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TOREWORD: THATHEMATICS

ow more than ever, our daily lives are directly affected by mathematics.

I’'m not just talking about the grades students get or how many mathe-

matics classes they have to take. I'm talking about answering the phone,
faxing a document, or driving a car. I'm talking about buying medicine for your
family, building a house, and listening to music. Mathematics has also helped
bring us things that indirectly affect us, like the discoveries of DNA, weather
patterns, and how to use light as a surgical tool. It has helped us walk on the
moon, create microchips, and transmit images across thousands of miles. With
mathematics, we design models to test our ideas and refine them, from nerve
impulses to human behavior, volcanoes to food. Mathematics is everywhere.
But mathematics has always been around, and the concepts it uses have
always helped us.

So why is mathematics so much more important to our lives now than it
was then? Years ago, in the eras of the abacus or slide rule, information took
a lot longer to sort through, but now it is easy to chart a course, assay a risk,
or compare statistics. Information is more abundant than ever. You can find
answers about everything from world politics to school lunches almost as soon
as you think of the questions.

This new speed of access to volumes of information obviously brings good

FOREWORD
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things—Ilike better medical information, better building materials, and more
diverse options in business and education. The down side to all of this is that
as easily as there can be information, there can be misuse of information.

So what does this mean for our children? More than ever, they need to be
mathematically savvy. Learning to think and reason mathematically is the
only way our children can be sure that they are in control, not being controlled.

More practically, almost every job these days requires at least some ele-
mentary understanding of mathematics. In fact, many of the jobs that keep
our country competitive and successful in the global market are jobs that
require more than basic mathematics comprehension. Not that everyone needs
to be able to program a computer or predict the stock market, but with the
vastly increased speed of statistical calculation (and manipulation) and easier
and faster global communication, our children need to know what a number
means, where it came from, and how best to judge its veracity.

As the Governor of Georgia, I take all of this pretty seriously. I know the
importance of bringing businesses to my state to create jobs for Georgians. The
world, however, is their marketplace; to be healthy, competitive, and economi-
cally secure, our citizens must understand mathematics. They need to become
comfortable with the notion of mathematics as a tool for life.

was elected Governor of the state of Georgia in 1990. Since taking office,
his love of teaching and commitment to education has resulted in one of the most ambitious agen-
das to improve public education in this century. Governor Miller’s public career includes service at
virtually every level of government: as mayor, as a member of the state senate, as lieutenant gov-
ernor, and now as Governor. He is currently Chairman of the Education Commission of the States.
He has also chaired the Southern Governors’ Association, the Appalachian Regional Commission,
and the Council of State Governments. Governor Miller keynoted the 1992 Democratic National
Convention in New York and chaired the Platform Drafting Committee for the 1996 Democratic
National Convention in Chicago.

HIGH SCHOOL MATHEMATICS AT WORK

viii

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/5777.html

says and Examples for the Education of All Students

ACKNOWLEDGITENTS

or over ten years the Mathematical Sciences Education Board (MSEB) has

worked to support the improvement of mathematics education. The work of

the Board becomes visible largely through publications, beginning with
Everybody Counts (1989) and Reshaping School Mathematics (1990). High
School Mathematics at Work builds on this prior work. Like Measuring Up
(1992), it contains student tasks; like Mathematical Preparation of the Techni-
cal Work Force (1995), it highlights the mathematics needed for careers.

High School Mathematics at Work was developed through the efforts of
more people than can be named individually here. We gratefully acknowledge
the generous financial support of the Pew Charitable Trusts, and thank both
Robert Schwartz for his special encouragement with this project when he was
Director of their Education Programs, as well as Janet Kroll for her continuing
interest and support as our program officer.

The project was launched as a 12th grade sequel to Measuring Up through
the initiative of Linda P. Rosen. The MSEB first envisioned that this sequel
would illuminate some features of high quality high school mathematics teach-
ing and learning through standards-based assessment tasks. The growing inter-
est in school-to-work issues, however, led to our giving this theme major promi-
nence. With this new focus, Lynn Arthur Steen and Susan Forman designed the

ACKNOWLEDGMENTS

ix

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/5777.html

says and Examples for the Education of All Students

project, secured funding, collected mathematical examples, commissioned
essays, and worked with the Task Force, first as members of the MSEB staff and
later as consultants. We also thank Daniel Goroff for his leadership during a
period of staff transition.

Examples of mathematical tasks were solicited over a period of two years
from a wide variety of sources, as described in Appendix A. From the hundreds
of examples that were contributed, the Task Force selected about two dozen for
inclusion, wrote first drafts of those mathematical examples, and identified
essay topics and authors. The resulting collection of examples and essays was
molded into its current form by Bradford Findell, serving as editor, under the
guidance of Glenda Lappan, Alan Schoenfeld, and Harvey Keynes, with the
assistance of Cathy Kessel, and with substantial input from Deborah Ball,
Sadie Bragg, Gail Burrill, Shari Coston, Shelley Ferguson, Melvin George,
Rick Jennings, Jim Leitzel, Tony Martinez, Pamela Matthews, Patrick McCray,
and Jack Price.

Of course, no project of this size could ever come to completion without the
contributions of support staff. Thanks especially to Sharon O’Donnell for her
help collecting the essays and examples and to Catherine Bell and Doug
Sprunger for their help with the review process. We must also thank Sally
Stanfield, Linda Humphrey, and the staff at the National Academy Press for
their support and patience with the complex evolution of this project.

Mathematical Sciences Education Board

National Research Council. (1989). Everybody counts: A report to the nation on the future of math-
ematics education. Washington, DC: National Academy Press.

National Research Council. (1990). Reshaping school mathematics: A philosophy and framework
for curriculum. Washington, DC: National Academy Press.

National Research Council. (1993). Measuring up: Prototypes for mathematics assessment. Wash-
ington, DC: National Academy Press.

National Research Council. (1995). Mathematical preparation of the technical work force. Wash-
ington, DC: National Academy Press.

Additional thanks for the many efforts and suggestions offered by the following people:

Jennifer Bemis, John Bishop, Judy Estep, Jim Fey, Carol Findell, Kent Findell, Irene Gable, Jim
Gates, Mary Hornyak, Ramona Irvin, Jay Labov, Patrice Legro, Diane Mann, Bob Naismith,
Harold Pratt, Kirsten Sampson, Harold Shoen, Kevin Sullivan, Jan Tuomi, Phil Wagreich, Tina
Winters, and Judi Zawojewski.

HIGH SCHOOL MATHEMATICS AT WORK

X

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/5777.html

says and Examples for the Education of All Students

TABLE OF COMTENTS

Foreword: Mathematics for a Modern Age vii
Zell Miller, Governor of Georgia

Acknowledgments ix

INTRODUCTION 1

CONNECTING MATHEMATICS WITH WORK AND LIFE
Overview 9

Mathematics as a Gateway to Student Success 14
Dale Parnell, Oregon State University

Market Launch 18

Rol Fessenden, L. L. Bean, Inc.

Integrating Vocational and Academic Education 24
Thomas Bailey, Columbia University

The Importance of Workplace and Everyday Mathematics
Jean E. Taylor, Rutgers University

Working with Algebra 35
Daniel Chazan, Michigan State University
Sandra Callis Bethell, Holt High School
EMERGENCY CALLS 42
BACK-OF-THE-ENVELOPE ESTIMATES 45
SCHEDULING ELEVATORS 49
HEATING-DEGREE-DAYS 54

Copyright © National Academy of Sciences. All rights reserved.

30

xi


http://www.nap.edu/catalog/5777.html

says and Examples for the Education of All Students

THE ROLES OF STANDARDS AND ASSESSMENTS

Overview 59

Science and Mathematics Education: Finding Common

Ground 63
Jane Butler Kahle, Miami University

SCANS and Mathematics—Supporting the Transition from

Schools to Careers 67
Arnold Packer, Johns Hopkins University

Thinking about the SAT 70
William Linder-Scholer, SciMath Minnesota

Extended Response Tasks in International Contexts 75
John Dossey, Illinois State University

DRUG DOSAGE 80

MENTAL MATHEMATICS 83

BUYING ON CREDIT 87

CURRICULAR CONSIDERATIONS

xii

Overview 93

Fitting Tasks to Curriculum 97

Zalman Usiskin, University of Chicago

Mathematics as a Way of Thinking about Things 102
Albert A. Cuoco, Education Development Center

Preparing Students for Postsecondary Education 107
Harvey B. Keynes, University of Minnesota

LOTTERY WINNINGS 111

HOSPITAL QUALITY 115

ROUNDING OFF 119

RULES OF THUMB 123

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/5777.html

says and Examples for the Education of All Students

IMPLICATIONS FOR TEACHING AND TEACHER EDUCATION

Overview 129

Pedagogical Implications for Problem-Centered

Teaching 132
Glenda T. Lappan, Michigan State University

The Role of Complex Mathematical Tasks in Teacher
Education 137

Gilbert J. Cuevas, University of Miami
Assessment Conversations as a Tool for Reform 141

Paul G. LeMahieu, University of Delaware and Delaware Department of Education
Marsha T. Horton, Delaware Department of Education

ESTIMATING AREA 145
TIMING TRAFFIC LIGHTS 147
BUYING A USED CAR 153

EPILOGUE 157

APPENDIXES

Sources of Problems and Tasks 163
Susan Forman and Lynn Arthur Steen

Task Force Members 167

INDEX 171

xiii

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/5777.html

says and Examples for the Education of All Students

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/5777.html

says and Examples for the Education of All Students

[NTRODUCTION

ociety’s technological, economic, and cultural changes of the last 50 years

have made many important mathematical ideas more relevant and accessible

in work and in everyday life. As examples of mathematics proliferate, the
mathematics education community is provided with both a responsibility and an
opportunity. Educators have a responsibility to provide a high-quality mathe-
matics education for all of our students. A recent report of the National Academy
of Sciences (NAS) entitled Preparing for the 21st Century: The Education Imper-
ative (National Research Council [NRC], 1997) neatly summarizes this point:

... today, an understanding of science, mathematics, and technology is very important
in the workplace. As routine mechanical and clerical tasks become computerized,
more and more jobs require high-level skills that involve critical thinking, problem
solving, communicating ideas to others and collaborating effectively. Many of these
jobs build on skills developed through high-quality science, mathematics, and tech-
nology education. Our nation is unlikely to remain a world leader without a better-
educated workforce. (p. 1)

These economic and technological changes also present an opportunity for
providing that high-quality education. Specifically, there is rich mathematics in
workplace applications and in everyday life that can contribute to the school
curriculum. Thus, today’s world not only calls for increasing connection

INTRODUCTION
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between mathematics and its applications, but also provides compelling exam-
ples of mathematical ideas in everyday and workplace settings. These examples
can serve to broaden the nation’s mathematics education programs to encom-
pass the dual objectives of preparing students for the worlds of work and of
higher education. Furthermore, such programs can provide students with the
flexibility to return to higher education whenever appropriate in their career
paths. By illustrating the commonalities among the mathematical expectations
for college, for work, and for everyday life, and by illustrating sophisticated uses
of mathematics taught in high schools as well as in community colleges, this
document aims to offer an expanded vision of mathematics. Mathematics based
in the workplace and in everyday life can be good mathematics for everyone.

High School Mathematics at Work is a collection of essays and illustrative
tasks from workplace and everyday contexts that suggest ways to strengthen
the mathematical education of all students. The essays are written by a wide
range of individuals who have thought deeply about mathematics education
and about the futures of today’s students, from mathematics educators to busi-
ness leaders, from mathematicians to educational researchers, from curricu-
lum developers to policy makers. The essays and tasks in High School Mathe-
matics at Work not only underscore the points made in The Education
Imperative (NRC, 1997), but also begin to explore connections between acade-
mic mathematics and mathematics for work and life.

As a step toward examining ways in which our schools and colleges can
better serve the needs of both academic and vocational education, the National
Research Council (NRC) of the National Academy of Sciences hosted a work-
shop in 1994 that resulted in a report entitled Mathematical Preparation of the
Technical Work Force (NRC, 1995). Participants discussed questions such as

How can mathematics content and technical applications of mathe-
matics be integrated into educational programs?

Should algebra continue to be the “critical filter” used to determine whether
or not students will be admitted into youth apprenticeship programs?

Is the mathematics included in technical education programs consis-
tent with emerging educational and occupational skills standards?

Is it possible (or desirable) to design a core mathematics curriculum
for the high school and community college levels that prepares stu-
dents both for further formal education and for immediate employ-
ment in the technical work force? (p. 6)

High School Mathematics at Work continues discussion of these questions,
and considers in particular how workplace and everyday mathematics can
enrich mathematics teaching and learning.

HIGH SCHOOL MATHEMATICS AT WORK
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Though the nominal mathematical content of this volume is high school
mathematics, consideration of the above issues will lead to implications for col-
leges as well. For example, some two-year colleges have moved toward pro-
grams that include contextual learning and work-based experiences to enhance
academic learning, often through articulated 2+2 partnerships that combine
two years of course-work in high school with two years at a community college.
The movement toward work-based learning has gained momentum in recent
years through the School-to-Work Opportunities Act of 1994, administered
jointly by the Departments of Education and Labor, and through the Advanced
Technological Education program at the National Science Foundation. Both
programs emphasize high academic expectations and require strong connec-
tions among schools, two-year colleges, businesses, and industry. By bringing
these issues to the attention of the broader college and school communities,
and by promoting higher mathematical expectations for all students, this doc-
ument might provide an opportunity for schools and colleges to reconsider the
mathematics courses before calculus, perhaps leading to new conceptualiza-
tions of their remedial, developmental, and “liberal arts” courses.

Fundamentally, High School Mathematics at Work is about mathematics.
Its view of mathematics and mathematics learning recognizes a potential sym-
biotic relationship between concrete and abstract mathematics, each con-
tributing to the other, enhancing their joint richness and power. This view is
not new. Historically, much mathematics originated from attempts to solve
problems from science and engineering. On the other hand, solutions to many
problems from science and engineering have been based on creative ways of
applying some mathematics that until then had no known applications. Math-
ematics can help solve problems, and complex workplace problems can help
stimulate the creation of new mathematics.

Embracing this connected view of mathematics requires more than
addressing content issues. In this document, the essays and tasks are orga-
nized according to four themes, each considering a different aspect of the many
challenges involved in creating an enriched mathematics education for stu-
dents. Each theme is introduced by an overview that provides a context for
and a summary of the essays and tasks that follow. The first theme, Connect-
ing Mathematics with Work and Life, sets the stage for the document as a
whole, examining why and how “real world problems” can be used to enhance
the learning of mathematics. With that premise, the remaining themes
emphasize implications for various components of the educational system. The
Roles of Standards and Assessments highlights the roles of standards and
assessments in maintaining and also changing a vision of mathematics educa-
tion. Curricular Considerations explores ways of designing curricula that
attend to the needs of a diverse citizenry. Finally, Implications for Teaching
and Teacher Education underscores the background and support teachers must
have to respond to the needs of today’s students.

INTRODUCTION
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Many of the issues raised by these essays are quite complex; no single
essay provides a definitive resolution for any of these issues, and in fact, on
some matters, some of the essayists disagree. Collectively, these essays point
toward a vision of mathematics education that simultaneously considers the
needs of all students. High School Mathematics at Work, however, unlike many
documents produced by the National Research Council, is not a consensus doc-
ument. The intent of this document is to point out some mathematical possi-
bilities that are provided by today’s world and to discuss some of the issues
involved—not to resolve the issues, but to put forward some individual and
personal perspectives that may contribute to the discussion.

Under each theme, the essays are accompanied by several tasks that illus-
trate some of the points raised in those essays, though many of the tasks could
appropriately fit under several of the themes. The tasks serve as examples of
where today’s world can provide good contexts for good mathematics. They
never were intended to represent, or even suggest, a full menu of high school
mathematics. They provide possibilities for teaching. They exemplify central
mathematical ideas and simultaneously convey the explanatory power of math-
ematics to help us make sense of the world around us. This book offers an exis-
tence proof: one can make connections between typical high school mathemat-
ics content and important problems from our everyday lives. And, it makes an
important point: that the mathematics we learn in the classroom can and
should help us to deal with the situations we encounter in our everyday lives.
But High School Mathematics at Work is not only about relevance and utility.
The mathematics involved is often generalizable; it often has aesthetic value,
too. Mathematics can be beautiful, powerful, and useful. We hope you will dis-
cover all three of these virtues in some of the examples.

At a time when analysts of the Third International Mathematics and Sci-
ence Study (TIMSS) have characterized the K-12 mathematics curriculum as “a
mile wide and an inch deep” (Schmidt, McKnight & Raizen, 1996) this report
does not advocate that tasks like the ones in this volume merely augment the
curriculum. Rather, it suggests that tasks like these can provide meaningful
contexts for important mathematics we already teach, including both well-estab-
lished topics such as exponential growth and proportional reasoning, as well as
more recent additions to the curriculum, such as data analysis and statistics.

Collectively, these essays and tasks explore how mathematics supports
careers that are both high in stature and widely in demand. By suggesting
ways that mathematics education can be structured to serve the needs of all
students, the Mathematical Sciences Education Board (MSEB) hopes to initi-
ate, inform, and invigorate discussions of how and what might be taught to
whom. To this end, High School Mathematics at Work is appropriate for a
broad audience, including teachers, teacher educators, college faculty, parents,
mathematicians, curriculum designers, superintendents, school board mem-
bers, and policy makers—in short, anyone interested in mathematics educa-

HIGH SCHOOL MATHEMATICS AT WORK
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tion. For those who teach mathematics, the essays might provide new ways of
thinking about teaching and learning; the tasks might provide ideas for the
classroom. For parents, this book can give a sense of how mathematics can be
powerful, useful, beautiful, meaningful, and relevant for students. And for
those who influence educational policy, this book might motivate a search for
curricula with these virtues.

As with all of the recent published work of the MSEB, High School Math-
ematics at Work is meant to be shared by all who care about the future of math-
ematics education, to serve as a stimulus for further discussion, planning, and
action. All those who contributed to this report would be delighted if teachers
gave copies to school board members, college faculty gave copies to deans, cur-
riculum developers gave copies to publishers, employers gave copies to policy
makers, and so on. Only through continued, broad-based discussion of curric-
ular issues can we implement change and raise our expectations of what stu-
dents know and are able to do.

