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(NAS Colloquium) Elliptic Curves and Modular Forms

Proc. Natl. Acad. Sci. USA
Vol. 94, p. 11109, October 1997
Colloquium Paper

This paper is an introduction to the following papers, which were presented at a colloquium entitled “Elliptic Curves and
Modular Forms,” organized by Barry Mazur and Karl Rubin, held March 15-17, 1996, at the National Academy of

Sciences in Washington, DC.

Introduction

BARRY MAZUR* AND KARL RUBINT

*Department of Mathematics, Harvard University, Cambridge, MA 02138; and TDepartment of Mathematics, Ohio State University, Columbus, OH 43210

The colloquium “Elliptic Curves and Modular Forms” was
held at the National Academy of Sciences in Washington, DC,
March 15-17, 1996. The topics covered by this colloquium have
been extraordinarily active lately. These topics have played an
essential role in some of the exciting recent work on classical
problems, including Fermat’s Last Theorem. They will surely
continue to be central to further developments in Number
Theory. The 11 articles to follow are the texts of addresses
given during this colloquium. These articles range from the

study of “p-adic Galois representations, L functions, modular
forms, and the p-adic congruences they satisfy” (as in the
articles by John Coates, Robert Coleman, Fred Diamond,
Jean-Marc Fontaine, Ralph Greenberg, Haruzo Hida, Berna-
dette Perrin-Riou, and Richard Taylor) to the study of the
delicate geometry of modular curves and Shimura varieties (as
in the articles by Gerd Faltings and Ken Ribet) to the analytic
number-theoretic study of Zeta functions and Eisenstein series
of classical groups (as in the article by Goro Shimura).

Copyright © National Acadéﬂr\w&f Sciences. All rights reserved.
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Proc. Natl. Acad. Sci. USA
Vol. 94, pp. 11110-11114, October 1997
Colloquium Paper

This paper was presented at a colloquium entitled “Elliptic Curves and Modular Forms,” organized by Barry Mazur
and Karl Rubin, held March 15-17, 1996, at the National Academy of Sciences in Washington, DC.

Parametrizations of elliptic curves by Shimura curves and by

classical modular curves

KENNETH A. RIBET AND SHUZO TAKAHASHI

Mathematics Department, University of California, Berkeley, CA 94720-3840

ABSTRACT Fix an isogeny class sl of semistable elliptic
curves over Q. The elements of </ have a common conductor
N, which is a square-free positive integer. Let D be a divisor
of N which is the product of an even number of primes—i.e.,
the discriminant of an indefinite quaternion algebra over Q.
To D we associate a certain Shimura curve Xf,) (N/D), whose
Jacobian is isogenous to an abelian subvariety of Jo(V). There
is a unique 4 € s for which one has a nonconstant map
mp : Xo(N/D) — A whose pullback A — Pic®(X5 (N/D)) is
injective. The degree of m7p is an integer &, which depends only
on D (and the fixed isogeny class s{). We investigate the
behavior of &, as D varies.

Let f = Za,(f)e*™ be a weight-two newform on I'g(N), where
N = DM is the product of two relatively prime integers D and
M and where D is the discriminant of an indefinite quaternion
division algebra over Q. Assume that the Fourier coefficients
of f are rational integers, so that f is associated with an isogeny
class o of elliptic curves over Q. Among the curves in o is a
distinguished element A4, the strong modular curve attached to
f. Shimura (1) has constructed 4 as an optimal quotient of
Jo(N). Thus A is the quotient of Jo(V) by an abelian subvariety
of this Jacobian. Composing the standard map Xo(N) <= Jo(IV)
with the quotient & Jo(N) — A, we obtain a covering m: Xo(N)
— A whose degree & is an integer which depends only on f.

The integer 6 has been regarded with intense interest for the
last decade. For one thing, primes dividing & are “congruence
primes for f”: if p divides §, then there is a mod p congruence
between f and a weight-two cusp form on I'¢(N) which has
integral coefficients and is orthogonal to f under the Petersson
inner product. (See, e.g., Section 5 of ref. 2 for a precise
statement.) For another, it is known that a sufficiently good
upper bound for 8 will imply the ABC Conjecture (3, 4). More
precisely, as R. Murty explains in ref. 24, the ABC Conjecture
follows from the conjectural bound

82 O(N?*®) forall e > 0.

(For a partial converse, see ref. 5.) While 8 is easy to calculate
in practice (6), it seems more difficult to manage theoretically.
Murty (24), has summarized what bounds are known at
present.

This note concerns relations between 8 and analogues of &
in which Jo(N) is replaced by the Jacobian of a Shimura curve.

To define these analogues, it is helpful to give a character-
ization of & in which 7 does not appear explicitly. For this, note
that the map &V: AV <= Jy(N)V which is dual to ¢ may be viewed
as a homomorphism A — Jo(N), since Jacobians of curves (and
elliptic curves in particular) are canonically self-dual. The
image of £V is a copy of A which is embedded in Jo(N). The
composite &&V € End A is necessarily multiplication by some

© 1997 by The National Academy of Sciences 0027-8424/97/9411110-5$2.00/0
PNAS is available online at http://www.pnas.org.

integer; a moment’s reflection shows that this integer is 6. Let
I'f(M) be the analogue of I'y(M) in which SL(2, Z) is replaced
by the group of norm-1 units in a maximal order of the rational
quaternion algebra of discriminant D. Let X5 %\/[) be the
Shimura curve associated with 'y (M) and letJ' = J§'(M) be the
Jacobian of X{(M). The correspondence of Shimizu and
J acquet—Lan%lands (7) relates f to a weight-two newform f” for
the group I'j(M); the form f’ is well defined only up to
multiplication by a nonzero constant. Associated to f’ is an
elliptic curve A’ which appears as an optimal quotient §' :J' —
A’ of J'. Using the techniques of Ribet (8) or the general
theorem of Faltings (9), one proves that 4 and A’ are iso-
genous—i.e., that A’ belongs to . We define §°(M) € Z as the
composite &'°(§')V.

To include the case D = 1 in formulas below, we set 8'(N)
= o.

Roberts (10) and Bertolini and Darmon (section 5 of ref. 11)
have pointed out that the Gross—Zagier formula and the
conjecture of Birch and Swinnerton-Dyer imply relations
between & and §°(M) in Q*/(Q*)%. Bertolini and Darmon
allude to the possibility that there may be a simple, precise
formula for the ratio 8/5°(M). The relation which they envis-
age involves local factors for the elliptic curves 4 and 4" at the
primes p|D.

While these factors may well be different for the two elliptic
curves, we will ignore this subtlety momentarily and introduce
only those factors which pertain to 4. Suppose, then, that p is
a prime dividing D, so that 4 has multiplicative reduction at p.
Let ¢, be the number of components in the fiber at p for the
Néron model of 4; i.e., ¢, = ord,A, where A is the minimal
discriminant of A. As was mentioned above, d controls con-
gruences between f and newforms other than f in the space §
of weight-two forms on T'o(N); analogously, 8°(M) controls
congruences between f and other forms in the D-new subspace
of S. At the same time, level-lowering results such as those of
Ribet (12) lead to the expectation that the ¢, control congru-
ences between f and D-old forms in S. This yields the heuristic
formula:

82 8'(N)/[ [ .
plD

Equivalently, one can consider factorizations N = MpgD,
where p and g are distinct prime numbers, D = 1 is the product
of an even number of distinct primes, and the four numbers p,
g, D, and M are relatively prime. The formula displayed above
amounts to the heuristic relation

2 87 (pgM)

89D (M) e
rtq

(1]

for each factorization N = MpgD. Although simple examples
show that Eq. 1 is not correct as stated, we will prove that a
suitably modified form of it is valid in many cases.

Copyright © National Acadéﬂnkll& Sciences. All rights reserved.
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To state our results, we need to be more precise about the
numbers ¢, and ¢, which appear above. We set:

J=TI2Mpq),J =T5(M).

Let¢:J—Aand & :J' — A’ be the optimal quotients of J and
J' for which A and A’ lie in «. (This is a change of notation,
since we have been taking A to be an optimal quotient of Jo(N);
the new elliptic curve A4 is the unique curve isogenous to the
original A which appears as an optimal quotient of J.) Let ¢,
and ¢, be defined for 4 as above; i.e., ¢, = ord,A(4) and ¢, =
ord,A(4). Note that c,, for instance, may be viewed as the
order of the group of components of the fiber at p of the Néron
model for A. This group is cyclic. Let ¢, and ¢, be defined
analogously, with 4’ replacing 4. Notice that ord.c, = ordc,
and ordec, = ordecg for each prime ¢ such that A[€] is
irreducible. Indeed, the curves 4 and A’ are isogenous over Q.
The irreducibility hypothesis on A[€] implies that any rational
isogeny A — A’ of degree divisible by ¢ factors through the
multiplication-by-£ map on A. Hence there is an isogeny ¢ : A
— A' whose degree is prime to €. If d = deg ¢, the map ¢
induces an isomorphism between the prime-to-d parts of the
component groups of A and A’, both in characteristic p and in
characteristic g.
THEOREM 1. One has

8P (pgM
S9(M) = (1,761 )
€prCq

€(D, p, q, M)?,

where the “error term” €(D, p, q, M) is a positive divisor of c;c,.
Further, suppose that M is square free but not a prime number,t
and let € be a prime number which divides €(D, p, g, M). Then
the Gal(Q/Q)-module A[{] is reducible.

In our proof of the theorem, we shall first prove a version of
the displayed formula in which €(D, p, g, M) is expressed in
terms of maps between component groups in characteristics p
and q. (See Theorem 2 below.) We then prove the second
assertion of Theorem 1.

Before undertaking the proof, we illustrate Theorem 1 by
considering a series of examples. As the reader will observe,
these examples show in particular that the “error term” €(D,
P, g, M) is not necessarily divisible by all primes € for which A[€]
is reducible.

For the first example, take M = 1, D = 1, and pqg = 14. Thus
N = 14, so that the curves A and A’ lie in the unique isogeny class
of elliptic curves over Q with conductor 14. [There is a unique
weight-two newform on I'g(14).] According to the tables of
Antwerp IV, there are six curves in this isogeny class [ref. 13, p.
82]. The curve A is identified as [14C] in the notation of ref. 13.
We have 4 = Jy(14); and A’ = J'(1), so that 8'(14) = §'4(1) =
1. Since ¢; = 6 and ¢;7 = 3, Theorem 1 yields the pair of equalities

3ch=%(1,2,7,1)% 6c5=%(1,17, 2, 1)

there are two equalities because there are two choices for the
ordered pair (p, q). By Theorem 1, the integers €(1, 2,7, 1) and
€(1, 7, 2, 1) are divisible only by the primes 2 and 3. Indeed,
we see (once again from ref. 13) that these are the only primes
¢ for which A[{] is reducible. Looking further at the tables, we
see that there is a unique curve 4’ in the isogeny class of 4 for
which 3c; is the square of an integer. This curve is [14D]. Thus
we have A’ = [14D], as Kurihara determined in ref. 14.
There are five similar examples of products pg for which
J57(1) has genus one, namely 2-17, 2-23, 3-5, 3-7, and 3-11. [See,
e.g., the table of Vignéras (ref. 15, p. 122).] In each of the five
cases, we shall see that 4" = Jj?(1) can be determined as a
specific elliptic curve of conductor pg with a small amount of

TIn a forthcoming article, the second author expects to study the
excluded case where M is a prime number.

Proc. Natl. Acad. Sci. USA 94 (1997) 11111

detective work. [We suspect that this detective work was done
15 years ago by J.-F. Michon (see refs. 16 and 17).]

To begin with, we note that in each case there is a single
weight-two newform on I'g(pg) with integral coefficients, i.e.,
a single isogeny class of elliptic curves of conductor pg. The
strong modular elliptic curve 4 of conductor pq is identified in
ref. 13. Knowing this curve, we have at our disposal ¢, and ¢,.
Further, the integer 8'(pq) is available from Cremona’s table
(ref. 6, pp. 1247-1250).

In the two cases pg = 3'5 and 3-7, A coincides with the
Jacobian Jy(pq). In this circumstance, an easy argument based
on Proposition 1 below shows that the local invariants of 4 and
A’ = J§(1) are “flipped”—we have ¢, = ¢, and ¢; = c,,. After
glancing at p. 82 of ref. 13, one sees that 4’ = [15C] in the first
of the two cases and A’ = [21D] in the second.

Let us now discuss the remaining three cases, 2-17, 2:23, and
3-11, where Cremona’s table gives the values 2, 5, and 3
(respectively) for 8'(pq). Using Theorem I and the value &49(1)
= 1 in each case, we obtain equations which express c;, and c;
as products of known rational numbers and unknown square
integers. These are enough to determine 4'. Indeed, when
pq = 34, we have

1=——%(1,17,2, 1)

’
6C]7

so that 3ci7 is a square. We then must have A’ = [34C]. When
pq = 46, 2ch3 is a square, and we conclude A" = [23B]. When
pq = 33, 2ciy is a square and thus 4" = [33B].

In the six examples we have discussed so far, an alternative
approach would have been to read off the numbers ¢, and ¢,
from a formula of Jordan and Livné (section 2 of ref. 18; see
Theorem 4.3 of ref. 8). As we have seen, A’ is determined in
each case by these local invariants.

For an example with a different flavor, we take f to be the
modular form associated with the curve A = [S7E] of ref. 13.
This curve is isolated in its isogeny class; i.e., A[ €] is irreducible
for all €. In particular, 4" = A. Because A[(] is irreducible for
all ¢, the theorem gives €(1, 3, 19, 1) = 1. Hence

557(1) = 81(57)/(C3C19)-

Now Cremona’s table (ref. 6, p. 1247) yields the value §'(57)
= 4; also, one has c3 = 2, c19 = 1. Thus we find 87(1) = 2. This
relation is confirmed by results of D. Roberts (10), who shows,
more precisely, that 4 is the quotient of X3'(1) by its Atkin—
Lehner involution wss.

Next, we consider the elliptic curves of conductor N = 714 =
2-37-17, which are tabulated in Cremona’s book (19). These
curves fall into nine isogeny classes, A-I. Four of these classes,
B, C, E and H, contain precisely one element. In other words,
the four elliptic curves 714B1, 714C1, 714E1, and 714H1 are
isolated in their isogeny classes. For each elliptic curve,
Theorem 1 expresses §"14(1) as well as the six degrees &#4(714/
pq) for pg|714 in terms of 5'(714) and the integers ¢, for p|714.
These numbers are available from refs. 6 and 19. The most
striking of the four elliptic curves is perhaps 714H1. For this
curve, ¢a = ¢3 = ¢7 = c¢17 = 1 and 8'(714) = 40. Hence §7'%(1)
and all degrees &49(714/pq) are equal to 40.

For a final example, we consult further tables of John
Cremona which are available by anonymous ftp from
euclid.ex.ac.uk in /pub/cremona/data. Let A be the curve
denoted 1001C1, which has Weierstrass data [0, 0, 1, —199,
1092]. Its minimal discriminant is —72113132. This curve is
isolated in its isogeny class, which suggests that €(1, 7, 13, 11)
= 1. Since 11 is a prime, the second part of Theorem I yields
no information. However, by Proposition 3 below, €(1, 7, 13,
11) divides both c7 and ¢;3. Each of these integers is 2, so that
we may conclude at least that €(1, 7, 13, 11) is 1 or 2.
Cremona’s tables give the value §'(1001) = 1008; hence

Copyright © National Academy of Sciences. All rights reserved.
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8713(11) is either 252 or 1008.% On the other hand, since ¢7 and
c11 are relatively prime, we find that €(1, 7, 11, 13) = 1. Thus
8711(13) = 1008/6 = 168. Similarly, §'1'13(7) = 168.

The First Assertion of Theorem 1

If VVis an abelian variety over Q and ¢ is a prime, let ®(V, ¢)
be the group of components of the fiber at € of the Néron
model of V. This group is a finite étale group scheme over Spec
Fy,i.e., afinite abelian group furnished with a canonical action
of Gal(F¢/F). The association V' — ®(V, €) is functorial. For
example, as we noted above, if A is an elliptic curve with
multiplicative reduction at p, then ®(4, p) is a cyclic group of
order cp.
The maps ¢ and ¢ induce homomorphisms

£,: 9, q) > D4, q), & U, p) > DA, p).

Here is a version of the first assertion of Theorem I in which
€(D, p, g, M) appears with a precise value.
THEOREM 2. One has

8P (pgM
S90(M) = (I?q )
€pCq

€(D, p, q, M)?,

where €(D, p, q, M) = #imageé&.#coker &.

To prove the theorem, we compare the character groups of
algebraic tori which are associated functorially to the mod p
reduction of J' and the mod g reduction of J. Recall that the
former reduction is described by the well known theory of
Cerednik and Drinfeld (20-22), while the latter falls into the
general area studied by Deligne and Rapoport (23). [Although
Deligne and Rapoport provide only the briefest discussion of
the case D > 1, what we need will follow from recent results
of K. Buzzard (31).] Our comparison is based on the oft-
exploited circumstance that the two reductions involve the
arithmetic of the same definite rational quaternion algebra:
that algebra whose discriminant is Dgq.

To state the result which is needed, we introduce some
notation: if I/ is an abelian variety over Q and ¢ is a prime
number, let T be the toric part of the fiber over F, of the
Néron model for " and write ¥(V, €) for the character group
Homg (T, Grm). Thus &(V, €) is a free abelian group which is
furnished with compatible actions of Gal(F;/F;) and Endg
V. At least in the case when " has semistable reduction at €,
there is a canonical bilinear pairing

uy: XV, 0) X E(WVV, 0) > 7

which was introduced by Grothendieck (Theorem 10.4 of ref.
25). If, moreover, V' is canonically self-dual (e.g., if V' is the
Jacobian of a curve or a product of Jacobians), then the
monodromy pairing uy is a pairing on (¥, €) (in the sense that
it is defined on the product of two copies of this group).

The relation between ®(V, €) and the character groups & is
as follows (Theorem 11.5 of ref. 25): there is a natural exact
sequence

0%V, ) S Hom(X(V, €),Z) > ®(V, ) >0
in which « is obtained from u;, by the standard formula

(aX)) = wix, y).

PROPOSITION 1. There is a canonical exact sequence

0 =%, p) =%, q) = LJ", q) X X", q) — 0,

#The forthcoming results of the second author which were mentioned
earlier should prove that ¢(1, 7, 13, 11) = 1 and that §713(11) = 252.

Proc. Natl. Acad. Sci. USA 94 (1997)

where J' = J5(gM). The sequence is compatible with the action
of Hecke operators T, for n prime to N, which operate in the usual
way on J, J', and J'. Moreover, the map v is compatible with the
monodromy pairings on X(J', p) and X(J, q) in the sense that
urx, y) = u(w, ) forallx,y € (', p).

When D = 1, the proposition was proved in ref. 12. (See
especially Theorem 4.1 of ref. 12.) The case D > 1 can be handled
in an analogous way, thanks to K. Buzzard’s analogue (31) of the
Deligne—Rapoport theorem (23). This theme is explored in the
work of Jordan and Livné (26) and L. Yang (27).

Let & be the “f-part” of ¥(J, q), defined for example as the
group of charactersx € ¥(J, q) such that T,x = a,(f)x for all
n prime to N. [Recall that a,(f) is the nth coefficient of f.]
It is not hard to check that & is isomorphic to Z and that in
fact it is contained in X(J', p), viewed as a subgroup of %(J,
q) via v. Indeed, consider the decomposition of J as a product
up to isogeny of simple abelian varieties over Q. One of the
factors is A, which occurs with multiplicity 1, and the other
factors are non-f: they correspond to newforms of level
dividing N whose nth coefficients cannot coincide with the
an(f) for all n prime to N. Hence £ ® Q is the tensor product
with Q of the character group of the toric part of Ay, this
shows that & has rank 1. A similar computation shows that
£ N X', p) has rank 1, since A occurs up to isogeny exactly
once inJ' and since A has multiplicative reduction at p. The
image of £ in X(J", q) X ¥(J", q) is thus finite; it is zero since
%(J", q) is torsion free.

Fix a generator g of £ and set 7 = uy(g g). An arbitrary
nonzero element ¢ of £ may be written ng, where n is a nonzero
integer. We then have u(t, 1) = n’r.

By the theorem of Grothendieck (25) that was cited above,
¢, may be interpreted as u4(x, x), where x is a generator of %(4,
q) and where u4 is the monodromy pairing arising from the
mod g reduction of 4. Meanwhile, the map & : J — A4 induces
by pullback a homomorphism &* : ¥(4, q) — ¥(J, g) and the
dual of £ induces similarly a homomorphism &, : €(J, g) — %(A4,
q). The two homomorphisms are adjoint with respect to the
monodromy pairings:

uy(&x,y) = uax, £y) forallx €X(4, q),y € X, q).

Notice, however, that & &* is multiplication by § := 8°(pgM)
on (4, q), since it is induced by the endomorphism “multi-
plication by &” of A. Thus

Suy(x, x) = uqx, §,(£%%)) = uy(£*x, £*x)

for allx € (4, g). On taking x to be a generator of ¥(4, q),
we find

dc,=(£: %4, Q)*,

where we view ¥(4, q) as embedded in & by &*. A similar
argument applied to 4’ mod p yields &'c, = (£ : £(4', p))*>,
where 8 = 8°P4(M). [To prove this relation, one must view &£
as a subgroup of ¥(J’, p) and interpret T as uy (¢, t), where g =
ut. The legitimacy of this interpretation stems from the com-
patibility among ¢, uy, and u,.]

We emerge with the preliminary formula

5'c) ~ 8¢,
(£:%A',p) (L:%A4,9)*

After isolating & on one side of the equation, we see that
Theorem 2 is implied by the following result:

PROPOSITION 2. Let &, and &, be the homomorphisms ®(J, q)
— ®(A, q) and ®(J', p) — D(A’, p) which are induced by & and
&' on component groups. Then (£ : X(A, q)) = #coker &, and
(£ %A, p)) = #coker E.

Copyright © National Academy of Sciences. All rights reserved.
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Proof: The two formulas are analogous; we shall prove only
the assertion relative to &,. Because of the assumption that & :
J — A is an optimal quotient, the map &V : 4 — J is injective.
One deduces from this the surjectivity of the map on character
groups &, : ¥(J, q) — %(A4, q). Consider the commutative
diagram with exact rows

0 — %4, q) — Hom(%(4, q),Z) = ®(A,q) — 0
1 1 1

0 - %¥(,q) — Hom(X({, q),Z) —®J,q) —0

in which the three vertical maps are induced by &. [For instance,
the central vertical map is Hom(&*, Z), where &* : ¥(4, q) —
%(J, q) is an injective map between free abelian groups of finite
rank.] The exactness of the rows is guaranteed by Theorem 11.5
of ref. 25. Because the left-hand vertical map is surjective, the
cokernels of Hom(¢&*, Z) and the right-hand &, may be
identified.

Itis clear that the order of coker(Hom(¢&*, Z)) coincides with
the order of the torsion subgroup of coker(&*). Since ¥(J, g)/%
is torsion free by the definition of ¥, we obtain first the
formula

s

#coker(Hom(&*,Z)) = (£ : %(4, q))
and then the desired equality. ]
The Second Assertion of Theorem 1

We assume from now on that N is square free and that ¢ is a
prime for which A[€] is irreducible. We should mention in
passing that the irreducibility hypothesis holds for one 4 €
if and only if it holds for all A € . Indeed, the semisimpli-
fication of the mod € Galois representation A[€] depends only
on si. At the same time, A[{] is irreducible if and only if its
semisimplification is irreducible.

LEMMA 2. There is a prime r|N for which € does not divide c,.

