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Preface

In the last decade of the 20th century, computer science and biology both emerged as fields capable
of remarkable and rapid change. Moreover, they evolved as fields of inquiry in ways that draw atten-
tion to their areas of intersection. The continuing advancements in technology and the pace of scientific
research present the means for computing to help answer fundamental questions in the biological
sciences and for biology to demonstrate that new approaches to computing are possible.

Advances in the power and ease of use of computing and communications systems have fueled
computational biology (e.g., genomics) and bioinformatics (e.g., database development and analysis).
Modeling and simulation of biological entities such as cells have joined biologists and computer scien-
tists (and mathematicians, physicists, and statisticians too) to work together on activities from pharma-
ceutical design to environmental analysis.

On the other side, computer scientists have pondered the significance of biology for their field. For
example, computer scientists have explored the use of DNA as a substrate for new computing hardware
and the use of biological approaches in solving hard computing problems. Exploration of biological
computation suggests a potential for insight into the nature of and alternative processes for computa-
tion, and it also gives rise to questions about hybrid systems that achieve some kind of synergy of
biological and computational systems. And there is also the fact that biological systems exhibit charac-
teristics such as adaptability, self-healing, evolution, and learning that would be desirable in the infor-
mation technologies that humans use.

Making the most of the research opportunities at the interface of computing and biology—what we
are calling the BioComp interface—requires illuminating what they are and effectively engaging people
from both computing and biology. As in other contexts, the challenges of interdisciplinary education
and of collaboration are significant, and each will require attention, together with substantive work
from both policy makers and researchers. At the start of the 1990s, attempts were made to stimulate
mutual interest and collaboration among young researchers in computing and biology. Those early
efforts yielded nontrivial successes, but in retrospect represented a Version 1.0 prototype for the poten-
tial in bringing the two fields together. Circumstances today seem much more favorable for progress.
New research teams and training programs have been formed as individual investigators from the
respective communities, government agencies, and private foundations have become increasingly en-
gaged. Similarly, some larger groups of investigators from different backgrounds have been able to

Vil
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obtain funding to work together to address cross-disciplinary research problems. It is against this
background that the committee sees a Version 2.0 of the BioComp interface emerging that will yield
unprecedented progress and advance.

The range of possible activities at the BioComp interface is broad, and accordingly so is the range of
interested agencies, which include the Defense Advanced Research Projects Agency (DARPA), the
National Science Foundation (NSF), the Department of Energy (DOE), and the National Institutes of
Health (NIH). These agencies have, to varying degrees, recognized that truly cross-disciplinary work
would build on both computing and biology, and they have sought to advance activities at the interface.

This report by the Committee on Frontiers at the Interface of Computing and Biology seeks to
establish the intellectual legitimacy of a fundamentally cross-disciplinary collaboration between biolo-
gists and computer scientists. That is, while some universities are increasingly favorable to research at
the intersection, life science researchers at other universities are strongly impeded in their efforts to
collaborate. This report addresses these impediments and describes some strategies for overcoming
them.

In addition, this report provides a wealth of well-documented examples. As a rule, these examples
have generally been selected to illustrate the breadth of the topic in question, rather than to identify the
most important areas of activity. That is, the appropriate spirit in which to view these examples is “let
a thousand flowers bloom,” rather than one of “finding the prettiest flowers.” It is hoped that these
examples will encourage students in the life sciences to start or to continue study in computer science
that will enable them to be more effective users of computing in their future biological studies. In the
opposite direction, the report seeks to describe a rich and diverse domain—biology—within which
computer scientists can find worthy problems that challenge current knowledge in computing. It is
hoped that this awareness will motivate interested computer scientists to learn about biological phe-
nomena, data, experimentation, and the like—so that they can engage biologists more effectively.

To gather information on such a broad area, the committee took input from a wide variety of
sources. The committee convened two workshops in March 2001 and May 2001, and committee mem-
bers or staff attended relevant workshops sponsored by other groups. The committee mined the pub-
lished literature extensively. It solicited input from other scientists known to be active in BioComp
research. An early draft of the report was examined by a number of reviewers far larger than usual for
National Research Council (NRC) reports, and the draft was modified in accordance with their exten-
sive input, which helped the committee to sharpen its message and strengthen its presentation.

The result of these efforts is the first comprehensive NRC study that suggests a high-level intellec-
tual structure for federal agencies for supporting work at the BioComp interface. Although workshop
reports have been supported by individual agencies on the subject of computing applied to various
aspects of biological inquiry, the NRC has not until now undertaken a study whose intent was to be
inclusive.

Within the NRC, the lead unit on this project was the Computer Science and Telecommunications
Board (CSTB), and Marjory Blumenthal and Elizabeth Grossman launched the project. The committee
also acknowledges with gratitude the contribution of the Board on Biology—Robin Schoen continued
work on the project after Elizabeth Grossman’s departure. Geoff Cohen and Mitch Waldrop, consult-
ants to CSTB, made major substantive contributions to this report. A variety of project assistants,
including D.C. Drake, Jennifer Bishop, Gloria Westbrook, and Margaret Huynh, provided research and
administrative support. Finally, grateful thanks are offered to DARPA, NIH, NSF, and DOE for their
financial support for this project as well as their patience in awaiting the final report. No single agency
can respond to the challenges and opportunities at the interface, and the committee hopes that its
analysis will facilitate agency efforts to define their own priorities, set their own path, and participate in
what will be a continuing adventure along the frontier at this exciting and promising interface, which
will continue to develop throughout the 21st century.
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A Personal Note from the Chair

The committee found the scope of the study and the need to achieve an adequate level of balance in
both directions around the BioComp interface to be a challenge. This challenge, I hope, has been met,
but this was only possible due to the recruitment of an outstanding physicist turned computer science
policy expert from the NRC. Specifically, after the original series of meetings, Herb Lin from the CSTB
side of the NRC joined the effort, and most notably, followed up on the committee’s earlier analyses by
interviewing numerous individuals engaged in both biocomputing (applications of biology to comput-
ing) and computational biology (applications of computing to biology). This was invaluable, as was
Herb’s never ending enthusiasm, insight into the nature of the interdisciplinary discussions that are
growing, and his willingness to engage in learning a lot about biology. The report could never have
been completed without his persistence. His expertise in editing and analytical treatment of policy and
technical material allowed us to sustain a broad vision. (Even with the length and breadth of this study,
we were able to cover only selected areas at the interface.) The committee’s efforts were sustained and
accelerated by Herb’s determination that we stay the course despite the size of the task, and by his
insightful comments, criticisms, and suggestions on every aspect of the study and the report.

John Wooley, Chair

Committee on Frontiers at the Interface
of Computing and Biology
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Executive Summary

Despite some apparent differences, biology and information technology (IT) have much in com-
mon. They are two of the most rapidly changing fields today—the former because of enormous influxes
of new, highly heterogeneous data, and the latter because of exponentially decreasing price-perfor-
mance ratios. They both deal with entities of astounding complexity (organisms in the case of biology,
networks and computer systems in the case of information technology), although in the IT context, the
significance of the constituent connections and components is much better understood than in the
biological context. Also, they both have profound and revolutionary implications for science and soci-
ety. Biological science and technology have the potential to contribute strongly to society in improving
human health and well-being. The potential impacts include earlier diagnoses and more powerful
treatments for diseases, rapid environmental cleanup, and more robust food production. Computing
and information technology enable human beings to acquire, store, process, and interpret enormous
amounts of information that continue to underpin much of modern society.

Against that backdrop, this report considers potential interactions between biology and comput-
ing—the “BioComp” interface. To understand better the potential synergies at the BioComp interface
and to facilitate the development of new collaborations between the scientific communities in both
fields that can better exploit these synergies, the National Research Council established the Committee
on Frontiers at the Interface of Computing and Biology. For simplicity, this report uses “computing” to
refer to the broad domain encompassed collectively by terms such as computing, computation, model-
ing and simulation, computer science, computer engineering, informatics, information technology, sci-
entific computing, and computational science. (Analytical techniques without a strong machine-as-
sisted computational dimension are generally excluded from this study, although they are mentioned
from time to time when there is an interesting relationship to computing.) Similarly, the report uses the
term “21st century biology” to refer to all fields of endeavor in the biological, biochemical, and biomedi-
cal sciences.

Obviously, the union of computing with biology results in an extraordinarily broad area of interest.
Thus, this report is not intended to be comprehensive in the sense of seeing how every subfield of
biology might connect to every topic in computing. Instead, it seeks to sample the intellectual terrain in
enough places so as to give the reader a sense of the kinds of activities under way, and its spirit should

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/11480.html

omputing and Biology

2 CATALYZING INQUIRY

be understood as “letting a thousand flowers bloom” rather than “identifying the prettiest flowers in
the landscape.”

COMPUTING'’S IMPACT ON BIOLOGY

Twenty-first century biology will integrate a number of diverse intellectual notions. One integra-
tion is that of the reductionist and systems approaches—a focus on components of biological systems
combined with a focus on interactions among these components. A second integration is that of many
distinct strands of biological research: taxonomic studies of many species, the enormous progress in
molecular genetics, steps toward understanding the molecular mechanisms of life, and a consideration
of biological entities in relationship to their larger environment. A third integration is that computing
will become highly relevant to both hypothesis testing and hypothesis generation in empirical work in
biology. Finally, 21st century biology will also encompass what is often called discovery science—the
enumeration and identification of the components of a biological system independently of any specific
hypothesis about how that system functions (a canonical example being the genomic sequencing of
various organisms). Twenty-first century biology will embrace the study of an inclusive set of biological
entities, their constituent components, the interactions among components, and the consequences of
those interactions, from molecules, genes, cells, and organisms to populations and even ecosystems.

How will computing play in 21st century biology? Life scientists have exploited computing for
many years in some form or another. Yet what is different today—and will increasingly be so in the
future—is that the knowledge of computing needed to address many interesting biological problems
can no longer be learned and exploited simply by “hacking” and reading the manuals. Indeed, the kinds
and levels of expertise needed to address the most challenging problems of 21st century biology stretch
the current state of knowledge of the field—a point that illuminates the importance of real computing
research in a biological context.

This report identifies four distinct but interrelated roles of computing for biology.

1. Computational tools are artifacts—usually implemented as software but sometimes hardware—
that enable biologists to solve very specific and precisely defined problems. Such biologically
oriented tools acquire, store, manage, query, and analyze biological data in a myriad of forms
and in enormous volume for its complexity. These tools allow biologists to move from the study
of individual phenomena to the study of phenomena in a biological context; to move across vast
scales of time, space, and organizational complexity; and to utilize properties such as evolution-
ary conservation to ascertain functional details.

2. Computational models are abstractions of biological phenomena implemented as artifacts that can
be used to test insights, to make quantitative predictions, and to help interpret experimental
data. These models enable biological scientists to understand many types of biological data in
context, even in very large volume, and to make model-based predictions that can then be tested
empirically. Such models allow biological scientists to tackle difficult problems that could not
readily be posed without visualization, rich databases, and new methods for making quantita-
tive predictions. Biological modeling itself has become possible because data are available in
unprecedented richness and because computing itself has matured enough to support the analy-
sis of such complexity.

3. A computational perspective on or metaphor for biology applies the intellectual constructs of com-
puter science and information technology as ways of coming to grips with the complexity of
biological phenomena that can be regarded as performing information processing in different
ways. This perspective is a source of information and computing abstractions that can be used to
interpret and understand biological mechanisms and function. Because both computing and
biology are concerned with function, information and computing abstractions can provide well-
understood constructs that can be used to characterize the biological function of interest. Further,
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such abstractions may well provide an alternative and more appropriate language and set of
abstractions for representing biological interactions, describing biological phenomena, or con-
ceptualizing some characteristics of biological systems.

4. Cyberinfrastructure and data acquisition are enabling support technologies for 21st century biology.
Cyberinfrastructure—high-end general-purpose computing centers that provide supercomputing
capabilities to the community at large; well-curated data repositories that store and make avail-
able to all researchers large volumes and many types of biological data; digital libraries that
contain the intellectual legacy of biological researchers and provide mechanisms for sharing,
annotating, reviewing, and disseminating knowledge in a collaborative context; and high-speed
networks that connect geographically distributed computing resources—will become an en-
abling mechanism for large-scale, data-intensive biological research that is distributed over mul-
tiple laboratories and investigators around the world. New data acquisition technologies such as
genome sequencers will enable researchers to obtain larger amounts of data of different types
and at different scales, and advances in information technology and computing will play key
roles in the development of these technologies.

Why is computing in all of these roles needed for 21st century biology? The answer, in a word, is
data. The data relevant to 21st century biology are highly heterogeneous in content and format,
multimodal in method of collection, multidimensional in time and space, multidisciplinary in creation
and analysis, multiscale in organization, international in relevance, and the product of collaborations
and sharing. Consider, for example, that biological data may consist of sequences, graphs, geometric
information, scalar and vector fields, patterns of organization, constraints, images, scientific prose, and
even biological hypotheses and evidence. These data may well be of very high dimension, since data
points that might be associated with the behavior of an individual unit must be collected for thousands
or tens of thousands of comparable units.

These data are windows into structures of immense complexity. Biological entities (and systems
consisting of multiple entities) are sufficiently complex that it may well be impossible for any human
being to keep all of the essential elements in his or her head at once; if so, it is likely that computers will
be the vessel in which biological theories are held, formed, and evaluated. Furthermore, because of
evolution and a long history of environmental accidents that have driven processes of natural selection,
biological systems are more properly regarded as engineered entities than as objects whose existence
might be predicted on the basis of the first principles of physics, although the evolutionary context
means that an artifact is never “finished” and rather has to be evaluated on a continuous basis. The task
of understanding thus becomes one of “reverse engineering”—attempting to understand the construc-
tion of a device about whose design little is known but from which much indicative empirical data can
be extracted.

Twenty-first century biology will be an information science, and it will use computing and informa-
tion technology as a language and a medium in which to manage the discrete, nonsymmetric, largely
nonreducible, unique nature of biological systems and observations. In some ways, computing and
information will have a relationship to the language of 21st century biology that is similar to the
relationship of calculus to the language of the physical sciences. Computing itself can provide biologists
with an alternative, and possibly more appropriate, language and sets of intellectual abstractions for
creating models and data representations of higher-order interactions, describing biological phenom-
ena, and conceptualizing some characteristics of biological systems.

BIOLOGY’S IMPACT ON COMPUTING

From the computing side (i.e., for the computer scientist), there is an as-yet-unfulfilled promise that
biology may have significant potential to influence computer design, component fabrication, and soft-
ware. The essential premise is that biological systems possess many qualities that would be desirable in
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the information technology that humans use. For example, computer and information scientists are
looking for ways to make computers more adaptive, reliable, “smarter,” faster, and resilient. Biological
systems excel at finding and learning good—but not necessarily optimal—solutions to ill-posed prob-
lems on time scales short enough to be useful to them. They efficiently store “data,” integrate “hard-
ware” and “software,” self-correct, and have many other properties that computing and information
science might capture in order to achieve its future goals. Especially for areas in which computer science
lacks a well-developed theory or analysis (e.g., the behavior of complex systems or robustness), biology
may have the most to contribute.

The impact of biology and biological sciences on advances in computing is, however, more specula-
tive than the reverse, because such considerations are, with only a few exceptions, relevant to future
outcomes and not to what has been or is already being delivered. Humans understand computing
artifacts much better than they do biological organisms, largely because humans have been responsible
for the design of computing artifacts. Absent a comparable base of understanding of biological organ-
isms, the historical and contemporary contributions from biology to computing have been largely
metaphorical and can be characterized more readily as inspiration, rather than advances having a
straightforward or linear impact.

This difference may be one of time scale. Because today’s computing already contributes directly in
an essential way to advancing biological knowledge, a path for the near-term future can be readily
described. Contemporary advances in computing provide new opportunities for understanding biol-
ogy, and this will continue to be true for the foreseeable future. Advances in biological understanding
may yet have enormous value for changing computing paradigms (e.g., as may be the case if neural
information processing is understood more fully)—but these advances are themselves contingent on
work done over a considerably longer time scale.

ILLUSTRATIVE PROBLEM DOMAINS AT THE BIOCOMP INTERFACE

Both life scientists and computer scientists will draw inspiration and derive utility from other
fields—including each other’s—as they see fit. Nevertheless, one way of making progress is to address
problems that emerge naturally at the BioComp interface. Problem-focused research carries the major
advantage that problems offered by nature do not respect disciplinary boundaries; hence, in making
progress against challenging problems, practitioners of different disciplines must learn to work on
problems that are shared.

The BioComp interface drives many problem domains in which the expenditure of serious intellec-
tual effort can reasonably be expected to generate significant new knowledge in biology and/or com-
puting. Compared to many of grand challenges in computational biology outlined over the past two
decades, making significant progress in these problem domains will call for a longer time scale, greater
resources, and more extensive basic progress in computing and in biology.

Biological insight could take different forms—the ability to make new predictions, the understand-
ing of some biological mechanism, the construction of a synthetic biological mechanism. The same is
true for computing—insight might take the form of a new biologically inspired approach to some
computing problem, different hardware, or novel architecture.

This report discusses a number of interesting problem domains at the BioComp interface, but given
the breadth of the cognizant scientific arenas, no attempt is made to be exhaustive. Rather, topics have
been selected to span a space of possible problem domains, and no inferences should be made concern-
ing the omission of any problem from this list. The problem domains discussed in this report include
high-fidelity cellular modeling and simulation, the development of a synthetic cell, neural information
processing and neural prosthetics, evolutionary biology, computational ecology, models that facilitate
individualized medicine, a digital human on which a surgeon can operate virtually, computational
theories of self-assembly and self-modification, and a theory of biological information and complexity.

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/11480.html

omputing and Biology

EXECUTIVE SUMMARY 5

THE ROLE OF ORGANIZATION AND INFRASTRUCTURE IN CREATING
OPPORTUNITIES AT THE INTERFACE

The committee believes that over time, computing will assume an increasing role in the working
lives of nearly all biologists. But given the societal benefits that accompany a fuller and more systematic
understanding of biological phenomena, it is better if the computing-enabled 21st century biology
arrives sooner rather than later.

This point suggests that cultural and organizational issues have at least as much to do with the
nature and scope of the biological embrace of computing as do intellectual ones. The report discusses
barriers to cooperation arising from differences in organizational culture and differences in intellectual
style.

Consider organizational cultures. In many universities, for example, it is difficult for scholars work-
ing at the interface between two fields to gain recognition (e.g., tenure, promotion) from either—a fact
that tends to drive such individuals toward one discipline or another. The short-term goals in industrial
settings also inhibit partnerships along the interface because of the longer time frame for payoff. None-
theless, the committee believes that a synergistic cooperation between practitioners in each field, in both
basic and applied settings, will have enormous payoffs despite the real differences in intellectual style.

Coordination costs are another issue, because they increase with interdisciplinary work. Computer
scientists and biologists are likely to belong to different departments or universities, and when they try
to work together, the lack of physical proximity makes it harder for collaborators to meet, to coordinate
student training, and to share physical resources. In addition, bigger projects increase coordination
costs, and interdisciplinary projects are often larger than unidisciplinary projects. Such costs are re-
flected in delays in project schedules, poor monitoring of progress, and an uneven distribution of
information and awareness of what others in the project are doing. They also reduce people’s willing-
ness to tolerate logistical problems that might be more tolerable in their home contexts, increase the
difficulty of developing mutual regard and common ground, and can lead to more misunderstandings.

Differences of intellectual style occur because the individuals involved are first and foremost intel-
lectuals. For example, for the computer scientist, the notions of modeling systems and using abstrac-
tions are central to his or her work. Using these abstractions and models, computer scientists are able to
build some of the most complex artifacts known. But many—perhaps most—biologists today have a
deep skepticism about theory and models, at least as represented by mathematics-based theory and
computational models. And many computer scientists, mathematicians, and other theoretically inclined
researchers fail to recognize the complexity inherent in biological systems. As a result, there is often an
intellectual tension between simplification in service of understanding and capturing details in service
of fidelity—and such a tension has both positive and negative consequences.

Cooperation will require that practitioners in each field learn enough about the other to engage in
substantive conversations about hard biological problems. To take one of the most obvious examples,
the different fields place different emphases on the role of empirical data vis-a-vis theory. Accurate data
from biological organisms impose “hard” constraints on the biologist in much the same way that results
from theoretical computer science impose hard constraints on the computer scientist. A second example
is that whereas computer scientists are trained to develop general solutions that give guarantees about
events in terms of their worst-case performance, biologists are interested in specific solutions that relate
to very particular (though voluminous) datasets.

Finally, institutional difficulties often arise in academic settings for work that is not traditional or
not easily identified with existing departments. These differences derive from the structure and culture
of departments and disciplines, and they lead to scientists in different disciplines having different
intellectual and professional goals and experiencing different conditions for their career success. Col-
laborators from different disciplines must find and maintain common ground, such as agreeing on
goals for a joint project, but must also respect one another’s separate priorities, such as having to
publish in primary journals, present at particular conferences, or obtain tenure in their respective
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departments according to departmental criteria. Such cross-pressures and expectations from home
departments and disciplinary colleagues remain even if the participants in a collaboration develop
similar goals for a project.

FINDINGS AND RECOMMENDATIONS

At the outset, the committee had hoped to identify a deep symmetry between computing and
biology. That is, it is clear that the impact of computing on biology is increasingly profound, and the
symmetrical notion would be that biology would have a comparable effect on computing. However,
this proved not to be the case. The impact of computing on biology will be deep and profound, and
indeed will span virtually all areas of life sciences research, and in this direction a focus on interesting
problem domains (some of which are illustrated above) is a reasonable way to proceed. By contrast,
research that explores the impact of biology on computing falls much more into the “high-risk, high-
payoff” category. That is, the ultimate value of biology for changing computing paradigms in deep and
fundamental ways is as yet unproven. Nevertheless, various biological attributes—robustness, adapta-
tion, damage recovery, and so on—are so desirable from a computing point of view that any intellectual
inquiry is valuable if it can contribute to human-engineered artifacts with these attributes.

It is also clear that a number of other areas of inquiry are associated with the BioComp interface; in
addition to biology and computing, the interface also draws from chemistry, materials science, bioengi-
neering, and biochemistry. Three of the most important efforts, which can be loosely characterized as
different flavors of biotechnology, are (1) analytical biotechnology (which involves the application of
biotechnological tools for the creation of chemical measurement systems); (2) materials biotechnology
(which entails the use of biotechnological methods for the fabrication of novel materials with unique
optical, electronic, rheological, and selective transport properties); and (3) computational biotechnology
(which focuses on the potential replacement of silicon devices with nanoscale biomolecular-based com-
putational systems).

The committee underscores the importance of building human capital and, within that enterprise,
the special significance of educational innovation at the BioComp interface. The committee endorses the
call from other reports that recommend greater training in quantitative sciences (e.g., mathematics,
computer sciences) for biologists, but it also believes that students of the new biology would benefit
greatly from some study of engineering. Just as engineers must construct physical systems to operate in
the real world, so also must nature operate under these same constraints—physical laws—to “design”
successful organisms. Despite this fundamental similarity, biology students rarely learn the important
analysis, modeling, and design skills common in engineering curricula. The committee believes that the
particular area of engineering (electrical, mechanical, computer, etc.) is probably much less relevant
than exposure to essential principles of engineering design: the notion of trade-offs in managing com-
peting objectives, control systems theory, feedback, redundancy, signal processing, interface design,
abstraction, and the like.

Of course, more than education will have to change. Fifty years ago, academic biology had to
choose between altering the then-dominant styles of research to embrace molecular biology or risking
obsolescence. The committee believes that a new dawn is visible—and just as molecular biology has
become simply part of the biological sciences as a whole, so also will computational biology ultimately
become simply a part of the biological sciences. In the interim, however, considerable effort will be
required to build and sustain the infrastructure and to train a generation of biologists and computer
scientists who can choose the right collaborators to thrive at the BioComp interface.

The committee believes that 21st century biology will be based on a synergistic mix of reductionist
and systems biologies. For systems biology researchers, the committee emphasizes that empirical and
experimental hypothesis-testing research will continue to be central in providing experimental verifica-
tion of putative discoveries—and indeed, relevant as much to studies of how components interact as to
studies of components themselves. Thus, disparaging rhetoric about the inadequacies and failures of
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reductionist biology and overheated zeal in promoting systems biology should be avoided. For re-
searchers more oriented toward experimental or empirical work, the committee emphasizes that sys-
tems biology will be central in formulating novel, interesting, and in some cases counterintuitive hy-
potheses to test. The point suggests that agencies that have traditionally supported hypothesis-testing
research would do well to cast a wide “discovery” net that supports the development of alternative
hypotheses as well as research that supports traditional hypothesis testing.

Twenty-first century biology will require leadership from both biology and computing that links
together first-class research efforts in their respective domains. These efforts will necessarily cross
traditional institutional boundaries. For example, research efforts in scientific computing will have to
exist in both clinical and biological environments if they are to couple effectively to problem domains in
the life sciences. Establishment of a pervasive national infrastructure for life sciences research (includ-
ing the construction of interdisciplinary teams) and development of the requisite IT-enabled tools for
the larger community will require both sustained funding and rigorous oversight. Likewise, the depart-
mental imperatives that characterize much of academe will have to be modified if work at the BioComp
interface is to flourish.

In general, the committee believes that the most important change in funding policy for the sup-
porters of this area would be to broaden the kinds of work for which they offer support to include the
development of technology for data acquisition and analysis and exploratory research that results in the
generation of interesting hypotheses to be tested. That said, there is a direct relationship between the
speed with which research frontiers advance and the levels of funding allocated to them. Although it
understands the realities of a budget-constrained environment, the committee would gladly endorse an
increased flow of funding to the furtherance of a truly integrated 21st century biology.

As for the support of biologically inspired computing, the committee believes that its high-risk,
high-payoff nature means that supporting agencies should take a broad view of what “biological inspi-
ration” means and should support the field on a level-of-effort basis, recognizing the long-term nature
of such work and taking into account the number of researchers doing and likely to do good work in
this area and the potential availability of other avenues to improved computing.

From the committee’s perspective, the high-level goals articulated by the agencies and programs
that support work related to biology’s potential contribution to computing seem generally sensible.
This is not to say that every proposal supported under the auspices of these agencies’ programs would
necessarily have garnered the support of the committee—but that would be true of any research portfo-
lio associated with any program.

One important consequence of supporting high-risk research is that it is unlikely to be successful in
the short term. Research—particularly of the high-risk variety—is often more “messy” and takes longer
to succeed than managers would like. Managers understandably wish to terminate unproductive lines
of inquiry, especially when budgets are constrained. But short-term success cannot be the only metric of
the value of research, because when it is, funding managers invite hyperbole and exaggeration on the
part of proposal submitters, and unrealistic expectations begin to characterize the field. Those believing
the hyperbole (and those contributing to it as well) thus overstate the importance of the research and its
centrality to the broader goal of improving computing. When unrealistic expectations are not met (and
they will not be met, almost by definition), disillusionment sets in, and the field becomes disfavored
from both a funding and an intellectual standpoint.

From this perspective, it is easy to see why support for certain fields rises rapidly and then drops
precipitously. Wild budget fluctuations and an unpredictable funding environment that changes goals
rapidly can damage the long-term prospects of a field to produce useful and substantive knowledge.
Funding levels do matter, but programs that provide steady funding in the context of broadly stated but
consistent intellectual goals are more likely to yield useful results than those that do not.

Thus, the committee believes that in the area of biologically inspired computing, funding agencies
should have realistic expectations, and these expectations should be relatively modest in the near term.
Intellectually, their programs should continue to take a broad view of what “biological inspiration”
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means. Funding levels in these areas ought to be established on a level-of-effort basis (i.e., what the
agency believes is a reasonable level of effort to be expended in this area), by taking into account the
number of researchers doing and likely to do good work in an area and the potential availability of other
avenues to improved computing. In addition, programmatic continuity for biologically inspired com-
puting should be the rule, with playing rules and priorities remaining more or less constant in the
absence of profound scientific discovery or technology advances in the area.

CLOSING THOUGHTS

The impact of computing on biology can fairly be considered a paradigm change as biology enters
the 21st century. Twenty-five years ago, biology saw the integration of multiple disciplines from the
physical and biological sciences and the application of new approaches to understand the mechanisms
by which simple bacteria and viruses function. The impact of the early efforts was so significant that a
new discipline, molecular biology, emerged, and many biologists, including those working at the level
of tissues or systems and whole organisms, came to adopt the approaches and even often the tech-
niques. Molecular biology has had such success that it is no longer a discipline but simply part of life
sciences research itself.

Today, the revolution lies in the application of a new set of interdisciplinary tools: computational
approaches will provide the underpinning for the integration of broad disciplines in developing a
quantitative systems approach, an integrative or synthetic approach to understanding the interplay of
biological complexes as biological research moves up in scale. Bioinformatics provides the glue for
systems biology, and computational biology provides new insights into key experimental approaches
and how to tackle the challenges of nature. In short, computing and information technology applied to
biological problems is likely to play a role for 21st century biology that is in many ways analogous to the
role that molecular biology has played across all fields of biological research for the last quarter-
century—and computing and information technology will become embedded within biological re-
search itself.
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1.1 EXCITEMENT AT THE INTERFACE OF COMPUTING AND BIOLOGY

Sustained progress across all areas of science and technology over the last half-century has trans-
formed the expectations of society in many ways. Yet, even in this context of extraordinary advances,
both the biological sciences and the computer and information sciences share a number of characteris-
tics that are compelling.

First, both fields have been characterized by exponential growth, with doubling times on the order
of 1-2 years. In information technology (IT), both the component density of microprocessors and the
information storage density on hard disk drives have increased exponentially with doubling times from
9 to 18 months. In biology, the rate of growth of the biological literature is characterized by exponential
growth as well (e.g., the growth in GenBank is on the order of 60 percent per year, a rate comparable to
Moore’s law for microprocessors). While these growth rates cannot continue indefinitely, exponential
growth is likely at least in the short term.

Second, both fields deal with organisms and phenomena or artifacts of astounding complexity.
Both biological organisms and sophisticated computer systems involve very large numbers of compo-
nents and interconnections between them, and out of these assemblages of components and connec-
tions emerges interesting and useful functionality. In the information technology context, the signifi-
cance of these connections and components is much better understood than in the biological context,
not least because human beings have been responsible for the design of information technology
systems such as operating systems and computer systems. Still, the capabilities of existing computing
methodologies to design or characterize large-scale information systems and networks are being
stretched, and in the biological domain, a systems-level understanding of biological or computer
networks is both highly important and difficult to achieve. In addition, information technology is a
necessary and enabling technology for the study of complex objects. Computers are the scientific
instruments that let us see genomes just as electron microscopes let us see viruses, or radio telescopes
let us see quasars.

Third, both biology and information technology have profound and revolutionary implications for
science and society. From an intellectual standpoint, biology offers at least partial answers to eternal
questions such as, What is life? Also, biological science and technology have the potential for great
impact on human health and well-being, including improved disease treatments, rapid environmental

9
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cleanup, and more robust food production. Computing and information technology enable human
beings to acquire, store, process, and interpret enormous amounts of information, and continue to
underpin much of modern society.

Finally, several important areas of interaction between the two fields have already emerged, and
there is every expectation that more will emerge in the future. Indeed, the belief of the committee that
there are many more synergies at the interface between these two fields than have been exploited to
date is the motivation for this report. Against this backdrop, it makes good sense to consider potential
interactions between the two fields—what this report calls the “BioComp” interface.

As for the nature of computing that can usefully be exploited by life scientists, there is a range of
possibilities. For some problems encountered by biology researchers, a very rudimentary knowledge of
computing and information technology is quite sufficient. However, as problems become bigger and /or
more complex, what one may pick up by hacking and reading manuals is no longer sufficient. To
address such problems, the kinds and levels of expertise needed are more likely to require significant
formal study of computer science (e.g., as an undergraduate major in the field). And for still more
difficult, larger, or more complex problems, the kinds and levels of expertise needed stretch the current
state of knowledge of the field—a point that illuminates the importance of real computer science
research in a biological context.

Nor is the utility of computing limited to providing tools or models—no matter how sophisti-
cated—for biologists to use. As discussed in Chapter 6, computing can also provide intellectual abstrac-
tions that may provide insight into biological phenomena and a useful language for describing such
phenomena. As one example, notions of circuit and network and modularity—originally conceptual-
ized in the world of engineering and computer science—have much applicability to understanding
biological phenomena.

On the other side, biology refers to the scientific study of the activities, processes, mechanisms,
and other attributes of living organisms. For the purposes of this report, biology, biomedicine, life
sciences, and other descriptions of research into how living systems work should be regarded as
synonymous. In this context, for the past decade, researchers have spoken increasingly of a new
biology, a biology of the 21st century, one that is driven by new technologies, that is more automated
with tools and methods provided by industrial models, and that often entails high-throughput data
acquisition.! This report examines the BioComp interface from the perspective of 21st century biol-
ogy, as a science that integrates traditional empirical and experimental biology with a systems-level
biology that considers the multiscale, hierarchical, highly interwoven, or interactive aspects intrinsic
to living systems.

1.2 PERSPECTIVES ON THE BIOCOMP INTERFACE

This report addresses computationally inspired ways of understanding biology and biologically
inspired ways of understanding computing. Although the committee started its work with the idea that
it would discover a single community and intellectual synthesis of biology and computing, closer
examination showed that the appropriate metaphor is one of an interface between the two fields rather
than a common, shared area of inquiry. Thus, the adventures along the frontier cannot be treated as
coming from a single community, and the different objectives have to be recognized.

IFor example, see National Research Council, Opportunities in Biology, National Academy Press, Washington, DC, 1989. High-
throughput data acquisition is an approach that relies on the large-scale parallel interrogation of many similar biological entities.
Such an approach is essential for the conduct of global biological analyses, and it is often the approach of choice for rapid and
comprehensive assessment of biological system properties and dynamics. See, for example, T. Ideker, T. Galitski, and L. Hood,
“A New Approach to Decoding Life: Systems Biology,” Annual Review of Genomics and Human Genetics 2:343-372, 2001. A number
of the high-throughput data acquisition technologies mentioned in that article are discussed in Chapter 7 of his report.
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1.2.1 From the Biology Side

Biologists have a long history of applying tools from other disciplines to provide more powerful
methods to address or even solve their research problems. For example, Anton Van Leeuwenhoek’s
invention of the optical microscope in the late 1600s opened up a previously unknown world and
ultimately brought an entirely new vista to biology—namely, the existence of cells and cellular struc-
tures. This remarkable revolutionary discovery would have been impossible without the study of
optics—and Leeuwenhoek was a clockmaker.

The biological sciences have drawn heavily from chemistry, physics, and more recently, mathemati-
cal modeling. Indeed, the reductionist revolution in biological sciences—which led to the current state
of understanding of biological function and mechanism at the molecular level or of specific areas such
as neurophysiology—in the past five decades began as chemists, physicists, microbiologists, and others
interacted and created what is now known as molecular biology. The applications from the physical
sciences are already so well established that it is unnecessary to discuss them at length.

Mathematics and statistics have at times played important roles in designing and optimizing bio-
logical experiments. For example, statistical analysis of preliminary data can lead to improved data
collection and interpretation in subsequent experiments. In many cases, simple mathematical or physi-
cal ideas, accompanied by calculations or models, can suggest experiments or lead to new ideas that are
not easily identified with biological reasoning alone. An example of this category of contribution is
William Harvey’s estimation of the volume of the blood and his finding that a closed circulatory system
would explain the anomaly in such calculations. Traditionally, biologists have resisted mathematical
approaches for various reasons discussed at length in Chapter 10. To some extent, this history is being
changed in modern biology, and it is the premise of this report that an acceleration of this change is
highly worthwhile.

Approaches borrowed from another discipline may provide perspectives that are unavailable from
inside the disciplinary research program itself. In some cases, these lead to a new integrative explana-
tion or to new ways of studying and appreciating the intricacies of biology. In other cases, this borrow-
ing opens an entirely new subfield of biology. The discovery of the helical structure and the “code” of
DNA, impossible without crystallography and innovative biological thinking, is one example. The
understanding of electrical signaling in neurons by voltage-gated channels, and the Hodgkin-Huxley
equations (based on the theory of electrical circuits), constitute another example. Both of these ap-
proaches revolutionized the way biology was conducted and required significant, skilled input from
other fields.

The most dramatic scenarios arise when major subfields emerge. An example dating back some
decades, and described above in another context, is molecular biology, whose tools and techniques
(using advanced chemistry, physics, and equipment based on the above) changed the face of biology. A
more recent, current example is genomics with its indelible mark on the way that biology as a discipline
is conducted and will be conducted for years to come.

The committee believes that from the perspective of the biology researcher, there is both substantial
legacy and future promise regarding the application of computing to biological problems. Some of this
legacy is manifested in a several-decade development of private-sector databases (mostly those of
pharmaceutical companies) and software for data analysis, in public-sector genetic databases, in the use
of computer-generated visualization, and in the use of computation to determine the crystal structures
of increasingly complex biomolecules.?

Several life sciences research fields have begun to take computational approaches. For example,
ecology and evolution were among the first subfields of biology to develop advanced computational
simulations based on theory and models of ecosystems and evolutionary pathways. Cardiovascular

2See, for example, T. Head-Gordon and J.C. Wooley, “Computational Challenges in Structural and Functional Genomics,” IBM
Systems Journal 40(2):265-296, 2001, available at http:/ /www.research.ibm.com/journal/sj/402/headgordon.pdf.
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physiology and studies of the structure and function of heart muscle have involved bioengineering
models and combined experimental and computational approaches. All of these computational ap-
proaches would have been impossible without solid preexisting mathematical models that led to the
intuition and formed the basis for the emerging computational aspects.

Nevertheless, genomics research is simply not possible without information technology. It is not an
exaggeration to say that it was the sequencing of complete genomes, more than any other research
activity, that brought computational and informatics approaches to the forefront of life sciences re-
search, as well as identifying the need for basic underlying algorithms to tackle biological problems.
Only through computational analysis have researchers begun to uncover the implications of genomic-
scale sequence data. Apart from specific results thereby obtained, such analysis, coupled with the
availability of complete genomic sequences, has changed profoundly how many biologists think, con-
duct research, and plan strategically to address central research problems.

Today, computing is essential to every aspect of molecular and cell biology, as researchers expand
their scope of inquiry from gene sequence analysis to broader investigations of biological complexity.
This scope includes the structure and function of proteins in the context of metabolic, genetic, and
signaling networks, the sheer complexity of which is overwhelming. Future challenges include the
integration of organ physiology, catalogs of species-wide phenotypic variations, and understanding of
differences in gene expression in various states of health and disease.

1.2.2 From the Computing Side

From the viewpoint of the computer scientist, there is an as-yet-unfulfilled promise that biology
may have significant potential to influence computer design, component fabrication, and software.
Today, the impact of biology and biological sciences on advances in computing is more speculative than
the reverse (as described in Section 1.2.1), because such considerations are, with only a few exceptions,
relevant to future outcomes and not to what has been or is already being delivered.

In one sense, this should not be very surprising. Computing is a “science of the artificial,”3 whereas
biology is a science of the natural, and in general, it is much easier for humans to understand both the
function and the behavior of a system that they have designed to fulfill a specific purpose than to
understand the internal machinery of a biological black box that evolved as a result of forms and
pressures that we can only sketchily guess.* Thus, paths along which biology may influence computing
are less clear than the reverse, and work in this area should be expected to have longer time horizons
and to take the form of many largely independent threads, rather than a hierarchy of interrelated or
intellectual thrusts.

Nevertheless, exploring why the biological sciences might be relevant to computing is worthwhile
in particular because biological systems possess many qualities that would be desirable in the informa-
tion technology that humans use. For example, computer and information scientists are looking for
ways to make computers more adaptive, reliable, “smarter,” faster, and resilient. Biological systems
excel at finding and learning adequate—but not necessarily optimal—solutions to ill-posed problems
on time scales short enough to be useful to them. They efficiently store “data,” integrate “hardware”
and “software,” self-correct, and have many other properties that computing and information science

3“We speak of engineering as concerned with ‘synthesis,” while science is concerned with “analysis.” Synthetic or artificial ob-
jects—and more specifically prospective artificial objects having desired properties—are the central objective of engineering activity
and skill. The engineer, and more generally the designer, is concerned with how things ought to be—how they ought to be in order
to attain goals, and to function.” H.A. Simon, Sciences of the Artificial, 3rd ed., MIT Press, Cambridge, MA, 1996, pp. 4-5.

4This is what neuroscientist Valentino Braitenberg called his law of uphill analysis and downhill synthesis, in Vehicles: Experi-
ments in Synthetic Psychology, MIT Press/A Bradford Book, Cambridge, MA, 1984. Cited in Daniel C. Dennett, “Cognitive Science
as Reverse Engineering: Several Meanings of “Top-down’ and ‘Bottom-up’,” Proceedings of the Ninth International Congress of Logic,
Methodology and Philosophy of Science, D. Prawitz, B. Skyrms, and D. Westerstahl, eds., Elsevier Science North-Holland, 1994.

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/11480.html

omputing and Biology

INTRODUCTION 13

might capture in order to achieve its future goals. Especially for areas in which computer science lacks
a well-developed theory or analysis (e.g., the behavior of complex systems or robustness), biology may
have the most to contribute.

To hint at some current threads of inquiry, some researchers envision a hybrid device—a biological
computer—essentially, an organic tool for accomplishing what is now carried out in silicon. As an
information storage and processing medium, DNA itself may someday be the substance of a massively
dense memory storage device, although today the difficulties confronting the work in this area are
significant. DNA may also be the basis of nanofabrication technologies.

Biomimetic devices are mechanical, electrical, or chemical systems in which an attempt has been
made to mimic the way that a biological system solves a particular problem. Successes include robotic
locomotion (based on legged movements of arthropods), artificial blood or skin, and others. Approaches
with general-purpose applicability are less clearly successes, though they are still intriguing. These
include attempts to develop approaches to computer security that are modeled on the mammalian
immune system and approaches to programming based on evolutionary concepts.

Hybrid systems are a promising new technology for measurement of or interaction with small
biological systems. In this case, hybrid systems refer to silicon chips or other devices designed to
interact directly with a biological sample (e.g., record electrical activity in the flight muscles of a moth)
or analyze a small biological sample under field conditions. Here the applications of the technology
both to basic scientific problems and to industrial and commercially viable products are exciting.

In the domain of algorithms, swarm intelligence (a property of certain systems of nonintelligent,
independently acting agents that collectively exhibit intelligent behavior) and neural nets offer ap-
proaches to programming that are radically different from many of today’s models. Such applications of
biological principles to nonbiological computing could have much value, and Chapter 8 addresses in
greater detail some possible biological inspirations for computing. Yet it is also possible that a better
understanding of information-processing principles in biological systems will lead as well to greater
biological insight; so the dividing line between “applying biological principles to information process-
ing” and “understanding biological information processing” is not as clear as it might appear at
first glance. Moreover, even if biology ultimately proves unhelpful in providing insight into potential
computing solutions, it is still a problem domain par excellence—one that offers interesting intellec-
tual challenges in which progress will require that the state of computing research be stretched
immeasurably.

1.2.3 The Role of Organization and Culture

The possibility—or even the fact—that one field may be well positioned to make or facilitate signifi-
cant intellectual contributions to the other does not, by itself, lead to harmonious interchange between
practitioners in the two fields. Cultural and organizational issues are also very much relevant to the
success or failure of collaborations across different fields. For example, one important issue is the fact
that much of today’s biological research is done in individual laboratories, whereas many interesting
problems of 21st century biology will require interdisciplinary teams and physical or virtual centers
with capable scientists, distributed wherever they work, involved in addressing difficult problems.

Twenty-first century biology will also see the increasing importance of research programs that have
a more industrial flavor and involve greater standardization of instruments and procedures. A small
example is that reagent kits are becoming more and more popular, as labs realize that the small advan-
tages that might accrue through the use of a set of customized reagents are far outweighed by the
savings in effort associated with the use of such kits. A larger example might be shared devices and
equipment of larger-scale and assembly-line-like processes that replace the craft work of individual
technicians.

As biologists recognize the inherent difficulties posed by the data-intensive nature of these new
research strategies, they will require different—and additional—training in quantitative methods and
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science. Computing is likely to be central, but since the nature and scope of the computing required will
go far beyond what is typically taught in an introductory computing course, real advancement of the
frontier will require that computer scientists and biologists recognize and engage each other as intellec-
tual coequals. At the same time, computer scientists will have to learn enough about biology to under-
stand the nature of problems interesting to biologists and must refrain from regarding the problem
domain as a “mere” application of computing.

The committee believes that such peer-level engagement happens naturally, if slowly. But accelerat-
ing the cultural and organizational changes needed remains one of the key challenges facing the commu-
nities today and is one that this report addresses. Such considerations are the subject of Chapter 10.

1.3 Imagine What’s Next

In the long term, achievements in understanding and harnessing the power of biological systems
will open the door to the development of new, potentially far-reaching applications of computing and
biology—for example, the capability to use a blood or tissue sample to predict an individual’s suscepti-
bility to a large number of afflictions and the ability to monitor disease susceptibility from birth,
factoring in genetics and aging, diet, and other environmental factors that influence the body’s func-
tions over time and ultimately to treat such ailments.

Likewise, 21st century biology will advance the abilities of scientists to model, before a treatment is
prescribed, the likely biological response of an individual with cancer to a proposed chemotherapy
regime, including the likelihood of the effectiveness of the treatment and the side effects of the drugs.
Indeed, the promise of 21st century biology is nothing less than a system-wide understanding of bio-
logical systems both in the aggregate and for individuals. Such understanding could have dramatic
effects on health and medicine. For example, detailed computational models of cellular dynamics could
lead to mechanism-based target identification and drug discovery for certain diseases such as cancer,
to predictions of drug effects in humans that will speed clinical trials,® and to a greater understanding
of the functional interactions between the key components of cells, organs, and systems, as well as how
these interactions change in disease states.”

On another scale of knowledge, it may be possible to trace the genetic variability in the world’s
human populations to a common ancestral set of genes—to discover the origins of the earliest humans,
while learning, along the way, about the earliest diseases that arose in humans, and about the biological
forces that shape the world’s populations. Work toward all of these capabilities has already begun, as
biologists and computer scientists compile and consider vast amounts of information about the genetic
variability of humans and the role of that variability in relation to evolution, physiological functions,
and the onset of disease.

At the frontiers of the interface, remarkable new devices can be pictured that draw on biology for
inspiration and insight. It is possible to imagine, for example, a walking machine—an independent set
of legs as agile, stable, and energy-efficient as those of humans or animals—able to negotiate unknown
terrain and recover from falls, capable of exploring and retrieving materials. Such a machine would
overcome the limitations of present-day rovers that cannot do such things. Biologists and computer
scientists have begun to examine the locomotion of living creatures from an engineering and biological
perspective simultaneously, to understand the physical and biological controls on balance, gait, speed,
and energy expended and to translate this information into mechanical prototypes.

5.B. Gibbs, “Mechanism-Based Target Identification and Drug Discovery in Cancer Research,” Scierce 287:1969, 2000.
6C. Sander, “Genomic Medicine and the Future of Health Care,” Science 287:1977, 2000.
D. Noble, “Modeling the Heart—From Genes to Cells to the Whole Organ,” Science 295:1678, 2002.
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We can further imagine an extension of present-day bioengineering from mechanical hearts and
titanium hip joints to an entirely new level of devices, such as an implantable neural prosthetic that
could assist stroke patients in restoring speech or motor control or could enhance an individual’s
capability to see more clearly in the dark or process complex information quickly under pressure. Such
a prosthetic would marry the speed of computing with the brain’s capacity for intelligence and would
be a powerful tool with many applications.

With the advancement of computational power and other capabilities, there is a great opportunity
and challenge in whether human functions can be represented in digital computational forms. One form
of representation of a human being is how it is constructed, starting with genes and proteins. Another
form of representation is how a human being functions. Human functions can be viewed at many
different levels—physioanatomical, motion-mechanical, and psychocognitive, for example. If it were
possible to represent a human being at any or all of these functional levels, then a “digital human” could
be created inside the computer, to be used for many applications such as medical surgical training,
human-centered design of products, and societal simulation. (There are already such simulations at
varying levels of fidelity for particular organs such as the heart.)

The potential breadth and depth of the interface of computing and biology are vast. Box 1.1 is a
representative list of research areas already being pursued at the interface; Appendix B at the end of this
report provides references to more detailed discussions of these efforts. The excitement and challenge of
all of these possibilities drive the increasing interest in and enthusiasm for research at the interface.

Box 1.1
Illustrative Research Areas at the Interface of Computer Science and Biology

e Structure determination of biological molecules and complexes

e Simulation of protein folding

* Whole genome sequence assembly

* Whole genome modeling and annotation

¢ Full genome-genome comparison

¢ Rapid assessment of polymorphic genetic variations

e Complete construction of orthologous and paralogous groups of genes

* Relating gene sequence to protein structure

e Relating protein structure to function

¢ Insilico drug design

¢ Mechanistic enzymology

¢ Cell network analysis-simulation of genetic networks and the sensitivity of these pathways to component
stoichiometry and kinetics

e Dynamic simulation of realistic oligomeric systems

* Modeling of cellular processes

* Modeling of physiological systems in health and disease

¢ Modeling behavior of schools, swarms, and their emergent behavior

e Simulation of membrane structure and dynamic function

¢ Integration of observations across scales of vastly different dimension and organization for model
creation purposes

e Development of bio-inspired autonomous locomotive devices

e Development of biomimetic devices

¢ Bioengineering prosthetics
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1.4 SOME RELEVANT HISTORY IN BUILDING THE INTERFACE

1.4.1 The Human Genome Project

According to Cook-Deegan,® the Human Genome Project resulted from the collective impact of
three independent public airings of the idea that the human genome should be sequenced. In 1985,
Robert Sinsheimer and others convened a group of scientists to discuss the idea.” In 1986, Renato
Dulbecco noted that sequencing the genome would be an important tool in probing the genetic origins
of cancer.! Then in 1988, Charles DeLisi developed the idea of sequencing the genome in the context of
understanding the biological and genetic effects of ionizing radiation on survivors of the Hiroshima and
Nagasaki atomic bombs.!!

In 1990, the International Human Genome Consortium was launched with the intent to map and
sequence the totality of human DNA (the genome).!> On April 14, 2003, not quite 50 years to the day
after James Watson and Francis Crick first published the structure of the DNA double helix,'® officials
announced that the Human Genome Project was finished.!* After 13 years and $2.7 billion, the interna-
tional effort had yielded a virtually complete listing of the human genetic code: a sequence some 3
billion base pairs long.!®

1.4.2 The Computing-to-Biology Interface

For most of the electronic computing age, biological computing applications have been secondary
compared to those associated with the physical sciences and the military. However, over the last two
decades, use by the biological sciences—in the form of applications related to protein modeling and
folding—went from virtually nonexistent to being the largest user of cycles at the National Science
Foundation Centers for High Performance Computing by FY 1998. Nor has biological use of computing
capability been limited to supercomputing applications—a plethora of biological computing applica-
tions have emerged that run on smaller machines.

During the last two decades, federal agencies also held a number of workshops on computational
biology and bioinformatics, but until relatively recently, there was no prospect for significant support

8Cook-Deegan’s perspective on the history of the Human Genome Project can be found in R.M. Cook-Deegan, The Gene Wars:
Science, Politics, and the Human Genome, W.W. Norton and Company, New York, 1995.

9R. Sinsheimer, “The Santa Cruz Workshop,” Genomics 5(4):954-956, 1989.

10R. Dulbecco, “A Turning Point in Cancer Research: Sequencing the Human Genome,” Science 231(4742):1055-1056, 1986.

11C. DeLisi, “The Human Genome Project,” American Scientist 76:488-493, 1988.

12Cook-Deegan identifies three independent public airings of the idea that the human genome should be sequenced, airings
that collectively led to the establishment of the HGP. In 1985, Robert Sinsheimer and others convened a group of scientists to
discuss the idea. (See R. Sinsheimer, “The Santa Cruz Workshop,” Genomics 5(4):954-956, 1989.) In 1986, Renato Dulbecco noted
that sequencing the genome would be an important tool in probing the genetic origins of cancer. (See R. Dulbecco, “A Turning
Point in Cancer Research: Sequencing the Human Genome,” Science 231(4742):1055-1056, 1986.) In 1988, Charles DeLisi devel-
oped the idea of sequencing the genome in the context of understanding the biological and genetic effects of ionizing radiation
on survivors of the Hiroshima and Nagasaki atomic bombs. (See C. DeLisi, “The Human Genome Project,” American Scientist
76:488-493, 1988.) Cook-Deegan’s perspective on the history of the Human Genome Project can be found in R. Cook-Deegan, The
Gene Wars: Science, Politics, and the Human Genome, W.W. Norton and Company, New York, 1995.

13].D. Watson and F.H. Crick, “Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid,” Nature
171(4356):737-738, 1953.

14The “completion” of the project had actually been announced once before, on June 26, 2000, when U.S. President Bill Clinton
and British Prime Minister Tony Blair jointly hailed the release of a preliminary, draft version of the sequence with loud media
fanfare. However, while that draft sequence was undoubtedly useful, it contained multiple gaps and had an error rate of one
mistaken base pair in every 10,000. The much-revised sequence released in 2003 has an error rate of only 1 in 100,000, and gaps in
only those very rare segments of the genome that cannot reliably be sequenced with current technology. See http://
www.genome.gov/11006929.

