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Preface

Critical systems are often subject to certification: a formal assurance 
that the system has met relevant technical standards designed to 
ensure it will not unduly endanger the public and can be depended 

upon to deliver its intended service safely and securely. Today, certifica-
tion� of the dependability of a software-based system usually relies more 
on assessments of the process used to develop the system than on the 
properties of the system itself. While these assessments can be useful, few 
would dispute that direct observation of the artifact ought to provide a 
stronger kind of assurance than the credentials of its production method. 
Yet the complexity of software systems, as well as the discontinuous way 
they behave, renders them extremely difficult to analyze unless great care 
has been taken with their structure and maintenance.

To further understand these and related issues, the High Confi-
dence Software and Systems (HCSS) Coordinating Group (CG) of the 
National Science and Technology Council’s Networking and Informa-
tion Technology Research and Development (NITRD) Subcommittee ini-
tiated discussions with the Computer Science and Telecommunications 
Board (CSTB) of the National Research Council (NRC). These discussions 
resulted in a study to assess the current state of certification in dependable 
systems with the goal of recommending areas for improvement. Funding 

� The committee uses the term “certification” to refer to the process of assuring that a 
product or process has certain stated properties, which are then recorded in a certificate. 
Certification usually involves assurance by an independent party, although the term is also 
used analogously for customer (second-party) and developer (first-party) assurance.
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viii	 SOFTWARE FOR DEPENDABLE SYSTEMS

for the project was obtained from the following HCSS CG agencies: the 
National Science Foundation, the National Security Agency, the Office of 
Naval Research, and the Federal Aviation Administration.

A committee was formed consisting of 13 experts from industry 
and academia specializing in diverse aspects of systems dependability 
including software engineering, software testing and evaluation, software 
dependability, embedded systems, human-computer interaction, systems 
engineering, systems architecture, accident theory, standards setting, avi-
onics, medicine, economics, security, and regulatory policy (see Appendix 
A for committee and staff biographies).

To accomplish its mission, the committee divided the study into two 
phases: a framing phase and an assessment phase. The framing phase 
culminated in a public workshop in April 2004, attended by members of 
industry, government, and academia. The workshop was organized as a 
series of panel discussions on a variety of topics and was summarized by 
the committee in a subsequent report.�

In the assessment phase of the study, the committee held a series of 
meetings over a 2-year period. Each meeting comprised a day of open 
sessions in which the committee heard opinions and evidence from a 
variety of experts, and 1 or 2 days of closed sessions in which the com-
mittee analyzed the information presented to it and worked to develop a 
view on the state of software dependability and recommendations for the 
future. The chair of the committee also conducted a handful of telephone 
interviews with experts to supplement the material covered during the 
committee’s meetings. 

This report adopts a broad perspective on the question of how soft-
ware might be made dependable in a cost-effective manner rather than 
focusing narrowly on the question of software certification per se. By 
design, this diverse committee represented a range of views on issues, 
and with this wider perspective, the committee found itself confronting 
the perennial dilemmas of software engineering, discussing in a current 
context many of the same issues that have been debated since a seminal 
1968 NATO conference.� In discussions and through the process of writing 
the report, a number of these issues were explored, including the likeli-
hood of catastrophes caused by software; whether formal methods will 
scale to large systems; and the extent to which a manufacturer’s disclaim-

� National Research Council, 2004, Summary of a Workshop on Software Certification and 
Dependability, The National Academies Press, Washington, D.C. Available online at <http://
books.nap.edu/catalog/11133.html>.

� See P. Naur and B. Randell, eds., 1969, “Software engineering: Report on a conference 
sponsored by the NATO Science Committee,” Garmisch, Germany, October 7-11, 1968, 
NATO Scientific Affairs Division, Brussels, Belgium. Available online at <http://homepages.
cs.ncl.ac.uk/brian.randell/NATO/>.
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ing of liability should be seen as undermining any dependability claims 
it makes. Although this study does not attempt to resolve these long-
standing issues, the committee believes that the recommendations and 
approach set forth in this report can be used in the short term to improve 
the dependability of systems and in the longer term to lay the foundation 
for new and more powerful software development methods.

The committee thanks the many individuals who contributed to its 
work. The people who briefed the committee at the workshop and in 
subsequent meetings are listed in Appendix B; we appreciated their will-
ingness to address the questions we posed to them and are grateful for 
their insights. The sponsors of the report have been most supportive and 
responsive in helping the committee to do its work. The reviewers and the 
review monitor, listed below, provided thoughtful and detailed critiques 
that influenced the final form of the report significantly.

 My personal thanks to Martyn Thomas, who from the start took a 
leading role in helping to crystallize the committee’s thinking and shared 
much of the burden of writing and editing the report; to Lynette Millett, 
our study director, for her constructive guidance throughout, for keeping 
us focused, and for her expert editing of the report; to associate program 
officer David Padgham for his meticulous help with the preparation of 
the final version; to our research associate at the start of the study, Phil 
Hilliard, for gathering materials and setting up our infrastructure; to my 
doctoral student, Derek Wayside, for configuring and maintaining the 
committee Wiki; to Liz Fikre of the DEPS editorial staff for her careful and 
clarifying assistance with manuscript preparation; to review monitor Elsa 
Garmire for her thorough and helpful oversight; and to Jon Eisenberg, 
director of the CSTB, for the special interest he has taken in this study and 
the attention and sage advice he has given.

Daniel Jackson, Chair
Committee on Certifiably  

Dependable Software Systems
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Summary

How can software and the systems that rely on it be made depend-
able in a cost-effective manner, and how can one obtain assurance 
that dependability has been achieved? Rather than focusing nar-

rowly on the question of software or system certification per se, this report 
adopts a broader perspective.

A system is dependable when it can be depended on to produce 
the consequences for which it was designed, and no adverse effects, in 
its intended environment. This means, first and foremost, that the term 
dependability has no useful meaning for a given system until these con-
sequences and the intended environment are made explicit by a clear pri-
oritization of the requirements of the system and an articulation of envi-
ronmental assumptions. The effects of software are felt in the physical, 
human, and organizational environment in which it operates, so depend-
ability should be understood in that context and cannot be reduced eas-
ily to local properties, such as resilience to crashing or conformance to a 
protocol. Humans who interact with the software should be viewed not 
as external and beyond the boundary of the software engineer’s concerns 
but as an integral part of the system. Failures involving human operators 
should not automatically be assumed to be the result of errors of usage; 
rather, the role of design flaws should be considered as well as the role of 
the human operator. As a consequence, a systems engineering approach—
which views the software as one engineered artifact in a larger system of 
many components, some engineered and some given, and the pursuit of 
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dependability as a balancing of costs and benefits and a prioritization of 
risks—is vital. 

Unfortunately, it is difficult to assess the dependability of software. 
The field of software engineering suffers from a pervasive lack of evi-
dence about the incidence and severity of software failures; about the 
dependability of existing software systems; about the efficacy of existing 
and proposed development methods; about the benefits of certification 
schemes; and so on. There are many anecdotal reports, which—although 
often useful for indicating areas of concern or highlighting promising 
avenues of research—do little to establish a sound and complete basis 
for making policy decisions regarding dependability. Moreover, there 
is sometimes an implicit assumption that adhering to particular pro-
cess strictures guarantees certain levels of dependability. The committee 
regards claims of extraordinary dependability that are sometimes made 
on this basis for the most critical of systems as unsubstantiated, and per-
haps irresponsible. This difficulty regarding the lack of evidence for sys-
tem dependability leads to two conclusions, reflected in the committee’s 
findings and recommendations below: (1) that better evidence is needed, 
so that approaches aimed at improving the dependability of software can 
be objectively assessed, and (2) that, for now, the pursuit of dependability 
in software systems should focus on the construction and evaluation of 
evidence.

The committee thus subscribes to the view that software is “guilty 
until proven innocent,” and that the burden of proof falls on the devel-
oper to convince the certifier or regulator that the software is dependable. 
This approach is not novel and is becoming standard in the world of sys-
tems safety, in which an explicit safety case (and not merely adherence to 
good practice) is usually required. Similarly, a software system should be 
regarded as dependable only if it has a credible dependability case, the 
elements of which are described below. 

Meeting the burden of proof for dependability will be challenging. 
The demand for credible evidence will, in practice, make it infeasible to 
develop highly dependable systems in a cost-effective way without some 
radical changes in priorities. If very high dependability is to be achieved 
at reasonable cost, the needs of the dependability case will influence 
many aspects of the development, including the choice of programming 
language and the software architecture, and simplicity will be key. For 
high levels of dependability, the evidence provided by testing alone will 
rarely suffice and will have to be augmented by analysis. The ability to 
make independence arguments that allow global properties to be inferred 
from an analysis of a relatively small part of the system will be essential. 
Rigorous processes will be needed to ensure that the chain of evidence for 
dependability claims is preserved.
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The committee also recognized the importance of adopting the prac-
tices that are already known and used by the best developers; this sum-
mary gives a sample of such practices in more detail below. Some of these 
(such as systematic configuration management and automated regression 
testing) are relatively easy to adopt; others (such as constructing hazard 
analyses and threat models, exploiting formal notations when appropri-
ate, and applying static analysis to code) will require new training for 
many developers. However valuable, though, these practices are in them-
selves no silver bullet, and new techniques and methods will be required 
in order to build future software systems to the level of dependability 
that will be required.

Assessment

Society is increasingly dependent on software. Software failures can 
cause or contribute to serious accidents that result in death, injury, signifi-
cant environmental damage, or major financial loss. Such accidents have 
already occurred, and, without intervention, the increasingly pervasive 
use of software—especially in arenas such as transportation, health care, 
and the broader infrastructure—may make them more frequent and more 
serious. In the future, more pervasive deployment of software in the civic 
infrastructure could lead to more catastrophic failures unless improve-
ments are made.

Software, according to a popular view, fails because of bugs: errors in 
the code that cause a program to fail to meet its specification. In fact, only 
a tiny proportion of failures can be attributed to bugs. As is well known to 
software engineers, by far the largest class of problems arises from errors 
made in the eliciting, recording, and analysis of requirements. A second 
major class of problems arises from poor human factors design. The 
two classes are related; bad user interfaces usually reflect an inadequate 
understanding of the user’s domain and the absence of a coherent and 
well-articulated conceptual model. Security vulnerabilities are to some 
extent an exception to this observation: The overwhelming majority of 
security vulnerabilities reported in software products—and exploited to 
attack the users of such products—are at the implementation level. The 
prevalence of code-related problems, however, is a direct consequence of 
higher-level decisions to use programming languages, design methods, 
and libraries that admit these problems.

In systems where software failure could have significant human or 
financial costs, it is crucial that software be dependable—that it can be 
depended upon to function as expected and to not cause or contribute to 
adverse events in the environment in which it operates. Improvements 
in dependability would allow such systems to be used more widely and 
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with greater confidence for the benefit of society. Moreover, software itself 
has great potential to bring improvements in safety in many areas. 

Complete and reliable data about software-related system failures or 
the efficacy of particular software development approaches are hard to 
come by, making objective scientific evaluation difficult. Moreover, the 
lack of systematic reporting of software-related system failures is a seri-
ous problem that makes it more difficult to evaluate the risks and costs 
of such failures and to measure the effectiveness of proposed policies or 
interventions. 

This lack of evidence has two direct consequences for this report. 
First, it has informed the key recommendations in this report regard-
ing the need for evidence to be at the core of dependable software sys-
tem development; for data collection efforts to be established; and for 
transparency and openness to be encouraged. Second, it has tempered 
the committee’s desire to provide prescriptive guidance: The approach 
recommended is therefore largely free of endorsements or criticisms of 
particular development approaches, tools, or techniques. Moreover, the 
report leaves to the developers and procurers of individual systems the 
question of what level of dependability is appropriate, and what costs are 
worth incurring to achieve it.

Nonetheless, the evidence available to the committee did support 
several qualitative conclusions. First, developing software to meet even 
existing dependability criteria is difficult and costly. Large software proj-
ects fail at a high rate, and the cost of projects that do succeed in deliver-
ing highly dependable software is often exorbitant. Second, the quality 
of software produced by the industry is extremely variable, and there is 
inadequate oversight in some critical areas. Today’s certification regimes 
and consensus standards have a mixed record. Some are largely ineffec-
tive, and some are counterproductive. They share a heavy reliance on 
testing, which cannot provide sufficient evidence for the high levels of 
dependability required in many critical applications.

A final observation is that the culture of an organization in which soft-
ware is produced can have a dramatic effect on its quality and depend-
ability. It seems likely that the excellent record of avionics software is due 
in large part to a safety culture in that industry that encourages meticu-
lous attention to detail, high aversion to risk, and realistic assessment of 
software, staff, and process. Indeed, much of the benefit of standards such 
as DO-178B, Software Considerations in Airborne Systems and Equip-
ment Certification, may be due to the safety culture that their strictures 
induce. 
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Toward Certifiably Dependable Software

The focus of this report is a set of fundamental principles that under-
lie software system dependability and that suggest a different approach 
to the development and assessment of dependable software. Due to a 
lack of sufficient data to support or contradict any particular approach, a 
software system may not be declared “dependable” based on the method 
by which it was constructed. Rather, it should be regarded as depend-
able—certifiably dependable—only when adequate evidence has been 
marshaled in support of an argument for dependability that can be inde-
pendently assessed. The goal of certifiably dependable software cannot 
therefore be achieved by mandating particular processes and approaches, 
regardless of their effectiveness in certain situations. Instead, software 
developers should marshal evidence to justify an explicit dependability 
claim that makes clear which properties in the real world the system is 
intended to establish. Such evidence forms a dependability case, and cre-
ating a dependability case is the cornerstone of the committee’s approach 
to developing certifiably dependable software systems.

Explicit Claims, Evidence, and Expertise

The committee’s proposed approach can be summarized in “the three 
Es”—explicit claims, evidence, and expertise: 

•	 Explicit claims. No system can be “dependable” in all respects and 
under all conditions. So to be useful, a claim of dependability must be 
explicit. It must articulate precisely the properties the system is expected 
to exhibit and the assumptions about the system’s environment upon 
which the claim is contingent. The claim should also indicate explicitly the 
level of dependability claimed, preferably in quantitative terms. Different 
properties may be assured to different levels of dependability.

•	 Evidence. For a system to be regarded as dependable, concrete 
evidence must be present that substantiates the dependability claim. This 
evidence will take the form of a dependability case arguing that the 
required properties follow from the combination of the properties of the 
system itself (that is, the implementation) and the environmental assump-
tions. Because testing alone is usually insufficient to establish properties, 
the case will typically combine evidence from testing with evidence from 
analysis. In addition, the case will inevitably involve appeals to the pro-
cess by which the software was developed—for example, to argue that the 
software deployed in the field is the same software that was subjected to 
analysis or testing.
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•	 Expertise. Expertise—in software development, in the domain 
under consideration, and in the broader systems context, among other 
things—is necessary to achieve dependable systems. Flexibility is an 
important advantage of the proposed approach; in particular the devel-
oper is not required to follow any particular process or use any particular 
method or technology. This flexibility allows experts freedom to employ 
new techniques and to tailor the approach to the system’s application and 
domain. But the requirement to produce evidence is highly demanding 
and likely to stretch today’s best practices to their limit. It will therefore 
be essential that developers are familiar with best practices and deviate 
from them only for good reason. 

These prescriptions shape any particular development approach only in 
outline and give considerable freedom to developers in their choice of 
methods, languages, tools, and processes.

This approach is not, of course, a silver bullet. There are no easy solu-
tions to the problem of developing dependable software, and there will 
always be systems that cannot be built to the required level of depend-
ability even using the latest methods. But, the approach recommended is 
aimed at producing certifiably dependable systems today, and the com-
mittee believes it holds promise for developing the systems that will be 
needed in the future.

In the overall context of engineering, the basic tenets of the pro-
posed approach are not controversial, so it may be a surprise to some 
that the approach is not already commonplace. Nor are the elements of 
the approach novel; they have been applied successfully for more than 
a decade. Nevertheless, this approach would require radical changes for 
most software development organizations and is likely to demand exper-
tise that is currently in short supply.

Systems Engineering Approach

Complementing “the three Es” are several systems engineering ideas 
that provide an essential foundation for the building of dependable soft-
ware systems:

•	 Systems thinking.  Engineering fields with long experience in build-
ing complex systems (for example, aerospace, chemical, and nuclear engi-
neering) have developed approaches based on “systems thinking.” These 
approaches focus on properties of the system as a whole and on the 
interactions among its components, especially those interactions (often 
neglected) between a component being constructed and the components 
of its environment. As software has come to be deployed in—indeed has 

Software for Dependable Systems: Sufficient Evidence?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/11923


SUMMARY	 �

enabled—increasingly complex systems, the system aspect has come to 
dominate in questions of software dependability.

•	 Software as a system component.  Dependability is not an intrinsic 
property of software. The committee strongly endorses the perspective 
of systems engineering, which views the software as one engineered arti-
fact in a larger system of many components, some engineered and some 
given, and views the pursuit of dependability as a balancing of costs and 
benefits and a prioritization of risks. A software component that may be 
dependable in the context of one system might not be dependable in the 
context of another.

•	 Humans as components.  People—the operators and users (and even 
the developers and maintainers) of a system—may also be viewed as 
system components. If a system meets its dependability criteria only if 
people act in certain ways, then those people should be regarded as part 
of the system, and an estimate of the probability that they will behave as 
required should be part of the evidence for dependability.

•	 Real-world properties. The properties of interest to the user of a 
system are typically located in the physical world: that a radiotherapy 
machine deliver a certain dose, that a telephone transmit a sound wave 
faithfully, that a printer make appropriate ink marks on paper, and so 
on. The software, on the other hand, is typically specified in terms of 
properties at its interfaces, which usually involve phenomena that are 
not of direct interest to the user: that the radiotherapy machine, tele-
phone, or printer send or receive certain signals at certain ports, with 
the inputs related to the outputs according to some rules. It is important, 
therefore, to distinguish the requirements of a software system, which 
represent these properties in the physical world, from the specification 
of a software system, which characterizes the behavior of the software 
system at its interface with the environment. When the software system 
is itself only one component of a larger system, the other components in 
the system (including perhaps, as explained above, the people who work 
with the system) will be viewed as part of the environment. The depend-
ability properties of a software system, therefore, should be expressed as 
requirements, and the dependability case should demonstrate how these 
properties follow from the combination of the specification and the envi-
ronmental assumptions.

Coping with Complexity

The need for evidence of dependability and the difficulty of pro-
ducing such evidence for complex systems have a straightforward but 
profound implication. Any component for which compelling evidence of 
dependability has been amassed at reasonable cost will likely be small by 
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the standards of most modern software systems. Every critical specifica-
tion property, therefore, will have to be assured by one, or at most a few, 
small components. Sometimes it will not be possible to separate concerns 
so cleanly, and in that case, the dependability case may be less credible or 
more expensive to produce.

As a result, one key to achieving dependability at reasonable cost is a 
serious and sustained commitment to simplicity, including simplicity of 
critical functions and simplicity in system interactions. This commitment 
is often the mark of true expertise. An awareness of the need for simplic-
ity usually comes only with bitter experience and the humility gained 
from years of practice. There is no alternative to simplicity. Advances in 
technology or development methods will not make simplicity redundant; 
on the contrary, they will give it greater leverage. To achieve high levels 
of dependability in the foreseeable future, striving for simplicity is likely 
to be by far the most cost-effective of all interventions. Simplicity is not 
easy or cheap, but its rewards far outweigh its costs.

The most important form of simplicity is that produced by indepen-
dence, in which particular system-level properties are guaranteed by 
individual components much smaller than the system as a whole, which 
can preserve these properties despite failures in the rest of the system. 
Independence can be established in the overall design of the system, 
with the support of architectural mechanisms. Its effect is to dramatically 
reduce the cost of constructing a dependability case for a property, since 
only a relatively small part of the system needs to be considered.

Appropriate simplicity and independence cannot be accomplished 
without addressing the challenges of “interactive complexity” and “tight 
coupling.” Both interactive complexity, where components may interact 
in unanticipated ways, and tight coupling, wherein a single fault cannot 
be isolated but brings about other faults that cascade through the system, 
are correlated with the likelihood of system failure. Software-intensive 
systems tend to have both attributes. Careful attention should therefore 
be paid to the risks of interactive complexity and tight coupling and the 
advantages of modularity, isolation, and redundancy. The interdepen-
dences among components of critical software systems should be ana-
lyzed to ensure that there is no fault propagation path from less critical 
components to more critical components, that modes of failure are well 
understood, and that failures are localized to the greatest extent possible. 
The reduction of interactive complexity and tight coupling can contrib-
ute not only to the improvement of system dependability but also to the 
development of evidence and analysis in the service of a dependability 
case.

Software for Dependable Systems: Sufficient Evidence?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/11923


SUMMARY	 �

Rigorous Process and Preserving the Chain of Evidence

Generating a dependability case after the fact, when a development 
is largely complete, might be possible in theory. But in practice, at least 
with today’s technology, the costs of doing so would be high, and it will 
be practical to develop a dependability case only if the system is built with 
its construction in mind. Each step in developing the software needs to 
preserve the chain of evidence on which will be based the argument that 
the resulting system is dependable. 

At the start, the domain and environmental assumptions and the 
required properties of the system should be made explicit; they should be 
expressed unambiguously and in a form that permits systematic analysis 
to ensure that there are no unresolvable conflicts between the required 
properties. Each subsequent stage of development should preserve the 
evidence chain—that these properties have been carried forward without 
being corrupted—so each form in which the requirements, design, or 
implementation is expressed should support analysis to permit checking 
that the required properties have been preserved. What is sufficient will 
vary with the required dependability, but preserving the evidence chain 
necessitates that the checks are carried out in a disciplined way, following 
a documented procedure, and leaving auditable records.

The Roles of Testing, Analysis, and Formal Methods

Testing is indispensable, and no software system can be regarded as 
dependable if it has not been extensively tested, even if its correctness has 
been proven mathematically. Testing may find flaws that elude analysis 
because it exercises the system in its entirety, whereas analysis must 
typically make assumptions about the execution platform, the external 
environment, and operator responses, any of which may turn out to be 
unwarranted. At the same time, it is important to realize that testing alone 
is rarely sufficient to establish high levels of dependability. It is errone-
ous to believe that a rigorous development process, in which testing and 
code review are the only verification techniques used, justifies claims of 
extraordinarily high levels of dependability. Some certification schemes, 
for example, associate higher safety integrity levels with more burden-
some process prescriptions and imply that following the processes recom-
mended for the highest integrity levels will ensure that the failure rate is 
minuscule. In the absence of a carefully constructed dependability case, 
such confidence is misplaced.

Because testing alone will not be sufficient for the foreseeable future, 
the dependability claim will also require evidence produced by analysis. 
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Moreover, because analysis links the software artifacts directly to the 
claimed properties, the analysis component of the dependability case will 
usually contribute confidence at a lower cost than testing for the highest 
levels of dependability. A dependability case will generally require many 
forms of analysis, including (1) the validation of environmental assump-
tions, use models, and fault models; (2) the analysis of fault tolerance 
measures against fault models; (3) schedulability analysis for temporal 
behaviors; (4) security analysis against attack models; (5) verification 
of code against module specifications; and (6) checking that modules 
in aggregate achieve appropriate system-level effects. These analyses 
will sometimes involve informal argument that is carefully reviewed; 
sometimes mechanical inference (as performed, for example, by “type 
checkers” that confirm that memory is used in a consistent way and 
that boundaries between modules are respected); and, sometimes, formal 
proof. Indeed, the dependability case for even a relatively simple system 
will usually require all of these kinds of analysis, and they will need to 
be fitted together into a coherent whole.

Traditional software development methods rely on human inspec-
tion and testing for validation and verification. Formal methods also use 
testing, but they employ notations and languages that are amenable to 
rigorous analysis, and they exploit mechanical tools for reasoning about 
the properties of requirements, specifications, designs, and code. Prac-
titioners have been skeptical about the practicality of formal methods. 
Increasingly, however, there is evidence that formal methods can yield 
systems of very high dependability in a cost-effective manner, at least 
for small to medium-sized critical systems. Although formal methods are 
typically more expensive to apply when only low levels of dependability 
are required, the cost of traditional methods rises rapidly with the level 
of dependability and often becomes prohibitive. When a highly depend-
able system is required, therefore, a formal approach may be the most 
cost effective.

Certification, Transparency, and Accountability

A variety of certification regimes exist for software in particular appli-
cation domains. For example, the Federal Aviation Authority (FAA) itself 
certifies new aircraft (and air-traffic management) systems that include 
software, and this certification is then relied on by the customers who 
buy and use the aircraft; the National Information Assurance Partnership 
(NIAP) licenses third-party laboratories to assess security software prod-
ucts for conformance to the Common Criteria. Some large organizations 
have their own regimes for certifying that the software products they 
buy meet the organization’s quality criteria, and many software product 
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manufacturers have their own criteria that each version of their product 
must pass before release. 

Few, if any, existing certification regimes encompass the combination 
of characteristics recommended in this report—namely, explicit depend-
ability claims, evidence for those claims, and a rigorous argument that 
demonstrates that the evidence is sufficient to establish the validity of the 
claims. To establish that a system is dependable will involve inspection 
and analysis of the dependability claim and the evidence offered in its 
support. Where the customer for the system is not able to carry out that 
work itself (for lack of time or lack of expertise) it may need to involve 
a third party whose judgment it can rely on to be independent of com-
mercial pressures from the vendor. Certification can take many forms, 
from self-certification by the supplier at one extreme, to independent 
third-party certification by a licensed certification authority at the other. 
No single certification regime is suitable for all circumstances, so a suit-
able scheme should be chosen for each circumstance. Industry groups 
and professional societies should consider developing model certifica-
tion schemes appropriate to their domains, taking account of the detailed 
recommendations in this report.

When choosing suppliers and products, customers and users can 
make informed judgments only if the claims are credible. Such claims are 
unlikely to be credible if the evidence underlying them is not transparent. 
Economists have established that if consumers cannot reliably observe 
quality before they buy, sellers may get little economic benefit from pro-
viding higher quality than their competitors, and overall quality can 
decline. Sellers are concerned about future sales, and “reputation effects” 
compel them to strive to maintain a minimum level of quality. If consum-
ers rely heavily on branding, though, it becomes more difficult for new 
firms to enter the market, and quality innovations spread more slowly.

Those claiming dependability for their software should therefore 
make available the details of their claims, criteria, and evidence. To assess 
the credibility of such details effectively, an evaluator should be able to 
calibrate not only the technical claims and evidence but also the organi-
zation that produced them, because the integrity of the evidence chain 
is vital and cannot easily be assessed without supporting data. This sug-
gests that in some cases data of a more general nature should be made 
available, including the qualifications of the personnel involved in the 
development; the track record of the organization in providing depend-
able software; and the process by which the software was developed. 
The willingness of a supplier to provide such data, and the clarity and 
integrity of the data that the supplier provides, will be a strong indication 
of its attitude to dependability.
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Where there is a need to deploy software that satisfies a particular 
dependability claim, it should always be explicit who is accountable for 
any failure to achieve it. Such accountability can be made explicit in the 
purchase contract, or as part of certification of the software, or as part of 
a professional licensing scheme, or in other ways. Since no single solution 
will suit all the circumstances in which certifiably dependable software 
systems are deployed, accountability regimes should be tailored to par-
ticular circumstances. At present, it is common for software developers 
to disclaim, so far as possible, all liability for defects in their products, to 
a greater extent than customers and society expect from manufacturers in 
other industries. Clearly, no software should be considered dependable if 
it is supplied with a disclaimer that withholds the manufacturer’s com-
mitment to provide a warranty or other remedies for software that fails 
to meet its dependability claims. Determining the appropriate scale of 
remedies, however, was beyond the scope of this study and would require 
a careful analysis of benefits and costs, taking into account not only the 
legal issues but also the state of software engineering, the various submar-
kets for software, the economic impact, and the effect on innovation.

Key Findings and Recommendations

Presented below are the committee’s findings and recommendations, 
each of which is discussed in more detail in Chapter 4.

Findings

Improvements in software development are needed to keep pace 
with societal demands for software. Avoidable software failures have 
already been responsible for loss of life and for major economic losses. 
The quality of software produced by the industry is extremely variable, 
and there is inadequate oversight in several critical areas. More per-
vasive deployment of software in the civic infrastructure may lead to 
catastrophic failures unless improvements are made. Software has the 
potential to bring dramatic benefits to society, but it will not be possible to 
realize these benefits—especially in critical applications—unless software 
becomes more dependable.

More data are needed about software failures and the efficacy of 
development approaches. Assessment of the state of the software indus-
try, the risks posed by software, and progress made is currently hampered 
by the lack of a coherent source of information about software failures. 
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Recommendations to Builders and Users of Software

Make the most of effective software development technologies and 
formal methods. A variety of modern technologies—in particular, safe 
programming languages, static analysis (analysis of software and source 
code done without actually executing the program), and formal meth-
ods—are likely to reduce the cost and difficulty of producing dependable 
software. 

Follow proven principles for software development. The committee’s 
proposed approach also includes adherence to the following principles:

 
•	 Take a systems perspective.  Here the dependability of software is 

viewed not in terms of intrinsic properties (such as the incidence of bugs 
in the code) but rather in terms of the system as a whole, including inter-
actions among people, process, and technology.

•	 Exploit simplicity.  If dependability is to be achieved at reasonable 
cost, simplicity should become a key goal, and developers and customers 
must be willing to accept the compromises it entails. 

