutionaryse isoformshierarchy, there are more isoforms for many signaling proteins.  The 

same protein comes in three, four or five different forms.  They often have some what different 

connections, so we think of these proteins not quite as full siblings, but more like half brothers 

and sisters with some common connections and some unique connections.  

 What we found most interesting, was non-homogeneous organization of the positive and 

negative motifs. As we start at the receptor, at the outside of the cell, the first few steps yield 

many more negative  feedback and feed-forward loops, which would tend to limit the progression 

of  information transfer.  As you go deeper into the system, in each of these cases—with 

glutamate, norepinephrine, we pick up the positive feedback loops and positive feedforward 

motifs.  It appears that, if the signal penetrates deep into the cell, it has much more chance of the 

signal being consolidated within the cell. This consolidation may trigger many of the memory 

processes by changing the cell state. This was our first big breakthrough that we got in 

understanding the configuration of the network and may satisfy my biology friends.  
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    FIGURE 21 

 

 Two brief detours into the standard differential equation based modeling to illustrate the 

capabilities of the feedback and feed-forward regulatory motifs. Positive feedback loops work as 

switches. We have shown this a while ago for the MAP-kinase 1,2, system both initially from 

modeling analysis and subsequently by experiments in a model cell-culture system NIH-3T3 

fibroblasts.  A comparison of a model and experiments showing the input output relationship due 

to the presence of a feedback loop is shown in Figure 21. 

 Positive feed forward motifs also give you extended output, and this is shown below in 

Figure 22.  Although what is shown is a toy model, we can see that over a range of rates the 

presence of a feed-forward motif affects input-output relationships.  So, the presence of these 

regulatory motifs can have real functional consequences.   

 
FIGURE 22 

 
  

 The next analysis was to simulate the formation of motifs as signals propagated from the 

receptor to an effector protein.   Generally, in our initial analyses we started at the receptor and 
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allowed connectivity to propagate all over the cell.  That does happen to some extent, but in most 

situations information flow is constrained by the input and output nodes. When we stimulate the 

hippocampal neurons, it results in changes in the activity of the channels or changes the activity 

of the transcription factors like CREB that results in altered gene expression.  So, we decided to 

look at the system using a breadth-first of algorithm to go from receptor to effector with 

progressively increasing number of steps.  This is shown in Figure 23. 

 
    FIGURE 23 

 

 This analysis actually yielded the most satisfying part of our observations.  It had been 

known for a long time that glutamate by itself would not allow this neuron to change state and get 

potentiated for an extended period without engaging the cAMP pathway.  When we think about 

the cyclic AMP pathway, we think of the neurotransmitter norepinephrine, that in the 

hippocampus facilitates the glutamate dependent potentiation. When neurons become potentiated, 

they behave differently in response to stimuli.   

 The pesudodynamic analyses showed that for norepinephrine, when the number of feed 

forward and feedback loops were counted for whether they were positive or negative,  far more 

positive loops were engaged with increasing numbers of steps.  The preponderance of positive 

feedback and feedforward loops from norepinephrine to CREB provides an explanation of why 

this route is so critical for the formation of memory processes. CREB is often called the memory 

molecule since its activity is crucial for the formation of memory in animal experiments. 

 In contrast, for glutamate by itself, the numbers of positive and negative motifs are equal, 

and BDNF actually turned out to be a bonus. For neuronal communication there are always two 

cells, the presynaptic neuron and the postsynaptic neuron.  Neurons can be potentiated by the 

actions that go on within themselves, and they also can be potentiated by changes in the 
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presynaptic neuron.  It has been shown that that BDNF actually works in the pre-synaptic CA3 

neuron, and in the postsynaptic CA1 neuron that we have modeled for the network analyses and 

the regulatory motifs for BDNF induced network evenly balance out.  This statistical analysis 

gives us insight into how the configuration of motifs can affect state change in cells. If we engage 

more positive feedback and feed forward loops than negative loops we can induce state change 

(i.e plasticity). If the positive loops and negative loops are balanced then although signals 

propagate and acute effects are observed there is no state change.   This is summarized in Figure 

24. 

  

 

 

 

 

 

 

 

 

    FIGURE 24 

 

 I want to make two further points.  First, when we conducted this pesudodynamic 

analysis, we actually sampled the system for dynamic modularity.  Modularity means different 

things for scientists in different fields.  For those of us who come from a cell biology background, 

the word module actually means either a functional module, like components of one linear 

pathway, or it means a group of components in an organelle such as the proteins in the cell 

membranes, or the nucleus.  In our analyses we used a functional approach going from receptor to 

effector protein. This analysis is shown in Figure 25.  

 

 

 

 

 

 

 

 162



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

 

  

 

 

 

 

 

 

    FIGURE 25 

 

 As we follow the number of links that we engaged when we go from, the NMDA 

receptor an initial glutamate target, to the AMPA receptor, which is also a glutamate target and 

the final effector in the system, or from the  NMDA receptor to the transcription factor we found 

that these lines were relatively linear. To validate this profile Avi came up with a clever trick in 

creating shuffled networks that could be used as controls for this biological networks.  What he 

did was maintain the biological specificity of the first uppermost connection, which is from the 

ligand to the receptor, and maintained the biological specificity of the last connection that is the 

links to come into the AMPA channels or CREB.  So, there may be 10 components that feed into 

CREB with seven or eight protein kinases that regulate it and those links did not change.  He then 

randomized everything in the middle.  When he tracked paths in these shuffled networks we 

either got paths that yielded plots that fit either to a power law or an exponential function.  

 Two features of these paths are noteworthy. One is that the path is linear and, two,  there 

are many more links engaged in the  CA1 neuron network than in the shuffled networks even 

though only 10-20 percent of the links are engaged.  I point that out to you because if you look at 

the scale, the number of links here is either 100 or 200 and if you go 10 steps without output 

constraint, without outward constraint, you engage about 1,000 links.   So the input-output 

constraint and the number of steps (and if we use the number of steps as a surrogate for time) 

allows us to constrain the number of interactions that can occur starting from the point of signal 

entry to the final effector target.  This boundary defines the module, and everything else on the 

outside becomes “separate” because one cannot engage these links within the time period defined 

by the number of steps.  This type of analyses indicates that we are likely to have a series of 

dynamic functional modules.  The properties of these functional modules are summarized in 

Figure 26. 
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FIGURE 26 

  

 Second, we were interested in figuring out what these highly connected nodes do as part 

of the network.  Avi started out with a system of mostly unconnected nodes and then asked the 

question, what happens to the system if we add nodes with four, five, six links, iteratively.   He 

then determined both the number of islands as a measure of networking and the motifs that are 

formed as the network coalesces.  This approach is described below in Figure 27. 

  

 
    FIGURE 27 

  

 Initially, at four links per node he had around sixty islands, and by the time he reaches 21 

links per node, he was able to form one large island (i.e., a fully connected network).  This is 

shown in Figure 28. 
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FIGURE 28 

 

 The surprise from this analysis was, none of the major players, the highly connected 

nodes, and ones that we know are biologically important were not needed to form the network.  

So what might the role of these biologically important highly connected nodes be? To answer this 

question we decided to determine what types of motifs are formed as these highly connected links 

come into play.  The results from this analysis are shown in Figure 29. 

 

 
FIGURE 29 

  

 What we found is that the highly connected nodes disproportionately contribute to the 

formation of regulatory motifs. Eighty percent of the feedback loops and feed forward motifs 

occurred as these highly connected nodes come into play. For this network, it appears that the 

highly connected nodes are not needed for the structural integrity of the network, rather the highly 

connected nodes are required for the formation of the regulatory motifs that process information. 

 Thus the psuedodynamic analysis has allowed us to move from thinking about individual 
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components to groups of components within these coupled chemical reaction networks.  The 

location of these regulatory motifs within the network allows us to define areas within the 

networks that are capable of information processing.   Maps specifying the density of motifs at 

specific locations and their relative positions with respect to receptors and the effector proteins 

are shown.  A heat map representing the density of motifs as a function of steps from the receptor 

is shown in Figure 30.   A detailed distribution of the various types of motifs in the interaction 

space between receptor and effector proteins is shown in Figure 31.  

 
FIGURE 30 

 
FIGURE 31 

  

 Detailed analyses for the location of the various motifs indicate that the motifs are 

densely clustered around the functional center of the network as shown in Figure 31. The map in 

Figure 31 would suggest that there are no regulatory motifs between channels. Channels pose an 

interesting representation problem for interactions between each other. Often channels use 

membrane voltage and membrane resistance to interact with each other. But voltage and 

resistance are not represented as entities within this network and hence these motifs are not 
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“seen” in our network. So, there are some corrections we need to make for biological networks 

that use electrical and physical forces as entities.    In spite of these limitations we can make a 

numbers of conclusions from the type of analyses we have conducted. These are summarized in 

Figure 32. 

 

 

 

 

 

 

 

 

    

     FIGURE 32 

 

 The major features of the cellular network within hippocampal cells are 1) highly 

connected nodes can consolidate information by participating in regulatory loops 2) Early 

regulation is designed to limit signals and presumably filter spurious signals.  As signals penetrate 

deep into the network the positive loops that are formed favor signal consolidation that leads to 

state change.  Thus description of the statistics of networks for somebody like me who works at a 

cellular level, is very useful in providing an initial picture of the regulatory capabilities of the 

cellular network. 

 It allows me to design experiments to test which of these regulatory motifs are operative 

and develop an overall picture that I would never get from a bottom up approach, if I was just 

studying one feedback loop or two feedback loops at a time.  That is my experience with the 

statistics of networks. Thank you very much. 

 [Applause.] 
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QUESTIONS AND ANSWERS 

 

 DR. JENSEN:  I am interested in the motif-finding aspect. Usually, with these 

algorithms you find all frequently occurring patterns, and then at some point you go on threshold.  

You say, you know things about the threshold, those are unexpected things, but because of the 

nature of them it is often difficult to do good hypotheses tests and say where we should draw that 

threshold.  So, what approach did you use for saying these are motifs that seem big and 

interesting? 

 DR. IYENGAR:  Actually, I did not have a real initial statistical threshold, because I 

was going from a biological point of view.  The protein that participated was known to have 

important biology. 
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Dynamic Network Analysis in Counterterrorism Research 
 

Kathleen Carley, Carnegie Mellon University 
 
 

 I am going to talk about some applied work that we have been doing, some of the issues 

that have arisen, and some of the challenges that the work drives for both network analysis in 

general or statistical approaches to network analysis.   

 To set the context, let me present two real-world examples that we have come across and 

had to deal with using our models.  The first one occurred over a year ago when we happened to 

be out in Hawaii. A group of individuals associated with the Philippine terrorist group Jemaah 

Islamiyah (JI) had just been arrested in a move that foiled a major bomb plot.  The question posed 

to us, was what was likely to happen to JI following that arrest.  When a question like this comes 

to the analyst it often takes several months to deal with it; however, we were told they needed the 

answer yesterday.  So, one of the issues is, “How can we answer such questions, rapidly and 

accurately?” 

 The other motivating example comes from analyzing the effects of an administrative 

change in a nation state.  On the surface, the impact of a change in leadership seems like a very 

different question. We’re thinking of situations where, as a region of the world becomes more 

progressive, they become less antagonistic to the United States.  Looking at the political elite in 

those countries to see how they are related to each other and to the military can reveal strategies 

by which small subtle changes in those groups can alter the lines of disagreement, possibly 

moving the groups more in alignment with U.S. interests.  In contemplating such changes, we 

might ask questions such as what are the main lines of disagreement, can we influence them, 

would changing them likely alter the country’s attitude toward the United States.  An issue here 

is, “How can we explore the impact of changes in a network of people on beliefs and attitudes?” 

 On the surface the problems of JI and of state change are very different.  They certainly 

bring to the forefront a lot of different kinds of data.  However, there are analysts who face both 

of these issues using the same kind of data and in both cases using data that has strong network 

characteristics.  That is, in both cases the data includes who is connected to whom, who has what 

resources, skills or beliefs, and who is doing what.  In both cases, the question arises, what would 

happen if a particular node were to be removed; e.g., as when a member of JI is arrested or a 

political elite is removed from power. These and other questions are often addressed—things like:  

How vulnerable is the overall system?  What groups or individuals stand out? Who are the key 

actors, key groups, key ideas, and key things?  How can we influence them? What are the 
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important connections and so on, or what is the health of the organization, how has it been 

changing over time?   Can we infer where there is missing data, which helps to focus intelligence 

gathering ideas?  How different are groups?  And so on.  There is a whole slew of questions like 

these that need to be addressed, some very theoretical while others are of near-term, pragmatic 

interest, such as “What is the immediate impact of a particular course of action?”  These are the 

kinds of questions that need to be addressed using network inspired tools.  The tools that I will 

talk about today are the first tiny steps on the long road to helping people address these kinds of 

questions and meeting this very real and practical need. 

 From a technical perspective what we want to do is be able to provide a system of 

evaluation for looking at change in multi-mode, multi-plex, dynamic networks.  Maybe they are 

terror networks today, maybe they are drug networks tomorrow, but there is a whole set of these 

kinds of networks, and we want to analyze them under conditions of uncertainty.  Finally, we 

want to place predictions in a risk context: that is, given sparse and erroneous data we want to 

estimate the probabilities of events and the likelihood of other inferences and the confidence 

interval around these estimates.   

 From a user’s point of view it is imperative that we provide the tools and the ability to 

think about analysis and policy issues from an end-to-end perspective.  We all know that network 

tools are extremely data greedy, so we need to embed them in a larger context of bringing in the 

data automatically, analyzing it automatically, and using different kinds of prediction capabilities 

to make forecasts and so basically free up human time to do real live analysis and interpretation.  

At CMU we have developed a few tools as shown in Figure 1, but these are just examples of a lot 

of the tools that are out there.  For every tool I will mention there are dozens more that more or 

less meet a similar purpose.  Overall, our tool chain serves to bring in a set of raw text, like 

newspaper reports, and, using various entity extraction and language technology, identifies 

various networks.  These are networks of people to people, people to ideas, people to events, et 

cetera.  We then take those networks and analyze them.  We are using a tool called ORA1 for 

doing that, which lets us do things like identify key actors, groups, and so on.  Once we have 

done that, the tools give us some courses of action that we might want to analyze.  We take those, 

put them into a simulation framework, and evolve the system forward at time.  All of this sits on 

top of data bases, etc.  Basically, the set of tools help you build a network so you may find points 

of influence, and then help you assess strategic intervention.  The important thing from a 

technology standpoint is that all of these things have to be built by lots of people, they have to be 
                                                      
1 ORA is a statistical toolkit for meta-matrices that identifies vulnerabilities, key actors (including emergent 
leaders), and network characteristics of groups, teams, and organizations. 
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made interoperable, and we have to start thinking about things that we don’t normally think about 

as network arrows. 
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FIGURE 1 Integrated Tool Chain for Dynamic Network Analysis 

 

 From a network assessment perspective I am only going to concentrate on the middle 

block of Figure 1, which deals with network analysis.  Basically, we ask four fundamental types 

of questions.  One is who are the key actors?  We want to do this from a multi-criteria 

perspective, not just worrying about who is key in terms of the social network but also other kinds 

of power, such as that stemming from access to money, resources, and so on.  Second, we want to 

know about the emergent groups. What are the groups and who are there key members and 

leaders.  Third, we want to know how we can influence someone or some group.  And fourth, we 

want to characterize the network.  Knowing what kind of network it is, is critical because the 

intervention options depend on the type of network. 

 Our tool for network analysis, ORA, is a dynamic network analysis (DNA) tool for 
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locating patterns and identifying vulnerabilities in networks.  It lets you run a whole series of 

statistical tool kits on the networks and pull out a whole set of measures.  It then organizes these 

into various reports, such as reports for intelligence, management, risks, etc.  Importantly, ORA

lets you utilize multiple kinds of data, not just who-talks-to-whom type data but also who has

access to what resources, who has been involved in what events, who has been seen at what 

location.  It uses these different kinds of multi-m
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nd infer actions from one network to another.   
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FIGURE 2 Illustrative Meta-Matrix for Dynamic Network Analysis  
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tworks analysis by enabling the simultaneous analysis of relations 
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 In other words, ORA uses something we call the meta-matrix approach to evaluate 

connections among multiple entities at varying strength, as illustrated in Figure 2.  Traditional 

social network analysis tends to focus on just a single entity class, such as people to people.  In 

contrast, DNA uses networks connecting not just people to people, but people to knowledge or 

resources, attacks or events, and organizations, and there are other fields as well. This approach

multi-mode and multi-plex, and thus more powerful than a single mode technique.  It takes us 

beyond the traditional social ne

a many types of entities. 

 Before telling you about some of the results from using these tools, I want to highlight 

some of the major issues we have come across, basically as caveats as to why it is difficult to get

useful insights about dynamic networks if one only relies on simple social network techniques. 
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The first caveat is that you really need multi-mode, multi-plex data to reveal relations.  This is 

certainly true when people are trying to hide, when groups operate covertly.  In covert cases, 

often have to infer network relations from other kinds of data, such as co-presence at a large 

number of events.  Second, we need to collect data from multiple sources, implying different 

collections methods and biases, and so we need protocols that help us triangulate from those 

multiple sources to infer the actual relations.  Finally, we have also found the need to consider 

networks over time; specifically looki

we 

ng at data from multiple time periods reveals what relations 

main 

d 

 noting the lack of connectivity and the isolated subgraphs, the labels 

are not important here.)   

 

FIGURE 3 Political Elite Network Mideast 

 

re constant and which change.   

 As an example of the first of these challenges, I point to an analysis we conducted about 

one particular Middle Eastern country.  We identified a social network for the political elite base

on open source data.  This observed network, Figure 3, suggests that the society is not strongly 

connected.  (See Figure 3,

 

 

 

 

 

 

 

 

 

 

 

 

 

But this impression is wrong.  When we dug deeper and examined the knowledge and resources 

that these various people had access to, we in fact found a lot of connectivity.  The nature of the 

society is such that members who have shared a resource have probably actually met, and so we 

were able to infer many other social connections that we wouldn’t have been able to infer without

resource access data.  The resulting network, shown in Figure 4, is a very connected group.  This 
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structure reveals that the society has a dual core with two competing cores.  One such core tends

to be more reformist than the other.  It is important to note that multi-mode data gives us a very 

different picture of the society and the connections am

 

ong the elite than we would have inferred 

from just the social network in the open-source data. 
 

 

 FIGURE 4 Political Elite with Connections Through Knowledge and Resources—MidEast 
 

 The next example is about collection methods.  In order to understand better the 

insurgency in Iraq, two sets of data have been collected.  But the data was collected by two 

separate subgroups that refused to talk to each other, and they collected the data in very different 

ways.  The first group collected data on incidents (left in Figure 5); for each incident they 

generated a report that said who was involved in that incident and what was going on. Analyzing 

the incident data results in a network that is basically a set of isolated individuals or groups, 

because few of the people involved in the individual incidents had the same name.  Looking at 

just this data, we might conclude that the insurgency is really a bunch of disconnected groups 

copying one another’s methods.  In other words, we might conclude that fighting it, would be like 

fighting fires, and very difficult to counter or stop in the long run.  Even when you codify location 

it doesn’t help; that is, the conclusion still appears the same.   
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FIGURE 5 Social Network Based on Incidents (left) and Resistance (right) 

the 

t 

, 

ho 

s, 

 in meet applied needs, is that 

The second group that collected data focused more on the resistance movement, and they

included information on who attended resistance movement meetings.  Based on this attendance 

data we get the picture of the resistance network shown on the right in Figure 5.  It’s a complete

different structure than in Figure 4, showing more of a core periphery structure.  Based on just 

this data, we might conclude that there is a central controlling unit that was calling the shots.  In 

this case, fighting the resistance could be successful if we could identify and alter that core.  No

many of the same people appear in both data sets.  If we combined them we find that the little 

networks that were identified through incidence data are basically on the fringe of the core of the 

resistance.  This would alter further the operational conclusion. The point of this example is that 

when dealing with covert groups and working to set operational direction, 

collect data in multiple way before drawing any  

operational conclusions.   

 

 

 

 

 

 

  

 

 What about the case where there is data from multiple time periods?  For Iraq, we had 

opportunity to analyze newspaper data prior to the election.  In a very quick proof-of-concep

exercise, we collected data on both the incidents and resistance movement. We had a set of 

people, and we tracked them over a one-month period from November 19 to December 25.  At 

that time, the prevailing view was that the Iraqi insurgents were a bunch of disconnected groups

that didn’t have anything to do with each other.  When we actually started taking those people 

over time using newspaper reports we found that there was a core group of about 50 people w

kept showing up repeatedly.  As you tracked them over time you saw that they did have very 

strong connections with each other and they did have a very strong group structure.  In fact, we 

were able to actually assess who the leaders were once we started capturing data over time.  Thu

the third issue that is critical if network techniques are to be used
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d st be captured and assessed over multiple time periods. 

 Once we got all that data we asked questions like who do we target? Where are the 

vulnerabilities in these kinds of networks, who are the leaders, who stands out, and so on?  Using

traditional social network measures, based on a single mode data of just who talks to whom, w

would typically reveal node attributes such as the centralities:  who is the most connected or 

which of two figures is on the most paths.  In the 9-11 hijacker network constructed by Valdez 

Krebs, four individuals stand out—Alhazami, Hanjour, Atta, and Al-Shehhi.  If you actuall

the full network and are able to pull out the centralities you have a good understanding of 

different ways of affecting the group, because then you can affect the flow of communicatio

the transmission of illness, and so on.  However, as was certainly the case with the hijacker 

network, often you only see part of the network.  As such, these centralities can be misleading.  

Moreover, from an intervention perspective, you sometimes are more concerned with issues of 

power, control or expertise. As such, you might be better served by using exclusivity measures, 

like who has exclusive access to particular resources and so forth.  Thus, another issue is that you

need, since for many applied concerns, you need to move beyon

ata mu

 

e 

y track 

ns, 

 

d single-mode single plex data, 

o 

at 

l 

  

 

the 

 be pulled out when we place networks in this kind of dynamic multi-mode 

ulti-pl

pecial 

you also need new metrics for identifying core vulnerabilities. 

 In building the dynamic network tools we have tried to address the issues described 

above, and others. We assess not only the social network but also go on to ask what resources d

the members of the network have access to, and how does that access relate to their position in 

the social network.  With event and task data we go still further, and ask who has been at wh

events, who is doing what tasks, and so on, and use that information to infer missing socia

linkages and identify different social roles.  It is still possible to calculate things that like 

centralities, but they are on multi-mode data and as such begin to reveal individuals’ roles. 

Individuals can standout on a number of dimensions, not just by virtue of their communication.

For example, one metric we have developed measures who is likely to be the emergent leader, 

using a multi-mode multi-plex metric called cognitive demand.  Additional roles can be defined

in terms of work load, subsequent event attendance, and exclusive access to resources.  All 

things that we want to talk about with respect to individuals and why they are important in 

networks can begin to

m ex context.   

 This dynamic approach affords a much richer understanding of how we might impact the 

underlying network. The person who is connected to a lot of other people but doesn’t have s

expertise or doesn’t have high cognitive demand is probably a good target for going to and 

getting information.  However, if I want to break the system, I might want to go in and pull out 
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the individuals who have exclusive access to particular resources, so I want to use an exclusivity

metric.  If I want to impa

 

ct not just the formal but the informal leadership then I would want to 

 

 And, we 

s 

nse, because their political positions ensured that they would be connected to the same 

others.   

use cognitive demand.   

 Once I’ve identified a possible individual, I might want to ask how I can influence that 

person.  To answer that I would ask who are they connected to, what groups are they in, what do

they know, what resources do they control, what events have they been at, and so on.  Figure 6 

shows the sphere of influence for one actor, showing their focus—their ego network, basically—

but in this multi-mode multi-plex space.  In addition, as part of the sphere of influence analysis, 

we also calculate how the actor fares relative to everyone else on a number of metrics. 

assess who are the closest others to them in that network; i.e., who are most like them 

structurally.  Now Figure 6 implies that Khamenei is close to Khatami in this data set. On the one 

hand, this is funny because they hold completely opposite political views.  On the other hand, thi

makes se
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FIGURE 6 Sphere of Influence Analysis 
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 We next want to ask how such a network can be broken into groups.  In Mark Newman’s 

paper, he introduced some grouping algorithms. Grouping algorithms are extremely important in 

this area.  We use grouping algorithms in a dynamic sense to look at the evolution of the structu

of a network.   Figure 7 shows the structure of al Qaeda in 2000 as based on open source data.  

Figure 8 shows some of the groups that were extracted from that data using one of Newman’s 

algorithms.  The block model reveals a structure that basically shows a bunch of individua

are all tightly connected along the diagonal to a bunch of separate groups, and then a few 

individuals who serve as liaisons connecting multiple groups.   The upper red horizontal rectangle 

in Figure 8 is the row of group connections for Zawahiri, while the lower red horizontal one is for 

bin Laden.  They c

re 

ls who 

ross connect between groups.  This is what is now referred to as the classic 

cellular structure. 
 

 

 
FIGURE 7 Al Qaeda 2000—Open Source Information 
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FIGURE 8 Al Qaeda 2000—Cellular Structure 
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 Using those techniques, we can now look at change over time in network. By 

simply running these grouping algorithms on the network at multiple points in time, and

tracking which critical individuals move between them, we begin to track the extent t

which these networks are evolving and changing their basic structure.  I am going to 

show you some networks and talk about this in the context of some work we have been 

doing on Al Qaeda using data collected from open sources on what it looked like in 2000, 

2001, 2002, and 2003.  In the Figure 9 the meta-network of al Qaeda circa 2000 (left) an

2003 (right) is shown; with different symbols for people, resources, locations, etc.  The 

red circles are people.  All the other things represent known locations where operatives 

were, resources, knowledge at their disposal, roles that people were playing, and critica

events.  The point that I want to make about this is that there is a lot more information 

here than just who was in contact with whom.  We know a lot more about al Qaeda.  This

means that, if we are going to be smart about this, we have to use that other information 

to be able to think about how to evolve the
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infer what the social network looks like.   

 

 

FIGURE 9 Meta-Matrix for Al Qaeda—2000 (left) and 2003 (right) 
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 through having been from the same locations, which may be dead letter 

king or 

3 

 

 Has al Qaeda remained the same over time?  In short, no; in fact, it has changed quite a

lot.  Although you can’t tell it from Figure 10, if we were to actually zoom in on the graph for 

2003, the red circles, which are the people, actually form two completely separate, broken apart

sub-networks.  Whereas, it was one completely connected group back in 2000—except for the

isolates—but in 2003 we have got two big separate cores with no connections between them. 

They are only connected

drops, or who knows.   

 Let’s examine this data in more detail.  So far, I am just showing you two visual images 

and asserting that these pictures are different. Behind this are a lot of statistics for looking at how 

the networks change.  For example, in Figure 10 we look at the movement of al Qaeda over these 

four years on a number of dimensions. Over time, the density of the overall network has gone 

down. Basically, this is attrition effect, and it has gone down not just in terms of who is tal

who is communicating with whom, but it has gone down in access to resources, access to 

knowledge, and involvement in various tasks.  At the same time, the network was become 

increasingly adaptive as a group from 2001 to 2002, but it had suffered so much attrition by 200

that it kind of stabilized in a new organizational form.  In terms of other factors, we know that, 

over time, the communication structure of the group has changed, such that the average shortest 

path among actors, for example, has actually increased.  So, on average, communication should 
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take longer.  The communication congruence, which is a mapping of who needs to communicate

with whom to do the kind of tasks that they are supposedly doing, has actually improved.  Th

suggests the very different organizational structure that evolved be

 

is 

tween 2000 and 2003.  A 

leaner, more tightly organized structure appears to have evolved. 

 

 

FIGURE 10 Change in Al Qaeda Over Time 
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 What about performance?  Learning, recruitment and attrition lead to changes in the 

network which in turn impact performance.  Some of these changes, e.g., learning are natural, and

others, e.g., attrition are the result of strategic interventions.  We have a whole series of tools for

looking at dynamic change in networks, for looking at the effects of both natural evolution and

interventions.  Basically these tools—we have used ORA to estimate immediate impact using 
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comparative statics and DyNet to estimate near-term impact using multi-agent simulatio

you look at change in networks immediate

n—let 

ly or in the near term, and to look at change 

ypothe

e 

or 

t 

r time, 

ure.  

illates between these two 

etworks 

was the Hamas 

ader and, in fact, Hamas’ performance did improve once Yassin was removed. 

 

 

FIGURE 11 Impact of Removal of Top Formal Leader 

h tically or for a specific network.  

 You can use these tools to ask questions about network evolution. Fundamental 

principles from cognitive psychology, sociology, and anthropology about why people interact, th

tendency of people to interact with those who are similar, tendency of people to go to others f

expertise, and so on, form the basis for the evolutionary mechanisms in DyNet a multi-agen

technique for evolving networks.  DyNet can be used to address both natural and strategic 

change.  For example, we took the al Qaeda network, shown in figure 7 and evolved it ove

naturally.  The result was that the overall network, in the absence of interventions such as 

arresting key members, oscillated back and forth between a two core and single core struct

The structure at 300 steps is similar to that at 100 steps, with a totally connected structure 

intermediate at 200 and 400 steps.  Without intervention, it just osc

forms over time, according to these basic fundamental principles.  

 We also used DyNet to examine the effects of hypothetical changes to stylized n

composed by blending actual network data with network structure extracted from more 

qualitative assessments.  For example, Figure 11 shows an expected change over time for Al 

Qaeda, which is in blue, and Hamas, which is in red, based on a combination of real and stylized 

data drawn from qualitative assessments.  On the left, we see the state if we just left them alone, 

in which al Qaeda out-performs Hamas and so on, and on the right what would happen if the top 

leader were removed from each.  We did this analysis a while back, when Yassin 

le
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 Finally, we can use DyNet to do course of action analysis and ask “How do these 

networks evolve, when there are specific strategic interventions?” We might, take a network, for 

example the al Qaeda 2000 network from Figure 7, and isolate the individuals who stand 

some of the various measures.  For example, the individuals who were highest in degree 

centrality or betweenness or cognitive demand might be removed; i.e., bin Laden or Baasyir.  W

could, alternatively, remove a whole group of people, such as the top 25 in cognitive demand

Each of these what-if scenarios represents various courses of action.  Running this series of

virtual experiments results in comparative impact statistics like those in Figure 12.  In this 

example, any of the actions considered would lead the system to perform worse than it is now.  

Caveat:  these results were generated using a multi-agent simulation on a network extracted from 

open source.  The relative value of this analysis is not to make a point prediction of what actua

happens to these groups, it is not to predict specific reductions such as that pulling out all the 

high-cognitive-demand people will result in 40-percent lower performance.  Rather, the value of 

this analysis is to show relative impact; e.g., that the relative impact will be stronger were y

remove all those peop

out on 

e 

. 

 

lly 

ou to 

le versus removing just bin Laden and that any intervention is more 

 

FIGURE 12 Relative Impact of Different Courses of Action 
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Performance

(post isolation strategy)

0
0.2
0.4
0.6
0.8

1

Do Nothing Baasyir Bin Laden High
Cognitive
Demand

Weak
Boundary
Spanner

 

 

 

 

 

 

 

 

 

 

 

 

 183 
 



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

 You can also use such an analysis to go further and ask, if we were to remove parti

individuals, then—since people are learning and changing anyway—who is going to start 

interacting. That is, where should we see the impact of change?  In fact, we migh

cular 

t find many 

people starting to interact in the simulation.  An example is shown in Figure 13. 

URE 13 Emergence of New Relations After Removal of bin Laden  

t 

 

t missing data are some of 

 

ut 

ne 

y issues that the network community needs to deal with.  At this point, I will 

open it to questions. 
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 If I were the analyst, I would look at these results in Figure 13 and ask “What does i

mean that the simulation is predicting that Salah and Sulaeman will start interacting with a 

probability of one?” Well, it is actually .999999999.  Even so, is the probability really that high? 

What that means is that there is a good chance that these two individuals are already interacting 

and additional information gathering efforts should be directed to confirming this, if it is critical. 

The point here, is that suggestions for information gathering and abou

the side benefits from doing predictive analysis of network change.  

 In summary, from an applied perspective there is a need to move beyond simple network

analysis to look at dynamic multi-mode, multi-plex approaches.  Doing so will require us to p

network statistical analysis as a component within a larger tool chain moving from network 

extraction, to analysis, to simulation, and employing more text mining, data mining and machi

learning techniques.  The tools I have shown you are a step in this direction, and their use has 

raised a number of ke
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  Is there anything you can do, or what sort of methods do you have for 

y 

les 

erent branches of science, and there is lots of evidence underlying all three of 

em.  S

 

nd in general we got between a .8 and .9 prediction 

e.  I can tell you that, in 

s it 

places to look to gather data 

QUESTIONS AND ANSWERS 

 

 DR. HOFF:  This is a very sophisticated model that you have for the behavior of the 

networks under changes.  Even when we look at observational studies of the impact of, say, beta 

carotene on people’s health, we get that wrong.  So, you need to do a clinical trial to figure out 

what the causal effect is.

sort of checking—you talk about what will happen if we modify X. Is there any way of checking 

that or diagnosing that? 

 DR. CARLEY:  This is going to be kind of a long answer. There were three parts to that 

question. The first thing is that, in the model, there are three fundamental mechanisms for why 

individuals change their level of interaction. One is based on this notion called relative similarit

or homophily based interaction. I interact with you because it is comfortable; you have stuff in 

common with me.  Another is expertise, you have something I need to know.  And the third is 

task based, we are working on the same task, so we start interacting.  Those three basic princip

all came out of diff

th o, we began by taking things that had been empirically validated, and put them in the 

network context.   

 Then what we did was, we took this basic model and we have applied it in a variety of 

contexts. For example, we applied it to NASA’s team X out in California and to other groups at 

NASA.  We applied it to three different companies that don't like to be talked about.  In all cases

we used it to predict changes in interaction, a

of changes and who started to interact with whom. It was less good at who stopped interacting. 

So, we know that there is a weakness there. 

 In terms of the covert networks themselves, we actually used this model to try to predict 

who some of the emergent leaders were in some of the groups over tim

the case of Hamas, we correctly predicted the next leader after Yassin using this model.  Doe

need more validation?  Of course, but that is the beginning answer.   

 The other part of the answer, though, is that one of the ways that things like this are 

validated in the field, and one of the things that people like about models like this in the field, is 

that it helps them think systematically about data.  Thinking systematically is really important.  

The second thing is that, even if the model gets it wrong, it suggests 

and, when you get that data back in, you can then modify and upgrade and adapt things based on 

that new data, which is what I think we are in the process of doing. 
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 DR. GROSS:  When you said you used a variety of statistical tools, other than 

based on 

 have a quick question. It is sort of technical. You were using a Hamming 

nt 

r of 

e 

 looking at is a Hamming metric between—

 seen 

o 

ry 

f 

e 

ked at 69 different organizations in a crisis, non-crisis condition, and you can 

calculating measures, did you use any other statistical tools, cross validation or boot strapping? I 

don’t know, I am just mentioning random— 

 DR. CARLEY:  The tool itself basically has a lot of measure calculations. It also has an 

optimizer system for optimizing the fit between a desired network form and an actual network 

form.   It also has a morphing procedure for morphing from one form to another that is 

facial morphing technology, and it has some clustering and other techniques for grouping.  In 

terms of the simulation models, we have tried different types of validation techniques. 

 DR. BANKS:  I

network on the two networks as a measure of adaptability, and I am not quite sure what the inte

of adaptability is there. 

 DR. CARLEY:  Basically, one of the ways in which people think of organizations as 

being adaptive is that they change who is doing what and who has access to what resources, and 

who is working together.  Rapid changes in those are often considered a key leading indicato

adaptivity. That doesn’t mean improvement in performance.  It just means it is adaptive from th

organizational sense to change.  So, what we are

thinking of this as an organization—what the connections were in this multimode state at time 

one versus two and that becomes our measure. 

 DR. MOODY:  Could you speak about what you mean by performance?  You have

reductions in performance, but I could imagine numerous dimensions of performance. 

 DR. CARLEY:  Right now, in the system, there are two things that are considered 

performance metrics that people are using the system on.  One is basically a measure of 

information diffusion, which is basically based on shortest path, with the idea that systems tend t

perform better if they are closer together and so on.  A second measure of performance is what 

we call our performance-as-accuracy metric, which is a simulation technique that estimates, for 

any given organizational form, its likelihood of correctly classifying information, given a ve

trivial classification choice task. It is not a specific measure of how good are you at recruiting or 

how good are you at X, Y, and Z, but it is a generic thing of how good is a structure, is this 

structural topology good at doing classification choice tasks.  We use that because there is a lot o

evidence out of organization science that, in fact, a huge portion of tasks that any group does ar

classification choice tasks. So, this seems to get at it, and we have some validation in the sense 

that we have loo

correctly get their ensemble performance differences using this kind of a generic measure. It is a 

good indicator. 
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ave 

here have been doing similar 

nalyse

y, 

 to be 

 of network structures?  We are not sure yet. Some of our leading data 

uggests that for some types of network structures, like corporate free networks, you can in fact 

o better than that. 

 

 

 DR. HANDCOCK:  Leading into the next session, could you make some comments on 

the reliability and quality issues and, in particular, about missing sample data? 

 DR. CARLEY:  Well, the first thing I will say is that these metrics in here don't yet h

confidence intervals about them, showing how confident we are that this metric is what it is given 

the high levels of missing data.  So, that is an unsolved problem.  The second thing is that we 

have been doing a series of analyses, as I know several other people 

a s, looking at networks where we know what the true answer is, and we then sample from 

it, and we then re-estimate the measures to see how robust they are. 

 Steve Borgatti and I have just finished some work in that area, which suggests that, for a 

lot of these measures, if you have 10 or 20 percent errors, that as long as you are not trying to sa

this person is number one, but instead say, this person is in the top 10 percent, you are going

about right some 80-90 percent of the time.  So, it has that kind of fidelity.  Is it worse or better 

with particular types

s

d
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Current Developments in a Cortically Controlled Brain-Machine 
Interface 

 
Nicho Hatsopoulos, University of Chicago 

 
 

 DR. HATSOPOULOS:  My background is in neuroscience. I started out in physics, 

went to psychology, and now I’m in neuroscience.  Today I am going to talk about some work we 

have been doing starting 10 years ago with my collaborators at Brown University, which is trying 

to make sense out of large data sets collected from the brain, particularly in the cortex of 

behaving monkeys, and then where we are taking that to the next level. 

 It is going to sound a little bit engineering in flavor, but I hope to convince you that it has 

not just applied applications but also has scientific interest.  Let me start off by telling you what 

people in my line of business do and have done historically.  For about 40 years, my field might 

properly be called behavioral electrophysiology. What we are trying to understand is electrical 

and physiological signals in the brain and how they correlate with behavior, whether it is sensory 

signals coming in, visual or auditory signals, cognitive process, or motor outputs.  Since the late 

1960s people have been able to record these electrical signals in behaving animals and, for the 

most part, what people have done is address this encoding problem.  In our case, we have worked 

with a monkey that we trained for several months to play a video game by using a joy stick to 

move a curser to particular targets.  Historically, what people have done is insert an electrode into 

the an animal’s brain to record the extracellular action potentials from individual neurons while 

the animal performs a task.  Particularly in cortex, signals are believed to be highly noisy so you 

have to do some sort of multi-trial averaging, requiring the animal to perform the task over and 

over again. 

 Figure 1 shows an example of five trials. These are raster plots showing you the time 

occurrence of the spikes, which are action potentials.  These are extracellular recordings.  By 

averaging many of these rasters you can get an average response which is shown in the yellow 

graph, and this is a typical average response for a neuron in the motor cortex. What we are 

plotting on the y axis is the firing rate of the neurons versus time. This vertical bar is the onset of 

movement when the monkey first begins to move.  Typical of the motor cortex, it starts firing 

maybe 200 or 300 milliseconds before the moving begins, and it is believed to be intimately 

involved in driving the arm, driving the motor neurons in the spinal cord that ultimately activate 

the muscles and move the arm.  This same approach has been used in the sensory domain as well. 

You present a sensory stimulus multiple times, so as to wash out noise, and you get this sort of 

response. 

 189 
 



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

 
FIGURE 1 Unpublished. 

 

 What we have been doing, especially over the past five years, is taking the inverse 

approach, the so-called decoding problem, which in some sense is more realistic in terms of what 

the brain actually has to deal with. We put in multiple sensors, multiple electrodes in a particular 

area of the brain, the motor cortex, record multiple single neurons, their action potential, and 

based on the activity on a single trial, tried to predict what the animal was going to do.  We don’t 

have the luxury of trial averaging, we just have a snapshot of activity at a certain moment in time 

and try to predict what the animal is doing.  This multi-electrode sensor, shown in Figure 2, is this 

so-called Utah array that was developed by Dick Normann, a biomedical engineer at the 

University of Utah.  It is a silicon based array consisting of 100 electrodes arranged in a matrix 10 

by 10.  Each electrode is separated from its neighbors by 400 microns.  The length of those 

electrodes is typically 1 or 1½ millimeters long.  So, we are picking up the cortical layer where 

the cell bodies lie, and the tips of these electrodes are what actually pick up the electrical signals. 

The rest of the shaft is insulated.  These tips are platinized and we pick up these extracellular 

signals.  The picture on the right of Figure 2 gives you a sense of the scale.  Oftentimes when I 

first gave these talks I would present this thing on a big screen and people would think this is like 

a bed of nails destroying the brain here.  In fact, that is my finger to show you the scale.  It is 

quite small, and for a neurosurgeon it is essentially a surface structure although it is penetrating in 
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about a millimeter.   

 
FIGURE 2 Left panel:  electron-micrograph of Utah micoelectrode array taken by Dr. Richard 

Normann.  Right panel:  photo taken by the Chicago Tribune. 
 

 I am going to work backwards.  I am going to talk to you about where we have taken it to 

the next step then take you back into the lab with our monkeys, tell you where we are going for 

the future, and where this area of decoding is going to head in the next few years.  