15V arious histories of the Human Genome Project can be found at http:/ /www.ornl.gov/sci/techresources/Human_Genome/
project/hgp.shtml.
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for academic work at the interface. The Keck Foundation and the Sloan Foundation supported training,
and numerous database activities have been supported by federal agencies. As the impact of the Human
Genome Project and comparative genomics began to reach the community as a whole, the situation
changed. An important step came from the Howard Hughes Medical Institute, which in 1999 held a
special competition to select professors in bioinformatics and thus provided a strong endorsement of
the role of computing in biology.

In 1999, the National Institutes of Health (NIH) also took a first step toward integrating ad hoc
support by requesting an analysis of the opportunities, requirements, and challenges from computing
for biomedicine. In June 1999, the Botstein-Smarr Working Group on Biomedical Computing presented
a report to the NIH entitled The Biomedical Information Science and Technology Initiative.'® Specifically
tasked with investigating the needs of NIH-supported investigators for computing resources, including
hardware, software, networking, algorithms, and training, the working group made recommendations
for NIH actions to support the needs of NIH-funded investigators for biomedical computing.

That report embraces a vision of computing as the hallmark of tomorrow’s biomedicine. To acceler-
ate the transition to this new world of biomedicine, the working group sought to find ways “to discover,
encourage, train, and support the new kinds of scientists needed for tomorrow’s science.” Much of the
report focuses on national programs to create “the best opportunities that can be created for doing and
learning at the interfaces among biology, mathematics, and computation,” and argues that “with such
new and innovative programs in place, scientists [would] absorb biomedical computing in due course,
while supporting the mission of the NIH.” The report also identifies a variety of barriers to the full
exploitation of computation for biological needs.

In the intervening 4 years, the validity of the Botstein-Smarr Working Group report vision has not
been in question; if anything, the expectations, opportunities, and requirements have grown. Computa-
tion in various forms is rapidly penetrating all aspects of life sciences research and practice.

e State-of-the-art radiology (and along with it other fields dependent on imaging—mneurology, for
example) is highly dependent on information technology: the images are filtered, processed reconstruc-
tions that are acquired, stored, and analyzed computationally.

* Genomics and proteomics are completely dependent on computation.

¢ Integrative biology aimed at predictive modeling is not just computationally enabled—it literally
cannot occur in a noncomputational environment.

Biomedical scientists of all stripes are increasingly using public resources and computational tools
at high levels of intensity such that very significant fractions of the overall effort are in this domain, and
it is highly likely that these trends will continue. Yet many of the barriers to full exploitation of compu-
tation in the biological sciences that were identified in the Botstein-Smarr report still remain. One
primary focus of the present report is accordingly to consider the intellectual, organizational, and
cultural barriers that impede or even prevent the full benefits of computation from being realized for
biomedical research.

1.4.3 The Biology-to-Computing Interface

The application of biological ideas to the design of computing systems appears through much of the
history of electronic computers, in most cases as an outgrowth of attempts to model or simulate a
biological system. In the early 1970s, John H. Holland (the first person in the United States to be
awarded a Ph.D. in computer science) pioneered the idea of genetic algorithms, which use simulated
genetic processes (crossover, mutation, and inversion) to search a large solution space of algorithms.!”

16 Available at http:/ /www.nih.gov/about/director/060399.htm.
17 H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, 1975.
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This work grew out of research in the 1950s and 1960s to simulate just such processes in the natural
world. A second wave of popularity of this technique came after John Koza described genetic program-
ming, which used similar techniques to modify symbolic expressions that comprised entire programs.!8
Both of these approaches are in use today, especially in research and academic settings.

The history of artificial neural networks also shows a strong relationship between attempts to
simulate biology and attempts to construct a new software tool. This research predates even the modern
electronic digital computers, since Warren McCulloch and Walter Pitts published a model of a neuron
that incorporated analog weights into a binary logic scheme in 1943.1° This was meant to be used as a
model of biological neurons, not merely as an abstract computational processing approach. Research on
neural nets continued throughout the next decades, focusing on network architectures (particularly
random and layered), mechanisms of self-assembly, and pattern recognition and classification. Signifi-
cant among this research was Rosenblatt’s work on perceptrons.?? However, lack of progress caused a
loss of interest in neural networks in the late 1970s and early 1980s. Hopfield revived interest in the field
in 1982,2! and progress throughout the 1980s and 1990s established neural networks as a standard tool
for learning and classifying patterns.

A similar pattern characterizes research into cellular automata. John von Neumann'’s attempts to
provide a theory of biological self-assembly inspired him to apply traditional automata theory to a two-
dimensional grid;?? similar work was being done at the same time by Stanislaw Ulam (who may have
suggested the approach to von Neumann). Von Neumann also showed that cellular automata could
simulate a Turing machine, meaning that they were a system that could provide universal computation.
A boom of popularity for cellular automata followed the publication of the details of John Conway’s
Game of Life.? In the early 1980s, Stephen Wolfram made important contributions to formalizing
cellular automata, especially in their role in computational theory,?* and Toffoli and Margolus stressed
the general applicability of automata as systems for modeling.?®

At a more metaphorical level, IBM has taken initiatives in biologically inspired computing. Specifi-
cally, IBM launched its Autonomic Computing initiative in 2001. Autonomic computing is inspired by
biology in the sense that biological systems—and in particular the autonomic nervous system—are
capable of doing many things that would be desirable in complex computing systems. Autonomic
computing is conceived as a way to manage increasingly complex and distributed computing environ-
ments as traditional approaches to system management reach their limits. IBM takes special note of the
fact that “the autonomic nervous system frees our conscious brain from the burden of having to deal
with vital but lower-level functions.”?® Autonomic computing, by IBM’s definition, requires that a
system be able to configure and reconfigure itself under varying and unpredictable conditions, to
continually optimize its workings, to recover from routine and extraordinary events that might cause

18] R. Koza, “Genetically Breeding Populations of Computer Programs to Solve Problems in Artificial Intelligence,” pp. 819-827
in Proceedings of the Second International Conference on Tools for Artificial Intelligence, IEEE Computer Society Press, Los Alamitos,
CA, 1990.

19W.S. McCulloch and W.H. Pitts, “A Logical Calculus of the Ideas Immanent in Nervous Activity,” Bulletin of Mathematical
Biophysics 5:115-137, 1943.

20R. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms, Spartan Books, Washington, DC,
1962.

21y 1. Hopfield, “Neural Networks and Physical Systems with Emergent Collective Computational Abilities,” Proceedings of the
National Academy of Sciences (USA) 79(8):2554-2558, 1982.

227, yon Neumann, Theory of Self-reproducing Automata (edited and completed by A. W. Burks), University of Illinois Press, 1966.

23M. Gardner, “MATHEMATICAL GAMES: The Fantastic Combinations of John Conway’s New Solitaire Game ‘Life’,” Scien-
tific American 223(October):120-123, 1970.

243, Wolfram, “Computation Theory of Cellular Automata,” Communications in Mathematical Physics 96:15-57, 1984.

25T Toffoli and N. Margolus, Cellular Automata Machines: A New Environment for Modeling, MIT Press, Cambridge, MA, 1987.

26G. Ganek and T.A. Corbi, “The Dawning of the Autonomic Computing Era,” IBM Systens Journal 42(1):5-18, 2003.
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some parts to malfunction in a manner analogous to the healing of a biological system, and to protect
itself against dangers in its (open) environment.

1.5 BACKGROUND, ORGANIZATION, AND APPROACH OF THIS REPORT

To better understand potential synergies at the BioComp interface and to facilitate the development
of collaborations between scientific communities in both fields that can better exploit these synergies,
the National Research Council established the Committee on Frontiers at the Interface of Computing
and Biology. The committee hopes that this report will be valuable and important to a variety of
interested parties and constituencies and that scientists who read it will be attracted by the excitement
of research at the interface. To researchers in computer science, the committee hopes to demonstrate
that biology represents an enormously rich problem domain in which their skills and talents can be of
enormous value in ways that go far beyond their value as technical consultants and also that they may
in turn be able to derive inspiration for solving computing problems from biological phenomena and
insights. To researchers in the biological sciences, the committee hopes to show that computing and
information technology have enormous value in changing the traditional intellectual paradigms of
biology and allowing interesting new questions to be posed and answered. To academic administrators,
the committee hopes to provide guidance and principles that facilitate the conduct of research and
education at the BioComp interface. Finally, to funding agencies and organizations, the committee
hopes to provide both a rationale for broadening the kinds of work they support at the BioComp
interface and practices that can enhance and create links between computing and biology.

A note on terminology and scope is required for this report. Within the technology domain are a
number of interconnecting aspects implied by terms such as computing, computation, modeling, com-
puter science, computer engineering, informatics, information technology, scientific computing, and
computational science. Today, there is no one term that defines the breadth of the science and technol-
ogy within the computing and information sciences and technologies. The intent is to use any of these
terms with a broad rather than narrow construction and connotation and to consider the entire domain
of inquiry in terms of an interface to life science. For simplicity, this report uses the term “computing”
to refer to intellectual domains characterized by roots in the union of the terms above.

Although the words “computing” and “computation” are used throughout this report, biology in
the new millennium connects with a number of facets of the exact sciences in a way that cannot be
separated from computer science per se. In particular, biology has a synergistic relationship with math-
ematics, statistics, physics, chemistry, engineering, and theoretical methods—including modeling and
analysis as well as computation and simulation. In this relationship, blind computation is no surrogate
for insight and understanding. In many cases, the fruits of computation are reaped only after careful
and deliberate theoretical analysis, in which the physics, biology, and mathematics underlying a given
system are carefully considered. Although much of the focus of this report is on the exchange between
biology and computing, the reader should consider how the same ideas may be extended to encompass
these other aspects.

Consider, for example, the fact that mathematics plays an essential role in the interpretation of
experimental data and in developing algorithms for machine-assisted computing. Computing is implic-
itly mathematical, and as techniques for mathematical analysis evolve and develop, so will new oppor-
tunities for computing.

These points suggest that any specific limits on the range of coverage of this report are artificial and
somewhat forced. Yet practicality dictates that some limits be set, and thus the committee leaves sys-
tematic coverage of certain important dimensions of the biology-computing interface to other reports.
For example, a 2005 report of the Board on Mathematical Sciences (BMS) of the National Research
Council (NRC) recommends a mathematical sciences research program that allows biological scientists
to make the most effective use of the large amount of existing genomic information and the much larger
and more diverse collections of structural and functional genomic information that are being created,
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covering both current research needs and some higher-risk research that might lead to innovative
approaches for the future.”’” The BMS study takes a very broad look at what will be required for
bioinformatics, biophysics, pattern matching, and almost anything related to the mathematical founda-
tions of computational biology; thus, it is that BMS report, rather than the present report, that addresses
analytical techniques.

Similar comments apply to the present report’s coverage of medical devices based on embedded
information technologies and medical informatics. Medical devices such as implanted defibrillators rely
on real-time analysis of biological data to decide when to deliver a potentially lifesaving shock. Medical
informatics can be regarded as computer science applied directly to problems of medicine and health
care, focusing on the management of medical information, data, and knowledge for medical problem
solving and decision making. Medical devices and medical informatics have many links and similarities
to the subject matter of this report, but they, too, are largely outside its scope, although from time to
time issues and challenges from the medical area are mentioned. Comprehensive studies describing
future needs in medical informatics and medical devices must await future NRC work.

Yet another area of concern unaddressed in this report is the area of ethics associated with the issues
discussed here. To ask just a few questions: Who will own DNA data? What individual biomedical data
will be collected and retained? What are the ethics involved in using this data? What should individuals
be told about their genetic futures? What are the ethical implications of creating new biological organ-
isms or of changing the genetics of already living individuals? All of these questions are important, and
philosophers and ethicists have begun to address some of them, but they are outside the scope of this
report or the expertise of the committee.

In developing this report, the committee chose to characterize the overarching opportunities at the
interface of biology and the computer and information sciences, and to highlight several diverse ex-
amples of activities at the interface. These points of intersection broadly represent and illustrate charac-
teristics of research along the interface and include promising areas of exploration, some exciting from
a basic science perspective and others from the point of view of novel applications.

Chapter 2 presents perspectives on 21st century biology, a synthesis among a variety of different
intellectual approaches to biological research. Chapter 3 is a discussion of the nature of biological data
and the requirements that biologists put on data.

Chapter 4 discusses computational tools for biology that help to solve specific and precisely defined
problems. Chapter 5 focuses on models and simulations in biology as approaches for exploring and
predicting biological phenomena.

Chapter 6 describes the value of a computational and engineering perspective in characterizing
biological functionality of interest. Chapter 7 addresses roles in biological research for cyberinfrastruc-
ture and technologies for data acquisition.

Chapter 8 describes the potential of computer science applications and processes to utilize biologi-
cal systems—to emulate, mimic, or otherwise draw inspiration from the organization, behavior, and
structure of living things or to make use of the physical substrate of biological material in hybrid
systems or other information-processing applications.

Chapter 9 presents a number of illustrative problem domains. These are technical challenges, poten-
tial future applications, and specific research questions that exemplify points along the interface of
computing and biology. They illustrate the two overarching themes described in Chapter 2, and de-
scribe in detail the specific technological goals that must be met in order to successfully meet the
challenge.

Chapter 10 is a discussion of the research infrastructure—people and resources need to vitalize the
interface. The chapter examines the requisite scientific expertise, the false starts of the past, cultural and
other barriers that must be addressed, and the coordinated effort needed to move research at the
interface forward.

27National Research Council, Mathematics and 21st Century Biology, The National Academies Press, Washington, DC, 2005.
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Finally, Chapter 11 summarizes key findings about opportunities and barriers to progress at the
interface and provides recommendations for priority areas of research, tools, education, and resources
that will propel progress at the interface.

Appendix A is a reprint of a chapter from a 1995 NRC report entitled Calculating the Secrets of Life.
The chapter, “The Secrets of Life: A Mathematician’s Introduction to Molecular Biology,” is essentially
a short primer on the fundamentals of molecular biology for nonbiologists. Appendix B lists some of the
research challenges in computational biology discussed in other reports. Short biographies of commit-
tee members, staff, and the review coordinator are given in Appendix C.

Throughout this report, examples of relevant work are provided quite liberally where they are
relevant to the topic at hand. The reader should note that these examples have generally been selected
to illustrate the breadth of the topic in question, rather than to identify the most important areas of
activity. That is, the appropriate spirit in which to view these examples is “letting a thousand flowers
bloom,” rather than one of “finding the prettiest flowers.”
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21st Century Biology

Biology, like any science, changes when technology introduces new tools that extend the scope and
type of inquiry. Some changes, such as the use of the microscope, are embraced quickly and easily,
because they are consonant with existing values and practices. Others, such as the introduction of multi-
variate statistics as performed by computers in the 1960s, are resisted, because they go against traditions of
intuition, visualization, and conceptions of biology that separate it clearly from mathematics.

This chapter attempts to frame the challenges and opportunities created by the introduction of
computation to the biological sciences. It does so by first briefly describing the existing threads of
biological culture and practice, and then by showing how different aspects of computational science
and technology can support, extend, or challenge the existing framework of biology.

Computing is only one of a large number of fields playing a role in the transformation of biology,
from advanced chemistry to new fields of mathematics. And yet, in many ways, computers have proven
the most challenging and the most transformative, rooted as they are in a tradition of design and
abstraction so different from biology. Just as computers continue to radically change society at large,
however, there is no doubt that they will change biology as well. As it has done so many times before,
biology will change with this new technology, adopting new techniques, redefining what makes good
science and good training, and changing which inquiries are important, valued, or even possible.

2.1 WHAT KIND OF SCIENCE?

2.1.1 The Roots of Biological Culture

Biology is a science with a deep history that can be linked to the invention of agriculture at the very
dawn of civilization and, even earlier, to the first glimmerings of oral culture: “Is that safe to eat?” As
such, it is a broad field, rich with culture and tradition, that encompasses many threads of observa-
tional, empirical, and theoretical research and spans scales from single molecules to continents. Such a
broad field is impossible to describe simply; nevertheless, this section attempts to identify a number of
the main threads of the activity and philosophy of biology.

First, biology is an empirical and a descriptive science. It is rooted in a tradition of qualitative obser-
vation and description dating back at least to Aristotle. Biological researchers have long sought to

23
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catalog the characteristics, behaviors, and variations of individual biological organisms or populations
through the direct observation of organisms in their environments, rather than trying to identify general
principles through mathematical or abstract modeling. For this reason, the culture of biology is both
strongly visual and specific. Identifying a new species, and adequately describing its physical appear-
ance, environment, and life cycle, remains a highly considered contribution to biological knowledge.

It is revealing to contrast this philosophy with that of modern physics, where the menagerie of new
subatomic particles discovered in the 1960s and 1970s was a source of faint embarrassment and discom-
fort for physicists. Only with the introduction of quarks, and the subsequent reduction in the number of
fundamental particles, did physicists again feel comfortable with the state of their field. Biology, in
strong contrast, not only prizes and embraces the enormous diversity of life, but also considers such
diversity a prime focus of study.

Second, biology is an ontological science, concerned with taxonomy and classification. From the time
of Linnaeus, biologists have attempted to place their observations into a larger framework of knowl-
edge, relating individual species to the identified span of life. The methodology and basis for this
catalog is itself a matter of study and controversy, and so research activity of this type occurs at two
levels: specific species are placed into the tree of life (or larger taxa are relocated), still a publishable
event, and the science of taxonomy itself is refined.

Biology is a historical science. Life on Earth apparently arose just once, and all life today is derived
from that single instance. A complete history of life on Earth—which lineage arose from which, and
when—is one of the great, albeit possibly unachievable, goals of biology. Coupled to this inquiry, but
separate, are the questions, How? and Why? What are the forces that cause species to evolve in certain
ways? Are there secular trends in evolution, for example, as is often claimed, toward increasing com-
plexity? Does evolution proceed smoothly or in bursts? If we were to “replay the tape” of evolution,
would similar forms arise? Just as with taxonomy (and closely related to it), there are two levels here:
what precisely happened and what the forces are that cause things to happen.

These three strands—empirical observations of a multitude of life forms, the historical facts of
evolution, and the ordering of biological knowledge into an overarching taxonomy of life—served to
define the central practices of biology until the 1950s and still in many ways affect the attitudes, training,
philosophy, and values of the biological sciences. Although biology has expanded considerably with
the advent of molecular biology, these three strands continue as vital areas of biological research and
interest.

These three intellectual strands have been reflected in biological research that has been qualitative
and descriptive throughout much of its early history. For example, empirical and ontological research-
ers have sought to catalog the characteristics, behaviors, and variations of individual biological organ-
isms or populations through the direct observation of organisms in their environments.

Yet as important and valuable as these approaches have been for biology, they have not provided—
and cannot provide—very much detail about underlying mechanisms. However, in the last half-cen-
tury, an intellectual perspective provided by molecular biology and biochemistry has served as the
basis for enormous leaps forward.

2.1.2 Molecular Biology and the Biochemical Basis of Life

In the past 50 years, biochemical approaches to analyzing biological questions and the overall
approaches now known as molecular biology have led to the increased awareness, identification, and
knowledge of the central role of certain mechanisms, such as the digital code of DNA as the mechanism
underlying heredity, the use of adenosine triphospate (ATP) for energy storage, common protein sig-
naling protocols, and many conserved genetic sequences, some shared by species as distinct as humans,
sponges, and even single-cell organisms such as yeast.

This new knowledge both shaped and was shaped by changes in the practice of biology. Two
important threads of biological inquiry, both existing long before the advent of molecular biology, came
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to the forefront in the second half of the 20th century. These threads were biological experimentation
and the search for the underlying mechanics of life.

Biological experimentation and the collection of data are not new, but they acquired a new impor-
tance and centrality in the late 20th century. The identification of genes and mutations exemplified by
experiments on Drosophila became an icon of modern biological science, and with this a new focus
emerged on collecting larger amounts of quantitative data.

Biologists have always been interested in how organisms live, a question that ultimately comes
down to the very definition of life. A great deal of knowledge regarding anatomy, circulation, respira-
tion, and metabolism was gathered in the 18th and 19th centuries, but without access to the instruments
and knowledge of biochemistry and molecular biology, there was a limit to what could be discovered.
With molecular biology, some of the underlying mechanisms of life have been identified and analyzed
quantitatively.

The effort to uncover the basic chemical features of biological processes and to ascertain all aspects
of the components by way of experimental design will continue to be a major aspect of basic biological
research, and much of modern biology has sought to reduce biological phenomena to the behavior of
molecules.

However, biological researchers are also increasingly interested in a systems-level view in which
completely novel relationships among system components and processes can be ascertained. That is, a
detailed understanding of the components of a biological organism or phenomenon inevitably leads to
the question of how these components interact with each other and with the environment in which the
organism or phenomenon is embedded.

2.1.3 Biological Components and Processes in Context, and Biological Complexity

There is a long tradition of studying certain biological systems in context. For example, ecology has
always focused on ecosystems. Physiology is another example of a life science that has generally consid-
ered biological systems as whole entities. Animal behavior and systematics science also considers
biological phenomena in context. However, data acquisition technologies, computational tools, and
even new intellectual paradigms are available today that enable a significantly greater degree of in-
context understanding of many more biological components and processes than was previously pos-
sible, and the goal today is to span the space of biological entities from genes and proteins to networks
and pathways, from organelles to cells, and from individual organisms to populations and ecosystems.

Following Kitano,! a systems understanding of a biological entity is based on insights regarding
four dimensions: (1) system structures (e.g., networks of gene interactions and biochemical pathways
and their relationship to the physical properties of intracellular and multicellular structures), (2) system
dynamics (e.g., how a system behaves over time under various conditions and the mechanisms under-
lying specific behaviors), (3) control mechanisms (e.g., mechanisms that systematically control the state
of the cell), and (4) design principles (e.g., principles underlying the construction and evolution of
biological systems that have certain desirable properties).?

As an example, consider advances in genomic sequencing. Sequence genomics has created a path
for establishing the “parts list” for living cells, but to move from isolated molecular details to a compre-
hensive understanding of phenomena from cell growth up to the level of homeostasis is widely recog-

1H. Kitano, “Systems Biology: A Brief Overview,” Science 295(5560):1662-1664, 2002.

ZFor example, such principles might occur as the result of convergent evolution, that is, the evolution of species with different
origins toward similar forms or characteristics, and an understanding of the likely ways that evolution can take to solve certain
problems. Alternatively, principles might be identified that can explain the functional behavior of some specific biological
system under a wide set of circumstances without necessarily being an accurate reflection of what is going on inside the system.
Such principles may prove useful from the standpoint of being able to manipulate the behavior of a larger system in which the
smaller system is embedded, though they may not be useful in providing a genuine understanding of the system with which
they are associated.
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nized as requiring a very different approach. In the highly interactive systems of living organisms, the
macromolecular, cellular, and physiological processes, themselves at different levels of organizational
complexity, have both temporal and spatial components. Interactions occur between sets of similar
objects, such as two genes, and between dissimilar objects, such as genes and their environment.

A key aspect of biological complexity is the role of chance. One of the most salient instances of
chance in biology is evolution, in which chance events affect the fidelity of genetic transmission from
one generation to the next. The hand of chance is also seen in the development of an organism—chance
events affect many of the details of development, though generally not the broad picture or trends. But
perhaps the most striking manifestation is that individual biological organisms—even as closely related
as sibling cells—are unlikely to be identical because of stochastic events from environmental input to
thermal noise that affect molecular-level processes. If so, no two cells will have identical macromolecu-
lar content, and the dynamic structure and function of the macromolecules in one cell will never be the
same as even a sibling cell. This fact is one of the largest distinctions between living systems and most
silicon devices or almost any other manufactured or human-engineered artifact.

Put differently, the digital “code of life” embedded in DNA is far from simple. For example, the
biological “parts list” that the genomic sequence makes available in principle may be unavailable in
practice if all of the parts cannot be identified from the sequence. Segments of the genome once assumed
to be evolutionary “junk” are increasingly recognized as the source of novel types of RNA molecules that
are turning out to be major actors in cellular behavior. Furthermore, even a complete parts list provides a
lot less insight into a biological system than into an engineered artifact, because human conventions for
assembly are generally well understood, whereas nature’s conventions for assembly are not.

A second example of the complexity is that a single gene can sometimes produce many proteins. In
eukaryotes, for example, mRNA cannot be used as a blueprint until special enzymes first cut out the
introns, or noncoding regions, and splice together the exons, the fragments that contain useful code.3 In
some cases, however, the cell can splice the exons in different ways, producing a series of proteins with
various pieces added or subtracted but with the same linear ordering (these are known as splice vari-
ants). A process known as RNA editing can alter the sequence of nucleotides in the RNA after transcrip-
tion from DNA but before translation into a protein, resulting in different proteins. An individual
nucleotide can be changed into a different one (“substitution editing”), or nucleotides can be inserted or
deleted from the RNA (“insertion-deletion editing”). In some cases (however rare), the cell’s translation
machinery might introduce an even more radical change by shifting its “reading frame,” meaning that
it starts to read the three-base-pair genetic code at a point displaced by one or two base pairs from the
original. The result will be a very different sequence of amino acids and, thus, a very different protein.

Furthermore, even after the proteins are manufactured at the ribosome, they undergo quite a lot of
postprocessing as they enter the various regulatory networks. Some might have their shapes and activity
levels altered by the attachment, for example, of a phosphate group, a sugar molecule, or any of a variety
of other appendages, while others might come together to form a multiprotein structure. In short, know-
ing the complete sequence of base pairs in a genome is like knowing the complete sequence of Is and 0s
that make up a computer program: by itself, that information does not necessarily yield insight into what
the program does or how it may be organized into functional units such as subroutines.

A third illustration of biological complexity is that few, if any, biological functions can be assigned
to a single gene or a single protein. Indeed, the unique association between the hemoglobin molecule
and the function of oxygen transport in the bloodstream is by far the exception rather than the rule.

3Virtually all introns are discarded by the cell, but in a few cases, an intron has been found to code—by itself—for another
protein.

4A meaningful analogy can be drawn to the difference between object code and source code in a computer. Object code,
consisting of binary digits, is what runs on the computer. Source code, usually written in a high-level programming language, is
compiled into object code so that a program will run, but source code—and therefore program structure and logic—is much
more comprehensible to human beings. Source code is also much more readily changed.
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Much more common is the situation in which biological function depends on interactions among many
biological components. A cell’s metabolism, its response to chemical and biological signals from the
outside, its cycle of growth and cell division—all of these functions and more are generally carried out
and controlled by elaborate webs of interacting molecules.

Francois Jacob and Jacque Monod won the 1965 Nobel Prize in medicine for the discovery that DNA
contained regulatory regions that governed the expression of individual genes.® (They further empha-
sized the importance of regulatory feedback and discussed these regulatory processes using the lan-
guage of circuits, a point of relevance in Section 5.4.3.3.) Since then, it has become understood that
proteins and other products of the genome interact with the DNA itself (and with each other) in a
regulatory web.

For example, RNA molecules have a wide range of capabilities beyond their roles as messengers
from DNA to protein. Some RNA molecules can selectively silence or repress gene transcription; others
operate as a combination chemoreceptor-gene transcript (“riboswitch”) that gives rise to a protein at
one end of the molecule when the opposite end comes in contact with the appropriate chemical target.
Indeed, it may even be that a significant increase in the number of regulatory RNAs on an evolutionary
time scale is largely responsible for the increase in eukaryotic complexity without a large increase in the
number of protein-coding genes. Understanding the role of RNA and other epigenetic phenomena that
result in alternative states of gene expression, molecular function, or organization—"systems [that] are
far more complex than any problem that molecular biology, genetics or genomics has yet approached,”®
is critical to realizing genomics’ promise.

A fourth example of biological complexity is illustrated by the fact that levels of biological complex-
ity extend beyond the intricacies of the genome and protein structures through supramolecular com-
plexes and organelles to cellular subsystems and assemblies of these to form often functionally polar-
ized cells that together contribute to tissue form and function and, thereby to an organism’s properties.
Although the revolution of the last half of the last century in biochemistry and molecular biology has
contributed significantly to our knowledge of the building blocks of life, we have only begun to scratch
the surface of a data-dense and Gordian knot-like puzzle of complex and dynamic molecular interac-
tions that give rise to the complex behaviors of organisms. In short, little is known about how the
complexities of physiological processes are governed by molecular, cellular, and transcellular signaling
systems and networks. Available information is deep only in limited spatial or temporal domains, and
scarce in other key domains, such the middle spatial scales (e.g., 10 A-10 um), and there are no tools that
make intelligent links between relatable pieces of scientific knowledge across these scales.

Complexity, then, appears to be an essential aspect of biological phenomena. Accordingly, the
development of a coherent intellectual approach to biological complexity is required to understand
systems-level interactions—of molecules, genes, cells, organisms, populations, and even ecosystems. In
this intellectual universe, both “genome syntax” (the letters, words, and grammar associated with the
DNA code) and “genome semantics” (what the DNA code can express and do) are central foci for
investigation. Box 2.1 describes some of the questions that will arise in cell biology.

2.2 TOWARD A BIOLOGY OF THE 21st CENTURY

A biology of the 21st century will integrate a number of diverse intellectual themes.” One integra-
tion is that of the reductionist and systems approaches. Where the component-centered reductionist

5F. Jacob and J. Monod, “Genetic Regulatory Mechanisms in the Synthesis of Proteins,” Journal of Molecular Biology 3:318-356,
1961.

6F.S. Collins et al., “A Vision for the Future of Genomic Research,” Nature 422:835-847, 2003.

7What this report calls 21st century biology has also been called “bringing the genome to life,” an intentional biology, an
integrative biology, synthetic biology, the new biology or even the next new biology, Biology 21, beyond the genome, postgenomic
biology, genome-enabled science, and industrialized biology.
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Box 2.1
Some Questions for Cell Biology in the 21st Century

In the Human Genome Institute’s recently published agenda for research in the postgenome era, Francis
Collins and his coauthors repeatedly emphasized how little biologists understand about the data already in
hand. Collins et al. argue that biologists are a very long way from knowing everything there is to know about
how genes are structured and regulated, for example, and they are virtually without a clue as to what’s going
on in the other 95 percent of the genome that does not code for genes. This is why the agenda’s very first grand
challenge was to systematically endow those data with meaning—that is, to “comprehensively identify the
structural and functional components encoded in the human genome.”!

The challenge, in a nutshell, is to understand the cellular information processing system—all of it—from the
genome on up. Weng et al. suggest that the essential defining feature of a cell, which makes the system as a
whole extremely difficult to analyze, is the following:?

[The cell] is not a machine (however complex) drawn to a well-defined design, but a machine that can and does
constantly rebuild itself within a range of variable parameters. For a systematic approach, what is needed is a
relatively clear definition of the boundary of this variability. In principle, these boundaries are determined by an as-
yet-unknown combination of intrinsic capability and external inputs. The balance between intrinsic capability and
the response to external signals is likely to be a central issue in understanding gene expression. . . . A large body of
emerging data indicates that early development occurs through signaling interactions that are genetically pro-
grammed, whereas at the later stages, the development of complex traits is dependent on external inputs as well. A
quantitative description of this entire process would be a culmination and synthesis of much of biology.

Some of the questions raised by this perspective include the following:

e What is the proteome of any given cell? How do these individual protein molecules organize themselves
into functional subnetworks—and how do these subnetworks then organize themselves into higher- and
higher-level networks?®> What are the functional design principles of these systems? And how, precisely, do
the products of the genome react back on the genome to control their own creation?

¢ To what extent are active elements (such as RNA) present in the noncoding portions of the genome? What
is the inventory of epigenetic mechanisms (e.g., RNA silencing, DNA methylation, histone hypoacetylation,
chromatin modifications, imprinting) that cells use to control gene expression? These mechanisms play impor-
tant roles in controlling an organism’s development and, in some lower organisms, are defense responses
against viruses and transposable elements. However, epigenetic phenomena have also been implicated in
several human diseases, particularly cancer development due to the repression of tumor suppressor genes.
What activates these mechanisms?

e How do these dynamically self-organizing networks vary over the course of the cell cycle (even though
most cells in an organism are not proliferating and have exited from the cell cycle)? How do they change as
the cell responds to its surroundings? How do they encode and process information? Also, what accounts for
life’s robustness—the ability of these networks to adapt, maintain themselves, and recover from a wide variety
of environmental insults?

TF.S. Collins, E.D. Green, A.E. Guttmacher, and M.S. Guyer, “A Vision for the Future of Genomic Research,” Nature 422(6934):835-847,
2003. To help achieve this grand challenge, the institute has launched the ENCODE project, a public research consortium dedicated to
building an annotated encyclopedia of all known functional DNA elements. See http://www.genome.gov/10005107.

2G. Weng, U.S. Bhalla, and R. lyengar, “Complexity in Biological Signaling Systems,” Science 284(5411):92-96, 1999.

3The hierarchy of levels obviously doesn’t stop at the cell membrane. Although deciphering the various cellular regulatory networks is a
huge challenge in itself, systems biology ultimately has to deal as well with how cells organize themselves into tissues, organs, and the whole
organism. One group that is trying to lay the groundwork for such an effort is the Physiome Project at the University of Auckland in New
Zealand. See http://www.webopedia.com/TERM/W/Web_services.html.
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¢ How do cells develop spatial structure? The cytoplasm is far from a uniform mixture of all of the biomol-
ecules that exist in a cell; proteins and other macromolecules are often bound to membranes or isolated inside
various cellular compartments (especially eukaryotes). A full account of the regulatory networks has to take
this compartmentalization into account, along with such spatial factors as diffusion and the transport of vari-
ous species through the cytoplasm and across membranes.

¢ How do the networks organize and reorganize themselves over the course of embryonic development, as
each cell decides whether its progeny are going to become skin, muscle, brain, or whatever? Then, once the
cells are through differentiating, how do the networks actually vary from one cell type to the next? What
constitutes the difference, and what happens to the networks as cells age or are damaged? How do flaws in the
networks manifest themselves as maladies such as cancer?

¢ How do the networks vary between individuals? How do those variations account for differences in mor-
phology and behavior? Also—especially in humans—how do those variations account for individual differ-
ences in the response to drugs and other therapies?

¢ How do multicellular organisms operate? A full account of multicellular organisms will have to include an
account of signaling (in all its varieties, including cell-cell; cell-substratum; autocrine, paracrine, and exocrine
signaling), cellular differentiation, cell motility, tissue architecture, and many other “community” issues.

¢ How do the networks vary between species? To put it another way, how have they changed over the
course of evolution? Since the “blueprint” genes for proteins and RNA seem to be quite highly conserved from
one species to the next, is it possible that most of evolution is the result of rearrangements in the genetic
regulatory system?>

4Physiological processes such as metabolism, signal transduction, and the cell cycle take place on a time scale that ranges from
milliseconds to days and are reversible in the sense that an activity flickers on, gene expression is adjusted as needed, and then everything
returns to some kind of equilibrium. But the commitments that the cell makes during development are effectively irreversible. Becoming a
particular cell line means that the genetic regulatory networks in each successive generation of cells have to go through a cascade of
decisions that end up turning genes on and off by the thousands. Unless there is some drastic intervention, as in the cloning experiments that
created Dolly the Sheep, those genes are locked in place for the life span of the organism. Of course, the developmental program does not
proceed in an isolated, “open-loop” fashion, as a computer scientist might say. Very early in the process, for example, the growing embryo
lays out its basic body plan—front versus back, top versus bottom, and so on—by establishing embryo-wide chemical gradients, so that the
concentration of the appropriate compound tells each cell what to do. Similar tricks are used at every stage thereafter: each cell is always
receiving copious feedback from its neighbors, with chemical signals providing a constant stream of instructions and course corrections.

SAfter all, even very small changes in the timing of events during development, and in the rates at which various tissues grow, can have
a profound impact on the final outcome.

approach is based on identifying the constituent parts of an organism and understanding the behavior
of the organism in terms of the behavior of those parts (in the limit, a complete molecular-level charac-
terization of the biological phenomena in question), systems biology aims to understand the mecha-
nisms of a living organism across all relevant levels of hierarchy.® These different foci—a focus on
components of biological systems versus a focus on interactions among these components—are comple-
mentary, and both will be essential for intellectual progress in the future.

Twenty-first century biology will bring together many distinct strands of biological research: taxo-
nomic studies of many species, the enormous progress in molecular genetics, steps towards under-
standing the molecular mechanisms of life, and an emerging systems biology that will consider biologi-
cal entities in relationship to their larger environment. Twenty-first century biology aims to understand
fully the mechanisms of a living cell and the increasingly complex hierarchy of cells in metazoans, up to

8As a philosophical matter, the notion of reductionist explanation has had a long history in the philosophy of science. Life is
composed of matter, and matter is governed by the laws of physics. So, the ultimate in reductionist explanation would suggest
that life can be explained by the properties of Schrédinger’s equation.
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processes operating at the level of the organism and even populations and ecosystems. However, this
kind of understanding is fundamentally dependent on synergies between a systems understanding as
described above and the reductionist tradition.

Twenty-first century biology also brings together empirical work in biology with computational
work. Empirical work is undertaken in laboratory experiments or field observations and has led to both
hypothesis testing and hypothesis generation. Hypothesis testing relies on the data provided by empiri-
cal work to accept or reject a candidate hypothesis. However, data collected in empirical work can also
suggest new hypotheses, leading to work that is exploratory in nature. In 21st century biology, compu-
tational work provides a variety of tools that support empirical work, but also enables much of systems
biology through techniques such as simulation, data mining, and microarray analysis—and thus under-
lies the generation of plausible candidate hypotheses that will have to be tested. Note also that hypoth-
esis testing is relevant to both reductionist and systems biology, in the sense that both types of biology
are formulated around hypotheses (about components or about relationships between components)
that may—or may not—be consistent with empirical or experimental results.

In this regard, a view expressed by Walter Gilbert in 1991 seems prescient. Gilbert noted that “in the
current paradigm [i.e., that of 1991], the attack on the problems of biology is viewed as being solely
experimental. The ‘correct’ approach is to identify a gene by some direct experimental procedure—
determined by some property of its product or otherwise related to its phenotype—to clone it, to
sequence it, to make its product and to continue to work experimentally so as to seek an understanding
of its function.” He then argued that “the new paradigm [for biological research], now emerging [i.e., in
1991], is that all the genes will be known (in the sense of being resident in databases available electroni-
cally), and that the starting point of a biological investigation will be theoretical. An individual scientist
will begin with a theoretical conjecture, only then turning to experiment to follow or test that hypoth-
esis. The actual biology will continue to be done as ‘small science’—depending on individual insight
and inspiration to produce new knowledge but the reagents that the scientist uses will include a
knowledge of the primary sequence of the organism, together with a list of all previous deductions from
that sequence.”?

Finally, 21st century biology encompasses what is often called discovery science. Discovery science
has been described as “enumerat[ing] the elements of a system irrespective of any hypotheses on how
the system functions” and is exemplified by genome sequencing projects for various organisms.!? A
second example of discovery science is the effort to determine the transcriptomes and proteomes of
individual cell types (e.g., quantitative measurements of all of the mRNAs and protein species).!! Such
efforts could be characterized as providing the building blocks or raw materials out of which hypoth-
eses can be formulated—metaphorically, words of a biological “language” for expressing hypotheses.
Yet even here, the Human Genome Project, while unprecedented in its scope, is comfortably part of a
long tradition of increasingly fine description and cataloging of biological data.

All told, 21st century biology will entail a broad spectrum of research, from laboratory work di-
rected by individual principal investigators, to projects on the scale of the human genome that generate
large amounts of primary data, to the “mesoscience” in between that involves analytical or synthetic
work conducted by multiple collaborating laboratories. For the most part, these newer research strate-
gies involving discovery science and analytical work will complement rather than replace the tradi-
tional, relatively small laboratory focusing on complementary empirical and experimental methods.

9W. Gilbert, “Towards a Paradigm Shift in Biology,” Nature 349(6305):99, 1991.

10R. Aebersold, L.E. Hood, and J.D. Watts, “Equipping Scientists for the New Biology,” Nature Biotechnology 18:359, 2000.

HThese examples are taken from T. Ideker, T. Galitski, and L. Hood, “A New Approach to Decoding Life: Systems Biology,”
Annual Review of Genomics and Human Genetics 2:343-372, 2001. The transcriptome is the complete collection of transcribed
elements of the genome, including all of the genetic elements that code for proteins, all of the mRNAs, and all noncoding RNAs
that are used for structural and regulatory purposes. The proteome is the complete collection of all proteins involved in a
particular pathway, organelle, cell, tissue, organ, or organism that can be studied in concert to provide accurate and comprehen-
sive data about that system.
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Grand questions, such as those concerning origins of life, the story of evolution, the architecture of
the brain, and the interactions of living things with each other in populations and ecosystems, are up for
grabs in 21st century biology, and the applications to health, agriculture, and industry are no less
ambitious. For example, 21st century biology may enable the identification of individuals who are likely
to develop cancer, Alzheimer’s, or other diseases, or who will respond to or have a side effect from a
particular disease treatment. Pharmaceutical companies are making major investments in
transcriptomics to screen for plausible drug targets. Forward-thinking companies want to develop more
nutritious plants and animals, commandeer the machinery of cells to produce materials and drugs, and
build interfaces to the brain to correct impaired capabilities or produce enhanced abilities. Agencies
interested in fighting bioterrorism want to be able to rapidly identify the origins and ancestry of patho-
gen outbreaks, and stewards of natural systems would like to make better predictions about the impacts
of introduced species or global change.

2.3 ROLES FOR COMPUTING AND INFORMATION TECHNOLOGY IN BIOLOGY

To manage biological data, 21st century biology will integrate discovery science, systems biology,
and the empirical tradition of biological science and provide a quantitative framework within which the
results of efforts in each of these areas may be placed. The availability of large amounts of biological
data is expected to enable biological questions to be addressed globally, for example, examining the
behavior of all of the genes in a genome, all of the proteins produced in a cell type, or all of the
metabolites created under particular environmental conditions. However, enabling the answering of
biological questions by uncovering the raw data is not the same as answering those questions—the data
must be analyzed and used in intellectually meaningful and significant ways.

2.3.1 Biology as an Information Science

The data-intensive nature of 21st century biology underlies the dependence of biology on informa-
tion technology (IT). For example, even in 1990 it was recognized that IT would play a central role in the
International Human Genome Consortium for the storage and retrieval of biological gene sequence
data—recording the signals, storing the sequence data, processing images of fluorescent traces specific
to each base, and so on. Also, as biology unfolds in the 21st century, it is clear that the rate of production
of biological data will not abate. Data acquisition opportunities will emerge in most or all life science
subdisciplines and fields, and life scientists will have to cope with the coming deluge of highly multi-
variate, largely nonreducible data, including high-resolution imaging and time series data of complex
dynamic processes.

Yet beyond data management issues, important and challenging though they are, it has also become
clear that computing and information technology will play crucial roles in identifying meaningful
structures and patterns in the genome (e.g., genes, genetic regulatory elements), in understanding the
interconnections between various genomic elements, and in uncovering functional biological informa-
tion about genes, proteins, and their interactions. This focus on information—on acquiring, processing,
structuring, and representing information—places genomic studies squarely in the domain of comput-
ing and information science.

Of course, genomic studies are not the whole of modern biology. For life sciences ranging from
ecology, botany, zoology, and developmental biology to cellular and molecular biology—all of which
can be characterized as science with diverse data types and high degrees of data heterogeneity and
hierarchy—IT is essential to collect key information and organize biological data in methodical ways in
order to draw meaningful observations. Massive computing power, novel modeling approaches, new
algorithms and mathematical or statistical techniques, and systematic engineering approaches will
provide biologists with vital and essential tools for managing the heterogeneity and volume of the data
and for extracting meaning from those data.

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/11480.html

omputing and Biology

32 CATALYZING INQUIRY

Ultimately, what calculus is to the language of the physical sciences, computing and information
will be to the language of 21st century biology, or at least to its systems biology thread.!? The processes
of biology, the activities of living organisms, involve the usage, maintenance, dissemination, transfor-
mation or transduction, replication, and transmittal of information across generations. Biological sys-
tems are characterized by individuality, contingency, historicity, and high digital information content—
every living thing is unique. Furthermore, the uniqueness and historical contingency of life means that
for population-scale problems, the potential state space that the population actually inhabits is huge.!3
As an information science, the life sciences use computing and information technology as a language
and a medium in which to manage the discrete, asymmetric, largely irreducible, unique nature of
biological systems and observations.

In the words above, those even marginally familiar with the history of biology will recognize hints
of what was once called theoretical biology or mathematical biology, which in earlier days meant
models and computer simulations based on such then-fashionable ideas as cybernetics and general
systems theory."* The initial burst of enthusiasm waned fairly quickly, as it became clear that the
available experimental data were not sufficient to keep the mathematical abstractions tethered to real-
ity. Indeed, reliable models are impossible when many or most of the quantitative values are missing.
Moreover, experience since then has indicated that biological systems are much more complex and
internally interlinked than had been imagined—a fact that goes a long way towards explaining why the
models of that era were not very successful in driving productive hypothesis generation and research.

The story is radically different today. High-throughput data acquisition technologies (themselves
enabled and made practical by today’s information technologies), change a paucity of data into a deluge
of it, as illustrated by the use of these technologies for sequencing of many eukaryotic organisms. This
is not to say that more data are not needed, merely that the acquisition of necessary data now seems to
be possible in reasonable amounts of time.

The same is true for the information technologies underpinning 21st century biology. In the past,
even if data had been available, the IT then available would have been inadequate to make sense out of
those data. But today’s information technologies are vastly more powerful and hold considerable prom-
ise for enabling the kinds of data management and analytical capabilities that are necessary for a
systems-level approach. Moreover, information technology as an underlying medium has the advan-
tage of growing ever more capable over time at exponential rates. As information technology becomes
more capable, biological applications will have an increasingly powerful technology substrate on which
to draw.

12Bjological Sciences Advisory Committee on Cyberinfrastructure for the Biological Sciences, Building a Cyberinfrastructure for
the Biological Sciences (CIBIO): 2005 and Beyond: A Roadmap for Consolidation and Exponentiation, July 2003. Available from http://
research.calit2.net/cibio/archived /CIBIO_FINAL.pdf. This is not to deny that calculus also has application in systems biology
(mostly through its relevance to biochemistry and thermodynamics), but calculus is not nearly as central to systems biology as it
is to the physical sciences nor as central as computing and information technology are to systems biology.

13The number of possible different 3-billion-base-pair genomes, assuming only simple base substitution mutations, is 4 to the
3-billionth power. That’s a big number. In fact, it is so big that the ratio of that number (big) to the number of particles in the
known universe (small) is much greater than the ratio of the diameter of the universe to the diameter of a carbon atom. Thus,
exhaustive computer modeling of that state space is effectively precluded. Even more tractable state spaces, such as the number
of different possible human haploid genotypes, still produce gigantic numbers. For example, if we assume that the entire human
population is heterozygous at just 500 locations throughout the genome (a profound underestimate of existing diversity), with
each site having only two states, then the number of possible human haplotypes is 2 to the 500th power, which also exceeds the
number of electrons in the known universe. These back-of-the-envelope calculations also show that it is impossible for the state
space of existing human genotypes to exist in anything approaching linkage equilibrium.

14N. Wiener, Cybernetics, or Control and Communication in the Animal and the Machine, 2nd ed., MIT Press, Cambridge, MA, 1961;
L. von Bertalanffy, General Systems Theory: Foundations, Development, Applications, George Braziller, New York, 1968. This history
was recently summarized in O. Wolkenhauer, “Systems Biology: The Reincarnation of Systems Theory Applied in Biology?”
Briefings in Bioinformatics 2(3):258-270, 2001.
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In short, the introduction of computing into biology has transformed, and continues to transform,
the practice of biology. The most straightforward, although often intellectually challenging, way in-
volves computing tools with which to acquire, store, process, and interpret enormous amounts of
biological data. But computing (when used wisely and in combination with the tools of mathematics
and physics) will also provide biologists with an alternative and possibly more appropriate language
and set of abstractions for creating models and data representations of higher-order interactions, de-
scribing biological phenomena, and conceptualizing some characteristics of biological systems.

Finally, it should be noted that although computing and information technology will become an
increasingly important part of life science research, researchers in different subfields of biology are
likely to understand the role of computing differently. For example, researchers in molecular biology or
biophysics may focus on the ability of computing to make more accurate quantitative predictions about
enzyme behavior, while researchers in ecology may be more interested in the use of computing to
explore relationships between ecosystem behavior and perturbations in the ambient environment. These
perspectives will become especially apparent in the chapters of this report dealing with the impact of
computing and IT on biology (see Chapter 4 on tools and Chapter 5 on models).

This report distinguishes between computational tools, computational models, information abstrac-
tions and a computational perspective on biology, and cyberinfrastructure and data acquisition tech-
nologies. Each of these is discussed in Chapters 4 through 7, respectively, preceded by a short chapter
on the nature of biological data (Chapter 3).

2.3.2 Computational Tools

In the lexicon of this report, computational tools are artifacts—usually implemented as software,
but sometimes as hardware—that enable biologists to solve very specific and precisely defined prob-
lems. For example, an algorithm for gene finding or a database of genomic sequences is a computational
tool. As a rule, these tools reinforce and strengthen biological research activities, such as recording,
managing, analyzing, and presenting highly heterogeneous biological data in enormous quantity. Chap-
ter 4 focuses on computational tools.

2.3.3 Computational Models

Computational models apply to specific biological phenomena (e.g., organisms, processes) and are
used for several purposes. They are used to test insight; to provide a structural framework into which
observations and experimental data can be coherently inserted; to make hypotheses more rigorous,
quantifiable, and testable; to help identify key or missing elements or important relationships; to help
interpret experimental data; to teach or present system behavior; and to predict dynamical behavior of
complex systems. Predictive models provide some confidence that certain aspects of a given biological
system or phenomenon are understood, when their predictions are validated empirically. Chapter 5
focuses on computational models and simulations.

2.3.4 A Computational Perspective on Biology

Coming to grips with the complexity of biological phenomena demands an array of intellectual
tools to help manage complexity and facilitate understanding in the face of such complexity. In recent
years, it has become increasingly clear that many biological phenomena can be understood as perform-
ing information processing in varying degrees; thus, a computational perspective that focuses on infor-
mation abstractions and functional behavior has potentially large benefit for this endeavor. Chapter 6
focuses on viewing biological phenomena through a computational lens.
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2.3.5 Cyberinfrastructure and Data Acquisition

Cyberinfrastructure for science and engineering is a term coined by the National Science Founda-
tion to refer to distributed computer, information, and communication technologies and the associated
organizational facilities to support modern scientific and engineering research conducted on a global
scale. Cyberinfrastructure for the life sciences is increasingly an enabling mechanism for a large-scale,
data-intensive biological research effort, inherently distributed over multiple laboratories and investi-
gators around the world, that facilitates the integration of experimental data, enables collaboration, and
promotes communication among the various actors involved.

Obtaining primary biological data is a separate question. As noted earlier, 21st century biology is
increasingly a data-intensive enterprise. As such, tools that facilitate acquisition of the requisite data
types in the requisite amounts will become ever more important in the future. Although they are not by
any means the whole story, advances in IT and computing will play key roles in the development of
new data acquisition technologies that can be used in novel ways.

Chapter 7 focuses on the roles of cyberinfrastructure and data acquisition for 21st century biology.

2.4 CHALLENGES TO BIOLOGICAL EPISTEMOLOGY

The forthcoming integration of computing into biological research raises deep epistemological
questions about the nature of biology itself. For many thousands of years, a doctrine known as vitalism
held that the stuff of life was qualitatively different from that of nonlife and, consequently, that living
organisms were made of a separate substance than nonliving things or that some separate life force
existed to animate the materials that composed life.

While this belief no longer holds sway today (except perhaps in bad science fiction movies), the
question of how biological phenomena can be understood has not been fully settled. One stance is based
on the notion that the behavior of a given system is explained wholly by the behaviors of the compo-
nents that make up that system—a view known as reductionism in the philosophy of science. A con-
trasting stance, known as autonomy in the philosophy of science, holds that in addition to understand-
ing its individual components, understanding of a biological system must also include an understanding
of the specific architecture and arrangement of the system’s components and the interactions among
them.

If autonomy is accepted as a guiding worldview, introducing the warp of computing into the weft
of biology creates additional possibilities for intellectual inquiry. Just as the invention of the microscope
extended biological inquiry into new arenas and enlarged the scope of questions that were reasonable to
ask in the conduct of biological research, so will the computer. Computing and information technology
will enable biological researchers to consider heretofore inaccessible questions, and as the capabilities of
the underlying information technologies increase, such opportunities will continue to open up.

New epistemological questions will also arise. For example, as simulation becomes more pervasive
and common in biology, one may ask, Are the results from a simulation equivalent to the data output of
an experiment? Can biological knowledge ever arise from a computer simulation? (A practical example
is the following: As large-scale clinical trials of drugs become more and more expensive, under what
circumstances and to what extent might a simulation based on detailed genomic and pharmacological
knowledge substitute for a large-scale trial in the drug approval process?) As simulations become more
and more sophisticated, pre-loaded with more and more biological data, these questions will become
both more pressing and more difficult to answer definitively.
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On the Nature of Biological Data

Twenty-first century biology will be a data-intensive enterprise. Laboratory data will continue to
underpin biology’s tradition of being empirical and descriptive. In addition, they will provide confirming
or disconfirming evidence for the various theories and models of biological phenomena that researchers
build. Also, because 21st century biology will be a collective effort, it is critical that data be widely
shareable and interoperable among diverse laboratories and computer systems. This chapter describes the
nature of biological data and the requirements that scientists place on data so that they are useful.

