

Visit the National Academies Press online, the authoritative source for all books from the
National Academy of Sciences, the National Academy of Engineering, the Institute of
Medicine, and the National Research Council:

• Download hundreds of free books in PDF
• Read thousands of books online, free
• Sign up to be notified when new books are published
• Purchase printed books
• Purchase PDFs
• Explore with our innovative research tools

Thank you for downloading this free PDF. If you have comments, questions or just want
more information about the books published by the National Academies Press, you may
contact our customer service department toll-free at 888-624-8373, visit us online, or
send an email to comments@nap.edu.

This free book plus thousands more books are available at http://www.nap.edu.

Copyright © National Academy of Sciences. Permission is granted for this material to be
shared for noncommercial, educational purposes, provided that this notice appears on the
reproduced materials, the Web address of the online, full authoritative version is retained,
and copies are not altered. To disseminate otherwise or to republish requires written
permission from the National Academies Press.

ISBN: 0-309-10845-4, 78 pages, 6 x 9, (2007)

This free PDF was downloaded from:
http://www.nap.edu/catalog/11936.html

Summary of a Workshop for Software-Intensive
Systems and Uncertainty at Scale

Joan D. Winston and Lynette I. Millett, Editors,
Committee on Advancing Software-Intensive Systems
Producibility, National Research Council

http://www.nap.edu/
http://www.nas.edu/nas
http://www.nae.edu/
http://www.iom.edu/
http://www.iom.edu/
http://www.nationalacademies.org/nrc
http://www.nap.edu/
mailto:comments@nap.edu
http://www.nap.edu./

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

Joan D. Winston and Lynette I. Millett, Editors

Committee on Advancing Software-Intensive Systems Producibility

Computer Science and Telecommunications Board

Division on Engineering and Physical Sciences

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

THE NATIONAL ACADEMIES PRESS  500 Fifth Street, N.W.  Washington, DC 20001

NOTICE: The project that is the subject of this report was approved by the Gov-
erning Board of the National Research Council, whose members are drawn from
the councils of the National Academy of Sciences, the National Academy of Engi-
neering, and the Institute of Medicine. The members of the committee responsible
for the report were chosen for their special competences and with regard for
appropriate balance.

Support for this project was provided by the Office of the Secretary of Defense,
Department of Defense, with assistance from the National Science Foundation
under sponsor award number CNS-0541636 and by the Office of Naval Research
under sponsor award number N00014-04-1-0736. Any opinions, findings, conclu-
sions, or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the agencies and organizations that
provided support for the project.

International Standard Book Number-13:  978-0-309-10844-7
International Standard Book Number-10:  0-309-10844-6

Additional copies of this report are available from

The National Academies Press
500 Fifth Street, N.W., Lockbox 285
Washington, DC 20055
800/624-6242
202/334-3313 (in the Washington metropolitan area)
http://www.nap.edu

Copyright 2007 by the National Academy of Sciences. All rights reserved.

Printed in the United States of America

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

The National Academy of Sciences is a private, nonprofit, self-perpetuating
society of distinguished scholars engaged in scientific and engineering research,
dedicated to the furtherance of science and technology and to their use for the
general welfare. Upon the authority of the charter granted to it by the Congress
in 1863, the Academy has a mandate that requires it to advise the federal govern-
ment on scientific and technical matters. Dr. Ralph J. Cicerone is president of the
National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the char-
ter of the National Academy of Sciences, as a parallel organization of outstand-
ing engineers. It is autonomous in its administration and in the selection of its
members, sharing with the National Academy of Sciences the responsibility for
advising the federal government. The National Academy of Engineering also
sponsors engineering programs aimed at meeting national needs, encourages
education and research, and recognizes the superior achievements of engineers.
Dr. Charles M. Vest is president of the National Academy of Engineering.

The Institute of Medicine was established in 1970 by the National Academy of
Sciences to secure the services of eminent members of appropriate professions
in the examination of policy matters pertaining to the health of the public. The
Institute acts under the responsibility given to the National Academy of Sciences
by its congressional charter to be an adviser to the federal government and, upon
its own initiative, to identify issues of medical care, research, and education.
Dr. Harvey V. Fineberg is president of the Institute of Medicine.

The National Research Council was organized by the National Academy of
Sciences in 1916 to associate the broad community of science and technology
with the Academy’s purposes of furthering knowledge and advising the federal
government. Functioning in accordance with general policies determined by the
Academy, the Council has become the principal operating agency of both the
National Academy of Sciences and the National Academy of Engineering in pro-
viding services to the government, the public, and the scientific and engineering
communities. The Council is administered jointly by both Academies and the
Institute of Medicine. Dr. Ralph J. Cicerone and Dr. Charles M. Vest are chair and
vice chair, respectively, of the National Research Council.

www.national-academies.org

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

�

Committee on Advancing Software-Intensive
Systems Producibility

WILLIAM L. SCHERLIS, Carnegie Mellon University, Chair
ROBERT F. BEHLER, The MITRE Corporation
BARRY W. BOEHM, University of Southern California
LORI A. CLARKE, University of Massachusetts, Amherst
MICHAEL A. CUSUMANO, Massachusetts Institute of Technology
MARY ANN DAVIDSON, Oracle Corporation
LARRY DRUFFEL, Independent Consultant
RUSSELL FREW, Lockheed Martin
JAMES LARUS, Microsoft Corporation
GREG MORRISETT, Harvard University
WALKER ROYCE, IBM
DOUGLAS C. SCHMIDT, Vanderbilt University
JOHN P. STENBIT, Independent Consultant
KEVIN J. SULLIVAN, University of Virginia

Staff

LYNETTE I. MILLETT, Study Director and Senior Program Officer
JOAN D. WINSTON, Program Officer
MARGARET MARSH HUYNH, Senior Program Assistant

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

vi

COMPUTER SCIENCE AND TELECOMMUNICATIONS BOARD

JOSEPH F. TRAUB, Columbia University, Chair
Eric Benhamou, Benhamou Global Ventures, LLC
FREDERICK R. CHANG, University of Texas, Austin
WILLIAM DALLY, Stanford University
MARK E. DEAN, IBM Almaden Research Center
DEBORAH ESTRIN, University of California, Los Angeles
JOAN FEIGENBAUM, Yale University
KEVIN KAHN, Intel Corporation
JAMES KAJIYA, Microsoft Corporation
MICHAEL KATZ, University of California, Berkeley
RANDY H. KATZ, University of California, Berkeley
SARA KIESLER, Carnegie Mellon University
TERESA H. MENG, Stanford University
PRABHAKAR RAGHAVAN, Yahoo! Research
FRED B. SCHNEIDER, Cornell University
ALFRED Z. SPECTOR, Independent Consultant, Pelham, New York
WILLIAM STEAD, Vanderbilt University
ANDREW J. VITERBI, Viterbi Group, LLC
PETER WEINBERGER, Google, Inc.

Staff

JON EISENBERG, Director
KRISTEN BATCH, Associate Program Officer
RADHIKA CHARI, Administrative Coordinator
RENEE HAWKINS, Financial Associate
MARGARET MARSH HUYNH, Senior Program Assistant
HERBERT S. LIN, Senior Scientist
LYNETTE I. MILLETT, Senior Program Officer
DAVID PADGHAM, Associate Program Officer
JANICE M. SABUDA, Senior Program Assistant
TED SCHMITT, Consultant
BRANDYE WILLIAMS, Program Assistant
JOAN D. WINSTON, Program Officer

For more information on CSTB, see its Web site at <http://www.cstb.org>,
write to CSTB, National Research Council, 500 Fifth Street, N.W., Wash-
ington, DC 20001, call (202) 334-2605, or e-mail CSTB at cstb@nas.edu.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

vii

Preface

Pursuant to a request by the Department of Defense, the National
Research Council (NRC) convened a study committee under the
auspices of the Computer Science and Telecommunications Board

(CSTB) to assess the nature of the U.S. national investment in software
research and, in particular, to consider ways to enhance the knowledge and
human resource base needed to design, produce, and employ software-
intensive systems for tomorrow’s weapons and operations systems. Many
organizations are facing the combination of increasing system scale and
increasing complexity of software-intensive systems. However, the com-
pelling need to interconnect them to realize DoD’s vision of “net-centric
warfare” exacerbates the challenges of uncertainty at scale for DoD.

Several recent reports that highlight these challenges� suggest that
the scale and complexity of software-intensive systems introduce funda-
mental new challenges and require augmentation of existing approaches
by software practices and technologies that more explicitly address these
challenges. Challenges of uncertainty and scale are faced in large-scale
enterprise systems of all kinds but are particularly demanding in defense
systems owing to the relative lack of precedent in both requirements and
engineering designs and also to the need for high levels of quality, secu-

� See, for example, Software Engineering Institute (2006), Ultra-large Scale Systems: The
Software Challenge of the Future, which noted that current abstractions fail for the levels of
complexity that systems require today. Also see Defense Science Board (2000), Task Force on
Defense Software Report, which noted, among other things, that strengthening the technology
base to rapidly adapt to fluid circumstances is important and that the complexity of DoD
software applications is increasing more than linearly.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

viii	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

rity, and safety in an environment with well-resourced adversaries. This
suggests that defense, while sharing many particular kinds of require-
ments with large-scale enterprises and infrastructures, is nonetheless a
demand leader with respect to many of these requirements, outpacing
most enterprise and commercial projects.

As part of its study, this committee organized a public workshop
on January 17, 2007, to examine uncertainty at scale in current and future
software-intensive systems. Workshop sessions examined the challenges
related to engineering uncertainty, system complexity, and scale from a
range of perspectives. Session speakers were given roughly 25 minutes
to provide their views on issues identified in the workshop agenda (see
Appendix A). There was substantial discussion and interaction among the
session speakers and moderators, the committee, and others present.

The purpose of the workshop was to inform the committee as it con-
ducts its study. This report summarizes the workshop discussions, includ-
ing speaker presentations and discussions with committee members and
others present. It is not a compilation of quotations from particular indi-
viduals nor is it a complete synthesis of conclusions or results. Although
the summary was prepared by the committee based on presentations and
discussion at the workshop, the comments do not necessarily reflect the
views of the committee nor do they represent findings and recommenda-
tions of the NRC. Moreover, the summary points for the sessions are a
digest of both presentations and discussion. They should not be taken
as remarks made solely by the scheduled session speakers because the
discussions included remarks by the others in attendance.

The committee’s broader consideration of advancing software-
intensive system producibility will appear in its final report, to be issued
near the end of the study. That report will provide recommendations to
the responsible agency, the executive branch, and legislative officials—
and to the broader software community—about how to improve software
development and achieve future goals.

The committee thanks all the workshop participants for their thought-
ful presentations and discussion. It also thanks the Computer Science
and Telecommunications Board staff, particularly study director Lynette
Millett and program officer Joan Winston, who have ably managed this
project, coordinated the team, and contributed greatly to the development
of this report, and to Margaret Huynh, who has facilitated our meetings
and other project activities.

William Scherlis, Chair
Committee on Advancing

Software-Intensive Systems Producibility

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

ix

Acknowledgment of Reviewers

This report has been reviewed in draft form by individuals chosen
for their diverse perspectives and technical expertise, in accordance
with procedures approved by the National Research Council’s

(NRC’s) Report Review Committee. The purpose of this independent
review is to provide candid and critical comments that will assist the
institution in making its published report as sound as possible and to
ensure that the report meets institutional standards for objectivity, evi-
dence, and responsiveness to the study charge. The review comments
and draft manuscript remain confidential to protect the integrity of the
deliberative process. We wish to thank the following individuals for their
review of this report:

David Notkin, University of Washington,
Alfred Spector, Independent Consultant,
John Vu, Boeing Corporation,
Peter Weinberger, Google, Inc., and
Jeannette Wing, Carnegie Mellon University.

Although the reviewers listed above have provided many construc-
tive comments and suggestions, they were not asked to endorse the con-
clusions or recommendations, nor did they see the final draft of the report
before its release. The review of this report was coordinated by Susan
Graham of the University of California, Berkeley. Appointed by the NRC,

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

�	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

she was responsible for making certain that an independent examination
of this report was carried out in accordance with institutional procedures
and that all review comments were carefully considered. Responsibility
for the final content of this report rests entirely with the authoring com-
mittee and the institution.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

xi

Contents

1	 INTRODUCTION AND OVERVIEW	 1

2	 SUMMARY OF WORKSHOP DISCUSSIONS	 4
	 Session 1: Process, Architecture, and the Grand Scale, 4
	 Session 2: DoD Software Challenges for Future Systems, 12
	 Session 3: Agility at Scale, 19
	 Session 4: Quality and Assurance with Scale and Uncertainty, 23
	 Session 5: Enterprise Scale and Beyond, 33

3	 WRAP-UP DISCUSSION AND EMERGENT THEMES	 40	
	 Architectural Challenges in Large-Scale Systems, 40
	 The Need for Software Engineering Capability, 41
	 Open Questions and Research Opportunities, 42

APPENDIXES

A	 Workshop Agenda	 47
B	 Biosketches of Committee Members and Staff	 50
C	 Biosketches of Workshop Speakers	 60

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

�

1

Introduction and Overview

This report summarizes the workshop on uncertainty at scale in the
context of software-intensive systems producibility, held January
17, 2007, in Washington, D.C., under the auspices of the National

Research Council’s (NRC’s) Committee on Advancing Software-Intensive
Systems Producibility. The workshop was structured to gather inputs and
insights from the commercial and military software and system develop-
ment communities looking at the current and future challenges that sur-
round engineering uncertainty, system complexity, and scale. The purpose
of the workshop was to inform the committee as it conducts its study and
to stimulate discussion of these issues in the community. This workshop
summary, which does not contain findings or recommendations from the
committee, is presented in the spirit of continuing that discussion.

As they develop unprecedented systems, software engineers must
address many kinds of uncertainty in the course of requirements assimi-
lation, architecture, design, development, deployment, and ongoing use
of large-scale software systems. For defense systems, the operating envi-
ronment, coalition-driven requirements, adversary capabilities, security
and safety requirements, and so on also pose significant uncertainty. The
increasing scale and complexity of systems, along with the compelling
need to interconnect them, make the challenges of uncertainty at scale
increasingly formidable and of particular significance for the Depart-
ment of Defense (DoD). Exacerbating the situation, requirements for DoD
software-intensive systems are emerging and/or not static, and the DoD
has not enough internal software engineering expertise. In the context of

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

�	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

this workshop, “scale” refers not just to gross scale (e.g., the numbers of
instructions or lines of code), but also to the extent of complexity, inter-
connection, and interdependence. “Uncertainty” refers to the full range of
engineering risks, including the rates at which requirements and features
and the operating and technical environments are changing. The brief-
ings for this workshop examined these and other challenges regarding
engineering uncertainty, system complexity, and scale from a range of
perspectives.

Several recent reports that highlight these challenges� suggest that the
scale and complexity of software-intensive systems introduce fundamen-
tal new challenges and require augmentation of existing approaches by
software practices and technologies that more explicitly address the chal-
lenges. Challenges of uncertainty and scale are faced in large-scale enter-
prise systems of all kinds but are particularly demanding in defense sys-
tems. Technical factors contributing to heightened challenges include the
relative lack of precedent in both requirements and engineering designs,
as well as the need for high levels of quality, security, and safety in an
environment with well-resourced adversaries. Institutional factors include
complexities resulting from the particulars of DoD management and pro-
curement. As a result, defense requirements, although having some com-
monality with those of other large-scale enterprises and infrastructures,
may outpace those of most enterprise and commercial projects.

Workshop participants explored the various dimensions of these chal-
lenges, focusing particularly on software engineering and the manage-
ment of uncertainties in requirements, operating environment, and imple-
mentation. They were invited to examine the range of problems inherent
in building large-scale systems and to explore both the current state of
software engineering knowledge regarding potential incremental solu-
tions to problems of scale as well as areas where fundamental research is
needed to bridge the gap between current practice and the revolutionary
challenges offered by future systems. Discussions at the workshop took
place with an eye to emerging defense needs but in a way that was recep-
tive to lessons to be gleaned from commercial and enterprise-level efforts.
Case studies and examples provided at the workshop were explored to
assess promising ideas and directions and to identify the fundamental
research problems that remain.

Questions posed to participants included these: Are there precedented

�See, for example, Software Engineering Institute (2006), Ultra-large Scale Systems: The
Software Challenge of the Future, which noted that current abstractions fail for the levels of
complexity that systems require today. Also see Defense Science Board (2000), Task Force on
Defense Software Report, which noted, among other things, that strengthening the technology
base to rapidly adapt to fluid circumstances is important and that the complexity of DoD
software applications is increasing more than linearly.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

INTRODUCTION AND OVERVIEW	 �

architectural concepts from existing systems that can provide a basis
for making decisions about the architecture for systems where constant
evolution and change are the norm? Which best and emerging practices
extant today are likely to be beneficial? Which technological approaches
would support large-scale decentralized design processes? Which specific
existing approaches show the most potential? What problems will indus-
try likely solve on its own? What problems require the stimulus of R&D
investment? Participants were also asked to consider areas of research
that are likely to yield fruitful outcomes and how DoD, in particular, can
both stimulate and assimilate innovative ideas, whether they be advanced
practices from industry or ideas from the research laboratory.