Make a dependability case for a given system and context: evidence, 
explicitness, and expertise. A software system should be regarded as 
dependable only if sufficient evidence of its explicitly articulated proper-
ties is presented to substantiate the dependability claim. This approach 
gives considerable leeway to developers to use whatever practices are 
best suited to the problem at hand. In practice the challenges of develop-
ing dependable software are sufficiently great that developers will need 
considerable expertise, and they will have to justify any deviations from 
best practices.

Demand more transparency, so that customers and users can make 
more informed judgments about dependability. Customers and users can 
make informed judgments when choosing suppliers and products only if 
the claims, criteria, and evidence for dependability are transparent. 

Make use of but do not rely solely on process and testing. Testing 
will be an essential component of a dependability case, but will not in 
general suffice, because even the largest test suites typically used will not 
exercise enough paths to provide evidence that the software is correct nor 
will it have sufficient statistical significance for the levels of confidence 
usually desired. Rigorous process is essential for preserving the chain of 
dependability evidence but is not per se evidence of dependability.

Base certification on inspection and analysis of the dependability 
claim and the evidence offered in its support. Because testing and pro-
cess alone are insufficient, the dependability claim will require, in addi-
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tion, evidence produced by other modes of analysis. Security certification 
in particular should go beyond functional testing of the security compo-
nents of a system and assess the effectiveness of measures the developer 
took to prevent the introduction of security vulnerabilities.

Include security considerations in the dependability case. Security 
vulnerabilities can undermine the case made for dependability proper-
ties by violating assumptions about how components behave, about their 
interactions, or about the expected behavior of users. The dependability 
case must therefore account explicitly for security risks that might com-
promise its other aspects. It is also important to ensure that security certi-
fications give meaningful assurance of resistance to attack. New security 
certification regimes are needed that can provide confidence that most 
attacks against certified products or systems will fail. Such regimes can 
be built by applying the other findings and recommendations of this 
report, with an emphasis on the role of the environment—in particular, 
the assumptions made about the potential actions of a hostile attacker and 
the likelihood that new classes of vulnerabilities will be discovered and 
new attacks developed to exploit them.

Demand accountability and make it explicit. Where there is a need 
to deploy certifiably dependable software, it should always be made 
explicit who or what is accountable, professionally and legally, for any 
failure to achieve the declared dependability. 

Recommendations to Agencies and Organizations That Support 
Software Education and Research

The committee was not constituted or charged to recommend budget 
levels or to assess trade-offs between software dependability and other 
priorities. However, it believes that the increasing importance of software 
to society and the extraordinary challenge currently faced in producing 
software of adequate dependability provide a strong rationale for invest-
ment in education and research initiatives. 

Place greater emphasis on dependability—and its fundamen-
tal underpinnings—in the high school, undergraduate, and graduate 
education of software developers. Many practitioners do not have an 
adequate appreciation of the software dependability issues discussed 
in this report, are not aware of the most effective development practices 
available today, or are not capable of applying them appropriately. Wider 
implementation of the committee’s recommended approach, which goes 
beyond today’s state of the practice, implies a need for further education 
and training activities. 

Software for Dependable Systems: Sufficient Evidence?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/11923


SUMMARY	 15

Federal agencies that support information technology research and 
development should give priority to basic research to further software-
enabled system dependability, emphasizing a systems perspective and 
evidence. In keeping with this report’s approach, such research should 
emphasize a systems perspective and “the three Es” (explicit claims, 
evidence, and expertise) and should be informed by a systems view 
that attaches more importance to those advances that are likely to have 
an impact in a world of large systems interacting with other systems 
and operators in a complex physical environment and organizational 
context. 
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Assessment: 
Software Systems and  
Dependability Today 

The software industry is, by most measures, a remarkable success. 
But it would be unwise to be complacent and assume that soft-
ware is already dependable enough or that its dependability will 

improve without any special efforts.
Software dependability is a pressing concern for several reasons:

•	 Developing software to meet existing dependability criteria is 
notoriously difficult and expensive. Large software projects fail at a rate 
far higher than other engineering projects, and the cost of projects that 
deliver highly dependable software is often exorbitant.

•	 Software failures have caused serious accidents that resulted in 
death, injury, and large financial losses. Without intervention, the increas-
ingly pervasive use of software may bring about more frequent and more 
serious accidents.

•	 Existing certification schemes that are intended to ensure the 
dependability of software have a mixed record. Some are largely ineffec-
tive, and some are counterproductive.

•	 Software has great potential to improve safety in many areas. 
Improvements in dependability would allow software to be used more 
widely and with greater confidence for the benefit of society.

This chapter discusses each of these issues in turn. It then discusses 
the committee’s five observations that informed the report’s recommenda-
tions and findings.
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Cost and Schedule Challenges  
in software development 

For many years, international surveys have consistently reported that 
less than 30 percent of commercial software development projects are fin-
ished on time and within budget and satisfy the business requirements. 
The exact numbers are hard to discern and subject to much discussion and 
disagreement, because few surveys publish their definitions, methodolo-
gies, or raw data. However, there is widespread agreement that only a 
small percentage of projects deliver the required functionality, perfor-
mance, and dependability within the original time and cost estimate.

Software project failure has been studied quite widely by govern-
ments, consultancy companies, academic groups, and learned societies. 
Two such studies are one published by the Standish Group and another 
by the British Computer Society (BCS). The Standish Group reported that 
28 percent of projects succeeded, 23 percent were cancelled, and 49 per-
cent were “challenged” (that is, overran significantly or delivered limited 
functionality).� The BCS surveyed� 38 members of the BCS, the Associa-
tion of Project Managers, and the Institute of Management, covering 1,027 
projects in total. Of these, only 130, or 12.7 percent, were successful; of 
the successful projects, 2.3 percent were development projects, 18.2 per-
cent maintenance projects, and 79.5 percent data conversion projects—yet 
development projects made up half the total projects surveyed. That 
means that of the more than 500 development projects included in the 
survey, only three were judged to have succeeded.

The surveys covered typical commercial applications, but applica-
tions with significant dependability demands (“dependable applications,” 
for short) show similar high rates of cancellation, overrun, and in-service 
failure. For example, the U.S. Department of Transportation’s Office of 
the Inspector General and the Government Accountability Office track the 
progress of all major FAA acquisition projects intended to modernize and 
add new capabilities to the National Airspace System. As of May 2005, 
of 16 major acquisition projects being tracked, 11 were over budget, with 
total cost growth greater than $5.6 billion; 9 had experienced schedule 
delays ranging from 2 to 12 years; and 2 had been deferred.� Software is 
cited as the primary reason for these problems.

� Robert L. Glass, 2005, “IT failure rates—70 percent or 10-15 percent?” IEEE Software 
22(3):112.

� Andrew Taylor, 2001, “IT projects sink or swim,” Based on author’s M.B.A. dissertation, 
BCS Review.

� DOT, Office of the Inspector General, 2005, “Status of FAA’s major acquisitions: Cost 
growth and schedule delays continue to stall air traffic modernization,” Report Number 
AV-2005-061, May 26.
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An Air Force project that has been widely studied and reported illus-
trates the difficulty of developing dependable software using the methods 
currently employed by industry leaders. The F/A-22 aircraft has been 
under development since 1986. Much of the slow pace of development 
has been attributed to the difficulty of making the complex software 
dependable.� The instability of the software has often been cited as a cause 
of schedule delays�,� and the loss of at least one test aircraft.� The inte-
grated avionics suite for the F/A-22 is reported to have been redesigned 
as recently as August 2005 to improve stability, among other things.�

The similarly low success rates in both typical and dependable appli-
cations is unsurprising, because dependable applications are usually 
developed using methods that do not differ fundamentally from those 
used commercially. The developers of dependable systems carry out far 
more reviews, more documentation, and far more testing, but the under-
lying methods are the same. The evidence is clear: These methods cannot 
dependably deliver today’s complex applications, let alone tomorrow’s 
even more complex requirements.

It must not be forgotten that creating dependable software systems 
itself has economic consequences. Consider areas such as dynamic rout-
ing in air traffic control, where there are not only significant opportunities 
to improve efficiency and (arguably) safety, but also great risks if auto-
mated systems fail. 

disruptions and Accidents due to Software

The growing pervasiveness and centrality of software in our civic 
infrastructure is likely to increase the severity and frequency of accidents 
that can be attributed to software. Moreover, the risk of a major catas-
trophe in which software failure plays a part is increasing, because the 
growth in complexity and invasiveness of software systems is not being 
matched by improvements in dependability.

Software has already been implicated in cases of widespread eco-
nomic disruption, major losses to large companies, and accidents in which 

� Michael A. Dornheim, 2005, “Codes gone awry,” Aviation Week & Space Technology, Febru-
ary 28, p. 63.

� Robert Wall, 2003, “Code Red emergency,” Aviation Week & Space Technology, June 9, pp. 
35-36.

� General Accounting Office, 2003, “Tactical aircraft, status of the F/A-22 program: State-
ment of Allen Li, director, Acquisition and Sourcing Management,” GAO-33-603T, April 2.

� U.S. Air Force, “Aircraft accident investigation,” F/A-22 S/N 00-4014. Available online at 
<http://www.airforcetimes.com/content/editorial/pdf/af.exsum_f22crash_060805.pdf>.

� Stephen Trimble, 2005, “Avionics redesign aims to improve F/A-22 stability,” Flight 
International, August 23.
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hundreds of people have been killed. Accidents usually have multiple 
causes, and software is rarely the sole cause. But this is no comfort. On 
the contrary, software can (and should) reduce, rather than increase, the 
risks of system failures.

The economic consequences of security failures in desktop software 
have been severe to date. Several individual viruses and worms have 
caused events where damage was assessed at over $1 billion each—Code 
Red was assessed at $2.75 billion worldwide�—and two researchers have 
estimated that a worst-case worm could cause $50 billion in damage.10 
One must also consider the aggregated effect of minor loss and inconve-
nience inflicted on large numbers of people. In several incidents in the last 
few years, databases containing the personal information of thousands of 
individuals—such as credit card data—were breached. Security attacks 
on personal computers are now so prevalent that according to some esti-
mates, a machine connected to the Internet without appropriate protec-
tion would be compromised in under 4 minutes,11 less time than it takes 
to download up-to-date security patches. 

In domains where attackers may find sufficient motivation, such as the 
handling of financial records or the management of critical infrastructures, 
and with the growing risk and fear of terrorism and the evolution of mass 
network attacks, security has become an important concern. For example, 
as noted elsewhere, in the summer of 2005, radiotherapy machines in 
Merseyside, England, and in Boston were attacked by computer viruses. 
It makes little sense to invest effort in ensuring the dependability of a 
system while ignoring the possibility of security vulnerabilities. A basic 
level of security—in the sense that a software system behaves properly 
even in the presence of hostile inputs from its environment—should be 
required of any software system that is connected to the Internet, used to 
process sensitive or personal data, or used by an organization for its criti-
cal business or operational functions.

Automation tends to reduce the probability of failure while increas-
ing its severity because it is used to control systems when such control 
is beyond the capabilities of human operators without such assistance.12 

� See Computer Economics, 2003, “Virus attack costs on the rise—Again,” Figure 1. Available 
online at <http://www.computereconomics.com/article.cfm?id=873>.

10 Nicholas Weaver and Vern Paxson, 2004, “A worst-case worm,” Presented at the Third 
Annual Workshop on Economics and Information Security (WEIS04), March 13-14. Available 
online at <http://www.dtc.umn.edu/weis2004/weaver.pdf>.

11 Gregg Keizer, 2004, “Unprotected PCs fall to hacker bots in just four minutes,” Tech Web, 
November 30. Available online at <http://www.techweb.com/wire/security/54201306>. 

12 N. Sarter, D.D. Woods, and C. Billings, 1997, “Automation surprises,” Handbook of Human 
Factors/Ergonomics, 2nd ed., G. Salvendy, ed., Wiley, New York. (Reprinted in N. Moray, ed., 
Ergonomics: Major Writings, Taylor & Francis, Boca Raton, Fla., 2004.)
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Aviation, for example, is no exception, and current trends—superairlin-
ers, free flight, greater automation, reduced human oversight in air-traffic 
control, and so on—increase the potential for less frequent but more seri-
ous accidents. High degrees of automation can also reduce the ability of 
human operators to detect and correct mistakes. In air-traffic control, for 
example, there is a concern that the failure of a highly automated system 
that guides aircraft, even if detected before an accident occurs, might 
leave controllers in a situation beyond their ability to resolve, with more 
aircraft to consider, and at smaller separations than they can handle. There 
is also a legitimate concern that a proliferation of safety devices itself cre-
ates new risks. The traffic alert and collision avoidance system (TCAS), 
an onboard collision avoidance system now mandatory on all commercial 
aircraft,13 has been implicated in at least one near miss.14

Hazardous Materials

The potential for the worst software catastrophes resulting in thou-
sands of deaths lies with systems involving hazardous materials, most 
notably plants for nuclear power, chemical processing, storing lique-
fied natural gas, and other related storage and transportation facilities. 
Although software has not been implicated in disasters on the scale of 
those in Chernobyl15 or Bhopal,16 the combination of pervasive software 
and high risk is worrying. Software is used pervasively in plants for moni-
toring and control in distributed control systems (DCS) and supervisory 
control and data acquisition (SCADA) systems. According to the EPA,17 
123 chemical plants in the United States could each expose more than a 
million people if a chemical release occurred, and a newspaper article 
reports that a plant in Tennessee gave a worst-case estimate of 60,000 
people facing death or serious injury from a vapor cloud formed by an 

13 For more information on TCAS, see the FAA’s “TCAS home page.” Available online at 
<http://adsb.tc.faa.gov/TCAS.htm>.

14 N. Sarter, D.D. Woods, and C. Billings, 1997, “Automation surprises,” Handbook of Human 
Factors/Ergonomics, 2nd ed., G. Salvendy, ed., Wiley, New York. (Reprinted in N. Moray, ed., 
Ergonomics: Major Writings, Taylor & Francis, Boca Raton, Fla., 2004.)

15 See the Web site “Chernobyl.info: The international communications platform on the 
long-term consequences of the Chernobyl disaster” at <http://www.chernobyl.info/>.

16 See BBC News’ “One night in Bhopal.” Available online at <http://www.bbc.co.uk/ 
bhopal>.

17 See U.S. General Accounting Office, 2004, “Federal action needed to address security 
challenges at chemical facilities,” Statement of John B. Stephenson before the Subcommit-
tee on National Security, Emerging Threats, and International Relations, Committee on 
Government Reform, House of Representatives (GAO-04-482T), p. 3. Available online at 
<http://www.gao.gov/new.items/d04482t.pdf>.
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accidental release of sulfur dioxide.18 Railways already make extensive 
use of software for signaling and safety interlocks, and the use of software 
for some degree of remote control of petrochemical tanker trucks (e.g., 
remote shutdown in an emergency) is being explored.19

Aviation

Smaller but still major catastrophes involving hundreds rather than 
thousands of deaths have been a concern primarily in aviation. Commer-
cial flight is far safer than other means of travel, and the accident rate per 
takeoff and landing, or per mile, is extremely small (although accident 
rates in private and military aviation are higher). Increasing density of 
airspace use and the development of airliners capable of carrying larger 
numbers of passengers pose greater risks, however.

Although software has not generally been directly blamed for an avia-
tion disaster, it has been implicated in some accidents and near misses. 
The 1997 crash of a Korean Airlines 747 in Guam resulted in 200 deaths 
and would almost certainly have been avoided had a minimum safe 
altitude warning system been configured correctly.20 Several aircraft acci-
dents have been attributed to “mode confusion,” where the software oper-
ated as designed but not as expected by the pilots.21 Several incidents in 
2005 further illustrate the risks posed by software:

•	 In February 2005, an Airbus A340-642 en route from Hong Kong 
to London suffered from a failure in a data bus belonging to a computer 
that monitors and controls fuel levels and flow. One engine lost power 
and a second began to fluctuate; the pilot diverted the aircraft and landed 
safely in Amsterdam. The subsequent investigation noted that although 
a backup slave computer was available that was working correctly, the 
failing computer remained selected as the master due to faulty logic in the 
software. A second report recommended an independent low-fuel warn-
ing system and noted the risks of a computerized management system 

18 See James V. Grimaldi and Guy Gugliotta, 2001, “Chemical plants feared as targets,” 
Washington Post, December 16, p. A01. 

19 See “Tanker truck shutdown via satellite,” 2004, GPS News, November. Available online 
at <http://www.spacedaily.com/news/gps-03zn.html>.

20 For more information, see the National Transportation Safety Board’s formal report on 
the accident. Available online at <http://www.ntsb.gov/Publictn/2000/AAR0001.htm>.

21 See NASA’s “FM program: Analysis of mode confusion.” Available online at <http://
shemesh.larc.nasa.gov/fm/fm-now-mode-confusion.html>; updated August 6, 2001.
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that might fail to provide crew with appropriate data, preventing them 
from taking appropriate actions.22

•	 In August 2005, a Boeing 777-200 en route from Perth to Kuala 
Lumpur presented the pilot with contradictory reports of airspeed: that 
the aircraft was overspeed and at the same time at risk of stalling. The 
pilot disconnected the autopilot and attempted to descend, but the auto-
throttle caused the aircraft to climb 2,000 ft. He was eventually able to 
return to Perth and land the aircraft safely. The incident was attributed to 
a failed accelerometer. The air data inertial reference unit (ADIRU) had 
recorded the failure of the device in its memory, but because of a software 
flaw, the unit failed to recheck the device’s status after power cycling.23

•	 In October 2005, an Airbus A319-131 flying from Heathrow to 
Budapest suffered a loss of cockpit power that shut down not only avi-
onics systems but even the radio and transponder, preventing the pilot 
from issuing a Mayday call. At the time of writing, the cause has not been 
determined. An early report in the subsequent investigation noted, how-
ever, that an action was available to the pilots that would have restored 
power, but it was not shown on the user interface due to its position on 
a list, and a software design that would have required items higher on 
the list to be manually cleared in order for that available action to be 
shown.24

Perhaps the most serious software-related near miss incident to date 
occurred on September 14, 2004. A software system at the Los Angeles Air 
Route Traffic Control Center in Palmdale, California, failed, preventing 
any voice communication between controllers and aircraft. The center is 
responsible for aircraft flying above 13,000 ft in a wide area over southern 
California and adjacent states, and the outage disrupted about 800 flights 
across the country. According to the New York Times, aircraft violated 
minimum separation distances at least five times, and it was only due 
to onboard collision detection systems (i.e., TCAS systems) that no colli-
sions actually occurred. The problem was traced to a bug in the software, 
in which a countdown timer reaching zero shut down the system.25 The 

22 See Air Accidents Investigation Branch (AAIB) Bulletin S1/2005–SPECIAL (Ref: EW/
C2005/02/03). Available online at <http://www.aaib.dft.gov.uk/cms_resources/G-VATL_
Special_Bulletin1.pdf>.

23 See Aviation Safety Investigation Report—Interim Factual, Occurrence Number 
200503722. November 2006. Available online at <http://www.atsb.gov.au/publications/
investigation_reports/2005/AAIR/aair200503722.aspx>.  

24 See AAIB Bulletin S3/2006 SPECIAL (Ref. EW/C2005/10/05). Available online at 
<http://www.aaib.dft.gov.uk/cms_resources/S3-2006%20G-EUOB.pdf>. 

25 L. Geppert, 2004, “Lost radio contact leaves pilots on their own,” IEEE Spectrum 
41(11):16-17.
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presence of the bug was known, and the FAA was in the process of dis-
tributing a patch. The FAA ordered the system to be restarted every 30 
days in the interim, but this directive was not followed. Worryingly, a 
backup system that should have taken over also failed within a minute of 
its activation. This incident, in common with the hospital system failure 
described in the next section, illustrates the greater risk that is created 
when services affecting a large area or many people are centralized in a 
single system, which then becomes a single point of failure.

Medical Devices and Systems

Medical devices such as radiation therapy machines and infusion 
pumps are potentially lethal. Implanted devices pose a particular threat, 
because although a single failure affects only one user, a flaw in the 
software of a device could produce failures across the entire population 
of users. Safety recalls of pacemakers and implantable cardioverter-defi-
brillators due to firmware (that is, software) problems between 1990 and 
2000 affected over 200,000 devices, comprising 41 percent of the devices 
recalled and are increasing in frequency.26 In the 20-year period from 1985 
to 2005, the FDA’s Maude database records almost 30,000 deaths and 
almost 600,000 injuries from device failures.27

In a study the FDA conducted between 1992 and 1998, 242 out of 3,140 
device recalls (7.7 percent) were found to be due to faulty software.28 Of 
these, 192—almost 80 percent—were caused by defects introduced dur-
ing software maintenance.29 The actual incidence of failures in medical 
devices due to software is probably much higher than these numbers sug-
gest, as evidenced by a GAO study30 that found extensive underreporting 
of medical device failures in general. 

26 William H. Maisel, Michael O. Sweeney, William G. Stevenson, Kristin E. Ellison, Laurence 
M. Epstein, 2001, “Recalls and safety alerts involving pacemakers and implantable cardioverter-
defibrillator generators,” Journal of the American Medical Association 286:793-799.

27 FDA, 2006, Ensuring the Safety of Marketed Medical Devices: CDRH’s Medical Device Post-
market Safety Program. January.

28 Insup Lee and George Pappas, 2006, Report on the High-Confidence Medical-Device Software 
and Systems (HCMDSS) Workshop. Available online at <http://rtg.cis.upenn.edu/hcmdss/
HCMDSS-final-report-060206.pdf>.

29 In addition, it should be noted that delays in vendor testing and certification of patches 
often make devices (and therefore even entire networks) susceptible to worms and other 
malware.

30 GAO, 1986, “Medical devices: Early warning of problems is hampered by severe under-
reporting,” U.S. Government Printing Office, Washington, D.C., GAO publication PEMD-87-
1. For example, the study noted that of over 1,000 medical device failures surveyed, 9 percent 
of which caused injury and 37 percent of which had the potential to cause death or serious 
injury, only 1 percent were reported to the FDA.
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Indeed, software failures have been responsible for some notable 
catastrophic device failures, of which perhaps the best known are fail-
ures associated with radiotherapy machines that led to patients receiving 
massive overdoses. The well-documented failure of the Therac-25, which 
led to more than five deaths between 1985 and 1987, exposed not only 
incompetence in software development but also a development culture 
unaware of safety issues.31 A very similar accident in Panama in 200132 
suggests that these lessons were not universally applied.33 

As software becomes more pervasive in medicine, and reliance is 
placed not only on the software that controls physical processes but also 
on the results produced by diagnostic and scanning devices, the opportu-
nity for software failures with lethal consequences will grow. In addition, 
software used for data management, while often regarded as noncritical, 
may in fact pose risks to patients that are far more serious than those 
posed by physical devices. Most hospitals are centralizing patient records 
and moving toward a system in which all records are maintained elec-
tronically. The failure of a hospital-wide database brings an entire hospital 
to a standstill, with catastrophic potential. Such failures have already been 
reported.34 

An incident reported by Cook and O’Connor is indicative of the kinds 
of risks faced. A software failure in a pharmacy database in a tertiary-care 
hospital in the Chicago area made all medication records inaccessible 

31 See Nancy Leveson and Clark S. Turner, 1993, “An investigation of the Therac-25 
accidents,” IEEE Computer 26(7):18-41.

32 See International Atomic Energy Agency (IAEA), 2001, “Investigation of an accidental 
exposure of radiotherapy patients in Panama: Report of a team of experts,” International 
Atomic Energy Agency, Vienna, Austria. Available online at <http://www-pub.iaea.org/
MTCD/publications/PDF/Pub1114_scr.pdf>.

33 A number of studies have investigated challenges related to infusion devices. See R.I. 
Cook, D.D. Woods, and M.B. Howie, 1992, “Unintentional delivery of vasoactive drugs with 
an electromechanical infusion device,” Journal of Cardiothoracic and Vascular Anesthesia 6:238-
244; M. Nunnally, C.P. Nemeth, V. Brunetti, and R.I. Cook, 2004, “Lost in menuspace: User 
interactions with complex medical devices,” IEEE Transactions on Systems, Man and Cyber-
netics—Part A: Systems and Humans 34(6):736-742; L. Lin, R. Isla, K. Doniz, H. Harkness, K. 
Vicente, and D. Doyle, 1998, “Applying human factors to the design of medical equipment: 
Patient controlled analgesia,” Journal of Clinical Monitoring 14:253-263; L. Lin, K. Vicente, and 
D.J. Doyle, 2001, “Patient safety, potential adverse drug events, and medical device design: 
A human factors engineering approach,” Journal of Biomedical Informatics 34(4):274-284; R.I. 
Cook, D.D. Woods, and C. Miller, 1998, A Tale of Two Stories: Contrasting Views on Patient 
Safety, National Patient Safety Foundation, Chicago, Ill., April. Available online at <http://
www.npsf.org/exec/report.html>.

34 See, for example, Peter Kilbridge, 2003, “Computer crash: Lessons from a system fail-
ure,” New England Journal of Medicine 348:881-882, March 6; Richard Cook and Michael 
O’Connor, “Thinking about accidents and systems,” forthcoming, in K. Thompson and H. 
Manasse, eds., Improving Medication Safety, American Society of Health-System Pharmacists, 
Washington, D.C.

Software for Dependable Systems: Sufficient Evidence?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/11923


ASSESSMENT	 25

for almost a day. The pharmacy relied on this database for selecting and 
distributing medications throughout the hospital and was only able to 
continue to function by collecting paper records from nurses’ stations 
and reentering all the data manually. Had the paper records not been 
available, the result would have been catastrophic. Although no patients 
were injured, Cook and O’Connor were clear about the significance of the 
event: “Accidents are signals sent from deep within the systems about the 
sorts of vulnerability and potential for disaster that lie within.”35 

In many application areas, effectiveness and safety are clearly dis-
tinguished from each other. In medicine, however, the distinction can be 
harder to make. The accuracy of the data produced by medical informa-
tion systems is often critical, and failure to act in a timely fashion can be 
as serious as failure to prevent an accident. Moreover, the integration of 
invasive devices with hospital networks will ultimately erase the gap 
between devices and databases, so that failures in seemingly unimportant 
back-office applications might compromise patient safety. Networking 
also makes hospital systems vulnerable to security attacks; in the summer 
of 2005, radiotherapy machines in Merseyside, England36 were attacked 
by a computer virus. In contrast to the problem described above, this 
attack affected availability, not the particular treatment delivered.

Computerized physician order entry (CPOE) systems are widely used 
and can reduce the incidence of medical errors as well as bring efficiency 
improvements. The ability to take notes by computer rather than by 
hand and instantly make such information available to others of the 
medical team can save lives. The ability to record prescriptions the minute 
they are prescribed, and the automated checking of these prescriptions 
against others the patient is taking, reduces the likelihood of interactions. 
The ability to make a tentative diagnosis and instantly receive informa-
tion on treatment options clearly improves efficiency. But one study37 
suggests that poorly designed and implemented systems can actually 
facilitate medication errors. User interfaces may be poorly designed and 
hard to use, and important functions that once, before computerization, 
were implemented by other means may be missing. Moreover, users can 

35 Richard Cook and Michael O’Connor, “Thinking about accidents and systems,” forth-
coming, in K. Thompson and H. Manasse, eds., Improving Medication Safety, American 
Society of Health-System Pharmacists, Washington, D.C., p. 15. Available online at <http://
www.ctlab.org/documents/ASHP_chapter.pdf>.

36 BBC News, 2005, “Hospital struck by computer virus,” August 22. Available online at 
<http://news.bbc.co.uk/1/hi/england/merseyside/4174204.stm>.

37 Ross Koppel, Joshua P. Metlay, Abigail Cohen, Brian Abaluck, A. Russell Localio, Ste-
phen E. Kimmel, and Brian L. Strom, 2005, “Role of computerized physician order en-
try systems in facilitating medication errors,” Journal of the American Medical Association 
293(10):1197-1203.
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become reliant on the information such systems provide, even to the point 
of using it for invalid purposes (for example, using doses in the pharmacy 
database to infer normative ranges).

The usability of medical information systems is an important con-
sideration as poor usability may not only lead to accidents but may also 
reduce or even eliminate efficiency gains and lower the quality of care. 
If an information system is not designed to carefully represent complex 
traditional procedures in digital form, information may be lost or misrep-
resented. Moreover, avenues for data entry by physicians need to ensure 
that the physicians are able to pay sufficient attention to the patient and 
pick up any subtle cues about the illness without being distracted by the 
computer and data entry process. 

Many of these challenges might stem from organizational control 
issues—centralized and rigid design that fails to recognize the nature of 
practice,38 central rule-making designed to limit clinical choices, insur-
ance requirements that bin various forms of a particular condition in a 
way that fails to individualize treatment, and insufficient assessment 
after deployment. However, technology plays a role in poorly designed 
and inefficient user interfaces as well. Although the computerization of 
health care can offer improvements in safety and efficiency, care is needed 
so that computerization does not undermine the safety of existing manual 
procedures. In the medical device industry, for example, while many of 
the largest manufacturers have well-established safety programs, smaller 
companies may face challenges with respect to safety, perhaps because 
they lack the necessary resources and expertise.39 

Infrastructure

By enhancing communication and live data analysis, software offers 
opportunities for efficiency improvements in transportation and other 
infrastructure. Within a decade or two, for example, traffic flow may be 
controlled by extensive networks of monitors, signals, and traffic advi-
sories sent directly to cars.40 A major, sustained failure of such a system 
might be catastrophic. For critical functions such as ambulance, fire, and 
police services, any failure has catastrophic potential. The failure of even 

38 See Kathryn Montgomery, 2006, How Doctors Think, Clinical Judgment and the Practice of 
Medicine, Oxford University Press, Oxford, United Kingdom.

