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Proc. Natl. Acad. Sci. USA
Vol. 94, p. 11109, October 1997
Colloquium Paper

This paper is an introduction to the following papers, which were presented at a colloquium entitled “Elliptic Curves and
Modular Forms,” organized by Barry Mazur and Karl Rubin, held March 15–17, 1996, at the National Academy of
Sciences in Washington, DC.

Introduction

BARRY MAZUR* AND KARL RUBIN†

*Department of Mathematics, Harvard University, Cambridge, MA 02138; and †Department of Mathematics, Ohio State University, Columbus, OH 43210

The colloquium “Elliptic Curves and Modular Forms” was
held at the National Academy of Sciences in Washington, DC,
March 15–17, 1996. The topics covered by this colloquium have
been extraordinarily active lately. These topics have played an
essential role in some of the exciting recent work on classical
problems, including Fermat’s Last Theorem. They will surely
continue to be central to further developments in Number
Theory. The 11 articles to follow are the texts of addresses
given during this colloquium. These articles range from the

study of “p-adic Galois representations, L functions, modular
forms, and the p-adic congruences they satisfy” (as in the
articles by John Coates, Robert Coleman, Fred Diamond,
Jean-Marc Fontaine, Ralph Greenberg, Haruzo Hida, Berna-
dette Perrin-Riou, and Richard Taylor) to the study of the
delicate geometry of modular curves and Shimura varieties (as
in the articles by Gerd Faltings and Ken Ribet) to the analytic
number-theoretic study of Zeta functions and Eisenstein series
of classical groups (as in the article by Goro Shimura).
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Colloquium Paper

This paper was presented at a colloquium entitled ‘‘Elliptic Curves and Modular Forms,’’ organized by Barry Mazur
and Karl Rubin, held March 15–17, 1996, at the National Academy of Sciences in Washington, DC.

Parametrizations of elliptic curves by Shimura curves and by
classical modular curves

KENNETH A. RIBET AND SHUZO TAKAHASHI

Mathematics Department, University of California, Berkeley, CA 94720-3840

ABSTRACT Fix an isogeny class ! of semistable elliptic
curves over Q. The elements of ! have a common conductor
N, which is a square-free positive integer. Let D be a divisor
of N which is the product of an even number of primes—i.e.,
the discriminant of an indefinite quaternion algebra over Q.
To D we associate a certain Shimura curve X0

D(NyD), whose
Jacobian is isogenous to an abelian subvariety of J0(N). There
is a unique A [ ! for which one has a nonconstant map
pD : X0

D(NyD) 3 A whose pullback A 3 Pic0(X0
D(NyD)) is

injective. The degree of pD is an integer dD which depends only
on D (and the fixed isogeny class !). We investigate the
behavior of dD as D varies.

Let f 5 (an( f )e2pinz be a weight-two newform on G0(N), where
N 5 DM is the product of two relatively prime integers D and
M and where D is the discriminant of an indefinite quaternion
division algebra over Q. Assume that the Fourier coefficients
of f are rational integers, so that f is associated with an isogeny
class ! of elliptic curves over Q. Among the curves in ! is a
distinguished element A, the strong modular curve attached to
f. Shimura (1) has constructed A as an optimal quotient of
J0(N). Thus A is the quotient of J0(N) by an abelian subvariety
of this Jacobian. Composing the standard map X0(N)

(
3 J0(N)

with the quotient j: J0(N)3 A, we obtain a covering p: X0(N)
3 A whose degree d is an integer which depends only on f.

The integer d has been regarded with intense interest for the
last decade. For one thing, primes dividing d are “congruence
primes for f”: if p divides d, then there is a mod p congruence
between f and a weight-two cusp form on G0(N) which has
integral coefficients and is orthogonal to f under the Petersson
inner product. (See, e.g., Section 5 of ref. 2 for a precise
statement.) For another, it is known that a sufficiently good
upper bound for d will imply the ABC Conjecture (3, 4). More
precisely, as R. Murty explains in ref. 24, the ABC Conjecture
follows from the conjectural bound

d 0 O~N21«! for all « . 0.

(For a partial converse, see ref. 5.) While d is easy to calculate
in practice (6), it seems more difficult to manage theoretically.
Murty (24), has summarized what bounds are known at
present.

This note concerns relations between d and analogues of d
in which J0(N) is replaced by the Jacobian of a Shimura curve.

To define these analogues, it is helpful to give a character-
ization of d in which p does not appear explicitly. For this, note
that the map j~: A~ (

3 J0(N)~ which is dual to j may be viewed
as a homomorphism A3 J0(N), since Jacobians of curves (and
elliptic curves in particular) are canonically self-dual. The
image of j~ is a copy of A which is embedded in J0(N). The
composite j+j~ [ End A is necessarily multiplication by some

integer; a moment’s reflection shows that this integer is d. Let
G0

D(M) be the analogue of G0(M) in which SL(2, Z) is replaced
by the group of norm-1 units in a maximal order of the rational
quaternion algebra of discriminant D. Let X0

D(M) be the
Shimura curve associated with G0

D(M) and let J9 5 J0
D(M) be the

Jacobian of X0
D(M). The correspondence of Shimizu and

Jacquet–Langlands (7) relates f to a weight-two newform f 9 for
the group G0

D(M); the form f 9 is well defined only up to
multiplication by a nonzero constant. Associated to f 9 is an
elliptic curve A9 which appears as an optimal quotient j9 : J93
A9 of J9. Using the techniques of Ribet (8) or the general
theorem of Faltings (9), one proves that A and A9 are iso-
genous—i.e., that A9 belongs to !. We define dD(M) [ Z as the
composite j9+(j9)~.

To include the case D 5 1 in formulas below, we set d1(N)
5 d.

Roberts (10) and Bertolini and Darmon (section 5 of ref. 11)
have pointed out that the Gross–Zagier formula and the
conjecture of Birch and Swinnerton-Dyer imply relations
between d and dD(M) in Q*y(Q*)2. Bertolini and Darmon
allude to the possibility that there may be a simple, precise
formula for the ratio dydD(M). The relation which they envis-
age involves local factors for the elliptic curves A and A9 at the
primes puD.

While these factors may well be different for the two elliptic
curves, we will ignore this subtlety momentarily and introduce
only those factors which pertain to A. Suppose, then, that p is
a prime dividing D, so that A has multiplicative reduction at p.
Let cp be the number of components in the fiber at p for the
Néron model of A; i.e., cp 5 ordpD, where D is the minimal
discriminant of A. As was mentioned above, d controls con-
gruences between f and newforms other than f in the space S
of weight-two forms on G0(N); analogously, dD(M) controls
congruences between f and other forms in the D-new subspace
of S. At the same time, level-lowering results such as those of
Ribet (12) lead to the expectation that the cp control congru-
ences between f and D-old forms in S. This yields the heuristic
formula:

dD~M! 5
?? d1~N!yP

puD
cp .

Equivalently, one can consider factorizations N 5 MpqD,
where p and q are distinct prime numbers, D $ 1 is the product
of an even number of distinct primes, and the four numbers p,
q, D, and M are relatively prime. The formula displayed above
amounts to the heuristic relation

dpqD~M! 5
?? dD~pqM!

cpcq
[1]

for each factorization N 5 MpqD. Although simple examples
show that Eq. 1 is not correct as stated, we will prove that a
suitably modified form of it is valid in many cases.

© 1997 by The National Academy of Sciences 0027-8424y97y9411110-5$2.00y0
PNAS is available online at http:yywww.pnas.org.
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To state our results, we need to be more precise about the
numbers cp and cq which appear above. We set:

J 5 J0
D~Mpq!, J9 5 J0

Dpq~M!.

Let j : J3 A and j9 : J93 A9 be the optimal quotients of J and
J9 for which A and A9 lie in !. (This is a change of notation,
since we have been taking A to be an optimal quotient of J0(N);
the new elliptic curve A is the unique curve isogenous to the
original A which appears as an optimal quotient of J.) Let cp
and cq be defined for A as above; i.e., cp 5 ordpD(A) and cq 5
ordqD(A). Note that cp, for instance, may be viewed as the
order of the group of components of the fiber at p of the Néron
model for A. This group is cyclic. Let c9p and c9q be defined
analogously, with A9 replacing A. Notice that ord,cp 5 ord,c9p
and ord,cq 5 ord,c9q for each prime , such that A[,] is
irreducible. Indeed, the curves A and A9 are isogenous over Q.
The irreducibility hypothesis on A[,] implies that any rational
isogeny A 3 A9 of degree divisible by , factors through the
multiplication-by-, map on A. Hence there is an isogeny w : A
3 A9 whose degree is prime to ,. If d 5 deg w, the map w
induces an isomorphism between the prime-to-d parts of the
component groups of A and A9, both in characteristic p and in
characteristic q.

THEOREM 1. One has

dpqD~M! 5
dD~pqM!

c9pcq
%~D, p, q, M!2,

where the ‘‘error term’’ %(D, p, q, M) is a positive divisor of c9pcq.
Further, suppose that M is square free but not a prime number,†
and let , be a prime number which divides %(D, p, q, M). Then
the Gal(QyQ)-module A[,] is reducible.

In our proof of the theorem, we shall first prove a version of
the displayed formula in which %(D, p, q, M) is expressed in
terms of maps between component groups in characteristics p
and q. (See Theorem 2 below.) We then prove the second
assertion of Theorem 1.

Before undertaking the proof, we illustrate Theorem 1 by
considering a series of examples. As the reader will observe,
these examples show in particular that the ‘‘error term’’ %(D,
p, q, M) is not necessarily divisible by all primes , for which A[,]
is reducible.

For the first example, take M 5 1, D 5 1, and pq 5 14. Thus
N 5 14, so that the curves A and A9 lie in the unique isogeny class
of elliptic curves over Q with conductor 14. [There is a unique
weight-two newform on G0(14).] According to the tables of
Antwerp IV, there are six curves in this isogeny class [ref. 13, p.
82]. The curve A is identified as [14C] in the notation of ref. 13.
We have A 5 J0(14); and A9 5 J0

14(1), so that d1(14) 5 d14(1) 5
1. Since c2 5 6 and c7 5 3, Theorem 1 yields the pair of equalities

3zc92 5 %~1, 2, 7, 1!2, 6zc97 5 %~1, 7, 2, 1!2;

there are two equalities because there are two choices for the
ordered pair (p, q). By Theorem 1, the integers %(1, 2, 7, 1) and
%(1, 7, 2, 1) are divisible only by the primes 2 and 3. Indeed,
we see (once again from ref. 13) that these are the only primes
, for which A[,] is reducible. Looking further at the tables, we
see that there is a unique curve A9 in the isogeny class of A for
which 3c92 is the square of an integer. This curve is [14D]. Thus
we have A9 5 [14D], as Kurihara determined in ref. 14.

There are five similar examples of products pq for which
J0

pq(1) has genus one, namely 2z17, 2z23, 3z5, 3z7, and 3z11. [See,
e.g., the table of Vignéras (ref. 15, p. 122).] In each of the five
cases, we shall see that A9 5 J0

pq(1) can be determined as a
specific elliptic curve of conductor pq with a small amount of

detective work. [We suspect that this detective work was done
15 years ago by J.-F. Michon (see refs. 16 and 17).]

To begin with, we note that in each case there is a single
weight-two newform on G0(pq) with integral coefficients, i.e.,
a single isogeny class of elliptic curves of conductor pq. The
strong modular elliptic curve A of conductor pq is identified in
ref. 13. Knowing this curve, we have at our disposal cp and cq.
Further, the integer d1(pq) is available from Cremona’s table
(ref. 6, pp. 1247–1250).

In the two cases pq 5 3z5 and 3z7, A coincides with the
Jacobian J0(pq). In this circumstance, an easy argument based
on Proposition 1 below shows that the local invariants of A and
A9 5 J0

pq(1) are ‘‘f lipped’’—we have c9p 5 cq and c9q 5 cp. After
glancing at p. 82 of ref. 13, one sees that A9 5 [15C] in the first
of the two cases and A9 5 [21D] in the second.

Let us now discuss the remaining three cases, 2z17, 2z23, and
3z11, where Cremona’s table gives the values 2, 5, and 3
(respectively) for d1(pq). Using Theorem 1 and the value dpq(1)
5 1 in each case, we obtain equations which express c9p and c9q
as products of known rational numbers and unknown square
integers. These are enough to determine A9. Indeed, when
pq 5 34, we have

1 5
2

6c917
%~1, 17, 2, 1!2,

so that 3c917 is a square. We then must have A9 5 [34C]. When
pq 5 46, 2c923 is a square, and we conclude A9 5 [23B]. When
pq 5 33, 2c911 is a square and thus A9 5 [33B].

In the six examples we have discussed so far, an alternative
approach would have been to read off the numbers c9p and c9q
from a formula of Jordan and Livné (section 2 of ref. 18; see
Theorem 4.3 of ref. 8). As we have seen, A9 is determined in
each case by these local invariants.

For an example with a different flavor, we take f to be the
modular form associated with the curve A 5 [57E] of ref. 13.
This curve is isolated in its isogeny class; i.e., A[,] is irreducible
for all ,. In particular, A9 5 A. Because A[,] is irreducible for
all ,, the theorem gives %(1, 3, 19, 1) 5 1. Hence

d57~1! 5 d1~57!y~c3c19!.

Now Cremona’s table (ref. 6, p. 1247) yields the value d1(57)
5 4; also, one has c3 5 2, c19 5 1. Thus we find d57(1) 5 2. This
relation is confirmed by results of D. Roberts (10), who shows,
more precisely, that A is the quotient of X0

57(1) by its Atkin–
Lehner involution w57.

Next, we consider the elliptic curves of conductor N 5 714 5
2z3z7z17, which are tabulated in Cremona’s book (19). These
curves fall into nine isogeny classes, A–I. Four of these classes,
B, C, E and H, contain precisely one element. In other words,
the four elliptic curves 714B1, 714C1, 714E1, and 714H1 are
isolated in their isogeny classes. For each elliptic curve,
Theorem 1 expresses d714(1) as well as the six degrees dpq(714y
pq) for pqu714 in terms of d1(714) and the integers cp for pu714.
These numbers are available from refs. 6 and 19. The most
striking of the four elliptic curves is perhaps 714H1. For this
curve, c2 5 c3 5 c7 5 c17 5 1 and d1(714) 5 40. Hence d714(1)
and all degrees dpq(714ypq) are equal to 40.

For a final example, we consult further tables of John
Cremona which are available by anonymous ftp from
euclid.ex.ac.uk in ypubycremonaydata. Let A be the curve
denoted 1001C1, which has Weierstrass data [0, 0, 1, 2199,
1092]. Its minimal discriminant is 272113132. This curve is
isolated in its isogeny class, which suggests that %(1, 7, 13, 11)
5 1. Since 11 is a prime, the second part of Theorem 1 yields
no information. However, by Proposition 3 below, %(1, 7, 13,
11) divides both c7 and c13. Each of these integers is 2, so that
we may conclude at least that %(1, 7, 13, 11) is 1 or 2.
Cremona’s tables give the value d1(1001) 5 1008; hence

†In a forthcoming article, the second author expects to study the
excluded case where M is a prime number.
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d7z13(11) is either 252 or 1008.‡ On the other hand, since c7 and
c11 are relatively prime, we find that %(1, 7, 11, 13) 5 1. Thus
d7z11(13) 5 1008y6 5 168. Similarly, d11z13(7) 5 168.

The First Assertion of Theorem 1

If V is an abelian variety over Q and , is a prime, let F(V, ,)
be the group of components of the fiber at , of the Néron
model of V. This group is a finite étale group scheme over Spec
F,, i.e., a finite abelian group furnished with a canonical action
of Gal(F,yF,). The association V ° F(V, ,) is functorial. For
example, as we noted above, if A is an elliptic curve with
multiplicative reduction at p, then F(A, p) is a cyclic group of
order cp.

The maps j and j9 induce homomorphisms

j
*

: F~J, q!3 F~A, q!, j9
*

: F~J9, p!3 F~A9, p!.

Here is a version of the first assertion of Theorem 1 in which
%(D, p, q, M) appears with a precise value.

THEOREM 2. One has

dpqD~M! 5
dD~pqM!

c9pcq
%~D, p, q, M!2,

where %(D, p, q, M) 5 #imagejpz#coker j9p.
To prove the theorem, we compare the character groups of

algebraic tori which are associated functorially to the mod p
reduction of J9 and the mod q reduction of J. Recall that the
former reduction is described by the well known theory of
Cerednik and Drinfeld (20–22), while the latter falls into the
general area studied by Deligne and Rapoport (23). [Although
Deligne and Rapoport provide only the briefest discussion of
the case D . 1, what we need will follow from recent results
of K. Buzzard (31).] Our comparison is based on the oft-
exploited circumstance that the two reductions involve the
arithmetic of the same definite rational quaternion algebra:
that algebra whose discriminant is Dq.

To state the result which is needed, we introduce some
notation: if V is an abelian variety over Q and , is a prime
number, let T be the toric part of the fiber over F, of the
Néron model for V and write -(V, ,) for the character group
HomF,

(T, Gm). Thus -(V, ,) is a free abelian group which is
furnished with compatible actions of Gal(F,yF,) and EndQ

V. At least in the case when V has semistable reduction at ,,
there is a canonical bilinear pairing

uV : -~V, ,! 3 -~V~, ,!3 Z

which was introduced by Grothendieck (Theorem 10.4 of ref.
25). If, moreover, V is canonically self-dual (e.g., if V is the
Jacobian of a curve or a product of Jacobians), then the
monodromy pairing uV is a pairing on -(V, ,) (in the sense that
it is defined on the product of two copies of this group).

The relation between F(V, ,) and the character groups - is
as follows (Theorem 11.5 of ref. 25): there is a natural exact
sequence

03 -~V, ,!3
a

Hom~-~V, ,!,Z!3 F~V, ,!3 0

in which a is obtained from uV by the standard formula
(a(x))(y) 5 uV(x, y).

PROPOSITION 1. There is a canonical exact sequence

03 -~J9, p!3
i

-~J, q!3 -~J0, q! 3 -~J0, q! 3 0,

where J0 5 J0
D(qM). The sequence is compatible with the action

of Hecke operators Tn for n prime to N, which operate in the usual
way on J, J9, and J0. Moreover, the map i is compatible with the
monodromy pairings on -(J9, p) and -(J, q) in the sense that
uJ9(x, y) 5 uJ(ix, iy) for all x, y [ -(J9, p).

When D 5 1, the proposition was proved in ref. 12. (See
especially Theorem 4.1 of ref. 12.) The case D . 1 can be handled
in an analogous way, thanks to K. Buzzard’s analogue (31) of the
Deligne–Rapoport theorem (23). This theme is explored in the
work of Jordan and Livné (26) and L. Yang (27).

Let + be the ‘‘f-part’’ of -(J, q), defined for example as the
group of characters x [ -(J, q) such that Tnx 5 an( f )x for all
n prime to N. [Recall that an( f ) is the nth coefficient of f.]
It is not hard to check that + is isomorphic to Z and that in
fact it is contained in -(J9, p), viewed as a subgroup of -(J,
q) via i. Indeed, consider the decomposition of J as a product
up to isogeny of simple abelian varieties over Q. One of the
factors is A, which occurs with multiplicity 1, and the other
factors are non-f: they correspond to newforms of level
dividing N whose nth coefficients cannot coincide with the
an( f ) for all n prime to N. Hence + R Q is the tensor product
with Q of the character group of the toric part of AFq

; this
shows that + has rank 1. A similar computation shows that
+ ù -(J9, p) has rank 1, since A occurs up to isogeny exactly
once in J9 and since A has multiplicative reduction at p. The
image of + in -(J0, q) 3 -(J0, q) is thus finite; it is zero since
-(J0, q) is torsion free.

Fix a generator g of + and set t 5 uJ(g, g). An arbitrary
nonzero element t of + may be written ng, where n is a nonzero
integer. We then have uJ(t, t) 5 n2t.

By the theorem of Grothendieck (25) that was cited above,
cq may be interpreted as uA(x, x), where x is a generator of -(A,
q) and where uA is the monodromy pairing arising from the
mod q reduction of A. Meanwhile, the map j : J 3 A induces
by pullback a homomorphism j* : -(A, q) 3 -(J, q) and the
dual of j induces similarly a homomorphism j

*
: -(J, q)3-(A,

q). The two homomorphisms are adjoint with respect to the
monodromy pairings:

uJ~j*x, y! 5 uA~x, j
*
y! for all x [ -~A, q!, y [ -~J, q!.

Notice, however, that j
*
+j* is multiplication by d :5 dD(pqM)

on -(A, q), since it is induced by the endomorphism ‘‘multi-
plication by d’’ of A. Thus

duA~x, x! 5 uA~x, j
*
~j*x!! 5 uJ~j*x, j*x!

for all x [ -(A, q). On taking x to be a generator of -(A, q),
we find

dcq 5 ~+ : -~A, q!!2zt,

where we view -(A, q) as embedded in + by j*. A similar
argument applied to A9 mod p yields d9c9p 5 (+ : -(A9, p))2zt,
where d9 5 dDpq(M). [To prove this relation, one must view +
as a subgroup of -(J9, p) and interpret t as uJ9(t, t), where g 5
i t. The legitimacy of this interpretation stems from the com-
patibility among i, uJ, and uJ9.]

We emerge with the preliminary formula

d9c9p
~+ : -~A9, p!!2 5

dcq

~+ : -~A, q!!2 .

After isolating d9 on one side of the equation, we see that
Theorem 2 is implied by the following result:

PROPOSITION 2. Let j
*

and j9
*

be the homomorphisms F(J, q)
3 F(A, q) and F(J9, p)3 F(A9, p) which are induced by j and
j9 on component groups. Then (+ : -(A, q)) 5 #coker j

*
and

(+ : -(A9, p)) 5 #coker j9
*
.

‡The forthcoming results of the second author which were mentioned
earlier should prove that %(1, 7, 13, 11) 5 1 and that d7z13(11) 5 252.
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Proof: The two formulas are analogous; we shall prove only
the assertion relative to j

*
. Because of the assumption that j :

J 3 A is an optimal quotient, the map j~ : A 3 J is injective.
One deduces from this the surjectivity of the map on character
groups j

*
: -(J, q) 3 -(A, q). Consider the commutative

diagram with exact rows

0 3 -~A, q! 3 Hom~-~A, q!,Z)3 F(A, q)3 0
1 1 1

0 3 -~J, q! 3 Hom~-~J, q!,Z! 3 F~J, q! 3 0

in which the three vertical maps are induced by j. [For instance,
the central vertical map is Hom(j*, Z), where j* : -(A, q) 3
-(J, q) is an injective map between free abelian groups of finite
rank.] The exactness of the rows is guaranteed by Theorem 11.5
of ref. 25. Because the left-hand vertical map is surjective, the
cokernels of Hom(j*, Z) and the right-hand j

*
may be

identified.
It is clear that the order of coker(Hom(j*, Z)) coincides with

the order of the torsion subgroup of coker(j*). Since -(J, q)y+
is torsion free by the definition of +, we obtain first the
formula

#coker~Hom~j*,Z!! 5 ~+ : -~A, q!!

and then the desired equality. ■

The Second Assertion of Theorem 1

We assume from now on that N is square free and that , is a
prime for which A[,] is irreducible. We should mention in
passing that the irreducibility hypothesis holds for one A [ !
if and only if it holds for all A [ !. Indeed, the semisimpli-
fication of the mod , Galois representation A[,] depends only
on !. At the same time, A[,] is irreducible if and only if its
semisimplification is irreducible.

LEMMA 2. There is a prime ruN for which , does not divide cr .
Proof: Suppose to the contrary that , divides cr for all ruN.

Then the mod , Gal(QyQ)-representation A[,] is finite at all
primes (section 4.1 of ref. 28). If , 5 2, this contradicts a
theorem of Tate (29). If , . 2, a theorem of the first author
(Theorem 1.1 of ref. 12) implies that A[,] is modular of level
1 in the sense that it arises from the space of weight-two cusp
forms on SL(2, Z). Since this space is zero, we obtain a
contradiction in this case as well. ■

In order to prove the second assertion of Theorem 1, which
concerns the ‘‘,-part’’ of %(D, p, q, M), we will consider varying
decompositions N 5 DzpzqzM. In these decompositions, the
isogeny class !, and the integer N in particular, are understood
to be invariant. We view the prime , as fixed, and recall the
hypothesis that A[,] is irreducible. (If this irreducibility hy-
pothesis holds for one A [ !, then it holds for all A.) Set

e~D, p, q, M! :5 ,ord,%~D, p, q, M!,

so that e(D, p, q, M) is the ‘‘,-part’’ to be studied.
PROPOSITION 3. If N 5 DpqM, then e(D, p, q, M) is the order

of the ,-primary part of the cokernel of

j9
*

: F~J9, p!3 F~A9, p!.

Further, we have e(D, p, q, M) 5 e(D, q, p, M), and e(D, p, q,
M) divides both cp and cq.

Proof: In view of Theorem 2, the first statement means that
the ,-primary part of the image of j

*
: F(J, q) 3 F(A, q) is

trivial. For each prime number r which is prime to N, let Tr be
the rth Hecke operator on J. It is a familiar fact that F(J, q) is
Eisenstein in the sense that Tr acts on F(J, q) as 1 1 r for all
such r. This was proved by the first author in case D 5 1 (see
Theorem 3.12 of ref. 12 and ref. 30), and the result can be

extended as needed in view of results of Buzzard (31) and
Jordan and Livné (26).