3.1 DATA HETEROGENEITY

An immense challenge—one of the most central facing 21st century biology—is that of managing
the variety and complexity of data types, the hierarchy of biology, and the inevitable need to acquire
data by a wide variety of modalities. Biological data come in many types. For instance, biological data
may consist of the following:!

® Sequences. Sequence data, such as those associated with the DNA of various species, have grown
enormously with the development of automated sequencing technology. In addition to the human
genome, a variety of other genomes have been collected, covering organisms including bacteria, yeast,
chicken, fruit flies, and mice.? Other projects seek to characterize the genomes of all of the organisms
living in a given ecosystem even without knowing all of them beforehand.> Sequence data generally

IThis discussion of data types draws heavily on H.V. Jagadish and F. Olken, eds., Data Management for the Biosciences, Report of
the NSF/NLM Workshop of Data Management for Molecular and Cell Biology, February 2-3, 2003, Available at http://
www.eecs.umich.edu/~jag/wdmbio/wdmb_rpt.pdf. A summary of this report is published as H.V. Jagadish and F. Olken,
“Database Management for Life Science Research,” OMICS: A Journal of Integrative Biology 7(1):131-137, 2003.

25ee http:/ /www.genome.gov/11006946.

3See, for example, J.C. Venter, K. Remington, J.F. Heidleberg, A.L. Halpern, D. Rusch, J.A. Eisen, D. Wu, et al., “Environmental
Genome Shotgun Sequencing of the Sargasso Sea,” Science 304(5667):66-74, 2004. Venter’s team collected microbial populations
en masse from seawater samples originating in the Sargasso Sea near Bermuda. The team subsequently identified 1.045 billion
base pairs of nonredundant sequence, which they estimated to derive from at least 1,800 genomic species based on sequence
relatedness, including 148 previously unknown bacterial phylotypes. They also claimed to have identified more than 1.2 million
previously unknown genes represented in these samples.
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consist of text strings indicating appropriate bases, but when there are gaps in sequence data, gap
lengths (or bounds on gap lengths) must be specified as well.

e Graphs. Biological data indicating relationships can be captured as graphs, as in the cases of
pathway data (e.g., metabolic pathways, signaling pathways, gene regulatory networks), genetic maps,
and structured taxonomies. Even laboratory processes can be represented as workflow process model
graphs and can be used to support formal representation for use in laboratory information management
systems.

o High-dimensional data. Because systems biology is highly dependent on comparing the behavior
of various biological units, data points that might be associated with the behavior of an individual unit
must be collected for thousands or tens of thousands of comparable units. For example, gene expression
experiments can compare expression profiles of tens of thousands of genes, and since researchers are
interested in how expression profiles vary as a function of different experimental conditions (perhaps
hundreds or thousands of such conditions), what was one data point associated with the expression of
one gene under one set of conditions now becomes 10° to 107 data points to be analyzed.

* Geometric information. Because a great deal of biological function depends on relative shape (e.g.,
the “docking” behavior of molecules at a potential binding site depends on the three-dimensional
configuration of the molecule and the site), molecular structure data are very important. Graphs are one
way of representing three-dimensional structure (e.g., of proteins), but ball-and-stick models of protein
backbones provide a more intuitive representation.

o Scalar and vector fields. Scalar and vector field data are relevant to natural phenomena that vary
continuously in space and time. In biology, scalar and vector field properties are associated with chemi-
cal concentration and electric charge across the volume of a cell, current fluxes across the surface of a
cell or through its volume, and chemical fluxes across cell membranes, as well as data regarding charge,
hydrophobicity, and other chemical properties that can be specified over the surface or within the
volume of a molecule or a complex.

e Patterns. Within the genome are patterns that characterize biologically interesting entities. For
example, the genome contains patterns associated with genes (i.e., sequences of particular genes) and
with regulatory sequences (that determine the extent of a particular gene’s expression). Proteins are
characterized by particular genomic sequences. Patterns of sequence data can be represented as regular
expressions, hidden Markov models (HMMs), stochastic context-free grammars (for RNA sequences),
or other types of grammars. Patterns are also interesting in the exploration of protein structure data,
microarray data, pathway data, proteomics data, and metabolomics data.

e Constraints. Consistency within a database is critical if the data are to be trustworthy, and bio-
logical databases are no exception. For example, individual chemical reactions in a biological pathway
must locally satisfy the conservation of mass for each element involved. Reaction cycles in thermody-
namic databases must satisfy global energy conservation constraints. Other examples of nonlocal con-
straints include the prohibition of cycles in overlap graphs of DNA sequence reads for linear chromo-
somes or in the directed graphs of conceptual or biological taxonomies.

e Images. Imagery, both natural and artificial, is an important part of biological research. Electron
and optical microscopes are used to probe cellular and organ function. Radiographic images are used to
highlight internal structure within organisms. Fluorescence is used to identify the expressions of genes.
Cartoons are often used to simplify and represent complex phenomena. Animations and movies are
used to depict the operation of biological mechanisms over time and to provide insight and intuitive
understanding that far exceeds what is available from textual descriptions or formal mathematical
representations.

o Spatial information. Real biological entities, from cells to ecosystems, are not spatially homoge-
neous, and a great deal of interesting science can be found in understanding how one spatial region is
different from another. Thus, spatial relationships must be captured in machine-readable form, and
other biologically significant data must be overlaid on top of these relationships.
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® Models. As discussed in Section 5.3.4, computational models must be compared and evaluated.
As the number of computational models grows, machine-readable data types that describe computa-
tional models—both the form and the parameters of the model—are necessary to facilitate comparison
among models.

e Prose. The biological literature itself can be regarded as data to be exploited to find relationships
that would otherwise go undiscovered. Biological prose is the basis for annotations, which can be
regarded as a form of metadata. Annotations are critical for researchers seeking to assign meaning to
biological data. This issue is discussed further in Chapter 4 (automated literature searching).

® Declarative knowledge such as hypotheses and evidence. As the complexity of various biological
systems is unraveled, machine-readable representations of analytic and theoretical results as well as the
underlying inferential chains that lead to various hypotheses will be necessary if relationships are to be
uncovered in this enormous body of knowledge. This point is discussed further in Section 4.2.8.1.

In many instances, data on some biological entity are associated with many of these types: for
example, a protein might have associated with it two-dimensional images, three-dimensional struc-
tures, one-dimensional sequences, annotations of these data structures, and so on.

Overlaid on these types of data is a temporal dimension. Temporal aspects of data types such as
fields, geometric information, high-dimensional data, and even graphs—important for understanding
dynamical behavior—multiply the data that must be managed by a factor equal to the number of time
steps of interest (which may number in the thousands or tens of thousands). Examples of phenomena
with a temporal dimension include cellular response to environmental changes, pathway regulation,
dynamics of gene expression levels, protein structure dynamics, developmental biology, and evolution.
As noted by Jagadish and Olken,* temporal data can be taken absolutely (i.e., measured on an absolute
time scale, as might be the case in understanding ecosystem response to climate change) or relatively
(i-e., relative to some significant event such as division, organism birth, or environmental insult). Note
also that in complex settings such as disease progression, there may be many important events against
which time is reckoned. Many traditional problems in signal processing involve the extraction of signal
from temporal noise as well, and these problems are often found in investigating biological phenomena.

All of these different types of data are needed to integrate diverse witnesses of cellular behavior into
a predictive model of cellular and organism function. Each data source, from high-throughput
microarray studies to mass spectroscopy, has characteristic sources of noise and limited visibility into
cellular function. By combining multiple witnesses, researchers can bring biological mechanisms into
focus, creating models with more coverage that are far more reliable than models created from one
source of data alone. Thus, data of diverse types including mRNA expression, observations of in vivo
protein-DNA binding, protein-protein interactions, abundance and subcellular localization of small
molecules that regulate protein function (e.g., second messengers), posttranslational modifications, and
so on will be required under a wide variety of conditions and in varying genetic backgrounds. In
addition, DNA sequence from diverse species will be essential to identify conserved portions of the
genome that carry meaning.

3.2 DATA IN HIGH VOLUME

Data of all of the types described above contribute to an integrated understanding of multiple levels
of a biological organism. Furthermore, since it is generally not known in advance how various compo-
nents of an organism are connected or how they function, comprehensive datasets from each of these

4H.V. Jagadish and F. Olken, “Database Management for Life Science Research,” OMICS: A Journal of Integrative Biology 7(1):131-
137, 2003.
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types are required. In cellular analysis, data comprehensiveness includes three aspects, as noted by
Kitano: 5

1. Factor comprehensiveness, which reflects the numbers of mRNA transcripts and proteins that can
be measured at once;

2. Time-line comprehensiveness, which represents the time frame within which measurements are
made (i.e., the importance of high-level temporal resolution); and

3. Item comprehensiveness—the simultaneous measurement of multiple items, such as mRNA and
protein concentrations, phosphorylation, localization, and so forth.

For every one of the many proteins in a given cell type, information must be collected about protein
identity, abundance, processing, chemical modifications, interactions, turnover time, and so forth. Spa-
tial localization of proteins is particularly critical. To understand cellular function in detail, proteins
must be localized on a scale finer than that of cell compartments; moreover, localization of specific
protein assemblies to discrete subcellular sites through anchoring and scaffolding proteins is important.

All of these considerations suggest that in addition to being highly heterogeneous, biological data
must be voluminous if they are to support comprehensive investigation.

3.3 DATA ACCURACY AND CONSISTENCY

All laboratories must deal with instrument-dependent or protocol-dependent data inconsistencies.
For example, measurements must be calibrated against known standards, but calibration methods and
procedures may change over time, and data obtained under circumstances of heterogeneous calibration
may well not be comparable to each other. Experiments done by multiple independent parties almost
always result in inconsistencies in datasets.® Different experimental runs with different technicians and
protocols in different labs inevitably produce data that are not entirely consistent with each other, and
such inconsistencies have to be noted and reconciled. Also, the absolute number of data errors that must
be reconciled—both within a single dataset and across datasets—increases with the size of the dataset.
For such reasons, statistical data analysis becomes particularly important in analyzing data acquired via
high-throughput techniques.

To illustrate these difficulties, consider the replication of microarray experiments. Experience with
microarrays suggests that such replication can be quite difficult. In principle, a microarray experiment
is simple. The raw output of a microarray experiment is a listing of fluorescent intensities associated
with spots in an array; apart from complicating factors, the brightness of these spots is an indication of
the expression level of the transcript associated with them.

On the other hand, the complicating factors are many, and in some cases ignoring these factors can
render one’s interpretation of microarray data completely irrelevant. Consider the impact of the following:

® Background effects, which are by definition contributions to spot intensity that do not originate
with the biological material being examined. For example, an empty microarray might result in some

SH. Kitano, “Systems Biology: A Brief Overview,” Science 295(5560):1662-1664, 2002.

6As an example, there is only limited agreement between the datasets generated by multiple methods regarding protein-
protein interactions in yeast. See, for example, the following set of papers: Y. Ho, A. Gruhler, A. Heilbut, G.D. Bader, L. Moore,
S.L. Adams, A. Miller, et al., “Systematic Identification of Protein Complexes in Saccharomyces cerevisiae by Mass Spectrometry,”
Nature 415(6868):180-183, 2002; A.C. Gavin, M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, et al., “Functional
Organization of the Yeast Proteome by Systematic Analysis of Protein Complexes,” Nature 415(6868):141-147, 2002; T. Ito, T.
Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki, “A Comprehensive Two Hybrid Analysis to Explore the Yeast Protein
Interactome,” Proceedings of the National Academy of Sciences 98(8):4569-4574, 2001; P. Uetz, L. Giot, G. Cagney, T.A. Mansfield,
R.S. Judson, J.R. Knight, D. Lockshon, et al., “A Comprehensive Analysis of Protein-Protein Interactions in Saccharomyces
cerevisiae,” Nature 403(6770):623-627, 2000.
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background level of fluorescence and even some variation in background level across the entire surface
of the array.

® Noise dependent on expression levels of the sample. For example, Tu et al. found that hybridization
noise is strongly dependent on expression level, and in particular the hybridization noise is mostly
Poisson-like for high expression levels but more complex at low expression levels.”

e Differential binding strengths for different probe-target combinations. The brightness of a spot is deter-
mined by the amount of target present at a probe site and the strength of the binding between probe and
target. Held et al. found that the strength of binding is affected by the free energy of hybridization,
which is itself a function of the specific sequence involved at the site, and they developed a model to
account for this finding.8

o Lack of correlation between mRNA levels and protein levels. The most mature microarray technology
measures mRNA levels, while the quantity of interest is often protein level. However, in some cases of
interest, the correlation is small even if overall correlations are moderate. One reason for small correla-
tions is likely to be the fact that some proteins are regulated after translation, as noted in Ideker et al.?

o Lack of uniformity in the underlying glass surface of a microarray slide. Lee et al. found that the specific
location of a given probe on the surface affected the expression level recorded.!”

Other difficulties arise when the results of different microarray experiments must be compared.!

o Variations in sample preparation. A lack of standardized procedure across experiments is likely to
result in different levels of random noise—and procedures are rarely standardized very well when they
are performed by humans in different laboratories. Indeed, sample preparation effects may dominate
effects that arise from the biological phenomenon under investigation.!2

o Insufficient spatial resolution. Because multiple cells are sampled in any microarray experiment,
tissue inhomogeneities may result in more of a certain kind of cell being present, thus throwing off the
final result.

o Cell-cycle starting times. Identical cells are likely to have more-or-less identical clocks, but there is
no assurance that all of the clocks of all of the cells in a sample are started at the same time. Because
expression profile varies over time, asynchrony in cell cycles may also throw off the final result.!3

To deal with these difficulties, the advice offered by Lee et al. and Novak et al., among others, is
fairly straightforward—repeat the experiment (assuming that the experiment is appropriately struc-

7Y. Tu, G. Stolovitzky, and U. Klein, “Quantitative Noise Analysis for Gene Expression Microarray Experiments,” Proceedings
of the National Academy of Sciences 99(22):14031-14036, 2002.

8G.A. Held, G. Grinstein, and Y. Tu, “Modeling of DNA Microarray Data by Using Physical Properties of Hybridization,”
Proceedings of the National Academy of Sciences 100(13):7575-7580, 2003.

9T. Ideker, V. Thornsson, J.A. Ranish, R. Christmas, J. Buhler, ] K. Eng, R. Bumgarner, et al., “Integrated Genomic and Proteomic
Analyses of a Systematically Perturbed Metabolic Network,” Science 292(5518):929-934, 2001. (Cited in Rice and Stolovitzky,
“Making the Most of It,” 2004, Footnote 11.)

10ML.L. Lee, F.C. Kuo, G.A. Whitmore, and J. Sklar, “Importance of Replication in Microarray Gene Expression Studies: Statisti-
cal Methods and Evidence from Repetitive cDNA Hybridizations,” Proceedings of the National Academy of Sciences 97(18):9834-
9839, 2000.

177, Rice and G. Stolovitzky, “Making the Most of It: Pathway Reconstruction and Integrative Simulation Using the Data at
Hand,” Biosilico 2(2):70-77, 2004.

12 p. Novak, R. Sladek, and T.J. Hudson, “Characterization of Variability in Large-scale Gene Expression Data: Implications
for Study Design,” Genomics 79(1):104-113, 2002.

13R.]. Cho, M.J. Campbell, E.A. Winzeler, L. Steinmetz, A. Conway, L. Wodicka, T.G. Wolfsberg, et al., “A Genome-wide
Transcriptional Analysis of the Mitotic Cell Cycle,” Molecular Cell 2(1):65-73, 1998; P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R.
Iyer, K. Anders, M.B. Eisen, P.O. Brown, et al., “Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccha-
romyces cerevisine by Microarray Hybridization,” Molecular Biology of the Cell 9(12):3273-3297, 1998. (Cited in Rice and Stolovitzky,
“Making the Most of It,” 2004, Footnote 11.)
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tured and formulated in the first place). However, the expense of microarrays may be an inhibiting
factor in this regard.

3.4 DATA ORGANIZATION

The acquiring of experimental data by some researcher is only the first step in making them useful
to the wider biological research community. Data are useless if they are inaccessible or incomprehen-
sible to others, and given the heterogeneity and large volumes of biological data, appropriate data
organization is central to extracting useful information from the data. Indeed, it would not be an
exaggeration to identify data management and organization issues as a key rate-limiting step in doing
science for the small to medium-sized laboratory, where “science” covers the entire intellectual water-
front from laboratory experiment to data that are useful to the community at large. This is especially
true in laboratories using high-throughput data acquisition technologies.

In recent years, biologists have taken significant steps in coming to terms with the need to think
collectively about databases as research tools accessible to the entire community. In the field of molecu-
lar biology, the first widely recognized databases were the international archival repositories for DNA
and genomic sequence information, including GenBank, the European Molecular Biology Laboratory
(EMBL) Nucleotide Sequence Database, and the DNA Databank of Japan (DD]J). Subsequent databases
have provided users with information that annotated the genomic sequence data, connecting regions of
a genome with genes, identifying proteins associated with those genes, and assigning function to the
genes and proteins. There are databases of scientific literature, such as PubMed; databases on single
organisms, such as FlyBase (the Drosophila research database); and databases of protein interactions,
such as the General Repository for Interaction Datasets (GRID). In their research, investigators typically
access multiple databases (from the several hundred Web-accessible biological databases). Table 3.1
provides examples of key database resources in bioinformatics.

Data organization in biology faces significant challenges for the foreseeable future, given the levels
of data being produced. Each year, workshops associated with major conferences in computational
biology are held to focus on how to apply new techniques from computer science into computational
biology. These include the Intelligent Systems for Molecular Biology (ISMB) Conference and the Confer-
ence on Research in Computational Biology (RECOMB), which have championed the cause of creating
tools for database development and integration.'* The long-term vision for biology is for a decentral-
ized collection of independent and specialized databases that operate as one large, distributed informa-
tion resource with common controlled vocabularies, related user interfaces, and practices. Much re-
search will be needed to achieve this vision, but in the short term, researchers will have to make do with
more specialized tools for the integration of diverse data types as described in Section 4.2.

What is the technological foundation for managing and organizing data? In 1998, Jeff Ullman noted
that “the common characteristic of [traditional business databases] is that they have large amounts of
data, but the operations to be performed on the data are simple,” and also that under such circum-
stances, “the modification of the database scheme is very infrequent, compared to the rate at which
queries and other data manipulations are performed.”1®

The situation in biology is the reverse. Modern information technologies can handle the volumes of
data that characterize 21st century biology, but they are generally inadequate to provide a seamless
integration of biological data across multiple databases, and commercial database technology has proven
to have many limitations in biological applications.'® For example, although relational databases have
often been used for biological data management, they are clumsy and awkward to use in many ways.

14T, Head-Gordon and J. Wooley, “Computational Challenges in Structural and Functional Genomics,” IBM Systems Journal
40(2):265-296, 2001.

15].D. Ullman, Principles of Database and Knowledge-Base Systems, Vols. I and II, Computer Science Press, Rockville, MD, 1988.

16H.V. Jagadish and F. Olken, “Database Management for Life Science Research,” OMICS: A Journal of Integrative Biology
7(1):131-137, 2003.
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TABLE 3.1 Examples of Key Database Resources in Bioinformatics

Category

Databases and URLs

Comprehensive data
center: broad content
including sequence,
structure, function, etc.

DNA or protein sequence

Biomolecular interactions

Genomes: complete
genome sequences and
related information for
specific organisms

Genetics: gene mapping,
mutations, and diseases

NCBI (National Center for Biotechnology and Information):
http://www.ncbi.nlm.nih.gov/

EBI (European Bioinformatics Institute): http://www.ebi.ac.uk/

European Molecular Biology Laboratory (EMBL):
http://www.emblheidelberg.de/

TIGR (the Institute of Genome Research): http:/ /www.tigr.org/

Whitehead /Massachusetts Institute of Technology Genome Center:
http:/ /www-genome.wi.mit.edu/

GenBank: http://www.ncbi.nlm.nih.gov/Genbank
DDBJ (DNA Data Bank of Japan): http://www.ddbj.nig.acjp/

EMBL Nucleotide Sequence Databank:
http://www.ebi.ac.uk/embl/index.html

PIR (Protein Information Resource): http:/ /pir.georgetown.edu/
Swiss-Prot: http:/ /www.expasy.ch/sprot/sprot-top.html
BIND (Biomolecular Interaction Network Database):

http:/ /www.blueprint.org/bind /bind.php

The contents of BIND include high-throughput data submissions and

hand-curated information gathered from the scientific literature.

Entrez complete genomes:
http://www.ncbi.nlm.nih.gov/Entrez/Genome/org.html

Complete genome at EBI: http://www.ebi.ac.uk/genomes/

University of California, Santa Cruz, Human Genome Working Draft:
http:/ /genome.ucsc.edu/

MGD (Mouse Genome Database): http:/ /www.informaticsjax.org/

SGD (Saccharomyces Genome Database):
http:/ /genomewww.stanford.edu/Saccharomyces/

FlyBase (a database of the Drosophila genome):
http:/ /flybase.bio.indiana.edu/

WormBase (the genome and biology of Caenorhabditis elegans):
http://www.wormbase.org/

GDB (Genome Database): http://gdbwww.gdb.org/gdb/

OMIM (Online Mendelian Inheritance in Man):
http://www3.ncbi.nlm.nih.gov/Omim /searchomim.html

HGMD (Human Gene Mutation Database):
http://archive.uwcm.ac.uk/uwem/mg/hgmdO.html

continued
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Category

Databases and URLs

Gene expression:
microarray and cDNA
gene expression

Structure: three-
dimensional structures of
small molecules, proteins,
nucleic acids (both RNA
and DNA) folding
predictions

Classification of protein
family and protein
domains

Protein pathway
Protein-protein
interactions and
metabolic pathway

Proteomics: proteins,
protein family

Unigene: http://www.ncbi.nlm.nih.gov/UniGene/

dbEST (Expression Sequence Tag Database):
http:/ /www.ncbi.nlm.nih.gov/dbEST/index.html

BodyMap: http://bodymap.ims.u-tokyo.ac.jp/

GEO (Gene Expression Omnibus): http://www.ncbi.nlm.nih.gov/geo/

PDB (Protein Data Bank): http://www.rcsb.org/pdb/index.html

NDB (Nucleic Acid Database):
http:/ /ndbserver.irutgers.edu/NDB/ndb.html

CSD (Cambridge Structural Database):
http://www.ccde. cam. ac.uk/prods/csd/csd.html

SCOP (Structure Classification of Proteins):
http:/ /scop.mrc-Imb.cam.ac.uk/scop/

CATH (Protein Structure Classification Database):
http://www .biochem.ucl.ac.uk/bsm/cath-new/index.html

Pfam: http://pfam.wustl.edu/

PROSITE database for protein family and domains:
http:/ /www.expasy.ch/prosite/

BLOCK: http://www .blocks.fherc.org/

KEGG (Kyoto Encyclopedia of Genes and Genomes):
http:/ /www.genome.ad.jp/kegg/kegg2 html#pathway

BIND (Biomolecular Interaction Network Database):
http:/ /www.binddb.org/

DIP (Database of Interacting Proteins): http: Hdip.doe-mbi.ucla.edu/

EcoCyc (Encyclopedia of Escherichia coli Genes and Metabolism):
http:/ /ecocyc.org/ecocyc/ecocyc.html

WIT (Metabolic Pathway): http:/ /Hwit.mcs.anl.gov/WIT2/
AFCS (Alliance for Cellular Signaling): http://cellularsignaling.org/

JCSG (Joint Center for Structure Genomics):
http://www jesg.org/scripts/prod /home.html

PKR (Protein Kinase Resource): http://pkr.sdsc.edu/html/index.shtml
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TABLE 3.1 Continued

Category Databases and URLs

Pharmacogenomics, PharmGKB (Pharmacogenetics Knowledge Base):
pharmaco genetics, single http://pharmgkb.org
nucleotide polymorphism
(SNP), genotyping SNP Consortium: http://snp.cshl.org

dbSNP (Single Nucleotide Polymorphism Database):
http:/ /www.ncbi.nlm.nih.gov/SNP/

LocusLink: http:/ /www.ncbi.nlm.nih.gov/LocusLink

AFRED (Allele Frequency Database):
http:/ /alfred.med.yale. edu/alfred/index.asp

CEPH Genotype Database: http://www.cephb.fr/cephdb/

Tissues, organs, and Visible Human Project Database:
organisms http:/ /www.nlm.nih.gov/research/visible/visible-human.html

BRAID (Brain Image Database): http://Hbraid.rad.jhu.edu/interface.html

NeuroDB (Neuroscience Federated Database):
http:/ /www.npaci.edu/DICE/Neuro/

The Whole Brain Atlas:
http:/ /www.med.harvard.edu/AANLIB/home.html

Literature reference PubMed MEDLINE:
http:/ /www.ncbi.nlm.nih.gov/entrez/query.fcgi

USPTO (U.S. Patent and Trademark Office): http://www.uspto.gov/

The size of biological objects is often not constant. More importantly, relational databases presume the
existence of well-defined and known relationships between data records, whereas the reality of biologi-
cal research is that relationships are imprecisely known—and this imprecision cannot be reduced to
probabilistic measures of relationship that relational databases can handle.

Jagadish and Olken argue that without specialized life sciences enhancements, commercial rela-
tional database technology is cumbersome for constructing and managing biological databases, and
most approximate sequence matching, graph queries on biopathways, and three-dimensional shape
similarity queries have been performed outside of relational data management systems. Moreover, the
relational data model is an inadequate abstraction for representing many kinds of biological data (e.g.,
pedigrees, taxonomies, maps, metabolic networks, food chains). Box 3.1 provides an illustration of how
business database technology can be inadequate.

Object-oriented databases have some advantages over relational databases since the natural foci of
study are in fact biological objects. Yet Jagadish and Olken note that object-oriented databases have also
had limited success in providing efficient or extensible declarative query languages as required for
specialized biological applications.

Because commercial database technology is of limited help, research and development of database
technology that serves biological needs will be necessary. Jagadish and Olken provide a view of require-
ments that will necessitate further advances in data management technology, requirements that include
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Box 3.1
Probabilistic One-to-Many Database Entry Linking

One purpose of database technology is the creation and maintenance of links between items in different
databases. Thus, consider the problem in which a primary biological database of genes contains an object
(call it A) that subsequent investigation and research reveal to be two objects. For example, what was thought
to be a single gene might upon further study turn out to be two closely linked genes (A1 and A2) with a
noncoding region in between (A3). Another database (e.g., a database of clones known to hybridize to various
genes) may have contained a link to A—call the clone in question C. Research reveals that it is impossible for
C to hybridize to both AT and A2 individually, but that it does hybridize to the set taken collectively (i.e., AT,
A2, and A3).

How should this relationship now be represented? Before the new discovery, the link was simple: C to A. Now
that new knowledge requires that the primary database (or at least the entry for A) be restructured, how should
this new knowledge be reflected in the original simple link? That is, what should one do with links connected
to the previously single object, now that that single object has been divided into two?

The new information in the primary database has three components, A1, A2, and A3. To which of these, if
any, should the original link be attached? If the link is discarded entirely, the database loses the fact that C
hybridizes to the collection. If the link from C is now attached to all three equally, that link represents infor-
mation contrary to fact, since experiment shows that C does not hybridize to both AT and A2. The necessary
relationship that must be reflected calls for the clone entry C to link to A1, A2, and A3 simultaneously but also
probabilistically. That is, what must be represented is that the probability of the match in the set of three is one
and that the probability of match for two or one in the set is zero.

As a general rule, such relationships (i.e., one-to-many relationships that are probabilistic) are not supported
by business database technology. However, they are required in scientific databases once this kind of splitting
operation has occurred on a hypothetical biological object—and such splitting is commonplace in scientific
literature. As indicated, it can occur in the splitting of a gene, or in other cases, it can occur in the splitting of
a species on the basis of additional findings on the biology of what was believed to be one species.

a great diversity of data types: sequences, graphs, three-dimensional structures, images; unconven-
tional types of queries: similarity queries, (e.g., sequence similarity), pattern-matching queries, pattern-
finding queries; ubiquitous uncertainty (and sometimes even inconsistency) in the data; data curation
(data cleaning and annotation); large-scale data integration (hundreds of databases); detailed data
provenance; extensive terminology management; rapid schema evolution; temporal data; and manage-
ment for a variety of mathematical and statistical models of organisms and biological systems.

Data organization and management present major intellectual challenges in integration and presen-
tation, as discussed in Chapter 4.

3.5 DATA SHARING

There is a reasonably broad consensus among scientists in all fields that reproducibility of findings
is central to the scientific enterprise. One key component of reproducibility is thus the availability of
data for community examination and inspection. In the words of the National Research Council (NRC)
Committee on Responsibilities of Authorship in the Biological Sciences, “an author’s obligation is not
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only to release data and materials to enable others to verify or replicate published findings but also to
provide them in a form on which other scientists can build with further research.”!”

However, in practice, this ethos is not uniformly honored. An old joke in the life science research
community comments on data mining in biology—"“the data are mine, mine, mine.” For a field whose
roots are in empirical description, it is not hard to see the origins of such an attitude. For most of its
history, the life sciences research community has granted primary intellectual credit to those who have
collected data, a stance that has reinforced the sentiment that those that collect the data are its rightful
owners. While some fields such as evolutionary biology generally have an ethos of data sharing, the
data-sharing ethos is honored with much less uniformity in many other fields of biology. Requests for
data associated with publications are sometimes (even often) denied, ignored, or fulfilled only after
long delay or with restrictions that limit how the data may be used.!8

The reasons for this state of affairs are multiple. The UPSIDE report called attention to the growing
role of the for-profit sector (e.g., the pharmaceutical, biotechnology, research-tool, and bioinformatics
companies) in basic and applied research over the last two decades, and the resulting circumstance that
increasing amounts of data are developed by and held in private hands. These for-profit entities—
whose primary responsibilities are to their investors—hope that their data will provide competitive
advantages that can be exploited in the marketplace.

Nor are universities and other nonprofit research institutions immune to commercial pressures. An
increasing amount of life sciences research in the nonprofit sector is supported directly by funds from
the for-profit sector, thus increasing the prospect of potentially conflicting missions that can impede
unrestricted data sharing as nonprofit researchers are caught up in commercial concerns. Universities
themselves are encouraged as a matter of public law (the Bayh-Dole Act of 1980) to promote the use,
commercialization, and public availability of inventions developed through federally funded research
by allowing them to own the rights to patents they obtain on these inventions. University researchers
also must confront the publish-or-perish issue. In particular, given the academic premiums on being
first to publish, researchers are strongly motivated to take steps that will preserve their own ability to
publish follow-up papers or the ability of graduate students, postdoctoral fellows, or junior faculty
members to do the same.

Another contributing factor is that the nature of the data in question has changed enormously since
the rise of the Human Genome Project. In particular, the enormous volumes of data collected are a
continuing resource that can be productively “mined” for a long time and yield many papers. Thus,
scientists who have collected such data can understandably view relinquishing control of them as a stiff
penalty in light of the time, cost, and effort needed to do the research supporting the first publication.?
Although some communities (notably the genomics, structural biology, and clinical trials communities)
have established policies and practices to facilitate data sharing, other communities (e.g., those working
in brain imaging or gene and protein expression studies) have not yet done so.

17National Research Council, Sharing Publication-Related Data and Materials: Responsibilities of Authorship in the Life Sciences,
National Academies Press, Washington, DC, 2003. Hereafter referred to as the UPSIDE report. Much of the discussion in Section
3.5 is based on material found in that report.

18For example, a 2002 survey of geneticists and other life scientists at 100 U.S. universities found that of geneticists who had
asked other academic faculty for additional information, data, or materials regarding published research, 47 percent reported
that at least one of their requests had been denied in the preceding 3 years. Twelve percent of geneticists themselves acknowl-
edged denying a request from another academic researcher. See E.G. Campbell, B.R. Clarridge, M. Gokhale, L. Birenbaum, S.
Hilgartner, N.A. Holtzen, and D. Blumenthal, “Data Withholding in Academic Genetics: Evidence from a National Survey,”
Journal of the American Medical Association 287(4):473-480, 2002. (Cited in the UPSIDE report; see Footnote 17.)

Data provenance (the concurrent identification of the source of data along with the data itself as discussed in Section 3.7) has
an impact on the social motivation to share data. If data sources are always associated with data, any work based on that data
will automatically have a link to the original source; hence proper acknowledgment of intellectual credit will always be possible.
Without automated data provenance, it is all too easy for subsequent researchers to lose the connection to the original source.
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Finally, raw biological data are not the only commodities in question. Computational tools and
models are increasingly the subject of publication in the life sciences (see Chapters 4 and 5), and it is
inevitable that similar pressures will arise (indeed, have arisen) with respect to sharing the software and
algorithms that underlie these artifacts. When software is at issue, a common concern is that the release
of software—especially if it is released in source code—can enable another party to commercialize that
code. Some have also argued that mandatory sharing of source code prevents universities from exercis-
ing their legal right to develop commercial products from federally funded research.

Considering these matters, the NRC Committee on Responsibilities of Authorship in the Biological
Sciences concluded:

The act of publishing is a quid pro quo in which authors receive credit and acknowledgment in ex-
change for disclosure of their scientific findings. All members of the scientific community—whether
working in academia, government, or a commercial enterprise—have equal responsibility for uphold-
ing community standards as participants in the publication system, and all should be equally able to
derive benefits from it.

The UPSIDE report also explicated three principles associated with sharing publication-related data
and software:?

* Authors should include in their publications the data, algorithms, or other information that is central
or integral to the publication—that is, whatever is necessary to support the major claims of the paper and
would enable one skilled in the art to verify or replicate the claims.

e If central or integral information cannot be included in the publication for practical reasons (for exam-
ple, because a dataset is too large), it should be made freely (without restriction on its use for research
purposes and at no cost) and readily accessible through other means (for example, on line). Moreover,
when necessary to enable further research, integral information should be made available in a form that
enables it to be manipulated, analyzed, and combined with other scientific data. . . . [However, m]aking
data that is central or integral to a paper freely obtainable does not obligate an author to curate and
update it. While the published data should remain freely accessible, an author might make available an
improved, curated version of the database that is supported by user fees. Alternatively, a value-added
database could be licensed commercially.

¢ If publicly accessible repositories for data have been agreed on by a community of researchers and are
in general use, the relevant data should be deposited in one of these repositories by the time of publica-
tion. . . . [TThese repositories help define consistent policies of data format and content, as well as accessi-
bility to the scientific community. The pooling of data into a common format is not only for the purpose
of consistency and accessibility. It also allows investigators to manipulate and compare datasets, synthe-
size new datasets, and gain novel insights that advance science.

When a publication explicitly involves software or algorithms to solve biological problems, the
UPSIDE report pointed out that the principle enunciated for data should also apply: software or algo-
rithms that are central or integral to a publication “should be made available in a manner that enables its
use for replication, verification, and furtherance of science.” The report also noted that one option is to
provide in the publication a detailed description of the algorithm and its parameters. A second option is
to make the relevant source code available to investigators who wish to test it, and either option
upholds the spirit of the researcher’s obligation.

Since the UPSIDE report was released in 2003, editors at two major life science journals, Science and
Nature, have agreed in principle with the idea that publication entails a responsibility to make data
freely available to the larger research community.?! Nevertheless, it remains to be seen how widely the
UPSIDE principles will be adopted in practice.

20The UPSIDE report contained five principles, but only three were judged relevant to the question of data sharing per se. The
principles described in the text are quoted directly from the UPSIDE report.
21E. Marshall, “The UPSIDE of Good Behavior: Make Your Data Freely Available,” Science 299(5609):990, 2003.
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As for the technology to facilitate the sharing of data and models, the state of the art today is that
even when the will to share is present, data or model exchange between researchers is generally a
nontrivial exercise. Data and models from one laboratory or researcher must be accompanied by enough
metadata that other researchers can query the data and use the model in meaningful ways without a lot
of unproductive overhead in “futzing around doing stupid things.” Technical dimensions of this point
are discussed further in Section 4.2.

3.6 DATA INTEGRATION

As noted in Chapter 2, data are the sine qua non of biological science. The ability to share data
widely increases the utility of those data to the research community and enables a higher degree of
communication between researchers, laboratories, and even different subfields. Data incompatibilities
can make data hard to integrate and to relate to information on other variables relevant to the same
biological system. Further, when inquiries can be made across large numbers of databases, there is an
increased likelihood that meaningful answers can be found. Large-scale data integration also has the
salutary virtue that it can uncover inconsistencies and errors in data that are collected in disparate ways.

In digital form, all biological data are represented as bits, which are the underlying electronic
representation of data. However, for these data to be useful, they must be interpretable according to
some definitions. When there is a single point of responsibility for data management, the definitions are
relatively easy to generate. When responsibility is distributed over multiple parties, they must agree on
those definitions if the data of one party are to be electronically useful to another party. In other words,
merely providing data in digital form does not necessarily mean that they can be shared readily—the
semantics of differing data sets must be compatible as well.

Another complicating factor is the fact that nearly all databases—regardless of scale—have their
origins in small-scale experimentation. Researchers almost always obtain relatively small amounts of
data in their first attempts at experimentation. Small amounts of data can usually be managed in flat
files—typically, spreadsheets. Flat files have the major advantage that they are quick and easy to
implement and serve small-scale data management needs quite well.

However, flat files are generally impractical for large amounts of data. For example, queries involv-
ing multiple search criteria are hard to make when a flat-file database is involved. Relationships be-
tween entries are concealed in a flat-file format. Also, flat files are quite poor for handling heteroge-
neous data types.

There are a number of technologies and approaches, described below, that address such issues. In
practice, however, the researcher is faced with the problem of knowing when to abandon the small-
scale flat file in favor of a more capable and technically sophisticated arrangement that will inevitably
entail higher overhead, at least initially.

The problem of large-scale data integration is extraordinarily complex and difficult to solve. In
2003, Lincoln Stein noted that “life would be much simpler if there was a single biological database, but
this would be a poor solution. The diverse databases reflect the expertise and interests of the groups that
maintain them. A single database would reflect a series of compromises that would ultimately impov-
erish the information resources that are available to the scientific community. A better solution would
maintain the scientific and political independence of the databases, but allow the information that they
contain to be easily integrated to enable cross-database queries. Unfortunately, this is not trivial.”??

Consider, for example, what might be regarded as a straightforward problem—that of keeping
straight vocabularies and terminologies and their associated concepts. In reality, when new biological
structures, entities, and events have been uncovered in a particular biological context, they are often

22Reprinted by permission from L.D. Stein, “Integrating Biological Databases,” Nature Reviews Genetics 4(5):337-345, 2003.
Copyright 2005 Macmillan Magazines Ltd.
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described with novel terminology or measurements that do not reveal much about how they might be
related to similar entities in other contexts or how they quantitatively function in the contexts in which
they exist, for example:

* Biological concepts may clash as users move from one database to another. Stein discusses
several examples:?3

1. To some research communities, “a pseudogene is a gene-like structure that contains in-frame
stop codons or evidence of reverse transcription. To others, the definition of a pseudogene is
expanded to include gene structures that contain full open reading frames (ORFs) but are not
transcribed. Some members of the Neisseria gonorrhea research community, meanwhile, use
pseudogene to mean a transposable cassette that is rearranged in the course of antigenic variation.”
2. “The human genetics community uses the term allele to refer to any genomic variant, includ-
ing silent nucleotide polymorphisms that lie outside of genes, whereas members of many model-
organism communities prefer to reserve the term allele to refer to variants that change genes.”
3. “Even the concept of the gene itself can mean radically different things to different research
communities. Some researchers treat the gene as the transcriptional unit itself, whereas others
extend this definition to include up- and downstream regulatory elements, and still others use
the classical definitions of cistron and genetic complementation.”

¢ Evolving scientific understandings may drive changes in terminology. For example, diabetes
was once divided into the categories of juvenile and adult onset. As the role of insulin became clearer,
the relevant categories evolved into “insulin dependent” and “non-insulin dependent.” The relation-
ship is that almost all juvenile cases of diabetes are insulin dependent, but a significant fraction of adult-
onset cases are as well.

¢ Names of the same biological object may change across databases. “For example, consider the
DNA-damage checkpoint-pathway gene that is named Rad24 in Saccharomyces cerevisiae (budding yeast).
[Schizolsaccharomyces pombe (fission yeast) also has a gene named rad24 that is involved in the check-
point pathway, but it is not the orthologue of the S. cerevisine Rad24. Instead, the correct S. pombe
orthologue is rad17, which is not to be confused with the similarly named Rad17 gene in S. cerevisiae.
Meanwhile, the human checkpoint-pathway genes are sometimes named after the S. cerevisiae
orthologues, sometimes after the S. pombe orthologues, and sometimes have independently derived
names. In C. elegans, there are a series of rad genes, none of which is orthologous to S. cerevisine Rad17.
The closest C. elegans match to Rad17 is, in fact, a DNA-repair gene named mrt-2.”24

¢ Implicit meanings can be counterintuitive. For example, the International Classification of Dis-
ease (ICD) code for “angina” means “angina occurring in the past.”?> A condition of current angina is
indicated by the code for “chest pain not otherwise specified.”

e Data transformations from one database to another may destroy useful information. For ex-
ample, a clinical order in a hospital may call for a “PA [posterior-anterior] and lateral chest X-ray.”
When that order is reflected in billing, it may be collapsed into “chest X-ray: 2 views.”

¢ Metadata may change when databases originally created for different purposes are conceptually
joined. For example, MEDLINE was developed to facilitate access to the printed paper literature by

23Reprinted by permission from L.D. Stein, “Integrating Biological Databases,” Nature Reviews Genetics 4(5):337-345, 2003.
Copyright 2005 Macmillan Magazines Ltd.

ZReprinted by permission from L.D. Stein, “Integrating Biological Databases,” Nature Reviews Genetics 4(5):337-345, 2003.
Copyright 2005 Macmillan Magazines Ltd.

25ICD codes refer to a standard international classification of diseases. For more information, see http:/ /www.cdc.gov/nchs/
about/otheract/icd9/abticd9.htm.
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scientists. The data were assembled in MEDLINE to help users find citations. As a result, authors in
MEDLINE were originally treated as text strings, not as people. There was no effort, to identify indi-
vidual people, so “Smith, ]” could be John Smith, Jim Smith, or Joan Smith. However, the name of an
individual is not necessarily constant over his or her professional lifetime. Thus, one cannot use
MEDLINE to search for all papers authored by an individual who has undergone a name change
without independent knowledge of the specifics of that change.

Experience suggests that left to their own devices, designers of individual databases generally make
locally optimal decisions about data definitions and formats for entirely rational reasons, and local deci-
sions are almost certain to be incompatible in some ways with other such decisions made in other labora-
tories by other researchers.?® Nearly 10 years ago, Robbins noted that “a crisis occurred in the [biological]
databases in the mid 1980s, when the data flow began to outstrip the ability of the database to keep up. A
conceptual change in the relationship of databases to the scientific community, coupled with technical
advances, solved the problem. . . . Now we face a data-integration crisis of the 1990s. Even if the various
separate databases each keep up with the flow of data, there will still be a tremendous backlog in the
integration of information in them. The implication is similar to that of the 1980s: either a solution will
soon emerge or biological databases collectively will experience a massive failure.”?” Box 3.2 describes
some of the ways in which community-wide use of biological databases continues to be difficult today.

Two examples of research areas requiring a large degree of data integration are cellular modeling and
pharmacogenomics. In cellular modeling (discussed further in Section 5.4.2), researchers need to integrate
the plethora of data available today about cellular function; such information includes the chemical,
electrical, and regulatory features of cells; their internal pathways; mechanisms of cell motility; cell shape
changes; and cell division. Box 3.3 provides an example of a cell-oriented database. In pharmacogenomics
(the study of how an individual’s genetic makeup affects his or her specific reaction to drugs, discussed in
Section 9.7), databases must integrate data on clinical phenotypes (including both pharmacokinetic and
pharmacodynamic data) and profiles (e.g., pulmonary, cardiac, and psychological function tests, and
cancer chemotherapeutic side effects); DNA sequence data, gene structure, and polymorphisms in se-
quence (and information to track haploid, diploid, or polyploid alleles, alternative splice sites, and poly-
morphisms observed as common variants); molecular and cellular phenotype data (e.g., enzyme kinetic
measurements); pharmacodynamic assays; cellular drug processing rates; and homology modeling of
three-dimensional structures. Box 3.4 illustrates the Pharmacogenetics Research Network and Knowledge
Base (PharmGKB), an important database for pharmacogenetics and pharmacogenomics.

3.7 DATA CURATION AND PROVENANCE?

Biological research is a fast-paced, quickly evolving discipline, and data sources evolve with it: new
experimental techniques produce more and different types of data, requiring database structures to
change accordingly; applications and queries written to access the original version of the schema must

26[n particular, a scientist working on the cutting edge of a problem almost certainly requires data representations and models
with more subtlety and more degrees of resolution in the data relevant to the problem than someone who has only a passing
interest in that field. Almost every dataset collected has a lot of subtlety in some areas of the data model and less subtlety
elsewhere. Merging these datasets into a common-denominator model risks throwing away the subtlety, where much of the
value resides. Yet, merging these datasets into a uniformly data-rich model results in a database so rich that it is not particularly
useful for general use. An example—biomedical databases for human beings may well include coding for gender as a variable.
However, in a laboratory or medical facility that does a lot of work on transgendered individuals who may have undergone sex-
change operations, the notion of gender is not necessarily as simple as “male” or “female.”

27R J. Robbins, “Comparative Genomics: A New Integrative Biology,” in Integrative Approaches to Molecular Biology, J. Collado-
Vides, B. Magasanik, and T.F. Smith, eds., MIT Press, Cambridge, MA, 1996.

283ection 3.7 embeds excerpts from S.Y. Chung and J.C. Wooley, “Challenges Faced in the Integration of Biological Informa-
tion,” Bioinformatics: Managing Scientific Data, Z. Lacroix and T. Critchlow, eds., Morgan Kaufmann, San Francisco, CA, 2003.

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/11480.html

omputing and Biology

50 CATALYZING INQUIRY

Box 3.2
Characteristics of Biological Databases

Biological databases have several characteristics that make them particularly difficult to use by the community
at large. Biological databases are

e Autonomous. As a point of historical fact, most biological databases have been developed and maintained
by individual research groups or research institutions. Initially, these databases were developed for individual
use by these groups or institutions, and even when they proved to have value to the larger community, data
management practices peculiar to those groups remained. As a result, biological databases almost always
have their own governing body and infrastructure.

e Inconsistent in format (syntax). In addition to the heterogeneity of data types discussed in Section 3.1,
databases that contain the same types of data still may be (and often are) syntactically heterogeneous. For
example, the scientific literature, images, and other free-text documents are commonly stored in unstructured
or semistructured formats (plain text files, HTML or XML files, binary files). Genomic, microarray gene expres-
sion, and proteomic data are routinely stored in conventional spreadsheet programs or in structured relational
databases (Oracle, Sybase, DB2, Informix, etc.). Major data depository centers have also adopted different
standards for data formats. For example, the U.S. National Center for Biotechnology Information (NCBI) has
adopted the highly nested data ASN.1 (Abstract Syntax Notation) for the general storage of gene, protein, and
genomic information, while the U.S. Department of Agriculture’s Plant Genome Data and Information Center
has adopted the object-oriented ACEDB data management systems and interface.

* Inconsistent in meaning (semantics). Biological databases containing the same types of data are also often
semantically inconsistent. For example, in the database of biological literature known as MEDLINE, multiple
aliases for genes are the norm, rather than the exception. There are cases in which the same name refers to
different genes that have no relationship to each other. A gene that codes for an enzyme might be named
according to its mutant phenotype by a geneticist and its enzymatic function by a biochemist. A vector to a
molecular biologist refers to a vehicle, as in a cloning vector, whereas vector to a parasitologist is an organism
that is an agent in the transmission of disease. Research groups working with different organisms will often
give the same molecule a different name. Finally, biological knowledge is often represented only implicitly, in
the shared assumptions of the community that produced the data source, and not explicitly via metadata that
can be used either by human users or by integration software.

e Dynamic and subject to continual change. As biological research progresses and better understanding
emerges, it is common that new data are obtained that contradict old data. Often, new data organizational
schemes become necessary, even new data types or entirely new databases may become necessary.

e Diverse in the query tools they support. The queries supported by a database are what give the database its
utility for a scientist, for only through the making of a query can the appropriate data be returned. Yet databas-
es vary widely in the kinds of query they support—or indeed that they can support. User interfaces to query
engines may require specific input and output formats. For example, BLAST (the basic local alignment search
tool), the most frequently used program in the molecular biology community, requires a specific format
(FASTA) for input sequence and outputs a list of pairwise sequence alignments to the end users. Output from
one database query often is not suitable as direct input for a query on a different database. Finally, application
semantics vary widely. Leaving aside the enormous variety of different applications for different biological
problems (e.g., applications for nucleic and protein sequence analysis, genome comparison, protein structure
prediction, biochemical pathway and genetic network analysis, construction of phylogenetic trees, modeling
and simulation of biological systems and processes), even applications nominally designed for the same
problem domain can make different assumptions about the underlying data and the meaning of answers to
queries. Attimes, they require nontrivial domain knowledge from different fields. For example, protein folding
can be approached using ab initio prediction based on first principles (physics) or using knowledge-based
(computer science) threading methods.

e Diverse in the ways they allow users to access data. Some databases provide large text dumps of their
contents, others offer access to the underlying database management system and still others provide only Web
pages as their primary mode of access.

SOURCE: Derived largely from S.Y. Chung and J.C. Wooley, “Challenges Faced in the Integration of Biological Information,”
Bioinformatics: Managing Scientific Data, Z. Lacroix and T. Critchlow, eds., Morgan Kaufmann, San Francisco, CA, 2003.
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Box 3.3
The Alliance for Cellular Signaling

The Alliance for Cellular Signaling (AfCS), partly supported by the National Institute of General Medical
Sciences and partly by large pharmaceutical companies, seeks to build a publicly accessible, comprehensive
database on cellular signaling that makes available virtually all significant information about molecules of
interest. This database will also be one enabler for pathway analysis and facilitate an understanding of how
molecules coordinate with one another during cellular responses. The database seeks to identify all of the
proteins that constitute the various signaling systems, assess time-dependent information flow through the
systems in both normal and pathological states, and reduce the mass of detailed data into a set of interacting
theoretical models that describe cellular signaling. To the maximum extent possible, the information con-
tained in the database is intended to be machine-readable.

The complete database is intended to enable researchers to:

¢ Query the database about complex relationships between molecules;

¢ View phenotype-altering mutations or functional domains in the context of protein structure;

¢ View or create de novo signaling pathways assembled from knowledge of interactions between molecules
and the flow of information among the components of complex pathways;

e Evaluate or establish quantitative relationships among the components of complex pathways;

e View curated information about specific molecules of interest (e.g., names, synonyms, sequence informa-
tion, biophysical properties, domain and motif information, protein family details, structure and gene data, the
identities of orthologues and paralogues, BLAST results) through a “molecule home page” devoted to each
molecule of interest, and

* Read comprehensive, peer-reviewed, expert-authored summaries, which will include highly structured
information on protein states, interactions, subcellular localization, and function, together with references to
the relevant literature.

The AFCS is motivated by a desire to understand as completely as possible the relationships between sets of
inputs and outputs in signaling cells that vary both temporally and spatially. Yet because there are many re-
searchers engaged in signaling research, the cultural challenge faced by the alliance is the fact that information
in the database is collected by multiple researchers in different laboratories and from different organizations.
Today, it involves more than 50 investigators from 20 academic and industrial institutions. However, as of this
writing, it is reported that the NIGMS will reduce funding sharply for the Alliance following a mid-project review
in early 2005 (see Z. Merali and J. Giles, “Databases in Peril,” Nature 435:1010-1011, 23 June 2005).

be rewritten to match the new version. Incremental updates to data warehouses (as opposed to whole-
sale rebuilding of the warehouse from scratch) are difficult to accomplish efficiently, particularly when
complex transformations or aggregations are involved.

A most important point is that most broadly useful databases contain both raw data and data that
are either the result of analysis or derived from other databases. In this environment, databases become
interdependent. Errors due to data acquisition and handling in one database can be propagated quickly
into other databases. Data updated in one database may not be propagated immediately to related
databases.

Thus, data curation is essential. Curation is the process through which the community of users can
have confidence in the data on which they rely. So that these data can have enduring value, information
related to curation must itself be stored within the database; such information is generally categorized
as annotation data. Data provenance and data accuracy are central concerns, because the distinctions
between primary data generated experimentally, data generated through the application of scientific
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Box 3.4
The Pharmacogenetics Research Network and Knowledge Base

Supported by the National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health,
the Pharmacogenetics Research Network and Knowledge Base (PharmGKB) is intended as a national resource
containing high-quality structured data linking genomic information, molecular and cellular phenotype infor-
mation, and clinical phenotype information. The ultimate aim of this project is to produce a knowledge base
that provides a public infrastructure for understanding how variations in the human genome lead to variations
in clinical response to medications.

Sample inquiries to this database might include the following:

1. For gene X, show all observed polymorphisms in its sequence;
2. For drug Y, show the variability in pharmacokinetics; and
3. For phenotype Z, show the variability in association with drug Y and/or gene X.