39 A recent FDA report estimates that there are about 15,000 manufacturers of medical 
devices and notes that “these small firms may lack the experience to anticipate, recognize, 
or address manufacturing problems that may pose safety concerns.” Ensuring the Safety of 
Marketed Medical Devices: CDRH’s Medical Device Postmarket Safety Program, January 2006.

40 See ongoing work at <http://www.foresight.gov.uk/Intelligent_Infrastructure_Systems/
Index.htm>.
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one component, such as the dispatch system, can have significant reper-
cussions; the infamous collapse of the London Ambulance System41 dem-
onstrated how vulnerable such a system is just to failures of availability.

Software is a key enabler for greater fuel efficiency; modern cars rely 
heavily on software for engine control, and in some cars, control is largely 
by electrical rather than mechanical means. However, software flaws might 
cause a car to fail to respond to commands or even to shut down entirely. 
Whereas mechanical failures are often predictable (through evidence of 
wear, for example), software failures can be sudden and unexpected and, 
due to coupling, can have far-reaching effects. In 2005, for example, Toyota 
identified a software flaw that caused Prius hybrid cars to stall or shut 
down when traveling at high speed; 23,900 vehicles were affected.42 

In the realm of communications infrastructure, advances in telecom-
munications have resulted in lower costs, greater flexibility, and huge 
increases in bandwidth. These improvements have not, however, been 
accompanied by improvements in robustness. Cell phone networks have 
a different—not necessarily improved—vulnerability posture than con-
ventional landline systems, and even the Internet, despite its redundan-
cies, may be susceptible to failure under extreme load.43 The disaster on 
September 11 and Hurricane Katrina were both exacerbated by failures of 
communication systems.44

Defense

The U.S. military is a large, if not the largest, user of information tech-
nology and software. Failures in military systems, as one might expect, 
can have disastrous consequences:

A U.S. soldier in Afghanistan used a Precision Lightweight GPS Re-
ceiver—a “plugger”—to set coordinates for an air strike. He then saw 

41 D. Page, P. Williams, and D. Boyd, 1993, Report of the Inquiry into the London Ambu-
lance Service, Communications Directorate, South West Thames Regional Health Au-
thority, London, February. Available online at <http://www.cs.ucl.ac.uk/staff/ 
A.Finkelstein/las/lascase0.9.pdf>.

42 Sholnn Freeman, 2005, “Toyota attributes Prius shutdowns to software glitch,” 
Wall Street Journal, May 16. Available online at <http://online.wsj.com/article_print/
SB111619464176634063.html>.

43 For a discussion of how the traditional landline phone system and the Internet man-
age congestion and other issues, see National Research Council, 1999, Trust in Cyberspace, 
National Academy Press, Washington, D.C. Available online at <http://books.nap.edu/
catalog.php?record_id=6161>.

44 For more information on communications relating to September 11, 2001, see National 
Research Council, 2003, The Internet Under Crisis Conditions: Learning from September 11, The 
National Academies Press, Washington, D.C. Available online at <http://books.nap.edu/
catalog.php?record_id=10569>.
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that the “battery low” warning light was on. He changed the battery, 
then pressed “Fire.” The device was designed, on starting or resuming 
operation after a battery change, to initialize the coordinate variables to 
its own location.45 

It was reported that three soldiers were killed in this incident.46 The 
error appears to have been the result of failing to consider the larger sys-
tem when defining the safety properties that guided the design of the soft-
ware. Hazard analysis should have revealed the danger of transmitting 
the location of the plugger as the destination for a missile strike, and once 
the hazard had been identified, it would be straightforward to specify a 
system property that required (for example) that the specified target be 
more than some specified (safe) distance away, and that this be checked 
by the software before the target coordinates are transmitted.

Defense systems with high degrees of automation are inherently risky. 
The Patriot surface-to-air missile, for example, failed with catastrophic 
effect on several occasions. An Iraqi Scud missile hit the U.S. barracks in 
Dhahran, Saudi Arabia, in February 1991, killing 28 soldiers; a govern-
ment investigation47 found that a Patriot battery failed to intercept the 
missile because of a software error. U.S. Patriot missiles downed a British 
Tornado jet and an American F/A-18 Hornet in the Iraq war in 2003.

Distribution of Energy and Goods

Software failures could also interrupt the distribution of goods and 
services, such as gasoline, food, and electricity. An extended blackout 
during wintertime in a cold area of the United States would be an emer-
gency. The role of software in the blackout in the Northeast in 2003 is 
complicated, but at the very least it seems clear that had the software 
monitoring system correctly identified the initial overload, it could have 
been contained without leading to systemwide failure.48

Apart from experiencing functional failures or design flaws, software 
is also vulnerable to malicious attacks. The very openness and ubiquity 
that makes networked systems attractive exposes them to attack by van-

45 From page 83 in Michael Jackson, 2004, “Seeing more of the world,” IEEE Software 
21(6):83-85. Available online at <http://mcs.open.ac.uk/mj665/SeeMore3.pdf>.

46 Vernon Loeb, 2002, “‘Friendly fire’ deaths traced to dead battery: Taliban targeted, but 
US forces killed,” Washington Post, March 24, p. A21.

47 GAO, 1992, Patriot Missile Software Problem, Report of the Information Management 
and Technology Division. Available online at <http://www.fas.org/spp/starwars/gao/
im92026.htm>.

48 See Charles Perrow, 2007, The Next Catastrophe: Reducing our Vulnerabilities to Natural, 
Industrial, and Terrorist Disasters, Princeton University Press, Princeton, N.J., Chapter 7.
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dals or criminals. The trend to connecting critical systems to the Internet 
is especially worrying, because it often involves placing in a new and 
unknown environment a program whose design assumed that it would 
be running on an isolated computer. In the summer of 2005, two sepa-
rate incidents were reported wherein radiotherapy systems were taken 
offline because their computers were infected by viruses after the systems 
had been connected to the Internet.49 Numerous studies and significant 
research have been carried out in software and network security. This 
report does not focus on the security aspects of dependability, but analysis 
of the security aspects of a system should be part of any dependability 
case (see Chapter 2 for a discussion of dependability cases generally, and 
see Chapter 3 for more on security). 

Voting

There have been many reports of failures of software used for elec-
tronic voting, although none have been substantiated by careful and 
objective analysis. But there are few grounds for confidence, and some 
of the most widely used electronic voting software has been found by 
independent researchers to be insecure and of low quality.50 In the 2006 
election in Sarasota County, Florida, the outcome was decided by a mar-
gin of 363 votes, yet over 18,000 ballots cast on electronic voting machines 
did not register a vote. A lawsuit filed to force a revote cites, among 
other things, the possibility of software malfunction and alleges that the 
machines were improperly certified.51

Problems with Existing Certification Schemes

Evidence for the efficacy of existing certification schemes is hard to 
come by. What seems certain, however, is that experience with certifi-
cation varies dramatically across domains, with different communities 
of users, developers, and certifiers having very different perceptions of 
certification. A variety of certification regimes exist for software in par-
ticular application domains. For example, the Federal Aviation Authority 
(FAA) itself certifies new aircraft (and air-traffic management) systems 
that include software, and this certification is then relied on by the cus-

49 BBC News, 2005, “Hospital struck by computer virus,” August 25. Available online at 
<http://news.bbc.co.uk/1/hi/england/merseyside/4174204.stm>.

50 See Avi Rubin et al., 2004, “Analysis of an electronic voting system,” IEEE Symposium on 
Security and Privacy, Oakland, Calif., May. Available online at <http://avirubin.com/vote.
pdf>. 

51 See the full complaint online at <http://www.eff.org/Activism/E-voting/florida/
sarasota_complaint.pdf>.
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tomers who buy and use the aircraft; whereas the National Information 
Assurance Partnership (NIAP) licenses third-party laboratories to assess 
security software products for conformance to the Common Criteria 
(CC).52 Some large organizations have their own regimes for certifying 
that the software products they buy meet their quality criteria, and many 
product manufacturers have their own criteria that each version of their 
product must pass before release. Few, if any, existing certification regimes 
encompass the combination of characteristics recommended in this report: 
namely, explicit dependability claims, evidence for those claims, and a 
demand for expertise sufficient to construct a rigorous argument that 
demonstrates that the evidence is sufficient to establish the validity of 
the claims. 

On the one hand, in the domain of avionics software, the certification 
process (and the culture that surrounds it) is held in high regard and is 
credited by many for an excellent safety record, with software impli-
cated in only a handful of incidents. On the other hand, in the domain 
of software security, certification has been a dismal failure: New security 
vulnerabilities appear daily, and certification schemes are regarded by 
developers as burdensome and ineffective.

 Security Certification

Security certification standards for software were developed initially 
in response to the needs of the military for multilevel-secure products that 
could protect classified information from disclosure. Concern for security 
in computing is now universal. The most widely recognized security 
certification standard is the CC. In short, since CC is demanded by some 
government agencies, it is widely applied; however better criteria would 
make it more effective and less burdensome.

Like its predecessors, the CC is a process in which independent gov-
ernment-accredited evaluators conduct technical analyses of the security 
properties of—typically—commercial off-the-shelf (COTS) IT products 
and then certify the presence and quality of those properties. The CC 
model allows end users or government agencies to write a protection pro-
file that specifies attributes of the security features of a product (such as 
the granularity of access controls and the level of detail captured in audit 

52 CC was finalized in the late 1990s by the national governments that are signatories to the 
Common Criteria Mutual Recognition Agreement. It succeeds the U.S. Trusted Computer 
Systems Evaluation Criteria (TCSEC, or Orange Book) and the European IT Security Evalu-
ation Criteria. The description in the next section is simplified but fundamentally accurate. It 
is based on presentations to the committee and on discussions of CC at the Common Criteria 
Users’ Forum in Washington, D.C., October 2004.
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logs) and the level of security assurance of a product, as determined by 
the quality of its design and implementation.

The CC characterizes assurance at one of seven levels, referred to as 
Evaluation Assurance Levels or EAL 1 (the lowest) through 7 (the high-
est). Each higher EAL requires more structured design documentation 
(and presumably more structured design), more detailed documentation, 
more extensive testing, and better control over the development environ-
ment. At the three highest levels of assurance (EALs 5-7), formal specifica-
tion of system requirements, design, or implementation is mandated.

With a handful of exceptions,53 COTS products complete evalua-
tions only at the lowest four levels of assurance (EALs 1-4). Commercial 
vendors of widely used software have not committed either to the use of 
formal methods or to the extensively documented design processes that 
the higher levels of the CC require. Typical vendor practice for complet-
ing evaluation is to hire a specialized contractor who reviews whatever 
documentation the vendor’s process has produced as well as the prod-
uct source code and then produces the documentation and associated 
tests that the CC requires. The vendor often has the option of excluding 
problematic features (and code) from the “evaluated configuration.” A 
separate contractor team of evaluators (often another department of the 
company that produces the evidence) then reads the documentation and 
reviews the test plans and test results. At EALs 1-4, the assurance levels 
applied to COTS products, the evaluators may conduct a penetration 
test to search for obvious vulnerabilities or at the Enhanced Basic level 
for other flaws (both criteria as defined in the CC documents).54 If the 
evaluators find that all is in order, they recommend that the responsible 
government agency grant CC certification to the product as configured. In 
the United States, the National Security Agency employs validators who 
are government employees or consultants with no conflicts of interest to 
check the work of the evaluators. 

Because the CC certification process focuses on documentation 
designed to meet the needs of the evaluators, it is possible for a prod-
uct to complete CC evaluation even though the evaluators do not have 
a deep understanding of how the product functions. And because the 
certification process at economically feasible evaluation levels focuses on 
the functioning of the product’s security features even while real vulner-
abilities can occur in any component or interface, real-world vulnerability 

53 The smartcard industry has embraced higher levels of evaluation, and many smartcard 
products have completed evaluation at EAL 5. Of more than 400 evaluated products other 
than smartcards listed at <http://www.commoncriteriaportal.org>, only 7 have completed 
evaluation at EAL 5 or higher.

54 See CC Evaluation Methodology manuals versions 2.3 and 3.1, respectively.
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data show that products that have undergone evaluation fare no better 
(and sometimes worse) than products that have not.55 

While the CC evaluation of security features gives users some confi-
dence that the features are appropriate and consistent, most users would 
logically assume that a product that had completed evaluation would 
have fewer vulnerabilities (cases in which an attacker could defeat the 
product’s security) than a product that had not been evaluated. Sadly, 
there is no evidence that this is the case.

CC evaluation does not necessarily correlate with the observed rate 
of vulnerability, as the following examples illustrate. The first example, 
which a member of the committee participated in at Microsoft, considers 
the relative effectiveness of CC evaluation and other measures in reduc-
ing security vulnerabilities in two Microsoft operating system versions. 
Microsoft’s Windows 2000 was evaluated at the highest evaluation level 
usually sought by commercial products (EAL 4), a process that cost many 
millions of dollars and went on for roughly 3 years after Windows 2000 
had been released to customers. However, Windows 2000, as fielded, 
experienced a large number of security vulnerabilities both before and 
after the evaluation was completed. A subsequent Windows version, Win-
dows Server 2003, was subject to an additional series of pragmatic steps 
such as threat modeling and application of static analysis tools during its 
development. These steps proved effective, with the result that the (then-
unevaluated) Windows Server 2003 experienced about half the rate of 
critical vulnerabilities in the field as its CC-evaluated predecessor.56 Some 
18 months later, a CC evaluation against the same set of requirements as 
for Windows 2000 was completed for Windows Server 2003. The evalua-
tion was useful insofar as it demonstrated the operating system contained 
a relatively complete set of security features, However, Microsoft’s assess-
ment was that the vulnerability rate of Windows Server 2003 was better 
than that of Windows 2000 because of a reduced incidence of errors at 
the coding level, a level well below the level at which it is scrutinized 
by the CC evaluation. Another example is a recent comparison57 of the 
vulnerability rates of database products, which indicated that a product 

55 See, for example, the National Vulnerability Database online at <http://nvd.nist.
gov/> and a list of evaluated products at <http://www.commoncriteriaportal.org/public/
consumer/index.php?menu=5>.

56 For information on security vulnerabilities and fixes, see the Microsoft Security Bulletin 
Web site at <http://www.microsoft.com/technet/security/current.aspx>.

57 See David Litchfield, 2006, “Which database is more secure? Oracle vs. Microsoft,” an 
NGS Software Insight Security Research (NISR) publication. Available online at <http://
www.databasesecurity.com/dbsec/comparison.pdf>. The National Vulnerability Database 
at <http://nvd.nist.gov/> also provides information on this topic. 
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that had completed several CC evaluations actually experienced a higher 
vulnerability rate than one that had completed none.

These data, and comparable data on other classes of products, dem-
onstrate that completion of CC evaluations does not give users confidence 
that evaluated products will show lower vulnerability rates than products 
that have not been evaluated. While evaluation against a suitable protec-
tion profile ensures completeness and consistency of security features, 
most users would expect (incorrectly) that CC evaluation is an indicator 
of better security, which they equate with fewer vulnerabilities.

The problem with CC goes beyond the certification process itself. 
Its fundamental assumption is that security certification should focus 
on security components—namely, components that implement security 
features, such as access control. This is akin to evaluating the security of 
a building by checking the mechanisms of the door locks. Software attack-
ers, like common burglars, more often look for weaknesses in overall 
security—for example, for entry points that are not guarded. In computer 
security jargon, an evaluation should consider the entire attack surface of 
the system. The CC community is well aware of these problems and has 
discussed them at length. Unfortunately, the newly released CC version 
3 does not show any significant change of direction.

Avionics Certification

Avionics systems are not certified directly but are evaluated as part of 
the aircraft as a whole. In the United States, when the regulations govern-
ing aircraft design were initially developed, avionics systems were imple-
mented in hardware alone and did not incorporate software. The intro-
duction of software into civilian aircraft beginning in the 1970s exposed 
inadequacies in the regulations relating to avionics: They could not be 
readily applied to software-based systems. In 1980, a special committee 
(SC-145) of the Radio Technical Commission for Aeronautics (RTCA) was 
created to develop guidelines for evaluating software used on aircraft. It 
was composed of representatives of aircraft manufacturers and avionics 
manufacturers, members of the academic community, aircraft customers, 
and certifiers. The committee released its report, Software Considerations in 
Airborne Systems and Equipment Certification (RTCA DO-178), in 1982. The 
document was subsequently revised, and the present 1992 version, DO-
178B, eventually became the de facto standard worldwide for software 
in civilian aircraft. In Europe, it is known as ED-12B and is published by 
the European equivalent of RTCA, the European Organisation for Civil 
Aviation Equipment (EUROCAE).58

58 More information on the work of EUROCAE is available online at <http://www.
eurocae.org/>.
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DO-178B classifies software using the FAA’s five failure levels to 
characterize the impact of that particular software’s failure on an air-
craft59—ranging from Level A (catastrophic) to Level E (no effect on the 
operational capability of an aircraft)—and prescribes more stringent cri-
teria at higher levels. DO-178B tends to focus more on eliminating defects 
than on preventing their introduction in the first place. The desire to make 
DO-178B widely acceptable also made it imprecise, and evaluations have 
yielded very different results when conducted by different organizations 
or government agencies.  For example, there are very few detailed require-
ments for standards and checklists contained within DO-178B.   Where 
one evaluator may be satisfied to check against a set of criteria in a check-
list or standard, another may document numerous deficiencies based on 
his or her own experience, and DO-178B cannot be used to adjudicate 
between the two different results.60 A dearth of skilled personnel with a 
stable body of knowledge and capable of delivering consistent interpreta-
tions has exacerbated the situation. Evaluators were typically drawn from 
industry, but despite having good practical experience, they rarely had 
any formal qualifications in software engineering. To reduce variability, 
additional explanatory guidance and procedures were developed, and 
certifiers were given special training. These steps have led to a more pre-
scriptive approach and have resulted in better standardization.

At least in comparison with other domains (such as medical devices), 
avionics software appears to have fared well inasmuch as major losses of 
life and severe injuries have been avoided. However, this is not in itself 
evidence that any or all of the processes prescribed by the DO-178B stan-
dard are necessary or cost effective. To give one example, DO-178B lays 
down criteria for structural coverage of the source code during testing 
depending on the criticality of the component. The unstated purpose is 
to establish that requirements-based testing has ensured that all source 
code has been completely exercised with a rigor commensurate with the 
hazard associated with the software. Without considerable negotiation, 
no other approaches are allowable. However, in one published study, 
detailed analysis and comparison of systems that had been certified to 
Levels A or B of DO-178B showed that there was no discernible differ-

59 Adapted from Jim Alves-Foss, Bob Rinker, and Carol Taylor, undated, “Merging safety 
and assurance: The process of dual certification for FAA and the Common Criteria.” Avail-
able online at <http://www.csds.uidaho.edu/comparison/slides.pdf>.

60 This was documented in the following NASA report: K.J. Hayhurst, C.A. Dorsey, J.C. 
Knight, N.G. Leveson, and G.F. McCormick, 1999, “Streamlining software aspects of certifi-
cation:  Report on the SSAC survey.” NAS/TM-1999-209519, August, Section 3, observations 
1, 3, 4, 5 (p. 45). The report is available online at <http://ntrs.nasa.gov/archive/nasa/casi.
ntrs.nasa.gov/19990070314_1999110914.pdf>, and an overview of the SSAC process is avail-
able online at <http://shemesh.larc.nasa.gov/ssac/>.
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ence between the two levels in the remaining level of anomalies in the 
software, and that these anomalies included many serious, safety-related 
defects.61 The main difference between Level A (software that could lead 
to a catastrophic failure) and Level B (software whose failure would at 
most be severely hazardous) is that Level A calls for requirements-based 
testing to be shown to provide MCDC coverage of the software. This 
suggests that MCDC test coverage (at least as carried out on the software 
examined in the lessons learned study mentioned above62) does not sig-
nificantly increase the probability of detecting any serious defects that 
remain in the software.

Medical Software Certification

Medical software, in contrast to avionics software, is generally not 
subject to uniform standards and certification. The Food and Drug Admin-
istration (FDA) evaluates new products in a variety of ways. Some are 
subject to premarket approval (PMA), which is “based on a determina-
tion by FDA that the PMA contains sufficient valid scientific evidence to 
assure that the device is safe and effective for its intended use(s).”63 Other 
classes of products are subject to premarket notification, which requires 
manufacturers to demonstrate that the product is substantially equivalent 
to, or as safe and effective as, an existing product. The FDA’s requirements 
for this procedure are minimal.64 They center on a collection of guidance 
documents that outline the kinds of activities expected and suggest con-
sensus standards that might be adopted. The larger manufacturers often 
voluntarily adopt a standard such as the International Electrotechnical 
Commission’s (IEC’s) 61508,65 a standard related to the functional safety 

61 Andy German and Gavin Mooney, 2001, “Air vehicle software static code analysis—
Lessons learnt,” Proceedings of the Ninth Safety-Critical Systems Symposium, Felix Redmill and 
Tom Anderson, eds., Springer-Verlag, Bristol, United Kingdom.

62 In the study cited above, few survey respondents found MCDC testing to be effective—it 
rarely revealed errors according to 59 percent and never revealed them at all according to 
12 percent. That survey (which had a 72 percent response rate) also found that 76 percent 
of respondents acknowledged inconsistency between approving authorities; only 7 percent 
said that the guidance provided was ample (with 33 percent deeming it insufficient and 55 
percent barely sufficient); and 75 percent found the cost and time for MCDC to be substantial 
or nearly prohibitive. The committee is not aware of results suggesting significant changes 
in the ensuing years. 

63 See the FDA’s “Device advice” on premarket approval. Available online at <http://
www.fda.gov/cdrh/devadvice/pma/>.

64 The FDA’s guidance on premarket notification is available online at <http://www.fda.
gov/cdrh/devadvice/314.html>.

65 For more information on IEC 61508, see <http://www.iec.ch/zone/fsafety/pdf_safe/
hld.pdf>; for information on ISA S84.01, see <http://www.isa.org/>.
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of electrical/electronic/programmable electronic-safety-related systems, 
or its U.S. equivalent, ISA S84.01. The certification process itself typically 
involves a limited evaluation of the manufacturer’s software process.

The consensus standards contain a plethora of good advice and are 
mostly process-based, recommending a large collection of practices. They 
emphasize “verification” repeatedly, but despite the safety-critical nature 
of many of the devices to which they are applied, they largely equate 
verification with testing (which, as explained elsewhere in this report, is 
usually insufficient for establishing high dependability) and envisage no 
role for analysis beyond traditional reviews. The FDA’s guidance docu-
ment,66 like the IEC’s, has a lengthy section on testing techniques and 
discusses how the level of criticality should determine the level of testing. 
It recognizes the limitations of testing and suggests the use of other veri-
fication techniques to overcome these limitations, but it does not specify 
what these might be.

Opportunities for Dependable Software

Analyses of the role of software in safety-critical systems often focus 
on their potential to cause harm. It is important to balance concern about 
the risks of more pervasive software with a recognition of the enormous 
value that software brings, not only by improving efficiency but also by 
making systems safer. Software can reduce the risk of a system failure 
by monitoring for warning signs and controlling interventions; it can 
improve the quality and timeliness of information provided to operators; 
and it can oversee the activities of error-prone humans. Software can also 
enable a host of new applications, tools, and systems that can contribute 
to the health and well-being of the population.

Without better methods for developing dependable software, it may 
not be possible to build the systems we would like to build. When software 
is introduced into critical settings, the benefits must obviously outweigh 
the risks, and without convincing evidence that the risk of catastrophic 
failure is sufficiently low, society may be reluctant to field the system 
whatever the benefits may be. In the United States, the threat of litigation 
may raise the bar even higher, since failing to deploy a new system that 
improves safety is less likely to result in damage claims than deploying a 
system that causes injury.

To illustrate these issues, we consider the same two domains: air 
transportation and medicine. 

66 FDA, 2002, General Principles of Software Validation; Final Guidance for Industry and FDA 
Staff, January 11. Available online at <http://www.fda.gov/cdrh/comp/guidance/938.
html>.
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Air Transportation

Software already plays a critical role in air transportation, most nota-
bly in onboard avionics and in air-traffic management. Dependable soft-
ware will be a linchpin of safe air transport in the coming decades, in two 
areas in particular.67 First, efforts to enhance aviation functionality, such as 
plans for (1) new avionics systems that incorporate full-authority digital 
engine controllers (FADECs) to manage large engines and monitor their 
performance and (2) flight-deck and ground-based automation to support 
free flight, will rely heavily on software.

Second, there are efforts to improve aviation safety by employing 
automation in the detection and mitigation of accidents.68 The category 
of accident responsible for most fatalities involving commercial jetliners is 
“controlled flight into terrain” (CFIT), in which the pilot, usually during 
takeoff or landing, inadvertently flies the aircraft into the ground. Colli-
sions between planes during ground operations, takeoff, and landing also 
merit attention; a runway incursion in the Canary Islands in 1977 resulted 
in one of the worst accidents in aviation history, with 583 fatalities. While 
such accidents are not common, they pose significant risk.

Software can help prevent both kinds of accident, with—for example—
ground proximity warning systems and automatic alerts for runway incur-
sions. Software can also be used to defend against mechanical failures: the 
Aircraft Condition Analysis and Management System (ACAMS) uses 
onboard components and ground-based information systems to diagnose 
weaknesses and communicate them to maintainers.

Medicine

Software is crucial to the future of medicine. Although computers 
are already widely used in hospitals and doctors’ offices, the potential 
benefits of IT in patient management have been garnering increased atten-
tion of late. The ready availability of information and automated record 
keeping can have an impact on health care that goes far beyond efficiency 
improvements. Each year, an estimated 98,000 patients die from pre-
ventable medical errors.69 Many of these deaths could be prevented by 
software. CPOE systems, for example, can dramatically reduce the rate 

67 This section is based on information provided in John C. Knight, 2002, “Software chal-
lenges in aviation systems,” Lecture Notes in Computer Science 2434:106-112. 

68 See, for example, the NASA Aviation Safety Program. Available online at <http://www.
aerospace.nasa.gov/programs_avsp.htm>.

69 Institute of Medicine, 2000, To Err Is Human: Building a Safer Health System, National 
Academy Press, Washington, D.C. Available online at <http://books.nap.edu/catalog.
php?record_id=9728>.
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of medication errors by eliminating transcription errors. Although media 
attention tends to focus on the more exciting and exotic applications of 
software, a wider and deeper deployment of existing IT could have a 
profound effect on health care.70 Computerization alone, however, is not 
sufficient; a highly dependable system with adequate levels of decision 
support is needed.71

The ability of software to implement complex functionality that can-
not be implemented at reasonable cost in hardware makes new kinds of 
medical devices possible, such as heart and brain implants and new surgi-
cal tools and procedures. An exciting example of the potential of software 
to improve medical treatment is image-guided surgery, in which images 
produced by less recent technologies such as MRI can be synchronized 
with positioning data, allowing surgeons to see not only the physical 
surfaces of the area of surgery but also the internal structure revealed 
by prior imaging. A neurosurgeon removing a tumor aims to remove 
as much tumor material as possible without causing neurological dam-
age; better tools allow less conservative but safer surgery. Obviously, the 
software supporting such a tool is critical and must be extraordinarily 
dependable.

Observations

This study raised a host of questions that have been asked many 
times before in the software engineering community and beyond but have 
still to be satisfactorily answered. How dependable is software today? 
Is dependability getting better or worse? How many accidents can be 
attributed to software failures? Which development methods are most 
cost-effective in delivering dependable software? Not surprisingly, this 
report does not answer these questions in full; answering any one of 
them comprehensively would require major research. Nevertheless, in 
the course of investigating the current state of software development and 
formulating its approach, the committee made some observations that 
inform its recommendations and reflect on these questions.

70 Edward H. Shortliffe, 2005, “Strategic action in health information technology: Why the 
obvious has taken so long,” Health Affairs 24(5):1222-1233.

71 In one study of a hospital in Utah, 52 percent of admitted patients suffered from adverse 
drug events (ADEs), of which 9 percent resulted in serious harm, despite the use of a CPOE 
system intended to prevent them (Jonathan R. Nebeker, Jennifer M. Hoffman, Charlene R. 
Weir, Charles L. Bennett, and John F. Hurdle, 2005, “High rates of adverse drug events in a 
highly computerized hospital,” Archives of Internal Medicine 165:1111-1116).
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Observation 1: Lack of Evidence

Studies of this sort do not have the resources to perform their own 
data collection, so they rely instead on data collected, analyzed, and inter-
preted by others. Early on in this study, it became clear that very little 
information was available for addressing the most fundamental questions 
about software dependability. 

Incomplete and unreliable data about software failures and about 
the efficacy of different approaches to the development of software make 
objective scientific evaluation difficult if not impossible. When software 
fails, the failures leave no evidence of fractured spars or metal fatigue to 
guide accident investigators; execution of software rarely causes changes 
to the software itself. Investigating the role of software in an accident 
needs a full understanding of the software design documents, the imple-
mentation, and the logs of system events recorded during execution, yet 
this expertise may be available only to the manufacturer, which may have 
a conflict of interest. 