Proof: Suppose to the contrary that ¢ divides c, for all r|N.
Then the mod ¢ Gal(Q/Q)-representation A[€] is finite at all
primes (section 4.1 of ref. 28). If € = 2, this contradicts a
theorem of Tate (29). If £ > 2, a theorem of the first author
(Theorem 1.1 of ref. 12) implies that A[€] is modular of level
1 in the sense that it arises from the space of weight-two cusp
forms on SL(2, Z). Since this space is zero, we obtain a
contradiction in this case as well. [

In order to prove the second assertion of Theorem 1, which
concerns the “¢-part” of €(D, p, g, M), we will consider varying
decompositions N = Dp-g:M. In these decompositions, the
isogeny class s, and the integer N in particular, are understood
to be invariant. We view the prime ¢ as fixed, and recall the
hypothesis that A[€] is irreducible. (If this irreducibility hy-
pothesis holds for one A € o, then it holds for all A.) Set

E(D,p, q, M) -= eord(%(D,p,q,M)’

so that e(D, p, g, M) is the “{-part” to be studied.
PROPOSITION 3. If N = DpgM, then e(D, p, q, M) is the order
of the {-primary part of the cokernel of

gD, p) > DA, Pp).

Further, we have e(D, p, g, M) = e(D, q, p, M), and e(D, p, q,
M) divides both c, and c,.

Proof: In view of Theorem 2, the first statement means that
the ¢-primary part of the image of £, : ®(J, q) — P4, q) is
trivial. For each prime number r which is prime to N, let 7, be
the rth Hecke operator on J. It is a familiar fact that ®(J, q) is
Eisenstein in the sense that T, acts on ®(J, ¢) as 1 + r for all
such r. This was proved by the first author in case D = 1 (see
Theorem 3.12 of ref. 12 and ref. 30), and the result can be
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extended as needed in view of results of Buzzard (31) and
Jordan and Livné (26).

It follows from the Eichler—Shimura relation that the image
of ¢, is annihilated by a,(f) — r — 1 for all . One deduces from
this that the ¢-primary part of the image is trivial: If not, then
a(f) =r + 1 mod ¢ for all », and this implies that the
semisimplification of A[€] is reducible; cf. Theorem 5.2(c) of
ref. 12.

To prove the second statement, we begin by noting that
e(D, p, g, M) divides c;,. As we pointed out earlier, there is
an isogeny A — A’ of prime-to-¢ degree. Indeed, 4 and A’
are isogenous over Q; on the other hand, the hypothesis on
A[€] implies that any rational isogeny A — A’ of degree
divisible by € factors through the multiplication-by-¢ map on
A. Hence the ¢-primary components of ®(4, p) and (A4, p)
are isomorphic, so that the largest powers of € in ¢, and ¢,
are the same. Thus e(D, p, g, M) divides c,. Also, since an
analogous reasoning shows that ¢, and c; have the same
valuations at €, e(D, p, g, M) depends symmetrically on p and
g, as asserted. Finally, e(D, p, g, M) divides both ¢, and cg,
since it divides ¢, and depends symmetrically on p and g. m

COROLLARY. If N = dpgrsm, where p, q, r, and s are primes
and d is the product of an even number of primes, then

e(rsd, p, q, m) = e(gsd, p, r, m)

and e(d, r, s, pgm) = e(d, g, s, prm).

Proof: Each of the two integers in the displayed equality may
be calculated as the order of the €-primary part of the cokernel
of & : ®J®PTs(m), p) — ®(A’, p). This coincidence gives the
first equality. To obtain the second from the first, we note that
both e(rsd, p, g, m)? e(d, r, s, pgm)? and e(gsd, p, r, m)? e(d, q,
s, prm)? are equal to the ¢{-part of the quantity
8Pars(m)c, e ¢/ 8 (pgrsm). u

To finish the proof of Theorem 1, we assume from now on
that M is not prime. To prove that e(D, p, g M) = 1, it suffices
to show that e(D, p, g, M) divides c, for each r|N. If r = p or
r = q, this divisibility is included in the statement of Proposition
3. Assume, next, that r is a divisor of D, and write D = rsd,
where s is a prime. We have

e(D,p,q,M) =e(rsd, p,q, M) = e(gsd, p, r, M),

where the second equality follows from the Corollary. The
latter number divides c,, as required. Finally, suppose that r
divides M. Since M is not prime, we may write M = rsm, where
s is a prime. We have seen thate(D, r, s, pgm) = e(D, g, s, prm).
Permuting the roles of the four primes p, g, r, and s, we may
write instead e(D, p, g, rsm) = e(D, r, g, psm). The latter
number is a divisor of c,.
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ABSTRACT Let E be a modular elliptic curve over Q,
without complex multiplication; let p be a prime number
where E has good ordinary reduction; and let F., be the field
obtained by adjoining to Q all p-power division points on E.
Write G.. for the Galois group of F.. over (0. Assume that the
complex L-series of E over () does not vanish ats = 1. If p =
5, we make a precise conjecture about the value of the
G .-Euler characteristic of the Selmer group of E over F... If
one makes a standard conjecture about the behavior of this
Selmer group as a module over the Iwasawa algebra, we are
able to prove our conjecture. The crucial local calculations in
the proof depend on recent joint work of the first author with
R. Greenberg.

Let E be an elliptic curve defined over Q. For simplicity, we
shall assume throughout that E does not admit complex
multiplication. Let p be a prime number, and write E,. (n =
1, 2, ...) for the group of p”"-division points on E. Write E,.-
for the union of the E,,, (n = 1, 2, .. .). Put F.. = Q(Ep-), and
let G.. denote the Galois group of F.. over Q. By a theorem of
Serre (1), G~ is an open subgroup of GL(2, Z,), and hence is
a p-adic Lie group of dimension 4. Assume from now on that
p =5, so that G has no p-torsion. By a refinement (2) of a
theorem of Lazard (3), G- then has p-cohomological dimen-
sion equal to 4. Let A be a p-primary abelian group, which is
a discrete G.-module. We say that 4 has a finite G.-Euler
characteristic if all of the cohomology groups H (G, A) (i =
0) are finite. When A has finite G..-Euler characteristic, we
define its Euler characteristic (G, A) by

4
x(G., A) = [[#(H(G.., 4)) V.
i=0

The present note will be concerned with the calculation of the
G.-Euler characteristic of the Selmer group ¥(F-.) of E over
F... We recall that this Selmer group is defined by the exactness
of the sequence

0—S(F.) = H'(F., Epu) = || H'(F..uy E), 1]

w finite

where w runs over all finite places of F.; here F.,, denotes the
union of the completions at w of the finite extensions of ()
contained in F... Of course, ¥(F..) has a natural structure as a
G.-module, and we expect its Euler characteristic to be closely
related to the Birch and Swinnerton-Dyer formula. Specifi-
cally, let Il (E) denote the Tate-Shafarevich group of E over
Q, and, for each finite prime v, let ¢, = [E(Q,) : Eo(Q,)], where,
as usual, E¢(Q,) is the subgroup of points with nonsingular
reduction modulo v. Let L(E, s) be the Hasse-Weil L-series of
E over Q. If B is an abelian group, we write B(p) for its
p-primary subgroup. If n is a positive integer, n® will denote
the exact power of p dividing n. Finally, we denote by E the

© 1997 by The National Academy of Sciences 0027-8424/97/9411115-3$2.00/0
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reduction of £ modulo p. We then define, for p where E has
good reduction,

#(W(E)(p))] [, cP#(EF,) ()
#(E(Q)(p))? :

pp(E/Q) = [2]

where v runs over all finite places of Q.

CONJECTURE 1. Let E be a modular elliptic curve over Q,
without complex multiplication, such that L(E, 1) # 0. Letp =
5 be a prime number such that E has good ordinary reduction at
p. Then ¥(F) has a finite G.-Euler characteristic, which is given
by X(Gouy H(F-)) = py(E/Q).

This conjecture is suggested by the following considerations
in Iwasawa theory. Let Q.. denote the unique extension of Q
such that the Galois group I'.. of Q.. over Q is isomorphic to
Z,. Of course, Q.. is contained in F... Let $(Q..) be the Selmer
group of E over (.., which is defined by replacing F.. by Q.. in
the exact sequence of Eq. 1. Making the same hypotheses on
E and p as in Conjecture 1, it is well known that ¥(Q.) has a
finite I'.-Euler characteristic, which is given by

X(Tee, $(Q20)) = py(E/Q); [3]

we recall that I".. has p-cohomological dimension equal to 1, so
that y(I'., A) = #(H°(T=., A))/#(H'(I'., A)) for any discrete
p-primary I'.-module 4. Thus Conjecture 1 asserts that, under
the hypotheses made on E and p, the G..-Euler characteristic
of $(F.) should be precisely equal to the I'.-Euler character-
istic of $(Q.,). This is indeed what one would expect from the
following heuristic argument. If H.. is any profinite group, let

I(H.) = limZ,[H../U], [4]

U

where U runs over all open subgroups of H.., be the Iwasawa
algebra of H... Write 4 = Hom (A4, Q,/Z,,) for the Pontrjagin
dual of a discrete p-primary abelian group Af Under the

hypotheses of Conjecture 1, it is known that ¥(Q-.) is a finitely
generated torsion module over I(I'..), whereas the structure
theory of such modules enables us to define the characteristic
ideal C(¥(Q-)) of F(Q-.) in I(T'x.). It is easy and well known
to see that C(¥(Q)) has a generator w(Q-) such that

f dp(Q.) = x(Ie, $(Q2)), [5]
T

where we are now interpreting the elements of I(I'.) as
Z,-valued measures on I'... We do not at present know enough
about the structure theory of I(G.)-modules to be able to
define the analogue C(¥(F-)) of C(¥(Q-)). Nevertheless, one
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is tempted to guess that there should be a generator w(F.) of
C(Y(F-)) such that

f du(Fz) = x(Gu, S(Fo)). [6]
G

Moreover, the link, which may exist between these character-
istic ideals and p-adic L-functions, suggests that C(¥(Fx))
should map to C(¥(Q-)) under the canonical surjection from
1(G) onto I(I'»). This latter property would show that the two
integrals on the left of Eqs. 4 and 5 are equal, for suitable
generators of C(¥(F-)) and C(¥(Q)), and so explain the
equality of the Euler characteristics.

In spite of the above heuristic argument, it does not seem
easy to prove Conjecture 1. Let Fy = Q(E,), and let 2. denote
the Galois group of F.. over Fy, so that 3. is a pro-p-group. We
say that a module X over the Iwasawa algebra I(2..) is torsion
if each element of X is annihilated by some non-zero element
of I(Z.). Our main result is the following.

THEOREM &Iaddition to the hypotheses of Conjecture 1,

assume that S(F.,) is torsion over the Iwasawa algebra 1(2..),
where 2.. = G(F/Fy). Then Conjecture 1 holds, and H(G<.,
F(Fr)) =0fori=2---,4.

It has long been conjectured (see ref. 4) that y%lis torsion
over I(2.) for all E and all primes p where E has good ordinary
reduction, but very little is known in this direction at present.
In view of this, it may be worth noting the following weaker
result, which we can prove without this assumption. By a
theorem of Serre (5), the cohomology groups H (G, E,-) (i =
0) are finite.

THEOREM 3. Under the same hypotheses as in Conjecture 1,
we have that H*(Gw, $(Fx)) is finite, and

#(H(G.., F(F) = py(E/Q)#(H (G, Epo)). (7]

Sketch of the Proof of Theorem 3. Let S be a fixed finite set
of nonarchimedean primes containing p and all primes where
E has bad reduction. We write () for the maximal extension
of @ unramified outside S and . For eachn = 0, let F,, =
Q(E,»+1). We define, for v € S,

— 1 1
JOC,U - hg@H (Fn,wr E)(p)a

n” ol

where w runs over all primes of F,, dividing v, and the inductive
limit is taken with respect to the restriction maps. Our proof
is based on the following well known commutative diagram
with exact rows

0 — 9(F.)% —> HY(G(Q,/F.), E)° A=
la i

0 — 9@ — H(GQ/Q),E, *,

. (& J...)%
vES
T Y= D
vES
_. 9HY(Q,E)P),

vES

where the vertical arrows are restriction maps.

LEMMA 4. The m%g v is surjective, and its kernel is finite of
order #(E(F,))>,c®.

Proof. This is a purely local calculation. For each v € S, fix
a place w of F.. above v, and let A,, denote the Galois group

Proc. Natl. Acad. Sci. USA 94 (1997)
of F..,, over Q,. Assume first that v # p. Then
Ker v, = H*A,, E,-), Coker vy, = H*(A,, E )
and simple calculations (cf. ref. 7, Lemma 13) then show that
#(H'(A,, E,») = c?, H¥(A,, E,») = 0.

Suppose next that v = p. The extension F.. , of Q, is deeply
ramified in the sense of ref. 8 because it contains the deeply
ramified field Q,(u,-), where u,- denotes the group of all
p-power roots of unity. We can therefore apply the principal
results of ref. 8 to calculate Ker vy, and Coker vy,. We deduce
that v, is surjective because H*(A,, E,-) = 0 and that Ker v,
is finite, with order equal to

#H (A, Ep)#(H' (A, Ep2) = #(E(F,) ()%,

completing the proof of the lemma.

LEMMA 5. Assume L(E, 1) # 0. Then (i) $(Q) is finite, (ii)
H*(G(Qs|Q), Ep) = 0, and (iii) the cokernel of A is finite of
order equal to #(E(Q)(p)).

Proof. Assertion (i) is a fundamental result of Kolyvagin.
Assertions (if) and (iii) follow immediately from the finiteness
of $(Q) and Cassels’ variant of the Poitou-Tate sequence (cf.
the proof of Theorem 12 of ref. 7).

LEMMA 6. Assume that L(E, 1) # 0. Then the map A in the
above diagram is surjective.

Proof. We make essential use of the cyclotomjc Z,,-extension

Q. of Q. The finiteness of $(Q) implies that $(Q-.) is torsion
over the Iwasawa algebra I(I'..). A well known argument then
shows that the sequence

0—%(Q.) > H(G(Qs/Q..), Eyr) > @ H..,—>0 [8]

vES

is exact, where Ho o, = @, H'(Qu 0, E) (p) and o runs over all
places of Q.. dividing v. Next, we assert that H'(T'., $(Qx)) =
0. Indeed, H'(T'-, $(Q-)) is finite b F(Q) is finite,

whence H!(T'w, $(Q)) = 0 because ¥(Q-) has no non-zero
finite I'.-submodule (see ref. 9). Hence, taking I'.-invariants
of the above exact sequence, we see that the natural map

I
¢ 1 (HY(G(Qs/Q.), pr))r"é( @Hm,v)

vES

is surjective. But the surjectivity of ¢.. and the surjectivity of
v together clearly show that v.. is surjective, as required.

LEMMA 7 (J.-P. Serre, personal communication). We have
X(Go, Ep=) = 1 and HY(Go, Ep-) = 0.

To prove Theorem 3, one simply uses diagram chasing in the
above diagram, combined with Lemmas 4-7.

Sketch of the Proof of Theorem 2. We begin with another
purely local calculation. For each v € S, let J., be the
G.-module defined at the beginning of §2.

LEMMA 8. For each v € S, we have H(Gw, J,) = 0 for all
i =1

Proof. Fix a place w of F.. above v, and let A, denote the
Galois group of F., over (,. Then for all i = 0, we have

H(G.,J.,) = H(As, H'(F..., E)(p)).

On the other hand, the results of ref. 8 show that H'(F.. ., E)(p)
is isomorphic as a A.-module to A, where A4,, is defined to be
H'(F..., B,), with B,, = E,, or E,., according as v # p or v = p.
One then proves that H/(A,, B,) = 0 for all i = 2. Using the
Hochschild-Serre spectral sequence, it is then easy to show that
Hi(A,, A,) = 0 for all i = 1, as required.

If W is an abelian group, we define, as usual, T,,(W) = li&q
(W)pn, where (W), denotes the kernel of multiplication by p”

Copyright © National Academy of Sciences. All rights reserved.
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on W. We put T,,(E) for T,(E,-). For each integer m = 0, we
define R(F,,) by the exactness of the sequence

0 — R(F,)) = H'(F,,, T,(E)) = [ | T,(H'(F,,., E)).

%)

We then define

R(F) = lim R(F,,),

m

where the projective limit is taken with respect to the co-
restriction maps from F,, to F,, when m = n. Recall that 2.
denotes the Galois group of F.. over Fj.

LEMMA 9. If H’%Iis torsion over the Iwasawa algebra 1(2..),
then R(F.) = 0.

Proof. This is analogous to the well known argument for the
cyclotomic Z,-extension Q.., which has already been implicitly
used in proving exactness at the right hand end of E e

recall that L(E, 1) # 0 automatically implies that $(Q.) is
torsion over I(I'..)). The only unexpected point is to note that
the projective limit of the E,.+i(n = 0, 1, . . .) with respect to
the norm maps from F,, to F, when m = n is in fact zero.
Indeed, since G- is open in GL»(Z,), one sees that, for all
sufficiently large n, the norm map from F, to F,—; acts as
multiplication by p* onto E,.+1, whence the previous assertion
is plain.

We assume that for the rest of this section that ¥(F.) is
torsion over the Iwasawa algebra I(Z..). Then we claim that

HZ(G(QS'/FDC)’ Ep*) = 0) [9]
and that the sequence

0— S(F..) = H(G(Qs/F.), E,) =5 @J..,—0 [10]

vES

is exact. Indeed, applying Cassels’ variant of the Poitou-Tate
sequence to each of the fields F,(n = 0, 1,...), and then
passing to the inductive limit as n — o with respect to the
restriction maps, we obtain an exact sequence

1
0 — Coker(¥..) = R(F..) = H(G(Qg/F.), E,-) =0

Proc. Natl. Acad. Sci. USA 94 (1997) 11117

whence Egs. 9 and 10 follow immediately from Lemma 9. In
fact, Eq. 9 is known to be true for all p # 2 without any
additional hypothesis.

L1
LEMMA 10. Assume that $(F..) is torsion over 1(2..). Then
H(G=, H(G(Qs/F<), Ep=)) = 0 for i = 2, and

HYG., H(G(Qs/F.).E))) = H (G, Ep). [11]

Proof. The assertion (Eq. 11) follows from the Hochschild-
Serre spectral sequence (cf. Theorem 3 of ref. 10) on using Eq.
9 and (ii) of Lemma 5. Similarly, the first assertion of Lemma
10 is an immediate consequence of Theorem 3 of ref. 10 and
the fact that G(Qs/F~) has p-cohomological dimension <2,
together with the fact that H4G=, E,<) = 0 (J.-P. Serre,
personal communication).

To complete the proof of Theorem 2, we take G.-invariants
of the exact sequence (Eq. 10). Using Lemmas 6, 8, and 10, we
deduce that

HYG., ¥(F.)) > HG.., E,-),

and that H (G, ¥(F=)) = 0 for all i = 2. Hence, Theorem 2
follows from Theorem 3.

We finish with the following remark. Let K.. be the fixed
field of the center of G-, and let H.. denote the Galois group
of K. over Q. We conjecture that, under the same hypotheses
as Conjecture 1, the H.-Euler characteristic of the Selmer
group ¥(K-) of r K., is finite and equal to p,(E/Q). If

we assume that ¥(F.) is torsion over I(2.), we can prove this
conjecture for the Euler characteristic of ¥(K-.).

We are very grateful to J.-P. Serre for providing us with a proof that
X(G<, Ep-) = 1. We also warmly thank B. Totaro for pointing out to
us a result that revealed an error in an earlier version of this
manuscript.
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p-adic L functions and trivial zeroes

BERNADETTE PERRIN-RIOU

Mathématique, Université de Paris-Sud, Batiment 425, F-91405 Orsay, France

ABSTRACT The following is adapted from the notes for the
lecture. It announces results and conjectures about values of the
p-adic L function of the symmetric square of an elliptic curve.

First let us give some examples of trivial zeroes. Let K/Q be
an imaginary quadratic field such that p splits in K, m the
associated quadratic Dirichlet character; the Euler factor of
L(m, s) at p is 1 — p~*. Choose an ideal % above p and a
compatible embedding of an algebraic closure Q of Q in an
algebraic closure Q, of Q,. There exists a Kubota—Leopoldt
p-adic L function L,(m, s) such that for n» > 0 and even,

Lyn, 1=n)=(1 - (no " @p" HL(nw ", 1 - n).

THEOREM [Ferrero—Greenberg (1)].

Ly(n,0)=0
L,(m,0)= —<€,(n)L(n, 0),
lo
with €,(n) = Ori”z and q = =/ P" = (m).
4

Let E/Q be a modular elliptic curve with split multiplicative
reduction at p. Mazur et al. (2) have constructed a p-adic L
function L,(E, s).

THEOREM [Greenberg—Stevens (3)].

L,(E,1) =0

L,E,1) = €,(E)L(E, 1),

lo
with €,(E) = %’% and qg the Tate pamn'ieter of E/Q,,

It has been recently proved that €,(E) is nonzero: Barré-
Sirieix et al. (12) proved that if E/Q is a Tate curve at p, and
if jg is algebraic, then g is transcendental.

Finally, let E be a modular elliptic curve over Q and 1 — a,p*
+ p'=2 the Euler factor at p of its L function. Let M =
Sym?(h1(E)) = Sym*(h'(E)) (2). The Tate twist of M is M* (1)
= 8l(h1(E)) = 3l(h'(E)). The Euler factor at p of M is

A=p pHA—-ap A -B ),
where o + B = a,, a3 = p. The Euler factor at p of M*(1)

18
g o)

When E has ordinary reduction, a p-adic L function has been
constructed by interpolation of values of twists of L(M, s) at
s = 0 (4). The complex L function L(M, s) is nonzero at s =
0 because 0 is inside the convergence domain of the Euler
product.

© 1997 by The National Academy of Sciences 0027-8424/97/9411118-3$2.00/0
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Under a mild technical hypothesis, the following theorem
has been proved:

THEOREM [Greenberg-Tilouine (5)]. Assume E has multi-
plicative reduction at p. Then,

L,(M, 0)

0

LM, 0)
Q.

LM, 0) = €,(M)

where (.. is some explicit complex period and €,(M) = €,(E).

So L,(M, s) has a simple zero [recall €,(E) is nonzero].

In general, a trivial zero should appear when 1 or p~
annihilates the p-Euler factor. It means that the p-adic L
function should have a zero of multiplicity strictly bigger than
the one of the complex L function.

The following work has been done by Greenberg (6) (in the
ordinary situation). (i) He gives a definition of some €,(M) in
a very general case. In particular, for M = Sym?(h,(E)) with
E having (good) ordinary reduction. (i) He gives a conjecture
for the behavior of the p-adic L function at the trivial zero
(multiplicity order of the zero and behavior of the dominant
coefficient of the expansion at this zero). (iii) He checks that
one recovers theorems already proved.

In this talk, we look only at the case of the symmetric square
of an elliptic curve with good reduction at p, we explain in this
special case: (i) the construction of the Greenberg invariant in
the ordinary case, (ii) a construction of a similar invariant in
the supersingular case; (iii) the conjectural definition of the
p-adic L function; (iv) a conjectural link between the p-adic L
function and a conjectural special system, and (v) conse-
quences on the p-adic L function and the trivial zero.

1

Section 1. Notations

Fix an algebraic closure Qof @, Gg = Gal(@/@). In the
following, M will designe Sym?(h1(E)). The p-adic realization
of MisV =M, = Sym*(V,(E)) with V,,(E) = Q, ® lim E,..

It’s a p-adic representation of Gg of dimension 3.

Let D,(V) be the filtered ¢-module associated to " by Fon-
taine’s theory. If Dr(M) = Sym?(Hig(E))[—2], there exists a
natural isomorphism D,(V) = Q, ® Dgr(M). We describe the
action of ¢ and the filtration explicitly. Let (e, e—1, e—2) be a basis
such that ge_; = p~le_1, pey = a ey, pe_2 = B %e_1.

In the ordinary case, we can choose « to be in Z;; the
filtration is given by

{FilODp(V) = Q,w,
Fﬂ_le(V) = @pwe @ @p(E,I + Aefz),

1
where w, = Ee,z +e_ 1 + ﬁeo for some A € Q, that we

assume nonzero.