National Research Council. (1995). Mathematical preparation of the technical work force. Wash-
ington, DC: National Academy Press.

National Research Council. (1997). Preparing for the 21st century: The education imperative.
Washington, DC: National Academy Press.

Schmidt, W. H., McKnight, C. C., & Raizen, S. A. (1996). A splintered vision: An investigation of U.S.
science and mathematics education. Dordrecht, The Netherlands: Kluwer Academic Publishers.
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DVERVIEL

Mathematics is the key to opportunity. No longer just the language of science, math-
ematics now contributes in direct and fundamental ways to business, finance, health,
and defense. For students, it opens doors to careers. For citizens, it enables informed
decisions. For nations, it provides knowledge to compete in a technological commu-
nity. To participate fully in the world of the future, America must tap the power of
mathematics. (NRC, 1989, p. 1)

he above statement remains true today, although it was written almost ten

years ago in the Mathematical Sciences Education Board’s (MSEB) report

Everybody Counts (NRC, 1989). In envisioning a future in which all stu-
dents will be afforded such opportunities, the MSEB acknowledges the crucial
role played by formulae and algorithms, and suggests that algorithmic skills
are more flexible, powerful, and enduring when they come from a place of
meaning and understanding. This volume takes as a premise that all students
can develop mathematical understanding by working with mathematical tasks
from workplace and everyday contexts. The essays in this report provide some
rationale for this premise and discuss some of the issues and questions that fol-
low. The tasks in this report illuminate some of the possibilities provided by
the workplace and everyday life.

GONNECTING MATHEMATICS WITH WORK AND LIFE
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Contexts from within mathematics also can be powerful sites for the
development of mathematical understanding, as professional and amateur
mathematicians will attest. There are many good sources of compelling prob-
lems from within mathematics, and a broad mathematics education will
include experience with problems from contexts both within and outside math-
ematics. The inclusion of tasks in this volume is intended to highlight partic-
ularly compelling problems whose context lies outside of mathematics, not to
suggest a curriculum.

The operative word in the above premise is “can.” The understandings
that students develop from any encounter with mathematics depend not only
on the context, but also on the students’ prior experience and skills, their ways
of thinking, their engagement with the task, the environment in which they
explore the task—including the teacher, the students, and the tools—the kinds
of interactions that occur in that environment, and the system of internal and
external incentives that might be associated with the activity. Teaching and
learning are complex activities that depend upon evolving and rarely articu-
lated interrelationships among teachers, students, materials, and ideas. No
prescription for their improvement can be simple.

This volume may be beneficially seen as a rearticulation and elaboration
of a principle put forward in Reshaping School Mathematics:

Students need to experience mathematical ideas in the context in which they naturally
arise—from simple counting and measurement to applications in business and science.
Calculators and computers make it possible now to introduce realistic applications
throughout the curriculum.

The significant criterion for the suitability of an application is whether it has the
potential to engage students’ interests and stimulate their mathematical thinking.
(NRC, 1990, p. 38)

Mathematical problems can serve as a source of motivation for students
if the problems engage students’ interests and aspirations. Mathematical
problems also can serve as sources of meaning and understanding if the prob-
lems stimulate students’ thinking. Of course, a mathematical task that is
meaningful to a student will provide more motivation than a task that does
not make sense. The rationale behind the criterion above is that both mean-
ing and motivation are required. The motivational benefits that can be pro-
vided by workplace and everyday problems are worth mentioning, for
although some students are aware that certain mathematics courses are nec-
essary in order to gain entry into particular career paths, many students are
unaware of how particular topics or problem-solving approaches will have rel-
evance in any workplace. The power of using workplace and everyday prob-
lems to teach mathematics lies not so much in motivation, however, for no con-

HIGH SCHOOL MATHEMATICS AT WORK

10

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/5777.html

says and Examples for the Education of All Students

text by itself will motivate all students. The real power is in connecting to
students’ thinking.

There is growing evidence in the literature that problem-centered
approaches—including mathematical contexts, “real world” contexts, or both—
can promote learning of both skills and concepts. In one comparative study, for
example, with a high school curriculum that included rich applied problem sit-
uations, students scored somewhat better than comparison students on alge-
braic procedures and significantly better on conceptual and problem-solving
tasks (Schoen & Ziebarth, 1998). This finding was further verified through
task-based interviews. Studies that show superior performance of students in
problem-centered classrooms are not limited to high schools. Wood and Sellers
(1996), for example, found similar results with second and third graders.

Research with adult learners seems to indicate that “variation of contexts
(as well as the whole task approach) tends to encourage the development of
general understanding in a way which concentrating on repeated routine appli-
cations of algorithms does not and cannot” (Strasser, Barr, Evans, & Wolf,
1991, p. 163). This conclusion is consistent with the notion that using a vari-
ety of contexts can increase the chance that students can show what they know.
By increasing the number of potential links to the diverse knowledge and expe-
rience of the students, more students have opportunities to excel, which is to
say that the above premise can promote equity in mathematics education.

There is also evidence that learning mathematics through applications
can lead to exceptional achievement. For example, with a curriculum that
emphasizes modeling and applications, high school students at the North Car-
olina School of Science and Mathematics have repeatedly submitted winning
papers in the annual college competition, Mathematical Contest in Modeling
(Cronin, 1988; Miller, 1995).

The relationships among teachers, students, curricular materials, and
pedagogical approaches are complex. Nonetheless, the literature does supports
the premise that workplace and everyday problems can enhance mathematical
learning, and suggests that if students engage in mathematical thinking, they
will be afforded opportunities for building connections, and therefore meaning
and understanding.

In the opening essay, Dale Parnell argues that traditional teaching has
been missing opportunities for connections: between subject-matter and con-
text, between academic and vocational education, between school and life,
between knowledge and application, and between subject-matter disciplines.
He suggests that teaching must change if more students are to learn mathe-
matics. The question, then, is how to exploit opportunities for connections
between high school mathematics and the workplace and everyday life.

Rol Fessenden shows by example the importance of mathematics in busi-
ness, specifically in making marketing decisions. His essay opens with a dia-
logue among employees of a company that intends to expand its business into
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Japan, and then goes on to point out many of the uses of mathematics, data col-
lection, analysis, and non-mathematical judgment that are required in making
such business decisions.

In his essay, Thomas Bailey suggests that vocational and academic edu-
cation both might benefit from integration, and cites several trends to support
this suggestion: change and uncertainty in the workplace, an increased need
for workers to understand the conceptual foundations of key academic subjects,
and a trend in pedagogy toward collaborative, open-ended projects. Further-
more, he observes that School-to-Work experiences, first intended for students
who were not planning to attend a four-year college, are increasingly being
seen as useful in preparing students for such colleges. He discusses several
such programs that use work-related applications to teach academic skills and
to prepare students for college. Integration of academic and vocational educa-
tion, he argues, can serve the dual goals of “grounding academic standards in
the realistic context of workplace requirements and introducing a broader view
of the potential usefulness of academic skills even for entry level workers.”

Noting the importance and utility of mathematics for jobs in science,
health, and business, Jean Taylor argues for continued emphasis in high school
of topics such as algebra, estimation, and trigonometry. She suggests that
workplace and everyday problems can be useful ways of teaching these ideas
for all students.

There are too many different kinds of workplaces to represent even most
of them in the classrooms. Furthermore, solving mathematics problems from
some workplace contexts requires more contextual knowledge than is reason-
able when the goal is to learn mathematics. (Solving some other workplace
problems requires more mathematical knowledge than is reasonable in high
school.) Thus, contexts must be chosen carefully for their opportunities for
sense making. But for students who have knowledge of a workplace, there are
opportunities for mathematical connections as well. In their essay, Daniel
Chazan and Sandra Callis Bethell describe an approach that creates such
opportunities for students in an algebra course for 10th through 12th graders,
many of whom carried with them a “heavy burden of negative experiences”
about mathematics. Because the traditional Algebra I curriculum had been
extremely unsuccessful with these students, Chazan and Bethell chose to do
something different. One goal was to help students see mathematics in the
world around them. With the help of community sponsors, Chazen and Bethell
asked students to look for mathematics in the workplace and then describe
that mathematics and its applications to their classmates.

The tasks in Part One complement the points made in the essays by mak-
ing direct connections to the workplace and everyday life. Emergency Calls
(p. 42) illustrates some possibilities for data analysis and representation by
discussing the response times of two ambulance companies. Back-of-the-
Envelope Estimates (p. 45) shows how quick, rough estimates and calculations
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are useful for making business decisions. Scheduling Elevators (p. 49)
shows how a few simplifying assumptions and some careful reasoning can be
brought together to understand the difficult problem of optimally scheduling
elevators in a large office building. Finally, in the context of a discussion with
a client of an energy consulting firm, Heating-Degree-Days (p. 54) illumi-
nates the mathematics behind a common model of energy consumption in home
heating.

Cronin, T. P. (1988). High school students win “college” competition. Consortium: The Newsletter
of the Consortium for Mathematics and Its Applications, 26, 3, 12.

Miller, D. E. (1995). North Carolina sweeps MCM ’94. SIAM News, 28(2).

National Research Council. (1989). Everybody counts: A report to the nation on the future of math-
ematics education. Washington, DC: National Academy Press.

National Research Council. (1990). Reshaping school mathematics: A philosophy and framework
for curriculum. Washington, DC: National Academy Press.

Schoen, H. L. & Ziebarth, S. W. (1998). Assessment of students’ mathematical performance (A Core-
Plus Mathematics Project Field Test Progress Report). Iowa City: Core Plus Mathematics Pro-
ject Evaluation Site, University of Iowa.

Strasser, R., Barr, G. Evans, J. & Wolf, A. (1991). Skills versus understanding. In M. Harris (Ed.),
Schools, mathematics, and work (pp. 158-168). London: The Falmer Press.

Wood, T. & Sellers, P. (1996). Assessment of a problem-centered mathematics program: Third
grade. Journal for Research in Mathematics Education, 27(3), 337-353.

GONNECTING MATHEMATICS WITH WORK AND LIFE

13

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/5777.html

says and Examples for the Education of All Students

fITHEMATICS S A GATEWAY
10 oTUDENT SUCCESS

he study of mathematics stands, in many ways, as a gateway to student

success in education. This is becoming particularly true as our society

moves inexorably into the technological age. Therefore, it is vital that
more students develop higher levels of competency in mathematics.!

The standards and expectations for students must be high, but that is
only half of the equation. The more important halfis the development of teach-
ing techniques and methods that will help all students (rather than just some
students) reach those higher expectations and standards. This will require
some changes in how mathematics is taught.

Effective education must give clear focus to connecting real life con-
text with subject-matter content for the student, and this requires a more
“connected” mathematics program. In many of today’s classrooms, espe-
cially in secondary school and college, teaching is a matter of putting stu-
dents in classrooms marked “English,” “history,” or “mathematics,” and
then attempting to fill their heads with facts through lectures, textbooks,
and the like. Aside from an occasional lab, workbook, or “story problem,”
the element of contextual teaching and learning is absent, and little
attempt is made to connect what students are learning with the world in
which they will be expected to work and spend their lives. Often the frag-
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mented information offered to students is of little use or application except
to pass a test.

What we do in most traditional classrooms is require students to commit
bits of knowledge to memory in isolation from any practical application—to
simply take our word that they “might need it later.” For many students,
“later” never arrives. This might well be called the freezer approach to teach-
ing and learning. In effect, we are handing out information to our students
and saying, “Just put this in your mental freezer; you can thaw it out later
should you need it.” With the exception of a minority of students who do well
in mastering abstractions with little contextual experience, students aren’t
buying that offer. The neglected majority of students see little personal mean-
ing in what they are asked to learn, and they just don’t learn it.

I recently had occasion to interview 75 students representing seven dif-
ferent high schools in the Northwest. In nearly all cases, the students were
juniors identified as vocational or general education students. The comment of
one student stands out as representative of what most of these students told
me in one way or another: “I know it’s up to me to get an education, but a lot
of times school is just so dull and boring. . .. You go to this class, go to that
class, study a little of this and a little of that, and nothing connects. . . . I
would like to really understand and know the application for what I am learn-
ing.” Time and again, students were asking, “Why do I have to learn this?”
with few sensible answers coming from the teachers.

My own long experience as a community college president confirms the
thoughts of these students. In most community colleges today, one-third to one-
half of the entering students are enrolled in developmental (remedial) education,
trying to make up for what they did not learn in earlier education experiences.
A large majority of these students come to the community college with limited
mathematical skills and abilities that hardly go beyond adding, subtracting, and
multiplying with whole numbers. In addition, the need for remediation is also
experienced, in varying degrees, at four-year colleges and universities.

What is the greatest sin committed in the teaching of mathematics today?
It is the failure to help students use the magnificent power of the brain to
make connections between the following:

subject-matter content and the context of use;
academic and vocational education;

school and other life experiences;

knowledge and application of knowledge; and
one subject-matter discipline and another.

Why is such failure so critical? Because understanding the idea of mak-
ing the connection between subject-matter content and the context of applica-
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tion is what students, at all levels of education, desperately require to survive
and succeed in our high-speed, high-challenge, rapidly changing world.

Educational policy makers and leaders can issue reams of position papers
on longer school days and years, site-based management, more achievement
tests and better assessment practices, and other “hot” topics of the moment,
but such papers alone will not make the crucial difference in what students
know and can do. The difference will be made when classroom teachers begin
to connect learning with real-life experiences in new, applied ways, and when
education reformers begin to focus upon learning for meaning.

A student may memorize formulas for determining surface area and mea-
suring angles and use those formulas correctly on a test, thereby achieving the
behavioral objectives set by the teacher. But when confronted with the need to
construct a building or repair a car, the same student may well be left at sea
because he or she hasn’t made the connection between the formulas and their
real-life application. When students are asked to consider the Pythagorean
Theorem, why not make the lesson active, where students actually lay out the
foundation for a small building like a storage shed?

What a difference mathematics instruction could make for students if it
were to stress the context of application—as well as the content of knowledge—
using the problem-solving model over the freezer model. Teaching conducted
upon the connected model would help more students learn with their thinking
brain, as well as with their memory brain, developing the competencies and
tools they need to survive and succeed in our complex, interconnected society.

One step toward this goal is to develop mathematical tasks that integrate
subject-matter content with the context of application and that are aimed at
preparing individuals for the world of work as well as for postsecondary edu-
cation. Since many mathematics teachers have had limited workplace experi-
ence, they need many good examples of how knowledge of mathematics can be
applied to real life situations. The trick in developing mathematical tasks for
use in classrooms will be to keep the tasks connected to real life situations that
the student will recognize. The tasks should not be just a contrived exercise
but should stay as close to solving common problems as possible.

As an example, why not ask students to compute the cost of 12 years of
schooling in a public school? It is a sad irony that after 12 years of schooling
most students who attend the public schools have no idea of the cost of their
schooling or how their education was financed. No wonder that some public
schools have difficulty gaining financial support! The individuals being served
by the schools have never been exposed to the real life context of who pays for
the schools and why. Somewhere along the line in the teaching of mathemat-
ics, this real life learning opportunity has been missed, along with many other
similar contextual examples.

The mathematical tasks in High School Mathematics at Work provide stu-
dents (and teachers) with a plethora of real life mathematics problems and
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challenges to be faced in everyday life and work. The challenge for teachers
will be to develop these tasks so they relate as close as possible to where stu-
dents live and work every day.

Parnell, D. (1985). The neglected majority. Washington, DC: Community College Press.
Parnell, D. (1995). Why do I have to learn this? Waco, TX: CORD Communications.

1. For further discussion of these issues, see Parnell (1985, 1995).
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[IHRKET LAUNCH

K, the agenda of the meeting is to review the status of our launch into
Japan. You can see the topics and presenters on the list in front of you.
Gregg, can you kick it off with a strategy review?”

“Happy to, Bob. We have assessed the possibilities, costs, and return on
investment of opening up both store and catalog businesses in other countries.
Early research has shown that both Japan and Germany are good candidates.
Specifically, data show high preference for good quality merchandise, and a
higher-than-average propensity for an active outdoor lifestyle in both coun-
tries. Education, age, and income data are quite different from our target mar-
ket in the U.S., but we do not believe that will be relevant because the cultures
are so different. In addition, the Japanese data show that they have a high
preference for things American, and, as you know, we are a classic American
company. Name recognition for our company is 14%, far higher than any of our
American competition in Japan. European competitors are virtually unrecog-
nized, and other Far Eastern competitors are perceived to be of lower quality
than us. The data on these issues are quite clear.

“Nevertheless, you must understand that there is a lot of judgment
involved in the decision to focus on Japan. The analyses are limited because
the cultures are different and we expect different behavioral drivers. Also,
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much of the data we need in Japan are simply not available because the Japan-
ese marketplace is less well developed than in the U.S. Drivers’ license data,
income data, lifestyle data, are all commonplace here and unavailable there.
There is little prior penetration in either country by American retailers, so
there is no experience we can draw upon. We have all heard how difficult it
will be to open up sales operations in Japan, but recent sales trends among
computer sellers and auto parts sales hint at an easing of the difficulties.

“The plan is to open three stores a year, 5,000 square feet each. We expect
to do $700/square foot, which is more than double the experience of American
retailers in the U.S. but 45% less than our stores. In addition, pricing will be
20% higher to offset the cost of land and buildings. Asset costs are approxi-
mately twice their rate in the U.S., but labor is slightly less. Benefits are more
thoroughly covered by the government. Of course, there is a lot of uncertainty
in the sales volumes we are planning. The pricing will cover some of the uncer-
tainty but is still less than comparable quality goods already being offered in
Japan.

“Let me shift over to the competition and tell you what we have learned.
We have established long-term relationships with 500 to 1000 families in each
country. This is comparable to our practice in the U.S. These families do not
know they are working specifically with our company, as this would skew their
reporting. They keep us appraised of their catalog and shopping experiences,
regardless of the company they purchase from. The sample size is large enough
to be significant, but, of course, you have to be careful about small differences.