Failures in a complex system often involve fault propagation and 
complex interactions between hardware components, software compo-
nents, and human operators. This makes it very difficult to precisely 
determine the impact of software on a system failure. Complex interac-
tions and tight coupling not only make a system less reliable but also 
make its failures harder to diagnose. There are a number of compendia 
of anecdotal failure reports, most notably those collected by the Risks 
Forum,72 which for many years has been gathering into a single archive 
a wide variety of reports of software-related problems, mostly from the 
popular press. The accident databases maintained by federal agencies (for 
example, the National Transportation Safety Board) include incidents in 
which software was implicated. But detailed analyses of software fail-
ures are few and far between, and those that have been made public are 
mostly the work of academics and researchers who based their analyses 
on secondary sources.

The lack of systematic reporting of significant software failures is a 
serious problem that hinders evaluation of the risks and costs of software 
failure and measurement of the effectiveness of new policies or interven-
tions. In traditional engineering disciplines, the value of learning from 
failure is well understood,73 and one could argue that without this feed-
back loop, software engineering cannot properly claim to be an engineer-

72 See The Risks Digest, a forum on risks to the public in computers and related systems 
moderated by Peter G. Neumann. Available online at <http://catless.ncl.ac.uk/risks>.

73 See, for example, Henry Petroski, 2004, To Engineer Is Human, St. Martin’s Press, New 
York; and Matthys Levy and Mario Salvadori, 1992, Why Buildings Fall Down, W.W. Norton 
& Company, New York.
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ing discipline at all. Of course, many companies track failures in their own 
software, but there is little attention paid by the field as a whole to historic 
failures and what can be learned from them.

This lack of evidence leads to a range of views within the broader 
community. The essential question is, If mechanisms for certifying soft-
ware cannot be relied on, should the software be used or not? Some 
believe that absent evidence for dependability and robust certification 
mechanisms, a great deal of caution—even resistance—is warranted in 
deploying and using software-based systems, since there are risks that 
systems will be built that could have a catastrophic effect. Others observe 
that systems are being built, that software is being deployed widely, and 
that deployment of robust systems could in fact save lives, and they argue 
that the risk of a catastrophic event is worth taking. From this perspective, 
effects should focus not so much on deciding what to build, but rather on 
providing the guidance that is urgently needed by practitioners and users 
of systems. Accordingly, the lack of evidence has two direct consequences 
for this report. First, it has informed the key notions that evidence be at 
the core of dependable software development, that data collection efforts 
are needed, and that transparency and openness be encouraged so that 
those deploying software in critical applications are aware of the limits 
of evidence for its dependability and can make fully informed decisions 
about whether the benefits of deployment outweigh the residual risks. 
Second, it has tempered the committee’s desire to provide prescriptive 
guidance—that is, the approach recommended by the committee is largely 
free of endorsements or criticisms of particular development approaches, 
tools, or techniques. Moreover, the report leaves to the developers and 
procurers of individual systems the question of what level of depend-
ability is appropriate, and what costs are worth incurring in order to 
obtain it.

Observation 2: Not Just Bugs

Software, according to a popular view, fails because of bugs: errors 
in the code that cause the software to fail to meet its specification. In fact, 
only a tiny proportion of failures due to the mistakes of software develop-
ers can be attributed to bugs—3 percent in one study that focused on fatal 
accidents.74 As is well known to software engineers (but not to the general 
public), by far the largest class of problems arises from errors made in the 
eliciting, recording, and analysis of requirements. A second large class 
of problems arises from poor human factors design. The two classes are 

74 Donald MacKenzie, 2001, Mechanizing Proof: Computing, Risk, and Trust, MIT Press, Cam-
bridge, Mass., Chapter 9.
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related; bad user interfaces usually reflect an inadequate understanding 
of the user’s domain and the absence of a coherent and well-articulated 
conceptual model.

Security vulnerabilities are to some extent an exception; the over-
whelming majority of security vulnerabilities reported in software 
products—and exploited to attack the users of such products—are at the 
implementation level. The prevalence of code-related problems, however, 
is a direct consequence of higher-level decisions to use programming 
languages, design methods, and libraries that admit these problems. In 
principle, it is relatively easy to prevent implementation-level attacks but 
hard to retrofit existing programs.

One insidious consequence of the focus on coding errors is that devel-
opers may be absolved from blame for other kinds of errors. In particular, 
inadequate specifications, misconceptions about requirements, and serious 
usability flaws are often overlooked, and users are unfairly blamed. The 
therapists who operated the radiotherapy system that failed in Panama, 
for example, were blamed for entering data incorrectly, even though the 
system had an egregious design flaw that permitted the entry of invalid 
data without generating a warning, and they were later tried in court for 
criminal negligence.75 In several avionics incidents, pilots were blamed for 
issuing incorrect commands, even though researchers recognized that the 
systems themselves were to blame for creating “mode confusion.”76

Understanding software failures demands a systems perspective, in 
which the software is viewed as one component of many, working in con-
cert with other components—be they physical devices, human operators, 
or other computer systems—to achieve the desired effect. Such a perspec-
tive underlies the approach recommended in Chapter 3.

Observation 3: The Cost of Strong Approaches

In the last 20 years, new techniques have become available in which 
software can be specified and designed using precise notations and sub-
sequently subjected to mechanized analysis. These techniques, often 
referred to as “formal methods,” are believed by many to incur unrea-
sonable costs. While it may be true that formal methods are not economi-
cal when only the lowest levels of dependability are required, there is 
some evidence that as dependability demands increase, an approach that 
includes formal specification and analysis becomes the more cost-effective 

75 See Deborah Gage and John McCormick, 2004, “We did nothing wrong,” Baseline, March 
4. Available online at <http://www.baselinemag.com/article2/0,1540,1543571,00.asp>.

76 See NASA, 2001, “FM program: Analysis of mode confusion.” Available online at 
<http://shemesh.larc.nasa.gov/fm/fm-now-mode-confusion.html>.
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option. This section presents some data in support of this claim and gives 
a simple economic analysis showing how the choice between a traditional 
approach and a strong approach (one that incorporates formal methods) 
might be made.

Traditional software development approaches use specification and 
design notations that do not support rigorous analysis, as well as pro-
gramming languages that are not fully defined or that defeat automated 
analysis. Traditional approaches depend on human inspection and testing 
for validation and verification. Strong approaches also use testing but 
employ notations and languages that are amenable to rigorous analy-
sis, and they exploit mechanical tools for reasoning about properties of 
requirements, specifications, designs, and code.

Traditional approaches are generally less costly than strong methods 
for obtaining low levels of dependability, and for this reason many prac-
titioners believe that strong methods are not cost-effective. The costs of 
traditional approaches, however, can increase exponentially with increas-
ing levels of dependability. The cost of strong approaches increases more 
slowly with increasing dependability, meaning that at some level of 
dependability strong methods can be more cost-effective.77 

Whether software firms and developers will use traditional or strong 
approaches depends, in part, on consumer demand for dependability. The 
following exercise discusses the consumer-demand-dependent conditions 
under which firms and developers would choose either the traditional or 
the strong approach and the conditions under which it would be sensible, 
from an economics and engineering perspective, to switch back to the 
traditional approach.

77 Peter Amey, 2002, “Correctness by construction: Better can also be cheaper,” CrossTalk 
Magazine, The Journal of Defence Software Engineering, March. Available online at <http://
www.praxis-his.com/pdfs/c_by_c_better_cheaper.pdf>. This paper describes the savings 
that are repeatedly made by projects that use strong software engineering methods. On 
p. 27, Amey asks

How . . . did SPARK help Lockheed reduce its formal FAA test costs by 80 percent? The 
savings arose from avoiding testing repetition by eliminating most errors before testing 
even began. . . . Most high-integrity and safety-critical developments make use of language 
subsets. Unfortunately, these subsets are usually informally designed and consist, in practice, 
of simply leaving out parts of the language thought to be likely to cause problems. Although 
this shortens the length of rope with which the programmers may hang themselves, it does 
not bring about any qualitative shift in what is possible. The use of coherent subsets free from 
ambiguities and insecurities does bring such a shift. Crucially it allows analysis to be per-
formed on source code before the expensive test phase is entered. This analysis is both more 
effective and cheaper than manual methods such as inspections. Inspections should still take 
place but can focus on more profitable things like “does this code meet its specification” rather 
than “is there a possible data-flow error.” Eliminating all these “noise” errors at the engineer’s 
terminal greatly improves the efficiency of the test process because the testing can focus on 
showing that requirements have been met rather than becoming a “bug hunt.” 
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Consumers have some willingness to pay for dependability. Like any 
other good, the more costly dependability is, the less of it consumers, who 
have limited resources, will purchase. Figure 1.1 shows this downward-
sloping demand (D0) for dependability: At low prices for dependability, 
consumers will purchase a lot of it; at high prices, they will purchase less. 
It is costly, meanwhile, for suppliers to increase dependability. The mar-
ginal cost of supplying different levels of dependability using traditional 
approaches is depicted by the line labeled “MCTraditional.” With perfect 
competition, the market will reach an equilibrium in which firms supply 
dependability, DepT0, at the price PT0.

Next, consider the introduction of strong software engineering 
approaches (Figure 1.2). Consumers still have the same willingness to 
pay for dependability, but the costs of supplying any given amount of it 
now depend on whether the firm uses traditional approaches or strong 
engineering approaches, with the cost structure of the latter depicted in 
the figure by the curve labeled “MCStrong.”

D0

MC Traditional

Dependability

P
ric

e

PT0

DepT0

D0

Traditional

PT0

T0

1-1

FIGURE 1.1  Equilibrium price and dependability with perfect competition and 
traditional software approaches.
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FIGURE 1.2  Lower equilibrium price and higher dependability with strong 
engineering approaches.

Consumers have the same demand profile for dependability as they 
had before, but the curve intersects the strong software cost profile at a 
different point, yielding a new equilibrium at higher dependability (DepS0) 
and lower price (PS0).

78 It is a new equilibrium because, in a perfectly com-
petitive market, firms that continue to use traditional approaches would 
be driven out of business by firms using strong approaches.

Lower prices and higher dependability are not necessarily the new 
equilibrium point. The new equilibrium depends crucially on the slopes 
and location of the demand and cost curves. For some goods, consumers 
might not be willing to pay as much for a given level of dependability as 
they might for other goods. Figure 1.3 depicts this demand profile as D1. 
In this scenario, firms will continue to use traditional approaches, with 
the equilibrium DepT1 at a price of PT1. No rational firm would switch to 
strong approaches if consumer demand did not justify doing so.

78 It is assumed here that the costs of switching to the new programming methods are 
incorporated into the MCStrong curve.
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Observation 4: Coupling and Complexity

In Normal Accidents,79 Perrow outlines two characteristics of systems 
that induce failures: interactive complexity, where components may inter-
act in unanticipated ways, perhaps because of failures or just because no 
designer anticipated the interactions that could occur; and tight coupling, 
wherein a failure cannot be isolated but brings about other failures that 
cascade through the system. Systems heavy with software tend to have 
both attributes. The software may operate as designed, and the compo-
nent it interfaces with may be performing within specifications, but the 
software design did not anticipate unusual, but still permissible, values 
in the component. (In one incident, avionics software sensed the pilot was 
performing a touch-and-go maneuver; this was because the wet tarmac 
did not allow the wheels to turn, so they skidded. The pilot was trying to 
land but the control assumed otherwise and would not let him deceler-

79 Charles Perrow, 1999, Normal Accidents, Princeton University Press, Princeton, N.J.
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FIGURE 1.3  Consumer demand for dependability is decreased; there is no switch 
to strong approaches in equilibrium.
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ate.80) Or, the component may be used in a way not anticipated by the 
software specifications, or a newer model of the component is introduced 
without realizing how the software might affect it. (Both were true in the 
case in the Ariane 5 rocket failure. It was destroyed by the overflow of a 
horizontal velocity variable in a reused Ariane 4 component that was to 
perform a function not even required by Ariane 5.81) Complicated soft-
ware programs interact with other complicated software programs, so 
many unexpected interactions can occur. Trying to find a single point of 
failure is often fruitless. 

The interactive character of software and the components it interfaces 
with is, quite literally, tightly coupled, so faulty interactions can easily dis-
turb the components linked to it, cascading the disturbance. Modularity 
reduces this tendency and reduces complexity. Redundant paths increase 
reliability; while they increase the number of components and the amount 
of software, this does not necessarily increase the interactive complexity 
and certainly not the coupling. 

The problem of coupling and complexity is exacerbated by the drive 
for efficiency that underlies modern management techniques. It is com-
mon to use software systems in an attempt to increase an organization’s 
efficiency by eliminating redundancy and shaving margins. In such cir-
cumstances, systems can tend to be drawn inexorably toward the danger-
ous combination of high complexity and high coupling. Cook and Ras-
mussen explain this phenomenon and illustrate its dangers in the context 
of patient care.82 In one incident they describe, for example, a hospital 
allowed surgeries to begin on patients expected to need intensive care 
afterwards on the assumption that space in the intensive care unit would 
become available; when it did not, the surgery had to be terminated 
abruptly. In another incident, when a computer upgrade was introduced, 
the automated drug delivery program of a large hospital was disrupted 
for more than 2 days, neccesitating the manual rewriting of drug orders 
for all patients. All backup tapes of medication orders were corrupted 
“because of a complex interlocking process related to the database man-
agement software that was used by the pharmacy application. Under 
particular circumstances, tape backups could be incomplete in ways that 

80 See Main Commission Accident Investigation—Poland, 1994, “Report on the accident 
to Airbus A320-211 aircraft in Warsaw on 14 September 1993.”  Available online at <http://
sunnyday.mit.edu/accidents/warsaw-report.html>.

81 See J.L. Lions, 1996, “ARIANE 5: Flight 501 failure,” Report by the Inquiry Board. Avail-
able online at <http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html>.

82 R. Cook and J. Rasmussen, 2005, “Going solid: A model of system dynamics and conse-
quences for patient safety,” Quality and Safety in Health Care 14(2):130-134.
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remained hidden from the operator.”83 There was no harm to patients, but 
the disruption and effort required to mitigate it were enormous.

It is also well known that the operator interfaces to complex software 
systems are often so poorly designed that they invite operator error.84 
However, there is a more insidious danger that derives from a lack of 
confidence in systems assurance—namely, systems that might best be 
largely autonomous are instead dubbed “advisory” and placed under 
human supervision. For a human to monitor an automated system, the 
automation must generally expose elements of its internal state and oper-
ation; these are seldom designed to support an effective mental model, 
so the human may be left out of the loop and unable to perform effec-
tively.85 Such problems occur frequently in systems that operate in differ-
ent modes, where the operator has to understand which mode the system 
is in to know its properties. Mode confusion contributing to an error is 
exemplified by the fatal crashes of two Airbus 320s—one in Warsaw in 
1993 and one near Bangalore in 1990.86 Systems thinking invites consider-
ation of such combinations (sometimes called “mixed initiative systems”) 
in which the operator is viewed as a component and the overall system 
design takes adequate account of human cognitive functions.

These concerns do not necessarily militate against the use of software, 
but they do suggest that careful attention should be paid to the risks of 
interactive complexity and tight coupling and the advantages of modular-
ity, buffering, and redundancy; that interdependences among components 
of critical software systems should be analyzed to ensure that modes of 

83 Richard Cook and Michael O’Connor, forthcoming, “Thinking about accidents and sys-
tems,” in Improving Medication Safety, K. Thompson and H. Manasse, eds., American Society 
of Health-System Pharmacists, Washington, D.C.

84 See, for example, Ross Koppel, Joshua P. Metlay, Abigail Cohen, Brian Abaluck, A. Rus-
sell Localio, Stephen E. Kimmel, and Brian L. Strom, 2005, “Role of computerized physi-
cian order entry systems in facilitating medication errors,” Journal of the American Medical 
Association 293(10):1197-1203.

85 One comprehensive study of this phenomenon is P.J. Smith, E. McCoy, and C. Layton, 
1997, “Brittleness in the design of cooperative problem-solving systems: The effects on user 
performance,” IEEE Transactions on Systems, Man and Cybernetics 27:360-371. See also C. 
Layton, P.J. Smith, and C.E. McCoy, 1994, “Design of a cooperative problem-solving system 
for en-route flight planning: An empirical evaluation,” Human Factors 36:94-119. For an over-
view of this and related work see D.D. Woods and E. Hollnagel, 2006, Joint Cognitive Systems: 
Patterns in Cognitive Systems Engineering, Taylor & Francis, Boca Raton, Fla.

86 The report in Flight International (May 2-8, 1990) on the Bangalore crash makes very in-
teresting reading. The account of the number of flight modes which the A320 went through 
in the 2 minutes before the crash and the side effects of each (which seem not to have been 
understood properly by the pilots) makes operating an A320 appear very different from 
flying a fully manual airplane. The secondary effects (such as selecting a target altitude that 
causes the engines to be retarded to idle, and needing several seconds to develop full power 
again) need to be well understood by the pilots.
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failure are well understood; and that failures are localized to the greatest 
extent possible. Developers and procurers of software systems should 
also keep in mind that there are likely to be trade-offs of various sorts 
between the goals of efficiency and safety and that achieving appropriate 
safety margins may exact a cost in reduced efficiency and perhaps also in 
reduced functionality and automation. At the same time, the clarification 
and simplification that meeting most safety requirements demands may 
also improve efficiency. Recent work on engineering resilience suggests 
ways to dynamically manage the trade-off and ways to think about when 
to sacrifice efficiency for safety.87 

Observation 5: Safety Culture Matters

The efficacy of a certification regimen or development process does 
not necessarily result directly from the technical properties of its con-
stituent practices. The de facto avionics standard, DO178B, for example, 
although it contains much good advice, imposes (as explained above) 
some elaborate procedures that may not have a direct beneficial effect 
on dependability. And yet avionics software has an excellent record with 
remarkably few failures, which many in the field credit to the adoption 
of DO178B.

One possible explanation is that the strictures of the standard and 
the domain in which system engineers and developers are working have 
collateral effects on the larger cultural framework in which software is 
developed beyond their immediate technical effects. The developers of 
avionics software are confronted with the fact that many lives depend 
directly on the software they are constructing and they pay meticulous 
attention to detail. A culture tends to evolve that leads developers to act 
cautiously, to not rely on intuition, and to value the critiques of others. 

Richard Feynman, in his analysis of the Challenger disaster,88 com-
mented on similar attitudes among software engineers at NASA:

The software is checked very carefully in a bottom-up fashion. . . . But 
completely independently there is an independent verification group, 
that takes an adversary attitude to the software development group, and 

87 See, for example, D.D. Woods, 2006, “Essential characteristics of resilience for organiza-
tions,” in Resilience Engineering: Concepts and Precepts, E. Hollnagel, D.D. Woods, and N. 
Leveson, eds., Ashgate, Aldershot, United Kingdom; D.D. Woods, 2005, “Creating foresight: 
Lessons for resilience from Columbia,” in Organization at the Limit: NASA and the Columbia 
Disaster, W.H. Starbuck and M. Farjoun, eds., Blackwell, Malden, Mass.

88 Richard P. Feynman, 1986, “Appendix F—Personal observations on the re-
liability of the shuttle,” In Report of the Presidential Commission on the Space Shut-
tle Challenger Accident, June. Available online at <http://science.ksc.nasa.
gov/shuttle/missions/51-l/docs/rogers-commission/Appendix-F.txt>.
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tests and verifies the software as if it were a customer of the delivered 
product. . . . A discovery of an error during verification testing is con-
sidered very serious, and its origin studied very carefully to avoid such 
mistakes in the future.

To summarize then, the computer software checking system and attitude 
is of the highest quality. There appears to be no process of gradually 
fooling oneself while degrading standards so characteristic of the Solid 
Rocket Booster or Space Shuttle Main Engine safety systems.

An organizational culture that encourages and supports such atti-
tudes is called a “safety culture,” and it is widely recognized as an essen-
tial ingredient in the engineering of critical systems. At the same time, it 
is important to recognize that a strong safety culture, while necessary, is 
not sufficient. As Feynman noted in the same analysis: “One might add 
that the elaborate system could be very much improved by more mod-
ern hardware and programming techniques.” A safety culture and the 
processes that support it need to be accompanied by the best technical 
practices in order to achieve desired dependability.89 

Establishing a good safety culture is not an easy matter and requires 
a sustained effort. The task is easier in the context of organizations that 
already have strong safety cultures in their engineering divisions and in 
industries that have organizational commitments to safety (and pressure 
from consumers to deliver safe products).90 The airline industry is a good 
example. The large companies that produce avionics software have a long 
history of engineering large-scale critical systems. There is a rich assem-
blage of organizations and institutions with an interest in safety; accidents 
are vigorously investigated; standards are strict; liabilities established; 
and its customers are influential and resourceful. In his book on accident 

89 The safety culture alone may prevent the deployment of dangerous systems, but it may 
exact an unreasonably high cost. NASA’s avionics software for the space shuttle, for example, 
is estimated to have cost roughly $1,000 per line of code (Dennis Jenkins, “Advanced vehicle 
automation and computers aboard the shuttle.” Available online at <http://history.nasa.
gov/sts25th/pages/computer.html>, updated April 5, 2001). Using appropriate tools and 
techniques can help reduce cost (see previous discussion of the cost of strong approaches). 
Studies of some systems developed by Praxis, for example, show that software was obtained 
with defect rates comparable to the software produced by the most exacting standards, but 
at costs not significantly higher than for conventional developments (Anthony Hall, 1996, 
“Using formal methods to develop an ATC information system,” IEEE Software 13(2):66-76). 
It is not clear how widely these results could be replicated, but it is clear that conventional 
methods based on testing and manual review become prohibitively expensive when very 
high dependability is required.

90 For a comprehensive discussion of the role of safety culture in a variety of industries, see 
Charles Perrow, 1999, Normal Accidents, Princeton University Press, Princeton, N.J.
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investigation,91 Chris Johnson lists a dozen public and nonprofit organi-
zations concerned with software reliability in the industry (and notes the 
lack of incident reporting even there). A strong safety culture has not been 
as widespread in some other domains. 

Standards and certification regimes can play a major role in establish-
ing and strengthening safety cultures within companies. The processes 
they mandate contribute directly to the safety culture, but there are impor-
tant indirect influences also. They raise the standards of professional-
ism, the abilities they demand leads to the weeding out of less-skilled 
engineers, and they call for a seriousness of purpose (and a willingness 
to perform some laborious work whose benefit may not be immedi-
ately apparent). The need to conform to a standard or obtain certification 
imposes unavoidable costs on a development organization. One engineer 
interviewed by the committee explained that in his department (in a large 
U.S. computer company), the fact that managers were forced to spend 
money on safety made them more open and willing to consider better 
practices in general and somewhat counterbalanced the tendency to focus 
on expanding the feature set of a product and hurrying the product to 
market.

91 C.W. Johnson, 2003, Failure in Safety-Critical Systems: A Handbook of Accident and Incident 
Reporting, University of Glasgow Press, Glasgow, Scotland. Available online at <http://
www.dcs.gla.ac.uk/~johnson/book/>.
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Proposed Approach

This chapter is the core of the report. It describes an approach to the 
development of dependable software that the committee believes 
could be widely adopted, and would be more effective than the 

approaches that are currently in widespread use.
The proposed approach can be summarized in three key points—“the 

three Es”:

•	 Explicit claims.  No system can be dependable in all respects and 
under all conditions. So to be useful, a claim of dependability must be 
explicit. It must articulate precisely the properties the system is expected 
to exhibit and the assumptions about the system’s environment on which 
the claim is contingent. The claim should also make explicit the level of 
dependability claimed, preferably in quantitative terms. Different proper-
ties may be assured to different levels of dependability.

•	 Evidence.  For a system to be regarded as dependable, concrete 
evidence must be present that substantiates the dependability claim. This 
evidence will take the form of a “dependability case,” arguing that the 
required properties follow from the combination of the properties of the 
system itself (that is, the implementation) and the environmental assump-
tions. So that independent parties can evaluate it, the dependability case 
must be perspicuous and well-structured; as a rule of thumb, the cost 
of reviewing the case should be at least an order of magnitude less than 
the cost of constructing it. Because testing alone is usually insufficient to 
establish properties, the case will typically combine evidence from testing 
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with evidence from analysis. In addition, the case will inevitably involve 
appeals to the process by which the software was developed—for exam-
ple, to argue that the software deployed in the field is the same software 
that was subjected to analysis or testing.

•	 Expertise.  Expertise—in software development, in the domain 
under consideration, and in the broader systems context, among other 
things—is necessary to achieve dependable systems. Flexibility is an 
important advantage of the proposed approach; in particular the devel-
oper is not required to follow any particular process or use any particular 
method or technology. This flexibility provides experts the freedom to 
employ new techniques and to tailor the approach to their application 
and domain. However, the requirement to produce evidence is extremely 
demanding and likely to stretch today’s best practices to their limit. It will 
therefore be essential that the developers are familiar with best practices 
and diverge from them only with good reason. Expertise and skill will be 
needed to effectively utilize the flexibility the approach provides and dis-
cern which best practices are appropriate for the system under consider-
ation and how to apply them. This chapter contains a short catalog of best 
practices, judged by the committee to be those that are most important for 
dependability.

These notions—to be explicit, to demand and produce evidence, and 
to marshall expertise—are, in one sense, entirely traditional and uncon-
troversial. Modern engineering of physical artifacts marshals evidence for 
product quality by measuring items against explicit criteria, and licensing 
is often required in an attempt to ensure expertise. Applying these notions 
to software, however, is not straightforward, and many of the assump-
tions that underlie statistical process control (which has governed the 
design of production lines since the 1920s) do not hold for software. Some 
of the ways in software systems differ from more traditional engineering 
projects include the following: 

•	 Criteria.  The criteria for physical artifacts are often simpler, often 
comprising no more than a failure or breakage rate for the artifact as a 
whole. Because of the complexity of software and its interdependence on 
the environment in which it operates, explicit and precise articulation of 
claims is both more challenging and more important than for traditional 
engineering.

•	 Feasibility of testing.  For physical artifacts, limited testing provides 
compelling evidence of quality, with the continuity of physical phenom-
ena allowing widespread inferences to be drawn from only a few sample 
points. In contrast, limited testing of software can rarely provide compel-
ling evidence of behavior under all conditions.

•	 Process/product correlation.  The fundamental premise of statistical 
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quality control is that sampling the product coming out of a process gives 
a measure of the quality of the process itself, which in turn will determine 
the quality of items that are not sampled. Although better software pro-
cess can lead to better software, the correlation is not sufficiently strong to 
provide evidence of dependability. Unlike physical engineering, in which 
large classes of identical artifacts are produced, software engineering 
rarely produces the same artifact twice, so evidence about one software 
system rarely bears on another such system. And even an organization 
with the very best process can produce seriously flawed software.

These differences have profound implications, so that the application 
of standard engineering principles to software results in an approach that is 
far from traditional. Practitioners are likely to find the proposed approach 
radical in three respects. First, the articulation of explicit dependability 
claims suggests that software systems requirements should be structured 
differently, with requirements being prioritized (separating the crucial 
dependability properties from other desirable, but less crucial, ones) and 
environmental assumptions being elevated to greater prominence. Sec-
ond, the standard of evidence for a system that must meet a high level 
of dependability cannot generally be achieved using the kind of testing 
regimen that is accepted by many certification schemes today. Instead, it 
will be necessary to show an explicit connection between the tests per-
formed and the properties claimed; the inevitable gap will likely have to 
be filled by analysis. Third, constructing the dependability case after the 
implementation is complete will not usually be feasible. Instead, consider-
ations of the ease of constructing the case will permeate the development, 
influencing the choice of features, the architecture, the implementation 
language, and so on, and the need to preserve the chain of evidence will 
call for a rigorous process. Achieving all of this will demand significant 
and broad-ranging expertise. 

Lest the reader be concerned that the proposed approach is too risky, 
it should be noted that although widespread adoption of the proposed 
approach would be a radical change for the software industry, the con-
stituent practices that the approach would require are far from novel and 
have been used successfully in complex, critical software projects for 
over a decade. Moreover, the underlying sensibility of the approach is 
consistent with the attitude advocated by the field of systems engineer-
ing—often referred to as “systems thinking”—whose validity is widely 
accepted and repeatedly reaffirmed by accidents and failures that occur 
when it is not applied. 

Because the proposed approach is very different from the approach 
used to build most software today, it will not only require a change in 
mindset but will also probably demand skills that are in short supply. A 
radical improvement in software will therefore depend on improvements 
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in education (e.g., better curricula). Furthermore, the high standards 
imposed by this approach may not always be achievable at reasonable 
cost. In some cases, this will mean reducing expectations of depend-
ability—in other words, limiting the functionality and complexity of the 
system. If no acceptable trade-off can be agreed upon, it may not be pos-
sible to build the system at all using today’s technology. Without major 
advances brought about by fundamental research, many software systems 
that society will want or need in the coming decade will probably be 
impossible to build to appropriate dependability standards. The approach 
advocated here is technology-neutral, so as technology advances, more 
effective and economical means of achieving society’s goals will become 
possible, and systems that cannot be built today may be feasible in the 
future.

Explicit Dependability Claims

What Is Dependability?

Until now, this report has relied on the reader’s informal understand-
ing of the term “dependable.” This section clarifies the way in which the 
term is used in the context of this report.

The list of adjectives describing the demands placed on software 
has grown steadily. Software must be reliable and available; usable and 
flexible; maintainable and adaptable; and so on. It would not be helpful 
simply to add “dependable” to this long list, with the meaning that a 
“dependable” software system is one on which the user can depend. 