Such queries require a database that can model key elements of the data, acquire data efficiently, provide
query tools for analysis, and deliver the resulting system to the scientific community.

A central challenge for PharmGKB is that data contained it must be cross-referenced and integrated with a
variety of other Web-accessible databases. Thus, PharmGKB provides mechanisms for surveillance of and
integration with these databases, allowing users to submit one query with the assurance that other relevant
databases are being accessed at the same time. For example, PharmGKB monitors dbSNP, the National Center
for BioTechnology Information (NCBI)-supported repository for single nucleotide polymorphisms and short
deletion and insertion polymorphisms. These monitoring operations search for new information about the
genes of interest to the various research groups associated with the Pharmacogenetics Research Network. In
addition, PharmGKB provides users with a tool for comparative genomic analysis between human and mouse
that focuses on long-range regulatory elements. Such elements can be difficult to find experimentally, but are
often conserved in syntenic regions between mice and humans, and may be useful in focusing polymorphism
studies on noncoding areas that are more likely to be associated with detectable phenotypes.

Another important issue for the PharmGKB database is that because it contains clinical data derived from
individual patients, it must have functionality that enforces the rights of those individuals to privacy and
confidentiality. Thus, data flow must be limited both into and out of the knowledge base, based on evolving
rules defining what can be stored in PharmGKB and what can be disseminated. No identifying information
about an individual patient can be accepted into the knowledge base, and the data must be “massaged” so
that patient identity cannot be reconstructed from publicly available data records.

analysis programs, and data derived from database searches are blurred. Users of databases containing
these kinds of data must be concerned about where the data come from and how they are generated. A
database may be a potentially rich information resource, but its value is diminished if it fails to keep an
adequate description of the provenance of the data it contains.?’ Although proponents of online access

29P. Buneman, S. Khanna, and W.C. Tan, “Why and Where: A Characterization of Data Provenance,” 8th International Confer-
ence on Database Theory (ICDT), pp. 316-330, 2001. Cited in Chung and Wooley, “Challenges Faced in the Integration of Biological
Information,” 2003, Footnote 28.
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PharmGKB integrates data on clinical phenotypes (including both pharmacokinetic and pharmacodynamic
data) and profiles (e.g., pulmonary, cardiac, and psychological function tests; cancer chemotherapeutic side
effects), DNA sequence data, gene structure, and polymorphisms in sequence (and information to track hap-
loid, diploid, or polyploid alleles; alternative splice sites; and polymorphisms observed as common variants),
molecular and cellular phenotype data (e.g., enzyme kinetic measurements), pharmacodynamic assays, cellu-
lar drug processing rates, and homology modeling of three-dimensional structures. Figure 3.4.1 illustrates the
complex relationships that are of interest for this knowledge base.

Isolated Integrated
) functional functional . .
Genomic measures Molecular & measures Cllnlcal
. —> Cellular —
Information Phenotype
Phenotype
Coding ..
Variations Observable
. . Observable .
relationship in genome phenotypes phenotypes Physiology
Protein Genetic
d makeu
pioduc Alleles Pl 4
Pha-u-fn.acologic Role in Treatment
) organism Mo.lec.ular protocols Non-genetic
variations

factors

Drug

Response
Systems

FIGURE 3.4.1 Complexity of relationships in pharmacogenetics.

SOURCE: Figure reprinted and text adapted by permission from T.E. Klein, J.T. Chang, M.K. Cho, K.L. Easton, R. Fergerson, M. Hewett, Z.
Lin, Y. Liu, S. Liu, D.E. Oliver, D.L. Rubin, F. Shafa, J.M. Stuart, and R.B. Altman, “Integrating Genotype and Phenotype Information: An
Overview of the PharmGKB Project,” The Pharmacogenomics Journal 1:167-170, 2001. Copyright 2001 Macmillan Publishers Ltd.

to databases frequently tout it as an advantage that “the user does not need to know where the data
came from or where the data are located,” in fact it is essential for quality assurance reasons that the user
be able to ascertain the source of all data accessed in such databases.

Data provenance addresses questions such as the following: Where did the characterization of a
given GenBank sequence originate? Has an inaccurate legacy annotation been “transitively” propa-
gated to similar sequences? What is the evidence for this annotation?

A complete record of a datum’s history presents interesting intellectual questions. For example, it is
difficult to justify filling a database with errata notices correcting simple errors when the actual entries

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/11480.html

omputing and Biology

54 CATALYZING INQUIRY

can be updated. However, the original data themselves might be important, because subsequent re-
search might have been based on them. One view is that once released, electronic database entries, like
the pages of a printed journal, must stand for all time in their original condition, with errors and
corrections noted only by the additional publication of errata and commentaries. However, this might
quickly lead to a situation in which commentary outweighs original entries severalfold. On the other
hand, occasional efforts to “improve” individual entries might inadvertently result in important infor-
mation being mistakenly expunged. A middle ground might be to require that individual released
entries be stable, no matter what the type of error, but that change entries be classified into different
types (correction of data entry error, resubmission by original author, correction by different author,
etc.), thus allowing the user to set filters to determine whether to retrieve all entries or just the most
recent entry of a particular type.

To illustrate the need for provenance, consider that the output of a program used for scientific
analysis is often highly sensitive to the parameters used and the specifics of the input datasets. In the
case of genomic analysis, a finding that two sequences are “similar” or not may depend on the specific
algorithms used and the different cutoff values used to parameterize matching algorithms, in which
case other evidence is needed. Furthermore, biological conclusions derived by inference in one database
will be propagated and may no longer be reliable after numerous transitive assertions. Repeated transi-
tive assertions inevitably degrade data, whether the assertion is a transitive inference or the result of a
simple “join” operation. In the absence of data perfection, additional degradation occurs with each
connection.

For a new sequence that does not match any known sequence, gene prediction programs can be
used to identify open reading frames, to translate DNA sequence into protein sequence, and to charac-
terize promoter and regulatory sequence motifs. Gene prediction programs are also parameter-depen-
dent, and the specifics of parameter settings must be retained if a future user is to make sense of the
results stored in the database.

Neuroscience provides a good example of the need for data provenance. Consider the response of
rat cortical cells to various stimuli. In addition to the “primary” data themselves—that is, voltages as a
function of time—it is also important to record information about the rat: where the rat came from, how
the rat was killed, how the brain was extracted, how the neurological preparation was made, what
buffers were present, the temperature of the preparation, how much time elapsed between the sacrifice
of the rat and the actual experiment being done, and so on. While all of this “extra” information seems
irrelevant to the primary question, neuroscience has not advanced to the point where it is known which
of these variables might have an effect on the response of interest—that is, on the evoked cortical
potential.

Box 3.5 provides two examples of well-characterized and well-curated data repositories.

Finally, how far curation can be carried is an open question. The point of curation is to provide
reliable and trustworthy data—what might be called biological truths. But the meaning of such “truths”
may well change as more data is collected and more observations are made—suggesting a growing
burden of constant editing to achieve accuracy and internal consistency. Indeed, every new entry in the
database would necessarily trigger extensive validity checks of all existing entries individually and
perhaps even for entries taken more than one at a time. Moreover, assertions about the real world may
be initially believed, then rejected, then accepted again, albeit in a modified form. Catastrophism in
geology is an example. Thus, maintaining a database of all biological truths would be an editorial
nightmare, if not an outright impossibility—and thus the scope of any single database will necessarily
be limited.

A database of biological observations and experimental results provides different challenges. An
individual datum or result is a stand-alone contribution. Each datum or result has a recognized party
responsible for it, and inclusion in the database means that it has been subject to some form of editorial
review, which presumably assures its adherence to current scientific practices (and does not guarantee
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Box 3.5
Two Examples of Well-Curated Data Repositories

GenBank

GenBank is a public database of all known nucleotide and protein sequences, distributed by the National
Center for Biotechnology Information (NCBI), a division of the National Library of Medicine (NLM). As of
January 2003, GenBank contained over 20 billion nucleotide bases in sequences from more than 55,000
species—human, mice, rat, nematode, fruit fly, and the model plant Arabidopsis are the most represented.
GenBank and its collaborating European (EMBL) and Japanese (JPPL) databases are built with data submitted
electronically by individual investigators (using Banklt or Sequin submission programs) and large-scale se-
guencing centers (using batch procedures). Each submission is reviewed for quality assurance and assigned an
accession number; sequence updates are designated as new versions. The database is organized by a se-
quence-based taxonomy into divisions (e.g., bacteria, viruses, primates) and categories (e.g., expressed se-
quence tags, genome survey sequences, high-throughput genomic data). GenBank makes available derivative
databases, for example of putative new genes, from these data.

Investigators use the Entrez retrieval system for cross-database searching of GenBank’s collections of DNA,
protein, and genome mapping sequence data, population sets, the NCBI taxonomy, protein structures from
the Molecular Modeling Database (MMDB), and MEDLINE references (from the scientific literature). A popu-
lar tool is BLAST, the sequence alignment program, for finding GenBank sequences similar to a query se-
quence. The entire database is available by anonymous FTP in compressed flat-file format, updated every 2
months. NCBI offers its ToolKit to software developers creating their own interfaces and specialized analytical
tools.

The Research Resource for Complex Physiologic Signals

The Research Resource for Complex Physiologic Signals was established by the National Center for Research
Resources of the National Institutes of Health to support the study of complex biomedical signals. The creation
of this three-part resource (PhysioBank, PhysioToolkit, and PhysioNet) overcomes long-standing barriers to
hypothesis-testing research in this field by enabling access to validated, standardized data and software.!

PhysioBank comprises databases of multiparameter, cardiopulmonary, neural, and other biomedical signals
from healthy subjects and patients with pathologies such as epilepsy, congestive heart failure, sleep apnea,
and sudden cardiac death. In addition to fully characterized, multiply reviewed signal data, PhysioBank
provides online access to archival data that underpin results reported in the published literature, significantly
extending the contribution of that published work. PhysioBank provides theoreticians and software develop-
ers with realistic data with which to test new algorithms.

The PhysioToolkit includes software for the detection of physiologically significant events using both classic
methods and novel techniques from statistical physics, fractal scaling analysis, and nonlinear dynamics; the
analysis of nonstationary processes; interactive display and characterization of signals; the simulation of phys-
iological and other signals; and the quantitative evaluation and comparison of analysis algorithms.

PhysioNet is an online forum for the dissemination and exchange of recorded biomedical signals and the
software for analyzing such signals; it provides facilities for the cooperative analysis of data and the evaluation
of proposed new algorithms. The database is available at http://www.physionet.org/physiobank.

TAL. Goldberger, L.A. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, and H.E. Stanley,
“PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals,” Circulation
101(23):E215-E220, 2000.
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its absolute truth value). Without the existence of databases with differing editorial policies, some
important but iconoclastic data or results might never be published. On the other hand, there is no
guarantee of consistency among these data and results, which means that progress at the frontiers will
depend on expert judgment in deciding which data and results will constitute the foundation from
which to build.

In short, reconciling the tension between truth and diversity—both desirable, but for different
reasons—is implicitly a part of the construction of every large-scale database.
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Computational Tools

As a factual science, biological research involves the collection and analysis of data from potentially
billions of members of millions of species, not to mention many trillions of base pairs across different
species. As data storage and analysis devices, computers are admirably suited to the task of supporting
this enterprise. Also, as algorithms for analyzing biological data have become more sophisticated and
the capabilities of electronic computers have advanced, new kinds of inquiries and analyses have
become possible.

4.1 THE ROLE OF COMPUTATIONAL TOOLS

Today, biology (and related fields such as medicine and pharmaceutics) are increasingly data-
intensive—a trend that arguably began in the early 1960s.! To manage these large amounts of data, and
to derive insight into biological phenomena, biological scientists have turned to a variety of computa-
tional tools.

As arule, tools can be characterized as devices that help scientists do what they know they must do.
That is, the problems that tools help solve are problems that are known by, and familiar to, the scientists
involved. Further, such problems are concrete and well formulated. As a rule, it is critical that compu-
tational tools for biology be developed in collaboration with biologists who have deep insights into the
problem being addressed.

The discussion below focuses on three generic types of computational tools: (1) databases and data
management tools to integrate large amounts of heterogeneous biological data, (2) presentation tools
that help users comprehend large datasets, and (3) algorithms to extract meaning and useful informa-
tion from large amounts of data (i.e., to find meaningful a signal in data that may look like noise at first
glance). (Box 4.1 presents a complementary view of advances in computer sciences needed for next-
generation tools for computational biology.)

IThe discussion in Section 4.1 is derived in part from T. Lenoir, “Shaping Biomedicine as an Information Science,” Proceedings
of the 1998 Conference on the History and Heritage of Science Information Systems, M.E. Bowden, T.B. Hahn, and R.V. Williams, eds.,
ASIS Monograph Series, Information Today, Inc., Medford, NJ, 1999, pp. 27-45.
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Box 4.1
Tool Challenges for Computer Science
Data Representation

* Next-generation genome annotation system with accuracy equal to or exceeding the best human
predictions
* Mechanism for multimodal representation of data

Analysis Tools

* Scalable methods of comparing many genomes

* Tools and analyses to determine how molecular complexes work within the cell
e Techniques for inferring and analyzing regulatory and signaling networks

* Tools to extract patterns in mass spectrometry datasets

e Tools for semantic interoperability

Visualization
e Tools to display networks and clusters at many levels of detail
e Approaches for interpreting data streams and comparing high-throughput data with simulation output

Standards

e Good software-engineering practices and standard definitions (e.g., a common component architecture)
e Standard ontology and data-exchange format for encoding complex types of annotation

Databases

e Large repository for microbial and ecological literature relevant to the “Genomes to Life” effort.

* Big relational database derived by automatic generation of semantic metadata from the biological literature
e Databases that support automated versioning and identification of data provenance

¢ Long-term support of public sequence databases

SOURCE: U.S. Department of Energy, Report on the Computer Science Workshop for the Genomes to Life Program, Gaithersburg, MD,
March 6-7, 2002; available at http:/DOEGenomesTolLife.org/compbio/.

These examples are drawn largely from the area of cell biology. The reason is not that these are the
only good examples of computational tools, but rather that a great deal of the activity in the field has
been the direct result of trying to make sense out of the genomic sequences that have been collected to
date. As noted in Chapter 2, the Human Genome Project—completed in draft in 2000—is arguably the
first large-scale project of 21st century biology in which the need for powerful information technology
was manifestly obvious. Since then, computational tools for the analysis of genomic data, and by
extension data associated with the cell, have proliferated wildly; thus, a large number of examples are
available from this domain.

4.2 TOOLS FOR DATA INTEGRATION?

As noted in Chapter 3, data integration is perhaps the most critical problem facing researchers as
they approach biology in the 21st century.

2Gections 42.1,4.24,4.2.6,and 4.2.8 embed excerpts from S.Y. Chung and J.C. Wooley, “Challenges Faced in the Integration of
Biological Information,” in Bioinformatics: Managing Scientific Data, Z. Lacroix and T. Critchlow, eds., Morgan Kaufmann, San
Francisco, CA, 2003. (Hereafter cited as Chung and Wooley, 2003.)
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4.2.1 Desiderata

If researcher A wants to use a database kept and maintained by researcher B, the “quick and dirty”
solution is for researcher A to write a program that will translate data from one format into another. For
example, many laboratories have used programs written in Perl to read, parse, extract, and transform
data from one form into another for particular applications.?> Depending on the nature of the data
involved and the structure of the source databases, writing such a program may require intensive
coding.

Although such a fix is expedient, it is not scalable. That is, point-to-point solutions are not sustain-
able in a large community in which it is assumed that everyone wants to share data with everyone else.
More formally, if there are N data sources to be integrated, and point-to-point solutions must be
developed, N (N — 1)/2 translation programs must be written. If one data source changes (as is highly
likely), N — 1 programs must be updated.

A more desirable approach to data integration is scalable. That is, a change in one database should
not necessitate a change on the part of every research group that wants to use those data. A number of
approaches are discussed below, but in general, Chung and Wooley argue that robust data integration
systems must be able to

1. Access and retrieve relevant data from a broad range of disparate data sources;

2. Transform the retrieved data into a common data model for data integration;

3. Provide a rich common data model for abstracting retrieved data and presenting integrated data
objects to the end-user applications;

4. Provide a high-level expressive language to compose complex queries across multiple data
sources and to facilitate data manipulation, transformation, and integration tasks; and

5. Manage query optimization and other complex issues.

Sections 4.2.2,4.2.4,4.2.5,4.2.6, and 4.2.8 address a number of different approaches to dealing with
the data integration problem. These approaches are not, in general, mutually exclusive, and they may be
usable in combination to improve the effectiveness of a data integration solution.

Finally, biological databases are always changing, so integration is necessarily an ongoing task. Not
only are new data being integrated within the existing database structure (a structure established on the
basis of an existing intellectual paradigm), but biology is a field that changes quickly—thus requiring
structural changes in the databases that store data. In other words, biology does not have some “classi-
cal core framework” that is reliably constant. Thus, biological paradigms must be redesigned from time
to time (on the scale of every decade or so) to keep up with advances, which means that no “gold
standards” to organize data are built into biology. Furthermore, as biology expands its attention to
encompass complexes of entities and events as well as individual entities and events, more coherent
approaches to describing new phenomena will become necessary—approaches that bring some com-
monality and consistency to data representations of different biological entities—so that relationships
between different phenomena can be elucidated.

As one example, consider the potential impact of “-omic” biology, biology that is characterized by
a search for data completeness—the complete sequence of the human genome, a complete catalog of
proteins in the human body, the sequencing of all genomes in a given ecosystem, and so on. The
possibility of such completeness is unprecedented in the history of the life sciences and will almost
certainly require substantial revisions to the relevant intellectual frameworks.

3The Perl programming language provides powerful and easy-to-use capabilities to search and manipulate text files. Because
of these strengths, Perl is a major component of much bioinformatics programming. At the same time, Perl is regarded by many
computer scientists as an unsafe language in which it is easy to make programs do dangerous things. In addition, many regard
the syntax and structure of most Perl programs to be of a nature that is hard to understand much after the fact.
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4.2.2 Data Standards

One obvious approach to data integration relies on technical standards that define representations of
data and hence provide an understanding of data that is common to all database developers. For obvious
reasons, standards are most relevant to future datasets. Legacy databases, which have been built around
unique data definitions, are much less amenable to a standards-driven approach to data integration.

Standards are indeed an essential element of efforts to achieve data integration of future datasets,
but the adoption of standards is a nontrivial task. For example, community-wide standards for data
relevant to a certain subject almost certainly differ from those that might be adopted by individual
laboratories, which are the focus of the “small-instrument, multi-data-source” science that characterizes
most public-sector biological research.

Ideally, source data from these projects flow together into larger national or international data
resources that are accessible to the community. Adopting community standards, however, entails local
compromises (e.g., nonoptimal data structuring and semantics, greater expense), and the budgets that
characterize small-instrument, single-data-source science generally do not provide adequate support
for local data management and usually no support at all for contributions to a national data repository.

If data from such diverse sources are to be maintained centrally, researchers and laboratories must have
incentives and support to adopt broader standards in the name of the community’s greater good. In this
regard, funding agencies and journals have considerable leverage and through techniques such as requiring
researchers to deposit data in conformance to community standards may be able to provide such incentives.

At the same time, data standards cannot resolve the integration problem by themselves even for
future datasets. One reason is that in some fast-moving and rapidly changing areas of science (such as
biology), it is likely that the data standards existing at any given moment will not cover some new
dimension of data. A novel experiment may make measurements that existing data standards did not
anticipate. (For example, sequence databases—by definition—do not integrate methylation data; and yet
methylation is an essential characteristic of DNA that falls outside primary sequence information.) As
knowledge and understanding advance, the meaning attached to a term may change over time. A second
reason is that standards are difficult to impose on legacy systems, because legacy datasets are usually very
difficult to convert to a new data standard and conversion almost always entails some loss of information.

As a result, data standards themselves must evolve as the science they support changes. Because
standards cannot be propagated instantly throughout the relevant biological community, database A
may be based on Version 12.1 of a standard, and database B on Version 12.4 of the “same” standard. It
would be desirable if the differences between Versions 12.1 and 12.4 were not large and a basic level of
integration could still be maintained, but this is not ensured in an environment in which options vary
within standards, different releases and versions of products, and so on. In short, much of the devil of
ensuring data integration is in the detail of implementation.

Experience in the database world suggests that standards gaining widespread acceptance in the
commercial marketplace tend to have a long life span, because the marketplace tends to weed out weak
standards before they become widely accepted. Once a standard is widely used, industry is often moti-
vated to maintain compliance with this accepted standard, but standards created by niche players in the
market tend not to survive. This point is of particular relevance in a fragmented research environment and
suggests that standards established by strong consortia of multiple players are more likely to endure.

4.2.3 Data Normalization*

An important issue related to data standards is data normalization. Data normalization is the process
through which data taken on the “same” biological phenomenon by different instruments, procedures, or
researchers can be rendered comparable. Such problems can arise in many different contexts:

4Section 4.2.3 is based largely on a presentation by C. Ball, “The Normalization of Microarray Data,” presented at the AAAS
2003 meeting in Denver, Colorado.
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® Microarray data related to a given cell may be taken by multiple investigators in different labo-
ratories.

e Ecological data (e.g., temperature, reflectivity) in a given ecosystem may be taken by different
instruments looking at the system.

¢ Neurological data (e.g., timing and amplitudes of various pulse trains) related to a specific
cognitive phenomenon may be taken on different individuals in different laboratories.

The simplest example of the normalization problem is when different instruments are calibrated
differently (e.g., a scale in George’s laboratory may not have been zeroed properly, rendering mass
measurements from George’s laboratory noncomparable to those from Mary’s laboratory). If a large
number of readings have been taken with George’s scale, one possible fix (i.e., one possible normaliza-
tion) is to determine the extent of the zeroing required and to add or subtract that correction to the
already existing data. Of course, this particular procedure assumes that the necessary zeroing was
constant for each of George’s measurements. The procedure is not valid if the zeroing knob was jiggled
accidentally after half of the measurements had been taken.

Such biases in the data are systematic. In principle, the steps necessary to deal with systematic bias
are straightforward. The researcher must avoid it as much as possible. Because complete avoidance is
not possible, the researcher must recognize it when it occurs and then take steps to correct for it.
Correcting for bias entails determining the magnitude and effect of the bias on data that have been taken
and identifying the source of the bias so that the data already taken can be modified and corrected
appropriately. In some cases, the bias may be uncorrectable, and the data must be discarded.

However, in practice, dealing with systematic bias is not nearly so straightforward. Ball notes that
in the real world, the process goes something like this:

1. Notice something odd with data.

2. Try a few methods to determine magnitude.
3. Think of many possible sources of bias.

4. Wonder what in the world to do next.

There are many sources of systematic bias, and they differ depending on the nature of the data
involved. They may include effects due to instrumentation, sample (e.g., sample preparation, sample
choice), or environment (e.g., ambient vibration, current leakage, temperature). Section 3.3 describes a
number of the systematic biases possible in microarray data, as do several references provided by Ball.?

There are many ways to correct for systematic bias, depending on the type of data being corrected.
In the case of microarray studies, these ways include use of dye swap strategies, replicates and reference
samples, experimental controls, consistent techniques, and sensible array and experiment design. Yet all

5Ball’'s AAAS presentation includes the following sources: T.B. Kepler, L. Crosby, and K.T. Morgan, “Normalization and
Analysis of DNA Microarray Data by Self-consistency and Local Regression,” Genome Biololgy 3(7), RESEARCHO0037.1- RE-
SEARCHO0037.12, 2002. Available at http://genomebiology.org/2002/3/7 /research/0037.1; R. Hoffmann, T. Seidl, M. Dugas.
“Profound Effect of Normalization on Detection of Differentially Expressed Genes in Oligonucleotide Microarray Data Analy-
sis,” Genome Biolology 3(7):RESEARCHO0033.1-RESEARCHO0033.1-11. Available at http://genomebiology.com/2002/3/7/re-
search/0033; C. Colantuoni, G. Henry, S. Zeger, and J. Pevsner, “Local Mean Normalization of Microarray Element Signal
Intensities Across an Array Surface: Quality Control and Correction of Spatially Systematic Artifacts,” Biotechniques 32(6):1316-
1320, 2002; B.P. Durbin, J.S. Hardin, D.M. Hawkins, and D.M. Rocke, “A Variance-Stabilizing Transformation for Gene-Expres-
sion Microarray Data,” Bioinformatics 18 (Suppl. 1):5105-5110, 2002; P.H. Tran, D.A. Peiffer, Y. Shin, L. M. Meek, J.P. Brody, and
K.W. Cho, “Microarray Optimizations: Increasing Spot Accuracy and Automated Identification of True Microarray Signals,”
Nucleic Acids Research 30(12):e54, 2002, available at http://nar.oupjournals.org/cgi/content/full/30/12/e54; M. Bilban, L.K.
Buehler, S. Head, G. Desoye, and V. Quaranta, “Normalizing DNA Microarray Data,” Current Issues in Molecular Biology 4(2):57-
64, 2002; J. Quackenbush, “Microarray Data Normalization and Transformation,” Nature Genetics Supplement 32:496-501, 2002.
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of these approaches are labor-intensive, and an outstanding challenge in the area of data normalization
is to develop approaches to minimize systematic bias that demand less labor and expense.

4.2.4 Data Warehousing

Data warehousing is a centralized approach to data integration. The maintainer of the data ware-
house obtains data from other sources and converts them into a common format, with a global data
schema and indexing system for integration and navigation. Such systems have a long track record of
success in the commercial world, especially for resource management functions (e.g., payroll, inven-
tory). These systems are most successful when the underlying databases can be maintained in a con-
trolled environment that allows them to be reasonably stable and structured. Data warehousing is
dominated by relational database management systems (RDBMS), which offer a mature and widely
accepted database technology and a standard high-level standard query language (SQL).

However, biological data are often qualitatively different from the data contained in commercial
databases. Furthermore, biological data sources are much more dynamic and unpredictable, and few
public biological data sources use structured database management systems. Data warehouses are often
troubled by a lack of synchronization between the data they hold and the original database from which
those data derive because of the time lag involved in refreshing the data warehouse store. Data ware-
housing efforts are further complicated by the issue of updates. Stein writes:®

One of the most ambitious attempts at the warehouse approach [to database integration] was the Inte-
grated Genome Database (IGD) project, which aimed to combine human sequencing data with the multi-
ple genetic and physical maps that were the main reagent for human genomics at the time. At its peak,
IGD integrated more than a dozen source databases, including GenBank, the Genome Database (GDB)
and the databases of many human genetic-mapping projects. The integrated database was distributed to
end-users complete with a graphical front end. . . . The IGD project survived for slightly longer than a
year before collapsing. The main reason for its collapse, as described by the principal investigator on the
project (O. Ritter, personal communication, as relayed to Stein), was the database churn issue. On aver-
age, each of the source databases changed its data model twice a year. This meant that the IGD data
import system broke down every two weeks and the dumping and transformation programs had to be
rewritten—a task that eventually became unmanageable.

Also, because of the breadth and volume of biological databases, the effort involved in maintaining
a comprehensive data warehouse is enormous—and likely prohibitive. Such an effort would have to
integrate diverse biological information, such as sequence and structure, up to the various functions of
biochemical pathways and genetic polymorphisms.

Still, data warehousing is a useful approach for specific applications that are worth the expense of
intense data cleansing to remove potential errors, duplications, and semantic inconsistency.” Two cur-
rent examples of data warehousing are GenBank and the International Consortium for Brain Mapping
(ICBM) (the latter is described in Box 4.2).

4.2.5 Data Federation

The data federation approach to integration is not centralized and does not call for a “master”
database. Data federation calls for scientists to maintain their own specialized databases encapsulating
their particular areas of expertise and retain control of the primary data, while still making it available
to other researchers. In other words, the underlying data sources are autonomous. Data federation often

6Reprinted by permission from L.D. Stein, “Integrating Biological Databases,” Nature Reviews Genetics 4(5)337-345, 2003. Copy-
right 2005 Macmillan Magazines Ltd.
7R. Resnick, “Simplified Data Mining,” pp. 51-52 in Drug Discovery and Development, 2000. (Cited in Chung and Wooley, 2003.)
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Box 4.2
The International Consortium for Brain Mapping (ICBM):
A Probabilistic Atlas and Reference System for the Human Brain

In the human population, the brain varies structurally and functionally in currently undefined ways. It is clear
that the size, shape, symmetry, folding pattern, and structural relationships of the systems in the human brain
vary from individual to individual. This has been a source of considerable consternation and difficulty in
research and clinical evaluations of the human brain from both the structural and the functional perspective.
Current atlases of the human brain do not address this problem. Cytoarchitectural and clinical atlases typically
use a single brain or even a single hemisphere as the reference specimen or target brain to which other brains
are matched, typically with simple linear stretching and compressing strategies. In 1992, John Mazziotta and
Arthur Toga proposed the concept of developing a probabilistic atlas from a large number of normal subjects
between the ages of 18 and 90. This data acquisition has now been completed, and the value of such an atlas
is being realized for both research and clinical purposes. The mathematical and software machinery required
to develop this atlas of normal subjects is now also being applied to patient populations including individuals
with Alzheimer’s disease, schizophrenia, autism, multiple sclerosis, and others.

Talairach Atlas

To date, more than 7,000 normal subjects have been entered into the Talairach atlas project and a wide range
of datasets. These datasets contain detailed demographic histories of the subjects, results of general medical
and neurological examinations, neuropsychiatric and neuropsychological evaluations, quantitative “handed-
ness measurements”, and imaging studies. The imaging studies include multispectra 1 mm? voxel-size mag-
netic resonance imaging (MRI) evaluations of the entire brain (T, T,, and proton density pulse sequences). A
subset of individuals also undergo functional MRI, cerebral blood flow position emission tomography (PET)
and electroencephalogram (EEG) examinations (evoked potentials). Of these subjects, 5,800 individuals have
also had their DNA collected and stored for future genotyping. As such, this database represents the most
comprehensive evaluation of the structural and functional imaging phenotypes of the human brain in the
normal population across a wide age span and very diverse social, economic, and racial groups. Participating
laboratories are widely distributed geographically from Asia to Scandinavia, and include eight laboratories, in
seven countries, on four continents.

World Map of Sites

A component of the World Map of Sites project involves the post mortem MRI imaging of individuals who
have willed their bodies to science. Subsequent to MRI imaging, the brain is frozen and sectioned at a reso-
lution of approximately 100 microns. Block face images are stored, and the sectioned tissue is stained for
cytoarchitectural, chemoarchitectural, and differential myelin to produce microscopic maps of cellular anat-
omy, neuroreceptor or transmitter systems, and white matter tracts. These datasets are then incorporated into
a target brain to which the in vivo brain studies are warped in three dimensions and labeled automatically.
The 7,000 datasets are then placed in the standardized space, and probabilistic estimates of structural bound-
aries, volumes, symmetries, and shapes are computed for the entire population or any subpopulation (e.g.,
age, gender, race). In the current phase of the program, information is being added about in vivo chemoarchi-
tecture (5-HT, 5 [5-hydroxytryptamine-2A] in vivo PET receptor imaging), in vivo white matter tracts (MRI-
diffusion tensor imaging), vascular anatomy (magnetic resonance angiography and venography), and cerebral
connections (transcranial magnetic stimulation-PET cerebral blood flow measurements).

Target Brain

The availability of 342 twin pairs in the dataset (half monozygotic and half dizygotic) along with DNA for
genotyping provides the opportunity to understand structure-function relationships related to genotype and,
therefore, provides the first large-scale opportunity to relate phenotype-genotype in behavior across a wide
range of individuals in the human population.

continued
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Box 4.2 Continued

The development of similar atlases to evaluate patients with well-defined disease states allows the opportunity
to compare the normal brain with brains of patients having cerebral pathological conditions, thereby poten-
tially leading to enhanced clinical trials, automated diagnoses, and other clinical applications. Such examples
have already emerged in patients with multiple sclerosis and epilepsy. An example in Alzheimer’s disease
relates to a current hotly contested research question. Individuals with Alzheimer’s disease have a greater
likelihood of having the genotype ApoE 4 (as opposed to ApoE 2 or 3). Having this genotype, however, is
neither sufficient nor required for the development of Alzheimer’s disease. Individuals with Alzheimer’s dis-
ease also have small hippocampi, presumably because of atrophy of this structure as the disease progresses.
The question of interest is whether individuals with the high-risk genotype (ApoE 4) have small hippocampi to
begin with. This would be a very difficult hypothesis to test without the dataset described above. With the
ICBM database, it is possible to study individuals from, for example, ages 20 to 40 and identify those with the
smallest (lowest 5 percent) and largest (highest 5 percent) hippocampal volumes. This relatively small number
of subjects could then be genotyped for ApoE alleles. If individuals with small hippocampi all had the geno-
type ApoE 4 and those with large hippocampi all had the genotype ApoE 2 or 3, this would be strong support
for the hypothesis that individuals with the high-risk genotype for the development of Alzheimer’s disease
have small hippocampi based on genetic criteria as a prelude to the development of Alzheimer’s disease.
Similar genotype-imaging phenotype evaluations could be undertaken across a wide range of human condi-
tions, genotypes, and brain structures.

SOURCE: Modified from John C. Mazziotta and Arthur W. Toga, Department of Neurology, David Geffen School of Medicine, University
of California, Los Angeles, personal communication to John Wooley, February 22, 2004.

calls for the use of object-oriented concepts to develop data definitions, encapsulating the internal
details of the data associated with the heterogeneity of the underlying data sources.® A change in the
representation or definition of the data then has minimal impact on the applications that access those
data.

An example of a data federation environment is BioMOBY, which is based on two ideas.” The first
is the notion that databases provide bioinformatics services that can be defined by their inputs and
outputs. (For example, BLAST is a service provided by GenBank that can be defined by its input—that
is, an uncharacterized sequence—and by its output, namely, described gene sequences deposited in
GenBank.) The second idea is that all database services would be linked to a central registry (MOBY
Central) of services that users (or their applications) would query. From MOBY Central, a user could
move from one set of input-output services to the next—for example, moving from one database that,
given a sequence (the input), postulates the identity of a gene (the output), and from there to a database
that, given a gene (the input), will find the same gene in multiple organisms (the output), and so on,
picking up information as it moves through database services. There are limitations to the BioMOBY
system’s ability to discriminate database services based the descriptions of inputs and outputs, and
MOBY Central must be up and running 24 hours a day.!°

8R.G.G. Cattell, Object Data Management: Object-Oriented and Extended Relational Database Systems, revised edition, Addison-
Wiley, Reading, MA, 1994. (Cited in Chung and Wooley, 2003.)

9M.D. Wilkinson and M. Links, “BioMOBY: An Open-Source Biological Web Services Proposal,” Briefings In Bioinformatics
3(4):331-341, 2002.

10, D. Stein, “Integrating Biological Databases,” Nature Reviews Genetics 4(5):337-345, 2003.
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4.2.6 Data Mediators/Middleware

In the middleware approach, an intermediate processing layer (a “mediator”) decouples the under-
lying heterogeneous, distributed data sources and the client layer of end users and applications.!! The
mediator layer (i.e., the middleware) performs the core functions of data transformation and integra-
tion, and communicates with the database “wrappers” and the user application layer. (A “wrapper” is
a software component associated with an underlying data source that is generally used to handle the
tasks of access to specified data sources, extraction and retrieval of selected data, and translation of
source data formats into a common data model designed for the integration system.)

The common model for data derived from the underlying data sources is the responsibility of the
mediator. This model must be sufficiently rich to accommodate various data formats of existing biologi-
cal data sources, which may include unstructured text files, semistructured XML and HTML files, and
structured relational, object-oriented, and nested complex data models. In addition, the internal data
model must facilitate the structuring of integrated biological objects to present to the user application
layer. Finally, the mediator also provides services such as filtering, managing metadata, and resolving
semantic inconsistency in source databases.

There are many flavors of mediator approaches in life science domains. IBM’s DiscoveryLink for the
life sciences is one of the best known.'? The Kleisli system provides an internal nested complex data
model and a high-power query and transformation language for data integration.!® K2 shares many
design principles with Kleisli in supporting a complex data model, but adopts more object-oriented
features.'* OPM supports a rich object model and a global schema for data integration.'> TAMBIS
provides a global ontology (see Section 4.2.8 on ontologies) to facilitate queries across multiple data
sources.'® TSIMMIS is a mediation system for information integration with its own data model (Object-
Exchange Model, OEM) and query language.!”

4.2.7 Databases as Models

A natural progression for databases established to meet the needs and interests of specialized
communities, such as research on cell signaling pathways or programmed cell death, is the evolution of

11G. Wiederhold, “Mediators in the Architecture of Future Information Systems,” IEEE Computer 25(3):38-49, 1992; G.
Wiederhold and M. Genesereth, “The Conceptual Basis for Mediation Services,” IEEE Expert, Intelligent Systems and Their Applica-
tions 12(5):38-47, 1997. (Both cited in Chung and Wooley, 2003.)

12], M. Haas et al., “DiscoveryLink: A System for Integrated access to Life Sciences Data Sources,” IBM Systems Journal 40(2):489-
511, 2001.

135, Davidson, C. Overton, V. Tannen, and L. Wong, “BioKleisli: A Digital Library for Biomedical Researchers,” International
Journal of Digital Libraries 1(1):36-53, 1997; L. Wong, “Kleisli, a Functional Query System,” Journal of Functional Programming
10(1):19-56, 2000. (Both cited in Chung and Wooley, 2003.)

14]. Crabtree, S. Harker, and V. Tannen, “The Information Integration System K2,” available at http://db.cis.upenn.edu/K2/
K2.doc; S.B. Davidson, J. Crabtree, B.P. Brunk, J. Schug, V. Tannen, G.C. Overton, and C.J. Stoeckert, Jr., “K2/Kleisli and GUS:
Experiments in Integrated Access to Genomic Data Sources,” IBM Systems Journal 40(2):489-511, 2001. (Both cited in Chung and
Wooley, 2003.)

I51.M.A. Chen and V.M. Markowitz, “An Overview of the Object-Protocol Model (OPM) and OPM Data Management Tools,”
Information Systems 20(5):393-418, 1995; I-M.A. Chen, A.S. Kosky, V.M. Markowitz, and E. Szeto, “Constructing and Maintaining
Scientific Database Views in the Framework of the Object-Protocol Model,” Proceedings of the Ninth International Conference on
Scientific and Statistical Database Management, Institute of Electrical and Electronic Engineers, Inc., New York, 1997, pp. 237-248.
(Cited in Chung and Wooley, 2003.)

16N.W. Paton, R. Stevens, P. Baker, C.A. Goble, S. Bechhofer, and A. Brass, “Query Processing in the TAMBIS Bioinformatics
Source Integration System,” Proceedings of the 11th International Conference on Scientific and Statistical Database Management, IEEE,
New York 1999, pp. 138-147; R. Stevens, P. Baker, S. Bechhofer, G. Ng, A. Jacoby, N.W. Paton, C.A. Goble, and A. Brass,
“TAMBIS: Transparent Access to Multiple Bioinformatics Information Sources,” Bioinformatics 16(2):184-186, 2000. (Both cited in
Chung and Wooley, 2003.)

17y. Papakonstantinou, H. Garcia-Molina, and ]J. Widom, “Object Exchange Across Heterogeneous Information Sources,”
Proceedings of the IEEE Conference on Data Engineering, IEEE, New York, 1995, pp. 251-260. (Cited in Chung and Wooley, 2003.)
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databases into models of biological activity. As databases become increasingly annotated with func-
tional and other information, they lay the groundwork for model formation.

In the future, such “database models” are envisioned as the basis of informed predictions and
decision making in biomedicine. For example, physicians of the future may use biological information
systems (BISs) that apply known interactions and causal relationships among proteins that regulate cell
division to changes in an individual’s DNA sequence, gene expression, and proteins in an individual
tumor.'® The physician might use this information together with the BIS to support a decision on
whether the inhibition of a particular protein kinase is likely to be useful for treating that particular
tumor.

Indeed, a major goal in the for-profit sector is to create richly annotated databases that can serve as
testbeds for modeling pharmaceutical applications. For example, Entelos has developed PhysioLab, a
computer model system consisting of a large set (more than 1,000) of ordinary nonlinear differential
equations.!’” The model is a functional representation of human pathophysiology based on current
genomic, proteomic, in vitro, in vivo, and ex vivo data, built using a top-down, disease-specific systems
approach that relates clinical outcomes to human biology and physiology. Starting with major organ
systems, virtual patients are explicit mathematical representations of a particular phenotype, based on
known or hypothesized factors (genetic, life-style, environmental). Each model simulates up to 60
separate responses previously demonstrated in human clinical studies.

In the neuroscience field, Bower and colleagues have developed the Modeler’s Workspace,?® which
is based on a notion that electronic databases must provide enhanced functionality over traditional
means of distributing information if they are to be fully successful. In particular, Bower et al. believe
that computational models are an inherently more powerful medium for the electronic storage and
retrieval of information than are traditional online databases.

The Modeler’s Workspace is thus designed to enable researchers to search multiple remote data-
bases for model components based on various criteria; visualize the characteristics of the components
retrieved; create new components, either from scratch or derived from existing models; combine com-
ponents into new models; link models to experimental data as well as online publications; and interact
with simulation packages such as GENESIS to simulate the new constructs.

The tools contained in the Workspace enable researchers to work with structurally realistic biologi-
cal models, that is, models that seek to capture what is known about the anatomical structure and
physiological characteristics of a neural system of interest. Because they are faithful to biological
anatomy and physiology, structurally realistic models are a means of storing anatomical and physi-
ological experimental information.

For example, to model a part of the brain, this modeling approach starts with a detailed description
of the relevant neuroanatomy, such as a description of the three-dimensional structure of the neuron
and its dendritic tree. At the single-cell level, the model represents information about neuronal mor-
phology, including such parameters as soma size, length of interbranch segments, diameter of branches,
bifurcation probabilities, and density and size of dendritic spines. At the neuronal network level, the
model represents the cell types found in the network and the connectivity among them. The model must
also incorporate information regarding the basic physiological behavior of the modeled structure—for
example, by tuning the model to replicate neuronal responses to experimentally derived data.

With such a framework in place, a structural model organizes data in ways that make manifestly
obvious how those data are related to neural function. By contrast, for many other kinds of databases it
is not at all obvious how the data contained therein contribute to an understanding of function. Bower

18R. Brent and D. Endy, “Modelling Cellular Behaviour,” Nature 409:391-395, 2001.

19See, for example, http:/ /www.entelos.com/science/physiolabtech.html.

200\, Hucka, K. Shankar, D. Beeman, and J.M. Bower, “The Modeler’s Workspace: Making Model-Based Studies of the Nervous
System More Accessible,” Computational Neuroanatomy: Principles and Methods, G.A. Ascoli, ed., Humana Press, Totowa, NJ, 2002,
pp- 83-103.
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and colleagues argue that “as models become more sophisticated, so does the representation of the data.
As models become more capable, they extend our ability to explore the functional significance of the
structure and organization of biological systems.”?!

4.2.8 Ontologies

Variations in language and terminology have always posed a great challenge to large-scale, com-
prehensive integration of biological findings. In part, this is due to the fact that scientists operate, with
a data- and experience-driven intuition that outstrips the ability of language to describe. As early as
1952, this problem was recognized:

Geneticists, like all good scientists, proceed in the first instance intuitively and . . . their intuition has
vastly outstripped the possibilities of expression in the ordinary usages of natural languages. They know
what they mean, but the current linguistic apparatus makes it very difficult for them to say what they
mean. This apparatus conceals the complexity of the intuitions. It is part of the business of genetical
methodology first to discover what geneticists mean and then to devise the simplest method of saying
what they mean. If the result proves to be more complex than one would expect from the current exposi-
tions, that is because these devices are succeeding in making apparent a real complexity in the subject
matter which the natural language conceals.?2

In addition, different biologists use language with different levels of precision for different pur-
poses. For instance, the notion of “identity” is different depending on context.?> Two geneticists may
look at a map of human chromosome 21. A year later, they both want to look at the same map again. But
to one of them, “same” means exactly the same map (same data, bit for bit); to the other, it means the
current map of the same biological object, even if all of the data in that map have changed. To a protein
chemist, two molecules of beta-hemoglobin are the same because they are composed of exactly the same
sequence of amino acids. To a biologist, the same two molecules might be considered different because
one was isolated from a chimpanzee and the other from a human.

To deal with such context-sensitive problems, bioinformaticians have turned to ontologies. An
ontology is a description of concepts and relationships that exist among the concepts for a particular
domain of knowledge.?* Ontologies in the life sciences serve two equally important functions. First,
they provide controlled, hierarchically structured vocabularies for terminology that can be used to
describe biological objects. Second, they specify object classes, relations, and functions in ways that
capture the main concepts of and relationships in a research area.

4.2.8.1 Ontologies for Common Terminology and Descriptions

To associate concepts with the individual names of objects in databases, an ontology tool might
incorporate a terminology database that interprets queries and translates them into search terms consis-
tent with each of the underlying sources. More recently, ontology-based designs have evolved from
static dictionaries into dynamic systems that can be extended with new terms and concepts without
modification to the underlying database.

21M. Hucka, K. Shankar, D. Beeman, and J.M. Bower, “The Modeler’s Workspace,” 2002.

221 H. Woodger, Biology and Language, Cambridge University Press, Cambridge, UK, 1952.

23R J. Robbins, “Object Identity and Life Science Research,” position paper submitted for the Semantic Web for Life Sciences
Workshop, October 27-28 2004, Cambridge, MA, available at http://lists.w3.org/Archives/Public/public-swls-ws/2004Sep /
att-0050/ position-01.pdf.

24The term “ontology” is a philosophical term referring to the subject of existence. The computer science community borrowed
the term to refer to “specification of a conceptualization” for knowledge sharing in artificial intelligence. See, for example, T.R.
Gruber, “A Translation Approach to Portable Ontology Specification,” Knowledge Acquisition 5(2):199-220, 1993. (Cited in Chung
and Wooley, 2003.)
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A feature of ontologies that facilitates the integration of databases is the use of a hierarchical
structure that is progressively specialized; that is, specific terms are defined as specialized forms of
general terms. Two different databases might not extend their annotation of a biological object to the
same level of specificity, but the databases can be integrated by finding the levels within the hierarchy
that share a common term.

The naming dimension of ontologies has been common to research in the life sciences for much of
its history, although the term itself has not been widely used. Chung and Wooley note the following, for
example:

e The Linnaean system for naming of species and organisms in taxonomy is one of the oldest
ontologies.

¢ The nomenclature committee for the International Union of Pure and Applied Chemistry (IUPAC)
and the International Union of Biochemistry and Molecular Biology (IUBMB) make recommendations
on organic, biochemical, and molecular biology nomenclature, symbols, and terminology.

¢ The National Library of Medicine Medical Subject Headings (MeSH) provides the most compre-
hensive controlled vocabularies for biomedical literature and clinical records.

e A division of the College of American Pathologists oversees the development and maintenance
of a comprehensive and controlled terminology for medicine and clinical information known as
SNOMED (Systematized Nomenclature of Medicine).

¢ The Gene Ontology Consortium? seeks to create an ontology to unify work across many ge-
nomic projects—to develop controlled vocabulary and relationships for gene sequences, anatomy, physi-
cal characteristics, and pathology across the mouse, yeast, and fly genomes.?® The consortium'’s initial
efforts focus on ontologies for molecular function, biological process, and cellular components of gene
products across organisms and are intended to overcome the problems associated with inconsistent
terminology and descriptions for the same biological phenomena and relationships.

Perhaps the most negative aspect of ontologies is that they are in essence standards, and hence take
a long time to develop—and as the size of the relevant community affected by the ontology increases, so
does development time. For example, the ecological and biodiversity communities have made substan-
tial progress in metadata standards, common taxonomy, and structural vocabulary with the help of
National Science Foundation and other government agencies.”” By contrast, the molecular biology
community is much more diverse, and reaching a community-wide consensus has been much harder.

An alternative to seeking community-wide consensus is to seek consensus in smaller subcommuni-
ties associated with specific areas of research such as sequence analysis, gene expression, protein path-
ways, and so on.?® These efforts usually adopt a use-case and open-source approach for community
input. The ontologies are not meant to be mandatory, but instead to serve as a reference framework
from which further development can proceed.

255ee www.geneontology.org.

26M\. Ashburner, C.A. Ball, J.A. Blacke, D. Botstein, H. Butler, ].M. Cherry, A.P. Davis, et al., “Gene Ontology: Tool for the
Unification of Biology,” Nature Genetics 25(1):25-29, 2000. (Cited in Chung and Wooley, 2003.)

271.L. Edwards, M.A. Lane, and E.S. Nielsen, “Interoperability of Biodiversity Databases: Biodiversity Information on Every
Desk,” Science 289(5488):2312-2314, 2000; National Biological Information Infrastructure (NBII), available at http://
www.nbii.gov/disciplines/systematics.html; Federal Geographic Data Committee (FGDC), available at http:/ /www.fgdc.gov/.
(All cited in Chung and Wooley, 2003.)

28Gene Expression Ontology Working Group, see http://www.mged.org/; P.D. Karp, M. Riley, S.M. Paley, and A. Pellegrini-
Toole, “The MetaCyc Database,” Nucleic Acids Research 30(1):59-61, 2002; P.D. Karp, M. Riley, M. Saier, I.T. Paulsen, ]J. Collado-
Vides, S.M. Paley, A. Pellegrini-Toole, et al., “The EcoCyc Database,” Nucleic Acids Research 30(1):56-58, 2002; D.E. Oliver, D.L.
Rubin, ].M. Stuart, M. Hewett, T.E. Klein, and R.B. Altman, “Ontology Development for a Pharmacogenetics Knowledge Base,”
Pacific Symposium on Biocomputing 65-76, 2002. (All cited in Chung and Wooley, 2003.)
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An ontology developed by one subcommunity inevitably leads to interactions with related ontolo-
gies and the need to integrate. For example, consider the concept of homology. In traditional evolution-
ary biology, “analogy” is used to describe things that are identical by function and “homology” is used
to identify things that are identical by descent. However, in considering DNA, function and descent are
both captured in the DNA sequence, and therefore to molecular biologists, homology has come to mean
simply similarity in sequence, regardless of whether this is due to convergence or ancestry. Thus, the
term “homologous” means different things in molecular biology and evolutionary biology.?’ More
broadly, a brain ontology will inevitably relate to ontologies of other anatomic structures or at the
molecular level sharing ontologies for genes and proteins.®

Difficulties of integrating diverse but related databases thus are transformed into analogous diffi-
culties in integrating diverse but related ontologies, but since each ontology represents the integration
of multiple databases relevant to the field, the integration effort at the higher level is more encompass-
ing. At the same time, it is also more difficult, because the implications of changes in fundamental
concepts—which will be necessary in any integration effort—are much more far-reaching than analo-
gous changes in a database. That is, design compromises in the development of individual ontologies
might make it impossible to integrate the ontologies without changes to some of their basic components.
This would require undoing the ontologies, then redoing them to support integration.

These points relate to semantic interoperability, which is an active area of research in computer
science.?! Information integration across multiple biological disciplines and subdisciplines would de-
pend on the close collaborations of domain experts and information technology professionals to de-
velop algorithms and flexible approaches to bridge the gaps between multiple biological ontologies. In
recent years, a number of life science researchers have come to believe in the potential of the Semantic
Web for integrating biological ontologies, as described in Box 4.3.

A sample collection of ontology resources for controlled vocabulary purposes in the life sciences is
listed in Table 4.1.

4.2.8.2 Ontologies for Automated Reasoning

Today, it is standard practice to store biological data in databases; no one would deny that the
volume of available data is far beyond the capabilities of human memory or written text. However, even
as the volume of analytic and theoretical results drawn from these data (such as inferred genetic
regulatory, metabolic, and signaling network relationships) grows, it will become necessary to store
such information as well in a format suitable for computational access.

The essential rationale underlying automated reasoning is that reasoning one’s way through all of
the complexity inherent in biological organisms is very difficult, and indeed may be, for all practical
purposes, impossible for the knowledge bases that are required to characterize even the simplest organ-
isms. Consider, for example, the networks related to genetic regulation, metabolism, and signaling of an
organism such as Escherichia coli. These networks are too large for humans to reason about in their
totality, which means that it is increasingly difficult for scientists to be certain about global network
properties. Is the model complete? Is it consistent? Does it explain all of the data? For example, the
database of known molecular pathways in E. coli contains many hundreds of connections, far more than
most researchers could remember, much less reason about.

29For more on the homology issue, see W.M. Fitch, “Homology: A Personal View on Some of the Problems,” Trends in Genetics
16(5):227-231, 2000.

30A. Gupta, B. Ludischer, and M.E. Martone, “Knowledge-Based Integration of Neuroscience Data Sources” Conference on
Scientific and Statistical Database Management, Berlin, IEEE Computer Society, July 2000. (Cited in Chung and Wooley, 2003.)