It follows from the Eichler–Shimura relation that the image
of j

*
is annihilated by ar( f ) 2 r 2 1 for all r. One deduces from

this that the ,-primary part of the image is trivial: If not, then
ar( f ) [ r 1 1 mod , for all r, and this implies that the
semisimplification of A[,] is reducible; cf. Theorem 5.2(c) of
ref. 12.

To prove the second statement, we begin by noting that
e(D, p, q, M) divides c9p. As we pointed out earlier, there is
an isogeny A 3 A9 of prime-to-, degree. Indeed, A and A9
are isogenous over Q; on the other hand, the hypothesis on
A[,] implies that any rational isogeny A 3 A9 of degree
divisible by , factors through the multiplication-by-, map on
A. Hence the ,-primary components of F(A, p) and F(A9, p)
are isomorphic, so that the largest powers of , in cp and c9p
are the same. Thus e(D, p, q, M) divides cp. Also, since an
analogous reasoning shows that cq and c9q have the same
valuations at ,, e(D, p, q, M) depends symmetrically on p and
q, as asserted. Finally, e(D, p, q, M) divides both cp and cq,
since it divides cp and depends symmetrically on p and q. ■

COROLLARY. If N 5 dpqrsm, where p, q, r, and s are primes
and d is the product of an even number of primes, then

e~rsd , p, q, m! 5 e~qsd , p, r, m!

and e(d, r, s, pqm) 5 e(d, q, s, prm).
Proof: Each of the two integers in the displayed equality may

be calculated as the order of the ,-primary part of the cokernel
of j9p : F(Jdpqrs(m), p) 3 F(A9, p). This coincidence gives the
first equality. To obtain the second from the first, we note that
both e(rsd, p, q, m)2 e(d, r, s, pqm)2 and e(qsd, p, r, m)2 e(d, q,
s, prm)2 are equal to the ,-part of the quantity
ddpqrs(m)cpcqcrcsydd(pqrsm). ■

To finish the proof of Theorem 1, we assume from now on
that M is not prime. To prove that e(D, p, q, M) 5 1, it suffices
to show that e(D, p, q, M) divides cr for each ruN. If r 5 p or
r 5 q, this divisibility is included in the statement of Proposition
3. Assume, next, that r is a divisor of D, and write D 5 rsd,
where s is a prime. We have

e~D, p, q, M! 5 e~rsd , p, q, M! 5 e~qsd , p, r, M!,

where the second equality follows from the Corollary. The
latter number divides cr, as required. Finally, suppose that r
divides M. Since M is not prime, we may write M 5 rsm, where
s is a prime. We have seen that e(D, r, s, pqm) 5 e(D, q, s, prm).
Permuting the roles of the four primes p, q, r, and s, we may
write instead e(D, p, q, rsm) 5 e(D, r, q, psm). The latter
number is a divisor of cr.
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ABSTRACT Let E be a modular elliptic curve over Q,
without complex multiplication; let p be a prime number
where E has good ordinary reduction; and let F` be the field
obtained by adjoining to Q all p-power division points on E.
Write G` for the Galois group of F` over Q. Assume that the
complex L-series of E over Q does not vanish at s 5 1. If p Ä
5, we make a precise conjecture about the value of the
G`-Euler characteristic of the Selmer group of E over F`. If
one makes a standard conjecture about the behavior of this
Selmer group as a module over the Iwasawa algebra, we are
able to prove our conjecture. The crucial local calculations in
the proof depend on recent joint work of the first author with
R. Greenberg.

Let E be an elliptic curve defined over Q. For simplicity, we
shall assume throughout that E does not admit complex
multiplication. Let p be a prime number, and write Epn (n 5
1, 2, . . .) for the group of pn-division points on E. Write Ep`

for the union of the Epn (n 5 1, 2, . . .). Put F` 5 Q(Ep`), and
let G` denote the Galois group of F` over Q. By a theorem of
Serre (1), G` is an open subgroup of GL(2, Zp), and hence is
a p-adic Lie group of dimension 4. Assume from now on that
p Ä 5, so that G` has no p-torsion. By a refinement (2) of a
theorem of Lazard (3), G` then has p-cohomological dimen-
sion equal to 4. Let A be a p-primary abelian group, which is
a discrete G`-module. We say that A has a finite G`-Euler
characteristic if all of the cohomology groups H i(G`, A) (i Ä
0) are finite. When A has finite G`-Euler characteristic, we
define its Euler characteristic x(G`, A) by

x~G`, A! 5 P
i50

4

#~Hi~G`, A!!~21!i.

The present note will be concerned with the calculation of the
G`-Euler characteristic of the Selmer group 6(F`) of E over
F`. We recall that this Selmer group is defined by the exactness
of the sequence

03 6~F`!3 H1~F`, Ep`!3 P
v finite

H1~F`,v, E!, [1]

where v runs over all finite places of F`; here F`,v denotes the
union of the completions at v of the finite extensions of Q
contained in F`. Of course, 6(F`) has a natural structure as a
G`-module, and we expect its Euler characteristic to be closely
related to the Birch and Swinnerton-Dyer formula. Specifi-
cally, let È (E) denote the Tate-Shafarevich group of E over
Q, and, for each finite prime y, let cy 5 [E(Qy) : E0(Qy)], where,
as usual, E0(Qy) is the subgroup of points with nonsingular
reduction modulo y. Let L(E, s) be the Hasse-Weil L-series of
E over Q. If B is an abelian group, we write B(p) for its
p-primary subgroup. If n is a positive integer, n(p) will denote
the exact power of p dividing n. Finally, we denote by Ẽ the

reduction of E modulo p. We then define, for p where E has
good reduction,

rp~EyQ! 5
#~È~E!~p!!zPy cy

~p!z#~Ẽ~Fp!~p!!2

#~E~Q!~p!!2 , [2]

where y runs over all finite places of Q.
CONJECTURE 1. Let E be a modular elliptic curve over Q,

without complex multiplication, such that L(E, 1) Þ 0. Let p Ä
5 be a prime number such that E has good ordinary reduction at
p. Then 6(F`) has a finite G`-Euler characteristic, which is given
by x(G`, 6(F`)) 5 rp(E/Q).

This conjecture is suggested by the following considerations
in Iwasawa theory. Let Q` denote the unique extension of Q

such that the Galois group G` of Q` over Q is isomorphic to
Zp. Of course, Q` is contained in F`. Let 6(Q`) be the Selmer
group of E over Q`, which is defined by replacing F` by Q` in
the exact sequence of Eq. 1. Making the same hypotheses on
E and p as in Conjecture 1, it is well known that 6(Q`) has a
finite G`-Euler characteristic, which is given by

x~G`, 6~Q`!! 5 rp~EyQ!; [3]

we recall that G` has p-cohomological dimension equal to 1, so
that x(G`, A) 5 #(H0(G`, A))y#(H1(G`, A)) for any discrete
p-primary G`-module A. Thus Conjecture 1 asserts that, under
the hypotheses made on E and p, the G`-Euler characteristic
of 6(F`) should be precisely equal to the G`-Euler character-
istic of 6(Q`). This is indeed what one would expect from the
following heuristic argument. If H` is any profinite group, let

I~H`! 5 lim
U
4

Zp@H`yU#, [4]

where U runs over all open subgroups of H`, be the Iwasawa
algebra of H`. Write Â 5 Hom (A, QpyZp) for the Pontrjagin
dual of a discrete p-primary abelian group A. Under the

hypotheses of Conjecture 1, it is known that 6~Q`!
∧

is a finitely
generated torsion module over I(G`), whereas the structure
theory of such modules enables us to define the characteristic
ideal C(6(Q`)) of 6̂(Q`) in I(G`). It is easy and well known
to see that C(6(Q`)) has a generator m(Q`) such that

E
G`

dm~Q`! 5 x~G`, 6~Q`!!, [5]

where we are now interpreting the elements of I(G`) as
Zp-valued measures on G`. We do not at present know enough
about the structure theory of I(G`)-modules to be able to
define the analogue C(6(F`)) of C(6(Q`)). Nevertheless, one
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is tempted to guess that there should be a generator m(F`) of
C(6(F`)) such that

E
G`

dm~F`! 5 x~G`, 6~F`!!. [6]

Moreover, the link, which may exist between these character-
istic ideals and p-adic L-functions, suggests that C(6(F`))
should map to C(6(Q`)) under the canonical surjection from
I(G`) onto I(G`). This latter property would show that the two
integrals on the left of Eqs. 4 and 5 are equal, for suitable
generators of C(6(F`)) and C(6(Q`)), and so explain the
equality of the Euler characteristics.

In spite of the above heuristic argument, it does not seem
easy to prove Conjecture 1. Let F0 5 Q(Ep), and let ¥` denote
the Galois group of F` over F0, so that ¥` is a pro-p-group. We
say that a module X over the Iwasawa algebra I(¥`) is torsion
if each element of X is annihilated by some non-zero element
of I(¥`). Our main result is the following.

THEOREM 2. In addition to the hypotheses of Conjecture 1,

assume that 6~F`!
∧

is torsion over the Iwasawa algebra I(¥`),
where ¥` 5 G(F`yF0). Then Conjecture 1 holds, and Hi(G`,
6(F`)) 5 0 for i 5 2, z z z , 4.

It has long been conjectured (see ref. 4) that 6~F`!
∧

is torsion
over I(¥`) for all E and all primes p where E has good ordinary
reduction, but very little is known in this direction at present.
In view of this, it may be worth noting the following weaker
result, which we can prove without this assumption. By a
theorem of Serre (5), the cohomology groups Hi(G`, Ep`) (i Ä
0) are finite.

THEOREM 3. Under the same hypotheses as in Conjecture 1,
we have that H0(G`, 6(F`)) is finite, and

#~H0~G`, 6~F`!! 5 rp~EyQ!z#~H3~G`, Ep`!!. [7]

Sketch of the Proof of Theorem 3. Let S be a fixed finite set
of nonarchimedean primes containing p and all primes where
E has bad reduction. We write Qs for the maximal extension
of Q unramified outside S and `. For each n Ä 0, let Fn 5
Q(Epn11). We define, for y [ S,

J`,y 5 lim
3n

%
vuy

H1~Fn,v, E!~p!,

where v runs over all primes of Fn dividing y, and the inductive
limit is taken with respect to the restriction maps. Our proof
is based on the following well known commutative diagram
with exact rows

0 3 6~F`!G` 3 H1~G~QsyF`!, Ep`!G`
3
l`

1a 1b

0 3 6~Q! 3 H1~G~QsyQ!, Ep` 3
l

3 ~ %
y[S

J`,y!
G`

1g 5 %
y[S

gy

3 %
y[S

H1~Qy, E!~p!,

where the vertical arrows are restriction maps.
LEMMA 4. The map g is surjective, and its kernel is finite of

order #(Ẽ(Fp))2z)ycy
(p).

Proof. This is a purely local calculation. For each y [ S, fix
a place v of F` above y, and let Dv denote the Galois group

of F`,v over Qy. Assume first that y Þ p. Then

Ker gy 3
, H2~Dv, Ep`!, Coker gy3

; H2~Dv, Ep`!

and simple calculations (cf. ref. 7, Lemma 13) then show that

#~H1~Dv, Ep`!! 5 cy
~p!, H2~Dv, Ep`! 5 0.

Suppose next that y 5 p. The extension F`,v of Qp is deeply
ramified in the sense of ref. 8 because it contains the deeply
ramified field Qp(mp`), where mp` denotes the group of all
p-power roots of unity. We can therefore apply the principal
results of ref. 8 to calculate Ker gp and Coker gp. We deduce
that gp is surjective because H2(Dv, Ẽp`) 5 0 and that Ker gp
is finite, with order equal to

#~H0~Dv, Ẽp`!!#~H1~Dv, Ẽp`!! 5 #~Ẽ~Fp!~p!!2,

completing the proof of the lemma.
LEMMA 5. Assume L(E, 1) Þ 0. Then (i) 6(Q) is finite, (ii)

H2(G(QSuQ), Ep`) 5 0, and (iii) the cokernel of l is finite of
order equal to #(E(Q)(p)).

Proof. Assertion (i) is a fundamental result of Kolyvagin.
Assertions (ii) and (iii) follow immediately from the finiteness
of 6(Q) and Cassels’ variant of the Poitou-Tate sequence (cf.
the proof of Theorem 12 of ref. 7).

LEMMA 6. Assume that L(E, 1) Þ 0. Then the map l` in the
above diagram is surjective.

Proof. We make essential use of the cyclotomic Zp-extension
Q` of Q. The finiteness of 6(Q) implies that 6~Q`!

∧
is torsion

over the Iwasawa algebra I(G`). A well known argument then
shows that the sequence

03 6~Q`!3 H1~G~QSyQ`), Ep`!3 %
y[S

H`,y3 0 [8]

is exact, where H`,y 5 Qv H1(Q`,v, E) (p) and v runs over all
places of Q` dividing y. Next, we assert that H1(G`, 6(Q`)) 5
0. Indeed, H1(G`, 6(Q`)) is finite because 6(Q) is finite,
whence H1(G`, 6(Q`)) 5 0 because 6~Q`!

∧
has no non-zero

finite G`-submodule (see ref. 9). Hence, taking G`-invariants
of the above exact sequence, we see that the natural map

w` ; ~H1~G~QSyQ`!, Ep`!!G`3 S %
y[S

H`,yDG`

is surjective. But the surjectivity of w` and the surjectivity of
g together clearly show that g` is surjective, as required.

LEMMA 7 (J.-P. Serre, personal communication). We have
x(G`, Ep`) 5 1 and H4(G`, Ep`) 5 0.

To prove Theorem 3, one simply uses diagram chasing in the
above diagram, combined with Lemmas 4–7.

Sketch of the Proof of Theorem 2. We begin with another
purely local calculation. For each y [ S, let J`,y be the
G`-module defined at the beginning of §2.

LEMMA 8. For each y [ S, we have Hi(G`, J`,y) 5 0 for all
i Ä 1.

Proof. Fix a place v of F` above y, and let Dv denote the
Galois group of F`,v over Qy. Then for all i Ä 0, we have

Hi~G`, J`,y! 3
, Hi~D`, H1~F`,v, E!~p!!.

On the other hand, the results of ref. 8 show that H1(F`,v, E)(p)
is isomorphic as a D`-module to Av, where Av is defined to be
H1(F`,v, Bv), with Bv 5 Ep` or Ẽp`, according as y Þ p or y 5 p.
One then proves that Hi(Dv, Bv) 5 0 for all i Ä 2. Using the
Hochschild-Serre spectral sequence, it is then easy to show that
Hi(Dv, Av) 5 0 for all i Ä 1, as required.

If W is an abelian group, we define, as usual, Tp(W) 5 4lim
(W)pn, where (W)pn denotes the kernel of multiplication by pn
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on W. We put Tp(E) for Tp(Ep`). For each integer m Ä 0, we
define R(Fm) by the exactness of the sequence

03 R~Fm!3 H1~Fm, Tp~E!!3P
v

Tp~H1~Fm,v, E!!.

We then define

5~F`! 5 lim
m4

R~Fm!,

where the projective limit is taken with respect to the co-
restriction maps from Fm to Fn when m Ä n. Recall that ¥`

denotes the Galois group of F` over F0.

LEMMA 9. If 6~F`!
∧

is torsion over the Iwasawa algebra I(¥`),
then 5(F`) 5 0.

Proof. This is analogous to the well known argument for the
cyclotomic Zp-extension Q`, which has already been implicitly
used in proving exactness at the right hand end of Eq. 8 (we

recall that L(E, 1) Þ 0 automatically implies that 6~Q`!
∧

is
torsion over I(G`)). The only unexpected point is to note that
the projective limit of the Epn11(n 5 0, 1, . . .) with respect to
the norm maps from Fm to Fn when m Ä n is in fact zero.
Indeed, since G` is open in GL2(Zp), one sees that, for all
sufficiently large n, the norm map from Fn to Fn21 acts as
multiplication by p4 onto Epn11, whence the previous assertion
is plain.

We assume that for the rest of this section that 6(F`) is
torsion over the Iwasawa algebra I(¥`). Then we claim that

H2~G~QSyF`!, Ep`! 5 0, [9]

and that the sequence

03 6~F`!3 H1~G~QSyF`!, Ep`!3
C`

%
y[S

J`,y3 0 [10]

is exact. Indeed, applying Cassels’ variant of the Poitou-Tate
sequence to each of the fields Fn(n 5 0, 1, . . .), and then
passing to the inductive limit as n 3 ` with respect to the
restriction maps, we obtain an exact sequence

03 Coker~C`!3 5~F`!
∧

3 H2~G~QSyF`!, Ep`!3 0

whence Eqs. 9 and 10 follow immediately from Lemma 9. In
fact, Eq. 9 is known to be true for all p ° 2 without any
additional hypothesis.

LEMMA 10. Assume that 6(F`)
∧

is torsion over I(¥`). Then
Hi(G`, H1(G(QSyF`), Ep`)) 5 0 for i Ä 2, and

H1~G`, H1~G~QSyF`!,Ep`!!3, H3~G`, Ep`!. [11]

Proof. The assertion (Eq. 11) follows from the Hochschild-
Serre spectral sequence (cf. Theorem 3 of ref. 10) on using Eq.
9 and (ii) of Lemma 5. Similarly, the first assertion of Lemma
10 is an immediate consequence of Theorem 3 of ref. 10 and
the fact that G(QSyF`) has p-cohomological dimension ¶2,
together with the fact that H4(G`, Ep`) 5 0 (J.-P. Serre,
personal communication).

To complete the proof of Theorem 2, we take G`-invariants
of the exact sequence (Eq. 10). Using Lemmas 6, 8, and 10, we
deduce that

H1~G`, 6~F`!! 3, H3~G`, Ep`!,

and that Hi(G`, 6(F`)) 5 0 for all i Ä 2. Hence, Theorem 2
follows from Theorem 3.

We finish with the following remark. Let K` be the fixed
field of the center of G`, and let H` denote the Galois group
of K` over Q. We conjecture that, under the same hypotheses
as Conjecture 1, the H`-Euler characteristic of the Selmer
group 6(K`) of E over K` is finite and equal to rp(EyQ). If
we assume that 6~F`!

∧
is torsion over I(¥`), we can prove this

conjecture for the Euler characteristic of 6(K`).

We are very grateful to J.-P. Serre for providing us with a proof that
x(G`, Ep`) 5 1. We also warmly thank B. Totaro for pointing out to
us a result that revealed an error in an earlier version of this
manuscript.
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p-adic L functions and trivial zeroes

BERNADETTE PERRIN-RIOU

Mathématique, Université de Paris-Sud, Bâtiment 425, F-91405 Orsay, France

ABSTRACT The following is adapted from the notes for the
lecture. It announces results and conjectures about values of the
p-adic L function of the symmetric square of an elliptic curve.

First let us give some examples of trivial zeroes. Let KyQ be
an imaginary quadratic field such that p splits in K, h the
associated quadratic Dirichlet character; the Euler factor of
L(h, s) at p is 1 2 p2s. Choose an ideal 3 above p and a
compatible embedding of an algebraic closure Q of Q in an
algebraic closure Qp of Qp. There exists a Kubota–Leopoldt
p-adic L function Lp(h, s) such that for n . 0 and even,

Lp~h, 1 2 n! 5 ~1 2 ~hv2n!~p!pn21!L~hv2n, 1 2 n!.

THEOREM [Ferrero–Greenberg (1)].

Lp~h, 0! 5 0

L9p~h , 0! 5 2 ,p~h!L~h , 0!,

with ,p(h) 5
logpq
ordpq

and q 5 pyp̄, 3h 5 (p).

Let EyQ be a modular elliptic curve with split multiplicative
reduction at p. Mazur et al. (2) have constructed a p-adic L
function Lp(E, s).

THEOREM [Greenberg–Stevens (3)].

Lp~E, 1! 5 0

Lp
9 ~E, 1! 5 ,p~E!L~E, 1!,

with ,p(E) 5
logpqE

ordpqE
and qE the Tate parameter of EyQp.

It has been recently proved that ,p(E) is nonzero: Barré-
Sirieix et al. (12) proved that if EyQ is a Tate curve at p, and
if jE is algebraic, then qE is transcendental.

Finally, let E be a modular elliptic curve over Q and 1 2 apps

1 p122s the Euler factor at p of its L function. Let M 5
Sym2(h1(E)) 5 Sym2(h1(E)) (2). The Tate twist of M is M* (1)
5 sl(h1(E)) 5 sl(h1(E)). The Euler factor at p of M is

~1 2 p21p2s!~1 2 a22p2s!~1 2 b22p2s!,

where a 1 b 5 ap, ab 5 p. The Euler factor at p of M*(1)
is

~1 2 p2s!S1 2
a

b
p2sDS1 2

b

a
p2sD .

When E has ordinary reduction, a p-adic L function has been
constructed by interpolation of values of twists of L(M, s) at
s 5 0 (4). The complex L function L(M, s) is nonzero at s 5
0 because 0 is inside the convergence domain of the Euler
product.

Under a mild technical hypothesis, the following theorem
has been proved:

THEOREM [Greenberg–Tilouine (5)]. Assume E has multi-
plicative reduction at p. Then,

Lp~M, 0! 5 0

L9p~M, 0! 5 ,p~M!
L~M, 0!

V`
,

where V` is some explicit complex period and ,p(M) 5 ,p(E).
So Lp(M, s) has a simple zero [recall ,p(E) is nonzero].
In general, a trivial zero should appear when 1 or p21

annihilates the p-Euler factor. It means that the p-adic L
function should have a zero of multiplicity strictly bigger than
the one of the complex L function.

The following work has been done by Greenberg (6) (in the
ordinary situation). (i) He gives a definition of some ,p(M) in
a very general case. In particular, for M 5 Sym2(h1(E)) with
E having (good) ordinary reduction. (ii) He gives a conjecture
for the behavior of the p-adic L function at the trivial zero
(multiplicity order of the zero and behavior of the dominant
coefficient of the expansion at this zero). (iii) He checks that
one recovers theorems already proved.

In this talk, we look only at the case of the symmetric square
of an elliptic curve with good reduction at p, we explain in this
special case: (i) the construction of the Greenberg invariant in
the ordinary case, (ii) a construction of a similar invariant in
the supersingular case; (iii) the conjectural definition of the
p-adic L function; (iv) a conjectural link between the p-adic L
function and a conjectural special system, and (v) conse-
quences on the p-adic L function and the trivial zero.

Section 1. Notations

Fix an algebraic closure Q of Q, GQ 5 Gal(QyQ). In the
following, M will designe Sym2(h1(E)). The p-adic realization
of M is V 5 Mp 5 Sym2(Vp(E)) with Vp(E) 5 Qp R lim

4n
Epn.

It’s a p-adic representation of GQ of dimension 3.
Let Dp(V) be the filtered w-module associated to V by Fon-

taine’s theory. If DdR(M) 5 Sym2(HdR
1 (E))[22], there exists a

natural isomorphism Dp(V) 5 Qp R DdR(M). We describe the
action of w and the filtration explicitly. Let (e0, e21, e22) be a basis
such that we21 5 p21e21, we0 5 a22e0, we22 5 b22e22.

In the ordinary case, we can choose a to be in Zp
3; the

filtration is given by

HFil0Dp~V! 5 Qpve

Fil21Dp~V! 5 Qpve % Qp~e21 1 le22!,

where ve 5
l

2
e22 1 e21 1

1
2l

e0 for some l [ Qp that we

assume nonzero.
In the supersingular case (and ap 5 0, which is automatic

if p . 3), V is a direct sum (as a GQp
-representation): V 5 W1

Q W2 with
© 1997 by The National Academy of Sciences 0027-8424y97y9411118-3$2.00y0
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W2 5 Qp~1!~«!,Dp~W2! 5 Qpe22,

we22 5 b22e22 5 2p 2 1e 2 2

and

Dp~W1! 5 Qpe21 % Qpe20, we21 5 p21e21,

we0 5 a22e0 5 2p21e0.

The filtration is given by

HFil0Dp~V! 5 Qpve

Fil21Dp~V! 5 Qpve % Qpe22
,

with ve 5 e21 2 e0 [for some suitable choice of (e0, e21, e22)].
In both cases, Dp(V)w5p21

5 Qpe21. In supersingular case,
take l 5 21y2.

Section 2. Greenberg Invariants

2.1. Ordinary Case. On V, there exists a filtration of p-adic
representations of GQp

5 Gal(QpyQp):

0 , Filp
2V , Filp

1V , V,

such that

Dp~Filp
2V! 5 Qpe22

Dp(Filp1V) 5 Qpe22 % Qpe21.
So there is a natural surjection Filp

1V 3 Qp(1). We choose
e21 such that the map

Dp~V!w5p213 Dp~Filp
1V!3 Dp~Qp~1!! 5 Qp

sends e21 to 1.
It’s easy to see that H1(Qp, Filp

1V) > H1(Qp, V)5Hg
1(Qp, V)

(we use the notation Hf
1, Hg

1 of Bloch–Kato). Recall that there
is an isomorphism

H1~Qp, Qp~1!! > Qp ^ ~Qp
3!p > Qp 3 Qp.

The first one is just Kummer theory where (Qp
3)p 5 lim

4n
Qp

3yQp
3pn

, the second one is given by q ° (logpq, ordpq) where
logp is the logarithm on Qp

3 such that logpp 5 0. So there is a
map

H1~Qp,V! > H1~Qp,Filp
1V!

x
3 H1

°
~Qp, Qp~1!!

qe~x!
3
°

Qp 3 Qp

~logpqe~x!, ordpqe~x!!.