 About three or four years ago we took it to the clinical setting.   The idea was if we could 

predict, based on a collection of signals from the motor cortex, where a monkey was going to 

move, could we use that to help someone who was severely motor disabled like a spinal cord 

injured patient who can’t move their limbs.  Could we extract those signals while the patient is 

thinking about moving, and then control some sort of external device, whether it be a cursor on a 

computer screen, or a robotic device, or even their own arm by electrically stimulating the 

muscles.  There are already devices out there for people who are partially paralyzed who can still 

move their shoulders but can’t move their wrist or their fingers.  Basically, these devices have 

little sensors in the shoulder and depending on the orientation of the shoulder joint, will generate 

different patterns of electrical stimulation, and generate different canonical grips like holding a 

cup of coffee or holding a fork or whatever.  Ultimately we want to connect those devices with 

our cortical sensor and then provide a kind of practical device for a patient.   

 About three years ago we formed a company that took this to the clinical setting and 

initiated an FDA approved clinical trial involving five patients.  We had three proofs of principle 

and milestones that we had to meet.  First, by putting this in a spinal cord injury patient, could we 

extract human signals from a human cortex?  That hadn’t been shown before, at least with this 

particular device.  Secondly, could the participant, the patient, modulate those neural signals by 

thinking about moving?  Thirdly, could those modulated signals be used for a useful device?  

What we are going to talk about today is just moving a computer cursor.   
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FIGURE 3 Photos taken by Cyberkinetics Neurotechnology Systems, Inc. 

 

 

 Figure 3 shows our so-called BrainGate pilot device which basically has this sensor 

which is the same sensor we use in our monkeys, connected to a connector that is secured to the 

skull.  Going through the skin we can connect it to an external computer and acquisition system 

which is shown here.  We collect the data, do our calibration, build our so-called decoding model 

to make sense out of those signals and hopefully, allow the patient to move a cursor.   

 Our first patient was a young man in Massachusetts who was basically tetraplegic and 

decided to participate.  We implanted the sensor array in his motor cortex during a 3-hour 

surgery, he had an unremarkable recovery from the operation, and several months afterwards we 

began picking up electrical signals.  Figure 4 shows examples of raster plots from three channels 

while we had the patient imagine opening and closing his hand.  You can see all three of these 

neurons tend to fire when he imagines closing the hand, and then stop firing when he imagines 

opening the hand.   
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FIGURE 4 Figure generated by Cyberkinetics Neurotechnology Systems, Inc. 

 

 

 Here is a video clip of this voluntary modulation.  [A video clip was shown at the 

workshop.]  When the technician asks the patient to think about moving the whole arm either to 

the left or to the right or relax, the top raster plot displays a big burst of spiking as the patient 

imagines moving his arm to the left.  Thus, we met the first two milestones of our clinical trial, 

demonstrating that the neural signals can be detected and that the participant can modulate that 

neural output. 

 We met the third milestone by actually showing that the patient could basically read his 

e-mail, turn on the television, and so forth.  This is an example of what can be done.  It is pretty 

crude, and there are already a lot of devices out there for spinal cord injured patients.  This patient 

can speak, so we have to really demonstrate that what we are providing for this patient isn’t 

something he could do for himself with a much cheaper solution, such as an existing voice-

activated system.  I think we have just begun to scratch the surface with this technology. 

 One of the interesting results from this study and also with our monkey studies is that it 

has always intrigued me how few signals we can extract and yet get reasonable control and 

reasonable accuracy and prediction of movement.  Under that little chip, that sensor array, there 

are about 1.6 million neurons, and yet, by extracting signals from maybe 20 or 30 neurons or 

multi-unit activity, we can do a reasonably good job. 

 Why do we have all those neurons in the first place?  It is intriguing, and there are all 

kinds of hypotheses.  There is some redundancy in the system.  I am not sure if that is the whole 

answer, but that has always been intriguing to me.  Again, this sensor array is just put into the arm 

area of the motor cortex. We know it is activated when the arm is moved or planned to move.  
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Aside from that, we are not picking particular cells or particular areas. 

 Let me switch to the work that I have been doing in the lab with the monkeys, and taking 

this idea of a brain-machine interface to the next step.  One of the ways we view interaction with 

the world is to consider two different general modes of interaction:  a continuous (analog) mode, 

such as moving a mouse on a computer screen or moving one’s limb in space and time, and a 

discrete (symbolic) mode, such as language or pressing keys on a keyboard, or even grasp 

configurations such as holding a cup and so forth, which can be considered discrete kinds of 

movement.  Our feeling is that those two different modes of movement or selection processes 

might involve two different kinds of cell populations and different kinds of decoding algorithms. 

 To tackle this problem with our monkeys we trained them to perform two different kinds 

of tasks. To get at this continuous mode we had the monkey basically scribble to follow a set of 

randomly positioned targets as shown in the top left part of Figure 5.  When they get to a target it 

disappears and a new target disappears.  They move to it and it disappears and so forth.  Over 

multiple trials they generate the kind of mess shown in the lower left.  To get at the discrete mode 

of operation we use a much more common task, which is called a center-out task, where basically 

the monkey reaches from a center target to one of eight targets positioned radically away from the 

center, and  keep repeating, doing the same task over to one target.  In the actual experiment each 

target is randomly selected on any given trial.  By doing this they generate the relatively 

stereotyped movement to different targets shown in the lower right of Figure 5.  The key here is 

that we break up the center-out task into a planning phase and an execution phase:  in the 

planning phase, one of the squares on the outer ring is turned to yellow, signifying it is the target, 

but the monkey is now allowed to move.  He has to wait there for about a second and presumably 

plan his movement.  After about a second, the target starts blinking, indicating that he has to 

move.  When the monkey waits for that blinking, we know we have trained the animals.  It takes 

a lot of training to get them to do that because as soon as they see that target their natural 

inclination is to move to it because they know they are going to get their apple juice and be 

happy.  Again, it takes some time to train them to do that, but they will wait for about a second.  

We are going to look at that early planning phase and see if we can then predict which target the 

animal has selected.  That tackles two different kinds of modes of operation. What we were 

interested in is whether there were different cortical areas that might be better suited for these two 

different modes of operation.   
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FIGURE 5 Top left and top right panels generated by myself, unpublished; bottom left and right:  
taken from Hatsopoulos et al. (2004).  “Decoding continuous and discrete motor behavior from 
motor and premotor cortical ensembles.” Journal of Neurophysiology 92:1165-1174. 

 

 

 For the most part we have been implanting into the central motor strip of the monkey 

cortex.  It has a rough topography—a leg area, an arm area, and the face area.   For the most part 

we have implanted in the arm area of the primary motor cortex.  Since I moved to Chicago I have 

been doing these dual array implants, and am now doing triple array implants, but I will be 

showing you these dual array implants where we have a second array implanted in the pre-motor 

cortex in the dorsal part of the pre-motor cortex, which is believed to be involved in this early 

planning or target selection process.   
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FIGURE 6 Figure generated by myself, unpublished. 

 

 The photograph on the left of Figure 6 shows you the two arrays implanted in surgery.  

What we are proposing here is a system of three decoders to facilitate these two different modes 

of interaction with the world within a constrained experimental environment.  We have got these 

two arrays in two different cortical areas.  The pre-motor cortex signals will be fed into a discrete 

decoder to predict which target the animal is going to go to.  If the monkey incorrectly predicts, 

based on his brain activity, which target he is going to go to we then switch to a continuous mode 

based on signals in the motor cortex.  We have a third decoder which allows us to switch between 

the two modes.  We control the switch but ideally we want the switch to occur voluntarily by the 

patient or by the monkey, and we are going to use a different kind of signal to instantiate that 

switch.  
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FIGURE 7 Taken from Hatsopoulos et al. (2004).  “Decoding continuous and discrete motor 
behavior from motor and premotor cortical ensembles.” Journal of Neurophysiology 92:1165-
1174. 
  

 Figure 7 shows some elementary statistics.  Basically, we have tried a number of different 

approaches to predicting the position of the monkey’s hand based on the response of multiple 

neurons at multiple time lags.  This is essentially a linear regression problem.  We have tried 

nonlinear approaches and we have tried more sophisticated linear approaches.  For the most part 

we can get a bit of improvement but not that much better.  In fact, this very simple linear 

approach does remarkably well.  The key to this is we are looking in this response matrix; we are 

looking at the neural activity not at just one instant at time but in multiple time points in the past, 

up to about a second in the past.  It turns out that neural activity way back in history can actually 

participate in predicting what the current position of the monkey’s hand is.  Figure 8 shows the 

output of just one simulation. This is an off line simulation where we are predicting the position 

of the monkey’s hand, and the blue is our best prediction based on the neural activity.   
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FIGURE 8 Figure generated by myself, unpublished. 

 

 What we found—this in retrospect isn’t so surprising, although there was some data in 

the literature that suggested otherwise—was that cells from the motor cortex, primary motor 

cortex, M1—the red trace in Figure 9—did a much better job of predicting the actual position of 

the monkey’s hand. 

 Figure 10 shows the results from a monkey playing that random walk task; he is jumping 

around and you can see he is oscillating; he is doing harmonic oscillation.  M-1 activity predicts 

better than pre-motor cortex.  In this little video [shown at the workshop] you can probably see 

how well M-1 does compared to pre-motor cortex, and pre-motor cortex is lagging behind; it is 

not doing such a good job.  That is something we have seen repeatedly; it is a consistent finding 

and not very surprising. 
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FIGURE 9 Taken from Hatsopoulos et al. (2004).  “Decoding continuous and discrete motor 
behavior from motor and premotor cortical ensemble.” Journal of Neurophysiology 92:1165-
1174. 
 

 
FIGURE 10 Figure generated by myself, unpublished. 

 

 

 QUESTION:  It looked like the pre-motor signals actually had a higher frequency 

response than the motor signals. Is it true that some combination is better than one or the other? 
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 DR. HATSOPOULOS:  Certainly a combination is better than either one alone. We 

have demonstrated that as well, it is true.  We were interested in, if you had a choice between one 

cortical area versus another, which one would you choose for this kind of continuous control, but 

you are absolutely right, and we have demonstrated that. 

 So, what we found in Figure 11 was what percentage of the variance we account for 

based on a selection of neurons.  The x-axis shows the number of neurons used to predict the 

movement of the hand.  So, we have different sized ensembles, ranging from one neuron to 20 in 

this example.  As you can see, overall, M-1 is doing much better than pre-motor cortex, and this 

is the mean response as a function of the number of neurons. 

 

 
FIGURE 11 Taken from Hatsopoulos et al. (2004).  “Decoding continuous and discrete motor 
behavior from motor and premotor cortical ensembles.” Journal of Neurophysiology 92:1165-
1174. 
 

 There are a couple of things that are particularly interesting. One is, if you look at the 

lower-left graph, if you go back to one neuron—let’s say you have only one neuron to work 

with—you can see a big cluster of neurons that do poorly; they account for maybe 10 percent of 

the variance, and then you have two outliers higher up that account for a much larger percentage 

of the variance.  I have termed these “super-neurons” because we consistently find these unique 
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neurons that fall outside the main cluster of neurons that do a much better job.  In fact, if you look 

at a large ensemble, and you consider 10 neurons in your decoding you can see this pattern so you 

have got these big spaces.  This cluster of 10 neurons always contains one of these two super-

neurons.  That is one interesting finding.  The other interesting one if when you try to extrapolate 

based on 20 (or we have actually gone out to 40 neurons or 50 neurons), and try to extrapolate 

how many neurons would you need to get ideal performance.  Our definition of ideal performance 

would be that 95 percent of the variance is accounted for.  Now extrapolation is always fraught 

with problems, but if you were to do that you get the hypothetical curves in the two graphs on the 

right side of Figure 11.  You might say, wait a minute, this is just make-believe.  You are right, it 

is kind of make believe, although these are curves that have been proposed in the past.  Let’s say 

they were true, how many would you need?  You would need about 200 neurons in the primary 

motor cortex.   

 Yet we have shown in real time applications with patients and with our monkeys that it is 

irrelevant whether or not we were restricting the hand.  The fact is the animal and the patient can 

control the cursor remarkably well so this is the continuous mode.  For the discrete mode we had 

this other task where it is basically a center-out task, and we have this instruction period where 

the monkey is asked to bring the cursor to the center of the target and wait anywhere from 600 to 

1,500 milliseconds.  This is shown schematically in Figure 12.  We are going to look at this early 

activity to try to predict which of the eight targets he is going to move to prior to actually moving 

at all. 

 

 
FIGURE 12 Figure generated by myself, unpublished. 
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 Figure 13 shows the the average responses for this task—these are now peri-event 

histograms which are generated in the same old-fashioned way as they have been done for 50 

years, you just have the monkey perform each of eight directions.  Each column is now one of 

eight directions and each row is a different neuron.  The top three are from pre-motor cortex, and 

the bottom three are from M-1, primary motor cortex.  You just average the response over 

multiple trials of the same direction. What you see is this interesting increase in activity as soon 

as the instruction signal comes on.  Zero represents the onset of the instruction signal comes on so 

zero represents the onset of the instruction signal.  You see this increase in firing rate, then it goes 

down, and then about a second into the trial the movement begins.  This is well before movement 

begins. You don’t generally see this activity in the primary motor cortex, although it is not so cut 

and dried.  Generally you see more of this early target selection activity in pre-motor cortex. 

 
FIGURE 13 Taken from Hatsopoulos et al. (2004).  “Decoding continuous and discrete motor 
behavior from motor and premotor cortical ensembles.” Journal of Neurophysiology 92:1165-
1174. 
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 When we tried to model the probability of the response of the whole ensemble—let’s say 

we have 20 neurons—using a maximum likelihood classifier, this R vector is a 20-dimensional 

vector.  We model this probability conditioned on each of the targets, so we have eight of these 

models, and we have tried Gaussian or Poisson models for the probability.  Poisson tends to do 

better than the Gaussian.  We then maximize the likelihood of the data and use that to predict the 

target.  Figure 14 shows examples of that, where we are now looking at our prediction starting 

from instruction onset.  You can see chance is 12.5 percent, shown in the blue dotted line.  Pre-

motor cortex does considerably better than M-1 during this early period, which is not surprising 

based on those average responses and, in fact, we have gotten a lot better than even 42 percent. 

We have gotten up to about 80 to 90 percent based on activity in pre-motor cortex.   

 
 

 
FIGURE 14 Taken from Hatsopoulos et al. (2004).  “Decoding continuous and discrete motor 
behavior from motor and premotor cortical ensembles.” Journal of Neurophysiology 92:1165-
1174. 

 

 Figure 15 shows plots where you examine the performance of the classifier as a function 

of neurons.  As seen in the previous figure, pre-motor cortex does exactly the opposite of M-1.  
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FIGURE 15 Taken from Hatsopoulos et al. (2004).  “Decoding continuous and discrete motor 

I just want to thank members of my lab, in particular Jignesh Joshi and John O’Leary, and John 

behavior from motor and premotor cortical ensembles.” Journal of Neurophysiology 92:1165-
1174.  

 

Donohue at Cyberkinetics, as well.  Thank you very much. 
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QUESTIONS AND ANSWERS 

 

 DR. MOODY: Perhaps one quick question and then another.  In the discrete trial of the 

histograms, and each degree on the clock there was a great deal of variance, it seemed, in those 

histograms across the different directions.  Could you explain why that is the case? 

 The second question is, can you explain or can you speak perhaps more about whether or 

not it really matters so much if you are tapping into what they are doing if, instead, they learn 

how to respond and manipulate, even subconsciously, what they are doing to get the outcome. 

Can you speak between the two of those, the observation and the learning? 

 DR. HATSOPOULOS:  The first question was the variance in response over the eight 

directions.  The whole point was, it not only modulates with that direction, it modulates during 

that planning phase, but it varies with direction, with target.  That tells us, in fact, that it is 

providing target information.  It is saying, this neuron likes target five and not target three, and 

that is the whole point.  If it was common to all directions, we would have a very hard time 

decoding.  The second point was, oh, yes, in some sense, you could in principle use any brain 

area.  It is a form of biofeedback. Is that what you are getting at?  Absolutely, that is true. In fact, 

there are EEG-based systems for doing this kind of thing in patients. The only thing I can say 

about that is that they are functional, but they take a long time to train the patient to use.  They 

basically have to associate certain global brain signal brain patterns with certain movements or 

certain targets, and it takes a lot of training to get them to do that.  With this device, it is invasive, 

that is the draw back, but the pro to this approach is we are extracting signals from the motor 

area, the area that was intentionally used in the normal intact system to control the arm, and this 

requires no training at all.  Some of these videos were done during the first attempt, or almost the 

first attempt. There was no extensive training in the animal.  You are right, in principle that is 

true. It is biofeedback, in some sense. 

 DR. KLEINFELD:  I have a question on some of the noise between cells. Were they 

really independent units? Did they co-fluctuate at all? 

 DR. HATSOPOULOS:  Yes. 

 DR. KLEINFELD:  You had a very coarse scale. You had a .4 millimeter scale.  Is there 

an issue if you get too close, that you expect to have sort of synchronous or noise sources? 

 DR. HATSOPOULOS:  You are talking about cross talk. 

 DR. KLEINFELD:  Common fluctuations to neural outputs so that they are no longer 

considered independent variables. 
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 DR. HATSOPOULOS:  In fact, that was the talk I wanted to give, but then I decided to 

give this, looking at neural synchrony in the motor cortex.  Basically in about 10 to 15 percent of 

cell pairs, we find evidence of synchronization, anywhere from a millisecond to 20 milliseconds.  

If you plot a cross-correlation histogram, we find some widths that are very narrow, maybe three 

millisecond widths, and other ranging all the way up to 20 milliseconds. 
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Some Implications of Path-Based Sampling on the Internet 
 

Eric D. Kolaczyk, Boston University 
 
 

 DR. KOLACZYK:  To all the organizers, thank you for the invitation. I’ve enjoyed very 

much what I have seen so far and hope I can follow well here in the next half hour. 

 I have heard sampling and measurement talked about a few times throughout the day and, 

as Mark said, we now have a session trying to delve a little deeper into some of those issues.  I 

want to look at the issue of sampling and its implications on certain inferences.  What I am going 

to talk about are two projects I’ve done with collaborators on Internet network modeling, which 

both end up leveraging classical sorts of problems from the statistical sampling literature going 

back, say, to the middle of the 1900s in that sense.  Given the context that we are in, they involve 

new methodology and new perspectives.  Basically, working with the network is breeding a need 

for new thinking in this area.  

 The two statistical problems I will discuss both involve path-based sampling on the 

Internet:  what we call I Traceroute Internet species and Network kriging.  There are lots and 

lots of ways you can think about statistical sampling on a network.  In some sense you have 

sampling of links, sampling of subnetworks, and sampling of paths. Our two projects are both in 

the context of sampling paths.  In both cases, the path-based sampling design necessitates 

innovative solutions to new versions of classical statistical problems, and the underlying network 

structure plays an important role.  The Internet species problem tries to perform inference of the 

network and the network kriging project performs inference for measurements on a network.  

Species problem is a classic one.  Kriging is a fancy name from the spatial literature for what is 

essentially linear prediction.   

 I am going to proceed first with the Internet species problem and then I am going to 

switch to the network kriging problem.  I figure I have about a half hour long talk here, so what 

should I do, cut down one of these hour long talks?  No, of course not, take a quarter of each and 

squeeze them into a half hour.  That is what I am going to do. This is going to be a rather high 

level view of each of them. What I am hoping to do is get a point across messages.  

 The Internet species problem is how to infer global network topology characteristics from 

a sample subnetwork.  This is work I did jointly with Fabien Viger, Luca Dall’Asta, Alain Barrat, 

and Cun-Hui Zhang.  Our measurements are what I am going to call traceroute-like paths between 

source and target nodes, and in a minute I will show you a slide talking a little more about that.  

The approach here is to characterize the estimation problem of certain characteristics in the 
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network as a so-called species problem.  A species problem refers to an old problem, the 

canonical example of which is a biologist sitting in the middle of a forest, watching the animals 

going by.  It is all well and good to mark which animals, but the biologist is really interested 

when they see new species.  They might see a tiger, a bear, another tiger, another tiger, or an 

ostrich.  There are three species there that I mentioned.  The question is, how many species are 

there, total?  It turns out that some questions regarding the inference of certain network topology 

characteristics from particular types of measurement can be paraphrased as species problem, and 

we propose estimators based on subsampling principles.  We have concentrated on accurate 

estimation of a so-called easy species, which is really just the size of the network in terms of 

nodes.  I will also try to shed a little bit of light on why some of the harder species, such as the 

number of edges and the degree distributions, are a little harder to get at.   

 Figure 1 defines the basic problem.  I am going to let G be a network graph.  It can be 

directed or undirected, which really doesn’t matter here. So, we can just think of a simple 

undirected graph.  We are going to suppose that a set of measurements yield a sampled subgroup, 

G*.  At a very general level, the question I am interested in here—which is really what is 

underlying a lot of the types of studies that you see in the literature—is how to take a sample of 

the network and infer something about the network itself.  I have certain characteristics of the 

sample network. I am going to infer that these are representative of the network I actually saw.  

The examples we are going to concentrate on are, for example, N, the number of vertices in the 

network, M, the number of edges, and the degrees of a given vertex. 

 

 
FIGURE 1 
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 Let me tell you a little bit about Traceroute sampling, and my apologies to the 

computer science community:  this is going to be an extremely high level sketch of it. 

Basically, what we have is a network, as depicted schematically in Figure 2.  Of course, the 

Internet and the nodes are referring to sources and routers, which are your standard machines on 

the Internet.  There is a standard experiment, and there are various versions of it, but there is a 

certain tool called Traceroute that I am now labeling all of it broadly as.  These are 

Traceroute-like experiments.  Basically, the idea is that you have ownership of certain 

machines and, from there you can send probes into the network.  These are going to be sources 

within the overall network. The nodes within the network are characterized by their addresses, 

their so-called IP addresses.  There are various ways that you can pull off addresses. You might 

generate them randomly. You might have large lists, but you have some sense of the overall 

address space. You make up some list of target addresses to which you want to send probes. The 

details of the particular Traceroute mechanism aren’t really important for the moment, for 

what I want to talk about; the end effect that results from that is all that I am really interested in.  I 

take a probe and I equip it with an address of a certain target.  It gets sent into the network and is 

routed so it goes from one node and then to another and then to another.  At each stage 

information is being accessed in that packet to find out where do you want to go and then saying, 

you need to go down that street.  You get there and then they say you need to go left down here.  

The information that you get back at the source is being sent back to you from each of these 

saying, yes, I have received it, I am this far away and I have sent it on, at a very rough level.  

From that information, you can reconstruct paths taken by the probes.  You can see that I have 

three sources in this little schematic and I have four targets.  There have been all kinds of studies 

about the topology that is inferred, the characteristics that are inferred from these types of studies 

(and to some degree the dependability of the characteristics you infer), and so on.   
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FIGURE 2 

 
 Basically, this is enough of a paradigm to suffice for what I am going to talk about.  Let 

me recap again and put more detail to the species problem, and in a moment I am going to take 

the Traceroute slide I just showed you and explain why these are essentially species 

problems. 

 Figure 3 defines the species problem.  A population is composed of C classes, and you 

observe N members of that population.  Overall, I might observe N animals in a forest and there 

are something like C species.  Of those N members you observe, they are going to fall into some 

subset of all the available species, say C* species, which is bounded above by C.  One of the 

standard questions is what is the value of C?  What you are really trying to find out is how many 

species were seen.  This is a very hard problem in many contexts.  It is a classic problem in 

statistics, as I said, but it arises in biology in the example I gave you. 
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FIGURE 3 

 

 The same problem arises in numismatics, as in when an archeologist digs up a number of 

ancient troves of coins and, from comparing the different coins that you have and the mint dates, 

you would like to know how many coins were minted in a certain period of time.  If you are 

talking thousands of years back, this is the data you have. You don’t have much more than that 

unless you have records that you can also access.  

 Linguistics presents another one instance of the species problem.  There is a famous 

paper by Brad Ephron and Ron Thisted in the early 1970s called, “How Many Words Did 

Shakespeare Know.”  There are lots of versions of this in the linguistics literature.  It is all getting 

at the same type of idea.  What is the effective vocabulary of an author?  One of the cute games 

they can play is going into the words of Shakespeare and once in a while you see that there is a 

new sonnet that has been discovered, and it is attributed to Shakespeare. The linguists do various 

types of quantitative analyses attempting to compare word frequencies and such.  A variant on 

that idea is to say, okay, there are some new words that were found in new sonnets that he could 

have known.  He is a pretty bright guy but, in some sense, how many words might he have known 

for the purpose of writing sonnets?  This problem is all over the place.  Some versions are 

challenging but certainly do-able, others slightly ill posed in a way that can be made formal. 

 Regarding Traceroute species, I would argue that N, M, and the degrees are all 

essentially species under the Traceroute-like standpoint.  Let me take the idea of the number 
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of vertices. You have a source and you have a target and, for each of those, you are getting what I 

am characterizing as a single path between them.  While you are doing that, you are discovering 

nodes. There is one discovered, there is one discovered, there is one and there is one.  The 

sources, of course, are known, and the targets are already known as well.  This particular target 

has been seen once, going there, it has been twice going there, it has been seen three times and 

four times.  It is a species, and you saw four members of that species. You can do the same thing 

with edges, and you can actually do the same thing with the degree of the node.  Each of these is 

getting successively harder, so we are going to go after the issue of estimating the number of 

vertices.  This is, in some sense, a toy problem. How many words did Shakespeare know, how big 

is the Internet?  There are an enormous amount of issues under that if you really wanted to look at 

that question.  There are other measurement devices that you would most likely want to bring to 

bear, etc.  The point is that a number of these issues of inferring graph characteristics can be 

phrased in this paradigm, and this is the one that we are using to bring to bear some focus on the 

problem.   

 You could think about doing parametric inference. We have an argument, which I 

haven’t attempted to sketch, that shows it would be quite hard given the current levels of 

knowledge.  If you think about it, what you need to be able to do is have a model, a parametric 

model, for the particularly species that you don’t see.  The problem is that there is typically an 

arbitrary number of species that you don’t see in an arbitrarily low frequency.  Without some kind 

of control on those two quantities, how many you haven’t seen and in what frequencies, there is 

very little you can say there, and that is what leads to the sort of ill-posedness and the worst 

conditions.  Nonparametric techniques, in the sense of not being reducible to just a handful of 

parameters, have typically had more success in this area.  So, that is what we choose to pursue 

here.  As I said, pathway sampling makes this problem non-standard.   
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FIGURE 4 

 

 Figure 4 shows the essence of one of the estimators.  Of all of the estimators we have 

looked at, we have essentially designed subsampling type estimators. You have a sample, now 

let’s sample from that sample in certain randomly chosen ways, so that you can utilize the 

information in an intelligent fashion to give you more information on what you haven’t seen.  

One version that we have looked at is the so-called leave-one-out estimator.  This is the strategy 

that underlies cross validation.  It is based on the idea that the information on unseen nodes can 

be gained through the rate of return per target node.  One of the assumptions here—I won’t show 

you the derivation—is that there is a low marginal rate of return from any single target node. 

 There is a paper by a couple of people in the audience here—John Byers and Mark 

Crovella, colleagues at Boston University—which, if I remember correctly, was called “The 

Marginal Utility of Trace Route-like Sampling.”  One of the figures they have in that is taking a 

look at, for each target, if I have already done Traceroute to all of these targets from these 

sources, how many new nodes do I discover.  If I recall correctly, the number was roughly on the 

order of a rate of 3-ish or so, per target.  We have done simulation studies where we have found 

similar things.  So the amount of bang for your buck of a target is not that much.  What that 

means is if you eliminate any one of these from the study, you look at which ones were not 

discovered, those are unseen species.   
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 Taking these out is giving you insight on the rate at which you have not seen certain 

species.   We do that for every one of these, and we do a type of averaging over those.  What we 

end up with is essentially an estimator of the form shown in Figure 4, where nS + nT is the number 

of sources plus the number of targets.  I want an estimate of how many nodes are there in the 

network.  Number of sources plus targets, of course, plus the numerator in this estimator is the 

number of discovered nodes, and star being the number that we actually saw, minus sources and 

targets, divided by an adjustment factor.  This adjustment, 1 – w*, is the fraction of the target 

nodes not discovered by traces to any of the other.  So, they are essentially the fraction that, if you 

left them out, would have been unseen species. 

 

 

 

 
FIGURE 5 

 

 Figure 5 is an illustration of how this type of thing works.  Around 1999 we took a couple 

of simulated networks, and then we took a measured topology from the Mercator, so this is rather 
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dated.  The row labeled ER is taken from an Erdös-Renyi random graph model, and the row 

labeled BA is taken from a Barbasi-Albert random graph model.  The stars here show the actual 

proportion of nodes discovered.  So, you just do Traceroute and count how many do you see.  

Of course, that is an underestimate, but that is a fine place to take as a grounding point.  We also 

had a re-sampling estimate where we said, in some sense, the quantity that you are sampling are 

actually paths.  What if you took a source and, from each source you randomly sampled some of 

these paths?  If there is a similarity between the networks at different sizes, then you might expect 

that that would give you some reasonable results.  It turns out it gives you some improvement in 

that it lies above the actual sample values, but not nearly what you would like.   

 What works very well is the leave-one-out estimator, and these are the black circles in 

Figure 5.  What you are looking for in this ratio is a ratio of 1.  What you can see is that with low 

sampling rates, which is a fraction of targets compared to all the vertices, you very quickly 

capture what the size is.  The reason is that within the species problem there are gradations of 

difficulty, and in between version of difficulty is a so-called coverage estimation problem.  

Coverage estimation is not quite actually trying to find out how many species there are; it is 

trying to find out what proportion of the overall population was represented by those you saw. 

 The easiest problem is not a species problem at all; it is where you know how many 

species there are, and you are estimating the relative frequency of those species.  That is an easy 

one.  The species problem is hard, and coverage estimation is in between the two.  As it turns out, 

to a reasonable degree you can argue that estimation of N is actually closer to a coverage 

problem.  The estimation we have shown is essentially a coverage-based estimate and these, in 

the literature, when you can use them, have tended to be better. 

 I am going to switch gears here.  I had two problems for you.  This past one was a 

Traceroute problem, and we tried to exploit sampling-type principles for inference of 

something regarding the network itself.  What I want to do now is take a look using sampling 

principles to estimate traffic on a network, so let me give you some background.  This is going to 

be a high-level summary before I go into some details.  

 The problem is global monitoring of network path traffic.  Now we are talking about the 

same network, the Internet or some sub-network like a backbone or such thing, and we are talking 

about traffic in the order of, say, packets from origins to destinations. 

 Every time you send an email, or every time you click on a browser, information is being 

exchanged, and that can be measured at the level of routers.  We are essentially talking about that 

type of traffic-volume information.  The idea is that, if you had a network and you wanted to 

monitor, in a global sense, the overall network, between all path origins and destinations, this is 
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infeasible on any reasonable network sites, because it is going to scale like O(N2), where N is the 

number of vertices.  You have to go down and start sampling and very quickly it becomes a 

sampling problem.  Measurements, origin, destination, packet delay, for example, you can also 

talk about packet loss.  I will use the word delay throughout here, and some of the data I show 

later is also delay data. 

 The approach that we use takes a different point from what had usually been done in the 

literature to date.  Some work came out of Berkeley and there is some other work, I believe, that 

came out earlier from Israel in which they are taking linear algebraic views of the problem.  In a 

moment I am going to show you a linear algebraic formulation, and you will see that it makes 

perfect sense to have done that. What that work said was you don’t need to measure all the paths 

in a network; you only need to measure a certain lower bound.  If you measure just that many 

then you would actually be able to recover all the information in the network but, if you lose even 

one of those paths, you lose the ability and you enter into the realm of statistics. You have to; it 

becomes a prediction problem.  We have characterized the problem as a linear prediction 

problem, and we saw how the network demography literature has done so well with a sexy name. 

 Instead of calling this “network linear prediction,” let’s call it network kriging, because 

kriging is the word from the spatial literature for the same problem, and it is a much neater name.  

The problem is to get a global monitoring of network path traffic based on measurements of 

origin-to-destination packet delays on a limited number of network paths.  We characterize this as 

a linear prediction (i.e., kriging) problem and exploit the sparsity of routing matrices.  The results 

are that we have an accurate prediction of whole-network delay summaries based on only a 

fraction of the number of paths previously used.   
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FIGURE 6 

 

 Figure 6 shows an example, taken from basic backbone that all the university systems are 

pretty much on.  The idea is that if we are looking at delay between New York and Sunnyvale, at 

a certain level that is essentially the delay going from Sunnyvale to Denver, if it is routed that 

way, and Denver to Kansas City, and Kansas City up to Indianapolis, and up to Chicago, and up 

to New York.  So essentially you have an additive sort of structure.  Secondly, if I have a sense of 

the path delay just how long from here to there, and I also measure something from Seattle and I 

measure something from, say, Sunnyvale, they are all sharing this part of the network.  They all 

have a certain amount of redundancy of information in those same measurements.  In principle, 

the idea behind sampling is that we shouldn’t have to measure all of those.  We ought to be able 

to get more bang for our buck if we tile the network, in a rough sense, with appropriately chosen 

paths. 

 So, a little bit of notation here.  As shown in Figure 7, I will let G be a representation of a 

network path, P is a set of all paths, the numeracy here, and we are going to be confining 

ourselves to situations in which we have path measurements, y, which we will just call delays, 

associated with link measurements x, through a linear relationship like this, where the matrix G is 

the so-called routing matrix.  I am taking a static routing matrix, assuming that there are no 

changes and there are no differences in terms of choice of path like load balancing and what not.  

Gi,j here is saying that the matrix is a one if path i traverses link j, and it is a zero otherwise. So, 
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you can put packet loss modeling in this framework, you can put delay modeling in this 

framework at an appropriate level of granularity.  In Figure 8 we squeeze what we have done into 

one slide.  The goal is to predict global linear summaries. There are a lot of ways that you can do 

that.  We are going to consider the path information that you have. 

 

 
FIGURE 7 

 

 On the Abilene, there are on the order of 120 different origin-destination pairs.  You can 

picture watching this in time, so you would have 120-dimensional multivariate time series that 

you would like to have information on.  One way to reduce that is to take summaries of it, and the 

simplest class to look at is just linear summaries.  You could take a look at the average delay over 

the network. You could take a look at differences of delays on subnetworks, and that gets into 

interconnections with things like multi-homing and various other applications.  You want to be 

able to monitor or predict this type of summary based on only measuring k paths. We are going to 

have some sort of evaluation of predictors, and we are going to choose mean square prediction 

error, which is essentially looking at the quantity we want to get, which is random, minus some 

function of the samples that we take, squared, expected value. 
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FIGURE 8 

 

 There is a series of arguments that are essentially standard up to some issues of rank, full 

rank, not full-rank issues. There are basically standard linear prediction arguments that can lead 

you up to an analogue of the so-called best linear unbiased predictor, except that this is not 

unbiased because of the rank issue I mentioned.  You are essentially going after something in that 

same genre of arguments.   It is saying take the sub-elements of this vector L, which might just be 

weights one on N, for all practical purposes—that is, taking the average of the whole network—

take the average of the measurements you saw.  For the measurements you didn’t see, which is 

the weights are obtained in this vector, take the measurements you took, standardize them by their 

co-variance matrix, and then this is the cross co-variance matrix between the measurements r that 

remained in the network and the measurements s that you sampled.  You then take that 

combination.  There is a derivation behind it, but there is not time to actually be able to show this.  

Those of you who have seen these types of things should recognize the essence of this formula, 

and this is sort of a standard argument. 

 There is one thing that I didn’t mention, which is how do you select the k paths that you 

want to use.  Previously in the literature, the result that I mentioned earlier basically took the 

relation in Figure 8 and it said we are essentially looking at the row space of G.  If we could find 

a set of rows of G that spanned it—because this matrix G is very tall and very thin, so you don’t 
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need all those rows. 

 The idea in that set of papers is, if you take just enough rows to span the row space of G, 

then you can recover x and therefore you can cover all the rest of y that you didn’t measure.  They 

use a so-called subset selection algorithm from the linear algebraic literature to do this.  If you 

cast things within this framework, you can actually show that algebraic subset selection algorithm 

is equivalent, in this framework, to minimizing the mean square prediction error over k, over 

choice of k.  There is actually a statistical angle on what is being done when one tries to do that so 

there is still an issue of, should I really believe that this is actually going to work.  There is an 

argument here that has much more of a story to it, but I am only going to show one slide, Figure 

9.  

 

 

 
FIGURE 9 

 

 Basically, this matrix G is, as I said, very tall, very thin:  there are a lot of these paths that 

will be common.  If a lot of the paths are common, then it means that a lot of the rows of G are 

very similar, which means that, for the most part, the dimensionality of G should be quite low.  If 

you have a lot of path redundancy, you can then picture a lot of the rows being similar and, 

therefore, G should have a lower dimension.  What I have here, standardized in the number of 
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rows up to the number of rows needed for full rank—that is, 1—and I have standardized the 

values here, I have item spectra of GT, so essentially square of the singular values.  What you can 

see in Figure 9—this is for the Abilene network I showed you plus six of the so-called rocket fuel 

networks that are measured by a rocket fuel project, which is considered a reasonably good 

benchmark for what these types of real networks would look like.  You can see that all of these 

are saying there is a huge decay in these eigenvalues very fast, after which it sort of tails out very 

quickly.  The dimension of these matrices is very small, uniformly, across these different sorts of 

networks, so we would hope we would be able to do well here.  

 Figure 10 presents a characterization of the theoretical performance, and all I am going to 

do is call your attention to the bottom here.  What we were after was to bound the mean-score 

prediction error in a way that was meaningful in terms of the relevant quantities here.  This 

interior part is all that is important for the story; it is the average link level delays.  That, of 

course, has to play a role, that flights of certain lengths have a lot of information, less if not.  The 

vector of combinations that you are using will have some role, but here what we have in equation 

2 are two pieces.  The term λk+1 is the k+1st largest item value, and f(k) is a function that is 

determining the rate, as a function of the number of paths you use, at which you can approximate 

the routing matrix by a submatrix.  How well you can do in your prediction is going to be a 

function of these two things.  In practice this thing ends up being much smaller than that, so the 

rate at which you can effectively do subset selection tends to dominate this overall performance. 

  

 
FIGURE 10 
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 Let me show you in numbers, for the same network I showed you before.  The graph in 

Figure 11 is essentially this function f(k), showing the rate at which we can approximate.  What 

you see here is a slope roughly on the order of k–1/2.  This is almost the same for all these 

networks.  There is a level of consistency here that all of those networks can essentially have a 

similar sort of rate.  In the same networks, we did a simulation study where we simulated a very 

simple model of delay.  We wanted to predict the average delay over the whole network, and we 

look at the relative route mean square as the proportion of the fraction sampled, up to full rank, 

where 1 means that you could actually recover all the paths.  What you can find is that you get on 

the order of a 10 percent error with only 20 to 25 percent of the paths you originally needed. 

 
FIGURE 11 

 

 Monitoring the average is the low-level test.  Picture that you have a network of 

engineers.  They want something that perhaps you put on the weather map for Abilene. Here is 

another something that you could put on—you watch it go up and down.  High-level tasks would 

be something like anomaly detection.  Can I infer high-level characteristics?  What we have done 

in Figure 12 is take the average—blue is the average path delay on Abilene—for a period of three 

days.  We generated the delays from that.  There is a bunch of data processing that is involved in 

that, but we backed into the delays. 
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 We then declared a criterion that, if the traffic at a certain point in time in average had 

spiked above three standard deviations from the previous hour, we declared an anomaly.  Clearly 

you can substitute your own definitions of anomalies here.  Then we asked what if we actually do 

our prediction based on just some small number of paths, such as 3, 6, or 9?  In Abilene, if you do 

30 path measurements in an independent fashion, then you can recover everything.  We said fine, 

if we apply the same type of criteria with a certain threshold, how well can we do at recovering 

the anomalies in the original data? 

 
 
 
 

 
FIGURE 12 

 

 On the left in Figure 12 is an ROC curve showing, as a function of the number of paths 

sampled—3, 6, and 9—and as a function of the threshold value we use for declaring anomalies, 

how well do we do.  What you can see is that, based on even 9 paths, which is only about a third, 

you can do extremely well, roughly on the order of a true positive rate of a little over 80 percent.  

We can argue here that this is effective both for low-level and high-level sort of tasks.  

 So, let me close up here.  Network sampling is something that, when I first started 
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working with my C.S. colleagues, and more recently with some biology colleagues, although I am 

definitely a neophyte in that area, I approach it at a certain level, and namely, here is the data, 

here is the network, blah, blah, blah, blah, blah, and where can I plug myself in.  As we delved 

into these, we started finding that we had to keep going back through the steps from which the 

things came.  I think network sampling deserves much more attention than it has had to date, and 

I should follow up quickly—because I know that a number of people here in the audience are 

working this—that it is starting to happen.  In the last few years, there have been, particularly in 

the area of heavy-tailed degree distributions, a number of people looking at issues of sampling 

and what is the effect of sampling.  Could my sampling have made me infer certain distributions 

for degrees and what not?  There is old literature and some more recent literature on social 

networks, and if I sample a network in a certain way, what are the inferences that I can draw?  It 

is out there, but I think in the same way that our intro courses, for example, quickly brush aside 

sampling issues, so that we can get on to linear regression by the end of the semester, because we 

have to do that for the students, sampling experimental design gets shuffled under the table from 

the very day one of our training in statistics, and I think that percolates out then and comes back 

to bite us when we are talking about doing science questions.  What is interesting, and should be a 

draw for statisticians, is that the problems are non-standard and non-trivial.  Our work shows that 

network topology here can be an influence both on inference of network characteristics and on 

the inference of network and data structures. 