31p. Mitra, G. Wiederhold, and M. Kersten, “A Graph-oriented Model for Articulation of Ontology Interdependencies,” Pro-
ceedings of Conference on Extending Database Technology Konstanz, Germany, March 2000. (Cited in Chung and Wooley, 2003.)
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Box 4.3
Biological Data and the Semantic Web

The Semantic Web seeks to create a universal medium for the exchange of machine-understandable
data of all types, including biological data. Using Semantic Web technology, programs can share and
process data even when they have been designed totally independently. The semantic web involves a
Resource Description Framework (RDF), an RDF Schema language, and the Web Ontology language
(OWL). RDF and OWL are Semantic Web standards that provide a framework for asset management,
enterprise integration and the sharing and reuse of data on the Web. Furthermore, a standardized query
language for RDF enables the “joining” of decentralized collections of RDF data. The underlying tech-
nology foundation of these languages is that of URLs, XML, and XML name spaces.

Within the life sciences, the notion of a life sciences identifier (LSID) is intended to provide a straight-
forward approach to naming and identifying data resources stored in multiple, distributed data stores in
a manner that overcomes the limitations of naming schemes in use today. LSIDs are persistent, location-
independent, resource identifiers for uniquely naming biologically significant resources including but
not limited to individual genes or proteins, or data objects that encode information about them.

The life sciences pose a particular challenge for data integration because the semantics of biological
knowledge are constantly changing. For example, it may be known that two proteins bind to each other.
But this fact could be represented at the cellular level, the tissue level, and the molecular level depend-
ing on the context in which that fact was important.

The Semantic Web is intended to allow for evolutionary change in the relevant ontologies as new
science emerges without the need for consensus. For example, if Researcher A states (and encodes
using Semantic Web technology) a relationship between a protein and a signaling cascade with
which Researcher B disagrees, Researcher B can instruct his or her computer to ignore (perhaps
temporarily) the relationship encoded by Researcher A in favor (perhaps) of a relationship that is
defined only locally.

An initiative coordinated by the World Wide Web Consortium seeks to explore how Semantic Web
technologies can be used to reduce the barriers and costs associated with effective data integration,
analysis, and collaboration in the life sciences research community, to enable disease understanding,
and to accelerate the development of therapies. A meeting in October 2004 on the Semantic Web and
the life sciences concluded that work was needed in two high-priority areas.

* In the area of ontology development, collaborative efforts were felt required to define core vocabu-
laries that can bridge data and ontologies developed by individual communities of practice. These
vocabularies would address provenance and context (e.g., identifying data sources, authors, publica-
tions names, and collection conditions), terms for cross-references in publication and other reporting of
experimental results, navigation, versioning, and geospatial/temporal quantifiers.

e With respect to LSIDs, the problem of sparse implementation was regarded as central, and partici-
pants believed that work should focus on how to implement LSIDs in a manner that leverages existing
Web resource resolution mechanisms such as http servers.

SOURCES: The Semantic Web Activity Statement, available at http:/www.w3.0rg/2001/sw/Activity; Life Sciences Identifiers RFP
Response, OMG Document lifesci/2003-12-02, January 12, 2004, available at http://www.omg.org/docs/lifesci/03-12-
02.doc#_Toc61702471; John Wilbanks, Science Commons, Massachusetts Institute of Technology, personal communication, April
4, 2005.
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Organization

Descriptions

Human Genome Organization (HUGO) Gene
Nomenclature Committee (HGNC):
http://www.gene.ucl.ac.uk/nomenclature/

Gene Ontology Consortium (GO):
http:/ /www.geneontology.org

Plant Ontology Consortium:
http:/ /www.plantontology.org

Microarrey Gene Expression Data (MGED)
Society Ontology Working Group:
http:/ /www.mged.org/

NIBII (National Biological Information
Infrastructure):

http://www.nbii.gov/disciplines/systematics.html

ITIS (Integrated Taxonomic Information System):
http://www.itis.usda.gov/

MeSH (Medical Subject Headings):
http://www.nlm.nih.gov/mesh/
meshhome.html

SNOMED (Systematized Nomenclature of
Medicine):
http://www.snomed.org/

International Classification of Diseases,
Ninth Revision, Clinical Modification
(ICD-9-CM):
http://www.cdc.gov/nchs/about/
otheract/lcd9/abtlcd9.htm

International Union of Pure and Applied
Chemistry (IUPAQ)

International Union of Biochemistry and
Molecular Biology (IUBMB) Nomenclature
Committee:
http://www.chem.q-mul.ac.uk/iubmb/

PharmGKB ( Pharmacogenetics Knowledge Base:
http://pharmgkb.org/

HGNC is responsible for the approval of a unique symbol
for each gene and designate description of genes. Aliases
for genes are also listed in the database.

The purpose of GO is to develop ontologies describing the
molecular function, biological process, and cellular
component of genes and gene products for eukaryotes.
Members include genome databases of fly, yeast, mouse,
worm, and Arabidopsis.

This consortium will produce structured, controlled
vocabularies applied to plant-based database information.

The MGED group facilitates the adoption of standards for
DNA-microarray experiment annotation and data
representation, as well as the introduction of standard
expertmental controls and data normalization methods.

NBII provides links to taxonomy sites for all biological
disciplines.

ITIS provides taxonomic information on plants, animals,
and microbes of North America and the world.

MeSH is a controlled vocabulary established by the
National Library of Medicine (NLM) and used for indexing
articles, cataloging books and other holdings, and searching
MeSH-indexed databases, including MEDLINE.

SNOMED is recognized globally as a comprehensive,
multiaxial, controlled terminology created for the indexing
of the entire medical record.

ICD-9-CM is the official system of assigning codes to
diagnoses and procedures associated with hospital
utilization in the United States. It is published by the U.S.
National Center for Health Statistics.

IUPAC and IUBMB make recommendations on organic,
biochemical, and molecular biology nomenclature,
symbols, and terminology.

PharmGKB, develops ontologies for pharmacogenetics and
pharmacogenomics.

continued
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TABLE 4.1 Continued

Organization Descriptions

mmCEF (Macromolecular Crystallographic The information file mmCEF is sponsored by IUCr
Information File): (International Union of Crystallography) to provide a
http://pdb.rutgers.edu/mmcif/ dictionary for data items relevant to macromolecular
http:/ /www.iucr.ac.ukliucr-top/cif/index.html crystallographic experiments.

LocusLink: LocusLink contains gene-centered resources, including
http:/ /www.ncbi.nlm.nih.gov/LocusLink/ nomenclature and aliases for genes.

Protégé-2000: Protégé-2000 is a tool that allows the user to construct a
http:/ /protege.stanford.edu domain ontology that can be extended to access embedded

applications in other knowledge-based systems. A number
of biomedical ontologies have been constructed with this
system, but it can be applied to other domains as well.

TAMBIS: TAMBIS aims to aid researchers in the biological sciences
http://imgproj.cs.man.ac.uk/tambis/ by providing a single access point for biological

information sources around the world. The access point will
be a single Web-based interface that acts as a single
information source. It will find appropriate sources of
information for user queries and phrase the user questions
for each source, returning the results in a consistent manner
which will include details of the information source.

By representing working hypotheses, derived results, and the evidence that supports and refutes
them in machine-readable representations, researchers can uncover correlations in and make inferences
about independently conducted investigations of complex biological systems that would otherwise
remain undiscovered by relying simply on serendipity or their own reasoning and memory capaci-
ties.?? In principle, software can read and operate on these representations, determining properties in a
way similar to human reasoning, but able to consider hundreds or thousands of elements simulta-
neously. Although automated reasoning can potentially predict the response of a biological system to a
particular stimulus, it is particularly useful for discovering inconsistencies or missing relations in the
data, establishing global properties of networks, discovering predictive relationships between elements,
and inferring or calculating the consequences of given causal relationships.33 As the number of discov-
ered pathways and molecular networks increases and the questions of interest to researchers become
more about global properties of organisms, automated reasoning will become increasingly useful.

Symbolic representations of biological knowledge—ontologies—are a foundation for such efforts.
Ontologies contain names and relationships of the many objects considered by a theory, such as genes,
enzymes, proteins, transcription, and so forth. By storing such an ontology in a symbolic machine-

32L,. Hunter, “Ontologies for Programs, Not People,” Genome Biology 3(6):1002.1-1002.2, 2002.

33As shown in Chapter 5, simulations are also useful for predicting the response of a biological system to various stimuli. But
simulations instantiate procedural knowledge (i.e., how to do something), whereas the automated reasoning systems discussed
here operate on declarative knowledge (i.e., knowledge about something). Simulations are optimized to answer a set of questions
that is narrower than those that can be answered by automated reasoning systems—namely, predictions about the subsequent
response of a system to a given stimulus. Automated reasoning systems can also answer such questions (though more slowly),
but in addition they can answer questions such as, What part of a network is responsible for this particular response?, presuming
that such (declarative) knowledge is available in the database on which the systems operate.
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readable form and making use of databases of biological data and inferred networks, software based on
artificial intelligence research can make complex inferences using these encoded relationships, for ex-
ample, to consider statements written in that ontology for consistency or to predict new relationships
between elements.3* Such new relationships might include new metabolic pathways, regulatory rela-
tionships between genes, signaling networks, or other relationships. Other approaches rely on logical
frameworks more expressive than database queries and are able to reason about explanations for a
given feature or suggest plans for intervention to reach a desired state.?®

Developing an ontology for automated reasoning can make use of many different sources. For
example, inference from gene-expression data using Bayesian networks can take advantage of online
sources of information about the likely probabilistic dependencies among expression levels of various
genes.> Machine-readable knowledge bases can be built from textbooks, review articles, or even the
Oxford Dictionary of Molecular Biology. The rapidly growing volume of publications in the biological
literature is another important source, because inclusion of the knowledge in these publications helps to
uncover relationships among various genes, proteins, and other biological entities referenced in the
literature.

An example of ontologies for automated reasoning is the ontology underlying the EcoCyc database.
The EcoCyc Pathway Database (http:/ /ecocyc.org) describes the metabolic transport, and genetic regu-
latory networks of E. coli. EcoCyc structures a scientific theory about E. coli within a formal ontology so
that the theory is available for computational analysis.?” Specifically, EcoCyc describes the genes and
proteins of E. coli as well as its metabolic pathways, transport functions, and gene regulation. The
underlying ontology encodes a diverse array of biochemical processes, including enzymatic reactions
involving small molecule substrates and macromolecular substrates, signal transduction processes,
transport events, and mechanisms of regulation of gene expression.

4.2.9 Annotations and Metadata

Annotation is auxiliary information associated with primary information contained in a database.
Consider, for example, the human genome database. The primary database consists of a sequence of
some 3 billion nucleotides, which contains genes, regulatory elements, and other material whose func-
tion is unknown. To make sense of this enormous sequence, the identification of significant patterns
within it is necessary. Various pieces of the genome must be identified, and a given sequence might be
annotated as translation (e.g., “stop”), transcription (e.g., “exon” or “intron”), variation (“insertion”),
structural (“clone”), similarity, repeat, or experimental (e.g., “knockout,” “transgenic”). Identifying a
particular nucleotide sequence as a gene would itself be an annotation, and the protein corresponding
to it, including its three-dimensional structure characterized as a set of coordinates of the protein’s
atoms, would also be an annotation. In short, the sequence database includes the raw sequence data,
and the annotated version adds pertinent information such as gene coded for, amino acid sequence, or
other commentary to the database entry of raw sequence of DNA bases.®

34p D. Karp, “Pathway Databases: A Case Study in Computational Symbolic Theories,” Science 293(5537):2040-2044, 2001.

35C. Baral, K. Chancellor, N. Tran, N.L. Tran, A. Joy, and M. Berens, “A Knowledge Based Approach for Representing and
Reasoning About Signaling Networks,” Bioinformatics 20(Suppl. 1):115-122, 2004.

36, Segal, B. Taskar, A. Gasch, N. Friedman, and D. Koller, “Rich Probabilistic Models for Gene Expression,” Bioinformatics
17(Supp. 1):5243-5252, 2001. (Cited in Hunter, “Ontologies for Programs, Not People,” 2002, Footnote 32.)

37P.D. Karp, “Pathway Databases: A Case Study in Computational Symbolic Theories,” Science 293(5537):2040-2044, 2001; P.D.
Karp, M. Riley, M. Saier, L.T. Paulsen, ]. Collado-Vides, S.M. Paley, A Pellegrini-Toole, et al., “The EcoCyc Database,” Nucleic
Acids Research 30(1):56-58, 2002.

38p.D. Karp, “An Ontology for Biological Function Based on Molecular Interactions,” Bioinformatics 16(3):269-285, 2000.

395ee http:/ /www.biochem.northwestern.edu/holmgren/Glossary / Definitions /Def-A / Annotation.html.
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Although the genomic research community uses annotation to refer to auxiliary information that
has biological function or significance, annotation could also be used as a way to trace the provenance
of data (discussed in greater detail in Section 3.7). For example, in a protein database, the utility of an
entry describing the three-dimensional structure of a protein would be greatly enhanced if entries also
included annotations that described the quality of data (e.g., their precision), uncertainties in the data,
the physical and chemical properties of the protein, various kinds of functional information (e.g., what
molecules bind to the protein, location of the active site), contextual information such as where in a cell
the protein is found and in what concentration, and appropriate references to the literature.

In principle, annotations can often be captured as unstructured natural language text. But for
maximum utility, machine-readable annotations are necessary. Thus, special attention must be paid to
the design and creation of languages and formats that facilitate machine processing of annotations. To
facilitate such processing, a variety of metadata tools are available. Metadata—or literally “data about
data”—are anything that describes data elements or data collections, such as the labels of the fields, the
units used, the time the data were collected, the size of the collection, and so forth. They are invaluable
not only for increasing the life span of data (by making it easier or even possible to determine the
meaning of a particular measurement), but also for making datasets comprehensible to computers. The
National Biological Information Infrastructure (NBII)*? offers the following description:

Metadata records preserve the usefulness of data over time by detailing methods for data collection and
data set creation. Metadata greatly minimize duplication of effort in the collection of expensive digital
data and foster sharing of digital data resources. Metadata supports local data asset management such as
local inventory and data catalogs, and external user communities such as Clearinghouses and websites. It
provides adequate guidance for end-use application of data such as detailed lineage and context. Metada-
ta makes it possible for data users to search, retrieve, and evaluate data set information from the NBII's
vast network of biological databases by providing standardized descriptions of geospatial and biological
data.

A popular tool for the implementation of controlled metadata vocabularies is the extensible markup
language (XML).#! XML offers a way to serve and describe data in a uniform and automatically parsable
format and provides an open-source solution for moving data between programs. Although XML is a
language for describing data, the descriptions of data are articulated in XML-based vocabularies.

Such vocabularies are useful for describing specific biological entities along with experimental
information associated with those entities. Some of the vocabularies have been developed in association
with specialized databases established by the community. Because of their common basis in XML,
however, one vocabulary can be translated to another using various tools, for example, the XML style
sheet language transformation, or XSLT.#?

Examples of such XML-based dialects include the BIOpolymer Markup Language (BIOML),*® de-
signed for annotating the sequences of biopolymers (e.g., genes, proteins), in such a way that all infor-
mation about a biopolymer can be logically and meaningfully associated with it. Much like HTML, the
language uses tags such as <protein>, <subunit>, and <peptide> to describe elements of a biopolymer
along with a series of attributes.

The Microarray Markup Language (MAML) was created by a coalition of developers
(www.beahmish.lbl.gov) to meet community needs for sharing and comparing the results of gene
expression experiments. That community proposed the creation of a Microarray Gene Expression Data-
base and defined the minimum information about a microarray experiment (MIAME) needed to enable

40gee http:/ /www.nbii.gov/datainfo/metadata/.

41H. Simon, Modern Drug Discovery, American Chemical Society, Washington, DC, 2001, pp. 69-71.
425ee http:/ /www.w3c./TR/xslt.

435ee http:/ /www.bioml.com/BIOML.
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sharing. Consistent with the MIAME standards proposed by microarray users, MAML can be used to
describe experiments and results from all types of DNA arrays.

The Systems Biology Markup Language, (SBML) is used to represent and model information in
systems simulation software, so that models of biological systems can be exchanged by different soft-
ware programs (e.g., E-Cell, StochSim). The SBML language, developed by the Caltech ERATO Kiranto
systems biology Project,** is organized around five categories of information: model, compartment,
geometry, specie, and reaction.

A downside of XML is that only a few of the largest and most used databases (e.g., a GenBank)
support an XML interface. Other databases whose existence predates XML keep most of their data in
flat files. But this reality is changing, and database researchers are working to create conversion tools
and new database platforms based on XML. Additional XML-based vocabularies and translation tools
are needed.

The data annotation process is complex and cumbersome when large datasets are involved, and
some efforts have been made to reduce the burden of annotation. For example, the Distributed Annota-
tion System (DAS) is a Web service for exchanging genome annotation data from a number of distrib-
uted databases. The system depends on the existence of a “reference sequence” and gathers “layers” of
annotation about the sequence that reside on third-party servers and are controlled by each annotation
provider. The data exchange standard (the DAS XML specification) enables layers to be provided in real
time from the third-party servers and overlaid to produce a single integrated view by a DAS client.
Success in the effort depends on the willingness of investigators to contribute annotation information
recorded on their respective servers, and on users’ learning about the existence of a DAS server (e.g.,
through ad hoc mechanisms such as link lists). DAS is also more or less specific to sequence annotation
and is not easily extended to other biological objects.

Today, when biologists archive a newly discovered gene sequence in GenBank, for example, they
have various types of annotation software at their disposal to link it with explanatory data. Next-
generation annotation systems will have to do this for many other genome features, such as transcrip-
tion-factor binding sites and single nucleotide polymorphisms (SNPs), that most of today’s systems
don’t cover at all. Indeed, these systems will have to be able to create, annotate, and archive models of
entire metabolic, signaling, and genetic pathways. Next-generation annotation systems will have to be
built in a highly modular and open fashion, so that they can accommodate new capabilities and new
data types without anyone’s having to rewrite the basic code.

4.2.10 A Case Study: The Cell Centered Database®®

To illustrate the notions described above, it is helpful to consider an example of a database effort
that implements many of them. Techniques such as electron tomography are generating large amounts
of exquisitely detailed data on cells and their macromolecular organization that have to be exposed to
the greater scientific community. However, very few structured data repositories for community use
exist for the type of cellular and subcellular information produced using light and electron microscopy.
The Cell Centered Database (CCDB) addresses this need by developing a database for three-dimen-
sional light and electron microscopic information.*6

#3ee http:/ /www.cds.caltech.edu/erato.

45Section 4.2.10 is adapted largely from M.E. Martone, S.T. Peltier, and M.H. Ellisman, “Building Grid Based Resources for
Neurosciences,” National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California,
San Diego, unpublished and undated working paper.

46M.E. Martone, A. Gupta, M. Wong, X. Qian, G. Sosinsky, B. Ludascher, and M.H. Ellisman, “A Cell-Centered Database for
Electron Tomographic Data,” Journal of Structural Biology 138(1-2):145-155, 2002; M.E. Martone, S. Zhang, S. Gupta, X. Qian, H.
He, D.A. Price, M. Wong, et al., “The Cell Centered Database: A Database for Multiscale Structural and Protein Localization Data
from Light and Electron Microscopy,” Neuroinformatics 1(4):379-396, 2003.
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The CCDB contains structural and protein distribution information derived from confocal, mul-
tiphoton, and electron microscopy, including correlated microscopy. Its main mission is to provide a
means to make high-resolution data derived from electron tomography and high-resolution light mi-
croscopy available to the scientific community, situating itself between whole brain imaging databases
such as the MAP project” and protein structures determined from electron microscopy, nuclear mag-
netic resonance (NMR) spectroscopy, and X-ray crystallography (e.g., the Protein Data Bank and EMBL).

The CCDB serves as a research prototype for investigating new methods of representing imaging
data in a relational database system so that powerful data-mining approaches can be employed for the
content of imaging data. The CCDB data model addresses the practical problem of image management
for the large amounts of imaging data and associated metadata generated in a modern microscopy
laboratory. In addition, the data model has to ensure that data within the CCDB can be related to data
taken at different scales and modalities.

The data model of the CCDB was designed around the process of three-dimensional reconstruction
from two-dimensional micrographs, capturing key steps in the process from experiment to analysis.
(Figure 4.1 illustrates the schema-entity relationship for the CCDB.) The types of imaging data stored in
the CCDB are quite heterogeneous, ranging from large-scale maps of protein distributions taken by
confocal microscopy to three-dimensional reconstruction of individual cells, subcellular structures, and
organelles. The CCDB can accommodate data from tissues and cultured cells regardless of tissue of
origin, but because of the emphasis on the nervous system, the data model contains several features
specialized for neural data. For each dataset, the CCDB stores not only the original images and three-
dimensional reconstruction, but also any analysis products derived from these data, including seg-
mented objects and measurements of quantities such as surface area, volume, length, and diameter.
Users have access to the full resolution imaging data for any type of data, (e.g., raw data, three-
dimensional reconstruction, segmented volumes), available for a particular dataset.

For example, a three-dimensional reconstruction is viewed as one interpretation of a set of raw data
that is highly dependent on the specimen preparation and imaging methods used to acquire it. Thus, a
single record in the CCDB consists of a set of raw microscope images and any volumes, images, or data
derived from it, along with a rich set of methodological details. These derived products include recon-
structions, animations, correlated volumes, and the results of any segmentation or analysis performed
on the data. By presenting all of the raw data, as well as reconstructed and processed data with a
thorough description of how the specimen was prepared and imaged, researchers are free to extract
additional content from micrographs that may not have been analyzed by the original author or employ
additional alignment, reconstruction, or segmentation algorithms to the data.

The utility of image databases depends on the ability to query them on the basis of descriptive
attributes and on their contents. Of these two types of query, querying images on the basis of their
contents is by far the most challenging. Although the development of computer algorithms to identify
and extract image features in image data is advancing,*® it is unlikely that any algorithm will be able to
match the skill of an experienced microscopist for many years.

The CCDB project addresses this problem in two ways. One currently supported way is to store the
results of segmentations and analyses performed by individual researchers on the data sets stored in the
CCDB. The CCDB allows each object segmented from a reconstruction to be stored as a separate object
in the database along with any quantitative information derived from it. The list of segmented objects
and their morphometric quantities provides a means to query a dataset based on features contained in
the data such as object name (e.g., dendritic spine) or quantities such as surface area, volume, and
length.

47 A. MacKenzie-Graham, E.S. Jones, D.W. Shattuck, I. Dinov, M. Bota, and A.W. Toga, “The Informatics of a C57BL/6 Mouse
Brain Atlas,” Neuroinformatics 1(4):397-410, 2003.

48U. Sinha, A. Bui, R. Taira, J. Dionisio, C. Morioka, D. Johnson, and H. Kangarloo, “A Review of Medical Imaging Informatics,”
Annals of the New York Academy of Sciences 980:168-197, 2002.
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FIGURE 4.1 The schema and entity relationship in the Cell Centered Database.
SOURCE: See http:/ /ncmir.ucsd.edu/CCDB.

It is also desirable to exploit information in the database that is not explicitly represented in the
schema.* Thus, the CCDB project team is developing specific data types around certain classes of seg-
mented objects contained in the CCDB. For example, the creation of a “surface data type” will enable users
to query the original surface data directly. The properties of the surfaces can be determined through very
general operations at query time that allow the user to query on characteristics not explicitly modeled in
the schema (e.g., dendrites from striatal medium spiny cells where the diameter of the dendritic shaft
shows constrictions of at least 20 percent along its length). In this example, the schema does not contain
explicit indication of the shape of the dendritic shaft, but these characteristics can be computed as part of
the query processing. Additional data types are being developed for volume data and protein distribution
data. A data type for tree structures generated by Neurolucida has recently been implemented.

The CCDB is being designed to participate in a larger, collaborative virtual data federation. Thus, an
approach to reconciling semantic differences between various databases must be found.?® Scientific

497, Lacroix, “Issues to Address While Designing a Biological Information System,” pp. 4-5 in Bioinformatics: Managing Scien-
tific Data, Z.T. Lacroix , ed., Morgan Kaufmann, San Francisco, 2003.

50Z. Lacroix, “Issues to Address While Designing a Biological Information System,” pp. 4-5 in Bioinformatics: Managing Scien-
tific Data, 2003.
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terminology, particularly neuroanatomical nomenclature, is vast, nonstandard, and confusing. Ana-
tomical entities may have multiple names (e.g., caudate nucleus, nucleus caudates), the same term may
have multiple meanings (e.g., spine [spinal cord] versus spine [dendritic spine]), and worst of all, the
same term may be defined differently by different scientists (e.g., basal ganglia). To minimize semantic
confusion and to situate cellular and subcellular data from the CCDB in a larger context, the CCDB is
mapped to several shared knowledge sources in the form of ontologies.

Concepts in the CCDB are being mapped to the Unified Medical Language System (UMLS), a large
metathesaurus and knowledge source for the biomedical sciences.”® The UMLS assigns each concept in
the ontology a unique identifier (ID); thus, all synonymous terms can then be assigned the same ID. For
example, the UMLS ID number for the synonymous terms Purkinje cell, cerebellar Purkinje cell, and
Purkinje’s corpuscle is C0034143. Thus, regardless of which term is preferred by a given individual, if
they share the same ID, they are asserted to be the same. Conversely, even if two terms share the same
name, they are distinguishable by their unique IDs. In the example given above, spine (spinal cord) =
C0037949, whereas spine (dendritic spine) = C0872341.

In addition, an ontology can support the linkage of concepts by a set of relationships. These rela-
tionships may be simple “is a” and “has a” relationships (e.g., Purkinje cell is a neuron, neuron has a
nucleus), or they may be more complex.5> From the above statements, a search algorithm could infer
that “Purkinje cell has a nucleus” if the ontology is encoded in a form that would allow such reasoning
to be performed. Because the knowledge required to link concepts is contained outside of the source
database, the CCDB is relieved of the burden of storing exhaustive taxonomies for individual datasets,
which may become obsolete as new knowledge is discovered.

The UMLS has recently incorporated the NeuroNames ontology®® as a source vocabulary.
NeuroNames is a comprehensive resource for gross brain anatomy in the primate. However, for the
type of cellular and subcellular data contained in the CCDB, the UMLS does not contain sufficient
detail. Ontologies for areas such as neurocytology and neurological disease are being built on top of the
UMLS, utilizing existing concepts wherever possible and constructing new semantic networks and
concepts as needed.>

In addition, imaging data in the CCDB is mapped to a higher level of brain organization by register-
ing their location in the coordinate system of a standard brain atlas. Placing data into an atlas-based
coordinate systems provides one method by which data taken across scales and distributed across
multiple resources can reliably be compared.®

Through the use of computer-based atlases and associated tools for warping and registration, it is
possible to express the location of anatomical features or signals in terms of a standardized coordinate
system. While there may be disagreement among neuroscientists about the identity of a brain area
giving rise to a signal, its location in terms of spatial coordinates is at least quantifiable. The expression
of brain data in terms of atlas coordinates also allows them to be transformed spatially to offer alterna-
tive views that may provide additional information (such as flat maps or additional parcellation

51B.L. Humphreys, D.A. Lindberg, HM. Schoolman, and G.O. Barnett, “The Unified Medical Language System: An Informatics
Research Collaboration,” Journal of the American Medical Informatics Association 5(1):1-11, 1998.

S2A. Gupta, B. Ludascher, ].S. Grethe, and M.E. Martone, “Towards a Formalization of a Disease Specific Ontology for
Neuroinformatics,” Neural Networks 16(9):1277-1292, 2003.

53D.M. Bowden and M.F. Dubach, “NeuroNames 2002,” Neuroinformatics 1:43-59, 2002.

S4A. Gupta, B. Ludascher, ].S. Grethe, and M.E. Martone, “Towards a Formalization of a Disease Specific Ontology for
Neuroinformatics,” Neural Networks 6(9):1277-1292, 2003.

55A. Brevik, T.B. Leergaard M. Svanevik, ].G. Bjaalie, “Three-dimensional Computerised Atlas of the Rat Brain Stem
Precerebellar System: Approaches for Mapping, Visualization, and Comparison of Spatial Distribution Data,” Anatomy and
Embryology 204(4):319-332, 2001; J.G. Bjaalie, “Opinion: Localization in the Brain: New Solutions Emerging,” Nature Reviews:
Neuroscience 3(4):322-325, 2003; D.C. Van Essen, H.A. Drury, J. Dickson, J. Harwell, D. Hanlon, and C.H. Anderson, “An Inte-
grated Software Suite for Surface-based Analyses of Cerebral Cortex,” Journal of the American Medical Informatics Association
8(5):443-459, 2001; D.C. Van Essen, “Windows on the Brain: The Emerging Role of Atlases and Databases in Neuroscience,”
Current Opinion in Neurobiology 12(5):574-579, 2002.
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schemes).%® Finally, because individual experiments can study only a few aspects of a brain region at
one time, a standard coordinate system allows the same brain region to be sampled repeatedly to allow
data to be accumulated over time.

4.2.11 A Case Study: Ecological and Evolutionary Databases

Although genomic databases such as GenBank receive the majority of attention, databases and
algorithms that operate on databases are key tools in research into ecology and biodiversity as well.
These tools can provide researchers with access to information regarding all identified species of a given
type, such as AlgaeBase®” or FishBase;?® they also serve as a repository for submission of new informa-
tion and research. Other databases go beyond species listings to record individuals: for example, the
ORNIS database of birds seeks to provide access to nearly 5 million individual specimens held in
natural history collections, which includes data such as recordings of vocalizations and egg and nest
holdings.>®

The data associated with ecological research are gathered from a wide variety of sources: physical
observations in the wild by both amateurs and professionals; fossils; natural history collections; zoos,
botanical gardens, and other living collections; laboratories; and so forth. In addition, these data must
placed into contexts of time, geographic location, environment, current and historical weather and
climate, and local, regional, and global human activity. Needless to say, these data sources are scattered
throughout many hundreds or thousands of different locations and formats, even when they are in
digitally accessible format. However, the need for integrated ecological databases is great: only by being
able to integrate the totality of observations of population and environment can certain key questions be
answered. Such a facility is central to endangered species preservation, invasive species monitoring,
wildlife disease monitoring and intervention, agricultural planning, and fisheries management, in addi-
tion to fundamental questions of ecological science.

The first challenge in building such a facility is to make the individual datasets accessible by
networked query. Over the years, hundreds of millions of specimens have been recorded in museum
records. In many cases, however, the data are not even entered into a computer; they may be stored as
a set of index cards dating from the 1800s. Natural history collections, such as a museum’s collection of
fossils, may not even be indexed, and they are available to researchers only by physically inspecting the
drawers. Very few specimens have been geocoded.

Museum records carry a wealth of image and text data, and digitizing these records in a mean-
ingful and useful way remains a serious challenge. For this reason, funding agencies such as the
National Science Foundation (NSF) are emphasizing integrating database creation, curation, and
sharing into the process of ecological science: for example, the NSF Biological Databases and
Informatics program® (which includes research into database algorithms and structures, as well as
developing particular databases) and the Biological Research Collections program, which provides
around $6 million per year for computerizing existing biological data. Similarly, the NSF Partner-
ships for Enhancing Expertise in Taxonomy (PEET) program,®! which emphasizes training in tax-
onomy, requires that recipients of funding incorporate collected data into databases or other shared
electronic formats.

56D.C. Van Essen, “Windows on the Brain: The Emerging Role of Atlases and Databases in Neuroscience,” Current Opinion in
Neurobiology 12:574-579, 2002.

57See http:/ /www.algaebase.org.

585ee http:/ /www fishbase.org.

59See http:/ /www.ornisnet.org.

60NSF Program Announcement NSF 02-058; see http:/ /www.nsf.gov/pubsys/ods/getpub.cfm?nsf02058.

61gee http://web.nhm.ku.edu/peet/.
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Ecological databases also rely on metadata to improve interoperability and compatibility among
disparate data collections.®> Ecology is a field that demands access to large numbers of independent
datasets such as geographic information, weather and climate records, biological specimen collections,
population studies, and genetic data. These datasets are collected over long periods of time, possibly
decades or even centuries, by a diverse set of actors for different purposes. A commonly agreed-upon
format and vocabulary for metadata is essential for efficient cooperative access.

Furthermore, as data increasingly are collected by automated systems such as embedded systems
and distributed sensor networks, the applications that attempt to fuse the results into formats amenable
to algorithmic or human analysis must deal with high (and always on) data rates, likely contained in
shifting standards for representation. Again, early agreement on a basic system for sharing metadata
will be necessary for the feasibility of such applications.

In attempting to integrate or cross-query these data collections, a central issue is the naming of
species or higher-level taxa. The Linnean taxonomy is the oldest such effort in biology, of course, yet
because there is not yet (nor likely can ever be) complete agreement on taxa identification, entries in
different databases may contain different tags for members of the same species, or the same tag for
members that were later determined to be of different species. Taxa are often moved into different
groups, split, or merged with others; names are sometimes changed. A central effort to manage this is
the Integrated Taxonomic Information System (ITIS),%® which began life as a U.S. interagency task force,
but today is a global cooperative effort between government agencies and researchers to arrive at a
repository for agreed-upon species names and taxonomic categorization. ITIS data are of varying qual-
ity, and entries are tagged with three different quality indicators: credibility, which indicates whether or
not data have been reviewed; latest review, giving the year of the last review; and global completeness,
which records whether all species belonging to a taxon were included at the last review. These measure-
ments allow researchers to evaluate whether the data are appropriate for their use.

In constructing such a database, many data standards questions arise. For example, ITIS uses naming
standards from the International Code of Botanical Nomenclature and the International Code of Zoologi-
cal Nomenclature. However, for the kingdom Protista, which at various times in biological science has
been considered more like an animal and more like a plant, both standards might apply. Dates and date
ranges provide another challenge: while there are many international standards for representing a calen-
dar date, in general these did not foresee the need to represent dates occurring millions or billions of years
ago. ITIS employs a representation for geologic ages, and this illustrates the type of challenge encountered
when stretching a set of data standards to encompass many data types and different methods of collection.

For issues of representing observations or collections, an important element is the Darwin Core, a
set of XML metadata standards for describing a biological specimen, including observations in the wild
and preserved items in natural history collections. Where ITIS attempts to improve communicability by
achieving agreement on precise name usage, Darwin Core® (and similar metadata efforts) concentrates
the effort on labeling and markup of data. This allows individual databases to use their own data
structures, formats, and representations, as long as the data elements are labeled by Darwin Core
keywords. Since the design demands on such databases will be substantially different, this is a useful
approach. Another attempt to standardize metadata for ecological data is the Access to Biological
Collections Data (ABCD) Schema,®® which is richer and contains more information. These two ap-
proaches indicate a common strategic choice: simpler standards are easier to adopt, and thus will likely
be more widespread, but are limited in their expressiveness; more complex standards can successfully

62For a more extended discussion of the issues involved in maintaining ecological data, see W.K. Michener and J.W. Brunt,
eds., Ecological Data: Design, Management and Processing, Methods in Ecology, Blackwell Science, Maryland, 2000. A useful online
presentation can be found at http:/ /www.soest.hawaii.edu/PFRP/dec03mtg/michener.pdf.

63Gee http:/ /www.itis.usda.gov.

64Gee hitp:/ /speciesanalyst.net/docs/dwc/ .

655ee http:/ /www.bgbm.org/TDWG/CODATA /Schema/default.htm.
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support a wider variety of queries and data types, but may be slower to gain adoption. Another effort to
accomplish agreement on data and metadata standards is the National Biological Information Initiative
(NBII), a program of the U.S. Geological Survey’s Center for Biological Informatics.

Agreement on standard terminology and data labeling would accomplish little if the data sources
were unknown. The most significant challenge in creating large-scale ecological information is the
integration and federation of the potentially vast number of relevant databases. The Global Biodiversity
Information Facility (GBIF)® is an attempt to offer a single-query interface to cooperating data provid-
ers; in December of 2004, it consisted of 95 providers totaling many tens of millions of individual
records. GBIF accomplishes this query access through the use of data standards (such as the Darwin
Core) and Web services, an information technology (IT) industry standard way of requesting informa-
tion from servers in a platform-independent fashion. A similar international effort is found at the
Clearinghouse Mechanism (CHM),%” an instrumentality of the Convention on Biodiversity. The CHM is
intended as a way for information on biodiversity to be shared among signatory states and made
available as a way to monitor compliance and as a tool for policy.

Globally integrated ecological databases are still in embryonic form, but as more data become
digitized and made available by the Internet in standard fashions, their value will increase. Integration
with phylogenetic and molecular databases will add to their value as research tools, in both the ecologi-
cal and the evolutionary fields.

4.3 DATA PRESENTATION

4.3.1 Graphical Interfaces

Biological processes can take place over a vast array of spatial scales, from the nanoscale inhabited
by individual molecules, to the everyday, meter-sized human world. They can take place over an even
vaster range of time scales, from the nanosecond gyrations of a folding protein molecule to the seven
decade (or so) span of a human life—and far beyond, if evolutionary time is included. They also can be
considered at many levels of organization, from the straightforward realm of chemical interaction to the
abstract realm of, say, signal transduction and information processing.

Much of 21st century biology must deal with these processes at every level and at every scale,
resulting in data of high dimensionality. Thus, the need arises for systems that can offer vivid and easily
understood visual metaphors to display the information at each level, showing the appropriate amount
of detail. (Such a display would be analogous to, say, a circuit diagram, with its widely recognized icons
for diodes, transistors, and other such components.) A key element of such systems is easily understood
metaphors that present signals containing multiple colors over time on more than one axis. As an
empirical matter, these metaphors are hard to find. Indeed, the problem of finding a visually (or
intellectually!) optimal display layout for high-dimensional data is arguably combinatorially hard,
because in the absence of a well-developed theory of display, it requires exploring every possible
combination of data in a multitude of arrangements.

The system would likewise offer easy and intuitive ways to navigate between levels, so that the user
could drill down to get more detail or pop up to higher abstractions as needed. Also, it would offer good
ways to visualize the dynamical behavior of the system over time—whatever the appropriate time scale
might be. Current-generation visualization systems such as those associated with BioSPICE® and
Cytoscape® are a good beginning—but, as their developers themselves are the first to admit, only a
beginning.

665ee http:/ /www.gbif.org/.

67See http:/ /www.biodiv.org/chm/default.aspx.
683ee http:/ /biospice.Ibl.gov /home.html.

69See http:/ /www.cytoscape.org/.
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Biologists use a variety of different data representations to help describe, examine, and understand
data. Biologists often use cartoons as conceptual, descriptive models of biological events or processes. A
cartoon might show a time line of events: for example, the time line of the phosphorylation of a receptor
that allows a protein to bind to it. As biologists take into account the simultaneous interactions of larger
numbers of molecules, events over time become more difficult to represent in cartoons. New ways to
“see” interactions and associations are therefore needed in life sciences research.

The most complex data visualizations are likely to be representations of networks. The complete
graph in Figure 4.2 contains 4,543 nodes of approximately 6,000 proteins encoded by the yeast genome,
along with 12,843 interactions. The graph was developed using the Osprey network visualization system.
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FIGURE 4.2 From genomics to proteomics. Visualization of combined, large-scale interaction data sets in yeast. A
total of 14,000 physical interactions obtained from the GRID database were represented with the Osprey network
visualization system (see http://biodata.mshri.on.ca/grid). Each edge in the graph represents an interaction be-
tween nodes, which are colored according to Gene Ontology (GO) functional annotation. Highly connected com-
plexes within the dataset, shown at the perimeter of the central mass, are built from nodes that share at least three
interactions within other complex members. The complete graph contains 4,543 nodes of ~6,000 proteins encoded
by the yeast genome, 12,843 interactions and an average connectivity of 2.82 per node. The 20 highly connected
complexes contain 340 genes, 1,835 connections, and an average connectivity of 5.39.

SOURCE: Reprinted by permission from M. Tyers and M. Mann, “From Genomics to Proteomics,” Nature 422:193-
197, 2003. Copyright 2003 Macmillan Magazines Ltd.
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Other diagrammatic simulations of complex cell networks use tools such as the Diagrammatic Cell
Language (DCL) and Visual Cell. These software tools are designed to read, query, and edit cell path-
ways, and to visualize data in a pathway context. Visual Cell creates detailed drawings by compactly
formatting thousands of molecular interactions. The software uses DCL, which can visualize and simu-
late large-scale networks such as interconnected signal transduction pathways and the gene expression
networks that control cell proliferation and apoptosis. DCL can visualize millions of chemical states and
chemical reactions.

A second approach to diagrammatic simulation has been developed by Efroni et al.”? These re-
searchers use the visual language of Statecharts, which makes specification of the simulation precise,
legible, and machine-executable. Behavior in Statecharts is described by using states and events that
cause transitions between states. States may contain substates, thus enabling description at multiple
levels and zooming in and zooming out between levels. States may also be divided into orthogonal
states, thus modeling concurrency, allowing the system to reside simultaneously in several different
states. A cell, for example, may be described orthogonally as expressing several receptors, no receptors,
or any combination of receptors at different stages of the cell cycle and in different anatomical compart-
ments. Furthermore, transitions take the system from one state to another. In cell modeling, transitions
are the result of biological processes or the result of user intervention. A biological process may be the
result of an interaction between two cells or between a cell and various molecules. Statecharts provide
a controllable way to handle the enormous dataset of cell behavior by enabling the separation of that
dataset into orthogonal states and allowing transitions.

Still another kind of graphical interface is used for molecular visualization. Interesting biomolecules
usually consist of thousands of atoms. A list of atomic coordinates is useful for some purposes, but an
actual image of the molecule can often provide much more insight into its properties—and an image
that can be manipulated (e.g., viewed from different angles) is even more useful. Virtual reality tech-
niques can be used to provide the viewer with a large field of view, and to enable the viewer to interact
with the virtual molecule and compare it to other molecules. However, many problems in biomolecular
visualization tax the capability of current systems because of the diversity of operations required and
because many operations do not fit neatly into the current architectural paradigm.

4.3.2 Tangible Physical Interfaces

As useful as graphical visualizations are, even in simulated three-dimensional virtual reality
they are still two-dimensional. Tangible, physical models that a human being can manipulate di-
rectly with his or her hands are an extension of the two-dimensional graphical environment. A
project at the Molecular Graphics Laboratory at the Scripps Research Institute is developing tan-
gible interfaces for molecular biology.”! These interfaces use computer-driven autofabrication tech-
nology (i.e., three-dimensional printers) and result in physical molecular representations that one
can hold in one’s hand.

These efforts have required the development and testing of software for the representation of
physical molecular models to be built by autofabrication technologies, linkages between molecular
descriptions and computer-aided design and manufacture approaches for enhancing the models with
additional physical characteristics, and integration of the physical molecular models into augmented-
reality interfaces as inputs to control computer display and interaction.

703, Efroni, D. Harel, and L.R. Cohen, “Toward Rigorous Comprehension of Biological Complexity: Modeling, Execution, and
Visualization of Thymic T-Cell Maturation,” Genome Research 13(11):2485-2497, 2003.

71A. Gillet, M. Sanner, D. Stoffler, D. Goodsell, and A. Olson, “Augmented Reality with Tangible Auto-Fabricated Models for
Molecular Biology Applications,” Proceedings of the IEEE Visualization 2004 (VIS’04), October 10-15, 2004, Austin, pp. 235-242.
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Box 4.4
Text Mining and Populating a Network Model of Intracellular Interaction

Other methods [for the construction of large-scale topological maps of cellular networks] have sought to mine
MEDLINE/PubMed abstracts that are considered to contain concise records of peer-reviewed published results. The
simplest methods, often called ‘guilt by association,” seek to find co-occurrence of genes or protein names in ab-
stracts or even smaller structures such as sentences or phrases. This approach assumes that co-occurrences are
indicative of functional links, although an obvious limitation is that negative relations (e.g., A does not regulate B) are
counted as positive associations. To overcome this problem, other natural language processing methods involve
syntactic parsing of the language in the abstracts to determine the nature of the interactions. There are obvious
computation costs in these approaches, and the considerable complexity in human language will probably render
any machine-based method imperfect. Even with limitations, such methods will probably be required to make
knowledge in the extant literature accessible to machine-based analyses. For example, PreBIND used support vector
machines to help select abstracts likely to contain useful biomolecular interactions to ‘backfill’ the BIND database.

SOURCE: Reprinted by permission from J.J. Rice and G. Stolovitzky, “Making the Most of It: Pathway Reconstruction and Integrative
Simulation Using the Data at Hand,” Biosilico 2(2):70-77. Copyright 2004 Elsevier. (References omitted.)

4.3.3 Automated Literature Searching”

Still another form of data presentation is journal publication. It has not been lost on the scientific
bioinformatics community that vast amounts of functional information that could be used to annotate
gene and protein sequences are embedded in the written literature. Rice and Stolovitzky go so far as to
say that mining the literature on biomolecular interactions can assist in populating a network model of
intracellular interaction (Box 4.4).73

So far, however, the availability of full-text articles in digital formats such as PDF, HTML, or TIF
files has limited the possibilities for computer searching and retrieval of full text in databases. In the
future, wider use of structured documents tagged with XML will make intelligent searching of full text
feasible, fast, and informative and will allow readers to locate, retrieve, and manipulate specific parts of
a publication.

In the meantime, however, natural language provides a considerable, though not insurmountable,
challenge for algorithms to extract meaningful information from natural text. One common application
of natural language processing involves the extraction from the published literature of information
about proteins, drugs, and other molecules. For example, Fukuda et al. (1998) pioneered identification
of protein names using properties of the text such as the occurrence of uppercase letters, numerals, and
special endings to pinpoint protein names.”*

Other work has investigated the feasibility of recognizing interactions between proteins and other
molecules. One approach is based on simultaneous occurrences of gene names and their use to predict
their connections based on their occurrence statistics.”> A second approach to pathway discovery was

72The discussion in Section 4.3.3 is based on excerpts from L. Hirschman, ].C. Park, J. Tsujii, L. Wong, and C.H. Wu, “Accom-
plishments and Challenges in Literature Data Mining for Biology,” Bioinformatics Review 18(12):1553-1561, 2002. Available at
http:/ /pir.georgetown.edu/pirwww /aboutpir/doc/data_mining.pdf.

731J. Rice and G. Stolovitzky, “Making the Most of It: Pathway Reconstruction and Integrative Simulation Using the Data at
Hand,” Biosilico 2(2):70-77, 2004.

74K. Fukuda, et al., “Toward Information Extraction: Identifying Protein Names from Biological Papers,” Pacific Symposium on
Biocomputing 1998, 707-718. (Cited in Hirschman et al., 2002.)

75B. Stapley and G. Benoit, “Biobibliometrics: Information Retrieval and Visualization from Co-occurrences of Gene Names in
MEDLINE Abstracts,” Pacific Symposium on Biocomputing 2000, 529-540; ]J. Ding et al., “Mining MEDLINE: Abstracts, Sentences,
or Phrases?” Pacific Symposium on Biocomputing 2002, 326-337. (Cited in Hirschman et al., 2002.)
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based on templates that matched specific linguistic structures to recognize and extract of protein inter-
action information from MEDLINE documents.”® More recent work goes beyond the analysis of single
sentences to look at relations that span multiple sentences through the use of co-reference. For example,
Putejovsky and Castano focused on relations of the word inhibit and showed that it was possible to
extract biologically important information from free text reliably, using a corpus-based approach to
develop rules specific to a class of predicates.”” Hahn et al. described the MEDSYNDIKATE system for
acquiring knowledge from medical reports, a system capable of analyzing co-referring sentences and
extracting new concepts given a set of grammatical constructs.”®

Box 4.5 describes a number of other information extraction successes in biology. In a commen-
tary in EMBO Reports on publication mining, Les Grivell, manager of the European electronic
publishing initiative, E-BioSci, sums up the challenges this way:”’

The detection of gene symbols and names, for instance, remains difficult, as researchers have seldom
followed logical rules. In some organisms—the fruit fly Drosophila is an example—scientists have enjoyed
applying gene names with primary meaning outside the biological domain. Names such as vamp, eve,
disco, boss, gypsy, zip or ogre are therefore not easily recognized as referring to genes.80

Also, both synonymy (many different ways to refer to the same object) and polysemy (multiple mean-
ings for a given word) cause problems for search algorithms. Synonymy reduces the number of recalls of
a given object, whereas polysemy causes reduced precision. Another problem is ambiguities of a word’s
sense. The word insulin, for instance, can refer to a gene, a protein, a hormone or a therapeutic agent,
depending on the context. In addition, pronouns and definite articles and the use of long, complex or
negative sentences or those in which information is implicit or omitted pose considerable hurdles for full-
text processing algorithms.

Grivell points out that algorithms exist (e.g., the Vector Space Model) to undertake text analysis,
theme generation, and summarization of computer-readable texts, but adds that “apart from the consid-
erable computational resources required to index terms and to precompute statistical relationships for
several million articles,” an obstacle to full-text analysis is the fact that scientific journals are owned by
a large number of different publishers, so computational analysis will have to be distributed across
multiple locations.

765 K. Ng and M. Wong, “Toward Routine Automatic Pathway Discovery from Online Scientific Text Abstracts,” Genome
Informatics 10:104-112, 1999. (Cited in Hirschman et al., 2002.)

77]. Putejovsky and J. Castano, “Robust Relational Parsing over Biomedical Literature: Extracting Inhibit Relations,” Pacific
Symposium on Biocomputing 2002, 362-373. (Cited in Hirschman et al., 2002.)

78U. Hahn, et al., “Rich Knowledge Capture from Medical Documents in the MEDSYNDIKATE System,” Pacific Symposium on
Biocomputing 2002, 338-349. (Cited in Hirschman et al., 2002.)

79L. Grivell, “Mining the Bibliome: Searching for a Needle in a Haystack? New Computing Tools Are Needed to Effectively
Scan the Growing Amount of Scientific Literature for Useful Information,” EMBO Report 3(3):200-203, 2002.

80D. Proux, F. Rechenmann, L. Julliard, V. Pillet. and B. Jacq, “Detecting Gene Symbols and Names in Biological Texts: A First
Step Toward Pertinent Information Extraction,” Genome Informatics 9:72-80, 1999. (Cited in Grivell, 2002.) Note also that while
gene names are often italicized in print (so that they are more readily recognized as genes), neither verbal discourse nor text
search recognizes italicization. In addition, because some changes of name are made for political rather than scientific reasons,
and because these political revisions are done quietly, even identifying the need for synonym tracking can be problematic. An
example is a gene mutation, discovered in 1963, that caused male fruit flies to court other males. Over time, the assigned gene
name of “fruity” came to be regarded as offensive, and eventually the genes name was changed to “fruitless” after much public
disapproval. A similar situation arose more recently, when scientists at Princeton University found mutations in flies that caused
them to be learning defective or, in the vernacular of the investigators, “vegged out.” They assigned names such as cabbage,
rutabaga, radish, and turnip—which some other scientists found objectionable. See, for example, M. Vacek, “A Gene by Any
Other Name,” American Scientist 89(6), 2001.
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Box 4.5
Selected Information Extraction Successes in Biology

Besides the recognition of protein interactions from scientific text, natural language processing has been applied to
a broad range of information extraction problems in biology.

Capturing of Specific Relations in Databases.

. .. We begin with systems that capture specific relations in databases. Hahn et al. (2002) used natural language
techniques and nomenclatures of the Unified Medical Language System (UMLS) to learn ontological relations for a
medical domain. Baclawski et al. (2000) is a diagrammatic knowledge representation method called keynets. The
UMLS ontology was used to build keynets.

Using both domain-independent and domain-specific knowledge, keynets parsed texts and resolved references to
build relationships between entities. Humphreys et al. (2000) described two information extraction applications in
biology based on templates: EMPathlIE extracted from journal articles details of enzyme and metabolic pathways;
PASTA extracted the roles of amino acids and active sites in protein molecules. This work illustrated the importance
of template matching, and applied the technique to terminology recognition. Rindflesch et al. (2000) described
EDCAR, a system that extracted relationships between cancer-related drugs and genes from biomedical literature.
EDGAR drew on a stochastic part-of-speech tagger, a syntactic parser able to produce partial parses, a rule-based
system, and semantic information from the UMLS. The metathesaurus and lexicon in the knowledge base were used
to identify the structure of noun phrases in MEDLINE texts. Thomas et al. (2000) customized an information extrac-
tion system called Highlight for the task of gathering data on protein interactions from MEDLINE abstracts. They
developed and applied templates to every part of the texts and calculated the confidence for each match. The
resulting system could provide a cost-effective means for populating a database of protein interactions.

Information Retrieval and Clustering.

The next papers [in this volume] focus on improving retrieval and clustering in searching large collections. Chang et
al. (2001) modified PSI-BLAST to use literature similarity in each iteration of its search. They showed that supple-
menting sequence similarity with information from biomedical literature search could increase the accuracy of
homology search result. Illiopoulos et al. (2001) gave a method for clustering MEDLINE abstracts based on a statis-
tical treatment of terms, together with stemming, a “go-list,” and unsupervised machine learning. Despite the mini-
mal semantic analysis, clusters built here gave a shallow description of the documents and supported concept
discovery.

Wilbur (2002) formalized the idea of a “theme” in a set of documents as a subset of the documents and a subset of
the indexing terms so that each element of the latter had a high probability of occurring in all elements of the former.
An algorithm was given to produce themes and to cluster documents according to these themes.

Classification.

.. . text processing has been used for classification. Stapley et al. (2002) used a support vector machine to classify
terms derived by standard term weighting techniques to predict the cellular location of proteins from description in
abstracts. The accuracy of the classifier on a benchmark of proteins with known cellular locations was better than
that of a support vector machine trained on amino acid composition and was comparable to a handcrafted rule-
based classifier (Eisenhaber and Bork, 1999).