Definition. If x [ H1 (Qp, V), let

,~x! 5
logpqe~x!

ordpqe~x!
[ Qp ø `;

it depends only on the line Qpx.
Definition. If x [ H1(Q, V) is a universal norm in the

Zp
3-cyclotomic extension, define

,p~M! 5 ,~x! [ Qp ø `.

The universal norms are contained in Hf,{p}
1 (Q, V) [elements

of H1(Q, V) which are unramified outside of p]. Thanks to
Flach (7) and under technical conditions, (i) the universal
norms are of dimension 1; (ii) Hf

1(Q, V) 5 0 and dim Hf,{p}
1 (Q,

V) 5 1. So in the above definition, ,p(M) 5 ,(x) for any
nonzero element x of Hf,{p}

1 (Q, V).

2.2. Supersingular Case. The canonical map

i : Dp~V!w5p213 Dp~W1!yFil0Dp~W1! 5 tW1
,

is an isomorphism. On the other hand, by Bloch–Kato, there
is a natural map

lg : H1~Qp, V! 5 Hg
1~Qp, V!3 Dp~V!w5p21.

Once having chosen logp on Qp
3(logp p 5 0), there is a

canonical splitting of the inclusion

Hf
1~Qp, W1!3 Hg

1~Qp, W1!,

and so we obtain an extension of the Boch–Kato logarithm
logW1

to Hg
1(Qp, W1):

logg,W1
: Hg

1~Qp, W1!3 tW1
.

Definition. If x 5 (x1, x2) [ Hg
1(Qp, V) 5 Hg

1(Qp, W1) Q
Hf

1(Qp, W2), define ,(x) [ Qp ø ` by

,~x!i + lg~x! 5 logg,W1
x1 [ tW1

.

Definition. Define ,p(M) 5 ,(x) with x a universal norm in
H1(Q, V) [again, we can just take a nonzero element in
Hf,{p}

1 (Q, V)].

Section 3. p-adic L Functions

Let G` 5 Gal(Q(mp`)yQ) > Zp
3 and Zp[[G`]] the continuous

group algebra of G`. Define some algebras:

_~G`! . *~G`! . Zp@@G`##.

Here *(G`) is the algebra of elements in Qp[[G`]] which are
O(logr) for a suitable r: it means that f [ *(G`) can be written
f 5 ¥nan(g 2 1)n with supn.0 uanuynr , ` (g is a topological
generator of the p-part of G`); _(G`) is the total fraction ring
of *(G`). If h is a continuous character from G` with values
Q̄p

3, we can evaluate h on any element of *(G`).
CONJECTURE (10): For any n [ `2Dp(V), there exists an

element L{p}
p

(n) [ *(G`) such that for any nontrivial even
character h of G` of conductor pa

h~L$p%
p ~n!!e 5

1
2

G(h)2L~M, h, 0!

V`,vQ

Vp,vQ
~~pw!2a~n!!

where (i) e is a basis of the Q-vector space det DdR 5 Q(23)dR,
and vQ is a basis of Fil0 DdR; (ii) V`,vQe 5 vQ ` nB

1 [ C R det
DdR with nB

1 a basis of det MB
1[for example of det Sym2(H1(E,

Z))1]; (iii) Vp,vQ
(n) 5 vQ ` n; and (iv) G(h) is a Gauss sum

associated to h.
So h(L{p}

p
(n))vQ ` nB

1 5 1
2

G(h)2L{p}(M, h, 0)vQ `
(pw)2a(n). We may see L{p}

p (M) 5 L{p}
p as an element of

HomQp
(Qp R `2 DdR(M), *(G`)) and as a function of s [ Zp: if

x is the cyclotomic character,

L$p%
p ~M, s! 5 ^x&s~L$p%

p ! and L$p%
p ~M, s, n! 5 ^x&s~L$p%

p ~n!!,

with n [ `2Dp(V). For any f [ *(G`), define ­(f) 5
d
ds

^ x &s

(f))us50.

Section 4. Logarithm

Let Kn 5 Qp(mpn11) and Z`
1 (Qp, T)5 lim

4n
H1(Kn, T) with T 5

Sym2(Tp(E)). It’s a Zp[[G`]]-module of rank 3. Note p0 the
projection on H1(Qp, T). One can construct a map (9)

+v 5 + : Z`
1 ~Qp, T!3 _~G`! ^ Dp~V!.

Recall only some properties of + (the first one depends on a
“reciprocity law” conjecture that seems to be proved now). If
x [ Z`

1 (Qp, T) (11):
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1~+~x!! 5 ~1 2 w!lg~p0~x!! [ Dp~V!w5p21.

If p0(x) [ He
1(Qp, T),

~1 2 w!21~1 2 p21w21!­~+~x!! ; logp0~x! mod Fil0Dp~V!.

Section 5. Special Systems and p-adic L Functions

There should exist a special element cp
spec [ Qp R lim

4n
H1(Q(mpn11), T) such that the p-adic L function should be
defined by the formula

L$p%
p ~n!e 5 +~cp

spec! ` n,

for any n [ `2 Dp(V).
Define cp

flach(p) 5 p0 (cp
spec) [ H1(Q, V).

CONJECTURE:

lg~cp
f lach~p!! 5

1
2S1 2

a

b
DS1 2

b

a
DL~M, 0!

V`,vQ

p@21#~vQ!,

where p[21] is the projection on Dp(V)w5p21
with respect to the

other eigenspaces of w.
In the ordinary case, it means that

ordpqe~cp
flach~p!! 5

1
2S1 2

a

b
DS1 2

b

a
DL~M, 0!

V`,ve

,

or

ordpqe~cp
flach~p!!ve ` nB

1 5
1
2S1 2

a

b
DS1 2

b

a
DL~M, 0!e.

Section 6. Some Theorems

We assume the existence of cp
spec and the fact that the p-adic

L function can be calculated by the formula L{p}
p (n)e 5

+(cp
spec) ` n.

THEOREM: The function L{p}
p

is nonzero at the trivial char-
acter 1 if and only if cp

f lach(p)¸ Hf
1
(Q, T) and one has

1~L$p%
p ~n!!e 5 ~1 2 p21!lg~cp

f lach~p!! ` n.

In particular, by using Flach’s theorem (7), L{p}
p

is nonzero
if and only if cp

f lach(p) is nonzero.
Assume cp

flach(p) Þ 0. Let L{p}
p,sc

5 L{p}
p

(e21 ` e22) [ * (G`).
THEOREM: The function L{p}

p,sc has a zero at 1 which is simple if
and only if ,p(M) Þ 0 and one has

­~L$p%
p,sc!e21 5

1
2l

~1 2 a22!S1 2
a

b
D21

,p~M!lg~cp
f lach~p!!.

THEOREM: The following formulas are equivalent

lg~cp
f lach~p!! 5

1
2 S1 2

a

b
DS1 2

b

a
DL~M, 0!

V`,vQ

p@21#~vQ!,

~1 2 p21w21!1~L$p%
p !e 5

1
2

L$p%~M, 0!

V`,vQ

~1 2 w!Vp,vQ
,

­~L$p%
p,sc! 5

1
2

,p~M!~1 2 a22!S1 2
b

a
DL~M, 0!

V`,vQ

Vp
sc,

where Vp,vQ

sc [ Qp is defined by Vp,vQ

sc e 5 vQ ` e21 ` e22.
In the ordinary case, L{p}

p,sc
should be the p-adic function

already known, the last formula is then the formula conjec-
tured by Greenberg.

Section 7. Even More Speculations

cp
f lach(p) should come from a motivic element: so it would exist

in any of the l-adic realizations of M; call it cl
flach(p) [ H1(Q,

Ml), this element should again have good reduction outside of
p. For l Þ p, let Dl(M) 5 Ml

Ip; there is a map

lg
l : H1~Qp, Ml!3 Dl~M!Frobp

215p21,

and for l 5 p,

lg
p : H1~Qp, Mp!3 Dp~M!w5p21.

We have

dimQl
Dl~M!Frobp

215p21
5 dimQp

Dp~Mp!
w5p21.

A candidate of such an element has been constructed by Flach.
On the other hand, there exists a natural Q-vector space $ such
that

Ql RQ $ 5 Dl~M!Frobp
215p21 or Dp~M!w5p21.

It can be described in terms of the Néron–Severi group of the
reduction E 3 E at p (8). We would like to compare
lg

l (cl
flach(p)) for different l and give a link with the p-adic L

function (work in preparation). For l Þ p, see calculations of
Flach (7).
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Adjoint modular Galois representations and their Selmer groups
(p-adic L-functionyclass number formulaymain conjecture)
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ABSTRACT In the last 15 years, many class number
formulas and main conjectures have been proven. Here, we
discuss such formulas on the Selmer groups of the three-
dimensional adjoint representation ad(f) of a two-
dimensional modular Galois representation f. We start with
the p-adic Galois representation f0 of a modular elliptic curve
E and present a formula expressing in terms of L(1, ad(f0))
the intersection number of the elliptic curve E and the
complementary abelian variety inside the Jacobian of the
modular curve. Then we explain how one can deduce a formula
for the order of the Selmer group Sel(ad(f0)) from the proof
of Wiles of the Shimura–Taniyama conjecture. After that, we
generalize the formula in an Iwasawa theoretic setting of one
and two variables. Here the first variable, T, is the weight
variable of the universal p-ordinary Hecke algebra, and the
second variable is the cyclotomic variable S. In the one-
variable case, we let f denote the p-ordinary Galois repre-
sentation with values in GL2(Zp[[T]]) lifting f0, and the
characteristic power series of the Selmer group Sel(ad(f)) is
given by a p-adic L-function interpolating L(1, ad(fk)) for
weight k 1 2 specialization fk of f. In the two-variable case,
we state a main conjecture on the characteristic power series
in Zp[[T, S]] of Sel(ad(f) R n21), where n is the universal
cyclotomic character with values in Zp[[S]]. Finally, we de-
scribe our recent results toward the proof of the conjecture
and a possible strategy of proving the main conjecture using
p-adic Siegel modular forms.

The talk at the conference on Elliptic Curves and Modular
Forms at the National Academy of Sciences was presented by
H.H. The purpose of the talk was to describe formulas giving
the characteristic ideal of the Selmer group of the Galois
representations as in the title in terms of their L-values. We fix
a prime p $ 5. Although we can treat the general case, allowing
ramification at finitely many primes and `, to keep the paper
short, we assume that the ramification is concentrated on {p,
`}.

1. Selmer Groups

Let G be the Galois group of the maximal extension Q(p)yQ
unramified outside {p, `}. Let 2 be a valuation ring finite flat
over Zp with residue field F. We start with a two-dimensional
continuous representation f : G 3 GL2(A) for a complete
(noetherian) local 2-algebra A with residue field F 5 AymA.
The power series ring 2[[T1, . . . , Tr]] is an example of such A.
We let G act on V 5 A2 via f and on End(V) by conjugation:
f R f∨ (s)x 5 f(s)xf(s)21. We look at its three-dimensional
factor ad(f) : G 3 GL3(A) acting on trace zero subspace

V(ad(f)) in End(V). Thus f R f∨ 5 ad(f) Q 1. Let f̄ 5 f mod
mA. We assume the following three conditions:

(AI) The restriction of f̄ to Gal (Q(p)yQ(=(21)(p21)y2p)) is
absolutely irreducible;

(Ord) For each decomposition group D over p, fuD > (0
d

«
p)

with unramified d;
(Reg) d mod mA Þ « mod mA.
Condition AI is equivalent to the absolute irreducibility of

ad(f̄) over G. We write V(d) , V for the d-eigen subspace, and
for each A-submodule X of V(ad(f)), let X* 5 X RA A* for
the Pontryagin dual A* 5 Hom2(A, QpyZp) of A. We put V1

5 {j [ V(ad(f)) , End(V) u j(V(d)) 5 0}. Then we define
the Selmer group for ad(f), as a special case of Greenberg’s
definition (ref. 1; see also ref. 2):

Sel(ad(f)) 5 ker~H1~G, V~ad~f!!*!3 H1~I, V~ad~f!!*yV1
p!!

for the inertia subgroup I of D. This is a generalization of the
class group; for example, taking a quadratic character x of G,

Sel(x) 5 ker~H1~G, V~x!*!3 H1~I, V~x!*!!

is the x-part of the p-class group of the quadratic extension F
fixed by ker(x). Thus if A 5 2 and if L(1, ad(f)) Þ 0, a naive
guess is that Sel(ad(f)) is finite and that its order is the p-part
of L(1, ad(f)) up to a transcendental factor. The finiteness is
first shown by Flach (3) and then by Wiles (4). We discuss later
some good cases where this guess works well. We generalize
the above definition to a tensor product ad(f) R « with a
character « : G 3 B3 for a complete noetherian 2-algebra B,
replacing A by AR̂2B and V1 by V1(ad(f) R «) 5 V1 R̂ B:

Sel(ad(f)R«) 5 ker~H1~G,V(ad(f)R«)*)

3H1~I,V(ad(f)R«)*yV1(ad(f)R«)*)),

which is a discrete module over AR̂2B.

2. Elliptic Curves over Q

For simplicity, we suppose that f0 is the Galois representation
on H1(EyQ̄, Zp) for a modular elliptic curve EyQ inside the
Jacobian J 5 J0(p) of the modular curve X0(p). Thus E has
multiplicative reduction at p and has good reduction outside p.
Taking the dual of the inclusion E , J, we have a quotient map
p : J 3 E. Then J 5 E 1 A for A 5 ker(p), and E ù A is a
finite group of square order. For a Néron differential v on the
Néron model EyZ, by a result of Mazur (5) corollary 4.1, we
may assume that p*v 5 2e(2pif0(z)dz) for a primitive form f0
[ S2(G0(p)) and e [ Z. Choosing a base c6 of 6-eigenspace
of H1(E(C), Z) under complex conjugation, we define V6 by
*c6 v after normalizing c6 as described below. The following
formula was proven 15 years ago in ref. 6 (see also ref. 7):

© 1997 by The National Academy of Sciences 0027-8424y97y9411121-4$2.00y0
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(IN1)
L~1, ad~f0!!

C21~2pi!V1V2
5 ÎuE ù Au [ Z

(intersection number formula),

where C 5 2a12ep(p 2 1) for 2a 5 [H1(E(C), Z) : Zc1 Q Zc2].
We define the canonical period U(f0) of f0 by C21(2pi)V1V2.
In ref. 6, to get formula IN1, we used the period determinant

u 5 US *c1
v *c2

v

*c1
#v *c2

#v D U
for a Z-base {c1, c2} of H1(E(C), Z) in place of V1V2 (see ref.
6, formula 6.20b). Writing v6 5 (v 6 #v)y2, we see *c6

v 5 6
*c6

v6, and thus V1 [ R and =21V2 [ R. Replacing c6 by
their negative if necessary, we may assume that V1 . 0 and =21
V2 . 0. Under this normalization, formula IN1 is correct.
Then by definition, 2au 5 =21V1V2, and we can deduce
formula IN1 from ref. 6, theorem 6.1, by just remarking that
L*f0

yLf0
> E ù A under the notation of the theorem quoted.

Actually, a formula similar to formula IN1 is proven in ref.
6 for the Galois representation attached to any holomorphic
primitive form of weight $2. The formula is generalized later
to cohomological cusp forms on GL(2) over imaginary qua-
dratic fields in ref. 8.

Let H be the subalgebra of End(J) generated by Hecke
operators T(n). Then p induces the projection l : H 3 Z ,
End(E) and another projection l9 : H 3 End(A). Then we
define two finite modules:

C0 5 Im~l! ^ HIm~l9! and

C1 5 VHyZ ^ H,lIm~l! > ker~l!yker~l!2.

It is proven in ref. 7 (equation 5.8b) that

~E ù A!p > ~C0, p!
2

as H modules. Note that Spec(C0) is the scheme theoretic
intersection of Spec(Im(l)) and Spec(Im(l9)) in Spec(H).
Thus we get

~IN2! p-part of
L~1, ad(f0))

U~f0!
5 uC0,pu

(intersection number formula in Spec~H!).

Recently, Taylor and Wiles (4, 9) have shown that uC0,pu 5
uC1,pu, and Wiles (4) has shown

C1, p > Sel~ad~f0!!.

This formula is a key to Wiles’ proof of Fermat’s last theorem.
The fact that Sel(ad(f0)) has a natural map into C1,p was first
discovered by Mazur through his deformation theory of Galois
representations (10). The above formula is conjectured in ref.
11 after proving the surjectivity of the map besides other
relevant results.

Anyway, under the various assumptions on p that we made,
we finally get a formula for the order of Sel(ad(f0)):

(CN1) p-part of
L~1, ad~f0!!

U~f0!
5 uSel~ad~f0!!u

(order formula of Selmer group).

3. One-Variable Case

The cusp form f0 [ S2(G0(p)) can be lifted to a p-adic family
of p-ordinary common eigenforms fk 5 ¥n51

` a(n; fk)qn [
Sk12(G0(p), v2k) (k $ 0) for the Teichmüller character v (cf.

ref. 12, chapter 7, theorem 7.3.7). For this, we need to fix an
embedding ip : Q̄

(
3 Q̄p. Then “p-ordinarity” of fk implies that

the pth coefficient of fk in its q-expansion satisfies ua(p; fk)up 5
1. Note that, by the multiplicative reduction hypothesis, a(p;
f0) 5 61. This family yields a Galois representation f : G 3
GL2 (L) for a finite flat 2[[T]]-algebra L (ref. 12, section 7.5).
For simplicity, we assume L 5 2[[T]]. Then writing as fk the
specialization of f via 1 1 T ° uk for u 5 1 1 p, fk is the
Galois representation of the cusp form fk. Then the Pontryagin
dual Sel*(ad(f)) of Sel(ad(f)) is shown by Wiles and Taylor
to be a torsion 2[[T]]-module of finite type, and its charac-
teristic power series is given by the characteristic power series
of the L-adic congruence module C0,L.

Before giving the definition of C0,L, we note that we have
taken cohomological formulation of Galois representations. In
this paper, we characterize Galois representations by the
characteristic polynomial of geometric Frobenii Frobq at
primes q Þ p. For example, fk is characterized by

det~1 2 fk(Frobq!X) 5 1 2 a~q; fk!X 2 v2k~q!qk11X2.

This normalization is dual to the one taken in ref. 4, but it is
all right for our purpose because ad(fk) 5 ad(fk

∨).
To define C0,L, we need to introduce the space SL of

p-ordinary L-adic cusp forms. For that, we consider the
subspace Sk12(G0(p), v2k; Q̄) of Sk12(G0(p), v2k) made of
cusp forms f with a(n; f) [ Q̄ for all n. We consider the Q̄p-span
Sk12(G0(p), v2k; Q̄p) of Sk12(G0(p), v2k; Q̄) in Q̄p[[q]] via
q-expansion. We write Sk12

ord (G0(p), v2k; Q̄p) for the subspace
of Sk12(G0(p), v2k; Q̄p) spanned by all p-ordinary eigenforms.
An element ^ [ SL is a formal q-expansion ¥n51

` an(T)qn [
L[[q]] such that the specialization ^k via 1 1 T ° uk is the
q-expansion of an element in Sk12

ord (G0(p), v2k; Q̄p) for all k $
0. Then SL is free of finite rank over L on which Hecke
operators T(n) naturally act (ref. 12, section 7.3). Hereafter we
write ^ for the unique L-adic form such that ^k 5 fk for all
k $ 0. Let H be the L-subalgebra of EndL(SL) generated by
T(n) for all n, and define a L-algebra homomorphism l : H3
L by ^uh 5 l(h)^. We also have another l9 of H into
EndL(ker(l)) given by multiplication by h [ H on ker(l). Then
we define

C0,L 5 Im~l! ^ HIm~l9! and

C1,L 5 VHyL ^ H,lIm~l! > ker~l!yker~l!2.

Then it is easy to see that C0,L > Ly(h(T)) for an element h(T)
[ L. We can deduce from the result of Wiles and Taylor in ref.
4 (theorem 3.3) and ref. 9 that

~h~T!! 5 charL~C1,L! and C1,L > Sel*~ad~f!!.

Here the characteristic ideal charA(M) for a torsion A-module
of finite type M over a normal noetherian ring A is given by the
product of prime divisors P in A with exponent given by
lengthAP

MP of the localization MP at P. Note that, as shown in
ref. 7 (theorem 0.1), for a canonical period U(fk) associated to
fk,

(CN2) h~uk 2 1! 5
L~1, ad~fk!!

U~fk!

up to p-adic units. This formula is not completely satisfactory,
because the p-adic L-function h(T) is determined only up to
units in L. For L-adic forms of CM type, we can choose a
suitable Katz p-adic L-function in place of h (11, 13–15). In
general, we can only make a conjecture on the existence of a
canonical p-adic L-function Lp(ad(f)) with precise interpola-
tion property (16), which generates charL(Sel*(ad(f))) 5
(h(T)) after extending scalar to the p-adic integer ring 2V of
the p-adic completion V of Q̄p.
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4. Two-Variable Case

Now we look at the universal character n : G 3 2[[S]]3

deforming the identity character of G. As already said, our
formulation is cohomological, and hence n(Frobq) 5 qv(q)21

for geometric Frobenius Frobq. Writing Q` for the cyclotomic
Zp-extension of Q and G 5 Gal(Q`yQ), the tautological
character: G

(
3 2[[G]] induces the above n for S 5 g 2 1 for

a generator g of G. Then we consider Sel*(ad(f) R n21), which
is a module over 2[[T, S]] of finite type (1). Classically, the
Selmer group involving the cyclotomic variable S is defined in
terms of cohomology groups over the cyclotomic Zp tower Q`.
As shown by Greenberg (ref. 1, proposition 3.2; see also ref. 2,
section 3.1), our Selmer group Sel(ad(f) R n21) over Q is
isomorphic to the classical one over Q`. Recently, we have
proven a control theorem for Sel(ad(f) R n21) giving the
following theorem.

THEOREM 1. The module Sel*(ad(f) R n21) is a torsion
2[[T, S]]-module of finite type. Moreover, the characteristic
power series of Sel*(ad(f) R n21) is of the form SC(T, S) in
2[[T, S]] and C(T, 0)uh(T) daydT (T) in 2[[T]], where a(T)
is the eigen value of T(p) for ^ lifting f0 (2). In early 1980s,
we constructed (17) a two-variable p-adic L-function L(T, S) in
h(T)21S2[[T, S]] such that for even m with 2k # m # 0,

h~uk 2 1!L~uk 2 1, um 2 1! 5 pE~k, m!
L~1 2 m, ad~fk!!

~2pi!22mU~fk!

for a factor E like an Euler p-factor and a simple constant p.
This L-function hL again has ambiguity by units in L, although
L(T, S) is uniquely determined. In ref. 16, the existence of a
canonical p-adic L-functions Lp(ad(f) R n21) in 2[[T, S]] [for
ad(f) R n21] with precise interpolation property is conjec-
tured. In particular, we should have an equality:

L~T, S! 5
Lp~ad~f! ^ n21!

Lp~ad~f!!
.

Anyway, the denominator and the numerator are not yet
known to exist in general in spite of the known existence of the
ratio L(T, S). Because of this, we need to use h(T) as a
replacement of Lp(ad(f)).

THEOREM 2. (R. Greenberg and J. Tilouine). Write
hL(T, S) 5 SF(T, S). We have

F~0, 0! 5 h~0!
da
dT

~0! up to units in 2.

We know that daydT (0) Þ 0 by the theorem of St. Etienne (18)
due to four people at St. Etienne in France. Thus if one can
prove the divisibility FuC in 2[[T, S]], the following conjecture
follows.

MAIN CONJECTURE. We have F 5 C up to a unit in 2[[T,
S]]. Actually this conjecture is close to being proven, assuming
the following ordinarity conjecture on the local structure of
Weissauer’s Galois representations, as discussed in the lectures of
E. Urban at the Mehta Research Institute (Allahabad, India). Let
us explain Urban’s strategy. First of all, there is a theory of (nearly)
p-ordinary 2[[T, S]]-adic forms on GSp(4), developed mainly
by Tilouine and Urban (19, 20). A cohomological Hecke
eigenform f on GSp(4)yQ is called nearly p-ordinary if its
eigenvalues for two standard Hecke operators at p are p-adic
units under the fixed embedding Q̄ into Q̄p. Here the word
cohomological means that the system of Hecke eigenvalues for
f appears in the middle cohomology H3 with coefficients in a
polynomial representation L of a Siegel modular variety for
GL(4)yQ. In other words, f belongs to a discrete series repre-
sentation whose Harish–Chandra parameter is the sum of the

highest weight of L and the half sum of positive roots. For each
cohomological eigenform f, Weissauer has attached a p-adic
modular Galois representation rf into GL(4) with character-
istic polynomials of Frobenii outside p given by the Hecke
polynomial (see ref. 21). Here is the ordinarity conjecture for
the Galois representation.

ORDINARITY CONJECTURE. Assume that f is nearly p-
ordinary. Then the image of the decomposition group at p of rf
is in a Borel subgroup of GSp(4). Weissauer’s construction
gave a compatible system of l-adic representations attached to
f, and rf is one of its members. When rf is crystalline, we have
two characteristic polynomials at p. One is that of the crystal-
line Frobenius Lcris(X), and the other, Let(X), is that of the
Frobenius at p of a non-p-adic member of the compatible
system. The p-ordinarity conjecture follows in this case if one
can prove Lcris(X) 5 Let(X), which is a standard conjecture and
is known to be true at least for constant sheaves (that is, so to
speak, the weight 0 case).