 

 

QUESTIONS AND ANSWERS 

 

 DR. DOYLE:  Have you thought at all about a slightly more Bayesian approach, which 

is, we know a lot about what routers can and can’t do?  You know, you have got the Cisco 

catalogue.  Could you use that in any way to knock down that number quite a bit?  I mean, 

obviously, you get a lot of redundancy, and that is a big win, but if you knew a lot about like core 

routers and their typical sizes and so on, would that be of any use in this? 

 DR. KOLACZYK:  In which one? 

 DR. DOYLE:  Either, but I was particularly thinking of the second problem. 

 DR. KOLACZYK:  I think there is plenty of room to build on what we had there.  We 

really have done the simplest thing you would think to do and it wasn’t easy, but it was the place 

to start, and that is linear prediction, plain and simple.  From there, there are sorts of stuff in the 

creating literature, for example, and the prediction problem, in which one of the first things you 
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might do is certainly build a Bayesian site onto that. 

 I am not sure where you build the information.  It could depend a lot on what sort of 

information you had, and how well you could functionally map that to the traffic patterns 

themselves in a hypothesized fashion, to build your priors.  Certainly the mechanism, what we put 

there is really a foundation for going in those directions. 
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Network Data and Models 
Martina Morris, University of Washington 

 
 DR. MORRIS:  As they say, I realize I am the only thing that stands between you and 

dinner.  It is the end of the day. It is not an enviable spot, and all of these have become longer and 

longer talks, so I am going to see if I can work through this a little more quickly. 

 I am closer to the biologists since I put the people up front. We have a large group of 

people working on network sampling and network modeling—Steve Goodreau, Mark Handcock 

and myself at the University of Washington; Dave Hunter and Jim Moody, who are both here; 

Rich Rothenberg, who is an M.D., Ph.D.; Tom Snijders who some of you know, is a network 

statistician; Phillipa Pattison and Garry Robbins from Melbourne have also done a lot of work on 

networks over the year, and then a gaggle of grad students that come from lots of different 

disciplines as well. 

 We are funded from NIH and we are primarily interested in how networks channel the 

spread of disease, so Figure 1 shows an example of a real network that comes from Colorado 

Springs, a visualization that Jim did.  You can see that the network has a giant component, which 

is not surprising.  It has this dendritic effect, which is what you tend to get with disassortative 

mixing.  I think that is something that Mark Newman pointed out. After a while you get to look at 

these things and you can immediately pick that up.  This is kind of a boy-girl disassortative 

mixing, and it generates these long loosely connected webs.  This is also a fairly high-risk group 

of individuals, and it was sampled to be exactly that.  John Potter thinks that he got about 85 

percent of the high-risk folks in Colorado Springs.  Every now and then you see a configuration 

like a ring of nodes connected to a central node, which represents a prostitute and a bunch of 

clients.  Of course not all networks look like that. 

 

 

 

 226 
 



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

 
FIGURE 1 

 

 Just a little bit on motivation. Our application is infectious disease transmission, and in 

particular HIV, recognizing that the real mechanism of transmission for HIV is partnership 

networks.  What we are interested in, in a general sense, is what creates the network connectivity, 

particularly in sparse networks.  As most of you know, HIV has enormously different prevalence 

around the world.  As low as it is here, which is certainly less than 1 percent, compared to close 

to 40 percent in places like Botswana.  So, there is a really interesting question there about what 

kind of network connectivity would generate that difference and variation in prevalence. 

 There are clearly properties of the transmission system that you need to think about, 

which include biological properties; heterogeneity, which is the distribution of attributes of the 

nodes, the persons, but also infectivity and susceptibility in the host population.  There are 

multiple time scales to consider, and time scales are something that we haven’t talked about much 

here, but I think are very important in this context.  You get the natural history and evolutionary 

dynamics of the pathogens, but you also have some interesting stuff going on with partnerships 

there.  In addition, there is this real challenge of data collection.  That is in contrast to 

Traceroutes—it would be great if we could collect Traceroutes of sexual behavior.  

Maybe we could do that with some of those little nodes that we stuck on the monkey heads, but at 
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this point we can’t really do that.  So, for us, this means that the data are, in fact, very difficult to 

collect, and that is a real challenge.  One of the things we are aiming for—basically, this is our 

lottery ticket—is to find methods that will help us define and estimate models for networks that 

use minimally sampled data.  By minimally, I mean you can’t even contact trace in this case, 

because contact tracing is, itself, a very problematic thing to do in the case of sexual behavior.   

 
FIGURE 2 

 

 So, how do you generate connectivity in sparse networks?  Lots of people have focused 

on a scale of three steps: high-degree hubs, all you need is one person out there with millions of 

partners and your population is connected.  In fact, you can generate connectivity in very-low-

degree networks as well, as shown in Figure 2.  Your simple square dance circle is a completely 

connected population where everybody only has two partners, so it is important to recognize that 

there are lots of other ways that you can generate connectivity, and that even if one person, for 

example, did act as a hub, and you figured that out somehow and you removed them, you would 

still have a connected population.  I think it has some pretty strong implications for prevention.   

 Also, there is obviously clustering and heterogeneity in networks.  Figure 3 shows data 

from a school.  You can see in this case that there is a combination of clustering by grade that 

generates the different colors and also the very strong racial divide. 
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FIGURE 3 

 

 You might ask yourself the question, why is this? What is the model behind this? What 

generates this?  A number of people have hinted at this kind of stuff earlier. 

 Are these exogenous attributes at work—that is, birds of a feather stick together?  If you 

are the same grade, you are the same race as me, that is why we are likely to be friends.  Or is it 

some kind of endogenous process where, if two people share a friend, they are more likely to be 

friends themselves?  That is a friend-of-a-friend process.  It is interesting that in popular language 

we have both of those ideas already ensconced in a little aphorism.  So, thinking about 

partnership dynamics and the timing and sequence and why that would matter, one of the things 

that we have started looking at in the field of networks and HIV is the role that concurrent 

partnerships play.   
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FIGURE 4 

 

 Concurrent partners are partnerships that don’t obey the rule of serial monogamy.  That 

is, each partnership does not have to end before the next one begins.  You can see in Figure 4, in 

the long yellow horizontal line labeled “1”, we have got somebody who has a partnership all the 

way across the time interval, and then a series of concurrent partnerships with that, including a 

little one night stand labeled “5” that makes three of them concurrent at some point in time.  Now, 

this is the same number of partners as in the upper graph, so it is not about multiple partners, 

although you do need to have multiple partners to have concurrent partners.  This is really a 

function of timing and sequence.  

 What we find in Uganda and Thailand is very interesting.  Uganda at the time that we 

were doing this study had a prevalence of about 18 percent and Thailand had about 2 percent, 

which is 10 times less.  In Uganda men reported about 8 partners in the lifetime on average and in 

Thailand it was 80.  Now, 10 years later Thailand doesn’t have an epidemic that comes from 

having 80 partners in your lifetime, so something else is obviously going on:  it is not just the 

number of partners.  We looked into this concurrency a little bit, and we found that in both cases 

you get concurrent partnerships.  So, it is not the simple prevalence of concurrency that is the 

difference.  The difference comes in the kinds of partnerships that are concurrent.  In Uganda you 

tend to get two long-term partnerships that overlap, whereas in Thailand you have the typical sex 

partner pattern, which is one long term partnership, and then a short term on the side.  The net 

result is that in Uganda the typical concurrent partnership is actually active on the day of the 
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interview—41 percent of them were, and they had been going for three years.  The ones that are 

completed are also reasonably long, about 10 months.  In Thailand you don’t get anywhere near 

as many active on the day of the interview.  They are about two months long.  Ninety-five percent 

of them are a day long, so these concurrences happen and they are over. 

 That kind of thing can actually generate a very different pattern on an epidemic. The 

simulations that we have done of that suggest that if you take this into account you do, in fact, 

generate an epidemic in Uganda that has about 18 percent prevalence, whereas Thailand will 

typically have just about 2 percent.  The approach that we take is thinking about generative 

models here, local rules that people use to select partners that cumulate up to global structures 

and a network.  What we want is a generative stochastic model for this process, and that model is 

not going to look like you, for example, want to create clustering.  A clustering coefficient, 

although it can be a great descriptive summary for a network, is not necessarily going to function 

well as a generative model for a network.  It is also probably the case that when I select a partner 

I am not thinking I want to create the shortest path, the shortest geodesic to the east coast.  That is 

probably also not going on.  Again, it’s a nice summary of a network but probably not a 

generative property.  We want to be able to fit both exogenous and endogenous effects in these 

models, so that turns out to be an interesting and difficult problem.  We also want this to work 

well for sample data. We want to be able to estimate based on observed data, and then make an 

inference to a complete network.   

 Figure 5 shows what this generative model is going to look like. We have adapted this 

from earlier work in the field.  It is an exponential random graph model.  It basically takes the 

probability of observing a network or a graph, a set of relationships, as a function of something 

that looks a little bit like an exponentiated version of a linear model, and then a normalizing 

constant down below that is all possible graphs of that size.  This is the probability of this graph 

as a function of a model prediction, with this as the normalizing constant.  The origins go back at 

least in the statistical literature of Bahadur during 1961; I talked a little bit about a multivariate 

binomial.  Besag has adopted this for spatial statistics, and Frank and Strauss first proposed it for 

networks in 1986.  The benefits of this approach are that it considers all possible relations jointly, 

and that is important because the relations here are going to be dependent, if there are any 

endogenous processes going on, like these friends of a friend.  It is an exponential family, which 

means it has very well understood statistical properties, and it also turns out to be very flexible. It 

can represent a wide range of configurations and processes. 
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FIGURE 5 

 

 What does model specification mean in a setting like this?  There are two things that we 

must choose, the set of network statistics z(x) and whether or not to impose homogeneity 

constraints on the parameter θ.  We are going to choose a set of network statistics that we think 

are part of the self-organizing property of this graph.  A network statistic is just a configuration of 

dyads.  Edges are a single dyad, that is the simplest network statistic, and that’s used to describe 

the density of the graph.  Others include k-stars, which are nested in the sense that a 4-star 

contains quite a few 3-stars in it, and the 3-star has 3 2-stars in it.  So, that is a nested kind of 

parameterization that is common in the literature.  We tend to prefer something like degree 

distributions instead in part because I think they are easier to understand.  Degrees are not nested.  

A node simply has a degree, it has one degree only, and you count up the number of nodes that 

have that degree.   

 Triads or closed triangles are typically the basis for most of the clustering parameters that 

people are interested in.  Almost anything you can think of in terms of a configuration of dyads 

can be represented as a network statistic.  Then you have the parameter θ, and your choice there is 

whether you want to impose homogeneity constraints, and I believe Peter Hoff talked about this a 

little bit in his talk this morning. 
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FIGURE 6 

 

 There is clearly a lot of heterogeneity in networks.  Heterogeneity can be based on either 

nodal or dyadic attributes.  People can be different because of their age, their race, their sex, those 

kinds of exogenous attributes, or different types of partnerships may be different.   Let’s think a 

little bit about how we create these network statistics.  Referring to Figure 6, the vector here can 

range from a really minimal number one, such as the number of edges, which is the simple 

Bernoulli model for a random graph.  But the vector and also be a saturated model, with one term 

for every dyad, which is a large number of terms.  Obviously, you don’t move immediately to a 

saturated model.  It wouldn’t give you any understanding of what was happening in the network 

anyway, so what we are trying to do is work somewhere in between these two, some 

parsimonious summary of the structural regularities in the network.   

 Figure 6 gives some examples from the literature that have been used in the past; the 

initial model was the p1 model by Holland and Leinhardt in 1981.  Peter Hoff’s talk this morning 

fit the framework of a p1 model:  it had an actor-specific in-degree and an actor-specific out-

degree—so, two parameters for every actor in the network—plus a single parameter for the 

number of mutual dyads, that is, when i nominates j and j nominates i in return.  That is a dyadic 

independent model, which is to say, within a dyad, between two nodes, where there is the only 

dependence here for this mutual term, all other dyads are independent. That is a minimal model of 

what is going on in a network. 

 The first attempt to really begin to model dependent processes in networks—and that is, 

the edges are dependent—was the Markhov graph proposal by Frank and Strauss, which is also 
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shown in Figure 6.  This model includes terms for the number of edges, the number of k-stars—

again, those are those nested terms—and the number of triangles.  In each of those cases you can 

impose homogeneity constraints on θ or not.  So, for any network statistic that you have in your 

model, the θ parameters can range from minimal—that is, there is a single homogenous θ for all 

actors—to maximal, where there is a family of θ i ’s, each being actor- or configuration-specific.  

That was the case in Peter Hoff’s model.  Every actor would have two parameters there.  You can 

say that every configuration has its own parameter, which is a function of the two actors, or 

multiple actors that are involved in it.   

 In the Bernoulli graph, the edges are the statistic, and there is a single θ that says every 

edge is as likely as every other edge. So, that is a homogeneity constraint.  When we go with 

maximal θ parameters, you quickly max out and lose insight, but you can sure explain a lot of 

variance that way.  In between are parameters that are specific to groups or classes of nodes—so 

you might have different levels of activity or different mixing propensities by age or by sex.  In 

addition, there are parametric versus non-parametric representations of ordinal distribution.  So, 

for a degree distribution, you can have a parameter for every single degree, or you could impose a 

parametric form of some kind, a Poisson, negative binomial, something like that. 

 The group parameterizations are typically used to represent attribute mixing in networks. 

We have heard a lot about that, but this is the statistical way to handle that.  There is a lot of work 

that has been done on that over the last 20 years.  The parametric forms are usually used to 

parsimoniously represent configuration distributions so degree distributions, shared partner 

distributions, and things like that. 

 

 

FIGURE 7 
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 Estimating these models has turned out to be a little harder than we had hoped; otherwise, 

we would all be talking about statistical models for networks today.  I don’t think there would be 

anybody in here who would be talking about anything else. 

 The reason is that this thing is a little bit hard to estimate.  Figure 7 shows the likelihood 

function P(X = x) that we are going to be trying to maximize.  The normalizing constant c makes 

direct maximum likelihood estimation of that θ vector impossible because, even with 50 nodes, 

there are an almost uncountable number of graphs.  So, you are not going to be able to compute 

that directly.  Typically, there have been two approaches to this. The first that dominated in the 

literature for the last 25 years is pseudolikelihood, which is essentially based on the logistic 

regression approximation.  We now know, and we knew even then, that this isn’t very good when 

the dependence among the ties is strong, because it makes some assumptions there about 

independence.  MCMC is the alternative; it theoretically guarantees estimation. 

 

 
FIGURE 8 

 

 But that’s only “theoretically.” Implementation has turned out to be very challenging.  

The reason has been something called model degeneracy.  Mark Handcock is going to talk a lot 

about this tomorrow, but I am just going to make a couple of notes about it today.  Figure 8 shows 

a really simple model for a network, just density and clustering. Those are the only two things 
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that we think are going on.  So, there is the density term, which is just the sum of the edges, and 

c(x) is the clustering coefficient that people like to use to represent the fraction of 2-stars that are 

completed triangles.  What are the properties of this model?  Let’s examine it through simulation. 

Start with a network of 50 nodes.  We are going to set the density to be about 4 percent, which is 

about 50 edges for a Bernoulli graph.  The expected clustering, if this were a simple random 

graph, would then just be 3.8 percent, but let’s give it some more clustering.  Let’s bump it up to 

10 times higher than expected and see how well this model does.  By construction, the networks 

produced by this simple model will have an average density of 4 percent, and an average 

clustering of 38 percent.  Figure 9 shows what the distribution of those networks looks like.   

 
 

FIGURE 9 

 

 The target density and clustering would be where the dotted lines intersect, but virtually 

none of the networks look like that.  Most of these networks, instead, are either fairly dense, but 

don’t have enough triangles, or not so dense, but are almost entirely clustered in triangles.  What 

does that mean?  It means that is this is a bad model.  For a graph with these properties, if you 

saw this kind of clustering and density, this is a bad model for it.  This graph didn’t come from 

that model, that is what it says.  In the context of estimation, we call the model degenerate when 

the graph used to estimate the model is extremely unlikely under that model.  Instead, the model 
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places almost all of its probability mass on graphs that bear no resemblance to the original graph. 

 We will never see anything like this in linear model settings, so this hung people up for 

about 10 years because they couldn’t figure out why every time they tried to estimate using 

MCMC, the parameters they would get back would create either complete graphs or empty 

graphs, and nothing in between.  What they did was make simpler and simpler models because 

they figured something had to be wrong with the algorithm or something else.  It turns out that 

the simpler the model the worse the properties, and 10 years of science were down the drain. 

 The morals—and I think these really are morals, because they are a new way to think 

about data—are three.  First, descriptive statistics may not produce good generative models, and I 

think that there is more truth in this setting than in the linear model setting.  Second, starting 

simple and adding complexity often doesn’t work—at least not the way that we expect it to work.  

Third, I think it is going to take a long time to develop new intuition, and we are going to have to 

develop new model diagnostics in order to help our intuition.  One thing we can say now pretty 

clearly is that statistics for endogenous processes—so, like this friend-of-a-friend stuff, the 

clustering parameter—need to be handled differently, because they induce very large feedback 

effects.  A little bit of that and all of a sudden the whole graph goes loopy.  It has to create lots of 

whatever it is because there is nothing to prevent it. 

 

 
FIGURE 10 
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 We have been thinking a little bit about new model terms to capture some of the 

endogenous clustering effects, because we think these are important, and so we do want to be able 

to capture them.  As shown in Figure 10, the old forms of these were typically either the number 

of triangles—that is what you saw in the Markov random graphs—or a clustering percent.  In 

those cases, every triangle has the same impact, θ.  That is your parameter, and that is obviously a 

problem.  What we have done is come up with new models where we parameterize a distribution 

of shared partners.  You can think of those shared partners as each giving you an increasing 

probability of having a tie with the other person, but there is a declining marginal return to that.  

So, it doesn’t blow up in the same way. 

 It looks ugly, but it turns out it is a fairly simple weight that creates an alternating k-

star—that is one way of thinking about it.  2-stars will be positively weighted and 3-stars will be 

negatively weighted; 4-stars will be positively weighted, and 5-stars will be negatively weighted. 

That is what this thing does.  It tends to create reasonably nice, smooth parametric distributions 

for shared partner statistics. 

 In the time I have left I want to give you a sense of how these models work in practice, 

and how friendly they look when you get them to actually estimate things well.  Imagine a 

friendship network in which two different clustering processes at work. There is homophily, 

which is the birds-of-a-feather exogenous attribute, in which people tend to choose friends (i.e., 

create a link) to people who are like them, in grade, race, etc.  Then there is transitivity, which is 

that people who have friends in common tend to also become friends.  This is a friend-of-a-friend 

endogenous process for creating links. 

 That can also generate a fair amount of assortative mixing, or can come from assortative 

mixing.  Imagine three of our actors in the same grade, and two of them are tied to the same 

person.  Then the question is, will they have a tie between themselves.  If they do, it could either 

be because of transitivity, or it could be because they are in the same grade.  So, the question is, 

how do we distinguish these?  We have a number of different kinds of ties here. There are within-

grade ties, which can come from both of these processes, and across-grade ties, which we can 

assume are due to transitivity.  There are triangles that come from both, and there are ties not 

forming triangles, and we can assume that is homophily.  So, we do have a little bit of 

information here that we are going to use to tease apart these things statistically, and we are going 

to work with data collected from a school.   
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FIGURE 11 

 

 Figure 11 shows data from school 10, a school that has a junior high school and a high 

school.  You can see there aren’t a whole lot of links between those two.  In addition, there is a 

fair amount of grade assortative mixing.  Because we don’t have a lot of black students in this 

school—it is mostly white and Asian—there is a little more mixing by race than you might get 

otherwise, so the race effects will not be quite as strong here. 

 We are going to try four models: edges alone (this is our simple random graph); edges 

plus attributes, which says the only thing going on in this model is that people are choosing others 

like themselves; edges plus this weighted edge-wise shared partner statistic, which is transitivity 

only, so just the friend-of-a-friend process; and then both of these things together.  Figure 12 

summarizes these four models. 
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FIGURE 12 

 

 Our approach is depicted schematically in Figure 13.  We start with the data and our 

model, and we estimate our model coefficients. We can then simulate graphs with those 

properties, those particular coefficients, and those statistics, drawn from a probability distribution.  

We are going to compare the graph statistics from the simulated data to the graph statistics from 

our observed data, but the graph statistics that we are going to use are not actually statistics that 

were in the model.  What we are trying to do is predict things like path links or geodesics that are 

not part of our original model, because that says we have got the local rules right. These are the 

local rules that generate those global properties.  That is the approach we are going to take. 
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FIGURE 13 

   

 Figure 14 gives an example for a Bernoulli graph.  You can see what the data looks like, 

and the chart shows the degree distribution from that graph.  Students were only allowed to 

nominate their five best male and five best female friends. So, it is truncated at 10.  Nobody 

reported 10 in this particular school.   

 

 

FIGURE 14 

 
FIGURE 15 
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 Figure 15 shows what the simulations look like from the Bernoulli model. You can see 

we don’t get the degree distribution very well.   

 

 
FIGURE 16 

 

 Figure 16 shows the edgewise shared-partner statistic.  This is, for every edge in the 

graph, how many shared partners do they have. That is like a generalized degree distribution.  

That is what it looks like in the observed data.  Figure 17 shows what it looks like from the 

Bernoulli model, so obviously the Bernoulli model isn’t capturing any of that kind of clustering at 

all. 
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FIGURE 17 

 

 Finally, Figure 18 shows the minim  distance between all pairs, with a certain 

action of them here being unreachable.   

um geodesic

fr

  

 
FIGURE 18 

 

 Figure 19 shows how the Bernoull and it doesn’t do very well.  i model does, 

 

 243 
 



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

 
FIGURE 19 

 

 Putting these all together, Figure 2 goodness of fit measures.   0 shows your 

 
FIGURE 20 

 

 Figure 21 shows what it looks like   The first column shows the degree 

istribution; even a Bernoulli model is pretty good.  Adding attributes doesn’t get you much, but 

dding 

 for all the models. 

d

a the shared partners, you get it exactly right on, and the same is true when you add both the 

shared partner and the attributes.  For the local clustering, which is this edgewise shared-partner 

term, the Bernoulli model does terrible. I can’t say the attribute model does a whole lot better.  Of 

course, once you put the two-parameter weighted shared-partner distribution in, you capture that 

pretty well. 
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FIGURE 21 

 

 You don’t capture the geodesic we alone, but it is amazing how well you get 

e geodesic just from attribute mixing alone, just from that homophily.  In fact, it actually 

oesn’t

n.   

 

ty 

ll with edges 

th

d  do so well, the local clustering term for this edgewise shared-partner doesn’t capture it 

anywhere near as well, and you actually don’t do as good a job when you put both of them i

 So, Figure 22 is the eyeball test.  That is a different approach to goodness of fit. One 

thing you want to make sure of with these models is that they aren’t just crazy.  Obviously, those

degenerate models were crazy, and you could see that very quickly. They would either be emp

or they would be complete.  For this figure, it actually would be hard to tell which one was 

simulated and which one was real.  They are actually getting the structure from the eyeball 

perspective pretty well. 
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FIGURE 22 

 

 There are 50 schools from which we can draw information. There are actually more, but 

50 that have good information.  They range in size from fairly small—and this school 10 is one of 

the smaller mid-sized schools, with 71 students in the data set—but we can use these models all 

the way up to beyond 1,000.  We have now used them on 3,000-node networks, and they are very 

good and very stable.  Figure 23 compares some results for different network sizes, using the 

model that has both the friends-of-a-friend and the birds-of-a-feather processes in it.  It does very 

well for the smaller networks, but as you start getting out into the bigger networks, the geodesics 

are longer than you would expect.  Basically, I think that is telling you there is more clustering, 

there is more pulling apart in these networks, and less homogeneity than these models assume.  

So, there is something else that is generating some heterogeneity here. 
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FIGURE 23 

 

 The other thing you can do is to compare the parameter estimates across the models, 

which is really nice.  In Figure 24, we look at 59 schools, using the attribute-only model.  You 

can see the differential effects for grades: the older students tend to have more friends.   
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FIGURE 24 

 

 Figure 25 shows the homophily effect, the birds-of-a-feather effect, which is interesting.  

You see that it is strongest for the younger and the older, and those are probably floor and ceiling 

effects.  Mean effects for race don’t show up as being particularly important, but blacks are 

significantly more likely than any other group to form assortative ties.  Interestingly, you can see 

that Hispanics really bridge the racial divide.  So, there are all sorts of nice things you can do by 

looking at those parameters as well. 

 Finally, the other thing you can do is examine what is the effect of adding a transitivity 

term to a homophily model.  I mean, how much of the effect that we attributed to homophily 

actually turns out to be this transitivity effect instead.  It turns out the grade-based homophily 

estimates fall by about 14 percent once you control for this friend-of-a-friend effect.  The race 

homophily usually falls, but actually sometimes rises, so once you account for transitivity you 

find that the race effects are actually even stronger than you would have expected with just the 

homophily model.  This is shown in Figure 26.  
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FIGURE 25 

 

FIGURE 26 
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 The transitivity estimates this friend-of-a-friend effect falls by nearly 25 percent once y

control for the homophily term, as shown in Figure 27.  This doesn’t seem like much, but it is 

amazing to be able to do this kind of stuff on networks, because we have not been able to do

before. We have not been able to test these kinds of things before

ou 

 this 

.  What we have now is a 

program and a theoretical background that allows us to do this.   

 

FIGURE 27 

 

 What this approach offers is a prin  for theory-based network analysis 

here you have a framework for model specification, estimation, comparison and inference.  

ring, 

 using 

o 

 

cipled method

w

These are generative models and they have tests for fit, so it is not as if you see there is cluste

but it is homogenous clustering how well that it fits.  These give you the answers to those 

questions. We have methods for simulating networks that fall out of these things automatically, 

because we can reproduce the known, observed, or theoretically-specified structure just by

the MCMC algorithm.  For the cross-sectional snapshots, this is a direct result of the fitting 

procedure.  For dynamic stationary networks, it is based on a modified MCMC algorithm, and 

dynamic evolving networks means you have to have model terms for how that evolution 

proceeds.  You can then simulate diffusion across these networks and, in particular, for us, 

disease transmission dynamics. It turns out the methods also lend themselves very easily t

sampled networks and other missing network data.   
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 With that I will say if you are interested in learning more about the package that we 

it is an R based package. We are going to make it available as soo

have, 

n as we get all the bugs out. If 

QUESTIONS AND ANSWERS 
 

 
 DR. BANKS:  Martina xactly right, you can do things 

een done before, and I am deeply impressed by all of it.  I do wonder if perhaps 

alytical mathematical formulation growing out of a p1 model and 

imulation, to try and construct things 

om sim e 

you want to define agent-based 

imulati  

s me, 

 

, 

d triangles.  I think there is an intuitive baby in the bath water, and that is, edges are only 

ould be 

 

an 5 friends might be 

e 

you want to be a guinea pig, we welcome guinea pigs, and all you need to do is take a look at 

http://csde.washington.edu/statnet. Thank you very much. 

 

 

 
 that was a lovely talk and you are e

that have never b

we have not tied ourselves into a straightjacket by continuing to use the analytic mathematical 

formulation of these models. 

 DR. MORRIS:  The analytic what formulation? 

 DR. BANKS:  An an

just evolving. An alternative might be to use agent-based s

fr ple rules for each of the agents.  For example, it is very unlikely that anybody could hav

more than 5 best friends or things like that. 

 DR. MORRIS:  Actually, you would be surprised how many people report that.  I am 

kidding.  I agree, except that I think that, depending on how 

s on, these are agent-based simulations.  What I am doing is proposing certain rules about

how people choose friends.  So, I choose friends because I tend to like people the same age a

the same race as me, the same socioeconomic status.  Those are agent-based rules and, when 

other people are using those rules, then we are generating the system that results from those rules 

being in operation.  I don’t see a distinction between these two in quite the same way, but I do

agree.   

 One thing that we did do was focus on the Markov model for far too long. It was edges

stars, an

dependent if they share a node. That is a very natural way to think about trying to model 

dependency, but I think it did kind of narrow our focus probably more than it should have. 

 DR. BANKS:  You are exactly right. Your models do instantiate something that c

an agent-based system, but there are other types of rules that would be natural for friendship

formation that would be very hard to capture in this framework, I think. 

 DR. MORRIS:  I would be interested in talking to you about what those are. 

 DR. BANKS:  For example, the rule that you can’t have more th

hard to build in. 

 DR. MORRIS:  No, in fact, that is very easy to build in. That is one of the first things w
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had to do to handle the missing data here, because nobody could have more than 5 male or five 

male f

 

ng about the degeneracy problem with the exponentially parameterized graph 

odels,

s 

ity to 

. There is basically 

 

 

it 

n the drain 

answer some of those 

ere, 

l 

  I 

we take some of these models and, rather than 

k they need to be more focused on the substantive problem at hand. 

fe riends. 

 DR. HOFF:  There was one middle part of your talk which I must have missed, because

you started talki

m  and then at the end we saw how great they were.  So, at some point there was the 

transition, by including certain statistics, or is it including certain statistics that makes them les

degenerate, or is it the heterogeneity you talked about?  I could see how adding heterogene

your models or to the parameters is going to drastically increase the amount of the sample space 

that you are going to cover. Could you give a little discussion about that? 

 DR. MORRIS:  These models have very little heterogeneity in them relative to your 

models.  So, every actor does not have both an in-degree and an out-degree

just a degree term for classes.  So, grades are allowed to have different degrees, race is allowed to 

have different degrees.  The real thing—that wasn’t what made this work. What made this work

was the edgewise shared partner. When we had originally tried using the local clustering term as 

either the clustering coefficient or the number of triangles with just a straight theta on it, those are

degenerate models.  The edgewise shared partner doesn’t solve all problems either, but at least it 

was an ability bound, and that is essentially the effect that it has, is that it bounds the tail and it 

says that people can't have that many partners.  So, that is what changed everything. 

 DR. JENSEN:  I think the description of model degeneracy is wonderful.  Fortunately, 

wasn’t 10 years of work in my case.  It was more like 6 months of work that went dow

and I didn’t know why, and I think you have now explained it.  Is that written up anywhere?  Are 

there tests that we can run for degeneracy?  What more can we do? 

 DR. MORRIS:  That is a great question.  Mark Handcock is really the wizard of model 

degeneracy, and I think he is going to give a talk tomorrow that can 

questions.  I don’t think we have a test for it yet, although you can see whether your MCMC 

chain is mixing properly and, if it is always down here and then all of a sudden it goes up h

then you know you have got a problem. It is still a bit of an art.  STATNET, this package, wil

have a lot of this stuff built into it. 

 DR. SZEWCZYK:  My question is, is it model degeneracy, or is it model inadequacy?

look at a lot of these things and my question is, can 

just fitting one universal model, can we go in there and, say, fit a mixture of these p-star models, 

or these Markov models or p1 models, rather than assuming that everyone acts the same within 

these groups? 

 DR. MORRIS:  There are lots of ways to try to address the heterogeneity, I agree with 

you, and I thin
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ing, I want to 

 

odels  would call it model degeneracy only in 

hen 

ry 

odels defined a class, I wonder if you thought about treating this using not classifiers, 

rge-m

e 

 

 

er, 

 

So, just throwing in a mixture or throwing in a latent dimension, to me, kind of misses the point 

of why do people form partnerships with others.  So, when I go into this, I go in say

add attributes to this. A lot of people who have worked in the network field don’t think attributes

matter because somehow it is still at the respondent level.  We all know that, as good network 

analysts, we don't care about individuals. We only care about network properties and dyads. 

 DR. SZEWCZYK:  We care about individuals. 

 DR. MORRIS:  Attributes do a lot of work. They do a lot of heavy lifting in these 

m and they actually explain, I think, a fair amount.  I

this case because you get an estimate and you might not even realize it was wrong.  In fact, w

people used the pseudolikelihood estimates, they had no idea that the cute little estimate they 

were getting with a confidence interval made no sense at all.  It is degenerate because what it 

does, it performs the function. It actually gets the average right, but then it gets all the details 

wrong. So, you can call that inadequate, and it is.  It is a failure. It is a model failure. That is ve

clear. 

 DR. WIGGINS:  So, one thing to follow up on that I was wondering about, since each of 

these m

la argin classifiers, like support vector machines.  Some anecdotal evidence is that 

sometimes you can tell if none of your network models is really good for a network that you ar

interested in.  So, some of these techniques that measure everything at once, rather than 

measuring a couple of features you want to reproduce will show you how one network, if you 

look at it in terms of one attribute, it looks like model F, but if you look at it in terms of a

different model, it turns out to be model G, and that might be one way of seeing whether or not

you have heterogeneity or just none of your models is a good model.  If you have a classifi

then all the different classifiers might choose, not me, as the class, in which case you can kind of

see if none of your models is the right model. 

 DR. MORRIS:  Yes, that is a nice idea.  
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Variability, Homeostasis per Contents and Compensation in  
Rhythmic Motor Networks 

 
Eve Marder, Brandeis University 

 
 

 DR. MARDER:  I’m a neuroscientist.  I should say that I’m an experimental 

neuroscientist who has worked at various times and places with a variety of theorists, including 

my fellow speaker, Nancy Kopell.  What I would like to do today is give you a sense of some 

problems and approaches where neuroscience and network science intersect.  I realize that you’ll 

think some of my take home messages are probably obvious, even though my neuroscience 

colleagues often get very disturbed and distressed and start foaming at the mouth. 

 The problem that we have been working on for the last 10 or 15 years, like all good 

problems, is both completely obvious and not.  For this group it’s basically the problem of how 

well-tuned do the parameters that underlie brain networks have to be for them to function 

correctly?  If you were to have asked most experimental neuroscientists 20 years ago how well-

tuned any given synapse would have to be, or how well-tuned the number of any kind of channel 

in the cell would have to be, they would have probably said 5 percent plus or minus.  You should 

know that neuroscientists have traditionally had the perspective that things have to be very tightly 

regulated, and we can talk about why that is in the future. 

 About 10 or 15 years ago we started working on a problem that has since been renamed 

homeostasis and compensation.  This comes back to something that is true in all biological 

systems, and not true in mechanical or engineering systems in the same way:  almost all the 

neurons in your brain will have lived for your entire life, but every single membrane protein that 

gives rise to the ability of cells to signal is being replaced on a time scale of minutes, hours, days 

or weeks.  The most long-lasting ones are sitting in the membrane for maybe a couple of weeks, 

which means that every single neuron and every single synapse is constantly rebuilding itself.  

This in turn means that you are faced with an incredible engineering task, which is how do you 

maintain stable brain function?  I still remember how to name a tree and a daffodil and all the 

things I learned as a child, despite the fact that my brain is constantly, in the microstructure, 

rebuilding itself.  When we started thinking about this, and this goes back a number of years, 

Larry Abbott and I worked on a series of models that basically used very simple negative 

feedback homeostatic mechanisms to try and understand how you could get stable neuronal 

function despite turnover and perturbations.  What that led to was going back to step one and 

saying, how well do negative-feedback self-tuning stability mechanisms have to work?  You have 
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to know how well-tuned do any of the parameters need to be in order to get the nervous system to 

do a given task.  That’s what I’m going to talk to you about today.1 

 There has been a series of both theoretical and experimental investigations into the 

question of what really are the constraints.  How well does a circuit have to tune all of its 

parameters in order to give an adequate or a good-enough output?  By good enough, I mean good 

enough so that we can all presumably see a tree, name a tree, although we also all know that my 

brain and every one of your brains are different.  (I would like to acknowledge the work I’ll be 

showing you today of three post-docs in the lab—Dirk Bucher, Jean-Marc Goaillard, and Adam 

Taylor—who have done a lot of this work, along with two ex-post-docs who are now faculty, 

Astrid Prinz and Dave Schulz, and a colleague of mine, Tim Hickey, from the computer science 

department.) 

 I’m going to show you a little bit about the maintenance of central pattern generators 

(CPGs).  Those are networks that produce rhythmic movements and that function despite growth.  

Among adult animals, we ask how much animal-to-animal variation there is in network 

mechanisms and underlying parameters, and then we will talk about the problem of parameter 

tuning: how tightly the parameters that determine neuronal activity and network dynamics have to 

be tuned and whether stable network function arises from tightly controlled elements or because 

elements can compensate for each other. 

 CPGs are groups of neurons in your spinal cord or brain stem.  In this case I’m going to 

work in lobsters and crabs, and the particular pattern we will talk about runs a portion of a lobster 

or crab’s stomach.  As shown in Figure 1, if you drill holes in the carapace and put wires into the 

muscles of what is called the pylorus or the pyloric region of the stomach, you see one-two-three, 

one-two-three, one-two-three, which is a rhythmic discharge to those muscles that persists 

throughout the animal’s life.  Here you see it in these muscle recordings.  When you dissect the 

nervous system that produces this motor pattern out, you can record intracellularly from the 

stomatogastric ganglion, which is responsible for producing this rhythmic discharge.  In the lower 

left part of Figure 1 you see three intracellular electrodes from the cell bodies which show that 

one-two-three, one-two-three rhythmic discharge pattern.  This discharge pattern really is a 

constrictor one phase, a constrictor two phase, and a dilator phase.  You can see this either in 

extracellular recordings from the motor nerves, or intracellular nerves for the pattern. 

 

 
                                                      
1 See also a recent review article on this same material, Marder, E., and J.M. Goaillard. 2006. Variability, 
compensation and homeostasis in neuron and network function. Nature Reviews Neuroscience 7:563:574. 
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FIGURE 1 

 
 For many years people have tried to understand why this discharge exists and how the 

particular neurons and their connectivity give rise to things like the frequency and the phasing of 

all the neurons in the network that do this.  The proof that this is a central pattern generator lies in 

the fact that the rhythm persists even when we have discarded most of the animal and are left with 

just the stomatogastric ganglion.   

 As neuroscientists we worry a lot about things like why the pattern has the frequency it 

has and why all these specific timing cues are there the way they are.  In Figure 2 we see the 

circuit diagram that gives rise to this pattern.  In these circuit diagrams, we use resister symbols to 

mean that cells are electrically coupled by gap junctions, so current can flow in both directions.  

These symbols are chemical inhibitory synapses, which means that when one cell is depolarized 

or fires, it will inhibit the follower cell.  This is the circuit diagram for the dilator neurons, the 

constrictor neurons.  None of you could a priori predict what this circuit would do, because there 

is information missing in the connectivity diagram.  I think that’s really an important thing for 

those who worry about dynamics to think about.  What is missing in this connectivity diagram is 

all the information about the strength and time course of the synaptic inputs.   Additionally, and 

as importantly, all the information about the dynamics of all the voltage and time-dependent 

currents in each of these cells that give them their particular intrinsic firing properties will then be 

sculpted by their position in the network. 
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FIGURE 2 

 

 So, as neuroscientists, what we have to do if we want to understand how this connectivity 

diagram gives rise to this particular pattern is ask what kinds of voltage and time-dependent 

currents does each one of these cells have?  Then try and understand how all of those currents act 

together to give rise to that cell’s own intrinsic electrophysiological signature.  Also to understand 

how they interact with the synaptic currents to end up producing this rhythmic pattern. 

 I can give you the short answer.  The short answer is that the AB neuron shown in Figure 

2 is an oscillatory neuron that behaves a lot like this in isolation.  It’s electrically coupled to the 

PD neuron, and it’s because of that electrical coupling that the PD neuron shows this 

depolarization burst of action potentials: hyperpolarization, depolarization, et cetera.  Together 

these two neurons rhythmically inhibit the LP and the PY neurons, and so force them to fire out 

of phase.  The LP neuron recovers from that inhibition first, because of the timing cues or the 

inhibition that it receives, and because of its own membrane conductances.  I can tell you as a 

first approximation why that occurs, but it took a long time to even get to that first approximation.  

That said, the question is, for this network, how tightly tuned do these synapses have to be in 

terms of strength, and how tightly tuned do all the membranes currently in each of these cells 

have to be?  What I’m going to do is first show you some biological data that will constrain the 

question, and we’ll talk a bit about some models that frame part of the answer.  I’ll go back to 

some recent biological experiments that go directly after the predictions of some of the models. 

 The first little piece of data I’m going to show you are from some juvenile and adult 

lobsters.  As lobsters mature to adulthood, they grow considerably, and obviously their nervous 
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system changes size as well.  Figure 3 shows a juvenile’s PD neuron (on the left) and one from an 

adult (on the right).  You can see that the cells have a certain look that has been maintained 

through that size change.  Those of you who are neuroscientists realize that as the cell grows from 

small to large size, every feature of its electrical properties has to change because its cables are 

growing—that is to say, the distance signals will travel.  Positions of synapses have to change, 

therefore, the number of channels in the membrane have to change.  All of these things have to 

change just as when you go from a 2-year-old or a 14-month-old who is learning how to walk, the 

whole peripheral plant is changing as the 14-month-old grows into an adult.  It’s a challenge to 

say how this has happens if it has to maintain constant physiological function.   

 

 

 
FIGURE 3 

 

 Here in Figure 4 are some intracellular recordings, some made from a juvenile, some 

from an adult.  You can see by your eye that the waveforms and patterns look virtually identical 

between that baby lobster and the big lobster, which tells you that there has to be a mechanism 

that maintains the stable function despite a massive amount of growth, and therefore a massive 

change in any one of those properties. 
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FIGURE 4 

 

 The question this poses is that there have to be clearly multiple solutions to producing the 

same pattern, or very similar patterns, because in the small animal and the big animal, many of 

the parameters are actually different, as are the number of channels.  This tells you that at least 

during natural life, the animal manages to find its way from one solution and to grow its way 

continuously without making mistakes that shift it into other whole classes of solutions.   

 To go beyond making the simple assertion, I would like to show you what we realized we 

have to do, which was to ask to what’s the variation among individual animals.  Basically, this 

defines the range of normal motor patterns in the population, and what we are going to do to 

quantify the motor patterns is look at these extracellular recordings form the motor nerves 

showing one-two-three, the discharge pattern we have been looking at, that triphasic motor 

pattern.  We can obviously measure the period.  We can measure the duration of the bursts.  We 

can measure latencies and the phase relationships of all the cells in the network.  (See Figure 5.) 
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FIGURE 5 

 
 The first thing I would like to show you is that if we look at different animals, the mean 

cycle periods vary about two-fold.  Figure 6 shows a histogram of the cycle periods in 99 

animals.   
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FIGURE 6 

 

 DR. BANKS:  I could imagine that every lobster is more than its own sort of starting 

point cycle time, and with age that cycle time slowly increases or slowly decreases.  I think that 

type of trend would be invisible if you do destructive testing. 