Each succeeding section describes some of the main themes arising
from a workshop session. The themes are not conclusions or findings of
the committee; they are ideas extracted from the discussions during each
session, drawn not only from the presentations of the speakers but also
from the discussions among all the participants (committee, speakers, and
attendees) that seem to form the gist of the session. Several items should
be kept in mind when reading this report. The workshop focused on a
particular subset of areas that the committee believed would provide a
basis for its work during the next year. The committee plans to gather
input on other topics, including through another public workshop; feed-
back and additional input from readers of this report are welcome. Also,
in the interests of timely dissemination, the committee elected to defer
elaboration and analysis of the workshop discussion and instead to offer
here a more succinct summary focused on reporting the issues discussed.
Accordingly, this report does not provide a freestanding overview of the
current state of challenges in software development or large-scale systems
producibility. Moreover, for readability and to promote understanding,
background material on some of the topics raised has been interspersed
with the record of presentations and discussions. Presenters’ views var-
ied, depending on their own experiences and expertise; some speakers
provided detailed information while others offered higher-level, more
abstract presentations. For these reasons and because some of the dis-
cussion amounted to brainstorming, this summary may contain internal
inconsistencies that reflect the wide range of views offered by the speakers
and other participants.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

�

2

Summary of Workshop Discussions

SESSION 1: Process, architecture,
and the grand scale

Panelists: John Vu, Boeing, and Rick Selby, Northrop Grumman
Corporation

Moderator: Michael Cusumano

Panelist presentations and general discussions at this session were
intended to explore the following questions from the perspectives of soft-
ware development for government and commercial aerospace systems:

•	 What are the characteristics of successful approaches to architec-
ture and design for large-scale systems and families of systems?

•	 Which architecture ideas can apply when systems must evolve
rapidly?

•	 What kinds of management and measurement approaches could
guide program managers and developers?

Synergies Across Software Technologies and Business Practices
Enable Successful Large-Scale Systems

Context matters in trying to determine the characteristics of success-
ful approaches—different customer relationships, goals and needs, pacing
of projects, and degree of precedent all require different practices. For
example, different best practices may apply depending on what sort of

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

SUMMARY OF WORKSHOP DISCUSSIONS	 �

system or application is under development. Examples discussed include
commercial software products, IT and Internet financial services, air-
planes, and government aerospace systems.

•	 Different systems and software engineering organizations have different
customers and strategies. They may produce a variety of deliverables, such as
a piece of software, an integrated hardware-software environment, or very
large, complicated, interconnected, hardware-software networked systems.

•	 Different systems and software engineering organizations have different
goals and needs. Product purposes vary—user empowerment, business
operations, and mission capabilities. Projects can last from a month to 10
or 12 years. The project team can be one person or literally thousands.
The customer agreement can be a license, service-level agreement, or
contract. There can be a million customers or just one—for example, the
government. The managerial focus can be on features and time to market;
cycle time, workflow, and uptime; or reliability, contract milestones, and
interdependencies; and so on.

•	 While some best practices, such as requirements and design reviews and
incremental and spiral life cycles, are broadly applicable, specific practice usu-
ally varies. Although risk management is broadly applicable, commercial,
financial, and government system developers may adopt different kinds
of risk management. While government aerospace systems developers
may spend months or years doing extensive system modeling, this may
not be possible in other organizations or for other types of products. Com-
mercial software organizations may focus on daily builds (that is, each
day compiling and possibly testing the entire program or system incor-
porating any new changes or fixes); for aerospace systems, the focus may
be on weekly or 60-day builds. Other generally applicable best practices
that vary by market and organization include parallel small teams, design
reuse, domain-specific languages, opportunity management, trade-off
studies, and portability layers. These differences are driven by the differ-
ent kinds of risks that drive engineering decisions in these sectors.

•	 Government aerospace systems developers, along with other very large
software-development enterprises, employ some distinctive best practices. These
include independent testing teams and, for some aspects of the systems
under consideration, deterministic, simple designs. These practices are
driven by a combination of engineering, risk-management, and contrac-
tual considerations.

In a very large� organization, synergy across software technologies
and business practices can contribute to success. Participants explored

�Very large in this case means over 100,000 employees throughout a supply chain doing
systems engineering, systems development, and systems management; managing multiple
product lines; and building systems with millions of lines of code.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

�	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

the particular case of moderately precedented systems� and major com-
ponents with control-loop architectures. For systems of this kind there are
technology and business practice synergies that have worked well. Here
are some examples noted by speakers:

•	 Decomposition of large systems to manage risk. With projects that typi-
cally take between 6 and as many as 24 months to deliver, incremental
decomposition of the system can reduce risk, provide better visibility into
the process, and deliver capability over time. Decomposition accelerates
system integration and testing.

•	 Table-based design, oriented to a system engineering view in terms of
states and transitions, both nominal and off-nominal. This enables the use of
clear, table-driven approaches to address nominal modes, failure modes,
transition phases, and different operations at different parts of the system
operations.

•	 Use of built-in, domain-specific (macro) languages in a layered architec-
ture. The built-in, command-sequencing macro language defines table-
driven executable specifications. This permits a relatively stable infra-
structure and a run-time system with low-level, highly deterministic
designs yet extensible functionality. It also allows automated testing of
the systems.

•	 Use of precedented and well-defined architectures for the task manage-
ment structure that incorporates a simple task structure, deterministic process-
ing, and predictable timelines. For example, a typical three-task management
structure might have high-rate (32 ms) tasks, minor-cycle (128 ms) tasks,
and background tasks. The minor cycle reads and executes commands,
formats telemetry, handles fault protection, and so forth. The high-rate
cycle handles message traffic between the processors. The background
cycle adds capability that takes a longer processing time. This is a reusable
processing architecture that has been used for over 30 years in space-
craft and is aimed at the construction of highly reliable, deterministic
systems.

•	 Gaining advantages from lack of fault proneness in reused components
by achieving high levels of code, design, and requirement reuse. One example
of code reuse was this: Across 25 NASA ground systems, 32 percent of
software components were either reused or modified from previous sys-
tems (for spacecraft, reuse was said to be as high as 80 percent). Designs
and requirements can also be reused. Typically, there is a large backward

� Precedent refers to the extent to which we have experience with systems of a similar kind.
More specifically, there can be precedent with respect to requirements, architecture and de-
sign, infrastructure choices, and so on. Building on precedent leads to routinization, reduced
engineering risk, and better predictability (lower variance) of engineering outcomes.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

SUMMARY OF WORKSHOP DISCUSSIONS	 �

compatibility set of requirements, and these requirements can be reused.
Requirements reuse is very common and very successful even though the
design and implementation might each be achieved differently. Design
reuse might involve allocation of function across processors in terms of
how particular algorithms are structured and implemented. The functions
might be implemented differently in the new system, for example, in com-
ponents rather than custom code or in different programming languages.
This is an example of true design reuse rather than code reuse.

In addition to these synergies, it was suggested that other types of
analyses could also contribute to successful projects. Data-driven statisti-
cal analyses can help to identify trends, outliers, and process improve-
ments to reduce or mitigate defects. For example, higher rates of compo-
nent interactions tend to be correlated with more faults, as well as more
fault-correction effort. Risk analyses prioritize risks according to cost,
schedule, and technical safety impacts. Charts that show project risk
mitigation over time and desired milestones help to define specific tasks
and completion criteria. It was suggested that each individual risk almost
becomes a microcosm of its own project, with schedules and milestones
and progressive mitigation of that risk to add value.

One approach to addressing the challenge of scale is to divide and
conquer. Of course, arriving at an architectural design that supports
decomposition is a prerequisite for this approach, which can apply across
many kinds of systems development efforts. Suggestions included the
following:

•	 Divide the organization into parallel teams.  Divide very large 1,000-
person teams into parallel teams; establish a project rhythm of design
cycles and incremental releases. This division of effort is often based on a
system architectural structure that supports separate development paths
(an example of what is known as Conway’s law—that software system
structures tend to reflect the structures of the organizations they are devel-
oped by). Indeed, without agreement on architectural fundamentals—the
key internal interfaces and invariants in a system—division of effort can
be a risky step.

•	 Innovate and synchronize.  Bring the parallel teams together, whether
the task is a compilation or a component delivery and interface integra-
tion. Then stabilize, usually through some testing and usage period.

•	 Encourage coarse-grain reuse.  There is a lot of focus on very fine-
grain reuse, which tends to involve details about interfaces and depen-
dencies; there is also significant coarse-grain opportunity to bring together
both legacy systems and new systems. A coarse-grain approach makes
possible the accommodation of systems at different levels of maturity.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

�	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

Examples of success in coarse-grain reuse are major system frameworks
(such as e-commerce frameworks), service-based architectures, and lay-
ered architectures.

•	 Automate.  Automation is needed in the build process, in testing,
and in metrics.

Uncertainty is inherent in the development of software-intensive
systems and must be reassessed constantly, because there are always
unknowns and incomplete information. Waiting for complete information
is costly, and it can take significant time to acquire the information—if it is
possible to acquire it at all. Schedules and budgets are always limited and
almost never sufficient. The goal, it was argued, should be to work effec-
tively and efficiently within the resources that are available and discharge
risks in an order that is appropriate to the goals of the system and the
nature of its operating environment: Establish the baseline design, apply
systematic risk management, and then apply opportunity management,
constantly evaluating the steps needed and making decisions about how
to implement them. Thus, it was suggested that appropriate incentives
and analogous penalty mechanisms at the individual level and at the
organization or supplier level can change behavior quickly. The goal is
thus for the incentive structure to create an opportunity to achieve very
efficient balance through a “self-managing organization.” In a self-man-
aging organization, it was suggested, the leader has the vision and is an
evangelist rather than a micromanager, allowing others to manage using
systematic incentive structures.

Some ways to enable software technology and business practices for
large-scale systems were suggested:

•	 Creating strategies, architectures, and techniques for the devel-
opment and management of systems and software, taking into account
multiple customers and markets and a broad spectrum of projects, from
small scale through large.

•	 Disseminating validated experiences and data for best practices
and the circumstances when they apply (for example, titles like “Case
Studies of Model Projects”).

•	 Aligning big V waterfall-like systems engineering life-cycle models
with incremental/spiral software engineering life-cycle models.�

� The V model is a V-shaped, graphical representation of the systems development life
cycle that defines the results to be achieved in a project, describes approaches for developing
these results, and links early stages (on the left side of the V) with evaluation and outcomes
(on the right side). For example, requirements link to operational testing and detailed design
links to unit testing.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

SUMMARY OF WORKSHOP DISCUSSIONS	 �

•	 Facilitating objective interoperability mechanisms and benchmarks
for enabling information exchange.

•	 Lowering entry barriers for research groups and nontraditional
suppliers to participate in large-scale system projects (Grand Challenges,
etc.).

•	 Encouraging advanced degree programs in systems and software
engineering.

•	 Defining research and technology roadmaps for systems and soft-
ware engineering.

•	 Collaborating with foreign software developers.

Process, Architecture, and Very Large-Scale Systems

Remarks during this portion of the session were aimed at thinking
outside the box about what the state of the art in architectures might look
like in the future for very large-scale, complex systems that exhibit unpre-
dictable behavior. The primary context under discussion was large-scale
commercial aircraft development—the Boeing 777 has a few million lines
of code, for example, and the new 787 has several million and climbing.

It was argued that very large-scale, highly complex systems and fami-
lies of systems require new thinking, new approaches, and new processes
to architect, design, build, acquire, and operate. It was noted that these
new systems are going from millions of lines of code to tens of millions of
lines of code (perhaps in 10 years to billions of lines of code and beyond);
from hundreds of platforms (servers) to thousands, all interconnected by
heterogeneous networks; from hundreds of vendors (and subcontractors)
to thousands, all providing code; and from a well-defined user com-
munity to dynamic communities of interdependent users in changing
environments. It was suggested that the issue for the future—10 or 20
years from now—is how to deal with the potential billion lines of code
and tens of thousands of vendors in the very diverse, open-architecture-
environment global products of the future, assembled from around the
world. According to the forward-looking vision presented by speakers,
these systems may have the following characteristics:

•	 Very large-scale systems would integrate multiple systems, each of
them autonomous, having distinctive characteristics, and performing its
own functions independently to meet distinct objectives.

•	 Each system would have some degree of intelligence, with the
objectives of enabling it to modify its relationship to other component sys-
tems (in terms of functionality) and allowing it to respond to changes, per-
haps unforeseen, in the environment. When multiple systems are joined

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

10	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

together, the significant emergent capabilities of the resulting system as a
whole would enable common goals and objectives.

•	 Each very large-scale system would share information among the
various systems in order to address more complex problems.

•	 As more systems are integrated into a very large-scale system, the
channels connecting all systems through which information flows would
become more robust and continue to grow and expand throughout the life
cycle of the very large-scale system.

It was argued that a key benefit of a very large-scale system is the
interoperability between operational systems that allows decision mak-
ers to make better, more informed decisions more quickly and accurately.
From a strategic perspective, a very large-scale system is an environment
where operational systems have the ability to share information among
geographically distributed systems with appropriate security and to act
on the shared information to achieve their desired business goals and
objectives. From an operational perspective, a very large-scale system
is an environment where each operational subsystem performs its own
functions autonomously, consistent with the overall strategy of the very
large-scale system.

The notion of continuous builds or continuous integration was also
discussed. Software approaches that depend on continuous integration—
that is, where changes are integrated very frequently—require processes
for change management and integration management. These processes
are incremental and build continuously from the bottom up to support
evolution and integration, instead of from the top down, using a plan-
driven, structured design. They separate data and functions for faster
updates and better security. To implement these processes, decentralized
organizations and an evolving concept of operations are required to adapt
quickly to changing environments.

The overall architectural framework for large-scale systems described
by some participants in this session consists of five elements:

•	 Governance.  These describe the rules, regulations, and change man-
agement that control the total system.

•	 Operational.  These describe how each operational system can be
assembled from preexisting or new components (building blocks) to oper-
ate in their own new environment so they can adapt to change.

•	 Interaction.  These describe the communication (information pipe-
line) and interaction between operational systems that may affect the very
large system and how the very large system will react to the inputs from
the operational systems.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

SUMMARY OF WORKSHOP DISCUSSIONS	 11

•	 Integration and change management.  These describe the processes
for managing change and the integration of systems that enable emergent
capabilities.

•	 Technical.  These depict the technology components that are neces-
sary to support these systems.

It was suggested that large-scale systems of that future that will cope
with scale and uncertainty would be built from the bottom up by start-
ing with autonomous building blocks to enable the rapid assembly and
integration of these components to effectively evolve the very large-scale
system. The architectural framework would ensure that each building
block would be aligned to the total system. Building blocks would be
assembled by analyzing a problem domain through the lens of an opera-
tional environment or mission for the purpose of creating the character-
istics and functionality that would satisfy the stakeholders’ requirements.
In this mission-focused approach, all stakeholders and modes of opera-
tions should be clearly identified; different user viewpoints and needs
should be gathered for the proposed system; and stakeholders must state
which needs are essential, which are desirable, and which are optional.
Prioritization of stakeholders’ needs is the basis for the development of
such systems; vague and conflicting needs, wants, and opinions should be
clarified and resolved; and consensus should be built before assembling
the system.

At the operational level, the system would be separated from current
rigid organization structures (people, processes, technology) and would
evolve into a dynamic concept of operation by assembling separate build-
ing blocks to meet operational goals. The system manager should ask:
What problem will the system solve? What is the proposed system used
for? Should the existing system be improved and updated by adding
more functionality or should it be replaced? What is the business case?
To realize this future, participants suggested that research is needed in
several areas, including these:

•	 Governance (rules and regulations for evolving systems).
•	 Interaction and communication among systems (including the pos-

sibility of negative interactions between individual components and the
integrity, security, and functioning of the rest of the system).

•	 Integration and change management.
•	 User’s perspective and user-controlled evolution.
•	 Technologies supporting evolution.
•	 Management and acquisition processes.
•	 An architectural structure that enables emergence.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

12	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

•	 Processes for decentralized organizations structured to meet opera-
tional goals.

SESSIOn 2: DoD Software challenges for
future systems

Panelists: Kristen Baldwin, Office of the Under Secretary of Defense
for Acquisitions, Technology and Logistics, and Patrick Lardieri,
Lockheed Martin

Moderator: Douglas Schmidt

Panelist presentations and general discussions during this session
were intended to explore two questions, from two perspectives: that of
the government and that of the government contractor:

•	 How are challenges for software in DoD systems, particularly
cyber-physical systems, being met in the current environment?