It is enough to prove the ordinarity conjecture for crystalline
rf for the following reason. We can glue Weissauer’s Galois
representations by means of Taylor’s pseudorepresentations
and attach to each 2[[T, S]]-adic eigen cusp form & a Galois
representation r& : G 3 GL4(FI) for the field of fractions FI

of a finite extension I of 2[[T, S]]. Thus at densely populated
points on Spec(I), r& specializes into Weissauer’s Galois
representations. Furthermore, r& has densely populated spe-
cializations on Spec(I) which are crystalline at p. Thus if one
can prove the p-ordinarity conjecture for crystalline special-
izations, the image under r& of each decomposition group at
p is in a Borel subgroup in GSp(4), and hence the ordinarity
conjecture for all specializations follows.

We now come back to the strategy for a proof of the Main
Conjecture. We look at the Klingen-style 2[[T, S]]-adic Eisen-
stein series % induced from the L-adic form ^. The Galois
representation r% attached to % has values in the standard
maximal parabolic subgroup, that is, it is of the following form:

r% > Sf
0

p
tf21 ^ ndet(f)D , GSp4~2@@T, S##!.

The constant term of % at the nonstandard parabolic subgroup
P is almost equal to ^ times h(T)L(T, S). Here we mean by
nonstandard the parabolic subgroup given by

P 5 51
p

p

p

0

0
p

0
0

p

p

p

0

p

p

p

p
2 [ GSp~4!6 .

Thus the Eisenstein ideal Eis giving congruence between % and
another 2[[T, S]]-adic cusp form & should be generated by
h(T)L(T, S). In particular, under the p-ordinarity conjecture,
Urban has shown for such Eisenstein primes P dividing F(T,
S), if & [ % mod P for a cusp form &, r& has values in GSp(4)
and is irreducible. It was a nontrivial task to prove this because
the representation is residually reducible. We also note that, to
prove this, we again need the result of Wiles (4) proving the
conjecture in ref. 11. The fact that r& has values in GSp(4) is
essential in the proof because it guarantees that the adjoint
action of r% on the unipotent radical of the standard maximal
parabolic subgroup is actually isomorphic to ad(f) R n21. The
extension of ndet(f) Rtf21 mod P by f mod P induced from
r& can be made nonsplit because of the irreducibility of r&. This
nontrivial extension gives rise to a nontrivial cocycle in
Sel(ad(f) R n21) under the Ordinarity Conjecture. This is a
GSp(4) version of an argument of Wiles in (22) applied to
GL(2). Since it is true for each height one prime P dividing Eis,
we conclude that the Eisenstein ideal Eis of % divides C,
assuming the Ordinarity Conjecture. To establish the divisi-
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bility FuEis, in other words, to establish the congruence & [
% mod Pe for PeuF, we need to have precise information on %
(not just its existence), for example, its Fourier coefficients, its
Whittaker model, and so on.

Although each author had already worked out some of their share
of the work presented here before they visited the Mehta Research
Institute of Mathematics and Mathematical Physics (MRI, Allahabad,
India) in January and February, 1996, the coordination in bringing all
the efforts into a general framework was done while they were visiting
Allahabad. We are grateful to Prof. Dipendra Prasad at MRI for giving
us the opportunity of working together and to the audience at MRI for
patiently listening to our lectures on the subject whose formulation was
not yet definite. H.H. acknowledges the support from the National
Science Foundation during the preparation of the paper.
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L-Functions for GL(n), Mémoires de Societe Mathematique de
France (French Math. Soc., Paris), Vol. 67.

17. Hida, H. (1990) Perspect. Math. 11, 93–142.
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The structure of Selmer groups
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ABSTRACT The purpose of this article is to describe
certain results and conjectures concerning the structure of
Galois cohomology groups and Selmer groups, especially for
abelian varieties. These results are analogues of a classical
theorem of Iwasawa. We formulate a very general version of
the Weak Leopoldt Conjecture. One consequence of this
conjecture is the nonexistence of proper L-submodules of
finite index in a certain Galois cohomology group. Under
certain hypotheses, one can prove the nonexistence of proper
L-submodules of finite index in Selmer groups. An example
shows that some hypotheses are needed.

The results that I will describe here are motivated by a
well-known theorem of Iwasawa. Let K be a finite extension of
Q. Let K`yK be the cyclotomic Zp-extension of K, where p is
any prime. Thus K` # K(mp`) and G 5 Gal(K`yK) > Zp, the
additive group of p-adic integers. We let L 5 Zp[[G]] be the
completed group algebra of G over Zp, which is isomorphic
(noncanonically) to the formal power series ring Zp[[T]]. Let
M` denote the maximal abelian pro-p extension of K` unrami-
fied outside S 5 {p, `}. Let L` denote the maximal abelian
pro-p extension of K` unramified at all primes of K`. Let X 5
Gal(M`yK`) and Y 5 Gal(L`yK`). In ref. 1, Iwasawa proves
the following important result.
THEOREM (Iwasawa):

(i) X and Y are finitely generated L-modules.
(ii) RankL(X) 5 r2, where r2 denotes the number of complex

primes of K.
(iii) Y is a torsion L-module.
(iv) X has no nonzero finite L-submodules.
We remark also that if K`yK is an arbitrary Zp-extension, (i)

and (iii) are true (due to Iwasawa). Statement (ii) should
conjecturally be true. It is often referred to as the ‘‘Weak
Leopoldt Conjecture’’ for K`yK and has the following inter-
pretation. Let Kn denote the unique subfield of K such that
KnyK is cyclic of degree pn. Let K̃n denote the compositum of
all Zp-extensions of Kn. Then it is known that

Gal~K̃nyKn! > Zp
r2 pn111dn,

where dn $ 0. Leopoldt’s Conjecture states that dn 5 0. The
Weak Leopoldt Conjecture states that dn is bounded as n 3
`, which is equivalent to the assertion that rankL(X) 5 r2. Also
if statement (ii) holds, then so does statement (iv). (See
proposition 4 of ref. 2.)

Returning to the cyclotomic Zp-extension K`yK, we can
restate Iwasawa’s theorem in terms of the Pontryagin duals

Hom~X, QpyZp!, Hom~Y, QpyZp!,

which are subgroups of H1(GK`
, QpyZp) 5 Hom(Gal(K`

aby
K`), QpyZp) defined by imposing certain local conditions.
They are examples of what have come to be called ‘‘Selmer

groups.’’ Iwasawa’s results then become: (i) Hom(X, QpyZp)
and Hom(Y, QpyZp) are cofinitely generated L-modules. (ii)
Hom(X, QpyZp) has L-corank r2. (iii) Hom(Y, QpyZp) is
L-cotorsion. (iv) Hom(X, QpyZp) has no proper L-
submodules of finite index.

Now consider an abelian variety A defined over K with good,
ordinary reductions at the primes of K lying over p. We denote
by SelA(K`)p the p-primary subgroup of the classical Selmer
group for A over K`. Over Kn, this Selmer group is defined as
follows.

SelA~Kn!p 5 ker~H1~GKn
, A@ p`#!3 %

y

Jy~Kn!!,

where Jy(Kn) 5 %
huy

(H1(Kn,h, A[ p`])yLh). Here A[ p`] de-

notes the p-power torsion points on A(K̄), y runs over all
primes of K, h over the primes of Kn lying over y, and Lh

denotes the image of the local Kummer homomorphism for A
over the h-adic completion Kn,h of Kn. We define Jy(K`) 5
Lim

n
3

Jy(Kn) (with obvious maps). Then SelA(K`)p 5

Lim
n
3 SelA(Kn)p can be defined by

SelA~K`!p 5 ker~H1~K`, A@ p`#!3 %
y

Jy~K`!!

5 ker~H1~KSyK`, A@ p`#!3 %
y[S

Jy~K`!!,

where S is a finite set of primes of K containing all primes of
K where A has bad reduction as well as all primes dividing p
or `. In the early 1970s, Mazur made the following conjecture,
where K`yK is assumed to be the cyclotomic Zp-extension.
CONJECTURE (Mazur): SelA(K`)p is L-cotorsion.

One can weaken the assumption that A has good, ordinary
reduction at all p dividing p. For each pup, let hp denote the
height of the formal group associated to the Neron model for
A over the integers in any finite extension of Kp where A
achieves semistable reduction. Let g 5 dim(A). Then Mazur’s
conjecture should be true if K`yK is the cyclotomic Zp-
extension and hp 5 g for all primes p of K lying over p. Using
results of ref. 3, one can show that SelA(K`)p has positive
L-corank if hp . g for at least one pup and for any Zp-extension
in which p is ramified. On the other hand, we should remark
that there may exist noncyclotomic Zp-extensions of K where
SelA(K`)p fails to be L-cotorsion even if A has good, ordinary
reduction at all pup. For example, this can occur if K` is the
anticyclotomic Zp-extension of an imaginary quadratic field K.
See ref. 4 for a discussion of this issue.

I now will describe various consequences if we assume that
K`yK is the cyclotomic Zp-extension, A has good, ordinary
reduction at all primes of K over p, and SelA(K`)p is L-co-
torsion.
Consequence 1: The L-corank of H1(KSyK`, A[ p`]) can be
determined. For i 5 0, 1, and 2, the L-modules Hi(KSyK`,
A[ p`]) are cofinitely generated and their coranks are related
by their Euler–Poincaré characteristic
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O
i50

2

~21!icorankL~H1~KSyK`, A@ p`#! 5 2@K:Q#dim~A!.

From this one gets the lower bound corankL(H1(KSyK`,
A[ p`])) $ [K : Q]dim(A), with equality if and only if H2(KSy
K`, A[ p`]) is L-cotorsion (since H0(KSyK`, A[ p`]) is obvi-
ously L-cotorsion). The calculation of the above global Euler–
Poincaré characteristic is a consequence of results of Poitou
and Tate for finite Galois modules over number fields. Using
their results over local fields one can prove the following fact:

CorankL~ %
y[S

Jy~K`!! 5 @K:Q#dim~A!.

The definition of the Selmer group and the assumption that
SelA(K`)p is L-cotorsion then imply that corankL(H1(KSyK`,
A[ p`])) 5 [K : Q]dim(A).
Consequence 2: The map g:H1(KSyK`, A[ p`]) 3Q

y[V
Jy(K`)

is surjective. It is clear by comparing the L-coranks that the
cokernel of this map will be L-cotorsion. The surjectivity is a
consequence of studying the behavior of the corresponding
cokernels over the Kn’s. One uses the known fact that A[ p`]GK`

is finite.
Consequence 3: In addition to the above assumptions, assume
that at least one of the following hold: (i) At(K) has no
p-torsion. (ii) For some y B p, A[ p`]Iy is finite. (iii) For some
pup, e(pyp) # p 2 2. Then SelA(K`)p has no proper L-
submodules of finite index.

The proof of this consequence is discussed in a much more
general context in ref. 5. In (ii), Iy denotes the inertia subgroup
of GKy

. If A is an elliptic curve, then (ii) is equivalent to A
having additive reduction at some y B p. In (iii), e(pyp) is the
ramification index; this assumption clearly holds if p . [K : Q]
1 1. Assumption (i) also holds if p is sufficiently large, at least
for a fixed A and K.

I want to add several remarks about these consequences.
Consequence 1 should be true more generally, without the
stringent assumptions made above. For any abelian variety
defined over K and for any Zp-extension K`yK, it is conjec-
turally true that H1(KSyK`, A[ p`]) has L-corank equal to [K :
Q]dim(A). This is equivalent to the assertion that H2(KSyK`,
A[ p`]) is L-cotorsion. I will state later a much more general
conjecture which will also include the Weak Leopoldt Con-
jecture stated earlier.

Concerning consequence 2, let V denote a finite set of
primes of K not dividing p or `. Define a ‘‘nonprimitive’’
Selmer group SelA

V(K`)p by

SelA
V~K`!p 5 ker~H1~K`, A@ p`#!3 %

y¹V

Jy~K`!!.

Thus SelA(K`)p # SelA
V(K`)p. Choose a finite set S as before,

but also containing V. The surjectivity of g gives an isomor-
phism

SelA
V~K`!pySelA~K`!p > %

y[V

Jy~K`!.

This isomorphism has an interesting interpretation in connec-
tion with Mazur’s ‘‘Main Conjecture’’ which asserts that the
characteristic ideal of the L-module SelA(K`)p

` is generated by
a certain element uA [ L associated to the p-adic L-function
for A over K. The existence of this p-adic L-function is known
only under very restrictive hypotheses, e.g., if K 5 Q and A is
a modular elliptic curve. But if it exists, then it is easy to
construct a ‘‘nonprimitive’’ analogue with an interpolation
property involving values of the Hasse–Weil L-function for A
with the Euler factors for primes in V omitted. One could then
define an element uA

V [ L. It turns out that uA
V 5 3VzuA, where

3V generates the characteristic ideal of Q
y[V

Jy(K`)`. Thus the

main conjecture is equivalent to a nonprimitive analogue
asserting that the characteristic ideal of SelA

V(K`)p
` is gener-

ated by uA
V.

Concerning consequence 3, some restrictive hypotheses are
necessary. Here is an example to show that. Let K 5 Q(m5) and
p 5 5. Let E be the elliptic curveyQ of conductor 11 such that
E(Q) is trivial. (The other two elliptic curves of conductor 11
are isogenous to E and contain a Q-rational point of order 5.)
Now K` 5 Q(m5`) and Gal(K`yQ) > D 3 G, where D 5
Gal(KyQ). Let v denote the Teichmuller character of D. Then
we can decompose SelA(K`)p by the action of D:

SelA~K`!p 5 %
i50

3

SelA~K`!p
vi.

One can determine the structure as a L-module of each factor.
The result is that the Pontryagin dual of SelA(K`)p

vi
is isomor-

phic to: Ly52L if i 5 0, 0 if i 5 1, the maximal ideal M # Ly52L
(which has index 5) if i 5 2, and Zy5Z if i 5 3. Thus SelA(K`)p
has a L-submodule of index p 5 5, the kernel of projecting to
the v3 factor.

It is interesting to note that Iwasawa’s m-invariant for
SelA(K`)p is nonzero in the above example. Mazur first gave
such examples in ref. 6, e.g. X0(11) for p 5 5, K 5 Q in which
case he showed that m 5 1. The behavior of the m-invariant
under isogenies has been studied by Schneider (7) [and in a
more general context by Perrin-Riou (8)]. Using their results,
the following conjecture would predict the value of m. Con-
jecture: m can be made zero by isogeny. For X0(11) and for K 5
Q, p 5 5, the isogenous elliptic curve E 5 X0(11)ym5 will have
SelA(K`)p 5 0.

We will now formulate a general version of the Weak
Leopoldt Conjecture, which gives a prediction of the L-corank
of H2(KSyK`, M) and, as a consequence, H1(KSyK`, M) for a
very general Gal(KSyK)-module M. The previously stated
version is the special case M 5 QpyZp, on which Gal(KSyK)
acts trivially (and S 5 the set of primes of K lying over p or `).
Various generalizations and special cases have been consid-
ered by Schneider (7), Greenberg (9), Coates and McConnell
(10), and Perrin-Riou (11). The form we will give here is
inspired by the thesis of McConnell. Let V be a finite dimen-
sional Qp-representation space for Gal(KSyK), where S is a
finite set of primes of K containing the primes over p and `.
Let T be a Galois-invariant Zp-lattice in V. Let d 5 dimQp

(V),
dy

6 5 dimQp
(V6) for the real primes of K, where V6 denotes

the (61)-eigenspaces for a complex conjugation above y. Let
M 5 VyT. Let K`yK be any Zp-extension. It is known that both
H1(KSyK`,, M) and H2(KSyK`, M) are cofinitely generated
L-modules (where L 5 Zp[[G]], G 5 Gal(K`yK)) and that

corankL~H1~KSyK`, M!! 5 corankL~H2~KSyK`, M!! 1 d,

where d 5 r2d 1 ¥y real dy
2. (See ref. 9, proposition 3. The

Euler–Poincaré characteristic for M over K` is 2d.) For any
prime y of K, we let Hy

2(K`, M) 5 Lim
n
3 (Q

huy
H2(Kn,h, M)),

where for each n, h runs over the primes of Kn lying over y. One
can prove the following result.
PROPOSITION. The natural map H2(KSyK` , M) 3
Q
y[S

Hy
2(K`, M) is surjective. The kernel is L-cofree.

Our version of the Weak Leopoldt Conjecture is the fol-
lowing.
CONJECTURE. The map H2(KSyK`, M) 3Q

y[S
Hy

2(K`, M) is an
isomorphism.

One can show that if y does not split completely in K`yK,
then Hy

2(K`, M) 5 0. However, primes can split completely in
a Zp-extension K`yK. For example, the archimedean primes of
K will split completely. If K is an imaginary quadratic field,
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then every nonarchimedean prime y of K not dividing p will
split completely in one Zp-extension of K. [This is obvious
because Gal(K̃yK) > Zp

2 and the decomposition subgroup for
y is isomorphic to Zp.] If y is inert in KyQ, then y splits
completely in the anticyclotomic Zp-extension of K. It is
conjectured that for any other Zp-extension of K at most one
prime of K can split completely. (One can prove that at most
two can.)

I discuss several special cases. First assume that K`yK is the
cyclotomic Zp-extension. Then the above conjecture states that

H2~KSyK`,M! > %
yu`

Hy
2~K`, M!,

because nonarchimedean primes of K cannot split completely
in K`yK. If p is odd, then Hy

2(K`, M) 5 0 for yu` and hence
conjecturally H2(KSyK`, M) 5 0. If p 5 2, then Hy

2(K`, M) can
be nontrivial. It is (Ly2L)-cofree and its (Ly2L)-corank equals
dimZy2Z(M(Ky)yM(Ky)div), where M(Ky) 5 H0(Ky, M). In the
special case where M 5 A[ p`], where A is an abelian vari-
etyyK, M(Ky)yM(Ky)div > A(Ky)yA(Ky)con, the group of con-
nected components. This can be nontrivial if Ky > R.

Let K`yK be any Zp-extension. Consider M 5 QpyZp and S
5 {p, `}. Then Hy

2(K`, M) 5 0 for all y. Also,

H1~KSyK`, M! 5 Hom~X, QpyZp!,

where X 5 Gal(M`yK`), M` denoting as before the maximal
abelian pro-p extension of K` unramified outside S. In this
case, d 5 r2 and the above conjecture states that H1(KSyK`,
M) should have L-corank r2—i.e., rankL(X) should equal r2.
This is the Weak Leopoldt Conjecture for the Zp-extension
K`yK, as stated earlier.

Let K`yK be any Zp-extension. Consider M 5 mp` 5
Qp(1)yZp(1). Let S be a finite set containing all primes over
p and `. Then it is not difficult to prove the Weak Leopoldt
Conjecture for M and K`yK. (This proof is given in ref. 5.) In
this case Hy

2(K`, M) has positive L-corank if y is a non-
archimedean prime which splits completely in K`yK. Thus
H2(KSyK, M) can have positive L-corank.

Let M 5 A[ p`]. Then Hy
2(K`, M) 5 0 for all nonarchime-

dean y (and for any Zp-extension K`yK). The Weak Leopoldt
Conjecture states that H2(KSyK`, M) 5 0 if p is any odd prime.
There are some known cases. For example, if A is an elliptic
curveyQ, K`yK is the cyclotomic Zp-extension, and KyQ is
abelian, then the conjecture is settled if A has complex
multiplication and good, ordinary reduction at p [Rubin (12),
where he proves Mazur’s conjecture in this case], if A has
complex multiplication and good, supersingular reduction at p
(McConnell), and, more generally if E is modular and has good
reduction at p (Kato). All of these results use a nonvanishing
theorem of Rohrlich for the Hasse–Weil L-function.

Let R2(K`,S, M)5ker(H2(KSyK`, M)3Q
y[S

Hy
2(K`, M)).

The Weak Leopoldt Conjecture for M and K`yK then asserts
that R2(K`, S, M) 5 0. We want to state an equivalent version
(inspired by McConnell). Let V* 5 HomQp

(V, Qp(1)) and T*
5 HomZp

(T, Zp(1)). Let M* 5 V*yT*. Define

R1~K`, S, M*! 5 ker~H1~KSyK`, M*!3 %
y[S

Hy
1~K`, M*!!.

Then, as a consequence of Tate’s global duality theorem, one
can show that R2(K`, S, M) and R1(K`, S, M*) have the same
L-corank. The Weak Leopoldt Conjecture then asserts that
R1(K`, S, M*) is L-cotorsion.

Let F` denote the fixed field for the kernel of the action of
GK`

on M*. Let H 5 Gal(F`yK`). Thus the action of GK`
on

M* factors through H. Let LF`
denote the maximal abelian

pro-p extension of F`, which is unramified at all primes of F`.
Then G 5 Gal(F`yK) acts on YF`

5 Gal(LF`
yF`). Here G is

a p-adic Lie group, H is a closed subgroup, and one has an exact
sequence 1 3 H 3 G 3 G 3 1. One also has the restriction
map

R1~K`, S, M*!3
r

HomH~YF`
, M*!.

The kernel of r is a subgroup of H1(H, M*), which is
L-cotorsion. We assume now that K`yK is the cyclotomic
Zp-extension. Then the cokernel of r is also L-cotorsion. Thus
the Weak Leopoldt Conjecture would then be equivalent to
asserting that HomH(YF`

, M*) is L-cotorsion. A theorem of
Harris (13) states that YF`

is a torsion-module over Zp[[G0]] in
a certain sense, where G0 is a suitable open subgroup of G. If
we replace K by a finite extension contained in F` (so that GK
acts trivially on M*[ p]), then H is a pro-p group. Assume that
m(K`yK) 5 0, which of course is a well-known conjecture of
Iwasawa. This means that YK`

5 Gal(LK`
yK`) is a finitely

generated Zp-module, where LK`
is the maximal abelian pro-p

extension of K` unramified everywhere (denoted by L` ear-
lier). By studying the map YF`

yIHYF`
3 YK`

, where IH is the
augmentation ideal of Zp[[H]], and by using a version of
Nakayama’s lemma, one finds that YF`

must be a finitely
generated Zp[[H]]-module. But the Weak Leopoldt Conjec-
ture for M (and for the cyclotomic Zp-extension K`yK) would
then follow because HomH(YF`

, M*) would consequently be
cofinitely generated as a Zp-module and therefore L-co-
torsion.

Continuing to assume that K`yK is the cyclotomic Zp-
extension, let M*(t) denote the tth Tate twist, where t [ Z.
Assume that mp # K (or m4 # K if p 5 2). Then another
equivalent form of the Weak Leopoldt Conjecture for M and
K`yK is the following statement: R1(K, S, M*(t)) is finite for
all but finitely many t [ Z. Here

R1~K, S, M*~t!! 5 ker~H1~KSyK, M*~t!!3 %
y[S

H1~Ky, M*~t!!!,

which has finite Zp-corank for all t. This formulation illustrates
the ‘‘Deformation’’ point of view since M*(t) 5 V*(t)yT*(t)
and T*(t), t [ Z, are specializations of a representation
Gal(KSyK) 3 GLd(L), which is a deformation of T* (the
‘‘cyclotomic’’ deformation as defined in ref. 14).

The Weak Leopoldt Conjecture for M and for an arbitrary
Zp-extension K`yK has two consequences, which are analogues
of parts of Iwasawa’s theorem stated earlier. The first is the
obvious consequence that one could then determine the
L-corank of H2(KSyK`, M) and hence of H1(KSyK`, M), in
terms of the Euler–Poincaré characteristic d for M and the
Zp-corank of the local Galois cohomology groups H2(Ky, M)
for those y [ S which split completely in K`yK. The second
consequence is the following result.
PROPOSITION: Assume that the Weak Leopoldt Conjecture holds
for M and K`yK. Then H1(KSyK`, M) has no proper L-
submodule of finite index.

I would like to now discuss briefly Selmer groups associated
to modular forms. To illustrate, consider D 5 ¥n51

` t(n)qn,
where t is Ramanujan’s tau-function. We let V denote Vp(D),
the p-adic representation associated to D. Let M 5 VyT, where
T 5 Tp(D) is a GQ-invariant Zp-lattice. Let S 5 {p, `}.
Assume p is odd. Then the Selmer group for M over the
cyclotomic Zp-extension of Q has the following definition.

SM~Q`! 5 ker~H1~QSyQ`, M!3 H1~Qp,`, M!yLp!,

where Lp 5 Hf
1(Qp,`, M) 5 Lim

n
3 Hf

1(Qp,n, M). Here Qp,`

5 ønQp,n is the cyclotomic Zp-extension of Qp, Qp,n is the nth
layer. For any finite extension FyQp, Hf

1(F, M) denotes the
image in H1(F, M) of Hf

1(Fy, V ), the Qp-subspace of H1(Fy, V )
defined by Bloch and Kato. In the so-called ordinary case
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[which means p B t(p)], one can describe Lp as follows. It is
known that there exists a one-dimensional Qp-subspace W
of V which is GQp

-invariant and such that VyW is unramified
for the action of GQp

. Let N denote the image of W under the
map V 3 M. Then it turns out that

Lp 5 Hf
1~Qp,`, M! 5 Im~H1~Qp,`, N!3 H1~Qp,`, M!!.

In contrast, if put(p), then it seems likely that Hf
1(Qp,`, M) 5

H1(Qp,`, M). Then it would follow that SM(Q`) 5 H1(QSyQ`,
M). This has been proven by Perrin-Riou if pit(p).