 DR. MARDER:  We do destructive testing so we have actually done a great deal of 

work on embryonic animals.  That is a whole other story.  This system is built in the embryo.  It 

has to be put in place before the animals hatch, because these motor patterns need to be ready for 

the animal before it starts to eat.  In the babies, we tend to see more variability, and to some 

degree slower patterns, which then consolidate so there is a whole other story about how things 

change very early in development. 

 DR. BANKS:  You don’t know that this pattern is stable over the entire portion of its 

life.  It could change. 

 DR. MARDER:  There are two answers to why we think it’s stable within the range of 

the population.  I don’t believe for a moment that an animal keeps an identical period over time.  

All I’m saying is it’s going to be within that range, and presumably as things are tuning 

continuously, it may wander round within the tolerance level, and we can’t monitor it long 

enough.  

 

 278 
 
 



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

 
FIGURE 7 

 

 Figure 7 shows the phase relationships, where we are looking at the time in a cycle where 

a cell starts firing and ends firing.  And again, you see that over this very large range of periods, 

the phase relationships are remarkably constant.  This in and of itself is actually a very 

challenging problem, because getting constant phase relationships over a large frequency range 

with constant time constant events, which is basically what you have, is tricky.  Now, thanks to 

really beautiful work by one of my former postdocs, Farzan Nadim, I think we really do 

understand the mechanisms underlying this.   

 Now, if we look at these measures in the juvenile and the adult animals (Figure 8), we see 

the cycle periods are basically the same.  Most of the phase relationships are very close, if not 

perfectly the same, and we just had fewer juvenile animals than adults, because they are very hard 

to come by.  My guess is if we had 99 of both of them, they would all fit in totally the same 

parameter regime. 
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FIGURE 8 

 
 That sets the stage for what we eventually want to account for, motor patterns with pretty 

tightly constrained, although not perfectly identical output patterns in different individuals.  We 

now want to go after the structure of the underlying conductances.   

 To do so, I’d like to step back and spend some time on the single neuron.  A lot of what 

I’m going to say is true of all neurons.  Neurons, when you just record from them, can have a 

variety of different behaviors.  Some of them can just be silent, and we’ll call those silent 

neurons.  Some of them will just fire single action potentials more or less randomly, and I we will 

call those tonically firing neurons.  Other neurons will fire what I’ll call bursts, that is to say they 

will depolarize, fire bursts of action potentials, and then they will hyperpolarize.  They will fire 

these clumped action potentials. 
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FIGURE 9 

 

 Figure 9, which was created by Zheng Liu when he was a graduate student of Larry 

Abbott, shows something that neuroscientists all take for granted, which is that as you change the 

conductance density or the channel density for all the different kinds of channels in the 

membrane, these behaviors can change.  I should tell those of you who aren’t neuroscientists that 

any given neuron in your brain might have—you probably all know about the classic sodium 

channel and the potassium channel in the Hodgkin-Huxley type axon where sodium carries 

current in, and potassium is partly responsible for the repolarization of the action potential.  Real 

neurons have 6, 8, 10, 12, and 18 different kinds of voltage and time-dependent conductances.  

Some carry calcium, some of those carry chloride.  Sometimes they are catanionic conductances, 

sometimes they are gated by other things.  Each one of these has its own characteristic voltage 

and time dependence that can be characterized in very much the same way by differential 

equations of the same form as Hodgkin-Huxley characterized the action potential equations.  

Zheng made a model to make these traces that contained a sodium current, a conventional one, 

two different kinds of calcium currents, and three different kinds of potassium currents.  Then he 

varied the relative density of those currents, and that’s what gave these different characteristic 

amounts of activity. 
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 What we experimental neuroscientists do is use a method called voltage clamp to actually 

isolate, and then measure each of the currents.  They are measured one by one in the cell.  We can 

then fit those experimental data to differential equations that characterize those properties.  Then 

we put all the currents from a cell back together again in a simulation and try to recover the 

properties of the cell.  So, that’s where the data in Figure 10 come from.  These models can be 

very useful in giving you intuition about what goes on, which combinations of currents must be 

there to determine these properties, and so on. 

 

 
FIGURE 10 

 
 The first thing that I would like to show you from these sorts of experiments is illustrated 

in Figure 10.  These data come from Mark Goldman, who was Larry Abbott’s graduate student 

and who is now on the faculty at Wellesley.  They represent a model very much like the one I just 

showed you, one with a sodium current, a calcium current, and three different kinds of potassium 

currents.  What Mark found, and this is really quite interesting, is he could have silent cells that 

have either low or high sodium currents.  He had tonic firing cells that could either have low or 

high sodium currents, and bursting cells that could either be low or high.  And the same thing was 

true for any one of the five currents in the model.  What this tells you, contrary to what most 

neuroscientists believe, is that knowing any single current by itself will not be adequate for telling 
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you what the behavior of the cell will be.   

 
 

FIGURE 11 
 
 It turns out that if you plot the three potassium currents against each other on a 3-

dimensional plot, as in Figure 11, you can see all these areas where you can have regions of 

silent, tonic firing, or bursting.  So, even the values of those three potassium currents are 

insufficient to basically predict what the cell's behavior.  On the other hand, the space partitions 

better if you plot one of those potassium currents against the calcium current and the sodium 

current.  You can then see the space partitions nicely.  This tells you that in this particular model, 

you have to know the correlated values of three of the five, and it has to be this subset of the three 

out of the five, which means it is actually a very inconvenient answer, because it makes it 

difficult to do many kinds of experiments. 

 We are going to take this approach and go one or two steps further.  Figure 12 shows 

work done by Astrid Prinz.  She wanted to build a really good model for the pyloric rhythm, 

because she wanted to build a nice model of that cell self-regulating or homeostatically 

regulating.  She wanted good models for the PD, LP, and PY cells, so she began by hand tuning.  

She got really frustrated, because hand tuning is unsatisfying, because it’s very hard when you 

have eight or so, as we have here, conductances in the cell. 
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FIGURE 12 

 
 Instead of that, she decided to use brute force.  There are eight different currents in the 

cell.  We have a leak current, and a current I haven’t spoken to you about before.  It’s a 

hyperpolarization activated inward current, three different potassium currents, two different 

calcium currents and sodium current.  She decided to use brute force, and took six values for each 

of those currents, one of the six being zero in all cases.  She then simulated combinations of all, 

and created a database of model neurons to span the full range of behaviors.  So, that was the 6th 

to the 8th, or 1.7 million versions of the model.  She ran them all and did this without telling me, 

because I would have screamed.  (All good things that happen in my lab happen without me 

knowing about them, I kid you not.)  She then wrote algorithms to search through the behavior of 

those cells, and to classify their behaviors in terms of whether they were tonic, firing, or bursting, 

and what they did. 

 She saved enough of the data so that we could search that database and find different 

neurons or different behaviors.   

 DR. BANKS:  Is it absolutely clear that you distinguish a tonic from a bursting nerve? 

 DR. MARDER:  You can make up criteria that will distinguish.  We’ll come back to 

that. 

 What do you see when you do that analysis?  Obviously you see cells of all different 

kinds of behaviors, as shown in Figure 13.  There is a single-spike burster, which has a single 

spike and then a long plateau phase.  There is a more conventional burster, and there are just other 

bizarre things. 
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FIGURE 13 

 
 Astrid spent a fair bit of time classifying those neurons, but the real question which 

comes back to what we are asking is how do these partition in conductance space, what are the 

overall structures?  What is of real importance to us, if we think about cells trying to 

homeostatically tune, is you want to know whether you have a structure like this.  In two 

dimensions, it’s real easy to see, or like this, where you have multiple regions of disconnected 

groups that can all be classified as bursters, but obviously this is going to be more problematic 

than if the space were better behaved.  Obviously, this you all know.  

 What I’m going to do is very briefly show you a new way we can visualize what is going 

on in 8-dimensional spaces.  It’s useful to be able to bring eight dimensions down into 2-D, which 

we do through something called dimensional stacking.  You start out for two conductances, 

everything else set to zero, which yields a plot.  Then we take that grid and embed it in another 

grid which would have those full range of behaviors embedded for all these other values in two 

dimensions, and we would repeat that grid over and over again.  Now we would have all of those 

four dimensions represented on the plot, and then you repeat that, and repeat it again and again 

until you have all the conductances plotted where you have one large and then smaller and 

smaller and smaller sets of repeating units, where everything has dropped down and repeated over 

and over again.  This gives you all of those 1.7 million neurons in principle, represented on one 

plot. The real key is to use color to represent their activities.   

 Because there are 40,000 different variations in the way you can do the stacking—e.g., 
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what axis you put as the smallest or the biggest—we asked ourselves what would be a most 

useful stacking order.  Tim Hickey and Adam Taylor, who actually did a lot of this work, decided 

that maximizing large blocks of color would mean there were fewer transitions, and might allow 

you to see where different patterns of activity were best. 

 To go back to this issue of connectedness, in this particular model, what do these 

parameter spaces look like?  What Adam Taylor did was to ask in the 8-dimensional space 

whether he could find all the cells that were nearest neighbors of one another by only varying one 

value of one current at a time.  He then defined those as a population.  It turns out that of all the 

tonically firing neurons, 99.96 percent of them can be found in one connected parameter space 

region.  We were very surprised and pleased by that.  100 percent of the silent neurons are found 

in a connected region of parameter space.  The bursters that have 6-10 spikes per burst, 99.3 

percent of them are in one region of connected space, and there are all these little regions down 

where many of the others sit. 

 Surprisingly, almost all of the models in each of the three major activity types are in 

single islands, which means that if a cell is going to have to tune, it is actually going to have a 

much easier job, because it can stay moving around, making minor modifications of one or more 

currents, but it doesn’t have to find 4 or 12 different isolated islands, and therefore cross into very 

different regions of activity in order to get there. 

 I would now like to show you one thing about our single spike bursters.  Of all the single 

spike bursters, just 99-point-something percent of them are in a single island of connected space.  

The underlying conductances are in different regions of the map. Indeed, each one of these cells, 

which to an electrophysiologist would look virtually identical, actually vary considerably in their 

underlying conductances.  So if I start looking at any one of these currents, you can see that all of 

these models, which have very similar behavior, have nonetheless very different underlying 

structure.  That says that widely disparate solutions producing similar behavior at the single cell 

level may be found in a continuous region of parameter space, and therefore that relatively simple 

tuning rules and targeting activity levels might be used to tune cells. 

 At the level of the network, Astrid Prinz did the same sort of thing that we just did at the 

level of the single neuron, but she did it to try and form a pyloric rhythm.  She took five candidate 

AB-PD cells from the single-cell database, and she wanted to use different ones to make sure that 

the results were not too idiosyncratic to any one model, and six versions of a PY neuron, 5 of LP 

neuron.  She then took all the synaptic connections and simulated either five or six of each of 

these.  She ended up simulating more than 20 million versions of the three-cell network.  Now we 

can go in and see what those do. 
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 The results include some answers where you get a tri-phasic rhythm in the right order.  

You get other answers where you don’t get a tri-phasic rhythm at all, and then a whole variety of 

other kinds of mistakes.  The tri-phasic rhythm is in the wrong order.  It’s almost a tri-phasic 

rhythm, but one of the cells doesn’t follow.  You can get really bad solutions and better solutions.  

There you have different model neurons of the same synaptic strengths, and again you get the full 

range of behaviors.  This tells you that as you vary either synaptic strength or the intrinsic 

properties of the individual cells, you can get a variety of different network outputs, which I’m 

sure you all understand. 

 Now the question is how many of these meet the criteria for being a good model of 

pyloric rhythm using the biological criteria that we established in the very beginning of the talk?  

Of the full set of all networks, 19 percent of them were pyloric-like.  That is to say, they were tri-

phasic in the right order.  If we go in and use the criteria from the biological database, and we use 

those to pick out all the model networks that meet all of these criteria, 2.4 percent of them were in 

the right frequency range, had the right duty cycles, the right phase relationships, and so on; there 

were something like 12 or 15 criteria that led us to that subset of networks.   

 We can now ask of that 2.4 percent that fit within a range that we would expect to be 

relevant to the biological system, what do they look like in their underlying structure?  Analysis 

shows that there are large differences between the specifics of the conductances for the two 

model networks.  For instance, the synapse conductance from PD to PY is much greater in model 

network 2 than for model network 1.  Similarly, the AB-to-LP synapse is considerably different 

between the two model networks, as is the case for many of the other conductances.  So, if you 

look at all of these, you say even though the behavior of the two networks is very similar, there 

are very disparate sets of underlying conductances giving rise to that very similar behavior.  What 

this tells the biologist is that there are probably a whole series of compensating changes so that 

one parameter over here is compensated for by a correlated or a compensating change over there.  

The interesting question is to ask, what set of correlations and multi-dimensional correlations are 

there that give rise to these viable different solutions? 

 In the model we see parameters that can vary over very large ranges.  Some of these 

parameters in these successful solutions may vary 5-fold, 10-fold, or 20-fold, and this is saying 

that if you have enough dimensionality, even if you have a very restricted output, you can come 

up with a large range of solutions.  If we look now at 633 models with very similar outputs, we 

see that none of them have a small PY-to-LP synapse, and none of them have a large LP-to-PY 

synapse, so these strengths are obviously important to producing that particularly output.  On the 

other hand, the AB-PY synapse is found either small or large in the population of networks, so 
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there are presumably some things that are much more important or more determinative than that 

conductance. 

 These data were very interesting to us.  Now we have the responsibility to go back to the 

animal and measure the synapse from LP to PD in 20 different animals to see how variable it is in 

reality.  Or if we measure the amount of potassium current in 20 animals, how variable is it?  So, 

I’m just going to finish off with some new experiments that basically say given the conclusions of 

this sort of analysis, the prediction would be that each individual animal will have found a 

different solution set.  Therefore, if we measure a given parameter, we should be able to see that 

variation in levels, so that’s what we are going to do.  We’re going to measure some of those 

things, and we’re going to do this in crabs.   

 We looked at two intracellular recordings from the LP neuron, and two ongoing rhythms.  

There is one LP neuron in each animal so it’s very easy to compare them.  Superimposing them 

shows that their wave forms and dynamics in the network are almost identical.  But when we 

measured the amount of the potassium currents, one can see differences in the amount of calcium-

activated potassium current.  Looking at 8-9 animals, we found a range of values, about 2-fold to 

4-fold.  This range is very similar to what most biophysicists see in most cell types.  

Experimentalists have always attributed that range to experimental error, but if you ask 

biophysicists to go back and tell you, they will all say, oh yes, 1.5-3 or 2-4 or something like that.  

It’s a very common range. 

 To conclude, I would just like to say that taken at face value, these data would say that 

it’s very important for an animal to maintain stable physiological function throughout its lifetime, 

even though the nervous system has to constantly rebuild itself.  Part of what we see is a 

tremendous heterogeneity in solutions found by individual animals, and probably by the same 

animal at a different time in its life.  What we eventually have to understand is which parameters 

are very tightly controlled, which are co-regulated, which are coupled, what things are free to 

vary, what things don’t matter.  And then we have to understand the rules that allow cells to 

wander around in their protected regions of parameter space as they are constantly rebuilding 

themselves to maintain our networks functioning throughout our life. 

 

 
 

QUESTIONS AND ANSWERS 
 
  
 DR. DING:  I would like to ask two questions.  One is, are there multiple PD cells?  You 

said for each cell type there is only one? 
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 DR. MARDER:  There are two PD cells in every animal; there is one LP cell.  There are 

four GM cells, et cetera. 

 DR. DING:  Okay.  Another question is, for each of the model neurons that you studied, 

over a million neurons studied, presumably these neurons are very highly nonlinear units.  

Couldn’t they be capable of multiple behaviors? 

 DR. MARDER:  Under different conditions.  If you inject current, yes.  But I just 

showed you their unperturbed behavior.  Presumably, if you do a whole variety of different 

perturbations, they will change their activity patterns, and you could then select for all the cells 

that were bursting, unless you do X, in which case they might have made a transition to bi-

stability or something like that. 

 DR. KLEINFELD:  I had the same question.  Because you cited your work and Ron 

Harris Warwick’s work when you add small modulators to the animal, the animal has its own 

endogenous modulators, you change the firing properties of cells.  Because the firing properties 

of the cells change with endogenous modulators, in fact you showed like 2.4 percent of all 

possible solutions were biologically relevant in these steady state conditions.  Do you in fact get a 

much smaller range of solutions if the cells actually have to track the effective modulators? 

 DR. MARDER:  David has asked that question much more politely than some people 

have asked it.  There is a really interesting question about neuromodulation.  With 

neuromodulation you apply a chemical, and you might alter one of the conductances 30 percent, 

and you may see a very big difference in the cell's properties.  One piece of the question is, if the 

population has a 2-fold to 4-fold range, why do you see an effect at all with a 30 percent 

modulation?  And that’s because 30 percent from one of those solutions can still, with all the 

other compensating currents, give you an effect, even though that 30 percent variation would still 

be part of the expected range within the population. 

 I think the same thing is true of the network.  What we know from our old data is that 

many neuromodulators have what we like to call state-dependent actions.  That is to say they had 

much stronger actions on networks that were going slowly than they did on networks that were 

going quickly.   Part of the answer is that every network is in a slightly different configuration.  

Modulators may always take them in the same direction, but the extent to which they will take 

them will depend on the underlying structure. 

 One of the things that we’re trying to do now is address this question in the models to 

really see whether many modulators go after multiple currents and multiple sites of action.  So, 

what we think is going on is that modulators may find correlated sets of currents and synapses to 

act on so that the whole system can go in the right direction, but it gets more or less of that 
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movement because of its action on multiple different currents in different sites. 

 DR. KLEINFELD:  So, you’re saying the modulator should cause things to co-vary in 

principle a little like you see in these analyses? 

 DR. MARDER:  Or the modulators have been chosen to go after the right set of 

compensating or cooperative currents and parameters. 

 DR. KLEINFELD:  So, the second question was does number one imply that if you 

added an interfering RNA, that you should be able to drive the from— 

 DR. MARDER:  Yes, if one could get the interfering RNA to work in your lobster that is 

sitting at 12 degrees and has really large pools of message and protein, yes. 

 DR. DOYLE:  So, I sort of just want to make a quick comment tying it up with my talk 

yesterday.  If you were to do the same kind of analysis on a range of clocks, you would 

presumably have found that the parameter space that gave good behavior was very small.  And 

so, early in the development of timepieces, it was very difficult to get clocks that were accurate.  

And if you take and do the same analysis on this, you would find that almost none of the 

parameters matter much at all, and that there are a few that have to be perfect more or less. 

 I have only studied bacteria, but bacteria appear to do the same thing that the advanced 

technologies do.  In advanced technologies, like my digital watch, you use the network 

architecture to create extreme robustness to the things that are hard to regulate well.  And you 

make extremely fragile architectures for things that are easy to regulate.  So the reason digital 

watches are so cheap is there is a large amount of integrated circuitry in there that does all of the 

extra stuff, and it's cheap and sloppy.  And there are a few little things that can be manufactured 

to very high tolerances also cheaply.  By structuring the network in the right way, you can 

combine these very sloppy things that are cheap to do with a few things that are very precise, and 

the consequences are that the network then has incredible robustness.  We know that everything 

that has been studied in bacteria seems to hold that.  I don't know if it holds here.  But it looks as 

though this is a standard thing in biology and advanced technologies, but not in primitive 

technologies.  It’s only in our most advanced technologies that we are doing that. 

 DR. MARDER:  My guess is that anything useful from bacteria the nervous system has 

kept and used, because that’s how brains were able to develop.  I think that's really cool.  The 

advantage of working in bacteria is you have fantastic genetics.  It’s going to be much harder for 

us neuroscientists to get some of those answers than it was for you. 

 DR. POULOS:  I’m Steve Poulos from the NSA.  What keeps these cells pyloric? 

 DR. MARDER:  The way I like to think about it is that early in development these cells 

are determined to have a certain set of firing properties, and that is to say certain genes are turned 
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on that says I want to burst at approximately this frequency.  Those then become set points for a 

series of homeostatic tuning. 
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Dynamics and Resilience of Blood Flow in Cortical Microvessels 

 
David Kleinfeld, University of California at San Diego 

 
 

 DR. KLEINFELD:  Like Eve Marder, I’m also a neuroscientist, but I’m going to talk to 

you about blood flow.  Some years ago we used some optical techniques invented by Larry 

Cohen to study the cortex, which Eve uses as well.  That data came out with unexpectedly large 

variance as a result of blood flow.  This gave rise to a series of studies—both measurement 

studies and perturbation studies on blood flow in cortex.  What I’m going to talk about today is 

work that is aimed at understanding the relationship between the topology of the vasculature, 

which are graph-like structures, and the dynamics of blood flow within the cortical vasculature.  

It’s interesting, because as you look at this problem from a physics or math point of view, you see 

highly interconnected networks; and the first thing you think about is percolation networks.  You 

can add defects to these networks, and they should keep working until some critical junction 

occurs, and then they will stop flowing.  If you talk to a neurologist or a stroke doctor, they also 

have this same notion, that you are constantly building up defects throughout your life in your 

cortical vasculature, and every so often you get these small, little microstrokes that occur 

throughout your life. 

 I broke the talk into three topics.  First, I want to warm everybody up to just how violent 

the world of blood flow is in your brain, and also introduce you to a little bit of the technology 

that we use to measure flow in the cortex.  In the spirit of using optics not just as a tool to 

visualize things but also as a tool to perturb, we will talk about two sets of experiments.  One 

takes place on the vasculature and runs across the top of your neocortex and actually supplies 

blood to individual cortical columns.  Another is about a separate network that exists in three 

dimensions and is within the bulk of the cortex itself, and how one could perturb flow in that 

region, and what the nature of that response is.  So, the idea is measure and perturb and measure 

again. 

 Just for a little bit of background, Figure 1 shows a rat’s brain.  Just to give you some 

flavor in terms of your own anatomy, there are four carotid arteries that come up your neck.  Two 

of them feed directly into this thing called the Circle of Willis that is on the bottom of your brain.  

It makes your brain somewhat resilient.  If somebody tries to choke you on one side, you’ll get 

full flow of blood on the other side so there is a level of redundancy built in.  Coming out of the 

Circle of Willis are another set of cerebral arteries.  One in particular is called the middle cerebral 
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artery that is labeled in the middle image in Figure 1, and this comes around the side of the cortex 

and branches as it comes off.  In fact, it meets up with another artery that comes through the 

midline called the anterior cerebral artery.  The point is that the redundancy actually begins to 

break down, and if a block is made in the main trunk of the middle cerebral artery, which has 

been a favorite model system of the neurology community, large swathes of your brain will start 

to die off. 

 

 
FIGURE 1 

 

 We are now going to look in finer scale at the region marked with the “X” in Figure 1, 

which is fed by the branches of these major cerebral arteries, and discuss what’s known from the 

past.  Others besides me, notably Rob Harrison, also got intrigued by the idea of variability 

between neural signals and blood flow.  He did a beautiful experiment.  He had done imaging 

studies and saw a lot of variability across the cortex.  He wanted to see if this variability could be 
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explained in terms of different vascularization.  This is shown in the top image of Figure 2.  

These images are from rats in which the entire vasculature was filled with latex, then you chew 

away the tissue and cover the latex with gold and look with a scanning electronic microscope.  

They give you beautiful pictures, but they are quantitatively useless, because you can’t see deep 

into the tissue.  Nonetheless, what Rob found is that if you look at the surface architecture, you 

see a lot of loops.  All of a sudden, this is the first serious indication that, rather than a tree-like 

structure that you see in textbooks, you actually have this loopy or graph-like structure.   

 

 
FIGURE 2 

 

 What Rob did next is look deep into the brain—the bottom image in Figure 2 shows a 

region in which a piece of the cast has chipped off—and follow from arterial to vein to venule, 

going from red to yellow to blue.  At least qualitatively it looks like one sees fewer loops.  This 

was very suggestive that the topology on the surface of the brain, maybe if only because it’s in 

2-D, is rather different from the topology below the brain’s surface.  Our question here is what in 

fact are the dynamic consequences of these differences in topology?  So, we need a method.   
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FIGURE 3 

 

 The first thing we need to do is make a nice map of the entire surface vasculature, so we 

use a technique invented by my friend Winfred Deale that is called two-photon microscopy 

(TPLSM).  This allows us to see deep into scattering tissue.  We are allowed to see about 500 or 

600 microns into tissue where 100 microns of thickness is enough to scatter away about 90 

percent of the light, which will allow us to make maps of the vasculature.  Keep in mind during 

the whole time that there is a rat here; there is a living, breathing rat.   

 What we could do is home in, going down from the surface to look and make a little map 

of individual vessels.  In the previous talk, Eve Marder showed these nice reconstructions of 

neurons that were made by making many individual planes and then reconstructed.  We are doing 

basically the same thing with scanning in a Z-direction, and taking all these planes, and looking 

down at them from the top.  That is shown in Figure 4 on the left.  We can home in on the vessel 

that is inside the box.  It’s about six microns in diameter.  That makes it a capillary, and we can 

then home in on the capillary per se. 
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FIGURE 4 

 

 We want to get some contrast to see movements of individual blood cell components.  In 

this case we can use a very simple mechanism.  We put large dextrose in, big sugar molecules 

that are coated with dye, so the blood plasma glows bright and fluoresces.  Particular red blood 

cells eschew the dye, so they are dark objects; we are imaging dark objects on a bright 

background.  If you look at successive frames from 1 to 2 to 3 to 4 to 5 in the right half of Figure 

4, these are roughly at video rate, there is a dark object progressively moving over to the right.  

That is the movement of a single red blood cell moving from a capillary, and this forms the 

notion of our basic data.  We could look at individual red blood cells, or any cell for that matter, 

moving through vessels that are within, in our case, about the top millimeter of cortex, halfway 

through the thickness of rat cortex.   

 As a technical issue, the red blood cells move pretty quickly, maybe 1 millimeter per 

second or so.  In order to quantify what the speed or the flux of these vessels is we use a 

technique called line scans.  We scan the laser repeatedly across a single vessel.  When there is 

just plasma, we get a bright image.  When we hit a red blood cell, we get no light coming back, 

and when we get past the red blood cell it goes bright again.  As we scan a little bit later in time, 

the red blood cell has moved, so it takes a while longer to hit the dark region.  We then build up a 

succession of strips in a space/time plot, as shown in the right-hand image of Figure 4.  The slope 

of this goes as one over the speed, and that’s basically enough to quantify what is going on. 

 296



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

  

 
FIGURE 5 

 

 Let’s see what happens just walking around the cortex in different columns, and looking 

at different capillaries.  The images in Figure 5 are in some sense typical.  You see these in a 

succession.  These are slow speeds, medium speeds, high speeds, and different slopes.  Not 

surprising, if you plot the speed versus the flux, the number of particles that pass per second is 

rather linear at low values of flux.  In fact, as you might expect, it may begin to saturate at high 

flux.  It’s in 1-D and it’s going to have a Pringle potato chip kind of transition. 

 The real thing that gets you is that you are sitting there, and all the sudden the speed 

jumps.  It’s very hard to find long swatches of time where the speed is uniform, or if this is a case 

where the red blood cells are moving, all of a sudden they stall and stop within the capillary.  

They will sit there for tens of seconds, or even more interesting, if nature very politely decided 

that capillaries should meet at Ts, what’s a better present to somebody who is doing scanning.  

Here we are scanning two legs of a T.  We have seen one come in from this side and one come in 

from that side.  Particles are conserved, so we know what’s coming out the third leg.  Right in the 

middle of this, marked R for reversal on the right-most image of Figure 5, the direction flips; 

therefore, this business of things flipping in direction is just a signature of feedback loops.  This 

data doesn’t tell you what the spatial scale of the loop is, but this is the typical thing and it’s wild. 

 Fritjof Helmchen and I gave a demonstration at Cold Spring Harbor Laboratories a 
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couple of summers ago at an imaging course, and it was like driving in Boston.  We found a little 

round-about and you see the blood go this way, and then it goes that way, and then it goes this 

way, so it’s like driving in the round-about.  The other thing that is very interesting is you could 

ask where most of the variation lives.  We could turn this kind of data into a time series of speed 

or velocity, because the direction is changing versus time.  We can then compute the spectral 

power density of this time series.  This is shown on the top plot of Figure 6, and what you see is 

that most of the variation lives at this very low frequency that comes in at about 0.1 Hertz.  This 

is an old topic; it is actually a 110-year old topic. The noise is known as vasomotion.  Its origin is 

unsolved and there is a real prize for this.  This is the dominant noise in imaging techniques like 

functional magnetic resonance imaging and optical imaging.  So, already at this capillary level 

you see this dominant noise source, and it is what got us into this game in the first place. 

 
 

 
FIGURE 6 

 

 What is the scale of this variability?  How can I put this into something realistic?  One 

thing I could do is give a stimulus.  I could ask if the speed of the blood changes as a function of 

stimulation.  I believe this is true from various sorts of functional imaging experiments.  At the 
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very top line in Figure 6, which is the time series of speed, you see that it’s noisy or ratty—no 

pun intended.  Towards the end of the trace you see a number of bumps.  These little boxes mark 

the time stamp of when we actually went in and simulated the animal.  In this case, we are 

recording from the vibursa area of the rat cortex, and we are tweaking the vibrissae at a level 

where we get about one spike per tweak, which is the normal physiological level of spiking.  

Sometimes you see a blood change and sometimes you don’t.  It’s a statement of a signal-to-noise 

of one.  If we take all those traces together and average them as shown in the lower left of Figure 

6, there is clearly a response, an increase in the speed during the stimulus.  The standard deviation 

is pretty much on the order of the mean itself, again, a statement of a signal-to-noise ratio of 1.  

To be more precise, if we take that time series on top and calculate its spectral power density, we 

have a stimulus peak that comes in at about 0.5 hertz, 1/20 seconds, and that’s shown in the lower 

right.  We then have our noise peak, our vasomotion peak, and they are about the same amplitude.  

You might argue that this is entrainment, so you look right before we put the stimulus on, and you 

see about the same amplitude.  This is the bottom line, the variability in blood flow, and the scale 

for this is that the changes in blood flow in response to normal stimulation are on the same size as 

the noise.  This could be why functional signals are weak, because they are right around the noise 

level.  It could say something about regulation.  

 Things are so noisy, and there are all kind of loops, then you think this might almost be 

resilient to defects.  We went ahead and tried this kind of experiment, and now I’m going back to 

our set-up, as shown in Figure 7.  I’m imaging on the surface, and the first series of experiments 

we’re looking at are changes in, or rearrangements of, flow on the surface.  These branches of 

cerebral arteries constantly form these interconnections, and this has a name.  It’s the connecting 

or communicating arterials, and what we could do is measure the direction and speed and 

magnitude of flow in all of these different vessels.  We will then go in and accrue data, make a 

blockage at this point, and look at the downstream flow. 
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FIGURE 7 

 

 We may ask, does it just stall out?  This is what you would expect for a tree structure.  Is 

there going to be some rapid rearrangement to the flow?  We need to introduce another new toy to 

do this.  The trick is these terrible molecules called photosensitizers that make a free radical when 

you shine light on them.  Within a couple of milliseconds these free radicals will actually damage 

the nearest piece of tissue.  In our case they will cause a little bit of irritation to the wall of a 

vessel.  This means we could inject these into an animal, do our observation at a wavelength that 

doesn’t excite these molecules, and then come in with a second beam of light to excite the 

molecules of interest and then see what’s going on.   

 The gist of it is the following, as illustrated in Figures 8 and 9.  We map the surface 

vasculature to determine where we’re going to target a particular point.  In this example flow is 
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going this way, and then it actually comes down and it branches, first here, and then branches in 

this direction.  Then I’m going to shine light.  The deal is that I adjust this dye, this rose bengal, 

which is very fancy name for a molecule that does damage.  It’s everywhere in the bloodstream, 

but I want to make a block just at the surface, so I come in with just-above-threshold levels of 

intensity.  I could actually activate the molecule on the surface, but once I get below the vessels, 

lensing due to the vessel and scattering through the issue will drop the intensity below threshold.  

I could then gradually build up a clot at this point and see that the flow, which was now all 

moving downward on the time scale of the block, would rapidly rearrange itself. 

 
FIGURE 8 

 
FIGURE 9 
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 Looking at Figure 10, I’m going to start irradiating at the point marked with a red X and 

then begin to build up a clot.  The clot begins to form, and slowly the direction of these vessels is 

beginning to reverse, and gradually we’ll make a stable clot.  As a matter of fact, the flow is 

almost completely stopped at this point, so the key result is already shown here, that we make a 

block, and we immediately get this rapid reversal in flow.  More so, the point is that the speed in 

the reverse vessel is very much on the same order, which means the rate of perfusion is on the 

same order as the initial flow. 

 

 
FIGURE 10 

 

 There are a number of examples here, and they illustrate the loopiness of what’s going 

on.  Let’s look at the top example in Figure 10 for a moment.  What we see is a blockage that is 

 302



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

  

shown on the right by the red X.  Initially, the speed of the flow coming into the downstream 

vessels was on the order of 5.7, let’s say 6, and 3 millimeters per second.  After the blockage, it’s 

down to 2 and 5 millimeters per second.  So, it’s the same order of speed. 

 You can just run through many animals.  We have done this on 30+ animals and 60+ 

vessels, and you always immediately see a reversal in flow.  Things don’t stall.  This magnitude 

of the speed is on the same order as the initial speed.  In fact, if we could plot this, we could plot 

the speed after the clot as a function of the speed before the clot on these immediate downstream 

vessels which are marked D1 in Figure 11.  The speed is slightly down, but not by much.  The 

critical thing is that if we multiply the speed times the cross-section of the vessel, which we can 

also measure we get an idea of sort of the volume flux.  That distribution is shown in the right-

hand graph of Figure 11.  The diagonal line there is the line of no change and the line parallel and 

to the right of it is about a reduction to 10 percent of the initial value.  This is the point at which 

physiologically you begin to get in trouble.  The point is that the rearrangement is well within 

physiological means to keep the neurons viable, and there is a set of histology that I’m not 

showing here that is also consistent in showing that neurons and glia stay viable. 
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FIGURE 11 

 

 The idea is that you have this mesh, and this mesh could rearrange its direction after a 

perturbation.  This should also hold if we make a much grosser kind of perturbation to the system.  

Here we appeal to a technique that, as I mentioned earlier, has been in the neurology literature for 

a long time.  That is putting a very fine filament through the carotids, and then up into the middle 

cerebral artery, and blocking this main artery itself.  Therefore, it’s not a complete blockage, and 

there is also a flow that comes in through the anterior cerebral artery.  The point is that we 

changed the pressure balance in the system, so to speak.  What we see in Figure 12 is again 

dominated completely by vessels changing their direction of flow when we go in and perturb 

even one of the main pipes.  This kind of business of very delicate balance of flow and changes in 

the direction seems, at least experimentally or phenomenologically, to be somewhat general. 
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FIGURE 12 

 

 One can summarize all of this as follows, as shown in Figure 13.  If we look at the first 

downstream vessels I mentioned, the flow after the fact is on average about half its initial value.  

That is lower than physiological levels.  If we make a blockage and look at vessels that fit parallel 

regions, there is virtually no change.  If we look here at vessels further downstream, on average 

there is no change, but quite a lot of variability.  It really is completely the loopiness of this 

system, and when you look in the textbooks they draw arterials as coming out as tree structures, 

and this is wrong.  The images in Figure 14 are actually taken in vivo by staining the vessels with 

a lipid-like fluorescein dye that stains the surface.  You can look at these regions and it’s fed this 

way; it’s fed this way and it’s fed this way.  It’s just a fantastic amount of redundancy.   
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FIGURE 13 
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FIGURE 14 

 

 DR. MARDER:  How big is the section that is sensing the pressure?  How far away from 

the inclusion do you see changes in flow? 

 DR. KLEINFELD:  Immediately downstream. 

 DR. MARDER:  Two millimeters away? 

 DR. KLEINFELD:  Let me give you a sense with the cartoon of vasculature in Figure 

14.  From here to here is a few hundred microns for the next sort of primary downstream vessels.  

By the time we get to secondary and tertiary vessels we are talking about 500 microns, and there, 

I think statistically, you would be even sensitive to this effect.  We are talking scales of 100 

microns, not millimeters, which may be, more importantly, of scale of cortical column in the rat.  

There is a deep issue, in fact, if this turns out to be a regulatory mechanism for blood flow in the 

rat.  That will take an awake-behaving imaging experiment, which we are slowly moving 

towards. 

 The last point I want to get at is the noise in the system.  We have talked about the 

redundancy on the surface, and now we actually want to move below the surface and look at the 

deep microvascular network, which at least superficially has less connectivity.  Now we have to 

introduce a different toy, as illustrated schematically in Figure 15, because initially we used light 
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to make a blockage, but we relied on the fact that the intensity was just enough to cause a 

blockage right at the surface.  What we need now is a means to actually cause a blockage below 

the surface.  That means I have to go nonlinear, so to speak, and I need to have an interaction, 

which is only effective at the focus of the lens.   

 

 
FIGURE 15 

 

 Just like we use nonlinear interactions to do our imaging, which means that we only get 

appreciable absorption at the focus, I can also come in with very, very short 100 femtosecond 

pulses, and I could only cause damage right at the focus of the lens.  Again, we are going to make 

a map of the surface, and then I can also map down below the surface.  I could find small arterials 

below the surface, and I could target these for damage.   
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FIGURE 16 

 

 The ideas of lasers in biology to perturb things are not new.  About 10 years ago people, 

particularly Eric Mazur at Harvard, started applying nonlinear interactions to actually perturb 

transparent objects.  We picked up on these ideas of using very-high electric fields to perturb 

things only at the focus.  I think it’s a nice technique for all of neuroscience.  What is going to 

happen is that we can target below, and there are three ranges of energies.  I guess at some level 

of energy you longer have a rat, so that is not interesting.  But at modest energies you actually 

cause an aneurysm to form.  At more intermediate energies you get something very interesting:  

we cause a little cavitation bubble to form inside an arterial.  We are picking a 10 micron object, 

and focusing light within the center of that object.  We can cause a little cavitation bubble to 

form, and that will actually cause temporary leakage in the blood-brain barrier.  It’s basically 

pulling apart the endothelial cells and we inject dye into the surrounding media.  It is similar 

energies, but by actually targeting the edge of the vessel, we can cause a blockage in a vessel that 

is below the surface.  This will allow us to get access to a new topology, and this is what happens.   

 

 309



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

  

 
FIGURE 17 

 

 Figure 17 shows a vessel that is about 300 microns below the surface, and we are homing 

in on the small region that is covered by a box on top.  There is flow going through this vessel, 

and I make a blockage at this point and map the speeds like I talked about before.  The key 

difference here is that I made a blockage at this point in this less connected network that lies well 

below the surface.   

 When I look downstream, again I get a reversal of flow, but the magnitude of these 

changes is about an order of magnitude smaller than what I have gotten on the surface.  This is 

not such a resilient network, so let’s see what happens.  On average we see the following.  In this 

case, if I look upstream, there is not much change below the surface.  If I look downstream I 

really do have pretty much a cessation of flow.  This holds for a fairly large sample, about 16 

animals and about 30 data points, as shown in Figure 18.  This vasculature in a qualitative way is 

missing loopiness, and I can compare it directly to what happens on the surface.  Again, upstream 

there is very little difference, but downstream on the surface you get this tremendous restoration 

of flow. 
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FIGURE 18 

 

 There are a lot of controlled experiments that we have done; there is a lot of histology I 

purposely left out.  One thing you could always say is that these changes had nothing to do with 

making a blockage, because you have gone in artificially.  You have made this transient 

mechanical disturbance and you have sent an electrical signal down the epithelial cells, down the 

vasculature.  Maybe you have turned on all kinds of inflammation and damage mechanisms.  

 I could go back and look at this other case that takes place at the same energies, where we 

go in, target the middle of a vessel, and cause a disruption of the wall, which we sense because 

dye that is normally confined completely in the vessel sort of oozes out for a short period of time.  

The important point is during this entire procedure I have now hit the system with laser pulses.  I 

have caused dye to leave, but I’m looking at the motion of the red blood cells at the same time, 

and that motion is unchanged as shown in Figure 19.  So, at least on these types of timescales of  
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hundreds of seconds, whatever changes happened in flow appear to be due to the blockage, and 

not due to biochemistry. 

 

 
FIGURE 19 

 

 The last point has to do with what one could do to restore this flow, and the role that 

viscosity could possibly play in this mechanism.  We did the same kind of experiment by making 

blockages at single points, and we asked if we looked further downstream, if some of the blood 

flow could be restored by actually dropping the viscosity of the blood.  This is an old idea.  What 

physicians used to do for stroke patients was just to dilute their blood.  It sounds on the same 

order of leeches.  Scary!  The point is that we normally look at baseline levels, and then we cause 

a clot.  Even if we try to dilute the blood, Figure 20 shows that there is virtually no change in the 

immediate downstream flow, and this region is stalled out.  If I look a little bit downstream, 

things are also fairly stalled out.  Yet, if you dilute the blood by 30 percent, you really do get this 

restoration of flow.  This is just more data to say that we are limited by simple fluid dynamics as 

to how the flow rearranges itself.  At least our neurology colleagues also think that this might be 

something that should be revisited in medical settings. 
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FIGURE 20 

 

 I have talked about ideas for trying to relate topology to blood flow, about how flow is 

very noisy in the vascular system, and about how we could go in and perturb flow on two 

different networks—a surface network and a deep network.  This one is highly interconnected, 

this one is less connected, and how there are quite differences in the dynamics.  Right now we are 

in the midst of quantifying the cortical angioarchitecture.  I mentioned at the beginning that the 

casts are very difficult to reconstruct because you can’t see into them.  We actually have a way to 

reconstruct big swatches of the vascular. 
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FIGURE 21 

 

 Figure 21 represents work in progress.  From the point of view of networks though, all 

the vertices have three connections, so in some sense this should make the problem simpler, if not 

tractable analytically.  If you look at the surface—just so far we have looked at a couple of 

networks—they are really dominated by these kind of little triads, the smallest possible loops that 

you could put together with these sort of three nodes.  If you look at the subsurface networks you 

see very few of these threes, so what we hope to do over the next year is put together these 

dynamics and the topology in a hard way. 
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FIGURE 22 

 

 I noted Eve reverted to math form, but I will revert to biology form and put the people at 

the end.  The initial flow experiments involved my colleagues Winfried Denk, Fritjoff Helmcien 

and Partha Mitra.  The National Academies more recent perturbation-based experiments were 

done in collaboration with Patrick Lyden’s laboratory at UCSD and involved Beth Triedman, 

Nozomi Nishimura, Chris Schaffer and Phil Tsai.  Beth and Phil, along with Pablo Blinder, Ben 

Migliori and Andy Shih, are continuing this collaborative effort. 