One could imagine, though, that demanding dependability in this 
broad sense from a software system is not unreasonable. After all, do not 
users of all kinds of nonsoftware systems demand, and obtain, depend-
ability from them? Since the late 1970s, for example, drivers have come to 
expect all-round dependability from their cars. But large software systems 
are more complex than most other engineered systems, and while it might 
make sense to demand dependability from a car in its entirety, it makes 
less sense to demand the same of a large software system. It is clear what 
services are expected of a car: If the car fails in deep water, for example, 
few drivers would think to point to that as a lack of dependability.� Most 

� Incidentally, the increasing complexity of automobile electronic systems means that 
accidental systems may form and the dependability problems experienced in complex soft-
ware systems may appear in automobiles. A recent example was the discovery of a “sneak 
circuit”: If the radio was switched on and the brake pedal was depressed at the same time 
as a rear window was being operated, the air bags deployed. Fortunately, this was detected 
by simulation tools examining the electronic design, and no vehicles had to be recalled. 
Reported by committee member Martyn Thomas. 
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large software systems, in contrast, perform a large range of complex 
functions in a complex and changing environment. Users are not typi-
cally aware of a system’s inherent limitations, nor can they always even 
detect changes in the environment that might compromise the system’s 
reliability. 

For these reasons, the dependability of a software system cannot be 
judged by a simple metric. A system is dependable only with respect to 
particular claimed properties; unless these properties are made explicit, 
dependability has little meaning. Moreover, dependability is not a local 
property of software that can be determined module by module but has 
to be articulated and evaluated from a systems perspective that takes into 
account the context of usage. A system may be dependable even though 
some of its functions fail repeatedly; conversely, it may be regarded as 
undependable if it causes unexpected effects in its environment, even if 
it suffers no obvious failures. These issues are discussed in more detail 
below (see “Software as a System Component”).

In addition, dependability does not reside solely within a system but 
is also reflected in the degree of trust that its users are willing to place 
in it. Systems may meet all of their dependability requirements, but if 
users cannot be convinced that this is so, the systems will not be seen as 
dependable. That is, dependability is an “ability to deliver service that 
can justifiably be trusted,”� and for such justification, evidence will be 
required.

Why Claims Must Be Explicit

With limitless resources, it might be possible to build a system that is 
highly dependable in all of its properties, but in practice—for systems of 
even minimal complexity—this will not be achievable at a reasonable cost. 
A key characteristic of a system designed with dependability in mind will 
therefore be differentiation—that is, the properties of the system will not 
be uniform in the confidence they warrant but, on the contrary, will be 
assured to (possibly dramatically) differing degrees of confidence.

It follows that the users of a system can depend on it only if they 
know which properties can be relied upon. In other words, the crucial 
properties should be explicitly articulated and made clear not only to the 
user, as consumer of the system, but also to the developer, as its producer. 
Currently, consumer software is typically sold with few explicit represen-
tations of the properties it offers or its fitness for any purpose. Apple and 
Adobe, for example, provide software “as is” and “with all faults” and 

� A. Avizienis, J.C. Laprie, B. Randell, and C. Landwehr, 2004, “Basic concepts and tax-
onomy of dependable and secure computing,” IEEE Transactions on Dependable and Secure 
Computing 1(1):11-33. 
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disclaim all warranties. Google offers “no warranties whatsoever” for its 
services, and Microsoft warrants only that the software will “perform 
substantially in accordance with the accompanying materials for a period 
of (ninety) 90 days.”� Software systems that are developed specially for 
a particular client are typically built to meet preagreed requirements, but 
these requirements are often a long and undifferentiated list of detailed 
functions.

Software as a System Component

Engineering fields with long experience in building complex systems 
(for example, aerospace, chemicals, and nuclear engineering) have devel-
oped approaches based on systems thinking; these approaches focus on 
the properties of the system as a whole and on the interactions among 
its components, especially those (often neglected) between a component 
being constructed and the components of its environment.

Systems thinking can have impacts on component design that may 
surprise those who have not encountered such thinking before. For 
example, the designer of a component viewed in isolation may think 
it a good idea to provide graceful degradation in response to perceived 
error situations. In a systems context, however, this could have negative 
consequences: For example, another component might be better placed to 
respond to the error, but its response might be thwarted by the gracefully 
degraded behavior of the original component, and its own attempts to 
work around this degraded behavior could have further negative conse-
quences elsewhere. It might have been better for the original component 
simply to have shut itself down in response to the error.

As software has come to be deployed in—indeed has enabled—
increasingly complex systems, the systems aspects have come to dominate 
in questions of software dependability. Dependability is not an intrinsic 
property of software. Software is merely one component of a system and 
a software component may be dependable in the context of one system 
but not dependable in another.�

� See, for example, warranty and disclaimer information at the following Web pages for 
each of the companies mentioned: <http://www.adobe.com/products/eula/warranty/> 
(Adobe); <http://www.apple.com/legal/sla/macosx.html> (Apple); <http://www.
microsoft.com/windowsxp/home/eula.mspx> (Microsoft); and <http://desktop.google.
com/eula.html> (Google). 

� The guidance software for the Ariane 4 rocket was dependable as part of that system, 
but when it was reused in the Ariane 5, the assumptions about its operating environment 
were no longer valid, and the system failed catastrophically. J.L. Lions, 1996, “ARIANE 5: 
Flight 501 failure,” Report by the Inquiry Board. Available online at <http://www.cs.unibo.
it/~laneve/papers/ariane5rep.html>.
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A system is not simply the sum of its components: A system causes its 
components to interact in ways that can be positive (producing desirable 
emergent behavior) or negative (often leading to surprising outcomes, 
including failures). Consequently, the properties of a system may not be 
related in a simple way to those of its components: It is possible to have 
a faulty system composed of correct components, and it is possible for a 
system correctly to achieve certain properties despite egregious flaws in 
its components.

Generally, what systems components should do is spelled out in their 
requirements and specification documents. These documents assume, but 
sometimes do not articulate, a certain environment. When placed in a sys-
tem context, however, some of these assumptions may be violated. That 
is, the actual operational profile includes circumstances for which there 
may be no specified behavior (which means it is unclear what will hap-
pen) or for which the specified behavior is actually inappropriate. When 
these circumstances are encountered, failure often results. These sources 
of system failure are far more common, and often far more serious, than 
those due to simple bugs or coding errors.

People—the operators, users (and even the developers and maintain-
ers) of a system—may also be viewed as system components. If a system 
meets its dependability criteria only if people act in certain ways, then 
those people should be regarded as part of the system, and an estimate 
of the probability of them behaving as required should be part of the 
evidence for dependability.� For example, if airline pilots are assumed to 
behave in a certain way as part of the dependability claim for an aircraft, 
then their training and the probability of human error become part of the 
system dependability analysis.

Accidental Systems and Criticality Creep 

Many enterprises introduce software, or software-enabled functions, 
into their organization without realizing that they are constructing a 
system or modifying an existing system. For example, a hospital may 
introduce a wireless network to allow physicians to access various data-
bases from handheld PDAs and may link databases (for example, patient 
and pharmacy records) to better monitor for drug interactions. Those 
developing software to perform these integrations often encounter sys-
tems issues but may not recognize them as such. For example, they may 
recognize that network protocols introduce potential vulnerabilities and 
will consider the security of the wireless connection and the appropriate 

� SW01, the European standard for ground-based air traffic control systems, incorporates 
this approach.
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cryptography to employ, but they may not recognize the larger systems 
issues of linking previously separate systems with their own security and 
access control policies.

As another example, emergency care units may have a dozen or more 
different medical devices connected to the same patient. These devices are 
designed and developed in isolation, but they form an accidental system 
(that is, a system constructed without conscious intent) whose compo-
nents interact through the patient’s physiology and through the cogni-
tive and organizational faculties of the attending physicians and nurses. 
Each device typically attempts to monitor and support the stabilization 
of some parameter (heart rate, breathing, blood chemistry) but it does so 
in ignorance of the others even though these parameters are physiologi-
cally coupled. The result can be suboptimal whole-body stabilization� and 
legitimate concern that faults in a device, or in its operation, may propa-
gate to other devices. Because they are designed in isolation, the devices 
have separate operator interfaces and may present similar information in 
different ways and require similar operations to be performed in different 
ways, thereby inviting operator errors.

A consequence of accidental system construction is that components 
may come to be used in contexts for which they were not designed and 
in which properties (typically internal failures and response to external 
faults) that were benign in their original context become more serious. 
An example is the use of desktop software in mission critical systems, as 
in the case of U.S.S. Yorktown, whose propulsion system failed on Sep-
tember 21, 1997, due to a software failure. An engineer with the Atlantic 
Fleet Technical Support Center attributed the failure to the integration 
and configuration of a commodity operating system without providing 
for adequate separation and process isolation.�

A more subtle but pervasive form of criticality creep occurs when the 
distinction between safety-critical and mission-critical features becomes 
blurred as users become dependent on features that they previously lived 
without. An avionics system, for example, might provide a moving map 
display—generally not flight-critical—that produces information for a 
pilot, on which the pilot might come to depend. 

The formation of accidental systems may not always be avoidable, 
but it can be mitigated in two ways. The developer may be able to limit 

� See, for example, a talk given by Timothy Buchman titled “Devices, data, information, 
treatment: A bedside perspective from the intensive care unit” at the June 2005 High Confi-
dence Medical Device Software and Systems Workshop in Philadelphia, Pennsylvania. More 
information can be found online at <http://rtg.cis.upenn.edu/hcmdss/index.php3>. 

� See Gregory Slabodkin, 1998, “Software glitches leave Navy smart ship dead in 
the water,” Government Computer News, July 13. Available online at <http://www.gcn.
com/print/17_17/33727-1.html>.
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the exposure of the system as a whole to failures in some components, 
by designing interfaces carefully. For example, if a medical device is to be 
integrated into a hospital-wide information system, the developer might 
erect firewalls in the design of the software and hardware to ensure that 
the critical functions of the device cannot be controlled remotely. If this is 
not possible, the accidental system effect can be countered by recognizing 
the scope of the system as a whole and ensuring that the dependability 
case covers it.

Evolution and Recertification

Because systems and their operating environments evolve, a system 
that was dependable at the time it was introduced may become unde-
pendable after some time, necessitating a review and perhaps reworking 
of its dependability case. This review may conclude that the system no 
longer meets its original dependability criteria in its new environment. 
If so, the system may need to be modified, replaced, withdrawn from 
service, or simply accepted as being undependable.

When a system has been accepted as fit to put into service and it has 
been in use for some time, two issues may arise. First (and most com-
monly) something will happen—perhaps a bug fix, or the modification 
of a feature, or a change to an interface—that requires that the software 
be changed. How should the modified system be recertified as fit for ser-
vice? A modified system is a new system, and local changes may affect the 
behavior of unmodified parts of the system, through interactions with the 
modified code or even (in many programming languages) as a result of 
recompilation of unmodified code. The evidence for dependability should 
therefore be reexamined whenever the system is modified and, if the 
evidence is no longer compelling, new evidence of dependability should 
be generated and the dependability case amended to reflect the changes. 
Ideally, most of the dependability case will be reusable. It is also impor-
tant to rerun the system test suite (including additional tests showing that 
any known faults have indeed been corrected) as software maintenance 
can subtly violate the assumptions on which the dependability case was 
originally based.

Second, in-service experience may show that the dependability case 
made incorrect assumptions about the environment. For example, a 
protection system for an industrial process may have the dependability 
requirement that it fails no more frequently than once in every thousand 
demands, based on an assumption that the control system would limit the 
calls on the protection system to no more than 10 each year. After a few 
months of service, it might be apparent that the protection system is being 
called far more often than was assumed would happen. In such cases, the 
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system should be taken out of service (or protected in some other way that 
is known to have the necessary dependability) until the dependability 
case has been reexamined under the new assumptions and shown to be 
adequate, or until sufficient additional evidence of the dependability of 
the protection system has been obtained. 

Third, in the security case, if a new class of vulnerability is discov-
ered, software that was understood to be secure might become vulnerable. 
In such a case new tests, tools, or review processes must be developed and 
applied, and the system updated as needed to operate in the new threat 
environment. The level of revision required to make the system’s security 
acceptable in the face of the new threat will vary depending on the scope 
and impact of the vulnerability.

What to Make Explicit

The considerations in the previous sections suggest two important 
principles regarding what should be made explicit. First, it makes no 
sense to talk about certifiable dependability and justifiable confidence 
without defining the elements of the service that must be delivered if the 
system is to be considered dependable. In general, this will be a subset 
of the complete service provided by the system: Some requirements will 
not be considered important with respect to dependability in the specific 
context under consideration. Nor will it always be necessary to guarantee 
conformance to these properties to the highest degree. Dependability is 
not necessarily something that must be applied to all aspects of a system, 
and a system that is certified as dependable need not work perfectly all 
the time. Second, any claim about a service offered by a software compo-
nent will be contingent on assumptions about the environment, and these 
assumptions will need to be made explicit.

Stating the requirements for a particular software component will 
generally involve three steps:

•	The first step is to be explicit about the desired properties: to articu-
late the functional dependability properties precisely. These should be 
requirements properties expressed in terms of the expected impact of the 
software in its environment rather than specification properties limited to 
the behavior of the software at its interface with other components of the 
larger system (see next section).

•	The second step is to be explicit about the degree of dependence 
that will be placed on each property. This may be expressed as the prob-
ability of failure on demand (pfd) or per hour (pfh) or as a mean time 
between failures (MTBF). In general, the dependence on different proper-
ties will be different: For example, it might be tolerable for a rail signal to 
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give an incorrect “stop” command once every 10,000 hours but an incor-
rect “go” would be tolerated only once every 100 million hours, because 
the former would only cause delay, whereas the latter might cause a fatal 
accident. 

•	The third step is to be explicit about the environmental assump-
tions. These assumptions will generally include a characterization of the 
system or systems within which the software should be dependable and 
particular assumed properties of those systems. These properties may 
be arbitrarily complex, but sometimes they may involve little more than 
ranges of conditions under which the system will be operating. For exam-
ple, an airborne collision-avoidance system may dependably provide 
separation for all geometries of two conflicting aircraft approaching each 
other at less than Mach 1 but become undependable if the approach is at 
Mach 2 (because the alerts could not be given in time for effective action to 
be taken) or when more than two aircraft are in conflict (because resolving 
the conflict between two aircraft might endanger the third).

Requirements, Specifications, and Domain Assumptions

The properties of interest to the user of a system are typically located 
in the physical world: that a radiotherapy machine deliver a certain dose, 
that a telephone transmit a sound wave faithfully, that a printer make 
appropriate ink marks on paper, and so on. The software, on the other 
hand, is typically specified in terms of properties at its interfaces, which 
usually involve phenomena that are not of direct interest to the user: that 
the radiotherapy machine, telephone, or printer send or receive certain 
signals at certain ports, with the inputs related to the outputs according 
to some rules.

It is important, therefore, to distinguish the requirements of a soft-
ware system, which involve properties in the physical world, from the 
specification of a software system, which characterizes the behavior of the 
software system at its interface with the environment.� When the software 
system is itself only one component of a larger system, the other compo-
nents in the system (including perhaps, as explained above, the people 
who work with the system) will be viewed as part of the environment.

One fundamental aspect of a systems perspective, as outlined in 
the early sections of this chapter, is paying attention to this distinction. 
Indeed, many failures of software systems can be attributed exactly to a 

� These definitions of the terms “requirements” and “specification” come from Michael 
Jackson (see footnote 11 below) and are not conventional. In standard usage, the distinction 
between the two is rather vague, with requirements being used for descriptions that are 
produced earlier in a development with more involvement of the customer.
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failure to recognize this distinction, in which undue emphasis was placed 
on the specification at the expense of the requirements. The properties 
that matter to the users of a system are the requirements; the properties 
the software developer can enforce are represented by the specification; 
and the gap between the two should be filled by properties of the envi-
ronment itself. 

The dependability properties of a software system, therefore, should 
be expressed as requirements, and the dependability case should demon-
strate how these properties follow from the combination of the specifica-
tion and the environmental assumptions.

In some cases, the requirements, specification, and environmental and 
domain assumptions will talk about the same set of phenomena. More 
often, though, the phenomena that can be directly controlled or moni-
tored by the software system are not the same phenomena of interest to 
the user. A key step, therefore, in articulating the dependability proper-
ties, is to identify these sets of phenomena and classify them according 
to whether they lie at the interface or beyond. In large systems involv-
ing multiple components, it will be profitable to consider all the various 
interfaces between the components and to determine which phenomena 
are involved at each interface.

This viewpoint is illustrated in Figure 2.1. The outermost box repre-
sents the collection of phenomena in the world that are relevant to the 
problem the software is designed to address. The box labeled “machine” 
represents the phenomena of the software system being built (and the 
machine it runs on). The box labeled “environment” represents the phe-
nomena of the components in the environment in which the software 
operates, including other computer systems, physical devices, and the 
human operators about whom assumptions are made. The box labeled 
“user” represents the phenomena involving the users. The gray borders 
of the boxes represent shared phenomena. The three spots denote arche-
typal phenomena. The phenomenon m is internal to the machine and 
invisible from outside; the instructions that execute inside the computer, 
for example, are such phenomena. The phenomenon s is a specification 
phenomenon, at the interface of the machine, shared with its environ-
ment. The phenomenon r is a requirements phenomenon, visible to the 
user and shared with the environment but not with the machine. This 
view simplifies the situation somewhat. It also shows the user as distinct 
from the environment, in order to emphasize that the phenomena that the 
user experiences (labeled r) are not generally the same as the phenomena 
controlled by the software (labeled s). In practice, the sets of specification 
and requirement phenomena overlap, and the user cannot be cleanly 
separated from the environment.
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The dependability case will involve m, s, and r. The argument will 
have two pieces. First, a correctness argument for the software will show 
how s follows from m: that is, how the intended properties of the software 
system at its interface are ensured by its implementation. Second, a speci-
fication-requirements argument will show how r follows from s: that is, 
how the desired requirement as observed by the user is ensured by the 
behavior of the software system at its interface. The correctness argument 
can be constructed in terms of the software alone and is entirely formal 
(in the sense that it does not involve any notions that cannot in principle 
be perfectly formalized). The specification-requirements argument, on the 
other hand, must combine knowledge about the software system with 
knowledge of the environment. In its general form, it will say that the 
requirements follow from the combination of the specification and the 
properties of the environment. This argument cannot usually be entirely 

FIGURE 2.1  Specification and requirements.

2-1
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formal, because determining the properties of the environment will in 
general have to be an informal matter. So whereas the correctness argu-
ment is in theory amenable to mechanized checking, the specification-
requirements argument will rest on assumptions about the environment 
that will need to be confirmed by domain experts. To illustrate the idea, 
here are some examples:

•	 Traffic lights.  The key dependability property of a traffic light sys-
tem at a particular intersection is to prevent accidents. This is a require-
ment, and the phenomenon of two cars crashing is an example of an r. 
The software system interacts with the environment by receiving sensor 
inputs and generating control signals for the lights; these are the s phe-
nomena. Assumptions about the environment include that the sensor and 
traffic light units satisfy certain specifications (for example, that a control 
signal sent to a traffic light will change the light in a certain way) and that 
the drivers behave in certain ways (for example, stopping at red lights and 
not in the middle of the intersection).

•	 Radiotherapy.  A key dependability property of a radiotherapy sys-
tem is to not deliver an overdose to the patient. The phenomena r are 
those involving the location of the target of the beam, the dosage deliv-
ered, the identity of the patient, and so on. The software system interacts 
with the operator through user interfaces and with the physical devices 
that control and monitor the beam settings. Assumptions include that the 
physical devices behave in certain ways and obey commands issued to 
them within certain tolerances, that the patient behaves in a certain way 
(not moving during irradiation, for example), and that the human organi-
zation of the facility obeys certain rules (such as preventing other people 
from entering the treatment room when the beam is on and ensuring that 
the correct patient is placed on the bed).

•	 Criminal records.  A dependability property of a system for main-
taining criminal records may be that no records are permanently lost. 
The phenomena r involve the records and the means by which they are 
created and accessed. The phenomena s at the interface of the software 
system might include these and, in addition, commands sent to a disk 
drive. The key assumptions, for example, are that the disk drive offers 
certain reliability guarantees and that unauthorized access to the file 
system is prevented. The demarcation between a software system and its 
environment is not always clear and will often be determined as much by 
economic and organizational issues as by technical ones. For example, if 
the criminal records system is built on top of an existing service (such as 
a database or replicated file system), that service will be regarded as part 
of the environment.
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The Warsaw airport Airbus accident in September 1993 has been 
cited as an example of a failure to distinguish between specifications 
and requirements. An Airbus A320-211 came in to land in heavy winds. 
The aircraft aquaplaned for 9 seconds before reverse thrust was enabled, 
overran the runway, and collided with an embankment, killing 1 pilot and 
seriously injuring 2 other crew members and 51 passengers. The reverse 
thrust system was designed to be disabled under software control unless 
both left and the right landing gears were under compression, indicating 
contact with the ground. The software met its specification flawlessly, but 
unfortunately the specification did not match the desired dependability 
property. The crucial property, a requirement, was that reverse thrust 
should be disabled only when airborne, and this was certainly not satis-
fied. Had the dependability of the system been expressed and evaluated 
in terms of this property, attention might have been drawn to the domain 
assumption that lack of compression always accompanies being airborne, 
and the construction of a dependability case might have revealed that this 
assumption was invalid.�

The inevitable gap between specification and requirements properties 
speaks directly to the dependability of a service provision. At a minimum, 
software developers must appreciate this distinction, and as part of devel-
oping a dependable case there should be accountability for ensuring that 
the specification properties guarantee the requirements properties and for 
providing evidence (in the form of justifiable environmental assumptions) 
for this connection. A useful analogy may be the role of architects in the 
design of a new building: The architects capture the extrinsic requirements 
(accommodation needs, relationships between different rooms, workflow, 
aesthetic considerations); they add the safety requirements and regulatory 
requirements and, with the help of specialists such as structural engineers, 
convert the whole into a set of specifications that can be implemented by 
a construction firm. The architects accept responsibility and accountability 
for the relationship between extrinsic and intrinsic requirements.

The idea of distinguishing requirements from specifications is not 
new. In process control, the need to express requirements in terms of 
observable, extrinsic properties has long been recognized and was codified 

� The official report of this incident has been translated by Peter Ladkin and can be found 
online (see below). Interestingly, although the report notes in its recommendations the de-
ficiencies of the software, it attributes the cause of the accident to the flight crew, blaming 
them for not aborting the landing. See Peter Ladkin, transcriber, 1994, “Transcription of 
report on the accident to Airbus A320-211 aircraft in Warsaw on 14 September 1993,” Main 
Commission, Aircraft Accident Investigation, Warsaw. Available online at <http://www.
rvs.uni-bielefeld.de/publications/Incidents/DOCS/ComAndRep/Warsaw/warsaw-report.
html>.
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in Parnas’s four-variable model.10 It distinguishes the specification phe-
nomena—the inputs and outputs of the machine—from the requirements 
phenomena—the monitored and controlled variables—thus accounting 
for the imperfections of the monitors and actuators that mediate between 
the machine and the environment. Recent work has extended this to sys-
tems of more general structure.11 

Evidence

A user should not depend on a system without some evidence that 
confidence is justified. Dependability and evidence of dependability are 
thus inseparable, and a system whose dependability is unknown cannot 
be regarded as dependable. In general, it will not be feasible to generate 
strong evidence for a system’s dependability after it is built (but before 
deployment); the evidence will need to be produced as part of the devel-
opment process. Beta-testing, controlled release, and other field-testing 
strategies may provide some evidence that software is acceptably depend-
able in applications that only require low dependability, but even in these 
less-critical applications, the evidence obtained through field-testing will 
rarely be sufficient to provide high confidence that the software has the 
required properties.

Goal-Based Versus Process-Based Assurance

To date, most approaches to developing dependable software (i.e., 
traditional approaches) have relied on fixed prescriptions, in which par-
ticular processes are applied and from which dependability is assumed to 
follow. The approach recommended in this report might be characterized 
in contrast as goal-based.

Even if a system has the same components and design as some other 
system, it is likely to be unique in its context of use and in the concerns 
of its stakeholders. For this reason, assurance for systems by reference 
to some fixed prescription is no longer advocated; instead, a goal-based 
approach is preferred. In a goal-based approach, the stakeholders first 
agree on the goals for which assurance is required (for example, “this 
device must not harm people”); then the developers produce specific 
claims (for example, “the radiation delivered by this device will never 

10 D.L. Parnas and J. Madey, 1995, “Functional documentation for computer systems,” Sci-
ence of Computer Programming 25(1):41-61.

11 The view of requirements and specifications in this section is based on the work of 
Michael Jackson (2001, Problem Frames: Analysing and Structuring Software Development 
Problems, Addison-Wesley, Boston, Mass.; and 1996, Software Requirements and Specifications, 
Addison-Wesley and ACM Press, New York).
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exceed so much intensity”) and an argument to justify the claims based on 
verifiable evidence (for example, “there is a mechanical interlock on the 
beam intensity and here is evidence, derived from extensive testing, that 
it works”). The top levels of the argument will generally employ meth-
ods from systems thinking, such as hazard analysis, fault tree analysis, 
and failure modes and effects analysis, while lower levels will employ 
more specialized techniques appropriate to the system and technology 
concerned.

Process-based assurance will typically mandate (or strongly recom-
mend) the processes that the developers must follow to support a claim 
for a particular level of dependability. For example, the avionics standard 
DO-178 mandates modified condition/decision coverage (MCDC) test-
ing—described in Chapter 1—for the most critical software. This can 
lead to a culture where software producers follow the standard and then 
claim that their software has achieved the required dependability with-
out providing any direct evidence that the resulting product actually has 
the required properties. In contrast, goal-based standards require the 
developers to state their dependability targets and to justify why these 
are adequate for the application, and then to choose development and 
assurance methods and to show how these methods provide sufficient 
evidence that the dependability targets have been achieved. Goal-based 
assurance will usually provide a far stronger dependability case than 
process-based assurance.

Another advantage of goal-based assurance cases over more prescrip-
tive methods for assurance is that they allow expert developers to choose 
suitable solutions to novel design problems. In addition, goal-based assur-
ance approaches are able to keep pace with technological change and 
with the attendant changes in system functions and hazards along with 
the goals of their stakeholders. As noted earlier, the increased flexibil-
ity demands expertise and judgment in discerning what technological 
and process approaches are best suited in a given circumstances to meet 
explicit requirements and develop the evidence needed for an ultimate 
dependability case. 

In short, then, as explained above, the developers make explicit claims 
about the dependability properties of the delivered system. For these 
claims to be useful to the consumers of the system, the developers present, 
along with the claims, a dependability case arguing that the system has 
the claimed properties. Such an approach is only useful to the extent that 
the claims can be substantiated by the dependability case, and that the 
case is convincing. It therefore requires transparency so that the consumer 
(broadly construed) can assess the case’s credibility and accountability to 
discourage misrepresentation.
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The Dependability Case

Dependability requires justifiable confidence, which in turn requires 
that there be adequate evidence to support the claims of dependability, 
and that this evidence be available to those who have to assess the degree 
of confidence that the evidence supports. Claims for certifiably depend-
able software should therefore be not only explicit but also backed by 
sufficient evidence, and this evidence should be open to inspection and 
analysis by those assessing the dependability case. 

What constitutes sufficient evidence for dependability depends on 
the nature of the claim and the degree of dependability that is required. 
In general, however, the evidence will constitute a dependability case 
that takes into account all components of the system as a whole: the soft-
ware, physical devices with which it interacts, and assumptions about the 
domain in which it operates (which will usually include both assumptions 
about the physical environment and assumptions about the behavior of 
human operators).

Of course, the construction of those parts of the dependability case 
that go beyond the software may require skills and knowledge beyond 
those of the software engineer and may be relegated to domain experts. 
But it is vital that the software engineer still be responsible for ensuring 
not only that the part of the case involving software is sound, but also that 
it is used appropriately in the larger case.

The Role of Domain Assumptions

As explained in the preceding section, a dependability claim for a 
system should be made in terms of requirements that involve the phe-
nomena of the environment; it is to affect these phenomena that the 
system is introduced in the first place. The software itself, on the other 
hand, is judged against a specification that involves only phenomena at 
the interface of the machine and the environment, which the software is 
capable of controlling directly.

Between the requirements and the specification lie domain assump-
tions. A dependability case will generally involve a statement of domain 
assumptions, along with their justifications, and an argument that the 
specification of the software and the domain assumptions together imply 
the requirements. Insisting on this tripartite division of responsibility—
checking the software, checking the domain assumptions, and checking 
that they have the correct combined effect—is not a pedantry. As the 
Warsaw Airbus incident illustrates, the meeting point of these three com-
ponents of the dependability case is often a system’s Achilles’ heel.
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The Role of Architecture

The demand for evidence of dependability and the difficulty of pro-
ducing such evidence for complex systems have a straightforward but 
profound implication. Any component for which compelling evidence of 
dependability has been constructed at reasonable cost will likely be small 
by the standards of most modern software systems. Every critical specifi-
cation property, therefore, will have to be assured by one, or at most a few, 
small components. Sometimes it will not be possible to separate concerns 
so cleanly, and in that case, the dependability case will be less credible or 
more expensive to produce.

The case that the system satisfies a property has three parts:

•	 An argument that the requirements properties will be satisfied by the 
specification of the system, in conjunction with the domain assumptions. As 
explained above, this requires that the domain assumptions are made 
explicit and shown to be justified. For example, the specification of a con-
troller that is used to maintain a safe level in a reservoir may depend on 
assumptions about signals from sensors, the behavior of valves, and the 
flow rate through outflow pipes under a range of operational conditions. 
These assumptions should be stated and reviewed by domain experts and 
may need to be tested under operational conditions to achieve the neces-
sary confidence that they are correct.