“All the families receive our catalog and catalogs from several of our com-
petitors. They match the lifestyle, income, and education demographic profiles
of the people we want to have as customers. They are experienced catalog shop-
pers, and this will skew their feedback as compared to new catalog shoppers.

“One competitor is sending one 100-page catalog per quarter. The product
line is quite narrow—200 products out of a domestic line of 3,000. They have
selected items that are not likely to pose fit problems: primarily outerwear and
knit shirts, not many pants, mostly men’s goods, not women’s. Their catalog
copy is in Kanji, but the style is a bit stilted we are told, probably because it
was written in English and translated, but we need to test this hypothesis. By
contrast, we have simply mailed them the same catalog we use in the U.S,,
even written in English.

“Customer feedback has been quite clear. They prefer our broader assort-
ment by a ratio of 3:1, even though they don’t buy most of the products. As the
competitors figured, sales are focused on outerwear and knits, but we are get-
ting more sales, apparently because they like looking at the catalog and spend
more time with it. Again, we need further testing. Another hypothesis is that
our brand name is simply better known.

“Interestingly, they prefer our English-language version because they find
it more of an adventure to read the catalog in another language. This is prob-
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ably a built-in bias of our sampling technique because we specifically selected
people who speak English. We do not expect this trend to hold in a general
mailing.

“The English language causes an 8% error rate in orders, but orders are
25% larger, and 4% more frequent. If we can get them to order by phone, we
can correct the errors immediately during the call.

“The broader assortment, as I mentioned, is resulting in a significantly
higher propensity to order, more units per order, and the same average unit
cost. Of course, paper and postage costs increase as a consequence of the larger
format catalog. On the other hand, there are production efficiencies from using
the same version as the domestic catalog. Net impact, even factoring in the
error rate, is a significant sales increase. On the other hand, most of the time,
the errors cause us to ship the wrong item which then needs to be mailed back
at our expense, creating an impression in the customers that we are not well
organized even though the original error was theirs.

“Final point: The larger catalog is being kept by the customer an average
of 70 days, while the smaller format is only kept on average for 40 days.
Assuming—we need to test this—that the length of time they keep the catalog
is proportional to sales volumes, this is good news. We need to assess the over-
all impact carefully, but it appears that there is a significant population for
which an English-language version would be very profitable.”

“Thanks, Gregg, good update. Jennifer, what do you have on customer
research?”

“Bob, there’s far more that we need to know than we have been able to find
out. We have learned that Japan is very fad-driven in apparel tastes and fasci-
nated by American goods. We expect sales initially to sky-rocket, then drop like
a stone. Later on, demand will level out at a profitable level. The graphs on page

3 [Figure 2-1] show demand
by week for 104 weeks, and FIGURE 2-1: sales projections by week, Scenario A
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expectations. That is why
we prepared several scenar-
Size ios. Of course, if we position
inventory for the high sce-
nario, and we experience the low one, we will experience a significant loss due to
liquidations. We are still analyzing the long-term impact, however. It may still
be worthwhile to take the risk if the 2-year ROI! is sufficient.

“We have solid information on their size scales [Figure 2-2]. Seventy percent
are small and medium. By comparison, 70% of Americans are large and extra
large. This will be a challenge to manage but will save a few bucks on fabric.

“We also know their color preferences, and they are very different than
Americans. Our domestic customers are very diverse in their tastes, but 80%
of Japanese customers will buy one or two colors out of an offering of 15. We
are still researching color choices, but it varies greatly for pants versus shirts,
and for men versus women. We are confident we can find patterns, but we also
know that it is easy to guess wrong in that market. If we guess wrong, the lig-
uidation costs will be very high.

“Bad news on the order-taking front, however. They don’t like to order by
phone. . ..”

0
S M XL

In this very brief exchange among decision-makers we observe the use of many
critically important skills that were originally learned in public schools. Per-
haps the most important is one not often mentioned, and that is the ability to
convert an important business question into an appropriate mathematical one,
to solve the mathematical problem, and then to explain the implications of the
solution for the original business problem. This ability to inhabit simultane-
ously the business world and the mathematical world, to translate between the
two, and, as a consequence, to bring clarity to complex, real-world issues is of
extraordinary importance.

In addition, the participants in this conversation understood and inter-
preted graphs and tables, computed, approximated, estimated, interpolated,
extrapolated, used probabilistic concepts to draw conclusions, generalized from
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small samples to large populations, identified the limits of their analyses, dis-
covered relationships, recognized and used variables and functions, analyzed
and compared data sets, and created and interpreted models. Another very
important aspect of their work was that they identified additional questions,
and they suggested ways to shed light on those questions through additional
analysis.

There were two broad issues in this conversation that required mathe-
matical perspectives. The first was to develop as rigorous and cost effective a
data collection and analysis process as was practical. It involved perhaps 10
different analysts who attacked the problem from different viewpoints. The
process also required integration of the mathematical learnings of all 10 ana-
lysts and translation of the results into business language that could be under-
stood by non-mathematicians.

The second broad issue was to understand from the perspective of the
decision-makers who were listening to the presentation which results were
most reliable, which were subject to reinterpretation, which were actually
judgments not supported by appropriate analysis, and which were hypotheses
that truly required more research. In addition, these business people would
likely identify synergies in the research that were not contemplated by the ana-
lysts. These synergies need to be analyzed to determine if—mathematically—
they were real. The most obvious one was where the inventory analysts said
that the customers don’t like to use the phone to place orders. This is bad news
for the sales analysts who are counting on phone data collection to correct
errors caused by language problems. Of course, we need more information to
know the magnitude—or even the existence—of the problem.

In brief, the analyses that preceded the dialogue might each be considered
a mathematical task in the business world:

A cost analysis of store operations and catalogs was conducted using
data from existing American and possibly other operations.

Customer preferences research was analyzed to determine preferences
in quality and life-style. The data collection itself could not be carried
out by a high school graduate without guidance, but 80% of the analy-
sis could.

Cultural differences were recognized as a causes of analytical error.
Careful analysis required judgment. In addition, sources of data were
identified in the U.S., and comparable sources were found lacking in
Japan. A search was conducted for other comparable retail experience,
but none was found. On the other hand, sales data from car parts and
computers were assessed for relevance.

Rates of change are important in understanding how Japanese and
American stores differ. Sales per square foot, price increases, asset
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costs, labor costs and so forth were compared to American standards to
determine whether a store based in Japan would be a viable business.

“Nielsen” style ratings of 1000 families were used to collect data.
Sample size and error estimates were mentioned. Key drivers of
behavior (lifestyle, income, education) were mentioned, but this list
may not be complete. What needs to be known about these families to
predict their buying behavior? What does “lifestyle” include? How
would we quantify some of these variables?

A hypothesis was presented that catalog size and product diversity
drive higher sales. What do we need to know to assess the validity of
this hypothesis? Another hypothesis was presented about the quality
of the translation. What was the evidence for this hypothesis? Is this
a mathematical question? Sales may also be proportional to the
amount of time a potential customer retains the catalog. How could
one ascertain this?

Despite the abundance of data, much uncertainty remains about what to
expect from sales over the first two years. Analysis could be conducted
with the data about the possible inventory consequences of choosing the
wrong scenario.

One might wonder about the uncertainty in size scales. What is so dif-
ficult about identifying the colors that Japanese people prefer? Can
these preferences be predicted? Will this increase the complexity of
the inventory management task?

Can we predict how many people will not use phones? What do they
use instead?

As seen through a mathematical lens, the business world can be a rich,
complex, and essentially limitless source of fascinating questions.

1. Return on investment.

is Vice-President of Inventory Planning and Control at L.L. Bean, Inc. He is also

Co-Principal Investigator and Vice-Chair of Maine’s State Systemic Initiative and Chair of the
Strategic Planning Committee. He has previously served on the Mathematical Science Education
Board, and on the National Alliance for State Science and Mathematics Coalitions (NASSMC).
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[t6ARTING VOGATIOMAL AlD

n high school education, preparation for work immediately after high school

and preparation for post-secondary education have traditionally been viewed

as incompatible. Work-bound high-school students end up in vocational edu-
cation tracks, where courses usually emphasize specific skills with little atten-
tion to underlying theoretical and conceptual foundations.! College-bound stu-
dents proceed through traditional academic discipline-based courses, where
they learn English, history, science, mathematics, and foreign languages, with
only weak and often contrived references to applications of these skills in the
workplace or in the community outside the school. To be sure, many vocational
teachers do teach underlying concepts, and many academic teachers motivate
their lessons with examples and references to the world outside the classroom.
But these enrichments are mostly frills, not central to either the content or
pedagogy of secondary school education.

Educational thinking in the United States has traditionally placed priority on
college preparation. Thus the distinct track of vocational education has been
seen as an option for those students who are deemed not capable of success in
the more desirable academic track. As vocational programs acquired a reputa-
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tion as a “dumping ground,” a strong background in vocational courses (espe-
cially if they reduced credits in the core academic courses) has been viewed as
a threat to the college aspirations of secondary school students.

This notion was further reinforced by the very influential 1983 report enti-
tled A Nation at Risk (National Commission on Excellence in Education, 1983),
which excoriated the U.S. educational system for moving away from an empha-
sis on core academic subjects that, according to the report, had been the basis
of a previously successful American education system. Vocational courses were
seen as diverting high school students from core academic activities. Despite
the dubious empirical foundation of the report’s conclusions, subsequent
reforms in most states increased the number of academic courses required for
graduation and reduced opportunities for students to take vocational courses.

The distinction between vocational students and college-bound students
has always had a conceptual flaw. The large majority of students who go to
four-year colleges are motivated, at least to a significant extent, by vocational
objectives. In 1994, almost 247,000 bachelors degrees were conferred in busi-
ness administration. That was only 30,000 less than the total number
(277,500) of 1994 bachelor degrees conferred in English, mathematics, philos-
ophy, religion, physical sciences and science technologies, biological and life
sciences, social sciences, and history combined. Furthermore, these “academic”
fields are also vocational since many students who graduate with these degrees
intend to make their living working in those fields.

Several recent economic, technological, and educational trends challenge
this sharp distinction between preparation for college and for immediate post-
high-school work, or, more specifically, challenge the notion that students plan-
ning to work after high school have little need for academic skills while college-
bound students are best served by an abstract education with only tenuous
contact with the world of work:

First, many employers and analysts are arguing that, due to changes
in the nature of work, traditional approaches to teaching vocational skills may
not be effective in the future. Given the increasing pace of change and uncer-
tainty in the workplace, young people will be better prepared, even for entry
level positions and certainly for subsequent positions, if they have an underly-
ing understanding of the scientific, mathematical, social, and even cultural
aspects of the work that they will do. This has led to a growing emphasis on
integrating academic and vocational education.2

Views about teaching and pedagogy have increasingly moved toward a
more open and collaborative “student-centered” or “constructivist” teaching
style that puts a great deal of emphasis on having students work together on
complex, open-ended projects. This reform strategy is now widely implemented
through the efforts of organizations such as the Coalition of Essential Schools,
the National Center for Restructuring Education, Schools, and Teaching at
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Teachers College, and the Center for Education Research at the University of
Wisconsin at Madison. Advocates of this approach have not had much interac-
tion with vocational educators and have certainly not advocated any emphasis
on directly preparing high school students for work. Nevertheless, the
approach fits well with a reformed education that integrates vocational and
academic skills through authentic applications. Such applications offer oppor-
tunities to explore and combine mathematical, scientific, historical, literary,
sociological, economic, and cultural issues.

In a related trend, the federal School-to-Work Opportunities Act of
1994 defines an educational strategy that combines constructivist pedagogical
reforms with guided experiences in the workplace or other non-work settings.
At its best, school-to-work could further integrate academic and vocational
learning through appropriately designed experiences at work.

The integration of vocational and academic education and the initia-
tives funded by the School-to-Work Opportunities Act were originally seen as
strategies for preparing students for work after high school or community col-
lege. Some educators and policy makers are becoming convinced that these
approaches can also be effective for teaching academic skills and preparing
students for four-year college. Teaching academic skills in the context of real-
istic and complex applications from the workplace and community can provide
motivational benefits and may impart a deeper understanding of the material
by showing students how the academic skills are actually used. Retention may
also be enhanced by giving students a chance to apply the knowledge that they
often learn only in the abstract.?

During the last twenty years, the real wages of high school graduates
have fallen and the gap between the wages earned by high school and college
graduates has grown significantly. Adults with no education beyond high
school have very little chance of earning enough money to support a family
with a moderate lifestyle.* Given these wage trends, it seems appropriate and
just that every high school student at least be prepared for college, even if
some choose to work immediately after high school.

There are many examples of programs that use work-related applications both
to teach academic skills and to prepare students for college. One approach is
to organize high school programs around broad industrial or occupational
areas, such as health, agriculture, hospitality, manufacturing, transportation,
or the arts. These broad areas offer many opportunities for wide-ranging cur-
ricula in all academic disciplines. They also offer opportunities for collabora-
tive work among teachers from different disciplines. Specific skills can still be
taught in this format but in such a way as to motivate broader academic and
theoretical themes. Innovative programs can now be found in many vocational
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high schools in large cities, such as Aviation High School in New York City and
the High School of Agricultural Science and Technology in Chicago. Other
schools have organized schools-within-schools based on broad industry areas.

Agriculturally based activities, such as 4H and Future Farmers of Amer-
ica, have for many years used the farm setting and students’ interest in farm-
ing to teach a variety of skills. It takes only a little imagination to think of how
to use the social, economic, and scientific bases of agriculture to motivate and
illustrate skills and knowledge from all of the academic disciplines. Many
schools are now using internships and projects based on local business activi-
ties as teaching tools. One example among many is the integrated program
offered by the Thomas Jefferson High School for Science and Technology in Vir-
ginia, linking biology, English, and technology through an environmental
issues forum. Students work as partners with resource managers at the Mason
Neck National Wildlife Refuge and the Mason Neck State Park to collect data
and monitor the daily activities of various species that inhabit the region.
They search current literature to establish a hypothesis related to a real world
problem, design an experiment to test their hypothesis, run the experiment,
collect and analyze data, draw conclusions, and produce a written document
that communicates the results of the experiment. The students are even
responsible for determining what information and resources are needed and
how to access them. Student projects have included making plans for public
education programs dealing with environmental matters, finding solutions to
problems caused by encroaching land development, and making suggestions for
how to handle the overabundance of deer in the region.

These examples suggest the potential that a more integrated education
could have for all students. Thus continuing to maintain a sharp distinction
between vocational and academic instruction in high school does not serve the
interests of many of those students headed for four-year or two-year college or
of those who expect to work after high school. Work-bound students will be
better prepared for work if they have stronger academic skills, and a high qual-
ity curriculum that integrates school-based learning into work and community
applications is an effective way to teach academic skills for many students.

Despite the many examples of innovative initiatives that suggest the
potential for an integrated view, the legacy of the duality between vocational
and academic education and the low status of work-related studies in high
school continue to influence education and education reform. In general, pro-
grams that deviate from traditional college-prep organization and format are
still viewed with suspicion by parents and teachers focused on four-year col-
lege. Indeed, college admissions practices still very much favor the traditional
approaches. Interdisciplinary courses, “applied” courses, internships, and
other types of work experience that characterize the school-to-work strategy or
programs that integrate academic and vocational education often do not fit
well into college admissions requirements.

GONNECTING MATHEMATICS WITH WORK AND LIFE

27

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/5777.html

says and Examples for the Education of All Students

What implications does this have for the mathematics standards developed by
the National Council of Teachers of Mathematics (NCTM)? The general princi-
ple should be to try to design standards that challenge rather than reinforce the
distinction between vocational and academic instruction. Academic teachers of
mathematics and those working to set academic standards need to continue to
try to understand the use of mathematics in the workplace and in everyday life.
Such understandings would offer insights that could suggest reform of the tra-
ditional curriculum, but they would also provide a better foundation for teach-
ing mathematics using realistic applications. The examples in this volume are
particularly instructive because they suggest the importance of problem solv-
ing, logic, and imagination and show that these are all important parts of math-
ematical applications in realistic work settings. But these are only a beginning.

In order to develop this approach, it would be helpful if the NCTM stan-
dards writers worked closely with groups that are setting industry standards®.
This would allow both groups to develop a deeper understanding of the math-
ematics content of work.

The NCTM’s Curriculum Standards for Grades 9-12 include both core
standards for all students and additional standards for “college-intending” stu-
dents. The argument presented in this essay suggests that the NCTM should
dispense with the distinction between college intending and non-college
intending students. Most of the additional standards, those intended only for
the “college intending” students, provide background that is necessary or ben-
eficial for the calculus sequence. A re-evaluation of the role of calculus in the
high school curriculum may be appropriate, but calculus should not serve as a
wedge to separate college-bound from non-college-bound students. Clearly,
some high school students will take calculus, although many college-bound stu-
dents will not take calculus either in high school or in college. Thus in prac-
tice, calculus is not a characteristic that distinguishes between those who are
or are not headed for college. Perhaps standards for a variety of options
beyond the core might be offered. Mathematics standards should be set to
encourage stronger skills for all students and to illustrate the power and use-
fulness of mathematics in many settings. They should not be used to institu-
tionalize dubious distinctions between groups of students.

Bailey, T. & Merritt, D. (1997). School-to-work for the college bound. Berkeley, CA: National Cen-
ter for Research in Vocational Education.

Hoachlander, G. (1997). Organizing mathematics education around work. In L.A. Steen (Ed.),
Why numbers count: Quantitative literacy for tomorrow’s America, (pp. 122-136). New York:
College Entrance Examination Board.

Levy, F. & Murnane, R. (1992). U.S. earnings levels and earnings inequality: A review of recent
trends and proposed explanations. Journal of Economic Literature, 30, 1333-1381.

National Commission on Excellence in Education. (1983). A nation at risk: The imperative for edu-
cational reform. Washington, DC: Author.
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1. Vocational education has been shaped by federal legislation since the first vocational education
act was passed in 1917. According to the current legislation, the Carl D. Perkins Vocational and
Technical Education Act of 1990, vocational students are those not headed for a baccalaureate
degree, so they include both students expecting to work immediately after high school as well
as those expecting to go to a community college.

