Health Risks from Exposure to Low Levels of Ionizing Radiation BEIR VII, Phase I, Letter Report Board on Radiation Effects Research ISBN: 0-309-58771-9, 12 pages, 8.5 x 11, (1998) This free PDF was downloaded from: http://www.nap.edu/catalog/9526.html Visit the <u>National Academies Press</u> online, the authoritative source for all books from the <u>National Academy of Sciences</u>, the <u>National Academy of Engineering</u>, the <u>Institute of Medicine</u>, and the National Research Council: - Download hundreds of free books in PDF - Read thousands of books online, free - Sign up to be notified when new books are published - Purchase printed books - Purchase PDFs - Explore with our innovative research tools Thank you for downloading this free PDF. If you have comments, questions or just want more information about the books published by the National Academies Press, you may contact our customer service department toll-free at 888-624-8373, <u>visit us online</u>, or send an email to <u>comments@nap.edu</u>. This free book plus thousands more books are available at http://www.nap.edu. Copyright © National Academy of Sciences. Permission is granted for this material to be shared for noncommercial, educational purposes, provided that this notice appears on the reproduced materials, the Web address of the online, full authoritative version is retained, and copies are not altered. To disseminate otherwise or to republish requires written permission from the National Academies Press. NATIONAL RESEARCH COUNCIL COMMISSION ON LIFE SCIENCES 2101 Constitution Avenue Washington, D.C. 20418 BOARD ON RADIATION E FFECTS RESEARCH NAS ROOM 342 TEL: (202) 334-2232 FAX: (202) 334-1639 1 January 21, 1998 Dr. Jerome Puskin US Environmental Protection Agency Radiation Studies Branch 401 M Street, SW Washington, DC 20460 Dear Dr. Puskin: The Environmental Protection Agency Office of Radiation and Indoor Air asked the National Research Council to evaluate whether sufficient new data exist to warrant a reassessment of health risks reported in *Health Effects of Exposure to Low Levels of Ionizing Radiations (BEIR V)* in 1990. To respond to this request, the National Research Council assembled the Committee on Health Risks of Exposure to Low Levels of Ionizing Radiations. The work of the committee was conducted in what was called the BEIR VII phase 1 study. To assist the committee during its deliberations, various scientists were consulted for advice, and a workshop on the impact of biology on risk assessment was held in collaboration with the Department of Energy Office of Health and Environmental Research. The intent of the workshop was to address the implications of new understanding of the biologic basis of radiation injury and carcinogenesis for risk assessment. Through this letter, we are providing you in advance a summary report of the committee's recommendations. This is being done in order to enable you to begin to move forward as soon as possible in making a decision on the appropriateness of undertaking additional study of the subject. The National Research Council is the principal operating agency of the National Academy of Sciences and the National Academy of Engineering to serve government and other organizations The following is a synopsis of the conclusions of the BEIR VII phase 1 study: In the committee's judgment, information that has become available since publication of the 1990 Health Effects of Exposure to Low Levels of Ionizing Radiations (BEIR V) makes this an opportune time to proceed with BEIR VII phase 2–a comprehensive reanalysis of health risks associated with low levels of ionizing radiations. Such a study should begin as soon as possible and is expected to take about 36 months to complete. The committee based that judgment on the following considerations: - Substantial new epidemiologic evidence has accumulated since the 1990 BEIR V report was published. The present committee's phase 1 report will cite 39 new epidemiologic studies that fall into this category (see Table 1). Additional studies that have a direct bearing on the subject should become available in the next 3 years, the estimated period required to complete the phase 2 study. - Some of the new epidemiologic data are on subjects on which information had been sparse, such as cancer mortality in those exposed to whole-body irradiation in childhood. - Studies of carcinogenesis completed since publication of the last BEIR report have focused on mechanisms and the cellular and molecular events that are involved in the neoplastic process. The understanding of molecular events involved in carcinogenesis has increased significantly. Mechanisms that might be involved in radiation carcinogenesis have been identified. Further knowledge of these mechanisms that should become available in the next 3 years might affect estimation of the radiation-response curve at low doses. - Over the next few years, investigators will be applying two closely linked approaches using animal models of carcinogenesis. These will likely contribute to a better understanding