•	 An independence argument, based on architectural principles, that only 
certain components are relevant. The independence argument will rely on 
properties of both the particular architecture and the language and imple-
mentation platform on which it stands. The easiest case will be where 
the components are physically separated, for example by running on 
separate processors with no shared memory. Where the components share 
memory, unless they use a safe, well-defined language and a robust, fully 
specified platform, such an argument will not be possible. For example, if 
the language allows arbitrary integers to be used as if they were pointers 
to variables (as in C), it will not be possible to argue that the regions of 
memory read and written by distinct modules are disjoint, so even mod-
ules implementing functionality unrelated to the property at issue would 
have to be treated as relevant. These shortcomings might be overcome, 
but only at considerable cost. For example, memory safety could be estab-
lished by restricting the code to a subset that disallows certain constructs 
and then performing a review, preferably with the aid of automated tools, 
to ensure that the restriction has been obeyed.

•	 A more detailed argument that the components behave appropriately. 
This argument is likely to involve analysis of the specification for com-
pleteness and consistency, analysis of the design to show conformance 
with the specification, and analysis of the implemented software to show 
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consistency with the design and the absence of unsafe properties (such as 
memory faults or the use of undefined values). The components, subsys-
tems, and system will then usually be tested to provide some end-to-end 
assurance.

The degree of coupling between components, in the form of depen-
dences that cause one component to rely on another, is likely to be a good 
indicator of the effort that will be required to construct a dependability 
argument. In general, the more dependences and the stronger the depen-
dences, the more components will need to be considered and the more 
detailed their specifications will need to be, even to establish a limited 
property. 

The Role of Testing

Testing is indispensable, and no software system can be regarded as 
dependable if it has not been extensively tested, even if its correctness has 
been proven mathematically. Testing can find flaws that elude analysis 
because it exercises the system in its entirety, where analysis must typi-
cally make assumptions about the execution platform that may turn out 
to be unwarranted. Human observation of an executing system, especially 
one that interacts heavily with a user, can also reveal serious flaws in the 
user interface, and even in the formulation of the dependability proper-
ties themselves.

Testing plays two distinct roles in software development. In the first 
role, testing is an integral component of the software development process. 
Automatic tests, run every time a change is made to the code, have proven 
to be extremely effective at catching faults unwittingly introduced during 
maintenance. If code is frequently refactored (that is, if code is modified 
to simplify its structure without changing its functionality) retesting is 
especially important. When a fault is found in the code, standard practice 
requires the construction of a regression test to ensure that the fault is 
not reintroduced later. Having programmers develop unit tests for their 
own modules encourages them to pay attention to specifications and can 
eliminate faults that would be more expensive to detect after integration. 
(There is some evidence, however, that unit tests are not particularly effec-
tive or necessary if code is developed from a formal specification and is 
subject to static analysis.12)

Testing is often an inexpensive way to catch major flaws, especially 
in areas (such as user interfaces) where analysis is awkward. A skillfully 

12 S. King, J. Hammond, R. Chapman, and A. Pryor, eds. “Is proof more cost-effective than 
testing?” IEEE Transactions on Software Engineering 26(8):675-686.
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constructed test suite can also find faults that would rarely fail in service 
but in ways difficult to diagnose; experienced programmers, for example, 
will insert diagnostics into concurrent code in patterns that are likely to 
expose data races and deadlocks. “Fuzz testing,” in which a program is 
subjected to a huge suite of randomly generated test cases, often reveals 
faults that have escaped detection in other ways. The power of testing 
can be greatly amplified if formal models, even very partial ones, are 
available; tests can be generated automatically from state machine models 
using a technique known as “model-based testing” and from invariants 
or run-time assertions.

As Dijkstra observed, however, testing can reveal the presence of 
errors but not their absence.13 The theoretical inadequacies of testing are 
well known. To test a program exhaustively would involve testing all 
possible inputs in all possible combinations and, if the program maintains 
any data from previous executions, all possible sequences of tests. This 
is clearly not feasible for most programs, and since software lacks the 
continuity of physical systems that allow inferences to be drawn from one 
sample execution about neighboring points, testing says little or nothing 
about the cases that were not exercised. Because state space14 coverage is 
unattainable and hard even to measure, less ambitious forms of coverage 
have been invented, such as “all-statements” (in which every statement 
of the program must be executed at least once), “all-branches” (in which 
every branch in the control flow must be taken), and a variety of predicate 
coverage criteria (in which the aim is to achieve combinations of logical 
outcomes from the expressions that comprise the condition of each loop 
or if-statement). Testing researchers established early on that many of the 
intuitions that a tester might have that give confidence in the value of 
coverage are incorrect—for example, a coverage criterion that is stricter 
(in the sense that it rejects a larger set of test suites as inadequate) is not 
necessarily more effective at finding faults.15 Moreover, a recent study 
showed that even the predicate coverage criterion known as MCDC (used 

13 O. Dahl, E.W. Dijkstra, and C.A. Hoare, 1972, Structured Programming, Academic Press, 
New York.

14 The “state space” of a system is the set of states—internal configurations or conditions—
that the system can potentially occupy. If a test suite covers the entire state space, then 
every possible configuration has been tested, and the test is complete. In practice, however, 
the state space is usually so large that only a small proportion is exercised by a test suite. 
Model-based testing is an approach that seeks to appropriately abstract and consolidate 
states in meaningful ways so that more of the state space can be covered. Demonstrating 
the appropriateness of the abstraction and consolidation then becomes another element of 
the construction of the dependability case. 

15 Phyllis G. Frankl and Elaine J. Weyuker, 1993, “A formal analysis of the fault-detecting 
ability of testing methods,” IEEE Transactions in Software Engineering 19(3):202-213.
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widely in avionics and regarded as extremely burdensome) does not 
ensure the detection of a class of bugs found easily by static analysis.16

As Hoare has noted,17 testing is, in practice, “more effective than it has 
any right to be” in improving the quality and dependability of software. 
Hoare’s explanation is that while the contribution of testing to exposing 
bugs might only account for low levels of dependability, its contribu-
tion to providing feedback on the development process might account 
for much higher levels. In Hoare’s words: “The real value of tests is not 
that they detect bugs in the code but that they detect inadequacies in the 
methods, concentration, and skills of those who design and produce the 
code.” The most conscientious development teams indeed use testing 
in this manner. When a module or subsystem fails too many tests, the 
developers do not simply attempt to patch the code. Instead, they look 
to the development process to determine where the error was introduced 
that eventually resulted in the failure, and they make the correction there. 
This might involve clarifying requirements or specifications, reworking a 
design, recoding one or more modules from scratch, and, in extreme cases, 
abandoning the entire development and starting afresh.

In short, testing is a powerful and indispensable tool, and a develop-
ment that lacks systematic testing should not be regarded as acceptable 
in any professional setting, let alone for critical systems. How a software 
supplier uses testing is important information in assessing the credibil-
ity of its dependability claims (see the discussion of transparency in 
Chapter 3). 

The second role of testing is in providing concrete evidence that can 
be used in a dependability case. Testing is an essential complement to 
analysis. Because the activities of testing differ so markedly from those 
involved in analysis, testing provides important redundancy and can 
catch mistakes made during the analysis process, whether by humans 
or tools. The dependability case for an extrinsic property will often rely 
on assumptions about a physical device, which will be represented as a 
formal model for the purpose of analysis. Such formal models should 
obviously be tested—ideally before they are used as the basis for devel-
opment. A patient monitoring system, for example, might assume certain 
properties of accuracy and responsiveness for the monitoring devices; 
the case for the system as a whole will require these to be substantiated 
by extensive and rigorous testing, ideally not only by the suppliers of the 

16 Andy German and Gavin Mooney, 2001, “Air vehicle software static code analysis—
Lessons learnt,” Proceedings of the Ninth Safety-Critical Systems Symposium, Felix Redmill and 
Tom Anderson, eds., Springer-Verlag, Bristol, United Kingdom. 

17 C.A.R. Hoare, 1996, “How did software get so reliable without proof?” Lecture Notes in 
Computer Science 1051:1-17.
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devices but also by the developers of the system that uses them. End-to-
end tests are especially important to catch interactions and couplings that 
may not have been predicted. In a radiotherapy system, for example, the 
beam would be examined with a dosimeter to ensure that the physical 
dose delivered at the nozzle matches the prescribed dose entered earlier 
at the therapist’s workstation. 

At the same time, it is important to realize that testing alone is very 
rarely sufficient to establish high levels of dependability. Testing will be 
an essential component of a dependability case but will not in general 
suffice, because even the largest test suites typically used will not exercise 
enough paths to provide evidence that the software is correct and have 
little statistical significance for the levels of confidence usually desired. 
It is erroneous to believe that a rigorous development process in which 
testing and code review are the only verification techniques would justify 
claims of extraordinarily high levels of dependability. Some certification 
schemes, for example, associate higher “safety integrity levels” with more 
burdensome process prescriptions and imply that following the processes 
recommended for the highest integrity levels gives confidence that the 
failure rate will be less than 1 failure per 1 billion hours. Such claims have 
no scientific basis.

Furthermore, unless a system is very small or has been meticulously 
developed bearing in mind the construction of a dependability case, 
credible claims of dependability are usually impossible or impractically 
expensive to demonstrate after design and development of the system 
have been completed.18

Another form of evidence that is widely used in dependability claims 
for a component or system to be used in a critical setting is its prior exten-
sive use. In fact, the internal state space of a complex software system may 
be so large that even several years’ worth of execution by millions of users 
cannot be assumed to achieve complete coverage. A new environment 
might expose unknown vulnerabilities in a component. Components 
designed for use in commercial, low-criticality contexts are not suitable 
for critical settings unless justified by an explicit dependability case that 
places only appropriate weight on previous successful uses.

Testing offered as part of a dependability case, like all other compo-
nents of the dependability case, should be carefully justified. Since the 
purpose of the dependability case is to establish the critical properties of 
the system, the degree of confidence warranted by the testing will vary 

18 B. Littlewood and L. Strigini, 1993, “Validation of ultra-high dependability for software-
based systems,” Communications of the ACM 36(11):69-80. Also see R. Butler and G. Finelli, 
1993, “The infeasibility of quantifying the reliability of life-critical real-time software,” IEEE 
Transactions on Software Engineering 19(1):3-12.
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according to the strength of the connection between the tests and the 
properties claimed. At one extreme, if a component can be tested exhaus-
tively for all possible inputs, testing becomes tantamount to proof, giving 
very high confidence. At the other extreme, execution of even a large set of 
end-to-end tests, even if it achieves high levels of code coverage, in itself 
says little about the dependability of the system as a whole.

It cannot be stressed too much that for testing to be a credible com-
ponent of a dependability case, the relationship between testing and the 
properties claimed will need to be explicitly justified. The tester may 
appeal to known properties of the internals of the system or to a statistical 
analysis involving the system’s operational profile. In many cases, the jus-
tification will necessarily involve an argument based on experience—for 
example, that attaining a certain coverage level has in the past led to 
certain measured failure rates. That experience should be carefully evalu-
ated. Sometimes, the test suite itself may be treated as direct evidence for 
dependability. For a standard test suite (such as the Java Compatibility 
Kit used for testing implementations of the Java platform19), it will be pos-
sible to base the degree of confidence on the opinions of experts familiar 
with the suite. But a custom test suite, however credible, may place an 
unreasonable burden on those assessing the dependability case.

Until major advances are made, therefore, testing should be regarded 
in general as only a limited means of finding flaws, and the evidence of a 
clean testing run should carry weight in a dependability argument only 
to the extent that its implications for critical properties can be explicitly 
justified.

The Role of Analysis

Because testing alone is insufficient, for the foreseeable future the 
dependability claim will also require evidence produced by analysis. 
Moreover, because analysis links the software artifacts directly to the 
claimed properties, for the highest levels of dependability, the analysis 
component of the dependability case will usually contribute confidence 
at lower cost.

Analysis may involve well-reasoned informal argument, formal 
proofs of code correctness, and mechanical inference (as performed, for 
example, by “type checkers” that confirm that every use of each variable 
in a program is consistent with the properties that the variables were 
defined to have). Indeed, the dependability case for even a relatively 
simple system will usually require all of these kinds of analysis, and they 
will need to be fitted together into a coherent whole.

19 For more information on the Java Compatibility Kit, see <https://jck.dev.java.net/>.
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Type checking, for example, may be used to establish the indepen-
dence of modules; known properties of the operating system may be used 
to justify the assumption that address space separation is sound; modu-
lar correctness proofs used to establish that, under these assumptions, 
the software satisfies its intrinsic specifications; and informal argument, 
perhaps augmented with some formal reasoning, to make the link to the 
crucial extrinsic properties.

An argument taking the form of a chain of reasoning cannot be stron-
ger than its weakest link. (Recent research20 on combining diverse argu-
ments opens the possibility that independent, weak arguments for the 
dependability of a system could some day be combined to provide a 
quantifiably stronger argument.) It will therefore be necessary to ensure 
that the tools and notations used to construct and check the argument are 
robust. If they are not, extraordinary efforts will be required to overcome 
their limitations. For example, if a language is used that does not require 
that the allowable properties of every program object are tightly defined 
and enforced (i.e., a “type-unsafe” or “weakly typed” language), a sepa-
rate, explicit argument will need to be constructed to ensure that there 
are no violations of memory discipline that would compromise modular 
reasoning. If the programming language has constructs that are not pre-
cisely defined, or that result in compiler-dependent behavior, it will be 
necessary to restrict programmers to a suitable subset that is immune to 
the known problems.

As noted in Chapter 1, there are difficulties and limits to contempo-
rary software analysis methods, owing in part to the need for a highly 
trained and competent software development staff. Indeed, the quality 
of the staff is at least as important as the development methods and 
tools that are used, and so these factors should also be included in the 
evidence.

Rigorous Process: Preserving the Chain of Evidence

Although it might be possible to construct a dependability case after 
the fact, in practice it will probably only be achievable if the software is 
built with the dependability case in mind. Each step in developing the 
software needs to preserve the chain of evidence on which will be based 
the argument that the resulting system is dependable. 

At the start, the domain assumptions and the required properties of 
the system should be made explicit; they should be expressed unambigu-

20 For example, Robin Bloomfield and Bev Littlewood, 2006, “On the use of diverse argu-
ments to increase confidence in dependability claims,” in Structure for Dependability, D. 
Besnard, C. Gacek, and C.B. Jones, eds., Springer-Verlag, New York, pp. 254-268.
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ously and in a form that permits systematic analysis to ensure that there 
are no unresolvable conflicts between the required properties. Because 
each subsequent stage of development should preserve the evidence 
chain that these properties have been carried forward without being cor-
rupted, each form in which the design or implementation requirements 
are expressed should support sufficient checking that the required proper-
ties have been preserved.

What is sufficient will vary with the required dependability, but pre-
serving the evidence chain necessitates that the checks are carried out 
in a disciplined way, following a documented procedure and leaving 
auditable records—in other words, a rigorous process. For example, if the 
dependability argument relies, in part, on reasoning from the properties 
of components, then the system build process should leave evidence that 
the system has been built out of the specific versions of each component 
for which there is evidence that the component has the necessary proper-
ties. This can be thought of as “rigorous configuration management.”

Components and Reuse

Complex components are seldom furnished with the information 
needed to support dependability arguments for the systems that use 
them. For use within a larger argument, the details of the dependability 
case of a component need not be known (and might involve proprietary 
details of the component’s design). But the claims made for a component 
should be known and clearly understood, and it should be possible to 
assess their credibility by, for example, the reputation of a third-party 
reviewer (in much the same way as the FAA credibly assures the airwor-
thiness of aircraft) or the nature of the evidence. 

Not all systems and not all properties are equally critical, and not all 
the components in a system need assurance to the same level: for exam-
ple, we may demand that one component can fail to satisfy some property 
no more than one time in a billion, while for another property we might 
tolerate one failure in a thousand. Until recently, there has been little 
demand for components to be delivered with the claims, argument, and 
evidence needed to support the dependability case for a system that uses 
the component. At lower levels of criticality, and in accidental systems, 
explicit dependability cases have seldom been constructed, so there has 
been no perceived need for component-level cases. At the other extreme, 
systems with highly critical assurance goals (such as airplanes) have 
driven their dependability cases down into the details of their compo-
nents and have lacked regulatory mechanisms to support use of prequali-
fied critical components, which would allow the case for the larger system 
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to use the case for its components without inquiring into all the details of 
the components themselves.

With greater reuse of components, and a concomitant awareness of 
the risks involved (especially of using commodity operating systems in 
critical settings), component-level assurance will become an essential 
activity throughout the industry. In the case of critical systems such as 
airplanes, it used to be the case that their software was built on highly 
idiosyncratic platforms that were seldom reused from one airplane to 
the next, and the same was true of the architectural frameworks that tie 
multiple computer systems and buses together to support fault-tolerant 
functions such as autopilot, autoland, flight management, and so on. 
Nowadays, however, the software is generally built on real-time operating 
systems such as LynxOS-178 that are highly specialized but nonetheless 
standardized components, and standardized architectural frameworks 
such as Primus Epic and the Time-Triggered Architecture (TTA) have 
emerged to support Integrated Modular Avionics (IMA).

To support these developments, the FAA developed an advisory cir-
cular on reusable software components,21 and guidelines for IMA have 
been developed by the appropriate technical bodies (SC200 of RTCA and 
WG60 of EUROCAE) and are currently being voted on. Both of these 
developments are rather limited, however, in that they allow only for a 
software component that has been used in the traditional assurance case 
for a certified airplane to take the assurance data developed in that certi-
fication into the assurance case for additional airplanes; they fall short of 
allowing the assurance case for a system to build on the assurance cases 
for its components.

In the case of less-critical systems, much attention has been focused 
recently on the use of commercial off-the-shelf (COTS) subsystems and 
software of uncertain pedigree/unknown provenance (SOUP). While the 
attention has focused mostly on the use of architectural mechanisms (for 
example, wrappers) to mitigate the unknown (un)reliability of these com-
ponents, it has also highlighted the lack of assurance data for these compo-
nents: It matters less that they are unreliable than that it is unknown how 
unreliable they are, and in what ways their unreliability is manifested.

Accidental systems often use COTS and SOUP and do so in contexts 
that promote criticality creep (see previous discussion). If these cases 
were recognized appropriately as systems and subjected to an appropri-
ate dependability regime, the cost of providing adequate dependability 

21 Federal Aviation Administration (FAA), 2004, “Reusable software components,” 
AC 20-148, FAA, Washington, D.C. Available online at <http://www.airweb.
f a a . g o v / R e g u l a t o r y _ a n d _ G u i d a n c e _ L i b r a r y / rg A d v i s o r y C i rc u l a r. n s f / 0 / 
EBFCCB29C0E78FFF86256F6300617BDD?OpenDocument>.

Software for Dependable Systems: Sufficient Evidence?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/11923


78	 SOFTWARE FOR DEPENDABLE SYSTEMS

evidence for the COTS/SOUP component might exceed the cost of devel-
oping a new component when high dependability is required. 

It is apparent that at all levels of criticality it is currently impossible 
to develop dependability cases for systems based solely on those cases 
for their components. In the case of critical systems such as airplanes 
this is mostly because the regulatory framework does not allow it, in 
part because the science base does not yet provide the ability to reason 
about system-level properties such as safety or security based solely on 
the properties of the system’s components. In the case of less critical and 
accidental systems, it is often because such systems rely on COTS and 
SOUP, for which no suitable assurance data are available.

Expertise

Building software is hard; building dependable software is harder. 
Although the approach advocated in this report is designed to be as free 
as possible from the fetters of particular technologies, it also assumes that 
developers are using the very best techniques and tools available. A devel-
opment team that is unfamiliar and inexperienced with best practices is 
very unlikely to succeed.

This section therefore contains an outline of some of today’s best 
practices. It might be used in many ways: for educational planning, for 
assessing development organizations, for evaluating potential recruits, 
and even as the basis for licensing. However, the committee offers the 
outline only as guidance and would not want it to be seen as binding in 
all circumstances. Few best practices have universal application, and most 
need to be adjusted to the context of a particular problem.

Different problems and different development contexts call for dif-
ferent practices. Moreover, what is considered to be best practice changes 
over time, as new languages and tools appear and ideas about how to 
develop software continue to mature. The committee therefore felt it 
would be unwise to tie its recommendations to particular practices. In 
addition, merely applying a set of best practices absent a carefully con-
structed dependability case does not warrant confidence in the system’s 
dependability.

At the same time, in order to make concrete the importance of best 
practices, the committee decided to offer a list of practices that it regards as 
representative of a broad consensus at the time of writing. It also seemed 
desirable to provide some guidance regarding today’s best practices, 
especially since developers in smaller organizations are often unaware of 
simple practices that can dramatically improve software quality.

This section begins with a discussion of simplicity, because a commit-
ment to simplicity is key to achieving justifiable confidence and depend-
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able software. A commitment to simplicity is often the mark of true exper-
tise. The list of particular best practices that follows this discussion is 
by no means exhaustive. It represents the consensus of the committee 
on a core set of practices that can be widely applied and that can bring 
dramatic benefit at relatively low cost. For the most part, these practices 
represent minimal standards of software engineering. In some cases, for 
development of a noncritical system in which high dependablity is not 
required, less stringent practices may make sense, as noted in the list.

Simplicity

The price of reliability is the pursuit of the utmost simplicity. It is a price 
which the very rich find most hard to pay.22

In practice, the key to achieving dependability at reasonable cost is 
a serious and sustained commitment to simplicity. An awareness of the 
need for simplicity usually comes only with bitter experience and the 
humility gained from years of practice. Moreover, the ability to achieve 
simplicity likewise comes from experience. As Alan Perlis said, “Simplic-
ity does not precede complexity, but follows it.”23

The most important form of simplicity is that produced by inde-
pendence, in which particular system-level properties are guaranteed 
by individual components, much smaller than the system as a whole, 
whose preservation of these properties is immune to failures in the rest 
of the system. Independence can be established in the overall design of 
the system with the support of architectural mechanisms. Its effect is to 
dramatically reduce the cost of constructing a dependability case for a 
property, since only a relatively small part of the system needs to be con-
sidered. Where independence is not possible, well-formed dependence is 
critical. Independence allows the isolation of safe critical functions to a 
small number of components. Well-formed dependence (wherein a less-
critical service may depend on a critical service but not vice versa) allows 
critical services to be safely used by the rest of the system. Independence 
and well-formed dependence are important design principles of overall 
system architecture. Simplicity has wider applications, however, which 
the rest of this section discusses.

A major attraction of software as an implementation medium is its 
capacity for complexity. Functions that are hard, expensive, or impossible 

22 C.A.R. Hoare, 1981, “The emperor’s old clothes” (Turing Award Lecture), Commu-
nications of the ACM 24(2):75-83. Available online at <http://portal.acm.org/citation.
cfm?id=358561>.

23 Alan J. Perlis, 1982, “Epigrams on programming,” SIGPLAN Notices 17(9):7-13.
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to implement by other means (whether automatically in physical devices 
or manually in human organizations) can often be realized at low cost in 
software. Indeed, the marginal cost of complexity in software can seem 
negligible, as the cost of computational resources drops. In fact, however, 
complexity can inflict large costs. When a software system grows as new 
and more complex functions are added, its structure tends to deteriorate, 
and each new modification becomes harder to perform, requiring more 
parts of the code to be changed. It is not uncommon for a system to col-
lapse under the weight of its own complexity.24 

Developers usually cannot shield the user from the complexity of 
software. As the specification becomes more complex, it typically loses 
any coherence it once possessed. The user has no intelligible conceptual 
model of the system’s behavior and can obtain predictable results only by 
sticking to well-tried scenarios.

Complexity has, of course, a legitimate role. After all, software is 
often used precisely to satisfy the need for complex functions that are 
more cheaply and reliably implemented by software than by other means, 
mechanical or human. But complexity exacts a heavy price. The more 
complex a system is, the less well it is understood by its developers and 
the harder it is to test, review, and analyze. Moreover, complex systems are 
likely to consist of complex individual components. Complex individual 
components are more likely to fail individually than simpler components 
and more likely to suffer from unanticipated interactions. These interac-
tions are most serious amongst systems and between systems and their 
human users; in many accidents (for example, at Three Mile Island25), 
users unwittingly took a system toward catastrophe because they were 
unable to understand what the system was doing.

Whether a system’s complexity is warranted is, of course, a difficult 
judgment, and systems serving more users and offering more powerful 
functionality will generally be more complex. Moreover, the demand 
for dependability itself tends to increase complexity in some areas. For 
example, a system may require a very robust storage facility for its data. 
This will inevitably make the system more complex than one in which 
data loss can be tolerated. But the lesson of simplicity still applies, and 
a designer committed to simplicity would choose, for example, a stan-
dard replication scheme over a more complicated and ad hoc design that 
attempts to exploit the particular properties of the data.

24 The failure of Netscape, for example, has been attributed in part to the company’s inabil-
ity to extricate itself from the complexity of its Navigator browser. See Michael A. Cusumano 
and David B. Yoffie, 1998, Competing on Internet Time: Lessons from Netscape and Its Battle with 
Microsoft, Free Press, New York.

25 See Charles Perrow, 1999, Normal Accidents, Princeton University Press, Princeton, N.J.
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The overriding importance of simplicity in software development 
has been championed for decades. Formal methods researchers, such as 
Hoare (quoted above), were among the first to stress its value because 
they discovered early that extra complexity rapidly destroys the ability 
to generate evidence for dependability. Many practitioners have argued 
that the complexity of software is inherent to the task at hand, but this 
position has eroded, and views such as those reflected in the dicta of agile 
methodologies—“you aren’t gonna need it” and “the simplest thing that 
works”—are gaining ground.

There is no alternative to simplicity. Advances in technology or devel-
opment methods will not make simplicity redundant; on the contrary, 
they will give it greater leverage. To achieve high levels of dependability 
in the foreseeable future, striving for simplicity is likely to be by far the 
most cost-effective of all interventions. Simplicity is not easy or cheap, but 
its rewards far outweigh its costs.

Here are some examples of how a commitment to simplicity can be 
demonstrated throughout the stages of a development:

•	 Requirements.  A development should start with a carefully chosen, 
minimal set of requirements. Complex features often exact a cost that 
greatly exceeds the benefit they bring to users. The key to simplicity in 
requirements is the construction of abstractions and generalizations that 
allow simple, uniform functions to be used for multiple purposes. Over-
generalization, of course, can itself be a source of gratuitous complexity 
but can usually be recognized because it makes the requirements more, 
not less, complicated.

•	 Architecture.  Small and simple components are easier to reason 
about and less likely to harbor subtle bugs. Simple and clean interfaces 
reduce the risk of misunderstandings between members of the develop-
ment team and reduce the incidence of complex interactions, which are 
the most common cause of bugs in large systems. It is a mistake to believe 
that richer interfaces with a larger array of more elaborate functions ben-
efit the users of the interface; on the contrary, they tend to be less useful 
and perform more poorly.26 A dependence graph of the code showing 
which other modules each module depends on can reveal sources of 
architectural complexity, indicating where layering is violated, where 
low-level modules depend on high-level ones, where cycles prevent mod-
ular reasoning, or where simply a proliferation of dependences suggests 
a breakdown of the original design.

26 Butler Lampson, 1983, “Hints for computer system design,” ACM Operating Systems Re-
view 17(5):33-48. (Reprinted in IEEE Software 1(1):11-28. Available online at <http://research.
microsoft.com/lampson/33-Hints/WebPage.html>.)
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•	 Trusted base.  If the dependability properties of a system can be 
confined to a small trusted base consisting of only a few components so 
that the properties can be guaranteed without analyzing the rest of the 
system (except perhaps to establish certain noninterference properties), 
powerful techniques such as program verification, which would not be 
feasible for the system as a whole, can be applied locally to provide a level 
of confidence not attainable by any other means.

•	 Languages.  Complex development languages can undermine a 
development by making even a simple design appear complex and by 
introducing new opportunities for error. Developers should be wary of 
complex and poorly defined modeling languages27 and of programming 
languages with imprecise semantics, or semantics that are platform- or 
compiler-dependent. When other factors dictate the use of an overly com-
plex language, simplicity can often be regained by restricting usage to a 
well-defined and robust subset (such as the SPARK subset of Ada).28

•	 Tools.  Developers should favor simple tools and should be espe-
cially wary of code generation tools whose behavior is poorly understood. 
Tools that perform elaborate functions may need to be complex, but 
understanding how to use them and assessing their output should not be 
complex. A code verification tool, for example, might have complex analy-
sis functions, but it should report its results in an intelligible fashion and, 
ideally, produce a proof that can be independently checked by a simpler 
tool.

•	 Process.  A rigorous process is essential to constructing a depend-
ability case, but an elaborate and complex process that places a heavy 
burden on developers can be worse than no process at all. Excessive 
documentation is particularly problematic; it diverts attention from more 
important matters and is usually write-only. A common tendency is to 
set elaborate standards in trivial areas: Some organizations, for example, 
have coding standards that specify meticulously how various constructs 
should be formatted (a task that should be carried out by an editing tool) 
but fail to address the major weaknesses of the programming language.

27 In computer science and allied fields of information management and business process 
modeling, modeling languages enable software architects, business analysts, and others to 
specify the requirements of an organizational or software system on a “top” or architectural 
level. These languages seek to diagrammatically render system requirements in a manner 
that management, user groups, and other stakeholders can understand, with the goal of 
eliciting feedback from these groups. 