 

 

QUESTIONS AND ANSWERS 

 

 DR. DING:  My question is how long is the latency when you stimulate and measure the 

speed change? 

 DR. KLEINFELD:  The latency is about 300 milliseconds. 

 DR. DING:  So, it’s very fast. 

 DR. KLEINFELD:  Yes, but I think if you look at intrinsic imaging, which is where 

people measure in a gross sense by average the change from oxy to deoxy, they typically quote 

numbers like 400 milliseconds.  I think the difference here is we are looking directly at individual 

vessels.  I have to be straight, we could see no faster than 200 milliseconds, because we have to 

average over a window of time to detect the speed change. 

 DR. DING:  A second question is that in the absence of stimulation you still see a lot of 

 315



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

 

 

 

316

activities in that flow.  You used the noise to describe.  Can you say a little more about what is 

underlying those noisy activities? 

 DR. KLEINFELD:  I can and I can’t.  This is a deep intellectual embarrassment to the 

neuroimaging field.  There are regions in the rat that are at least on the order of a couple of 

millimeters square in area, and in human patients they are probably a few centimeters square.  

This is based on Pertha Mitra’s analysis of fMRI data.  Basically, you get changes in the arterials 

and changes in the musculature in the arterial that regulate the flow.  What controls this is not 

known.  It’s the question of neural control.  There are interneurons and there are two populations 

of inhibitory interneurons.  One puts out somatostatin, which causes things to get smaller, and one 

puts out vasoactive intestinal peptide, which causes it to get larger.  The hypothesis is that there 

must be within some region of the cortex enough coupling among these interneuron networks that 

the blood flow is seeing some delicate balance of what’s going on in these inhibitory networks, 

but that has not been tested.  The one thing you can’t do is put a catheter in the carotid artery to 

look at the fluctuations and predict what’s going in the cortex.  This would solve a lot of practical 

problems, but it has not worked. 

 

REFERENCES 

 
Harrison, R.V., N. Harel, J. Panesar, and R.J. Mount. 2002. “Blood capillary distribution 
correlates with hemodynamic-based functional imaging in cerebral cortex.” Cereb Cortex. 
12(3):225-233. 
 
Kleinfeld, D., P.P. Mitra, F. Helmchen, and W. Denk. 1998. “Fluctuations and stimulus-induced 
changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex.” 
Proceedings of the National Academy of Sciences 95(26):15741-15746. 
 
Nishimura, N., C.B. Schaffer, B. Friedman, P.S. Tsai, P.D. Lyden, and D. Kleinfeld. 2006. 
“Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: Three models 
of stroke.” Nature Methods 3(2):99-108. 
 
Schaffer, C.B., B. Friedman, N. Nishimura, L.F. Schroeder, P.S. Tsai, F.F. Ebner, P.D. Lyden,  
and D. Kleinfeld. 2006. “Two-photon imaging of cortical surface microvessels reveals a robust 
redistribution in blood flow after vascular occlusion.” PLoS Biology  4(2):258-270. 
 

 
 

 



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

 
 
 
 
 
 
 
 
 

Robustness and Fragility 

 317 
 



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

Robustness and Fragility 
 

Jean M. Carlson, University of California at Santa Barbara 
 

 
 DR. CARLSON:  I’m in the in the area of complex systems in the physics department.  

Over the last 17-18 years I have been looking at trying to come up with simple models and 

fundamental kinds of guidelines in thinking about complex systems.  That has first led me into 

earthquakes and more recently into forest fires.  Part of the goal has been to try to make 

connections between simple theory, detailed models and practical kinds of issues so I have 

benefited a lot from collaborations. 

 In light of everything that dominates the news these days my aim here is to step back and 

talk about natural disasters.  I’m pulling from a lot of things that for me are less directly what I’m 

working on, but what are the impacts, what are the consequences of robust yet fragile behavior in 

terms of dynamics on the planet, and then also in terms of people.  This is also an invitation and a 

question for all the people who work on problems in sociology, what can we do from the point of 

view of passing information from the scale of the modeling and the geophysical phenomena up to 

where it has a real impact, which is on sociological issues such as response as well as policy and 

planning and so on.   I think we’ve got to do that better.  Clearly, that is responsible for an 

enormous amount of the impact of these events, and the part that I have worked on is just the very 

beginnings of the geophysical phenomenon themselves. 

 Stepping back, I want to provide an overview of natural disasters.   The question at the 

end is whether or not there are some interesting ways we can think about this.  First of all, all 

these natural disasters are a natural part of the evolution of the planet.  If we didn’t have this sort 

of stuff we wouldn’t have life, so there are many good things about natural disasters.  When you 

go around and start collecting data though, you start to see that there are a lot of trends in terms of 

natural disasters such as costs as well as loss of life.   

 Figure 1 shows some statistics that have been drawn, and you can see that things are on 

the increase.  Economic losses are on the increase and insurance on these losses is not keeping up 

with the actual losses themselves.  
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FIGURE 1 

 

 Figure 2 updates that picture through 2004.  It doesn’t include 2005, but it does reflect the 

tsunami in the Indian Ocean.  You can see another big spike in terms of economic losses 

associated with the Kobe earthquake in Japan.  And Figure 3 displays the trend in economic costs.  

Even correcting for inflation, you see that there is an overall increase in terms of global economic 

losses associated with natural disasters.  This goes hand-in-hand with increased population in the 

world, and a lot of the population increase is associated with less developed countries.   
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FIGURE 2 

 

 
FIGURE 3 

 

 320 
 



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

 Natural disasters are also occurring increasingly in urban areas.  The world is now 

approaching the point where the fraction of population in urban areas will equal the fraction in 

rural areas, and the total world rural population is expected to remain relatively flat or even 

decline in the 2020s.  Figure 4 drives this home.  Each set of bars represents a different large 

city’s expected population growth over coming decades.  In looking at some of the large cities 

you can see most of them are on the increase.  Particularly, places like Nigeria and India are 

showing huge population increases in the large cities.  
 

 
FIGURE 4 

. 
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FIGURE 5 

  

 Figure 5 shows the class of cities that have more than 10 million people, called mega 

cities.  People look at these cities, which are often on coastlines, and classify them in terms of 

their hazard (yellow on the graphic), vulnerability (red), and exposed value (blue) in terms of 

hazard.  People are evaluating these kinds of things.  You can see that Tokyo is considered to be 

at high risk because of all of the geophysical kinds of phenomenon such as tsunamis, and so are 

the coastal cities in the United States.  This is a natural hazard risk index. 
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FIGURE 6 

 

 There are two things that people look at when they try to measure and plot this kind of 

data:  fatalities and damage.  Interestingly, the trends are opposite one another, as shown in 

Figures 6 and 7.  The poorest nations dominate in terms of deaths from natural disasters, but 

industrialized nations dominate the economic costs.  What are you trying to protect, how is a 

natural disaster measured if you try to think about where you are going to put your resources?  

You see that there are these two different measures to consider, loss of life and dollar impact.  

  

 
FIGURE 7 

  

 323 
 



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

 Returning to this issue of robust yet fragile and the talk that John Doyle gave yesterday, if 

you look at the distribution of sizes of events themselves (Figure 8) what you see are these power 

law distributions.  Yesterday John talked about plotting the size statistics for natural disasters 

here.  This figure is in terms of dollars for the natural disasters.  They follow a power law 

distribution.  That means that on a log-log scale they are very broadly distributed.  Each dot 

represents one increase in the cumulative number, so does the largest event, second largest event 

and so on. 

 
  

 
FIGURE 8 

 

 This is a power law distribution, and what that means in that the worst event, the events 

that dominate the losses, are much worse, orders of magnitude worse than a typical event.  This is 

shown in Figure 9.  Large events that we see, like Hurricane Katrina, are completely consistent 

with these statistical distributions, so they’re not outliers or anything like that.  They are 

consistent with the statistics and they are to be expected. 
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FIGURE 9 

 

 One of the things that John Doyle and I have been looking at in recent years has been 

trying to think about complex systems, cascading failure events, in the context of power law 

distributions in a fundamental way.  This is a very quick summary of the work that we have been 

doing in that area.  We try to bring in insights from biological and technological systems; systems 

which are highly optimized or have evolved through years and years of Darwinian mechanisms to 

be behave optimally in some sense, not like generic random systems but in an optimal way.  We 

found that this demands a new theoretical framework on many different levels.  We have used 

some of the simple kinds of models that arise in physics in order to try to show how robustness 

issues change these models, and robustness trade-offs lead to new fragilities and sensitivities.  

One hallmark of this is these kinds of power laws.  Another statement is that sometimes 

heterogeneity and high variability can create opportunities for increased performance in some 

systems. 

 This HOT framework is one that talks about optimization or evolution of systems.  It also 

fits into a broader framework for describing large network systems that have robust, yet fragile 

behaviors.  Not necessarily all systems are obvious solutions of some kind of optimization 

problem like earthquakes, but they still have this kind of robust yet fragile behavior.    

 We are finding that feedback plays an important role.  Interesting issues arise in terms of 

multi-scale and multi-resolution modeling and analysis.  This really is a demand for a new 

approach to complex systems theory that goes all the way through.  My hope is that we’ll be able 
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to learn from what we study.  Social systems will be helpful to understanding complex systems 

and natural systems.  It doesn’t mean they are the same, but it does mean that we are sharing 

tools.  More and more we need to share those tools and we also need to be able to talk to each 

other, because our cascading failures pass from natural disasters into social systems and our 

network communication systems as well.  In any case, this HOT fits within this general picture 

and a big, primary message from the HOT systems is to imagine having some sorts of resources 

that you are allocating to a spectrum of events.  If you become, through design or evolution, 

robust to center kinds of perturbations, you introduce new fragilities as well, as a consequence of 

this architecture. 

 One of the kinds of pictures that John and I have worked on to describe this is a 

generalization of Shannon Coding Theory where you imagine that you have some kind of 

resources in your systems.  We want to compress our data, which calls for optimizing d-1 

dimensional cuts in d dimensional spaces.  Fires, as shown in Figure 10, provide an example, 

where there is some template of trees in a forest and the resources might be associated with fire 

breaks or means to suppress fire.  Given a constraint on the resources, you want to optimally 

assign the resources, given some spectrum of possible fires.  We have also looked at this 

generalization of Shannon Coding Theory in the context of Web design.   

 

 
FIGURE 10 
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 I’m not going to tell you the specifics of the model behind the curves in Figure 11, 

because I want to focus more on the robust and fragile features.  We compared it with data, and a 

very simple model gave rise to very accurate fits that was much more accurate than we were 

expecting for statistics of forest fire sizes and Web file downloads.  We then based it on data 

compression, so it has to fit there.   

 
FIGURE 11 

  

 In this graph, “rank” is just frequency of possibility as a function of size, measured 

obviously differently in these two different cases, but the straight-line parts of the slope are really 

signatures of the power laws.  In this particular case they have different exponents, because there 

is a different underlying dimensionality of the 2-dimensional forest and chopping 1-dimensional 

documents into files.   

 

 327 
 



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

 
FIGURE 12 

 

 The big message (as shown in Figure 12) is that most files and fires are small and most 

earthquakes are small.  You don’t feel most earthquakes, but most packets and burnt trees are 

associated with those few largest events in these statistical distributions.  If you sit around and 

wonder if there are earthquakes and fires happening, the answer is “yes” they are happening, but 

the ones we really notice are these large ones.  In the end this high variability is the important 

message to take away from power laws.  They are much more important than the power laws 

themselves and it’s not necessarily a bad thing.   

 The fast protocol that John Doyle mentioned yesterday is really taking advantage of this 

in the context of protocol development for the Internet.  These statistical distributions for fires 

and Web traffic have led us into looking at the Web problem and Internet traffic problem talked 

about yesterday.  I went with John and some colleagues of mine in the geography department at 

the University of California, Santa Barbara, and looked at issues associated with real forest fires.  

We had this nice statistical fit—how does that compare to real fires?  It’s a very simplified 

mechanism to imagine trees burning with just assignments to the perimeter.  We worked with 

some colleagues who are fire experts looking at statistics and fire simulators in real forests.  For a 

real fire, hazard factors aren’t just associated with proximity of trees and fire breaks.  Things like 

the terrain matter, how dry the trees are, and whether or not they are dead or how old they are.  

Weather is a big factor, especially in California where you have the Santa Ana winds, which are 

very high wind conditions that create very dry and hot days.  Those are dominant factors in 

California.  
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 We took a model that had been developed for individual fires, HFire.net, and generalized 

it to account for long extended records of fires.  It was based on satellite data for the topography, 

fuel measurements on the landscape, and models for how the fuel evolves once it is burned, or if 

it hasn’t burned, and historical data from weather catalogues.  We generalized this model so it 

could run for long periods of time, and then collected statistics.  Figure 13 shows some work that 

we have done, which I’m not going to explain in huge detail, but we found similar kinds of fire 

footprints to the types that are seen in actuality.   

 

 
FIGURE 13 

 

 The statistics also provide an excellent statistical agreement between this very simplified 

HOT model and about the best data set that exists for fires, as shown in Figure 14.  This is a 

starting point for lots of other things that you could do to think about more realistic fire models.  

It connects with a simple detailed picture and may be an interesting place to generally look at 

how these models could be used in terms of evaluating hazards and policy and social and 

economic impact.  This is one aspect of this work.   
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FIGURE 14 

 

 One of the questions that people often ask in terms of natural disasters like fires is are 

they getting worse?  Clearly, in the case of fires, there has been 100 years or so of suppression 

policies mandated by the U.S. government, which has led to a build-up of fuels in our forests.  In 

addition, we are urbanizing these fire-prone areas, urban-wildlife interfaces, which increase 

economic risks.  Climate change may also play a role.  Large wild fires are not a random and 

unexpected occurrence; they are to be expected and our policy has, if anything, made things 

worse.   

 Another interesting statistic is we spend about 100 to 1 in terms of reactive spending as 

opposed to proactive spending in terms of natural disasters.  If we could find some ways to use 

information ahead of time, it’s still a drop in the bucket.  Another important point is that regular 

burn cycles for forests are an intrinsic part of the ecosystem dynamics.  If you don’t have regular 

burn cycles, when you do burn, biodiversity increases in the recovery period.  Many plants in 

these areas are well adapted to fires and seeds will not germinate without them.  You are going to 

have fires and if you don’t there is a problem.  That’s part of the message, too. 

 I want to move beyond fire and talk about some of the other natural disasters.  As shown 

in Figure 15, fires have power law statistics, as do hurricanes, floods, and earthquakes.  Again, it 
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isn’t the most important part that they have power law distributions; it’s much more an issue that 

there is this high variability.  Also, in looking at the global distribution of natural disasters, forest 

fires are really only a small piece of the pie.  Floods dominate the losses.  Earthquakes are also a 

relatively small piece of the pie.  Windstorms are large, with Asia the dominate region in terms of 

losses.     

  

 
FIGURE 15 

 

 A large number of different approaches can be taken to break up this kind of data in 

terms of the damage associated with natural disasters.  In dollars, geophysical phenomena are 

large, but when it comes to the number of people affected, these are fairly well localized in 

regions like California in the United States, and in terms of number killed.   

 Over the period 1970-2000, there was an increase an increase in the number of natural 

disasters recorded worldwide, with the increase in damage going up in a very steady way over 

that period.  More people aren’t dying overall but there has been an increase in loss.  Again, a 

large part of the reason for these trends is that large populations are accumulating in coastal 

regions, which have high seismic activity, opportunities for flooding, hurricanes, and so on.  

Tectonic activity is in many cases also localized in coastal regions, and so damages from 

earthquakes have also gone up even though the number of earthquakes is not increasing. 
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FIGURE 16 

  

 How do earthquakes happen?  What’s the physics?  Figure 16 presents a cartoon-like 

picture.  The idea is you’ve got plate tectonics, and you’ve got the crust of the earth that is like an 

egg shell on top of the mantle that is slowly convecting, which drives the relative motion of these 

plates.  There are weak interfaces in between tectonic plates where stresses accumulate that create 

a slipping event when the material along the interface fails, and that sets off waves that radiate 

through the ground.  Figure 16 shows a lateral fault, which is like the San Andreas Fault, but 

there are different kinds of faults.  Again, this is a cartoon; the slip does not occur homo-

geneously.  There are different things you can look at such as the dynamics, the complexity of the 

slip itself, and the fact that it’s complicated.  You can also look at the dynamic complexity of the 

radiation as shown via simulation in Figure 17.  It doesn’t have much interesting dynamics in the 

slip itself, but it is showing you what would happen in Los Angeles if you had a very simple slip 

pulse propagating down the San Andreas Fault, which is cartooned by that line. 
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FIGURE 17 

 

 Figure 17 shows Los Angeles and its freeways.  You can see that the ground motion is 

complicated, and the reason is because the hard rock basin underneath Los Angeles is 

complicated.  What it looks like is known because of oil exploration.  You can find that there are 

some places where you don’t want to be, which has to do with such things as resonance effects.  

These kinds of models are the things that people use to try to set building codes in different parts 

of the city.  I’ll come back to earthquakes a little bit at the end, which is the area in which I have 

worked the most.  But first I’ll talk a bit about the Sumatran case and the tsunami.  What caused 

the Sumatran earthquake?  A simple answer is 200 million years of continental drift, as the Indian 

plate slides under the Asian plate.  Figure 18 shows that collision, with the red area being the 

portion that slid and caused the Sumatran earthquake.   
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FIGURE 18 

 

 If you superimpose the region that slid on a map of California (as shown in Figure 19), 

it’s an enormous magnitude 9 earthquake.  This just shows how significant the Sumatran quake 

was.     

 

 
FIGURE 19 

 

 This particular earthquake is not the lateral kind, the kind of earthquake that makes 

tsunamis happen at subduction zones.  Subduction zones are where you have two plates that, 

rather than slipping side-by-side, one is going under the other.  They are out in the ocean where 

things are spreading up; the sea floor is spreading and there is a divergent zone.  Material comes 

out and travels across the ocean very quietly.  When it hits another plate it goes down, as shown 
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in Figure 20, and when it goes down something goes up.  This happens underwater, so you have 

this water that doesn’t want to sit like this and it has to cope with that.  That is how you get a 

tsunami; waves are set off in both directions, as shown in Figure 21.   

 
FIGURE 20 

 

 
FIGURE 21 

  

 When the tsunami is a wave in the ocean, it is about one meter high—less than a meter 

high so it’s nothing; it just goes along in the ocean.  When it comes up against the coast, the slope 

amplifies the wave, as shown in Figure 22, and it can typically go to 10 meters, but it can also be 
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hundreds of meters.  There are some known examples where it is higher.  High does not 

necessarily mean high damage, but there is a wide range of heights of these waves.  You know 

that they are coming, and you can estimate how long it’s going to be.  But tsunamis travel at 

hundreds of miles an hour across the ocean.  The question is whether or not people know one is 

coming. 

 
FIGURE 22 

 

 There are all kinds of simulations of the Sumatran tsunami.  We have a simulation of the 

disturbance traveling across the ocean in these simulations, and you can estimate how long it will 

be until it hits various coastal places.  Figure 23 shows the tsunami’s progress in hours.  It took 

about two hours to get to Thailand.  It was Sumatra that didn’t have very much warning.  It’s a lot 

more warning than you would ever have for an earthquake, but that might not be enough if you’re 

out on the beach.  So the question is whether or not we really have effective warning systems for 

some of these things.  
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FIGURE 23 

 

 There are lots of tsunamis, and Figure 24 shows statistics for a bunch of recent ones.  A 

magnitude 9 earthquake is a big earthquake, so there was a lot of damage.  But not all tsunamis 

are damaging.  The red ones in Figure 24 are the damaging ones and the white ones aren’t.   

 Along the Pacific Coast in the United States we are always at risk for tsunamis.  The 

biggest chance for tsunamis is most likely up in Alaska and in the Chile fault.  We would have a 

lot of warning so we sort of sat around and said, well, look, what would you do?  I guess what 

happens is that the show is on the TV, you probably get an e-mail hours in advance, but you 

might be out on the beach on vacation, and you might not know, so the policemen and fire 

departments go out and tell you and try to clear people off the beach.  Some people are afraid to 

tell you because they fear people will go to the beach to see it.  That’s also taken into account. 
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FIGURE 24 

 

 Hurricanes are another category of natural disasters that can be extremely costly.  

Scientists are not surprised that a large one like Katrina will happen, but it doesn’t happen every 

day so we get used to thinking that it’s not going to happen.  There is a question of policy and 

where you allocate your resources.  There is lots of research going on in predicting the intensity, 

how the intensity will change, and predicting the tracks of a tsunami or a tropical storm once it 

starts.  There is also a lot of effort going on to predict what’s vulnerable by modeling so there’s a 

lot of interesting work in progress going on out there with the urban area topography.  The thing 

that you can do here regarding something like earthquakes is couple with field research; go out 

and measure the hot spots in the ocean, and you can tell what is going to spin up the tsunami rate.   
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 A lot of the vulnerabilities that we see are things that have to do with finite resource 

allocations and their impact over all kinds of scales on our sort of social network structure, as 

indicated by Figure 25.  There is the geophysics and hydrodynamics, which has its impact on 

homes and families, infrastructure and energy.  It puts stress on our hospitals.  If they are already 

full or they are closing because of other stresses like insurance, you won’t have Emergency 

Rooms for people to receive treatment.  We won’t have the military as much on the homeland to 

come and respond to our disasters if they are already allocated abroad.  This impacts our 

transportation and communications systems.  Fuel prices rise and it impacts airlines.  Airlines are 

already going bankrupt; therefore, there is a huge stress on the system.  It comes all the way up to 

global economic issues, politics and natural resources on large scales.  I think the thing that is so 

striking is how a shock, like a hurricane, to a about robust-yet-fragile system can lead to 

cascading failures all the way up the chain. 

 

   

 
FIGURE 25 
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FIGURE 26 

 

 In Figure 26 I tried to cartoon the whole issue of scale, going up in time/space.  Since 

most things happen on the diagonal, you might collapse that into a vertical time and space 

connecting these different scales, and horizontal issues associated with modeling the physics or 

geophysics on any one of these scales.  I would say for natural disasters we focus enormously on 

the horizontal aspect and not very much on how we can transmit information from one scale to 

the other.  I think it’s a huge issue, and my plea is to the people here that are involved in 

sociology is how to think better about this problem. 

 I have been thinking about how to address the risk of earthquakes in that multi-scale way.  

One can model fine-scale geophysics, the impact of that on friction laws, the impact of friction on 

faults and networks, and all the way up to things that have to do with hazard evaluation policy 

and building codes.  Part of the problem is that in this case, there is the issue of modeling on the 

horizontal scales of Figure 26 and then trying to connect the scales.  When you get to the point of 

understanding how to set insurance rates and policies in terms of reaction to disasters, the vertical 

challenges dominate the issues.   

 So, dealing with uncertainty in seismic hazard analysis requires addressing the horizontal 

challenges—identifying the range of physical behaviors that are plausible—and also addressing 

the vertical challenges, such as uncertainty management and how to pass information between 

scales in a useful way.  You might think of seismic hazard analysis as being represented by the 

elements in Figure 27, and to some extent they are there in the background.  In the end, though, a 

lot of economics and policies are based on a single number, which in this particular case is a 62 
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percent chance of a magnitude greater than 6.7 happening in a 20-year period or something like 

that in the Bay area.  There are all kinds of statistical problems associated with what this number 

is, and that’s what my student Morgan Page and I have been looking at.  

 
FIGURE 27 

 

 There needs to be more rigorous statistical methodology for combining data in these 

uncertain worlds, and also to incorporate physical constraints that come from modeling and 

simulation and ground motion estimates and so on.  In this issue of dealing with uncertainty, 

vertical challenges really dominate our ability to estimate things like losses and risk to human 

life.  If we could address these in a more systematic way maybe we would have a stronger impact 

on policy. 

 

QUESTIONS AND ANSWERS 

 

 DR. GROSS:  I’m Shula Gross from the City University of New York. My question is 

you showed a plot that suggested a power law for fire damages.  It’s funny, because statisticians 

and econometricians usually look at the tails, and we care more about the tails than about the 

center.  You somehow did the reverse. 
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 DR. CARLSON:  I think there are cut offs partly because of physical sampling, and in 

some cases, if you look at data for a particular region, like Los Padres National Forest, there is a 

larger size that is a constraint in that particular forest based on terrain, and where we have got 

urban areas, or where you hit desert or where you hit rivers and so on.  But the tails are really 

important.  There is again, this very broad span.  There is a cut off at the low end, too, of fires we 

just don’t bother to measure, and so it’s the fact that there is this broad span and natural cut offs at 

the two ends. 

 DR. BANKS:  This goes a bit outside the purview of the conference, but I wonder if you 

have any comments on the following.  When you have a country like the United States, which 

basically is self-insuring against natural disasters, one can usually look at the historical record, 

and one of your early slides did that, to sort of give you a forecast of what the total costs are 

going to be in any given year.  That sets the level at which money must be collected in order to 

maintain a balance on that.  But then one might very well use some of that money to invest in 

efforts to harden areas against disaster. I just don’t know about the economic theory that drives 

self-insured agencies.  Do you know if anybody is looking at that type of thing? 

 DR. CARLSON:  I don’t know about that, but I think it falls within this category of 100-

to-1 reactive spending, where we don’t invest very much in research, and we don’t invest as much 

as we should in building stronger barriers against these kinds of events.  I think that’s huge. We 

know in many cases that we are operating at or near capacity.  So, with things like the power grid, 

we know that we are operating at or near capacity.  If we put more resources in, we would be 

okay, but instead we have power failures.  It's going to get worse instead of better because of 

increased population, increased demand. 

 DR. SZEWCZYK:  So, why do you live in California? 

 DR. CARLSON:  Yes, I think that’s a really good question.  I grew up in Indiana, and I 

was afraid of tornados in Indiana.  So, in Indiana you would watch the news, and there would be 

these tornados that come through, then I went to school on the East Coast, and I went to 

California.  I think the first earthquake that occurred after I moved to California was the one in 

Canada that people felt in New York.  California is a little bit crazy but it’s beautiful though. 
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Stability and Degeneracy of Network Models 
 

Mark S. Handcock, University of Washington 
 
 

 DR. HANDCOCK:  There has been a lot of discussion related to the ideas I’ll be talking 

about today.  This is not a new topic at all but I think its worthwhile looking at how these 

particular issues relate to the particular problem of models and social networks.  My main idea is 

to see how very old issues and very old concerns apply or play themselves out in the context of 

social network models. 

 This is joint work and I’m going to go through some things here, but if you really want to 

find it, please look at these working papers on the Web at the Center for Statistics and the Social 

Sciences (CSSS) at the University of Washington (www.css.washington.edu).  Much of this work 

was with Martina Morris and with the University of Washington’s Network Working Group, 

which includes Carter Butts, Jim Moody, and other folks that Martina mentioned yesterday.  I 

particularly want to point out Dave Hunter of Pennsylvania State University, who is in the 

audience.  Much of this work is done jointly with him. 

 I’ll review some topics that have been gone through before.  I won’t belabor them now 

because they have basically already been covered.  As I look around this room, the study of 

networks draws in a very diverse set of folks, and we have many varied objectives and a 

multitude of frameworks and languages used to express things.  I don’t think I’ll spend much time 

on this.  After one and a half days I think this is fairly clear. 

 One thing that is important to recognize, at least for the topics that I’ll be looking at, is 

there are many deep and relevant theories here, and a deep statistical literature grouped into 

several communities.  For instance, the social networks community has done a massive amount of 

work as you saw last night in the after-dinner talk.  Two key references would be Frank (1972) 

and Wasserman and Faust (1994).  The statistical networks community has also worked on this 

topic for a long period of time, and some key references are Snijders (1997), Frank and Strauss 

(1986), and Hoff, Raftery, and Handcock (2002).  In particular, it’s worthwhile to look at the 

work of David Strauss, which I think threads through much of what’s going on and is very 

important from a technical contribution.  Other contributions which I think haven’t been 

discussed much at this workshop are from the spatial statistics community.  There is a lot of very 

important work there and it’s very closely allied.   If you are looking to work in this area I think 

it’s very important to read this stuff very closely.  Good pointers into that literature include Besag 

(1974) and Cressie (1993).  Another important literature, which I’ll mention later in this talk, is 
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exponential family theory.  It’s been worked out a long time ago and the best place to start is a 

seminal book by Barndorff-Nielsen (1978).  The last relevant literature is that coming from the 

graphical modeling community.  They work on related ideas that are actually closer than it would 

seem by just judging the commonality in terms used.  A good pointer is Lauritzen and 

Spiegelhalter (1988).  

 Networks are very complex things, and how we choose to model them will reflects what 

we have tried to represent well and what we are essentially not trying to represent well.  That 

choice is going to be driven much by the objectives we have in mind.  This is an obvious point, a 

point that drives through much of scientific modeling, but I have found that it’s very important 

for the networks area because of the complexity of the underlying models and the complexity of 

the phenomena we are interested in. 

 What we are probably interested in first would be the nature of the relationships 

themselves, questions such as how the behavior of individuals depends on their location in a 

social network, or how the qualities of the individuals influence the social structure.  Then we 

might be interested in how network structure influences processes that develop over a network.  

Dynamic or otherwise, the classic examples would include the spread of infection, the diffusion 

of innovations, or the spread of computer viruses, all of which are affected by the network 

structure.   

 Lastly—and I think this is of primary importance and why many people actually study 

networks, even though they will look at it only after understanding the relationships and the 

network structure—is that we are interested in the effect of interventions.  If we change the 

network structure and/or the processes that develop over that network, how will the network 

structure play itself out, and how will the process itself be actually changed?  If you make 

changes to the network almost certainly the consequences of those changes will not be obvious.   

 Another important point is that our objectives define our perspectives.  There is a 

difference between a so-called network-specific viewpoint and a population process.  By 

network-specific I mean we look at a given network.  It might be sampled or have missing data in 

it, but our scientific objective is that particular network.  That is in contrast with a population 

viewpoint, where we view the data we have, whether it’s complete or sampled, as a realization 

from some underlying social phenomena typically represented through a stochastic process, and 

we wish to understand the properties of that stochastic process.  In that case, the observed 

network is conceptualized as a realization of a stochastic process.  

 I think a lot of the different approaches in the literature look very different because they 

have these different perspectives and objectives in that mind.  For example, repeating a point 
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made last night by Steve Borgatti, one can compare a social-relations perspective with a nodal 

attribute compositional perspective.  The former brings out interdependence/endogeneity and 

structure and positional characteristics, while the latter focuses on atomistic essentialism and 

reductionism.  I won’t say more about these things because I think they have been adequately 

covered. 

 Figure 1 defines a very basic model for a social network. 

 

 

 
FIGURE 1 

  

 Hence, we can think of Y, the g-by-g matrix of relationships among the actors, as the 

sociomatrix.   In a very simple sense, we want to write down a stochastic model for the joint 

distribution of Y, which is this large, multivariate distribution, often discrete, but it could be 

continuous also.  All we want is a relatively simple “model” for the dependent structure of this 

multivariate random variable; that’s how a statistician would view this problem, and that view 

dominates the development.    
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FIGURE 2 

 

 Martina Morris showed Figure 2 yesterday but I’ll show it again just to bring it forward.  

Let Y be the sample space of all possible graphs, for example, just presence or absence of ties, 

and we write down an exponential family model of the form shown.  We also have the space of 

graphs that are possible.  The denominator is a constant which is  defined as the sum of the 

numerators.    

 One thing that I think is worthwhile to look at is a way of getting a general interpretation 

of the model through local specification.  This is shown in Figure 3.  We define Yc as the graph 

excluding the ij component of the network.  These are all the network elements, excluding the ij 

one.  This is a standard formula, but I think it’s quite instructive.  What it says is the probability 

of a tie between i and j given  the rest of the network, divided by the probability of a non-tie 

between i and j with the rest of the network held fixed.  The basic idea is that we consider the 

graph, and we hold the graph fixed and think about taking a particular tie:  what happens when 

we change it from a 0 to 1?  Looking at the odds of the tie conditional on the rest gives us a direct 

interpretation of these forms.  It can also be interpreted in terms of a relative risk form.  The basic 

idea gives us an interpretation of either, at least one or many others in terms of the local 

specifications of the actual form.  How a particular dyad probably would tie in between a 

particular pair of actors is influenced by the surrounding ties.  By specifying the local properties, 

as long as they are done in this way, you get the global joint distribution, going from the local 

specification to give you a global one.  Again, this is relatively straightforward from an algebraic 
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standpoint.  It’s just helping us with the interpretation. 

 

 
FIGURE 3 

 

 I’ll make a brief comment on models for the actor degree distribution, which is shown in 

Figure 4.  We can write a particular model of this form where the statistics are just the proportion 

of actors with exactly k relationships, i.e., the proportion of the nodes with k relationship or 

degree k.  Basically, we write just a linear predictor on these forms, this is the so-called degree-

only model.  In essence what it is saying is if we can condition on the degrees, and all of the 

graphs with those degree structures are equally likely, in that sense it’s random mixing given a 

given degree sequence.   This has a very long history in social networks community, and there are 

the two references shown in Figure 4 plus many others that are good places to start.  This is 

receiving an enormous amount of work.  The reason I’m pointing this out is because there has 

been a lot of work on these models, and they are being considered both from a technical and from 

a theoretical perspective.   I often think that science is not helped a lot when that prior work is 

forgotten. The other thing you can do here is further parameterize the degree distribution, which 

essentially places nonlinear parametric constraints on the α parameters here.  As most statisticians 

know, this moves it technically from just a straight linear exponential family to a curve 

exponential family.  Dave Hunter and I did some work on models of that kind.   
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FIGURE 4 

 

 We could then add in—Martina did this yesterday, and I’ll show this again briefly— 

co-variates that occur in this linear fashion, attributes of the nodes, attributes of the dyads.   We 

can add some additional clustering component to a degree form in this way.  This is shown in 

Figure 5. 

 

 

 
FIGURE 5 
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 I’ll give you just a couple of illustrations of how this model might apply in particular 

instances.  Say you wanted to represent a  village-level structure with 50 actors, a clustering 

coefficient of 15 percent, and the degree distribution was Yule with a scaling exponent of 3.  The 

Yule is the classic preferential attachment power law model, and we can just see how that looks.  

Figure 6 shows two different networks generated from that model. 

 
 

 
FIGURE 6 

 

 The network on the left side of Figure 6 is one with zero clustering, and on the right we 

see what happens when the mean clustering coefficient is pushed up to 15 percent with the same 

degree distribution.  The basic notion is that these models give you a way of incorporating known 

clustering coefficients in the model, while holding a degree distribution fixed.   Just to reiterate 

points made earlier that the degree distribution is clearly not all of what is going on.  
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FIGURE 7 

 

 Figure 7 shows the same thing with 1,000 nodes, so it’s a pretty big village.  You can see 

to get the clustering going on with a given degree of distribution it’s forcing a lot of geodesics in 

this form.  Of course, with 1,000 nodes it’s pretty hard to see. 

 Figure 8 is a bipartite graph; the same model form works for bipartite graphs.  The 

network in the upper left is a heterosexual Yule with no correlation and the one in the upper right 

is a heterosexual Yule with a strong correlation triangle percent of 60 percent versus 3, which is 

the default one for random mixing given degree.   There is a modest one here as well as one with 

negative correlation.  I don’t think I’m going to say too much more about these. 
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FIGURE 8 

 

 The main topic I would like to talk about today is to essentially address a canonical 

problem:  how can we tell if a model class is useful?  That is, if you write down a particular form 

of the kind in Figure 2, we can be introduce statistics based on principles of underlying local 

specifications or local configurations, or we can just write down statistics that we believe would a 

priori, from a scientific perspective, explain a lot of the variation in the actual graph.  But the 

natural question is, because these statistics will tend to be highly correlated with each other, 

highly dependent, it’s not really clear for any given model exactly what the node qualities of that 

model would actually be.  As Martina Morris showed yesterday, the natural idea of starting from 

something very simple can sometimes lead to models that aren’t very good. 

 It is true the properties we saw were the properties of the model we wrote down.  It’s 

essentially saying that any implication that simple models have simple properties is not true.  This 

has been known in statistical mechanics for a very long period of time.  It’s always a little bit of a 

surprise to see them occur in applied models or very empirically-based models.  So, the basic 

question here is, is a model class itself able to represent a range of realistic networks?  It’s not the 

only question, but one question that could be asked here, and this is what I refer to as the issue of 

model degeneracy (Handcock, 2003).  The idea is that some model classes will only represent a 
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small range of graphs as the parameters are varied.  In circumstances where we like a fairly 

general model to cover a large range of graph and graph types that might not be a desirable 

property of a model.  

 The second issue is what are the properties of different methods of estimation, such as 

Maximum likelihood estimation, pseudo-likelihood, or some Bayesian framework?  I’ll make 

some comments on the computational issues where certain estimators do or don’t exist in that 

many forms (e.g., see Snijders, 2002, and Handcock, 2002). 

 The last issue in assessing if a model class is useful is whether we can assess the 

goodness of fit of models.  For example, we have a graph and we have a model, how well does 

the model actually fit the actual graph?   I’ll say some notes here about measuring this.  I don’t 

think I’ll say a lot about this, but I think the application Martina went through yesterday was very 

interesting in terms of a stylized view of how that would be done.  Some background on this topic 

may be found in Besag (2000) and Hunter, Goodreau, and Handcock (2005). 

 Figure 9 illustrates some points on model degeneracy.  It is a property of a random graph 

model; it’s nothing to do with data per se, but the model itself.  We call it near degenerate if the 

model places all its probability mass, i.e., the likelihood of certain graphs on a small number of 

actual graphs.  An example of this would be the empty graph, as shown in Figure 10.  If we know 

that a model produces the empty graph with probably close to 1, that’s probably not good, or the 

full graph or some mixture of them.   In some sense, subsets of the set of possible graphs which 

are regarded for the particular scientific application is interesting.  If we are interested in 

heterosexual graphs, and the model chosen places all of its mass on heterosexual graphs which is 

a large subset, that’s a good thing.  This idea is clearly application-specific.   
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FIGURE 9 

 

 
FIGURE 10 
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 Let me illustrate this further with Figure 11, which is in some ways a toy model, but also 

in some ways an interesting model because of its connection to other fields.  The horizontal axis 

relates to the number of edges in the graph, so it’s a measure of graph density.  The other axis is 

the so-called two stars, which I interpret as either the path between j and k going through a third 

node I, or another way to interpret it is a clustering of edges.  How often do these two edges end 

up having a node in common?   

 

 
FIGURE 11 

 

 The reason I like the second interpretation is this model has analogues in other areas.  

One analog would be the Ising model for lattice-base processes.   It also has an analog as a 

Strauss model for spatial point processes in the very least.  Basically, what it has is an overall 

density parameter, and a single parameter dependence measure.  The clustering is of a certain 

kind, of course, because it's simple.   If this parameter of 2 is positive here, it’s a sense of placing 

more probability on graphs with the positive cluster in here.   If it’s negative it actually places on 

“regular” graphs: graphs that essentially have edges that do not end up at the same node. What we 

actually see, although this looks relatively simple and relatively easy to work with, is that it is 
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near degenerate for most positive values of n2.  While this is particular galling to social 

networkers, as was pointed out yesterday for many social processes you have a positive clustering 

of ties, and as a result would expect most social process to have a positive parameter.  This would 

seem like a good model to actually start, but in actual fact it is not a very good model at all.  I’ll 

show why this is true.  I’ll only focus on the plot shown in Figure 12.   

   

 
FIGURE 12 

 

 Figure 12 is just a plot of the 2-dimensional parameter space of this model.  If the 

parameters are in the dark region, then all the models produce empty graphs.  So, basically, it’s 

saying the density is so low and the clustering is so low that you get empty graphs.  You 

essentially have one area of the parameter space which is producing essentially all of the mass in 

a very small subset of models.  It’s only in this small area of the parameter space, around 0, which 

corresponds to just purely random graphs with equally likely ties, that you are about to get non-

degenerate forms.  Most of the time that θ2 is positive here, this entire upper hemisphere or upper 

part of the graph you actually have mostly degenerate models.  It’s only the little small area here 

that you could actually get non-degenerate ones. 
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FIGURE 13 

 

 Now I’ll say a little bit about the geometry of exponential random graph models, as 

explained in Figure 13.  For those of you who are very interested in this and are familiar with 

them, the papers on my Web site make this much more clear, so I’ll go through quite a stylized 

form.  The central idea is this.  Rather than thinking about the natural parameterization of the 

exponential family, we can think about the classical mean value parameterization of that family 

defined by the following mapping.  The parameter corresponding to the natural parameter of z  is 

just the expectation over y of the graph statistics, explicitly of this form η of z. Note that this 

mapping is injective.  It is also strictly increasing.  If you look at this product here what you see is 

that if you have a positive increase in the mean value here you will always have this product 

positive here.  So, it gives us some sense of the relationship between the natural and the mean 

value parameters.  This is shown by Barndorff-Wilson and others, that it’s just an alternative 

parameterization of the actual model.  Why is that interesting?  I think because this alternative 

parameterization has got a lot going for it, not necessarily to replace natural parameterization, but 

in a lot of scientific applications it's much more natural to look at. 
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FIGURE 14 

 

 Let’s go back to the two star model as shown in Figure 14.  Let E be the number of edges 

and S be the number of two stars.  Then μ1, the value per parameter corresponding to number of 

edges is just the expected number of edges, or with the simple dividing by the number of dyads, 

it’s just the probability that the two actors are linked.  As an interpretation I find this a very 

natural thing because if we just see this form here it gives it away.  If the probably that the two 

actors are linked that is a very natural parameter of this model.  Again, when you divide by the 

number of potential two stars here it is the probability that a given actor is tied to randomly 

chosen other actors.  If we choose two randomly chosen other actors what is the probability they 

are tied to a third?   