In the supersingular case (and a, = 0, which is automatic
if p > 3), Vis a direct sum (as a G -representation): V' = W
® W, with

Copyright © National Acadéﬂnkll& Sciences. All rights reserved.
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W2 = @p(l)(s)’Dp(WZ) = @176727

pe =B e ,=-p le_,
and
D,(W)) = Qe 1 D Qpe o, ey =pley,
ey = a ey = —p e,
The filtration is given by

{FilODp(V) = Q,w,
Fil™'D,(V) = Q 0. ® Qpe_,’

with we = e_1 — ¢ [for some suitable choice of (eg, e -1, e-2)].
In both cases, D,(}V)¢=” = Qpe—1. In supersingular case,
take A = —1/2

Section 2. Greenberg Invariants

2.1. Ordinary Case. On V, there exists a filtration of p-adic
representations of Gg, = Gal(Q,/Q,):

0 C FibV C Fil,y CV,

such that
Dp(FilﬁV) =Qe_>

Dp(Filp1V) = Qpe—2 ® Qpe—1.
So there is a natural surjection F11 V' — Qp(1). We choose
e_1 such that the map

D,(1)*""' = D,(FillV) = D,(@,(1)) = O

sends e_ to 1.

It’s easy to see thatHl(@ ,FilV) = H\(Q,, V)=Hy(Q,, V)
(we use the notation Hf, o Of Bloch —Kato). Recall that there
is an isomorphism

H'(@,, Q,(1) = Q,® (@)),=Q, X q,

The first one is just Kummer theory where (Q,), = lim

Q,'/Q,7", the second one is given by g — (log,q, ord,q) where
10g,, is the logarithm on @ such that log,p = 0. So there is a
map

H'(Q,V)=H'Q,FiLV) > H (@, Q1) —>  Q,xQ,
x - ge) > (log,g.x), ord,g.(x)).

Definition. If x € H' (Q,, V), let

logp‘h(x)

t0) = ord,g(x)

€ Q, U x;

it depends only on the line Q,x
Definition. If x € HY(Q, V) is a universal norm in the
Z,;-cyclotomic extension, define

€,(M) = t(x) €Q, U .

The universal norms are contained in Hf »(Q, V) [elements
of H'(Q, V) which are unramified outside of p]. Thanks to
Flach (7) and under technical condltlons (i) the unlversal
norms are of dimension 1; (if) Hf(@ V) = 0 and dim Hf (@,
V) = 1. So in the above definition, €,(M) = €(x) for any
nonzero element x of Hf (@, V).

2.2. Supersingular Case. The canonical map

LD,V = D, (W) [Fi'D, (W) =

Proc. Natl. Acad. Sci. USA 94 (1997) 11119

is an isomorphism. On the other hand, by Bloch-Kato, there
is a natural map

)\g : Hl(@p7 V) = Hé(@p’ V) _)Dp(V)<P:p7]'

Once having chosen log, on @,‘(log, p = 0), there is a
canonical splitting of the inclusion

H;(@p7 Wl) - H;(@pa W1)7

and so we obtaln an extension of the Boch-Kato logarithm
1OgW1 to H (@p, Wl)

logew, : Hy(Q,, W) =ty

Defmmon Ifx = (x1, x2) € Hy(Qp, V) = Hl(@ , W) @
Hf(@p, W>), define €(x) € Q, U < by
€(X)L ° )\g(x) = logg’Wrxl S th’
Definition. Define €,(M) = €(x) with x a universal norm in
Hl(CD ') [again, we can just take a nonzero element in

H; 1,1 (@, V).

Section 3. p-adic L Functions

Let Go. = Gal(Q(up-)/Q) = Z, and Z,[[G-]] the continuous
group algebra of G... Define some algebras:

H(G) D H(G.) D Z[[G..]].

Here #(G-) is the algebra of elements in Q,[[G-]] which are
O(log") for a suitable r: it means that f € #(G-) can be written
f = Zua,(y — 1) with sup,>o |a,|/n" <  (y is a topological
generator of the p-part of G..); #(G-) is the total fraction ring
of #(G-). If n is a continuous character from G.. with values
CDPX , we can evaluate m on any element of #(G-.).

CONJECTURE (10): For any n € /\N°’Dy(V), there exists an
element L{p}(n) € #(G) such that for any nontrivial even
character m of G« of conductor p*

1 G(H)ZL(M m, 0)

n(Lf,(n))e =5 a O 0,((Pe) (1))

0, 0g
where (i) e is a basis of the Q-vector space det Dyr = Q(—3)ar,
and g is a basis of Fil® Dyg; (ii) Qe wge = wg A\ nj € C ® det
Dgyr with ng; a basis of det Mg|[for example of det Sym?(H;(E,
2))*]; (iii) Qpwg (N) = wg /\ n; and (v) G(n) is a Gauss sum
associated to .

So n(L{p}(n))a)@ A\ nB = - G(n)ZL{p}(M n, wg N
(pe)“(n). We may see L{ 3 ( = L{ ; as an element of
Homg (Q, ® /\* Dar(M), %(Gm)) and as a function of s € Z,,: if
X is the cyclotomic character,

L, (M, 5) = (x)(L4,)) and Li,(M, 5, n) = (x)*(L{(n)),

w1tl|1 n € /\?D,(V). For any f € #(G-), define a(f) =
s 0-

*S<X>S

Section 4. Logarithm

Let K, = Qy(pp+1) and Zo(Q,, T)= lim H'(K,, T) with T =
Sym?(T,(E)). It’s a Z,[[G]]-module of rank 3. Note mp the
projection on H'(Q,, T). One can construct a map (9)

Py =%:2ZLQ,, T) > H(G..) @D,(V).

Recall only some properties of &£ (the first one depends on a
re01pr001ty law” conjecture that seems to be proved now). If
x € ZL(Q,, T) (11):
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LE®) = (1 = @)Ag(m(x) € D, (N

If mo(x) € HY(Qp, T),
(1-¢) "1 —p e Ha(%x)) = logm(x) mod Fil’D,(}).
Section 5. Special Systems and p-adic L Functions

There should exist a special element ¢, € Q, ® lim

HY(Q(ppnr1), T) such that the p-adic L function should be
defined by the formula

L7(n)e = L(cF) An,

for any n € A2 D,(V).
Define c)*"(p) = m (c/*) € HY(Q, V).

CONJECTURE
@ B\L(M, 0)
B 1= m m-1(0g),

1
Aglep*"(p) = 5( 1-
where 1] is the projection on Dp(V)‘P:V] with respect to the
other eigenspaces of ¢.
In the ordinary case, it means that

1 « LM, 0
ord,qe(cp*" (p)) = 5<1 - E) (1 - g)%,

or

ord,ge(c) " (p))we N nj = %(1 - %) (1 - §>L(M, 0)e.

Section 6. Some Theorems

We assume the existence of ¢,” and the fact that the p-adic
L function can be calculated by the formula Lf,,(n)e =
L(cy) N\ n.

THEOREM: The function L{p} is nonzero at the trivial char-
acter 1 if and only if c“aCh(p) ¢ H;(Q, T) and one has

L4, (n)e = (1 = p (e, " (p) N n.

In particular, by using Flach’s theorem (7), L{p} is nonzero
if and only if c Np) is nonzero.

Assume cﬂ“h(p) # 0. Let L{p} =L, (e-1\e_s) € % (G-).

THEOREM The function L{,,} has a zero at 1 which is simple if
and only if €I,(M) # 0 and one has

(L e— = 2/\ (1- a’2)<1 - E) €,(M)Ag(c) M (p)).

THEOREM: The following formulas are equivalent

LM, 0
- g)(l - E)% - 1(®g),

B o) Qoo

1
)\g(C;laCh(p)) — E (1

Proc. Natl. Acad. Sci. USA 94 (1997)

_ _ {p}(Ma 0)
(1—p o HLIL,)e ZT%( — 0)p
1 B\L(M,0)
pS( - _ 72 _ = sc
(1) = 6,000 - a1 - £) Tt
where (), € Qp is defmed by Dy € = wa Ne_1/Ne-s.

In the ordlnary case, L{p} should be the p-adic function
already known, the last formula is then the formula conjec-
tured by Greenberg.

Section 7. Even More Speculations
cf4h(p) should come from a motivic element: so it would exist
in any of the /-adic realizations of M; call it ¢/“""(p) € H'(Q,
M), this element should agaln have good reduction outside of
p. For I # p, let D(M) = Mj; there is a map

Ny 2 H'(@y, M) — Dy(M)™% =7,
and for [ = p,

H'(Q,, M,) - D,(M)*=""".

We have
dimgDy(M)™"*% 7" = dimg, D,(M,)* ",

A candidate of such an element has been constructed by Flach.
On the other hand, there exists a natural Q-vector space % such
that

Q; ®g D = Dy(M)F7°8 =P or D, (M)*="".

It can be described in terms of the Néron—Severi group of the
reduction E X E at p (8). We would like to compare

g(cﬂ“‘h(p)) for different / and give a link with the p-adic L
function (work in preparation). For [ # p, see calculations of
Flach (7).
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Adjoint modular Galois representations and their Selmer groups

(p-adic L-function/class number formula/main conjecture)
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ABSTRACT In the last 15 years, many class number
formulas and main conjectures have been proven. Here, we
discuss such formulas on the Selmer groups of the three-
dimensional adjoint representation ad(¢) of a two-
dimensional modular Galois representation ¢. We start with
the p-adic Galois representation ¢, of a modular elliptic curve
E and present a formula expressing in terms of L(1, ad(¢y))
the intersection number of the elliptic curve E and the
complementary abelian variety inside the Jacobian of the
modular curve. Then we explain how one can deduce a formula
for the order of the Selmer group Sel(ad(¢y)) from the proof
of Wiles of the Shimura-Taniyama conjecture. After that, we
generalize the formula in an Iwasawa theoretic setting of one
and two variables. Here the first variable, 7, is the weight
variable of the universal p-ordinary Hecke algebra, and the
second variable is the cyclotomic variable S. In the one-
variable case, we let ¢ denote the p-ordinary Galois repre-
sentation with values in GL(Z,[[T]]) lifting ¢y, and the
characteristic power series of the Selmer group Sel(ad(¢)) is
given by a p-adic L-function interpolating L(1, ad(¢y)) for
weight k + 2 specialization ¢ of ¢. In the two-variable case,
we state a main conjecture on the characteristic power series
in Z,[[T, S]] of Sel(ad(¢) ® v~!), where v is the universal
cyclotomic character with values in Z,[[S]]. Finally, we de-
scribe our recent results toward the proof of the conjecture
and a possible strategy of proving the main conjecture using
p-adic Siegel modular forms.

The talk at the conference on Elliptic Curves and Modular
Forms at the National Academy of Sciences was presented by
H.H. The purpose of the talk was to describe formulas giving
the characteristic ideal of the Selmer group of the Galois
representations as in the title in terms of their L-values. We fix
aprimep = 5. Although we can treat the general case, allowing
ramification at finitely many primes and %, to keep the paper
short, we assume that the ramification is concentrated on {p,

o},
1. Selmer Groups

Let G be the Galois group of the maximal extension Q®)/Q
unramified outside {p, «}. Let O be a valuation ring finite flat
over Z, with residue field F. We start with a two-dimensional
continuous representation ¢ : G — GL,(A) for a complete
(noetherian) local O-algebra 4 with residue field F = A /m 4.
The power series ring O[[T, . . ., T,]] is an example of such 4.
We let G act on V' = A2 via ¢ and on End(V) by conjugation:
¢ ® ¢ (0)x = Pp(o)xdp(o) ™. We look at its three-dimensional
factor ad(¢) : G — GL3(A) acting on trace zero subspace

© 1997 by The National Academy of Sciences 0027-8424/97/9411121-4$2.00/0
PNAS is available online at http://www.pnas.org.

V(ad(¢)) in End(V). Thus ¢ ® ¢° = ad(d) D 1. Let ¢ = ¢ mod
m4. We assume the following three conditions:

(AL) The restriction of ¢ to Gal (Q®/Q(V(—1)P—/2p))is

absolutely irreducible;

(Ord) For each decomposition group D over p, lp = (1)

with unramified

(Reg) 8 mod my # & mod ma.

Condition Al is equivalent to the absolute irreducibility of
ad(¢) over G. We write V(8) C V for the 8-eigen subspace, and
for each A-submodule X of V(ad(¢)), let X* = X &, A* for
the Pontryagin dual A* = Home(A4, Q,/Z,) of A. We put V.
= {& € V(ad(¢)) C End(V) | &V(8)) = 0}. Then we define
the Selmer group for ad(¢), as a special case of Greenberg’s
definition (ref. 1; see also ref. 2):

Sel(ad(¢)) = ker(H'(G, V(ad(d))*) — H'(I, Vlad($))* /V'2)

for the inertia subgroup 7 of D. This is a generalization of the
class group; for example, taking a quadratic character x of G,

Sel(x) = ker(H'(G, V()*) = H'(I, V(x)*))

is the y-part of the p-class group of the quadratic extension F
fixed by ker(x). Thus if A = 0 and if L(1, ad(¢)) # 0, a naive
guess is that Sel(ad(¢)) is finite and that its order is the p-part
of L(1, ad(¢)) up to a transcendental factor. The finiteness is
first shown by Flach (3) and then by Wiles (4). We discuss later
some good cases where this guess works well. We generalize
the above definition to a tensor product ad(¢$) ® e with a
character & : G — B* for a complete noetherian O-algebra B,
replacing A by AQ¢B and V; by V,(ad(¢) ® &) =V, & B:

Sel(ad(¢)®¢) = ker(H'(G,V(ad(¢p)®s)*)
—HY(1,V(ad($)®e)*/V, (ad(p)Re)*)),
which is a discrete module over AQgB.

2. Elliptic Curves over Q

For simplicity, we suppose that ¢y is the Galois representation
on HY(E g, Zp) for a modular elliptic curve E,q inside the
Jacobian J = Jy(p) of the modular curve Xy(p). Thus E has
multiplicative reduction at p and has good reduction outside p.
Taking the dual of the inclusion E C J, we have a quotient map
m:J—>FE.ThenJ = E + AforA = ker(w),and E N Aisa
finite group of square order. For a Néron differential w on the
Néron model E,z, by a result of Mazur (5) corollary 4.1, we
may assume that 7m*w = 2¢(2mify(z)dz) for a primitive form fo
€ S2(T'o(p)) and e € Z. Choosing a base ¢+ of *-eigenspace
of H{(E(C), Z) under complex conjugation, we define (. by
Je+ o after normalizing ¢+ as described below. The following
formula was proven 15 years ago in ref. 6 (see also ref. 7):

TTo whom reprint requests should be addressed.
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L(1, ad(¢)) me 7

(INT) C im0

(intersection number formula),

where C = 2¢72¢p(p — 1) for 2¢ = [H{(E(C), Z) : Zc + © Zc _].
We define the canonical period U(f) of fo by C~1(2mi)Q Q.
In ref. 6, to get formula IN1, we used the period determinant

Joo [
“= < Jo® [0 )‘

for a Z-base {c1, c2} of Hi(E(C), Z) in place of Q. _ (see ref.
6, formula 6.20b). Writing w+ = (0 = @)/2, we see [, 0 = *
Je, w=, and thus O, € Rand V—1Q_ € R. Replacing c+ by
their negative if necessary, we may assume that 0, > 0and+/—1
Q_ > 0. Under this normalization, formula IN1 is correct.
Then by definition, 2u = V—-10,Q_, and we can deduce
formula IN1 from ref. 6, theorem 6.1, by just remarking that
L*;,/Ls, = E N A under the notation of the theorem quoted.

Actually, a formula similar to formula IN1 is proven in ref.
6 for the Galois representation attached to any holomorphic
primitive form of weight =2. The formula is generalized later
to cohomological cusp forms on GL(2) over imaginary qua-
dratic fields in ref. 8.

Let H be the subalgebra of End(J) generated by Hecke
operators T(n). Then 7 induces the projection A : H — Z C
End(E) and another projection A’ : H — End(A4). Then we
define two finite modules:

Co=1Im(\) ® ygkIm(A'") and
Ci= Quz @ galm()) = ker(A) /ker(A)2
It is proven in ref. 7 (equation 5.8b) that
(E nA)p = (CO,p)z
as H modules. Note that Spec(Cy) is the scheme theoretic
intersection of Spec(Im(\)) and Spec(Im(A")) in Spec(H).
Thus we get

L1, ad(¢0))
U(fo)

(intersection number formula in Spec(H)).

(IN2) p-part of = |Co,pl

Recently, Taylor and Wiles (4, 9) have shown that |Co,| =
|C1,|, and Wiles (4) has shown

C,, = Sel(ad(¢y)).

This formula is a key to Wiles’ proof of Fermat’s last theorem.
The fact that Sel(ad(¢yo)) has a natural map into C, , was first
discovered by Mazur through his deformation theory of Galois
representations (10). The above formula is conjectured in ref.
11 after proving the surjectivity of the map besides other
relevant results.

Anyway, under the various assumptions on p that we made,
we finally get a formula for the order of Sel(ad(¢y)):

L(1, ad(¢y))
U(fo)

(order formula of Selmer group).

(CN1)

p-part of = |Sel(ad(¢y))]

3. One-Variable Case

The cusp form f € S2(T'o(p)) can be lifted to a p-adic family
of p-ordinary common eigenforms fi = 2,_; a(n; fi)q" €
Sk+2(To(p), @ %) (k = 0) for the Teichmiiller character  (cf.
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ref. 12, chapter 7, theorem 7.3.7). For this, we need to fix an
embedding i, : Q < Q,. Then “p-ordinarity” of f; implies that
the pth coefficient of fx in its g-expansion satisfies |a(p; fi)|, =
1. Note that, by the multiplicative reduction hypothesis, a(p;
fo) = £1. This family yields a Galois representation ¢ : G —
GL; (A) for a finite flat O[[T]]-algebra A (ref. 12, section 7.5).
For simplicity, we assume A = O[[7]]. Then writing as ¢y the
specialization of ¢ via 1 + T — u* foru = 1 + p, ¢y is the
Galois representation of the cusp form fi. Then the Pontryagin
dual Sel*(ad(¢)) of Sel(ad(¢)) is shown by Wiles and Taylor
to be a torsion O[[T]]-module of finite type, and its charac-
teristic power series is given by the characteristic power series
of the A-adic congruence module Cy 4.

Before giving the definition of Cy, we note that we have
taken cohomological formulation of Galois representations. In
this paper, we characterize Galois representations by the
characteristic polynomial of geometric Frobenii Frob, at
primes g # p. For example, ¢ is characterized by

det(1 — ¢p(Frob,)X) =1 —a(q; f)X — wik(q)qk“XZ.

This normalization is dual to the one taken in ref. 4, but it is
all right for our purpose because ad(¢y) = ad(Pp).

To define Cp, we need to introduce the space Sp of
p-ordinary A-adic cusp forms. For that, we consider the
subspace Sk+2(To(p), 0% Q) of Sk2(To(p), @ *) made of
cusp forms fwitha(n; f) € Q for alln. We consider the Q,-span
Sir2To(p), @5 Q) of Sisa(To(p), 0= Q) in Q,[[g] via
g-expansion. We write S¢"c5(To(p), @ %; Q,) for the subspace
of Sk+2(To(p), ®%; Q,) spanned by all p-ordinary eigenforms.
An element ¥ € S, is a formal g-expansion 2,,_; a,(T)q" €
A[[q]] such that the specialization % via 1 + T — u* is the
g-expansion of an element in S{'S,(To(p), @ *; Q,) for all k =
0. Then S, is free of finite rank over A on which Hecke
operators 7T(n) naturally act (ref. 12, section 7.3). Hereafter we
write & for the unique A-adic form such that %, = f; for all
k = 0. Let H be the A-subalgebra of Endx(S) generated by
T(n) for all n, and define a A-algebra homomorphism A : H —
A by Flh = AMh)F. We also have another A’ of H into
Endj(ker(X)) given by multiplication by 2 € H on ker(A). Then
we define

CO,A = Im()\) ® Hlm()\') and
Cin = Qua ® gadm()) = ker(A) /ker(A)~

Then it is easy to see that Cy » = A/(n(T)) for an element n(7T)
€ A. We can deduce from the result of Wiles and Taylor in ref.
4 (theorem 3.3) and ref. 9 that

(n(T)) = CharA(Cl,A) and Cy p = Sel*(ad(¢)).

Here the characteristic ideal char4(M) for a torsion A-module
of finite type M over a normal noetherian ring 4 is given by the
product of prime divisors P in A with exponent given by
length 4 ,Mp of the localization Mp at P. Note that, as shown in
ref. 7 (theorem 0.1), for a canonical period U(fx) associated to

fe

L(1, ad(¢y))
U(f)

up to p-adic units. This formula is not completely satisfactory,
because the p-adic L-function m(7T) is determined only up to
units in A. For A-adic forms of CM type, we can choose a
suitable Katz p-adic L-function in place of n (11, 13-15). In
general, we can only make a conjecture on the existence of a
canonical p-adic L-function L,(ad(¢)) with precise interpola-
tion property (16), which generates char,(Sel*(ad(¢))) =
(n(T)) after extending scalar to the p-adic integer ring Oq of
the p-adic completion O of Q,,.

(CN2) (s —1) =
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4. Two-Variable Case

Now we look at the universal character v : G — O[[S]]*
deforming the identity character of G. As already said, our
formulation is cohomological, and hence »(Frob,) = qu(q)~!
for geometric Frobenius Frob,. Writing Q.. for the cyclotomic
Z,-extension of Q and I' = Gal(Q./Q), the tautological
character: I' < O[[I']] induces the above v for § = y — 1 for
a generator vy of I'. Then we consider Sel*(ad(¢) ® v~!), which
is a module over O[[7, S]] of finite type (1). Classically, the
Selmer group involving the cyclotomic variable S is defined in
terms of cohomology groups over the cyclotomic Z,, tower Q...
As shown by Greenberg (ref. 1, proposition 3.2; see also ref. 2,
section 3.1), our Selmer group Sel(ad($) ® v~!) over Q is
isomorphic to the classical one over Q.. Recently, we have
proven a control theorem for Sel(ad(¢) ® v~1) giving the
following theorem.

THEOREM 1. The module Sel*(ad(¢p) @ v1) is a torsion
O[[T, S]]-module of finite type. Moreover, the characteristic
power series of Sel*(ad(b) @ v™1) is of the form SY(T, S) in
O[[T, S]] and (T, 0)|(T) da/dT (T) in O[[T]], where a(T)
is the eigen value of T(p) for F lifting fo (2). In early 1980s,
we constructed (17) a two-variable p-adic L-function L(7, §) in
n(T)~SO[[T, S]] such that for even m with —k = m = 0,

. L L(1 = m, ad($y)
n(u 1)L (u 1, u 1) = xE(k, m) Qi) 20 (f)
for a factor E like an Euler p-factor and a simple constant .
This L-function nL again has ambiguity by units in A, although
L(T, S) is uniquely determined. In ref. 16, the existence of a
canonical p-adic L-functions L,(ad(¢) ® v~!) in O[[7, S]] [for
ad(¢) ® v71] with precise interpolation property is conjec-
tured. In particular, we should have an equality:

L,(ad(¢) @ v7)

L,(ad(¢))
Anyway, the denominator and the numerator are not yet
known to exist in general in spite of the known existence of the

ratio L(7, §). Because of this, we need to use n(7) as a
replacement of L,(ad(¢)).

L(T, S) =

THEOREM 2. (R. Greenberg and J. Tilouine). Write
nL(T, S) = S®(T, S). We have

da
o0, 0) = n(O)ﬁ (0) up to units in O.

We know thatda /dT (0) # 0 by the theorem of St. Etienne (18)
due to four people at St. Etienne in France. Thus if one can
prove the divisibility ®|¥ in O[[ T, S]], the following conjecture
follows.