28 John Barnes, 2003, High Integrity Software: The SPARK Approach to Safety and Security, 
Addison-Wesley, Boston, Mass.
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Best Practices

The following subsections describe some of today’s specific system-
level, code- and module-level, and process-level best practices. 

System-Level Practices

The committee offers a set of system-level best practices below.

•	 Prioritization of requirements.  Prioritize requirements and articulate 
them simply and directly in terms of key properties rather than as a long 
list of functions, features, or scenarios.

•	 Requirements vs. specifications.  The requirements of a software sys-
tem should describe the intended effect of the system on its environment 
and not, more narrowly, the behavior of the system at its interface with 
the environment, which is the subject of the specification.

•	 Realistic demands.  Do not include requirements that are unrealistic 
or that cannot be realistically assessed. In particular, vague numerical 
measures are not a substitute for precise requirements: The requirement of 
“six 9s availability,” for example, makes little sense without a clear articu-
lation of which service is being provided and what constitutes availability 
or lack thereof.

•	 Environmental assumptions.  In the requirements document, clearly 
separate the demands on the software system being constructed from the 
demands on the environment or its operators. Include an explicit descrip-
tion of the environment, with a glossary that covers the domain-specific 
terms used throughout the document. Articulate precisely and fully any 
environmental assumptions and have them reviewed by domain experts.

•	 Hazard analysis.  For a critical application, perform a hazard analy-
sis that identifies the most likely hazards and checks that they have been 
mitigated appropriately. Address security risks by building and evaluat-
ing explicit threat models.

•	 Dependability case.  For a critical application, construct a depend-
ability case that explains why the system executing in context is likely to 
satisfy the prioritized requirements.

•	 Usability testing.  Apply usability testing to user interfaces in the 
early phases of development and periodically from then on.

•	 Formal modeling and analysis.  Express requirements and specifica-
tions precisely and unambiguously. An effective way to do this is to use 
a formal notation. For a noncritical system, a complete formal model will 
not generally be cost-effective, but it will usually be feasible and desirable 
to express at least the most important elements formally. 

•	 Analysis tools.  Exploit automatic analysis tools to find defects in 
requirements and specifications documents and to increase confidence in 
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their correctness. In noncritical developments this may involve little more 
than using tools that check for consistent use of names. In critical develop-
ments, use tools that offer deeper analysis, such as model checkers and 
simulators.

•	 Standard solutions.  Adopt standard solutions for algorithms and 
protocols unless a strong case has been made for deviating from stan-
dard practice. Avoid inventing algorithms in areas that are known to be 
extremely hard to design correctly (for example, distributed consensus, 
authentication, fault tolerance). If the standard solution seems not to 
apply, consult an expert.

Code- and Module-Level Practices

Other best practices would apply at the code and module levels:

•	 Interfaces.  Design interfaces between modules that are small and 
well-defined. Exploit programming language mechanisms to express the 
module structure and check it at compile time. Specify all public interfaces 
fully and integrate the specifications with the code, using, for example, a 
tool such as Javadoc.29

•	 Data abstraction.  Minimize the scope and accessibility of all pro-
gram components. Hide the representation of data using data abstraction, 
and use programming language mechanisms to enforce it. Make data 
types immutable whenever possible.

•	 Inheritance.  Inheritance is a powerful but dangerous program-
ming feature. Use it sparingly, and whenever possible favor composi-
tion (adding functionality by embedding one object explicitly in another) 
over inheritance. Design for inheritance or prohibit it, and do not extend 
classes that were not designed with extension in mind. In critical applica-
tions, avoid inheritance or ensure that adequate time has been allowed 
for the extensive additional verification activity that will be required.

•	 Module dependences.  Evaluate the code structure by constructing a 
module dependence diagram (preferably with an automated tool), and 
modify the code to eliminate complex or troublesome dependences (espe-
cially those violating layering, and those forming cycles).

•	 Standard libraries.  Use standard libraries unless (1) sufficiently 
robust libraries are not available for the functionality desired or (2) a 
much smaller and simpler library can be constructed for the problem at 
hand using published and peer-reviewed algorithms.

29 For more information about the Javadoc tool, see <http://java.sun.com/j2se/ 
javadoc/>.
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•	 Safe language.  Use a safe programming language where feasible 
and exploit the features that amplify static type checking (such as gener-
ics). Avoid extralinguistic or borderline features (such as native methods, 
reflection, and serialization). Know and avoid the traps and pitfalls of the 
platform. For a critical application, consider using a robust subset of the 
language (e.g., MISRA-C and SPARK); using an unsafe language (such as 
C) is unacceptable unless extraordinary measures (such as proof of type 
correctness) have been taken to mitigate the risks.30

•	 Coding standards.  Establish clear and simple coding standards to 
enforce good practices in the use of programming language features.31 
Conventions for naming and layout are useful, especially because they 
amplify the power of simple lexical tools, but they are secondary to stan-
dards that have a direct impact on dependability. Appropriate coding 
standards are especially effective at eliminating security vulnerabilities.

•	 Defensive programming.  Make liberal use of runtime assertions 
to detect flaws in the code and incorrect environmental assumptions, 
and disable them in the deployed code only after careful consideration. 
Assertions that embody preconditions, postconditions, and representation 
invariants are especially effective.

•	 Logging failures.  Generate a log of messages that record in detail the 
circumstances of any detected failure that occurs at runtime. The message 
log should be examined frequently even if there are no serious failures 
and should be archived for later analysis.

•	 Testing.  Automate testing, especially for regressions. Use tools to 
measure test coverage and aim to achieve full coverage of all statements. 

30 Almost all programming languages that are currently used in industry permit the pro-
grammer to write syntactically correct programs whose meaning is uncertain. In C, for 
example, the language standard allows the order in which the compiled code evaluates the 
individual elements of an expression to change each time the program is compiled. If an 
expression contains a function call, and the function changes the value of a variable that is 
also used in the expression, the value of the expression will depend on the order of evalua-
tion, and the meaning of the program is undefined and may change following a recompila-
tion. Some language standards attempt to resolve the problem of undefined programs by 
declaring them illegal but leave the compiler writer helpless to tell the programmer that their 
program is illegal before it is executed. For example, if an attempt is made to store a value in 
the 11th cell of an array defined in the C language to have 10 elements, the program is illegal 
and its behavior is undefined, but this will not be detected before the program is executed. 
This weakness in C is at the heart of the notorious “buffer overflows” that create the security 
vulnerabilities that have been exploited by many viruses and worms. When a programming 
language standard allows legal programs to have an undefined meaning, or where it de-
clares certain programs to be illegal but the illegality cannot practically be determined before 
the program is executed, the programming language is said to be “unsafe.”

31 For a good example of a small collection of well-justified and easy-to-apply rules, see 
G.J. Holzmann, 2006, “The power of ten: Rules for developing safety critical code,” IEEE 
Computer 39(6):95-97.
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Every method of an exported application programming interface (API) 
should be tested. Do not regard testing as a tool to eliminate errors; 
instead, regard it as a quality control tool, and discard software that 
contains significant numbers of errors. Change the design if necessary to 
make thorough testing feasible.

•	 Static analysis.  The compiler should be used in its strictest mode, 
and all code should pass without warnings. Use a static analysis tool to 
detect anomalies in the code; several such tools are now readily available. 
Specialized static analyses can establish the absence of certain kinds of 
security vulnerabilities.

•	 Code review.  Conduct systematic reviews of all code as early as 
possible, before the code is placed in the project repository.

•	 Incremental build.  Integrate the code of a system early and often. 
Include all checking tools in the automatic build process, including static 
analyses, unit and regression tests, and dependency analyses.

Process-Level Practices

Best practices at the process level include the following:

•	 Process.  A robust and clear quality management system that is 
appropriate to the development organization and the character of the 
software being developed should be chosen, documented, and adhered 
to.  Individuals should be trained in the aspects of the system that are 
relevant to their roles, and the process should encompass verification that 
its requirements are being adhered to and a systematic effort to review the 
costs and benefits of the process and improve it as appropriate.32 

•	 Risk management.  Identify key risks (of failure in development or 
failures of the product), record them in a risk register (essentially a table 
of all known risks), and articulate a plan to mitigate them. An incremen-
tal approach is most likely to succeed, focusing on major risks early on, 
developing core features first (including those that will have a significant 
impact on product architecture), and minimizing complexity.

•	 Project planning.  The project should have an explicit plan with 
milestones against which progress is systematically evaluated. The plan 
should explicitly address the risks identified in the risk register.

•	 Quality planning.  The project should have an explicit quality plan 
that articulates the quality criteria and describes how the quality criteria 
will be achieved and how the product will be assessed against them.

32 Key processes that should be defined include specification, design, programming, ver-
sion control, risk management, reviewing, testing, management of subcontractors, contract 
reviews, and documentation. ISO standard 9000-3 provides an example of this sort of pro-
cess definition and management.
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•	 Version control.  All of the significant project documents (require-
ments, designs, code, plans, reports, and so on) should contain a date, ver-
sion number, and change history and be kept under strict version control. 
In particular, a standard source code control system should be used that 
provides versioning, backup, and conflict detection.

•	 Bug tracking.  All reported bugs should be documented in a data-
base and indexed against the location where they were discovered in 
the code, design, or other documentation. All bug fixes should be fully 
documented and indexed against the appropriate bug report, and should 
result in reverification, including reexecution of regression test suites and 
the creation of new regression test cases. In any important application, 
each bug should be traced to its origin in the development, and a review 
should ensue to determine whether there are other similar bugs and what 
modifications to the development process could reduce the likelihood of 
such bugs occurring in the future.

•	 Phased delivery.  Deliver a system in phases, with the most basic and 
important functions delivered in the first phase and additional functions 
delivered in later phases, in order to exploit feedback from users and 
reduce risk.

•	 Independent review.  In a critical application, reviews by the develop-
ment team should be augmented by reviews by an independent party.

FEasibility of the Overall Approach

The approach to justifiable confidence and dependable software pro-
posed in this chapter and the technical practices it involves should be 
adoptable without significant risk, because the practices have already 
been successfully applied by a few companies, as illustrated by the four 
papers cited in the next three paragraphs. 

The importance of taking a systems perspective and regarding the 
direct human users of the computer interface as part of the overall system 
is widely recognized—in the aviation industry, for example, the aircraft is 
seen as a single system and the likelihood of error by the pilot is a factor 
treated explicitly in the system design and in safety analysis and certifi-
cation. The importance of simplicity, even in complex applications, has 
long been understood in high-security systems, where the software that 
protects data integrity and confidentiality is kept as simple as possible 
and often implemented as a “security kernel.” An example is described 
in a paper in IEEE Software.33

The benefits of exploiting analysis in addition to testing have been 
demonstrated on several projects reported in the literature. A good analy-

33 R. Chapman and A. Hall, 2002, “Correctness by construction: Developing a commercially 
secure system,” IEEE Software (January/February):18-25. 
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sis of a number of commercial projects is contained in a paper in IEEE 
Transactions on Software Engineering.34 The importance and effectiveness of 
capturing environmental assumptions is explained with reference to an 
e-commerce system, a safety protection system, and a railway signaling 
system in a 2001 conference report.35

Evidence-based dependability cases and explicit claims are widely 
used in safety-critical software development but have also been shown to 
be cost-effective when building commercial applications.36 The common 
experience, from these reports and others, is that these technical recom-
mendations are practical to adopt and effective in use by experts. As with 
all engineering, cost-effectiveness is a primary objective; making depend-
ability claims explicit allows developers to ensure that they achieve the 
necessary dependability without overengineering.

34 S. King, J. Hammond, R. Chapman, and A. Pryor, 2000, “Is proof more cost-effective than 
testing?” IEEE Transactions on Software Engineering 26(8):675-686.

35 J. Hammond, R. Rawlings, and A. Hall, 2001, “Will it work?” Proceedings of the 5th IEEE 
International Symposium on Requirements Engineering, August.

36 Adrian Hilton, 2003, “Engineering Software Systems for Customer Acceptance.” Avail-
able online at <http://www.praxis-his.co.uk/pdfs/customer_acceptance.pdf>.
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Broader Issues

The preceding chapter outlined a comprehensive approach to the 
development of certifiably dependable software. The proposed 
approach has implications not only for how software is produced 

and evaluated but also for government policy, legislation, and regulation; 
education; and research. Each of these areas warrants in-depth studies 
of its own, and the committee recognizes that policy prescriptions in 
particular—especially in light of the limited data and evidence avail-
able in the arena of certifiably dependable software—can have complex 
and unpredictable ramifications. The committee has therefore chosen to 
refrain from making concrete and prescriptive recommendations aimed 
at particular agencies or specific domains. Nevertheless, it seemed useful 
to outline some of the relevant issues and note areas for further investiga-
tion and consideration.

Transparency

Dependable systems need dependable components, tools, and soft-
ware companies, so it is important that customers and users be able to 
make an informed judgment when choosing suppliers and products. This 
only becomes possible when the criteria and evidence underlying claims 
of dependability are transparent.

Economists have established that if consumers cannot reliably observe 
quality before they buy, then sellers may get little economic benefit from 
providing higher quality than their competitors, and overall quality can 

89

Software for Dependable Systems: Sufficient Evidence?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/11923


90	 SOFTWARE FOR DEPENDABLE SYSTEMS

decline.� Because their reputation will affect future sales, sellers strive to 
maintain some minimum level of quality. If consumers rely heavily on 
such branding, though, it becomes more difficult for new firms to enter 
the market. In this case, the software industry could lose out on quality 
or other improvements because new and innovative firms had limited 
means of proving their quality. Information asymmetries of this type can 
be mitigated if dependability claims are explicit and backed by evidence, 
as long as the evidence is available for inspection by potential buyers.

Such transparency, in which those claiming dependability for their 
software make available the details of their claims, criteria, and evidence, 
is thus essential for providing the correct market conditions under which 
informed choices can be made and the more dependable suppliers can 
prosper.

To assess the credibility of such details effectively, an evaluator should 
be able to calibrate not only the technical claims and evidence but also the 
organization that produced them, because the integrity of the evidence 
chain is vital and cannot easily be assessed without supporting data. This 
suggests that data of a more general nature should be made available, 
including the qualifications of the personnel involved in the development; 
the track record of the organization in providing dependable software, 
which might include, for example, defect rates on previous projects; and 
the process by which the software was developed and the dependability 
argument constructed, which might include process manuals and metrics, 
internal standards documents, applicable test suites and results, and tools 
used.

A company is likely to be reluctant to reveal data that might be of 
benefit to a competitor or that might tarnish the company’s reputation. 
It is also likely that demands to publish defect rates would result in 
careful redefinitions of what constitutes a defect. These concerns, how-
ever, should not deter users from demanding such information, but the 
demands should be reasonable, well-defined, and commensurate with 
the dependability claimed and the consequences of failure. The willing-
ness of a supplier to provide such data, and the clarity and integrity of 
the data that it provides, will be a strong indication of its attitude toward 
dependability, since a supplier who truly understands the role of evidence 
in establishing dependability will be eager to provide such evidence, and 
a supplier who does not understand the need for evidence is unlikely to 
understand all the other attributes of dependability. 

One would not expect the users of a commodity operating system for 
standard office purposes to press for such information, although it would 

� See, for example, George A. Akerlof, 1970, “The market for ‘lemons’: Quality uncertainty 
and the market mechanism,” Quarterly Journal of Economics 84:488-500.
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be reasonable to expect lists of all known defects, details of the rate at 
which new defects were reported, and the rate of repair. In contrast, how-
ever, the public might reasonably demand that very detailed information 
about the construction and validation of an electronic voting system be 
made publicly available. Similarly, patients who receive treatment from a 
potentially lethal medical device should have access to information about 
its evaluation just as they have access to information about the side effects 
and risks of medications.

It should be noted that providing direct access to evidence is not the 
only way that a supplier can signal quality. More widespread use of war-
ranties, for example, would help consumers select the more dependable 
products and suppliers, so long as the warranties are based on explicit 
claims about the properties of the software and are not simply a market-
ing gimmick. Industry practice with regard to warranties on commercial 
software varies widely, with some software developers continuing to 
disclaim all responsibility for the quality of their products and some rou-
tinely warranting turnkey systems against all defects.

At the same time, consumer confidence is not necessarily a good 
measure of quality. Research into the effects of report cards in the health 
industry has found mixed results. In one study, consumers were found to 
base their choice of HMO more on the subjective ratings reported on the 
cards (which are obtained from consumers themselves and are influenced 
by factors such as the comfort of waiting rooms and availability of park-
ing) than on objective data (such as mammography rates and other data 
indicating conformance with best practices).� Similar phenomena seem 
to apply to consumer choice of software, which may be guided more by 
superficial convenience factors than by inherent quality. This is not to 
deny consumers the right to weigh factors as they please in their selection 
of products, of course, but it does mean that popularity with consumers 
should not be taken as prima facie evidence of quality.

Accountability and Liability

Where there is a need to deploy certifiably dependable software, it 
should always be explicit who is accountable, professionally and legally, 
for any failure to achieve the declared dependability. One benefit of mak-
ing dependability claims explicit is that accountability becomes possible; 
without explicit claims, there cannot even be a clear determination of 
what constitutes failure. Such accountability can be made explicit in the 

� Dafny Leemore and David Dranove, 2005, “Do report cards tell consumers anything they 
don’t already know? The case of Medicare HMOs,” National Bureau of Economic Research 
Working Paper No. 11420, June.

Software for Dependable Systems: Sufficient Evidence?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/11923


92	 SOFTWARE FOR DEPENDABLE SYSTEMS

purchase contract, as part of the certification of the software, as part of a 
professional licensing scheme, or in other ways. However, these are not 
true alternatives to one another because they interact—for example, a 
certification scheme might require the use of licensed staff as lead devel-
opers or as certifiers. No single solution will meet all the circumstances in 
which certifiably dependable software will be deployed, and accountabil-
ity regimes should therefore be tailored to suit particular circumstances.

At present, it is common for software developers to disclaim, so far 
as possible, liability for defects in their products to a greater extent than 
customers and society expect from manufacturers in other industries. 
Clearly, no software should be considered dependable if it is supplied 
with a disclaimer that releases the manufacturer from providing a war-
ranty or other remedies for software that fails to meet its dependability 
claims. Determining appropriate remedies, however, was beyond the 
scope of this study and would have required careful analysis of benefits 
and costs, taking into account not only the legal issues but also the state 
of software engineering, the various submarkets for software, economic 
impact, and the effect on innovation.

Certification

To establish that software is dependable involves inspection and 
analysis of the dependability claim and the evidence that is offered in its 
support. Where the customers of the software are not able to carry out that 
work themselves (for lack of time or expertise) they will need to involve 
a third party whose judgment they can rely on to be independent of pres-
sures from the vendor or other parties. Evaluating the dependability case 
is where certification regimes come into play.

Such independence must be demonstrated if third parties are to be 
successfully used in this role. Third-party assessors have been successful 
in other fields—the licensed engineers who carry out certificate-of-airwor-
thiness inspections on aircraft, for example, and the “authorized bodies” 
who perform inspections in the European rail industry—and there is no 
fundamental reason that such assessment should not work in the software 
industry too.

Certification can take many forms, from self-certification to inde-
pendent third-party certification by a licensed certification authority. No 
single certification regime is suitable for all circumstances, so a suitable 
scheme should be chosen by each customer and vendor to suit the circum-
stances of the particular requirement for certifiably dependable software. 
Industry groups and professional societies should consider developing 
model certification schemes for their industries, taking account of the 
detailed recommendations in this report. Any certification regime focus-
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ing on dependability should make use of a dependability case, as has been 
described throughout this report.

Certification should always explicitly allocate accountability for the 
failure of the software to meet the claimed dependability requirements. 
In general, such accountability should lie with the person making the 
claim for dependability—perhaps the software manufacturer, the system 
manufacturer (especially where COTS software has been incorporated in 
a system), or the certifier.

Evidence and Openness

Evidence is the central theme of this report. In the arena of particular 
software products and systems, the committee has argued that confidence 
in the dependability of a system must rest on concrete evidence. And 
in the broader arena of technology advances, including finding better 
approaches and methodologies to developing software as well as devel-
oping innovative new tools, it has argued that evidence supporting or 
contradicting particular approaches is an essential enabler of progress. 
Determining whether to build and field a software system that could 
offer great benefits but also pose a potentially catastrophic risk calls for 
a plausible and transparent cost-benefit analysis that explicitly and care-
fully considers the evidence.

In both arenas—individual software products and technology 
advances—there is currently a dearth of evidence, which seriously ham-
pered the committee’s work, making it hard to resolve debate or reach an 
informed consensus on some issues. Obtaining and recording better evi-
dence is crucial. A key obstacle is a lack of transparency and the inability 
to look into the system under consideration and see how it was devel-
oped. In some cases, evidence is not available. Many software develop-
ers, for example, are not withholding data but have simply not seriously 
considered using the evidence they have for evaluating the dependability 
of their product. In other cases, however, evidence exists but cannot be 
used effectively because no one who sees it has sufficient expertise.

Some software producers might be driven to hide evidence that could 
damage perceptions of their product. But others choose not to disclose 
evidence because they are reasonably concerned about revealing propri-
etary information that would aid competitors or because they have no 
incentive to pay the costs of organizing and disseminating the data. The 
committee is loath, therefore, to propose regulations or standards that 
might compel software producers to reveal proprietary information.

However, because such evidence would be valuable for the software 
industry and its consumers, it is important to rescue it from the shadows 
and make it more available. The committee encourages consumers to 
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demand better information about the dependability of software products 
and to be suspicious of any dependability claims that are not allowed to 
be evaluated by an independent third party.

Likewise, the committee encourages those in government who pro-
cure and field critical systems to be skeptical of manufacturers’ claims and 
to recognize that public scrutiny can be a good thing. In some domains, 
secrecy will remain important; it would not be sensible, for example, 
to insist that the designs and dependability cases for defense systems 
be made public. Secrecy, however, is often overrated, and much of the 
research community has come to believe that secrecy prevents it from 
examining the mechanism in question, robbing society of the peer review 
that would otherwise take place. Furthermore, the confidence of the pub-
lic might be seriously undermined if important information is withheld 
by government officials that might bear on the decision to field a system. 
Electronic voting is a prime example of this. Despite accusations of seri-
ous failures and vulnerabilities in voting software, its manufacturers, 
along with the state officials who award the contracts and are responsible 
for assessing the dependability of the software, have in some cases been 
reluctant to give out information that would allow independent experts 
to make their own judgments and may have forfeited society’s chance to 
have better software and may even have damaged the credibility of the 
electoral process itself.�

SECURITY CONCERNS

Because the committee has argued that the same broad principles 
should apply to a variety of systems in different application domains, 
it has not made recommendations specific to any particular area. Secu-
rity, however, demands special consideration, because although security 
concerns are greater for certain kinds of systems, almost all systems are 
vulnerable to malicious attack to some degree. Effort invested in building 
a dependability case for a system is much less useful if there are secu-
rity vulnerabilities that bring into question the most basic assumptions 
made about the behavior of components and their independence. In short, 
security vulnerabilities can undermine the entire dependability case and 
therefore need to be addressed as an integral part of the case. 

Most software systems are networked and therefore open to attack; 

� See, for example, National Research Council (NRC), 2006, “Letter report on electronic 
voting,” The National Academies Press, Washington, D.C.; and NRC, 2005, Asking the Right 
Questions About Electronic Voting, The National Academies Press, Washington, D.C. Available 
online at <http://books.nap.edu/catalog.php?record_id=11704> and <http://books.nap.
edu/catalog.php?record_id=11449>, respectively.
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these clearly need a security audit. For systems that have been isolated, an 
audit is also likely to be essential, because the inconvenience of isolation 
is usually a response to the perceived risk of malicious attack.

The security of a product or system (and, consequently, certification 
thereof) involves two somewhat distinct facets of the product or system: 
(1) the presence of security features such as access controls that allow the 
owner of the product or system to define and enforce security policy and 
(2) the ability of the product or system to resist hostile attack.� However, 
it should also be noted that the mere presence of security features is not 
sufficient in and of itself. Indeed, given the increasing complexity of sys-
tems and security features, the usability and complexity of security con-
figuration is a significant concern as well. It is important that it be likely, 
not just possible, that a system’s administrators will configure its security 
features correctly. Due effort is needed to evaluate and show that feasible 
and expected configurations do not result in obvious vulnerabilities and 
to ensure that it is clear to those configuring the system what the appro-
priate configurations are.

The presence and correctness of security features can be certified by 
measures similar to those used to certify that other functional require-
ments are present and correct, and such certification is the domain of 
today’s Common Criteria (CC). However, certification of the ability to 
resist attack needs to begin by considering the kinds of attacks that might 
be directed at the product or system (sometimes referred to as a threat 
analysis) and then proceeding to review the measures that the developer 
took to prevent attacks from being successful. This review examines not 
only the developer’s process but also the effectiveness of the specific 
techniques that were applied to identify and remove vulnerabilities, and 
it rests on evidence that the developer in fact applied those techniques 
thoroughly and effectively.

While the CC assess security features, a new paradigm is needed to 
provide the owners of products and systems with a meaningful certifica-
tion of resistance to attack. The approach to dependable software that 
this report proposes is germane to the development of such a certification 
paradigm. In particular, attention must be paid to articulating and evalu-
ating assumptions about the environment in which the system operates 
and in which malicious attackers reside. The analysis is harder for security 
than for other properties, because the interface between the system and 
the environment is not easily described. This is true in general, of course. 
A system that controls a motor, for example, might need to account not 

� For a brief overview of cybersecurity issues generally, see NRC, 2002, Cybersecurity Today 
and Tomorrow: Pay Now or Pay Later, The National Academies Press, Washington, D.C. Avail-
able online at <http://www.nap.edu/catalog.php?record_id=10274>.
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only for the electrical load but also for the heating effect of the motor on 
nearby sensors. In the security realm, however, the concerns are central, 
since attackers aim to exploit hidden aspects of the interface that a secu-
rity audit might have neglected. For example, attacks on smartcards, have 
been devised that rely on monitoring fluctuations in the electrical load 
that the device presents.� This means that security analysts should always 
be attentive to the risks of new kinds of attacks, and that security cases 
should be revisited as new attacks are discovered.

A Repository of Software Dependability Data

Transparency and openness alone are not enough, however. Few 
people have the time and expertise to carefully examine and understand 
arcane data. Developing a substantial repository of credible evidence 
will require a concerted effort to record, analyze and organize data. Such 
an effort would probably involve at least two distinct components, both 
aimed at involving software engineering experts more directly in accident 
analysis and reporting.

First, software experts should be actively involved in accident analy-
sis. In many accidents software is either a contributing or a central fac-
tor, yet it is common for review panels not to examine the software at a 
level of detail commensurate with its role. Experts in other fields tend to 
minimize the role of software and underestimate the threats it poses. It 
is common, for example, to blame users for taking inappropriate actions 
despite egregious flaws in the design of the user interface.� 

Second, reports of failures and accidents should, whenever possible, 
be accompanied by the software artifacts themselves so that experts can 
evaluate a report on the basis of the same evidence that was made avail-
able to the report’s authors. Concerns about proprietary material and the 
risk of exposing security vulnerabilities in existing systems should of 
course be taken into account, but the ease of publishing large artifacts in 
the era of the Web and the value of making the information widely avail-

� See, for example, O. Kommerling and M. Kuhn, 1999, “Design principles for tamper-
resistant smartcard processors,” Proceedings of the USENIX Workshop on Smartcard Technology 
(Smartcard ’99), Chicago, Ill., May 10-11, USENIX Association, pp. 9-20. Available online at 
<http://www.cl.cam.ac.uk/~mgk25/sc99-tamper.pdf> for a discussion of various smart-
card vulnerabilities.

� The Panama radiotherapy accidents are a good example of this phenomenon. See IAEA, 
2001, “Investigation of an accidental exposure of radiotherapy patients in Panama: Report 
of a team of experts, 26 May-1 June 2001,” IAEA, Vienna, Austria. Available online at 
<http://www-pub.iaea.org/MTCD/publications/PDF/Pub1114_scr.pdf>. Also, see M.H. 
Lützhöft and S.W.A. Dekker, 2002, “On your watch: Automation on the bridge,” Journal of 
Navigation 55(1):83-96.
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able should make disclosure the default position and place the burden of 
proof on those who would argue against it.

How exactly these goals should be achieved in terms of policy pre-
scriptions is beyond the purview of this report. A centralized approach, in 
which government agencies (the FDA, NTSB, FAA, and so on) maintain 
public databases and supervise the collection and dissemination of data, 
might make certain aspects of this process, such as cross-comparisons, 
easier. On the other hand, there is value in decentralized approaches, in 
which software specialists form local teams that oversee software in par-
ticular domains and locations, such as the software oversight committees 
proposed by Gardner and Miller for medical software systems.�

Education

In many high school and indeed some college-level programming 
courses, students are introduced to programming as a mechanistic activ-
ity, in which programs are developed by trial and error. Such experi-
mentation and exploration can be healthy; as in other fields of design 
and engineering, exploring new ideas is essential, especially for novices. 
However, as argued elsewhere in this report, the development of depend-
able software should ultimately be seen as an engineering activity—as 
argued elsewhere in this report. Thus a curricular emphasis on finding the 
essence of a program and solving it convincingly is preferable to master-
ing the accidental intricacies of particular software systems. Moreover, 
the absence of exemplars and overexposure to software that is overly 
complicated or otherwise poorly designed can make it harder to teach stu-
dents to appreciate the important qualities of good design, such as clarity, 
simplicity, and fitness to purpose. Introducing the notion of dependability 
in educational contexts would require (1) a recognition of the real-world 
factors that lead to complexity and (2) discussion of explicit examples of 
clarity and simplicity in the design of large systems and the trade-offs 
involved in their design. 