 In Figure 15, we have a new parameterization in which the mean values are actually on 

scales that people usually think about in terms of social network forms, and I think they have a lot 

of value for that reason. The natural parameters in exponential families make the math really 

easy, but unfortunately their interpretation in terms of traditional log-logs can be very tortured at 

time because of the auto-logistic form.  The auto dependence, meaning you are looking at some 

part conditional on holding some other parts of the graph fixed, which are closely dependent on 

them.  And it is very, very tortured. 
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FIGURE 15 

 

 I’ll briefly show some things here and then I’ll move on.  There are other 

parameterizations you can look at, such as that shown in Figure 16, which is just the mean value 

space.  The natural parameter spaces across all of R2.  The mean value space is from the number 

of edges, so 0-21 in my simple example with 7 nodes, and from 0-105.  It’s a finite parameter 

space.  The green area in Figure 16 is the interior of these points.   
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FIGURE 16 

 

 There are alternative mixed parameterizations which I find very useful that have a lot of 

very good statistical properties, and Figure 17 explains that.  I want to say how this is relevant to 

the degeneracy issue, so we’ll define that now explicitly: a model is near degenerate if μ(η) is 

close to the boundary of C.  Let degree Y = {y є Y : Z(y) є bdC} be the set of graph on the 

boundary of the convex hull.  Based on the geometry of the mean value parametrization, the 

expected sufficient statistics are close to the boundary of the hull and the model will place much 

probability mass on graphs in degree Y.  If Figure 18 shows our model space, then say you are 

close to the boundary of it, which I arbitrarily say is just this red rim around the corner.  I’m 

essentially going to claim that models in this red rimmed boundary of the parameter space, the 

boundaries of the corresponding convex hull, that is going to be models which are degenerate.  

And models in the center are somewhat less degenerate, but it’s a graded thing. Based on the 

geometry of the mean value parameterization, which is the expected statistics from the actual 

model, it is going to look very bad if you are right next to the boundary.  This can be quantified in 

very many ways due to mathematical theorems, which I won’t dwell on here. 
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FIGURE 17 

 

 
FIGURE 18 
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 I will ask a natural question: what happens when you map this red region around the edge 

of the parameter space, what I’m calling the degenerate region, back to the natural parameter 

space, and what happens when you map the green?  Figure 19 gives the idea here and I think this 

explains a lot why people have had a lot of trouble modeling in this class.   

 

 

 

FIGURE 19 

 

 What I have done in Figure 19 is map the green region on the previous slide back to the 

natural parameter space here, which is all of R2.  What we see is that the green region is mapped 

to this very jagged form here, and that small boundary red region is mapped to every other place.  

In essence, what this is saying is that if your parameter is in the region outside the green region, 

it’s essentially going to give you mean values on the edge of the parameter space, and hence very 

odd looking forms.  The only reasonable values are the values in this small green area.  What has 

gone on, in a nutshell is that people will be looking at changing the parameter values in the 

natural parameter space here, and we will be doing this fine.  Moving it so slightly over and they 

will step off the edge into the other area here, which gives you very bizarre looking models.  The 

geometry of this, which looks like some sort of “stealth bomber” gives us some sense that if you 

move around in a nice, smooth way in this space, you fall off an edge, you are in trouble.   

 To make matters worse, most of the interesting models are in the positive dependent area 

so they are out on this peninsula of models.  In a nutshell, what people are doing is changing 
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parameter values in this peninsula; make a small change, turning off the edge into a very 

degenerate model form.  There are a lot of problems in this example, but it follows through more 

generally due to the nonlinear nature of the mapping here, which leads to rapid changes in model 

behavior through small changes in the natural parameter space.  This statement can be quantified 

in a number of ways as shown in Figure 20: 

 
FIGURE 20 

 

 I’ll briefly speak about inference for social network models, although we can do 

inference based on the likelihood as before.  We have a probability model.  It’s natural to think of 

likelihood biased inference as shown in Figure 21. 

 

 
FIGURE 21 

   

 I will also say briefly about the existence and non-existence of maximum-likelihood 

estimators.  The classical result, due to Barndorff-Nielsen (1978), is that we have necessary and 

sufficient conditions for the MLE to exist here.  This is a classic result but it has enormous 

impact.  If the observed graph statistics are in the interior of the convex hull of the discrete 
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support points for the sufficient statistics, the MLE exists, and it can be found.  It is unique and 

can be found by directly solving equations or by direct optimization.   

 

 
FIGURE 22 

 

 Figures 22 and 23 tell us exactly what and how to do in terms of maximum likelihood.  

On the other hand if it’s on exterior of the convex hull, the MLE doesn’t exist.  So, if we use a 

method of optimization to find it we’re in deep trouble.  This caused a lot of problems in the past 

when people didn’t realize that was what was actually going on.   

 
 

 
FIGURE 23 

  

 I could belabor this and say a lot about corresponding results like pseudo-likelihood, but 

reading the paper is probably the easiest thing. 
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FIGURE 24 

 

 I’ll make a brief comment on MCMC.  For those who haven’t seen a lot of Monte Carlo 

this is the idea.  I find it’s a simple way of thinking about likelihood estimation.  The idea here, 

shown in Figure 24, is if you want to estimate the partition function or normalizing constant 

which is essentially the population mean of this over this set of all possible graphs.  Being 

statisticians, if we have a very large population to measure the mean of what we would do is draw 

a sample from that population.  We would then calculate the sample mean and use that to replace 

the population mean, which is one of the simplest ideas in statistics.  In essence what we do is 

draw a sample of the possible graphs, compute the corresponding sample mean, and use this to 

approximate the partition function.  The question is how do we get a sample of graphs?  MCMC 

graphs are a natural way.   This has been developed and I won’t say too much more about it.  

There is a result which corresponds to any MCMC likelihood used in that way actually converges 

with sufficient iterations which I won’t belabor here. 

 I always find interesting the relationship between a near degenerate model and MCMC 

estimation.  Figure 25 addresses this idea, which goes all the way back to very nice work by 

Charlie Geyer.  Basically, the idea is—there is some mathematics that goes behind it—if your 

model is near degenerate then your MCMC won’t mix very well.  This might be a surprise to 

most folks who have ever tried this, but just to give you some sense in practice of how this works 

I’ll show you again this two-star model in Figure 26.   
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FIGURE 25 

 

 
FIGURE 26 

 

 For example, suppose for the two-star models you want to choose a mean value with 9 

edges and about 40 two stars, and you run your MCMC sampler.  Figure 27 shows what you get.  

Many people have probably run into these if they have ever tried it.   
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FIGURE 27 

 

 This is the trace part of the edges.  I’m running the MCMC sampler for about 100,000 

iterations of this simple 7 node process, and these are the trace-plotted number of edges as we 

draw from that mark off chain.  It stays up here around 19, and dropping down to 15, 17, and 

suddenly jumps down to 3 or 2 or 0.  It stays down there for maybe 20,000 and jumps back up 

and jumps back down.  So, what we are actually seeing, if you look at the marginal distribution of 

these draws, is a profoundly polarized distribution with most of the draws from very low values 

and some of the draws from quite high.  And of course, in such a way that the mean value is 9, 

which is exactly what we designed the model to actually do.  This is another view of the example 

that Martina gave yesterday of the two star model.  Note that this sampler is doing great.  It is 

giving us samples back from the model we asked it for, but now that we looked at this we would 

probably say we don’t want this model therefore bad mixing of an MCMC is highly related to 

these degeneracy properties. 
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FIGURE 28 

  
 To come back very briefly, the estimation of the mean value parameterization is 

essentially just as hard as it is in natural parameterization, although the corresponding point 

estimate itself is trivial.  It’s just the observed statistics.  Of course, to find the properties of that 

point estimator, and it’s no good unless you know what its properties are, essentially you need the 

same MCMC methods as you need for the natural parameterization.  It is much easier to do the 

natural parameterization from a computational perspective in terms of writing code because of 

slightly simpler forms.  You don’t need to solve some part of the inverse problem.  

 To finish, I’ll say a little bit about network sampling because it has come up a bunch of 

times during this workshop.  I’ll give you some idea of the classical statistical treatment of it 

going back to Frank in 1972 and other work since.  We think of our design mechanism as that 

part of the observation process that is under the control of the researcher.  So, if we are thinking 

about doing network sampling, the design mechanism is how the researchers design the sampling 

process.   Examples would be surveys using egocentric, snowball, or other link-tracing sampling.  

There is the out-of-design mechanism also, which is the unintentional non-observation of network 

information, meaning the mechanisms by which information is missed, such as the failure to 

report links, incomplete measurement of links, and attrition from longitudinal surveys.  Note that 

for any sampling mechanism we need to deal with both these components of it.  

 It is sometimes convenient to cluster design mechanisms into conventional, adaptive, and 

convenience designs.  So-called conventional designs do not use the information collected during 

a survey to direct the subsequent sampling of individuals.   

 For example, we’ll sample everyone and do a network census, or we might do egocentric 

designs and randomly choose a number of individuals then look at the actual ties of only those 

individuals.  That is, we don’t use anything that we collect during a survey to look at subsequent 
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sampling.  This might sound like an odd way to do it, but let me describe adaptive designs for 

contrast.  In adaptive designs, we actually use information to direct the subsequent sampling; 

most network sampling is actually of this adaptive form.  The idea is to collect ties.  We then 

follow the links of the initial group and use the fact that we have observed the links of those 

individuals to essentially do contact tracing and move out in those forms.  An example is classic 

snowball sampling link tracing around work designs.  Many of the designs using computer 

science and physics fall under this form where you are using information taken during your 

particular survey to direct the subsequent sampling.  There are also convenience designs where 

you might use something very intelligent but not very statistical.  So, we are using convenient 

information; you just nab people who are close by and that are convenient to sample. 

 In Handcock (2003) I examined likelihood-based inference for adaptive designs—

basically how to fit the models I described earlier, and Martina Morris described, when you have 

a conventional design and, probably more importantly, when you have adaptive data.  You 

actually have massively sampled data due to link tracing.  It turns out that you can fit these 

models in this way, and there is a computationally feasible MCMC algorithm to actually do it, 

which I think is actually pretty helpful in practice.  This is being implemented in a statnet package 

for R.    

 As an example of the use of likelihood inference, I’ll briefly mention the Colorado 

Springs “Project 90,” which is familiar to many people in this room and which involved quite a 

broad sample.  This study dealt with a population of prostitutes, pimps, and drug dealers in 

Colorado Springs; I will only focus on 1991.  I’m looking at a heterosexual sexual network within 

the group of people who responded to a survey.  Essentially what they did was a form of link 

tracing, which could be referred to a bi-link tracing, where you are recruited into the survey if two 

other respondents nominated you.  It wasn’t enough just to be nominated by one individual, you 

had to be nominated by two.   
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FIGURE 29 

 

 Figure 29 presents an example of that network.  You see it has a relatively large 

component in the center.  Many of the ties tend to be just monogamy here, just split up.  You then 

have some small components around the side, and this core is around 300 folks.  I think there are 

some isolates also.  You get this sense that there is a large part that is connected but not 

massively, so individuals float around.  Note this is a visualization, so there are some artifacts.  

For instance, it looks more central than it actually is.  There is a lot of missing data here due to 

the sampling processes.   

 You are only seeing the actual part of it that is observed, and I won’t go through the 

boring detail, but if you run the program here, Figure 30 shows the sort of result you will get.  

You put in all these covariates.  We know a lot of the information about the individuals, their age, 

their race, whether they are a prostitute or a pimp.  What we did was looked at different types of 

tie formation based on age, race, and occupation.   We also looked at whether there was 

homophily based on race, a homophily based on age, and then these endogenous parameters that 

measures the dependency involved.  I won’t say too much about this particular model, but you 

can get the natural parameter estimates.   I also measure the standard errors induced by the 

Markov of chain Monte Carlo sampling.   In terms of goodness of fit, because this is an 

exponential model, we can compute the deviance here so we have the classic deviance statistics 
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for this process.  Note that we do not have classical asymptotic approximations to their 

distributions!   

 

 
FIGURE 30 

 

 As we can see, attribute mixing does explain, although if you look at the p-values here, 

there is not a massive amount of difference based on attribute mixing.  When we look at these 

dependence terms what we actually see is that there is a fairly large over supply of people with a 

degree of exactly 1.  This parameter is quite large and positive, indicating there are a lot of people 

in monogamous relationships.  There is also a fairly substantial homophily based on race 

involved in this process as well. 

 In my two remaining seconds I will say we can use those model parameters to generate 

processes that look a lot like Colorado Springs, and Figure 31 shows two of them.  They don’t 

have the larger component of the graph we saw in Figure 29, because this model doesn’t naturally 

have that form, but if you go through other realizations you can get very similar looking forms. 
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FIGURE 31 
 

 In conclusion, I’ll reiterate that large and deep literatures exist that are often ignored; 

simple models are being used to capture clustering and other structural properties, and the 

inclusion of attributes (e.g., actor attributes, dyad attributes) is very important. 

 

QUESTIONS AND ANSWERS 

 

 DR. KOLACZYK:  Eric Kolaczyk, Boston University. 

 Mark, here is a quick question for you.  My understanding is the nature of this 

degeneracy result is essentially relying on Barndorff-Nielsen’s statement with the interior of what 

you were calling C, and whether you are in the boundary or not.  That is always filtering in the 

sort of standard theory that you would see, but it always sort of floats by.  Most of us don’t end 

up really needing to worry about it.  Or if you are going to end up working in discrete models and 

binomial type models or something, then you have to be aware of it a bit.  But it almost never is 

as extreme as this.  So, that’s something I’m missing here.  What is the intuition behind this?  Is it 

the mapping involved?  Why is it that it’s so extreme here, whereas for the most part in most 

models that we would consider across a distribution of statistics, if you want to say roughly, 

people don't have to worry about that seemingly innocuous theoretical result? 
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 DR. HANDCOCK:  That’s a good question.  The underlying theory is the same, but here 

are actually two forms.  One form is the computational degeneracy: that is, for a given observed 

graph, if you try to calculate the MLE, the MLE may or may not exist, and that is the standard 

Barndorff-Nielsen form.  Although I agree that it is rarely seen for very complex models, and this 

is the first case I’ve seen beyond my undergraduate statistic classes. 

 The second is the same theory, but a completely separate idea is used for the model 

degeneracy, which has no data in sight.  It’s just that you’ve got a model.  You are looking at it.  

You’re saying what does this model do?  You are treating it as a toy so you start playing with it 

and seeing how it behaves.  The same underlying geometry is important, but it’s not related to 

those results about existence of an MLE.  The basic idea is that if we change the view from the 

natural parameter space, where interpretation of model properties is actually quite complex, to the 

mean value parameter space, which is expressed in terms of the statistics—which we chose to be 

the foundation of our model, and hence for which we should have good interpretation about—

then it gives us a much better lens to see about how the model is working. 

 The last part of your question is that the nonlinear mapping is exactly the key here.  And 

a stealth bomber is also an example plot that makes that clear.  I should also point out, which I 

didn’t earlier, Mark Newman has a nice paper where he looks at the mean-field approximation to 

exactly this two-ster model, and I think he has been able to produce a similar plot for the same 

model. 

 DR. HOFF:  Peter Hoff, University of Washington. 

 Before I begin Mark, I just want to remind you that you were the one who taught me that 

I should be critical of these types of models. So, when we make univariate a parameter, and we 

have replications, and we make model-based inference, we have some way of evaluating whether 

or not a model is good or adequate.  Or even if we are interested in the mean of a population, we 

have replicates.  We can rely on a stochastic distribution, which relies only on the first and second 

moments of the actual population, and nothing else.  So in a way we are not concerned with 

model misspecification, or we have ways of dealing with it, and in these situations, the way you 

formulate the model, you have one observation, so my question is your work, a lot of it shows 

that model selection is extremely critical.  And the choice of these statistics you put in, that’s the 

choice of the model, is extremely critical.  So, I’m just kind of curious if you could comment on 

maybe the utility or how we can start thinking about getting replications to address this issue, and 

if there is any way to actually address this issue without replications, because you are putting up a 

table of P values and confidence intervals there.  That is clearly going to rely on what other 

statistics you choose to put in the model. 
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 DR. HANDCOCK:  There are a number of different issues here.  First, I think there are 

very valid points, very important points.  Issue number one is single replication:  well, that’s 

clearly true.  We’ve got a single graph, and what is essentially pseudo-replication, which we are 

using to compute the standard errors and other things like that, is in essence induced by the 

structure of the model.  If I write down the given set of statistics that define that model, that 

implicitly gives us a set of configurations, which we can define the replication over.  So, in 

essence, the standard errors are very dependent upon the specification of the actual model.  Let 

me give a very simple example.  If we just have a model with edges in it, and clearly all the edges 

are independent of each other we have essentially got replication of edges.  If we put a model 

with two stars in it, then if we look at other forms, you look at all the possible configurations 

which are two stars, then the configurations which aren’t of that form then give us a replication 

over then to look at the properties of the two stars involved.  But note that that’s very dependent 

upon the form so that’s a partial answer to the question. 

 I think the other answers are important as well.  How do we specify this model if it really 

matters how the form actually is?  A natural answer to that, which is incomplete, is if you had 

replications of these graphs, the classic, purely independent forms would apply, and then we 

could work with them, and that would be one solution.  The other answer I think is it’s worth 

stepping back and asking ourselves whether to have pure independence is required.  I’ll just 

remind us that every spatial process has exactly the same issues.  All the spatial statistics deal 

with spatial processes which are dependent across their full domain.  I think a spatial lattice 

process, continuous field processes all have dependence, and you only have a single realization.  

So, this is more a property of dependent models rather than social network models on this 

particular model class. 

 Coming back to Peter’s last point, model specification is extremely difficult here, because 

you are using the model specification to also find misspecification in that model.  And I strongly 

emphasize the use of the goodness of fit methods that Martina described. 

 And why I think this is very helpful is that if you have a statistic which is not in a model, 

not in your specification, and you see who well the model actually can reconstruct that somewhat 

separate, although obviously typically dependent statistic, and that gives you a way of just seeing 

how it does represent properties you have not explicitly placed in your model.  The other thing is 

just a standard statistical approach of doing exact testing, based on this model, is of a similar ilk, 

where you can do exact testing to look for model misspecification forms.  I think Peter has raised 

a good point here.  I have been very critical of these models in the past for the reasons I have said, 

and I’m actually using them.  I’ll leave it at that. 
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Characterizing Brain Networks with Granger Causality 
 

Mingzhou Ding, University of Florida 

 

DR. DING:  Thank you for coming to this last session.  It takes a lot of will power to 

stay on.  I also belong to the neural club of this workshop, and I’m going to talk a little bit about 

brain networks and how to characterize that with Granger causality.  The idea of Granger 

causality has been around for many years, and I will talk about our attempt at using this method 

to assign directions to interactions between neural ensembles.  So far in this workshop we have 

heard a lot of graph theory, but the examples tend to be undirected graphs.  So, hopefully, I’m 

going to present some directed graphs through my combination of this method with the brain.   

We’ve heard a lot of excellent neural talks so far; therefore, the groundwork has already 

been laid for me.  What I’m interested in is to put multiple electrodes in the brain and measure 

signals from various parts simultaneously.  The particular measurements that we look at are local 

field potentials, as was the case for several previous talks at this meeting.  This local field 

potential is also recorded with an electrode directly in the brain, but it’s not looking at one 

neuron’s activity, it is more like the activity of a population of neurons.  People estimate that it 

reflects the summed dendritic activity of maybe 10,000 or so neurons.  It’s a population variable, 

and particularly suited for us to look at network formations during performance of some kind of 

experiment or task. 

We’ve also heard a lot about rhythms in neural systems.  If you look at the signal you 

record as a time series and look at the spectrum, very often you see very prominent peaks in 

various frequency bands; therefore in this particular study we are going to apply a spectral 

analysis framework to our experimental data.  Our approaches are very simple; all of them are 

very standard statistical methodologies, so I have nothing new to offer in terms of statistical 

methodology. 
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FIGURE 1 

The tools of our network analysis are listed in Figure 1.  The first technique we apply is 

simply the power spectrum.  We collect data from each electrode and look at its power spectrum 

to identify whether there are any features like peaks in a band.  Next, we try to find out which if 

any of those electrodes show similar features; for example, whether there are 10-hertz peaks at 

multiple recording sites.  In the second step, we look at their statistical correlation by computing 

coherence to see whether those 10-hertz peaks measured in different parts of the brain actually 

belong to the same oscillatory network.   

The network I’m talking about here is defined in a statistical sense.  That is, data streams 

that are statistically co-varying during task performance are said to belong to a network.  

Sometimes this is called a functional network.  This is in contrast to another way of talking about 

brain networks, which is anatomical networks, namely, how different parts of the brain are 

actually wired together, linked together through physical cables (axon projections).  I also want to 

stress the indispensable relation between the two networks.  From a graph theory perspective, our 

first step will allow us to identify similar features at different nodes, and the coherence will allow 

us to draw edges linking together nodes to indicate that activities at these different locations are 

co-varying at certain frequencies.  The result is an undirected graph.  Sometimes when you look 

at that graph you still don’t really know the relative contributions of different nodes in this 

network, or in this case different brain areas. 

The third step is more or less new in the neuroscience business, although it has been 

around for many years.  Through Granger causality we are trying to introduce directions among 

different brain areas during a given task performance.  Through those direction assessments you 

can sometimes get a better view of how different areas are organized together to produce 

meaningful behaviors that we experience every day. 

 377 
 

 



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

The final tool we use is a moving window approach.  This just allows us to move through 

our experimental recordings to look at various states in the brain because they change rapidly 

during cognitive performance.  We want to look at the temporal evolutions of that. 

A very quick introduction to Granger causality is given in Figures 2 and 3.  This will be a 

familiar topic to the statisticians in the audience.  Basically, you have two simultaneous time 

series recordings, X and Y, from which you build regressive predictors.  You are predicting the 

current value of X based on a linear combination of a set of X measurements that has occurred in 

the past where the linear coefficients are selected in some optimal sense.  When the actual value 

comes in you can look at the difference to see how good your predictor is compared to the real 

value.  The difference is captured in an error term, and the magnitude of this error term is a 

signature of how good your predictor is.  Obviously, the smaller it is the better your prediction. 

 

 

FIGURE 2 
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FIGURE 3 

 

Then you try to see whether using the previous measurements of the X process, in 

combination with Y’s previous measurements, produces a better prediction or not.  In that sense 

you are looking at the error term one more time to see whether introducing the other measurement 

actually improved this error term.  If that is true, then in some statistical sense we say Y has a 

causal influence on X.  You can then reverse the role of the X and the Y to examine whether there 

is an influence in the other direction and assess the directional influence between these two time 

series. 

The idea of Granger causality came about in the early 1950s in an article written by 

Wiener.  He talked about the prediction of time series.  That’s where he first proposed this notion, 

but his article is very thick and full of measure theory; it’s unclear how you could implement this 

in practice.  In 1969 Clive Granger implemented this whole thing in a linear regression form as 

you see in Figure 1, and that led to a lot of applications in economics.  Recently we and other 

people have begun to take this and try to apply it to our study of the brain.  In 1982 Geweke 

found a spectral version of the previously introduced Granger causality, as indicated in Figure 4.  

Note that what we have seen earlier is a time-domain version.  We also like to have spectral 

representations, because we want to study the rhythms in the brain. In this regard we found the 

spectral version by Geweke.  He was able to have a very revolutionary way of looking at 

decomposing the interdependence between time series.  The important thing he did was to prove a 

theorem that if you integrate this spectral version over frequency you get a time-domain version 

back.  This relation alone shows that there is something right, so we will call this Granger 

causality spectrum.   
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FIGURE 4 

 

Geweke’s basic idea is this.  Given two signals, X and Y, you take X signal’s power 

spectrum at a given frequency f and then ask whether it can be decomposed into two parts: an 

intrinsic part and a causal part.  The first of these is due to some kind of intrinsic dynamics, while 

the other is due to the causal dynamics from the Y signal.  After performing this decomposition, 

Geweke defined the causality as a logarithm of the ratio of total power to the intrinsic part of the 

power.  Therefore, if the causal part is 0 (i.e., all of the power is in the intrinsic part), this ratio is 

1 and the log of the ratio—the causality—is 0.  Therefore, there is no causal influence.  On the 

other hand, if the causal part is greater than 0, the ratio is greater than 1 and the log of that ratio 

will be greater than 0.  You do a statistical test on whether this quantity is 0 or not. 

We began to work with this set of measures about six years ago.  We tested various cases 

trying to convince ourselves this thing is working, and it turns out we are quite convinced.  We 

then began to apply it to experimental data.  Today I’m just going to mention one experiment 

related to the beta oscillation in the sensorimotor cortex of behaving monkeys.  Some of the 

results below have been published in Proceedings of the National Academy of Sciences in 2004. 
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FIGURE 5 

 

Figure 5 introduces you to the experiment itself.  It’s a very simple standard pattern 

discrimination go/no-go experiment.  The monkey comes in, sits down, and when he feels ready 

to do the experiment he extends his hand and depresses a mechanical lever, depressing it and 

holding it steady.  The depression of the mechanical lever triggers the electronics, and then the 

experiment commences.  After a little while a stimulus will show up on the screen.  He looks at 

that screen.  The stimulus is a group of 4 dots in one of 4 configurations: right slanting line, left 

slanting line, right slanting diamond, of left slanting diamond, as shown in the bottom right of 

Figure 5.  The monkey’s job is to tell whether the dots are in a diamond configuration or in a line, 

without regard to orientation.  If he is able to find out which pattern he is seeing he will make a 

response by indicating that he understood what is going on.  The response is by releasing the 

lever if he sees one pattern, by holding onto the lever if he sees the other pattern.  That’s the way 

we know that he really understands the situation.  In this case the response itself also has two 

types.  One is a go response in which he lifts his hand from the lever, and the other one is a no-go 

response in which he does not move.  This becomes very important for us later on when we try to 

understand our analysis. 

The experiment was done with four monkeys, but today I’m going to report on the 

analysis of two.  Figure 6 shows the location of the electrodes, with each dot representing one 

electrode insertion.  You can see that the electrodes were distributed over many different parts of 

one hemisphere.  That hemisphere is chosen based on the handedness of this monkey; if the 
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monkey is a right hander you record from the left brain because the hand is contralaterally 

controlled.  If it’s a left hander you do the right brain.      

  

 

FIGURE 6 

 

Bipolar recordings were used, meaning that two electrode tips are inserted into each 

location, one tip at the surface and the other at some depth.  The difference between these two tips 

becomes the signal we amplify and then later analyze.  It is important for us to take the difference 

so that the far field effect could be subtracted out. Likewise, the volume conduction and so on 

could also be subtracted out.  Therefore, we are reasonably confident that the signals we are 

getting from these electrodes are indeed reflecting local activities.  If you want to look at 

networks you don’t want to have a huge common influence (e.g., far-field effect) on the analysis 

because that will make your analysis futile. 

I want to show you some of the typical time series we get.  Before that I want to comment 

on the mathematical framework we use to model these time series. When we study stochastic 

processes in the classroom we know that everything is defined first and foremost in terms of 

ensembles, but in the real world, for instance in economics, you get only one realization.  Here 

you can have many realizations if you continue to do the same experiment over and over again.  

This is precisely the case in neurobiology. Figure 7 shows the overlaying of time series from 

many trials—that’s over 400 trials superimposed on the same plot.  In the traditional studies 
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people take all these trials and perform an ensemble average.  This is the white curve you see; it’s 

called the even-related potential, ERP.  Traditional studies only study this average curve, and 

that’s all.  All these jiggly lines in Figure 7 are averaged away, branded as noise and then just 

forgotten.  What we are going to do is bring them back and treat them as our signal. 

 

FIGURE 7 

 

Time 0 in Figure 7 indicates the time when stimulus appears on the screen.  The time to 

the left of that is when the monkey has already depressed the lever and is looking at the screen, 

getting ready to perform the experiment.  Our first analysis was over this early period of the data, 

from -100ms to 20ms.  During this period, the monkey is already prepared to do the job but the 

stimulus has not yet appeared, because the signal takes some time to transmit to the brain to 

trigger a response.  This time period is sometimes referred to as the ongoing period, prestimulus, 

or fore period.  We treat the data as coming from a stochastic process and each trial as one 

realization.  Then we begin to fit the parametric models and do the signal analysis.   

 383 
 

 



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

 

FIGURE 8 

 

Among all the electrodes we simultaneously recorded, we first did a blind network 

analysis to see which time series correlates with which other and in what frequency range.  

Interestingly, two segregated networks popped out, as shown in red and blue in Figure 8.  One is 

located in the sensorimotor area, and the other is in the visual system.  Today I’m going to spend 

time analyzing the former, which is the most interesting one and the stronger of the two.   

This network in the sensorimotor area is synchronized at about 20 hertz.  That is, the 

nodes tend to communicate at about 20 hertz, and therefore it’s a beta range oscillation.  Among 

neuroscientists there is an approximate taxonomy to describe the different frequencies: a 

frequency in the range 1-3 hertz is called a delta wave, 3-7 is a theta wave, 7-14 is an alpha, 14-

25 hertz is a beta wave, and higher frequencies are called gamma waves.  We have heard other 

talks at this workshop dealing with gamma waves.  But we are looking at a subclass of beta 

oscillations in the present study.  Figure 9 shows the averaged power spectrum from all these 

locations; at each location we compute a power spectrum and then average them.  The first plot in 

the top row shows the averaged power spectrum for the two different monkey subjects.  Very 

clearly, they both show energy concentration in the 20 hertz range. The next plot in that row 

shows coherence results averaged together from the two different monkey subjects, and again we 

can see clear synchronized activities in the beta range, meaning that the signals are co-varying 

also in this 20 hertz range, that is, local oscillations also appear to be the oscillations that link all 

the sites together.  They bind them together into one network.   
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FIGURE 9 

 

The top-right plot in Figure 9 shows our Granger causality result, which also shows quite 

clearly the concentration of Granger causal influences in the 20 hertz range.  It appeared to be the 

same oscillation underlying the three phenomena.  By the way, all the pair-wise Granger 

influences 1-2, 2-1, 1-3, 2-3, 3-1 and so on are averaged together for each subject. The bottom 

row shows just one pair from one subject. We are looking at the power, coherence and Granger.  

The interesting thing is that power spectra showed very clear beta oscillation.  Coherence was 

very strong, 0.6, in the beta range, indicating that the two sites are strongly interacting but no 

directional information is available from coherence. But if you look at the Granger causality, it 

becomes immediately apparent that the interaction is unidirectional:  one direction is very strong 

and the other direction is nearly flat. 

 385 
 

 



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

 

FIGURE 10 

 

What we did next was to draw all the pair-wise Granger plots as shown in Figure 10 on a 

graph which we call the Granger causality graph which is a directed graph.  A very interesting 

thing happens if you look at the primary somatosensory area.  It tends to send out influences 

while receiving tiny ones. In contrast, the motor cortex receives all the input, and it is sending out 

little.  In addition, I want to say that we did a significance test.  A lot of this passed the 

significance test, but the strong ones are an order of magnitude bigger than the little ones. 

To aid our understanding of the results, all the big and strong causal influences that are 

common to the two subjects are summarized in Figure 11.  At the beginning when we began to do 

this study we had no idea what this network was actually doing.  After we did all this directional 

analysis a very clear hypothesis jumped out at us:  we believe this network is actually formed to 

support the monkey depressing the mechanical level and holding it steady, because holding 

something steady is in itself a function.  The brain needs to be involved to support that function.  

The reasons for this hypothesis are several-fold.  First of all, the primary somatosensory areas S1 

are sitting center stage in this network, and are sending influences out to the other parts of the 

network.  Think about this: holding something steady is like feedback control.  You are 

stabilizing an equilibrium state, and when you are stabilizing an equilibrium state the key 

ingredient is the sensory feedback.  That is, I need to know how I’m performing right now so that 

proper control signals can be exported to maintain that state. 
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FIGURE 11 

 

I want to quote a patient study that actually supports our work.  In 1982 there was a group 

in London that studied a patient who suffered a neuropathy and lost all sensory feedback.  But his 

motor system was totally intact.  That is, the system that allows commands from the brain to 

move muscles was completely intact, but he could not feel anything.  So if you ask this person to 

pick up a suitcase he would have no problem doing that.  But if you ask him to hold the suitcase 

steady for an extended period of time, he cannot do it unless he looks at this hand.  (If he looks at 

his hand, he is using visual information to supplement the lack of sensory feedback.)  Therefore, 

this tells us that sensory feedback is critical in maintaining the steady state. 

Area 7B is a very interesting area.  We later learned that it is a very important area for 

non-visually guided motion.  There is a network involving 7B and the cerebellum, which together 

form some kind of network that helps the brain maintain goals.  When we are making a 

movement, the brain first has to have a goal about what to do.  So we form a goal and tell the 

motor system to execute and fulfill that goal.  In control terms, the model is here and an idea of 

what is to be achieved is here. This area receives sensory updates from S1, compares that to the 

internal model, and exports the error signals to the motor cortex for output adjustment.  

The third line of evidence is coming from many other studies people have done in either 

humans or monkeys linking beta range neural oscillations and isometric contraction—maintaining 

a steady state pressure on some kind of a gauge.  People who have studied the motor cortex have 

seen beta oscillation in this area very clearly.  What we have done is extend the network into 

post-central areas. Through the directional analysis we are able to say that the post-central areas 

play an important role in organizing this network.  Without the arrows we cannot really say who 

is playing the organizational role in this whole system, but adding the arrows we are able to 
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identify S1 as playing a more central role in organizing this network to support this behavior.  At 

this point one can make a prediction. Namely, when the monkey makes a movement by releasing 

this pressure, this network should dissolve itself and go away. How do we test this hypothesis?  

Recall that in this experiment there are two response types, a go response—the monkey sees some 

stimuli he recognizes, and he lifts the lever—and there is a no-go response that consists of 

holding steady until the very end.  Therefore, if this oscillation network is in support of holding 

something steady, then we should see this network continuing in the no-go conditions all the way 

to the end, while for the go conditions, because the monkey released halfway through it, the 

network should disappear halfway through the experiment. 

This motivated the next study, which is the moving-window analysis, where you do a 

time-frequency analysis with an 80-millisecond window and compare go versus no-go conditions.  

Here the result is very clear.  Figure 12 shows a time-frequency plot.  This is time and this is the 

frequency.  The magnitude is represented by color. As you can see, for the go trials, there is 20 

hertz oscillation at the beginning.  The oscillation then disappeared half way through the trial.  

This arrow is indicating the mean reaction time.  That is the mean time at which the monkey 

released the hand, so prior to lever release, the oscillation just terminated.  For the no-go trials 

this oscillation is maintained to the very end.  This is evidence in support of our hypothesis that 

the network supports the pressure maintenance on the lever.   
 

 

FIGURE 12 
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FIGURE 13 

 

When we look at the time frequency plot of Granger causality it’s clear that there is 

directional driving from S1 to M1 at the beginning (Figure 13).  When the network disappeared 

the causal influences also stopped.  In the no-go trials the causal influences are maintained all the 

way to the end.  It even becomes stronger in the end.  On the other hand, if you look at the causal 

influences in the opposite direction in this 20 hertz range in Figure 14 there is nothing going on.  

When we see some of this high frequency stuff we really don’t know what this means.  It’s not 

very well organized but the 20 hertz definitely is quite unidirectional if we compare Figures 13 

and 14.  Our basic conclusion here is that the time course of these beta oscillations seems to be 

consistent with the lever pressure maintenance hypothesis. 

 

 

FIGURE 14 
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At this point I want to make a comment. That is, when people talk about networks in the 

brain, there are usually two ways to talk about it.  One is functional network like what I’m 

discussing here.  This is looking at the statistical relationships between different brain areas 

during a given task. On the other hand there are also anatomical networks in the brain.  One can 

say that the anatomical network is there and not changing during this experiment.  This 

experiment is only half a second long.  The anatomical network didn’t change a whole lot yet the 

dynamics that is traveling on the anatomical network disappears when the behavior it supports is 

no longer there.   

 

 

FIGURE 15 

 

Therefore, the dynamics are completely flexible.  It’s like a highway system, the road is 

always there but the traffic pattern can be very different depending on the functions it serves.  It’s 

the same thing here.  The network is in place but the dynamics traveling on that can be changing 

rapidly depending on the function it supports. This is an interesting thing. 
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FIGURE 16 

The next thing is my last result concerning conditional Granger causality.  Here I want to 

show how the anatomy can inform our functional network analysis.  Specifically, this is to show 

that neuroanatomy can motivate us to look at a problem that we would otherwise not have 

thought of doing. 

 

FIGURE 17 

Mathematically, the problem is the following.  Consider three time series. Suppose they 

interact as shown in Figure 17. A pair-wise analysis, as we have been doing so far, cannot tell 

these two patterns apart, because in both cases A drives C from a pairwise perspective.  This issue 

has relevance for the analysis result reported in Figure 11.   

Consider a subset of nodes in Figure 11 which is re-plotted in Figure 18. The arrows 

come from our pair-wise analysis.  The question is, is the link from S1 to 7a real or is it the result 

of pairwise analysis? We care about this question because anatomically there is a reason for us to 

lean toward the latter. Specifically, Figure 19 shows the sensorimotor network that is published 

by 1991 by Felleman and Van Essen on the macaque monkey’s brain.   
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FIGURE 18 

As you can see in this diagram 7A is not connected directly to S1.  7A is connected only 

to 7B in this network. This suggests the hypothesis that the causal influence from S1 to 7A is 

mediated by 7B.  

 

FIGURE 19 

 

To test this hypothesis we need additional analysis ideas. This is accomplished by 

conditional Granger causality analysis. Like pairwise Granger it’s also prediction-based.  Refer to 

Figure 17. If, by incorporating A, we do not get any additional improvement in prediction, then 

we say we have the connectivity pattern like that on the left.  On the other hand, if by including A 

we can still improve the predictor, we say that we have the pattern on the right. Therefore, these 

two cases will be distinguished based on these two different types of computation. Spectral 

versions of conditional Granger causality have been developed recently. We use the spectral 

version to test our hypothesis in Figure 20. The result is shown in Figure 21. 
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FIGURE 20 

 

FIGURE 21 

The blue curve shows the pairwise result from S1 to 7B which is very clearly above 

threshold.  If you condition 7B out, then all of a sudden, the causal influence from S1 to 7B drops 

below threshold.  In other words S1 to 7B appeared to be mediated by 7A. 
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FIGURE 22 

We then did a control study to rule out the possibility that the result in Figure 21 is a 

procedural artifact.  We took the same three channels and conditioned 7A out to see the effect.  

As you can see in Figure 22 there is hardly any difference between the two curves. This means 

that what we see in Figure 21 is not simply a procedure related artifact. It, in fact, reflects 

anatomy-constrained neural communications between two areas.  

 

FIGURE 23 

Thank you very much. 

[Applause.] 
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QUESTIONS AND ANSWERS 

 

DR. WIGGINS:  Some of what you are doing similar to things that have happened in 

genetic networks where people are trying to infer genetic networks from time series.  So, just by 

points of comparison, one is I’m wondering if Granger tests, which I wasn’t really familiar with, 

has been validated on synthetic data?  Like people generate synthetic systems. 

DR. DING:  We have performed extensive test on synthetic data with excellent results. 

Regarding genetic networks, I have heard people talk about microarray data. We have never done 

any work in this area. 

DR. WIGGINS:  You might be interested to look at papers from the genetic network 

inference literature where they look at mutual information between different nodes, because in 

that case you can, with some confidence, eliminate spurious links, like in the triangle you had if 

you know for example that the mutual information between A and B is strictly less than either of 

the other two.  Then you can argue that that's not a direct causation. 

DR. DING:  Certainly.  It would be interesting to look at that. On the other hand, we are 

spectral people.  We don’t want just pure time domain analysis. There are many reasons with 

respect to the nervous system for the spectral bias. 

DR. KLEINFELD:  Just to make sure I understood the data was recorded with a 14 

channel probe? 

DR. DING:  Each channel analyzed here represents a bipolar derivation. There are 14 or 

15 of those.  
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Visualization and Variation: Tracking Complex Networks Across 
 Time and Space  

 
Jon Kleinberg, Cornell University 

 
 
 

 DR. KLEINBERG:  Thanks very much to the organizing committee for inviting me to 

come speak.  This has been a very interesting workshop for me, especially seeing how the 

techniques across all these different areas make use of common principles.  Obviously there is a 

lot we are going to have to think about afterwards. 

 I’m a computer scientist, so I’m coming at this from a computer science perspective.  In 

particular, the kinds of networks that I’m interested in are the large information networks that are 

built up on top of the applications on the Internet, starting with things like the World Wide Web 

and spilling over into networks that affect the way we communicate through things like email and 

instant messaging, through the way we express interest in hobbies through online communities 

like Live Journal and so forth, to the way we do electronic commerce and so forth, as indicated in 

Figure 1. 