•	 What advancements in R&D, technology, and practices are needed
to achieve success as demands on software-intensive system development
capability increase, particularly with respect to scale, complexity, and the
increasingly rapid evolution in requirements (and threats)?

DoD Software Engineering and System Assurance

An overview of various activities relating to DoD software engineering
was given. Highlights from the presentation and discussion follow. The
recent Acquisition & Technology reorganization is aimed at positioning
systems engineering within the DoD, consistent with a renewed emphasis
on software. The director of Systems and Software Engineering now reports
directly to the Under Secretary of Defense for Acquisition and Technology.
The mission of Systems and Software Engineering, which addresses evolv-
ing system—and software—engineering challenges, is as follows:

•	 Shape acquisition solutions and promote early technical planning.
•	 Promote the application of sound systems and software engineer-

ing, developmental test and evaluation, operational test and evaluation to
determine operational suitability and effectiveness, and related technical
disciplines across DoD’s acquisition community and programs.

•	 Raise awareness of the importance of effective systems engineering
and raise program planning and execution to the state of the practice.

•	 Establish policy, guidance, best practices, education, and train-
ing in collaboration with the academic, industrial, and government
communities.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

SUMMARY OF WORKSHOP DISCUSSIONS	 13

•	 Provide technical insight to program managers and leadership to
support decision making.

DoD’s Software Center of Excellence is made up of a community of
participants including industry, DoD-wide partnerships, national part-
nerships, and university and international alliances. It will focus on sup-
porting acquisition; improving the state of the practice of software engi-
neering; providing leadership, outreach, and advocacy for the systems
engineering communities; and fostering resources that can meet DoD
goals. These are elements of DoD’s strategy for software, which aims to
promote world-class leadership for DoD software engineering.

Findings from some 40 recent program reviews were discussed. These
reviews identified seven systemic issues and issue clusters that had con-
tributed to DoD’s poor execution of its software program, which were
highlighted in the session discussion. The first issue is that software
requirements are not well defined, traceable, and testable. A second issue
cluster involves immature architectures; integration of commercial-off-
the-shelf (COTS) products; interoperability; and obsolescence (the need
to refresh electronics and hardware). The third cluster involves software
development processes that are not institutionalized, have missing or
incomplete planning documents, and inconsistent reuse strategies. A
fourth issue is software testing and evaluation that lacks rigor and breadth.
The fifth issue is lack of realism in compressed or overlapping schedules.
The sixth issue is that lessons learned are not incorporated into successive
builds—they are not cumulative. Finally, software risks and metrics are
not well defined or well managed.

	 To address these issues, DoD is pursuing an approach that includes
the following elements:

•	 Identification of software issues and needs through a software industrial
base assessment,� a National Defense Industrial Association (NDIA) workshop
on top software issues, and a defense software strategy summit. The industrial
base assessment, performed by CSIS, found that the lack of comprehensive,
accurate, timely, and comparable data about software projects within DoD
limits the ability to undertake any bottom-up analysis or enterprise-wide
assessments about the demand for software. Although the CSIS analy-
sis suggests that the overall pool of software developers is adequate, the
CSIS assessment found an imbalance in the supply of and demand for the
specialized, upper echelons of software developer/management cadres.
These senior cadres can be grown, but it takes time (10 or more years) and

� Center for Strategic and International Studies (CSIS), Defense-Industrial Initiatives Group,
2006. Software Industrial Base Assessment: Phase I Report, October 4.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

14	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

a concerted strategy. In the meantime, management/architecture/systems
engineering tools might help improve the effectiveness of the senior cadres.
Defense business system/COTS software modification also places stress on
limited pools of key technical and management talent. Moreover, the true
cost and risk of software maintenance deferral are not fully understood.

•	 Creation of opportunities and partnerships through an established net-
work of government software points of contact; chartering the NDIA Software
Committee; information exchanges with government, academia, and industry,
and planning a systems and software technology conference. Top issues emerg-
ing from the NDIA Defense Software Strategy Summit in October 2006
included establishment and management of software requirements, the
lack of a software voice in key system decisions, inadequate life-cycle
planning and management, the high cost and ineffectiveness of traditional
software verification methods, the dearth of software management exper-
tise, inadequate technology and methods for assurance, and the need for
better techniques for COTS assessment and integration.

•	 Execution of focused initiatives such as Capability Maturity Model Inte-
gration (CMMI) support for integrity and acquisition, a CMMI guidebook, a
handbook on engineering for system assurance, a systems engineering guide
for systems of systems (SoSs), the provision of software support to acquisition
programs, and a vision for acquisition reform. SoSs to be used for defense
require special considerations for scale (a single integrated architecture is
not feasible), ownership and management (individual systems may have
different owners), legacy (given budget considerations, current systems
will be around for a long time), changing operations (SoS configurations
will face changing and unpredictable operational demands), criticality
(systems are integrated via software), and role of the network (SoSs will
be network-based, but budget and legacy challenges may make imple-
mentation uneven). To address a complex SoS, an initial (incremental)
version of the DoD’s SoS systems engineering guide is being piloted;
future versions will address enterprise and net-centric considerations,
management, testing, and sustaining engineering.

The issue of system assurance—reducing the vulnerability of systems
to malicious tampering or access—was noted as a fundamental consid-
eration, to the point that cybertrust considerations can be a fundamental
driver of requirements, architecture and design, implementation practice,
and quality assurance.� Because current assurance, safety, and protection

� A separate National Research Council study committee is exploring the issue of cyberse-
curity research and development broadly, and its report, Toward a Safer and More Secure Cyber-
space, will be published in final form in late 2007. See http://cstb.org/project_cybersecurity
for more information.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

SUMMARY OF WORKSHOP DISCUSSIONS	 15

initiatives are not aligned, a comprehensive strategy for system assurance
initiatives is being developed, including standards activities and guidance
to put new methods into practice.

One additional challenge for DoD is that, given its shortage of soft-
ware resources and critical dependence on software, it cannot afford to
have stovepipes in its community. To that end, the DoD Software Center
of Excellence is intended to be a focal point for the community. Areas
to be explored include, for example, agile methods, software estimation
(a harder problem to address for unprecedented systems than for prec-
edented ones), and software testing.

Challenges in Developing DoD Cyber-physical Systems

This session explored challenges in building cyber-physical systems
for DoD—systems that integrate physical processes and computer pro-
cesses in a real-time distributed fashion—from the perspective of a large
contractor responsible for a wide range of systems and IT services.

Cyber-physical systems are increasingly systems- and software-inten-
sive—for example, in 1960, only 8 percent of the F-4 fighter capability was
provided by software; in 2000, 85 percent of the F-22 fighter capability was
provided by software. Such systems are distributed, real-time systems
with millions of lines of code, driven by multiple sensors reporting at
a variety of timescales and by multiple weapon system and machinery
control protocols. Current examples of cyber-physical systems include the
Joint Strike Fighter (JSF) and Future Combat Systems (FCS); examples of
forthcoming technologies would be teams of autonomous robots or teams
of small, fast surface ships. Characteristics of these systems exemplify the
challenges of uncertainty and scale; they include

•	 Large scale—tens of thousands of functional and performance
requirements, 10 million lines of code, and 100 to 1,000 software configu-
ration items;

•	 Simultaneous conflicting performance requirements—real-time
processing, bounded failure recovery, security;

•	 Implementation diversity—programming languages, operating
systems, middleware, complex deployment architectures, 20-40 year sys-
tem life cycles, stringent certification standards; and

•	 Complex deployment architectures—systems of systems; mixed
wired, wireless and satellite networks; multi-tiered servers; personal digital
assistants (PDAs) and workstations; and multiple system configurations.

These systems are challenging, complex, and costly. Accordingly, sys-
tem design challenges are frequently simplified by deferring or eliminat-

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

16	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

ing capability to bound costs and delivery dates. Nevertheless, cost over-
runs and schedule delays are common. The GAO reported that in fiscal
year 2003 (FY03) the DoD spent $21 billion on research, development,
testing, and evaluation (RDT&E) for new warfighting systems; about 40
percent of that may have been spent on reworking software to remedy
quality-related issues.� For the F/A-22, the GAO reported that Air Force
officials do not understand avionics software instability well enough to
predict when they will be able to resolve its problems.� Because of the
complex interrelationships between parts of these cyber-physical systems
and the high degree of interactive complexity, piecewise deployment of
partial systems is not helpful. An example given was a situation regarding
the JSF, where changing an instruction memory layout to accommodate
built-in test processing unexpectedly damaged the system’s ability to
meet timing requirements. It was suggested that as a result of experiences
such as the one with the Aegis Combat System, where Aegis Baseline 6,
Phase I, deployment was delayed for months because of integration prob-
lems between two independently designed cyber-physical systems, certi-

� Government Accountability Office (GAO), 2004, “Defense acquisitions: Stronger man-
agement practices are needed to improve DOD’s software-intensive weapon acquisitions,”
Report to the Committee on Armed Services, U.S. Senate, GAO-04-393, March.

� Government Accountability Office (GAO), 2003, “Tactical aircraft: Status of the F/A-22,”
Statement of Alan Li, Director, Acquisition and Sourcing Management, Testimony Before
the Subcommittee on Tactical Air and Land Forces, Committee on Armed Services, House
of Representatives (GAO-03-603T), February. See also: Government Accountability Office
(GAO), 2005, “Tactical aircraft: F/A-22 and JSF acquisition plans and implications for tactical
aircraft modernization,” Statement of Michael Sullivan, Director, Acquisition and Sourcing
Management Issues, Testimony Before the Subcommittee on AirLand, Committee on Armed
Services, U.S. Senate (GAO-05-519T), April 6, which concluded as follows:

The original business case elements—needs and resources—set at the outset of the program
are no longer valid, and a new business case is needed to justify future investments for
aircraft quantities and modernization efforts. The F/A-22’s acquisition approach was not
knowledge-based or evolutionary. It attempted to develop revolutionary capability in a single
step, causing significant technology and design uncertainties and, eventually, significant cost
overruns and schedule delays;

and Government Accountability Office (GAO), 2007, “Tactical aircraft: DOD needs a joint
and integrated investment strategy,” Report to the Chairman, Subcommittee on Air and
Land Forces, Committee on Armed Services, House of Representatives (GAO-07-415), April,
which concluded as follows:

We have previously recommended that DOD develop a new business case for the F-22A
program before further investments in new aircraft or modernization are made. DOD has
not concurred with this recommendation, stating that an internal study of tactical aircraft
has justified the current quantities planned for the F-22A. Because of the frequently changing
OSD-approved requirements for the F-22A, repeated cost overruns, significant remaining in-
vestments, and delays in the program we continue to believe a new business case is required
and that the assumptions used in the internal OSD study be validated by an independent
source.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

SUMMARY OF WORKSHOP DISCUSSIONS	 17

fication communities have become extremely conservative and require a
static configuration for certification.�

Despite software’s centrality and criticality in DoD cyber-physical
systems and in warfighting in general, participants suggested that it is
underemphasized in high-level management reviews. For example, the
Quadrennial Defense Review calls for more complex systems for advanced
warfighting capabilities but mentions software only twice.

Some inherent scientific and research challenges underlying engineer-
ing and engineering management of DoD cyber-physical systems cited by
workshop participants include these:

•	 The management of knowledge fragmentation—fragmentation
among people and teams, geographic areas, organizations, and temporal
boundaries;

•	 Design challenges—the many problems that cannot be clearly
defined without specifying the solution and for which every solution
is a one-time-only operation (these are sometime referred to as “wicked
problems”); and

•	 Team collaboration complexity—thousands of requirements, huge
teams (hundreds or thousands of engineers), with frequent turnover and
highly variable ranges of skill.

With respect to knowledge fragmentation (that is, knowledge split
across individual minds, knowledge split across different phases of the
development cycle and the life cycle, knowledge split across different
artifacts, and knowledge split across various components of an organiza-
tion), system engineering today is a concurrent top-down process. There
is ad hoc coordination among engineers (domain engineers, system engi-
neers, software engineers) at different levels and loose semantic coupling
between design and specifications. There are some problems where it is
difficult to say what to do without specifying how and thereby commit-
ting to an implementation; participants noted that current tools do not
generally help manage the tremendous interdependence between the
specification of the problem and the realization of a solution. Solutions
are not necessarily right or wrong, and designers have to iterate rapidly,
switching repeatedly between thinking about problem and solution con-
cerns, along the lines of Fred Brooks’ description of throw-away proto
typing.� The process is slow, it is error prone because interaction is ad hoc,

� Note that the previous discussion noted the desirability of not having a static configura-
tion in early stages of development.

� Frederick P. Brooks, 1995, The Mythical Man-Month: Essays in Software Engineering,
Addison-Wesley Professional, New York.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

18	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

it uses imprecise English prose, and automated checking is relegated to
the lowest level where formal specifications exist. Matters become even
worse as the program or system grows in size and complexity.

Large teams managing complex systems must grapple with the issues
of large scale in a complex collaborative environment. Interactive com-
plexity has two dimensions: coupling (tight or loose) and interactions
(complex or linear). Systems with high interactive complexity—for exam-
ple, nuclear power plants and chemical plants—possess numerous hid-
den interactions that can lead to systems accidents and hazards. Interac-
tive complexity can complicate reuse. Well-known cyber-physical system
accidents cited by participants included the Ariane 5, which reportedly
reused a module developed for Ariane 4. That module assumed that the
horizontal velocity component would not overflow a 16-bit variable. This
was true for Ariane 4 but not for Ariane 5, leading to self-destruction
roughly 40 seconds after the launch.10

Cyber-physical systems typically have high interactive complexity.
New systems have more resource sharing, which leads to hidden depen-
dencies. There is limited design time support to understand or reduce
interactive complexity. Modeling and analytic techniques are difficult
to employ and often are underutilized. Simulations may not capture the
system that is actually built; diagrams are not sufficient to convey all
consequences of decisions. Thus, present cyber-physical systems rely on
human ingenuity at design time and extensive system testing to manage
interactive complexity. They also rely on particular knowledge of and
experience with specific vendor-sourced components in the “technology
stack.” For this reason, the structure of the stack tends to resist change,
impeding architectural progress and increased complexity in these sys-
tems. The resulting long and costly development efforts are expected to
run into system accidents.

Elements of a research agenda for cyber-physical systems that per-
form predictably were discussed. One goal of such research would be to
find ways to manage the uncertainty that arises from the highly-coupled
nature and interactive complexity of system design at very large scale.
Two areas were focused on during discussions at this session:

•	 Platform technology.  One example of a platform technology would
be generation of custom run-time infrastructures. Current run-time infra-
structure is deployed in general-purpose layers that are not designed for
specific applications. It is a significant challenge to configure controls

10 J.C. Lyons, 1996, “Ariane 5 Flight 501 failure: Report by the inquiry board,” Paris, July
19. Downloaded from http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html on
March 15, 2007.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

SUMMARY OF WORKSHOP DISCUSSIONS	 19

across the layers to achieve performance requirements; analysis is difficult
because of many hidden dependencies and because of complex inter-
faces and capabilities. The generation of custom run-time infrastructure
(e.g., WebSprocket) reduces system complexity. Another such technology
would be certifiable dynamic resource management services. Current
certification processes are based on extensive analysis and testing (hun-
dreds of man-years) of fixed system configurations. Furthermore, these
are human-intensive evaluation processes with limited technological sup-
port that occur over the design, development, and production lifecycle.
There is no way to achieve the same level of assurance for untested system
configurations that may be generated by an adaptive system in the run-
time environment—and these are the kinds of systems that are likely to
be deployed in the future.

•	 System design tools.  Model-centric system design would allow eval-
uation of the design before final implementation by developing proto
typing systems and using forms of static verification. Domain-specific
modeling languages enable unambiguous system specifications. Model
generation tools could be used to make models the center of the devel-
opment process, synchronized with software artifacts. Tools that enable
automated characterization of the behavior of third-party and COTS
applications would be helpful. And, program transformation tools could
be used to make the legacy code base and COTS software compatible with
new platforms.

In addition to platform technologies and design tools, cultural ele-
ments are also needed to address the challenges of cyber-physical system
development. Speakers noted some aspects of these elements:

•	 Independent, neutral-party benchmarking and evaluation—speak-
ers believed that there is currently insufficient funding for this type of
work.

•	 Development challenges that are realistic and at scale, allowing
credible evaluation of technology solutions (measure technologies, not
just artifacts).

•	 System design education as part of the undergraduate curriculum.

SESSION 3: AGILITY at Scale

Panelists: Kent Beck and Cynthia Andres, Three Rivers Institute
Moderator: Douglas Schmidt

This session addressed the application and applicability of extreme
programming’s “agile techniques” to very large, complex systems from

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

20	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

the perspectives of technology, development practices, and social psy-
chology. For this session, both speakers and workshop participants were
asked the following question:

•	 How can the engineering and management values that the “agile”
community has identified be achieved for larger-scale systems and for
systems that must evolve in response to rapidly changing requirements?