If p B t(p), then SM(Q`) is L-cotorsion (proved by Kato).
We consider two ordinary primes: p 5 11, p 5 23. In ref. 15,
I have calculated the structure of SM(Q`) for these primes
(even as a L-module for p 5 11). As groups, SM(Q`) > QpyZp
in both cases. The idea behind the calculation is to use certain
congruences between modular forms: D [ fE(mod 11), where
fE is the modular form of weight 2 associated to X0(11), and
D [ fr(mod 23), where fr is the weight 1 modular form
associated to a certain dihedral two-dimensional Artin char-
acter. One can use an easily verified fact that SM(Q`)[ p]5
SM[p](Q`), where one defines the Selmer group for the finite
Galois module M[ p] in a way analogous to the definition of
SM(Q`), using the subgroup N[ p] of M[ p]. (One needs mild
hypotheses on M to verify this fact.) One can calculate the
Selmer group over Q` for Vp(X0(11)) and for Vp(r) (modulo
Zp-lattices). This allows one to show that in both cases
SM(Q`)has order p. One concludes that SM(Q`) > QpyZp by

using the result that SM(Q`) has no proper L-submodule of
finite index [and hence SM(Q`) cannot be finite]. A very
general result of this nature is proved in ref. 9 under rather
restrictive hypotheses, and much more generally in ref. 5.
However, as indicated earlier, there are cases where such a
result fails to be true.

This work was partially supported by a National Science Foundation
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On the coefficients of the characteristic series of the U-operator
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ABSTRACT A conceptual proof is given of the fact that
the coefficients of the characteristic series of the U-operator
acting on families of overconvegent modular forms lie in the
Iwasawa algebra.

Introduction

In this document, I attempt to ‘‘explain’’ why the formula for
the characteristic power series for the U-operator acting on
families of completely continuous p-adic modular forms (see
section B4 of ref. 2) looks the way it does. In other words, I give
a conceptual proof of the part of theorem B6.1, when p is odd,
which is evident from the explicit formulas (see appendix I of
ref. 1) and which asserts that the coefficients of this series lie
in the Iwasawa algebra L 5 Zp@@Z*p##. I also prove that this
series analytically continues to a larger space. This was asserted
by this theorem and is not evident from the formulas (I have
not proven this assertion when p 5 2). I use the operator called
U in section B4 of ref. 1, which is the Up-operator on weight 0
overconvergent forms twisted by a family of Eisenstein series
E (see section 1 below). The key point is that the q-expansion
coefficients of E lie in L , L. This is enough to prove that the
function Ep whose q-expansion is E(q)yE(qp) lies in LR̂A0(Z)
where Z is the connected component of the ordinary locus
containing the cusp ` in X1(q) [a sort of affinoid q-expansion
principle (see Theorem 2.1 below)]. The operator U acts on
LR̂A0(ZN) and if it were completely continuous that would
basically do it, but it’s not. I am forced into some technicalities
to get around this difficulty in sections 3 and 4. I complete the
proof in section 5, and in section 6, I prove theorem B6.2 of ref.
1, when p is odd, which asserts that this characteristic series
‘‘controls’’ forms of higher level.

Some notation: Fix a prime p. Let q 5 4 if p 5 2 and p
otherwise. Let L 5 Zp[[1 1 qZp]].

If X is a rigid analytic space and Y is a reduced affinoid with
good reduction, let YX 5 Y 3 X and A†(YXyX) denote the ring
of overconvergent rigid analytic functions on YX over X (see
section A5 of ref. 1). If @ is the rigid space of continuous
characters on 1 1 qZp with values in C*p, it is conformal over
Qp to the open unit disk. I can and do think of L as rigid
functions on @ defined over Qp bounded by 1. If Y is the
affinoid unit disk with parameter T, let A0(X)[T]† denote
A†(Yx) ù A0(Yx). Identifying @ with the open unit disk, we may
regard L as Zp[[S]]. Then, for each 0 , t , 1 and (n

` bnSn [
L, set

U O
n50

`

bnSnU t 5 Maxn$ubnutn%.

If t [ uCpu, this is the norm obtained upon mapping an element
of L into A0(B[t]) and then taking the supremum norm of its
image. Then, if t # s , 1, log t(s) . 0 and one can easily check

u f ut # u f us # u f ut
log t~s!.

Let I be the maximal ideal in L. Suppose t , 1, then f [ In

implies

u f ut # Max$upun,tn%,

and if n # Min{log t(ufut), 2 logp(ufut)}, f [ In.
We deduce:
PROPOSITION 1.1. All the norms u ut, for 0 , t , 1, are equiv-

alent and induce the I-adic topology on L.
COROLLARY 1.1.1. The image of L in A0(B) is closed.
I define L[X]† to be the subring of L[[X]] consisting of

elements of the form

O
n50

`

ln X n

for which there exists an a . 0 in R such that ln [ I[an] for large
n. Then, f(X) [ L[X]† if and only if the image of f(X) in
A0(B[t])[[X]] lies in A0(B[t])[X]† for some t , 1 if and only if
the image of f(X) in A0(B[t])[[X]] lies in A0(B[t])[X]† for all t ,
1. Thus

LEMMA 1.2. A†(B[1]@y@)0 > L[X]†.

2. A q-Expansion Principle

In this section, I will prove:
THEOREM 2.1 (q-expansion principle). Suppose, t [ uCpu and

0 , t , 1. Then, if G [ A†(ZB[t]yB[t]) and G(q) [ L[[q]], G
uniquely analytically continues to an element of A† (Z@y@)0.

LEMMA 2.2. There exists a finite morphism f from Z† onto
B[1]† such that f21(0) 5 ` and, f is separated.

Proof: Let Z be the reduction of Z and D be the divisor of
degree zero on Z, s[`] 2 (i51

s [ei], where {e1, . . . , es} is the set
of points at ` (the supersingular points) on Z. Then mD is
principal for some positive integer m. Suppose m is minimal.
If f is a function on the completion of Z with divisor D, f:Z3
B[1] is a finite separated morphism such that f21(0) 5 `. We
may now apply theorem A-1 of ref. 2 with A 5 Zp, B 5
A0(B[1]†), C 5 A0(Z†) and D 5 Zp[X]yXm, thought of as the
ring of the closed subscheme m` of Z†, to conclude there is
a lifting of f to an overconvergent function f on Z which gives
a finite morphism of degree s from Z† onto B[1]† with the
property f21(0) 5 `. ■

Proof of the q-expansion principle:
Let G be as in the statement of the theorem. Let f be as in

the lemma. Suppose f has degree d. Let Trf denote the trace
map from A(Z†) to A(B[1]†). Let X be the standard parameter
on A1. Regarding q as a parameter at `, the fact that f is totally
ramified above 0 implies that Trf extends naturally to a map
from Zp[[q]] to Zp[[X]]. Hence, we may write

© 1997 by The National Academy of Sciences 0027-8424y97y9411129-4$2.00y0
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Trf ~qn! 5 O
m$0

an,mXm,

where an,m [ Zp. In fact, an,m 5 0 for m , nyd. For r [ A0(Z†),
we may write

rG~q! 5 O
n

lnqn,

where ln [ L. Now f extends to a finite morphism from
(ZB[t]yB[t])† to (B[1]B[t]yB[t])† and we extend Trf according-
ly. Then,

Trf~rG! 5 O
n

ln O
m

an,mXm

5 O
m
S O

n
an,mlnDXm.

We know, by the above, that, for each m, the coefficient of Xm

is a finite sum so lies in L. We also know Trf(rG) [ A†(B[1]B[t]y
B[t]). Since this is true for all r [ A0(Z†) we conclude DG [
A†(Z@y@) where D generates the discriminant ideal in Zp[X]†
of A0(Z†)yZp[X]†). Since f is separated, p õD. The principle
will follow from:

LEMMA 2.3. Let t [ uCpu ù (0, 1). Suppose a(X) [ A0(B)[X]†
and there exists a D(X) [ Zp[X]† such that p õD(X) and
D(X)a(X) [ L[X]†, then a(X) [ L[X]†.

Proof: Let A 5 A0(B[t]). Suppose

D~X!a~X! 5 O
n$0

lnXn,

where ln [ L and ulnut # dn for some d , 1 and large n. Let
d be the degree of the reduction of D(X) modulo p which is
defined because D Þ 0. Using the division algorithm, we may
write Xn 5 D(X)hn(X) 1 rn(X) where rn(X) is either 0 or a
polynomial over Zp of degree strictly less than d and hn(X) [
Zp[X]†. [We first know we can do this with hn(X) [ Zp^X&. Then
the equation Xn 2 rn(X) 5 D(X)hn(X) implies hn(X) [ Zp[X]†.]
It follows that,

D~X!a~X! 5 D~X! O
n

lnhn~X! 1 O
n

lnrn~X!.

Since ulnut # dn for large n, we conclude both sums converge
in A[X]†. The second sum must be 0 since it has degree strictly
less than d. Since A[X]† is an integral domain, we conclude

a~X! 5 O
n

lnhn~X!.

The lemma follows from the fact that L is closed in A by
Corollary 1.1.1. ■

Now suppose b1, . . . , bd is a basis for A0(Z†) over Zp[X]†. We
may write, uniquely,

G 5 a1~X!b1 1 a2~X!b2 1 · · · 1 ad~X!bd ,

where ai(X) [ A0(B[t])[X]†. Then I apply the lemma to a(X) 5
ai(X) and deduce the theorem. ■

Let E(q) denote the element of L[[q]]* such that k(E[q]) 5
Ek(q). Recall, for t , upu, I proved in corollary B4.1.2 of ref.
1, there exists a rigid analytic function F0 on ZB[t], overcon-
vergent relative to B[t], such that F0(k, q) 5 Ek(q)yEk(qp) for
k [ B[t]. I deduce,

COROLLARY 2.1.1. There is an element Ep [ A†(Z@y@)
bounded by 1 on Z@ whose q-expansion is E(q)yE(qp).

3. Continuous Versus Completely Continuous Operators

Suppose L is a complete subring of A, P and N are Banach
modules over A and L, respectively, and i:P

(
3 NR̂LA is a

continuous injective homomorphism.

PROPOSITION 3.1. Suppose u is a continuous linear operator on
N such that u R 1 preserves i(P) and i21ui 5 uP is a completely
continuous operator on P. Then, if there exists an orthonormal
basis B :5 {bi}i[I for N over L and a map r:B 3 A* such that
B* 5 {r(b)b R 1:b [ B} is contained in i(P) and i21(B*) is
an orthonormal basis for P, det(1 2 TuP) [ L[[T]].

Proof: For b [ B, let b* 5 r(b)b R 1 and for a subset S of
I, let ps:P3 P be the projector onto the subspace Ps spanned
by {b*i:i [ S} as defined in lemma A1.6 of ref. 1. Then by
theorem A2.1 and lemma A1.6 of ref. 1,

det~1 2 TuP! 5 lim
S

det~1 2 T~pS+uP!uPS!,

as S ranges over finite subsets of I. Now since det(1 2 T(pS +
uP)uPS) is independent of the choice of basis of PS over A and
its matrix with respect to the basis {b*iyr(bi):i [ S} has entries
in L, we see that det(1 2 T(pS + uP)uPS) [ L[T]. Since L is a
complete subring of A, the proposition follows. ■

We will be able to apply this to the operator U because,
LEMMA 3.2. Suppose X is a minimal underlying affinoid of a

basic wide open W. Then there exists an orthonormal basis B of
A(X) and an underlying affinoid Y of W such that Y strictly
contains X and there exists a map r from B to K* such that
{r(e)e:e [ B} is an orthonormal basis of A(Y).

(Compare proposition 1 of ref. 3.)
This will be an immediate consequence of Corollary 4.2.1,

which is a more precise version.

4. Orthonormal Bases of Wide Open Neighborhoods

Let K be a finite extension of Qp contained in Cp, R the ring of
integers of K, and F the residue field of R. Below, the symbol r will
always refer to an element of uCpu. Note, however, that for any
given r one might have to replace K by a finite extension so that
r [ uKu. Suppose that G is a finite Abelian group of order prime
to p such that the uGu-th roots of unity are contained in K.

Suppose W is a basic wide open defined over K with minimal
underlying affinoid X such that W 2 X has s connected
components U1, . . . , Us (see ref. 4). Suppose in addition that
G acts faithfully on W and preserves X. For 1 # i # s and s [
G let 1 # s(i) # s be such that s(Ui) 5 Us(i). Let zi:Ui3 B(0,
1)\{0} be a uniformizing parameter such that the subset of Ui
where uziu $ r is nonempty and connected to X for any r , 1.
Suppose in addition that there exist c(s, i) [ R such that s*
zi 5 c(s, i)zs(i) (this we can arrange by using appropriate
projectors like Eq. 1 below corresponding to the fixers in G of
elements 1 # i [ s). It follows that c(s, i) [ R*. For r # 1, let
Xr 5 W 2 ø{x [ Ui:uzi(x)u , r}. Then for r close to 1, r , 1,
Xr is an underlying affinoid of W which is a strict neighborhood
of X and is preserved by G.

The affine X has s points at `, P1, . . . , Ps corresponding to
the Ui and is acted on faithfully by G [since (uGu, p) 5 1]. For
f [ F(X), f Þ 0 let

M~f! 5 2Max$uPi
~f!%.

Let m( f ) 5 {i: 2 vPi
( f ) 5 M( f )}. Let Ti be a parameter at Pi,

which lifts to zi and for i [ m( f ), let ci( f ) [ F be such that

vPi
~f 2 ci~f!Ti

2M~f!! . 2M~f!.

Let A be the ring F[y1, y2, . . . , ys]y{yiyj:i Þ j} and let G act on
A so that

s*yi 5 c~s,i!ys~i! for s [ G.

Also let l( f ) be the element of A,

O
i[m~f!

ci~f!yi
M~f! .
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It follows that deg(l( f )) 5 M( f ) and l(s* f )) 5 s*l( f ). Let
B be the subring of A generated by l( f ) where f ranges over
2x(X), f Þ 0. Then by Riemann–Roch B . I :5 Qyi

N A for some
positive integer N. Moreover, ByI is finite dimensional over F
and is acted on by G. Let H be a basis of ByI each element of
which is an eigenvector for the action of G. Then the set

T 5 H ø $yi
nN1j:1 # i # s,0 # j , N,n $ 0%,

is a basis of B. Let t be a map from T to F(X), such that l(t(a))
5 a, s*t(h) 5 et(h) if h [ H and s*h 5 eh and

t~yi
nN1j! 5 H t~yi

N!n if j 5 0
t~yi

N!n21t~yi
N1j! if 0 , j , N.

Then {t(a):a [ T} is a basis for F(X). For « [ H om(G, R*), let

p« 5
1

uGu O
s[G

«21~s!s [ R@G#. [1]

Note that if a [ T, p«a 5 0 or deg(p«a) 5 deg(a). It follows
that if p«(a) Þ 0,

M~p« t~a!! 5 M~t~a!!. [2]

Now, let fi 5 t(yi
N), gij 5 t(yi

N1j) and kl, 1 # l # m, be elements
in F[{ah, bi, cj k}h[H,1#i,j#s,0,k,N] which generate the ideal
consisting of f such that

f~t~h!, fi,gjk! 5 0.

Let Kl be a lifting of kl to R[{ah, bi, cij}h[H,1#i,j#s,0,k,N]. Then
the equations

Kl~ah,bi,cjk! 5 0,

determine an affine scheme x which lifts X and so there is an
isomorphism from X† to its weak completion such that the
pullbacks of ah, bi, and cij are liftings of t(h), t(yi

N) and t(yi
N1j).

For u [ T call the lifting of t(u) in X† made by taking the
appropriate product of these pullbacks t̃(u). Let V 5 {t̃(u):u [
H or u 5 f i

N1j, 1 # i # s, 0 # j , N}. Let Uir 5 Ui ù Xr.
LEMMA 4.1. If r is close enough to 1, r , 1, and J [ V,

rM(J)uJuUir equals 1 if i [ m(J) and is strictly less than 1
otherwise. Moreover, if i [ m(J),

urM~J!J 2 ci~J!~ryzi!
M~J!uUir , 1.

It follows that if r is close to 1 and J [ V that uJuXr 5 r2M(J#) and,
in particular, if uau 5 r,

A~Xr! > K^$aM~h!ah,aM~fi!bi,aM~gjk!cjk%&y~$Kl~ah,bi,cjk!%!.

PROPOSITION 4.2. For r close enough to 1, r # 1, the R-algebra
A0(Xr) is the completion of the subalgebra generated over R
by the elements {aM(J)J:J [ V} and if r , 1 its reduction, A(Xr)
is G-isomorphic to B.

Proof: This proposition is immediate when r 5 1 so suppose
r , 1. Let C be the above complete subalgebra. We know, for
r close to 1, C R Qp 5 A(Xr) so by lemma 3.11 of ref. 5 we only
have to prove: (i) for all f [ C, there exists a c [ R such that
fyc [ C 2 mC, (ii) A0(Xr) is integral over C and (iii) CymC is
reduced. Now, (i) follows after making a finite extension if
necessary, (ii) follows from proposition 6.3.4y1 of ref. 7, and
the above description of A(Xr) and finally, (iii) (as well as the
second part of the proposition) will follow, once we exhibit a
G-isomorphism CymC 3 B.

To see the latter, first note that elements in A0(Uir) may be
written in the form (2`

` anzi
n where an[R and uanurn 3 0 as

unu3 ` and so A(Uir) is isomorphic to F((zi)). If we map C in
to QiA0(Uir) and then reduce we get, after mapping the
reduction of zitoyi, a homomorphism

CymC3 % F~~yi!!.

Using the previous lemma, we see that for r close to 1, this
factors through a surjection onto B which is a G-homomor-
phism by construction.

Now we produce the inverse to this homomorphism. For J [
V, let Ja 5 aM(J)J. Consider the correspondence l(J) ° Ja mod
mC from V to V mod mC. It suffices to show that for r
sufficiently close to 1 this extends to an R-algebra homomor-
phism B 3 CymC. Let Ym be the subset of B consisting of
elements of the form )f [ V f n(f) such that (f[V n( f )M( f ) 5 m
and let Y 5 øm Ym. If z [ Ym we will say deg(z) 5 m. Then (
is generated by a finite set of relations of the form

O
y[Ym

ayl~y! 5 0.

(These relations may include single monomial relations.) For
each relation of this form, there must be a relation of the form

O
y[Ym

ayy 1 O
z[Y

deg~z!,m

bzz 5 0,

on F(X). If ãy and b̃y are liftings of the coefficients and ỹ and
z̃ are the liftings of the monomials y and z obtained by lifting
t(u) to t̃(u) for u [ T. Then, because x lifts X, there must be
a relation of the form

O
y[Ym

ãyỹ 1 O
z[Y

deg~z!,m

b̃zz̃ 5 ah,

where h is a polynomial in {v [ V} with coefficients in R and
a [ R, uau , 1. It follows that

O
y[Ym

Ayrmỹ 1 O
z[Y

deg~z!,m

r m2deg~z!Bmrdeg~z! z̃ 5 rmah.

Since rnũ for u [ Vn is a product of elements of the form Ja for
J [ V and rmah is in mC for r close to one, since h is a
polynomial, we see that for r close to 1 we have a homomor-
phism from B onto CymC which takes l(J) to Ja as desired.

For a character « [ Hom(G, R*) and an R module M on
which G acts, set M(«) 5 p«M.

COROLLARY 4.2.1. Let r be as in the proposition and suppose
uau 5 r. Then the set

$aM~u! t̃ ~u!: u [ T%,

is an orthonormal basis for A(Xr). Moreover, if « [ Hom(G, R*)
and S , T is such that {p«(s):s [ S} is a basis for B(«), then

$aM~s!p«~ t̃ ~s!!: s [ S%,

is an orthonormal basis for A(Xr)(«).

5. End of Proof

Fix a positive integer N prime to p. Let X be connected
component of the ordinary locus of X1(Nq) containing the cusp
` and U be the operator on A†(X@y@),

U~f! 5 U~0!~Ep f!,

where U(0) is the weight zero U-operator, which is an operator
on A(X)†. This is the analytic continuation of the operator with
the same name in remark B4.2 of ref. 1. We have a natural
action of (ZypZ)* on X1(Nq) via diamond operators. (Note
that this is intentionally trivial when p 5 2, unfortunately.)

Let D be a disk around zero contained in @ and Y a strict
affinoid neighborhood of X stable under the action of (ZypZ)*
such that Ep converges on YD. (This exists, by Corollary 2.1.1.)
Let «: (ZypZ)* 3 Z*p be a character. By Corollary 4.2.1 (and
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the properties of U(0)), we may suppose we have an orthonor-
mal basis B of A0(X)(«) over K0 (we allow K to be as large as
necessary and then eliminate this choice later) satisfies the
hypotheses of Proposition 3.1, with A 5 K, L 5 K0, N 5
A0(X)(«) and P 5 A(Y)(«). It follows that {1 R b:b [ B} is an
orthonormal basis for A0(XD)(«) over A0(D) which also satis-
fying these hypotheses with N 5 A0(XD)(«) and P 5 A(YD)(«).
We conclude from Proposition 3.1 that the characteristic series
of U acting on A(YD)(«), which is the series labeled P«(s, T) in
section B3 of ref. 1 when p Þ 2 and is the series labeled there
PN(s, T) when p 5 2, lies in AK

0 (D)[[T]]. Since this is true for
all D, we see that it lies in ACp

0 (@)[[T]]. However, we know, a
priori (using arguments as in the proof of theorem B3.2 of ref.
1, that it lies in Qp[[S, T]]. Hence,

THEOREM 5.1. (i) If p is odd the characteristic series of U
acting on A(X0)† over A(W), QN(T) (see lemma B3.7 of ref. 1),
lies in L[[T]] and converges on W 3 Cp. (ii) If p 5 2, the
characteristic series of U acting on A(X@)† over A(@), PN(s, T),
lies in L[[T]] and converges on @ 3 Cp.

In fact, if we were only worrying about modular forms on
G0(N) (i.e., without character), we could have used a Katz basis
(see section 2.6 of ref. 6). Indeed, suppose, for now, p $ 5. Let
{ba,1 . . . , ba,ni

} be a Zp basis for B(N, 0, a). Then we have an
orthonormal basis for A(Xr) 5 S(K, r, N, 0)

H r aba,i

Ep21
a :a $ 0,1 # i # niJ ,

for all r [ R, r Þ 0. This is good enough to apply the results
of section 3 in this case.

6. Higher Level

In this section, I prove theorem B6.2 of ref. 1 when p is odd.
That is, I prove,

THEOREM 6.1. Suppose p is odd. If k(x) 5 x(x)^^x&&k where k
is an integer, x:Z*p 3 C*p is a character of finite order and pn 5
LCM(p, fx), then k(QN)(T) is the characteristic series of the
U-operator acting on overconvergent modular forms of level N pn,
weight k, and character x.

Proof: The proof of this is very simple, given what we now
know. Let a be the character on Z*p, x ° k(^^x&&) and c 5 kya.
Then c 5 t i for some i. If M(N pn, k, x) denotes the Banach
space of overconvergent modular forms of level Npn, weight k
and character x (of some fixed yet to be determined radius),
then, the map

F ° FyEa ,

is an isomorphism from M(N pn, k, x) onto the Banach space
M(N p, 0, c) and thus the characteristic series of U on M(Npn,
k, x) is the characteristic series of the operator G ° U(0)
((Ea(q)yEa(qp))G) acting on M(N p, 0, c). Since a(Ep(q)) 5
Ea(q)yEa(qp), the theorem follows. ■
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Zeta functions and Eisenstein series on classical groups
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ABSTRACT We construct an Euler product from the
Hecke eigenvalues of an automorphic form on a classical
group and prove its analytic continuation to the whole com-
plex plane when the group is a unitary group over a CM field
and the eigenform is holomorphic. We also prove analytic
continuation of an Eisenstein series on another unitary group,
containing the group just mentioned defined with such an
eigenform. As an application of our methods, we prove an
explicit class number formula for a totally definite hermitian
form over a CM field.

Section 1. Given a reductive algebraic group G over an
algebraic number field, we denote by GA, Ga, and Gh its
adelization, the archimedean factor of GA, and the non-
archimedean factor of GA. We take an open subgroup D of GA
of the form D 5 D0Ga with a compact subgroup D0 such that
D0 ù Ga is maximal compact in Ga. Choosing a specific type
of representation of D0 ù Ga, we can define automorphic
forms on GA as usual. For simplicity we consider here the
forms invariant under D0 ù Gh. Each Hecke operator is given
by DtD, with t in a subset X of GA, which is a semigroup
containing D and the localizations of G for almost all non-
archimedean primes. Taking an automorphic form f such that
fuDtD 5 l(t)f with a complex number l(t) for every t [ X and
a Hecke ideal character x of F, we put

T~s, f, x! 5 O
t[D\XyD

l~t!x~n0~t!!N~n0~t!!2s, [1.1]

where n0(t) is the denominator ideal of t and N(n0(t)) is its
norm. Now our first main result is that if G is symplectic,
orthogonal, or unitary, then

L~s, x!T~s, f, x! 5 P
p

Wp[x(p)N~p)2s#21, [1.2]

where L(s, x) is an explicitly determined product of L-
functions depending on x, Wp is a polynomial determined for
each v [ h whose constant term is 1, and p runs over all the
prime ideals of the basic number field. This is a purely
algebraic result concerning only nonarchimedean primes.

Let Z(s, f, x) denote the right-hand side of Eq. 1.2. As our
second main result, we obtain a product G(s) of gamma factors
such that GZ can be continued to the whole s-plane as a
meromorphic function with finitely many poles, when G is a
unitary group of an arbitrary signature distribution over a CM
field, and f corresponds to holomorphic forms.