 

 
FIGURE 1 

 

 There is this whole, what some people call “speciation,” event on the Internet where we 

see all these new forms of media springing up very suddenly, looking at the emergence of not just 

the technological structure here, but also the social structure.  This notion that there are 

interesting social structures going on in these online applications is something that has interested 
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me for quite a while, starting back with some work I did on the World Wide Web where the 

question was how to use the linked structure of the Web, and the fact that these are documents 

authored by people, to help improve a search.  This is something that combines the social and 

technology aspect very clearly, although I haven’t always been so good at conveying this.   

 I have been at workshops of this flavor for some time.  A few years ago I gave a talk in a 

very early workshop that brought together some computer scientists and sociologists.  We talked 

about links on the Web and kept casually referring to the Web as a social network without really 

trying to unpack what I was really saying.  This was at the Santa Fe Institute, and during the 

break some of us were standing out on the patio looking out at this beautiful view of Santa Fe 

when a very eminent sociologist came up next to me smoking a cigar and asked, “Did you see 

that talk by the guy from Cornell?  That was terrible.  He thought he was talking about social 

networks, and all he was talking about was how Google worked.”  After explaining that I was that 

guy from Cornell, we actually had a reasonable conversation under the circumstances.  That was 

what I view as one of the early steps in learning about some of the cultural gaps that exist 

between these different areas. 

 I think more than anything that what I have done, or social scientists have done, or what 

these workshops like this have accomplished, has simply been the unbelievable perfusion of these 

online media, which has just made it abundantly clear that all of these technological things we are 

seeing are in the end about content authored by people and people communicating with each 

other. 

 In reality it’s not so much that they both exist but that they are really intertwined.  You 

can’t disentangle the technological networks from the social networks anymore.  If I were to ask 

what are the networks and which email communication, instant messaging, or blogging or any of 

these other things take place, sure, your packets are traveling over the Internet, but if you are 

trying to configure a new instant messaging system you have to know a lot about the kinds of 

people that are going to be using it.  You have to know the diurnal rhythms of them and whether 

it’s going to be used by teenagers or by grown-ups and so forth.  All this affects the way in which 

we configure the technology, so in a real sense these things are inextricable at this point. 

 A particular thing I wanted to focus on here is in the context of these social and 

technological networks, the way in which they are embedded in space, embedded in time, and 

embedded in surrounding organizational structures.  One thing that I wanted to get at is that we 

shouldn’t just view the networks in isolation, but to think about them as being physically 

embedded as concretely as we view networks in neuron-anatomy as being physically embedded.   

 I’m going to be talking about network models, as have most of the other talks at this 
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workshop, reflecting our interest in the structural properties of networks, but also particularly for 

me, in the processes unfolding on networks, the algorithmic processes that unfold on networks, 

and trying to find models that relate these to each other.  In the end, hopefully, even very simple 

toy models—and in this talk I’ll try to go from a progression of toy models, up through more and 

more general models—they don’t just help us form a vocabulary of patterns, although that is 

certainly a very useful thing, but also in the computer science context, it’s often very surprising to 

me how quickly those turn into design principles.  In the online world the ability to create new 

online media like peer-to-peer file sharing gives you a certain kind of flexibility such that things 

that had seemed like toy artificial models can very rapidly become principles by which you 

actually architect a system.  That is one of the interesting things about this domain also. 

 I also wanted to mention one thing that has been lurking around the surface of some of 

the talks, and that is the social science component.  It is the notion of working with model 

systems.  I think, especially for the statistics aspect of this workshop, this is going to be 

something important to think about.  So, if I could caricature the traditional research obstacle in 

studying complex networks, it would be that you’d like your networks to be large-scale, realistic, 

and completely mapped, but in actuality you can only achieve any two of those.  For obvious 

reasons it is very hard to achieve all three at once. 

 

 
FIGURE 2 

 

 So, just as Mark Handcock stole a slide from Martina Morris, I’ll steal a slide from Mark.  
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Figure 2 shows his Zachary Karate Club Network, and the only thing I want to point out here is 

that this is clearly a real network of real people, and it’s completely mapped.  We know a lot 

about it, but the nature of how data like that are collected inherently limits the size.  In his after-

dinner talk last night, Steve Borgatti mentioned that a trend over the last few years has been to see 

networks go from sizes in the hundreds to sizes in the ten thousands or hundred thousands.  In the 

process of doing that, we have to ask what are we losing? We are obviously gaining a lot.  Many 

of these systems are what I would call online model systems.  When I say model systems, I don’t 

mean that there is anything fake or synthetic about them.  All of the people involved in the 

activities listed on Figure 2 are real people engaged in social interaction.  It’s simply that we 

don’t know as much about them as we might have known about these smaller more self-contained 

systems such as the Karate Club Network.  It’s hard to draw their boundaries; I’m thinking about 

things like the links among Web pages or Web blogs in the communities of bloggers and how 

they interact—social networking services like Live Journal or Orchid or any of the other things, 

which are actually trying to create a social network on their members.   

 Email and instant messaging within organizations define network interaction.  For online 

e-commerce sites, there has been some amount of interesting research on simply the behavior of 

people at these sites, because of course there is still the interaction of product reviews, forum 

discussions, replies, posts, and so forth, and then the download behavior of these people.  We can 

then pick—this is a line of work that Mark really stimulated thinking—something like arXiv, 

which is a model system of, in this case, high-energy physicists, all publishing papers, co-

authoring, citing each other, and so forth.  It’s a very rich domain in which we can try studying 

things on a very large scale. 

 It was this, for example, that caused three of us at Cornell—Paul Ginsparg, the author of 

the arXiv, Johannes Gehrke, and myself—to choose this as a data set for the annual KDD Cup 

Competition, basically saying here is a very rich system in which you can do data analysis in all 

sorts of dimensions, looking at real social data.  There are also things that we would like to know 

about the people in this network that we don’t, but for looking at very-large-scale data, so far this 

is the best we can do. 

 Figure 3 gives an overview of my talk.  The hope was to show how all these themes can 

be traced out through a single particular topic, small-world networks and decentralized search.  I 

could have easily picked several other topics. 
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FIGURE 3 

 

 We’ll start with an initial model, the small-world model of Watts and Strogatz, which 

many of you know, and then we’ll move from that, which is really a structural model, looking at 

the structure of the network, to a model about processes on top of the network.  In particular, the 

problem of searchability of networks is really more about the process that operates on the 

network.  We’ll start with a very simple model of that.  I’ll try to pull back to create more general 

models.  In particular, by abstracting a general pattern that’s going on here, we’ll start looking at 

both data and design principles.  Then we’ll try to find that pattern in large-scale network data.  

We’ll see some rather surprising ways in which it has shown up in hyperlinks on the Web, email 

communication, and friendships on these online communities, and also how it’s been used as a 

design principle in things like peer-to-peer systems.  And finally, some recent work I’ve been 

doing with Faloutsos and Yuri Leskovec looking at how well these networks evolve over time, 

and some things that actually completely challenge the conventional wisdom we had had on this.  

And necessarily, since my time is short, I will go through all of these rather briefly. 
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FIGURE 4 

 

 To introduce small-world networks, rather than reach back to the Watts-Strogatz model, I 

wanted to reach much further back to the original work in social psychology that stimulated a lot 

of this, Stanley Milgram’s small world experiments.   Both models are summarized in Figure 4.  

To briefly recap Milgram’s experiment for those of you who haven’t seen it before, the idea was 

to trace out short paths in a social network, and particularly the network of acquaintanceships in 

the United States.  He picked a target person who his subject was supposed to reach, who lived in 

a suburb of Boston, and he picked a whole bunch of starting people, mainly drawing them from 

out in the Midwest.  Each starter person would start with a letter that he had to forward to this 

target, and rather than mail it directly to them, they had to use what they were told about the 

target and mail it to one of their friends with the goal of reaching the target in as few steps as 

possible.  Those were the rules of the experiment.  You get a letter, you're trying to reach a 

stockbroker in Sharon, Massachusetts, and you think about the things that you might know about 

them and you know about your friends.  You figure out who you should pass it to, and the famous 

outcome of this was that the median number of steps in the completed chains was six, a number 

that has entered into the phrase six degrees of separation.   

 There are a few things going on with this experiment, and I don’t have time to unravel 

them all, but one is clearly the structural issue.  Why is it that our social networks in which our 

friends all seem to know each other, which as a number of the talks have said before looks fairly 

clustered, why should it have these short chains?  This highly influential Nature paper of Watts 

and Strogatz in 1998 can really be viewed as a proposal for a kind of network that we ought to be 
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studying.  More than any particular result, it really said let’s think about networks as 

superpositions; the notion of a random network embedded in some reference frame, in this case 

maybe a spatial reference frame.  To take one of the flavors of their model, we can imagine that 

in a very simple version we have a grid with nodes, and these might represent the people in the 

social network, knowing something about their geographic coordinates.  We then add random 

links, even as few as one per node; an example is shown in red in Figure 4.  These random links 

are enough to make the diameter of the world very small, even while locally it looks very 

clustered.  So, adding a very small number of random links, the network still looks relatively 

grid-like, even though we now know that its diameter has become very small.  We can actually 

prove things like that using results that have been known for some time in the area of random 

graphs, in particular the results of Bollobás and Chung (1988), which studied almost exactly this 

network.  So this was the idea, think of these networks as a superposition or, for our purposes, a 

random network embedded in some reference frame, be it spatial, organizational, or what have 

you. 

 When I first came across the Watts-Strogatz work—which wasn’t hard, because they 

were also at Cornell at the time—the thing that really struck me about the original experiment 

was not just the structure.  It was not just about the fact that there were these short chains, but it 

was about a process.  As we teach our undergraduates in computer science classes, if you want to 

find the shortest path in a network you shouldn’t have done this experiment.  You should have 

given a letter to someone and said, send this to all your friends.  Tell them to send it to all their 

friends, and eventually you will see what the shortest chain to the target is.  You can think about 

the obvious reasons why Milgram wasn’t able to do that experiment, therefore, he was forced to 

embark on this much more interesting one where you actually have to tunnel your way, you have 

make your best guess over the next hop.  Essentially, what he was doing was decentralized 

routing.   

 Decentralized routing is a completely non-technological context on the social network of 

people.  That’s the first thing I would like to try modeling here.  So, we would like to model a 

decentralized algorithm looking for a path through a network.  Figure 5 describes a very basic 

model:  imagine there is a current message holder who knows the message, the grid structure, 

their coordinates on the grid, and the coordinates of the target on the grid.  They don’t know all 

the random links, but they know their own random links.  So, this simply says when you get the 

letter, you know that you are living wherever you live.  You know the target is in Sharon, 

Massachusetts, and you know you have friends in New Jersey and Montana and Singapore and so 

forth, and you want to try to figure out how best to direct the letter.  That’s the idea.  That’s why 
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it is decentralized. 

 

 

 
FIGURE 5 

 

 The gold standard here, which is going to pop up through a lot of the results, is this 

difference between things that grow logarithmically in n versus things that grow linearly in n; or 

more generally, things that grow like polynomials in log n versus polynomials in n.  The idea is 

that the network has n × n nodes, but we want to be exponentially better.  We want to be 

something like log n or log n squared in our delivery time.  That would somehow tell us that the 

world is small.  We can get there in a short number of steps. 

 The funny thing here is that, although one could have asked this question immediately 

upon seeing the Milgram experiment, the Watts-Strogatz model, although not intended for this 

purpose, is really ideal as a kind of minimal model you would need if you wanted to ask this 

question.  If you want to ask this question in an interesting way, what are the minimal ingredients 

you need?  Well, you need a network that is partially known and partially unknown.  A 

completely known network of course leads to the shortest-path algorithms, but that’s a very 

different subject.  Finding you way in a known network—that’s basically the Mapquest problem.  

A completely unknown network is equally different. Then we have nothing to go on.  In the 

known part you have high diameter, or else it would be too easy.  For the full networks you have 

low diameters, so there is a solution to find.  And we want to explore this relation between the 
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known and the unknown and the unknown part. 

 How does the random network relate to the way in which it’s embedded in the spatial or 

organization structure or whatever?  Again, if you are worried that this model is too simple, 

obviously, in a million ways it’s too simple.  Obviously, to the extent that the grid in Figure 4 is a 

proxy for anything, maybe it’s a proxy for geographic information.  We know people in the 

Milgram experiment also used occupational information and other things.  I’ll try folding some of 

these things in, but I want to start with an intentionally very simple model, as shown in Figure 6. 

 

 
FIGURE 6 

 

 The Watts-Strogatz model is a bit too simple.  So, the first theorem you can prove here is 

a negative result, an impossibility result which says that the network has n × n nodes.  There 

really is a path of length of log n.  There was a solution to find, but probably with local 

information you can’t find it.  Any decentralized algorithm, however hard it computes, simply its 

lack of information is going to mean you need about at least n to the ⅔ steps to find your way, 

and ⅔ is actually the right answer here.  You can also achieve this, but this is exponentially larger 

than they want.  So, that’s what happens when you have a simple toy model.  You have this 

striking phenomenon, and try analyzing it, and sometimes there is not enough in there.   

 So, let’s try generalizing the model just a little bit, just minimally to try to do something.  

We could add one more knob we could turn, and I’ll call this a clustering exponent r.  I’ll still add 
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a random long-range link out of each node, as you see in Figure 6, but it’s going to be tuned by 

this parameter r, which basically says so if I’m node v, I don’t actually choose my long-range link 

uniformly at random, but rather, I take into account the spatial structure.  I choose w as the other 

end, with probability something like lattice distance to the minus r.  So, think about the effect r 

has:  when r = 0, that’s the uniform distribution and I’m back to the Watts-Strogatz model.  As I 

crank r way up to some large number, I go from the network on the left in Figure 6 to the one on 

the right, where long links are very unlikely.  Therefore, the network goes back to having a large 

diameter.  My long-range links are not really helping me that much.  I’m in this funny spectrum 

here where I know that when r = 0, the network is too confusing.  There were the short paths, but 

I couldn’t find them, and when r is very big, there are no short paths to find.  The question is what 

happens in this middle region as we trace it out.  At least we have a 1-dimensional family we can 

study.   

 The answer is that something kind of funny happens.  There actually is an optimal 

operating point for this network as shown in Figure 7, and that’s when r = 2.  So when I choose 

links with probability according to an inverse square distribution, I can actually achieve this gold 

standard of polynomial log squared n.  As I move away from r = 2 in either direction, things get 

worse rapidly, at least in an asymptotic sense.  Things become n to some power, where the power 

depends on how far away r is from 2.  Two was somehow the right operating point for this 

network. 

 

 
FIGURE 7 
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 Let’s think about that.  Figure 8 gives some idea of how you prove something like that, 

and then we can go on to how we might extract out what we have actually learned from this 

beyond the fact that we are on a grid, beyond the fact that we have one long-range link, and so 

forth.  But even in this very simple system there is obviously something to be proven.  Referring 

to Figure 8, let me tell you how to prove the positive result with exponent 2, and I’ll skip the 

negative results for the sake of time.  The basic idea is that I say I’m trying to get to this target t 

and I’m at this node v.  Rather than try to trace analyze the whole sequence of steps from here on, 

I want to ask a simpler question:  What’s the probability that in this very step I have my distance 

to the target?  To have my distance to the target I have to go from d to jump into this ball of 

radius d/2.   You can basically compute the probability mass in this ball and show that it’s about 

1/log n, independent of d.  The d cancels out, which is the key here. 

 

 

 
FIGURE 8 

 

 Basically, with 1/log n probability you have your distance to the target right away.  

Therefore, every log n steps or so you expect to halve your distance.  The distance can only be 

halved log n times, and so the delivery time is proportional to log n times log n.  That’s the one-

slide outline.  My interest here is to try figure out whether we can conclude something more 
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generally about networks, since networks aren’t n × n grids with random jumps and so forth.  

What is actually going on?  Somehow, it was key that d was independent of your probability of 

halving.  But somehow d just washed out completely.  It had something to do with the fact that no 

matter what distance scale you were at, you could be sure of halving your distance, or expect to 

halve your distance.  Think, somehow about this result qualitatively.  Let’s think about these 

exponentially layered distance scales around the nodes.  All nodes that are within distance 1-2, 2-

4, 4-8, 8-16 and all these powers of 2. 

 There are log n different distance scales in the network, and the great thing about r = 2 or, 

if I were in k dimensions, r = k—somehow it’s the dimension that matters here—is that nodes 

have about the same portion of links to each distance scale.  You have about the same probability 

of a link to somebody very close as to one moderately close or one somewhat far away, very far 

away, and so forth.  That was actually in one sentence what was going on in the proof.  In the 

early version of this talk I had some hand-drawn picture trying to illustrate distance scales.  And 

then I realized there are people who have done this much better than I have.  For example, Sol 

Steinberg with his well-known 1974 New Yorker cover that was designed to show something else 

illustrates this perfectly.  We devote the same amount of attention to 9th Avenue as we do to the 

rest of our neighborhood in Manhattan, as we do to all of New York City, to all the rest of the 

United States and of the world.  These different layers of distances all occupying about the same 

amount of probability mass, and that’s what is going on qualitatively.  

 Now, why is it useful to observe that?  Well, that doesn’t help us prove anything new, but 

it does help us go out and look for other models where we might see that happening.  For 

example, we quickly conclude that the grid wasn’t really very important to this behavior.  The 

grid just gave us a system of balls, centered at points that had a certain way in which they grew in 

area.  I could just as easily put the nodes on a hierarchy, and this is something that people ask 

about, because we also think about the world hierarchically.  We even think about people 

hierarchically as we break them down, say, by occupation.  It’s fine to think about that kind of a 

model.  So, now nodes would reside at the leaves of this hierarchy, as shown in Figure 9.   

 How is each node going to generate its random links?   Here is a way of generating 

random links:  first pick an ancestor at random in the tree, look at my path to the root and some 

distribution on the ancestors, and then pick a node uniformly at random.  Suppose that’s my 

generation process.  Then the analog of searchability is explored in a 2002 paper of mine and also 

in a paper of Duncan Watts, Peter Dodds, and Mark Newman (2002), which also considered the 

case of multiple hierarchies.  You get the best navigation in this case.  Again, you have this 

uniformity over distance scales, which here would mean I should choose my ancestor uniformly 
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at random in this generation process.  In a way, for hierarchies, the result is much more intuitive 

than this sort of mysterious inverse square law that you then have to explain.  Here it makes sense 

that if I want to have good searchability to any target, I should be able to funnel down to any level 

of the tree as the search proceeds.  If I’m trying to make my way over to some node over here, I 

first have to span this barrier, which requires a really long link.  Once I’m into the subtree, I have 

to span the next level barrier, and I need to be able to do this at every level.  This is actually the 

first indication that you could potentially look at real measurements doing that.   

 

 

 

 
FIGURE 9 

 

 So, with the initial searchability result, you had the grid.  You had these long-range links, 

and people said, okay, take searching the Web.  You are browsing on the Web with local 

information.  Where is the grid?  Where are the random links?  And the answer was, I don’t 

know.  Once you have a hierarchy, you can actually do things like take a hierarchical 

classification of Web pages.  This is something that was done by Menczer at the University of 

Indiana.  To look at how links are embedded in the structure, he took the open directory which 

classifies Web pages hierarchically (like on science/computer science/algorithms, 

biology/neuroscience, or art/music/Italian opera).  Right now it’s not a spatial structure, but a 

 408 
 

 



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

taxonomical structure, and you could say if I actually wanted to do focused Web crawling, if I 

wanted to get a page on Italian opera, then as I look around at my links I should try to find ones 

that lead to pages on art.  Once I’m within there, I assume there is going to be a slightly higher 

density of links into music, from there a higher density into opera and so forth.  Not only did he 

partially validate this density of links decaying with height in the tree, but it also became the basis 

for some focused Web crawling experiments.  Again, an example of the turnaround of seemingly 

simple models rapidly becoming design principles in this case for something like focused Web 

crawling. 

 There are a bunch of other proposed models here.  For example Duncan, Peter and Mark 

had this model where you actually had several hierarchies.  One hierarchy could be, as in the case 

of the Milgram experiment, geography.  Another hierarchy could be occupation.  You can choose 

among these different hierarchies, and there were some other proposed models.  Maybe the right 

model for social networks is a hierarchy on top of a lattice.   

 At some point you think that, if these two results have very similar proofs, there must be 

some kind of more general statement that covers all of these.  Figure 10 is actually a proposal for 

something that simultaneously includes searchability in grids, searchability in hierarchies, and a 

bunch of other things.  In the end you could say nodes are embedded in some structure, some 

reference frame, unless it’s imagined now as a collection of finite sets.  Nodes form links because 

they belong to certain groups:  I’m friends with you because we live on the same block, or 

because we work in the same field, or because we are fans of the same science fiction author.  

They all belong to some overlapping collection of groups. 
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FIGURE 10 

  

If I were just in a lattice the groups could be balls, essentially of points.  In a hierarchy, they 

would be the subtrees.  In any set of groups, if you just draw some red dots as the nodes and some 

blue circles as the groups around them, I can generate a network by saying let v link to node w 

with probability proportional to 1/kr.  Here r is my exponent again, and k is the size of the 

smallest group that contains both v and w.  That’s now going to be my very general proxy for 

distance here.  It’s somehow generalizing distance in a grid, and also least common ancestor 

height in a hierarchy.  Simply how far apart you are is the smallest group you share.  Sure, we 

both live in the United States, but the real point is that we are both fans of the same obscure 

author, and that’s really the smallest group.   

 You can’t take any set system and have this work.  Subject to some technical conditions 

that include all these cases, often searchability is achieved when the exponent is 1, which is one 

very general way to see where this inverse square law is coming from also, because if I were on a 

grid and the groups were all the balls centered at points, then if you are at distance d from me, 

what’s the smallest group containing both of those?  How big is it?  If you are distance d, then 

because area grows like the square, it’s d2.  So, 1 over group size to the first power is 1 over d2 

which gives us back the inverse square law.  This is a way to see all those results under one 

common rubric, as in searchable networks can be achieved if you link with probably 1 over the 

size of the smallest group containing them.  We now have a bunch of general kinds of results and 

now a few things happen in different directions.  We have both a pattern that we can look for; we 
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also potentially have a proposal for ways to design networks. 

 Searching for a file with the original Napster was the equivalent of sending a letter not by 

four different acquaintances, but by using the U.S. postal system.  It was a central index that 

knew everything, and you just asked it where the file is.  But as noted in Figure 11, once Napster 

went away we were plunged from the world of the postal system or of directory assistance into 

the world of the Milgram experiment: if you want to find something, there is no central directory, 

you have to ask your network neighbors, who in turn ask their network neighbors, and maybe you 

find your MP3 file and maybe you don’t.  In fact, a lot of the early debates about things about 

Gnutella versus Freenet versus a lot of these early systems look very similar to different ways you 

might have run that experiment.  For example, comparing Gnutella’s flooding solution and 

Freenet’s targeted solution, to take two of the very earliest ones of these decentralized things, is 

analogous to comparing a chain letter to the Milgram experiment.  One is much more likely to get 

you a target, assuming it scales, but it scales very badly.  Freenet was able to take advantage of 

some of the earliest of these results by configuring itself to look like a searchable small world.  

More recent work has actually tried to do this even more explicitly.   

 

 
FIGURE 11 

 

 The online world gives us so much flexibility that there is no need to care that we don’t 

live on an n × n grid with uniform spacing and random links.  Once we build an overlay network 

on the Internet—as in CAN, for example—if you want the world to look like an n × n grid with 
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uniform spacing, you simply take all your nodes include in the protocol that each will be assigned 

two coordinates.  That’s the node’s position in the grid, and it can then generate some random 

links. 

 For a lot of these peer-to-peer systems, it became remarkably easy to generate searchable 

networks explicitly by embedding them in some kind of Cartesian space, and some of these use 

these small world models quite explicitly.  That’s all I’m going to say about this as a design 

principle here.   

 

 

 
FIGURE 12 

 

 Let me go back to data.  About a year and a half back there was this nice study by Lada 

Adamic and Eytan Adar where they looked at a particular surrogate social network, shown in 

Figure 12, on 436 researchers at Hewlett-Packard Labs in the Bay area.  They simply asked 

Hewlett-Packard (HP) to contribute suitably anonymized logs of who communicate with whom 

by e-mail.  They then built a network joining pairs of people who exchange at least 6 emails each 

way.  That’s our proxy for having a link on the network shown.  Now, the question was what 

should we embed this into?  There is a very natural embedding for the social structure of HP 

Labs, the organizational hierarchy.  The lab director, area managers, and lower managers can be 

seen in the graph in Figure 12.  Most organizations would look something like this.  Because we 

have these more general ways of thinking about searchability, we can now ask how well this 
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maps onto some of these models of a searchable network.   

 I can ask if g(x,y) is the size of the smallest group containing nodes x and y, how does the 

density of links scale as I go up the hierarchy?  As we know, optimal searchability should be one 

over group size.  When I first saw they were doing this, I was a little concerned because it wasn’t 

clear to me they would go down with group.  That was the hope, but in fact while it doesn’t give 

us , it gives us something that is in the ballpark:  it gives us density of link scaling as .  I 

don’t want to conclude too much from this, because this is a single group of 436 people.  They fit 

something as best they could here, and of course this network was not optimized for searchability.  

HP Labs didn’t say let’s set up everything so that we can do this Milgram experiment as 

efficiently as possible, although you can make qualitative arguments about why that might be a 

good thing for your organization.  In fact, it says that the organization has something of that 

character, so it does give us a very general way of talking about how frequency of communication 

scales as you kind of move up layers, as you have to span larger and larger layers of an 

organization.  Around this point in time there were these peer-to-peer networks.  There was the 

open directory.  There was actually something like a social network, and I began thinking it’s nice 

that this pattern is appearing in real data.  In the end the grid was just a metaphor.  The grid with 

the random long-jumping links was just a way to get us thinking about this, but it was really 

about hierarchies and groups.  There really was no grid, right?  That, too, was not quite right.   

1−g 4/3−g

 There was a nice experiment done in the past year by David Liben-Nowell, my former 

student at Cornell, who is now at Carleton College, and a bunch of colleagues of mine: Robby 

Kumar, Jasmine Novak, and Andrew Tomkins, most of who are now at Yahoo.  They looked for 

how links span actual geography.  Remember that question, where was the grid, where are the 

long-range links?  Well, for that you would need a large network in which people have somehow 

identified their friends and provided you geographic location information, which five years ago 

seemed way too much to hope for, but which we now actually have in things like LiveJournal.  

 So, you go into LiveJournal, which is an online community mainly populated by 

teenagers, and it’s very easy to write a crawler that collects names, zip codes, and links.  This is 

actually out there in public.  So, as shown in Figure 13, you collect 500,000 members of 

LiveJournal with U.S. zip codes, giving you about 4 million links.  The average number of 

friendships declared here is about 8.  You may ask the question how it decays with distance.  This 

gets you remarkably close; somehow you are still one step short of the goal, because the inverse 

square law was about the growth rate of balls, and the growth rate of balls was really on this 

assumption that the density is uniform.  Within distance d, I have d2 nodes no matter where I am.  

You look at the scatter plot of who is using LiveJournal and you see it’s very non-uniform.  The 
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first thing I thought when I saw the scatter plot was isn’t that weird, no one out west is using 

LiveJournal.  But actually this is the same thing you would see if I just plotted the population 

density of the United States.  So, they are indistinguishable at the level of scatter plot. 

 

 
FIGURE 13 

 

   LiveJournal is sampling pretty broadly, but it’s very non-uniform.  The growth rate of 

the ball of somebody, whoever is using it out here in eastern Nevada, is going to grow very 

gradually compared with someone who is using it on a particular block in Manhattan.  What do 

we do about that?  One thing we do is use groups, because groups didn’t require a grid.  Liben-

Nowell et al. simply said the groups are the first some number of people within some distance of 

me, all the balls centered on all the points.  They took something that was slightly easier to 

analyze in their context.  It’s very similar; it’s what they called rank-based friendship.  Node v 

simply rank orders all their potential friends by everyone in the world by proximity.  So the center 

of the circle in Figure 14 is node v, and their closest people are the small circles within that circle, 

the diameter of which is equal to the distance to person 7; that person is ranked 7th.  Then what 

you do is link with probability somehow decaying in the rank:  I’m more likely to link to the nth 

most close person than the (n+1)st closest person.  What they did was prove a different 

generalization.  So, rather than generalize things into group structures, they generalized it into 

rank-based friendships and proved an analog of the inverse square results, as shown in Figure 14. 
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FIGURE 14 

 

 Efficient routing is possible for a nearly arbitrary population density, again, mild 

assumptions here, if the link of probability is decay like 1/rank.  Why is this a generalization?  

Well, because if distance d would be ranked d2, there are d2 people close to them.  This gives me 

the inverse square law in that special case.  Now they’ve got results saying what would be 

optimal for searchability?  They have got 500,000 people with zip codes, and they look at some 

data.  The punch line, which made me very happy, is that LiveJournal friendships actually 

approximate 1/rank quite closely.  Time prevents me from getting into a lot of what they did here, 

but these lines are basically slope 1 and 1.05, and the chart in Figure 14 is one particular view of 

that data. 

 For Hewlett-Packard Labs you could have argued somebody sat down and drew up the 

order chart.  Maybe they were thinking about this.  This is weirder still; it somehow configured 

itself to be like this.  I don’t have a good explanation for that.  I should also mention that 

independence of searchability is a little surprising because LiveJournal is a purely virtual online 

community, so if someone asked me what do you expect, I would have said a mixture model.  I 

would have said you log on and you immediately link to all your high school friends who live in 

the same zip code as you.  So, I get a big spike there, then I meet people utterly at random, and 

it’s kind of like a uniform distribution on the rest.  The point is that is not what happened.  If you 

lived in Nevada, you were nonetheless more likely to link to somebody in Nebraska and 
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Wyoming than you were to someone in New York City, and that’s bizarre.  There is a lot more 

that should be looked at in this data, so one hesitates to draw sweeping conclusions yet, but it’s 

very intriguing. 

 In the final few minutes I have remaining I want to talk about not just spatial embedding, 

but how things have evolved over time because here, too, there tend to be some surprises that 

actually make us go back and think about some things we need to be looking at.  The question we 

wanted to ask was really a very simple one, stated in Figure 15, which is take one of these large 

model systems—we’ll take the arXiv, because it really works very nicely for our purposes—and 

ask how do the degrees of separation change in the network as it grows over time?   We could 

define degrees of separation to say the 90th percentile distance among all pair-wise distances, but 

we have tried other ways.  Why in the world has no one studied this on some large-scale system?  

Well, it’s computationally hard to answer this question.  You want a network you can run up to 

any point in time and stop it.  You would like to ask this question every month or every week, and 

every week that means you have to do an all-pairs shortest-path problem on a 100,000-node 

network.  This is computationally somewhat demanding, so we were actually able to take 

advantage of some nice stuff that one of my co-authors wrote for approximate all-pairs shortest-

paths in a large graph, some stuff Faloutsos worked on to track this effective diameter in several 

networks over time. 
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FIGURE 15 

 

 We looked at things beyond the arXiv of this model system, so on Figure 16 you will see 

plots.  Time runs on the x axis, and effective diameter of the network runs on the y axis.  The 

original plan was we’ll look at this, and we’ll try to see which slowly growing function of n best 

fit the diameter.  Was it log2 n, was it log n, or some other function?  Given that was the original 

plan, we found these plots a bit surprising, because slowly growing functions as you know go up, 

and these were all going down.  The point was, despite the fact that the network was growing—

and some of these networks were growing at an exponential rate over time—the effective 

diameter, and this is basically a smooth version of the 90 percentile, which I can tell you more 

about offline, was going down as the network grew.  The network was growing, but the degrees 

of separation were actually getting closer.  I have a few lines here which are probably better 

explained in question and answer form, but basically, there is a big missing past issue here.  We 

are coming and observing networks starting at a particular time. 
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FIGURE 16 

 

 With the arXiv, we technically have no missing past problem because we have the arXiv 

from its very first paper.  But in a very real sense we have a missing past problem, because the 

archive got plopped down in the middle of a lively, thriving research community that has been 

exchanging pre-prints for a long time.  We only started measuring it at time “zero.”  One worries 

that what these results really show is the process of catching up with a stationary structure the 

network already had.  I can’t say that that’s not what is going on, but one can look at the decrease 

in diameter in many different ways.  For example, one can artificially cut off the past, any number 

of years you want.  You can say supposed we only started measuring in 1995.  That’s what the 

dotted line in the left-hand graph represents, and you get this initial massive swoop down as the 

network catches up with links that essentially were already there.  That effect quickly goes away, 

and we still see a steady decline in diameter long after that effect appears to be negligible.  One 

can also do things where you keep the network intact, but only start measuring—I would have to 

explain this more slowly—but it, too, catches up with this.  So, what we seem to be seeing, long 

after a lot of the edge effects go away, we are still seeing this steady march downward.  Maybe in 

retrospect I should have seen this coming, because back on Figure 5 I said our gold standard is 

log n.  We have n nodes and we want the diameter to grow like log n. That’s sort of the graph 
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theorist’s take on what the small world property means.  It means that you grow exponentially 

slower than the size of the network.  The common sense take on what the small world property 

means is that even as the world is growing, there are forces out there that are causing us to 

become more closely connected; in other words a decreasing diameter.  Intuitively, maybe this 

has been consistent with the common sense intuition behind the small world property all along.  It 

was simply our random-graph background that caused us to inject this log imagery.  Having said 

that, log n and log2 n and these slowly growing functions are a very useful modeling tool for the 

kinds of analyses I have been talking about up until now, which was not of a temporal trend 

nature but simply looking at static snapshots, and talking about asymptotics as a way of capturing 

these.  But it says that there is a lot to do here.  A related property, one reason that sort of makes it 

easier to believe why it might be going down is that the number of edges also decreases, so the 

average degree in the network is not constant. 

 If you compare now versus 10 years ago, people cite more papers, they author more 

papers, they co-author with more people.  Everything in the arXiv network is densifying as we go 

forward, and clearly, any model is going to have decreasing diameter.  There are models that we 

have been thinking about to do this.  For example, one way, at least through simulation—this 

seems very hard to analyze—but through simulation if I have a model where people enter a social 

network via some point of contact, you are introduced into the network through a sort of epidemic 

process in which you befriend some of that person's friends, some of their friends, and so forth.  

Those are your links, and now we iterate, add a new person.  Through simulation, one can set the 

parameters so that it densifies, the diameter goes down, but it seems very hard to prove anything 

about that kind of model.  At least there are models out that that seem plausible, that might 

capture this kind of thing. 
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FIGURE 17 

 

 Figure 17 presents some reflections on various things and suggests some other questions.  

As I said, the set of themes that I wanted to try tracing through this was somehow the way the 

network models, even very specific models, become more general patterns, they become design 

principles.  In the end, with enough patience, you can actually find data sets that really start to 

bear some of these things out. The shrinking diameters thing is again very suggestive of more 

work that could be done here, and in general I think we are only starting to have the 

computational ability to look at very large networks and snapshot them densely over time.  I think 

it suggests that there are more surprises coming up. 

 One network that we would like to try understanding over time is the Web itself.  There is 

currently a large effort going on at Cornell involving some pure scientists, and also some people 

in the sociology department like Michael Macy and David Strang.  In particular, we are trying to 

get a handle on Web evolution over time and some questions we can ask them.  In small world 

networks, there are any number of other interesting questions that one can ask, which I haven’t 

touched on here.  One, for example, which came up in a paper a year ago by Cristos Faloutsos, 

Kevin McCurly, and Andrew Tomkins, was roughly the question of when are short paths 

meaningful.  So intuitively there is this tempting connection between social networks and, for 

example, homeland security applications in which you discover statements like my next door 

neighbor once sublet an apartment from a person who took a class with the brother of a 9/11 

hijacker.  You read in the news that social network analysis is going to cause us to discover things 
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like this and that’s going to be very useful.  Are we really lacking any sense of how you score?  Is 

this short path meaningful?  Isn’t the whole point of the small world phenomenon that I could say 

this about any instantiation?  I would say that we are really lacking, and I think this is interesting 

direction for the statistics aspect of this workshop, some way of talking about when short paths in 

the network are meaningful, and when they simply suffer from what you could call the small 

world problem, that you see short paths everywhere. 

 Another area where this blends into economics and game theory—this is some work I 

have been doing with Prabhakar Raghavan, who is the head of research at Yahoo, where they are 

very interested in social media—is the notion that a lot of these onlines like LiveJournal and 

Orchid and Friendster and Linked In, and you can name any number of these, they attracted a lot 

of excitement a year ago based on the idea that they would become big marketplaces for 

information and services.  You join one of these, and what’s the value to you in joining 

something like Friendster or Link In or Orchid?  Well, because maybe a year from now you are 

going to need to rent an apartment in Boulder, Colorado you ask your friends.  You say you need 

to rent an apartment in Boulder, Colorado.  Do you know anyone who has a room to rent?  They 

ask their friends, and gradually an answer percolates back.  Not only is it an answer, but it 

somehow has been vetted by your friends.  That was some of the appeal of these networks, but 

once you start thinking about this as a marketplace for information and services, you have to ask 

about the incentive issues at work.  If you are actually offering incentives to people, and they 

have to act essentially as middle men for these products and services, then when does this 

function efficiently?  When do things break down simply because of the friction of everybody 

skimming off money that you offer them? 

 It turns out there are some interesting transitional behaviors here, which relate to some 

things about branching processes, and some sharp transitions between networks that function 

efficiently in this mode and networks that don’t.  There is something qualitatively important 

about an effective branching factor of 2, and something I can’t really get into, but there is also a 

lot when you think about this interface of small world networks with the sort of economic game 

theory take on it. 

 In general, I think this is a window into a lot of interesting questions in these kinds of 

networks, a lot of which can be studied with some of the model system data that we have.  We are 

trying to accumulate more data, and I think in general there is much to be done here.  I would be 

happy to talk about it more offline, but for now I’ll stop here. 
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QUESTIONS AND ANSWERS 

 

 DR. HANDCOCK:  I have one question which has four related parts.  This is coming 

back to the HP real world email data set.  How did you fit the model?  And then how did you 

assess the goodness of fit.  Three, was there any missing data from the email responses, and how 

was that dealt with?  And four, because it's an ad hoc model based on heuristics, how did it 

compare to other models that took into account the organizational structure? 

 DR. KLEINBERG:  Those are all good questions, and actually I will start with an 

answer which applies to all four parts, which is I didn’t do any of this, because this was actually 

the work of Adamic and Adar.  So, I don’t want to answer in detail on their behalf, because there 

was thinking behind that which I don’t have access to all of.  There was actually not that much 

missing data as far as I actually understood, because they essentially collected these from logs.  

They got people’s permission to collect these from logs. 

 In terms of competing models, I would say there wasn’t really a generative network 

model here, so, this was not a statement about a generative network model.  It was a statement 

about simply trying to fit a decay of linkage frequency to group size.  And so then it just comes 

down to a question of the goodness of fit for that particular data set, for which you can consult 

their paper.  But there wasn't an attempt to then infer from that a general model. 

 DR. CROVELLA:  I’m Mark Crovella from Boston University.  I’m just sort of curious 

about that example.  What do you think?  Is it more likely that the e-mail messages are the result 

of the organizational structure, or the organizational structure is a result of the e-mail messages?  

If it’s the latter, I would be interested in the social engineering aspects of that. 

 DR. KLEINBERG:  Yes, I think that’s a very interesting question.  So, this may sound 

like a cop out, but I don’t think it is that obvious. As we know from looking at organizations, they 

do change: groups get reassigned, groups split, groups merge, and that clearly is the result of 

increased bandwidth.  So, here unfortunately, I’m not going to draw so much on social science 

studies since I haven’t looked that much at the organizational theory of literature.  But simply 

suggesting that obviously groups split and merge based on increased or decreased traffic between 

that, and that’s a sense in which the e-mail traffic in the long-range sense is going to feed back 

into the organizational structure.  But it’s a good question.  You could also argue that both of 

these are consequences of some hidden variable.  So, in fact, people are working on similar or 

different things.  That influences both the organization structure you see and who communicates 

with whom.  In a sense, that’s the single root cause of these, but I think it’s true that as that 

changes over time, you are going to see changes in communication patterns in the organization. 
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Dependency Networks for Relational Data 
 

David Jensen, University of Massachusetts 
 

 

 DR. JENSEN:  What I’m going to talk about is some work that has been done in 

statistical modeling of relational data.  I’ll tell you what I mean by that in a moment.  This is joint 

work with one of my students, Jennifer Neville, who is one of those fabulous students who the 

previous speaker referred to.  She is also in the job market this year, so if you happen to be in 

computer science and looking for a good faculty candidate, she should definitely be on your list. 

 The main point of what I’m going to talk about is a new joint model for relational data:  

Relational Dependency Networks (RDNs).  I’ll also talk about it in the context of a particular 

application of this kind of statistical modeling—some fraud-detection work that we have been 

doing for the National Association of Securities Dealers.  I will also try to serve as an exemplar of 

work in this area of computer science, particularly in what we generally think of as machine 

learning or knowledge discovery.  And finally, I’ll try to point to some interesting new research 

directions. 

 This talk is a bit of a Russian doll: I make multiple passes, going a little bit deeper each 

time.  I’m a computer scientist, and we do iterative deepening search, so think of it that way.  You 

may want to gauge your questions with that in mind. 

 
FIGURE 1 

 

 First, let me start out with this application.  About two years ago we were approached by 

some people at the National Association of Securities Dealers (NASD).  They are the world’s 
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largest regulator of securities brokers; and they are essentially detailed by the Securities and 

Exchange Commission to regulate the market in much the same way as the American Bar 

Association and the AMA regulate their particular areas.  Some background on the NASD is 

included in Figure 1.  The particular interest that they had was to try to predict fraud, and to focus 

their examinations for fraud by accounting for the fact that fraud is a social phenomenon.  They 

particularly came to us because we were involved in doing this kind of work, but we’re taking 

into account the context, the relations between either people or Web pages or other things. 

 NASD has a large dataset, and Figure 2 is a rough schema of the data.  Intriguingly, this 

is data that you can access online a single record at a time.  We have the entire database, but you 

can access records on your particular stockbroker if you are interested in finding out if they have 

engaged in questionable conduct prior to you working with them.  The website is 

http://www.nasdbrokercheck.com. 