MAIN CONJECTURE. We have ® = W up to a unit in O[[T,
S1].  Actually this conjecture is close to being proven, assuming
the following ordinarity conjecture on the local structure of
Weissauer’s Galois representations, as discussed in the lectures of
E. Urban at the Mehta Research Institute (Allahabad, India). Let
us explain Urban’s strategy. First of all, there is a theory of (nearly)
p-ordinary O[[T, S]]-adic forms on GSp(4), developed mainly
by Tilouine and Urban (19, 20). A cohomological Hecke
eigenform f on GSp(4),q is called nearly p-ordinary if its
eigenvalues for two standard Hecke operators at p are p-adic
units under the fixed embedding Q into Q,. Here the word
cohomological means that the system of Hecke eigenvalues for
f appears in the middle cohomology H? with coefficients in a
polynomial representation L of a Siegel modular variety for
GL(4),q. In other words, f belongs to a discrete series repre-
sentation whose Harish—-Chandra parameter is the sum of the
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highest weight of L and the half sum of positive roots. For each
cohomological eigenform f, Weissauer has attached a p-adic
modular Galois representation py into GL(4) with character-
istic polynomials of Frobenii outside p given by the Hecke
polynomial (see ref. 21). Here is the ordinarity conjecture for
the Galois representation.

ORDINARITY CONJECTURE. Assume that f is nearly p-
ordinary. Then the image of the decomposition group at p of pr
is in a Borel subgroup of GSp(4). Weissauer’s construction
gave a compatible system of l-adic representations attached to
f, and pyis one of its members. When pyis crystalline, we have
two characteristic polynomials at p. One is that of the crystal-
line Frobenius Lis(X), and the other, L¢(X), is that of the
Frobenius at p of a non-p-adic member of the compatible
system. The p-ordinarity conjecture follows in this case if one
can prove Lgis(X) = Le(X), which is a standard conjecture and
is known to be true at least for constant sheaves (that is, so to
speak, the weight 0 case).

It is enough to prove the ordinarity conjecture for crystalline
pr for the following reason. We can glue Weissauer’s Galois
representations by means of Taylor’s pseudorepresentations
and attach to each O[[T, S]]-adic eigen cusp form %4 a Galois
representation pg : G — GL4(F)) for the field of fractions F
of a finite extension [ of O[[T, S]]. Thus at densely populated
points on Spec(l), pg specializes into Weissauer’s Galois
representations. Furthermore, pg has densely populated spe-
cializations on Spec(l) which are crystalline at p. Thus if one
can prove the p-ordinarity conjecture for crystalline special-
izations, the image under pg of each decomposition group at
p is in a Borel subgroup in GSp(4), and hence the ordinarity
conjecture for all specializations follows.

We now come back to the strategy for a proof of the Main
Conjecture. We look at the Klingen-style O[[7, S]]-adic Eisen-
stein series € induced from the A-adic form %. The Galois
representation pg attached to € has values in the standard
maximal parabolic subgroup, that is, it is of the following form:

pe = (3’ "I ® vdet(d))) C GSp4(O[LT, S]D.

The constant term of € at the nonstandard parabolic subgroup
P is almost equal to & times n(T)L(T, S). Here we mean by
nonstandard the parabolic subgroup given by

0

*

0
0

€ GSp(4)

S ¥ ¥ ¥
S ¥ ¥ ¥
* % ¥ %

Thus the Eisenstein ideal Eis giving congruence between € and
another O[[T, S]]-adic cusp form % should be generated by
n(T)L(T, S). In particular, under the p-ordinarity conjecture,
Urban has shown for such Eisenstein primes P dividing ®(7,
S), if ¢ = € mod P for a cusp form 4, pg has values in GSp(4)
and is irreducible. It was a nontrivial task to prove this because
the representation is residually reducible. We also note that, to
prove this, we again need the result of Wiles (4) proving the
conjecture in ref. 11. The fact that pg has values in GSp(4) is
essential in the proof because it guarantees that the adjoint
action of pg on the unipotent radical of the standard maximal
parabolic subgroup is actually isomorphic to ad(¢) ® v~!. The
extension of vdet(¢) ®¢~! mod P by ¢ mod P induced from
pg can be made nonsplit because of the irreducibility of p«. This
nontrivial extension gives rise to a nontrivial cocycle in
Sel(ad(¢) ® v~!) under the Ordinarity Conjecture. This is a
GSp(4) version of an argument of Wiles in (22) applied to
GL(2). Since it is true for each height one prime P dividing Eis,
we conclude that the Eisenstein ideal Eis of € divides W,
assuming the Ordinarity Conjecture. To establish the divisi-
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bility ®|Eis, in other words, to establish the congruence % =
€ mod P¢ for P¢|®, we need to have precise information on ¢
(not just its existence), for example, its Fourier coefficients, its
Whittaker model, and so on.

Although each author had already worked out some of their share
of the work presented here before they visited the Mehta Research
Institute of Mathematics and Mathematical Physics (MR, Allahabad,
India) in January and February, 1996, the coordination in bringing all
the efforts into a general framework was done while they were visiting
Allahabad. We are grateful to Prof. Dipendra Prasad at MR for giving
us the opportunity of working together and to the audience at MRI for
patiently listening to our lectures on the subject whose formulation was
not yet definite. H.H. acknowledges the support from the National
Science Foundation during the preparation of the paper.
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The structure of Selmer groups
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ABSTRACT The purpose of this article is to describe
certain results and conjectures concerning the structure of
Galois cohomology groups and Selmer groups, especially for
abelian varieties. These results are analogues of a classical
theorem of Iwasawa. We formulate a very general version of
the Weak Leopoldt Conjecture. One consequence of this
conjecture is the nonexistence of proper A-submodules of
finite index in a certain Galois cohomology group. Under
certain hypotheses, one can prove the nonexistence of proper
A-submodules of finite index in Selmer groups. An example
shows that some hypotheses are needed.

The results that I will describe here are motivated by a
well-known theorem of Iwasawa. Let K be a finite extension of
Q. Let K../K be the cyclotomic Z,-extension of K, where p is
any prime. Thus K.. C K(up-) and I' = Gal(K./K) = Z,, the
additive group of p-adic integers. We let A = Z,[[I']] be the
completed group algebra of I' over Z,, which is isomorphic
(noncanonically) to the formal power series ring Z,[[T]]. Let
M., denote the maximal abelian pro-p extension of K., unrami-
fied outside 3 = {p, «}. Let L. denote the maximal abelian
pro-p extension of K.. unramified at all primes of K... Let X =
Gal(M./K-) and Y = Gal(L./K.). In ref. 1, Iwasawa proves
the following important result.
THEOREM (Iwasawa):

(i) X and Y are finitely generated A-modules.

(ii) Rankx(X) = r», where r; denotes the number of complex

primes of K.

(iii) Y is a torsion A-module.

(iv) X has no nonzero finite A-submodules.

We remark also that if K../K is an arbitrary Z,-extension, (i)
and (iii) are true (due to Iwasawa). Statement (ii) should
conjecturally be true. It is often referred to as the “Weak
Leopoldt Conjecture” for K../K and has the following inter-
pretation. Let K, denote the unique subfield of K such that
K, /K is cyclic of degree p". Let K,, denote the compositum of
all Z,-extensions of K,,. Then it is known that

Gal(K,/K,) = 7" 1",

where §, = 0. Leopoldt’s Conjecture states that §, = 0. The
Weak Leopoldt Conjecture states that §, is bounded as n —
%, which is equivalent to the assertion that rank, (X) = r,. Also
if statement (if) holds, then so does statement (iv). (See
proposition 4 of ref. 2.)

Returning to the cyclotomic Z,-extension K../K, we can
restate Iwasawa’s theorem in terms of the Pontryagin duals

Hom(X, Q,/7Z,), Hom(Y, Q,/Z,),

which are subgroups of H'(Gk,, Q,/Z,) = Hom(Gal(K%"/
K.), Q,/Z,) defined by imposing certain local conditions.
They are examples of what have come to be called “Selmer
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groups.” Iwasawa’s results then become: (i) Hom(X, Q,/Z,)
and Hom(Y, Q,/Z,) are cofinitely generated A-modules. (if)
Hom(X, Q,/Z,) has A-corank r,. (iii) Hom(Y, Q,/Z,) is
A-cotorsion. (iv) Hom(X, @Q,/Z,) has no proper A-
submodules of finite index.

Now consider an abelian variety 4 defined over K with good,
ordinary reductions at the primes of K lying over p. We denote
by Sel,(K-), the p-primary subgroup of the classical Selmer
group for A over K... Over K,,, this Selmer group is defined as
follows.

Sely(K,), = ker(H (G, A[p~]) = D J,(K,),

where J,(K,,) = @(Hl(K,,,T,,A[p“’])/LT,). Here A[p~] de-

notes the p-power torsion points on A(K), v runs over all
primes of K, n over the primes of K, lying over v, and L,
denotes the image of the local Kummer homomorphism for 4
over the m-adic completion K, ,, of K,,. We define J(K-) =
Lim J,(K,) (with obvious maps). Then Sels(K-),

Lim Sel4(K,), can be defined by
Sely(K..), = ker(H'(K.., A[p™]) = D J,(K.)

v

= ker(H'(Ks/K.., A[p~]) — D J(K.)),

vEY

where 3, is a finite set of primes of K containing all primes of
K where A has bad reduction as well as all primes dividing p
or «. In the early 1970s, Mazur made the following conjecture,
where K../K is assumed to be the cyclotomic Z,-extension.
CONJECTURE (Mazur): Sel4(K-), is A-cotorsion.

One can weaken the assumption that 4 has good, ordinary
reduction at all p dividing p. For each p|p, let h, denote the
height of the formal group associated to the Neron model for
A over the integers in any finite extension of K, where 4
achieves semistable reduction. Let g = dim(A4). Then Mazur’s
conjecture should be true if K./K is the cyclotomic Z,-
extension and %, = g for all primes p of K lying over p. Using
results of ref. 3, one can show that Sel(K..), has positive
A-corank if hy, > g for at least one p|p and for any Z,,-extension
in which p is ramified. On the other hand, we should remark
that there may exist noncyclotomic Z,-extensions of K where
Sel4(K-)p fails to be A-cotorsion even if A has good, ordinary
reduction at all p|p. For example, this can occur if K., is the
anticyclotomic Z,-extension of an imaginary quadratic field K.
See ref. 4 for a discussion of this issue.

I now will describe various consequences if we assume that

K../K is the cyclotomic Z,-extension, A has good, ordinary
reduction at all primes of K over p, and Sel4(K.), is A-co-
torsion.
Consequence I: The A-corank of H'(Ks/K., A[p~]) can be
determined. For i = 0, 1, and 2, the A-modules H'(Ks/K..,
A[p~]) are cofinitely generated and their coranks are related
by their Euler-Poincaré characteristic
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2
> (~1)icorank,(H'(Ks/K., A[p”]) = —[K:Q]dim(A4).

i=0

From this one gets the lower bound coranky(H'(Ks/K-,
A[p~])) = [K : Q]dim(A4), with equality if and only if H*(Ks/
K.., A[p~]) is A-cotorsion (since H*(Ks/K.., A[p~]) is obvi-
ously A-cotorsion). The calculation of the above global Euler—
Poincaré characteristic is a consequence of results of Poitou
and Tate for finite Galois modules over number fields. Using
their results over local fields one can prove the following fact:

Corank,( D J,(K.)) = [K:Q]dim(A).

vEY

The definition of the Selmer group and the assumption that
Sel4(K-), is A-cotorsion then imply that coranka(H'(Ks/Kos,
A[p*]) = [K : O]dim(A).

Consequence 2: The map y:H'(Ks/K, A[p~]) = D Jo(K=)
veEQ

is surjective. It is clear by comparing the A-coranks that the
cokernel of this map will be A-cotorsion. The surjectivity is a
consequence of studying the behavior of the corresponding
cokernels over the K,,’s. One uses the known fact that A[ p*] ¢
is finite.

Consequence 3: In addition to the above assumptions, assume
that at least one of the following hold: (i) 4/(K) has no
p-torsion. (ii) For some v + p, A[p*]’ is finite. (iif) For some
plp, e(b/p) = p — 2. Then Sels(K-), has no proper A-
submodules of finite index.

The proof of this consequence is discussed in a much more
general context in ref. 5. In (if), [, denotes the inertia subgroup
of Gk, If A is an elliptic curve, then (if) is equivalent to 4
having additive reduction at some v 4 p. In (i), e(p/p) is the
ramification index; this assumption clearly holds if p > [K : Q]
+ 1. Assumption (7) also holds if p is sufficiently large, at least
for a fixed 4 and K.

I want to add several remarks about these consequences.
Consequence 1 should be true more generally, without the
stringent assumptions made above. For any abelian variety
defined over K and for any Z,-extension K../K, it is conjec-
turally true that H'(Ks /K., A[p”]) has A-corank equal to [K :
Q]dim(A). This is equivalent to the assertion that H*>(Ks /K-,
A[p~]) is A-cotorsion. I will state later a much more general
conjecture which will also include the Weak Leopoldt Con-
jecture stated earlier.

Concerning consequence 2, let {} denote a finite set of
primes of K not d1V1d1ng p or ». Define a “nonprimitive”
Selmer group Sel{(K.), by

Sel{(K..), = ker(H'(K.., A[p~]) — D J(K..)).
ve)

Thus Sel4(K-), C Sel{{(K-.),. Choose a finite set 3 as before,
but also containing (). The surjectivity of vy gives an isomor-
phism

D (k..

vEQ)

Self(K..),/Sel4(K..), =

This isomorphism has an interesting interpretation in connec-
tion with Mazur’s “Main Conjecture” Wthh asserts that the
characteristic ideal of the A-module Sel4 (Kx)p is generated by
a certain element 64 € A associated to the p-adic L-function
for 4 over K. The existence of this p-adic L-function is known
only under very restrictive hypotheses, e.g., if K = Q and 4 is
a modular elliptic curve. But if it exists, then it is easy to
construct a “nonprimitive” analogue with an interpolation
property involving values of the Hasse—Weil L-function for 4
with the Euler factors for primes in () omltted One could then
define an element GA € A. It turns out that OA = P04, where
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P generates the characteristic ideal of @ J(K.)". Thus the
veQ

main conjecture is equivalent to a nonprlmltlve analogue
asserting that the characteristic ideal of Sel(K-. )1/,\ is gener-
ated by 65

Concerning consequence 3, some restrictive hypotheses are
necessary. Here is an example to show that. Let K = Q(us) and
p = 5. Let E be the elliptic curve/Q of conductor 11 such that
E(Q) is trivial. (The other two elliptic curves of conductor 11
are isogenous to E and contain a (-rational point of order 5.)
Now K. = Q(use) and Gal(K./Q) = A X T', where A =
Gal(K/Q). Let w denote the Teichmuller character of A. Then
we can decompose Sel,(K-), by the action of A:

@ Sel(K..).

i=0

Sely(K-), =

One can determine the structure as a A-module of each factor.
The result is that the Pontryagin dual of Sel4(K-.)," is isomor-
phicto: A/5?Aifi = 0, 0ifi = 1, the maximal ideal M C A/5%A
(which has index 5) ifi = 2, and Z/5Ziti = 3. Thus Sel4(K-),
has a A-submodule of index p = 5, the kernel of projecting to
the w? factor.

It is interesting to note that Iwasawa’s u-invariant for
Sel4(K~), is nonzero in the above example. Mazur first gave
such examples in ref. 6, e.g. Xo(11) forp = 5, K = Q in which
case he showed that u = 1. The behavior of the u-invariant
under isogenies has been studied by Schneider (7) [and in a
more general context by Perrin-Riou (8)]. Using their results,
the following conjecture would predict the value of u. Con-
jecture: u can be made zero by isogeny. For X((11) and for K =
Q, p = 5, the isogenous elliptic curve E = X(11) /s will have
SelA(Koc)p = 0.

We will now formulate a general version of the Weak
Leopoldt Conjecture, which gives a prediction of the A-corank
of H*(Ks /K, M) and, as a consequence, H'(Ks /K-, M) for a
very general Gal(Ky/K)-module M. The previously stated
version is the special case M = Q,/Z,, on which Gal(Ks/K)
acts trivially (and X, = the set of primes of K lying over p or ).
Various generalizations and special cases have been consid-
ered by Schneider (7), Greenberg (9), Coates and McConnell
(10), and Perrin-Riou (11). The form we will give here is
inspired by the thesis of McConnell. Let V" be a finite dimen-
sional Q,-representation space for Gal(Kx/K), where 2, is a
finite set of primes of K containing the primes over p and .
Let T be a Galois-invariant Z-lattice in V. Let d = dimg (V),
d; = dlm@ (V=) for the real primes of K, where V= denotes
the (£1)- elgenspaces for a complex con]ugatlon above v. Let
M =V/T.LetK../K be any Z,-extension. It is known that both
H'(Ks/K-,, M) and HZ(KE/KDO, M) are cofinitely generated
A-modules (where A = Z,[[I']], I' = Gal(K»/K)) and that

corank,(H'(Ks/K.., M)) = corank,(H*(Ks/K.., M)) + 8§,

where 8 = rod + 2yrea dy .- (See ref. 9, proposition 3. The
Euler-Poincaré characteristic for M over K., is —8.) For any
prime v of K, we let Hx(K., M) = Lim (69 HX(K,,.n, M)),

where for each n, n runs over the primes 'of K, lylng over v. One
can prove the followmg result.
PROPOSITION. The natural map H?*(Ks/Kw=, M) —

S5 H?(K., M) is surjective. The kernel is A-cofree.
vES,

Our version of the Weak Leopoldt Conjecture is the fol-
lowing.
CONJECTURE. The map H*(Ks/K.., M) — @ H(K., M) is an
isomorphism. 2

One can show that if v does not split completely in K../K,
then H2(K.., M) = 0. However, primes can split completely in
a Z,-extension K../K. For example, the archimedean primes of
K will split completely. If K is an imaginary quadratic field,
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then every nonarchimedean prime v of K not dividing p will
split completely in one Z,-extension of K. [This is obvious
because Gal(K/K) = Zz and the decomposmon subgroup for
v is isomorphic to Z, ] If v is inert in K/Q, then v splits
completely in the anticyclotomic Zp-extension of K. It is
conjectured that for any other Z,-extension of K at most one
prime of K can split completely. (One can prove that at most
two can.)

I discuss several special cases. First assume that K../K is the
cyclotomic Z,-extension. Then the above conjecture states that

HZ(KZ/KwsM) = @ Hi(KOC’ M)’

oo

because nonarchimedean primes of K cannot split completely
in K../K. If p is odd, then H*(K.., M) = 0 for v\oo and hence
conjecturallyHQ(Kg/Kx,, M) = 0.Ifp = 2, then H(K.., M) can
be nontrivial. It is (A/2A)-cofree and its (A/ 2A)-corank equals
dimz22(M(K,)/M(Ky,)div), where M(K,) = H(K,, M). In the
special case where M = A[p~], where A is an abelian vari-
ety/K, M(K,)/M(K,)aiv = A(K,)/A(Ky)con, the group of con-
nected components. This can be nontrivial if K, = R.

Let K../K be any Z,-extension. Consider M = Q,/Z,, and X,
= {p, ©}. Then H? (Km, M) = 0 for all v. Also,

Hl(KE/KOO’ M) = HOm(X, @p/zp)’

where X = Gal(M./K..), M.. denoting as before the maximal
abelian pro-p extension of K., unramified outside 3. In this
case, 8 = r, and the above conjecture states that H'(Ks /K-,
M) should have A-corank r,—i.e., ranka(X) should equal r,.
This is the Weak Leopoldt Conjecture for the Z,-extension
K../K, as stated earlier.

Let K../K be any Z,-extension. Consider M = p,- =
Qp(1)/Z,(1). Let X be a finite set containing all primes over
p and . Then it is not difficult to prove the Weak Leopoldt
Conjecture for M and K../K. (This proof is given in ref. 5.) In
this case HU(KGC, M) has positive A-corank if v is a non-
archimedean prime which splits completely in K../K. Thus
H*(Ks/K, M) can have pos1t1ve A-corank.

Let M = A[p~]. Then H*(K.., M) = 0 for all nonarchime-
dean v (and for any Z,-extension K../K). The Weak Leopoldt
Conjecture states that HZ(K;/KOC, M) = 0ifp is any odd prime.
There are some known cases. For example, if A is an elliptic
curve/Q, K../K is the cyclotomic Z,-extension, and K/Q is
abelian, then the conjecture is settled if A has complex
multiplication and good, ordinary reduction at p [Rubin (12),
where he proves Mazur’s conjecture in this case], if A has
complex multiplication and good, supersingular reduction at p
(McConnell), and, more generally if E is modular and has good
reduction at p (Kato). All of these results use a nonvanishing
theorem of Rohrlich for the Hasse—Weil L-function.

Let Ry(K»S, M)=ker(H*(Ks/K~, M)—D H2(K.., M)).
vEY

The Weak Leopoldt Conjecture for M and K../K then asserts
that R>(K=, 3, M) = 0. We want to state an equivalent version
(inspired by McConnell). Let I* = Homg (V, Q,(1)) and T*
= Homg (T, Z,(1)). Let M* = V*/T*. Define

Ry(K.., S, M*) = ker(H'(Ks/K.., M*) — D HYK., M*)).

vES

Then, as a consequence of Tate’s global duality theorem, one
can show that R>(K.., 3, M) and R(K-~, %, M*) have the same
A-corank. The Weak Leopoldt Conjecture then asserts that
Ri(K=, 2, M*) is A-cotorsion.

Let F.. denote the fixed field for the kernel of the action of
Gk, on M*. Let H = Gal(F../K.). Thus the action of Gg_ on
M* factors through H. Let Lr, denote the maximal abelian
pro-p extension of F.., which is unramified at all primes of F...
Then G = Gal(F./K) acts on Yy, = Gal(Lp,/F-). Here G is
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ap-adic Lie group, H is a closed subgroup, and one has an exact
sequence 1 - H — G — I' — 1. One also has the restriction
map

Ri(K.., S, M*) - Hom, (Y., M*).

The kernel of p is a subgroup of HY(H, M*), which is
A-cotorsion. We assume now that K../K is the cyclotomic
Z,-extension. Then the cokernel of p is also A-cotorsion. Thus
the Weak Leopoldt Conjecture would then be equivalent to
asserting that Homg(Yr,, M*) is A-cotorsion. A theorem of
Harris (13) states that Yy is a torsion-module over Z,[[Gy]] in
a certain sense, where Gy is a suitable open subgroup of G. If
we replace K by a finite extension contained in F., (so that Gg
acts trivially on M*[p]), then H is a pro-p group. Assume that
w(K-/K) = 0, which of course is a well-known conjecture of
Iwasawa. This means that Yx, = Gal(Lg /K-) is a finitely
generated Z,-module, where L is the maximal abelian pro-p
extension of K., unramified everywhere (denoted by L.. ear-
lier). By studying the map Yy /IyYr, — Yk , where Iy is the
augmentation ideal of Z,[[H]], and by using a version of
Nakayama’s lemma, one finds that Yy must be a finitely
generated Z,[[H]]-module. But the Weak Leopoldt Conjec-
ture for M (and for the cyclotomic Z,-extension K../K) would
then follow because Hompy(Yr,, M*) would consequently be
cofinitely generated as a Z,-module and therefore A-co-
torsion.

Continuing to assume that K../K is the cyclotomic Z,-
extension, let M*(¢) denote the rth Tate twist, where t € Z.
Assume that w, C K (or uy C K if p = 2). Then another
equivalent form of the Weak Leopoldt Conjecture for M and
K../K is the following statement: R(K, X, M*(¢)) is finite for
all but finitely many t € Z. Here

Ry(K, 3, M*(@)) = ker(H'(Ks/K, M*(®) - D H'K,. M*()),

vEX

which has finite Z,,-corank for all #. This formulation illustrates
the “Deformation” point of view since M*(t) = V*(t)/T*(¢)
and T#(¢t), t € Z, are specializations of a representation
Gal(Ks/K) — GL4(A), which is a deformation of T* (the
“cyclotomic” deformation as defined in ref. 14).