2. This point of view underlies the reforms articulated in the 1990 reauthorization of the Carl
Perkins Vocational and Technical Education Act (VATEA). VATEA also promoted a program,
dubbed “tech-prep,” that established formal articulations between secondary school and com-
munity college curricula.

3. This argument is reviewed in Bailey & Merritt (1997). For an argument about how education
may be organized around broad work themes can enhance learning in mathematics see Hoach-
lander (1997).

4. These wage data are reviewed in Levy & Murnane (1992).

5. The Goals 2000: Educate America Act, for example, established the National Skill Standards
Board in 1994 to serve as a catalyst in the development of a voluntary national system of skills
standards, assessments, and certifications for business and industry.

is an Associate Professor of Economics Education at Teachers College, Columbia
University. He is also Director of the Institute on Education and the Economy and Director of the
Community College Research Center, both at Teachers College. He is also on the board of the
National Center for Research in Vocational Education.
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D tVERYDRY TIATHEMATICS

or decades our industrial society has been based on fossil fuels. In today’s

knowledge-based society, mathematics is the energy that drives the system.

In the words of the new WQED television series, Life by the Numbers, to
create knowledge we “burn mathematics.” Mathematics is more than a fixed
tool applied in known ways. New mathematical techniques and analyses and
even conceptual frameworks are continually required in economics, in finance,
in materials science, in physics, in biology, in medicine.

Just as all scientific and health-service careers are mathematically based,
so are many others. Interaction with computers has become a part of more and
more jobs, and good analytical skills enhance computer use and troubleshoot-
ing. In addition, virtually all levels of management and many support posi-
tions in business and industry require some mathematical understanding,
including an ability to read graphs and interpret other information presented
visually, to use estimation effectively, and to apply mathematical reasoning.

Education in mathematics and the ability to communicate its predictions is
more important than ever for moving from low-paying jobs into better-paying
ones. For example, my local paper, The Times of Trenton, had a section “Focus
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on Careers” on October 5, 1997 in which the majority of the ads were for high
technology careers (many more than for sales and marketing, for example).

But precisely what mathematics should students learn in school? Mathe-
maticians and mathematics educators have been discussing this question for
decades. This essay presents some thoughts about three areas of mathematics—
estimation, trigonometry, and algebra—and then some thoughts about teach-
ing and learning.

Estimation is one of the harder skills for students to learn, even if they
experience relatively little difficulty with other aspects of mathematics. Many
students think of mathematics as a set of precise rules yielding exact answers
and are uncomfortable with the idea of imprecise answers, especially when the
degree of precision in the estimate depends on the context and is not itself
given by a rule. Yet it is very important to be able to get an approximate sense
of the size an answer should be, as a way to get a rough check on the accuracy
of a calculation (I've personally used it in stores to detect that I've been
charged twice for the same item, as well as often in my own mathematical
work), a feasibility estimate, or as an estimation for tips.

Trigonometry plays a significant role in the sciences and can help us
understand phenomena in everyday life. Often introduced as a study of trian-
gle measurement, trigonometry may be used for surveying and for determining
heights of trees, but its utility extends vastly beyond these triangular applica-
tions. Students can experience the power of mathematics by using sine and
cosine to model periodic phenomena such as going around and around a circle,
going in and out with tides, monitoring temperature or smog components
changing on a 24-hour cycle, or the cycling of predator-prey populations.

No educator argues the importance of algebra for students aiming for
mathematically-based careers because of the foundation it provides for the
more specialized education they will need later. Yet, algebra is also important
for those students who do not currently aspire to mathematics-based careers,
in part because a lack of algebraic skills puts an upper bound on the types of
careers to which a student can aspire. Former civil rights leader Robert Moses
makes a good case for every student learning algebra, as a means of empower-
ing students and providing goals, skills, and opportunities. The same idea was
applied to learning calculus in the movie Stand and Deliver. How, then, can
we help all students learn algebra?

For me personally, the impetus to learn algebra was at least in part to
learn methods of solution for puzzles. Suppose you have 39 jars on three
shelves. There are twice as many jars on the second shelf as the first, and four
more jars on the third shelf than on the second shelf. How many jars are there
on each shelf? Such problems are not important by themselves, but if they
show the students the power of an idea by enabling them to solve puzzles that
they’d like to solve, then they have value. We can’t expect such problems to
interest all students. How then can we reach more students?
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One of the common tools in business and industry for investigating mathemat-
ical issues is the spreadsheet, which is closely related to algebra. Writing a
rule to combine the elements of certain cells to produce the quantity that goes
into another cell is doing algebra, although the variables names are cell names
rather than x or y. Therefore, setting up spreadsheet analyses requires some
of the thinking that algebra requires.

By exploring mathematics via tasks which come from workplace and every-
day settings, and with the aid of common tools like spreadsheets, students are
more likely to see the relevance of the mathematics and are more likely to learn
it in ways that are personally meaningful than when it is presented abstractly
and applied later only if time permits. Thus, this essay argues that workplace
and everyday tasks should be used for teaching mathematics and, in particular,
for teaching algebra. It would be a mistake, however, to rely exclusively on such
tasks, just as it would be a mistake to teach only spreadsheets in place of algebra.

Communicating the results of an analysis is a fundamental part of any
use of mathematics on a job. There is a growing emphasis in the workplace on
group work and on the skills of communicating ideas to colleagues and clients.
But communicating mathematical ideas is also a powerful tool for learning, for
it requires the student to sharpen often fuzzy ideas.

Some of the tasks in this volume can provide the kinds of opportunities I am
talking about. Another problem, with clear connections to the real world, is the
following, taken from the book entitled Consider a Spherical Cow: A Course in
Environmental Problem Solving, by John Harte (1988). The question posed is:
How does biomagnification of a trace substance occur? For example, how do pes-
ticides accumulate in the food chain, becoming concentrated in predators such as
condors? Specifically, identify the critical ecological and chemical parameters
determining bioconcentrations in a food chain, and in terms of these parameters,
derive a formula for the concentration of a trace substance in each link of a food
chain. This task can be undertaken at several different levels. The analysis in
Harte’s book is at a fairly high level, although it still involves only algebra as a
mathematical tool. The task could be undertaken at a more simple level or, on
the other hand, it could be elaborated upon as suggested by further exercises
given in that book. And the students could then present the results of their
analyses to each other as well as the teacher, in oral or written form.

When teaching mathematics, it is easy to spend so much time and energy focusing
on the procedures that the concepts receive little if any attention. When teaching
algebra, students often learn the procedures for using the quadratic formula or for
solving simultaneous equations without thinking of intersections of curves and
lines and without being able to apply the procedures in unfamiliar settings. Even
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when concentrating on word problems, students often learn the procedures for
solving “coin problems” and “train problems” but don’t see the larger algebraic con-
text. The formulas and procedures are important, but are not enough.

When using workplace and everyday tasks for teaching mathematics, we
must avoid falling into the same trap of focusing on the procedures at the
expense of the concepts. Avoiding the trap is not easy, however, because just like
many tasks in school algebra, mathematically based workplace tasks often have
standard procedures that can be used without an understanding of the underly-
ing mathematics. To change a procedure to accommodate a changing business
climate, to respond to changes in the tax laws, or to apply or modify a procedure
to accommodate a similar situation, however, requires an understanding of the
mathematical ideas behind the procedures. In particular, a student should be
able to modify the procedures for assessing energy usage for heating (as in Heating-
Degree-Days, p. 54) in order to assess energy usage for cooling in the summer.

To prepare our students to make such modifications on their own, it is
important to focus on the concepts as well as the procedures. Workplace and
everyday tasks can provide opportunities for students to attach meaning to the
mathematical calculations and procedures. If a student initially solves a prob-
lem without algebra, then the thinking that went into his or her solution can
help him or her make sense out of algebraic approaches that are later presented
by the teacher or by other students. Such an approach is especially appropriate
for teaching algebra, because our teaching of algebra needs to reach more stu-
dents (too often it is seen by students as meaningless symbol manipulation) and
because algebraic thinking is increasingly important in the workplace.

To illustrate the complexity of learning algebra meaningfully, consider the fol-
lowing problem from a study by Clement, Lockhead, & Monk (1981):

Write an equation for the following statement: “There are six times as many students
as professors at this university.” Use S for the number of students and P for the num-
ber of professors. (p. 288)

The authors found that of 47 nonscience majors taking college algebra,
57% got it wrong. What is more surprising, however, is that of 150 calculus-
level students, 37% missed the problem.

A first reaction to the most common wrong answer, 6S = P, is that the stu-
dents simply translated the words of the problems into mathematical symbols
without thinking more deeply about the situation or the variables. (The
authors note that some textbooks instruct students to use such translation.)

By analyzing transcripts of interviews with students, the authors found
this approach and another (faulty) approach, as well. These students often
drew a diagram showing six students and one professor. (Note that we often
instruct students to draw diagrams when solving word problems.) Reasoning
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from the diagram, and regarding S and P as units, the student may write 6S = P,
just as we would correctly write 12 in. = 1 ft. Such reasoning is quite sensible,
though it misses the fundamental intent in the problem statement that S is to
represent the number of students, not a student.

Thus, two common suggestions for students—word-for-word translation
and drawing a diagram—can lead to an incorrect answer to this apparently
simple problem, if the students do not more deeply contemplate what the vari-
ables are intended to represent. The authors found that students who wrote
and could explain the correct answer, S = 6P, drew upon a richer understand-
ing of what the equation and the variables represent.

Clearly, then, we must encourage students to contemplate the meanings
of variables. Yet, part of the power and efficiency of algebra is precisely that
one can manipulate symbols independently of what they mean and then draw
meaning out of the conclusions to which the symbolic manipulations lead.
Thus, stable, long-term learning of algebraic thinking requires both mastery of
procedures and also deeper analytical thinking.

Paradoxically, the need for sharper analytical thinking occurs alongside a
decreased need for routine arithmetic calculation. Calculators and computers
make routine calculation easier to do quickly and accurately; cash registers used
in fast food restaurants sometimes return change; checkout counters have bar
code readers and payment takes place by credit cards or money-access cards.

So it is education in mathematical thinking, in applying mathematical com-
putation, in assessing whether an answer is reasonable, and in communicating
the results that is essential. Teaching mathematics via workplace and everyday
problems is an approach that can make mathematics more meaningful for all
students. It is important, however, to go beyond the specific details of a task in
order to teach mathematical ideas. While this approach is particularly crucial
for those students intending to pursue careers in the mathematical sciences, it
will also lead to deeper mathematical understanding for all students.

Clement, J., Lockhead, J., & Monk, G. (1981). Translation difficulties in learning mathematics.
American Mathematical Monthly, 88, 286-290.

Harte, J. (1988). Consider a spherical cow : A course in environmental problem solving. York, PA:
University Science Books.
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LIORKING WITH HLGEBRA

eaching a mathematics class in which few of the students have demon-

strated success is a difficult assignment. Many teachers avoid such assign-

ments, when possible. On the one hand, high school mathematics teach-
ers, like Bertrand Russell, might love mathematics and believe something like
the following:

Mathematics, rightly viewed, possesses not only truth, but supreme beauty—a beauty
cold and austere, like that of sculpture, without appeal to any part of our weaker
nature, without the gorgeous trappings of painting or music, yet sublimely pure, and
capable of a stern perfection such as only the greatest art can show. ... Remote from
human passions, remote even from the pitiful facts of nature, the generations have
gradually created an ordered cosmos, where pure thought can dwell as in its nature
home, and where one, at least, of our nobler impulses can escape from the dreary exile
of the natural world. (Russell, 1910, p. 73)

But, on the other hand, students may not have the luxury, in their cir-
cumstances, of appreciating this beauty. Many of them may not see themselves
as thinkers because contemplation would take them away from their primary
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focus: how to get by in a world that was not created for them. Instead, like
Jamaica Kincaid, they may be asking:

What makes the world turn against me and all who look like me? I won nothing, I sur-

vey nothing, when I ask this question, the luxury of an answer that will fill volumes

does not stretch out before me. When I ask this question, my voice is filled with
despair. (Kincaid, 1996, pp. 131-132)

During the 1991-92 and 1992-93 school years, we (a high school teacher and a
university teacher educator) team taught a lower track Algebra I class for 10th
through 12th grade students.! Most of our students had failed mathematics
before, and many needed to pass Algebra I in order to complete their high
school mathematics requirement for graduation. For our students, mathemat-
ics had become a charged subject; it carried a heavy burden of negative expe-
riences. Many of our students were convinced that neither they nor their peers
could be successful in mathematics.

Few of our students did well in other academic subjects, and few were
headed on to two- or four-year colleges. But the students differed in their affil-
iation with the high school. Some, called “preppies” or “jocks” by others, were
active participants in the school’s activities. Others, “smokers” or “stoners,”
were rebelling to differing degrees against school and more broadly against
society. There were strong tensions between members of these groups.2

Teaching in this setting gives added importance and urgency to the typi-
cal questions of curriculum and motivation common to most algebra classes. In
our teaching, we explored questions such as the following:

What is it that we really want high school students, especially those
who are not college-intending, to study in algebra and why?

What is the role of algebra’s manipulative skills in a world with graph-
ing calculators and computers? How do the manipulative skills taught
in the traditional curriculum give students a new perspective on, and
insight into, our world?

If our teaching efforts depend on students’ investment in learning, on
what grounds can we appeal to them, implicitly or explicitly, for
energy and effort? In a tracked, compulsory setting, how can we help
students, with broad interests and talents and many of whom are not
college-intending, see value in a shared exploration of algebra?

As a result of thinking about these questions, in our teaching we wanted to
avoid being in the position of exhorting students to appreciate the beauty or
utility of algebra. Our students were frankly skeptical of arguments based on
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utility. They saw few people in their community using algebra. We had also
lost faith in the power of extrinsic rewards and punishments, like failing
grades. Many of our students were skeptical of the power of the high school
diploma to alter fundamentally their life circumstances. We wanted students
to find the mathematical objects we were discussing in the world around them
and thus learn to value the perspective that this mathematics might give them
on their world.

To help us in this task, we found it useful to take what we call a “rela-
tionships between quantities” approach to school algebra. In this approach,
the fundamental mathematical objects of study in school algebra are functions
that can be represented by inputs and outputs listed in tables or sketched or
plotted on graphs, as well as calculation procedures that can be written with
algebraic symbols.? Stimulated, in part, by the following quote from August
Comte, we viewed these functions as mathematical representations of theories
people have developed for explaining relationships between quantities.

In the light of previous experience, we must acknowledge the impossibility of deter-

mining, by direct measurement, most of the heights and distances we should like to

know. It is this general fact which makes the science of mathematics necessary. For

in renouncing the hope, in almost every case, of measuring great heights or distances

directly, the human mind has had to attempt to determine them indirectly, and it is
thus that philosophers were led to invent mathematics. (Quoted in Serres, 1982, p. 85)

Using this approach to the concept of function, during the 1992-93 school year,
we designed a year-long project for our students. The project asked pairs of
students to find the mathematical objects we were studying in the workplace
of a community sponsor. Students visited the sponsor’s workplace four times
during the year—three after-school visits and one day-long excused absence
from school. In these visits, the students came to know the workplace and
learned about the sponsor’s work. We then asked students to write a report
describing the sponsor’s workplace and answering questions about the nature
of the mathematical activity embedded in the workplace. The questions are
organized in Table 5-1.

In order to determine how the interviews could be structured and to provide
students with a model, we chose to interview Sandra’s husband, John Bethell,
who is a coatings inspector for an engineering firm. When asked about his job,
John responded, “I argue for a living.” He went on to describe his daily work
inspecting contractors painting water towers. Since most municipalities con-
tract with the lowest bidder when a water tower needs to be painted, they will
often hire an engineering firm to make sure that the contractor works accord-
ing to specification. Since the contractor has made a low bid, there are strong
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TABLE 5-1: oquestions to ask in the workplace

QUANTITIES: MEASURED OR COUNTED VERSUS COMPUTED
What quantities are measured or counted by the people you interview?
What kinds of tools are used to measure or count?
Why is it important to measure or count these quantities?
What quantities do they compute or calculate?
What kinds of tools are used to do the computing?
Why is it important to compute these quantities?

COMPUTING QUANTITIES

When a quantity is computed, what information is needed and then what computations
are done to get the desired result?

Are there ever different ways to compute the same thing?

REPRESENTING QUANTITIES AND RELATIONSHIPS BETWEEN QUANTITIES
How are quantities kept track of or represented in this line of work?
Collect examples of graphs, charts, tables, etc. that are used in the business.
How is information presented to clients or to others who work in the business?

COMPARISONS

What kinds of comparisons are made with computed quantities?
Why are these comparisons important to do?

What set of actions are set into motion as a result of interpretation of the computations?

financial incentives for the contractor to compromise on quality in order to
make a profit.

In his work John does different kinds of inspections. For example, he
has a magnetic instrument to check the thickness of the paint once it has
been applied to the tower. When it gives a “thin” reading, contractors often
question the technology. To argue for the reading, John uses the surface area
of the tank, the number of paint cans used, the volume of paint in the can,
and an understanding of the percentage of this volume that evaporates to cal-
culate the average thickness of the dry coating. Other examples from his
workplace involve the use of tables and measuring instruments of different
kinds.
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When school started, students began working on their projects. Although
many of the sponsors initially indicated that there were no mathematical
dimensions to their work, students often were able to show sponsors places
where the mathematics we were studying was to be found. For example, Jackie
worked with a crop and soil scientist. She was intrigued by the way in which
measurement of weight is used to count seeds. First, her sponsor would weigh
a test batch of 100 seeds to generate a benchmark weight. Then, instead of
counting a large number of seeds, the scientist would weigh an amount of seeds
and compute the number of seeds such a weight would contain.

Rebecca worked with a carpeting contractor who, in estimating costs, read
the dimensions of rectangular rooms off an architect’s blueprint, multiplied to
find the area of the room in square feet (doing conversions where necessary),
then multiplied by a cost per square foot (which depended on the type of car-
pet) to compute the cost of the carpet. The purpose of these estimates was to
prepare a bid for the architect where the bid had to be as low as possible with-
out making the job unprofitable. Rebecca used a chart (Table 5-2) to explain
this procedure to the class.