SOURCE: Reprinted by permission from L. Hirschman, J.C. Park, J. Tsujii, L. Wong, and C.H. Wu, “Accomplishments and Challenges in
Literature Data Mining for Biology, Bioinformatics Review 18(12):1553-1561, 2002, available at http:/pir.georgetown.edu/pirwww/aboutpir/
doc/data_mining.pdf. Copyright 2002 Oxford University Press.
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4.4 ALGORITHMS FOR OPERATING ON BIOLOGICAL DATA

4.4.1 Preliminaries: DNA Sequence as a Digital String

The digital nature of DNA is a central evolutionary innovation for many reasons—that is, the
“values” of the molecules making up the polymer are discrete and indivisible units. Just as an electronic
digital computer abstracts various continuous voltage levels as 0 and 1, DNA abstracts a three-dimen-
sional organization of atoms as A, T, G, and C. This has important biological benefits, including very
high-accuracy replication, common and simplified ways for associated molecules to bind to sites, and
low ambiguity in coding for proteins.

For human purposes in bioinformatics, however, the use of the abstraction of DNA as a digital
string has had other equally significant and related benefits. It is easy to imagine the opposite case, in
which DNA is represented as the three-dimensional locations of each atom in the macromolecule, and
comparison of DNA sequences is a painstaking process of comparing the full structures. Indeed, this is
very much the state of the art in representing proteins (which, although they can be represented as a
digital string of peptides, are more flexible than DNA, so the digital abstraction leaves out the critically
important features of folding). The digital abstraction includes much of the essential information of the
system, without including complicating higher- and lower-order biochemical properties.3! The com-
parison of the state of the art in computational analysis of DNA sequences and protein sequences speaks
in part to the enormous advantage that the digital string abstraction offers when appropriate.

The most basic feature of the abstraction is that it treats the arrangement of physical matter as
information. An important advantage of this is that information-theoretic techniques can be applied to
specific DNA strings or to the overall alphabet of codon-peptide associations. For example, computer
science-developed concepts such as Hamming distance, parity, and error-correcting codes can be used
to evaluate the resilience of information in the presence of noise and close alternatives.?

A second and very practical advantage is that as strings of letters, DNA sequences can be stored
efficiently and recognizably in the same format as normal text.83 An entire human genome, for example, can
be stored in about 3 gigabytes, costing a few dollars in 2003. More broadly, this means that a vast array of
tools, software, algorithms, and software packages that were designed to operate on text could be adapted
with little or no effort to operate on DNA strings as well. More abstract examples include the long history of
research into algorithms to efficiently search, compare, and transform strings. For example, in 1974, an
algorithm for identifying the “edit distance” of two strings was discovered, 3 measuring the minimum
number of changes, transpositions, and insertions necessary to transform one string into another. Although
this algorithm was developed long before the genome era, it is useful to DNA analysis nonetheless.®

Finally, the very foundation of computational theory is the Turing machine, an abstract model of
symbolic manipulation. Some very innovative research has shown that the DNA manipulations of some
single-celled organisms are Turing-complete,3® allowing the application of a large tradition of formal
language analysis to problems of cellular machinery.

81A. Regev and E. Shapiro, “Cellular Abstractions: Cells as Computation,” Nature 419(6905): 343, 2002.

82D.A. MacDonaill, “A Parity Code Interpretation of Nucleotide Alphabet Composition,” Chemical Communications 18:2062-
2063, 2002.

83Ideally, of course, a nucleotide could be stored using only two bits (or three to include RNA nucleotides as well). ASCII
typically uses eight bits to represent characters.

84R.A. Wagner and M.J. Fischer, “The String-to-String Correction Problem,” Journal of the Association for Computing Machinery
21(1):168-173, 1974.

85Gee for example, American Mathematical Society, “Mathematics and the Genome: Near and Far (Strings),” April 2002.
Available at http://www.ams.org/new-in-math/cover/genome5.html; M.S. Waterman, Introduction to Computational Biology:
Maps, Sequences and Genomes, Chapman and Hall, London, 1995; M.S. Waterman, “Sequence Alignments,” Mathematical Methods
for DNA Sequences, CRC, Boca Raton, FL, 1989, pp. 53-92.

86LF. Landweber and L. Kari, “The Evolution of Cellular Computing: Nature’s Solution to a Computational Problem,”
Biosystems 52(1-3):3-13, 1999.
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These comments should not be taken to mean that the abstraction of DNA into a digital string is cost-
free. Although digital coding of DNA is central to the mechanisms of heredity, the nucleotide sequence
cannot deal with nondigital effects that also play important roles in protein synthesis and function.
Proteins do not necessarily bind only to one specific sequence; the overall proportions of AT versus CG in
a region affect its rate of transcription; and the state of methylation of a region of DNA is an important
mechanism for the epigenetic control of gene expression (and can indeed be inherited just as the digital
code can be inherited).%” There are also numerous posttranslational modifications of proteins by processes
such as acetylation, glycosylation, and phosphorylation, which by definition are not inherent in the
genetic sequence.® The digital abstraction also cannot accommodate protein dynamics or kinetics. Be-
cause these nondigital properties can have important effects, ignoring them puts a limit on how far the
digital abstraction can support research related to gene finding and transcription regulation.

Last, DNA is often compared to a computer program that drives the functional behavior of a cell.
Although this analogy has some merit, it is not altogether accurate. Because DNA specifies which
proteins the cell must assemble, it is at least one step removed from the actual behavior of a cell, since
the proteins—not the DNA—that determine (or at least have a great influence on) cell behavior.

4.4.2 Proteins as Labeled Graphs

A significant problem in molecular biology is the challenge of identifying meaningful substructural
similarities among proteins. Although proteins, like DNA, are composed of strings made from a se-
quence of a comparatively small selection of types of component molecules, unlike DNA, proteins can
exist in a huge variety of three-dimensional shapes. Such shapes can include helixes, sheets, and other
forms generally referred to as secondary or tertiary structure.

Since the structural details of a protein largely determine its functions and characteristics, determin-
ing a protein’s overall shape and identifying meaningful structural details is a critical element of protein
studies. Similar structure may imply similar functionality or receptivity to certain enzymes or other
molecules that operate on specific molecular geometry. However, even for proteins whose three-dimen-
sional shape has been experimentally determined through X-ray crystallography or nuclear magnetic
resonance, finding similarities can be difficult due to the extremely complex geometries and large
amount of data.

A rich and mature area of algorithm research involves the study of graphs, abstract representations
of networks of relationships. A graph consists of a set of nodes and a set of connections between nodes
called “edges.” In different types of graphs, edges may be one-way (a “directed graph”) or two-way
(“undirected”), or edges may also have “weights” representing the distance or cost of the connection.
For example, a graph might represent cities as nodes and the highways that connect them as edges
weighted by the distance between the pair of cities.

Graph theory has been applied profitably to the problem of identifying structural similarities among
proteins.?” In this approach, a graph represents a protein, with each node representing a single amino
acid residue and labeled with the type of residue, and edges representing either peptide bonds or close
spatial proximity. Recent work in this area has combined graph theory, data mining, and information
theoretic techniques to efficiently identify such similarities.”

87For more on the influence of DNA methylation on genetic regulation, see R. Jaenisch and A. Bird, “Epigenetic Regulation of
Gene Expression: How the Genome Integrates Intrinsic and Environmental Signals,” Nature Genetics 33 (Suppl):245-254, 2003.

88Indeed, some work even suggests that DNA methylation and histone acetylation may be connected. See J.R. Dobosy and E.U.
Selker, “Emerging Connections Between DNA Methylation and Histone Acetylation,” Cellular and Molecular Life Sciences 58(5-
6):721-727, 2001.

89E.M. Mitchell, P.J. Artymiuk, D.W. Rice, and P. Willet, “Use of Techniques Derived from Graph Theory to Compare Second-
ary Structure Motifs in Proteins,” Journal of Molecular Biology 212(1):151-166, 1989.

90]. Huan, W. Wang, A. Washington, J. Prins, R. Shah, and A. Tropsha, “Accurate Classification of Protein Structural Families
Using Coherent Subgraph Analysis,” Pacific Symposium on Biocomputing 2004:411-422, 2004.
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A significant computational aspect of this example is that since the general problem of identifying
subgraphs is NP-complete,! the mere inspiration of using graph theory to represent proteins is insuffi-
cient; sophisticated algorithmic research is necessary to develop appropriate techniques, data representa-
tions, and heuristics that can sift through the enormous datasets in practical times. Similarly, the problem
involves subtle biological detail (e.g., what distance represents a significant spatial proximity, which
amino acids can be classified together), and could not be usefully attacked by computer scientists alone.

4.4.3 Algorithms and Voluminous Datasets

Algorithms play an increasingly important role in the process of extracting information from large
biological datasets produced by high-throughput studies. Algorithms are needed to search, sort, align,
compare, contrast, and manipulate data related to a wide variety of biological problems and in support
of models of biological processes on a variety of spatial and temporal scales. For example, in the
language of automated learning and discovery, research is needed to develop algorithms for active and
cumulative learning; multitask learning; learning from labeled and unlabeled data; relational learning;
learning from large datasets; learning from small datasets; learning with prior knowledge; learning
from mixed-media data; and learning causal relationships.?

The computational algorithms used for biological applications are likely to be rooted in mathematical
and statistical techniques used widely for other purposes (e.g., Bayesian networks, graph theory, principal
component analysis, hidden Markov models), but their adaptation to biological questions must address
the constraints that define biological events. Because critical features of many biological systems are not
known, algorithms must operate on the basis of working models and must frequently contend with a lack
of data and incomplete information about the system under study (though sometimes simulated data
suffices to test an algorithm). Thus, the results they provide must be regarded as approximate and provi-
sional, and the performance of algorithms must be tested and validated by empirical laboratory studies.
Algorithm development, therefore, requires the joint efforts of biologists and computer scientists.

Sections 4.4.4 through 4.4.9 describe certain biological problems and the algorithmic approaches to
solving them. Far from giving a comprehensive description, these sections are intended to illustrate the
complex substrate on which algorithms must operate and, further, to describe areas of successful and
prolific collaboration between computer scientists and biologists.

Some of the applications described below are focused on identifying or measuring specific at-
tributes, such as the identity of a gene, the three-dimensional structure of a protein, or the degree of
genetic variability in a population. At the heart of these lines of investigation is the quest to understand
biological function, (e.g., how genes interact, the physical actions of proteins, the physiological results
of genetic differences). Further opportunities to address biological questions are likely to be as diverse
as biology itself, although work on some of those questions is only nascent at this time.

4.4.4 Gene Recognition

Although the complete genomic sequences of many organisms have been determined, not all of the genes
within those genomes have been identified. Difficulties in identifying genes from sequences of uncharacterized
DNA stem mostly from the complexity of gene organization and architecture. Just a small fraction of the
genome of a typical eukaryote consists of exons, that is, blocks of DNA that, when arranged according to their
sequence in the genome, constitute a gene; in the human genome, the fraction is estimated at less than 3 percent.

91The notion of an NP-complete problem is rooted in the theory of computational complexity and has a precise technical
definition. For purposes of this report, it suffices to understand an NP-complete problem as one that is very difficult and would
take a long time to solve.

923, Thurn, C. Faloutsos, T. Mitchell, and L. Wasseterman, “Automated Learning and Discovery: State-of-the-Art and Research
Topics in a Rapidly Growing Field,” Summary of a Conference on Automated Learning and Discovery, Center for Automated Learn-
ing and Discovery, Carnegie Mellon University, Pittsburgh, PA, 1998.
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Regions of the genome that are not transcribed from DNA into RNA include biological signals (such as
promoters) that flank the coding sequence and regulate the gene’s transcription. Other untranscribed regions of
unknown purpose are found between genes or interspersed within coding sequences.

Genes themselves can occasionally be found nested within one another, and overlapping genes have
been shown to exist on the same or opposite DNA strands.”® The presence of pseudogenes (nonfunctional
sequences resembling real genes), which are distributed in numerous copies throughout a genome, further
complicates the identification of true protein-coding genes.** Finally, it is known that most genes are ulti-
mately translated into more than one protein through a process that is not completely understood. In the
process of transcription, the exons of a particular gene are assembled into a single mature mRNA. However,
in a process known as alternate splicing, various splicings omit certain exons, resulting in a family of variants
(“splice variants”) in which the exons remain in sequence, but some are missing. It is estimated that at least
a third of human genes are alternatively spliced,” with certain splicing arrangements occurring more
frequently than others. Protein splicing and RNA editing also play an important role. To understand gene
structures completely, all of these sequence features have to be anticipated by gene recognition tools.

Two basic approaches have been established for gene recognition: the sequence similarity search, or
lookup method, and the integrated compositional and signal search, or template method (also known as
ab initio gene finding).*® Sequence similarity search is a well-established computational method for gene
recognition based on the conservation of gene sequences (called homology) in evolutionarily related
organisms. A sequence similarity search program compares a query sequence (an uncharacterized se-
quence) of interest with already characterized sequences in a public sequence database (e.g., databases of
the Institute of Genomic Research (TIGR)?”) and then identifies regions of similarity between the se-
quences. A query sequence with significant similarity to the sequence of an annotated (characterized) gene
in the database suggests that the two sequences are homologous and have common evolutionary origin.
Information from the annotated DNA sequence or the protein coded by the sequence can potentially be
used to infer gene structure or function of the query sequence, including promoter elements, potential
splice sites, start and stop codons, and repeated segments. Alignment tools, such as BLAST,? FASTA, and
Smith-Waterman, have been used to search for the homologous genes in the database.

Although sequence similarity search has been proven useful in many cases, it has fundamental
limitations. Manning et al. note in their work on the protein kinase complement of the human genome

93[. Dunham, L.H. Matthews, J. Burton, J.L. Ashurst, K.L. Howe, K.J. Ashcroft, D.M. Beare, et al., “The DNA Sequence of
Human Chromosome 22,” Nature 402(6982):489-495, 1999.

94A mitigating factor is that pseudogenes are generally not conserved between species (see, for example, S. Caenepeel, G.
Charydezak, S. Sudarsanam, T. Hunter, and G. Manning, “The Mouse Kinome: Discovery and Comparative Genomics of All
Mouse Protein Kinases,” Proceedings of the National Academy of Sciences 101(32):11707-11712, 2004). This fact provides another clue
in deciding which sequences represent true genes and which represent pseudogenes.

95D. Brett, J. Hanke, G. Lehmann, S. Haase, S. Delbruck, S. Krueger, J. Reich, and P. Bork, “EST Comparison Indicates 38% of
Human mRNAs Contain Possible Alternative Splice Forms,” FEBS Letters 474(1):83-86, 2000.

96] W. Fickett, “Finding Genes by Computer: The State of the Art,” Trends in Genetics 12(8):316-320, 1996.

97See http:/ /www.tigr.org/tdb/.

98The BLAST 2.0 algorithm, perhaps the most commonly used tool for searching large databases of gene or protein sequences, is
based on the idea that sequences that are truly homologous will contain short segments that will match almost perfectly. BLAST was
designed to be fast while maintaining the sensitivity needed to detect homology in distantly related sequences. Rather than aligning
the full length of a query sequence against all of the sequences in the reference database, BLAST fragments the reference sequences into
sub-sequences or “words” (11 nucleotides long for gene search) constituting a dictionary against which a query sequence is matched.
The program creates a list of all the reference words that show up in the query sequence and then looks for pairs of those words that
occur at adjacent positions on different sequences in the reference database. BLAST uses these “seed” positions to narrow candidate
matches and to serve as the starting point for the local alignment of the query sequence. In local alignment, each nucleotide position in
the query receives a score relative to how well the query and reference sequence match; perfect matches score highest, substitutions of
different nucleotides incur different penalties. Alignment is continued outward from the seed positions until the similarity of query
and reference sequences drops below a predetermined threshold. The program reports the highest scoring alignments, described by an
E-value, the probability that an alignment with this score would be observed by chance. See, for example, S.F. Altschul, T.L. Madden,
A.A. Schaffer, ]. Zhang, Z. Zhang, W. Miller, and D.J. Lipman, “Gapped BLAST and PSI-BLAST: A New Generation of Protein
Database Search Programs,” Nucleic Acids Research 25(17):3389-3402, 1997.
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that although “all 518 [kinase] genes are covered by some EST [Expressed Sequence Tag] sequence, and
~90% are present in gene predictions from the Celera and public genome databases, . . . those predic-
tions are often fragmentary or inaccurate and are frequently misannotated.”%

There are several reasons for these limitations. First, only a fraction of newly discovered sequences have
identifiable homologous genes in the current databases.!® The proportion of vertebrate genes with no detect-
able similarity in other phyla is estimated to be about 50 percent,!?! and this is supported by a recent analysis
of human chromosome 22, where only 50 percent of the proteins are found to be similar to previously known
proteins.!? Also, the most prominent vertebrate organisms in GenBank have only a fraction of their genomes
present in finished (versus draft, error-prone) sequences. Hence, it is obvious that sequence similarity search
within vertebrates is currently limited. Second, sequence similarity searches are computationally expensive
when query sequences have to be matched against a large number of sequences in the databases.

To resolve this problem, a dictionary-based method, such as Identifier of Coding Exons (ICE), is often
employed. In this method, gene sequences in the reference database are fragmented into subsequences of
length k, and these subsequences make up the dictionary against which a query sequence is matched. If the
subsequences corresponding to a gene have at least 1 consecutive matches with a query sequence, the gene is
selected for closer examination. Full-length alignment techniques are then applied to the selected gene se-
quences. The dictionary-based approach significantly reduces the processing time (down to seconds per gene).

In compositional and signal search, a model (typically a hidden Markov model) is constructed that
integrates coding statistics (measures indicative of protein coding functions) with signal detection into
one framework. An example of a simple hidden Markov model for a compositional and signal search
for a gene in a sequence sampled from a bacterial genome is shown in Figure 4.3. The model is first
“trained” on sequences from the reference database and generates the probable frequencies of different
nucleotides at any given position on the query sequence to estimate the likelihood that a sequence is in
a different “state” (such as a coding region). The query sequence is predicted to be a gene if the product
of the combined probabilities across the sequence exceeds a threshold determined by probabilities
generated from sequences in the reference database.

The discussion above has presumed that biological understanding does not play a role in gene
recognition. This is often untrue—gene-recognition algorithms make errors of omission and commis-
sion when run against genomic sequences in the absence of experimental biological data. That is, they
fail to recognize genes that are present, or misidentify starts or stops of genes, or mistakenly insert or
delete segments of DNA into the putative genes. Improvements in algorithm design will help to reduce
these difficulties, but all the evidence to date shows that knowledge of some of the underlying science
helps even more to identify genes properly.1%

9G. Manning, D.B. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam, “The Protein Kinase Complement of the Human
Genome,” Science 298(5600):1912-1934, 2002.

1001, Dunham, N. Shimizu, B.A. Roe, S. Chissoe, A.R. Hunt, J.E. Collins, R. Bruskiewich, et al. “The DNA Sequence of Human
Chromosome 22,” Nature 402(6761):489-495, 1999.

1017 M. Claverie, “Computational Methods for the Identification of Genes in Vertebrate Genomic Sequences,” Human Molecular
Genetics 6(10):1735-1744, 1999.

1021, pynham, N. Shimizu, B.A. Roe, S. Chissoe, A.R. Hunt, J.E. Collins, R. Bruskiewich, et al., “The DNA Sequence of Human
Chromosome 22,” Nature 402(6761):489-495, 1999.

103This discussion is further complicated by the fact that there is no scientific consensus on the definition of a gene. Robert
Robbins (Vice President for Information Technology at the Fred Hutchinson Cancer Research Center in Seattle, Washington, per-
sonal communication, December 2003) relates the following story: “Several times, I've experienced a situation where something like
the following happens. First, you get biologists to agree on the definition of a gene so that a computer could analyze perfect data
and tell you how many genes are present in a region. Then you apply the definition to a fairly complex region of DNA to determine
the number of genes (let’s say the result is 11). Then, you show the results to the biologists who provided the rules and you say,
‘According to your definition of a gene there are eleven genes present in this region.” The biologists respond, ‘No, there are just
three. But they are related in a very complicated way.” When you then ask for a revised version of the rules that would provide a
result of three in the present example, they respond, ‘No, the rules I gave you are fine.”” In short, Robbins argues with considerable
persuasion that if biologists armed with perfect knowledge and with their own definition of a gene cannot produce rules that will
always identify how many genes are present in a region of DNA, computers have no chance of doing so.
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FIGURE 4.3 Hidden Markov model of a compositional signal and search approach for finding a gene in a bacterial

genome.
The model has four features: (1) state of the sequence, of which four states are possible (coding, intergenic, start,

and stop); (2) outputs, defined as the possible nucleotide(s) that can exist at any given state (A, C, T, G at coding
and intergenic states; ATG and TAA at start and stop states, respectively); (3) emission possibilities—the probabil-
ity that a given nucleotide will be generated in any particular state; and (4) transition probability (TP)—the proba-
bility that the sequence is in transition between two states.

To execute the model, emission and transition probabilities are obtained by training on the characterized genes
in the reference database. The set of all possible combinations of states for the query sequence is then generated,
and an overall probability for each combination of states is calculated. If the combination having the highest
overall probability exceeds a threshold determined using gene sequences in the reference database, the query
sequence is concluded to be a gene.

4.4.5 Sequence Alignment and Evolutionary Relationships

A remarkable degree of similarity exists among the genomes of living organisms.!™ Information
about the similarities and dissimilarities of different types of organisms presents a picture of relatedness
between species (i.e., between reproductive groups), but also must provide useful clues to the impor-
tance, structure, and function of genes and proteins carried or lost over time in different species.
“Comparative genomics” has become a new discipline within biology to study these relationships.

104For example, 9 percent of E. coli genes, 9 percent of rice genes, 30 percent of yeast genes, 43 percent of mosquito genes, 75
percent of zebrafish genes, and 94 percent of rat genes have homologs in humans. See http://iubio.bio. Indiana.edu:8089/all/

hgsummary.html (Summary Table August 2005).
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Alignments of gene and protein sequences from many different organisms are used to find diagnostic
patterns to characterize protein families; to detect or demonstrate homologies between new sequences
and existing families of sequences; to help predict the secondary and tertiary structures of new se-
quences; and to serve as an essential prelude to molecular evolutionary analysis.

To visualize relationships between genomes, evolutionary biologists develop phylogenetic trees
that portray groupings of organisms, characteristics, genes, or proteins based on their common ances-
tries and the set of common characters they have inherited. One type of molecular phylogenetic tree, for
example, might represent the amino acid sequence of a protein found in several different species. The
tree is created by aligning the amino acid sequences of the protein in question from different species,
determining the extent of differences between them (e.g., insertions, deletions, or substitutions of amino
acids), and calculating a measure of relatedness that is ultimately reflected in a drawing of a tree with
nodes and branches of different lengths.

The examination of phylogenetic relationships of sequences from several different species gen-
erally uses a method known as progressive sequence alignment, in which closely related sequences
are aligned first, and more distant ones are added gradually to the alignment. Attempts at tackling
multiple alignments simultaneously have been limited to small numbers of short sequences be-
cause of the computational power needed to resolve them. Therefore, alignments are most often
undertaken in a stepwise fashion. The algorithm of one commonly used program (ClustalW) con-
sists of three main stages. First, all pairs of sequences are aligned separately in order to calculate a
distance matrix giving the divergence of each pair of sequences; second, a guide tree is calculated
from the distance matrix; and third, the sequences are progressively aligned according to the
branching order in the guide tree.

Alignment algorithms that test genetic similarity face several challenges. The basic premise of a
multiple sequence alignment is that, for each column in the alignment, every residue from every se-
quence is homologous (i.e., has evolved from the same position in a common ancestral sequence). In the
process of comparing any two amino acid sequences, the algorithm must place gaps or spaces at points
throughout the sequences to get the sequences to align. Because inserted gaps are carried forward into
subsequent alignments with additional new sequences, the cumulative alignment of multiple sequences
can become riddled with gaps that sometimes result in an overall inaccurate picture of relationships
between the proteins. To address this problem, gap penalties based on a weight matrix of different
factors are incorporated into the algorithm. For example, the penalty for introducing a gap in aligning
two similar sequences is greater that that for aligning two dissimilar sequences. Gap penalties differ
depending on the length of the sequence, the types of sequence, and different regions of sequence.
Based on the weight matrix and rules for applying penalties, the algorithm compromises in the place-
ment of gaps to obtain the lowest penalty score for each alignment.

The placement of a gap in a protein sequence may represent an evolutionary change—if a gap,
reflecting the putative addition or subtraction of an amino acid to a protein’s structure, is introduced,
the function of the protein may change, and the change may have evolutionary benefit. However, the
change may also be insignificant from a functional point of view. Today, it is known that most insertions
and deletions occur in loops on the surface of the protein or between domains of multidomain proteins,
which means that knowledge of the three-dimensional structure or the domain structure of the protein
can be used to help identify functionally important deletions and insertions.

As the structures of different protein domains and families are increasingly determined by other
means, alignment algorithms that incorporate such information should become more accurate. More
recently, stochastic and iterative optimization methods are being used to refine individual alignments.
Also, some algorithms (e.g., Bioedit) allow users to manually edit the alignment when other information
or “eyeballing” suggests logical placement of gaps.

Exploitation of complete genomic knowledge across closely related species can play an important
role in identifying the functional elements encoded in a genome. Kellis et al. undertook a comparative
analysis of the yeast Saccharomyces cerevisiae based on high-quality draft sequences of three related
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species (S. paradoxus, S. mikatae, and S. bayanus).1%% This analysis resulted in significant revisions of the
yeast gene catalogue, affecting approximately 15 percent of all genes and reducing the total count by
about 500 genes. Seventy-two genome-wide elements were identified, including most known regula-
tory motifs and numerous new motifs, and a putative function was inferred for most of these motifs.
The power of the comparative genomic approach arises from the fact that sequences that are positively
selected (i.e., confer some evolutionary benefit or have some useful function) tend to be conserved as a
species evolves, while other sequences are not conserved. By comparing a given genome of interest to
closely related genomes, conserved sequences become much more obvious to the observer than if the
functional elements had to be identified only by examination of the genome of interest. Thus, it is
possible, at least in principle, that functional elements can be identified on the basis of conservation
alone, without relying on previously known groups of co-regulated genes or without using data from
gene expression or transcription factor binding experiments.

Molecular phylogenetic trees that graphically represent the differences between species are usually
drawn with branch lengths proportional to the amount of evolutionary divergence between the two
nodes they connect. The longer the distance between branches, the more relatively divergent are the
sequences they represent. Methods for calculating phylogenetic trees fall into two general categories: (1)
distance-matrix methods, also known as clustering or algorithmic methods, and (2) discrete data meth-
ods. In distance-matrix methods, the percentage of sequence difference (or distance) is calculated for
pairwise combinations of all points of divergence; then the distances are assembled into a tree. In
contrast, discrete data methods examine each column of the final alignment separately and look for the
tree that best accommodates all of the information, according to optimality criteria—for example, the
tree that requires the fewest character state changes (maximum parsimony), the tree that best fits an
evolutionary model (maximum likelihood), or the tree that is most probable, given the data (Bayesian
inference). Finally, “bootstrapping” analysis tests whether the whole dataset supports the proposed tree
structure by taking random subsamples of the dataset, building trees from each of these, and calculating
the frequency with which the various parts of the proposed tree are reproduced in each of the random
subsamples.

Among the difficulties facing computational approaches to molecular phylogeny is the fact that
some sequences (or segments of sequences) mutate more rapidly than others.!® Multiple mutations at
the same site obscure the true evolutionary difference between sequences. Another problem is the
tendency of highly divergent sequences to group together when being compared regardless of their true
relationships. This occurs because of a background noise problem—with only a limited number of
possible sequence letters (20 in the case of amino acid sequences), even divergent sequences will not
infrequently present a false phylogenetic signal due strictly to chance.

4.4.6 Mapping Genetic Variation Within a Species

The variation that occurs between different species represents the product of reproductive isolation
and population fission over very long time scales during which many mutational changes in genes and
proteins occur. In contrast, variation within a single species is the result of sexual reproduction, genetic

105\, Kellis, N. Patterson, M. Endrizzi, B. Birren, and E.S. Lander, “Sequencing and Comparison of Yeast Species to Identify
Genes and Regulatory Elements,” Nature 423(6937):241-254, 2003.

106 A number of interesting references to this problem can be found in the following: M.T. Holder and P.O. Lewis, “Phylogeny
Estimation: Traditional and Bayesian Approaches,” Nature Reviews Genetics 4:275-284, 2003; I. Holmes and W.]. Bruno, “Evolu-
tionary HMMs: A Bayesian approach to multiple alignment,” Bioinformatics 17(9):803-820, 2001; A. Siepel and D. Haussler,
“Combining Phylogenetic and Hidden Markov Models in Biosequence Analysis,” in Proceedings of the Seventh Annual Interna-
tional Conference on Computational Molecular Biology, Berlin, Germany, pp. 277-286, 2003; R. Durbin, S. Eddy, A. Krogh, and G.
Mitchison, Biological Sequence Analysis—Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press, New York,
1998.
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recombination, and smaller numbers of relatively recent mutations.!?”” Examining the variation of gene
or protein sequences between different species helps to draw a picture of the pedigree of a particular
gene or protein over evolutionary time, but scientists are also interested in understanding the practical
significance of such variation within a single species.

Geneticists have been trying for decades to identify the genetic variation among individuals in the
human species that result in physical differences between them. There is an increasing recognition of
the importance of genetic variation for medicine and developmental biology and for understanding the
early demographic history of humans.!® In particular, variation in the human genome sequence is
believed to play a powerful role in the origins of and prognoses for common medical conditions.!%

The total number of unique mutations that might exist collectively in the entire human population
is not known definitively and has been estimated at upward of 10 million,!'® which in a 3 billion base-
pair genome corresponds to a variant every 300 bases or less. Included in these are single-nucleotide
polymorphisms (SNPs), that is, single-nucleotide sites in the genome where two or more of the four
bases (A, C, T, G) occur in at least 1 percent of the population. Many SNPs were discovered in the
process of overlapping the ends of DNA sequences used to assemble the human genome, when these
sequences came from different individuals or from different members of a chromosome pair from the
same individual. The average number of differences observed between the DNA of any two unrelated
individuals represented at 1 percent or more in the population is one difference in every 1,300 bases; this
leads to the estimation that individuals differ from one another at 2.4 million places in their genomes.!!!

In rare cases, a single SNP has been directly associated with a medical condition, such as sickle cell
anemia or cystic fibrosis. However, most common diseases such as diabetes, cancer, stroke, heart dis-
ease, depression, and arthritis (to name a few) appear to have complex origins and involve the partici-
pation of multiple genes along with environmental factors. For this reason there is interest in identifying
those SNPs occurring across the human genome that might be correlated with common medical condi-
tions. SNPs found within exons that contain genes are of greatest interest because they are believed to be
potentially related to changes in proteins that affect a predisposition to disease, but because most of the
genome does not code for proteins (and indeed a number of noncoding SNPs have been found!1?), the
functional impact of many SNPs is unknown.

Armed with rapid DNA sequencing tools and the ability to detect single-base differences, an inter-
national consortium looked for SNPs in individuals over the last several years, ultimately identifying
more than 3 million unique SNPs and their locations on the genome in a public database. SNP maps of
the human genome with a density of about one SNP per thousand nucleotides have been developed. An
effort under way in Iceland known as deCODE seeks to correlate SNPs with human diseases.!'> How-
ever, determining which combinations of the 10 million SNPs are associated with particular disease
states, predisposition to disease, and genes that contribute to disease remains a formidable challenge.

Some research on this problem has recently on focused on the discovery that specific combinations
of SNPs on a chromosome (called “haplotypes”) occur in blocks that are inherited together; that is, they

107D, Posada and K.A. Crandall, “Intraspecific Gene Genealogies: Trees Grafting into Networks,” Trends in Ecology and Evolu-
tion 16(1):37-45, 2001.

1081, 1. Cavalli-Sforza and M.W. Feldman, “The Application of Molecular Genetic Approaches to the Study of Human Evolu-
tion,” Nature Genetics 33 (Suppl.):266-275, 2003.

1095 B. Gabriel, S.F. Schaffner, H. Nguyen, ].M. Moore, ]J. Roy, B. Blumenstiel, J. Higins, et al., “The Structure of Haplotype
Blocks in the Human Genome,” Science 296(5576):2225-2229, 2002.

110g, Kruglyak and D.A. Nickerson, “Variation Is the Spice of Life,” Nature Genetics 27(3):234-236, 2001, available at http://
nucleus.cshl.edu/agsa/Papers/snp /Kruglyak_2001.pdf.

11The International SNP Map Working Group, “A Map of Human Genome Sequence Variation Containing 1.42 Million Single
Nucleotide Polymorphisms,” Nature 409:928-933, 2001.

112G¢¢, for example, D. Trikka, Z. Fang, A. Renwick, S.H. Jones, R. Chakraborty, M. Kimmel, and D.L. Nelson, “Complex SNP-
based Haplotypes in Three Human Helicases: Implications for Cancer Association Studies,” Genome Research 12(4):627-639, 2002.

1135 www.decode.com.

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/11480.html

omputing and Biology

96 CATALYZING INQUIRY

are unlikely to be separated by recombination that takes place during reproduction. Further, only a
relatively small number of haplotype patterns appear across portions of a chromosome in any given
population.!* This discovery potentially simplifies the problem of associating SNPs with disease be-
cause a much smaller number of “tag” SNPs (500,000 versus the estimated 10 million SNPs) might be
used as representative markers for blocks of variation in initial studies to find correlations between
parts of the genome and common diseases. In October 2002, the National Institutes of Health (NIH)
launched the effort to map haplotype patterns (the HapMap) across the human genome.

Developing a haplotype map requires determination of all of the possible tag SNP combinations
that are common in a population, and therefore relies on data from high-throughput screening of SNPs
from a large number of individuals. A difficulty is that a haplotype represents a specific group of SNPs
on a single chromosome. However, with the exception of gametes (sperm and egg), human cells contain
two copies of each chromosome (one inherited from each parent). High-throughput studies generally
do not permit the separate, parallel examination of each SNP site on both members of an individual’s
pair of chromosomes. SNP data obtained from individuals represent a combination of information
(referred to as the genotype) from both of an individual’s chromosomes. For example, genotyping an
individual for the presence of a particular SNP will result in two data values (e.g., A and T). Each value
represents an SNP at the same site on both chromosomes, and recently it has become possible to
determine the specific chromosomes to which A and T belong.'1®

There are two problems in creating a HapMap. The first is to extract haplotype information
computationally from genotype information for any individual. The second is to estimate haplotype
frequencies in a population. Although good approaches to the first problem are known,'1¢ the second
remains challenging. Algorithms such as the expectation-maximization approach, Gibbs sampling
method, and partition-ligation methods have been developed to tackle this problem.

Some algorithmic programs rely on the concept of evolutionary coalescence or a perfect phylog-
eny—that is, a rooted tree whose branches describe the evolutionary history of a set of sequences (or
haplotypes) in sample individuals. In this scenario, each sequence has a single ancestor in the previous
generation, under the presumption that the haplotype blocks have not been subject to recombination,
and takes as a given that only one mutation will have occurred at any one SNP site. Given a set of
genotypes, the algorithm attempts to find a set of haplotypes that fit a perfect phylogeny (i.e., could
have originated from a common ancestor). The performance of algorithms for haplotype prediction
generally improves as the number of individuals sampled and the number of SNPs included in the
analysis increases. This area of algorithm development will continue to be a robust area of research in
the future as scientists and industry seek to associate genetic variation with common diseases.

Direct haplotyping is also possible, and can circumvent many of the difficulties and ambiguities
encountered when a statistical approach is used.!” For example, Ding and Cantor have developed a
technique that enables direct molecular haplotyping of several polymorphic markers separated by as
many as 24 kb.18 The haplotype is directly determined by simultaneously genotyping several polymor-
phic markers in the same reaction with a multiplex PCR and base extension reaction. This approach
does not rely on pedigree data and does not require previous amplification of the entire genomic region
containing the selected markers.

1145 5. Lander, L.M. Linton, B. Birren, C. Nusbaum, M.C. Zody, ]. Baldwin, et al., “Initial Sequencing and Analysis of the
Human Genome,” Nature 409(6822):860-921, 2001.

15C. Ding and C.R. Cantor, “Direct Molecular Haplotyping of Long-range Genomic DNA with M1-PCR,” Proceedings of the
National Academy of Sciences 100(13):7449-7453, 2003.

116gee, for example, D. Gusfield, “Inference of Haplotypes from Samples of Diploid Populations: Complexity and Algo-
rithms,” Journal of Computational Biology 8(3):305-323, 2001.

117]. Tost, O. Brandt, F. Boussicault, D. Derbala, C. Caloustian, D. Lechner, and 1.G. Gut, “Molecular Haplotyping at High
Throughput,” Nucleic Acids Research 30(19):€96, 2002.

18C. Ding and C.R. Cantor, “Direct Molecular Haplotyping of Long-range Genomic DNA with M1-PCR,” Proceedings of the
National Academy of Sciences 100(13):7449-7453, 2003.

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/11480.html

omputing and Biology

COMPUTATIONAL TOOLS 97

Finally, in early 2005, National Geographic and IBM announced a collaboration known as the the
Genographic Project to probe the migratory history of the human species.!'® The project seeks to collect 100,000
blood samples from indigenous populations, with the intent of analyzing DNA in these samples. Ultimately,
the project will create a global database of human genetic variation and associated anthropological data
(language, social customs, etc.) that provides a snapshot of human genetic variation before the cultural context
of indigenous populations is lost—a context that is needed to make sense of the variations in DNA data.

4.4.7 Analysis of Gene Expression Data

Although almost all cells in an organism contain the same genetic material (the genomic blueprint for
the entire organism), only about one-third of a given cell’s genes are expressed or “switched on”—that is,
are producing proteins—at a given time. Expressed genes account for differences in cell types; for ex-
ample, DNA in skin cells produces a different set of proteins than DNA in nerve cells. Similarly, a
developing embryo undergoes rapid changes in the expression of its genes as its body structure unfolds.
Differential expression in the same types of cells can represent different cellular “phenotypes” (e.g.,
normal versus diseased), and modifying a cell’s environment can result in changed levels of expression of
a cell’s genes. In fact, the ability to perturb a cell and observe the consequential changes in expression is a
key to understanding linkages between genes and can be used to model cell signaling pathways.

A powerful technology for monitoring the activity of all the genes in a cell is the DNA microarray
(described in Box 7.5 in Chapter 7). Many different biological questions can be asked with microarrays,
and arrays are now constructed in many varieties. For example, instead of DNA across an entire
genome, the array might be spotted with a specific set of genes from an organism or with fabricated
sequences of DNA (oligonucleotides) that might represent, for example, a particular SNP or a mutated
form of a gene. More recently, protein arrays have been developed as a new tool that extends the reach
of gene expression analysis.

The ability to collect and analyze massive sets of data about the transcriptional states of cells is an
emerging focus of molecular diagnostics as well as drug discovery. Profiling the activation or suppres-
sion of genes within cells and tissues provides telling snapshots of function. Such information is critical
not only to understand disease progression, but also to determine potential routes for disease interven-
tion. New technologies that are driving the field include the creation of “designer” transcription factors
to modulate expression, use of laser microdissection methods for isolation of specific cell populations,
and technologies for capturing mRNA. Among the questions asked of microarrays (and the computa-
tional algorithms to decipher the results) are the discrimination of genes with significant changes in
expression relative to the presence of a disease, drug regimen, or chemical or hormonal exposure.

To illustrate the power of large-scale analysis of gene data, an article in Science by Gaudet and
Mango is instructive.!?? A comparison of microarray data taken from Caenorhabditis elegans embryos
lacking a pharynx with microarray data from embryos having excess pharyngeal tissue identified 240
genes that were preferentially expressed in the pharynx, and further identified a single gene as directly
regulating almost all of the pharynx-specific genes that were examined in detail. These results suggest
the possibility that direct transcriptional regulation of entire gene networks may be a common feature of
organ-specification genes.'?!

19 ore information on the project can be found at http:/ /www5.nationalgeographic.com/genographic/.

1207 Gaudet and S.E. Mango, “Regulation of Organogenesis by the Caenorhabditis elegans FoxA Protein PHA-4,” Science
295(5556):821-825, 2002.

121For example, it is known that a specific gene activates other genes that function at two distinct steps of the regulatory
hierarchy leading to wing formation in Drosophila (K.A. Guss, C.E. Nelson, A. Hudson, M. E. Kraus and S. B. Carroll, “Control of
a Genetic Regulatory Network by a Selector Gene,” Science 292(5519):1164-1167, 2001), and also that the presence of specific
factor is both necessary and sufficient for specification of eye formation in Drosophila imaginal discs, where it directly activates
the expression of both early- and late-acting genes (W.J. Gehring and K. Ikeo, “Pax 6: Mastering Eye Morphogenesis and Evolu-
tion,” Trends in Genetics 15(9):371-377, 1999).
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Many analytic techniques have been developed and applied to the problem of revealing biologically
significant patterns in microarray data. Various statistical tests (e.g., t-test, F-test) have been developed
to identify genes with significant changes in expression (out of thousands of genes); such genes have
had widespread attention as potential diagnostic markers or drug targets for disease, stages of develop-
ment, and other cellular phenotypes. Many classification tools (e.g., Fisher’s Discriminant Analysis,
Bayesian classifier, artificial neural networks, tools from signal processing) have also been developed to
build a phenotype classifier with the genes differentially expressed. These classification tools are gener-
ally used to discriminate known sample groups from each other using differentially expressed genes
selected by statistical testing.

Other algorithms are necessary because data acquired through microarray technology often have
problems that must be managed prior to use. For example, the quality of microarray data is highly
dependent on the way in which a sample is prepared. Many factors can affect the extent to which a dot
fluoresces, of which the transcription level of the particular gene involved is only one. Such extraneous
factors include the sample’s spatial homogeneity, its cleanliness (i.e., lack of contamination), the sensi-
tivity of optical detectors in the specific instrument, varying hybridization efficiency between clones,
relative differences between dyes, and so forth. In addition, because different laboratories (and different
technicians) often have different procedures for sample preparation, datasets taken from different labo-
ratories may not be strictly comparable. Statistical methods of analysis of variance (ANOVA) have been
applied to deal with these problems, using models to estimate the various contributions to relative
signal from the many potential sources. Importantly, these models not only allow researchers to attach
measures of statistical significance to data, but also suggest improved experimental designs.!??

An important analytical task is to identify groups of genes with similar expression patterns. These
groups of genes are more likely to be involved in the same cellular pathways, and many data-driven
hypotheses about cellular regulatory mechanisms (e.g., disease mechanisms) have been drawn under
this assumption. For this purpose, various clustering methods, such as hierarchical clustering methods,
self-organizing maps (trained neural networks), and COSA (Clustering Objects on Subsets of Attributes),
have been developed. The goal of cluster analysis is to partition a dataset of N objects into subgroups
such that these objects are more similar to those in their subgroups than to those in other groups.
Clustering tools are generally used to identify groups of genes that have similar expression pattern
across samples; thus, it is reasonable to suppose that the genes in each group (or cluster) are involved in
the same biological pathway. Most clustering methods are iterative and involve the calculation of a
notional distance between any two data points; this distance is used as the measure of similarity. In
many implementations of clustering, the distance is a function of all of the attributes of each sample.

Agglomerative hierarchical clustering begins with assigning N clusters for N samples, where all
samples are defined as different individual clusters. Potential clusters are arranged in a hierarchy
displayed as a binary tree or “dendrogram.” Euclidian distance or Pearson correlation is used with
“average linking” to develop the dendrogram. For example, two clusters that are closest to each other in
terms of Euclidean distance are combined to form a new cluster, which is represented as the average of
two groups combined (average linkage). This process is continued until there is one cluster to which all
samples belong. In the process of forming the single cluster, the overall structure of clusters is evaluated
for whether the merging of two clusters into one new cluster decreases both the sum of the similarity
within all of the clusters and the sum of differences between all of the clusters. The clustering procedure
stops at the level at which these are equal.

Self-organizing maps (SOMs)!?? are another form of cluster analysis. With SOMs, a number of
desired clusters is decided in advance, and a geometry of nodes (such as an N x M grid) is created,
where each node represents a single cluster. The nodes are randomly placed in the data space. Then, in

12201, Kerr, M. Martin, and G. Churchill, “Analysis of Variance for Gene Expression Microarray Data,” Journal of Computational
Biology 7(6):819-837, 2000.
123T, Kohonen, Self-Organizing Maps, Second Edition, Springer, Berlin, 1997.
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arandom order, each data point is selected. At each iteration, the nodes move closer to the selected data
point, with the distance moved influenced by the distance from the data point to the node and the
iteration number. Thus, the closest node will move the most. Over time, the initial geometry of the
nodes will deform and each node will represent the center of an identified cluster. Experimentation is
often necessary to arrive at a useful number of nodes and geometry, but since SOMs are computationally
tractable, it is feasible to run many sessions. The properties of SOMs—partially structured, scalable to
large datasets, unsupervised, easily visualizable—make them well suited for analysis of microarray
data, and they have been used successfully to detect patterns of gene expression.'?*

In contrast to the above two methods, COSA is based on the assumption that better clustering can
be achieved if only relevant genes are used in individual clusters. This is consistent with the idea of
identifying differentially expressed genes (relevant genes) and then using only those genes to build a
classifier. The search algorithm in COSA identifies an optimal set of variables that should be used to
group individual clusters and which clusters should be merged when their similarity is assessed using
the optimal set of variables identified. This idea was implemented by adding weights reflecting contri-
butions of all genes to producing a particular set of sample clusters, and the search algorithm is then
formulated as an optimization problem. The clustering results by COSA indicate that a subset of genes
makes a greater contribution to a particular sample cluster than to other clusters.'?

Clustering methods are being used in many types of studies. For example, they are particularly
useful in modeling cell networks and in clustering disparate kinds of data (e.g., RNA data and non-
RNA data; sequence data and protein data). Clustering can be applied to evaluate how feasible a given
network structure is. Also, clustering is often combined with perturbation analysis to explore a set of
samples or genes for a particular purpose. In general, clustering can be useful in any study in which
local analyses with groups of samples or genes identified by clustering improve the understanding of
the overall system.

Biclustering is an alternate approach to revealing meaningful patterns in the data.!?® It seeks to
identify submatrices in which the set of values has a low mean-squared residue, meaning that the each
value is reasonably coherent with other members in its row and column. (However, excluding meaning-
less solutions with zero area, this problem is unfortunately NP-complete.) Advantages of this approach
include that it can reveal clusters based on a subset of attributes, it simultaneously clusters genes with
similar expression patterns and conditions with similar expression patterns, and most importantly,
clusters can overlap. Since genes are often involved in multiple biological pathways, this can be used to
reveal linkages that otherwise would be obscured by traditional cluster analysis.

While many analyses of microarray data consider a single snapshot in time, of course expression
levels vary over time, especially due to the cellular life cycle. A challenge in analyzing microarray time-
series data is that cell cycles may be unsynchronized, making it difficult to correctly identify correla-
tions between data samples that have similar expression behavior. Statistical techniques can identify
periodicity in series and look for phase-shifted correlations between pairs of samples,'?” as well as more
traditional clustering analysis.

A separate set of analytic techniques is referred to as supervised methods, in contrast to clustering
and similar methods that run with no incoming assumptions. Supervised methods, in contrast, use
existing knowledge of the dataset to classify data into one of a set of classes. In general, these techniques

124p, Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewwan, E. Dmitrovsky, E.S. Lander, and T.R. Golub, “Interpreting
Patterns of Gene Expression with Self-organizing maps: Methods and Application to Hematopoietic Differentiation,” Proceedings
of the National Academy of Sciences 96(6):2907-2912, 1999.

1257 H. Friedman and J.J. Meulman, “Clustering Objects on Subsets of Attributes,” Journal of the Royal Statistical Society Series B
66(4):815-849(34), 2004.

126y, Cheng and G.M. Church, “Biclustering of Expression Data,” Proceedings of the Eighth International Conference on Intelligent
Systems for Molecular Biology 8:93-103, 2000.

127y, Filkov, S. Skiena, and J. Zhi, “Analysis Techniques for Microarray Time-Series Data,” Journal of Computational Biology
9(2):317-330. Available at http:/ /www.cs.ucdavis.edu/ ~filkov/papers/spellmananalysis.pdf.
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rely on training sets provided by the researchers, where the class membership of data is provided. Then,
when presented with experimental data, supervised methods apply the learning from the training set to
perform similar classifications. One such technique is support vector machines (SVMs), which are
useful for highly multidimensional data. SVMs map the data into a “feature space” and then create
(through one of a large number of possible algorithms) a hyperplane that separates the classes. Another
common method is Artificial Neural Nets (see XREF), which train on a dataset with defined class
membership; if the neural network classifies a member of the training set incorrectly, the error back-
propagates through the system and updates the weightings. Unsupervised and supervised methods can
be combined for “semisupervised” learning methods, in which heterogeneous training data can be both
classified and unclassified.'?8

However, there is no analytic method optimal to any dataset. Thus, it would be useful to develop a
scheme that can guide users to choose an appropriate method (e.g., in hierarchical clustering, an appro-
priate set of similarity measure, linkage method, and the measure used to determine the number of
clusters) to achieve a reasonable analysis of their own datasets.

Ultimately, it is desirable to go beyond correlations and associations in the analysis of gene expres-
sion data to seek causal relationships. It is an elementary truism of statistics that indications of correla-
tion are not by themselves indicators of causality—an experimental manipulation of one of more vari-
ables is always necessary to conclude a causal relationship. Nevertheless, analysis of microarray data
can be helpful in suggesting experiments that might be particularly fruitful in uncovering causal rela-
tionships. Bayesian analysis allows one to make inferences about the possible structure of a genetic
regulatory pathway on the basis of microarray data, but even advocates of such analysis recognize the
need for experimental test. One work goes so far as to suggest that it is possible that automated
processing of microarray data can suggest interesting experiments that will shed light on causal rela-
tionships, even if the existing data themselves don’t support causal inferences.!?

4.4.8 Data Mining and Discovery

4.4.8.1 The First Known Biological Discovery from Mining Databases!>

By the early 1970s, the simian sarcoma virus had been determined to cause cancer in certain species
of monkeys. In 1983, the responsible oncogene within the virus was sequenced. At around the same
time, and entirely independently, a partial amino acid sequence of an important growth factor in
humans—the platelet-derived growth factor (PDGF) was also determined. PDGF was known to cause
cultured cells to proliferate in a cancer-like manner. Russell Doolittle compared the two sequences and
found a high degree of similarity between them, indicating a possible connection between an oncogene
and a normal human gene. In this case, the indication was that the simian sarcoma virus acted on cells
in monkeys in a manner similar to the action of PDGF on human cells.

128T, 1, S. Zhu, Q. Li, and M. Ogihara, “Gene Functional Classification by Semisupervised Learning from Heterogeneous
Data,” pp. 78-82 in Proceedings of the ACM Symposium on Applied Computing, ACM Press, New York, 2003.

129C. Yoo and G. Cooper, “An Evaluation of a System That Recommends Microarray Experiments to Perform to Discover
Gene-regulation Pathways,” Artificial Intelligence in Medicine 31(2):169-182, 2004, available at http://www.phil.cmu.edu/projects/
genegroup/papers/y002003a.pdf.

130Adapted from S.G.E. Andersson and L. Klasson, “Navigating Through the Databases,” available at http:/ /artedi.ebc.uu.se/
course/overview /navigating_databases.html. The original Doolittle article was published as R.F. Doolittle, M.W. Hunkapiller,
L.E. Hood, S.G. Davare, K.C. Robbins, S.A. Aaronson, and H.N. Antoniades, “Simian Sarcoma Virus onc Gene, v-sis, Is Derived
from the Gene (or Genes) Encoding a Platelet-derived Growth Factor,” Science 221(4607):275-277, 1983.
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4.4.8.2 A Contemporary Example: Protein Family Classification and
Data Integration for Functional Analysis of Proteins

New bioinformatics methods allow inference of protein function using associative analysis (“guilt
by association”) of functional properties to complement the traditional sequence homology-based meth-
ods.131 Associative properties that have been used to infer function not evident from sequence homol-
ogy include co-occurrence of proteins in operons or genome context; proteins sharing common domains
in fusion proteins; proteins in the same pathway, subcellular network, or complex; proteins with corre-
lated gene or protein expression patterns; and protein families with correlated taxonomic distribution
(common phylogenetic or phyletic patterns).

Coupling protein classification and data integration allows associative studies of protein family,
function, and structure.’® An example is provided in Figure 4.4, which illustrates how the collective
use of protein family, pathway, and genome context in bacteria helped researchers to identify a long-
sought human gene associated with the methylmalonic aciduria disorder.

Domain-based or structural classification-based searches allow identification of protein families
sharing domains or structural fold classes. Functional convergence (unrelated proteins with the same
activity) and functional divergence are revealed by the relationships between the enzyme classification
and protein family classification. With the underlying taxonomic information, protein families that
occur in given lineages can be identified. Combining phylogenetic pattern and biochemical pathway
information for protein families allows identification of alternative pathways to the same end product
in different taxonomic groups, which may present attractive potential drug targets. The systematic
approach for protein family curation using integrative data leads to novel prediction and functional
inference for uncharacterized “hypothetical” proteins, and to detection and correction of genome anno-
tation errors (a few examples are listed in Table 4.2). Such studies may serve as a basis for further
analysis of protein functional evolution, and its relationship to the coevolution of metabolic pathways,
cellular networks, and organisms.