In high school computer science education, giving students a foun-
dation in the ideas of dependability would require greater emphasis on 
programming as a design activity, on the qualities of a good program, and 
on the process of constructing programs and reasoning about them. The 
intricacies of the programming language or platform low-level execution 
details would receive less emphasis. Programming with an eye toward 
dependability and a rudimentary dependability case would be used to 

� Randolph Miller and Reed M. Gardner, 1997, “Recommendations for responsible moni-
toring and regulation of clinical software systems,” Journal of the American Medical Informatics 
Association (4):442-457. 
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help develop a student’s ability to crystallize ideas and make them precise 
and to structure and dissect arguments.

Decisions on the curriculum are often motivated by the desire to make 
students “computer literate.” The goal is laudable, but it is important 
that such literacy not be construed merely as familiarity with the details 
of today’s software products. The ability to operate a computer and use 
standard desktop applications with basic competency is essential, but 
it is also important for students to have an understanding of how the 
computing infrastructure as a whole works and why it sometimes fails.� 
Computer literacy should not be confused with computer science and 
software engineering, and it is important that students understand the 
difference. In addition, mathematics is important for the education of 
software engineers, especially combinatorics and discrete mathematics, 
including the theory of sets, relations, and graphs.

At the university level, an emphasis on dependability would mean 
that the software and computer science curriculum should address more 
explicitly the topics that are the foundation for dependable software. Stu-
dents need to have a broader understanding of the role of software and 
computers in larger systems and need to be familiar with the basic prin-
ciples of systems engineering. Topics that support dependability include 
a basic introduction to formal methods, with an emphasis on system 
modeling rather than proofs of correctness, along with usability and 
human factors. Security and dependability are usually treated as special-
ized topics, but they should be integrated into the curriculum more fully 
and encountered by students repeatedly, especially when learning how 
to program.

The mathematical background of students studying computer sci-
ence and software engineering would need to be expanded to include not 
only discrete mathematics (set theory and logic) but also probability and 
statistics, whose importance in many fields of computing is growing and 
which are particularly important for understanding dependability issues. 
Because the mathematics courses offered to computer science students are 
often designed with mathematicians in mind rather than engineers, they 
tend to focus on meta results and proof. Most computer science students, 
especially those interested in software, would benefit more from math-
ematics courses that focus on using mathematical constructs to model 
and reason about systems.

� For more on the importance of literacy and fluency with information technology, see the 
NRC report Being Fluent with Information Technology (National Academy Press, 1999, pp. 3-4), 
which argued that IT fluency “is fundamentally integrative, calling upon an individual to 
coordinate information and skills with respect to multiple dimensions of a problem and to 
make overall judgments and decisions taking all such information into account.”
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In software projects, one way to encourage attention to dependability 
concerns would be to require students to build programs that respond 
gracefully to unanticipated input as a way of introducing them to the 
most fundamental principles of building secure software. More generally, 
students should be encouraged not merely to achieve a running program 
that passes a suite of tests but also to develop a deeper understanding 
of why the program works and to assess their confidence in its depend-
ability by developing minidependability cases of their own based on an 
honest appraisal of their own abilities, on the strength of their argument 
that it works, and on the significance and likelihood of adverse events in 
the environment.

Research

Although the committee believes that the approach outlined in this 
report might substantially improve the dependability of software, it rec-
ognizes that these measures alone cannot overcome the ever-growing 
demands for software with more complex functionality, operating in more 
invasive and critical contexts. Major technological advances are therefore 
essential for the future of the industry. While such advances might be 
produced by the computer industry alone, its history to date (and the 
dramatic success of federal investment, for example, in networking) sug-
gests that advances will come more quickly and at lower cost if signifi-
cant investments are made in fundamental research. In the United States, 
the High Confidence Software and Systems Coordinating Group (HCSS 
CG) of the National Coordination Office for Networking and Informa-
tion Technology Research and Development (NITRD) coordinates many 
research activities in areas relevant to this report, focusing on 

scientific foundations and technologies for innovative systems design, 
systems and embedded application software, and assurance and veri-
fication to enable the routine production of reliable, robust, safe, scal-
able, secure, stable, and certifiably dependable IT-centric physical and 
engineered systems comprising new classes of advanced services and 
applications. These systems, often embedded in larger physical and IT 
systems, are essential for the operation of the country’s critical societal 
infrastructures, acceleration of U.S. capability in industrial competitive-
ness, and optimization of citizens’ quality of life.� 

The importance of software dependability suggests that funding 
could be focused on areas that might lead to more dependable software. 

� For more information, see the NITRD HCSS CG home page online at <http://www.nitrd.
gov/subcommittee/hcss.html>.
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Some areas that seem to merit attention and follow from the overarching 
recommendations and approach of this study are covered briefly below. 
They should not be construed as exclusive but as providing an indication 
of what sorts of research questions the approach raises:

•	 Testing as evidence.  Testing is currently the most widely used tech-
nique for finding bugs in code, and when it is performed systematically 
and extensively, it can be an important element of a dependability case. As 
noted earlier in the report, however, it is hard to determine what level of 
dependability is assured when a system passes a given test suite. Clearly, 
an exhaustive test that covers every state and history that could possibly 
occur in the field would be tantamount to proof (and perhaps better). At 
the other end of the spectrum, passing a few dozen ad hoc tests provides 
little information about the flaws that might remain. The former approach 
is almost never feasible and the latter is insufficient. The gray area in the 
middle merits consideration. Can concrete dependability claims be based 
on limited testing? Can the absence of certain classes of error be assured 
by the successful execution of certain test cases? Could stronger claims be 
based on testing if novel forms of coverage (such as execution of all possi-
ble traces for a limited heap size or number of context switches) are used? 
Might testing with respect to a known operational profile be substantiated 
by online monitoring to ensure that the profile used for testing remains 
an accurate representation of actual operation? Although considerable 
literature on testing exists, there is an opportunity for further research to 
be undertaken focused specifically on methods that create evidence that 
a system has some explicit dependability properties to a high degree of 
confidence.

•	 Checking code against domain-specific properties.  Recent years have 
seen many advances in techniques for automatic code checking, and there 
is renewed interest in program verification (witness the recent proposal 
of a Grand Challenge in this area10). These techniques will be essential 
to the construction of dependability cases, especially if they are capable 
of handling domain-specific properties rather than just local properties 
of the code that cannot be assembled into a systemwide argument for 
dependability.

•	 Strong languages and tools for independence arguments.  As discussed 
above, the cost of constructing a case for dependability with respect to a 
particular critical property would be reduced by restricting the code-level 
argument to a small proportion of the modules. Using unsafe languages 
compromises any modularity that would otherwise make such an inde-

10 See C.A.R. Hoare, 2003, “The verifying compiler: A grand challenge for computing re-
search,” Journal of the ACM 50(1):63-69.
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pendence argument plausible. For example, as noted previously, in a 
program written in a language such as C, an out-of-bounds array access 
can overwrite data structures that are not accessible by name, so that one 
cannot rely on the use of names to determine how one module might 
interact with another. Research is needed to understand whether using 
safe languages or other tools could justify independence and help struc-
ture dependability arguments, and how independence arguments might 
be made when there are good reasons to use an unsafe language.

•	 Composing component dependability cases.  Complex software com-
ponents are seldom furnished with the information needed to support 
dependability arguments for the systems that use them. For use within 
a larger argument, the details of the dependability case of a component 
need not be known. Until recently, there has been little demand for com-
ponents to be delivered with the claims, arguments, and evidence needed 
to support the dependability case for a system that uses the component. At 
lower levels of criticality, and in accidental systems, explicit dependability 
cases have seldom been constructed, so there has been no perceived need 
for component-level cases. At the other extreme, the dependability cases 
for systems with highly critical assurance goals (such as airplanes) have 
focused on the details of their components. In addition, there have been 
few regulatory mechanisms applicable to such systems to support the use 
of prequalified critical components that would allow the dependability 
case for the larger system to use the applicable cases for its components 
without inquiring into all the details of the components themselves. With 
greater reuse of components, and a concomitant awareness of the risks 
involved (especially of using commodity operating systems in critical 
settings), component-level assurance will become an essential activity 
throughout the industry, and it will be necessary to find ways to compose 
the dependability arguments of components into an argument for the 
system as a whole. The research challenges involve not only investigating 
how this might be done, but also how to account for, and mitigate, vary-
ing levels of confidence in the component arguments.

•	 Modeling and reasoning about environments.  As explained earlier in 
this report, the dependability of a system usually rests on assumptions 
about the behavior of operators and devices in the environment of the sys-
tem and, more broadly, on the human organization in which the system 
is deployed. The dependability case should therefore involve reasoning 
about interactions between the system and its environment. The necessary 
formal foundations for such reasoning are perhaps already available, since 
an operator or physical device can be modeled along with the system, for 
example, as a state machine. It is not clear, however, how to model the 
environment and structure environmental assumptions; how to account 
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for human behavior or larger organizational effects; how to handle nor-
mal and malicious users; or how to express crucial properties.

•	 Reasoning about fail-stop systems.  The critical dependability proper-
ties of most critical systems will take the form “X should never happen, 
but if it does, then Y must happen.” For example, the essential property 
of a radiotherapy machine is that it not overdose the patient. Yet some 
amount of overdose occurs in many systems, and any overdose that 
occurs must be reported. Similarly, any fail-stop system is built in the 
hope that certain failures will never occur but is designed to fail in a safe 
way should they occur. It therefore seems likely that multiple dependabil-
ity cases are needed, at different levels of assurance, each making different 
assumptions about which adverse events in the environment and failures 
in the system itself might occur. The structuring of these cases and their 
relationship to one another is an important topic of investigation.

•	 Making stronger arguments from weaker ones.  A chain can be stronger 
than even its strongest link if the links are joined in parallel rather than 
in series. Similarly, weaker arguments can be combined to form a single 
stronger argument. A dependability case will typically involve evidence 
of different sorts, each contributing some degree of confidence to the 
overall dependability claim. It would be valuable to investigate such 
combinations, to determine what additional credibility each argument 
brings, and under what conditions of independence such credibility can 
be maximized.
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Findings and Recommendations

In this chapter, the committee distills its proposed approach and find-
ings and briefly discusses its recommendations for achieving justifi-
able confidence in dependable software systems.

FINDINGS

Improvements in software development are needed to keep pace 
with societal demands for software. Avoidable software failures have 
already been responsible for loss of life and for large economic losses. The 
quality of software produced by the industry is extremely variable, and 
there is inadequate oversight in some critical areas. Unless improvements 
are made, more pervasive deployment of software in the civic infrastruc-
ture� may lead to catastrophic failures. Software has the potential to bring 
dramatic benefits to society, but it will not be possible to realize these 
benefits—especially in critical applications—unless software becomes 
more dependable.

More data are needed about software failures and the efficacy of 
development approaches. Assessment of the state of the software indus-
try, the risks posed by software, and progress made is currently hampered 

� As an indication of the growth in the pervasiveness of software, the Bureau of Labor 
Statistics found in 2003 that the output of prepackaged software increased annually by 26.5 
percent between 1990 and 2000, growth attributed to “the increased use of computers and 
the rising demand for reliable, user-friendly software.” See <http://www.bls.gov/opub/
ted/2003/feb/wk3/art01.htm>. 
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by the lack of a coherent source of information about software failures. 
Careful documentation and analysis of failures has had dramatic impact 
in other areas. More attention should be paid to the contributions of 
software to accidents, and repositories of accident reports are needed 
that include sufficient details to enable the analysis of trends and an 
evaluation of technologies and methods. Without a concerted effort to 
collect better data, investment in software technology and research may 
be misdirected, ineffective practices will remain, and adoption of the 
most effective methods will be hindered. In the absence of a federal 
initiative, the situation might improve dramatically if all the parties cur-
rently involved in software production, regulation, and accident reporting 
were to monitor systems more pervasively and systematically for failures; 
involve software experts to a greater degree in the investigation of failures 
of systems that include software as a component; and insist on greater 
transparency in every aspect of software development and deployment 
than is currently expected.

RECOMMENDATIONS

To Builders and Users of Software

Make the most of effective software development technologies and 
formal methods. A variety of modern technologies—in particular, safe 
programming languages, static analysis, and formal methods—are likely 
to reduce the cost and difficulty of producing dependable software. Ele-
mentary best practices, such as source code control and systematic defect 
tracking, should be universally adopted, and development organizations 
that fail to use them should not be regarded as sources of dependable 
software. Advanced practitioners, especially those working in specialized 
domains, may be justified in creating their own framework of processes 
and practices that embodies these recommended elements. But those who 
are not already familiar with the best practices of the industry (described 
previously) should first ensure that their developments adhere to these 
elements and then consider diverging only under extraordinary circum-
stances. Formal methods have been shown to be effective only for small 
to medium-sized critical systems and have not been widely adopted. Fur-
thermore, they require a new mindset and may demand staff with greater 
expertise, especially in the early stages of development. Nevertheless, key 
elements of formal techniques would aid in the cost-effective construc-
tion of dependability cases and could be widely applied, especially in 
combination with the incrementality and minimality encouraged in some 
development approaches such as those currently labeled “agile.”
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Follow proven principles for software development. The committee’s 
proposed approach also includes adherence to the following principles:

 
•	 Take a systems perspective. A systems perspective should be adopted 

in which the dependability of software is viewed not in terms of intrin-
sic properties (such as the incidence of bugs in the code) but in terms of 
the system as a whole, including interactions among people, process, 
and technology and encompassing both the physical and organizational 
environment of the system. Engineering of software should be driven 
by a consideration of risks and their mitigation, and well-established 
risk analysis and reduction techniques that are applied in other domains 
(such as hazard analysis) should be routinely applied to software. Differ-
ent levels of assurance will be appropriate for different systems and for 
dependability properties within a single system.

•	 Exploit simplicity. If dependability is to be achieved at reasonable 
cost, simplicity should become a key goal, and developers and customers 
must be willing to accept the compromises it entails. Unfettered growth in 
the complexity of the functionality offered is incompatible with depend-
ability. The architecture of the software should reflect the prioritization of 
requirements, ideally so that the critical properties can be established by 
examining closely only a small portion of the software, relying on inde-
pendence arguments to account for lack of interference from the remain-
ing portions.

Make a dependability case for a given system and context: evidence, 
explicitness, and expertise. A software system should be regarded as 
dependable only if sufficient evidence is presented to substantiate the 
dependability claim. The evidence should take the form of a dependabil-
ity case that explains why the critical properties hold, and it will involve 
reasoning about both the code and the environmental assumptions. To 
the extent that this reasoning can be supported by automated tools, it 
will be more credible. The dependability properties should be explicitly 
articulated and carefully prioritized; the assumed properties of the envi-
ronment should be made explicit also. This approach gives considerable 
leeway to developers to use whatever practices are best suited to the 
problem at hand. In particular, it allows the use of less robust components 
and languages at the expense of having to mitigate the risk with a more 
elaborate dependability argument. Despite this flexibility, in practice the 
challenges of developing dependable software are sufficiently great that 
developers will need considerable expertise and will have to justify any 
deviations from best practices.

Demand more transparency, so that customers and users can make 
more informed judgments about dependability. Customers and users 
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can make informed judgments when choosing suppliers and products 
only if the claims, criteria, and evidence for dependability are transparent. 
The willingness of a supplier to provide data beyond the dependability 
case proper (about the qualifications of personnel, its track record in 
providing dependable software, and the process it used) and the clarity 
and integrity of the data that it provides will be a strong indicator of its 
attitude toward dependability.

Make use of but do not rely solely on process and testing. Testing 
will be an essential component of a dependability case but will not in 
general suffice, because even the largest test suites typically used will not 
exercise enough paths to provide evidence that the software is correct, nor 
will they have sufficient statistical significance for the levels of confidence 
usually desired. Testing is a vital aspect of every development, not only 
because it exposes flaws but also because it provides feedback on the 
quality of the development process. Software that fails many test cases 
probably cannot be made dependable and should perhaps be abandoned. 
Adherence to a particular process will not suffice as evidence either. There 
is no established universal correlation between process and dependability, 
although demonstrated adherence to process contributes to the depend-
ability case. In other words, rigorous process is essential for preserving 
the chain of dependability evidence but is not per se evidence of depend-
ability. Without a rigorous process, however, evidence produced by the 
developers will not be credible, and it is unlikely that the developing 
organization will be able to identify and correct flaws in the way it pro-
duces software. An effective process need not be a burdensome one, and 
too elaborate a process (especially if it requires the production of excessive 
documentation) can be damaging.

Base certification on inspection and analysis of the dependability 
claim and the evidence offered in its support. Because testing and pro-
cess alone are insufficient, the dependability claim will require, in addi-
tion, evidence produced by analysis. Analysis may involve well-reasoned 
informal argument, formal proofs of code correctness, and mechanical 
inference (as performed, for example, by type checkers). Indeed, the 
dependability case for even a relatively simple system will usually require 
all of these kinds of analysis, and they will need to be fitted together into 
a coherent whole. A developer that uses COTS components will either 
have to demonstrate in the dependability case that their failure will not 
undermine the crucial dependability properties or will have to incorpo-
rate in the case appropriate claims about the properties of the components 
themselves. Absent careful engineering, a system can become as vulner-
able as its weakest components, so the inclusion of standard desktop 
software in critical applications should be carefully examined. Where 
the customer for the software is not able to carry out that work itself 

Software for Dependable Systems: Sufficient Evidence?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/11923


FINDINGS AND RECOMMENDATIONS	 107

(through lack of time or lack of expertise) it will need to involve a third 
party whose judgment it can rely on to be independent of commercial 
pressures from the vendor. Certification can take many forms, from self-
certification through independent third-party certification by a licensed 
certification authority. 

Include security considerations in the dependability case. By vio-
lating assumptions about how components behave, about their interac-
tions, or about the expected behavior of users, security vulnerabilities 
can undermine the case made for dependability properties. The depend-
ability case must therefore account explicitly for security risks that might 
compromise its other aspects. It is also important to ensure that security 
certifications give meaningful assurance of resistance to attack. Owners 
of products and systems whose security has been certified expect that 
if they deploy the products and systems properly, most attacks against 
those products or systems will fail. Today’s security certification regimes 
do not provide this confidence, and new security certification regimes are 
needed. Such certification regimes can be built by applying the other find-
ings and recommendations of this report, with an emphasis on the role of 
the environment—in particular, the assumptions made about the potential 
actions of a hostile attacker and the likelihood that new classes of vulner-
abilities will be discovered and new attacks developed to exploit them.

Demand accountability and make it explicit. Where there is a need 
to deploy certifiably dependable software, it should always be made 
explicit who is accountable, professionally and legally, for any failure to 
achieve the declared dependability. At present, it is common for software 
developers to disclaim liability for defects in their products to a greater 
extent than customers and society expect from manufacturers in other 
industries. Clearly, no software should be considered dependable if it is 
supplied with a disclaimer that withholds the manufacturer’s commit-
ment to provide a warranty or other remedies for software that fails to 
meet its dependability claims. The appropriate scope of remedies was not 
determined in this study, however, and would require a careful analysis 
of benefits and costs.

To Agencies and Organizations That Support  
Software Education and Research

The committee was not constituted or charged to recommend budget 
levels or to assess trade-offs between software dependability and other 
priorities. However, the committee does conclude that the increasing 
importance of software to society and the extraordinary challenge cur-
rently faced in producing software of adequate dependability provide a 
strong rationale for investment in education and research initiatives. 
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Place greater emphasis on dependability—and its fundamental 
underpinnings—in the high school, undergraduate, and graduate edu-
cation of software developers. Many practitioners do not have an ade-
quate appreciation of software dependability issues, are not aware of the 
most effective development practices, or are not capable of applying them 
appropriately. A focus on dependability considerations in high school, 
undergraduate, and graduate educational contexts is therefore needed. 
The importance of dependability for software is not adequately stressed 
in most degree programs in the United States. More emphasis should be 
placed on systems thinking; on requirements, specification, and large-
scale design; on security; on usability; on the development of robust and 
resilient code; on basic discrete mathematics and statistics; and on the 
construction and analysis of dependability arguments. 

Federal agencies that support information technology research and 
development should give priority to basic research to further software-
enabled system dependability, emphasizing a systems perspective and 
evidence. Until there is a dramatic improvement in the methods, lan-
guages, and tools of software development, there will be systems that 
cannot be constructed to appropriate levels of dependability. Moreover, 
even when this is possible, the cost will be higher than it should be. 
Because of the increasing importance of software to our society and the 
extraordinary challenge of producing software of adequate dependability, 
research is needed that emphasizes a systems perspective and “the three 
E’s,” and such research should be a priority for funding agencies. The 
research should be informed by a systems view that assigns greater value 
to advances that are likely to have an impact in a world of large systems 
interacting with other systems and operators in a complex physical envi-
ronment and organizational context.

* * *

The committee believes that the approach discussed here will sub-
stantially improve the dependability of many critical software systems 
being produced today. While the economic trade-offs are different in 
individual cases, the committee believes that its recommendations are 
generally applicable to many non-safety-critical systems as well—a con-
sideration that becomes increasingly important as COTS components are 
reused in critical systems and accidental systems are formed from a mix of 
critical and noncritical components. Applying the committee’s approach 
to all software systems, safety-critical and non-safety-critical alike, prom-
ises to alleviate the heavy costs and frustrations that low-quality software 
imposes even in noncritical applications.
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In the long term, innovations in software engineering are likely to 
bring dramatic improvements in dependability. Software systems are 
complex and, just as in other sorts of complex systems, failures will inevi-
tably occur. But if our society succeeds in this ambitious program, we can 
hope that, 10 or 20 years from now, the adoption of ambitious and poten-
tially dangerous new systems will be justified by rational arguments; a 
broad consensus in the software industry will guide standard practice; 
the production of software will be less expensive and more predictable 
than it is today; and the incidence of software failures will be low and 
well-documented.
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health care systems and on a National Research Council panel that defined 
the future of the national air transportation system. Dr. Woods earned a 
Ph.D. from Purdue University in 1979.

STAFF

Lynette I. Millett is a senior program officer and study director at the 
Computer Science and Telecommunications Board of the National Acad-
emies. She is currently involved in several CSTB projects, including a 
study on software-intensive systems producibility, an assessment of the 
Social Security Administration’s e-government strategy, and a compre-
hensive exploration of biometrics systems, among other things. She was 
the study director for the CSTB project that produced Who Goes There? 
Authentication Technologies and Their Privacy Implications and IDs—Not That 
Easy: Questions About Nationwide Identity Systems. Her portfolio includes 
significant portions of CSTB’s recent work on software and on identity 
systems and privacy. She has an M.Sc. in computer science from Cornell 
University, along with a B.A. in mathematics and computer science with 
honors from Colby College. Her graduate work was supported by both 
an NSF graduate fellowship and an Intel graduate fellowship.

David Padgham rejoined CSTB as an associate program officer in the 
spring of 2006 following nearly 2 years as a policy analyst in the Asso-
ciation for Computing Machinery’s (ACM’s) Washington, D.C., Office of 
Public Policy, where he worked closely with that organization’s public 
policy committee, USACM. Previously, Mr. Padgham spent nearly 6 years 
with CSTB, working on—among other things—the studies that produced 
Trust in Cyberspace; Funding a Revolution; Broadband: Bringing Home the Bits; 
LC21: A Digital Strategy for the Library of Congress; and The Internet’s Com-
ing of Age. Currently, he is focused on the CSTB projects related to health 
care informatics, computing performance, and software dependability. 
He holds a master’s degree in library and information science from the 
Catholic University of America in Washington, D.C., and a bachelor of 
arts degree in English from Warren Wilson College in Asheville, N.C.
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Gloria Westbrook recently left the Computer Science and Telecommu-
nications Board where she was a senior program assistant. She previ-
ously served as the executive assistant to the directors of the Office of 
Youth Programs and the Youth Opportunity Grant Program at the D.C. 
Department of Employment Services (DOES). In 2003, Ms. Westbrook was 
selected to be the lead administrator of a team that successfully admin-
istered a $4 million Summer Youth Employment Program that registered 
over 5,000 District youth. In addition, Ms. Westbrook has also served as 
the executive assistant to the director of DOES, where she was appointed 
by the director to serve as his elite liaison to the D.C. mayor and his 
cabinet, members of the D.C. Council, and members of Congress. While 
serving in the Director’s Office, Ms. Westbrook received the Meritorious 
Service Award and the Workforce Development Administrator’s Award 
of Appreciation for Dedication of Service. She also became a member 
of the National Association of Executive Secretaries and Administrative 
Assistants. She attended Duke Ellington School of the Performing Arts 
for ballet and went on to further her dance education at the University of 
the Arts in Philadelphia. 

Phil Hilliard was a research associate with the Computer Science and 
Telecommunications Board until May 2004. He provided research sup-
port as part of the professional staff and worked on projects focusing on 
telecommunications research, supercomputing, and dependable systems. 
Before joining the National Academies, he worked at BellSouth in Atlanta, 
Georgia, as a competitive intelligence analyst and at NCR as a technical 
writer and trainer. He has a master’s in library and information science 
from Florida State University, an M.B.A. from Georgia State University, 
and a B.S. in computer and information technology from the Georgia 
Institute of Technology.

Penelope Smith worked temporarily with the Computer Science and 
Telecommunications Board between February and July 2004 as a senior 
program assistant. Prior to joining the National Academies, she worked 
in rural Angola as a health project manager and community health advi-
sor for Concern Worldwide. She also worked for Emory University as a 
project coordinator and researcher on reproductive health and HIV and 
for the Centers for Disease Control as a technology transfer evaluator for 
HIV/AIDS programs. She earned an M.P.H. from Emory University and 
a B.A. in medical anthropology from the University of California at Santa 
Cruz. She is also a certified health education specialist.
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Open Session Briefers

Although the individuals listed below provided much useful infor-
mation of various kinds to the committee, they were not asked 
to endorse this study’s conclusions or recommendations, nor did 

they see the final draft of this report before its release. 

December 18-19, 2003 
Washington, D.C.

Helen Gill, National Science Foundation
Sol Greenspan, National Science Foundation
Paul L. Jones, Food and Drug Administration
Carl Landwehr, National Science Foundation
Ernie Lucier, Federal Aviation Administration
Brad Martin, National Security Agency
Paul Miner, NASA 
Ralph Wachter, Office of Naval Research

April 19-21, 2004 
Workshop on Software  

Certification and Dependability 
Washington, D.C.

Kent Beck, Three Rivers Institute
Richard Cook, University of Chicago
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David Dill, Stanford University
Matthias Felleisen, Northeastern University
Brent Goldfarb, University of Maryland
Anthony Hall, Praxis Critical Systems
Bob Harper, Carnegie Mellon University
Mats Heimdahl, University of Minnesota 
Chuck Howell, MITRE Corporation
Doug Jones, University of Iowa
Shriram Krishnamurthi, Brown University
Jim Larus, Microsoft Research
Isaac Levendel, Independent Consultant
Gary McGraw, Cigital
Peter Neumann, SRI International
Bob Noel, MITRE Corporation
Gene Rochlin, University of California, Berkeley
Avi Rubin, Johns Hopkins University
Bill Scherlis, Carnegie Mellon University
Ted Selker, Massachusetts Institute of Technology
André van Tilborg, Office of the Secretary of Defense

May 18-19, 2004 
Cambridge, Massachusetts

James Baker, U.S. Air Force
Michael Cusumano, Massachusetts Institute of Technology
Michael Hammer, Hammer and Company
Mike Lai, Microsoft 
Butler Lampson, Microsoft Research
Alfred Spector, IBM Research
Richard Stanley, MITRE

February 16-18, 2005 
Mountain View, California

Bill Bush, Sun Microsystems
Window Snyder, Microsoft

Software for Dependable Systems: Sufficient Evidence?

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/11923


C 
 
 

Statement of Task

This project will convene a mixed group of experts to assess current 
practices for developing and evaluating mission-critical software, 
with an emphasis on dependability objectives. The goal of this 

study is to identify the kinds of system properties for which certification 
is desired, how that certification is obtained today, and, most important, 
what design and development methods, including methods for establish-
ing evidence of trustworthiness, could lead to future systems structures 
that are more easily certified. Where these methods cannot be identified, 
the study will identify a research agenda that would lead to their discov-
ery. The committee will address system certification, examining a few 
different application domains (e.g., medical devices and aviation systems) 
and their approaches to software evaluation and assurance. This should 
provide some understanding of what common ground and disparities 
exist. 

The discussion will engage members of the fundamental research com-
munity, who have been scarce in this arena. It will consider approaches to 
systematically assessing systems’ user interfaces. It will examine potential 
benefits and costs of improvements in evaluation of dependability as per-
formance dimensions. It will evaluate the extent to which current tools 
and techniques aid in ensuring and evaluating dependability in software 
and investigate technology that might support changes in the develop-
ment and certification process. It will also use the information amassed 
to develop a research agenda for dependable software system develop-
ment and certification, factoring in earlier High Confidence Software and 
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Systems research planning. It will also investigate ideas for improving 
the certification processes for dependability-critical software systems. 
The work of the expert committee will culminate in a written report with 
recommendations, which will be subject to National Research Council 
review processes.
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