Values and Sponsorship

Participants noted that extreme programming (XP)—an agile software
development methodology—was one of the first methodologies to be
explicit about the value system behind its approach and about what is fun-
damental to this perspective on software development.11 Different develop-
ment approaches have their own underlying values. Speakers argued that
over the 10 years or so since the coining of extreme programming, the key
to success seems to be sponsorship—senior-level commitment to adopt-
ing XP ideas within an organization. Trying extreme programming can be
disruptive, stirring up internal tension and controversy. Effective sponsors
advocate among their peers and mitigate these effects. Senior-level sponsors
also can help acquire resources to foster teamwork and communication.

When trying extreme programming, it was suggested that people
tend to focus initially on the more visible and explicit changes to prac-
tices, such as pair programming, weekly releases, sitting together in open
rooms, or using a test first approach. If a fundamental value shift is taking
place, practices will change accordingly. However, under pressure, people
tend to revert back to their old ways. Without support at higher levels for
changes in approach and underlying values and without sustaining that
support through periods of organizational discomfort during the transi-
tion, simply trying to put new or different practices in place is not very
effective. One speaker noted that senior-level commitment and sponsor-
ship are therefore key to changing values and conveying these changes to
larger groups and organizations.

Human Issues in Software Development

One speaker noted that many of the challenges in software develop-
ment are human issues: People are the developers and people write the

11 For a brief summary of some of the underlying values in agile software development, see
“The Agile Manifesto,” available online at http://www.agilemanifesto.org/. These values
include a focus on individuals over process, working software over documentation, and
responsiveness to change over following a particular plan.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

SUMMARY OF WORKSHOP DISCUSSIONS	 21

software. Limitations to what can be done with software are often limita-
tions of human imagination and how much complexity can be managed
in one person’s mind. Innovation requires fresh ideas, and if all parties
are thinking similarly, not as many ideas are generated. Many problems
have multiple solutions—a key is to sort out which solutions are sufficient
and doable. It was suggested that one way to promote innovation is to
encourage diversity: Small projects with diverse groups can be effective in
that fostering interaction and coordination across disciplines often results
in a stronger, richer set of ideas to choose from.

It was suggested that having interesting problems to work on is a
nonmonetary motivator for many software and computer science practi-
tioners. A good example of nonmonetary incentives is open source tech-
nology. Participants also noted that marketing innovation, intellectual
curiosity, and creativity as an organizational goals are important. The
perception or image of the work can be crucial to attracting new hires,
who may know that the organization’s work involves a lot of processes,
requires great care, and takes a long time, but not necessarily that it is also
interesting and creative work.

Trust, Communication, and Risk

Speakers argued that much of the effort in extreme programming
comes down to finding better ways of building trust. Examples were
given of ways to begin conversations and to putpeople in contact with
one another in order to establish trust. These include the techniques of
Appreciative Inquiry (talking about what works), World Café (acquire the
collective knowledge, insight, and synergies of a group in a fairly short
time), and Open Space (people talk about the concerns that they have
and the issues that matter to them in breakout sessions whose highlights
are reported to the rest of the group).12 Some of the technical aspects of
extreme programming are useful ways for programmers to demonstrate
their trustworthiness. It was suggested that enhancing communication—
in part, by using these communication techniques—could be useful to
DoD. Tools to make developers’ testing activities more visible, not just to
themselves but also to teammates, contribute to accountability and trans-
parency in development and increase communication as well.

There are technical things that can be done to reduce risk in projects.
Some risk-reduction principles persist throughout all of extreme program-
ming (XP). However, the bulk of the XP experience is not at the scale that

12 See the Appreciative Inquiry Commons (http://appreciativeinquiry.case.edu/), the World
Café (http://www.theworldcafe.com/), and Open Space (http://www.openspaceworld.
org/).

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

22	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

DoD systems manifest. Therefore, one issue raised at the meeting was
whether and how the agile programming/extreme programming experi-
ence can scale. Three risk reduction techniques were mentioned:

•	 Reduce the amount of work that is half done.  Half-done work is an
inherent risk. The feedback cycle has not been closed. No value has yet
been received from the effort that has been expended; the mix of done and
undone work occupies and distracts people. By gradually reducing the
inventory of half-done work, a project can be made to run more smoothly
with lower overall risk.

•	 Find ways to defer the specification of requirement detail.  If a project
experiences requirement churn, the chances are that too much detail has
been specified too soon. There is a clear case to be made for much more
carefully specifying the goals of a project up front but not the means for
accomplishing those goals.

•	 Testing sooner.  The longer a bug lives, the more expensive it
becomes. One way of addressing that situation and improving the overall
effectiveness of development is finding ways to validate software sooner,
such as by developer testing. Integration is part of that testing.

Several research topics were discussed at this session:

•	 Techniques for communication.  Examine how teams actually com-
municate and how they could communicate more effectively.13

•	 Encouragement of multidisciplinary work and collaboration.
•	 Learning how to value simplicity.  In complex systems, fewer

components in the architecture means fewer possible unpredictable
interactions.

•	 Empirical research in software.  One example of the results of such
research was noted—namely, the appearance of the power law distribu-
tions for object usage in software. That is, many objects are only used
once, some are used multiple times, and very few are used very fre-
quently. Exploring the implications of this and other phenomena may
provide insight into development methodologies and how to manage
complexity and scale.

•	 Testing and integration techniques.  In a complicated deployment
environment, finding better ways to get more assurance sooner in the

13 One example is some research under way at the University of Sheffield. Psychologists
watch teams using XP methodologies and then report on the psychological effects of using
XP, as opposed to other metrics such as defect rates. Results suggest that people are happier
doing things this way. See http://www.shef.ac.uk/dcs/research/groups/vt/research/
observatory.html for more information.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

SUMMARY OF WORKSHOP DISCUSSIONS	 23

cycle and more frequently should improve software development as a
whole.

Session 4: Quality and assurance with scale
and uncertainty

Panelists: Joe Jarzombek, Department of Homeland Security;
Kris Britton, National Security Agency; Mary Ann Davidson,
Oracle Corporation; Gary McGraw, Cigital

Moderator: William Scherlis

Panelist presentations and general discussions in this session were
intended to address the following questions, from government and indus-
try perspectives:

•	 What are the particular challenges for achieving particular assur-
ances for software quality and cybersecurity attributes as scale and inter-
connection increase?

•	 What are emerging best practices and technologies?
•	 What kinds of new technologies and practices could assist? This

includes especially interventions that can be made as part of the devel-
opment process rather than after the fact. Interventions could include
practices, processes, tools, and so on.

•	 How should cost-effectiveness be assessed?
•	 What are the prospects for certification, both at a comprehensive

level and with respect to particular critical quality attributes?

The presentations began by describing the goals and activities of two
federal programs in software assurance and went on to explore present
and future approaches.

Software Assurance Considerations and the
 DHS Software Assurance Program

The U.S. Department of Homeland Security (DHS) has a strategic pro-
gram (discussed in more detail later in this section) to promote integrity,
security, and reliability in software.14 This program for software assur-

14 The definition of software assurance that DHS uses comes out of the Committee on
National Security Systems: namely, it is the level of confidence that software is free from
vulnerabilities, either intentionally designed into the software or accidentally inserted at
any time during its life cycle, and that the software functions in the intended manner. More
generally, “assurance” is about confidence—that is, it is a human judgment, not an objective
test/verification/analytic result but rather a judgment based on those results.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

24	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

ance emphasizes security; the risk exposures associated with reliance on
software leave a lot of room for improvements. In industry as well as
government there is increased concern about security. Security is difficult
to measure. It is difficult to quantify security or assess relative progress
in improving it. Participants noted the need for more comprehensive
diagnostic capabilities and standards on which to base assurance claims.
Two suggestions were made:

•	 The software assurance tool industry has not been keeping pace
with changes in software systems—tools that provide point solutions
are available, but much of the software industry cannot apply them. As
testing processes become more complex, costly, and time consuming, the
testing focus frequently narrows to functional testing.

•	 Tools are not interoperable. This leads to more standards but, para-
doxically, less standardization. Less standardization, in turn, leads to
decreased confidence and lower levels of assurance.

One remedy for this situation would have the following elements:

•	 Government, in collaboration with industry and academia, works
to raise expectations on product assurance. This would help to advance
more comprehensive diagnostic capabilities, methodologies, and tools to
mitigate risks.

•	 Acquisition managers and users start to factor information about
suppliers’ software development processes and the risks posed by the
supply chain into their decision making and acquisition/delivery pro-
cesses. Information about evaluated products would become available,
and products in use could be securely configured.

•	 Suppliers begin to deliver quality products with requisite integ-
rity and make assurance claims about their IT and the software’s safety,
security, and dependability. To do this, they would need to have and use
relevant standards, qualified tools, independent third-party certifiers, and
a qualified workforce.

It was suggested that software is an industry that demands only
minimal levels of responsible practice compared to some other industries
and that this is part of the challenge. But raising the level of responsible
practice could increase sales to customers that demand high-assurance
products.

From the perspective of the DHS, critical infrastructure around the
United States is often not owned or operated by U.S. interests. As cyber-
space and physical space become increasingly intertwined and software-
controlled or -enabled, these interconnections and controls are often

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

SUMMARY OF WORKSHOP DISCUSSIONS	 25

implemented using the Internet. This presents a target-rich environment
especially given the asymmetries at work: According to one speaker,
extrapolating from data on average defect rates, a deployed software
package of a million lines of code will have 6,000 defects. Even if only 1
percent of those defects introduce security-related vulnerabilities, then
there are 60 different vulnerabilities for an adversary to exploit. In an era
riddled with asymmetric cyberattacks, claims about system reliability,
integrity, and safety must also address the built-in security of the enabling
software. Security is an enabler for reliability, integrity, and safety. Cyber-
related disruptions have an economic and business impact because they
can lead to the loss of money and time, delayed or cancelled products,
and loss of sensitive information, reputation, even life. From a CEO/CIO
perspective, disruptions and security flaws can mean having to redeploy
staff to deal with problems and increase IT security, reduced end user
productivity, delayed products, and unanticipated patch management
costs. Results from a survey of CIOs in 2006 by the CIO Executive Council
indicate that reliable and vulnerability-free software is a top priority. In
that same survey respondents expressed “low to medium confidence”
that software is “free from” flaws, vulnerabilities, and malicious code.
The majority of these CIOs would like vendors to certify and test software
using qualified tools.

Speakers noted that the second national software summit had iden-
tified major gaps in requirements for tools and technologies, as well as
major shortcomings in the state-of-the-art and the state-of-the practice for
developing error-free software. A national software strategy was recom-
mended in order to enhance the nation’s capability to routinely develop
trustworthy software products and ensure the continued competitive-
ness of the U.S. software industry. This strategy focused on improving
software trustworthiness, educating and fielding the software workforce,
re-energizing software R&D, and encouraging innovation in the U.S.
industry.15 In addition to the gaps and shortcomings identified at that
software summit, a recent PITAC report on national priorities for cyber-
security listed security software engineering and software assurance as
among the top ten goals.16

Software assurance contributes to trustworthy software systems. The
goals of the DHS Software Assurance (SwA) program promote the secu-
rity of software across its development, acquisition, and implementation

15 Center for National Software Studies, 2005, “Software 2015: A national software strat-
egy to ensure U.S. security and competitiveness,” available online at www.cnsoftware.
org/nss2report, April 29.

16 President’s Information Technology Advisory Committee (PITAC), 2005, Cybersecurity:
A Crisis of Prioritization, February.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

26	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

life cycles.17 The SwA program is scoped to address trustworthiness,
predictable execution, and conformance to requirements, standards, and
procedures. It is structured to target people, process, technology, and
acquisition.

The SwA program is process-agnostic, providing practical guidance
in assurance practices and methodologies for process improvement. A
developer’s guide and glossary discussed during this session, Securing
the Software Life Cycle, is not a policy or standard. Instead, it focuses on
touch points and artifacts throughout the life cycle that are foundational
knowledge, best practices, and tools and resources for building assurance
in. Integrating security into the systems engineering life cycle enables the
implementation of software assurance.

It was suggested that software assurance would be well-served
by standards that assign names to practices or collections of practices.
Standards are needed to facilitate communication between buyer and
seller, government and industry, insurer and insured. They are needed to
improve information exchange and interoperability among practices and
among tools. The goal is to close the gap between art and practice and
raise the minimum level of responsible practice. Some current standards
efforts for software and system life cycle processes include ISO SC7, ISO
SC22, ISO SC27, and IEEE S2ESC. A critical aspect, it was suggested, is
language: articulating structured assurance claims supported by evidence
and reasoning. For example, the Object Management Group (OMG) has
been working with industry and federal agencies to help collaboration in a
common framework for the analysis and exchange of information related
to software trustworthiness. This framework can be used for building
and assembling software components, including legacy systems and large
systems and networks: Looking only at product evaluation overlooks the
places where systems and networks are most vulnerable, because it is the
interaction of all the components as installed that becomes the problem.

One of the challenges often noted regarding standardization of prac-
tices is the lag between identification of a best practice and its codification
into a standard. This is particularly challenging in areas such as software
assurance, where there is rapid evolution of technologies, practices, and
related standards. In the future, the goal is for customers to have expec-
tations for product assurance—including information about evaluated
products, suppliers’ process capabilities, and secure configurations of
software—and for suppliers to be able to distinguish themselves by deliv-
ering quality products with the requisite integrity and to be able to make
assurance claims based on relevant standards.

17 The MITRE Web site, http://www.cwe.mitre.org, can be used to track SwA progress.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

SUMMARY OF WORKSHOP DISCUSSIONS	 27

The National Security Agency Center for Assured Software

According to the historical perspective offered by one speaker, the
DoD assurance requirements of 30 years ago mostly focused on what
became the National Information Assurance Partnership (NIAP) and
the trusted product evaluation program.18 Developers were known and
trusted intrinsically. By contrast, in today’s environment, the market for
software is a global one: Even U.S. companies are international. DoD has
become increasingly concerned about malicious intent. Malicious code
done very well is going to look like an accident. Unfortunately, it was
argued, assurance is gained today the same way as it was 30 years ago.
Various mechanisms for gaining confidence in general-purpose software
are also being used for DoD software: functional testing, penetration test-
ing, design and implementation analysis, advanced development envi-
ronments, trusted developers, process, discipline, and so forth are mecha-
nisms to build confidence. The intention is for the Center for Assured
Software to contribute to the advancement of measurable confidence in
software.

In today’s environment, vendors do not have an incentive to be
involved early in the design process, so testing typically is done after the
fact, with a third-party orientation. The problem with this model is that
it is all about penetration analysis, not building security in, and trust is
bestowed by a third party. Moreover, this model does not scale very well.
In one speaker’s view, assurance models for COMSEC devices will not,
for example, scale to the DoD’s Joint Tactical Radio System (JTRS) pro-
gram. In addition, composition has always been a problem in the context
of assurance: The current state of knowledge about how to compose sys-
tems well and to know what we have, with the inadequacy in assurance,
is compounded by the problem of malicious intent.

A challenge for NSA’s Center for Assured Software is to be able
to scale assurance. To do that, the future assurance paradigm needs to
acknowledge the role of the development process in the assurance argu-
ment. How software is built, what processes are used, and what tools are
used all have to be part of the assurance argument. That is a subtle but
important shift in the paradigm.

In the speaker’s view, the way to achieve scale in the development
process and the way to gain assurance in the development process and
in third-party analysis is by increasing the extent of automation. The cur-

18 NIAP is a U.S. government initiative originated to meet the security testing needs of
both information technology consumers and producers and is operated by the NSA (see
http://www.niap-ccevs.org/). The Trusted Product Evaluation Program (TPEP) was started
in 1983 to evaluate COTS products against the Trusted Computer Systems Evaluation
Criteria (TCSEC).

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

28	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

rent paradigm does not embrace that means of achieving scale very well.
Previous measurement techniques mostly entailed humans looking for
vulnerabilities. What the Center for Assured Software is trying to do is
find correlations between assurance and positive things that can be mea-
sured—for instance, the properties that are important—to give confidence
that the software is indeed built appropriately. Another area where work
is needed, it was suggested, is to create a science of composition that
enables making an argument for levels of assurance at scale. In the mid-
1980s, there were attempts to do that with the Trusted Database Manage-
ment System Interpretation of the Trusted Computer System Evaluation
Criteria (often referred to as the Orange Book), but the results did not
scale very well.

Participants mentioned a variety of ideas being pursued in industry
and academia in response to business and government needs in the area
of software assurance: anomaly identification, model checking, repeatable
methodology for assurance analysis and evaluation, and intermediate
representation of executable code.19 Suggested research areas mentioned
during this discussion include these:

•	 Assurance composition,
•	 Verifiable compilation,
•	 Software annotation,
•	 Model checking,
•	 Safe languages and automated migration from unsafe languages,
•	 Software understanding, and
•	 Measurable attributes that have strong correlation to assurance.