Underlying this approach is the availability of resources that provide analytical tools and data. For
example, the Protein Information Resource (PIR) is a public bioinformatics resource that provides an
advanced framework for comparative analysis and functional annotation of proteins. PIR recently
joined the European Bioinformatics Institute and Swiss Institute of Bioinformatics to establish
UniProt,'3% an international resource of protein knowledge that unifies the PIR, Swiss-Prot, and TrTEMBL
databases. Central to the PIR-UniProt functional annotation of proteins is the PIRSF (SuperFamily)
classification system!3* that provides classification of whole proteins into a network structure to reflect
their evolutionary relationships. This framework is supported by the iProClass integrated database of
protein family, function, and structure,'3® which provides value-added descriptions of all UniProt pro-
teins with rich links to more than 50 other databases of protein family, function, pathway, interaction,
modification, structure, genome, ontology, literature, and taxonomy. As a core resource, the PIR envi-
ronment is widely used by researchers to develop other bioinformatics infrastructures and algorithms
and to enable basic and applied scientific research, as shown by examples in Table 4.3.

131 M. Marcotte, M. Pellegrini, M.J. Thompson, T.O. Yeates, and D. Eisenberg, “Combined Algorithm for Genome-wide
Prediction of Protein Function,” Nature 402(6757):83-86, 1999.

132C H. Wu, H. Huang, A. Nikolskaya, Z. Hu, and W.C. Barker, “The iProClass Integrated Database for Protein Functional
Analysis,” Computational Biology and Chemistry 28(1):87-96, 2004.

133R. Apweiler, A. Bairoch, C.H. Wu, W.C. Barker, B. Boeckmann, S. Ferro, E. Gasteiger, et al., “UniProt: Universal Protein
Knowledgebase,” Nucleic Acids Research 32(Database issue):D115-D119, 2004.

134C H. Wu, A. Nikolskaya A, H. Huang, L.S. Yeh, D.A. Natale, C.R. Vinayaka, Z.Z. Hu, et al., “PIRSF Family Classification
System at the Protein Information Resource,” Nucleic Acids Research 32(Database issue):D112-D114, 2004.

135C . H. Wu, H. Huang, A. Nikolskaya, Z. Hu, and W.C. Barker, “The iProClass Integrated Database for Protein Functional
Analysis,” Computational Biology and Chemistry 28(1):87-96, 2004.
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FIGURE 4.4 Integration of protein family, pathway, and genome context data for disease gene identification.

The ATR enzyme (EC 2.5.1.17) converts inactive cobalamins to AdoCbl (A), a cofactor for enzymes in several
pathways, including diol/glycerol dehydratase (EC 4.2.1.28) (B) and methylmalonyl-CoA mutase (MCM) (EC
5.4.99.2) (C). Many prokaryotic ATRs are predicted to be required for EC 4.2.1.28 based on the genome context of
the corresponding genes. However, in at least one organism (Archaeoglobus fulgidus), the ATR gene is adjacent to
the MCM gene, which provided a clue for cloning the human and bovine ATRs.

SOURCE: Courtesy of Cathy Wu, Georgetown University.
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TABLE 4.2 Protein Family Classification and Integrative Associative Analysis for Functional
Annotation

Superfamily Classification Description

A. Functional inference of uncharacterized hypothetical proteins

SF034452 TIM-barrel signal transduction protein
SF004961 Metal-dependent hydrolase
SF005928 Nucleotidyltransferase
SF005933 ATPase with chaperone activity
and inactive LON protease domain
SF005211 alpha/beta hydrolase
SF014673 Lipid carrier protein
SF005019 [Ni,Fe]-Hydrogenase-3-type complex,

membrane protein EhaA

B. Correction or improvement of genome annotations

SF025624 Ligand-binding protein with an ACT domain

SF005003 Inactive homologue of metal-dependent
protease

SF000378 Glycyl radical cofactor protein YfiD

SF000876 Chemotaxis response regulator
methylesterase CheB

SF000881 Thioesterase, type 11

SF002845 Bifunctional tetrapyrrole methylase and

MazG NTPase

C. Enhanced understanding of structure, function, evolutionary relationships

SF005965 Chorismate mutase, AroH class

SF001501 Chorismate mutase, AroQ class,
prokaryotic type

NOTE: PIRSF protein family reports detail supporting evidence for both experimentally validated and computationally pre-
dicted annotations.

4.4.9 Determination of Three-dimensional Protein Structure

One central problem of proteomics is that of protein folding. Protein folding is one of the most
important cellular processes because it produces the final conformation required for a protein to attain
biological activity. Diseases such as Alzheimer’s disease or bovine spongiform encephalopathy (BSE, or
“Mad Cow” disease) are associated with the improper folding of proteins. For example, in BSE the
protein (called the scrapie prion), which is soluble when it folds properly, becomes insoluble when one
of the intermediates along its folding pathway misfolds and forms an aggregation that damages nerve
cells.136

Due to the importance of the functional conformation of proteins, many efforts have been at-
tempted to predict computationally a three-dimensional structure of a protein from its amino acid
sequence. Although experimental determination of protein structure based on X-ray crystallography
and nuclear magnetic resonance yields protein structures in high resolution, it is slow, labor-intensive,
and expensive and thus not appropriate for large-scale determination. Also, it can apply only to al-
ready-synthesized or isolated proteins, while an algorithm could be used to predict the structure of a
great number of potential proteins.

1365ee, for example, C.M. Dobson, “Protein Misfolding, Evolution and Disease,” Trends in Biochemical Science 24(9):329-332,
1999; C.M. Dobson, “Protein Folding and Its Links with Human Disease.” Biochemical Society Symposia 68:1-26, 2001; C.M. Dob-
son, “Protein Folding and Misfolding,” Nature 426(6968):884-890, 2003.
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Resource
Resource Topic Reference
Algorithm Benchmarking for sequence similarity search Pearson, J. Mol. Biol. 276:71-84,
statistics 1998
PANDORA keyword-based analysis of proteins Kaplan, Nucleic Acids Research
31:5617-5626, 2003
Computing motif correlations for structure Horng et al., J. Comp. Chem.
prediction 24(16):2032-2043, 2003
Database NESbase database of nuclear export signals la Cour et al., Nucleic Acids
Research 31(1):393-396, 2003
TMPDB database of transmembrane topologies Ikeda et al., Nucleic Acids
Research 31:406-409, 2003
SDAP database and tools for allergenic proteins Ivanciuc et al., Nucleic Acids
Research 31:359-362, 2003
System SPINE 2 system for collaborative structural Goh et al., Nucleic Acids
proteomics Research 31:2833-2838, 2003
ERGOTM genome analysis and discovery system Overbeek et al., Nucleic Acids
Research 31(1):164-171, 2003
Automated annotation pipeline and cDNA Kasukawa et al., Genome Res.
annotation system 13(6B):1542-1551, 2003
Systers, GeneNest, SpliceNest from genome to Krause et al., Nucleic Acids
protein Research 30(1):299-300, 2002
Research Intermediate filament proteins during Prasad et al., Int. J. Oncol.

carcinogenesis or apoptosis
Conserved pathway by global protein network

14(3):563-570, 1999
Kelley et al., PNAS

alignment 100(20):11394-11399, 2003
Membrane targeting of phospholipase C Singh and Murray, Protein Sci.
pleckstrin 12:1934-1953, 2003

Analysis of human and mouse cDNA sequences

A novel Schistosoma mansoni G protein-coupled
receptor

Proteomics reveals open reading frames (ORFs)
in Mycobacterium tuberculosis

Strausberg et al., PNAS
99(26):16899-16903, 2002

Hamdan et al., Mol. Biochem.
Parasitol. 119(1):75-86, 2002

Jungblut et al., Infect. Immunol.
69(9):5905-5907, 2001

Protein structures predicted in high resolution can help characterize the biological functions of
proteins. Biotechnology companies are hoping to accelerate their efforts to discover new drugs that
interact with proteins by using structure-based drug design technologies. By combining computational
and combinatorial chemistry, researchers expect to find more viable leads. Algorithms create molecular
structure built de novo to optimize interactions within the protein’s active sites. The use of so-called
virtual screening in combination with studies of co-crystallized drugs and proteins could be a powerful
tool for drug development.

A number of tools for protein structure prediction have been developed, and progress in prediction
by these methods has been evaluated by the Critical Assessment of Protein Structure Prediction (CASP)
experiment held every two years since 1994.137 In a CASP experiment, the amino acid sequences of
proteins whose experimentally determined structures have not yet been released are published, and
computational research groups are then invited to predict structures of these target sequences using
their methods and any other publicly available information (e.g., known structures that exist in the
Protein Data Bank (PDB), the data repository for protein structures). The methods used by the groups

1375ee http:/ /predictioncenter.llnl.gov /.
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can be divided into three areas depending on the similarity of the target protein to proteins of known
structure: comparative (also known as homology) modeling, fold recognition (also known as thread-
ing), and de novo/new fold methods (also known as ab initio). This traditional division of prediction
methods has become blurred as the methods in each category incorporate detailed information used by
methods in the other categories.

In comparative (or homology) modeling, one or more template proteins of known structure with
high sequence homology (greater than 25 percent sequence identity) to the target sequence are identi-
fied. The target and template sequences are aligned through multiple sequence alignment (similar to
comparative genomics), and a three-dimensional structure of the target protein is generated from the
coordinates of the aligned residues of the template proteins. Finally, the model is evaluated using a
variety of criteria, and if necessary, the alignment and the three-dimensional model are refined until a
satisfactory model is obtained.

If no reliable template protein can be identified from sequence homology alone, the prediction
problem is denoted as a fold recognition (or threading) problem. The primary goal is to identify one or
more folds in the template proteins that are consistent with the target sequence. In the classical thread-
ing methods, known as “rigid body assembly,” a model is constructed from a library of known core
regions, loops, side chains, and folds, and the target sequence is then threaded onto the known folds.
After evaluating how well the model fits the known folds, the best fit is chosen. The assumption in fold
recognition is that only a finite number of folds exist and most existing folds can be identified from
known structures in the PDB. Indeed, as new sequences are deposited and more protein structures are
solved, there appear to be fewer and fewer unique folds. When two sequences share more than 25
percent similarity (or sequence identity), their structures are expected to have similar folds. However,
there are still remaining issues such as the high rate of false positives in fold recognition, and therefore,
the resulting alignment with the fold structure is poor. At 30 percent sequence identity, the fraction of
incorrectly aligned residues is about 20 percent, and the number rises sharply with further decreases in
sequence similarity. This limits the usefulness of comparative modeling.!38

If no template structure (or fold) can be identified with confidence by sequence homology methods,
the target sequence may be modeled using new fold prediction methods. The goal in this prediction
method rests on the biological assumption that proteins adopt their lowest free energy conformation as
their functional state. Thus, computational methods to predict structure ab initio comprise three ele-
ments: (1) protein geometry, (2) potential energy functions, and (3) an energy space search method
(energy minimization method). First, setting protein geometry involves determining the number of
particles to be used to represent the protein structure (for example, all-atom, united-atom, or virtual-
atom model) and the nature of the space where atoms can be allocated (e.g., continuous (off-lattice) or
discrete (lattice) model). In a simple ab initio folding such as a virtual-atom lattice model, one virtual
atom represents a number of atoms in a protein (i.e., the backbone is represented as a sequence of alpha
carbons) and an optimization method searches only the predetermined lattice points for positions of the
virtual atoms to minimize the energy functions. Second, the potential energy functions in ab initio
models include covalent terms, such as bond stretching, bond angle stretching, improper dihedrals, and
torsional angles, and noncovalent terms, such as electrostatic and van der Waals forces. The use of
molecular mechanics for refinement in comparative modeling is equivalent to ab initio calculation using
all atoms in an off-lattice model. Third, many optimizations tools, such as genetic algorithms, Monte
Carlo, simulated annealing, branch and bound, and successive quadratic programming (SQP), have
been used to search for the global minimum in the energy (or structure) spaces with a number of local
minima. These approaches have provided encouraging results, although the performance of each
method may be limited by the shape of the energy space.

138T. Head-Gordon and J. Wooley, “Computational Challenges in Structural and Functional Genomics,” IBM Systents Journal
40(2):265-296, 2001.
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Beyond studies of protein structure is the problem of describing a solvent environment (such as
water) and its influence on a protein’s conformational behavior. The importance of hydration in protein
stability and folding is widely accepted. Models are needed to incorporate the effects of solvents in
protein three-dimensional structure.

4.4.10 Protein Identification and Quantification from Mass Spectrometry

A second important problem in proteomics is protein identification and quantification. That is,
given a particular biological sample, what specific proteins are present and in what quantities? This
problem is at the heart of studying protein—protein interactions at proteomic scale, mapping various
organelles, and generating quantitative protein profiles from diverse species. Making inferences about
protein identification and abundance in biological samples is often challenging, because cellular
proteomes are highly complex and because the proteome generally involves many proteins at relatively
low abundances. Thus, highly sensitive analytical techniques are necessary.

Today, techniques based on mass spectrometry increasingly fill this need. The mass spectrometer
works on a biological sample in ionized gaseous form. A mass analyzer measures the mass-to-charge
ratio (m/z) of the ionized analytes, and a detector measures the number of ions at each m/z value. In
the simplest case, a procedure known as peptide mass fingerprinting (PMF) is used. PMF is based on the
fact that a protein is composed of multiple peptide groups, and identification of the complete set of
peptides will with high probability characterize the protein in question. After enzymatically breaking
up the protein into its constituent peptides, the mass spectrometer is used to identify individual pep-
tides, each of which has a known mass. The premise of PMF is that only a very few (one in the ideal case)
proteins will correspond to any particular set of peptides, and protein identification is effected by
finding the best fit of the observed peptide masses to the calculated masses derived from, say, a se-
quence database. Of course, the “best fit” is an algorithmic issue, and a variety of approaches have been
taken to determine the most appropriate algorithms.

The applicability of PMF is limited when samples are complex (that is, when they involve large
numbers of proteins at low abundances). The reason is that only a small fraction of the constituent
peptides are typically ionized, and those that are observed are usually from the dominant proteins in
the mixture. Thus, for complex samples, multiple (tandem) stages of mass spectrometry may be neces-
sary. In a typical procedure, peptides from a database are scored on the likelihood of their generating a
tandem mass spectrum, and the top scoring peptide is chosen. This computational approach has shown
great success, and contributed to the industrialization of proteomics.

However, much remains to be done. First, the generation of the spectrum is a stochastic process
governed by the peptide composition, and the mass spectrometer. By mining data to understand these
fragmentation propensities, scoring and identification can be further improved. Second, if the peptide is
not in the database, de novo or homology-based methods must be developed for identification. Many
proteins are post-translationally modified, with the modifications changing the mass composition.
Enumeration and scoring of all modifications leads to a combinatorial explosion that must be addressed
using novel computational techniques. It is fair to say that computation will play an important role in
the success of mass spectrometry as the tool of choice for proteomics.

Mass spectrometry is also coming into its own for protein expression studies. The major problem here
is that the intensity of a peak depends not only on the peptide abundance, but also on the physico-
chemical properties of the peptide. This makes it difficult to measure expression levels directly. However,
relative abundance can be measured using the proven technique of stable-isotope dilution. This method
makes use of the facts that pairs of chemically identical analytes of different stable-isotope composition
can be differentiated in a mass spectrometer owing to their mass difference, and that the ratio of signal
intensities for such analyte pairs accurately indicates the abundance ratio for the two analytes.

This approach shows great promise. However, computational methods are needed to correlate data
across different experiments. If the data were produced using liquid chromatography coupled with
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mass spectrometry, a peptide pair could be approximately labeled by its retention time in the column,
and its mass-to-charge ratio. Such pairs can be matched across experiments using geometric matching.
Combining the relative abundance levels from different experiments using statistical methods will
greatly help in improving the reliability of this approach.

4.4.11 Pharmacological Screening of Potential Drug Compounds'®

The National Cancer Institute (NCI) has screened more than 60,000 compounds against a panel of
60 human cancer cell lines. The extent to which any single compound inhibits growth in any given cell
line is simply one data point relevant to that compound-cell line combination—namely the concentra-
tion associated with a 50 percent inhibition in the growth of that cell line. However, the pattern of such
values across all 60 cell lines can provide insight into the mechanisms of drug action and drug resis-
tance. Combined with molecular structure data, these activity patterns can be used to explore the NCI
database of 460,000 compounds for growth-inhibiting effects in these cell lines, and can also provide
insight into potential target molecules and modulators of activity in the 60 cell lines. Based on this
approach, five compounds have been screened in this manner and selected for entry into clinical trials.

This approach to drug discovery and molecular pharmacology serves a number of useful functions.
According to Weinstein et al.,

(i) It suggests novel targets and mechanisms of action or modulation.

(ii) It detects inhibition of integrated biochemical pathways not adequately represented by any single
molecule or molecular interaction. (This feature of cell-based assays is likely to be more important in the
development of therapies for cancer than it is for most other diseases; in the case of cancer, one is fighting
the plasticity of a poorly controlled genome and the selective evolutionary pressures for development of
drug resistance.)

(iii) It provides candidate molecules for secondary testing in biochemical assays; conversely, it provides a
well-characterized biological assay in vitro for compounds emerging from biochemical screens.

(iv) It “fingerprints” tested compounds with respect to a large number of possible targets and modula-
tors of activity.

(v) It provides such fingerprints for all previously tested compounds whenever a new target is assessed
in many or all of the 60 cell lines. (In contrast, if a battery of assays for different biochemical targets were
applied to, for example, 60,000 compounds, it would be necessary to retest all of the compounds for any
new target or assay.)

(vi) It links the molecular pharmacology with emerging databases on molecular markers in microdissect-
ed human tumors—which, under the rubric of this article, constitute clinical (C) databases.

(vii) It provides the basis for pharmacophore development and searches of an S [structure] database for
additional candidates. If an agent with a desired action is already known, its fingerprint patterns of
activity can be used by . . . [various] pattern-recognition technologies to find similar compounds.

Box 4.6 provides an example of this approach.

4.4.12 Algorithms Related to Imaging

Biological science is rich in images. Most familiar are images taken through optical microscopes, but
there are many other imaging modalities—electron microscopes, computed tomography scans, X-rays,
magnetic resonance imaging, and so on. For most of the history of life science research, images have

139Gection 4.4.11 is based heavily on J.N. Weinstein, T.G. Myers, P.M. O’Connor, S.H. Friend, A.J. Fornace, Jr., KW. Kohn, T.
Fojo, et al., “An Information-Intensive Approach to the Molecular Pharmacology of Cancer,” Science 275(5298):343-349, 1997.
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Box 4.6
An Information-intensive Approach to Cancer Drug Discovery

Given one compound as a “seed,” [an algorithm known as] COMPARE searches the database of screened agents for
those most similar to the seed in their patterns of activity against the panel of 60 cell lines. Similarity in pattern often
indicates similarity in mechanism of action, mode of resistance, and molecular structure. . . .

A formulation of this approach in terms of three databases [includes databases for] the activity patterns [A], . . .
molecular structural features of the tested compounds [S], and . . . possible targets or modulators of activity in the
cells [T]. . . . The (S) database can be coded in terms of any set of two-dimensional (2D) or 3D molecular structure
descriptors. The NCI’s Drug Information System (DIS) contains chemical connectivity tables for approximately
460,000 molecules, including the 60,000 tested to date. 3-D structures have been obtained for 97% of the DIS
compounds, and a set of 588 bitwise descriptors has been calculated for each structure by use of the Chem-X
computational chemistry package. This data set provides the basis for pharmacophoric searches; if a tested com-
pound, or set of compounds, is found to have an interesting pattern of activity, its structure can be used to search for
similar molecules in the DIS database.

In the target (T) database, each row defines the pattern (across 60 cell lines) of a measured cell characteristic that may
mediate, modulate, or otherwise correlate with the activity of a tested compound. When the term is used in this general
shorthand sense, a “target” may be the site of action or part of a pathway involved in a cellular response. Among the
potential targets assessed to date are oncogenes, tumor-suppressor genes, drug resistance-mediating transporters, heat
shock proteins, telomerase, cytokine receptors, molecules of the cell cycle and apoptotic pathways, DNA repair en-
zymes, components of the cytoarchitecture, intracellular signaling molecules, and metabolic enzymes.

In addition to the targets assessed one at a time, others have been measured en masse as part of a protein expression
database generated for the 60 cell lines by 2D polyacrylamide gel electrophoresis.

Each compound displays a unique “fingerprint” pattern, defined by a point in the 60D space (one dimension for each
cell line) of possible patterns. In information theoretic terms, the transmission capacity of this communication chan-
nel is very large, even after one allows for experimental noise and for biological realities that constrain the com-
pounds to particular regions of the 60D space. Although the activity data have been accumulated over a 6-year
period, the experiments have been reproducible enough to generate . . . patterns of coherence.

SOURCE: Reprinted by permission from J.N. Weinstein, T.G. Myers, P.M. O’Connor, S.H. Friend, A.J. Fornace, Jr., K.W. Kohn, T. Fojo, et
al., “An Information-intensive Approach to the Molecular Pharmacology of Cancer,” Science 275(5298):343-349, 1997. Copyright 1997
AAAS.

been a source of qualitative insight.1#0 While this is still true, there is growing interest in using image
data more quantitatively.
Consider the following applications:

¢ Automated identification of fungal spores in microscopic digital images and automated estima-
tion of spore density;!4!

¢ Automated analysis of liver MRI images from patients with putative hemochromatosis to deter-
mine the extent of iron overload, avoiding the need for an uncomfortable liver biopsy;'42

140Njote also that biological imaging itself is a subset of the intersection between biology and visual techniques. In particular, other
biological insight can be found in techniques that consider spectral information, e.g., intensity as a function of frequency and perhaps a
function of time. Processing microarray data (discussed further in Section 7.2.1) ultimately depends on the ability to extract interesting
signals from patterns of fluorescing dots, as does quantitative comparison of patterns obtained in two-dimensional polyacrylamide gel
electrophoresis. (See S. Veeser, M.J. Dunn, and G.Z. Yang, “Multiresolution Image Registration for Two-dimensional Gel Electrophore-
sis,” Proteomics 1(7):856-870, 2001, available at http:/ /vip.doc.ic.ac.uk/2d-gel/2D-gel-final-revision.pdf.)

41T Bernier and J.A. Landry, “Algorithmic Recognition of Biological Objects,” Canadian Agricultural Engineering 42(2):101-109, 2000.

142George Reeke, Rockefeller University, personal communication to John Wooley, October 8, 2004.
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Box 4.7
The Open Microscopy Environment!

Responding to the need to manage a large number of multispectral movies of mitotic cells in the late 1990s,
Sorger and Swedlow began work on the open microscopy environment (OME). The OME is designed as
infrastructure that manages optical microscopy images, storing both the primary image data and appropriate
metadata on those images, including data on the optics of the microscope, the experimental setup and sam-
ple, and information derived by analysis of the images. OME also permits data federation that allows informa-
tion from multiple sources (e.g., genomic or chemical databases) to be linked to image records.

In addition, the OME provides an extensible environment that enables users to write their own applications for
image analysis. Consider, for example, the task of tracking labeled vesicles in a time-lapse movie. As noted by
Swedlow et al., this problem requires the following: a segmentation algorithm to find the vesicles and to
produce a list of centroids, volumes, signal intensities, and so on; a tracker to define trajectories by linking
centroids at different time points according to a predetermined set of rules; and a viewer to display the analytic
results overlaid on the original movie.?

OME provides a mechanism for linking together various analytical modules by specifying data semantics that
enable the output of one module to be accepted as input to another. These semantic data types of OME
describe analytic results such as “centroid,” “trajectory,” and “maximum signa,” and allow users, rather than
a predefined standard, to define such concepts operationally, including in the machine-readable definition
and the processing steps that produce it (e.g., the algorithm and the various parameter settings used).

TSee www.openmicroscopy.org.

2J.R. Swedlow, I. Goldberg, E. Brauner, and P.K. Sorger, “Informatics and Quantitative Analysis in Biological Imaging,” Science
300(5616):100-102, 2003.

SOURCE: Based largely on the paper by Swedlow et al. cited in Footnote145 and on the OME Web page at www.openmicroscopy.org.

* Fluorescent speckle microscopy, a technique for quantitatively tracking the movement, assem-
bly, and disassembly of macromolecules in vivo and in vitro, such as those involved in cytoskeleton
dynamics;!3and

e Establishing metrics of similarity between brain images taken at different times.!44

These applications are only an infinitesimal fraction of those that are possible. Several research
areas associated with increasing the utility of biological images are discussed below. Box 4.7 describes
the open microscopy environment, an effort intended to automate image analysis, modeling, and min-
ing of large sets of biological images obtained from optical microscopy.'4>

As a general rule, biologists need to develop better imaging methods that are applicable across the
entire spatial scale of interest, from the subcellular to the organismal. (In this context, “better” means
imaging that occurs in real time (or nearly so) with the highest possible spatial and temporal resolution.)
These methods will require new technologies (such as the multiphoton microscope) and also new
protein and nonprotein reporter molecules that can be expressed or introduced into cells or organisms.

143C M. Waterman-Storer and G. Danuser, “New Directions for Fluorescent Speckle Microscopy,” Current Biology 12(18):R633-
R640, 2002.

144\ 1 Miller, A. Trouve, and L. Younes, “On the Metrics and Euler-Lagrange Equations of Computational Anatomy,” Annual
Review of Biomedical Engineering 4:375-405, 2002, available at http://www.cis.jhu.edu/publications/papers_in_database/
EulerLagrangeEqnsCompuAnatomy.pdf.

1457 R. Swedlow, 1. Goldberg, E. Brauner, and P.K. Sorger, “Informatics and Quantitative Analysis in Biological Imaging,”
Science 300(5616):100-102, 2003.
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The discussion below focuses only on a narrow slice of the very general problem of biological imaging,
as a broader discussion would go beyond the scope of this report.

4.4.12.1 Image Rendering!®

Images have been central to the study of biological phenomena ever since the invention of the
microscope. Today, images can be obtained from many sources, including tomography, MRI, X-rays,
and ultrasound. In many instances, biologists are interested in the spatial and geometric properties of
components within a biological entity. These properties are often most easily understood when viewed
through an interactive visual representation that allows the user to view the entity from different angles
and perspectives. Moreover, a single analysis or visualization session is often not sufficient, and pro-
cessing across many image volumes is often required.

The requirement that a visual representation be interactive places enormous demands on the
computational speed of the imaging equipment in use. Today, the data produced by imaging equip-
ment are quickly outpacing the capabilities offered by the image processing and analysis software
currently available. For example, the GE EVS-RS9 CT scanner is able to generate image volumes with
resolutions in the 20-90 mm range, which results in a dataset size of multiple gigabytes. Datasets of
such size require software tools specifically designed for the imaging datasets of today and tomorrow
(see Figure 4.5) so that researchers can identify subtle features that can otherwise be missed or misrep-
resented. Also with increasing dataset resolution comes increasing dataset size, which translates di-
rectly to lengthening dataset transfer, processing, and visualization times.

New algorithms that take advantage of state-of-the-art hardware in both relatively inexpensive
workstations and multiprocessor supercomputers must be developed and moved into easy-to-access
software systems for the clinician and researcher. An example is ray-tracing, a method commonly used
in computer graphics that supports highly efficient implementations on multiple processors for interac-
tive visualization. The resulting volume rendition permits direct inspection of internal structures,
without a precomputed segmentation or surface extraction step, through the use of multidimensional
transfer functions. As seen in the visualizations in Figure 4.6, the resolution of the CT scan allows
subtleties such as the definition of the cochlea, the modiolus, the implanted electrode array, and the lead
wires that connect the array to a head-mounted connector. The co-linear alignment of the path of the
cochlear nerve with the location of the electrode shanks and tips is the necessary visual confirmation of
the correct surgical placement of the electrode array.

In both of the studies described in Figure 4.5 and Figure 4.6, determination of three-dimensional
structure and configuration played a central role in biological inquiry. Volume visualization created
detailed renderings of changes in bone morphology due to a Pax3 mutation in mice, and it provided
visual confirmation of the precise location of an electrode array implanted in the feline skull. The
scientific utility of volume visualization will benefit from further improvements in its interactivity and
flexibility, as well as simultaneous advances in high-resolution image acquisition and the development
of volumetric image-processing techniques for better feature extraction and enhancement.

4.4.12.2 Image Segmentation'?’

An important problem in automated image analysis is image segmentation. Digital images are
recorded as a set of pixels in a two- or three-dimensional array. Images that represent natural scenes
usually contain different objects, so that, for example, a picture of a park may depict people, trees, and

1465ection 4.4.12.1 is based on material provided by Chris Johnson, University of Utah.
147Gection 4.4.11.2 is adapted from and includes excerpts from National Research Council, Mathematics and Physics of Emerging
Biomedical Imaging, National Academy Press, Washington, DC, 1996.
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FIGURE 4.5 Visualizations of mutant (left) and normal (right) mice embryos.

CT values are inspected by maximum intensity projection in (a) and with standard isosurface rendering in (b).
Volume rendering (c) using multidimensional opacity functions allows more accurate bone emphasis, depth cue-
ing, and curvature-based transfer functions to enhance bone contours in image space. In this case, Drs. Keller and
Capecchi are investigating the birth defects caused by a mutation in the Pax3 gene, which controls musculoskeletal
development in mammalian embryos. In their model, they have activated a dominantly acting mutant Pax3 gene
and have uncovered two of its effects: (1) abnormal formation of the bones of the thoracolumbar spine and
cartilaginous rib cage and (2) cranioschisis, a more drastic effect in which the dermal and skeletal covering of the
brain is missing. Imaging of mutant and normal mouse embryos was performed at the University of Utah Small
Animal Imaging Facility, producing two 1.2 GB 16-bit volumes of 769 x 689 x 1173 samples, with resolution of 21 x
21 x 21 microns.

SOURCE: Courtesy of Chris Johnson, University of Utah; see also http://www.sci.utah.edu/stories/2004/
spr_imaging.html.
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(b) (©)

FIGURE 4.6 Volume renderings of electrode array implanted in feline skull.

In this example, scanning produced a 131 MB 16-bit volume of 425 x 420 x 385 samples, with resolution of 21 x
21 x 21 microns. Renderings of the volume were generated using a ray-tracing algorithm across multiple proces-
sors allowing interactive viewing of this relatively large dataset. The resolution of the scan allows definition of the
shanks and tips of the implanted electrode array. Volumetric image processing was used to isolate the electrode
array from the surrounding tissue, highlighting the structural relationship between the implant and the bone.
There are distinct CT values for air, soft tissue, bone, and the electrode array, enabling the use of a combination of
ray tracing and volume rendering to visualize the array in the context of the surrounding structures, specifically
the bone surface. The volume is rotated gradually upward in columns (a), (b), and (c), from seeing the side of the
cochlea exterior in (a), to looking down the path of the cochlear nerve in (c). From top to bottom, each row uses
different rendering styles: (1), summation projections of CT values (green) and gradients (magenta); (2), volume
renderings with translucent bone, showing the electrode leads in magenta.
SOURCE: Courtesy of Chris Johnson, University of Utah; see also http://www.sci.utah.edu/stories/2004/
spr_imaging.html.

benches. Similarly, a scanned image of a magazine page may contain text and graphics (e.g., a picture of
a park). Segmentation refers to the process by which an object (or characteristics of the object) in an
image is extracted from image data for purposes of visualization and measurement. (Extraction means
that the pixels associated with the object of interest are isolated.) In a biological context, a typical
problem in image segmentation might involve extracting different organs in a CT scan of the body.
Segmentation research involves the development of automatic, computer-executable rules that can
isolate enough of these pixels to produce an acceptably accurate segmentation. Segmentation is a central
problem of image analysis because segmentation must be accomplished before many other interesting
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problems in image analysis can be solved, including image registration, shape analysis, and volume and
area estimation. A specific laboratory example would be the segmentation of spots on two-dimensional
electrophoresis gels.

There is no common method or class of methods applicable to even the majority of images. Segmen-
tation is easiest when the objects of interest have intensity or edge characteristics that allow them to be
separated from the background and noise, as well as from each other. For example, an MRI image of the
human body would be relatively easy to segment for bones: all pixels with intensity below a given
threshold would be eliminated, leaving mostly the pixels associated with high-signal-intensity bone.

Generally, edge detection depends on a search for intensity gradients. However, it is difficult to find
gradients when, as is usually the case in biomedical images, intensities change only gradually between
the structure of interest and the surrounding structure(s) from which it is to be extracted. Continuity
and connectivity are important criteria for separating objects from noise and have been exploited quite
widely.

A number of different approaches to image segmentation are described in more detail by Pham et al.18

4.4.12.3 Image Registration!®

Different modes of imaging instrumentation may be used on the same object because they are
sensitive to different object characteristics. For example, an X-ray of an individual will produce different
information than a CT scan. For various purposes, and especially for planning surgical and radiation
treatment, it can be important for these images to be aligned with each other, that is, for information
from different imaging modes to be displayed in the same locations. This process is known as image
registration.

There are a variety of techniques for image registration, but in general they can be classified based
on the features that are being matched. For example, such features may be external markers that are
fixed (e.g., on a patient’s body), internal anatomic markers that are identifiable on all images, the center
of gravity for one or more objects in the images, crestlines of objects in the images, or gradients of
intensity. Another technique is minimization of the distance between corresponding surface points of a
predefined object. Image registration often depends on the identification of similar structures in the
images to be registered. In the ideal case, this identification can be performed through an automated
segmentation process.

Image registration is well defined for rigid objects but is more complicated for deformable objects or
for objects imaged from different angles. When soft tissue deforms (e.g., because a patient is lying on his
side rather than on his back), elastic warping is required to transform one dataset into the other. The
difficulty lies in defining enough common features in the images to enable specifying appropriate local
deformations.

An example of an application in which image registration is important is the Cell-Centered Database
(CCDB).10 Launched in 2002, the CCDB contains structural and protein distribution information derived
from confocal, multiphoton, and electron microscopy for use by the structural biology and neuroscience
communities. In the case of neurological images, most of the imaging data are referenced to a higher level
of brain organization by registering their location in the coordinate system of a standard brain atlas.
Placing data into an atlas-based coordinate system provides one method by which data taken across scales

148D L. Pham, C. Xu, and J.L. Prince, “Current Methods in Medical Image Segmentation,” Annual Review of Biomedical Engineer-
ing 2:315-338, 2000.

1495ection 4.4.12.3 is adapted from National Research Council, Mathematics and Physics of Emerging Biomedical Imaging, National
Academy Press, Washington, DC, 1996.

150See M.E. Martone, S.T. Peltier, and M.H. Ellisman, “Building Grid Based Resources for Neurosciences,” unpublished paper
2003, National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California, San Diego,
San Diego, CA, and http://ccdb.ucsd.edu/CCDB/about.shtml.
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and distributed across multiple resources can be compared reliably. Through the use of atlases and tools
for surface warping and image registration, it is possible to express the location of anatomical features or
signals in terms of a standardized and quantitative coordinate system, rather by using terms that describe
objects in the field of view. The expression of brain data in terms of atlas coordinates also allows it to be
transformed spatially to provide alternative views that may offer additional information (e.g., flat maps or
additional parcellation schemes). Finally, a standard coordinate system allows the same brain region to be
sampled repeatedly to allow data to be accumulated over time.

4.4.12.4 Image Classification

Image classification is the process through which a set of images can be sorted into meaningful
categories. Categories can be defined through low-level features such as color mix and texture patterns or
through high-level features such as objects depicted. As a rule, low-level features can be computed with
little difficulty, and a number of systems have been developed that take advantage of such features.!5!

However, users are generally much more interested in semantic content that is not easily repre-
sented in such low-level features. The easiest method to identify interesting semantic content is simply
to annotate an image manually with text, although this process is quite tedious and is unlikely to
capture the full range of content in an image. Thus, automated techniques hold considerable interest.

The general problem of automatic identification of such image content has not been solved. One
approach described by Huang et al. relies on supervised learning to classify images hierarchically.!5?
This approach relies on using good low-level features and then performing feature-space reconfiguration
using singular value decomposition to reduce noise and dimensionality. A hierarchical classification
tree can be generated from training data and subsequently used to sort new images into categories.

A second approach is based on the fact that biological images often contain branching struc-
tures. (For example, both muscle and neural tissue contain blood vessels and dendrites that are
found in branching structures.) The fractal dimensionality of such structures can then be used as a
measure of similarity, and images that contain structures of similar fractal dimension can be
grouped into categories.!53

4.5 DEVELOPING COMPUTATIONAL TOOLS

The computational tools described above were once gleams in the eye of some researcher. Despite
the joy and satisfaction felt when a prototype program supplies the first useful results to its developer,
it is a long, long way to converting that program into a genuine product that is general, robust, and
useful to others. Indeed, in his classic text The Mythical Man-Month (Addison-Wesley, Reading, MA,
1995), Frederick P. Brooks, Jr., estimates the difference in effort necessary to create a programming
systems product from a program as an order of magnitude.

Some of the software engineering considerations necessary to turn a program into a product include
the following:

® Quality. The program, of course, must be as free of defects as possible, not only in the sense of
running without faults, but also of precisely implementing the stated algorithm. It must be tested for all

151gee, for example, M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, ]J. Hafner, D. Lee, D.
Petkovic, D. Steele, and P. Yanker, “Query by Image and Video Content: The QBIC System,” IEEE Computer 28(9):23-32, 1995,
available at http://wwwgbic.almaden.ibm.com/.

152]. Huang, S.R. Kumar, and R. Zabih, “An Automatic Hierarchical Image Classification Scheme,” ACM Conference on
Multimedia, Bristol, England, September 1998. A revised version appears in EURASIP Journal on Applied Signal Processing, 2003,
available at http:/ /www.cs.cornell.edu/rdz/Papers/Archive/mm98.pdf.

153p, Cornforth, H. Jelinek, and L. Peich, “Fractop: A Tool for Automated Biological Image Classification,” available at http://
csu.edu.au/~dcornfor/Fractop_v7.pdf.
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potential inputs, and combinations of factors, and must be robust even in the face of invalid usage. The
program should have well-understood and bounded resource demands, including memory, input-
output, and processing time.

® Maintenance. When bugs are discovered, they must be tracked, patched, and provided to users.
This often means that the code should be structured for maintainability; for example, Perl, which is
extremely powerful, is often written in a way that is incomprehensible to programmers other than the
author (and often even to the author). Differences in functionality between versions must be docu-
mented carefully.

e Documentation. If the program is to be usable by others, all of the functionality must be clearly
documented, including data file formats, configuration options, output formats, and of course program
usage. If the source code of the program is made available (as is often the case with scientific tools), the
code must be documented in such a way that users can check the validity of the implementation as well
as alter it to meet their needs.

o User interface. The program must have a user interface, although not necessarily graphical, that is
unambiguous and able to access the full range of functions of the program. It should be easy to use,
difficult to make mistakes, and clear in its instructions and display of state.

® System integration and portability. The program must be distributed to users in a convenient way,
and be able to run on different platforms and operating systems in a way that does not interfere with
existing software or system settings. It should be easily configurable and customizable for particular
requirements, and should install easily without access to specialized software, such as nonstandard
compilers.

e General. The program should accept a wide selection of data types, including common formats,
units, precisions, ranges, and file sizes. The internal coding interfaces should have precisely defined
syntax and semantics, so that users can easily extend the functionality or integrate it into other tools.

Tool developers address these considerations to varying degrees, and users may initially be more
tolerant of something that is more program than product if the functionality it confers is essential and
unique. Over time, however; such programs will eventually become more product-like because users
will not tolerate significant inconvenience.

Finally, there is an issue of development methodology. A proprietary approach to development can
be adopted for a number of competitive reasons, ranging from the ultimate desire to reap financial
benefit to staying ahead of competing laboratories. Under a proprietary approach, source code for the
tools would be kept private, so that potential competitors would be unable to exploit the code easily for
their own purposes. (Source code is needed to make changes to a program.) An open approach to
development calls for the source code to be publicly available, on the theory that broad community
input strengthens the utility of the tools being made available and better enables one team to build on
another team’s work.
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Computational Modeling and Simulation as
Enablers for Biological Discovery

While the previous chapter deals with the ways in which computers and algorithms could support
existing practices of biological research, this chapter introduces a different type of opportunity. The
quantities and scopes of data being collected are now far beyond the capability of any human, or team
of humans, to analyze. And as the sizes of the datasets continue to increase exponentially, even existing
techniques such as statistical analysis begin to suffer. In this data-rich environment, the discovery of
large-scale patterns and correlations is potentially of enormous significance. Indeed, such discoveries
can be regarded as hypotheses asserting that the pattern or correlation may be important—a mode of
“discovery science” that complements the traditional mode of science in which a hypothesis is gener-
ated by human beings and then tested empirically.

For exploring this data-rich environment, simulations and computer-driven models of biological
systems are proving to be essential.

5.1 ON MODELS IN BIOLOGY

In all sciences, models are used to represent, usually in an abbreviated form, a more complex and
detailed reality. Models are used because in some way, they are more accessible, convenient, or familiar
to practitioners than the subject of study. Models can serve as explanatory or pedagogical tools, repre-
sent more explicitly the state of knowledge, predict results, or act as the objects of further experiments.
Most importantly, a model is a representation of some reality that embodies some essential and interest-
ing aspects of that reality, but not all of it.

Because all models are by definition incomplete, the central intellectual issue is whether the essen-
tial aspects of the system or phenomenon are well represented (the term “essential” has multiple
meanings depending on what aspects of the phenomenon are of interest). In biological phenomena,
what is interesting and significant is usually a set of relationships—from the interaction of two mol-
ecules to the behavior of a population in its environment. Human comprehension of biological systems
is limited, among other things, by that very complexity and by the problems that arise when attempting
to dissect a given system into simpler, more easily understood components. This challenge is com-
pounded by our current inability to understand relationships between the components as they occur in
reality, that is, in the presence of multiple, competing influences and in the broader context of time and
space.

117
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Different fields of science have traditionally used models for different purposes; thus, the nature of
the models, the criteria for selecting good or appropriate models, and the nature of the abbreviation or
simplification have varied dramatically. For example, biologists are quite familiar with the notion of
model organisms.! A model organism is a species selected for genetic experimental analysis on the
basis of experimental convenience, homology to other species (especially to humans), relative simplic-
ity, or other attractive attributes. The fruit fly Drosophila melanogaster is a model organism attractive at
least in part because of its short generational time span, allowing many generations in the course of an
experiment.

At the most basic level, any abstraction of some biological phenomenon counts as a model. Indeed,
the cartoons and block diagrams used by most biologists to represent metabolic, signaling, or regulatory
pathways are models—qualitative models that lay out the connectivity of elements important to the
phenomenon. Such models throw away details (e.g., about kinetics) implicitly asserting that omission of
such details does not render the model irrelevant.

A second example of implicit modeling is the use of statistical tests by many biologists. All statisti-
cal tests are based on a null hypothesis, and all null hypotheses are based on some kind of underlying
model from which the probability distribution of the null hypothesis is derived. Even those biologists
who have never thought of themselves as modelers are using models whenever they use statistical tests.

Mathematical modeling has been an important component of several biological disciplines for
many decades. One of the earliest quantitative biological models involved ecology: the Lotka-Volterra
model of species competition and predator-prey relationships described in Section 5.2.4. In the context
of cell biology, models and simulations are used to examine the structure and dynamics of a cell or
organism’s function, rather than the characteristics of isolated parts of a cell or organism.? Such models
must consider stochastic and deterministic processes, complex pleiotropy, robustness through redun-
dancy, modular design, alternative pathways, and emergent behavior in biological hierarchy.

In a cellular context, one goal of biology is to gain insight into the interactions, molecular or
otherwise, that are responsible for the behavior of the cell. To do so, a quantitative model of the cell
must be developed to integrate global organism-wide measurements taken at many different levels of
detail.

The development of such a model is iterative. It begins with a rough model of the cell, based on
some knowledge of the components of the cell and possible interactions among them, as well as prior
biochemical and genetic knowledge. Although the assumptions underlying the model are insufficient
and may even be inappropriate for the system being investigated, this rough model then provides a
zeroth-order hypothesis about the structure of the interactions that govern the cell’s behavior.

Implicit in the model are predictions about the cell’s response under different kinds of perturbation.
Perturbations may be genetic (e.g., gene deletions, gene overexpressions, undirected mutations) or
environmental (e.g., changes in temperature, stimulation by hormones or drugs). Perturbations are
introduced into the cell, and the cell’s response is measured with tools that capture changes at the
relevant levels of biological information (e.g., mRNA expression, protein expression, protein activation
state, overall pathway function). Box 5.1 provides some additional detail on cellular perturbations.

The next step is comparison of the model’s predictions to the measurements taken. This comparison
indicates where and how the model must be refined in order to match the measurements more closely.
If the initial model is highly incomplete, measurements can be used to suggest the particular compo-
nents required for cellular function and those that are most likely to interact. If the initial model is
relatively well defined, its predictions may already be in good qualitative agreement with measure-
ment, differing only in minor quantitative ways. When model and measurement disagree, it is often

1See, for example, http://www.nih.gov/science/models for more information on model organisms.

2Section 5.1 draws heavily on excerpts from T. Ideker, T. Galitski, and L. Hood, “A New Approach to Decoding Life: Systems
Biology,” Annual Review of Genomics and Human Genetics 2:343-372, 2001; and H. Kitano, “Systems Biology: A Brief Overview,”
Science 295(5560):1662-1664, 2002.
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Box 5.1
Perturbation of Biological Systems

Perturbation of biological systems can be accomplished through a number of genetic mechanisms, such as the
following:

* High-throughput genomic manipulation. Increasingly inexpensive and highly standardized tools are avail-
able that enable the disruption, replacement, or modification of essentially any genomic sequence. Further-
more, these tools can operate simultaneously on many different genomic sequences.

e Systematic gene mutations. Although random gene mutations provide a possible set of perturbations, the
random nature of the process often results in nonuniform coverage of possible genotypes—some genes are
targeted multiple times, others not at all. A systematic approach can cover all possible genotypes and the
coverage of the genome is unambiguous.

e Gene disruption. While techniques of genomic manipulation and systematic gene mutation are often use-
ful in analyzing the behavior of model organisms such as yeast, they are not practical for application to
organisms of greater complexity (i.e., higher eukaryotes). On the other hand, it is often possible to induce
disruptions in the function of different genes, effectively silencing (or deleting) them to produce a biologically
significant perturbation.

SOURCE: Adapted from T. Ideker, T. Galitski, and L. Hood, “A New Approach to Decoding Life: Systems Biology,” Annual Review of
Genomics and Human Genetics 2:343-372, 2001.

necessary to create a number of more refined models, each incorporating a different mechanism under-
lying the discrepancies in measurement.

With the refined model(s) in hand, a new set of perturbations can be applied to the cell. Note that
new perturbations are informative only if they elicit different responses between models, and they are
most useful when the predictions of the different models are very different from one another. Neverthe-
less, a new set of perturbations is required because the predictions of the refined model(s) will generally
fit well with the old set of measurements.

The refined model that best accounts for the new set of measurements can then be regarded as the
initial model for the next iteration. Through this process, model and measurement are intended to
converge in such a way that the model’s predictions mirror biological responses to perturbation. Mod-
eling must be connected to experimental efforts so that experimentalists will know what needs to be
determined in order to construct a comprehensive description and, ultimately, a theoretical framework
for the behavior of a biological system. Feedback is very important, and it is this feedback, along with
the global—or, loosely speaking, genomic-scale—nature of the inquiry that characterizes much of 21st
century biology.

5.2 WHY BIOLOGICAL MODELS CAN BE USEFUL

In the last decade, mathematical modeling has gained stature and wider recognition as a useful tool
in the life sciences. Most of this revolution has occurred since the era of the genome, in which biologists
were confronted with massive challenges to which mathematical expertise could successfully be brought
to bear. Some of the success, though, rests on the fact that computational power has allowed scientists to
explore ever more complex models in finer detail. This means that the mathematician’s talent for
abstraction and simplification can be complemented with realistic simulations in which details not
amenable to analysis can be explored. The visual real-time simulations of modeled phenomena give
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more compelling and more accessible interpretations of what the models predict.> This has made it
easier to earn the recognition of biologists.

On the other hand, modeling—especially computational modeling—should not be regarded as an
intellectual panacea, and models may prove more hindrance than help under certain circumstances. In
models with many parameters, the state space to be explored may grow combinatorially fast so that no
amount of data and brute force computation can yield much of value (although it may be the case that
some algorithm or problem-related insight can reduce the volume of state space that must be explored
to a reasonable size). In addition, the behavior of interest in many biological systems is not characterized
as equilibrium or quasi-steady-state behavior, and thus convergence of a putative solution may never
be reached. Finally, modeling presumes that the researcher can both identify the important state vari-
ables and obtain the quantitative data relevant to those variables.

Computational models apply to specific biological phenomena (e.g., organisms, processes) and are
used for a number of purposes as described below.

5.2.1 Models Provide a Coherent Framework for Interpreting Data

A biologist surveys the number of birds nesting on offshore islands and notices that the number
depends on the size (e.g., diameter) of the island: the larger the diameter d, the greater is the number of
nests N. A graph of this relationship for islands of various sizes reveals a trend. Here the mathematically
informed and uninformed part ways: simple linear least-squares fit of the data misses a central point.
A trivial “null model” based on an equal subdivision of area between nesting individuals predicts that
N~ d?, (i.e., the number of nests should be roughly proportional to the square of island area). This simple
geometric property relating area to population size gives a strong indication of the trend researchers
should expect to see. Departures from this trend would indicate that something else may be important.
(For example, different parts of islands are uninhabitable, predators prefer some islands to others, and
so forth.)

Although the above example is elementary, it illustrates the idea that data are best interpreted
within a context that shapes one’s expectations regarding what the data “ought” to look like; often a
mathematical (or geometric) model helps to create that context.

5.2.2 Models Highlight Basic Concepts of Wide Applicability

Among the earliest applications of mathematical ideas to biology are those in which population
levels were tracked over time and attempts were made to understand the observed trends. Malthus
proposed in 1798 the fitting of population data to exponential growth curves following his simple
model for geometric growth of a population.® The idea that simple reproductive processes produce

3As one example, Ramon Felciano studied the use of “domain graphics” by biologists. Felciano argued that certain visual
representations (known as domain graphics) become so ingrained in the discourse of certain subdisciplines of biology that they
become good targets for user interfaces to biological data resources. Based on this notion, Felciano constructed a reusable
interface based on the standard two-dimensional layout of RNA secondary structure. See R. Felciano, R. Chen, and R. Altman,
“RNA Secondary Structure as a Reusable Interface to Biological Information Resources,” Gene 190:59-70, 1997.

4In some cases, obtaining the quantitative data is a matter of better instrumentation and higher accuracy. In other cases, the
data are not available in any meaningful sense of practice. For example, Richard Lewontin notes that the probability of survival
Py of a particular genotype is an ensemble property, rather than the property of a single individual who either will or will not
survive. But if what is of interest is Py as a function of the alternative genotypes deriving from a single locus, the effects of the
impacts deriving from other loci must be randomized. However, in sexually reproducing organisms, there is no way known to
produce an ensemble of individuals that are all identical with respect to a single locus but randomized over other loci. Thus, a
quantitative characterization of P is in practice not possible, and no alternative measurement technologies will be of much value
in solving this problem. See R. Lewontin, The Genetic Basis of Evolutionary Change, Columbia University Press, New York, 1974.

5T.R. Malthus, An Essay on the Principle of Population, First Edition, E.A. Wrigley and D. Souden, eds., Penguin Books,
Harmondsworth, England, 1798.
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exponential growth (if birth rates exceed mortality rates) or extinction (in the opposite case) is a funda-
mental principle: its applicability in biology, physics, chemistry, as well as simple finance, is central.

An important refinement of the Malthus model was proposed in 1838 to explain why most popula-
tions do not experience exponential growth indefinitely. The refinement was the idea of the density-
dependent growth law, now known as the logistic growth model.® Though simple, the Verhulst model
is still used widely to represent population growth in many biological examples. Both Malthus and
Verhulst models relate observed trends to simple underlying mechanisms; neither model is fully accu-
rate for real populations, but deviations from model predictions are, in themselves, informative, be-
cause they lead to questions about what features of the real systems are worthy of investigation.

More recent examples of this sort abound. Nonlinear dynamics has elucidated the tendency of
excitable systems (cardiac tissue, nerve cells, and networks of neurons) to exhibit oscillatory, burst, and
wave-like phenomena. The understanding of the spread of disease in populations and its sensitive
dependence on population density arose from simple mathematical models. The same is true of the
discovery of chaos in the discrete logistic equation (in the 1970s). This simple model and its mathemati-
cal properties led to exploration of new types of dynamic behavior ubiquitous in natural phenomena.
Such biologically motivated models often cross-fertilize other disciplines: in this case, the phenomenon
of chaos was then found in numerous real physical, chemical, and mechanical systems.

5.2.3 Models Uncover New Phenomena or Concepts to Explore

Simple conceptual models can be used to uncover new mechanisms that experimental science has
not yet encountered. The discovery of chaos mentioned above is one of the clearest examples of this
kind. A second example of this sort is Turing’s discovery that two chemicals that interact chemically in
a particular way (activate and inhibit one another) and diffuse at unequal rates could give rise to “peaks
and valleys” of concentration. His analysis of reaction-diffusion (RD) systems showed precisely what
ranges of reaction rates and rates of diffusion would result in these effects, and how properties of the
pattern (e.g., distance between peaks and valleys) would depend on those microscopic rates. Later
research in the mathematical community also uncovered how other interesting phenomena (traveling
waves, oscillations) were generated in such systems and how further details of patterns (spots, stripes,
etc.) could be affected by geometry, boundary conditions, types of chemical reactions, and so on.