of mechanisms of radiation-induced cancer. In the first of these two approaches, genetically engineered mice having alterations in specific genes will be used to determine the influence of these genes on the susceptibility of the mice to radiation-induced cancer. In the second approach, studies will be conducted of the inherent differences in susceptibility to radiation-induced cancer among different mouse strains, the objective being to identify the genes involved in controlling susceptibility. Researchers responsible for this new generation of animal studies are taking advantage of the current rapid developments in molecular genetics. Progress on both approaches should be substantial over the next few years. Significant results of relevance to risk estimation are expected to be available for the proposed BEIR VII phase 2 study. Evidence regarding specific biologic events that can affect the shape of the dose-response curve at low doses is also accumulating. Information on such phenomena as DNA repair, signal transduction, chromosomal instability, and adaptation, although preliminary, might eventually affect risk analyses of low-dose and low-dose-rate exposures. The committee recommends that the group responsible for the proposed phase 2 study - Include a comprehensive review of all relevant epidemiologic data related to low-LET (low linear energy transfer), i.e. sparsely ionizing, radiation. - Define and establish principles on which quantitative analyses can be based, including requirements for epidemiologic data and cohort characteristics. In this respect, the group should consider biologic factors (such as the dose and dose-rate effectiveness factor, relative biologic effectiveness, genomic instability, and adaptive responses) and appropriate models (favoring simple as opposed to complex models) to develop etiologic models, estimate population detriment, and attribute causation in specific cases. This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true cannot be retained, and some typographic errors may have been accidentally inserted. use the print version of this publication as the authoritative version for attribution About this PDF file: - Assess the current status and relevance to risk models of biologic data and models of carcinogenesis. This should include a critical assessment of all data that might affect the shape of the response curve at low doses, in particular, evidence of thresholds or the lack thereof in dose-response relationships and the influence of adaptive responses and radiation hormesis. - Consider potential target cells and problems that might exist in determining dose to the target cell. - Consider any recent evidence regarding genetic effects not related to cancer. Any such data, even if obtained from high radiation exposures or at high dose rates, should be considered. With respect to modeling, the committee recommends that the group responsible for the proposed phase 2 study - Develop appropriate risk models for major cancer types and other outcomes, including benign disease and genetic effects. Specifically, the responsible group should develop models appropriate for probability-of-causation tables and should consider the fitting of purely empirical models to original data from studies or combined studies, the fitting of purely empirical models with meta-analytic techniques, and the fitting of semiempirical biology-based models to epidemiologic data. - Provide examples of specific risk calculations based on the models and explain the appropriate use of the risk models. - Describe and define the limitations and uncertainties of the risk models and their results. The group conducting the proposed phase 2 study should be directed to develop This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true About this PDF file: best-risk estimates as opposed to developing conservative models for purposes of radiation protection. - Discuss the role and effect of modifying factors, including host (such as individual susceptibility and variability, age, and sex), environment, and lifestyle. - Identify critical gaps in knowledge that should be filled by future research. To accomplish the above charge, the membership of the group responsible for the proposed BEIR VII phase 2 study will require expertise in epidemiology, biostatistics, radiation physics and dosimetry, molecular biology, risk assessment, cancer modeling, animal and cellular radiation biology, somatic cell genetics, cell-cycle regulation and apoptosis, and ionizing radiation-induced DNA damage and its repair. The committee recommends that the experts chosen have adequate resources and access to data for the computing, statistical analyses, and modeling required to complete the study. We trust that this synopsis of the recommendations of the committee will meet your current needs. The complete report of the committee will be published and provided to your office when it has received the committee's final approval and has been subjected to the National Research Council peer-review process. Richard B. Setton Sincerely, Richard