More broadly, participants suggested that it will be important to under-
stand how to build confidence from all of these (and other approaches)
and to improve these approaches. In particular, it will be important to
understand how they “combine” (that is, what multiple techniques col-
lectively convey regarding confidence) since it is at best highly unlikely
that one technique will ever by itself be sufficient.

Software Assurance: Present and Future

This vendor-perspective presentation and discussion focused on
COTS (it was suggested that 80 percent of DoD systems have at least some
COTS components) and on taking tactical, practical, and economical steps
at the component level to improve assurance. As scale and interconnec-

19 Other approaches include static analysis, extended static checkers, and rule-based
automatic code analysis.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

SUMMARY OF WORKSHOP DISCUSSIONS	 29

tivity increase, it was argued that the assurance bar for software quality
and cybersecurity attributes can be raised by (1) raising the component
assurance bar (resources are finite and organizations can spend too much
time and too many resources trying to patch their way to security) and
(2) getting customers to understand and accept that assurance for custom
software can be raised if they are willing to pay more (if customers do
not know about costs that are hidden, they cannot accept or budget for
them).

One set of best practices and technologies to write secure software
was described. It includes

•	 Secure coding standards,
•	 Developer training in secure coding,
•	 Enabled, embedded security points of contact (the “missionary

model”),
•	 Security as part of development including functional, design, test

(include threat modeling),
•	 Regressions (including destructive security tests),
•	 Automated tools (home grown, commercial of multiple flavors),
•	 Locked-down configurations (delivering products that are secure

on installation), and
•	 Release criteria for security.

However, these practices are not routinely taught in universities. Nei-
ther the software profession not the industry as a whole can simply rely
on a few organizations doing these kinds of things. Discussion identified
some necessary changes in the long run:

•	 University curricula.  It was argued that university programs should
do a better job of teaching secure coding practices and training future
developers to pay attention to security as part of software development. If
the mindset of junior developers does not change, the problem will not be
solved. One participant said, “Process won’t fix stupidity or arrogance.”
Incentives to be mindful of security should be integrated throughout the
curriculum. When security is embedded throughout the development
process, a small core of security experts is not sufficient. One challenge
is how to balance the university focus on enduring knowledge and skills
against the need for developers to understand particular practices and
techniques specific to current technologies.

•	 Automation.  Automated tools are promising and will be increas-
ingly important, but they are not a cure-all. Automated tools are not yet
ready for universal prime time for a number of reasons, including: Tools
need to be trained to understand the code base; programmers have dif-

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

30	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

ficulty establishing sound and complete rules; most of today’s tools look
only for anticipated vulnerabilities (e.g., buffer overruns) and cannot be
readily adapted to new classes of vulnerabilities; there are often too many
false positives; scalability is an issue; one size does not fit all (it is prema-
ture for standards) and therefore multiple tools are needed; and there is
not a good system for rating tools.

Conventional wisdom holds that people will not pay more for secure
software. However, people already are paying for bad security—a 2002
study by the National Institute of Standards and Technology (NIST)
reported that the consequences of bad software cost $59 billion a year in
the United States.20 It was argued that from a development standpoint,
security cost-effectiveness should be measured pragmatically. However,
a simple return on investment (ROI) is not the right metric. From a devel-
oper’s perspective, the goal should be the highest net present value (NPV)
for cost avoidance of future bugs—not raw cost savings or the ROI from
fixing bugs in the current year. Another way of valuing security is oppor-
tunity cost savings—what can be done (e.g., building new features) with
the resources saved from not producing patches. From the customer’s
perspective, it is the life-cycle cost of applying a patch weighed against
the expected cost of the harm from not applying the patch. Customers
want predictable costs, and the perception is that they cannot budget
for the cost of applying patches (even though the real cost driver is the
consequences of unpatched systems). If customers know what they are
getting, they can plan for a certain level of risk at a certain cost. The goal
is to find the match between expected risk for the customer and for the
vendor—how suitable the product is for its intended use.

Certification is a way of assessing what is “good.”21 But partici-
pants were not optimistic when considering prospects for certification
of development processes. There is too much disagreement and ideol-
ogy surrounding development processes. However, there can be some
commonality around aspects of good development processes. Certifying
developers is also problematic. In engineering, there are accredited degree
programs and clear licensing requirements. The awarding of a degree in
computer science is not analogous to licensing an engineer because there
is not the same common set of requirements, especially robustness and
safety requirements. In addition, it can be difficult to replicate the results

20 See NIST, 2002, “Planning Report 02-3: The economic impacts of inadequate
infrastructure for software testing.” Available online at http://www.nist.gov/
director/prog-ofc/report02-3.pdf.

21 A recent NRC study examines the issue of certification and dependability of software
systems. See information on the report Software for Dependable Systems: Sufficient Evidence?
at http://cstb.org/project_dependable.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

SUMMARY OF WORKSHOP DISCUSSIONS	 31

of software engineering processes, making it hard to achieve confidence
such that developers are willing to sign off on their work. Moreover, it
was argued that with current curricula, developers generally do not even
learn the basics of secure coding practice. There is little to no focus on
security, safety, or the possibility that the code is going to be attacked in
most educational programs. It was argued that curricula need to change
and that computer science graduates should be taught to “assume an
enemy.”

	 Automated tools can give better assurance to the extent that ven-
dors use them in development and fix what they find. Running evaluation
tools after the fact on something already in production is not optimal.22 It
was suggested that there is potential for some kind of “goodness meter”
(a complement to the “badness meter” described in the next section) for
tool use and effectiveness—what tool was used, what the tool can and
cannot find, what the tool did and did not find, the amount of code cov-
ered, and that tool use was verified by a third party.

Software Security: Building Security In

Discussions in this session focused on software security as a systems
problem as opposed to an application problem. In the current state of the
practice, certain attributes of software make software security a challenge:
(1) connectivity—the Internet is everywhere and most software is on it
or connected to it; (2) complexity—networked, distributed, mobile code
is hard to develop; and (3) extensibility—systems evolve in unexpected
ways and are changed on the fly. This combination of attributes also con-
tributes to the rise of malicious code.

Massively multiplayer online games (MMOGs) are bellwethers of
things to come in terms of sophisticated attacks and exploitation of vul-
nerabilities. These games experience the cutting edge of what is going on
in software hacking and attacks today.23 Attacks against such games are

22 It was suggested that vendors should not be required to vet products against numerous
tools. It was also suggested that there is a need for some sort of Common Criteria reform
with mutual recognition in multiple venues, eliminating the need to meet both Common
Criteria and testing requirements. Vendors, for example, want to avoid having to give gov-
ernments the source code for testing, which could compromise intellectual property, and
want to avoid revealing specifics on vulnerabilities (which may raise security issues and also
put users of older versions of the code more at risk). Common Criteria is an international
standard for computer security. Documentation for it can be found at http://www.niap-
ccevs.org/cc-scheme/cc_docs/.

23 World of Warcraft, for example, was described as essentially a global information grid
with approximately 6 million subscribers and half a million people playing in real time at
any given time. It has its own internal market economy, as well as a significant black market
economy.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

32	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

also at the forefront of so-called rootkit24 technology. Examining attacks
on large-scale games may be a guide to what is likely to happen in
the non-game world. It was suggested that in 2006, security started to
become a differentiator among commercial products. Around that time,
companies began televising ads about security and explicitly offering
security features in new products. Customers were more open to the idea
of using multiple vendors to take advantage of diversity in features and
suppliers.

Security problems are complicated. There is a difference between
implementation bugs such as buffer overflows or unsafe systems calls,
and architectural flaws such as compartmentalization problems in design
or insecure auditing. As much attention needs to be paid to looking for
architectural or requirements flaws as is paid to looking for coding bugs.
Although progress is being made in automation, both processes still need
people in the loop. When a tool turns up bugs or flaws, it gives some
indication of the “badness” of the code—a “badness-o-meter” of sorts. But
when use of a tool does not turn up any problems, this is not an indica-
tion of the “goodness” of the code. Instead, one is left without much new
knowledge at all.

Participants emphasized that software security is not application
security. Software is everywhere—not just in the applications. Software
is in the operating system, the firewall, the intrusion detection system, the
public key infrastructure, and so on. These are not “applications.” Appli-
cation security methods work from the outside in. They work for COTS
software, require relatively little expertise, and are aimed at protecting
installed software from harm and malicious code. System software secu-
rity works from the inside out, with input into and analysis of design and
implementation, and requires a lot of expertise.

In one participant’s view, security should also be thought of as an
emergent property of software, just like quality. It cannot be added on. It
has to be designed in. Vendors are placing increased emphasis on security,
and most customers have a group devoted to software security. It was
suggested that the tools market is growing, for both application security
(a market of between $60 million and $80 million) and software security
(a market of about $20 million, mostly for static analysis tools). Consult-
ing services, however, dwarf the tools market. One speaker described the
“three pillars” of software security:

24 A rootkit is a set of software tools that can allow hackers to continue to gain undetected,
unauthorized access to a system following an initial, successful attack by concealing pro-
cesses, files, or data from the operating system.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

SUMMARY OF WORKSHOP DISCUSSIONS	 33

•	 Risk management, tied to the mission or line of business. Financial
institutions such as banks and credit card consortiums are in the lead
here, in part because Sarbanes-Oxley made banks recognize their software
risk.

•	 Touchpoints, or best practices. The top two are code review with a
tool and architectural risk analysis.

•	 Knowledge, including enterprise knowledge bases about security
principles, guidelines, and rules; attach patterns; vulnerabilities; and his-
torical risks.

SESSION 5: enterprise scale and beyond

Panelists: Werner Vogels, Amazon.com, and Alfred Spector,
AZS-Services

Moderator: Jim Larus

The speakers at this session focused on the following topics, from the
perspective of industry:

•	 What are the characteristics of successful approaches to addressing
scale and uncertainty in the commercial sector, and what can the defense
community learn from this experience?

•	 What are the emerging software challenges for large-scale enter-
prises and interconnected enterprises?

•	 What do you see as emerging technology developments that relate
to this?

Life Is Not a State-Machine:
The Long Road from Research to Production

Discussions during this session centered on large-scale Web opera-
tions, such as that of Amazon.com, and what lessons about scale and
uncertainty can be drawn from them. It was argued that in some ways,
software systems are similar to biological systems. Characteristics and
activities such as redundancy, feedback, modularity, loose coupling, purg-
ing, apoptosis (programmed cell death), spatial compartmentalization,
and distributed processing are all familiar to software-intensive systems
developers, and yet these terms can all be found in discussions of robust-
ness in biological systems. It was suggested that there may be useful les-
sons to be drawn from that analogy.

Amazon.com is very large in scale and scope of operations: It has
seven Web sites; more than 61 million active customer accounts and
over 1.1 million active seller accounts, plus hundreds of thousands of

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

34	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

registered associates; over 200,000 registered Web services developers;
over 12,500 employees worldwide; and more than 20 fulfillment centers
worldwide. About 30 percent of Amazon’s sales are made by third-party
sellers; almost half of its sales are to buyers outside the United States.
On a peak shipping day in 2006, Amazon made 3.4 million shipments.
Amazon.com’s technical challenges include how to manage millions of
commodity systems, how to manage many very large, geographically
dispersed facilities in concert, how to manage thousands of services run-
ning on these systems, how to ensure that the aggregate of these services
produces the desired functionality, and how to develop services that can
exploit commodity computing power. It, like other companies providing
similar kinds of services, faces challenges of scale and uncertainty on an
hourly basis.

Over the years, Amazon has undergone numerous transformations—from
retailer to technology provider, from single application to platform, from Web
site and database to a massively distributed parallel system, from Web site to
Web service, from enterprise scale to Web scale. Amazon’s approach to man-
aging massive scale can be thought of as “controlled chaos.” It continuously
uses probabilistic and chaotic techniques to monitor business patterns and
how its systems are performing. As its lines of business have expanded these
techniques have had to evolve—for example, focusing on tracking customer
returns as a negative metric does not work once product lines expand into
clothing (people are happy to order multiple sizes, keep the one that fits, and
return the rest).

Amazon builds almost all of its own software because the commercial
and open source infrastructure available now does not suit Amazon.com’s
needs. The old technology adoption life cycle from product development
to useful acceptance was between 5 and 25 years. Amazon and similar
companies are trying to accelerate this cycle. However, it was suggested
that for an Amazon developer to select and use a research technology is
almost impossible. In research, there are too many possibilities to choose
from, experiments are unrealistic compared to real life, and underly-
ing assumptions are frequently too constrained. In real life, systems are
unstable, parameters change and things fail continuously, perturbations
and disruptions are frequent, there are always malicious actors, and fail-
ures are highly correlated. In the real world, when the system fails, the
mission of the organization cannot stop—it must continue.25

Often, complexity is introduced to manage uncertainty. However,
there may well exist what one speaker called “conservation laws of com-
plexity.” That is, in a complex interconnected system, complexity cannot

25 Examples of systems where assumptions did not match real life include the Titanic, the
Tacoma Narrows bridge, and the Estonian ferry disaster.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

SUMMARY OF WORKSHOP DISCUSSIONS	 35

be reduced absolutely, it can only be moved around. If uncertainty is not
taken into account in large scale system design, it makes adoption of the
chosen technology fairly difficult. Engineers in real life are used to deal-
ing with uncertainty. Assumptions are often added to make uncertainty
manageable. At Amazon, the approach is to apply Occam’s razor: If there
are competing systems to choose from, pick the system that has the fewest
assumptions. In general, assumptions are the things that are really limit-
ing and could limit the system’s applicability to real life.

Two different engineering approaches were contrasted, one with the
goal of building the best possible system (the “right” system) whatever
the cost, and the other with the more modest goal of building a smaller,
less-ambitious system that works well and can evolve. The speaker char-
acterized the former as being incredibly difficult, taking a long time
and requiring the most sophisticated hardware. By contrast, the latter
approach can be faster, it conditions users to expect less, and it can, over
time, be improved to a point where performance almost matches that of
the best possible system.

It was also argued that traditional management does not work for
complex software development, given the lack of inspection and control.
Control requires determinism, which is ultimately an illusion. Amazon’s
approach is to optimize team communication by reducing team size to
maximum of 8-10 people (a “two-pizza team”). For larger problems,
decompose the problem and reduce the size of the team needed to tackle
the subproblems to a two-pizza group. If this cannot be done, it was sug-
gested, than do not try to solve that problem—it’s too complicated.

A general lesson that was promoted during this session was to let
go of control and the notion that these systems can be controlled. Large
systems cannot be controlled—they are not deterministic. For various
reasons, it is not possible to consider all the inputs. Some may not have
been included in the original design; requirements may have changed;
the environment may have changed. There may be new networks and/or
new controllers. The problem is not one of control; it is dealing with all
the interactions among all the different pieces of the system that cannot
be controlled. Amazon.com’s approach is to let these systems mature
incrementally, with iterative improvement to yield the desired outcome
during a given time period.

The Old, the Old, and the New

In this session’s discussions, the first “old” was the principle of
abstraction-encapsulation-reuse. Reuse is of increasing importance every-
where as the sheer quantity of valuable software components continues to
grow. The second “old” was the repeated quest (now using Web services

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

36	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

and increasingly sophisticated software tools) to make component reuse
and integration the state of practice. Progress is being made in both of
these areas, as evidenced by investment and anecdotes. The “new” dis-
cussed was the view that highly structured, highly engineered systems
may have significant limitations. Accordingly, it was argued, “semantic
integration,” more akin to Internet search, will play a more important
role.

There are several global integration agendas. Some involve broad
societal goals such as trade, education, health care, and security. At the
firm or organization level, there is supply chain integration and N to 1
integration of many stores focusing on one consumer, as in the case Ama-
zon and its many partners and vendors. In addition, there is collaborative
engineering, multidisciplinary R&D, and much more.

Why is global integration happening? For one thing, it is now tech-
nically possible, given ubiquitous networking, faster computers, new
software methodologies. People, organizations, computation, and devel-
opment are distributed, and networked systems are now accepted as
part of life and business, along with the concomitant benefits and risks
(including security risks). An emerging trend is the drive to integrate
these distributed people and processes to get efficiency and cost-effective
development derived from reuse.

Another factor is that there are more software components to inte-
grate and assemble. Pooling of the world’s software capital stock is creat-
ing heretofore unimaginably creative applications. Software is a major
element of the economy. It was noted that by 2004, the amount of U.S.
commercial capital stock relating to software, computer hardware, and
telecommunications accounted for almost one-quarter of the total capital
stock of business; about 40 percent of this is software. Software’s real
value in the economy could even be understated because of accounting
rules (depreciation), price decreases, and improvements in infrastructure
and computing power. The IT agenda and societal integration reinforce
each other.