Turing’s theory was later given physical manifestation in artificial chemical systems, manipulated
to satisfy the theoretical criteria of pattern formation regimes. And, although biological systems did not
produce simple examples of RD pattern formation, the theoretical framework originating in this work
motivated later more realistic and biologically based modeling research.

5.2.4 Models Identify Key Factors or Components of a System

Simple conceptual models can be used to gain insight, develop intuition, and understand “how
something works.” For example, the Lotka-Volterra model of species competition and predator-prey” is
largely conceptual and is recognized as not being very realistic. Nevertheless, this and similar models
have played a strong role in organizing several themes within the discipline: for example, competitive
exclusion, the tendency for a species with a slight advantage to outcompete, dominate, and take over
from less advantageous species; the cycling behavior in predator-prey interactions; and the effect of

6P F. Verhulst, “Notice sur la loi que la population suit dans son accroissement,” Correspondence Mathématique et Physique, 1838.

7A.]. Lotka, Elements of Physical Biology, Williams & Wilkins Co., Baltimore, MD, 1925; V. Volterra, “Variazioni e fluttuazioni
del numero d’individui in specie animali conviventi,” Mem. R. Accad. Naz. dei Lincei., Ser. VI, Vol. 2, 1926. The Lotka-Volterra
model is a set of coupled differential equations that relate the densities of prey and predator given parameters involving the
predator-free rate of prey population increase, the normalized rate at which predators can successfully remove prey from the
population, the normalized rate at which predators reproduce, and the rate at which predators die.
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resource limitations on stabilizing a population that would otherwise grow explosively. All of these
concepts arose from mathematical models that highlighted and explained dynamic behavior within the
context of simple models. Indeed, such models are useful for helping scientists to recognize patterns
and predict system behavior, at least in gross terms and sometimes in detail.

5.2.5 Models Can Link Levels of Detail (Individual to Population)

Biological observations are made at many distinct hierarchies and levels of detail. However, the
links between such levels are notoriously difficult to understand. For example, the behavior of single
neurons and their response to inputs and signaling from synaptic connections might be well known.
The behavior of a large assembly of such neurons in some part of the central nervous system can be
observed macroscopically by imaging or electrode recording techniques. However, how the two levels
are interconnected remains a massive challenge to scientific understanding. Similar examples occur in
countless settings in the life sciences: due to the complexity of nonlinear interactions, it is nearly impos-
sible to grasp intuitively how collections of individuals behave, what emergent properties of these
groups arise, or the significance of any sensitivity to initial conditions that might be magnified at higher
levels of abstraction. Some mathematical techniques (averaging methods, homogenization, stochastic
methods) allow the derivation of macroscopic statements based on assumptions at the microscopic, or
individual, level. Both modeling and simulation are important tools for bridging this gap.

5.2.6 Models Enable the Formalization of Intuitive Understandings

Models are useful for formalizing intuitive understandings, even if those understandings are partial
and incomplete. What appears to be a solid verbal argument about cause and effect can be clarified and
put to a rigorous test as soon as an attempt is made to formulate the verbal arguments into a mathemati-
cal model. This process forces a clarity of expression and consistency (of units, dimensions, force
balance, or other guiding principles) that is not available in natural language. As importantly, it can
generate predictions against which intuition can be tested.

Because they run on a computer, simulation models force the researcher to represent explicitly
important components and connections in a system. Thus, simulations can only complement, but never
replace, the underlying formulation of a model in terms of biological, physical, and mathematical
principles. That said, a simulation model often can be used to indicate gaps in one’s knowledge of some
phenomenon, at which point substantial intellectual work involving these principles is needed to fill the
gaps in the simulation.

5.2.7 Models Can Be Used as a Tool for Helping to Screen Unpromising Hypotheses

In a given setting, quantitative or descriptive hypotheses can be tested by exploring the predictions
of models that specify precisely what is to be expected given one or another hypothesis. In some cases,
although it may be impossible to observe a sequence of biological events (e.g., how a receptor-ligand
complex undergoes sequential modification before internalization by the cell), downstream effects may
be observable. A model can explore the consequences of each of a variety of possible sequences can and
help scientists to identify the most likely candidate for the correct sequence. Further experimental
observations can then refine one’s understanding.

5.2.8 Models Inform Experimental Design

Modeling properly applied can accelerate experimental efforts at understanding. Theory embedded
in the model is an enabler for focused experimentation. Specifically, models can be used alongside
experiments to help optimize experimental design, thereby saving time and resources. Simple models
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give a framework for observations (as noted in Section 5.2.1) and thereby suggest what needs to be
measured experimentally and, indeed, what need not be measured—that is how to refine the set of
observations so as to extract optimal knowledge about the system. This is particularly true when models
and experiments go hand-in-hand. As a rule, several rounds of modeling and experimentation are
necessary to lead to informative results.

Carrying these general observations further, Selinger et al.8 have developed a framework for un-
derstanding the relationship between the properties of certain kinds of models and the experimental
sampling required for “completeness” of the model. They define a model as a set of rules that maps a set
of inputs (e.g., possible descriptions of a cell’s environment) to a set of outputs (e.g., the resulting
concentrations of all of the cell’s RNAs and proteins). From these basic properties, Selinger et al. are able
to determine the order of magnitude of the number of measurements needed to populate the space of all
possible inputs (e.g., environmental conditions) with enough measured outputs (e.g., transcriptomes,
proteomes) to make prediction feasible, thereby establishing how many measurements are needed to
adequately sample input space to allow the rule parameters to be determined.

Using this framework, Salinger et al. estimate the experimental requirements for the completeness
of a discrete transcriptional network model that maps all N genes as inputs to all N genes as outputs in
which the genes can take on three levels of expression (low, medium, and high) and each gene has, at
most, K direct regulators. Applying this model to three organisms—Mycoplasma pneumoniae, Escherichia
coli, and Homo sapiens—they find that 80, 40,000, and 700,000 transcriptome experiments, respectively,
are necessary to fill out this model. They further note that the upper-bound estimate of experimental
requirements grows exponentially with the maximum number of regulatory connections K per gene,
although genes tend to have a low K, and that the upper-bound estimate grows only logarithmically
with the number of genes N, making completeness feasible even for large genetic networks.

5.2.9 Models Can Predict Variables Inaccessible to Measurement

Technological innovation in scientific instrumentation has revolutionized experimental biology.
However, many mysteries of the cell, of physiology, of individual or collective animal behavior, and of
population-level or ecosystem-level dynamics remain unobservable. Models can help link observations
to quantities that are not experimentally accessible. At the scale of a few millimeters, Marée and
Hogeweg recently developed® a computational model based on a cellular automaton for the behavior of
the social amoeba Dictyostelium discoideum. Their model is based on differential adhesion between cells,
cyclic adenosine monophosphate (CAMP) signaling, cell differentiation, and cell motion. Using detailed
two- and three-dimensional simulations of an aggregate of thousands of cells, the authors showed how
a relatively small set of assumptions and “rules” leads to a fully accurate developmental pathway.
Using the simulation as a tool, they were able to explore which assumptions were blatantly inappropri-
ate (leading to incorrect outcomes). In its final synthesis, the Marée-Hogeweg model predicts dynamic
distributions of chemicals and of mechanical pressure in a fully dynamic simulation of the culminating
Dictyostelium slug. Some, but not all, of these variables can be measured experimentally: those that are
measurable are well reproduced by the model. Those that cannot (yet) be measured are predicted inside
the evolving shape. What is even more impressive: the model demonstrates that the system has self-
correcting properties and accounts for many experimental observations that previously could not be
explained.

8D.W. Selinger, M.A. Wright, and G.M. Church, “On the Complete Determination of Biological Systems,” Trends in Biotechnol-
ogy 21(6):251-254, 2003.

A.F.M. Marée and P. Hogeweg, “How Amoeboids Self-organize into a Fruiting Body: Multicellular Coordination in
Dictyostelium discoideum,” Proceedings of the National Academy of Sciences 98(7):3879-3883, 2001.
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5.2.10 Models Can Link What Is Known to What Is Yet Unknown

In the words of Pollard, “Any cellular process involving more than a few types of molecules is too
complicated to understand without a mathematical model to expose assumptions and to frame the
reactions in a rigorous setting.”1 Reviewing the state of the field in cell motility and the cytoskeleton,
he observes that even with many details of the mechanism as yet controversial or unknown, modeling
plays an important role. Referring to a system (of actin and its interacting proteins) modeled by Mogilner
and Edelstein-Keshet,'! he points to advantages gained by the mathematical framework: “A math-
ematical model incorporating molecular reactions and physical forces correctly predicts the steady-state
rate of cellular locomotion.” The model, he notes, correctly identifies what limits the motion of the cell,
predicts what manipulations would change the rate of motion, and thus suggests experiments to per-
form. While details of some steps are still emerging, the model also distinguishes quantitatively be-
tween distinct hypotheses for how actin filaments are broken down for purposes of recycling their
components.

5.2.11 Models Can Be Used to Generate Accurate Quantitative Predictions

Where detailed quantitative information exists about components of a system, about underlying
rules or interactions, and about how these components are assembled into the system as a whole,
modeling may be valuable as an accurate and rigorous tool for generating quantitative predictions.
Weather prediction is one example of a complex model used on a daily basis to predict the future. On
the other hand, the notorious difficulties of making accurate weather predictions point to the need for
caution in adopting the conclusions even of classical models, especially for more than short-term pre-
dictions, as one might expect from mathematically chaotic systems.

5.2.12 Models Expand the Range of Questions That Can Meaningfully Be Asked'?

For much of life science research, questions of purpose arise about biological phenomena. For
instance, the question, Why does the eye have a lens? most often calls for the purpose of the lens—to
focus light rays—and only rarely for a description of the biological mechanism that creates the lens.
That such an answer is meaningful is the result of evolutionary processes that shape biological entities
by enhancing their ability to carry out fitness-enhancing functions. (Put differently, biological entities
are the result of nature’s engineering of devices to perform the function of survival; this perspective is
explored further in Chapter 6.)

Lander points out that molecular biologists traditionally have shied away from teleological matters,
and that geneticists generally define function not in terms of the useful things a gene does, but by what
happens when the gene is altered. However, as the complexity of biological mechanism is increasingly
revealed, the identification of a purpose or a function of that mechanism has enormous explanatory
power. That is, what purpose does all this complexity serve?

As the examples in Section 5.4 illustrate, computational modeling is an approach to exploring the
implications of the complex interactions that are known from empirical and experimental work. Lander
notes that one general approach to modeling is to create models in which networks are specified in
terms of elements and interactions (the network “topology”), but the numerical values that quantify
those interactions (the parameters) are deliberately varied over wide ranges to explore the functionality

of the network—whether it acts as a “switch,” “filter,” “oscillator,” “dynamic range adjuster,” “pro-
ducer of stripes,” and so on.

10T.D. Pollard, “The Cytoskeleton, Cellular Motility and the Reductionist Agenda,” Nature 422(6933):741-745, 2003.

11A. Mogilner and L. Edelstein-Keshet, “Regulation of Actin Dynamics in Rapidly Moving Cells: A Quantitative Analysis,”
Biophysical Journal 83(3):1237-1258, 2002.

12Gection 5.2.12 is based largely on A.D. Lander, “A Calculus of Purpose,” PLoS Biology 2(6):e164, 2004.
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Lander explains the intellectual paradigm for determining function as follows:

By investigating how such behaviors change for different parameter sets—an exercise referred to as
“exploring the parameter space”—one starts to assemble a comprehensive picture of all the kinds of
behaviors a network can produce. If one such behavior seems useful (to the organism), it becomes a
candidate for explaining why the network itself was selected; i.e., it is seen as a potential purpose for the
network. If experiments subsequently support assignments of actual parameter values to the range of
parameter space that produces such behavior, then the potential purpose becomes a likely one.

5.3 TYPES OF MODELS"

5.3.1 From Qualitative Model to Computational Simulation

Biology makes use of many different types of models. In some cases, biological models are qualita-
tive or semiquantitative. For example, graphical models show directional connections between compo-
nents, with the directionality indicating influence. Such models generally summarize a great deal of
known information about a pathway and facilitate the formation of hypotheses about network function.
Moreover, the use of graphical models allows researchers to circumvent data deficiencies that might be
encountered in the development of more quantitative (and thus data-intensive) models. (It has also
been argued that probabilistic graphical models provide a coherent, statistically sound framework that
can be applied to many problems, and that certain models used by biologists, such as hidden Markov
models or Bayesian Networks), can be regarded as special cases of graphical models.!*)

On the other hand, the forms and structures of graphical models are generally inadequate to express
much detail, which might well be necessary for mechanistic models. In general, qualitative models do not
account for mechanisms, but they can sometimes be developed or analyzed in an automated manner.
Some attempts have been made to develop formal schemes for annotating graphical models (Box 5.2).15

Qualitative models can be logical or statistical as well. For example, statistical properties of a graph
of protein-protein interaction have been used to infer the stability of a network’s function against most
“deletions” in the graph.!® Logical models can be used when data regarding mechanism are unavail-
able and have been developed as Boolean, fuzzy logical, or rule-based systems that model complex
networks!” or genetic and developmental systems.

In some cases, greater availability of data (specifically, perturbation response or time-series data)
enables the use of statistical influence models. Linear,'® neural network-like,!” and Bayesian?® models
have all been used to deduce both the topology of gene expression networks and their dynamics. On the

13Gection 5.3 is adapted from A.P. Arkin, “Synthetic Cell Biology,” Current Opinion in Biotechnology 12(6):638-644, 2001.

14See, for example, Y. Moreau, P. Antal, G. Fannes, and B. De Moor, “Probabilistic Graphical Models for Computational
Biomedicine, Methods of Information in Medicine 42(2):161-168, 2003.

15K W. Kohn, “Molecular Interaction Map of the Mammalian Cell Cycle: Control and DNA Repair Systems,” Molecular Biology
of the Cell 10(8):2703-2734, 1999; I. Pirson, N. Fortemaison, C. Jacobs, S. Dremier, ].E. Dumont, and C. Maenhaut, “The Visual
Display of Regulatory Information and Networks,” Trends in Cell Biology 10(10):404-408, 2000. (Both cited in Arkin, 2001.)

16y, Jeong, S.P. Mason, A.L. Barabasi, and Z.N. Oltvai, “Lethality and Centrality in Protein Networks,” Nature 411(6833):41-42,
2001; H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.L. Barabasi, “The Largescale Organization of Metabolic Networks,”
Nature 407(6804):651-654, 2000. (Cited in Arkin, 2001.)

17D. Thieffry and R. Thomas, “Qualitative Analysis of Gene Networks,” pp. 77-88 in Pacific Symposium on Biocomputing, 1998.
(Cited in Arkin, 2001.)

18p. D'Haeseleer, X. Wen, S. Fuhrman, and R. Somogyi, “Linear Modeling of mRNA Expression Levels During CNS Develop-
ment and Injury,” pp. 41-52 in Pacific Symposium on Biocomputing, 1999. (Cited in Arkin, 2001.)

19E. Mjolsness, D.H. Sharp, and J. Reinitz, “A Connectionist Model of Development,” Journal of Theoretical Biology 152(4):429-
453, 1999. (Cited in Arkin, 2001.)

20N|. Friedman, M. Linial, I. Nachman, and D. Pe’er, “Using Bayesian Networks to Analyze Expression Data,” Journal of
Computational Biology 7(3-4):601-620, 2000. (Cited in Arkin, 2001.)
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Box 5.2
On Graphical Models

A large fraction of today’s knowledge of biochemical or genetic regulatory networks is represented either as
text or as cartoon-like diagrams. However, text has the disadvantage of being inherently ambiguous, and
every reader must reinterpret the text of a journal article. Diagrams are usually informal, often confusing, and
thus fail to present all of the information that is available to the presenter of the research. For example, the
meanings of nodes and arcs within a diagram are inconsistent—one arrow may mean activation, but another
arrow in the same diagram may mean transition of the state or translocation of materials.

To remedy this state of affairs, a system of graphical representation should be powerful enough to express
sufficient information in a clearly visible and unambiguous way and should be supported by software tools.
There are several criteria for a graphical notation system, including the following:

1. Expressiveness. The notation system should be able to describe every possible relationship among the
entities in a system—for example, those between genes and proteins in a biological model.

2. Semantical unambiguity. Notation should be unambiguous. Different semantics should be assigned to
different symbols that are clearly distinguishable.

3. Visual unambiguity. Each symbol should be identified clearly and not be mistaken with other symbols.
This feature should be maintained with low-resolution displays, using only black and white.

4. Extension capability. The notation system should be flexible enough to add new symbols and relationships
in a consistent manner. This may include the use of color coding to enhance expressiveness and readability,
but information should not be lost even with black-and-white displays.

5. Mathematical translation. The notation should be able to convert itself into mathematical formalisms, such
as differential equations, so that it can be applied directly for numerical analysis.

6. Software support. The notation should be supported by software for its drawing, viewing, editing, and
translation into mathematical formalisms.

No current graphical notation system satisfies all of these criteria fully, although a number of systems satisfy
some of them.!

SOURCE: Adapted by permission from H. Kitano, “A Graphical Notation for Biochemical Networks,” Biosilico 1(5):159-176. Copyright
2003 Elsevier.

1See, for example, K.W. Kohn, “Molecular Interaction Map of the Mammalian Cell Cycle Control and DNA Repair Systems,” Molecular
Biology of the Cell 10(8):2703-2734, 1999; K. Kohn, “Molecular Interaction Maps as Information Organizers and Simulation Guides,” Chaos
11(1):84-97, 2001.

other hand, statistical influence models are not causal and may not lead to a better understanding of
underlying mechanisms.

Quantitative models make detailed statements about biological processes and hence are easier to
falsify than more qualitative models. These models are intended to be predictive and are useful for
understanding points of control in cellular networks and for designing new functions within them.

Some models are based on power law formalisms.?! In such cases, the data are shown to fit generic
power laws, and the general theory of power law scaling (for example) is used to infer some degree of
causal structure. They do not provide detailed insight into mechanism, although power law models
form the basis for a large class of metabolic control analyses and dynamic simulations.

Computational models—simulations—represent the other end of the modeling spectrum. Simula-
tion is often necessary to explore the implications of a model, especially its dynamical behavior, because

21E.Q. Voit and T. Radivoyevitch, “Biochemical Systems Analysis of Genomewide Expression Data,” Bioinformatics 16(11):1023-
1037, 2000. (Cited in Arkin, 2001.)
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human intuition about complex nonlinear systems is often inadequate.?? Lander cites two examples.
The first is that “intuitive thinking about MAP [mitogen-activated protein] kinase pathways led to the
long-held view that the obligatory cascade of three sequential kinases serves to provide signal amplifi-
cation. In contrast, computational studies have suggested that the purpose of such a network is to
achieve extreme positive cooperativity, so that the pathway behaves in a switch-like, rather than a
graded, fashion.”?®> The second example is that while intuitive interpretations of experiments in the
study of morphogen gradient formation in animal development led to the conclusion that simple
diffusion is not adequate to transport most morphogens, computational analysis of the same experi-
mental data led the opposite conclusion.?*

Simulation, which traces functional biological processes through some period of time, generates
results that can be checked for consistency with existing data (“retrodiction” of data) and can also
predict new phenomena not explicitly represented in but nevertheless consistent with existing datasets.
Note also that when a simulation seeks to capture essential elements in some oversimplified and
idealized fashion, it is unrealistic to expect the simulation to make detailed predictions about specific
biological phenomena. Such simulations may instead serve to make qualitative predictions about ten-
dencies and trends that become apparent only when averaged over a large number of simulation runs.
Alternatively, they may demonstrate that certain biological behaviors or responses are robust and do
not depend on particular details of the parameters involved within a very wide range.

Simulations can also be regarded as a nontraditional form of scientific communication. Tradition-
ally, scientific communications have been carried by journal articles or conference presentations. Though
articles and presentations will continue to be important, simulations—in the form of computer pro-
grams—can be easily shared among members of the research community, and the explicit knowledge
embedded in them can become powerful points of departure for the work of other researchers.

With the availability of cheap and powerful computers, modeling and simulation have become
nearly synonymous. Yet, a number of subtle differences should be mentioned. Simulation can be used
as a tool on its own or as a companion to mathematical analysis.

In the case of relatively simple models meant to provide insight or reveal a concept, analytical
and mathematical methods are of primary utility. With simple strokes and pen-and-paper compu-
tations, the dependence of behavior on underlying parameters (such as rate constants), conditions
for specific dynamical behavior, and approximate connections between macroscopic quantities
(e.g., the velocity of a cell) and underlying microscopic quantities (such the number of actin fila-
ments causing the membrane to protrude) can be revealed. Simulations are not as easily harnessed
to making such connections.

Simulations can be used hand-in-hand with analysis for simple models: exploring slight changes in
equations, assumptions, or rates and gaining familiarity can guide the best directions to explore with
simple models as well. For example, G. Bard Ermentrout at the University of Pittsburgh developed XPP
software as an evolving and publicly available experimental modeling tool for mathematical biolo-
gists.?> XPP has been the foundation of computational investigations in many challenging problems in
neurophysiology, coupled oscillators, and other realms.

Mathematical analysis of models, at any level of complexity, is often restricted to special cases that
have simple properties: rectangular boundaries, specific symmetries, or behavior in a special class. Simu-
lations can expand the repertoire and allow the modeler to understand how analysis of the special cases

22A.D. Lander, “A Calculus of Purpose,” PLoS Biology 2 (6):e164, 2004.

23C.Y. Huang and J.E. Ferrell, “Ultrasensitivity in the Mitogen Activated Protein Kinase Cascade,” Proceedings of the National
Academy of Sciences 93(19):10078-10083, 1996. (Cited in Lander, “A Calculus of Purpose,” 2004.)

24A D. Lander, Q. Nie, and F.Y. Wan, “Do Morphogen Gradients Arise by Diffusion?” Developmental Cell 2(6):785-796, 2002.
(Cited in Lander, 2004.)

25Gee http:/ /www.math.pitt.edu/~bard /xpp /xpp.html.
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relates to more realistic situations. In this case, simulation takes over where analysis ends.?® Some systems
are simply too large or elaborate to be understood using analytical techniques. In this case, simulation is a
primary tool. Forecasts requiring heavy “number-crunching” (e.g., weather prediction, prediction of cli-
mate change), as well as those involving huge systems of diverse interacting components (e.g., cellular
networks of signal transduction cascades), are only amenable to exploration using simulation methods.

More detailed models require a detailed consideration of chemical or physical mechanisms involved
(i.e., these models are mechanistic?” ). Such models require extensive details of known biology and have
the largest data requirements. They are, in principle, the most predictive. In the extreme, one can imagine
a simulation of a complete cell—an “in silico” cell or cybercell—that provides an experimental framework
in which to investigate many possible interventions. Getting the right format, and ensuring that the in
silico cell is a reasonable representation of reality, has been and continues to be an enormous challenge.

No reasonable model is based entirely on a bottom-up analysis. Consider, for example, that solving
Schrodinger’s equation for the millions of atoms in a complex molecule in solution would be a futile
exercise, even if future supercomputers could handle this task. The question to ask is how and why such
work would be contemplated: finding the correct level of representation is one of the key steps to good
scientific work. Thus, some level of abstraction is necessary to render any model both interesting
scientifically and feasible computationally. Done properly, abstractions can clarify the sources of con-
trol in a network and indicate where more data are necessary. At the same time, it may be necessary to
construct models at higher degrees of biophysical realism and detail in any event, either because
abstracted models often do not capture the essential behavior of interest or to show that indeed the
addition of detail does not affect the conclusions drawn from the abstracted model.?8

It is also helpful to note the difference between a computational artifact that reproduces some
biological behavior (a task) and a simulation. In the former case, the relevant question is: “How well
does the artifact accomplish the task?” In the latter case, the relevant question is: “How closely does the
simulation match the essential features of the system in question?”

Most computer scientists would tend to assign higher priority to performance than to simulation.
The computer scientist would be most interested in a biologically inspired approach to a computer
science problem when some biological behavior is useful in a computational or computer systems
context and when the biologically inspired artifact can demonstrate better performance than is possible
through some other way of developing or inspiring the artifact. A model of a biological system then
becomes useful to the computer scientist only to the extent that high-fidelity mimicking of how nature
accomplishes a task will result in better performance of that task.

By contrast, biologists would put greater emphasis on simulation. Empirically tested and validated
simulations with predictive capabilities would increase their confidence that they understood in some
fundamental sense the biological phenomenon in question. However, it is important to note that be-
cause a simulation is judged on the basis of how closely it represents the essential features of a biological
system, the question “What counts as essential?” is central (Box 5.3). More generally, one fundamental
focus of biological research is a determination of what the “essential” features of a biological system are,

26At times, it is also desirable to employ a mix of analysis and simulation. Analysis would be used to generate the basic
equations underlying a complex phenomenon. Solutions to these equations would then be explored and with luck, considerably
simplified. The simplified models can then be simulated. See, for example, E.A. Ezrachi, R. Levi, ] M. Cambhi, and H. Parnas,
“Right-Left Discrimination in a Biologically Oriented Model of the Cockroach Escape System,” Biological Cybernetics 81(2):89-99,
1999.

27Note that mechanistic models can be stochastic—the term “mechanistic” should not be taken to mean deterministic.

28Tensions between these perspectives were apparent even in reviews of the draft of this report. In commenting on neuro-
science topics in this report, advocates of the first point of view argued that ultrarealistic simulations accomplish little to further
our understanding about how neurons work. Advocates of the second point of view argued that simple neural models could not
capture the implications of the complex dynamics of each neuron and its synapses and that these models would have to be
supplemented by more physiological ideas. From the committee’s perspective, both points of view have merit, and the scientific
challenge is to find an appropriate simplification or abstraction that does capture the interesting behavior at reasonable fidelity.
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Box 5.3
An lllustration of “Essential”

Consider the following modeling task. The phenomenon of interest is a monkey learning to fetch a banana
from behind a transparent conductive screen. The first time, the monkey sees the banana, goes straight ahead,
bumps into the screen, and then goes around the screen to the banana. The second time, the monkey, having
discovered the existence of the screen that blocks his way, goes directly around the screen to the banana.

To model this phenomenon, a system is constructed, consisting of a charged ball and a metal sheet. The
charged metal ball is hung from a string above the banana and then held at an angle so the screen separates
the ball and the banana. The first time the ball is released, the ball swings toward the screen, and then touches
it, transferring part of its charge to the screen. The similar charges on the screen and the ball now repel each
other, and the ball swings around the screen. The second time the ball is released, the ball sees a similarly
charged screen and goes around the screen directly.

This model reproduces the behavior of the monkey in the first instance. However, no one would claim that it
is an accurate model of the learning that takes place in the monkey’s brain, even though the model replicates
the most salient feature of the monkey’s learning consistently: both the ball and the monkey dodge the screen
on the second attempt. In other words, even though it demonstrates the same behavior, the model does not
represent the essential features of the biological system in question.

recognizing that what is “essential” cannot be determined once and for all, but rather depends on the
class of questions under consideration.

5.3.2 Hybrid Models

Hybrid models are models composed of objects with different mathematical representations. These
allow a model builder the flexibility to mix modeling paradigms to describe different portions of a
complex system. For example, in a hybrid model, a signal transduction pathway might be described by
a set of differential equations, and this pathway could be linked to a graphical model of the genetic
regulatory network that it influences. An advantage of hybrid models is that model components can
evolve from high-level abstract descriptions to low-level detailed descriptions as the components are
better characterized and understood.

An example of hybrid model use is offered by McAdams and Shapiro,?”” who point out that genetic
networks involving large numbers of genes (more than tens) are difficult to analyze. Noting the “many
parallels in the function of these biochemically based genetic circuits and electrical circuits,” they
propose “a hybrid modeling approach that integrates conventional biochemical kinetic modeling within
the framework of a circuit simulation. The circuit diagram of the bacteriophage lambda lysislysogeny
decision circuit represents connectivity in signal paths of the biochemical components. A key feature of
the lambda genetic circuit is that operons function as active integrated logic components and introduce
signal time delays essential for the in vivo behavior of phage lambda.”

There are good numerical methods for simulating systems that are formulated in terms of ordinary
differential equations or algebraic equations, although good methods for analysis of such models are
still lacking. Other systems, such as those that mix continuous with discrete time or Markov processes
with partial differential equations, are sometimes hard to solve even by numerical methods. Further, a
particular model object may change mathematical representation during the course of the analysis. For
example, at the beginning of a biosynthetic process there may be very small amounts of product so its

29Gee H.H. McAdams and L. Shapiro, “Circuit Simulation of Genetic Networks,” Science 269(5224):650-656, 1994.

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/11480.html

omputing and Biology

130 CATALYZING INQUIRY

concentration would have to be modeled discretely. As more of it is synthesized, the concentration
becomes high enough that a continuous approximation is justified and is then more efficient for simu-
lation and analysis.

The point at which this switch is made is dependent not just on copy number but also on where in the
dynamical state space the system resides. If the system is near a bifurcation point, small fluctuations may be
significant. Theories of how to accomplish this dynamic switching are lacking. As models grow more
complex, different parts of the system will have to be modeled with different mathematical representations.
Also, as models from different sources begin to be joined, it is clear that different representations will be
used. It is critical that the theory and applied mathematics of hybrid dynamical systems be developed.

5.3.3 Multiscale Models

Multiscale models describe processes occurring at many time and length scales. Depending on the
biological system of interest, the data needed to provide the basis for a greater understanding of the
system will cut across several scales of space and time. The length dimensions of biological interest
range from small organic molecules to multiprotein complexes at 100 angstroms to cellular processes at
1,000 angstroms to tissues at 1-10 microns, and the interaction of human populations with the environ-
ment at the kilometer scale. The temporal domain includes the femtosecond chemistry of molecular
interactions to the millions of years of evolutionary time, with protein folding in seconds and cell and
developmental processes in minutes, hours, and days. In turn, the scale of the process involved (e.g.,
from the molecular scale to the ecosystem scale) affects both the complexity of the representation (e.g.,
molecule base, concentration based, at equilibrium or fully dynamic) and the modality of the represen-
tation (e.g., biochemical, genetic, genomic, electrophysiological, etc.).

Consider the heart as an example. The macroscopic unit of interest is the heartbeat, which lasts
about a second and involves the whole heart of 10 cm scale. But the cardiac action potential (the
electrical signal that initiates myocellular contractions) can change significantly on time scales of milli-
seconds as reflected in the appropriate kinetic equations. In turn, the molecular interactions that under-
lie kinetic flows occur on time scales on the order of femtoseconds. Across such variation in time scales,
it is not feasible to model 10' molecular interactions in order to model a complete heartbeat. Fortu-
nately, in many situations the response with the shorter time scale will converge quickly to equilibrium
or quasi-steady-state behavior, obviating the need for a complete lower-level simulation.3

For most biological problems, the scale at which data could provide a central insight into the
operation of the whole system is not known, so multiple scales are of interest. Thus, biological models
have to allow for transition among different levels of resolution. A biologist might describe a protein as
a simple ellipsoid and then in the next breath explain the effect of a point mutation by the atomic-level
structural changes it causes in the active site.3!

Identifying the appropriate ranges of parameters (e.g., rate constants that govern the pace of chemi-
cal reactions) remains one of the difficulties that every modeler faces sooner or later. As modelers know
well, even qualitative analysis of simple models depends on knowing which “leading-order terms” are
to be kept on which time scales. When the relative rates are entirely unknown—true of many biochemi-
cal steps in living cells—it is hard to know where to start and how to assemble a relevant model, a point
that underscores the importance of close dialogue between the laboratory biologist and the mathemati-
cal or computational modeler.

Finally, data obtained at a particular scale must be sufficient to summarize the essential biological
activity at that scale in order to be evaluated in the context of interactions at greater scales of complexity.
The challenge, therefore, is one of understanding not only the relationship of multiple variables operat-
ing at one scale of detail, but also the relationship of multivariable datasets collected at different scales.

30A.D. McCulloch and G. Huber, “Integrative Biological Modelling in Silico,” pp. 4-25 in ‘I Silico” Simulation of Biological
Processes No. 247, Novartis Foundation Symposium, G. Bock and J.A. Goode, eds., John Wiley & Sons Ltd., Chichester, UK, 2002.
31D, Endy and R. Brent, “Modeling Cellular Behavior,” Nature 409(6818):391-395, 2001.
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5.3.4 Model Comparison and Evaluation

Models are ultimately judged by their ability to make predictions. Qualitative models predict trends
or types of dynamics that can occur, as well as thresholds and bifurcations that delineate one type of
behavior from another. Quantitative models predict values that can be compared to actual experimental
data. Therefore, the selection of experiments to be performed can be determined, at least in part, by their
usefulness in constraining a model or selecting one model from a set of competing models.

The first step in model evaluation is to replicate and test a computational model of biological
systems that has been published. However, most papers contain typographical errors and do not pro-
vide a complete specification of the biological properties that were represented in the model. One
should be able to extract the specification from the model’s source code, but for a whole host of reasons
it is not always possible to obtain the actual files that were used for the published work.

In the neuroscience field, ModelDB (http://senselab.med.yale.edu/senselab/modeldb/) is being
developed to answer the need for a database of published models used in neuroscience research.? It is
part of the SenseLab project (http:/ /senselab.med.yale.edu/), which is supported through the Human
Brain Project by the National Institute of Mental Health (NIMH), the National Institute of Neurologist
disorders and Stroke (NINDS), and the National Cancer Institute (NCI).

ModelDB is a curated database that is designed for convenient entry, search, and retrieval of models
written for any programming language or simulation environment. As of December 10, 2004, it con-
tained 141 downloadable models. Most of these are for NEURON, but 40 of them are for MATLAB,
GENESIS, SNNAP, or XPP, and there are also some models in C/C++ and FORTRAN. Database entries
are linked to the published literature so that users can more easily determine the “scientific context” of
any given model.

Although ModelDB is still in a developmental or research stage, it has already begun to have a positive
effect on computational modeling in neuroscience. Database logs indicate that it is seeing heavy usage, and
from personal communications the committee has learned that even experienced programmers who write
their own code in C/C++ are regularly examining models written for NEURON and other domain-specific
simulators, in order to determine key parameter values and other important details. Recently published
papers are beginning appear that cite ModelDB and the models it contains as sources of code, equations, or
parameters. Furthermore, a leading journal has adopted a policy that requires authors to make their source
code available as a condition of publication and encourages them to use ModelDB for this purpose.

As for model comparison, it is not possible to ascertain in isolation whether a given model is correct
since contradictory data may become available later, and indeed even “incorrect” models may make
correct predictions. Suitably complex models can be made to fit to any dataset, and one must guard
against “overfitting” a model. Thus, the predictions of a model must be viewed in the context of the
number of degrees of freedom of the model, and one measure that one model is better than another is a
judgment about which model best explains experimental data with the least model complexity. In some
cases, measures of the statistical significance of a model can be computed using a likelihood distribution
over predicated state variables taking into account the number of degrees of freedom present in the model.

At the same time, lessons learned over many centuries of scientific investigation regarding the use of
Occam’s Razor may have limited applicability in this context. Because biological phenomena are the result
of an evolutionary process that simply uses what is available, many biological phenomena are simply
cobbled together and in no sense can be regarded as the “simplest” way to accomplish something.

As noted in Footnote 28, there is a tension between the need to capture details faithfully in a model
and the desire to simplify those details so as to arrive at a representation that can be analyzed, understood
fully, and converted into scientific “knowledge.” There are numerous ways of reducing models that are
well known in applied mathematics communities. These include dimensional analysis and multiple time-
scale analysis (i.e., dissecting a system into parts that evolve rapidly versus those that change on a slower

32M.L. Hines, T. Morse, M. Migliore, N.T. Carnevale, and G.M. Shepherd, “ModelDB: A Database to Support Computational
Neuroscience,” Journal of Computational Neuroscience 17(1):7-11, 2004; B.]. Richmond, “Editorial Commentary,” Journal of Computa-
tional Neuroscience 17(1):5, 2004.
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time scale). In some cases, leaving out some of the interacting components (e.g., those whose interactions
are weakest or least significant) may be a workable method. In other cases, lumping together families or
groups of substances to form aggregate components or compartments works best. Sensitivity analysis of
alternative model structures and parameters can be performed using likelihood and significance mea-
sures. Sensitivity analysis is important to inform a model builder of the essential components of the model
and to attempt to reduce model complexity without loss of explanatory power.

Model evaluation can be complicated by the robustness of the biological organism being repre-
sented. Robustness generally means that the organism will endure and even prosper under a wide
range of conditions—which means that its behavior and responses are relatively insensitive to varia-
tions in detail.3® That is, such differences are unlikely to matter much for survival. (For example, the
modeling of genetic regulatory networks can be complicated by the fact that although the data may
show that a certain gene is expressed under certain circumstances, the biological function being served
may not depend on the expression of that gene.) On the other hand, this robustness may also mean that
a flawed understanding of detailed processes incorporated into a model that does explain survival
responses and behavior will not be reflected in the model’s output.3

Simulation models are essentially computer programs and hence suffer from all of the problems
that plague software development. Normal practice in software development calls for extensive testing
to see that a program returns the correct results when given test data for which the appropriate results
are known independently of the program as well as for independent code reviews. In principle, simula-
tion models of biological systems could be subject to such practices. Yet the fact that a given simulation
model returns results that are at variance with experimental data may be attributable to an inadequacy
of the underlying model or to an error in programming.3> Note also that public code reviews are
impossible if the simulation models are proprietary, as they often are when they are created by firms
seeking to obtain competitive advantage in the marketplace.

These points suggest a number of key questions in the development of a model.

How much is given up by looking at simplified versions?

How much poorer, and in what ways poorer, is a simplified model in its ability to describe the system?
Are there other, new ways of simplifying and extracting salient features?

Once the simplified representation is understood, how can the details originally left out be
reincorporated into a model of higher fidelity?

Finally, another approach to model evaluation is based on notions of logical consistency. This
approach uses program verification tools originally developed by computer scientists to determine
whether a given program is consistent with a given formal specification or property. In the biological
context, these tools are used to check the consistency and completeness of a model’s description of the
biological system’s processes. These descriptions are dynamic and thus permit “running” a model to
observe developments in time. Specifically, Kam et al. have demonstrated this approach using the
languages, methods, and tools of scenario-based reactive system design and applied it to modeling the
well-characterized process of cell fate acquisition during Caenorhabditis elegans vulval development.
(Box 5.4 describes the intellectual approach in more detail %)

3L.A. Segel, “Computing an Organism,” Proceedings of the National Academy of Sciences 98(7):3639-3640, 2001.

340n the basis of other work, Segel argues that a biological model enjoys robustness only if it is “correct” in certain essential features.

35Note also the well-known psychological phenomenon in programming—being a captive of one’s test data. Programming
errors that prevent the model from accounting for the data tend to be hunted down and fixed. However, if the model does
account for the data, there is a tendency to assume that the program is correct.

36N. Kam, D. Harel, H. Kugler, R. Marelly, A. Penueli, ]. Hubbard, et al., “Formal Modeling of C. elegans Development: A
Scenario-based Approach,” pp. 4-20 in Proceedings of the First International Workshop on Computational Methods in Systems Biology
(CMSBO03; Rovereto, Italy, February 2003), Vol. 2602, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Heidelberg,
2003. This material is scheduled to appear in the following book: G. Ciobanu, ed., Modeling in Molecular Biology, Natural Comput-
ing Series, Springer, available at http:/ /www.wisdom.weizmann.ac.il/ ~kam/CelegansModel /Publications/ MMB_Celegans.pdf.

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/11480.html

omputing and Biology

COMPUTATIONAL MODELING AND SIMULATION AS ENABLERS FOR BIOLOGICAL DISCOVERY

133

Box 5.4
Formal Modeling of Caenorhabditis elegans Development

Our understanding of biology has become sufficiently complex that it is increasingly difficult to integrate all the
relevant facts using abstract reasoning alone. [Formal modeling presents] a novel approach to modeling biological
phenomena. It utilizes in a direct and powerful way the mechanisms by which raw biological data are amassed, and
smoothly captures that data within tools designed by computer scientists for the design and analysis of complex
reactive systems.

A considerable quantity of biological data is collected and reported in a form that can be called “condition-result”
data. The gathering is usually carried out by initializing an experiment that is triggered by a certain set of circum-
stances (conditions), following which an observation is made and the results recorded. The condition is most often
a perturbation, such as mutating genes or exposing cells to an altered environment. . . . [and] a large proportion of
biological data is reported as stories, or “scenarios,” that document the results of experiments conducted under
specific conditions.

The challenge of modeling these aspects of biology is to be able to translate such “condition-result” phenomena
from the “scenario”-based natural language format into a meaningful and rigorous mathematical language. Such
a translation process will allow these data to be integrated more comprehensively by the application of high-level
computer-assisted analysis. In order for it to be useful, the model must be rigorous and formal, and thus amenable
to verification and testing.

We have found that modeling methodologies originating in computer science and software engineering, and created
for the purpose of designing complex reactive systems, are conceptually well suited to model this type of condition-
result biological data. Reactive systems are those whose complexity stems not necessarily from complicated compu-
tation but from complicated reactivity over time. They are most often highly concurrent and time-intensive, and
exhibit hybrid behavior that is predominantly discrete in nature but has continuous aspects as well. The structure of
a reactive system consists of many interacting components, in which control of the behavior of the system is highly
distributed amongst the components. Very often the structure itself is dynamic, with its components being repeatedly
created and destroyed during the system’s life span.

The most widely used frameworks for developing models of such systems feature visual formalisms, which are both
graphically intuitive and mathematically rigorous. These are supported by powerful tools that enable full model
executability and analysis, and are linkable to graphical user interfaces (GUIs) of the system. This enables realistic
simulation prior to actual implementation. At present, such languages and tools—often based on the object-oriented
paradigm—are being strengthened by verification modules, making it possible not only to execute and simulate the
system models (test and observe) but also to verify dynamic properties thereof (prove). . . .

[Mlany kinds of biological systems exhibit characteristics that are remarkably similar to those of reactive systems.
The similarities apply to many different levels of biological analysis, including those dealing with molecular, cellular,
organ-based, whole organism, or even population biology phenomena. Once viewed in this light, the dramatic
concurrency of events, the chain-reactions, the time-dependent patterns, and the event-driven discrete nature of
their behaviors, are readily apparent. Consequently, we believe that biological systems can be productively modeled
as reactive systems, using languages and tools developed for the construction of man-made systems. . . .

SOURCE: N. Kam et al., “Formal Modeling of C. elegans Development: A Scenario-based Approach,” pp. 4-20 in Proceedings of the First
International Workshop on Computational Methods in Systems Biology (CMSB03; Rovereto, Italy, February 2003), Vol. 2602, Lecture Notes
in Computer Science, Springer-Verlag, Berlin, Heidelberg, 2003, available at http:/www.wisdom.weizmann.ac.il/~kam/CelegansModel/
Publications/MMB_Celegans.pdf. Reprinted with permission from Springer-Verlag.
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54 MODELING AND SIMULATION IN ACTION

The preceding discussion has been highly abstract. This section provides some illustrations of how
modeling and simulation have value across a variety of subfields in biology. No claim is made to
comprehensiveness, but the committee wishes to illustrate the utility of modeling and simulations at
levels of organization from gene to ecosystem.

5.4.1 Molecular and Structural Biology

5.4.1.1 Predicting Complex Protein Structures

Interactions between proteins are crucial to the functioning of all cells. While there is much experi-
mental information being gathered regarding protein structures, many interactions are not fully under-
stood and have to be modeled computationally. The topic of computational prediction of protein-
protein structure remains to be solved and is one of the most active areas of research in bioinformatics
and structural biology.

ZDOCK and RDOCK are two computer programs that address this problem, also known as protein
docking.3” ZDOCK is an initial stage protein docking program that performs a full search of the relative
orientations of two molecules (referred to by convention as the ligand and receptor) to determine their
best fit based on surface complementarity, electrostatics and desolvation. The efficiency of the algo-
rithm is enhanced by discretizing the molecules onto a grid and performing a fast Fourier transform
(FFT) to quickly explore the translational degrees of freedom.

RDOCK takes as input the ZDOCK predictions and improves them using two steps. The first step is
to improve the energetics of the prediction and remove clashes by performing small movements of the
predicted complex, using a program known as CHARMM. The second step is to rescore these mini-
mized predictions with more detailed scoring functions for electrostatics and desolvation.

The combination of these two algorithms has been tested and verified with a benchmark set of
proteins collected for use in testing docking algorithms. Now at version 2.0, this benchmark is publicly
available and contains 87 test cases. These test cases cover a breadth of interactions, such as antibody-
antigen, and cases involving significant conformational changes.

The ZDOCK-RDOCK programs have consistently performed well in the international docking
competition CAPRI (Figure 5.1). Some notable predictions were for the Rotavirus VP6/Fab (50 of 52
contacting residues correctly predicted), and SAG-1/Fab complex (61 of 70 contacts correct), and the
cellulosome cohesion-dockerin structure (50 of 55 contacts correct). In the first two cases, the number of
contacts in the ZDOCK-RDOCK predictions were the highest among all participating groups.

5.4.1.2 A Method to Discern a Functional Class of Proteins

The DNA-binding helix-turn-helix structural motif plays an essential role in a variety of cellular
pathways that include transcription, DNA recombination and repair, and DNA replication. Current
methods for identifying the motif rely on amino acid sequence, but since members of the motif belong
to different sequence families that have no sequence homology to each other, these methods have been
unable to identify all motif members.

A new method based on three-dimensional structure was created that involved the following
steps:38 (1) choosing a conserved component of the motif, (2) measuring structural features relative

37For more information, see http://zlab.bu.edu.
38W.A. McLaughlin and H.M. Berman, “Statistical Models for Discerning Protein Structures Containing the DNA-binding
Helix-Turn-Helix Motif,” Journal of Molecular Biology 330(1):43-55, 2003.
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FIGURE 5.1 The ZDOCK/RDOCK prediction for dockerin (in red) superposed on the crystal structure for CAPRI
Target 13, cohesin/dockerin. SOURCE: Courtesy of Brian Pierce and Zhiping Weng, Boston University.

to that component, and (3) creating classification models by comparing measurements of structures
known to contain the motif to measurements of structures known not to contain the motif. In this
case, the conserved component chosen was the recognition helix (i.e., the alpha helix that makes
sequence-specific contact with DNA), and two types of relevant measurements were the hydropho-
bic area of interaction between secondary structure elements (SSEs) and the relative solvent acces-
sibility of SSEs.

With a classification model created, the entire Protein Data Bank of experimentally measured struc-
tures was searched and new examples of the motif were found that have no detected sequence homol-
ogy with previously known examples. Two such examples are Esal histone acetyltransferase and
isoflavone 4-O-methyltransferase. The result emphasizes an important utility of the approach: sequence-
based methods used to discern a functional class of proteins may be supplemented through the use of a
classification model based on three-dimensional structural information.
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5.4.1.3 Molecular Docking

Using a simple, uniform representation of molecular surfaces that requires minimal parameteriza-
tion, Jain® has constructed functions that are effective for scoring protein-ligand interactions, quantita-
tively comparing small molecules, and making comparisons of proteins in a manner that does not
depend on protein backbone. These methods rely on computational approaches that are rooted in
understanding the physics of molecular interactions, but whose functional forms do not resemble those
used in physics-based approaches. That is, this problem can be treated as a pure computer science
problem that can be solved using combinations of scoring and search or optimization techniques pa-
rameterized with the use of domain knowledge. The approach is as follows:

* Molecules are approximated as collections of spheres with fixed radii: H=1.2;C=1.6; N=1.5;0 =
14;5=195P=19,F=1.35Cl=1.8; Br=1.951=2.15.

e A labeling of the features of polar atoms is superimposed on the molecular representation:
polarity, charge, and directional preference (Figure 5.2, subfigures A and B).

® A scoring function is derived that, given a protein and a ligand in some relative alignment, yields
a prediction of the energy of interaction.

¢ The function is parameterized in terms of the pairwise distances between molecular surfaces.

¢ The dominant terms are a hydrophobic term that characterizes interactions between nonpolar
atoms and a polar term that captures complementary polar contacts with proper directionality.

¢ The parameters of the function were derived from empirical binding data and 34 protein-ligand
complexes that were experimentally determined.

e The scoring function is described in Figure 5.2, Subfigure C. The hydrophobic term peaks at
approximately 0.1 unit with a slight surface interpenetration. The hydrophobic term for an ideal hydro-
gen bond peaks at 1.25 units, and a charged interaction (tertiary amine proton (+1.0) to a charged
carboxylate (—0.5)) peaks at about 2.3 units. Note that this scoring function looks nothing like a force
field derived from molecular mechanics.

¢ Figure 5.2, Subfigure D compares eight docking methods on screening efficiency using thymi-
dine kinase as a docking target. For the test, 10 known ligands and 990 random ligands were used.
Particularly at low false-positive rates (low database coverage), the scoring function approach shows
substantial improvements over the other methods.

5.4.1.4 Computational Analysis and Recognition of Functional and
Structural Sites in Protein Structures®’

Structural genomics initiatives are producing a great increase in protein three-dimensional struc-
tures determined by X-ray and nuclear magnetic resonance technologies as well as those predicted by
computational methods. A critical next step is to study the relationships between protein structures and
functions. Studying structures individually entails the danger of identifying idiosyncratic rather than
conserved features and the risk of missing important relationships that would be revealed by statisti-

39Gee AN. Jain, “Scoring Noncovalent Protein Ligand Interactions: A Continuous Differentiable Function Tuned to Compute
Binding Affinities,” Journal of Computer-Aided Molecular Design 10(5):427-440, 1996; W. Welch, J. Ruppert, and A.N. Jain, “Ham-
merhead: Fast, Fully Automated Docking of Flexible Ligands to Protein Binding Sites,” Chemistry & Biology 3(6):449-462, 1996; J.
Ruppert, W. Welch, and A.N. Jain, “Automatic Identification and Representation of Protein Binding Sites for Molecular Dock-
ing,” Protein Science 6(3):524-533, 1997; A.N. Jain, “Surflex: Fully Automatic Flexible Molecular Docking Using a Molecular
Similarity-based Search Engine,” Journal of Medicinal Chemistry 46(4):499-511, 2003; A.N. Jain, “Ligand-Based Structural Hypoth-
eses for Virtual Screening.” Journal of Medicinal Chemistry 47(4):947-961, 2004.

405ection 5.4.1.4 is based on material provided by Liping Wei, Nexus Genomics, Inc., and Russ Altman, Stanford University,
personal communication, December 4, 2003.
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FIGURE 5.2 A Computational Approach to Molecular Docking. SOURCE: Courtesy of A.N. Jain, University of
California, San Francisco.

cally pooling relevant data. The expected surfeit of protein structures provides an opportunity to de-
velop computational methods for collectively examining multiple biological structures and extracting
key biophysical and biochemical features, as well as methods for automatically recognizing these fea-
tures in new protein structures.

Wei and Altman have developed an automated system known as FEATURE that statistically stud-
ies the important functional and structural sites in protein structures such as active sites, binding sites,
disulfide bonding sites, and so forth. FEATURE collects all known examples of a type of site from the
Protein Data Bank (PDB) as well as a number of control “nonsite” examples. For each of them, FEA-
TURE computes the spatial distributions of a large set of defined biophysical and biochemical proper-
ties spanning multiple levels of details in order to capture conserved features beyond basic amino acid
sequence similarity. It then uses a nonparametric statistical test, the Wilcoxin Rank Sum Test, to find the
features that are characteristic of the sites, in the context of control nonsites. Figure 5.3 shows the
statistical features of calcium binding sites.

By using a Bayesian scoring function that recognizes whether a local region within a three-dimen-
sional structure is likely to be any of the sites and a scanning procedure that searches the whole
structure for the sites, FEATURE can also provide an initial annotation of new protein structures.
FEATURE has been shown to have good sensitivity and specificity in recognizing a diverse set of site
types, including active sites, binding sites, and structural sites and is especially useful when the sites do
not have conserved residues or residue geometry. Figure 5.4 shows the result of searching for ATP
(adenosine triphosphate) binding sites in a protein structure.
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FIGURE 5.3 Statistical features of calcium binding sites determined by FEATURE. The volumes in this case corre-
spond to concentrate radial shells 1 A in thickness around the calcium ion or a control nonsite location. The
column shows properties that are statistically significantly different (at p-value cutoff of 0.01) in at least one
volume between known examples of calcium binding sites and those of control nonsites. A “>" (greater than sign)
indicates that the calcium binding sites have significantly higher value for that property at that volume compared
to control nonsites. A “<” (less than sign) indicates the opposite. An empty box indicates the lack of statistically
significant difference. SOURCE: Courtesy of Liping Wei, Nexus Genomics, Inc., and Russ Altman, Stanford Uni-
versity, personal communication, December 4, 2003.
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FIGURE 5.4 Results of automatic scanning for ATP binding sites in the structure of casein kinase (PDB ID 1csn)
using WebFEATURE, a freely available, Web-based server of FEATURE. The solid red dots show the prediction of
FEATURE, they correspond correc