B. Setlow, Ph.D. Chairman, Committee on Health Effects of Exposure to Low Levels of Ionizing Radiations (BEIR VII Phase 1) About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution. Table 1 is a summary of the more important epidemiologic data that have been published since the 1990 publication of the BEIR V report. Included are studies that are expected to provide new and useful data during the 3-year term of the proposed BEIR VII, Phase II, study. Although not exhaustive, the list should serve as a guide to some of the pertinent new and upcoming epidemiologic data on the subject. About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution. Table 1. Summary of Epidemiologic Studies of Low-LET Ionizing Radiation and Cancer, 1990 | | Caucei, 1990 | ı | | | | | T | |---|--|---------------------|-----------|-----------------------|--------------------------------|------------------------------|--| | STUDY | REFERENCE | TYPE
OF
STUDY | SERIES | SEX | NO. IN
STUDY | YEARS
OF
FOLLOW
-UP | CANCER
SITES
REPORTED | | Ankylosing
spondylitis
patients | Weiss et al. Cancer mortality
following x-ray treatment for
ankylosing spondylitis. Int J Cancer
1994;59:327-338. | Cohort | Mortality | Male
and
Female | 15,577 | 1935-
1992 | All cancer
and multiple
cancer sites | | | Weiss et al. Leukemia mortality
after x-ray treatment for ankylosing
spondylitis. Rad Res 1995;142:1-
11. | Cohort | Mortality | Male
and
Female | 14,767 | 1935-
1992 | Leukemia | | Atomic-bomb
survivors | Preston et al. Cancer incidence in
atomic-bomb survivors. Part III:
leukemia, lymphoma, and multiple
myeloma 1950-1987. Rad Res
1994;137:568-597 (2 suppl). | Cohort | Incidence | Male
and
Female | 93,696 | 1950-
1987 | Leukemia,
lymphoma,
multiple
myeloma | | | Thompson et al. Cancer incidence in atomic-bomb survivors. Part II: solid tumors, 1958-1987. Rad Res 1994;137:517-567. | Cohort | Incidence | Male
and
Female | 79,972 | 1958-
1987 | Multiple
cancer sites
(solid turnors) | | | Ron et al. Incidence of benign
gastrointestinal tumors among
atomic-bomb survivors. Amer J
Epi 1995;142:68-75. | Cohort | Incidence | Male
and
Female | 80,311 | 1958-
1989 | Benign
tumors of
stomach,
colon, and
rectum | | | Pierce et al. Studies of the mortality
of atomic bomb survivors. Report
12, Part 1. Cancer:1950-1990. Rad
Res 1996;146:1-27. | Cohort | Mortality | Male
and
Female | 86,572 | 1950-
1990 | Non
leukemias,
leukemia, and
multiple
cancer sites | | Atomic-bomb
survivors (case-
control study) | Land et al. A case control interview study of breast cancer among Japanese A-bomb survivors. I. Main effects. Cancer Causes and Control 1994;5:157-169. | Case-
control | | Female | Cases: 196
Controls:
566 | 1955-
1981 | Breast cancer | | | Land et al. A case-control interview study of breast cancer among Japanese A-bomb survivors. II. Interactions with radiation dose. Cancer Causes and Control 1994;5:167-176. | | | | | | | | Atomic-bomb
survivors (in utero
cohorts) | Delongchamp et al. Cancer
mortality among atomic-bomb
survivors exposed in utero or as
young children, October 1950-May
1992. Rad Res 1997;147:385-395. | Cohort | Mortality | Male
and
Female | 17,601 | 1950-
1992 | Non
leukemias,
leukemia, and
multiple
cancer sites | | STUDY | REFERENCE | TYPE
OF
STUDY | SERIES | SEX | NO. IN
STUDY | YEARS
OF
FOLLOW
-UP | CANCER
SITES
REPORTED | |-----------------------------------|---|---------------------------------------|-----------|------------------------|--|------------------------------|---| | Canadian
fluoroscopy | Howe. Lung Cancer Mortality
between 1950 and 1987 Following
Exposure to fractionated moderate
dose rate ionizing radiation in the
Canadian Fluoroscopy Study and a
comparison with lung cancer
mortality in the Atomic Bornb
Survivors Study. Radiat Res 1995;
142:295-304. | Cohort | Mortality | Male
and
Fernale | 64,172 | 1950-
1987 | Lung cancer | | | Howe and McLaughlin. Breast cancer mortality between 1950 and 1987 after exposure to fractionated moderate dose rate ionizing radiation in the Canadian fluoroscopy study and a comparison with breast cancer mortality in the Atomic bomb survivors study. Rad Res 1996;145:694-707. | Cohort | Mortality | Female | 31,917 | 1950-
1987 | Breast cancer | | Cervical cancer
patients | Kleinerman et al. Second primary
cancer after treatment for cervical
cancer. Cancer 1995;76:442-452. | Cohort | Incidence | Female | 86,193 | 1935-
1990 | Multiple
cancer sites | | Contralateral
breast (Denmark) | Storm et al. Adjuvant radiotherapy
and risk of contralateral breast
cancer. J Nat Cancer Inst
1992;84:1245-1250. | Case-
control
in a
cohort | | Formale | Cohort:
56,540
Cases: 691
Controls:
691 | 1943-
1986 | Breast cancer | | Contralateral
breast (U.S.A.) | Boice et al. Cancer in the contralateral breast after radiotherapy for breast cancer. N Engl J Med 1992;326:781-785. | Case
control
within a
cohort | | Female | Cohort:
4,109
Cases: 655
Controls:
1,189 | 1935-
1987 | Breast cancer | | Fallout from
Nevada Test Site | Kerber et al. A cobort study of
thyroid disease in relation to fallout
from nuclear weapons testing.