The Weak Leopoldt Conjecture for M and for an arbitrary
Z,-extension K../K has two consequences, which are analogues
of parts of Iwasawa’s theorem stated earlier. The first is the
obvious consequence that one could then determine the
A-corank of H*(Ks/K., M) and hence of H'(Ks/K, M), in
terms of the Euler—Poincaré characteristic 6 for M and the
Z,-corank of the local Galois cohomology groups H*(K,, M)
for those v € X which split completely in K../K. The second
consequence is the following result.

PROPOSITION: Assume that the Weak Leopoldt Conjecture holds
for M and K./K. Then H'(Ks/K., M) has no proper A-
submodule of finite index.

I would like to now discuss briefly Selmer groups associated
to modular forms. To illustrate, consider A = X7_, 7(n)q",
where 7is Ramanujan’s tau-function. We let I denote V,(A),
the p-adic representation associated to A. Let M = V//T, where
T = T,(A) is a Gg-invariant Z,-lattice. Let % = {p, o}.
Assume p is odd. Then the Selmer group for M over the
cyclotomic Z,-extension of Q has the following definition.

Su(Q..) = ker(H'(Qs/Q.., M) - H(Q, ., M)/L,),
= Hy(Qp» M) =

= U, Qp  is the cyclotomic Z,, -extension Of Qp, Q. is the nth
layer For any finite extens10n F/Qp, H} +(F, M) denotes the
image in H'(F, M) ofo(FU, V), the Q, subspace of HY(F,, V)
defined by Bloch and Kato. In the so-called ordinary case

where L, Lin;l H}(@p,,, M). Here Q.
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[which means p + 7(p)], one can describe L, as follows. It is
known that there exists a one-dimensional Q,-subspace W
of IV which is G@p-invariant and such that /W is unramified
for the action of Gq,. Let N denote the image of W under the
map V' — M. Then it turns out that

L,=H{Q,., M) = Im(H Q,., N) > H(Q, ., M)).

In contrast, if p|7(p), then it seems likely that H}(@p,m, M) =
H'(Q,,, M). Then it would follow that Sy/(Q-) = H(Qs/Qos,
M). This has been proven by Perrin-Riou if p||(p).

If p + 7(p), then Sy (Q-) is A-cotorsion (proved by Kato).
We consider two ordinary primes: p = 11, p = 23. In ref. 15,
I have calculated the structure of Sy/(Q.) for these primes
(even as a A-module for p = 11). As groups, Su(Q-) = Q,/Z,
in both cases. The idea behind the calculation is to use certain
congruences between modular forms: A = fz(mod 11), where
fr is the modular form of weight 2 associated to Xo(11), and
A = f,(mod 23), where f, is the weight 1 modular form
associated to a certain dihedral two-dimensional Artin char-
acter. One can use an easily verified fact that Sy(Q-)[p]=
Smp)(Q-), where one defines the Selmer group for the finite
Galois module M[p] in a way analogous to the definition of
Sm(Q-), using the subgroup N[p] of M[p]. (One needs mild
hypotheses on M to verify this fact.) One can calculate the
Selmer group over Q.. for V,(Xo(11)) and for V,(p) (modulo
Z,-lattices). This allows one to show that in both cases
Sm(Q-)has order p. One concludes that Sy(Q.) = Q,/Z, by
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using the result that Sy/(Q-) has no proper A-submodule of
finite index [and hence Sp(Q~) cannot be finite]. A very
general result of this nature is proved in ref. 9 under rather
restrictive hypotheses, and much more generally in ref. 5.
However, as indicated earlier, there are cases where such a
result fails to be true.
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On the coefficients of the characteristic series of the U-operator
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ABSTRACT A conceptual proof is given of the fact that
the coefficients of the characteristic series of the U-operator
acting on families of overconvegent modular forms lie in the
Iwasawa algebra.

Introduction

In this document, I attempt to “explain” why the formula for
the characteristic power series for the U-operator acting on
families of completely continuous p-adic modular forms (see
section B4 of ref. 2) looks the way it does. In other words, I give
a conceptual proof of the part of theorem B6.1, when p is odd,
which is evident from the explicit formulas (see appendix I of
ref. 1) and which asserts that the coefficients of this series lie
in the Iwasawa algebra A = Z,[[Z%]]. I also prove that this
series analytically continues to a larger space. This was asserted
by this theorem and is not evident from the formulas (I have
not proven this assertion when p = 2). I use the operator called
U in section B4 of ref. 1, which is the U,-operator on weight 0
overconvergent forms twisted by a family of Eisenstein series
E (see section 1 below). The key point is that the g-expansion
coefficients of E lie in A C A. This is enough to prove that the
function E, whose g-expansion is E(g)/E(¢?) lies in AQA%(Z)
where Z is the connected component of the ordinary locus
containing the cusp ° in X;(q) [a sort of affinoid g-expansion
principle (see Theorem 2.1 below)]. The operator U acts on
A®A°(Zy) and if it were completely continuous that would
basically do it, but it’s not. I am forced into some technicalities
to get around this difficulty in sections 3 and 4. I complete the
proof in section 5, and in section 6, I prove theorem B6.2 of ref.
1, when p is odd, which asserts that this characteristic series
“controls” forms of higher level.

Some notation: Fix a prime p. Let q = 4 if p = 2 and p
otherwise. Let A = Z,[[1 + qZ,]].

If X is a rigid analytic space and Y'is a reduced affinoid with
good reduction, let Yy = Y X X and 47(Yx/X) denote the ring
of overconvergent rigid analytic functions on Yx over X (see
section A5 of ref. 1). If & is the rigid space of continuous
characters on 1 + qZ, with values in C3, it is conformal over
Q, to the open unit disk. I can and do think of A as rigid
functions on % defined over Q, bounded by 1. If Y is the
affinoid unit disk with parameter 7, let A%(X)[T]T denote
AT(Yy) N A%(Y,). Identifying % with the open unit disk, we may
regard A as Z,[[S]]. Then, for each 0 < ¢ <1 and = b,S" €
A, set

E bnsn t = Maxn{|bn|tn}'
n=0
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If t € |Cp|, this is the norm obtained upon mapping an element
of A into A°(B[t]) and then taking the supremum norm of its
image. Then, ift = s < 1, log,(s) > 0 and one can easily check

fle = I, = |flio=.

Let I be the maximal ideal in A. Suppose t < 1, then f € I"
implies

|f|t = Max{[p|",t"},

and if n = Min{log,(|fl:), — log,(|fl-)}, f € I".

We deduce:

PROPOSITION 1.1. All the norms | |;, for 0 < t < 1, are equiv-
alent and induce the 1-adic topology on A.

COROLLARY 1.1.1. The image of A in A%(B) is closed.

I define A[X]T to be the subring of A[[X]] consisting of
elements of the form

> AX"
n=0

for which there exists ana > 0 in R such that A,, € I1#"] for large
n. Then, f(X) € A[X]" if and only if the image of f(X) in
AYB[])[[X]] lies in AXB[1])[X]" for some ¢ < 1 if and only if
the image of f(X) in A°(B[¢])[[X]] lies in A°(B[¢])[X]T for all t <
1. Thus

LEMMA 1.2. AT(B[I]a/B) = A[X]T.

2. A g-Expansion Principle

In this section, I will prove:

THEOREM 2.1 (g-expansion principle). Suppose, t € |C,| and
0 <t <1 Then, if G € AT(Zpy/Blt]) and G(q) € A[[q]], G
uniquely analytically continues to an element of AT (Z3/%)°.

LEMMA 2.2. There exists a finite morphism f from ZT onto
B[1] such that f~'(0) = % and, f is separated.

Proof: Let Z be the reduction of Z and D be the divisor of
degree zero on Z, s[°] — 2i_,[e;], where {ey, . . ., es} is the set
of points at % (the supersingular points) on Z. Then mD is
principal for some positive integer m. Suppose m is minimal.
If f is a function on the completion of Z with divisor D, f:Z —
BJ[1] is a finite separated morphism such that f~1(0) = . We
may now apply theorem A-1 of ref. 2 with 4 = Z,, B =
A%B[1]1), C = A%ZT) and D = Z,[X]/X™, thought of as the
ring of the closed subscheme m® of ZT, to conclude there is
a lifting of f to an overconvergent function f on Z which gives
a finite morphism of degree s from ZT onto B[1]T with the
property f~1(0) = oo. .

Proof of the g-expansion principle:

Let G be as in the statement of the theorem. Let f be as in
the lemma. Suppose f has degree d. Let Try denote the trace
map from A(Z") to A(B[1]7). Let X be the standard parameter
on Al, Regarding g as a parameter at @, the fact that f is totally
ramified above 0 implies that 77y extends naturally to a map
from Z,[[g]] to Z,[[X]]. Hence, we may write
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Try(q") = 2 X,
where a,,,» € Z,,. In fact, a,,,, = 0 form <n/d. Forr EAO(ZT),
we may write

rG(q) = 2 A"

where A, € A. Now f extends to a finite morphism from
(Zgp)/Blt])T to (B[1]51q/Blt])T and we extend Try according-
ly. Then,

Tr{rG) = 2, Ay 2, X"

“ 2 (S o)

We know, by the above, that, for each m, the coefficient of X™
is a finite sum so lies in A. We also know Tr(rG) € AT(B[1]51/
BJt]). Since this is true for all r € A%(ZT) we conclude DG €
AT(Z3/B) where D generates the discriminant ideal in Z,[X]f
of A%(ZT)/Z,[X]T). Since f is separated, p +D. The principle
will follow from:

LEMMA 2.3. Let t € |Cy| N (0, 1). Suppose a(X) € A'(B)[X]*
and there exists a D(X) € Zy[X] such that p ¥D(X) and
D(X)a(X) € A[X]T, then a(X) € A[X].

Proof: Let A = A%(B[t]). Suppose

D(X)a(X) = go AX",

where A, € A and |\,|; = & for some & < 1 and large n. Let
d be the degree of the reduction of D(X) modulo p which is
defined because D # 0. Using the division algorithm, we may
write X" = D(X)h,(X) + r,(X) where r,(X) is either 0 or a
polynomial over Z, of degree strictly less than d and /,(X) €
Z,[X]T. [We first know we can do this with /2,(X) € Z,(X). Then
the equation X" — r,(X) = D(X)h.(X) implies h,(X) € Z,[X]T.]
It follows that,

D(X)a(X) = D(X) X, Mhn(X) + 2 Ara(X).

Since ||, = & for large n, we conclude both sums converge
in A[X]T. The second sum must be 0 since it has degree strictly
less than d. Since A[X]T is an integral domain, we conclude

a(X) = 2 Mha(X).

The lemma follows from the fact that A is closed in A4 by

Corollary 1.1.1.
Now suppose by, . .

may write, uniquely,

G =a,(X)by + a(X)b, + - - - + a(X)by,

n
., byis abasis for 4%(Z ) over Z,[X]T. We

where a;(X) € A%(B[t])[X]T. Then I apply the lemma to a(X) =
a;(X) and deduce the theorem. "

Let E(g) denote the element of A[[g]]* such that k(E[gq]) =
E.(q). Recall, for t < |7, I proved in corollary B4.1.2 of ref.
1, there exists a rigid analytic function Fy on Zp[,, overcon-
vergent relative to B[t], such that Fy(k, g) = E«(q)/E.(¢g?) for
k € B[t]. I deduce,

COROLLARY 2.1.1. There is an element E, € AT(Zga/B)
bounded by 1 on Zg whose q-expansion is E(q)/E(qP).

3. Continuous Versus Completely Continuous Operators
Suppose L is a complete subring of A, P and N are Banach

modules over 4 and L, respectively, and v:P < N& A is a
continuous injective homomorphism.
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PROPOSITION 3.1. Suppose u is a continuous linear operator on
N such that u ® 1 preserves u(P) and v~ 'uv = up is a completely
continuous operator on P. Then, if there exists an orthonormal
basis B := {b;}icr for N over L and a map r:B — A* such that
B* = {r(b)b ® 1:b € B} is contained in «(P) and v~ (B*) is
an orthonormal basis for P, det(1 — Tup) € L[[T]].

Proof: For b € B, let b* = r(b)b ® 1 and for a subset S of
I, let ;:P — P be the projector onto the subspace P, spanned
by {b%i € S} as defined in lemma A1.6 of ref. 1. Then by
theorem A2.1 and lemma A1.6 of ref. 1,

det(1 — Tup) = lim det(1 — T(msoup)|Py),
s

as § ranges over finite subsets of I. Now since det(1 — T(ms ©
up)|Ps) is independent of the choice of basis of Ps over 4 and
its matrix with respect to the basis {b¥/r(b;):i € S} has entries
in L, we see that det(1 — T(ws © up)|Ps) € L[T]. Since L is a
complete subring of A, the proposition follows. n

We will be able to apply this to the operator U because,

LEMMA 3.2. Suppose X is a minimal underlying affinoid of a
basic wide open W. Then there exists an orthonormal basis B of
A(X) and an underlying affinoid Y of W such that Y strictly
contains X and there exists a map r from B to K* such that
{r(e)e:e € B} is an orthonormal basis of A(Y).

(Compare proposition 1 of ref. 3.)

This will be an immediate consequence of Corollary 4.2.1,
which is a more precise version.

4. Orthonormal Bases of Wide Open Neighborhoods

Let K be a finite extension of Q, contained in C,, R the ring of
integers of K, and F the residue field of R. Below, the symbol r will
always refer to an element of |C,|. Note, however, that for any
given r one might have to replace K by a finite extension so that
r € |K]. Suppose that G is a finite Abelian group of order prime
to p such that the |G|-th roots of unity are contained in K.

Suppose W is a basic wide open defined over K with minimal
underlying affinoid X such that W — X has s connected
components Uy, . .., U; (see ref. 4). Suppose in addition that
G acts faithfully on W and preserves X. For 1 =i =sand o €
G let 1 = o(i) = s be such that o(U;) = Ugy. Let z:U; — B(0,
1)\{0} be a uniformizing parameter such that the subset of U;
where |z;| = r is nonempty and connected to X for any r < 1.
Suppose in addition that there exist ¢(o, i) € R such that o*
z; = c(0, i)z (this we can arrange by using appropriate
projectors like Eq. 1 below corresponding to the fixers in G of
elements 1 =i € s). It follows that ¢(o, i) € R*. Forr = 1, let
X, = W — U{x € Uglzi(x)| < r}. Then for r close to 1,7 < 1,
X, is an underlying affinoid of Wwhich is a strict neighborhood
of X and is preserved by G.

The affine X has s points at %, Py, . . ., Ps corresponding to
the U; and is acted on faithfully by G [since (|G|, p) = 1]. For

fEFX),f#0let
M(f) = —Max{up(f)}.

Let m(f) = {i: — vp(f) = M(f)}. Let T; be a parameter at P;,
which lifts to z; and for i € m(f), let c,(f) € F be such that

vp(f = e(HT7 M) > —M(f).

Let A be the ring F[y, yo, . . .
A so that

,¥s]/yiyyii # j} and let G act on

o*y; =c(0,i)y,; for o€G.
Also let A(f) be the element of 4,
2 ey

iemf(f)

Copyright © National Academy of Sciences. All rights reserved.
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It follows that deg(A(f)) = M(f) and A(c™* f)) = o*A(f). Let
B be the subring of A generated by A(f) where f ranges over
0.(X), f # 0. Then by Riemann-Roch B D I := @ A for some
positive integer N. Moreover, B/I is finite dimensional over F
and is acted on by G. Let H be a basis of B/I each element of
which is an eigenvector for the action of G. Then the set

T=HUpN1=i=s50=<j<Nn=0},

is a basis of B. Let t be a map from T to F(X), such that A(t(a))
=a, o*t(h) = et(h) if h € H and ¢*h = eh and

1y ) = 1) _ ifj=0
: tyMyn 1 (yNH) if0<j<N.

Then {t(a):a € T} is a basis for F(X). For ¢ € H om(G, R*), let

> & Y(o)o € R[G]. [1]

h @ oeCG

Note that if a € T, m.a = 0 or deg(m.a) = deg(a). It follows
that if m.(a) # 0,

Te

M(m t(a)) = M(t(a)). [2]

Now, let f; = t(y)), g; = t(v} /) and k;, 1 =1 = m, be elements
in F[{an, bi ¢j rtner=ij=s0<k<n] which generate the ideal
consisting of f such that

f(t(h),figix) = 0.

Let K; be a lifting of k; to R[{ap, b;, ¢;jtnen1=ij=s0<k<n]- Then
the equations

Kl(ah?bhcjk) = 07

determine an affine scheme y which lifts X and so there is an
isomorphism from X to its weak completion such that the
pullbacks of a;, b;, and c; are liftings of #(h), t(y") and t(y} ™).
For u € T call the lifting of #(u) in XT made by taking the
appropriate product of these pullbacks 7(u). Let V' = {f(u):u €
Horu=f""1=i=s5,0=j<N}LetU, =U NX,.

LEMMA 4.1. If r is close enough to 1, r < 1,and J € V,
MODJ|U;, equals 1 if i € m(J) and is strictly less than 1
otherwise. Moreover, if i € m(J),

‘rM@J - Ci(j)(r/zi)M@|Uir <1

It follows that if 7 is close to 1 and J € V that [J|x, = r~M© and,
in particular, if |a] =r,

AX,) = K<{aM(h)ahﬂM(f')bi,aM(g’k)CjkD/({Kl(ah,bi,cjk)})~

PROPOSITION 4.2. For r close enough to 1,r =< 1, the R-algebra
AYX,) is the completion of the subalgebra generated over R
by the elements {a™"J.J] € V} and if r < 1 its reduction, A(X,)
is G-isomorphic to B.

Proof: This proposition is immediate when r = 1 so suppose
r < 1. Let C be the above complete subalgebra. We know, for
rclose to 1, C ® Q, = A(X,) so by lemma 3.11 of ref. 5 we only
have to prove: (i) for all f € C, there exists a ¢ € R such that
f/c € C — mC, (ii) A°(X,) is integral over C and (iii) C/mC is
reduced. Now, (i) follows after making a finite extension if
necessary, (ii) follows from proposition 6.3.4/1 of ref. 7, and
the above description of A(X;) and finally, (iii) (as well as the
second part of the proposition) will follow, once we exhibit a
G-isomorphism C/mC — B.

To see the latter, first note that elements in 4%(U;) may be
written in the form X7 .a,z where a,ER and |a,|r" — 0 as
|n| — % and so A(Uj,) is isomorphic to F((z;)). If we map C in
to ®,A%U;) and then reduce we get, after mapping the
reduction of z;toy;, a homomorphism

Proc. Natl. Acad. Sci. USA 94 (1997) 11131

C/mC— @ F((y).

Using the previous lemma, we see that for r close to 1, this
factors through a surjection onto B which is a G-homomor-
phism by construction.

Now we produce the inverse to this homomorphism. ForJ €
V, letJ, = aM?)J]. Consider the correspondence A(J) — J, mod
mC from V to VV mod mC. It suffices to show that for r
sufficiently close to 1 this extends to an R-algebra homomor-
phism B — C/mC. Let Y,, be the subset of B consisting of
elements of the form Il; ¢ 17 ) such that Zrep n(f)M(f) = m
andletY = U,, Y,. Ifz € Y,, we will say deg(z) = m. Then ¢
is generated by a finite set of relations of the form

> a\(y) = 0.

YEYm

(These relations may include single monomial relations.) For
each relation of this form, there must be a relation of the form

2 ayt 2 bz=0,
YEYm zeY
deg(z)<m

on F(X). If G, and b, are liftings of the coefficients and y and
Z are the liftings of the monomials y and z obtained by lifting
t(u) to t(u) for u € T. Then, because y lifts X, there must be
a relation of the form

2 ay+ 2 biz=ah
YEYm z€EY
deg(z)<m

where / is a polynomial in {v € V} with coefficients in R and
a € R, |a| < 1. Tt follows that
DS TP

YEYm zeY
deg(z)<m

pmodes@p pdes@y = Py,

Since r"i for u € V,, is a product of elements of the form J, for
J € V and r"ah is in mC for r close to one, since 4 is a
polynomial, we see that for r close to 1 we have a homomor-
phism from B onto C/mC which takes A(J) to J, as desired.

For a character ¢ € Hom(G, R*) and an R module M on
which G acts, set M(g) = w.M.

COROLLARY 4.2.1. Let r be as in the proposition and suppose
la| = r. Then the set

{a"WFw):u € T,

is an orthonormal basis for A(X,). Moreover, if e € Hom(G, R*)
and S C T is such that {m.(s):s € S} is a basis for B(¢), then

{a"m(i(s):5 € S},
is an orthonormal basis for A(X;)(g).

5. End of Proof

Fix a positive integer N prime to p. Let X be connected
component of the ordinary locus of X;(Nq) containing the cusp
« and U be the operator on AT(Xq/R),

U(f) = U(E,),

where U o is the weight zero U-operator, which is an operator
on A(X)T. This is the analytic continuation of the operator with
the same name in remark B4.2 of ref. 1. We have a natural
action of (Z/pZ)* on X1(Nq) via diamond operators. (Note
that this is intentionally trivial when p = 2, unfortunately.)
Let D be a disk around zero contained in & and Y a strict
affinoid neighborhood of X stable under the action of (Z/pZ)*
such that E, converges on Yp. (This exists, by Corollary 2.1.1.)
Let &: (Z/pZ)* — Z% be a character. By Corollary 4.2.1 (and
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the properties of U(g)), we may suppose we have an orthonor-
mal basis B of A%(X)(e) over K° (we allow K to be as large as
necessary and then eliminate this choice later) satisfies the
hypotheses of Proposition 3.1, with A = K, L = KO, N =
A%X)(e) and P = A(Y)(e). It follows that {1 ® b:b € B} is an
orthonormal basis for A°(Xp)(e) over A°(D) which also satis-
fying these hypotheses with N = A%(Xp)(e) and P = A(Yp)(¢).
We conclude from Proposition 3.1 that the characteristic series
of U acting on A(Yp)(e), which is the series labeled P.(s, T) in

section B3 of ref. 1 when p # 2 and is the series labeled there
Pn(s, T) when p = 2, lies 1nA x(D)[[TT]- Since this is true for
all D, we see that it hes in AC (B)[[T]]- However, we know, a
przort (using arguments as in the proof of theorem B3.2 of ref.

1, that it lies in Q,[[S, T]]. Hence,

THEOREM 5.1. (i) If p is odd the characteristic series of U
acting on A(Xqy)T over A(W), On(T) (see lemma B3.7 of ref. 1),
lies in A[[T]] and converges on W X C,. (ii) If p = 2, the
characteristic series of U acting on A(Xm)T over A(B), Pn(s, T),
lies in A[[T]] and converges on B X C,,.

In fact, if we were only worrying about modular forms on
I'y(N) (i.e., without character), we could have used a Katz basis
(see section 2.6 of ref. 6). Indeed, suppose, for now, p = 5. Let
{baj ..., ban} be a Z, basis for B(N, 0, a). Then we have an
orthonormal basis for A(X;) = S(K, r, N, 0)

raba,-
“a=0,1=i=n;,

a
p—1

for all » € R, r # 0. This is good enough to apply the results
of section 3 in this case.

Proc. Natl. Acad. Sci. USA 94 (1997)

6. Higher Level

In this section, I prove theorem B6.2 of ref. 1 when p is odd.
That is, I prove,

THEOREM 6.1. Suppose p is odd. If k(x) = x(x){(x))* where k
is an integer, x.L% — C% is a character of finite order and p" =
LCM(p, f,), then k(QOn)(T) is the characteristic series of the
U-operator acting on overconvergent modular forms of level N pn,
weight k, and character .

Proof: The proof of this is very simple, given what we now
know. Let a be the character on Zj‘,,x — k({((x))) and ¢ = k/a.
Then ¢ = 7' for some i. If M(N p", k, x) denotes the Banach
space of overconvergent modular forms of level Np", weight k
and character x (of some fixed yet to be determined radius),
then, the map

F—F/E,,

is an isomorphism from M(N p”, k, x) onto the Banach space
M(N p, 0, ) and thus the characteristic series of U on M(Np”,
k, x) is the characteristic series of the operator G — Uy,

((Eo(q)/Eog?))G) acting on M(N p, 0, ). Since a(Ep(Q)) =
E(q)/E(gP), the theorem follows.
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Zeta functions and Eisenstein series on classical groups
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ABSTRACT We construct an Euler product from the
Hecke eigenvalues of an automorphic form on a classical
group and prove its analytic continuation to the whole com-
plex plane when the group is a unitary group over a CM field
and the eigenform is holomorphic. We also prove analytic
continuation of an Eisenstein series on another unitary group,
containing the group just mentioned defined with such an
eigenform. As an application of our methods, we prove an
explicit class number formula for a totally definite hermitian
form over a CM field.