   

 
FIGURE 2 
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 The NASD has data on roughly 1 million brokers, 300,000 branches, and 16,000 firms, 

so there is quite a large set of data and it is virtually complete.  It is a wonderful network to look 

at because there are essentially no missing data in here.  There is one aspect in which there is 

missing data, which is that brokers file disclosures indicating that they may have done something 

wrong.  This can be a minor customer complaint; it can be a felony, and there is a large range of 

possible behaviors.  This is a self-reporting system, so they file data on themselves, or their 

branch or the firm files data about them.  Certainly in the case where they might have committed 

a felony and been fired, it would be the firm itself that would be filing the disclosure, but we 

know that those are fragmentary and are incomplete. 

 We built a model that I will tell you about in a little while.  We took that model and 

predicted, prospectively, who was at high risk for fraud in the next 12 months.  Despite people’s 

general expectation, it’s actually a very small percentage of all brokers that do anything 

fraudulent, but we knew that this would be a very weak predictor.  We rank ordered all brokers by 

their probability to fraud and compared this to NASD’s own rules.  NASD has expert-derived 

rules which they use to select out a group of brokers for special attention by their examiners.  We 

went down the list of brokers identified that way, which included about 125 brokers.  We took the 

top 125 brokers on our list and compared the two sets.  We took brokers who appeared on both 

lists, brokers on one list or the other list, and some brokers that were on neither list, and put them 

in front of human examiners, asking them to say how interested they were in those particular 

brokers, how much they would have wanted to know ahead of time about these brokers.  We 

compared the scores that these four examiners gave to each of these cases.  There were 80 cases, 

which each took about half an hour to examine, so for four examiners this was a person-week of 

effort per examiner.   

 Figure 3 shows what we ended up with.  Brokers who were on neither list generally have 

a very low score near 1.  (Five indicates the most interest on the part of an examiner, 1 the least 

interest.)  If we used NASD’s rules alone, or our rules alone derived automatically from the data, 

we would essentially have the same ability to predict brokers of interest to the examiners.  If you 

combined the rule sets and said we’re going to look at individuals who were on both lists, you 

would actually end up with a set of brokers of even more interest to the examiners.   
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FIGURE 3 

 

 We also got a little bit of informal unsolicited feedback from one of the examiners.  

These are experts who have spent years examining individual brokers, and one of the examiners 

said, “Wow, if you got this one case right, I’ll be really impressed.”  Because this examiner 

supervised barring this guy from the industry, he was so bad that he had used fraudulently 

obtained funds to attend a compliance conference that NASD runs on a regular basis.  I wouldn’t 

be telling you about this if their rules hadn’t missed him, which was the case.  In fact, our model 

ranked him in the top 100.  So, he would have been one we would have recommended to the 

examiners to take a look at.  That was a nice anecdotal result as well. 

 Let’s back up a minute: how did we do this?  What are we in the business of doing?  We 

were looking at relational data, data that tied brokers together based on the firms and branches 

that they worked for.  We called that relational data.  What do we really mean?  As we have all 

been talking about here, a lot of traditional work in statistics assumes that you have a single table 

of data.  You assume the instances are independent, and you are looking for relationships between 

the variables in a given instance.  In contrast, we assume there are multiple tables, many different 

types of objects, and importantly, the statistical dependencies may run between instances in the 
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same table, or between tables.  We might want to say that one broker influences the probability 

that another broker will engage in fraud, or something about that broker’s firm may influence that 

probability.  That’s the sense in which the data we are working with are relational. 

 Our goals are to model attributes.  Importantly, we are not trying to predict that a link 

will occur.  We are trying to predict that some attribute or set of attributes exists for individual 

objects in the data, conditioned on the attributes of other objects and the relational structure 

among many object types.  We are also after joint models so that we can do all the neat things 

you can do with a joint model.  For instance, you can predict anomalies and other kinds of things.  

We are also under the strong impression that our inferences about one object should inform our 

inferences about another.  We are doing what we refer to as collective inference.  We want to do 

joint inference across all of the instances in our data.  We can’t just do that one at a time, we need 

to conduct inference on large and complex networks. 

 Also, because of the kinds of applications we are working with, NASD is a good example 

we want to follow to construct understandable models.  The first thing that the NASD examiners 

asked of us when we first met them was, what does our model really say, how does it do what it 

does?  We were able to put the models in front of them; they looked at them and said, yes, that 

makes sense.  They were also able to say to us, “Oh, that thing over there . . .,” which we said, 

“Yes, yes, ignore that, that’s probably noise,” they said, “No, that is actually something that is 

interesting to us, but there is a better way of expressing it.”  They were able to help us improve 

our models and our data sets.  We are talking about large, complex networks over which we want 

to perform inference.  So, what are the models that we are building?  Figure 4 gives a high-level 

view of the model built from the data that I have just talked about.  I’ll explain it in detail in a 

minute.  Some of the details aren’t here because NASD, for obvious reasons, has said “Would 

you please not provide too many details of the exact model that you have built,” although they are 

surprisingly willing to work with us on publication.  In fact, three of the co-authors of a paper that 

we just presented at the Knowledge Discovery and Data Mining Conference were all from 

NASD, and that paper goes into some detail. What we have here are these plates, these boxes, 

indicating object types; circles indicating variables on those objects, variables, or attributes; and 

the edges indicating dependencies, statistical dependence that runs between variables.   
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FIGURE 4 

 

 This is a type of graphical model that I will explain in more detail in a minute.  It is a 

dependency network.  So, if you want to know what an object depends on you can   look at its 

parents.  Look at things that have arrows going from them to the node that you are interested in 

predicting.  For example, if you want to know whether the broker is a problem broker, you 

examine the sources of the arrows leading into that oval labeled “Is problem.”  You’d want to 

look at whether they had problems in the past and have they had some sort of bad disclosures in 

the past?  You would also want to look at that little loop under the oval in question, which asks 

whether there are known problem brokers in the same branch.  There is an auto-correlation 

dependency, or homophily, among brokers who work in the same branch.  You should look at 

whether other brokers in that branch have had problems in the past.  That’s the dependency that 

goes out to the left side of the yellow box.  Finally, there is one that goes up to the year of 

previous disclosures of that individual.  You can look at these and get a sense of the overall types 

of statistical dependencies that exist in your data, and then the high-level summary of a model 

that actually has more detail sitting under each of the nodes in much the same way that Bayesian 

networks do.  Also, there are these black dots in the upper left-hand corners of the four boxes, 

which indicate dependence on the mere count of those object types.  For instance, the link 

between the dot in the blue rectangle and the “on watchlist” oval in the yellow box indicates that 

the number of disclosures influences whether a broker is on the NASD’s watch list.  That black 

dot just indicates the number of, not some variable of that object type. 
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 What are relational dependency networks?  I’ll tell you how they are constructed in a 

minute, but they are a very expressive model in that they particularly represent the cyclic 

dependencies, this auto-correlation or homophily.  They are efficient to learn.  They are 

essentially linear in the time needed to learn a conditional distribution, because they are actually 

composed of a large number of conditional models.  They can perform this collective inference 

because the inferences about one object can inform the inferences about another.  What you do 

when you are performing inferences is to do inference over the entire graph simultaneously.  

Finally, they are practical because of some nice qualities about them.  You can actually use 

models that you know ahead of time and you don’t have to learn all of the elements of those 

models.  I should point out that the model you just looked at was learned without expert input 

other than the data set itself, so that model was learned automatically without any expert going in 

and turning off or adding dependencies. 

 For details you can see two papers that Jen Neville and I recently produced.  Also, this 

builds on work by David Heckerman and co-authors at Microsoft Research published in 2000 on 

propositional dependency networks: networks that assume independence among instances.  So the 

basic flavor of our work is in alignment with a set of other work that has been done in computer 

science and machine learning, specifically in what have come to be called probabilistic relational 

models, or just relational models.  That includes work by Daphne Koller’s group at Stanford on 

what they originally called PRMs, and now often called relational Bayesian networks, relational 

Markov networks, also out of Daphne’s group, and Ben Taskar, one of her students, our own 

relational dependency networks, and most recently some work at the University of Washington 

by Pedro Domingos and his student Matt Richardson in Markov logic networks.  Figure 5 lists 

some of this work. 
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FIGURE 5 

 

 As you can tell, there is an enormous alphabet soup here of different model types, and 

there are about 10 that I haven’t mentioned.  There has been an explosion of work in the last five 

years on graphical models for relational data—many different models being proposed.  We are 

now in the process of trying to sort it all out, and figure out what the advantages and relative 

performance of these things are.  We have done work over the last several years in statistical 

biases that can show up in these relational learning algorithms, and in this collective inference 

process.  There’s this idea that you’ve got a joint model over all of your data, and are making 

simultaneous inferences. 

 How do these RDNs work?  Let’s do one more Russian doll inside.  Relational 

dependence networks are a pseudo-likelihood model.  You have heard about some of these 

previously.  A model is constructed by composing a set of conditional models that are each 

learned independently.  This sounds like a really bad idea, because what you would like to do is 

learn your entire model, all of the elements of your model jointly, but if you have a sufficiently 

large data set, what you end up with is the data set performing a coordination function that allows 

you to have the individual conditional models be consistent enough with each other, that you end 

up forming something that looks a lot like a coherent joint distribution of the data.  What you 

want to do, for instance, is learn these individual conditional models.  You want to learn the 

probability that a broker is a problem broker.  You look at a set of characteristics about that 

broker and the neighborhood surrounding them.  You look at the past behavior of that broker, for 
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instance, which may be captured as an individual variable on that broker; relations to other 

problem brokers and attributes of those brokers; and other things like the location and status of 

the firms that the individuals have worked for.  You need to learn each of those models in a way 

that makes it parsimonious and accurate. 

 

 
FIGURE 6 

 

 The types of conditional models that we learned are these relational probability trees.  

These are trees where you take, for instance, a broker and the surrounding neighborhood of 

objects, which we specify ahead of time, drop that into the tree, and it rattles down to one of 

several leaf nodes.  The leaf node gives you a probability distribution over the variable that you 

are trying to predict.  Again, this is learned automatically from the data, a separate algorithm.  

Part of the tree for our NASD work is shown in Figure 7, enlarged just to give you a better sense.  

Is the particular broker older than 27 years of age?  The answer is no, so we go down the right-

hand part of the tree.  Then you ask something about the firm size of the broker and the current 

firm.  You may then go down the right-hand branch and ask about the past co-workers.  How 

many past co-workers do you have?  If it’s more than 35, you go down the left-hand branch of the 

tree, and you get down to this leaf node.  You say, “Oh, well, there is sort of a roughly even 

probability of committing fraud or not committing fraud in the next 12 months.”   

 433 
 



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

 
FIGURE 7 

 

 How are these relational probability trees learned?  These are a tree-based classifier like 

those worked on for 30 years in the statistics and machine learning community.  It’s a very 

common way of constructing a conditional model.  We take standard ways of building these trees, 

and say, “Well, the problem is we need to start with a graph. We need to start with a very large 

graph, consisting of lots of objects and lengths.”  What do we do?  As shown in Figure 8, we take 

pieces of that graph—for instance, a broker and his or her surrounding neighborhood—and then 

say, okay, those are our instances.  Now you have these little subgraphs that you have cut out of 

the graph, and you have these things that are sort of like instances, except they have widely 

varying structure.  Some brokers may have many past co-workers, others may have very few.  

What you need to do is some aggregation over that to summarize the relational structure, which 

ends up giving you a somewhat different data set.  There needs to be some adaptation of the 

learning to deal with problems of auto-correlation and some other things.  That’s addressed in 

detail in the paper.  Finally, you can construct yourself one of these relational probability trees.  

Do this for every variable in your data.  Compose these trees into a single model that ends up 

giving you the relational dependency network that I showed you earlier. 
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FIGURE 8 

 

 The key insight of this work and lots of work in relational data in the machine 

learning/CS realm has been this need to do aggregation, and to search over possible different 

aggregators.  So, what do I want to know about the past co-workers of somebody?  Do I want to 

know their average age; the number of disclosures that those past co-workers have had?  What are 

the things that matter?  You want to search over that space, and then choose those variables that 

help you most that allow you to form a highly accurate conditional distribution. 

 You can also have problems of what I would call pathological learning.  An example is 

given in Figure 9.  You can ignore the details of this particular network, but just to say we have a 

very nice relational dependency network here.  If we do the wrong kind of learning of conditional 

models, we can end up with a relational dependency network that looks like this, that is 

essentially impossible to interpret, which makes inference much more complex.  The reasons for 

that are there are at least two special problems you run into.  One, it’s been referred to several 

times as auto-correlation.  You need to account for auto-correlation when you are doing statistical 

hypothesis tests and parameter estimation.   
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FIGURE 9 

 

 Figure 10 shows a lot of correlation.  Let’s say the green things there are firms and the 

blue things are brokers; you are looking at the characteristics of brokers and whether they will 

commit fraud.  Firms tend to have either lots of these brokers or very few of them, so auto-

correlation is a fact of life in many of these data sets. 

 

 
FIGURE 10 
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 Another problem is what we call structural dependence, which is that you can often look 

at the mere structure, how many of something—for instance, how many brokers there are—and 

make some inference about the firm, where there is a correlation between the structure, the degree 

here in this case, and some attributes of one of the things in the graph.  We have papers on both of 

these issues showing how they can affect both our algorithms and other algorithms in the field. 

 If you correct for these problems, auto-correlation and structural dependence, what you 

end up with are much smaller models.  In each of the graphs shown in Figure 11, the far left-hand 

side is our approach to building a model.  The far right-hand side is a standard approach in a 

community, C4.5.  What we are showing is ending up with much more parsimonious models that 

are just as accurate.  Among all of these models accuracy did not differ but size certainly did.  

That influences how many edges you end up having in that big network, which affects both its 

interpretability and also the efficiency of inference.   

 

 
FIGURE 11 

 

 You now have this great model, and the question is, now what do we do?  We’ve got this 

model but we need to actually apply it to a very large network.  Figure 12 shows just notionally a 

citation network where you have papers and authors, and they are connected in the way that you 

would expect in terms of people authoring papers and papers citing each other.  We have this 

network, and we also have attributes on these individual things:  attributes on these papers and 

attributes on these authors.  What our model says is if we want to make some inference about this 
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center node, center variable, what is the topic of that paper?  We need to look at the topics of 

other papers published by that author, and we may need to look at characteristics of the authors as 

well.  We need to go out into the network, grab the values of these variables and bring them back.  

We need to do that for every variable that we are trying to predict in the network, which means 

that this obviously can be a very intensive process.  We also need to have the entire data set 

available to us to make these inferences simultaneously, because some of these nodes that are 

parents of the node we are trying to predict are, in turn, other things whose values we are 

inferring, other variables whose value we are inferring. 

 

 
FIGURE 12 

 

 We used Gibbs sampling to do this inference process, and we have had very good 

experience with its convergence and other properties.  What we can end up doing is a good job at 

predicting the value of unknown attributes wherever they reside in the network.  Your data set 

can look essentially like Swiss cheese at some level on which you are trying to make inferences, 

and you can fill in those gaps over a wide variety of variables.  Some of them are known and 

some of them are unknown.   
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 We do this process we call collective inference, in contrast to conventional models 

(whether they are graphical models or something else) where you can just look in an individual 

instance and say we’re going to make a prediction about this one, and now we are going to move 

onto the next one and make a prediction about this.  Because of the interconnections among 

instances, you need to make all these inferences simultaneously.  Doing this sort of inference has 

been shown to improve accuracy substantially in very specific settings.  For instance, Chakrabarti 

et al. (1998) shows that collective inference can really improve your ability to determine the 

topics of Web pages, but now it’s also been shown more generally.  The influence of highly 

confident inferences can travel substantial distances in the graph.  Collective inference exploits a 

clever factoring of the space of dependencies to reduce variance, thus improving performance 

over considering all relational attributes, as shown in (Jensen, Neville, and Gallagher, 2004). 

 Figure 13 shows another RDN that we constructed on a citation network in computer 

science, showing things that aren’t terribly surprising, like authors who are well known tend to 

author with other people who are well known.  That’s the average rank of the author.  Also, that 

the topics of papers tend to be related to the topics of other papers written by the same author.  

Again, this is not surprising, but it’s nice that this fell out of the model without any of our input.  

This is the model that was learned directly from the data, so those sorts of dependencies give us 

some confidence that it is actually learning something useful, that it matches our intuitions. 

 
FIGURE 13 

 

 Another data set, shown schematically in Figure 14, is the Internet movie database.  We 
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have movies, actors, directors, and studios linked up in the way that you would expect.  Here we 

are learning large numbers of auto-correlation dependencies showing, for instance, that the genre 

of a movie is likely to be highly correlated with the genre of other movies that are made by the 

same director, made by the same studio, or starring the same actors.  People tend to stay within 

genre.  That’s not a surprise, but again, nice to find that coming out of the model.   

 

 
FIGURE 14 

 

 Figure 15 shows a basic gene regulatory network.  This one is a bit more difficult for me 

to interpret, but it seems to make sense, and we have done experiments on simulated data to give 

us some confidence that the models are actually finding what we expect them to find. 

 Let me mention a couple of other pieces of work before I close.  One is that in the course 

of doing this we needed a query language for graphs.  SQL is what we started out using and it 

didn’t work particularly well, so one thing we came up with was a visual query language for 

graphs. QGRAPH (Blau, Immerman, and Jensen, 2002), which was very useful.  QGRAPH 

allows us to submit queries, written with a simple visual syntax, that return entire subgraphs with 

heterogeneous structure. 
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FIGURE 15 

 

 For instance, Figure 16 illustrates a query that we used in the NASD data.  I’ll blow up a 

portion of it.  At the top this says, basically, get me all the brokers associated with all of their 

disclosures.  The zero there says get me all the disclosures for this broker, and get me all of the 

past branches that they have worked with.  The box in the center of Figure 16 indicates the 

equivalent of the sub-query where you say we want those structures that include the branch, the 

firm, the regulator of the firm, and all of the past co-workers of that firm.  And by the way, we 

want all of the past branches.  So, these get you structures that can be highly variable in size, but 

which have the same basic properties in terms of the kinds of objects that they contain.  We use 

these queries both as an ad hoc tool for looking at big graphs, and for pulling out small pieces of 

them that are easy to actually display visually.  We also use it as a way of conveying to the 

algorithm where it should look for possible statistical dependencies.  
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FIGURE 16 

 

 Also, just a quick ad for a paper that is on a very different topic.  Jon Kleinberg set this 

up very nicely by discussing this problem of decentralized search in networks.  We are able to 

construct paths through a network with an algorithm called “expected value navigation,” which 

we recently came up with and published at a conference in the summer of 2005.  It does a 

remarkably good job of combining the information available for searching many of these 

networks, which is the degree of neighbors, as well as the attributes of neighbors, and using that 

to navigate in large networks.   

 We have open source software (PROXIMITY) available to build these relational 

dependency networks, and that implements the query language and other things.  It is available 

from our Website.  We released version 4.0 in April, and we have had more than 600 downloads, 

which is a nice thing.  We are pretty sure that those aren’t just crawlers, but are people really 

downloading.  I want to emphasize that this has an enormous potential for collaboration among 

all the kinds of people who are here, certainly people in computer science, but I think we need 

connections to people who work in theory, statistics, social networks, and physics. 
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FIGURE 17 

 

 Figure 17 summarizes my thoughts on our growing research network.  There is the 

potential for some really great collaboration here, and there is all this disparate work that is going 

on that has crossovers.  I have heard a lot of it today and yesterday, and really enjoyed it.  It’s 

been really good and I’ve certainly gotten a lot of input from this.  One example I want to note is 

that of Pedro Domingos and Matt Richardson who put out a paper in 2001 that won the best paper 

award at the Knowledge Discovery and Data Mining Conference.  Two years later Jon Kleinberg 

and co-authors picked up on that line of work, which had to do with viral marketing and some 

really interesting technical issues.  That sort of work between two areas of computer science was 

nice to see.  Now I hope we can branch out to other areas of science.  Currently we model 

attributes, but we would like to move to being able to say we think links will be formed between 

these two objects, or we think there is a missing object or group in the data. 

 Figure 18 lists some of my ideas for potential future research.  Sampling issues that have 

already been mentioned are active learning and knowing how to sample while you are building 

models.  The problem of what I would call non-link relations are actually links that aren’t 

instantiated, but rather are the kinds of things that we say, these two people are close in age, or 

they live next to each other.  We don’t want to have to instantiate all those links; we would like to 

be able to represent them in other ways.  Spatial and temporal models are a set of other things that 

are more CS oriented. 
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FIGURE 18 

 

 Finally, if you’d like further information, please contact me at jensen@cs.umass.edu  or  

kdl.cs.umass.edu. 

 

QUESTIONS AND ANSWERS 

 

 DR. BLEI:  Hi, I’m Dave Blei from Carnegie Mellon.  I didn’t quite see what the 

criterion was for determining dependence between two random variables.  Maybe you could step 

us through from, say, actor to genre, how one decides to put an arc there. 

 DR. JENSEN:  Structural learning in RDNs is merely learning conditional models, and 

looking at the variables that are in those conditional models.  So, if I look at a model that is X 

conditioned on everything else, and the model says, Y1 and Y3 are in the model for X, I draw in 

that dependency. 

 DR. BLEI:  How do we determine the independence of the variables?  That’s really the 

question. 

 DR. JENSEN:  Oh, how do you determine independence?  Graph separation. 

 DR. BLEI:  I have some data.  It’s a big table, and I ask is row A dependent on row B?  

What is the test for doing that? 

 DR. JENSEN:  When you are building the relational probability tree, these are rows you 
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are talking about, not columns.   

 DR. BLEI:  So, you are building a probability model of a set of random variables? 

 DR. JENSEN:  Let’s say variables here are columns. 

 DR. BLEI:  When you have an arc between two random variables does that mean one is 

dependent on the other? 

 DR. JENSEN:  Yes. 

 DR. BLEI:  So, my question is just how to measure whether or not two variables are 

dependent on each other, since you are learning that arc. 

 DR. JENSEN:  When we are learning the relational probability trees we are looking at 

individual variables as possible predictors of our dependent variable. We are scoring that with chi 

square in this case.  These are discrete variables.  If we have continuous variables we discretize 

them.  We are using chi squares as our scoring function for individual conditional dependencies.  

Those are learned in the conditional models.  We decide to select a feature as a split in a tree that 

may be the age of the broker.  Let’s use a simple one.  The age of the broker is greater than 27; 

that’s the root node of our tree.  What we are predicting is the broker is a problem, so that will 

result in an arc in our RDN beginning at broker age, going to broker-is-a-problem. 

 DR. BANKS:  I wasn’t quite sure that I followed exactly what the SQL search for graphs 

would give you.  Could you say a few more words about how you would instantiate an inquiry? 

 DR. JENSEN:  Certainly.  You are just asking what does the query language do for you. 

 DR. BANKS:  What types of questions would you ask that would not be asked?  I could 

ask who is in my social network that is not in Ed Wegman’s social network, or something like 

that, but that is not what you are going after. 

 DR. JENSEN:  Figure 19 illustrates a very simple query.  Say we get red things that are 

associated with two or more structures of the following kind, a blue thing associated with three or 

more green things.  Now, you could write that as an SQL query if you wanted to.  What you 

would get back are rows, which are a red thing, a blue thing, and a green thing.  What we want is 

to identify the subgraphs on the left and the right center as matches while skipping past subgraphs 

like the one in the lower right (which does not qualify because it has only two green things on the 

left end).   
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FIGURE 19 

 

 DR. GROSS:  It’s a hard thing to explain. 

 DR. JENSEN:  It is a subtle different from SQL in the sense that you are getting back 

these subgraphs, and in these grouping constructs have some subtle differences, although what we 

are now finally doing is actually writing out the algebra, and showing where it differs ever so 

slightly from SQL.  

 What is nice about the language as a user is that it is visual.  You draw these things that 

are much more pleasant than trying to write the convoluted SQL that we had to write to get these 

whole structures out.  Also, it is easier to convey to people when you sit down and draw it out, 

because that looks vaguely like the results you are trying to get.  It’s certainly a lot better than 

trying to explain SQL to someone who doesn’t know the language. 

 DR. GROSS:  [Remarks off mike.] 

 DR. JENSEN:  We have an implementation which I would definitely call a prototype, 

which is in PROXIMITY 4.0.  It was also in the previous version of the system.  We regularly 

query graphs that are on the order of 1 million to 2 million nodes.  Very soon we are going to 

have the algebra complete, which allows you to easily implement it in whatever database system 

you choose.  We have implemented it on top of both SQL in a previous implementation, and now 

on top of a vertical database called Monet.  You wouldn’t learn much from our implementation 

unless you were using this particularly bizarre database that we use for efficiency reasons.  

However, the algebra should provide you a really good starting point for an implementation that 

should be fairly straightforward, and many of the query optimizations that work for SQL will 
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work for this as well.  The algebra is only slightly different. 

 

 

REFERENCES 

 

Blau, H., N. Immerman, and D. Jensen. 2002. A Visual Language for Querying and Updating 
Graphs. University of Massachusetts Amherst Computer Science Technical Report 2002-037. 
 
Chakrabarti, S., B. Dom, and P. Indyk. 1998. Enhanced Hypertext Classification Using Hyper-
Links.  Proc. ACM SIGMOD Conference. Pp. 307-318. 
 
Dietterich, T. 2003. “Relational revolution.” New work in CS areas of machine learning and 
knowledge discovery. 
 
Domingos, P., and M. Richardson. 2001. Mining the Network Value of Customers. Proceedings 
of the Seventh International Conference on Knowledge Discovery and Data Mining. San 
Francisco, CA: ACM Press.  Pp. 57-66. 
 
Getoor, L., N. Friedman, D. Koller, and A. Pfeffer. 2001.  Learning Probabilistic Relational 
Models.  Relational Data Mining (S. Dzeroski and N. Lavrac, eds.).  Berlin, Germany: Springer-
Verlag. 
 
Jensen, D., and J. Neville. 2002. Linkage and Autocorrelation Cause Feature Selection Bias in 
Relational Learning. Proceedings of the 19th International Conference on Machine Learning. 
 
Jensen, D., J. Neville, and M. Hay. 2003. Avoiding Bias When Aggregating Relational Data with 
Degree Disparity. Proceedings of the 20th International Conference on Machine Learning. 
 
Jensen, D., J. Neville, and B. Gallagher. 2004. Why Collective Inference Improves Relational 
Classification. Proceedings of the 10th ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining. 
 
Kempe, D., J. Kleinberg, and E. Tardos. 2003. Maximizing the Spread of Influence Through a 
Social Network. Proceedings of the 9th Association for Computing Machinery Special Interest 
Group and Forum for Advancement and Adoption of the Science of Knowledge Discovery and 
Data Mining International Conference. 
 
Neville, J., and D. Jensen. 2000. Iterative Classification in Relational Data. L. Getoor and D. 
Jensen (eds.). Papers of the AAAI-2000 Workshop on Learning Statistical Models from 
Relational Data. Menlo Park, California: AAAI Press. 
 
Neville, J., and D. Jensen. 2003. Collective Classification with Relational Dependency Networks. 
Proceedings of the 2nd Multi- Relational Data Mining Workshop, 9th ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining. 
 
Neville, J., and D. Jensen. 2004. Dependency Networks for Relational Data. Proceedings of the 
4th IEEE International Conference on Data Mining. 
 

 447 
 



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

 448 
 

 
Richardson, M., and P. Domingos. 2004. Markov Logic: A Unifying Framework for Statistical 
Relational Learning. Proceedings of the ICML-2004 Workshop on Statistical Relational Learning 
and its Connections to Other Fields. Banff, Canada: IMLS. Pp. 49-54. 
 
Simsek, Ö., and D. Jensen. 2005. Decentralized Search in Networks Using Homophily and 
Degree Disparity. Proceedings of the 19th International Joint Conference on Artificial 
Intelligence. 
 
Taskar, B., E. Segal, and D. Koller. 2001. Probabilistic Clustering in Relational Data. 
Seventeenth International Joint Conference on Artificial Intelligence (IJCAI01). Seattle, 
Washington. 
 
Taskar, B., P. Abbeel, and D. Koller. 2002. Discriminative Probabilistic Models for Relational 
Data. Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI02). Edmonton, 
Canada. 
 
 
 
 



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

 
 
 
 
 
 
 
 
 

Appendixes 
 
 
 

  

      
      

 

 449



Copyright © National Academy of Sciences. All rights reserved.

Proceedings of a Workshop on Statistics on Networks 
http://www.nap.edu/catalog/12083.html

Appendix A 
 

Workshop Agenda and List of Attendees 
 
 

AGENDA 
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Appendix B 
 

Biographical Sketches of Workshop Speakers 
 
 
 

Stephen P. Borgatti, Boston College, received his Ph.D. in mathematical social science from the 
University of California, Irvine, in 1989.  His research interests are in shared cognition and social 
networks.  He is the author of ANTHROPAC, a software package for cultural domain analysis, 
and UCINET, a software package for social network analysis.  He is a past director of the 
National Science Foundation’s Summer Institute for Research Methods, as well as a past 
president of the International Network for Social Network Analysis, the professional association 
for social network researchers.  He currently serves as associate editor for a number of journals, 
including Field Methods and Computational and Mathematical Organizational Theory, and is 
senior editor for Organization Science.  He is currently professor and chair of the Organization 
Studies Department at the Carroll School of Management at Boston College. 
 
Kathleen M. Carley, Carnegie Mellon University, received her Ph.D. from Harvard University 
in mathematical sociology.  She is currently a professor of computer science at Carnegie Mellon 
University.  She also directs the center for Computational Analysis of Social and Organizational 
Systems (CASOS).  CASOS is a university-wide center for understanding complex systems 
through the combined application of computer science, social science, and social networks.  Her 
research combines cognitive science, social networks, and computer science to address complex 
social and organizational problems.  Her specific research areas are computational social and 
organization theory; group, organizational, and social adaptation and evolution; social and 
dynamic network analysis; computational text analysis; and the impact of telecommunication 
technologies and policy on communication, information diffusion, and disease contagion and 
response within and among groups, particularly in disaster or crisis situations.  Her models meld 
multiagent technology with network dynamics and empirical data. 
 
Jean M. Carlson, University of California, Santa Barbara, received a B.S.E. in electrical 
engineering and computer science from Princeton University in 1984, an M.S.E. in applied and 
engineering physics from Cornell University in 1987, and a Ph.D. in theoretical condensed matter 
physics from Cornell in 1988. After postdoctoral work at the Institute for Theoretical Physics at 
the University of California, Santa Barbara (UCSB), she joined the faculty at UCSB in 1990, 
where she is currently a professor of physics.  She is a recipient of fellowship awards from the 
Sloan Foundation, the David and Lucile Packard Foundation, and the McDonnell Foundation.  
Dr. Carlson's research interests include a combination of foundational work and  
a variety of practical applications of complex-systems theory, including earthquakes, wildfires, 
and optimization and design in networks. 
 
Mingzhou Ding, University of Florida, received his B.S. in astrophysics from Peking 
University in 1982 and his Ph.D. in physics from the University of Maryland in 1990. He is 
currently a professor in the Department of Biomedical Engineering at the University of Florida. 
His main research interest includes cognitive neuroscience and related signal processing 
problems. 
 
John Doyle, California Institute of Technology, is the John G. Braun Professor of Control and 
Dynamical Systems, Electrical Engineer, and BioEngineering at Caltech.  He has B.S. and M.S. 
degrees in electrical engineering from the Massachusetts Institute of Technology (1977) and a 
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Ph.D. in mathematics from the University of California, Berkeley (1984). His early work was in 
the mathematics of robust control, LQG robustness, (structured) singular value analysis, H-
infinity, and there have been many recent extensions.  He coauthored several books and software 
toolboxes currently used at over 1,000 sites worldwide, the main control analysis tool for high- 
performance commercial and military aerospace systems, as well as many other industrial 
systems. Early examples of  industrial applications of his work include various airplanes—X-29, 
F-16XL, F-15 SMTP, B-1, B-2, 757; Shuttle Orbiter; electric power generation; distillation; 
catalytic reactors; backhoe slope-finishing; active suspension; and CD players. His current 
research interests are in theoretical foundations for complex networks in engineering and biology, 
as well as multiscale physics. His group led the development of the open source Systems Biology 
Markup Language (SBML) and the Systems Biology Workbench (SBW), which have become the 
central software infrastructures for systems biology (www.sbml.org), and also released the 
analysis toolbox SOSTOOLS (www.cds.caltech.edu/sostools).  He was the theoretical lead on the 
team that developed the FAST protocol and shattered multiple world land speed records 
(netlab.caltech.edu). His prize papers include the Institute of Electrical and Electronics Engineers 
(IEEE) Baker Award (for the top research paper in all of the IEEE’s approximately 90 journals, 
also ranked in the top 10 “most important” papers worldwide in pure and applied mathematics 
from 1981-1993), the IEEE Automatic Control Transactions Axelby Award (twice), and the 
American Automatic Control Council (AACC) Schuck Award.  Individual awards that he has 
received include the IEEE Control Systems Field Award (2004) and the Centennial Outstanding 
Young Engineer (1984).  He has held national and world records and championships in various 
sports. 
 
Deborah Estrin, University of California at Los Angeles, holds a Ph.D. in Electrical 
Engineering and Computer Science (EECS) from MIT (1985) and a B.S. in EECS from the 
University of California at Berkeley (1980) and is a professor of computer science at the 
University of California at Los Angeles, where she holds the Jon Postel Chair in Computer 
Networks and is the founding director of the National Science Foundation Science and 
Technology Center for Embedded Networked Sensing (CENS).  Dr. Estrin has been instrumental 
in defining the research agenda for wireless sensor networks. Her research focuses on technical 
challenges posed by autonomous, distributed, physically coupled systems. She is particularly 
interested in environmental monitoring applications and is on the National Ecological 
Observatory Network (NEON) design team. Earlier in her career she contributed to the design of 
Internet routing protocols. Dr. Estrin is a member of the NSF Computer and Information Sciences 
and Engineering (CISE) Advisory Committee and of the National Research Council’s (NRC’s) 
Computer Science and Technology Board. 
  
Mark S. Handcock, University of Washington, is a professor of statistics and sociology, 
Department of Statistics, University of Washington, Seattle. His work focuses on the 
development of statistical models for the analysis of social network data, spatial processes, and 
demography. He received his B.Sc. from the University of Western Australia and his Ph.D. from 
the University of Chicago. Descriptions of his work are available at 
http://www.stat.washington.edu/handcock. 
 
Nicho Hatsopoulos, University of Chicago, received his B.A. in physics in 1984 from Williams 
College.  He received a master’s (Sc.M.) in psychology in 1991 and a Ph.D. in cognitive science 
in 1992, both from Brown University.  He was a postdoctoral fellow at the California Institute of 
Technology from 1992 to1995 and then again at Brown University from 1995 to 1998.  From 
1998 to 2001, he was an assistant professor of research in the Department of Neuroscience at 
Brown University.  From 2002 to the present, he has been an assistant professor in the 
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Department of Organismal Biology and Anatomy and on the Committees of Computational 
Neuroscience and Neurobiology at the University of Chicago. 
 
Peter Hoff, University of Washington, is an assistant professor in the Departments of Statistics 
and Biostatistics, and a member of the Center for Statistics and the Social Sciences at the 
University of Washington in Seattle. 
 
Ravi Iyengar, Mount Sinai School of Medicine, is the Rosenstiel Professor and Chair of the 
Department of Pharmacology and Biological Chemistry at Mount Sinai School of Medicine, New 
York, N.Y.  Trained as a biochemist, Dr. Iyengar has used biochemical and molecular biological 
approaches to study cell signaling, with a focus on heterotrimeric G protein pathways.  Over the 
past decade, the Iyengar laboratory has also used computational approaches to understand the 
regulatory capabilities of cellular signaling networks.  The laboratory’s most recent studies using 
graph theory approaches were published in Science in August 2005. 
 
David Jensen, University of Massachusetts, Amherst, is an associate professor of computer 
science and director of the Knowledge Discover Laboratory at the University of Massachusetts.  
He received a doctor of science in engineering at Washington University in 1991.  His research 
interests are knowledge discovery in relational data, social network analysis, and evaluation, 
social impacts, and government applications of knowledge discover systems. 
 
Jon Kleinberg, Cornell University, received his Ph.D. in computer science from MIT in 1996; 
he subsequently spent a year as a visiting scientist at the IBM Almaden Research Center and is 
now a professor in the Department of Computer Science at Cornell University.  His research 
interests are centered on issues at the interface of networks and information, with an emphasis on 
the social and information networks that underpin the Web and other online media.  He is the 
recipient of an NSF Career Award, an Office of Naval Research Young Investigator Award, an 
Alfred P. Sloan Foundation Fellowship, a David and Lucile Packard Foundation Fellowship, 
teaching awards from the Cornell Engineering College and Computer Science Department, and 
the 2001 National Academy of Sciences Award for Initiatives in Research. 
 
David Kleinfeld, University of California, San Diego, who now lives in La Jolla, 
is part of a generation of scientists who trained in physics in the 1980s and 1990s and 
now devote themselves to problems in the neurosciences.  Dr. Kleinfeld focuses 
on feedback control in somatosensation, using the rat vibrissa sensorimotor system as 
a model, and on blood flow dynamics in vascular loops, using rodent neocortex as 
a model system.  Aspects of the later work involve the use of nonlinear optics as a tool 
to measure and perturb flow.  Dr. Kleinfeld takes particular pride in the advanced education of 
graduate and postdoctoral students through his involvement in summer programs on 
computational modeling, data analysis, and imaging held at Woods Hole and at Cold Spring 
Harbor. 
 
Eric Kolaczyk, Boston University, is associate professor of statistics and director of the 
Program in Statistics in Boston University’s Department of Mathematics and Statistics and a 
member of the Center for Information and Systems Engineering (CISE) at the university. His 
research focuses on the statistical modeling and analysis of various types of temporal, spatial, and 
network data, with a particular emphasis on the use of sparseness in inference.  His work has 
resulted in new methods for signal and image denoising, tomographic image reconstruction, 
disease mapping, high-level image analysis in land cover classification, and analysis of computer 
network measurements. Professor Kolaczyk's publications have appeared in the literatures on 
statistical theory and methods, engineering, astronomy, geography, and computer science.  His 
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work has been supported by various grants from the National Science Foundation and the Office 
of Naval Research. 
 
Nancy Kopell, Boston University, has a Ph.D. in mathematics and has been working in 
neuroscience for about 20 years.  Her mathematical focus is dynamical systems, especially 
geometrical theory of systems with multiple time scales.  Scientifically, she has worked on a 
range of questions including pattern formation in chemical systems and central pattern generators 
for locomotion.  She is currently focusing on how the nervous system makes use of its dynamics, 
especially its rhythmic dynamics, to help with sensory processing, cognition, and motor 
preparation. 
 
Eve Marder, Brandeis University, is the Victor and Gwendolyn Beinfield Professor of 
Neuroscience in the Biology Department and Volen Center for Complex Systems at Brandeis 
University.  She received her Ph.D. in 1974 from the University of California, San Diego, and 
subsequently conducted a 1-year postdoctoral at the University of Oregon and then a 3-year 
postdoctoral at the Ecole Normale Superieure in Paris, France.  She became an assistant professor 
in the Biology Department at Brandeis University in 1978 and was promoted to professor in 
1990.  During her time at Brandeis University, Professor Marder has been instrumental in the 
establishment of both undergraduate and graduate programs in neuroscience.   
 Professor Marder has served on the editorial board of the Journal of Neurophysiology 
since 1989.  For almost 6 years she was a reviewing editor for the Journal of Neuroscience.  
Additionally, she now sits on the editorial boards of Physiological Reviews, Journal of 
Neurobiology, Journal of Comparative Neurology, Current Biology, Current Opinion in 
Neurobiology, Journal of Experimental Biology, and Journal of Comparative Physiology.  She 
has served on numerous study sections and review panels for the National Institutes of Health, 
NSF, and other funding agencies.  She also has served on the Council for the Society for 
Neuroscience, Council of the Biophysical Society, and several American Phytopathological 
Society (APS) committees. 
 Professor Marder is a fellow of the American Association for the Advancement of 
Science, a fellow of the American Academy of Arts and Sciences, a trustee of the Grass 
Foundation, and a member of the National Academy of Sciences.  She was the Forbes Lecturer at 
the Marine Biological Laboratory (MBL) in 2000 and the Einer Hille Lecturer at the University 
of Washington in 2002. 
 She has studied the dynamics of small neuronal networks using the crustacean 
stomatogastric nervous system.  Her work was instrumental in demonstrating that neuronal 
circuits are not “hard-wired” but can be reconfigured by neuromodulatory neurons and substances 
to produce a variety of outputs.  Together with Larry Abbott, her laboratory pioneered the 
“dynamic clamp.”  She was one of the first experimentalists to forge long-standing collaborations 
with theorists and has for almost 15 years of combined experimental work with insights from 
modeling and theoretical studies.  Her work today focuses on understanding how stability in 
networks arises despite ongoing channel and receptor turnover and modulation, both in 
developing and adult animals.  
 
Martina Morris, University of Washington, received a B.A. in sociology from Reed College in 
1980, an M.A. in statistics from the University of Chicago in 1986, and a Ph.D. in sociology from 
the University of Chicago in 1989.  She is the director of the Center for Studies in Demography 
and Ecology and holds the Blumstein-Jordan Chair in the Department of Sociology at the 
University of Washington.  Her research is interdisciplinary, intersecting with demography, 
economics, epidemiology and public health, and statistics. 
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Mark Newman, University of Michigan, received his Ph.D. in theoretical physics from the 
University of Oxford in 1991 and worked at Cornell University and the Santa Fe Institute before 
moving to the University of Michigan in 2002.  He is currently associate professor of physics and 
complex systems at the University of Michigan and a member of the external faculty of the Santa 
Fe Institute.  He has research interest in network statistics and modeling, epidemiology, computer 
algorithms, and cartography. 
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