Joe and Mick, also working in construction, found out that in laying pipes,
there is a “one by one” rule of thumb. When digging a trench for the placement
of the pipe, the non-parallel sides of the trapezoidal cross section must have a
slope of 1 foot down for every one foot across. This ratio guarantees that the
dirt in the hole will not slide down on itself. Thus, if at the bottom of the hole,
the trapezoid must have a certain width in order to fit the pipe, then on ground
level the hole must be this width plus twice the depth of the hole. Knowing in
advance how wide the hole must be avoids lengthy and costly trial and error.

Other students found that functions were often embedded in cultural arti-
facts found in the workplace. For example, a student who visited a doctor’s
office brought in an instrument for predicting the due dates of pregnant
women, as well as providing information about average fetal weight and length
(Figure 5-1).

TABLE 5-2: cost of carpet worksheet

INPUTS OuTPUT
LENGTH WIDTH AREA OF THE ROOM COST FOR CARPETING RoOM
10 35
20 25
15 30
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SOURCE: Matria Healthcare, Marietta, GA.

While the complexities of organizing this sort of project should not be mini-
mized—arranging sponsors, securing parental permission, and meeting admin-
istrators and parent concerns about the requirement of off-campus, after-
school work—we remain intrigued by the potential of such projects for helping
students see mathematics in the world around them. The notions of identify-
ing central mathematical objects for a course and then developing ways of iden-
tifying those objects in students’ experience seems like an important alterna-
tive to the use of application-based materials written by developers whose lives
and social worlds may be quite different from those of students.

Chazen, D. (1996). Algebra for all students? Journal of Mathematical Behavior, 15(4), 455-4717.
Eckert, P. (1989). Jocks and burnouts: Social categories and identity in the high school. New York:
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EMERGENCY CALLS

A city is served by two different write a report to the City Council (with sup-
ambulance companies. City logs record the porting charts and graphs) advising it on
date, the time of the call, the ambulance which ambulance company the 911 opera-
company, and the response time for each tors should choose to dispatch for calls from
911 call (Table 1). Analyze these data and this region.

RESPONSE RESPONSE
DATE TIME COMPANY TIME IN DATE TIME COMPANY TIME IN
OF CALL OF CALL NAME MINUTES OF CALL OF CALL NAME MINUTES

1 7:12 AM Metro 11 12 8:30 PM Arrow 8

1 7:43 PM Metro 11 15 1:03 AM Metro 12

2 10:02 PM  Arrow 7 15 6:40 AM Arrow 17

2 12:22 PM Metro 12 15 3:25 PM Metro 15

3 5:30 AM Arrow 17 16 4:15 AM Metro 7

3 6:18 PM Arrow 6 16 8:41 AM Arrow 19

4 6:25 AM Arrow 16 18 2:39 PM Arrow 10

5 8:56 PM Metro 10 18 3:44 PM Metro 14

6 4:59 PM Metro 14 19 6:33 AM Metro 6

7 2:20 AM Arrow 11 22 7:25 AM Arrow 17

1 12:41 PM  Arrow 8 22 4:20 PM Metro 19

1 2:29 PM Metro 11 24 4:21 PM Arrow 9

8 8:14 AM Metro 8 25 8:07 AM Arrow 15

8 6:23 PM Metro 16 25 5:02 PM Arrow 1

9 6:47 AM Metro 9 26 10:51 AM  Metro 9

9 7:15 AM Arrow 16 26 5:11 PM Metro 18

9 6:10 PM Arrow 8 27 4:16 AM Arrow 10
10 5:37 PM Metro 16 29 8:59 AM Metro 11
10 9:37 PM Metro 11 30 11:09 AM = Arrow 7
" 10:11 AM  Metro 8 30 9:15 PM Arrow 8
" 11:45 AM Metro 10 30 11:15 PM Metro 8
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This problem confronts
the student with a realistic situation and a
body of data regarding two ambulance com-
panies’ response times to emergency calls.
The data the student is provided are typically
“messy”—just a log of calls and response
times, ordered chronologically. The question
is how to make sense of them. Finding pat-
terns in data such as these requires a pro-
ductive mixture of mathematics, common
sense, and intellectual detective work. It's
the kind of reasoning that students should
be able to do—the kind of reasoning that
will pay off in the real world.

In this
case, a numerical analysis is not especially

says and Examples for the Education of All Students

informative. On average, the companies are
about the same: Arrow has a mean response
time of 11.4 minutes compared to 11.6 min-
utes for Metro. The spread of the data is also
not very helpful. The ranges of their distribu-
tions are exactly the same: from 6 minutes to
19 minutes. The standard deviation of Arrow’s
response time is a little longer—4.3 minutes
versus 3.4 minutes for Metro—indicating that
Arrow’s response times fluctuate a bit more.

Graphs of the response times (Figures 1 and 2)
reveal interesting features. Both companies,
especially Arrow, seem to have bimodal dis-
tributions, which is to say that there are two
clusters of data without much data in
between.

FIGURE 1: pistribution of Arrow’s response times

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

Response time (min.)

FIGURE 2: nDistribution of Metro's response times

1 2 3 4 5 6 7 8 9
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Response time (min.)
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EMERGENCY CALLS (conTinueD)

The distributions for both companies sug-
gest that there are some other factors at
work. Might a particular driver be the prob-
lem? Might the slow response times for
either company be on particular days of the
week or at particular times of day? Graphs
of the response time versus the time of day
(Figures 3 and 4) shed some light on these
questions.

FIGURE 3: Arrow response times
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~ 20 .
£ *90
E 15— .
£
=10+ % .,
g o* 01 *%
2 5T
(%2}
2

0 | |

0 8 16 24
Hour of day

FIGURE 4: metro response times

by time of day

20
- ‘e
E 154+ *
S %e
£ * *
= A o0 . 0
v 10 ., :0 :’ .
= * . *
3 5—
%]
i

0 I I

0 8 16 24
Hour of day

HIGH SCHOOL MATHEMATICS AT WORK

44

These graphs show that Arrow’s response
times were fast except between 5:30 AM and
9:00 AM, when they were about 9 minutes
slower on average. Similarly, Metro’s
response times were fast except between
about 3:30 PM and 6:30 PM, when they were
about 5 minutes slower. Perhaps the loca-
tions of the companies make Arrow more
susceptible to the morning rush hour and
Metro more susceptible to the afternoon
rush hour. On the other hand, the employ-
ees on Arrow’s morning shift or Metro’s
afternoon shift may not be efficient. To
avoid slow responses, one could recommend
to the City Council that Metro be called dur-
ing the morning and that Arrow be called
during the afternoon. A little detective work
into the sources of the differences between
the companies may yield a better recom-
mendation.

Comparisons may be
drawn between two samples in various con-
texts—response times for various services
(taxis, computer-help desks, 24-hour hot
lines at automobile manufacturers) being
one class among many. Depending upon the
circumstances, the data may tell very differ-
ent stories. Even in the situation above, if
the second pair of graphs hadn’t offered
such clear explanations, one might have
argued that although the response times for
Arrow were better on average the spread
was larger, thus making their “extremes”
more risky. The fundamental idea is using
various analysis and representation tech-
niques to make sense of data when the
important factors are not necessarily known
ahead of time.
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BACK-OF-THE-ENVELOPE ESTIMATES

Practice “back-of-the-envelope”
estimates based on rough approximations
that can be derived from common sense or
everyday observations. Examples:

Consider a public high school mathematics
teacher who feels that students should work
five nights a week, averaging about 35 min-
utes a night, doing focused on-task work and
who intends to grade all homework with com-
ments and corrections. What is a reasonable
number of hours per week that such a teacher
should allocate for grading homework?

How much paper does The New York Times
use in a week? A paper company that wishes
to make a bid to become their sole supplier
needs to know whether they have enough
current capacity. If the company were to
store a two-week supply of newspaper, will
their empty 14,000 square foot warehouse
be big enough?

Some 50 years ago,
physicist Enrico Fermi asked his students at
the University of Chicago,”"How many piano
tuners are there in Chicago?” By asking such
questions, Fermi wanted his students to
make estimates that involved rough approxi-
mations so that their goal would be not pre-
cision but the order of magnitude of their
result. Thus, many people today call these
kinds of questions “Fermi questions.” These
generally rough calculations often require
little more than common sense, everyday
observations, and a scrap of paper, such as
the back of a used envelope.

Scientists and mathematicians use the idea
of order of magnitude, usually expressed as
the closest power of ten, to give a rough
sense of the size of a quantity. In everyday
conversation, people use a similar idea when

they talk about “being in the right ballpark.”
For example, a full-time job at minimum
wage yields an annual income on the order
of magnitude of $10,000 or 10# dollars.

Some corporate executives and professional
athletes make annual salaries on the order of
magnitude of $10,000,000 or 107 dollars. To
say that these salaries differ by a factor of
1000 or 103, one can say that they differ by
three orders of magnitude. Such a lack of
precision might seem unscientific or
unmathematical, but such approximations
are quite useful in determining whether a
more precise measurement is feasible or nec-
essary, what sort of action might be required,
or whether the result of a calculation is “in
the right ballpark.” In choosing a strategy to
protect an endangered species, for example,
scientists plan differently if there are 500 ani-
mals remaining than if there are 5,000. On
the other hand, determining whether 5,200
or 6,300 is a better estimate is not necessary,
as the strategies will probably be the same.

Careful reasoning with everyday observa-
tions can usually produce Fermi estimates
that are within an order of magnitude of the
exact answer (if there is one). Fermi esti-
mates encourage students to reason cre-
atively with approximate quantities and
uncertain information. Experiences with
such a process can help an individual func-
tion in daily life to determine the reason-
ableness of numerical calculations, of situa-
tions or ideas in the workplace, or of a
proposed tax cut. A quick estimate of some
revenue- or profit-enhancing scheme may
show that the idea is comparable to suggest-
ing that General Motors enter the summer
sidewalk lemonade market in your neighbor-
hood. A quick estimate could encourage fur-
ther investigation or provide the rationale to
dismiss the idea.
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BACK-OF-THE-ENVELOPE (ConTINUED)

Almost any numerical claim may be treated
as a Fermi question when the problem solver
does not have access to all necessary back-
ground information. In such a situation, one
may make rough guesses about relevant
numbers, do a few calculations, and then
produce estimates.

The
examples are solved separately below.

Grading Homework. Although many
component factors vary greatly from
teacher to teacher or even from week to
week, rough calculations are not hard to
make. Some important factors to consider
for the teacher are: how many classes he
or she teaches, how many students are in
each of the classes, how much experience
has the teacher had in general and has the
teacher previously taught the classes, and
certainly, as part of teaching style, the
kind of homework the teacher assigns, not
to mention the teacher’s efficiency in
grading.

Suppose the teacher has 5 classes averaging
25 students per class. Because the teacher
plans to write corrections and comments,
assume that the students’ papers contain
more than a list of answers—they show
some student work and, perhaps, explain
some of the solutions. Grading such papers
might take as long as 10 minutes each, or
perhaps even longer. Assuming that the
teacher can grade them as quickly as 3 min-
utes each, on average, the teacher’s grading
time is:

minutes student x5 classes % days _

student class day week
minutes minutes __ hours

1875 +60—— =31 .
week hour week
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This is an impressively large number, espe-
cially for a teacher who already spends
almost 25 hours/week in class, some addi-
tional time in preparation, and some time
meeting with individual students. Is it rea-
sonable to expect teachers to put in that
kind of time? What compromises or other
changes might the teacher make to reduce
the amount of time? The calculation above
offers four possibilities: Reduce the time
spent on each homework paper, reduce the
number of students per class, reduce the
number of classes taught each day, or reduce
the number of days per week that homework
will be collected. If the teacher decides to
spend at most 2 hours grading each night,
what is the total number of students for
which the teacher should have responsibil-
ity? This calculation is a partial reverse of
the one above:

2 hours X6 minutes . minutes _ students

day hour ~ student_40 day

If the teacher still has 5 classes, that would
mean 8 students per class!

The New York Times. Answering this ques-
tion requires two preliminary estimates: the
circulation of The New York Times and the size
of the newspaper. The answers will probably
be different on Sundays. Though The New
York Times is a national newspaper, the num-
ber of subscribers outside the New York met-
ropolitan area is probably small compared to
the number inside. The population of the
New York metropolitan area is roughly ten
million people. Since most families buy at
most one copy, and not all families buy The
New York Times, the circulation might be
about 1 million newspapers each day. (A cir-
culation of 500,000 seems too small and 2
million seems too big.) The Sunday and
weekday editions probably have different
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circulations, but assume that they are the
same since they probably differ by less than
a factor of two—much less than an order of
magnitude. When folded, a weekday edition
of the paper measures about 1/2 inch thick, a
little more than 1 foot long, and about 1 foot
wide. A Sunday edition of the paper is the
same width and length, but perhaps 2 inches
thick. For a week, then, the papers would
stack 6 x 17+ 2 =5 inches thick, for a total
volume of about 1 ft x 1 ft x = ft = 0.5 ft3.

The whole circulation, then, would require
about 1/2 million cubic feet of paper per
week, or about 1 million cubic feet for a two-
week supply.

Is the company’s warehouse big enough?
The paper will come on rolls, but to make the
estimates easy, assume it is stacked. If it
were stacked 10 feet high, the supply would
require 100,000 square feet of floor space.
The company’s 14,000 square foot storage
facility will probably not be big enough as its
size differs by almost an order of magnitude
from the estimate. The circulation estimate
and the size of the newspaper estimate
should each be within a factor of 2, implying
that the 100,000 square foot estimate is off
by at most a factor of 4—less than an order
of magnitude.

How big a warehouse is needed? An acre is
43,560 square feet so about two acres of
land is needed. Alternatively, a warehouse
measuring 300 ft x 300 ft (the length of a
football field in both directions) would con-
tain 90,000 square feet of floor space, giving
a rough idea of the size.

After gaining some expe-
rience with these types of problems, stu-
dents can be encouraged to pay close atten-
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tion to the units and to be ready to make
and support claims about the accuracy of
their estimates. Paying attention to units
and including units as algebraic quantities in
calculations is a common technique in engi-
neering and the sciences. Reasoning about a
formula by paying attention only to the units
is called dimensional analysis.

Sometimes, rather than a single estimate, it is
helpful to make estimates of upper and
lower bounds. Such an approach reinforces
the idea that an exact answer is not the goal.
In many situations, students could first esti-
mate upper and lower bounds, and then col-
lect some real data to determine whether
the answer lies between those bounds. In
the traditional game of guessing the number
of jelly beans in a jar, for example, all stu-
dents should be able to estimate within an
order of magnitude, or perhaps within a fac-
tor of two. Making the closest guess, how-
ever, involves some chance.

Fermi questions are useful outside the work-
place. Some Fermi questions have political
ramifications:

How many miles of streets are in your city
or town? The police chief is considering
increasing police presence so that every
street is patrolled by car at least once every 4
hours.

When will your town fill up its landfill? Is
this a very urgent matter for the town’s
waste management personnel to assess in
depth?

In his 1997 State of the Union address, Pres-
ident Clinton renewed his call for a tax deduc-
tion of up to $10,000 for the cost of college
tuition. He estimates that 16.5 million stu-

GONNECTING MATHEMATICS WITH WORK AND LIFE

47

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/5777.html

says and Examples for the Education of All Students

BACK-OF-THE-ENVELOPE (ConTINUED)

dents stand to benefit. Is this a reasonable
estimate of the number who might take
advantage of the tax deduction? How much
will the deduction cost in lost federal revenue?

Creating Fermi problems is easy. Simply ask
quantitative questions for which there is no
practical way to determine exact values. Stu-
dents could be encouraged to make up their

HIGH SCHOOL MATHEMATICS AT WORK
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own. Examples are: “"How many oak trees are
there in lllinois?” or “How many people in the
U.S. ate chicken for dinner last night?” “If all
the people in the world were to jump in the
ocean, how much would it raise the water
level?” Give students the opportunity to
develop their own Fermi problems and to
share them with each other. It can stimulate
some real mathematical thinking.
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SCHEDULING ELEVATORS

In some buildings, all of the eleva-
tors can travel to all of the floors, while in
others the elevators are restricted to stop-
ping only on certain floors. What is the
advantage of having elevators that travel
only to certain floors? When is this worth
instituting?

Scheduling elevators is
a common example of an optimization prob-
lem that has applications in all aspects of
business and industry. Optimal scheduling
in general not only can save time and
money, but it can contribute to safety (e.g., in
the airline industry). The elevator problem
further illustrates an important feature of
many economic and political arguments—
the dilemma of trying simultaneously to
optimize several different needs.

Politicians often promise policies that will be
the least expensive, save the most lives, and
be best for the environment. Think of flood
control or occupational safety rules, for
example. When we are lucky, we can perhaps
find a strategy of least cost, a strategy that
saves the most lives, or a strategy that dam-
ages the environment least. But these might
not be the same strategies: generally one
cannot simultaneously satisfy two or more
independent optimization conditions. This is
an important message for students to learn,
in order to become better educated and
more critical consumers and citizens.

In the elevator problem, customer satisfac-
tion can be emphasized by minimizing the
average elevator time (waiting plus riding)
for employees in an office building. Minimiz-
ing wait-time during rush hours means deliv-
ering many people quickly, which might be
accomplished by filling the elevators and
making few stops. During off-peak hours,
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however, minimizing wait-time means maxi-
mizing the availability of the elevators. There
is no reason to believe that these two goals
will yield the same strategy. Finding the best
strategy for each is a mathematical problem;
choosing one of the two strategies or a com-
promise strategy is a management decision,
not a mathematical deduction.

This example serves to introduce a complex
topic whose analysis is well within the range
of high school students. Though the calcula-
tions require little more than arithmetic, the
task puts a premium on the creation of rea-
sonable alternative strategies. Students
should recognize that some configurations
(e.g., all but one elevator going to the top
floor and the one going to all the others) do
not merit consideration, while others are
plausible. A systematic evaluation of all pos-
sible configurations is usually required to
find the optimal solution. Such a systematic
search of the possible solution space is
important in many modeling situations
where a formal optimal strategy is not
known. Creating and evaluating reasonable
strategies for the elevators is quite appropri-
ate for high school student mathematics and
lends itself well to thoughtful group effort.
How do you invent new strategies? How do
you know that you have considered all plau-
sible strategies? These are mathematical
questions, and they are especially amenable
to group discussion.