Core elements of computer science, such as algorithms and data struc-
tures, are building blocks in the integration agenda. The field has been
focusing more and more on the creation and assembly of larger, more
flexible abstractions. It was suggested that if one accepts that the notion
of abstraction-encapsulation-reuse is central, then it might seem that ser-
vice-oriented computing is a done deal. However, the challenge is in
the details: How can the benefits of the integration agenda be achieved
throughout society? How are technologists and developers going to create
these large abstractions and use them?

When the Internet was developed, some details—such as quality of
service and security—were left undone. Similarly, there are open chal-

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

SUMMARY OF WORKSHOP DISCUSSIONS	 37

lenges with regard to integration and service-oriented approaches. What
are the complete semantics of services? What security inheres in the ser-
vice being used? What are the failure modes and dependencies? What is
the architectural structure of the world’s core IT and application services?
How does it all play out over time? What is this hierarchy that occurs
globally or, for the purposes of this workshop, perhaps even within DoD
or within one of the branches of the military?

Service-oriented computing is computing whereby one can create,
flexibly deploy, manage, meter and charge for (as appropriate), secure,
locate, use, and modify computer programs that define and implement
well-specified functions, having some general utility (services), often
recursively using other services developed and deployed across time and
space, and where computing solutions can be built with a heavy reliance
on these services. Progress in service-oriented computing brings together
information sharing, programming methodologies, transaction process-
ing, open systems approaches, distributed computing technologies, and
Web technologies.

There is now is a huge effort on the part of industry to develop appli-
cation-level standards. In this approach, companies are presented with
the definition of some structure that they need to use to interoperate with
other businesses, rather than, for example, having multiple individual
fiefdoms within each company develops unique customer objects.

The Web services approach generally implies a set of services that
can be invoked across a network. For many, Web services comprise things
such as Extensible Markup Language (XML) and SOAP (a protocol for
exchanging XML-based messages over computer networks) along with a
variety of Web service protocols that have now been defined and are heav-
ily used, developed, produced, and standardized (many in a partnership
between IBM and Microsoft). Web services are on the path to full-scale,
service-oriented computing; it was argued that this path can be traced
back to the 1960s and the airlines’ Sabre system, continuing through
Arpanet, the Internet, and the modern World Wide Web.

Web services based on abstraction-encapsulation-reuse are a new
approach to applying structure-oriented engineering tradition to informa-
tion technology (IT). For example, integration steps include the precise
definition of function (analogous to the engineering specifications and
standards for transportation system construction), architecture (analo-
gous to bridge design, for example), decomposition, rigorous component
production (steel beams, for example), careful assembly, and managed
change control. The problem is, there may be limits to this at scale. In
software, each of these integration steps is difficult in itself. Many projects
are inherently multiorganizational, and rapid changes have dire conse-
quences for traditional waterfall methodologies.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

38	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

It was argued that “semantic integration,” a dynamic, fuzzier inte-
gration more akin to Internet search, will play a larger role in integration
than more highly structured engineering of systems. Ad hoc integration
is a more humble approach to service-based integration, but it is also
more dynamic and interpretive. Components that are integrated may
be of lower generality (not a universal object) and quality (not so well
specified). Because they will be of lower generality, perhaps with dif-
ferent coordinate systems, there will have to be automated impendence
matching between them. Integration may take place on an intermediate
service, perhaps in a browser. Businesses are increasingly focusing on this
approach for the same reasons that simple approaches have always been
favored. This is a core motivational component of the Web 2.0 mash-up
focus. Another approach to ad hoc integration uses access to massive
amounts of information—with no reasonable set of predefined, param-
eterized interfaces, annotation and search will be used as the integration
paradigm.

It is likely that there will be tremendous growth in the standards
needed to capitalize on the large and growing IT capital plant. There
will be great variability from industry to industry and from place to
place around the world, depending on the roles of the industry groups
involved, differential regulations, applicable types of open source, and
national interests. Partnerships between the IT industry and other indus-
tries will be needed to share expertise and methodologies for creating
usable standards, working with competitors, and managing intellectual
property.

A number of topics for service-oriented systems and semantic inte-
gration research were identified, some of which overlap with traditional
software system challenges. The service-oriented systems research areas
and semantic integration research areas spotlighted included these:

•	 Basics.  Is there a, practical, normative general theory of consistency
models? Are services just a remote procedure call invocation or a complex
split between client and server? How are security and privacy to be pro-
vided for the real world, particularly if one does not know what services
are being called? How does one utilize parallelism? This is an increasingly
important question in an era of lessening geometric clock-speed growth.

•	 Management.  With so many components and so much information
hiding, how does one manage systems? How does one manage intellec-
tual property?

•	 Global properties.  Can one provide scalability generally? How does
one converge on universality and standards without bloat? What systems
can one deploy as really universal service repositories?

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

SUMMARY OF WORKSHOP DISCUSSIONS	 39

•	 Economics.  What are realistic costing/charging models and
implementations?

•	 Social networking.  How does one apply social networking technol-
ogy to help?

•	 Ontologies of vast breadth and scale.
•	 Automated discovery and transformation.
•	 Reasoning in the control flow.
•	 Use of heuristics and redundancy.
•	 Search as a new paradigm.

Complexity grows despite all that has been done in computer science.
There is valuable, rewarding, and concrete work for the field of computer
science in combating complexity. This area of work requires focus. It could
prove as valuable as direct functional innovation. Participants identified
several research areas to address complexity relevant to service-oriented
systems and beyond, including: meaning, measuring, methodology, sys-
tem architecture, science and technology, evolutionary systems design,
and legal and cultural change.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

40

3

Wrap-up Discussion and
Emergent Themes

Several major themes emerged from the day’s discussions on the
challenges of developing future-oriented, large-scale systems that
can cope with uncertainty at scale.� These themes are not findings or

recommendations of the study committee—those will be presented in the
committee’s final report later in the study. Indeed, observations offered
in some sessions contradicted those from other sessions—which perhaps
reflects the notion that there are different kinds of very large-scale systems
and that different kinds of systems will likely warrant different sorts of
approaches. Instead, this section presents a brief overview of the inter
related themes that arose over the course of the workshop’s discussions:

•	 Architectural challenges in large-scale systems,
•	 The need for software engineering capability, and
•	 Open questions and research opportunities.

Architectural Challenges in Large-Scale Systems

The issue of architecture and frameworks for large-scale software-
intensive systems coping with uncertainty at scale was raised repeatedly.
One approach to this problem that was put forward in discussions would

�Because neither the workshop nor this summary was intended to be (or constituted as) a
stand-alone product, contradictory views also emerged from different presenters during the
day—for example, the desirability of not producing software in-house versus the desirability
of producing all software in-house.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

WRAP-UP DISCUSSION AND EMERGENT THEMES	 41

be to develop executable models and architectures that can evolve over
the system’s life cycle. As the system develops and evolves, pieces that
were originally mock-ups could be replaced with actual subsystems—this
would be a way to provide ongoing feedback on the architecture, includ-
ing system performance, functionality, and so on. A broader question
asks what kind of structure and constraints can be imposed at a high
level such that the overall system can be decomposed (as needed) into
autonomous pieces. What specific architectural rules and approaches will
get one there? It was suggested that a framework would be needed, along
with clear specifications at the interface between the framework and
components.

Closely tied to the question of architecture is the significant challenge
of how to develop systems architectures and definitions for highly decen-
tralized organizations. For developing the sorts of systems under consid-
eration, some believed a loosely coupled organizational style would be
needed as systems scale up and more players enter the picture. Although
such a shift might place intense pressure on organizational culture and
management, “controlled chaos” rather than a very top-down, structured,
and controlled approach might need to become the order of the day. This
shift, however, might reflect a change of perspective on the essential com-
monalities that hold an overall system together—there could, for example,
be a shift from an overall structural model as the unifying factor to par-
ticular agreements on how components and subsystems are to interact
with each other through protocols, APIs, metadata standards, and the like.
It may also be the case that there is an underlying issue driving this ten-
sion that is not about coupling or control, but rather about the particular
nature of the architectural commonalities that hold a system together.
For example, the trend towards dynamic architecture demonstrates that
purely structural commonalities are giving way to semantic and other less
apparent—but perhaps more essential—commonalities in large systems.

This has implications for software engineering capability (see below),
in part because the frameworks and architecture for these systems will not
go away—they and the people involved with them will need to persist
for the lifetime of the system. And, of course, the architecture for these
systems will transcend particular individual suppliers.

The Need for Software Engineering Capability

Writing large, safety-critical, real-time systems requires a commitment
to genuine engineering discipline, even if it means constraining the design
space—limiting flexibility—in order to conform to precedented prac-
tices that enable application of this discipline. In addition, management
becomes a significant challenge when it comes to very large-scale systems

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

42	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

that will need to depend on very large networks and supply chains,. It
was suggested that this may lead to a focus on community-style collabo-
ration and integration over the long term. In any event, best practices will
differ depending on context, including the type of organization as well as
the type of application or system under development. Participants noted
that process practices will merit attention as well as technological prac-
tices. Process will not solve everything, of course, but process is vital to
assist with, among other things, the decomposition of large systems into
incremental subsets for better visibility and reduced risk. It was noted that
the focus on reuse may shift to earlier stages of the process and particu-
larly to requirements. In general, supporting technology will be needed
to enable the types of architectures and collaborations that large-scale
systems merit. In particular, finding ways to increase the extent of abstrac-
tion and automation in all aspects of software design, implementation,
testing, maintenance, and so on, may be a productive avenue, especially
with regard to scale and geographic distribution. Tools and strategies for
coping with design and architectures for very large, physically distributed
teams of people and organizations will be increasingly important along
with techniques and approaches that support high levels of trust. In addi-
tion, participants noted that the ability to use analytic techniques (such
as model checking, static analysis, dynamic analysis, and so on) will be
important. These types of tools are being used much more now than 5 or
10 years ago, but they are typically still early-generation tools. Continued
research and investment (see below) will help improve and extend them.
Even so, tools will not solve the problems of assurance or of large-scale
system development. Process, expertise, and skills matter a great deal.

Open Questions and Research Opportunities

Ultimately, many of the challenges related to architecture and capabil-
ity reflect problems that the community does not yet know how to solve.
Over the course of the workshop, participants articulated several open
research questions that should be addressed to make progress in address-
ing uncertainty at scale for software-intensive systems. At a high level,
the architectural and organizational challenges presented by large-scale
systems merit investigation: What are the key kinds of commonalities
that manifest architectural commitment, beyond a top-down structural
design? Industry issues were among the other topics that were spot-
lighted in the wrap-up discussion. These included (1) the extent to which
service-oriented architecture (SOA) and SOA vendors will or will not
make progress over the next 18 to 24 months in addressing DoD’s need
for producibility at scale—for example, in contrast to the well-established
enterprise resource planning framework and application servers offered

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

WRAP-UP DISCUSSION AND EMERGENT THEMES	 43

by vendors—and (2) the extent to which defense contractors can allocate
resources to address software challenges that fall outside current contract
parameters. Contracting issues that were noted in the discussion included
(1) how to establish collaborative mechanisms for contractors and the
DoD to work together, particularly in iterative fashion, on software assur-
ance and risk-reduction problems, as well as (2) contracting complexities
related to the integration of large software systems that include COTS
subsystems for the DoD. Another industry issue noted in the discus-
sion was industry’s misgivings about the availability of computer sci-
ence and computer engineering new hires at the bachelor’s and master’s
degree level. Related issues were software curricula development and the
appropriateness of accreditation for software engineering and computer
engineering and the need for computer science and computer engineering
faculty and students to have hands-on industry experience in building
systems.

* * *

Discussions at the workshop suggested that many of the key ideas
needed to make progress in developing large-scale systems and coping
with uncertainty at scale will not be found through the traditional incre-
mental advances made in various segments of the industry. While there
are lessons to be learned and gleaned from the varieties of experience and
perspective presented, the types of systems that are envisioned and that
serve as a driver for DoD’s interests in software pose significant manage-
ment, intellectual, and research challenges.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

Appendixes

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

47

A

Workshop Agenda

January 17, 2007
Washington, D.C.

9:00-9:15 a.m.	 Opening Remarks
	� Committee on Advancing Software-Intensive Systems

Producibility, William Scherlis, Chair

9:15-10:30 	 �Session 1: Process, Architecture, and the Grand 		
	 Scale

	 Moderator: Michael Cusumano
	 John Vu, Boeing
	 Rick Selby, Northrop Grumman Corporation

	 �What are characteristics of successful approaches to
architecture and design for large-scale systems and
families of systems? What are architecture ideas that
can apply when systems must evolve rapidly? What
kinds of management and measurement approaches
could assist in guiding program managers and
developers?

10:30-10:45	 Break

10:45-Noon	 �Session 2: DoD Software Challenges for Future 		
	 Systems

	 Moderator: Douglas Schmidt
	 Kristen Baldwin, Office of the Undersecretary of Defense for
	  Acquisitions, Technology and Logistics
	 Patrick Lardieri, Lockheed Martin

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

48	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

	 �How are challenges for software in DoD systems,
particularly cyber-physical systems, being met in the
current environment? What advances in R&D, tech-
nology, and practice do we need to achieve success
as demands on this capability increase, particularly
with respect to scale, complexity, and the increasingly
rapid rate of evolution in requirements (and threat)?

Noon-12:45 p.m.	 Lunch

12:45-1:20 	 Session 3: Agility at Scale
	 Moderator: Douglas Schmidt
	 Kent Beck, Three Rivers Institute
	 Cynthia Andres, Three Rivers Institute

	 �How can the engineering and management val-
ues that the “agile community” has identified be
achieved for larger-scale systems and for systems
that must evolve in response to rapidly changing
requirements?

1:20-2:30	 �Session 4: Quality and Assurance with Scale and 		
	U ncertainty

	 Moderator: William Scherlis
	 Joe Jarzombek, Department of Homeland Security
	 Kris Britton, National Security Agency

	 �What are the particular challenges for achieving par-
ticular assurances for software quality and cybersecu-
rity attributes as scale and interconnection increase?
What are emerging best practices and technologies?
What kinds of new technologies and practices could
assist? This includes, particularly, interventions
that can be made as part of the development pro-
cess, rather than after the fact. Interventions could
include practices, processes, tools, and so on. How
should cost-effectiveness be assessed? What are the
prospects for certification, both at a comprehensive
level and with respect to particular critical quality
attributes?

2:30-2:45	 Break

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

APPENDIX A	 49

2:45-4:00	 Session 4 (continued)
	 Mary Ann Davidson, Oracle Corporation
	 Gary McGraw, Cigital

4:00-5:15	 Session 5: Enterprise Scale and Beyond
	 Moderator: Jim Larus
	 Werner Vogels, Amazon.com
	 Alfred Spector, AZS-Services

	 �What are the characteristics of successful approaches
to addressing scale and uncertainty in the commer-
cial sector, and what can the defense community
learn from this experience? What are the emerging
software challenges for large-scale enterprises and
interconnected enterprises? What do you see as
emerging technology developments that relate to
this?

5:15-6:00	 Closing Discussion
	 Moderator: William Scherlis
	 All workshop participants and attendees

6:00	 Adjourn

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

50

B

Biosketches of Committee
Members and Staff

COMMITTEE MEMBERS

William L. Scherlis, Chair, is a full professor in the School of Computer
Science at Carnegie Mellon. He is the founding director of CMU’s doc-
toral program in software engineering and director of its International
Software Research Institute. His research relates to software assurance,
software evolution, and technology to support software teams. Dr. Scher-
lis joined the CMU faculty after completing a Ph.D. in computer science
at Stanford University, a year at the University of Edinburgh (Scotland)
as a John Knox Fellow, and an A.B. at Harvard University. He was the
lead principal investigator of the 4-year High Dependability Comput-
ing Project, in which CMU leads a collaboration with five universities to
help NASA address long-term software dependability challenges. He is
also co-PI (with two colleagues) of a new project with NASA and diverse
industry and laboratory subcontractors focused on dependable real-time
and embedded software systems. Dr. Scherlis is involved in a number
of activities related to technology and policy, recently testifying before
Congress on innovation and information technology and, previously, on
roles for a federal chief information officer. He interrupted his career at
CMU to serve at DARPA for 6 years, departing in 1993 as senior executive
responsible for coordination of software research. While at DARPA he
had responsibility for research and strategy in computer security, aspects
of high-performance computing, information infrastructure, and other
topics. Dr. Scherlis is a member of the NRC’s Committee on Improving
Cybersecurity Research in the United States and the DARPA Information

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

APPENDIX B	 51

Science and Technology Study Group. He recently finished chairing a
NRC study on information technology, innovation, and e-government. He
has led or participated in national studies related to cybersecurity, crisis
response, analyst information management, DoD software management,
and health care informatics infrastructure. He has been an advisor to
major IT companies. He served as program chair for a number of techni-
cal conferences, including the ACM Foundations of Software Engineering
Symposium. He has more than 70 scientific publications.