Section 1. Given a reductive algebraic group G over an
algebraic number field, we denote by Ga, G,, and Gy, its
adelization, the archimedean factor of Ga, and the non-
archimedean factor of GA. We take an open subgroup D of Ga
of the form D = DyG, with a compact subgroup Dy such that
Dy N G, is maximal compact in G,. Choosing a specific type
of representation of Dy N G, we can define automorphic
forms on G4 as usual. For simplicity we consider here the
forms invariant under Dy N Gy. Each Hecke operator is given
by DD, with 7 in a subset X of G4, which is a semigroup
containing D and the localizations of G for almost all non-
archimedean primes. Taking an automorphic form f such that
fiIDTD = A(7)f with a complex number A(7) for every 7 € X and
a Hecke ideal character y of F, we put

> ADx(w(M)N(w(M) ™5, [11]

T€D\X/D

(s, £, x) =

where 1y(7) is the denominator ideal of T and N(vy(7)) is its
norm. Now our first main result is that if G is symplectic,
orthogonal, or unitary, then

Als, TG, £ 0 = [ W x(®)Nm) 17, (1.2
P

where A(s, x) is an explicitly determined product of L-
functions depending on y, W, is a polynomial determined for
each v € h whose constant term is 1, and p runs over all the
prime ideals of the basic number field. This is a purely
algebraic result concerning only nonarchimedean primes.

Let Z(s, f, x) denote the right-hand side of Eq. 1.2. As our
second main result, we obtain a product ((s) of gamma factors
such that @Z can be continued to the whole s-plane as a
meromorphic function with finitely many poles, when G is a
unitary group of an arbitrary signature distribution over a CM
field, and f corresponds to holomorphic forms.

Now these problems are closely connected with the theory
of Eisenstein series E on a group G’ in which G is embedded.
To describe the series, let 3’ denote the symmetric space on
which G’ acts. Then the series as a function of (z, s) € 3' X
C can be given (in the classical style) in the form

© 1997 by The National Academy of Sciences 0027-8424/97/9411133-5$2.00/0
PNAS is available online at http://www.pnas.org.

Ees;tx) = 2 85t xle, A=END\,  [13]

aE€A

where I is a congruence subgroup of G’, and P is a parabolic
subgroup of G’ which is a semidirect product of a unipotent
group and G X GL,, with some m. The adelized version of &
will be explicitly described in Section 5. Now our third main
result is that there exists an explicit product &' of gamma
factors and an explicit product A’ of L-functions such that
&' (s)A'(5)Z(s, £, X)E(z, s; £, x) can be continued to the whole
s-plane as a meromorphic function with finitely many poles.

Though the above results concern holomorphic forms, our
method is applicable to the unitary group of a totally definite
hermitian form over a CM field. In this case, we can give an
explicit class number formula for such a hermitian form, which
is the fourth main result of this paper.

Section 2. For an associative ring R with identity element, we
denote by R* the group of all its invertible elements and by R}’
the R-module of all m X n matrices with entries in R. To
indicate that a union X = U,g; Y; is disjoint, we write X =
Uier Y.

Let K be an associative ring with identity element and an
involution p. For a matrix x with entries in K, we put x* = x?,
and £ = (x*)~! if x is square and invertible. Given a finitely
generated left K-module V, we denote by GL (V) the group of
all K-linear automorphisms of V. We let GL(})) act on V' on the
right; namely we denote by wa the image of w € V'under o €
GL(V). Given ¢ = =1, by an e-hermitian form on V, we
understand a biadditive map ¢:)” X V' — K such that ¢(x, y)*
= ey, x) and @(ax, by) = aq(x, y)b* for every a, b € K.
Assuming that ¢ is nondegenerate, we put

G*=G(e) =GV, ) ={y € GL(V)|ekxy,yy) = ¢lx,y)}. [2.1]

Given (V, ¢) and (W, ¢), we can define an e-hermitian form
oD Yyon VO Wby

(D P)x +y,x" +y') = @lx, x) + ¢y, y')
x,x"€V,y,y €W). [2.2]

We then write (VO W, ¢ ® ¢) = (V, ¢) ® (W, ¥). If both ¢ and
i are nondegenerate, we can view G¢ X GY as a subgroup of
G¥® The element (e, B) of G® X G¥ viewed as an element of
G*®¥ will be denoted by a X B or by (a, B). Given a positive
integer r, we put H, = I, ®1I,, I, = I, = K! and

nx+u,y +v)=uly?+exv" (x,y€lIl;u,vel).
[2.3]

We shall always use H,, I, I,, and m, in this sense. We
understand that Hy = {0} and no = 0.

Hereafter we fix 1/ and a nondegenerate ¢ on V, assuming
that K is a division ring whose characteristic is different from
2. LetJ be a K-submodule of IV which is totally ¢-isotropic, by
which we mean that ¢(J, J) = 0. Then we can find a decom-
position (V, ¢) = (Z, {) ® (H, n) and an isomorphism f of (H,
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m) onto (H,, m,) such that f(J) = I. In this setting, we define
the parabolic subgroup Pf of G¥ relative to J by

P¢={meGm =1}, [2.4]

and define homomorphlsms mPf — Gt and AT Pf — GL(J)
such that za — z7w§ () €J and wa = wAS () ifzez,wel,
and a € Py.

Taking a fixed nonnegative integer m, we put

W)=V, @@ Hy )y X0)=W, POV, —e). [25]

We can naturally view G¥ X G as a subgroup of G®. Since W =
V@ H,,, we can put X = V@ H,,, ® V" with the first summand
Vin W, and write every element of X in the form (i, A, v) with
(u, hy e VO®H,, =Wandv € V. Put

U={Wv,i,vlveV,iel,}.

Observing that U is totally w-isotropic, we can define Pp.
PROPOSITION 1. Let A(¢) be the maximum dimension of totally
¢-isotropic K-submodules of V. Then

POGY/[G" X G [2.6]
has exactly A\(¢) orbits. Moreover,

G X Gl = U, PU(EX 1,)B, 1), [27]

with & running over G* and B over PYGY, where H = H,,, and I =
L.

In fact, we can give an explicit set of representatives {7,
for Eq. 2.6 and also an explicit set of representatives for
PO\PLT[GY X G¢] in the same manner as in Eq. 2.7. This
proposition plays an essential role in the analysis of our
Eisenstein series E(z, s; f, x).

Section 3. In this section, K is a locally compact field of
characteristic 0 with respect to a discrete valuation. Our aim is
to establish the Euler factor W, of Eq. 1.2. We denote by 1 and
q the valuation ring and its maximal ideal; we put g = [r:q] and
k| = g vifx € Kand x € #* t* with v € Z. We assume that
K has an automorphism p such that p> = 1, and put F = {x €
K|x»=x},g=FNr,and 7! = {x€K|TrK/F(xr)Cq}1f
K # F. We consider (V, ) as in Section 2 with V' = K, and ¢
defined by ¢(x, y) = x¢y* for x, y € V' with a matrix ¢ of the
form

e (sD)

0 0 &6°°1

Q= 0 0 0 ,0=2g0*" € GL,(K), 8 € K*,
81, 0 0

[3.1]

where t = n — 2r. We assume that 6 is anisotropic and also that

e==*land6=2ifK=F, [3.2a]

e=1,8r=b,and 6" = -8 if K# F. [3.2b]
Thus our group G¢ is orthogonal, symplectic, or unitary. The
element 6 of Eq. 3.2b can be obtained by putting 6 = u — u?
with u such that v = g[u]. We include the case r# = 0 in our
discussion. If t = 0, we simply ignore 6; this is always so if K =
Fand e = —1. We have ¢ = 0 if r = 0.

Denoting by {e;} the standard basis of K}, we put

r t
J= 2 Ker+t+i’ T= E Ker+i7

i=1 i=1

M= E (rei + rer+t+i) +N7 N = {Ll € T|‘P(u7 u) € CI},

i=1

Proc. Natl. Acad. Sci. USA 94 (1997)

C={yeG¥Mvy =M}, E =GL,x).

Then G® = P7C. We choose {e,.;}_; so that N = =}_ ve,,.
Then we can find an element A of 1 such that

0=258\+&(6'N\)* . [3.3]
Put
S=8"={h K" = —e(5"/8)h}. [3.4]

We can write every element of P} in the form

a b c
E=1 0 e f |,a=deGLK),eEG,
0 0 d

beEK, f=—8ebb*d,c = (s — bAb¥)d,s ES. [3.5]

If t = 0, we simply ignore b, e, and f, so that & = [g Zd] ; wWe

have ¢ = e if r = 0.

We consider the Hecke algebra O(E, GL,(K)) consisting of
all formal finite sums 2c,ExE with ¢, € Q andx € GL,(K), with
the law of multiplication defined as in ref. 1. Taking r inde-
terminates 4, . . ., t,, we define a Q-linear map

(’)O:D(Ea GLr(K)) - Q[tla R t1717 st t;]] [3-6]

as follows; given ExE with x € GL,(K), we can put ExE =
LI, Ey with upper triangular y whose diagonal entries are 7',
, ™ with e; € Z. Then we put

> wolEy),  woEy) =

y

wy(EXE) = [Tq e 137

Next we consider the Hecke algebra O(C, G¥) consisting of
all formal finite sums Zc,CtC withc, € Q and 1 € G¢. We then
define a Q-linear map

0:0(C,G? = Q[ty, ..., t,t75t..., 7] [3.8]

as follows; given CtC with T € G*¢, we can put CtC = Ug C§
with ¢ € P of form Eq. 3.5. We then put

> 0(Cé), (Cé = wyEd),  [3.9]
&

w(C7C) =

where wy is given by Eq. 3.6 and d is the d-block in Eq. 3.5. We
can prove that this is well defined and gives a ring-injection.

Given x € K};', we denote by vy(x) the ideal of r which is the
inverse of the product of all the elementary divisor ideals of x
not contained in r; we put then v(x) = [riwy(x)]. We call x
primitive if rank(x) = Min(m, n) and all the elementary divisor
ideals of x are .

PROPOSITION 2. Given £as in Eq. 3.5, suppose that both e and
(86)~! (e — 1) have coefficients in v if t > 0. Leta = g~ h with
primitive [g h] € 15, and gb = j~! k with primitive [j k] € t,.,.
Then

vo((8¢) (& — 1)) = det(ghj®) vo(jgsg™*j ™),

where we take j = 1,if t = 0.
We now define a formal Dirichlet series X by

T(s) = 2, w(CTO)u(7) ",

TEA

A =C\G?/C. [3.10]

This is a formal version of the Euler factor of Eq. 1.2 at a fixed
nonarchimedean prime.

THEOREM 1. Suppose that 8¢ € GL,(x); putp =
(Thus p = q if K = F.) Then

[a:g N q].
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1-p 1—[ 1 - p*™)

I(s) = r— r—s resy—
O = =

(K=F,e=-1),

L ~ r a- pzi—z—zr) - B
z(s) - il} (1 _pr+1727sti)(1 _prfstlfl) (K - F’ €= 1)a
2r
H a- ei—lpi—l—Zx)
()= ——— (K # F).

H (1 _ qr+t717‘yti)(l _ qrfstlfl)

i=1

Here ¢ = 1 if i is even; when i is odd, & is —1 or 0 according as
db=rord #r.

This can be proved in the same manner as in ref. 2 by means
of Proposition 2.

Since we are going to take localizations of a global unitary
group, we have to consider G¥ = G(V, ¢) of Eq. 2.1 with V' =
K}, K = F X F, and p defined by (x, y)? = (), x), where F is a
locally compact field of characteristic 0 with respect to a
discrete valuation. Let g and p be the valution ring of F and its
maximal ideal; putt = g X g and p = [g:p]. We consider O(C,
G*?) with C = G¢ N GL,(x). Then the projection map pr of
GL,(K) onto GL,(F) gives an isomorphism n:0(C, G¥) —
O(E1, GL4(F)), where E; = GL,(g). To be explicit, we have
n(Cx, x~1)C) = ExE;. Let w; denote the map of Eq. 3.6
defined with n, E4, and F in place of r, E, and K. Putting o =
w1 © M, we obtain a ring-injection

w:0(C,G?) = Qlty, ..., tuti ..., 1] [3.11]

Forz = (x, y) € K, withx, y € F,, put v1(z) = v(x) and vx(2)
= v(y), where v is defined with respect to g instead of r. We
then put

T(s,5") = >, o(CTC)wy(7) *wy(1) ™,

TER

R = C\G¥/C.
[3.12]
Then we obtain

i—1—s—s'

11 - [3.13]
Ha—pna-p =y

Section 4. We now take a totally imaginary quadratic
extension K of a totally real algebraic number field F of finite
degree. We denote by a (resp. h) the set of archimedean (resp.
nonarchimedean) primes of F; further we denote by g (resp. 1)
the maximal order of F (resp. K). Let I/ be a vector space over
K of dimension n. We take a K-valued nondegenerate e-
hermitian form ¢ on V' with ¢ = 1 with respect to the Galois
involution of K over F, and define G as in Section 2. For every
v € a U h and an object X, we denote by X, its localization at
v. For v € h not splitting in K and for v € a, we take a
decomposition

(er (Pv) = (Tv’ 61//) S2] (Hr‘,a nrv) [4'1]

with anisotropic 6, and a nonnegative integer r,. Put ¢, =
dim(7,). Then n = 2r, + ¢,. If n is odd, then ¢, = 1 for every
v € h. If n is even, then ¢, = 0 for almost allv € h and ¢, =
2 for the remaining v € h. If n is odd, by replacing ¢ by c¢ with
a suitable ¢ € F, we may assume that ¢ is represented by a
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matrix whose determinant times (—1)®~1?2 belongs to
Nkir(K).

We take and fix an element k of K such that k» = —«k and
ik, ¢, has signature (r, + t,, r,) for every v € a. Then G(ik,¢))
modulo a maximal compact subgroup is a hermitian symmetric
space which we denote by 3¢. We take a suitable point i, of 3
which plays the role of “origin” of the space. If r, = 0, we
understand that 3¢ consists of a single point i,. We put 3¢ =
IT,ea 3%. To simplify our notation, forx € Ky orx € (CX)?,a €
Z?, and ¢ € (C*)*, we put

=[x ke=11 @x)e2 [4.2]

vEa vEa

For ¢ € GY and w € 3, we define &w € 37 in a natural way
and define also a scalar factor of automorphy j(w) so that
det(&)j«(w) " is the jacobian of & Givenk, v € Z2,z € 3¢, and
a € Gy, we put

az = (,2,)vea  j2"(2) = det(a) (2)~. [4.3]

Then, for a function f:3¢ — C, we define fljx,:3¢ — C by
(w0 2) = j5"(2) " f(az)

Now, given a congruence subgroup I' of G%, we denote by
My (T) the vector space of all holomorphic functions f on 3¢
which satisfy f|x.,y = f for every y € T and also the cusp
condltron if G¥is of the elliptic modular type. We then denote
by &{ () the set of all gusp forms belonglng to My ,,(F)
Further, we denote by M, resp. &, the union of Jﬁk V(F)
resp. & ,(I') for all congruence subgroups I'of G. If ¢ is
anisotropic, we understand that ‘@0 , = C.

Let D be an open subgroup of G¢ such that D N GY is
compact We then denote by & (D) the set of all functions
f: G5 — C satisfying the followmg conditions:

(z € 39). [4.4]

flaxw) = f(x) if « € G®and w € D N G; [4.5]
for every p € Gy, there exists an element f, € 6,‘5,,, such that

tpy) = (,/le.»)(i%) for every y € G¢, where i® = (i,),ea.
[4.6]

We now take D in a special form. We take a maximal r-lattice
M in V' whose norm is g in the sense of ref. 3 (p. 375) and put

C ={a € G{M,a, = M, for every v € h}, [4.7]

M ={x € V|ex, M) C >, [4.8]
D =D¢={yeC|M\(y, -

1) C ¢,M, for every v € h},
[4.9]

where D is the different of K relative to F and ¢ is a fixed integral
g-ideal. Clearly M is an r-lattice in V containing M, and we
easily see that D¢ is an open subgroup of G. We assume that

v[cif M, # M,. [4.10]
Define a subgroup X of G§ by
X ={y € G&ly, € D for every v|c}. [4.11]

We then consider the algebra 0(D, X) consisting of all the
finite llnear comblnatlons of DD with 7 € X and defrne its
action on &7, (D) as follows. Given 7 € X and f € &{ (D),
take a finite subset Y of Gy so that DD = LU neyDm and define
fiDTD:G§ — C by
(fiDTD)(x) (x € GY). [4.12]

= > flem )
ney

Copyright © National Academy of Sciences. All rights reserved.
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These operators form a commutative ring of normal operators
=
on & (D).
For x € GY, we define an ideal »y(x) of v by

vo) =[] volx), [4.13]

vEh

where vy(x,) is defined as in Section 3 with respect to an r,-basis
of M,. Clearly vy(x) depends only on CxC.

Let f be an element of & ,(D) that is a common eigenfunc-
tion of all the D7D with 7 € X, and let f|D1D = A(7)f with A(7)
€ C. Given a Hecke ideal character y of K such that |y| = 1,
define a Dirichlet series (s, f, x) by

T(s,bx) =

TED\X /D

A7) x* (wo(1))N (v(7)) %, [4.14]

where x* is the ideal character associated with y and N(a) is
the norm of an ideal a. Denote by x; the restriction of y to Fy,
and by 6 the Hecke character of F corresponding to the
quadratic extension K/F. For any Hecke character ¢ of F, put

L(s, &)= [1—&@)Nm) =1 [4.15]

pbtc
From Theorem 1 and Eq. 3.13, we see that

T, £ x) [ Le@s =i+ 1, x167")

i=1

= [I wlx*(@)N(a) =1 [4.16]

qtc

with a polynomial W, of degree n whose constant term is 1,
where g runs over all the prime ideals of K prime to ¢. Let Z(s,
f, x) denote the function of Eq. 4.16. Put

m—1
T,.(s) = @m= 02 [] I'(s — k). [4.17]

k=0

THEOREM 2. Suppose that xa(b) = b¥b|~* with u € Z*
and k € R? such that 2,ca k, = 0. Putm = k + 2v — pand

[T vi(s + (ix,/2))Z(s, £, x)

vEa

Ris, £, x) =
with vy, defined by

k, + m,|
'YV(S) :pv(s)qv(s)rrv s—n+r, + T

‘IJ"V - 2Vv|)
. F,,,,.V(s —r, + )

|kv - mv| kv -m, - .
L \s+ L\s+ 2 if m,=0,

—
—

[

|

‘ ~

-1
2_l-> 5 ¢ = |V“v_27jv|'

Proc. Natl. Acad. Sci. USA 94 (1997)

Then N(s, £, x) can be continued to the whole s-plane as a
meromorphic function with finitely many poles, which are all
simple. It is entire if 1 # 0" for v =0, 1.

We can give an explicitly defined finite set of points in which
the possible poles of M belong. Notice that p, and g, are
polynomials; in particular, p, = 1if0 =m, =k, and g, = 1 if
|y — 20 =n — 1.

The results of the above type and also of the type of
Theorem 3 below were obtained in refs. 2, 4, and 5 for the
forms on the symplectic and metaplectic groups over a
totally real number field. The Euler product of type Z, its
analytic continuation, and its relationship with the Fourier
coefficients of f have been obtained by Oh (6) for the group
G as above when ¢ = 7,.

Section 5. We now put (W, ¢) = (V, ¢) ® (Hm, mm) as in Eq.
2.5 with (V, ¢) of Section 4 and m = 0. Writing simply I = I,,,
we can consider the parabolic subgroup P}p of G¥. We put P¥
= P/ for simplicity, Ao(a) = det()\l (p)) for p € P¥, and

m

L =2 (ve;+ D eppn) + M, [5.1]

i=1

with M of Section 4 and the standard basis {&i, em+n+itieq of
H,,. We can define the space 3% and its origin i in the same
manner as for G¢. We then put

C'=keGilx=L}, Cl=feChi”)=i" [5.2]

DY ={x € C"M,(e, — 1) C ¢,M, for every v € h}.
[5.3]

Here e, is the element of End(};,) defined for x, by wx, — wev
€ (H,,), forw € V,. We define an R-valued function z on GA
by

h(x) = |Ao(p)|a if x € pC¥ with p € P,. [5.4]

Taking f € & (D¥) and y as 1n Section 4, we define u: G$
— C as follows: p,(x) =0ifx ¢ PAD*" ifx = pw withp € P,
and w € D¥ N C§, then we put

p0) = X)X Oow) "GN (YY), 155

where x. = Il . xv. Then we define E(x, s) forx € GX ands €
C by

=E(, 53 £, x, D)= 2, p(ax)h(ax)™?,

aEA

E(x,s)

A = PNG". [5.6]

This is meaningful if y.(b) = b*™2¥|b|* %2 with k € R?,
Zvea Ky = 0, and the conductor of y divides ¢. We take such a
x in the following theorem. The series of Eq. 5.6 is the adelized
version of a collection of several series of the type in Eq. 1.3.
THEOREM 3. Define vy, as in Theorem 2 with m = 0. Put

Yils) = q' (kD )gus) T Tl — n + (k,/2),

et )

i=1

q'(s, £) =

Then the product

m+n—1
[T vits + G2 TT Lo —j, x:6)
vEa j=n

Z(s, £, Y)E(x, s; f, x, DY)

Copyright © National Academy of Sciences. All rights reserved.
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can be continued to the whole s-plane as a meromorphic function
with finitely many poles, which are all simple.

We can give an explicitly defined finite set of points in which
the possible poles of the above product belong.

Section 6. Let G be an arbitrary reductive algebraic group
over Q. Given an open subgroup U of G4 containing G, and
such that U N Gy, is compact, we put U* = qUa~'and I'* = G
N U for every a € Ga. We assume that G, acts on a symmetric
space ¥, and we let G act on 28 via its projection to G,. We
also assume that I'\28 has finite measure, written vol(I'\28),
with respect to a fixed G,-invariant measure on 28. Taking a
complete set of representatives ¥ for G\GA/U, we put

oG, U)=o(U) = 2, [[*“NT:1] vol[*2W),  [6.1]

a€B

where T is the set of elements of G which act trivially on 28, and
we assume that [I'* N 7:1] is finite. Clearly o(U) does not depend
on the choice of ®B. We call (G, U) the mass of G with respect
to U. If G, is compact, we take 2 to be a single point of measure
1 on which G, acts trivially. Then we have

o(G,U) = o(U) = >, [T*1]"" [6.2]

aEeYB

We can show that o(U") = [U:U']o(U’") if U’ is a subgroup of
U. If strong approximation holds for the semisimple factor of
G, then it often happens that both [I* N T:1] and vol(I'\W)
depend only on U, so that

(G, U) = o(U) = #(G\GA/U)[I'" N T:1]" ol (T'\2R). [6.3]

If G, is compact and U is sufficiently small, then I'* = {1} for
every a, in which case we have o(U) = #(G\Ga/U). If U is the
stabilizer of a lattice L in a vector space on which G acts, then
#(G\Ga/U) is the number of classes in the genus of L.
Therefore, o(U) may be viewed as a refined version of the class
number in this sense.

Coming back to the unitary group G of Section 4, we can
prove the following theorem.