Now these problems are closely connected with the theory
of Eisenstein series E on a group G9 in which G is embedded.
To describe the series, let Z9 denote the symmetric space on
which G9 acts. Then the series as a function of (z, s) [ Z9 3
C can be given (in the classical style) in the form

E~z, s; f, x! 5 O
a[A

d~z, s, f, x!ia, A 5 ~P ù G!\G, [1.3]

where G is a congruence subgroup of G9, and P is a parabolic
subgroup of G9 which is a semidirect product of a unipotent
group and G 3 GLm with some m. The adelized version of d
will be explicitly described in Section 5. Now our third main
result is that there exists an explicit product G9 of gamma
factors and an explicit product L9 of L-functions such that
G9(s)L9(s)Z(s, f, x)E(z, s; f, x) can be continued to the whole
s-plane as a meromorphic function with finitely many poles.

Though the above results concern holomorphic forms, our
method is applicable to the unitary group of a totally definite
hermitian form over a CM field. In this case, we can give an
explicit class number formula for such a hermitian form, which
is the fourth main result of this paper.

Section 2. For an associative ring R with identity element, we
denote by R3 the group of all its invertible elements and by Rn

m

the R-module of all m 3 n matrices with entries in R. To
indicate that a union X 5 øi[I Yi is disjoint, we write X 5
ti[I Yi.

Let K be an associative ring with identity element and an
involution r. For a matrix x with entries in K, we put x* 5 txr,
and x̂ 5 (x*)21 if x is square and invertible. Given a finitely
generated left K-module V, we denote by GL(V) the group of
all K-linear automorphisms of V. We let GL(V) act on V on the
right; namely we denote by wa the image of w [ V under a [
GL(V). Given « 5 61, by an «-hermitian form on V, we
understand a biadditive map w:V 3 V 3 K such that w(x, y)r

5 «w(y, x) and w(ax, by) 5 aw(x, y)br for every a, b [ K.
Assuming that w is nondegenerate, we put

Gw 5 G~w! 5 G~V, w! 5 $g [ GL~V!uw~xg, yg! 5 w~x, y!%. [2.1]

Given (V, w) and (W, c), we can define an «-hermitian form
w Q c on V Q W by

~w % c!~x 1 y, x9 1 y9! 5 w~x, x9! 1 c~y, y9!

~x, x9 [ V; y, y9 [ W!. [2.2]

We then write (V Q W, w Q c) 5 (V, w) Q (W, c). If both w and
c are nondegenerate, we can view Gw 3 Gc as a subgroup of
GwQc. The element (a, b) of Gw 3 Gc viewed as an element of
GwQc will be denoted by a 3 b or by (a, b). Given a positive
integer r, we put Hr 5 I9r Q Ir, Ir 5 I9r 5 Kr

1 and

hr~x 1 u, y 1 v! 5 uztyr 1 «xztvr ~x, y [ I9r; u, v [ Ir!.
[2.3]

We shall always use Hr, I9r, Ir, and hr in this sense. We
understand that H0 5 {0} and h0 5 0.

Hereafter we fix V and a nondegenerate w on V, assuming
that K is a division ring whose characteristic is different from
2. Let J be a K-submodule of V which is totally w-isotropic, by
which we mean that w(J, J) 5 0. Then we can find a decom-
position (V, w) 5 (Z, z) Q (H, h) and an isomorphism f of (H,
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h) onto (Hr, hr) such that f(J) 5 Ir. In this setting, we define
the parabolic subgroup PJ

w of Gw relative to J by

PJ
w 5 $p [ GwuJp 5 J%, [2.4]

and define homomorphisms pz
w:PJ

w 3 Gz and lJ
w: PJ

w 3 GL(J)
such that za 2 zpz

w (a) [ J and wa 5 wlJ
w
(a) if z [ Z, w [ J,

and a [ PJ
w.

Taking a fixed nonnegative integer m, we put

~W, c! 5 ~V, w! % ~Hm, hm!, ~X, v! 5 ~W, c! % ~V, 2w!. [2.5]

We can naturally view Gc 3 Gw as a subgroup of Gv. Since W 5
V Q Hm, we can put X 5 V Q Hm Q V with the first summand
V in W, and write every element of X in the form (u, h, v) with
(u, h) [ V Q Hm 5 W and v [ V. Put

U 5 $~v, i , v!uv [ V, i [ Im%.

Observing that U is totally v-isotropic, we can define PU
v.

PROPOSITION 1. Let l(w) be the maximum dimension of totally
w-isotropic K-submodules of V. Then

PU
v\Gv/@Gc 3 Gw# [2.6]

has exactly l(w) orbits. Moreover,

PU
v@Gc 3 Gw# 5 t

b,j PU
v~~j 3 1H!b, 1V!, [2.7]

with j running over Gw and b over PI
cGc, where H 5 Hm and I 5

Im.
In fact, we can give an explicit set of representatives {te}e51

l(w)

for Eq. 2.6 and also an explicit set of representatives for
PU

v\PU
v

te[Gc 3 Gw] in the same manner as in Eq. 2.7. This
proposition plays an essential role in the analysis of our
Eisenstein series E(z, s; f, x).

Section 3. In this section, K is a locally compact field of
characteristic 0 with respect to a discrete valuation. Our aim is
to establish the Euler factor Wp of Eq. 1.2. We denote by r and
q the valuation ring and its maximal ideal; we put q 5 [r:q] and
uxu 5 q2n if x [ K and x [ pn r3 with n [ Z. We assume that
K has an automorphism r such that r2 5 1, and put F 5 {x [
K u xr 5 x}, g 5 F ù r, and d21 5 {x [ K u TrK/F (xr) , g} if
K Þ F. We consider (V, w) as in Section 2 with V 5 Kn

1 and w
defined by w(x, y) 5 xwy* for x, y [ V with a matrix w of the
form

w 5 F 0
0

d211r

0
u
0

«d2r1r

0
0

G , u 5 «u* [ GLt~K!, d [ K3,

[3.1]

where t 5 n 2 2r. We assume that u is anisotropic and also that

« 5 61 and d 5 2 if K 5 F, [3.2a]

« 5 1, dr5d, and dr 5 2d if K Þ F. [3.2b]

Thus our group Gw is orthogonal, symplectic, or unitary. The
element d of Eq. 3.2b can be obtained by putting d 5 u 2 ur

with u such that r 5 g[u]. We include the case rt 5 0 in our
discussion. If t 5 0, we simply ignore u; this is always so if K 5
F and « 5 21. We have w 5 u if r 5 0.

Denoting by {ei} the standard basis of Kn
1, we put

J 5 O
i51

r

Ker1t1i, T 5 O
i51

t

Ker1i,

M 5 O
i51

r

~rei 1 rer1t1i! 1 N, N 5 $u [ Tuw~u, u! [ g},

C 5 $g [ GwuMg 5 M%, E 5 GLr~r).

Then Gw 5 PJ
wC. We choose {er1i}i51

t so that N 5 (i51
t rer1i.

Then we can find an element l of rt
t such that

u 5 d21l 1 «~d21l!*. [3.3]

Put

S 5 Sr 5 $h [ Kr
ruh* 5 2«~dr/d!h%. [3.4]

We can write every element of PJ
w in the form

j 5 F a b c
0 e f
0 0 d

G , â 5 d [ GLr~K!, e [ Gu,

b [ K t
r, f 5 2deub*d, c 5 ~s 2 blb*!d, s [ S. [3.5]

If t 5 0, we simply ignore b, e, and f, so that j 5 Fa0 sd
d G ; we

have j 5 e if r 5 0.
We consider the Hecke algebra ℜ(E, GLr(K)) consisting of

all formal finite sums (cxExE with cx [ Q and x [ GLr(K), with
the law of multiplication defined as in ref. 1. Taking r inde-
terminates t1, . . . , tr, we define a Q-linear map

v0:ℜ~E, GLr~K!!3 Q@t1, . . . , tr, t1
21, . . . , tr

21# [3.6]

as follows; given ExE with x [ GLr(K), we can put ExE 5
ty Ey with upper triangular y whose diagonal entries are pe1,
. . . , per with ei [ Z. Then we put

v0~ExE! 5 O
y

v0~Ey!, v0~Ey! 5 P
i51

r

~q2iti!ei. [3.7]

Next we consider the Hecke algebra ℜ(C, Gw) consisting of
all formal finite sums (ctCtC with ct [ Q and t [ Gw. We then
define a Q-linear map

v:ℜ~C, Gw!3 Q@t1, . . . , tr, t1
21, t. . . , tr

21# [3.8]

as follows; given CtC with t [ Gw, we can put CtC 5 tj Cj
with j [ P of form Eq. 3.5. We then put

v~CtC! 5 O
j

v~Cj!, v~Cj! 5 v0~Edj!, [3.9]

where v0 is given by Eq. 3.6 and dj is the d-block in Eq. 3.5. We
can prove that this is well defined and gives a ring-injection.

Given x [ Kn
m, we denote by n0(x) the ideal of r which is the

inverse of the product of all the elementary divisor ideals of x
not contained in r; we put then n(x) 5 [r:n0(x)]. We call x
primitive if rank(x) 5 Min(m, n) and all the elementary divisor
ideals of x are r.

PROPOSITION 2. Given j as in Eq. 3.5, suppose that both e and
(du)21 (e 2 1) have coefficients in r if t . 0. Let a 5 g21 h with
primitive [g h] [ r2r

r and gb 5 j21 k with primitive [j k] [ rr1t
r .

Then

n0~~dw!21~j 2 1!! 5 det~ghj2!n0~jgsg*j*!,

where we take j 5 1r if t 5 0.
We now define a formal Dirichlet series T by

T~s! 5 O
t[A

v~CtC!n~t!2s, A 5 C\Gw/C. [3.10]

This is a formal version of the Euler factor of Eq. 1.2 at a fixed
nonarchimedean prime.

THEOREM 1. Suppose that dw [ GLn(r); put p 5 [g:g ù q].
(Thus p 5 q if K 5 F.) Then
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T~s! 5
1 2 p2s

1 2 pr2s P
i 5 1

r
~1 2 p2i22s!

~1 2 pr2sti!~1 2 pr2sti
21!

~K 5 F, « 5 21!,

T~s! 5 P
i51

r
~1 2 p2i2222s!

~1 2 pr1t222sti!~1 2 pr2sti
21!

~K 5 F, « 5 1!,

T~s! 5

P
i51

2r

~1 2 ui21pi2122s!

P
i51

r

~1 2 qr1t212sti!~1 2 qr2sti
21!

~K Þ F!.

Here ui 5 1 if i is even; when i is odd, ui is 21 or 0 according as
d 5 r or d Þ r.

This can be proved in the same manner as in ref. 2 by means
of Proposition 2.

Since we are going to take localizations of a global unitary
group, we have to consider Gw 5 G(V, w) of Eq. 2.1 with V 5
Kn

1, K 5 F 3 F, and r defined by (x, y)r 5 (y, x), where F is a
locally compact field of characteristic 0 with respect to a
discrete valuation. Let g and p be the valution ring of F and its
maximal ideal; put r 5 g 3 g and p 5 [g:p]. We consider ℜ(C,
Gw) with C 5 Gw ù GLn(r). Then the projection map pr of
GLn(K) onto GLn(F) gives an isomorphism h:ℜ(C, Gw) 3
ℜ(E1, GLn(F)), where E1 5 GLn(g). To be explicit, we have
h(C(x, tx21)C) 5 E1xE1. Let v1 denote the map of Eq. 3.6
defined with n, E1, and F in place of r, E, and K. Putting v 5
v1 + h, we obtain a ring-injection

v:ℜ~C, Gw!3Q@t1, . . . , tn, t1
21, . . . , tn

21#. [3.11]

For z 5 (x, y) [ Kn
n with x, y [ Fn

n put n1(z) 5 n(x) and n2(z)
5 n(y), where n is defined with respect to g instead of r. We
then put

T~s, s9! 5 O
t[R

v~CtC!n1~t!2sn2~t!2s9, R 5 C\GwyC.

[3.12]

Then we obtain

T~s, s9! 5 P
i51

n 1 2 pi212s2s9

~1 2 pn2sti
21!~1 2 p212s9ti!

. [3.13]

Section 4. We now take a totally imaginary quadratic
extension K of a totally real algebraic number field F of finite
degree. We denote by a (resp. h) the set of archimedean (resp.
nonarchimedean) primes of F; further we denote by g (resp. r)
the maximal order of F (resp. K). Let V be a vector space over
K of dimension n. We take a K-valued nondegenerate «-
hermitian form w on V with « 5 1 with respect to the Galois
involution of K over F, and define Gw as in Section 2. For every
v [ a ø h and an object X, we denote by Xv its localization at
v. For v [ h not splitting in K and for v [ a, we take a
decomposition

~Vv, wv! 5 ~Tv, u9v! % ~Hrv
, hrv

! [4.1]

with anisotropic u9v and a nonnegative integer rv. Put tv 5
dim(Tv). Then n 5 2rv 1 tv. If n is odd, then tv 5 1 for every
v [ h. If n is even, then tv 5 0 for almost all v [ h and tv 5
2 for the remaining v [ h. If n is odd, by replacing w by cw with
a suitable c [ F, we may assume that w is represented by a

matrix whose determinant times (21)(n21)/2 belongs to
NK/F(K).

We take and fix an element k of K such that kr 5 2k and
ikvwv has signature (rv 1 tv, rv) for every v [ a. Then G(ikvwv)
modulo a maximal compact subgroup is a hermitian symmetric
space which we denote by Zv

w. We take a suitable point iv of Zv
w

which plays the role of ‘‘origin’’ of the space. If rv 5 0, we
understand that Zv

w consists of a single point iv. We put Zw 5
)v[a Zv

w. To simplify our notation, for x [ KA
3 or x [ (C3)a, a [

Za, and c [ (C3)a, we put

xa 5 P
v[a

xv
av, uxuc 5 P

v[a

~xvxv!
cv/2. [4.2]

For j [ Gv
w and w [ Zv

w, we define jw [ Zv
w in a natural way

and define also a scalar factor of automorphy jj(w) so that
det(j)rvjj(w)2n is the jacobian of j. Given k, n [ Za, z [ Zw, and
a [ GA

w, we put

az 5 ~avzv!v[a, ja
k,n~z! 5 det~a!nja~z!k. [4.3]

Then, for a function f:Zw 3 C, we define f ik,na:Zw 3 C by

~f ik,na!~z! 5 ja
k,n~z!21f~az! ~z [ Zw!. [4.4]

Now, given a congruence subgroup G of Gw, we denote by
Mk,n

w (G) the vector space of all holomorphic functions f on Zw

which satisfy f ik,ng 5 f for every g [ G and also the cusp
condition if Gw is of the elliptic modular type. We then denote
by Sk,n

w (G) the set of all cusp forms belonging to Mk,n
w (G).

Further, we denote by Mk,n
w resp. Sk,n

w the union of Mk,n
w (G)

resp. Sk,n
w (G) for all congruence subgroups G of G. If w is

anisotropic, we understand that S0,n
w

5 C.
Let D be an open subgroup of GA

w such that D ù Gh
w is

compact. We then denote by Sk,n
w (D) the set of all functions

f: GA
w 3 C satisfying the following conditions:

f~axw! 5 f~x! if a [ Gw and w [ D ù Gh
w; [4.5]

for every p [ Gh
w there exists an element fp [ Sk,n

w such that

f~py! 5 ~fpik,ny!~iw! for every y [ Ga
w, where iw 5 ~iv!v[a.

[4.6]

We now take D in a special form. We take a maximal r-lattice
M in V whose norm is g in the sense of ref. 3 (p. 375) and put

C 5 $a [ GA
wuMvav 5 Mv for every v [ h%, [4.7]

M̃ 5 $x [ Vuw~x, M! , d21%, [4.8]

D 5 Dw 5 $g [ CuM̃v~gv 2 1! , cvMv for every v [ h%,
[4.9]

where d is the different of K relative to F and c is a fixed integral
g-ideal. Clearly M̃ is an r-lattice in V containing M, and we
easily see that Dw is an open subgroup of GA

w. We assume that

vuc if M̃v Þ Mv . [4.10]

Define a subgroup X of GA
w by

X 5 $y [ GA
wuyv [ D for every vuc}. [4.11]

We then consider the algebra ℜ(D, X) consisting of all the
finite linear combinations of DtD with t [ X and define its
action on Sk,n

w (D) as follows. Given t [ X and f [ Sk,n
w (D),

take a finite subset Y of Gh
w so that DtD 5 t h[YDh and define

fuDtD:GA
w 3 C by

~fuDtD!~x! 5 O
h[Y

f~xh21! ~x [ GA
w!. [4.12]
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These operators form a commutative ring of normal operators
on Sk,n

w (D).
For x [ GA

w, we define an ideal n0(x) of r by

n0~x! 5 P
v[h

n0~xv!, [4.13]

where n0(xv) is defined as in Section 3 with respect to an rv-basis
of Mv. Clearly n0(x) depends only on CxC.

Let f be an element of Sk,n
w (D) that is a common eigenfunc-

tion of all the DtD with t [ X, and let fuDtD 5 l(t)f with l(t)
[ C. Given a Hecke ideal character x of K such that uxu 5 1,
define a Dirichlet series T(s, f, x) by

T~s,f,x! 5 O
t[D\XyD

l~t!x*~n0~t!!N~n0~t!!2s, [4.14]

where x* is the ideal character associated with x and N(a) is
the norm of an ideal a. Denote by x1 the restriction of x to FA

3,
and by u the Hecke character of F corresponding to the
quadratic extension K/F. For any Hecke character j of F, put

Lc(s, j)5P
pBc

[12j*(p)N~p)2s#21. [4.15]

From Theorem 1 and Eq. 3.13, we see that

T~s, f, x! P
i51

n

Lc(2s 2 i 1 1, x1ui21)

5 P
qBc

Wq[x*(q)N~q)2s#21 [4.16]

with a polynomial Wq of degree n whose constant term is 1,
where q runs over all the prime ideals of K prime to c. Let Z(s,
f, x) denote the function of Eq. 4.16. Put

Gm~s! 5 pm~m21!/2 P
k50

m21

G~s 2 k!. [4.17]

THEOREM 2. Suppose that xa(b) 5 bmubuik2m with m [ Za

and k [ Ra such that (v[a kv 5 0. Put m 5 k 1 2n 2 m and

R~s, f , x! 5 P
v[a

gv~s 1 ~ikv/2!!zZ~s, f , x!

with gv defined by

gv~s! 5 pv~s!qv~s!GrvS s 2 n 1 rv 1
kv 1 umvu

2 D
z Gn2rvS s 2 rv 1

umv 2 2nvu
2 D ,

pv~s! 5 5GrvSs 1
ukv 2 mvu

2 DGrvSs 1
kv 2 mv

2 D21

if mv $ 0,

GrvSs 2
kv 1 mv

2 DGrvSs 2
kv 2 mv

2 D21

if mv , 0,

qv~s! 5 P
i51

n2,21

GS s 2
,

2
2 F i

2GD
z GS s 2

,

2 2 iD
21

, , 5 umv 2 2nvu.

Then R(s, f, x) can be continued to the whole s-plane as a
meromorphic function with finitely many poles, which are all
simple. It is entire if x1 Þ un for n 5 0, 1.

We can give an explicitly defined finite set of points in which
the possible poles of R belong. Notice that pv and qv are
polynomials; in particular, pv 5 1 if 0 # mv # kv and qv 5 1 if
umv 2 2nvu $ n 2 1.

The results of the above type and also of the type of
Theorem 3 below were obtained in refs. 2, 4, and 5 for the
forms on the symplectic and metaplectic groups over a
totally real number field. The Euler product of type Z, its
analytic continuation, and its relationship with the Fourier
coefficients of f have been obtained by Oh (6) for the group
Gw as above when w 5 hr.

Section 5. We now put (W, c) 5 (V, w) Q (Hm, hm) as in Eq.
2.5 with (V, w) of Section 4 and m $ 0. Writing simply I 5 Im,
we can consider the parabolic subgroup PI

c of Gc. We put Pc

5 PI
c for simplicity, l0(a) 5 det(lI

c(p)) for p [ Pc, and

L 5 O
i51

m

~r«i 1 d21«m1n1i! 1 M, [5.1]

with M of Section 4 and the standard basis {«i, «m1n1i}i51
m of

Hm. We can define the space Zc and its origin ic in the same
manner as for Gw. We then put

Cc 5 $x [ GA
cuLx 5 L%, C0

c 5 $x [ Ccux~ic! 5 ic%, [5.2]

Dc 5 $x [ CcuM̃v~ev 2 1! , cvMv for every v [ h%.
[5.3]

Here ev is the element of End(Vv) defined for xv by wxv 2 wev
[ (Hm)v for w [ Vv. We define an R-valued function h on GA

c

by

h~x! 5 ul0~p!uA if x [ pC0
c with p [ PA . [5.4]

Taking f [ Sk,n
w (Dw) and x as in Section 4, we define m:GA

c

3 C as follows: m(x) 5 0 if x ¸ PA
cDc; if x 5 pw with p [ PA

c

and w [ Dc ù C0
c, then we put

m~x! 5 x~l0~p!!21xc~l0~w!!21jw
k,n~ic!21f~pw

c~p!!, [5.5]

where xc 5 )vuc xv. Then we define E(x, s) for x [ GA
c and s [

C by

E~x, s! 5 E~x, s; f, x, Dc)5 O
a[A

m~ax!h~ax!2s,

A 5 PI
c\Gc. [5.6]

This is meaningful if xa(b) 5 bk12nubuik2k22n with k [ Ra,
(v[a kv 5 0, and the conductor of x divides c. We take such a
x in the following theorem. The series of Eq. 5.6 is the adelized
version of a collection of several series of the type in Eq. 1.3.

THEOREM 3. Define gv as in Theorem 2 with m 5 0. Put

g9v~s! 5 q9~s,ukvu!gv~s!qv~s!21Gm~s 2 n 1 ~kv/2!!,

q9~s, ,! 5 P
i51

m1n2,21

GS s 2
,

2
2 F i

2GDGS s 2
,

2
2 iD21

.

Then the product

P
v[a

g9v~s 1 ~ikv/2!! P
j5n

m1n21

zLc~2s 2 j, x1u j!

zZ~s, f, x!E~x, s; f, x, Dc!
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can be continued to the whole s-plane as a meromorphic function
with finitely many poles, which are all simple.

We can give an explicitly defined finite set of points in which
the possible poles of the above product belong.

Section 6. Let G be an arbitrary reductive algebraic group
over Q. Given an open subgroup U of GA containing Ga and
such that U ù Gh is compact, we put Ua 5 aUa21 and Ga 5 G
ù Ua for every a [ GA. We assume that Ga acts on a symmetric
space W, and we let G act on W via its projection to Ga. We
also assume that Ga\W has finite measure, written vol(Ga\W),
with respect to a fixed Ga-invariant measure on W. Taking a
complete set of representatives B for G\GA/U, we put

s~G, U! 5 s~U! 5 O
a[B

[Ga ù T:1]21vol~Ga\W!, [6.1]

where T is the set of elements of G which act trivially on W, and
we assume that [Ga ù T:1] is finite. Clearly s(U) does not depend
on the choice of B. We call s(G, U) the mass of G with respect
to U. If Ga is compact, we take W to be a single point of measure
1 on which Ga acts trivially. Then we have

s~G, U! 5 s~U! 5 O
a[B

[Ga:1]21. [6.2]

We can show that s(U9) 5 [U:U9]s(U9) if U9 is a subgroup of
U. If strong approximation holds for the semisimple factor of
G, then it often happens that both [Ga ù T:1] and vol(Ga\W)
depend only on U, so that

s~G, U! 5 s~U! 5 #~G\GA/U!@G1 ù T:1#21vol~G1\W!. [6.3]

If Ga is compact and U is sufficiently small, then Ga 5 {1} for
every a, in which case we have s(U) 5 #(G\GA/U). If U is the
stabilizer of a lattice L in a vector space on which G acts, then
#(G\GA/U) is the number of classes in the genus of L.
Therefore, s(U) may be viewed as a refined version of the class
number in this sense.

Coming back to the unitary group Gw of Section 4, we can
prove the following theorem.

THEOREM 4. Suppose that Ga
w is compact. Let M be a

g-maximal lattice in V of norm g and let d be the different of K
relative to F. Define an open subgroup D of GA

w by Eq. 4.9 with
an integral ideal c. If n is odd, assume that w is represented by a
matrix whose determinant times (21)(n21)/2 belongs to NK/F(K);
if n is even, assume that c is divisible by the product e of all prime
ideals for which tv 5 2. Then

s~Gw, D! 5 2zH P
k51

n

~n 2 k!J d

DF
~n22n!/2N~c!n2

zA P
k51

n

$N~d!k/2DF
1y2~2p!2kdLc~k, uk!%,

where d 5 [F:Q], DF is the discriminant of F, and A 5 1 or A 5
N(e)nN(d)2n/2 according as n is odd or even.

If n is odd, we can also consider s(D9) for

D9 5 $g [ CuMv~gv 2 1! , cvMv for every v [ h% [6.4]

with an arbitrary integral ideal c. Then s(D9) 5 22ts(D),
where t is the number of primes in F ramified in K.