Students should be able to use the tech-
niques first developed in solving a simple
case with only a few stories and a few eleva-
tors to address more realistic situations (e.g.,
50 stories, five elevators). Using the results
of a similar but simpler problem to model a
more complicated problem is an important
way to reason in mathematics. Students
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SCHEDULING ELEVATORS (ConTINuED)

need to determine what data and variables
are relevant. Start by establishing the kind
of building—a hotel, an office building, an
apartment building? How many people are
on the different floors? What are their nor-
mal destinations (e.g., primarily the ground
floor or, perhaps, a roof-top restaurant).
What happens during rush hours?

To be successful at the elevator task, stu-
dents must first develop a mathematical
model of the problem. The model might be
a graphical representation for each elevator,
with time on the horizontal axis and the
floors represented on the vertical axis, or a
tabular representation indicating the time
spent on each floor. Students must identify
the pertinent variables and make simplifying
assumptions about which of the possible
floors an elevator will visit.

This
section works through some of the details in
a particularly simple case. Consider an office
building with six occupied floors, employing
240 people, and a ground floor that is not
used for business. Suppose there are three
elevators, each of which can hold 10 people.
Further suppose that each elevator takes
approximately 25 seconds to fill on the
ground floor, then takes 5 seconds to move
between floors and 15 seconds to open and
close at each floor on which it stops.

Scenario one. What happens in the morn-
ing when everyone arrives for work? Assume
that everyone arrives at approximately the
same time and enters the elevators on the
ground floor. If all elevators go to all floors
and if the 240 people are evenly divided
among all three elevators, each elevator will
have to make 8 trips of 10 people each.
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When considering a single trip of one eleva-
tor, assume for simplicity that 10 people get
on the elevator at the ground floor and that
it stops at each floor on the way up, because
there may be an occupant heading to each
floor. Adding 5 seconds to move to each
floor and 15 seconds to stop yields 20 sec-
onds for each of the six floors. On the way
down, since no one is being picked up or let
off, the elevator does not stop, taking 5 sec-
onds for each of six floors for a total of 30
seconds. This round-trip is represented in
Table 1.

TABLE 1: FElevator

round-trip time, Scenario one

TIME (SEC)
Ground Floor 25
Floor 1 20
Floor 2 20
Floor 3 20
Floor 4 20
Floor 5 20
Floor 6 20
Return 30
ROUND-TRIP 175

Since each elevator makes 8 trips, the total
time will be 1,400 seconds or 23 minutes, 20
seconds.

Scenario two. Now suppose that one eleva-
tor serves floors 1-3 and, because of the
longer trip, two elevators are assigned to
floors 4-6. The elevators serving the top
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in a small time savings (about 3 minutes)

TABLE 2: Elevator round-trip times, over the first scenario. Because elevators B
Scenario two and C are finished so much sooner than ele-
ELEVATOR  ELEVATORS vator A, there is likely a more efficient solu-
A B&C tion.
STOP TIME STOP TIME
Scenario three. The two round-trip times in
Ground Floor 25 25 Table 2 do not differ by much because the
elevators move quickly between floors but
filoorit L 2l g stop at floors relatively slowly. This observa-
Floor 2 2 20 5 tion suggests that a more efficient arrange-
ment might be to assign each elevator to a
Floor 3 3 20 ) pair of floors. The times for such a scenario
i 0 4 20 are listed in Table 3.
Floor 5 0 5 20 Again assuming 40 employees per floor, each
elevator will deliver 80 people, requiring 8
Floor 6 0 6 20 trips, taking at most a total of 920 seconds.
Return 15 30 Thus this assignment of elevators results in a
time savings of almost 35% when compared
ROUND-TRIP 100 130 with the 1400 seconds it would take to deliver

all employees via unassigned elevators.

floors will save 15 seconds for

each of floors 1-3 by not stop- TABLE 3: Elevator round-trip times, Scenario three
ping. The elevator serving the

bottom floors will save 20 sec- ELEVATOR A ELEVATOR B  ELEVATOR C
onds for each of the top floors STOP TIME STOP TIME STOP TIME
and will save time on the return

trip as well. The times for these Ground Floor 25 25 25
trips are shown in Table 2. Floor 1 1 20 5 5
Assuming the employees are Floor 2 2 20 5 5
evenly distributed among the Floor 3 0 3 20 5
floors (40 people per floor), ele-

vator A will transport 120 peo- Floor 4 0 4 20 5
ple, requiring 12 trips, and eleva-

tors B and C will transport 120 Floor 5 0 0 3 20
people, requiring 6 trips each. Floor 6 0 0 6 20
These trips will take 1200 sec-

onds (20 minutes) for elevator A Return 10 20 30
and 780 seconds (13 minutes)

for elevators B and C, resulting ROUND-TRIP 5 9 115
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SCHEDULING ELEVATORS (ConTINuED)

Perhaps this is the optimal solution. If so,
then the above analysis of this simple case
suggests two hypotheses:

The optimal solution assigns each floor
to a single elevator.

If the time for stopping is sufficiently
larger than the time for moving between
floors, each elevator should serve the same
number of floors.

Mathematically, one could try to show that
this solution is optimal by trying all possible
elevator assignments or by carefully reason-
ing, perhaps by showing that the above
hypotheses are correct. Practically, however,
it doesn’t matter because this solution con-
siders only the morning rush hour and
ignores periods of low use.

The assignment is clearly not optimal during
periods of low use, and much of the ineffi-
ciency is related to the first hypothesis for
rush hour optimization: that each floor is
served by a single elevator. With this condi-
tion, if an employee on floor 6 arrives at the
ground floor just after elevator C has
departed, for example, she or he will have to
wait nearly two minutes for elevator C to
return, even if elevators A and B are idle.
There are other inefficiencies that are not
considered by focusing on the rush hour.
Because each floor is served by a single ele-
vator, an employee who wishes to travel from
floor 3 to floor 6, for example, must go via
the ground floor and switch elevators. Most
employees would prefer more flexibility than
a single elevator serving each floor.

At times when the elevators are not all busy,
unassigned elevators will provide the quick-
est response and the greatest flexibility.
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Because this optimal solution conflicts with
the optimal rush hour solution, some com-
promise is necessary. In this simple case,
perhaps elevator A could serve all floors, ele-
vator B could serve floors 1-3, and elevator C
could serve floors 4-6.

The second hypothesis, above, deserves
some further thought. The efficiency of the
rush hour solution Table 3 is due in part to
the even division of employees among the
floors. If employees were unevenly distrib-
uted with, say, 120 of the 240 people work-
ing on the top two floors, then elevator C
would need to make 12 trips, taking a total
of 1380 seconds, resulting in almost no ben-
efit over unassigned elevators. Thus, an effi-
cient solution in an actual building must
take into account the distribution of the
employees among the floors.

Because the stopping time on each floor is
three times as large as the traveling time
between floors (15 seconds versus 5 sec-
onds), this solution effectively ignores the
traveling time by assigning the same number
of employees to each elevator. For taller
buildings, the traveling time will become
more significant. In those cases fewer
employees should be assigned to the eleva-
tors that serve the upper floors than are
assigned to the elevators that serve the
lower floors.

The problem can be
made more challenging by altering the num-
ber of elevators, the number of floors, and
the number of individuals working on each
floor. The rate of movement of elevators can
be determined by observing buildings in the
local area. Some elevators move more
quickly than others. Entrance and exit times
could also be measured by students collect-
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ing data on local elevators. In a similar man-
ner, the number of workers, elevators, and
floors could be taken from local contexts.

A related question is, where should the ele-
vators go when not in use? Is it best for
them to return to the ground floor? Should
they remain where they were last sent?
Should they distribute themselves evenly
among the floors? Or should they go to
floors of anticipated heavy traffic? The
answers will depend on the nature of the
building and the time of day. Without analy-
sis, it will not be at all clear which strategy is
best under specific conditions. In some
buildings, the elevators are controlled by
computer programs that “learn” and then
anticipate the traffic patterns in the building.

A different example that students can easily
explore in detail is the problem of situating a
fire station or an emergency room in a city.
Here the key issue concerns travel times to
the region being served, with conflicting
optimization goals: average time vs. maxi-
mum time. A location that minimizes the
maximum time of response may not produce
the least average time of response. Com-
muters often face similar choices in selecting
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routes to work. They may want to minimize
the average time, the maximum time, or per-
haps the variance, so that their departure
and arrival times are more predictable.

Most of the optimization conditions dis-
cussed so far have been expressed in units of
time. Sometimes, however, two optimization
conditions yield strategies whose outcomes
are expressed in different (and sometimes
incompatible) units of measurement. In
many public policy issues (e.g., health insur-
ance) the units are lives and money. For
environmental issues, sometimes the units
themselves are difficult to identify (e.g., qual-
ity of life).

When one of the units is money, it is easy to
find expensive strategies but impossible to
find ones that have virtually no cost. In some
situations, such as airline safety, which bal-
ances lives versus dollars, there is no strategy
that minimize lives lost (since additional dol-
lars always produce slight increases in safety),
and the strategy that minimizes dollars will
be at $0. Clearly some compromise is neces-
sary. Working with models of different solu-
tions can help students understand the con-
sequences of some of the compromises.
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HEATING-DEGREE-DAYS

An energy consulting firm that rec-
ommends and installs insulation and similar
energy saving devices has received a com-
plaint from a customer. Last summer she
paid $540 to insulate her attic on the predic-
tion that it would save 10% on her natural
gas bills. Her gas bills have been higher than
the previous winter, however, and now she
wants a refund on the cost of the insulation.
She admits that this winter has been colder
than the last, but she had expected still to
see some savings.

The facts: This winter the customer has used
1,102 therms, whereas last winter she used
only 1,054 therms. This winter has been
colder: 5,101 heating-degree-days this winter
compared to 4,201 heating-degree-days last
winter. (See explanation below.) How does a
representative of the energy consulting firm
explain to this customer that the accumu-
lated heating-degree-days measure how
much colder this winter has been, and then
explain how to calculate her anticipated ver-
sus her actual savings.

Explaining the math-
ematics behind a situation can be chal-
lenging and requires a real knowledge of
the context, the procedures, and the
underlying mathematical concepts. Such
communication of mathematical ideas is
a powerful learning device for students of
mathematics as well as an important skill
for the workplace. Though the procedure
for this problem involves only propor-
tions, a thorough explanation of the
mathematics behind the procedure
requires understanding of linear model-
ing and related algebraic reasoning, accu-
mulation and other precursors of calcu-
lus, as well as an understanding of energy
usage in home heating.
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The
customer seems to understand that a
straight comparison of gas usage does not
take into account the added costs of colder
weather, which can be significant. But before
calculating any anticipated or actual savings,
the customer needs some understanding of
heating-degree-days. For many years,
weather services and oil and gas companies
have been using heating-degree-days to
explain and predict energy usage and to
measure energy savings of insulation and
other devices. Similar degree-day units are
also used in studying insect populations and
crop growth. The concept provides a simple
measure of the accumulated amount of cold
or warm weather over time. In the discus-
sion that follows, all temperatures are given
in degrees Fahrenheit, although the process
is equally workable using degrees Celsius.

Suppose, for example, that the minimum tem-
perature in a city on a given day is 52 degrees
and the maximum temperature is 64 degrees.
The average temperature for the day is then
taken to be 58 degrees. Subtracting that result
from 65 degrees (the cutoff point for heating),
yields 7 heating-degree-days for the day. By
recording high and low temperatures and com-
puting their average each day, heating-degree-
days can be accumulated over the course of a
month, a winter, or any period of time as a mea-
sure of the coldness of that period.

Over five consecutive days, for example, if
the average temperatures were 58, 50, 60, 67,
and 56 degrees Fahrenheit, the calculation
yields 7,15, 5,0, and 9 heating-degree-days
respectively, for a total accumulation of 36
heating-degree-days for the five days. Note
that the fourth day contributes 0 heating-
degree-days to the total because the tem-
perature was above 65 degrees.

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/5777.html

The relationship between average tempera-
tures and heating-degree-days is represented
graphically in Figure 1. The average tempera-
tures are shown along the solid line graph. The
area of each shaded rectangle represents the
number of heating-degree-days for that day,
because the width of each rectangle is one day
and the height of each rectangle is the number
of degrees below 65 degrees. Over time, the
sum of the areas of the rectangles represents
the number of heating-degree-days accumu-
lated during the period. (Teachers of calculus
will recognize connections between these
ideas and integral calculus.)

The statement that accumulated heating-
degree-days should be proportional to gas
or heating oil usage is based primarily on
two assumptions: first, on a day for which the
average temperature is above 65 degrees, no
heating should be required, and therefore
there should be no gas or heating oil usage;
second, a day for which the average temper-
ature is 25 degrees (40 heating-degree-days)
should require twice as much heating as a
day for which the average temperature is 45
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degrees (20 heating-degree-days) because
there is twice the temperature difference
from the 65 degree cutoff.

The first assumption is reasonable because
most people would not turn on their heat if
the temperature outside is above 65 degrees.
The second assumption is consistent with
Newton'’s law of cooling, which states that the
rate at which an object cools is proportional
to the difference in temperature between the
object and its environment. That is, a house
which is 40 degrees warmer than its environ-
ment will cool at twice the rate (and there-
fore consume energy at twice the rate to
keep warm) of a house which is 20 degrees
warmer than its environment.

The customer who accepts the heating-
degree-day model as a measure of energy
usage can compare this winter’s usage with
that of last winter. Because 5,101/4,201 =
1.21, this winter has been 21% colder than
last winter, and therefore each house should
require 21% more heat than last winter. If this
customer hadn't installed the insulation, she
would have required 21% more

- . . heat than last year, or about 1,275
FIG“HE 1 Dally heatlng-degree-days therms. Instead, she has required
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only 5% more heat (1,102/1,054 =
1.05), yielding a savings of 14% off
cutoff what would have been required
(1,102/1,275 = .86).

Another approach to this would be
to note that last year the customer
used 1,054 therms/4,201 heating-
degree-days = .251 therms/heat-
ing-degree-day, whereas this year
she has used 1,102 therms/5,101
heating-degree-days = .216
therms/heating-degree-day, a sav-
ings of 14%, as before.
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HEATING-DEGREE-DAYS (ConTINUED)

How good is the heating-
degree-day model in predicting energy
usage? In a home that has a thermometer
and a gas meter or a gauge on a tank, stu-
dents could record daily data for gas usage
and high and low temperature to test the
accuracy of the model. Data collection would
require only a few minutes per day for stu-
dents using an electronic indoor/outdoor
thermometer that tracks high and low tem-
peratures. Of course, gas used for cooking
and heating water needs to be taken into
account. For homes in which the gas tank has
no gauge or doesn't provide accurate enough
data, a similar experiment could be per-
formed relating accumulated heating-degree-
days to gas or oil usage between fill-ups.

It turns out that in well-sealed modern
houses, the cutoff temperature for heating
can be lower than 65 degrees (sometimes as
low as 55 degrees) because of heat gener-
ated by light bulbs, appliances, cooking, peo-
ple, and pets. At temperatures sufficiently
below the cutoff, linearity turns out to be a
good assumption. Linear regression on the
daily usage data (collected as suggested
above) ought to find an equation something
like U =-.251(T - 65), where T is the average
temperature and U is the gas usage. Note
that the slope, -.251, is the gas usage per
heating-degree-day, and 65 is the cutoff.
Note also that the accumulation of heating-
degree-days takes a linear equation and
turns it into a proportion. There are some
important data analysis issues that could be
addressed by such an investigation. It is
sometimes dangerous, for example, to
assume linearity with only a few data points,
yet this widely used model essentially
assumes linearity from only one data point,
the other point having coordinates of 65
degrees, 0 gas usage.
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Over what range of temperatures, if any, is this
a reasonable assumption? Is the standard
method of computing average temperature a
good method? If, for example, a day is mostly
near 20 degrees but warms up to 50 degrees
for a short time in the afternoon, is 35 heat-
ing-degree-days a good measure of the heat-
ing required that day? Computing averages
of functions over time is a standard problem
that can be solved with integral calculus.
With knowledge of typical and extreme rates
of temperature change, this could become a
calculus problem or a problem for approxi-
mate solution by graphical methods without
calculus, providing background experience for
some of the important ideas in calculus.

Students could also investigate actual savings
after insulating a home in their school district.
A customer might typically see 8-10% savings
for insulating roofs, although if the house is
framed so that the walls act like chimneys,
ducting air from the house and the basement
into the attic, there might be very little savings.
Eliminating significant leaks, on the other hand,
can yield savings of as much as 25%.

Some U.S. Department of Energy studies dis-
cuss the relationship between heating-
degree-days and performance and find the
cutoff temperature to be lower in some mod-
ern houses. State energy offices also have
useful documents.

What is the relationship between heating-
degree-days computed using degrees
Fahrenheit, as above, and heating-degree-
days computed using degrees Celsius?
Showing that the proper conversion is a
direct proportion and not the standard
Fahrenheit-Celsius conversion formula
requires some careful and sophisticated
mathematical thinking.
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DVERVIEL

ith President Clinton’s call for voluntary national tests of reading in

fourth grade and of mathematics in eighth grade, the debate about the

role of the government in establishing standards and assessments has
reached new heights on the political and educational landscapes. At the state
level, debates about standards have been particularly heated in California,
especially during the process of adopting state content and performance stan-
dards for all students. Throughout the country, much of the debate about stan-
dards has taken the form of dichotomies growing from language that positions
opponents at extreme ends of the spectrum, arising particularly from opposing
views about how people learn mathematics. For example, must automaticity
with procedural skills precede any problem solving, or should thinking and
reasoning permeate all aspects of the discipline, even before focusing on skill
development? Although resolving these issues is beyond the scope of this doc-
ument, finding common ground that transcends these dichotomies is a chal-
lenging but necessary part of the process of developing standards.