JAMA 1993;270:2076-2082. | Cohort | Incidence | Male
and
Female | 2,473 | 1965-
1986 | Thyroid
cancer and
other thyroid
disease | | | Simon et al. The Utah leukemia
case-control study: dosimetry
methodology and results. Alth
Phys 1995;6814:460-471. | Case-
Control | | Male
and
Female | Cases:
1,177
Controls:
5,330 | 1952-
1981 | Leukemia | | Massachusetts
fluoroscopy | Davis et al. Cancer mortality in a radiation-exposed cohort of Massachusetts tuberculosis patients. Cancer Res 1989;49:6130-6136. | Cohort | Mortality | Male
and
Female | 13,385 | 1929-
1986 | Multiple cancer sites Breast cancer | | | Boice at al. Frequent chest x-ray fluoroscopy and breast cancer incidence among tuberculosis patients in Massachusetts. Rad Res 1991;125:214-222. | Colort | aremence | Centale | 7,770 | 1986 | preast cancer | | 4 | | | |--------------|----------|---------| | rue | ase | | | e tı | leas | | | are | Ф | | | ×S | 99 | | | eal | erte | | | bre | JS6 | | | age | ·= | | | Pag | <u></u> | | | | ent | | | files | cide | | | D | acc | | | ţi | _ | | | set | ee | | | /pe | e p | | | _ | lave | | | ınal | _ | | | 0 | lay | | | Ori | E | | | the (| ors | | | E | err | | | <u>.</u> | O | | | oti | phi | | | _ | gra | | | 승 | od | | | 9 | \$ | | | per | ome | | | σ | son | | | al p | | | | -= | and | | | Ē. | ó | | | 0 | ine | | | the | stai | | | rom | ē | | | Ę | pe | | | ted | not | | | eat | anr | | | S | S | | | illes | er, | | | - | /eV | | | XML | NOV | | | | g, | | | rom | .⊑ | | | 7 | ıatt | | | Se | orm | | | bo | C fe | | | mo | Ciffic | | | recor | pec | | | \subseteq | လှ | | | ee | ing | ion | | s b | ett | † | | ha | es | Ŧ | | 논 | typ | ה | | 8 | ē | Ş | | <u>_</u> | ÷ | U | | gin | р | ũ | | orić | an | Š | | Э | Ś | Ϋ́ΥΡ | | ÷ | yle | oritati | | D 0 | St | Or. | | tio | ing | _ | | nta | ad | † | | ser | he | the | | J. | Ś | n as th | | Je J | eak | C | | ita | bre | catic | | igit | D | <u></u> | | o > | WO | h | | nev | Š, | his | | <u>S</u> | gth | ţ. | | Thi | leng | n of | | <u>.</u> | ne le | ,
U | | ij J | <u>=</u> | Proin | | PDF | <u></u> | 1 1/6 | | S | gin | rin | | thi | OĽ. | 2 | | ont | he | ţ | | Abo | to th | ď | | 4 | Ť | = | | STUDY | REFERENCE | TYPE
OF
STUDY | SERIES | SEX | NO. IN
STUDY | YEARS
OF
FOLLOW
-UP | CANCER
SITES
REPORTED | |--|---|--------------------------------------|-----------|-----------------------|--|------------------------------|--------------------------------------| | Multiple
diagnostic x-rays
of scoliosis
patients | Hoffman et al. Breast cancer in women with scoliosis exposed to multiple diagnostic x-rays. J Natl Cancer Inst 1989;81:1307-1312. | Cohort | Incidence | Female | 1,030 | 1935-
1986 | Breast cancer | | Nuclear industry
workers
(combined
analysis) | Cardis et al. Direct estimates of cancer mortality due to low doses of radiation: an international study. Lancet 1994;344:1039-1043. | Cohort | Mortality | Male
and
Female | 95,673 | 1943-
1988 | Multiple
cancer sites | | | Cardis et al. Effects of low doses
and low dose rates of external
ionizing radiation: cancer mortality
among nuclear industry workers in
three countries. Rad Res
1995;142:117-132. | Cohort | Mortality | Male
and
Female | 95,673 | 1943-
1988 | Solid tumors
and leukemia | | Nuclear workers at
Mayak Production
Association | Koshurnikova et al. NCRP
Proceedings, 1996, 113:T2, 113-
122. | Cohort | Mortality | Male
and
Female | 18,879 | 1948-
1993 | Lung cancer
and
leukemia | | Pelvic
radiotherapy for
benign
gynecologic
disease | Inskip et al. Leukemia, lymphoma
and multiple myeloma after pelvic
radiotherapy for benign disease.