Section 7. Let us now sketch the proof of the above theorems.
The full details will be given in ref. 7. We first take B , Gh

w so
that GA

w 5 tb[BGwbDw. Given E(x, s) as in Eq. 5.6, for each q [
Gh

c we can define a function Eq(z, s) of (z, s) [ Zc 3 C by

E~qy, s! 5 Eq~y~ic!, s!jy
k,n~ic!21 for every y [ Ga

c . [7.1]

The principle is the same as in Eq. 4.6, and so it is sufficient
to prove the assertion of Theorem 3 with Eq(z, s) in place of E(x,
s). In particular, we can take q to be q 5 b 3 12m with b [ B.
Define (X, v) as in Eq. 2.5. Then there is an isomorphism of
(X, v) to (Hm1n, hm1n) which maps PU

v of Proposition 1 to the
standard parabolic subgroup P of G(hm1n). Therefore, we can
identify Zv with the space ha with

h5$z [ Cm1n
m1nui~z* 2 z! is positive definite}. [7.2]

We can also define an Eisenstein series E9(x, s; x) for x [ GA
v

and s [ C, which is defined by Eq. 5.6 with (G(hm1n)A, P, 1)
in place of (GA

c, Pc, f ). Taking E9 and (q, a) [ Gh
v (with a [

B) in place of E(x, s) and q, we can define a function E9q,a(z, s)
of (z, s) [ ha 3 C in the same manner as in Eq. 7.1. There is
also an injection i of Zc 3 Zw into ha compatible with the
embedding Gc 3 Gw 3 G(hm1n). We put then

g8~z, w! 5 d~w, z!2kg~i~z, w!! ~z [ Zc, w [ Zw! [7.3]

for every function g on ha, where d(w, z) is a natural factor of
automorphy associated with the embedding i. Take a Hecke
eigenform f as in Section 4 and define fa by the principle of Eq.
4.6. Then, employing Proposition 1, we can prove

A~s!T~s, f, x!Eq~z, s!

5 O
a[B

E
Fa

~E9q,a!
o~z, w; s!fa~w!d~w!kdw, [7.4]

where q 5 b 3 12m, A is a certain gamma factor, and Fa 5 Ga\Zw.
The computation is similar to, but more involved than, that of ref.
4 (Section 4). Since the analytic nature of E9q,a can be seen from
the results of ref. 8, we can derive Theorem 3 from Eq. 7.4.

Take m 5 0. Then c 5 w and Eq(z, s) 5 fb(z). Then the
analytic nature of T (s, f, x), and consequently that of Z(s, f,
x), can be derived from Eq. 7.4. However, here we have to
assume that xa(b) 5 bk12nubuik2k22n with k [ Ra, (v[a kv 5 0,
and the conductor of x divides c. The latter condition on c is
a minor matter, but the condition on xa is essential. To obtain
Z(s, f, x) with an arbitrary x, we have to replace E9q,a by DE0q,a,
where E0 is a series of type E9 with 2n 2 m in place of k and
D is a certain differential operator on ha.

As for Theorem 4, we take again c 5 w and observe that a
constant function can be taken as f if Ga

w is compact. The space
Zw consists of a single point. The integral on the right-hand
side of Eq. 7.4 is merely the value (E9q,a)°(z, w; s). We can
compute its residue at s 5 n explicitly. Comparing it with the
residue on the left-hand side, we obtain Theorem 4 when c
satisfies Eq. 4.10. If n is odd, we can remove this condition by
computing a group index of type [U:U9].
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JEAN-MARC FONTAINE

Université de Paris-Sud, Mathématique, Bâtiment 425, F-91405 Orsay Cedex, France

ABSTRACT Let V be a p-adic representation of Gal~Q# y
Q!. One of the ideas of Wiles’s proof of FLT is that, if V is the
representation associated to a suitable autromorphic form ~a
modular form in his case! and if V* is another p-adic repre-
sentation of Gal~Q# yQ! “closed enough” to V, then V* is also
associated to an automorphic form. In this paper we discuss
which kind of local condition at p one should require on V and
V* in order to be able to extend this part of Wiles’s methods.

Geometric Galois Representations (refs. 1 and 2; exp. III
and VIII). Let Q# be a chosen algebraic closure of Q and G 5
Gal(Q# /Q). For each prime number ,, we choose an algebra-
ic closure Q# , of Q, together with an embedding of Q# into Q# ,

and we set G, 5 Gal(Q# ,/Q,) , G. We choose a prime num-
ber p and a finite extension E of Qp.

An E-representation of a profinite group J is a finite dimen-
sional E vector space equipped with a linear and continuous
action of J.

An E-representation V of G is said to be geometric if
(i) it is unramified outside of a finite set of primes;
(ii) it is potentially semistable at p (we will write pst for

short).
[The second condition implies that V is de Rham, hence

Hodge-Tate, and we can define its Hodge-Tate numbers hr 5
hr(V) 5 dimE (Cp(r) RQp

V)Gp where Cp(r) is the usual Tate twist
of the p-adic completion of Q# p (one has ¥r[Zhr 5 d). It implies
also that one can associate to V a representation of the
Weil-Deligne group of Qp, hence a conductor NV(p), which is
a power of p].

Example: If X is a proper and smooth variety over Q and m [
N, j [ Z, then the p-adic representation Het

m(XQ# , Qp(j)) is
geometric.

[Granted the smooth base change theorem, the represen-
tation is unramified outside of p and the primes of bad
reduction of X. Faltings (3) has proved that the representation
is crystalline at p in the good reduction case. It seems that Tsuji
(4) has now proved that, in case of semistable reduction, the
representation is semistable. The general case can be deduced
from Tsuji’s result using de Jong’s (5) work on alterations].

CONJECTURE (1). If V is a geometric irreducible E-
representation of G, then V comes from algebraic geometry,
meaning that there exist X, m, j such that V is isomorphic, as a
p-adic representation, to a subquotient of E RQp

Het
m(XQ# , Qp(j)).

Even more should be true. Loosely speaking, say that a
geometric irreducible E-representation V of G is a Hecke
representation if there is a finite Zp-algebra *, generated by
Hecke operators acting on some automorphic representation
space, equipped with a continuous homomorphism r : G 3
GLd(*), ‘‘compatible with the action of the Hecke operators,’’
such that V comes from * (i.e., is isomorphic to the one we get
from r via a map * 3 E). Then any geometric Hecke

representation of G should come from algebraic geometry and
any geometric irreducible representation should be Hecke.

At this moment, this conjecture seems out of reach. Nev-
ertheless, for an irreducible two-dimensional representation of
G, to be geometric Hecke means to be a Tate twist of a
representation associated to a modular form. Such a repre-
sentation is known to come from algebraic geometry. Observe
that the heart of Wiles’s proof of FLT is a theorem (6, th. 0.2)
asserting that, if V is a suitable geometric Hecke E-
representation of dimension 2, then any geometric E-
representation of G which is ‘‘close enough’’ to V is also Hecke.

It seems clear that Wiles’s method should apply in more
general situations to prove that, starting from a suitable Hecke
E-representation of G, any ‘‘close enough’’ geometric repre-
sentation is again Hecke. The purpose of these notes is to
discuss possible generalizations of the notion of ‘‘close
enough’’ and the possibility of extending local computations in
Galois cohomology which are used in Wiles’s theorem. More
details should be given elsewhere.

Deformations (7–9). Let 2E be the ring of integers of E, p
a uniformizing parameter and k 5 2E/p2E the residue field.

Denote by # the category of local noetherian complete
2E-algebras with residue field k (we will simply call the objects
of this category 2E-algebras).

Let J be a profinite group and RepZp

f (J) the category of
Zp-modules of finite length equipped with a linear and con-
tinuous action of J. Consider a strictly full subcategory $ of
RepZp

f (J) stable under subobjects, quotients, and direct sums.
For A in #, an A-representation T of J is an A-module of finite

type equipped with a linear and continuous action of J. We say
that T lies in D if all the finite quotients of T viewed as
Zp-representations of J are objects of $. The A-representations
of J lying in $ form a full subcategory $(A) of the category
RepA

tf(J) of A-representations of J.
We say T is flat if it is f lat (N free) as an A-module.
Fix u a (flat !)-k-representation of J lying in $. For any A in

#, let F(A) 5 Fu,J(A) be the set of isomorphism classes of flat
A-representations T of J such that T/pT . u. Set F$(A) 5
Fu,J,$(A) 5 the subset of F(A) corresponding to representa-
tions which lie in $.

PROPOSITION. If H0(J, gl(u)) 5 k and dimkH1(J, gl(u)) , 1`,
then F and F$ are representable.

(The ring R$ 5 Ru,J,$ which represents F$ is a quotient of
the ring R 5 Ru,J representing F.)

Fix also a flat 2E-representation U of J lifting u and lying in
$. Its class defines an element of F$(2E) , F(2E), hence
augmentations «U:R 3 2E and «U,$:R$ 3 2E.

Set 2n 5 2E/pn2E and Un 5 U/pnU. If pU 5 ker «U and pU,$
5 ker «U,$, we have canonical isomorphisms

~~pU1p nR!y~pU
2 1p nR!!*.Ext2n@J#

1 ~Un, Un!.H1~J, gl~Un!!

ø ø ø

~pU,$1pnR$!y~pU,$
2 1pnR$!*.Ext2n,$

1 ~Un, Un!5: H$
1 ~J, gl~Un!!

Close Enough to V Representations. We fix a geometric
E-representation V of G (morally a ‘‘Hecke representation’’).

© 1997 by The National Academy of Sciences 0027-8424y97y9411138-4$2.00y0
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We choose a G-stable 2E-lattice U of V and assume u 5 U/pU
absolutely irreducible (hence V is a fortiori absolutely irreduc-
ible).

We fix also a finite set of primes S containing p and a full
subcategory $p of RepZp

f (Gp), stable under subobjects, quo-
tients, and direct sums.

For any E-representation W of Gp, we say W lies in $p if a
Gp-stable lattice lies in $p.

We say an E-representation of G is of type (S, $p) if it is
unramified outside of S and lies in $p.

Now we assume V is of type (S, $p). We say an E-
representation V9 of G is (S, $p)-close to V if:

(i) given a G-stable lattice U9 of V9, then U9/pU9 . u;
(ii) V9 is of type (S, $p).
Then, if QS denote the maximal Galois extension of Q con-

tained in Q# unramified outside of S, deformation theory applies
with J 5 GS 5 Gal(QS/Q) and $ the full subcategory of RepZp

f (GS)
whose objects are T’s which, viewed as representations of Gp, are
in $p. But if we want the definition of (S, $p)-close to V to be good
for our purpose, it is crucial that the category $p is semistable, i.e.,
is such that any E-representation of Gp lying in $p is pst.

We would like also to be able to say something about the
conductor of an E-representation of Gp lying in $p. Since
H$

1 (J, gl(Un)) is the kernel of the natural map

H1~GS, gl~Un!!3H$p

1 ~Gp, gl~Un!!,

it is better also if we are able to compute H$p

1 (Gp, gl(Un)).
In the rest of these notes, we will discuss some examples of

such semistable categories $p’s.
Examples of Semi-Stable $p’s.
Example 1: The category $p

cr (application of (10); cr, crys-
talline).

For any 2E-algebra A, consider the category MF(A) whose
objects are A-module M of finite type equipped with

(i) a decreasing filtration (indexed by Z),

. . .Fili M . Fili11 M . . . .,

by sub-A-modules, direct summands as Zp-modules, with
Fili M 5 M for i ,, 0 and 5 0 for i .. 0;

(ii) for all i [ Z, an A-linear map fi : Fili M3 M, such that
fi uFili11 M5 pfi11 and M 5 (Im fi.

With an obvious definition of the morphisms, MF(A) is an
A-linear abelian category.

For a # b [ Z, we define MF[a,b](A) to be the full
subcategory of those M, such that Fila M 5 M and Filb11 M 5
0. If a , b, we define also MF]a,b](A) as the full subcategory
of MF[a,b](A) whose objects are those M with no nonzero
subobjects L with Fila11 L 5 0.

As full subcategories of MF(A), MF[a,b](A) and MF]a,b](A)
are stable under taking subobjects, quotients, direct sums, and
extensions.

If Z# p denote the p-adic completion of the normalization
of Zp in Q# p, the ring

Acris 5O3lim H0~~Spec~Z# pyp!yWn!crys, struct .sheaf!

is equipped with an action of Gp and a morphism of Frobenius
f : Acris 3 Acris. There is a canonical map Acris 3 Z# p whose
kernel is a divided power ideal J. Moreover, for 0 # i #
p 2 1, f(J[i]) , piAcris. Hence, because Acris has no p-torsion,
we can define for such an i, fi : J[i] 3 Acris as being the
restriction of f to J[i] divided out by pi.

For M in MF[2(p21),0](A), we then can define Filo(Acris R M) as
the sub-A-module of Acris RZp M, which is the sum of the images
of the FiliAcris R Fil2iM, for 0 # i # p 2 1. We can define
fo : Fil0(Acris R M)3 Acris R M as being fi R f2i on Fili Acris R
Fil2i M. If we set

U~M! 5 ~FilO~Acris ẑp
M!!f051,

this is an A-module of finite type equipped with a linear and
continuous action of Gp. We get in this way an A-linear functor

U : MF @2~p21!,0#~A! 3 RepA
ft

~Gp!

which is exact and faithful. Moreover, the restriction of U to
MF]2(p21),0](A) is fully faithful. We call $p

cr(A) the essential
image.

PROPOSITION. Let V9 be an E-representation of Gp. Then V9
lies in $p

cr if and only if the three following conditions are satisfied:
(i) V9 is crystalline (i.e., V9 is pst with conductor NV9(p) 5 1);
(ii) hr(V9) 5 0 if r . 0 or r , 2p 1 1;
(iii) V9 has no nonzero subobject V0 with V0(2p 1 1)

unramified.
Moreover (11), if X is a proper and smooth variety over Qp with

good reduction and if r,n [ N with 0 # r # p 2 2, Het
r (XQ# p

, Z/pnZ)
is an object of $p

cr(Zp).
Remarks: (i) Define $p

ff as the full subcategory of RepZp

f (Gp),
whose objects are representations which are isomorphic to the
general fiber of a finite and flat group scheme over Zp. If p Þ
2, $p

ff is a full subcategory stable under extensions of $p
cr (this

is the essential image of MF[21,0](Zp)).
(ii) Deformations in $p

cr don’t change Hodge type: if V,V9 are
E-representations of Gp, lying in $p

cr and if one can find lattices
U of V and U9 of V9 such that U/pU . U9/pU9, then hr(V) 5
hr(V9) for all r [ Z (if U/pU 5 U(M), hr(V) 5 dimkgr2rM).

Computation of H$
1

p
cr. This can be translated in terms of the

category MF(2E) . MF]2p11,0](2E).
In MF(2E), define HMF

i (Qp, M) as being the ith derived
functor of the functor HomMF(2E) (2E, 2). These groups are the
cohomology of the complex

Fil0 M O3
12f

M ¡ 0 ¡ 0 ¡ . . .

If we set tM 5 M/Fil0M, this implies lg2E
H$

1
p
cr(Qp, M) 5 lg2E

H0

1 lg2E
tM.

Hence, if U is a Gp-stable lattice of an E-representation V of
Gp lying in $p

cr, and if, for any i [ Z, hr 5 hr(V), with obvious
notations, we get H$

1
p
cr(Qp, gl(Un)) 5 ExtMF

1 ]2p11,0]
(A)(Mn, Mn)

5 ExtMF(A)
1 (Mn, Mn) 5 HMF

1 (Qp,End2E
(Mn)) and

lg2E
H$

1
p
cr(Qp,gl(Un)) 5 lg2E

H0(Qp,gl(Un)) 1 nh, where h 5
¥i,jhihj [this generalizes a result of Ramakrishna (9)].

A Special Case. Of special interest is the case where
H0(Qp,gl(u)) 5 k, which is equivalent to the representability of
the functor Fu,Gp,$p

cr. In this case, H$
1

p
cr(Qp, gl(Un)) . (2n)h11

and H$
1

p
cr(Qp,sl(Un)) . (2n)h. Moreover, because there is no

H2, the deformation problem is smooth, hence Ru,Gp
,$p

cr .
2E[[X0, X1, X2,. . .,Xh]].

Example 2: $p
na (the naive generalization of $p

cr to the
semistable case).

For any 2E-algebra A, we can define the category MFN(A)
whose objects consist of a pair (M, N) with M object of MF(A)
and N : M 3 M such that

(i) N(FiliM) , Fili21M,
(ii) Nfi 5 fi21N.
With an obvious definition of the morphisms, this is an

abelian A-linear category and MF(A) can be identified to the
full subcategory of MFN(A) consisting of M’s with N 5 0.

We have an obvious definition of the category
MFN]2p11,0](A). There is a natural way to extend U to a functor

U : MFN]2p11,0]~A! 3 RepZp

f ~Gp!

again exact and fully faithful. We call $p
cr(A) the essential

image.
There is again a simple characterization of the category

$p
na(E) of E-representations of Gp lying in $p

na as a suitable full
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subcategory of the category of semistable representations with
crystalline semisimplification. Moreover:

If p Þ 2, the category of semistable V values with hr(V) 5 0
if r ¸ {0, 21} is a full subcategory stable under extensions of
$p

na(E).
For 0 # r , p 2 1, let $p

ord,r the full subcategory of Rep Zp

f (Gp)
of T ’s such that there is a filtration (necessarily unique)

0 5 Fr11T , FrT , . . . F1T , F0T 5 T

such that griT(2i) is unramified for all i; then $p
ord,r is a full

subcategory of $p
na stable under extensions.

Again, in $p
na, deformations don’t change Hodge type. The

conductor may change.
Computation of H$

1
p
na(Qp, gl(Un)). As before, this can be

translated in terms of the category MFN(2E) .
MFN]2p11,0](2E): if we define HMFN

i (Qp, M) as the ith-derived
functor, in the category MFN(2E), of the functor
HomMFN(2E)(2E, 2), these groups are the cohomology of the
complex

Fil0M3 Fil21M Q M3 M3 03 03…

(with x ° (Nx, (1 2 f0)x) and (y, z) ° (1 2 f21)y 2 Nz).
Again, in this case, H$

1
p
na(Qp, gl(Un)) 5 ExtMFN

1 ]2p11,0]
(A)(Mn, Mn)

5 ExtMFN(A)
1 (Mn, Mn) 5 HMFN

1 (Qp, End2E
(Mn)). But,

(i) the formula for the length is more complicated, and
(ii) the (local) deformation problem is not always smooth.
Example 3: $p

st [the good generalization of $p
cr to the

semistable case, theory due to Breuil (12)].
Let S 5 Zp,u. be the divided power polynomial algebra in

one variable u with coefficients in Zp. If v 5 u 2 p, we have also
S 5 Zp,v.. Define:

(a) FiliS as the ideal of S generated by the vm/m!, for m $
i;

(b) f as the unique Zp-endomorphism such that f(u) 5 up;
(c) N as the unique Zp-derivation from S to S such that N(u)

5 2u.
For r # p 2 1, fr: FilrS 3 S is defined by fr(x) 5 p2rf(x).
If r # p 2 2, let 9}0

r be the category whose objects consist
of:

(i) an S-module },
(ii) a sub-S-module Filr} of } containing FilrS.},
(iii) a linear map fr: Filr}3}, such that fr(sx) 5 fr(s).f(x)

(where f: }3 } is defined by f(x) 5 fr(vrx)/fr(vr)), with an
obvious definition of the morphisms. We consider the full
subcategory }0

r of 9}0
r whose objects satisfy

(i) as an S-module } . Q1#i#dS/pndS for suitable integers d
and (ni)1#i#d;

(ii) as an S-module } is generated by the image of fr.
Finally, define }r as the category whose objects are objects

} of }0
r equipped with a linear endomorphism

N : } 3 }

satisfying
(i) N(sx) 5 N(s).x 1 s.N(x) for s [ S, x [ },
(ii) v.N(Filr}) , Filr},
(iii) if x [ Filr}, f1(v).N(fr(x)) 5 fr(v.N(x)).
This turns out to be an abelian Zp-linear category and we call

MFB[2r,o](Zp) the opposite category.
For A an 2E-algebra, one can define in a natural way the

category MFB[2r,o](A) (for instance, if A is artinian, an object
of this category is just an object of MFB[2r,o](Zp) equipped with
an homomorphism of A into the ring of the endomorphisms of
this object).

Breuil defines natural ‘‘inclusions’’:

MFB@2r21,o#~A! , MFB@2r,o#~A! ~if r 1 1 # p 2 2!,

MF@2r,o#~A! , MFN@2r,o#~A! , MFB@2r,o#~A!.

Moreover, the simple objects of MF[2r,o](k), MFN[2r,o](k), and
MFB[2r,o](k) are the same. Breuil extends U to MFB[2r,o](A)
and proves that this functor is again exact and fully faithful. We
call $p

st,r(A) the essential image.
Let V be an E-representation of Gp. Breuil proves that, if V

lies in $p
st,r then V is semistable and hm(V) 5 0 if m.0 or m ,

2r. Conversely, it seems likely that if V satisfies these two
conditions, V lies in $p

st,r. This is true if r 5 1, and it has been
proven by Breuil if E 5 Qp and V is of dimension 2. More
importantly, Breuil proved also

PROPOSITION (13). Let X be a proper and smooth variety over
Qp . Assume X as semistable reduction and let r, n [ N with 0 #
r # p22; then Het

r (XQ# p
, Z/pnZ) is an object of $p

st,r(Zp).
When working with $p

st,r, deformation may change the Hodge
type (the conductor also). The computation of H$

1
p
st,r(Qp,

gl(Un)) still reduces to a computation in MFB[2r,o](2E) (or
equivalently in }r). This computation becomes difficult in
general but can be done in specific examples.

Final Remarks. Let L be a finite Galois extension of Qp
contained in Q# p, 2L the ring of integers and eL 5 eL/$p.

(a) Call $p
ff,L, the full subcategory of RepZp

f (Gp) whose objects
are representations which, when restricted to Gal(Q# p/Qp), extends
to a finite and flat group scheme over 2L. If eL # p 2 1, an
E-representation V lies in $p if and only if it becomes crystalline
over L and hm(V) 5 0 for m ¸ {0, 21}). If eL , p 2 1, Conrad
(14) defines an equivalence between $p

ff,L and a nice category of
filtered modules equipped with a Frobenius and an action of
Gal(L/Qp). Using it, one can get the same kind of results as we
described for $p

cr. For eL 5 p 2 1, the same thing holds if we
require that the representation of Gal(Q# p/Qp) extends to a
connected finite and flat group scheme over 2L.

(b) More generally, Breuil’s construction should extend to
E-representations becoming semistable over L with hm(V) 5
0 if m . 0 or , 2(p 2 1)/eL (# 2(p 2 1)/eL with a ‘‘grain de
sel’’).

(c) Let RepQp(Gp)cris,L
r (resp. RepQp(Gp)st,L

r ) be the category
of Qp-representations V of Gp becoming crystalline over L
(resp. semistable) with hm(V) 5 0 if m . 0 or m , 2r. Let
$p

cris,r,L (resp. $p
st,r,L) be the full subcategory of Rep Zp

f (Gp)
consisting of T ’s for which one can find an object V of
RepQp(Gp)cris,L

r (resp. RepQp(Gp)st,L
r ) Gp-stable lattices U9 , U

of V such that T . U/U9. I feel unhappy not being able to prove
the following:

Conjecture. Cp
cr is ,r ,L (resp. Cp

st ,r ,L): Let V be a Qp-
representation of V lying in $p

cris,r,L (resp. $p
st,r,L). Then V an

object of RepQp
(Gp)cris,L

r (resp. RepQp
(Gp)st,L

r ).
The only cases I know Cp

cris,r,L are r 5 0, r 5 1, and eL #
p 2 1, r # p 2 1, and eL 5 1. The only cases I know Cp

st,r,L

are r 5 0, r 5 1, and eL # p 2 1. Of course, each time we know
the answer is yes, this implies that the category is semistable.

This paper was partially supported by the Institut Universitaire de
France and Centre National de la Recherche Scientifique, Unité de
Recherche Associée D0752.
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Integrality of Tate-cycles

GERD FALTINGS
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ABSTRACT We explain a technical result about p-adic
cohomology and apply it to the study of Shimura varieties. The
technical result applies to algebraic varieties with torsion-free
cohomology, but for simplicity we only treat abelian varieties.

Suppose A is an abelian variety over V, a p-adic discrete
valuation ring with perfect residue field k. Let V0 5 W(k) # V
denote the maximal unramified subring, V0 # K0 and V # K the
fraction fields. If p is a uniformizer of V, then p satisfies an
Eisenstein equation f(p) 5 0, and V > V0[T]y( f(T)). Let RV

denote the p-adically completed PD-hull of V0[T] along ( f(T)).
Associated to A there are the étale cohomology

Hét
i ~A! 5 Hét

i ~A ^ VK ,Zp! [1]

and the crystalline cohomology

Hcr
i ~A! 5 Hcr

i ~AyRV,2!. [2]

The étale cohomology Hét
i (A) is a free Zp-module with a

continuous action of Gal(KyK), while Hcr
i (A) is a filtered free

RV-module with a Frobenius-endomorphism F. These are
related by Fontaine’s isomorphism

Hét
i ~A! ^ Bcris > Hcr

i ~A! ^ Bcris, [3]

which after inverting p allows one to recover one cohomology
from the other.

An étale Tate cycle of degree r is a Galois-invariant element

c ét [ Hét
2r~A!~r!. [4]

A crystalline Tate cycle of degree r is an element

ccr [ Hcr
2r~A!, [5]

which lies in the r 2 th stage of the Hodge filtration and is
annihilated by F 2 pr.

By Fontaine’s comparison the Qp-vector spaces of étale and
crystalline Tate cycles are isomorphic. We show:

Theorem. If r # p 2 2 then cét is integral, if and only if, the
corresponding ccr is integral.