Robert F. Behler is a senior vice president in the MITRE Corporation
Command and Control Center for programs and advanced command and
control. The center serves MITRE’s DoD sponsors and focuses on creating
a joint command, control, and communications system. Mr. Behler leads
the center’s work for DoD sponsors. Before joining MITRE in April 2006,
Mr. Behler was general manager of Precision Engagement at Johns Hop-
kins University’s Applied Physics Laboratory. In this position he super-
vised over 250 scientists and engineers working on advanced command,
control, intelligence, surveillance, and reconnaissance (C2ISR) programs
for the DoD. Under Mr. Behler’s leadership, the Precision Engagement
organization turned new and emerging technologies into transformational
operational capabilities. Mr. Behler retired from the Air Force as a major
general in 2003. During his distinguished 31-year career, he accumulated
extensive experience managing and developing advanced command, con-
trol, communications, computers, intelligence, surveillance, and recon-
naissance (C4ISR) technologies at all levels. Before retiring, Mr. Behler
was commander of the Air Force C2ISR Center at Langley Air Force Base,
where he was principal C2ISR advisor to the secretary and chief of staff
of the Air Force. Prior to that, he served as deputy commander of NATO
Joint Headquarters North in Stavanger, Norway, and was the senior U.S.
military officer in Scandinavia. He has also served as director of com-
mand, control, communication, computers, and intelligence at the U.S.
Strategic Command at Offutt Air Force Base and as chief of the U.S. Air
Force-Senate Liaison Office. Mr. Behler entered the Air Force in 1972 as a
distinguished graduate of the Air Force Reserve Officer Training Corps
program at the University of Oklahoma. He received his bachelor’s and
master’s degrees in aerospace engineering from the University of Okla-
homa in 1970 and 1972, respectively. He is a graduate of the U.S. Air Force
Test Pilot School at Edwards Air Force Base and has accumulated over
5,000 flying hours in more than 65 aircraft types, including the SR-71 and
U-2. He was a National Security Fellow at Harvard University’s John F.
Kennedy School of Government in 1990 and received a master’s degree
in business administration from Marymount University in 1991. He is an

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

52	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

associate fellow of the Society of Experimental Test Pilots and a member
of the Armed Forces Communications and Electronics Association.

Barry W. Boehm, NAE, is TRW Professor of Software Engineering and
Director, Center for Software Engineering, at the University of Southern
California. Dr. Boehm received his B.A. degree from Harvard University
in 1957, and his M.S. and Ph.D. degrees from University of California,
Los Angeles, in 1961 and 1964, all in mathematics. He also received an
honorary Sc.D. in computer science from the University of Massachusetts
in 2000. Between 1989 and 1992, he served at the DoD as director of the
DARPA Information Science and Technology Office, and as director of the
DDR&E Software and Computer Technology Office. He worked at TRW
from 1973 to 1989, culminating as chief scientist of the Defense Systems
Group, and at the Rand Corporation from 1959 to 1973, culminating as
head of the Information Sciences Department. He was a programmer-
analyst at General Dynamics between 1955 and 1959. His current research
interest focus on value-based software engineering, including a method
for integrating a software system’s process models, product models, prop-
erty models, and success models called Model-Based (System) Architect-
ing and Software Engineering (MBASE). His contributions to the field
include the Constructive Cost Model (COCOMO), the Spiral Model of
the software process, the Theory W (win-win) approach to software man-
agement and requirements determination, the foundations for the areas
of software risk management and software quality factor analysis, and
two advanced software engineering environments: the TRW Software
Productivity System and Quantum Leap Environment. He has served on
the boards of several scientific journals, including the IEEE Transactions
on Software Engineering, IEEE Computer, IEEE Software, ACM Computing
Reviews, Automated Software Engineering, Software Process, and Information
and Software Technology. He has served as chair of the AIAA Technical
Committee on Computer Systems, chair of IEEE Technical Committee on
Software Engineering, and as a member of the Governing Board of the
IEEE Computer Society. He has served as chair of the Air Force Scien-
tific Advisory Board’s Information Technology Panel, chair of the NASA
Research and Technology Advisory Committee for Guidance, Control,
and Information Processing, and chair of the board of visitors for the
CMU Software Engineering Institute.

Lori A. Clarke is a professor of computer science at the University of Mas-
sachusetts, Amherst. She is an ACM Fellow, vice chair of the Computing
Research Association’s board of directors, and a member of the CRA-W.
She is a former IEEE distinguished visitor, ACM national lecturer, IEEE
publication board member, associate editor of ACM TOPLAS and IEEE

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

APPENDIX B	 53

TSE, member of the CCR NSF advisory board, ACM SIGSOFT secretary/
treasurer, vice-chair and chair, as well as a 1990 recipient of the University
of Massachusetts’ Chancellor’s Medal, and a 1993 recipient of a university
faculty fellowship. Dr. Clarke has worked in the area of software engi-
neering, particularly on software analysis and testing, for many years.
She was one of the primary developers of symbolic execution, a technique
used to reason about the behavior of software systems and for select-
ing test data, and made contributions in the areas of software architec-
ture and object management. Recently her work has focused on analysis
of concurrent systems. With colleagues, she has developed FLAVERS,
a static analysis tool that uses data-flow analysis techniques to verify
user-specified properties. FLAVERS automatically creates a concise, but
perhaps imprecise, model of the software system and then allows users
to selectively improve the accuracy of the program model as needed to
improve the accuracy of the results. The PROPEL system complements
FLAVERS and other event-based, finite-state verification systems by help-
ing users elucidate the details of the properties to be proven. FLAVERS
allows users to simultaneously view and construct properties from tem-
plates of English-language phrases or finite-state automata. The long-term
goal is to develop techniques that well-trained software engineers can
use to improve the quality of software systems. She received her B.A. in
mathematics (1969) from the University of Rochester and her Ph.D. in
computer science (1976) from the University of Colorado.

Michael A. Cusumano is the Sloan Management Review’s distinguished
professor at the Massachusetts Institute of Technology’s Sloan School of
Management. He specializes in strategy, product development, and entre-
preneurship in the computer software industry, as well as automobiles
and consumer electronics. He teaches courses on strategic management,
innovation and entrepreneurship, and the software business. He has con-
sulted for some 50 major companies around the world. He has been a
director of NuMega Technologies (sold to Compuware in 1998 for $150
million) and Infinium Software (sold to SSA Global Technologies in 2002
for $105 million), as well as other private and public software companies.
He is currently a director of Patni Computer Systems (software outsourc-
ing based in India) and Entigo (warrantee management software) and an
advisor to NetNumina Solutions (Internet architecture and custom solu-
tions), firstRain (wireless and Web services software), H-5 Technologies
(digital search technology), and Sigma Technology Group PLC (early-
stage ventures). He has also served as editor-in-chief and chairman of the
MIT Sloan Management Review and writes periodically for Communications
of the ACM, The Wall Street Journal, Computerworld, The Washington Post,
and other publications. Dr. Cusumano has published eight books. His

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

54	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

latest book, The Business of Software: What Every Manager, Programmer, and
Entrepreneur Must Know to Thrive and Survive in Good Times and Bad, was
published in March 2004. Dr. Cusumano received a B.A. degree from
Princeton in 1976 and a Ph.D. from Harvard in 1984. He completed a
postdoctoral fellowship in production and operations management at
the Harvard Business School from 1984 to 1986. He is fluent in Japanese
and lived and worked in Japan for 7 years. He received two Fulbright
fellowships and a Japan Foundation Fellowship for studying at Tokyo
University.

Mary Ann Davidson is the chief security officer at Oracle Corporation,
responsible for security evaluations, assessments, and incident handling.
As a senior executive in the IT industry she brings both a military and a
business background and in-depth experience with and perspective on
industrial capacity to respond to Defense needs. She represents Oracle on
the board of directors of the Information Technology Information Secu-
rity Analysis Center (IT-ISAC) and is on the editorial review board of the
Secure Business Quarterly. Ms. Davidson has a B.S.M.E. from the University
of Virginia and an M.B.A. from the Wharton School of the University of
Pennsylvania. She has also served as a commissioned officer in the U.S.
Navy Civil Engineer Corps, where she was awarded the Navy Achieve-
ment Medal.

Larry Druffel recently retired as president and CEO of SCRA, a public,
nonprofit research and development corporation engaged in the applica-
tion of advanced technology. He is a member of the board of directors
of Teknowledge Corporation and a member of the advisory board of
Amaix Corporation. He was the director of the Software Engineering
Institute (SEI) at Carnegie Mellon from 1986 to 1996, where he initiated
the Computer Emergency Response Team (CERT) in 1987. Before joining
SEI, he was vice president for business development at Rational Software.
He served on the board of directors of Rational from 1986 to 1995. Dr.
Druffel was on the faculty at the U.S. Air Force Academy. He later man-
aged research programs in advanced software technology at DARPA. He
was founding director of the Ada Joint Program Office and then served
as director of Computer Systems and Software (research and advanced
technology) in the Office of the Secretary of Defense. He is the coauthor
of a computer science textbook and over 35 professional papers, includ-
ing the chapter “Information Warfare” for the ACM fiftieth anniversary
book Beyond Computing. He has a B.S. in electrical engineering from the
University of Illinois, an M.Sc. in computer science from the University of
London, and a Ph.D. in computer science from Vanderbilt University. Dr.
Druffel is a fellow of the IEEE and a fellow of the ACM. He has served on

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

APPENDIX B	 55

engineering advisory boards of the University of South Carolina, Clem-
son, and Embry Riddle University. He was chairman of the board of direc-
tors of the Advanced Technology Institute, a nonprofit R&D corporation.
Dr. Druffel chaired the Air Force Science Advisory Board (AFSAB) study
on information architecture and co-chaired the Defense Science Board’s
study on acquiring defense software commercially. He led the Defensive
Information Warfare Panel for the AFSAB’s New World Vistas. He has
served on numerous AFSAB, DSB, and NRC committees dealing with the
use of information technology, including the NRC study on engineering
challenges to the long term operation of the International Space Station.

Russell Frew is the vice president, programs and technology, for Lock-
heed Martin’s Electronic Systems Business Area (ESBA). In this capacity
he is responsible for overseeing both technology development and pro-
gram performance in the business sector. He is frequently called upon
to lead engineering assistance teams that engage major programs across
the corporation struggling with significant technical and programmatic
issues. In his capacity as the ESBA chief technical officer, he is also respon-
sible for the technology strategy and the investment plan. Additionally,
Mr. Frew has executive responsibility for the Advanced Technology Labo-
ratories in Cherry Hill, New Jersey. From 1999 to late 2003, Mr. Frew was
on special assignment from the MS2 staff to the executive vice president,
ESBA. In this capacity he has led major program tiger teams working on
F/A-22 avionics stability, the F-35 Joint Strike Fighter’s Mission System
redesign, and the F-16 Block 60 Advanced Mission Computer. As part of
the COTS revolution, Mr. Frew authored and leads the Lockheed Mar-
tin Proven Path electronics program. Prior to his appointment as vice
president advanced technology for MS2 in 1999, he spent 18 months as
vice president, technology, for Government Electronics Systems (GES)
in Moorestown, New Jersey. While with GES he managed leap-ahead
technology programs such as COMBATS and InfoScene. From June 1996
to March 1997, Mr. Frew was executive director of the Lockheed Martin’s
Advanced Technology Laboratories (ATL). During his tenure, Mr. Frew
conceived and led a 9-month study for DARPA on collaborative intelligent
software agents. Before that, Mr. Frew managed ATL’s artificial intel-
ligence lab for 8 years and served as a career military officer. The Army
later loaned him to DARPA, where he was one of the original members of
the strategic computing program that defeated Japan’s Fifth Generation
challenge. Mr. Frew is on the board of directors of the ISX Corporation.

James Larus is a research area manager at Microsoft Research. He man-
ages several groups: Advanced Compiler Technology, studying com-
piler and language implement techniques and focused on techniques

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

56	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

for implementing modern, safe language and in compiling for highly
parallel hardware; Human Interaction in Programming, which uses HCI
techniques such as controlled user studies and ethnography to study
software developers, testers, managers, and their teams to produce inno-
vative software development tools that address human and social issues;
Runtime Analysis and Design, which uses runtime program analysis,
including hybrid static-dynamic analysis, statistical sampling, and heap
analysis to improve software quality, security, and performance; Software
Reliability Research, which applies program verification techniques and
software measurement and modeling techniques to improve the quality of
software; and Concurrency Research, which will explore ways to improve
parallel programming. His research centers on Singularity, a project to
focus on the construction of reliable systems through innovation in the
areas of systems, languages, and tools: What would a software platform
look like if it was designed from scratch with the primary goal of depend-
ability? Singularity is working to answer this question by building on
advances in programming languages and tools to develop a new system
architecture and operating system (named Singularity), with the aim of
producing a more robust and dependable software platform. Prior to
joining Microsoft, Dr. Larus was an associate professor in the Computer
Sciences Department at the University of Wisconsin-Madison. He has an
M.S. and Ph.D. in computer science from the University of California at
Berkeley and an A.B. in applied mathematics from Harvard University.

Greg Morrisett is Allen B. Cutting Professor of Computer Science at
Harvard University. His current research interest is in the application
of programming language technology for building secure and reliable
systems. In particular, he is interested in applications of advanced type sys-
tems, model checkers, certifying compilers, proof-carrying code, and inline
reference monitors for building efficient and provably secure systems. He
is also interested in the design and application of high-level languages
for new or emerging domains, such as sensor networks. Dr. Morrisett
received his B.S. in mathematics and computer science from the University
of Richmond (1989) and his Ph.D. in computer science from Carnegie Mel-
lon University (1995). He spent about 7 years on the faculty of the Com-
puter Science Department at Cornell University. In the 2002-2003 academic
year, he took a sabbatical at Microsoft’s Cambridge Research Laboratory.
In January of 2004, he moved to Harvard University.

Walker Royce is the vice president of IBM’s Worldwide Rational Lab
Services. Mr. Royce joined Rational in 1994 and served as vice president
of professional services from 1997 through IBM’s acquisition of Rational
in 2003. Over the last 10 years, he has managed large software engineer-

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

APPENDIX B	 57

ing projects, consulted with a broad spectrum of Rational’s worldwide
customer base, and developed a software management approach that
exploits an iterative life cycle, industry best practices, and architecture-
first priorities. He is the author of Software Project Management, A Unified
Framework (Addison Wesley Longman, 1998) and a principal contributor
to the management philosophy inherent in Rational’s Unified Process.
Before joining Rational, Mr. Royce spent 16 years in software project
development, software technology development, and software manage-
ment roles at TRW Electronics & Defense. He was a recipient of TRW’s
Chairman’s Award for Innovation for his contributions in distributed
architecture middleware and iterative software processes in 1990 and was
named a TRW Technical Fellow in 1992. He received his B.A. in physics
from the University of California and his M.S. in computer information
and control engineering from the University of Michigan.

Douglas C. Schmidt is a professor of computer science and associate chair
of the computer science and engineering program at Vanderbilt Univer-
sity. He has published over 300 technical papers and six books that cover a
range of research topics, including patterns, optimization techniques, and
empirical analyses of software frameworks and domain-specific modeling
environments that facilitate the development of distributed real-time and
embedded (DRE) middleware and applications running over high-speed
networks and embedded system interconnects. Dr. Schmidt has served
as a deputy office director and a program manager at DARPA, where he
led the national R&D effort on middleware for DRE systems. Dr. Schmidt
has also served as the co-chair for the Software Design and Productivity
Coordinating Group of the U.S. government’s multiagency Information
Technology Research and Development Program, which formulated the
multiagency research agenda in software design. In addition to his aca-
demic research and government service, Dr. Schmidt has over 15 years of
experience leading the development of ACE, TAO, CIAO, and CoSMIC,
which are widely used, open-source DRE middleware frameworks and
model-driven tools that contain a rich set of components and domain-
specific languages that implement patterns and product-line architectures
for high-performance DRE systems.

John P. Stenbit, NAE, is an independent consultant. He recently served
as assistant secretary of defense for networks and information integration
and as DoD’s chief information officer. Mr. Stenbit’s career spans more
than 30 years of public and private-sector service in telecommunications
and command and control. In addition to his recent service, his public
service includes 2 years as principal deputy director of telecommunica-
tions and command and control systems, and 2 years as staff specialist

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

58	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

for worldwide command and control systems, both in the Office of the
Secretary of Defense. Mr. Stenbit previously was executive vice president
at TRW, retiring in May 2001. He joined TRW in 1968 and was responsible
for the planning and analysis of advanced satellite surveillance systems.
Prior to joining TRW, he held a position with the Aerospace Corpora-
tion involving command-and-control systems for missiles and satellites,
and satellite data compression and pattern recognition. During this time,
he was a Fulbright Fellow and Aerospace Corporation Fellow at the
Technische Hogeschool, Einhoven, Netherlands, concentrating on cod-
ing theory and data compression. He has served on numerous scientific
boards and advisory committees, including as chair of the Science and
Technology Advisory Panel to the director of central intelligence and as
a member of the Science Advisory Group to the Directors of Naval Intel-
ligence and the Defense Communications Agency.