From any perspective in the standards debate, and from any political posi-
tion, the call for standards is born, in part, out of parents’ concerns for their chil-
dren’s futures: What should my child be learning? What should my child know
in order to be admitted to a good college or university? What should my child
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know in order to get a good job? One of the main themes of this document—that
problems from the workplace and everyday life can enhance the mathematical
education of all students—implies the fortunate conclusion that the answers to
these questions need not conflict.

Discussion of national standards has a long history. The release of A Nation
at Risk (National Commission on Excellence in Education, 1983) had an effect
like that of national standards, for many high schools responded by increasing
their course requirements for graduation. Since then, many organizations con-
cerned with different aspects of education have released documents delineating
standards. In 1989, the National Council of Teachers of Mathematics (NCTM)
published Curriculum and Evaluation Standards for School Mathematics. More
recently, many states have produced or are producing frameworks describing
new goals for K-12 performance and instruction in mathematics as well as other
disciplines. Some of those states have also produced state-wide assessments
that are explicitly aligned with those frameworks. At the national level, the Sec-
retary’s Commission on Achieving Necessary Skills (SCANS) described compe-
tencies needed for careers in its 1991 report, What Work Requires of Schools.
The Goals 2000: Educate America Act established the National Skill Standards
Board in 1994 to serve as a catalyst in the development of a voluntary national
system of skills standards, assessments, and certifications for business and
industry. In science, the American Association for the Advancement of Science
(AAAS) developed Benchmarks for Science Literacy (AAAS, 1993). After four
years of development, consensus-building, and extensive formal review, the
National Research Council (NRC) contributed the National Science Education
Standards (NRC, 1996). Also in 1995, the American Mathematical Association
of Two-Year Colleges published Crossroads in Mathematics: Standards for Intro-
ductory Mathematics Before Calculus.

With so many voices contributing standards and recommendations, teach-
ers are faced with difficult challenges. Despite the fact that the meaning of the
word “standard” varies greatly among and even within the above documents—
from statements about values to visions of the future; from statements about
goals or expectations to criteria for evaluation—nevertheless, some common
themes emerge. The standards for mathematics and those for science, for
example, have many commonalities, as Jane Butler Kahle discusses in her
essay, including ideas such as problem solving and communication.

The SCANS requirements for the workplace, described in Arnold Packer’s
essay, also emphasize problem solving and communication, but these skills are
embedded in a framework that is hard to reconcile with the traditional division
of schooling into subject areas. In particular, the SCANS requirements for
Planning Skills, Interpersonal Skills, and Personal Qualities, do not fall under
any of the traditional grades 9-12 subject headings and are rarely explicitly dis-
cussed as part of the curriculum, especially in mathematics. How might such
skills might be developed in a mathematics class? Part of an answer lies in the
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SCANS Commission’s belief that the requirements should be taught in context.
Throughout the nation, calls for new standards, new pedagogy, or new curricula
often meet with a challenge: But how will students do on standardized tests?
Discussions of student achievement as measured by standardized tests often
misses two important questions: For what purpose was the test designed? And
what is the relationship between this test and the educational goals that I
value? The NCTM Assessment Standards (NCTM, 1995) describe four purposes
of assessment: monitoring students’ progress, making instructional decisions,
evaluating students’ achievement, and evaluating programs. Though the rela-
tionship between standards and assessments often goes unarticulated in public
discussions, a constructive discussion of changes in mathematics education
must carefully consider the roles of the assessment tools in place, some of which
function as implicit standards because they influence expectations about what
counts mathematically. Because the SAT and the ACT have come to serve gate-
keeping functions in college admissions and in scholarship decisions, they influ-
ence the ideas of parents and policy makers alike about what constitutes desir-
able mathematical performance. The ACT purports to measure the academic
skills that students will need to perform college-level work. Based upon what
is taught in the high school curriculum, and requiring integration of knowledge
from a variety of courses, the ACT Assessment tests are designed to determine
how well students solve problems, grasp implied meanings, draw inferences,
evaluate ideas, and make judgments. The SAT aims to measure verbal and
mathematical reasoning abilities. Both tests are intended as predictors of suc-
cess in college (in particular, in the first year of college); they attempt to fulfill
a necessary function: providing colleges with a metric that allows for compari-
son of students from different schools when grades might not be comparable.

But how do SAT and ACT scores compare with other measurements of
mathematical performance? Can a test like the SAT adequately assess learn-
ing when the curriculum emphasizes extended, open-ended, or collaborative
tasks? William Linder-Scholer poses these questions in his essay and suggests
a data-analysis task for parents: assessing the SAT as a measurement of stu-
dent achievement and school quality, and as a basis for comparing education in
different states.

Though Linder-Scholer’s essay provides some understanding of the diffi-
culties in comparing average test scores for schools or states, many important
questions are left unaddressed. Serious consideration of the role of college
entrance exams depends upon answers to two perennial questions: What do
colleges, parents, and scholarship organizations do with the individual scores
from these tests? And does the SAT measure what colleges value? Both the
ACT and the SAT have evolved over the years to better serve the needs of par-
ents, colleges, and schools. Nonetheless, these questions require ongoing
research in response to changing curricula in high schools and colleges, and in
response to the changing needs of colleges and the workplace. Constructive
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evolution of the role of college entrance exams requires collective deliberations
among parents, teachers, college representatives, and testing experts around
what these tests should be and how they may be used most effectively.

In his essay, John Dossey provides an international perspective on the
character of the examinations given to students between high school and col-
lege. Looking at such examinations in the United States, England, Wales, and
four European countries, he finds that contextualized, extended-response tasks
are not routinely included. Such tasks are included, however, on the National
Assessment of Educational Progress (NAEP), which provides national and
state indicators about mathematics education but no individual scores (see,
e.g., Reese et al., 1997). The NAEP results indicate that if such tasks are to
assess individual student learning, “students will need a great deal of support
in formulating, solving, and communicating their results.”

The tasks that accompany these essays serve as examples and illustrations
of tasks that might help provide that support. Well-chosen tasks are in no way
to be construed as standards, but instead provide opportunities for building
understanding of the mathematical ideas that are embodied in standards.

Mental Mathematics (p. 83) suggests ways that mental arithmetic and
algebra might each contribute to the other. Though Buying on Credit (p. 87)
is about finance and Drug Dosage (p. 80) is about pharmacology, the mathe-
matics behind the tasks is quite similar, involving rates, series, and recursion.
Despite the similar mathematical content of the two tasks, both are included
to suggest an opportunity for students to engage in mathematical thinking: to
describe and understand whole classes of tasks by noticing commonalities
among their procedures or representations. The similarity, after all, can be
clear only with sufficient mathematical understanding of multiple contexts.

American Association for the Advancement of Science. (1993). Benchmarks for science literacy.
Washington, DC: Author.

American Mathematical Association of Two-Year Colleges (1995). Crossroads in mathematics:
Standards for introductory college mathematics before calculus. Memphis, TN: Author.

National Commission on Excellence in Education. (1983). A nation at risk: The imperative for edu-
cational reform. Washington, DC: Author.

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for
school mathematics. Reston, VA: Author.

National Council of Teachers of Mathematics. (1995). Assessment standards for school mathemat-
ics. Reston, VA: Author.

National Research Council. (1996). National science education standards. Washington, DC:
National Academy Press.

Reese, C. M., Miller, K. E., Mazzeo, J., & Dossey, J. A. (1997). NAEP 1996 mathematics report card
for the nation and the states. Washington, DC: National Center for Education Statistics.

United States Department of Labor. Secretary’s Commission on Achieving Necessary Skills.
(1991). What work requires of schools: A SCANS report for America 2000. Washington, DC:
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SCIENGE AND [TATHEMATICS

he current reforms in both science and mathematics education have many

commonalities; in fact, for the first time, the two disciplines are advancing

with common goals and objectives, as evidenced in the mathematics stan-
dards published by the National Council of Teachers of Mathematics (NCTM,
1989, 1991, 1995), and the science standards published by the National
Research Council (NRC, 1996). Both sets of standards are based on the
premises that all children can learn challenging mathematics and science, that
literacy in both disciplines is necessary for productive work in the future, that
learners construct their own knowledge, and that there are many effective
ways to promote knowledge construction.

One way to elaborate such standards is to provide tasks that illustrate
some of the ideas promoted by those standards. Tasks that fit with these stan-
dards have common characteristics: they require time, they allow multiple
solution paths, they are open-ended, they may be revisited and extended, and
they develop basic skills. Individually, each characteristic is applicable to both
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science and mathematics; and collectively, these characteristics delineate a
practical route from the rhetoric of standards to the reality of student achieve-
ment. Many of the skills involved in doing these tasks are critical to success
in the sciences, as well as in mathematics.

Useful and compelling mathematics tasks illustrate both the logical and
algorithmic nature of mathematics as well as its whimsy and beauty. These
dual goals again make a connection with science. A national study of mine
(Kahle, 1983) indicated that both ninth- and tenth-grade girls and boys were
motivated to continue to study advanced science when their science teachers
stressed both the basic skills of science (many of which may be learned in
mathematics) and its more creative elements. I believe that problems that
illustrate the whimsy and beauty of mathematics will encourage and excite
many students who heretofore have been turned off to mathematics.

Mathematics instruction that fits with the NCTM Standards includes
tasks that actively engage students in making meaning of mathematics and in
proposing several possible solution processes. Such activities provide sites in
which the NCTM process standards—mathematics as problem solving, mathe-
matics as communication, mathematics as reasoning, and mathematical con-
nections—can be emphasized and developed.

Science instruction consistent with the National Science Education Stan-
dards (NSES) (NRC, 1996) is characterized by similar parameters: students
identify a problem from their observations of nature; they propose several solu-
tions (hypotheses); in any one class, their investigations take multiple
approaches; and they discuss and consider all reasonable solutions. The sci-
ence as inquiry standards in particular promote the following processes:

.. . asking questions, planning and conducting investigations, using appropriate tools
and techniques to gather data, thinking critically and logically about relationships
between evidence and explanations, constructing and analyzing alternative explana-
tions, and communicating scientific arguments. (NRC, 1996, p. 105)

Practically speaking, it is possible to write tasks that are directly applic-
able to both mathematics and science lessons. In this volume, Drug Dosage
(p. 80) is a task in which students may either use a mathematical model to
understand a scientific context or use a scientific context to understand math-
ematical ideas in the model. Because of their availability and low cost, paper
towels are a common context for tasks that integrate mathematics and sci-
encel. In order to compare brands for absorbency, strength when wet, or cost
per sheet, or to investigate concepts such as the relationship between the num-
ber of water drops absorbed by the towel and the area of the wet spot, students
design experiments and collect and interpret data.

The NSES includes an excellent example of an activity, “The Solar Sys-
tem,” for an integrated mathematics and science program (NRC, 1996, pp. 215-
217). The goal of the activity is to have students construct a scale model of the
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sun, moon, and earth using techniques developed by early astronomers. Stu-
dents observe the stars, discuss the patterns they observe, and use a particu-
lar pattern (the North Star, Polaris, doesn’t appear to move) to suggest meth-
ods for estimating the circumference of the earth. In particular, if they know
angle of the North Star at two locations on the same longitude and a known
distance apart, they may estimate the circumference of the earth by using a
two-dimensional diagram of the three-dimensional situation (see Figure 6-1),
and by using geometric knowledge about circles, tangents, and angles.
Through activities such as this, students can see not only that geometric
understanding is necessary to understand the science problem, but also that
science provides contexts for geometric and mathematical ideas.

These possibilities arise because of common skills that are needed to study
both mathematics and science. For example, in both disciplines, students need to
be able to estimate, to use mathematical models, to interpolate and extrapolate,
to identify false negatives, to detect bias, to convert two-dimensional drawings to
three-dimensional models and vice versa, to make and interpret graphs and other
diagrams, and so on. Furthermore, when students use data gathered in science
investigations in their mathematics courses, they encounter many of the anom-
alies of authentic data: inconsistencies, outliers, and errors. Indeed, tasks that
build these kinds of skills are good examples of activities through which it should
be possible to develop aspects of the sci-
AT R BRI RICR G cntific literacy stressed in the NSES

“The Solar System” (NRC, 1996), as well as the mathematical
understandings promoted in the NCTM’s
— Curriculum and Evaluation Standards
Star for School Mathematics (NCTM, 1989).

Horizon Because of these connections
between mathematics and science, the
a5° NSES calls for coordinating the science
=~ T\ 90° Horizon and mathematics programs in schools.
Such coordination results in opportuni-
ties to advance instruction in science
beyond purely descriptive studies and
to provide mathematics classes with
authentic problems. The NCTM Stan-
dards documents (NCTM, 1989, 1991,
1995) also clearly encourage making
connections between mathematics and
Horizon the sciences, particularly in the sections
on mathematical connections. The doc-
uments note the pervasiveness of the
connections between mathematics and
other disciplines and encourage such

0°

SOURCE: NRC, 1996, p. 216.
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connections in the classroom as a means of enabling students to see the utility
of mathematics and to find motivation for mathematics.

We have been singularly unsuccessful in developing a long-term relation-
ship, let alone a successful marriage, between science and mathematics as they
are usually taught in schools. An often-promoted solution is simply using sci-
ence examples in mathematical problems. This solution is too simple, obvi-
ously, and has not been successful in the past. However, both the NSES and
this volume provide glimpses of what will work. First, students need to be able
to integrate the scientific skills of observing, classifying, inferring, collecting,
and interpreting data, using mathematical skills such as reasoning, comput-
ing, communicating, and making connections. For all students, the process of
doing both good science and good mathematics holds the most promise of suc-
cessful integration, an integration constructed by each learner as her or his
skills and understandings develop. Mathematics at Work may help inspire a
future in which value is placed upon the processes, not products, of learning,
where science and mathematics are integrated through common skills, where
relevant activities that integrate mathematics and science are readily avail-
able for each student, and where the common ground that is shared by those
interested in high-quality mathematics and science education is explicit.

Kahle, J. B. (Ed.). (1983). Girls in school: Women in science. Washington, DC: National Science
Board, Commission on Precollege Education in Mathematics. (ERIC Document Reproduction
Service No. ED 258 812).

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for
school mathematics. Reston, VA: Author.

National Council of Teachers of Mathematics. (1991). Professional standards for teaching mathe-
matics. Reston, VA: Author.

National Council of Teachers of Mathematics. (1995). Assessment standards for school mathemat-
ics. Reston, VA: Author.

National Research Council. (1996). National science education standards. Washington, DC:
National Academy Press.

Sneider, C. I. & Barber, J. (1987). Paper towel testing. Great Explorations in Math and Science
(GEMS) Project. Berkeley, CA: Lawrence Hall of Science, University of California, Berkeley.
Teaching Integrated Mathematics and Science (TIMS) Project, Inc. (1992). Spreading Out II.

Chicago: University of Illinois at Chicago.

1. See, for example, Spreading Out II (Teaching Integrated Mathematics and Science (TIMS) Pro-
ject, Inc. 1992) and Paper Towel Testing (Sneider & Barber, 1987).
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his essay addresses two related questions: What kinds of tasks will support the
learning of “SCANS” skills described by the report entitled What Work Requires
of Schools (United States Department of Labor, 1991)? And will use of such
tasks facilitate student success in making the transition from school to career?
The charge of the Secretary’s Commission on Achieving Necessary Skills
(SCANS) was to examine the demands of the workplace and whether students
were being prepared to meet those demands. SCANS commissioned a variety
of studies. Six special panels examined jobs ranging from manufacturing to
government employment. Researchers interviewed a wide range of workers.
The commission itself met with business owners, employers, union representa-
tives, and workers. In summarizing the findings of these studies, the SCANS
report describes five sets of competencies and a three-part foundation of skills
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and attributes essential for all students, both those going directly to work and
those planning further education. The commission believes that, in line with
current research in cognitive science, the eight requirements should be taught
in context rather than as abstract concepts and skills to be applied later.

The five competencies are

Planning Skills, such as allocating time, money, space, and staff;
Interpersonal Skills, such as negotiating and teaching;

Information Skills, such as acquiring, evaluating, interpreting, and
communicating information,;

Technology Skills, such as selecting, using, and fixing technology; and
Systems Skills, such as understanding, improving, and designing systems.

For example, an entry-level restaurant worker should be able to estimate costs
of replacing equipment and justify necessary expenses in writing. In order to plan
where the equipment should be placed, the worker should be capable of reading
blueprints and manufacturers’ installation requirements. Such a worker might
need interpersonal skills to explain technology or scheduling to a new employee, for
example. A necessary information skill might include being able to use a spread-
sheet program to estimate the costs of food required for different menus. And the
worker should be able to analyze and modify the system, determining the average
and maximum amount of time a customer waits between ordering and receiving an
appetizer, and between receiving an appetizer and the entree.

In this example, aspects of the three-part foundation of attributes and skills
are intertwined with the five competencies. The three-part foundation consists of

Basic Skills, such as reading, writing, and computing;

Thinking Skills, such as visualization, reasoning, and the ability to
solve problems; and

Personal Qualities, such as perseverance, politeness, self-esteem, and
empathy.

In the restaurant scenario above, the worker needs to read blueprints,
write a justification, and compute costs. Planning where to place equipment
requires processing the information from the blueprints as well as the informa-
tion given about the dimensions of the equipment. Throughout this scenario,
politeness is necessary, in directing workers where to place equipment, in
explaining matters to a new worker, and, of course, in dealing with customers.

What Work Requires of Schools describes these attributes and skills as
both extensive and enduring. They are extensive because they are needed at
all stages of careers of all kinds, including careers that require post-graduate
education, and they are enduring because these skills have been needed for
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centuries and will be needed for centuries to come. Furthermore, the report
claims that any authentic workplace task requiring a high level of effort and
perseverance will necessarily involve one or more of the five competencies.

When designing tasks to serve the SCANS goals, one needs to consider
tasks likely to be encountered in the workplace. From the SCANS perspective,
a good task is one that a million or more workers in the U.S. economy are being
paid to solve. (This is not to disparage tasks that students will need to solve
in roles outside the workplace, such as citizenship or parenting. But in
SCANS, workplace issues predominate.)