The proof uses techniques developed previously.
A. Vasiu (2) has used this result to show that certain Shimura

varieties classifying abelian varieties with higher-order Tate
cycles have good reduction. He obtains smooth models for
them by normalizing the moduli-space of abelian varieties in
the generic fiber of the Shimura variety. To control this
normalization one uses the valuative criterion, together with
the theorem applied to the Tate cycles defining the Shimura
variety.

1. Faltings, G. (1994) Integral Crystalline Cohomology Over Very
Ramified Valuation Rings, preprint.

2. Vasiu, A. (1995) Integral Canonical Models for Shimura Varieties
of Preabelian Type, preprint.

© 1997 by The National Academy of Sciences 0027-8424y97y9411142-1$2.00y0
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Congruences between modular forms: Raising the level
and dropping Euler factors

FRED DIAMOND

Department of Pure Mathematics and Mathematical Statistics, 16 Mill Lane, University of Cambridge, Cambridge CB2 1SB, United Kingdom

ABSTRACT We discuss the relationship among certain
generalizations of results of Hida, Ribet, and Wiles on con-
gruences between modular forms. Hida’s result accounts for
congruences in terms of the value of an L-function, and Ribet’s
result is related to the behavior of the period that appears
there. Wiles’ theory leads to a class number formula relating
the value of the L-function to the size of a Galois cohomology
group. The behavior of the period is used to deduce that a
formula at “nonminimal level” is obtained from one at
“minimal level” by dropping Euler factors from the L-
function.

An example of a congruence between modular forms is
provided by the newforms

f~t! 5 O
n51

`

ane2pint and g~t! 5 O
n51

`

bne2pint

of levels 11 and 77, respectively, whose first few Fourier
coefficients are found in Table 1. One can show that, in fact,
an [ bn mod 3 for all n not divisible by 7. (See Theorem 5.1
below.)

We shall discuss the relationship among the following three
results concerning congruences to a newform ƒ of weight 2 and
level N. We assume that K is a number field containing the
coefficients of ƒ and restrict our attention to congruences mod
powers of a prime l dividing ,.

• A formula of Hida (1) measuring congruences to ƒ in
terms of the value of an L-function.

• A result of Ribet (2) that establishes the existence of
certain systematic congruences between ƒ and forms of
level Np (such as the one above).

• A theorem of Wiles (3), completed by his work with
Taylor (4), which shows that all suitable deformations of
Galois representations associated to ƒ actually arise from
forms congruent to ƒ.

Hida’s formula, though not part of the logical structure of
ref. 3, provides some insight into the role played in Wiles’ proof
by a certain generalization of Ribet’s result. This generaliza-
tion can be interpreted as the invariance of a period appearing
in Hida’s formula. Using this invariance, one shows that Wiles’
theorem at minimal level implies the theorem at nonminimal
level.

Remark 1.1: We are concerned here mainly with Ribet’s
‘‘raising the level’’ result, rather than his ‘‘lowering the level’’
result of ref. 5. We remark that Hida also found systematic
congruences between ƒ and forms of level N,r. We shall not
discuss these, but focus on congruences between ƒ and forms
of level Nd with d not divisible by ,.

Notation and Review

We fix a prime , and embeddings Q# 3Q# , and Q# 3C. Suppose
that K is a number field contained in C and let l denote the
prime of 2K determined by our choice of embeddings. Let 2
denote the localization of 2K at l.

We suppose that ƒ is a newform of weight 2, level Nƒ and
character xƒ with coefficients in K. The Eichler–Shimura
construction associates to ƒ an ,-adic representation

rƒ:Gal~Q̄/Q!3 GL2~Q̄,!

such that if p does not divide Nƒ,, then rƒ is unramified at p and
rƒ(Frobp) has characteristic polynomial

X2 2 ap~ƒ!X 1 xƒ~p!p. [1]

We let r#ƒ denote the semisimplification of the reduction of ƒ.
If ƒ and g are newforms of weight 2, then we write ƒ ; g if r#ƒ
is equivalent to r#g. By the Cebotarev density theorem and the
Brauer–Nesbitt theorem, we have ƒ ; g if and only if ap(ƒ) [
ap(g) for all primes p not dividing NƒNg,, the congruence being
modulo the maximal ideal of the integral closure of Z, in Q# ,.

We assume throughout that , is odd, ,2 does not divide Nƒ,
and , does not divide the conductor of xƒ. We assume also that
the restriction of r# f to Gal (Q# yF) is irreducible where F is the
quadratic subfield of Q(z,). It is convenient to distinguish two
sets of primes which can create technical problems.

• We let Sƒ denote the set of primes p such that rƒuDp is not
minimally ramified in the sense of ref. 6.

• We let Pƒ denote the set of primes r Þ , such that r#
ƒ

I
p 5

0, but ad0(r#ƒ)Ip Þ 0.
If p is not in Pƒ ø ,, then p is in Sƒ if and only if the powers

of p differ in the conductors of rƒ and r#ƒ. In the introductory
example, we have Sƒ 5 Pƒ 5 Pg 5 A, and Sg 5 {7}.

Counting Congruences

We assume that N is divisible by Nƒ but not by ,2 and let

^N 5 $weight 2 newforms g such that g , ƒ NguN

and xƒ

5 xg%.

Let TN denote the 2-subalgebra of )g[FN
C generated by the

set of Tp for p not dividing N,, where Tp denotes (ap(g))g. Then
TN is a local ring, free over 2 of rank equal to the cardinality
of FN.

© 1997 by The National Academy of Sciences 0027-8424y97y9411143-4$2.00y0
PNAS is available online at http:yywww.pnas.org.

Table 1. Fourier coefficients

n 1 2 3 4 5 6 7 8

an 1 22 21 2 1 2 22 0
bn 1 1 2 21 22 2 21 3
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Consider the homomorphism pƒ:TN3 2 defined by projec-
tion to the ƒ coordinate. Define ideals of TN by

Iƒ 5 kerpƒ 5 $x [ Tuxƒ 5 0%

Jƒ 5 AnnTN
Iƒ 5 $x [ Tuxg 5 0 for all g Þ f%.

Then the ideal pƒ(Jƒ) has finite index in 2, and is called a
congruence ideal. This is a variant of the notion of a congruence
module used in refs. 1 and 2.

To see how it measures congruences, consider again the
above example with ƒ of level 11. We suppose that N 5 77 and
, 5 3. Then T77 can be identified with

$~x,y! [ 2 3 2ux ; y mod 32%,

and we find that the congruence ideal is 32.
We consider also some useful variants. Suppose that S is a

finite set of primes containing Sƒ. We let FS denote the set

$weight 2 new forms g such that g , ƒ,

Sg , ,S,,2õNg and xƒ

5 xg%.

We then define TS as above, but using the set FS instead of FN.
We denote the resulting congruence ideal Cƒ,S. If ƒ is replaced
by the newform associated to a twist, then TS is replaced by a
ring to which it is canonically isomorphic, and we obtain the
same congruence ideal. So we suppose from now on that xƒ is
of order not divisible by ,.

If S contains Pƒ, then FS can be identified with FNS
for a

certain integer NS. Assuming this holds, we shall also associate
to ƒ and S a cohomology congruence ideal.

Let GH(NS) denote the maximal subgroup of G0(NS) in which
G1(NS) has ,-power order. Let T denote the 2-subalgebra of

End~S2~GH~N¥!!!

generated by the Hecke operators Tn for n $ 1. We let ƒS

denote the normalized T-eigenform characterized by

• the newform associated to ƒS is ƒ;
• ap(ƒS) 5 0 for primes p in S 2 {,};
• al(ƒS) is a unit in 2 if , divides NS;

where we have enlarged K if necessary. Consider the prime
ideal u in T defined as the kernel of the map T3 2 arising from
ƒS, and let m denote the maximal ideal generated by u and l.
If r#ƒ is irreducible, the completion of TS at its maximal ideal
can be identified with the completion of T at m. (See section
4.2 of ref. 7.)

We now define a cohomology congruence ideal using the
cohomology of the modular curve XS 5 XH(NS) 5 GH(NS)\**.
We have a natural action of T on

H1~XS,2!.

We choose a basis {x, y} for the rank two submodule M 5
H1(XS,2)[u], the intersection of the kernels of the elements of
u. We define the cohomology congruence ideal

Cƒ,¥
coh 5 ^x,y&2,

where ^,& is the perfect pairing on H1(XS,2) gotten from xøWy,
where W is the Atkin–Lehner involution. One checks the
following (see section 4.4 of ref. 7).

LEMMA 3.1. The ideal Cƒ,S is contained in Cƒ,S
coh. Furthermore

if the completion H1(XS,2)m is free over T>TS , then equality
holds.

Remark 3.2: The freeness of H1(XS,2) is equivalent to
H1(XS,k)[m] being two-dimensional over k, which is known

under our hypotheses through work of Mazur et al. (see section
2.1 of ref. 3).

Relation with L-Functions

Hida’s formula relates Cƒ,S
coh to the value of an L-function. We

consider the L-function associated to the Galois representa-
tion ad0rƒ. This L-function is defined by analytic continuation
of the Euler product

L~ad0ƒ,s! 5 P
p

Lp~ad0ƒ,s!, [2]

where for primes p not dividing Nƒ, the Euler factor Lp(ad0rƒ,s)
is

@~1 2 apbp
21p2s!~1 2 p2s!~1 2 bpap

21p2s!#21

ap and bp being the roots of Eq. 1. We shall not give here the
recipe for the Euler factors at primes p dividing Nƒ. We remark,
however, that L(ad0ƒ,s) remains the same if ƒ is replaced by the
newform associated to a twist, and that if Nƒ is minimal among
such newforms, then Lp(ad0ƒ,s) for p dividing Nƒ is one of the
following:

~1 2 p212s!21,~1 2 p2s!21,~1 1 p2s!21 or 1.

If S is a finite set of primes, then we write LS(ad0ƒ,s) for the
function obtained by omitting the Euler factors at the primes
in S.

Suppose now that S contains PƒøSƒ as at the end of
preceding section. We let v denote the class in H1(XS,C)
associated to the holomorphic differential 2piƒS(t)dt on XS.
We let v9 denote the class associated to the antiholomorphic
differential Wvc where vc is defined using ƒS

c 5 (a#n(ƒS)e2pint

instead of ƒS.
Viewing M as contained in H1(XS,C), we find that the span

of x and y coincides with that of v and v9. We write A for the
matrix in GL2(C) such that

ASx
yD 5 S v

v9D .

Define the period V to be the determinant of A. (Note that
because we have chosen a basis for M, V is well defined only
up to a unit in 2.) Set d 5 3 if , is in S, 1 if ,uNƒ but , ¸ S,
and 0 otherwise. Hida’s formula can then be stated as follows:

THEOREM 4.1. Cƒ,S
coh is generated by

L(~ad0ƒ,1!,d

ipV

The proof uses results of Shimura to express the Petersson
inner product of ƒ with itself in terms of the value of the
L-function. In particular, the ratio is an element of 2.

Recall that we have assumed here that S contains PƒøSƒ, but
the formula actually holds assuming only that S contains Sƒ.
However, we have not explained how to define V in that
situation. We shall see that in fact

THEOREM 4.2. V is independent of S.
So we could use any S containing SƒøPƒ to define V. From the
theorem, we also see precisely how Cƒ,S

coh varies with S: Adding
primes other than , to S simply corresponds to dropping the
corresponding Euler factors from the L-function. Further-
more, we shall see that the congruences established by Ribet
are related to the theorem, which is essentially a reformulation
of Wiles’ generalization (3) of Ribet’s result.

Dropping Euler Factors

Ribet’s result (2) on ‘‘raising the level’’ is the following
theorem:
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THEOREM 5.1. If p does not divide Nƒ then the following are
equivalent: (a) There exists g such that ƒ ; g, xƒ 5 xg and Ng 5
dp for some divisor d of Nƒ.

(b) The congruence ap(ƒ)2 [ xƒ(p)(p 1 1)2 mod l holds.
The introductory example is a congruence as in the theorem.

We take p 5 7 and l dividing 3. Because ap(ƒ) 5 22, we see
there must be a form g congruent to ƒ with Ng 5 77 (because
Ng 5 7 is impossible).

The direction (a) f (b) of the theorem follows from
consideration of the representation r#ƒ. We give the idea of the
proof in the case p Þ ,: If there exists a g as in the theorem,
then the ratio of the eigenvalues of r#ƒ (Frobp) must be p61mod
l. Then one applies the formula

ap~ƒ!2 2 xƒ~p!~p 1 1!2 5 2 xƒ~p!~p 2 apbp
21!~p 2 bpap

21!.

The direction (b)f (a) is closely related to Theorem 4.2, which
shows that

Cƒ,¥ø{p}
coh 5 ~p 2 1!~ap~ƒ)2 2 xƒ~p!~p 1 1!2!Cƒ,¥

coh

if p is not in S and does not divide Nƒ. Ribet’s proof relies on
a comparison of cohomology congruence ideals, but his setup
is slightly different from the one here. He compares cohomol-
ogy congruence ideals at level Nƒ and Nƒp, with the result that
the factor of p 2 1 does not occur.

To prove Theorem 4.2, one defines a certain TS9-linear
injection

f:H1~X¥,2!m
(
3 H1~X¥9,2!m9 for S9 . S.

It is defined so that f(M),M9 where 9 indicates we are using
S9 instead of S. We may even normalize the map so that this
restriction, tensored with C, sends ƒS to ƒS9, i.e., the map drops
Euler factors. The key ingredient in the proof of independence
is the following generalization by Wiles of a lemma of Ribet:

LEMMA 5.2. f has torsion-free cokernel.
This is proved using a result of Ihara whose role in the
comparison of cohomology congruence ideals is identified in
Ribet’s work.

It follows that f induces an isomorphism M 3 M9, and we
conclude that A 5 A9 using f(x),f(y) as a basis for M9. From
Theorem 4.2 we deduce:

COROLLARY 5.3. Suppose that S9.S.PƒøSƒ. If , is not in S9
2 S, then let « 5 0. Otherwise let « 5 2 or 3 according to whether
or not Nƒ is divisible by ,. Then

• Cf,S
coh 5 ,2«Cf,S9

coh PpeS92SLp~ad0f,1!,

• and if Cf,S 5 Cf,S
coh, then

Cƒ,¥9 , ,«Cƒ,¥ P
p[¥92¥

Lp~ad0ƒ,1!21. [3]

Relation with Selmer Groups

Using Mazur’s theory of deformations of Galois representa-
tions, one associates a ring RS and a universal deformation

Gal(Q̄/Q)3 GL2(R¥)

of r#ƒ minimally ramified outside S (see ref. 6). Here we work
over the completion 2 of 2̂, which we view as contained in Q# ,.
Supposing that S contains Sƒ, we obtain a homomorphism pƒ,S:
RS 3 Q# , from rƒ and the universal property. The 2̂-module

Fƒ,¥ 5 kerpƒ,¥y(kerpƒ,¥)2

can be described using Galois cohomology. In fact we have a
canonical isomorphism

Hom2(Fƒ,¥,Ky2) > H¥
1 (GQ,LRz,

Q,yZ,) [4]

where L is gotten from ad0rƒ. The group on the right is
sometimes called a Selmer group. The subscript S indicates
that for p¸S the cohomology classes are supposed to restrict
to elements of Hƒ

1(Gp,L RZ,
Q,yZ,) (as defined in ref. 8). There

is also a possibly weaker condition imposed at p 5 , if it is in
S (3, 9). The universal property of the deformation also yields
a surjective homomorphism fS from RS to the completion of
TS. The key result of Wiles (3) and its generalization in (9) is
that fS is an isomorphism (6, 7).

This result turns out to be related to the comparison of the
congruence ideal Cƒ,S with the Fitting ideal of Fƒ,S, which we
denote Dƒ,S. (Recall that if Fƒ,S has finite length d, then its
Fitting ideal is generated by ld, and if the length is infinite than
the Fitting ideal is trivial.) On the one hand, an easy commu-
tative algebra argument shows that

Dƒ,¥ , Ĉƒ,¥. [5]

On the other hand, a deeper commutative algebra argument
shows that equality holds in Eq. 5 if and only if the following
hold: (a) fS is an isomorphism, and (b) TS is a complete
intersection.

One first proves the two assertions in the case S 5 À, so to
get started one needs the existence of ƒ such that Sƒ 5 À. This
existence is a version of Serre’s epsilon conjecture, and the
most difficult step in the proof is Ribet’s theorem on lowering
the level (5). Assuming that we also have Pƒ 5 À, Taylor and
Wiles (4) show that TÀ is a complete intersection, and using this
fact Wiles (3) shows that fÀ is an isomorphism. Their proofs
use the generalization of Mazur’s result discussed in Remark
3.2, and from which we also deduce

Dƒ,¥ 5 Ĉƒ,¥ 5 Ĉƒ,¥
coh [6]

if S 5 Sƒ 5 Pƒ 5 À.
Combining the inclusion Eq. 3 with its counterpart

Dƒ,¥9 . ,« Dƒ,¥ P
p[¥92¥

Lp(ad0ƒ,1)21

resulting from a Galois cohomology argument, we find that Eq.
6 holds for arbitrary S provided Sƒ 5 Pƒ 5 À. Hence we have (a)
and (b), and therefore Dƒ,S 5 Ĉƒ,S, assuming only that S . Sƒ and
Pƒ 5 À. Applying the result of remark 3.2, we get Eq. 6 as well in
that case.

Remark 6.1: Improvements to these arguments, due to
Faltings, Lenstra, Fujiwara, and the author (10) establish (a),
(b), and Eq. 6 simultaneously (first for S 5 À, then in general)
without appealing to Remark 3.2.

If Pƒ is not empty, then we can sometimes get empty Pƒ for a
twist, but in general we appeal to ref. 9 to get (a) and (b) in the
case of S 5 Sƒ 5 À, along with Eq. 3 if S9 5 Pƒ. We conclude that

THEOREM 6.2. Keep the above hypotheses and notation.

• For arbitrary (, (a) and (b) hold.

• If ( contains Sf, then
L(~ad0f, 1),d

ipV
is a generator for Df,(.

• If ( contains Sf ø Pf, then Eq. 6 holds.
Remark 6.3: Coates and Flach have pointed out that one can

deduce form the theorem a formula relating the order of HÀ
1

(GQ,LRz,
Q,yZ,) to LS(ad0f,1). To relate the orders of HÀ

1 and
HS

1 , one uses a variant of proposition 5.14 (ii) of ref. 8. In the
case of f corresponding to an elliptic curve, see section 3 of ref.
11 for this variant and ref. 12 for a discussion of the relation
with the Tamagawa number conjecture (8).
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1991–92, ed. David. S. (Birkhauser, Boston), pp. 23–36.

11146 Colloquium Paper: Diamond Proc. Natl. Acad. Sci. USA 94 (1997)



Copyright © National Academy of Sciences. All rights reserved.

(NAS Colloquium) Elliptic Curves and Modular Forms 

Proc. Natl. Acad. Sci. USA
Vol. 94, pp. 11147–11148, October 1997
Colloquium Paper

This paper was presented at a colloquium entitled ‘‘Elliptic Curves and Modular Forms,’’ organized by Barry Mazur
and Karl Rubin, held March 15–17, 1996, at the National Academy of Sciences in Washington, DC.

On degree 2 Galois representations over F4
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ABSTRACT We discuss proofs of some new special cases
of Serre’s conjecture on odd, degree 2 representations of GQ.

We shall call a simple abelian variety AyQ modular if it is
isogenous over Q to a factor of the Jacobian of a modular
curve. If AyQ is a modular abelian variety then F 5
End0(AyQ) is a number field of degree dim A. Replacing A by
an isogenous (over Q) abelian variety we may assume that
End(AyQ) 5 2F. If l is a prime of 2F with residue charac-
teristic l, then GQ acts on A[l] R F̄l, so that there is a
continuous representation rA,l: GQ 3 GL2(F̄l). We shall call
a representation arising in this way modular. If c denotes
complex conjugation then det rA,l(c) 5 21, i.e., rA,l is odd.

The following two conjectures have been extremely influ-
ential. The first is a generalization of the Shimura–Taniyama
conjecture, the second is due to Serre (1).

CONJECTURE 1: If AyQ is a simple abelian variety and
End0(AyQ) is a number field of degree dim A then A is modular.

CONJECTURE 2: If r: GQ 3 GL2(F̄l) is odd and irreducible
then r is modular.

Very little is known about Serre’s conjecture, but we do have
the following deep result of Langlands (2) and Tunnell (3).

THEOREM 1: If r: GQ 3 GL2(F2) or GL2(F3) is odd and
absolutely irreducible then r is modular.

Recent work of Wiles (4) completed by Taylor and Wiles (5)
and extended by Diamond (6) proves the following theorem.

THEOREM 2: Suppose AyQ is a simple abelian variety and that
End(AyQ) is the ring of integers in a number field, F, of degree
dim A. Suppose also that there is a prime l of 2F with residue
characteristic l Þ 2 such that A has semi-stable reduction at l, rA,l

restricted to GQ(=(21)(l21)y2l) is absolutely irreducible and rA,l is
modular. Then A is modular.

In ref. 7 we obtain a few new cases of Serre’s conjecture. In
fact we prove the following theorem.

THEOREM 3: 1. If r: GQ 3 GL2(F5) has determinant the
cyclotomic character and if #r(I3)u10 then r is modular.

2. If r: GQ 3 GL2(F4) is unramified at 3 and 5 then r is
modular.

This is an easy consequence of the two theorems cited above
and the following algebro-geometric result. By a =5 abelian
surface we shall mean a triple (A, l, i) where A is an abelian
surface, l: A 3̃ A~ is a principal polarization and i: Z[(1 1
=5)y2]

(
3 End(A), which has image fixed by the Rosati

involution coming from l (that is, l is Z[(1 1 =5)y2]-linear).
THEOREM 4: 1. If r: GQ 3 GL2(F5) has determinant the

cyclotomic character then there exists an elliptic curve EyQ such
that r > rE,5 and rE,3: GQ 3 GL2(F3) is surjective.

2. If r: GQ3 SL2(F4) then there is a =5 abelian surface (A,
l, i)yQ such that r > rA,2 and rA,=5: GQ 3 GL2(F5) is
surjective.

Part 1 of this theorem is a slight generalization of an old
result of Hermite (8); see also refs. 9 and 10. [We remark that
the analogous statement for representations GQ 3 GL2(Zy
4Z) is false.] In this form (except for the surjectivity of rE,3)
one of us (R.T.) pointed it out to Wiles in 1992 and explained
how it could be used to deduce part 1 of Theorem 3 from the
Shimura–Taniyama conjecture (see ref. 4). Part 2 seems to be
new. The same argument also gives the following result [recall
that SL2(F4) > A5].

PROPOSITION 1: Let K be a field of characteristic zero, f [ K[X]
a quintic polynomial with discriminant d and LyK the splitting
field for f. Then there is a =5 abelian surface AyK(=d) such that
L 5 K(=d)(A[2]).

We will now sketch the proof of part 2 of Theorem 4 (see ref.
7 for the details). Let Y denote the cubic surface

O
i51

5

yi 5 O
i51

5

yi
3 5 0.

It has an obvious action of S5. The 27 lines on Y divide into 3
orbits of length 15, 6, and 6 under the action of A5. The lines
in the orbit of length 15 are all defined over Q. We will let Y0

denote their complement. The other 12 lines are each defined
over Q(=5). The lines in each orbit of length 6 are disjoint.

Y0 is the open subspace of the coarse moduli space of
=5 abelian surfaces with full level 2 structure which param-
etrizes =5 abelian surfaces which are not the product of two
elliptic curves. [Over C this was discovered by Hirzebruch (see
for example ref. 11).] We can twist Y and Y0 by r: GQ 3
SL2(F4) > A5 to obtain Yr and Yr

0. Then Yr is still a cubic
surface because the action of A5 extends to one on the ambient
P3 which itself lifts to a homomorphism A5 3 GL4. Yr also
contains 6 disjoint lines collectively defined over Q(=5) and
blowing them down we obtain P2yQ(=5) (again because the
action of A5 lifts to a representation A53 GL3). If Xr denotes
the restriction of scalars from Q(=5) to Q of Yr then we
deduce that XryQ is a rational 4-fold. There is also a dominant
rational map u: Xr3 Yr which on geometric points sends a pair
(y1, y2) to the third point of intersection of the line y1y2 with
Yr. We deduce that Yr

0 contains many rational points.
Unfortunately, a rational point y [ Yr

0 does not necessarily
give rise to a =5 abelian surface A which is defined over Q.
However if it does then r > rA,2. Over Y0 there is no universal
abelian surface. However there is a canonical P1-bundle CyY0

(for the Zariski topology) and six sections s1, . . . , s6, such that
if y [ Y0(Q̄) then the =5 abelian surface parametrized by y
is the Jacobian of the double cover of Cy ramified exactly at
s1(y), . . . , s6(y). The action of A5 extends to C, where it
permutes s1, . . . , s6 transitively, so that we get a P1-bundle
CryYr

0 (now for the étale topology). A point of Yr
0(Q) gives rise

to a =5 abelian surface if and only if it is in the image of Cr(Q).
Although CryYr

0 is not split, one can show that its pull back to
Xr is split. Thus points in u(Xr(Q)) do correspond to =5
abelian surfaces defined over Q. This is sufficient to prove part

© 1997 by The National Academy of Sciences 0027-8424y97y9411147-2$2.00y0
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2 of Theorem 4. [To show that the pull back of Cr to Xr splits
we first show that it extends outside codimension two and
hence is equivalent to a constant bundle (as Xr is rational). Then
we find one rational point on it above the boundary of Xr.]
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