THEOREM 4. Suppose that G is compact. Let M be a
a-maximal lattice in V of norm g and let D be the different of K
relative to F. Define an open subgroup D of G by Eq. 4.9 with
an integral ideal c. If n is odd, assume that ¢ is represented by a
matrix whose determinant times (—1)%~72 belongs to Ngr(K);
if n is even, assume that c is divisible by the product ¢ of all prime
ideals for which t, = 2. Then

d
o(G*¢, D) = 2-[ [T - k)} DY RN ()
k=1

A [T AND*2D Y22 m) L .(k, 69},
k=1

where d = [F:Q], Dr is the discriminant of F,and A = 1 or A =
N(e)"N(d)~"? according as n is odd or even.
If n is odd, we can also consider o(D") for

D' ={ye My, — 1) Cc,M, foreveryv Eh}  [6.4]

with an arbitrary integral ideal ¢. Then o(D') = 27"a(D),
where 7 is the number of primes in F ramified in K.

Section 7. Let us now sketch the proof of the above theorems.
The full details will be given in ref. 7. We first take ¥ C G{ so
that G{ = U,esG¥bD?. Given E(x, s) as in Eq. 5.6, for each g €
Gy, we can define a function E,(z s) of (z 5) € 3¥ X Cby

Proc. Natl. Acad. Sci. USA 94 (1997) 11137

E(gqy,s) = E,(/(i"), )jy"(i") " foreveryy € GY.  [7.1]

The principle is the same as in Eq. 4.6, and so it is sufficient
to prove the assertion of Theorem 3 with E4(z, s) in place of E(x,
s). In particular, we can take g to be ¢ = b X 1, with b € .
Define (X, w) as in Eq. 2.5. Then there is an isomorphism of
(X, ®) to (Hyn-+n, Mm+n) Which maps Py, of Proposition I to the
standard parabolic subgroup P of G(7n+,). Therefore, we can
identify 3¢ with the space §* with

h={z € Ci{"|i(z* — z) is positive definite}.  [7.2]

We can also define an Eisenstein series E’(x, s; x) forx € Gy
and s € C, which is defined by Eq. 5.6 with (G(Mm+n)a, P, 1)
in place of (G4, P% f). Taking E’ and (¢, a) € G¢ (witha €
0) in place of E(x, s) and g, we can define a function E; ,(3, s)
of (3, 5) € h* X C in the same manner as in Eq. 7.1. There is
also an injection ¢ of 3% X 3¢ into 2 compatible with the
embedding G¥ X G¢ — G(Mn+n). We put then

8w =8w,2) gz, w) EJLWED) (73]

for every function g on §?, where 8(w, z) is a natural factor of
automorphy associated with the embedding t. Take a Hecke
eigenform f as in Section 4 and define f, by the principle of Eq.
4.6. Then, employing Proposition 1, we can prove

A()Z(s, £, Y)E (2, 5)

=> J (E4)°(z, ws $)f(w)8(w)kdw, — [7.4]
ae®B »

where g = b X 1y, A is a certain gamma factor, and ®, = T\ 3¢
The computation is similar to, but more involved than, that of ref.
4 (Section 4). Since the analytic nature of E;, can be seen from
the results of ref. 8, we can derive Theorem 3 from Eq. 74.

Take m = 0. Then ¢ = ¢ and E,(z, s) = fp(z). Then the
analytic nature of ¥ (s, f, x), and consequently that of Z(s, f,
X), can be derived from Eq. 7.4. However, here we have to
assume that xa(b) = bF2¥|b|'*%=2¥ with k € R?, Z,e, ky = 0,
and the conductor of x divides c¢. The latter condition on ¢ is
a minor matter, but the condition on y, is essential. To obtain
Z(s, f, x) with an arbitrary x, we have to replace E; , by DE7 .,
where E” is a series of type E’ with 2v — w in place of k and
D is a certain differential operator on 2.

As for Theorem 4, we take again ¢y = ¢ and observe that a
constant function can be taken as fif G is compact. The space
3¢ consists of a single point. The integral on the right-hand
side of Eq. 7.4 is merely the value (E;.)°(z, w; s). We can
compute its residue at s = n explicitly. Comparing it with the
residue on the left-hand side, we obtain Theorem 4 when ¢
satisfies Eq. 4.10. If » is odd, we can remove this condition by
computing a group index of type [U:U'].
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Deforming semistable Galois representations
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ABSTRACT Let V be a p-adic representation of Gal(Q/
Q). One of the ideas of Wiles’s proof of FLT is that, if V' is the
representation associated to a suitable autromorphic form (a
modular form in his case) and if V’ is another p-adic repre-
sentation of Gal(Q/Q) “closed enough” to V, then V' is also
associated to an automorphic form. In this paper we discuss
which kind of local condition at p one should require on " and
V" in order to be able to extend this part of Wiles’s methods.

Geometric Galois Representations (refs. 1 and 2; exp. III
and VIII). Let Q be a chosen algebraic closure of Q and G =
Gal(Q/Q). For each prime number ¢, we choose an algebra-
ic closure Q¢ of Q together with an embedding of Q into Q.
and we set G¢ = Gal(Q¢/Q¢) C G. We choose a prime num-
ber p and a finite extension E of Q,.

An E-representation of a profinite group J is a finite dimen-
sional E vector space equipped with a linear and continuous
action of J.

An E-representation V of G is said to be geometric if

(i) it is unramified outside of a finite set of primes;

(i) it is potentially semistable at p (we will write pst for
short).

[The second condition implies that V7 is de Rham, hence
Hodge-Tate, and we can define its Hodge-Tate numbers h" =
(V) = dimg (Cy(r) ®q, 19" where C,(r) is the usual Tate twist
of the p-adic completion of Q, (one has ,ez/” = d). It implies
also that one can associate to V' a representation of the
Weil-Deligne group of Q,, hence a conductor Ny(p), which is
a power of p].

Example: If X is a proper and smooth variety over Q andm €
N, j € Z, then the p-adic representation Hg(Xg, Q,(f)) is
geometric.

[Granted the smooth base change theorem, the represen-
tation is unramified outside of p and the primes of bad
reduction of X. Faltings (3) has proved that the representation
is crystalline at p in the good reduction case. It seems that Tsuji
(4) has now proved that, in case of semistable reduction, the
representation is semistable. The general case can be deduced
from Tsuji’s result using de Jong’s (5) work on alterations].

CONJECTURE (1). If V is a geometric irreducible E-
representation of G, then V comes from algebraic geometry,
meaning that there exist X, m, j such that V is isomorphic, as a
p-adic representation, to a subquotient of E ®q Hy/(Xq, Qp(f))-

Even more should be true. Loosely speaf(ing, say that a
geometric irreducible E-representation V' of G is a Hecke
representation if there is a finite Z,-algebra ¥, generated by
Hecke operators acting on some automorphic representation
space, equipped with a continuous homomorphism p : G —
GL4(3), “compatible with the action of the Hecke operators,”
such that V comes from ¥ (i.e., is isomorphic to the one we get
from p via a map ¥ — E). Then any geometric Hecke
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representation of G should come from algebraic geometry and
any geometric irreducible representation should be Hecke.

At this moment, this conjecture seems out of reach. Nev-
ertheless, for an irreducible two-dimensional representation of
G, to be geometric Hecke means to be a Tate twist of a
representation associated to a modular form. Such a repre-
sentation is known to come from algebraic geometry. Observe
that the heart of Wiles’s proof of FLT is a theorem (6, th. 0.2)
asserting that, if V7 is a suitable geometric Hecke E-
representation of dimension 2, then any geometric E-
representation of G which is “close enough” to V'is also Hecke.

It seems clear that Wiles’s method should apply in more
general situations to prove that, starting from a suitable Hecke
E-representation of G, any “close enough” geometric repre-
sentation is again Hecke. The purpose of these notes is to
discuss possible generalizations of the notion of “close
enough” and the possibility of extending local computations in
Galois cohomology which are used in Wiles’s theorem. More
details should be given elsewhere.

Deformations (7-9). Let O be the ring of integers of E,
a uniformizing parameter and k = Og/m0f the residue field.

Denote by € the category of local noetherian complete
Og-algebras with residue field k (we will simply call the objects
of this category Og-algebras).

Let J be a profinite group and Rep’ép(]) the category of
Z,-modules of finite length equipped with a linear and con-
tinuous action of J. Consider a strictly full subcategory & of
Rep"ZP(D stable under subobjects, quotients, and direct sums.

For A in 6, an A-representation T of J is an A-module of finite
type equipped with a linear and continuous action of J. We say
that T lies in D if all the finite quotients of T viewed as
Z,-representations of J are objects of &. The A-representations
of J lying in @ form a full subcategory %(A4) of the category
Rep"(J) of A-representations of J.

We say T is flat if it is flat (& free) as an A-module.

Fix u a (flat !)-k-representation of J lying in 9. For any A4 in
%, let F(A) = F, j(A) be the set of isomorphism classes of flat
A-representations T of J such that T/wT = u. Set Fg(A) =
F,;a(A) = the subset of F(A4) corresponding to representa-
tions which lie in 9.

PROPOSITION. If H(J, gl(w)) = k and dimH' (J, gl(u)) < +oo,
then F and Fg are representable.

(The ring Ry = R, ;5 which represents Fg is a quotient of
the ring R = R, ; representing F.)

Fix also a flat Og-representation U of J lifting u and lying in
9. Its class defines an element of Fg(0g) C F(Og), hence
augmentations ey:R — Og and ey g:Rg — Of.

Set 0,, = Og/7Ofg and U,, = U/7"U. If py = ker ey and py,o
= ker ey,s, we have canonical isomorphisms

((bu+m"R) /(05 + 7" R))*=Exte, i/ Un, Un)=H'(, §[(Uy))
U U U
(bug+7"Ra)/ 05+ 7"Re)*=Extg, ay(Uy, Up)=: H4(T, gl(Uy)

Close Enough to V' Representations. We fix a geometric
E-representation V' of G (morally a “Hecke representation”).
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We choose a G-stable Og-lattice U of IV and assume u = U/7U
absolutely irreducible (hence V'is a fortiori absolutely irreduc-
ible).

We fix also a finite set of primes S containing p and a full
subcategory %, of Rep’; (Gp), stable under subobjects, quo-
tients, and dlrect sums.

For any E-representation W of G, we say W lies in 9, if a
G-stable lattice lies in 9.

We say an E-representation of G is of type (S, 9,) if it is
unramified outside of S and lies in %,

Now we assume V' is of type (S, 9,). We say an E-
representation V' of G is (S, 9,)-close to V if:

(i) given a G-stable lattice U’ of V7, then U'/7U’ = u;

(@) V" is of type (S, D).

Then, if Qg denote the maximal Galois extension of Q con-
tained in Q unramified outside of S, deformation theory applies
withJ = Gg = Gal(Qs/Q) and & the full subcategory of Repy, (Gis)
whose objects are 7°s which, viewed as representations of G, are
in &,,. But if we want the definition of (S, &,,)-close to }'to be good
for our purpose, it is crucial that the category &), is semistable, i.e.,
is such that any E-representation of G, lying in %, is pst.

We would like also to be able to say something about the
conductor of an E-representation of G, lying in 9. Since
H,(J, gl(U,)) is the kernel of the natural map

H'(Gs, §l(Un)—Hz, (Gp, alU,)),

it is better also if we are able to compute H;LP(GP, al(Uy)).

In the rest of these notes, we will discuss some examples of
such semistable categories &,’s.

Examples of Semi-Stable %),’s.

Example 1: The category 9, (application of (10); cr, crys-
talline).

For any Og-algebra A, consider the category MF(A) whose
objects are A-module M of finite type equipped with

(i) a decreasing filtration (indexed by Z),

LFiPMDFlY"MD ..,

by sub-4-modules, direct summands as Z,-modules, with
Fil M = M fori << 0 and = 0 for i > 0;

(@) for alli € Z, an A-linear map ¢ : Fil' M — M, such that
& |pi = pdttand M = Sm ¢

With an obvious definition of the morphisms, MF(A) is an
A-linear abelian category.

For a = b € Z, we define MF“*](4) to be the full
subcategory of those M, such that Fil* M = M and Fil’*' M =
0. If a < b, we define also MF14?1(4) as the full subcategory
of MF*1(4) whose objects are those M with no nonzero
subobjects L with Fil**! [ = 0.

As full subcategories of MF(A), MFI41(4) and MF14b1(4)
are stable under taking subobjects, quotients, direct sums, and
extensions.

If Z, denote the p-adic completion of the normalization
of Z, in Qp, the ring

A i = 10 HO((Spec(Z,/p) /W) erys» Struct .sheaf)

is equipped with an action of G, and a morphism of Frobenius
¢ 1 Aeris —> Acrig. There is a canonical map A.; — Z, whose
kernel is a divided power ideal J. Moreover, for 0 =i =
p — 1, &) C p'A.is. Hence, because A5 has no p-torsion,
we can define for such an i, ¢ : JII — A, as being the
restriction of ¢ to JI1 divided out by p'.

For M in MFI=?=D01(4), we then can define Fil°(A ;s ® M) as
the sub-4-module of A.; ®z, M, which is the sum of the images
of the FilA.;; ® Fil7M, for 0 =i < p — 1. We can define
¢° 2 Fil'(Aeris @ M) —> Apris ® M as being ¢ @ ¢~ on Fill A s ®
Fil7# M. If we set

Proc. Natl. Acad. Sci. USA 94 (1997) 11139

Q(M) = (FilO(Acris ®zl, M))d)“Zl,

this is an 4A-module of finite type equipped with a linear and
continuous action of G,. We get in this way an 4-linear functor

U : MFT=P=994) — Rep!{ (G,)

which is exact and faithful. Moreover, the restriction of U to
MFI1=@?=D0l(4) is fully faithful. We call @,(4) the essential
image.

PROPOSITION. Let V' be an E-representation of G,. Then V'
lies in @, if and only if the three following conditions are satisfied:

(i) V" is crystalline (i.e., V' is pst with conductor Ny (p) = 1);

@)Y RV)Y=0ifr>00rr<-p + 1;

(iii) V' has no nonzero subobject V' with V'(—-p + 1)
unramified.

Moreover (11), if X is a proper and smooth variety over Q, with
good reduction and if ,n € Nwith 0 <r <p — 2, H,(Xq,, ZIp"Z)
is an object of B,/ (Zy).

Remarks: (i) Define QZ}” as the full subcategory of Rep’; (Gp),
whose objects are representatlons which are 1somorphlc to the
general fiber of a finite and flat group scheme over Z,. If p #
2, Qbff is a full subcategory stable under extensions of Qb” (this
is the essential i image of MFL=10(Z,)).

(i) Deformations in %, don’t change Hodge type: if V,J" are
E-representations of G,,, lying in %, and if one can find lattices
U of Vand U’ of V" such that U/nU = U'/wU’, then h'(V) =
V") for all r € Z (if U/wU = UM), h'(V) = dinygr"™M).

Computation of H(J)L‘r This can be translated in terms of the
category MF(0r) D MFI-P*10(0p).

In MF(Of), define Hy;:(Q,, M) as being the i derived
functor of the functor Homaro,) (O, —). These groups are the
cohomology of the complex

FOCMES M 5050, ..

If we set ty; = = Igo H’
+ Igotm.

Hence, if U is a G,-stable lattice of an E-representation V of
G, lying in %;, and 1f for any i € Z, h, = h(V), with obvious
notatlons we get H@Lr(Qp, al(U,)) = Extyz P +10) 4 (M, M)
= ExtMF(A (Mn, M ) = HMF(QP,EndGF(M )) and
ngEHt]«cr(Qp,q[(U )) = lch HO(Qp,(I[(U )) + nh where h =
El<,hh [this generalizes a result of Ramakrishna (9)].

A Special Case. Of special interest is the case where
H°(Q,,al(u)) = k, which is equlvalent to the representability of
the functor F,,c 9. In this case, H@cr(Qp, al(Uyn)) = (0,)"*!
and H(Jcr(Q,,,f[(pU 5) (O Moreover, because there is no
H?, the deformation problem is smooth, hence R, ap =
Og[[Xo, X1, X2,. . . X3]].

Example 2: %," (the naive generalization of ¥, to the
semistable case).

For any Og-algebra 4, we can define the category MFN(A)
whose objects consist of a pair (M, N) with M object of MF(A)
and N : M — M such that

({) N(Fil'M) C Fill='M,

(if) N¢f = ¢~ IN.

With an obvious definition of the morphisms, this is an
abelian A-linear category and MF(A) can be identified to the
full subcategory of MFN(A) consisting of M’s with N = 0.

We have an obvious definition of the category
MFN1=P*101(4). There is a natural way to extend U to a functor

M/Fil°M, this implies lgOFHgbcr(Qp,

U: MENY?*19(4) — Rep}, (G,)

again exact and fully faithful. We call 9;'(4) the essential
image.

There is again a simple characterization of the category
9,°(E) of E-representations of G, lying in &,* as a suitable full
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subcategory of the category of semistable representations with
crystalline semisimplification. Moreover:

If p # 2, the category of semistable " values with 4"(})) = 0
if r ¢ {0, —1} is a full subcategory stable under extensions of
gbnll(E)

"For0=r<p—1,let @5 the full subcategory of Rep'y, (G,)
of T’s such that there is a filtration (necessarily umque)

0=F. T CFTC...FIT CF,T=T
such that gr;y7(—i) is unramified for all /; then Qb"’d’ is a full
subcategory of 9, stable under extensions.

Again, in @, deformanons don’t change Hodge type. The
conductor may change

Computation of Hgm(Qp, gl(U,)). As before, this can be
translated in terms of the category MFN(@E) D
MFN"P*19)(0p): if we define Hjypn(Qp, M) as the i*-derived
functor, in the category MFN(Og), of the functor
HomMFN(@F_)(@E, —), these groups are the cohomology of the
complex

FilM - Fil"T'M®M ->M —>0—0— ...

(with x — (Nx, (1 — (bo)x) and (y, z) — (1 — ¢y — N2).
Agam in this case, ng,,m(Qp, al(U,)) = Extypn) PHOJ(A)(M,,,M )

EXIMFN(A)(MmM ) = Hyrn(Qp, Endo,(My)). But,

(i) the formula for the length is more comphcated, and

(ii) the (local) deformation problem is not always smooth.

Example 3: %, [the good generalization of ;" to the
semistable case, theory due to Breuil (12)].

Let S = Z,<u> be the divided power polynomial algebra in
one variable u with coefficients in Z,,. If v = u — p, we have also
S = Z,<v>. Define:

(a) Fil'S as the ideal of S generated by the v/m!, for m =
i

(b) ¢ as the unique Z,-endomorphism such that ¢(u) = u?;

(c) N as the unique Z,-derivation from S to S such that N(u)
= —u.

Forr =p — 1, ¢: Fil'S — S is defined by ¢'(x) = p~"¢(x).

Ifr =p — 2, let "M be the category whose objects consist
of:

(i) an S-module M,

(ii) a sub-S-module Fil" M of L containing Fil'S./,

(#ii) alinear map ¢": Fil' ll — M, such that ¢'(sx) = ¢'(s).P(x)
(where ¢: M — J is defined by ¢(x) = ¢&'(vx)/P'(v")), with an
obvious definition of the morphisms. We consider the full
subcategory Jlj of "My whose objects satisfy

(i) as an S-module M = @, ;=45/p™S for suitable integers d
and (1;)1=i<a;

(i) as an S-module Jl is generated by the image of ¢'.

Finally, define Jl" as the category whose objects are objects
M of My equipped with a linear endomorphism

N:M — M

satisfying

(@) N(sx) = N(s).x + s.N(x) for s € S, x € M,

(if) v.N(Fil'M) C Fil' M,

@iii) if x € Fil'M, ¢1(v).N(d'(x)) = ¢'(v.N(x)).

This turns out to be an abelian Z,-linear category and we call
MFBL=°)(Z,) the opposite category.

For A an Og-algebra, one can define in a natural way the
category MFBL™"°I(4) (for instance, if A is artinian, an object
of this category is just an object of MFBL"°)(Z,) equipped with
an homomorphism of 4 into the ring of the endomorphisms of
this object).

Breuil defines natural “inclusions™:

MFBU 1 4) € MFBU ) A) (ifr+1=p —2),
MFU=°4(4) c¢ MFN!=7°}(4) c MFB="°)(4).

Proc. Natl. Acad. Sci. USA 94 (1997)

Moreover, the simple objects of MFL="°I(k), MFNI="°l(k), and
MFBU=°)(k) are the same. Breuil extends U to MFBI="°)(4)
and proves that this functor is again exact and fully faithful. We
call @,""(A) the essential image.

Let V' be an E-representation of G,. Breuil proves that, if 1/
lies in @, then I is semistable and 2”(V) = 0 if m>0 or m <
—r. Conversely, it seems likely that if V" satisfies these two
conditions, V lies in ED‘]’,”’. This is true if » = 1, and it has been
proven by Breuil if E = Q, and V' is of dimension 2. More
importantly, Breuil proved also

PROPOSITION (13). Let X be a proper and smooth variety over
Q,. Assume X as semistable reduction and let r, n € N with 0 =
r = p—2; then H,(Xq,, ZIp"Z) is an object of Dy (Zp).

When workmg with QD“ ", deformation may change the Hodge
type (the conductor also) The computation of H@st (Qp,
al(Uy)) still reduces to a computation in MFBI~ ’01(6’5) (or
equivalently in J("). This computation becomes difficult in
general but can be done in specific examples.

Final Remarks. Let L be a finite Galois extension of Q,
contained in Qp, Oy, the ring of integers and e;, = e./%).

(a) Call Ebff L the full subcategory of Rep’; (Gp) whose ob]ects
are representanons which, when restricted to Gal(Qp/Qp) extends
to a finite and flat group scheme over O;. If e, = p — 1, an
E-representation V' lies in &, if and only if it becomes crystalline
over L and h"™(V) = 0 form ¢ {0, —1}). If ey <p — 1, Conrad
(14) defines an equivalence between Qbf and a nice category of
filtered modules equipped with a Frobemus and an action of
Gal(L/Qp). Using it, one can get the same kind of results as we
described for QZ)‘ For e;, = p — 1, the same thing holds if we
require that the representation of Gal(Q,/Q,) extends to a
connected finite and flat group scheme over O;.

(b) More generally, Breuil’s construction should extend to
E-representations becoming semistable over L with (V) =
Oifm>0o0r < —(p — 1)/er. (= —(p — 1)/e,, with a “grain de
sel”).

(c) Let RepQp(Gp)eris, (resp. RepQy(Gy)s, 1) be the category
of Q,-representations V' of G, becoming crystalline over L
(resp. sem1stable) with (V) = 0if m > 0 or m < —r. Let
QD‘”” (resp. Iy ") be the full subcategory of Repfz (Gp)
cons1stmg of T s for which one can find an object V of
RepQu(Gp)eris, . (resp. RepQ,(Gy)s;. 1) Gp-stable lattices U' C U
of Vsuch that T = U/U’. I feel unhappy not being able to prove
the following:

Conjecture. Cy*"" (resp. C)'""): Let V be a Q,-
representation of Vlylng in Qb;’” iz’ (resp. ED;”L) Then V an
object of Rep,(Gp)isy (resp. Repa,(GpYi1).

The only cases I know Cf,””l‘ arer =0,r =1,and ¢, =
p—1,r=p —1,and e, = 1. The only cases I Know CS”L
arer =0,r=1, and er =p — 1. Of course, each time we know
the answer is yes, this implies that the category is semistable.

This paper was partially supported by the Institut Universitaire de
France and Centre National de la Recherche Scientifique, Unité de
Recherche Associée D0752.
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Integrality of Tate-cycles

GERD FALTINGS

Max-Planck-Institut fiir Mathematik, Gottfried-Claren-Strasse 26, 53225 Bonn, Germany

ABSTRACT We explain a technical result about p-adic
cohomology and apply it to the study of Shimura varieties. The
technical result applies to algebraic varieties with torsion-free
cohomology, but for simplicity we only treat abelian varieties.