Rad Res 1993;135:108-124. | Cohort | Mortality | Female | 12,955 | 1929-
1985 | Multiple
hematopoietic
cancers | | Pooled analysis of
external radiation
and thyroid cancer | Ron et al. Thyroid cancer after
exposure to external radiation: a
pooled analysis of seven studies.
Rad Res 1996;141:259-277. | Cohort
Case-
control | Incidence | Male
and
Female | 120,000 | 1926-
1990 | Thyroid cancer | | Radiation
treatment for
benign head and
neck conditions
(benign thyroid
tumors) | Wong et al. Benign thyroid tumors: general risk factors and their effects on radiation risk estimation. Amer J Epi 1996;144:728-733. | Cohort | Incidence | Male
and
Female | 544 | 1939-
1991 | Benign
thyroid
nodules | | Radiation
treatment for
benign head and
neck conditions
(thyroid cancer
and thyroid
nodules) | Schneider et al. Dose-response relationships for radiation-induced thyroid cancer and thyroid nodules: evidence for the prolonged effects of radiation on the thyroid. J Clin Endocrinol Metab 1993;77:362-269. | Cohort | Incidence | Male
and
Female | 4,296 | 1939-
1990 | Thyroid
cancer and
nodules | | Radiation
treatment for
breast cancer | Curtis et al. Risk of leukemia after
chemotherapy and radiation
treatment for breast cancer. N Engl
J Med 1992;326:1745-1751. | Case-
control
within
cohort | | Female | Cohort:
82,700
Cases: 90
Controls:
264 | 1973-
1985 | Leukemia | | Radiation
treatment for
peptic ulcer | Griem et al. Cancer following radiotherapy for peptic ulcer. J Natl Cancer Inst 1994;86:842-849. | Cohort | Mortality | Male
and
Female | 3,609 | 1937-
1985 | Multiple
cancer sites | | 4 | | | |--------------|----------|---------| | rue | ase | | | e tı | leas | | | are | Ф | | | ×S | 99 | | | eal | erte | | | bre | JS6 | | | age | ·= | | | Pag | <u></u> | | | | ent | | | files | cide | | | D | acc | | | ţi | _ | | | set | ee | | | /pe | e p | | | _ | lave | | | inal | _ | | | 0 | lay | | | Ori | E | | | the (| ors | | | E | err | | | <u>.</u> | O | | | oti | phi | | | _ | gra | | | 승 | od | | | 9 | \$ | | | per | ome | | | σ | son | | | al p | | | | -= | and | | | Ē. | ó | | | 0 | ine | | | the | stai | | | rom | ē | | | Ę | pe | | | ted | not | | | eat | anr | | | S | S | | | illes | er, | | | - | /eV | | | XML | NOV | | | | g, | | | rom | .⊑ | | | 7 | ıatt | | | Se | orm | | | bo | C fe | | | mo | Ciffic | | | recor | pec | | | \subseteq | လှ | | | ee | ing | ion | | s b | ett | † | | ha | es | Ŧ | | 논 | typ | ה | | 8 | ē | Ş | | <u>_</u> | ÷ | U | | gin | р | ũ | | orić | an | Š | | Э | Ś | Ϋ́ΥΡ | | ÷ | yle | oritati | | D 0 | St | O. | | tio | ing | _ | | nta | ad | † | | ser | he | the | | J. | Ś | n as th | | Je J | eak | C | | ita | bre | catic | | igit | D | <u></u> | | o > | WO | h | | nev | Š, | his | | <u>S</u> | gth | ţ. | | Thi | leng | n of | | <u>.</u> | ne le | ,
U | | ij J | <u>=</u> | Proin | | PDF | <u></u> | 1 1/6 | | S | gin | rin | | thi | OĽ. | 2 | | ont | he | ţ | | Abo | to th | ď | | 4 | Ť | = | | STUDY | REFERENCE | TYPE
OF
STUDY | SERIES | SEX | NO. IN
STUDY | YEARS
OF
FOLLOW
-UP | CANCER
SITES
REPORTED | |---|---|--|-------------------------------|-----------------------|--|------------------------------|--| | Radiotherapy