Kevin J. Sullivan is associate professor and Virginia Engineering Founda-
tion (VEF) endowed faculty fellow in computer science at the University
of Virginia, where he has worked since 1994. His research interests are
mainly in software engineering and languages. He has served as associ-
ate editor for the Journal of Empirical Software Engineering and the ACM
Transactions on Software Engineering and Methodology, and on the program
and executive committees of conferences, including the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, the Interna-
tional Conference on Software Engineering, Aspect-Oriented Software
Development, and ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. He and his students are broadly interested
in the design and engineering of software-intensive systems, with an
emphasis on the need for a value-based theory and practice of system
design. Dr. Sullivan received his undergraduate degree from Tufts Univer-
sity in 1987 and the M.S. and Ph.D. in computer science and engineering
from the University of Washington in 1994.

CSTB Staff

Lynette I. Millett is a senior program officer and study director at the
Computer Science and Telecommunications Board of the National Acad-
emies. She is currently involved in several CSTB projects, including a
comprehensive exploration of biometrics systems, a study of emerging
challenges to sustaining computing performance growth, and an exami-
nation of the Social Security Administration’s electronic services strategy.
Her portfolio includes significant portions of CSTB’s recent work on soft-
ware and on identity systems and privacy. She recently completed the
study that produced Software for Dependable Systems: Sufficient Evidence?
and she was the study director for the project that produced the reports

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

APPENDIX B	 59

Who Goes There? Authentication Through the Lens of Privacy and IDs—Not
That Easy: Questions About Nationwide Identity Systems. She has an M.Sc. in
computer science from Cornell University, along with a B.A. in mathemat-
ics and computer science with honors from Colby College, where she was
elected to Phi Beta Kappa.

Joan D. Winston is a program officer for the Computer Science and
Telecommunications Board of the National Academies. She is currently
involved in CSTB projects assessing e-government strategy, the produc-
ibility of software-intensive systems, and the information technology
R&D ecosystem. Before CSTB, she was an assistant director (Information
Technology Team) at the Government Accountability Office. From 1998
to 2001, she was principal associate at Steve Walker and Associates, LLC,
which managed early-stage venture funds focusing on information tech-
nology. From 1995 to 1998, she was director of policy analysis for Trusted
Information Systems, Inc. From 1986 to 1995, she held various analytical
and project direction positions at the Congressional Office of Technol-
ogy Assessment (OTA) and was named an OTA senior associate in 1993.
Before OTA, she worked briefly for the Congressional Research Service of
the Library of Congress. Ms. Winston started her career as an engineer at
the Charles Stark Draper Laboratory, Inc., in Cambridge, Massachusetts.
She received an S.B. in physics and an S.M. in technology and policy, both
from the Massachusetts Institute of Technology.

Margaret Marsh Huynh, senior program assistant, has been with CSTB
since January 1999 supporting several projects. She is currently support-
ing the projects currently titled Whither Biometrics, Wireless Technology
Prospects and Policy, Advancing Software-Intensive Systems Producibility,
and Assessing the Impacts of Changes in the Information Technology Research
and Development Ecosystem. She previously worked on the projects that
produced the reports Signposts in Cyberspace: The Domain Name Systems
and Internet Navigation; Getting Up to Speed: The Future of Supercomput-
ing; Beyond Productivity: Information Technology, Innovation, and Creativity;
IT Roadmap to a Geospatial Future; Building a Workforce for the Information
Economy; and The Digital Dilemma: Intellectual Property in the Information
Age. Ms. Huynh also assisted with the NTIA workshop on improving
spectrum management through economic and other incentives (2006), the
GAO/NRC forum on information resource management and the paper-
work reduction act (2005), as well as the workshops on IT issues for the
behavioral and social sciences. Prior to coming to the NRC, Ms. Huynh
worked as a meeting assistant at Management for Meetings, April 1998-
August 1998, and as a meeting assistant at the American Society for Civil
Engineers from September 1996 to April 1998. Ms. Huynh has a B.A.
(1990) in liberal studies with minors in sociology and psychology from
Salisbury University, Salisbury, Maryland.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

60

C

Biosketches of Workshop Speakers

Cynthia Andres is a coauthor of Extreme Programming Explained: Embrace
Change, 2nd edition. Her professional interests include team and individual
psychology and facilitating change with large-scale transformative con-
versations. She holds a B.A. in psychology from Pacific Union College
with advanced work in women’s studies at the University of California
at Santa Cruz and psychology at Portland State University.

Kristen J. Baldwin works in the Office of the Under Secretary of Defense,
Acquisition, Technology and Logistics for the Director, Defense Systems.
Ms. Baldwin’s responsibilities span both systems engineering and systems
integration functional areas. She leads the OSD oversight and implemen-
tation of software acquisition process improvement legislation, commonly
referred to as Section 804. Ms. Baldwin formerly developed and man-
aged the Triservice Assessment Initiative, which is a DoD tool for pro-
gram managers to identify and mitigate system risk through independent
expert assessments. Previous assignments in her career include serving
as a science and technology advisor in the Army’s Office of the Deputy
Chief of Staff for Operations and Plans and at the Dismounted Battlespace
Battle Lab at Fort Benning. Ms. Baldwin received a bachelors degree in
mechanical engineering from Virginia Tech in 1990 and a master’s in sys-
tems management from Florida Tech in 1995.

Kent Beck is the founder and director of Three Rivers Institute. His
career has combined the practice of software development with reflection,

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

APPENDIX C	 61

innovation, and communication. His contributions to software develop-
ment include patterns for software, the rediscovery of test-first program-
ming, the xUnit family of developer testing tools, and Extreme Program-
ming. He currently divides his time between writing, programming, and
coaching. Mr. Beck is an author and/or coauthor of Extreme Programming
Explained: Embrace Change, 2nd Edition; Contributing to Eclipse; Test-Driven
Development: By Example; Planning Extreme Programming; The Smalltalk Best
Practice Patterns; and the JUnit Pocket Guide. He received his B.S. and M.S.
in computer science from the University of Oregon.

Kris Britton is the director for the National Security Agency (NSA) Center
for Assured Software. He has been involved with information assurance
issues for the past 15 years, during which time he worked to establish
commercial standards and programs to aid DoD customers in establish-
ing trust in commercial products they purchase. He began his career as
a commercial product evaluator in 1989, focusing on trust in operating
systems and databases using the DoD standard (DoD 5200.28/Orange
Book) and later helped to create the National Information Assurance
Partnership and was named its first technical director. More recently he
has been involved with software assurance issues, specifically working to
evolve the NSA’s software assurance paradigm to address today’s evolv-
ing and complex IT environment.

Mary Ann Davidson is the chief security officer at Oracle Corporation,
responsible for security evaluations, assessments, and incident handling.
As a senior executive in the IT industry she brings both a military and a
business background and in-depth experience with and perspective on
industrial capacity to respond to Defense needs. She represents Oracle on
the board of directors of the Information Technology Information Secu-
rity Analysis Center (IT-ISAC) and is on the editorial review board of the
Secure Business Quarterly. Ms. Davidson has a B.S.M.E. from the University
of Virginia and an M.B.A. from the Wharton School of the University of
Pennsylvania. She has also served as a commissioned officer in the U.S.
Navy Civil Engineer Corps, where she was awarded the Navy Achieve-
ment Medal.

Joe Jarzombek serves as director for software assurance in the Policy
and Strategic Initiatives Branch of the National Cyber Security Division
within the Department of Homeland Security (DHS) and, as such, is the
focal point on software integrity issues. He leads collaborative efforts in
analyzing software life-cycle components, including people, processes,
and technology and identifies areas for software quality and security
improvement with a focus on development, acquisition, and support.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

62	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

Mr. Jarzombek guides DHS initiatives in analyzing and resolving soft-
ware challenges; supports the evolution of policy and guidance on soft-
ware assurance, including assessment of federal policies, procedures, and
evaluation schemes, such as the National Information Assurance Partner-
ship. He functions as DHS coordinator for software quality and acquisi-
tion initiatives; working with other federal agencies, state agencies, and
international allies to focus on identifying and specifying organizational
software-related processes and software-enabled technologies to mitigate
risks attributable to software. Mr. Jarzombek works with federally funded
research and development centers (FFRDCs), consortiums, foundations,
universities, and standards groups to coordinate relevant initiatives and
leverage organizational resources to share best practices, tools, processes,
and research to improve software assurance. He serves as DHS liaison
on government/industry working groups and serves on NIST, IEEE, and
ISO/IEC standards committees and advisory groups, and other execu-
tive groups to ensure software assurance needs are addressed in stan-
dards, best practices, process models and product lifecycle initiatives.
He publishes best practices in software security on the Web site https://
buildsecurityin.us-cert.gov/portal/ as information for developers and
acquisition managers. In working with government/academic/industry
groups, he leads team efforts to develop the Software Assurance Common
Body of Knowledge, which is intended to provide a framework to rec-
ommend updates in curriculum to enhance IT acquisition and software-
related education and training across the federal acquisition workforce
curricula, within universities and colleges, and within industrial training
programs. Mr. Jarzombek has an M.S. in computer information systems
from the Air Force Institute of Technology, Dayton, Ohio; a B.B.A. in data
processing and analysis from the University of Texas, Austin; and a B.A.
in computer science from the University of Texas, Austin, where he was
also an Air Force ROTC distinguished graduate.

Patrick Lardieri is manager of Distributed Processing Programs at the
Lockheed Martin Advanced Technology Laboratory in Cherry Hill, New
Jersey. He has spent over 10 years researching the suitability of open,
standards-based middleware, operating systems, and networks for build-
ing distributed real-time systems. Recently, he has been leading Lockheed
Martin’s Software Technology Initiative, which is focused on developing
technologies for managing the complexity of integrating large-scale soft-
ware systems. He received a master’s in electrical engineering from the
University of Pennsylvania.

Gary McGraw, the CTO of Cigital, Inc., researches software security
and sets technical vision in the area of software quality management.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

APPENDIX C	 63

Dr. McGraw is coauthor of five best-selling books: Exploiting Software
(Addison-Wesley, 2004), Building Secure Software (Addison-Wesley, 2001),
Software Fault Injection (Wiley 1998), Securing Java (Wiley, 1999), and Java
Security (Wiley, 1996). His new book, Software Security: Building Security
In (Addison-Wesley), was released in February 2006. A world authority
on software security, Dr. McGraw consults with major software producers
and consumers. Dr. McGraw has written over 75 peer-reviewed technical
publications and functions as PI on grants from Air Force Research Labo-
ratories, DARPA, the National Science Foundation, and NIST’s Advanced
Technology Program. He serves on advisory boards of Authentica, Coun-
terpane, and Fortify Software, as well as advising the Computer Science
Department at the University of California, Davis, the Computer Science
Department at the University of Virginia, and the School of Informatics at
Indiana University. Dr. McGraw holds a dual Ph.D. in cognitive science
and computer science from Indiana University and a B.A. in philosophy
from the University of Virginia. He is a member of the IEEE Security
and Privacy Task Force, and was recently elected to the IEEE Computer
Society’s board of governors. He writes a monthly security column for the
magazine IT Architect, is the editor of “Building Security In” for IEEE’s
Security & Privacy magazine, and is often quoted in the press.

Richard W. Selby is the head of software products at Northrop Grum-
man Space Technology in Redondo Beach, California. He manages a 250-
person software organization and has served in this position since 2001.
Previously, he was the chief technology officer and senior vice president
at Pacific Investment Management Company (PIMCO) in Newport Beach,
California, where he managed a 105-person organization for 3 years. From
1985 to 1998, he was a full professor of information and computer science
(with tenure) at the University of California at Irvine. Since 2004, he has
held an adjunct faculty position at the University of Southern California
Computer Science Department at Los Angeles. In 1993, he held visiting
faculty positions at the MIT Laboratory for Computer Science and MIT
Sloan School of Management in Cambridge, Massachusetts, and in 1992,
he held a visiting faculty position at the Osaka University Department of
Computer Science in Osaka, Japan. His research focuses on development
and management of large-scale systems, software, and processes. He
has authored over 100 refereed publications and given over 205 invited
presentations at professional meetings. At Northrop, he led the $3 billion
company to a successful enterprise-wide rating of Capability Maturity
Model Integration (CMMI) level 5 for software. He served as the chief
software engineer for the NASA Prometheus spacecraft to Jupiter. He
also received the company’s highest quality award, named after former
President Tim W. Hannemann, for improvements in development, man-

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

64	 SOFTWARE-INTENSIVE SYSTEMS AND UNCERTAINTY AT SCALE

agement, process, and quality. At PIMCO, he led the $1 billion company
to be ranked as the fourth most innovative technology organization in
financial services, according to Wall Street & Technology. At the University
of California, Irvine, he coauthored an international best-selling book that
analyzed Microsoft’s technology, strategy, and management: Microsoft
Secrets: How the World’s Most Powerful Software Company Creates Technol-
ogy, Shapes Markets, and Manages People. The book, written with Michael
Cusumano, has been translated into 12 languages, has 150,000 copies in
print, and was ranked as a #6 best-seller in Business Week. He received
his Ph.D. and M.S. degrees in computer science from the University of
Maryland, College Park, Maryland, in 1985 and 1983, respectively. He
received his B.A. degree in mathematics from St. Olaf College, Northfield,
Minnesota, in 1981.

Alfred Spector, NAE, is currently an independent consultant working
with IBM and a few small companies, and performing some government
service. In his previous position as CTO and vice president of Strategy &
Technology for IBM’s Software Group, Dr. Spector was responsible for its
technical and business strategy, standards, software development meth-
odologies, advanced technology, and cutting-edge technical engagements.
Prior to this position, Dr. Spector was vice president of IBM’s world-
wide services and software research, general manager of marketing and
strategy for IBM’s middleware business, and general manager of IBM’s
transaction software business. Dr. Spector was also the founder and CEO
of Transarc Corporation, a pioneer in distributed transaction processing
and wide-area file systems and a tenured faculty member in the Carnegie
Mellon University computer science department. Dr. Spector received
his Ph.D. in computer science from Stanford University and his A.B. in
applied mathematics from Harvard University. He is recognized for his
contributions to the design, implementation, and commercialization of
reliable, scalable architectures for distributed file systems, transaction sys-
tems, and other applications. Dr. Spector is also an ACM and IEEE fellow
and a recipient of the IEEE Kanai Award in distributed computing.

Werner Vogels is vice president and chief technology officer at Amazon.
com, where he is responsible for driving the technology vision to continu-
ously enhance the innovation on behalf of Amazon’s customers at a global
scale. Prior to joining Amazon, he worked as a research scientist at Cornell
University, where he was a principal investigator in several advanced
research projects that target the scalability and robustness of mission-criti-
cal enterprise computing systems. He has held positions of vice president
of technology and chief technology officer in companies that handled the
transition of academic technology into industry. Dr. Vogels holds a Ph.D.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

APPENDIX C	 65

from the Vrije Universiteit in Amsterdam and has authored a large num-
ber of articles for journals and conferences, most of them on distributed
systems technologies for enterprise computing.

John Vu is a technical fellow at Boeing’s engineering, operations, and
technology. He has worked in various technical and management posi-
tions in Boeing, including computer-aided design and computer-aided
manufacturing supporting the development of the 777 airplane, leading
software and systems process improvement, and managing Boeing global
software outsourcing. Prior to joining Boeing, Mr. Vu worked at Teradyne
Semiconductor; Litton Industries, Motorola, and GTE. He led teams to
build navigation and avionics systems (F-15 and Tomahawk cruise mis-
sile) and design the array processors for several signal processing systems
(AWAC and several space exploration satellites). Mr. Vu is a visiting
scientist at the Software Engineering Institute (SEI), where he focused
on the development and implementation of several capability maturity
models. As senior scientist at Carnegie Mellon University, he is conduct-
ing research on software trends in the industry, such as process improve-
ment, e-business, and outsourcing. He has authored several benchmark-
ing papers on these topics. He published over 40 technical papers on
software and systems engineering disciplines, three books on software
engineering and has presented papers at various software engineering
conferences worldwide. He is a member of the Technical Advisory Board
of IEEE Software, and adjunct faculty at Carnegie Mellon University and
Seattle University.

Copyright © National Academy of Sciences. All rights reserved.

Summary of a Workshop for Software-Intensive Systems and Uncertainty at Scale
http://www.nap.edu/catalog/11936.html

	Front Matter
	1 Introduction and Overview
	2 Summary of Workshop Discussions
	3 Wrap-up Discussion and Emergent Themes
	Appendixes
	A: Workshop Agenda
	B: Biosketches of Committee Members and Staff
	C: Biosketches of Workshop Speakers