Suppose A is an abelian variety over V, a p-adic discrete
valuation ring with perfect residue field k. Let Vy = W(k) C V'
denote the maximal unramified subring, Iy C Ky and V' C K the
fraction fields. If = is a uniformizer of V, then = satisfies an
Eisenstein equation f(w) = 0, and V = Vy[T]/(f(T)). Let Ry
denote the p-adically completed PD-hull of V[ T] along (A T)).
Associated to A there are the étale cohomology

Hi(A) = Hy(A ® vK,Z,) 1]
and the crystalline cohomology
H!,(A) = H.,(A/Ry,0). [2]

The étale cohomology f]’ét(A) is a free Z,-module with a
continuous action of Gal(K/K), while H;(A4) is a filtered free
Ry-module with a Frobenius-endomorphism &. These are
related by Fontaine’s isomorphism

Héz(A) ® Bcri: = chr(A) ® Bcris> [3]

© 1997 by The National Academy of Sciences 0027-8424/97/9411142-1$2.00/0
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which after inverting p allows one to recover one cohomology
from the other.
An étale Tate cycle of degree r is a Galois-invariant element

Yot € He(A)(r). [4]
A crystalline Tate cycle of degree r is an element
Yo € HZ(A), (5]

which lies in the r — th stage of the Hodge filtration and is
annihilated by ® — p".

By Fontaine’s comparison the Qp-vector spaces of étale and
crystalline Tate cycles are isomorphic. We show:

Theorem. If r = p — 2 then i is integral, if and only if, the
corresponding i, is integral.

The proof uses techniques developed previously.

A. Vasiu (2) has used this result to show that certain Shimura
varieties classifying abelian varieties with higher-order Tate
cycles have good reduction. He obtains smooth models for
them by normalizing the moduli-space of abelian varieties in
the generic fiber of the Shimura variety. To control this
normalization one uses the valuative criterion, together with
the theorem applied to the Tate cycles defining the Shimura
variety.

1. Faltings, G. (1994) Integral Crystalline Cohomology Over Very
Ramified Valuation Rings, preprint.

2. Vasiu, A. (1995) Integral Canonical Models for Shimura Varieties
of Preabelian Type, preprint.
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Congruences between modular forms: Raising the level

and dropping Euler factors

FRED DIAMOND

Department of Pure Mathematics and Mathematical Statistics, 16 Mill Lane, University of Cambridge, Cambridge CB2 1SB, United Kingdom

ABSTRACT We discuss the relationship among certain
generalizations of results of Hida, Ribet, and Wiles on con-
gruences between modular forms. Hida’s result accounts for
congruences in terms of the value of an L-function, and Ribet’s
result is related to the behavior of the period that appears
there. Wiles’ theory leads to a class number formula relating
the value of the L-function to the size of a Galois cohomology
group. The behavior of the period is used to deduce that a
formula at “nonminimal level” is obtained from one at
“minimal level” by dropping Euler factors from the L-
function.

An example of a congruence between modular forms is
provided by the newforms

f(T) = 2(1"6277["7 and g(q-) = EbneZWim-
n=1 n=1

of levels 11 and 77, respectively, whose first few Fourier
coefficients are found in Table 1. One can show that, in fact,
a, = b, mod 3 for all n not divisible by 7. (See Theorem 5.1
below.)

We shall discuss the relationship among the following three
results concerning congruences to a newform f of weight 2 and
level N. We assume that K is a number field containing the
coefficients of f and restrict our attention to congruences mod
powers of a prime A dividing ¢.

* A formula of Hida (1) measuring congruences to f in

terms of the value of an L-function.

* A result of Ribet (2) that establishes the existence of
certain systematic congruences between f and forms of
level Np (such as the one above).

* A theorem of Wiles (3), completed by his work with
Taylor (4), which shows that all suitable deformations of
Galois representations associated to f actually arise from
forms congruent to f.

Hida’s formula, though not part of the logical structure of
ref. 3, provides some insight into the role played in Wiles’ proof
by a certain generalization of Ribet’s result. This generaliza-
tion can be interpreted as the invariance of a period appearing
in Hida’s formula. Using this invariance, one shows that Wiles’
theorem at minimal level implies the theorem at nonminimal
level.

Remark 1.1: We are concerned here mainly with Ribet’s
“raising the level” result, rather than his “lowering the level”
result of ref. 5. We remark that Hida also found systematic
congruences between f and forms of level N¢". We shall not
discuss these, but focus on congruences between f and forms
of level Nd with d not divisible by €.

© 1997 by The National Academy of Sciences 0027-8424/97/9411143-4$2.00/0
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Table 1. Fourier coefficients

n 1 2 3 4 5 6 7
an 1 -2 -1 2 1 2 -2 0
by 1 1 2 -1 -2 2 -1 3

Notation and Review

We fix a prime ¢ and embeddings Q — Q¢ and Q — C. Suppose
that K is a number field contained in C and let A denote the
prime of Ok determined by our choice of embeddings. Let O
denote the localization of O at A.

We suppose that f is a newform of weight 2, level Ny and
character x; with coefficients in K. The Eichler-Shimura
construction associates to f an €-adic representation

p;:Gal(Q/Q) — GL(Qy)

such that if p does not divide N, then p; is unramified at p and
ps(Frob,) has characteristic polynomial

X? = a,(HX + xsp)p. (1]

We let py denote the semisimplification of the reduction of f.
If f and g are newforms of weight 2, then we write f ~ g if ps
is equivalent to p,. By the Cebotarev density theorem and the
Brauer—Nesbitt theorem, we have f ~ g if and only if a,(f) =
ap,(g) for all primes p not dividing N¢N,£, the congruence being
modulo the maximal ideal of the integral closure of Z; in Q.
We assume throughout that € is odd, €2 does not divide Ny,
and ¢ does not divide the conductor of x;. We assume also that
the restriction of py to Gal (Q/F ) is irreducible where F is the
quadratic subfield of Q({). It is convenient to distinguish two
sets of primes which can create technical problems.
* We let S; denote the set of primes p such that p¢|D, is not
minimally ramified in the sense of ref. 6.
* We let P; denote the set of primes p # ¢ such that p p
0, but ad’(pp)? # 0.
If p is not in Py U ¢, then p is in S if and only if the powers
of p differ in the conductors of p; and py. In the introductory
example, we have Sy = Py = P, = &, and S; = {7}.

Fo

Counting Congruences
We assume that N is divisible by Ny but not by €2 and let
% = {weight 2 newforms g such that g ~ f NN
and x;
= Xe-

Let Ty denote the O-subalgebra of Il,er, C generated by the
set of T, for p not dividing N¢, where T, denotes (a,(g)),. Then
Ty is a local ring, free over O of rank equal to the cardinality
of FN.
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Consider the homomorphism 74:Txy — O defined by projec-
tion to the f coordinate. Define ideals of Ty by

I;=kerm; ={x€Tx;=0}

J;= Anng,J; = {x € Tlx, = 0 for all g # f}.

Then the ideal (/) has finite index in O, and is called a
congruence ideal. This is a variant of the notion of a congruence
module used in refs. 1 and 2.

To see how it measures congruences, consider again the
above example with f of level 11. We suppose that N = 77 and
¢ = 3. Then T77 can be identified with

{(x,y) € 0 X O]x =y mod 30},

and we find that the congruence ideal is 30.
We consider also some useful variants. Suppose that 3 is a
finite set of primes containing S;. We let Fs denote the set

{weight 2 new forms g such thatg ~ f,
S, C,2,¢*¥N;and x;
= Xg-

We then define T as above, but using the set Fs instead of F.
We denote the resulting congruence ideal Cys. If f is replaced
by the newform associated to a twist, then T is replaced by a
ring to which it is canonically isomorphic, and we obtain the
same congruence ideal. So we suppose from now on that y; is
of order not divisible by ¢.
If 3 contains Py, then Fs can be identified with Fy, for a
certain integer Ns. Assuming this holds, we shall also associate
to f and % a cohomology congruence ideal.
Let I'y(Ns) denote the maximal subgroup of I'g(Ny) in which
I'i(Ns) has €-power order. Let T denote the O-subalgebra of

End(S>(I'n(N3)))

generated by the Hecke operators 7, for n = 1. We let fs
denote the normalized T-eigenform characterized by

e the newform associated to fs is f;
* a,(fy) = 0 for primes p in 3 — {{};
* a/(fs) is a unit in O if € divides N;

where we have enlarged K if necessary. Consider the prime
ideal 6in T defined as the kernel of the map T — O arising from
fs, and let m denote the maximal ideal generated by 6 and A.
If py is irreducible, the completion of Ty at its maximal ideal
can be identified with the completion of T at m. (See section
4.2 of ref. 7.)

We now define a cohomology congruence ideal using the
cohomology of the modular curve Xs = Xp(Ns) = [u(Ns)\FC*.
We have a natural action of T on

H'(Xs,0).

We choose a basis {x, y} for the rank two submodule M =
H'(Xs,0)[6], the intersection of the kernels of the elements of
0. We define the cohomology congruence ideal

}OE}; - <X,Y>@

where (,) is the perfect pairing on H'(Xs,0) gotten from xUWy,
where W is the Atkin-Lehner involution. One checks the
following (see section 4.4 of ref. 7).

LEMMA 3.1. The ideal Cy s is contained in C*;" fz Furthermore
if the completion H (Xs,0)y is free over T=Ts, then equality
holds.

Remark 3.2: The freeness of H'(Xs,0) is equivalent to
H'(Xs,k)[m] being two-dimensional over k, which is known
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under our hypotheses through work of Mazur et al. (see section
2.1 of ref. 3).

Relation with L-Functions

Hida’s formula relates C' s " to the value of an L-function. We
consider the L-function associated to the Galois representa-
tion ad®py. This L-function is defined by analytic continuation
of the Euler product

L(ad’f,s) = [ [L,(ad’f,s), 121
4

where for primes p not dividing Ny, the Euler factor L,(ad%,s)
is

[~ a,B,'p )1 —p~)(1 — Bya, 'p )]

a, and B, being the roots of Eq. 1. We shall not give here the
recipe for the Euler factors at primes p dividing Ny. We remark,
however, that L(ad’f,s) remains the same if f is replaced by the
newform associated to a twist, and that if Ny is minimal among
such newforms, then L,(ad’f,s) for p dividing Ny is one of the
following:

A-p ' LA-p) A+p ™ torl

If 3 is a finite set of primes, then we write L>(ad’f,s) for the
function obtained by omitting the Euler factors at the primes
in 3.

Suppose now that 3 contains P;US; as at the end of
preceding section. We let w denote the class in H'(Xs,C)
associated to the holomorphic differential 2mifs(t)dT on Xs.
We let »’ denote the class associated to the antiholomorphic
differential Wo* where «f is defined using f$ = 2a,(fs)e?™"
instead of fs.

Viewing M as contained in H'(Xs,C), we find that the span
of x and y coincides with that of w and w’. We write A4 for the
matrix in GL,(C) such that

aG)- ()

y »

Define the period () to be the determinant of 4. (Note that

because we have chosen a basis for M, ) is well defined only

up to a unit in 0.) Set & = 3 if € isin =, 1 if €|N; but € ¢ 3,

and 0 otherwise. Hida’s formula can then be stated as follows:
THEOREM 4.1. C ;02 is generated by

L*(ad’f,1)€°
i)

The proof uses results of Shimura to express the Petersson
inner product of f with itself in terms of the value of the
L-function. In particular, the ratio is an element of O.

Recall that we have assumed here that X, contains P;USy, but
the formula actually holds assuming only that %, contains Sy.
However, we have not explained how to define ) in that
situation. We shall see that in fact

THEOREM 4.2. () is independent of 3.
So we could use any 3 containing SyUP i to define (). From the
theorem, we also see precisely how C} varies with X: Adding
primes other than ¢ to 3 simply corresponds to dropping the
corresponding Euler factors from the L-function. Further-
more, we shall see that the congruences established by Ribet
are related to the theorem, which is essentially a reformulation
of Wiles’ generalization (3) of Ribet’s result.

Dropping Euler Factors

Ribet’s result (2) on “raising the level” is the following
theorem:

Copyright © National Academy of Sciences. All rights reserved.
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THEOREM 5.1. If p does not divide Ny then the following are
equivalent: (a) There exists g such that f ~ g, xy = x; and Ny =
dp for some divisor d of Ny.

(b) The congruence a,(f)? = x¢(p)(p + 1)> mod A holds.

The introductory example is a congruence as in the theorem.
We take p = 7 and A dividing 3. Because a,(f) = —2, we see
there must be a form g congruent to f with N, = 77 (because
N, = 7 is impossible).

The direction (a) = (b) of the theorem follows from
consideration of the representation py. We give the idea of the
proof in the case p # €: If there exists a g as in the theorem,
then the ratio of the eigenvalues of p; (Frob,) must be p*!'mod
A. Then one applies the formula

ap(f)2 - Xf(P)(P + 1)2 = - Xf(P)(P - poil)(p - Bpapil)

The direction (b) = (a) is closely related to Theorem 4.2, which
shows that

CiZug = (0 = D(a,(f)* = x4 (p)(p + DICY

if p is not in % and does not divide Ny. Ribet’s proof relies on
a comparison of cohomology congruence ideals, but his setup
is slightly different from the one here. He compares cohomol-
ogy congruence ideals at level Ny and Nyp, with the result that
the factor of p — 1 does not occur.

To prove Theorem 4.2, one defines a certain Ty-linear
injection

:H' (X5,0)m <> H'(X5,0)p for 3’ D 3.

It is defined so that ¢(M)CM’ where ' indicates we are using
3 instead of 2. We may even normalize the map so that this
restriction, tensored with C, sends fs to fs, i.e., the map drops
Euler factors. The key ingredient in the proof of independence
is the following generalization by Wiles of a lemma of Ribet:

LEMMA 5.2. ¢ has torsion-free cokernel.

This is proved using a result of Thara whose role in the
comparison of cohomology congruence ideals is identified in
Ribet’s work.

It follows that ¢ induces an isomorphism M — M’, and we
conclude that 4 = A’ using ¢(x),$(y) as a basis for M’. From
Theorem 4.2 we deduce:

COROLLARY 5.3. Suppose that %' D3 DP;USy. If Cis not in %'
— 3, then let & = 0. Otherwise let € = 2 or 3 according to whether
or not Ny is divisible by €. Then

¢ ;,uih = FCCOh peZ'—);Lp(adOf’l)a

« and if C;x = C{¥', then
Crs C€Cps | Lyad’f, )" [3]
pEX -3

Relation with Selmer Groups

Using Mazur’s theory of deformations of Galois representa-
tions, one associates a ring Rs and a universal deformation

Gal(Q/Q) — GLy(Rx)

of py minimally ramified outside % (see ref. 6). Here we work
over the completion 0 of O, which we view as contained in Q.
Supposing that % contains S, we obtain a homomorphism 7y s:
Rs — Qq from p; and the universal property. The 0-module

q)f’z = kerwf,g/(kerwf;f

can be described using Galois cohomology. In fact we have a
canonical isomorphism
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Home(®; 5,K/0) = Hy(Go,L®, Q¢/Z¢) [4]
where L is gotten from ad’p;. The group on the right is
sometimes called a Selmer group. The subscript 2 indicates
that for pg3 the cohomology classes are supposed to restrict
to elements of H f(G,,,L ®2,Q¢/Z¢) (as defined in ref. 8). There
is also a possibly weaker condition imposed at p = € if it is in
2. (3,9). The universal property of the deformation also yields
a surjective homomorphism ¢s from Ry to the completion of
Ts. The key result of Wiles (3) and its generalization in (9) is
that ¢y is an isomorphism (6, 7).

This result turns out to be related to the comparison of the
congruence ideal Cys with the Fitting ideal of ®; s, which we
denote Dys. (Recall that if &5 has finite length d, then its
Fitting ideal is generated by A4, and if the length is infinite than
the Fitting ideal is trivial.) On the one hand, an easy commu-
tative algebra argument shows that

D;s C Cys. (51

On the other hand, a deeper commutative algebra argument
shows that equality holds in Eq. 5 if and only if the following
hold: (a) ¢s is an isomorphism, and (b) Ts is a complete
intersection.

One first proves the two assertions in the case 3 = @, so to
get started one needs the existence of f such that Sy = @. This
existence is a version of Serre’s epsilon conjecture, and the
most difficult step in the proof is Ribet’s theorem on lowering
the level (5). Assuming that we also have P; = @, Taylor and
Wiles (4) show that Ty is a complete intersection, and using this
fact Wiles (3) shows that ¢y is an isomorphism. Their proofs
use the generalization of Mazur’s result discussed in Remark
3.2, and from which we also deduce

sz — sz — Ccoh [6]

1f2 :Sf:Pf: 0.
Combining the inclusion Eq. 3 with its counterpart

Dis D¢ Dsx [[ Ly(ad’f,1)"!
pEX' —X

resulting from a Galois cohomology argument, we find that Eq.
6 holds for arbitrary 3 provided Sy = Py = 0. Hence we have (a)
and (b), and therefore Dy s = Cy 3, assuming only that 3, D Sy and
Py = 0. Applying the result of remark 3.2, we get Eq. 6 as well in
that case.

Remark 6.1: Improvements to these arguments, due to
Faltings, Lenstra, Fujiwara, and the author (10) establish (a),
(b), and Eq. 6 simultaneously (first for 3 = @, then in general)
without appealing to Remark 3.2.

If P; is not empty, then we can sometimes get empty Py for a
twist, but in general we appeal to ref. 9 to get (a) and (b) in the
case of 3, = Sy = @, along with Eq. 3 if 3" = P;. We conclude that

THEOREM 6.2. Keep the above hypotheses and notation.

* For arbitrary %, (a) and (b) hold.
L>(ad’f, 1)€°
imQ)

* If X contains Sy U Py then Eq. 6 holds.

Remark 6.3: Coates and Flach have pointed out that one can
deduce form the theorem a formula relating the order of H@
(GQ,L@zeQ[/ Z¢) to L>(ad’,1). To relate the orders of H@ and
HE, one uses a variant of proposition 5.14 (ii) of ref. 8. In the
case of f corresponding to an elliptic curve, see section 3 of ref.
11 for this variant and ref. 12 for a discussion of the relation
with the Tamagawa number conjecture (8).

* If = contains Sy then is a generator for Dys.
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ABSTRACT We discuss proofs of some new special cases
of Serre’s conjecture on odd, degree 2 representations of Gg.

We shall call a simple abelian variety 4/Q modular if it is
isogenous over Q to a factor of the Jacobian of a modular
curve. If 4/Q is a modular abelian variety then F =
End’(A4/Q) is a number field of degree dim A. Replacing 4 by
an isogenous (over Q) abelian variety we may assume that
End(4/Q) = Of. If X is a prime of Op with residue charac-
teristic /, then Gq acts on A[A] ® F, so that there is a
continuous representation p4: Gg — GLZ([FI). We shall call
a representation arising in this way modular. If ¢ denotes
complex conjugation then det p4\(c) = —1, i.e., p4, is odd.

The following two conjectures have been extremely influ-
ential. The first is a generalization of the Shimura-Taniyama
conjecture, the second is due to Serre (1).

CONJECTURE 1: If A/Q is a simple abelian variety and
End°(A/Q) is a number field of degree dim A then A is modular.

CONIECTURE 2: If p: Gg — GLx(l) is odd and irreducible
then p is modular.

Very little is known about Serre’s conjecture, but we do have
the following deep result of Langlands (2) and Tunnell (3).

THEOREM 1: If p: Gg — GL2(F2) or GL»(F3) is odd and
absolutely irreducible then p is modular.

Recent work of Wiles (4) completed by Taylor and Wiles (5)
and extended by Diamond (6) proves the following theorem.

THEOREM 2: Suppose A/Q is a simple abelian variety and that
End(A/Q) is the ring of integers in a number field, F, of degree
dim A. Suppose also that there is a prime A\ of O with residue
characteristic | # 2 such that A has semi-stable reduction at I, p4 )
restricted to Gon/—Tyen7) is absolutely irreducible and p4, ) is
modular. Then A is modular.

In ref. 7 we obtain a few new cases of Serre’s conjecture. In
fact we prove the following theorem.

THEOREM 3: 1. If p: Gg — GL(Fs) has determinant the
cyclotomic character and if #p(I3)|10 then p is modular.

2. If p: Gg — GLx(F4) is unramified at 3 and 5 then p is
modular.

This is an easy consequence of the two theorems cited above
and the following algebro-geometric result. By a /5 abelian
surface we shall mean a triple (A, A, i) where A4 is an abelian
surface, \: A = AV is a principal polarization and i: Z[(1 +
V'5)/2] < End(4), which has image fixed by the Rosati
involution coming from A (that is, A is Z[(1 + V/5)/2]-linear).

THEOREM 4: 1. If p: Gg — GL3(Fs) has determinant the
cyclotomic character then there exists an elliptic curve E /Q such
that p = pgs and pg3z Ga — GL2(F3) is surjective.

2. If p: Gg — SLx(F4) then there is a \/5 abelian surface (A,
A, i)/Q such that p = pap and pa~s Ga — GLo(Fs) is
surjective.

© 1997 by The National Academy of Sciences 0027-8424/97/9411147-2$2.00/0
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Part 1 of this theorem is a slight generalization of an old
result of Hermite (8); see also refs. 9 and 10. [We remark that
the analogous statement for representations Gg — GLy(Z/
47) is false.] In this form (except for the surjectivity of pg 3)
one of us (R.T.) pointed it out to Wiles in 1992 and explained
how it could be used to deduce part 1 of Theorem 3 from the
Shimura-Taniyama conjecture (see ref. 4). Part 2 seems to be
new. The same argument also gives the following result [recall
that SLz([F4) = A5]

PROPOSITION 1: Let K be a field of characteristic zero, f € K[ X]
a quintic polynomial with discriminant d and L/K the splitting
field for f. Then there is a \/S abelian surface A /K(Nd) such that
L = K(Vd)(A[2)).

We will now sketch the proof of part 2 of Theorem 4 (see ref.
7 for the details). Let Y denote the cubic surface

It has an obvious action of S5. The 27 lines on Y divide into 3
orbits of length 15, 6, and 6 under the action of As. The lines
in the orbit of length 15 are all defined over Q. We will let Y°
denote their complement. The other 12 lines are each defined
over @Q(V5). The lines in each orbit of length 6 are disjoint.
Y? is the open subspace of the coarse moduli space of
V5 abelian surfaces with full level 2 structure which param-
etrizes V'S abelian surfaces which are not the product of two
elliptic curves. [Over C this was discovered by Hirzebruch (see
for example ref. 11).] We can twist Y and Y° by p: Gg —
SL,(F4) = As to obtain Y, and Yg. Then Y, is still a cubic
surface because the action of A5 extends to one on the ambient
5 which itself lifts to a homomorphism As — GL4. Y, also
contains 6 disjoint lines collectively defined over @(\/gj and
blowing them down we obtain P,/Q(V/5) (again because the
action of A; lifts to a representation 45 — GL3). If X, denotes
the restriction of scalars from @(V5) to @ of Y, then we
deduce that X,,/Q is a rational 4-fold. There is also a dominant
rational map 6: X, — Y, which on geometric points sends a pair
(v1, y2) to the third point of intersection of the line yy, with
Y,. We deduce that Y?, contains many rational points.
Unfortunately, a rational pointy € Yg does not necessarily
give rise to a V5 abelian surface 4 which is defined over Q.
However if it does then p = p,4 . Over Y? there is no universal
abelian surface. However there is a canonical P;-bundle C/Y?
(for the Zariski topology) and six sections s, . . . , S, such that
if y € Y°(Q) then the /5 abelian surface parametrized by y
is the Jacobian of the double cover of C, ramified exactly at
§1(»), - .., S6(y). The action of 45 extends to C, where it
permutes sy, . .., S¢ transitively, so that we get a [’;-bundle
C,/ Y\;inow for the étale topology). A point of Yg(@) gives rise
toa V5 abelian surface if and only if it is in the image of C,(Q).
Although C,/ Yg is not split, one can show that its pull back to
X, is split. Thus points in 6(X,(Q)) do correspond to V5
abelian surfaces defined over Q. This is sufficient to prove part
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2 of Theorem 4. [To show that the pull back of C, to X, splits
we first show that it extends outside codimension two and
hence is equivalent to a constant bundle (as X, is rational). Then
we find one rational point on it above the boundary of X,.]
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