treatment for
Hodgkin's Disease
(breast cancer) | Hancock et al. Breast cancer after
treatment of Hodgkin's Disease. J
Natl Cancer Inst 1993;85:25-31. | Cohort | Incidence
and
Mortality | Female | 885 | 1961-
1990 | Breast cancer | | Radiotherapy
treatment for
Hodgkin's Disease
(gastro intestinal
cancer) | Birdwell et al. Gastrointestinal
cancer after treatment of Hodgkin's
Disease. Int J Rad Oncol Biol Phys
1997;37:67-73. | Cohort | Incidence
and
Mortality | Male
and
Female | 2,441 | 1961-
1993 | Multiple
cancer sites
(gastro-
intestinal
only) | | Radiotherapy
treatment for
metropathia
hemorrhagic
anemia | Darby et al. Mortality in a cohort of women given x-ray therapy for metropathia hemorrhagica. Int J Cancer 1994;56:793-801. | Cohort | Mortality | Female | 2,067 | 1940-
1991 | Multiple
cancer sites | | Radiotherapy
treatment for
pituitary adenoma | Brada et al. Risk of second brain
tumor after conservative surgery
and radiotherapy for pituitary
adenoma. Br Med J
1992;304:1343-1346. | Cohort | Incidence | Male
and
Female | 334 | 1962-
1986 | Multiple
cancer sites
(solid tumors
only) | | Radiotherapy
treatment for skin,
hemangioma in
childhood | Furst et al. Tumors after
radiotherapy for skin hemangioma
in childhood. Act Oncologica
1990; 29:557-562. | Case-
control
within a
cohort | | Male
and
Female | Cohort:
14,647
Cases: 94
Controls:
359 | 1920-
1986 | Multiple
cancer sites
(solid tumors) | | Radiotherapy
treatment for
thymus
enlargement | Shore et al. Overview of radiation induced skin cancer in humans. Int J Radiat Biol 1990;57:809-827. | Cohort | Incidence | Male
and
Female | 7,450 | 1953-
1989 | Skin cancer | | Radiotherapy
treatment for
uterine bleeding | Inskip et al. Cancer mortality following radium treatment for uterine bleeding. Rad Res 1990;123:331-344. | Cohort | Mortality | Female | 4,153 | 1925-
1984 | Multiple
cancer sites | | Tinea capitis
(Israel) | Ron et al. Thyroid neoplasia
following low-dose radiation in
childhood. Rad Res 1989;120:516-
531. | Cohort | Incidence | Male
and
Female | 10,834 | 1950-
1986 | Thyroid
cancer and
other thyroid
disease | | | Ron et al. Radiation induced skin carcinomas of the head and neck. Rad Res 1991;125:318-329. | Cohort | Incidence | Male
and
Female | 27,060 | 1950-
1980 | Melanoma,
other skin
cancer and
benign skin
tumors | | Women treated for infertility | Ron et al. Mortality following
radiation treatment for infertility of
hormonal origin or amenorrhea. Int
J Cancer 1994; 23:1165-1173 | Cohort | Mortality | Female | 816 | 1925-
1991 | Multiple
cancer sites | | IF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true | ; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please | مراه براه براه براه براه براه براه براه ب | |--|--|---| | file: This | ne len | t to coion or taine o | | Abou | to the | 4 0011 | | STUDY | REFERENCE | DESCRIPTION | |-------------------|---|---| | In utero exposure | Doll and Wakeford. Risk of
childhood cancer from fetal
irradiation, Brit J Radiol 1997;
70:130-139 | A review of case-control and cohort studies of childhood cancers. |