The most important worker in the educational system is the student.
Recent surveys of jobs by the SCANS Commission, by American College Test-
ing, and by the American Institute for Research (for O*NET) indicate that stu-
dents need a firm grasp of applied algebra—not a vague understanding of cal-
culus (Packer, 1997). They can always look up algorithms and formulas in
order to solve a quadratic equation or complete a square. Even if students can
recall them to pass their final exams, they are likely to forget many algorithms
and formulas two weeks later. What they need to demonstrate on exams is
that they know how to bring mathematics to bear on SCANS-like problems
such as budgeting and scheduling.

The issue has become more important because President Clinton has
called for a national 8th grade mathematics assessment. Should the test pose
mathematical “puzzles” that are interesting to the mathematically inclined?
Or should test items have a clear relationship to problems that students are
likely to encounter outside the schoolroom walls?

The SCANS goals require more variety in the circumstances under which
tasks are done. The traditional problem archetypes, such as canoe problems and
train problems, also have a traditional format—they are done individually in 10
minutes or less. In contrast, the SCANS competencies of teaching, negotiating,
interpreting, and communicating require tasks that can only be solved collec-
tively by groups. All of these changes will help schools reflect the needs of the
workplace with greater accuracy and ease the transition from schools to careers.

United States Department of Labor. Secretary’s Commission on Achieving Necessary Skills. (1991).
What work requires of schools: A SCANS report for America 2000. Washington, DC: Author.
Packer, A. (1997). Mathematical Competencies That Employers Expect. In L.A. Steen (Ed.), Why
numbers count: Quantitative literacy for tomorrow’s America, (pp. 137-154). New York: College

Entrance Examination Board.
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first Chief Economist at the U.S. Senate Budget Committee. He is a licensed (and practicing) engineer in
New York and California. His Ph.D. in Economics is from University of North Carolina at Chapel Hill.
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THINKING ABOUT THE ofll

or many parents, standardized test scores seem to answer the basic ques-

tions about education that everyone asks: How good is the school my child

attends? How do the schools in our state or region compare with schools
elsewhere? What chance does my son or daughter have of being admitted to a
good college or university?

Schools commonly use achievement test results to determine whether stu-
dents are making progress and to ensure that programs in basic subjects, such
as mathematics and reading, are effective. The referendum-voting and home-
buying public use test scores to judge the quality of their schools and the desir-
ability of living in one community over another. Colleges often combine stu-
dents’ high school grade point averages and scores on standardized tests to
make crucial in-or-out decisions about admissions.

But how reliable are standardized test results? Can we really use
achievement test rankings or college-admissions test scores to make fair and
meaningful comparisons of students, schools, and states?

Workplace and everyday tasks like those in this volume bring these ques-
tions into sharp relief in two very different ways. First, such tasks differ con-
siderably from the tasks used in standardized tests, most notably in the time
a student is expected to spend on the task and in what constitutes a solution.
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This point raises questions about whether any standardized test can ade-
quately assess a type of education in which extended tasks are used for instruc-
tion. Second, the kind of reasoning that parents need to gauge properly the
significance of test score data is precisely the kind of reasoning that we might
encourage. Interpreting test score data is itself a mathematical task!

For better or worse, we know that Americans have been making the compar-
isons outlined above for generations. This fact is perhaps best illustrated by
the power and popularity of the SAT'—the single most-used standardized test
of its type in the country and an important ingredient in college admissions
since the 1940s. The SAT I: Reasoning Test, a multiple-choice exam? with ver-
bal and mathematics components, is used in combination with high school
grades to predict a student’s readiness for college. Fluctuations in average
SAT scores are tracked as indicators, albeit indirect, of the quality of education
in this country (Bracey, 1996; Powell & Steelman, 1996).

Beginning in 1964, average scores on the SAT dropped slowly but steadily
for about 15 years. This led to much speculation and considerable hand-wring-
ing about possible causes of the apparent decline in education quality in the
U.S. By the early 1990s, average scores on the mathematics portion of the SAT
had rebounded significantly, but scores on the verbal section had not.

Scores on other national standardized exams also declined during this
same time period, but none attracted as much attention as the SAT. Further
significance was attributed to this alarming drop in SAT scores by the many
reports of poor mathematics and science performance by U.S. students relative
to that of students in other countries. In the U.S., state-by-state comparisons
of SAT results became a standard feature of the economic “warfare” among the
states to lure businesses and their employees based on relative measures of
“quality of life” as reflected in part by test-score rankings.

The trouble with all of this is that test scores, particularly average scores on
nationally-normed standardized tests such as the SAT, don’t mean as much as we
typically think they do. Understanding who takes the test—and who doesn’t—is
the first and perhaps single most important factor to consider when trying to
understand what raw SAT scores or state-to-state comparisons really mean.
For starters, we need to know what percentage of students actually take
the test. Students who take the SAT (or equivalent admissions exams such as
the ACT, used more extensively in the Midwestern states) are obviously
prospective college students and thus not representative of the total school
population. Thirty years ago, average national scores on the SAT exam were
highly unrepresentative of the achievement of the “average” student in the
U.S. because the pool of candidates taking the test was much smaller than it is
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now. In fact, in 1975 SAT-takers included only one-third of the nation’s grad-
uating seniors, but by 1994, they included 42% of the nation’s graduates (Col-
lege Entrance Examination Board, 1994). Although experts disagree about
specifics, the decline in SAT scores during the 1960s and 1970s seems due at
least in part to the fact that the test-taking pool is formed of a larger percent-
age of high school graduates, and, thus, in the ’60s and ’70s, an average SAT-
taker was more like an average high school graduate than was the case in the
1950s.

Today, with an even larger portion of total school population taking the
SAT, we can more fairly make comparisons, yet in making state-to-state con-
trasts we must still account for differential rates of overall student participa-
tion. In 1993 for example, the average SAT score for students in Iowa was 1103.
Students in Massachusetts averaged 903 (Powell & Steelman, 1996). But in
Towa only 5% of high school seniors took the SAT. In Massachusetts, participa-
tion was far greater—81%
of high school seniors took
the exam. Generally speak-
ing, in states where SAT
participation rates are rela- 1150
tively high, the likelihood is
that average scores will be
lower than in the low-par-
ticipation states. (See Fig-
ure 8-1.) 1050 —e

However, who takes
the test, as well as how
many take it, also makes a
difference in scores. To
some extent, the diversifi- 950 —
cation of the SAT-taking S .
pool during the 1960s and * o R
1970s was due to the over- 800 = : °
due “democratization” of
the test-taking group, with 850 —
the addition to the SAT
pool of significant numbers
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dents of color, groups who
previously had been under- Percentage of Seniors Taking the Exam
represented among the col-
lege-bound. Students in
these groups often do not
experience the “same” edu-
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cation as those from groups who are traditionally expected to be college-bound
(Oakes, 1990; Wellesley College Center for Research on Women, 1992).

But the effect of this democratization is not simple. Changes and rates of
change in SAT scores are linked in complex ways to both how many students
take the test and the composition of the test-taking pool. Consider the follow-
ing facts that run counter to the common expectation that such democratiza-
tion causes average scores to fall:

During the 1970s, at the very time that SAT scores fell fastest, high
school graduation rates were stable, the percentage of students taking
the test changed very little, and the percentage of students going to
college also changed only minimally. Clearly, other factors were at
work in causing the test score declines.

The most dramatic compositional changes in the SAT test-taking pool
(particularly the increase in numbers of ethnic minority students)
occurred after 1980, at a time when SAT scores were leveling off and
beginning to head back up, especially in mathematics (College
Entrance Examination Board, 1994).

Comparing states gets even more complicated when we consider the fact
that SAT scores can also be influenced by differences in school environments.
Low expectations for student performance, tracking of students into unchal-
lenging academic programs, high student-teacher ratios, and differences in
curricula and instructional practices account for significant differences in
school performance and can also influence a state’s SAT average. And, con-
versely, some changes in curriculum and instruction may not influence SAT
averages. For example, the Interactive Mathematics Program (IMP) is a non-
traditional high-school curriculum based on complex extended problems. The
average SAT score for IMP students was only 1 point higher than that of a
matched sample of students enrolled in a traditional mathematics curriculum.
But 87 percent of IMP students took the SAT and only 58% of their counter-
parts did (Interactive Mathematics Program, 1995).

For reasons like these, the U.S. government long ago instituted the
National Assessment of Educational Progress (NAEP), which tests a represen-
tative sampling of all high school students in the country, not just the college-
bound. Although the NAEP does not adjust for state-to-state variation in
expectations, curricula, and other environmental differences, it does test a rep-
resentative sample of students on a range of tasks, which include SAT-like
items as well as extended-response tasks. In this sense, it provides a more reli-
able way than the SAT of comparing one state’s educational performance with
another. In fact, a cross-check of the state-by-state NAEP results for grade 4
and grade 8 (White, 1993) is one way to put some “context” around SAT-score
comparisons.
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So here we have a mathematical task for parents and guardians. The cal-
culations necessary for comparing one state’s SAT scores with another’s must
include the percentage of total students taking the examination in each state
as well as the composition of each pool and, secondarily, information regarding
the relative strengths and weaknesses of the states based on existing measures
of academic performance. Unlocking the mystery of test-score statistics means
understanding raw numbers in the context of a host of student population and
school environment factors. It means getting beyond the simplistic messages
of test-score headlines in order to understand relative measures of student
achievement and quality of the educational system.
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tATENDED RESPONSE [ASHS N
[TTERNATIONAL COMTFERTS

athematical tasks with a strong connection to today’s workplace call for

students to use procedures drawing on knowledge of recursion, numeri-

cal approximations, exploratory data analysis, and statistical hypothesis
testing. Such problems are realistic, authentic, and representative of the real
world. They can involve a great deal of good mathematics. However, they can
also be quite different from what one sees in the examinations given to high
school students of other countries (Britton & Raizen, 1996; Dossey, 1996).

School-leaving examinations (given to all students at the end of high school) in
England and Wales, France, Germany, Japan, Sweden, and even the United
States, tend to focus much more on the narrow “taught curriculum” of tradi-
tionally conceived concepts and procedures related to the road to calculus—and
to the university. This canon of work is generally limited to various forms of
algebra, geometry, elementary functions (including trigonometry), and intro-
ductory calculus. An analysis of representative examinations from these coun-
tries for 1991 and 1992 (Dossey, 1996) indicates that the heaviest concentration
of test items falls in the areas of calculus (applications of the definite integral,
applications of the derivative, and the use of the derivative in finding maxima
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and minima), functions (interpreting the graphs of functions, trigonometric
equations, and trigonometric identities), and probability distributions—notably,
the normal distribution (also known as the bell curve) and its properties.

Little evidence was seen in the study of these school-leaving (or college-
entrance) examinations of items that reflect rich ties to contemporary real-world
problems. For example, when recursion appeared, it did so in a relationship
between trigonometric functions or in the context of a radioactive substance
which decayed exponentially, both rather theoretical settings. There were no
tasks involving recursion as rich in contemporary connections as you will see in
Lottery Winnings (p. 111), Drug Dosage (p. 80), or Buying on Credit (p. 87).
In a like manner, no international evidence was seen of tasks concerning back-
of-the-envelope calculations, estimation, rounding, or general number, operation,
and symbol sense—all of which occur in various tasks in this volume.

The school-leaving and college-entrance examinations at the international
level showed a strong predisposition to focus applications in one area: classical
applications of mathematics to motion and mechanics problems from physics.
Consider the following item taken from the 1991 University of Tokyo examina-
tion for students applying to enter the university in science. It presents a non-
routine but classically oriented problem dealing with kinematics (Wu, 1993):

Let a, b, and ¢ be positive real numbers. In the xyz-space, consider the truncated
plane R consisting of points (x, y, z) satisfying the conditions

lxl <a, lyl <b,and z = c.
Let P be a source of light moving once around the ellipse

2 2

X Yo o_
@ T

1

in the z = ¢ + 1 plane. Sketch and calculate the area of the shadow projected by R on
the xy-plane.

Only the examinations from Germany reflected applications to business.
These applications tended to deal with quality control and applications of prob-
ability to production problems. For example, the 1992 abitur (an examination
given college-bound students) in the state of Bavaria contained the following
item (Dossey, 1996):

It is given that 8% of the golf balls made by a particular manufacturer are considered
unusable by golf players. From past experience, it has been shown that 5% of the golf
balls delivered by the manufacturer are returned because of defects. For every
returned ball, the manufacturer takes a loss of 0.80 DM (Deutsche Marks), and for
every ball not returned the manufacturer will make a net profit of 1.20 DM. What is
the probability that the manufacturer will make a net profit of at least 210 DM on a
200-ball delivery?

One should be careful about criticizing the focus of most school-leaving
examinations on applications of mathematics to classical problems in physics.
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These problems remain valuable for many students who need the ability to
translate and formulate problems drawing on the common languages of math-
ematics and science. These skills are inherently important for students con-
tinuing with the study of physics, engineering, and advanced mathematics.
Through a much broader and potentially richer set of mathematical activi-
ties for motivating a more diverse set of students, we can show all students the
power of mathematics to effect change through decision-making in settings close
to their lives. The ability to balance such traditional and contemporary forces in
both curriculum and assessment will remain a challenge for years to come.

The 1992 National Assessment of Educational Progress (NAEP) mathematics
assessment evaluated the performance of a random sample of U.S. twelfth
graders on a mixed set of tasks (Dossey, Mullis, & Jones, 1993). One task was
somewhat similar to, but much simpler than, the motion problem given in the
University of Tokyo examination:

The darkened segments in the figure on the left below [Figure 9-1] show the path of
an object that starts at point A and moves to point C at a constant rate of 1 unit per
second. The object’s distance from point A (or from point C) is the shortest distance
between the object and the point. In the graph paper on the right, complete the fol-
lowing steps:

Sketch the graph of the distance of the object from point A over the 7-second period.

Then sketch the graph of the distance of the object from the point C over the same
period.

On your graph, label point P at the point where the distance of the object from point
A is equal to the distance of the object from point C.

Between which two consecutive seconds is the object equidistant from points A and C?

FIGURE 9-1: piagrams from a NAEP problem

7
B C (End) 6
o 5
3 % 4
2 2 3
a)
1 2
1
A 1 2 3 4 01234567
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A second NAEP problem, set in perhaps a more real-world setting, asked
students to consider the following situation involving a proposed income tax:

One plan for a state income tax requires those persons with income of $10,000 or less
to pay no tax and those persons with income greater than $10,000 to pay a tax of 6 per-
cent only on the part of their income that exceeds $10,000.

A person’s effective tax rate is defined as the percent of total income that is paid in
tax. Based on this definition, could any person’s effective tax rate be 5 percent?
Could it be 6 percent? Explain your answer. Include examples if necessary to justify
your conclusion.

Students’ performances on these two tasks were evaluated using a 6-point
partial-credit rubric according to the categories of no response, totally incorrect
work, minimal work, partial work, satisfactory work, and extended correct work.
Only 1% of U.S. twelfth graders achieved one of the top two scoring categories (sat-
isfactory or extended credit) for the particle-motion task. The performance was not
much better for the tax item, where only 3% rated a satisfactory or extended score.
These data are based on the performances of a random sample of U.S. students
still attending school at the twelfth-grade level. The performance percentages
would undoubtedly be lower if all youth of that age cohort were sampled.

Contextualized extended-response items like those shown from NAEP are very
demanding for U.S. students. However, they in no way reach the level of com-
plexity expected of students of similar ages in the terminal year of secondary
school mathematics in countries that are our economic peers. The tasks in this
volume push the envelope further for U.S. students by requiring that our stu-
dents be able to draw on information from outside the traditional mathemat-
ics/science connection. However, additional focus must be given to communi-
cating the expectation that U.S. students be able to deal with non-routine
problems in contextualized settings. The ability of mathematics educators,
curriculum specialists, and assessment directors to coordinate this forward
movement will require a great deal of effort.

Comparisons with school-leaving examinations in other countries are
always difficult to interpret (Gandal & Dossey, 1997). The NAEP examina-
tions are designed to collect information on a random sample of American
12th graders, regardless of the secondary school mathematics they have
taken. The University of Tokyo examination is an exceedingly challenging
entrance examination given to select the best of the excellent students apply-
ing for entrance to that university. Regardless of that difference in purpose—
status of the system versus selection of individuals—the data and analysis
from comparisons of examinations (Britton & Raizen, 1996; Gandal & Dossey,
1997) suggest that contextualized, non-routine tasks are not commonly
included even on the mathematics examinations in other countries, although
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a great deal has been written concerning the need for such tasks. The U.S.
experience with NAEP tasks requiring such work shows that students will
need a great deal of support in formulating, solving, and communicating
their results.

These cautions notwithstanding, the broad applications of mathematics in
daily life, the need to motivate and retain students in mathematics, and the
importance of reporting the ability levels of students in mathematics relative
to the demands of the world all require that we begin to move both instruction
and assessment to include tasks such as those illustrated in this volume. To
do less is to abandon significant opportunities to relate the real world to the
classroom while strengthening student problem-solving and modeling skills.
The trick will be to balance this instruction and assessment with the concepts
and skills that define the traditional core of mathematics. This is the real-life
problem confronting the classroom teacher and the curriculum specialist.

Britton, E. D. & Raizen, S. A. (Eds.). (1996). Examining the examinations. Boston, MA: Kluwer
Academic Publishers.

Dossey, J. A. (1996). Mathematics examinations. In E. D. Britton & S. A. Raizen (Eds.), Examin-
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DRUG DOSAGE

A student strained her knee in an
intramural volleyball game, and her doctor
has prescribed an anti-inflammatory drug to
reduce the swelling. She is to take two 220-
milligram tablets every 8 hours for 10 days.
Her kidneys filter 60% of this drug from her
body every 8 hours. How much of the drug
is in her system after 24 hours?

This task can be
approached in many different ways using
numeric or algebraic methods, by hand, with
calculators or with computers. Regardless of
their approach, mathematically literate stu-
dents will need to be familiar with the math-
ematical structure in this task. Whether the
situation involves understanding effective
drug dosages, population growth, bank
accounts or loans, amortization, heating or
cooling, filtering pollution from lakes and
streams, models of learning and forgetting,
or models of the economy, students should
be familiar with some of the many situations
which give rise to iterative processes—
repeated processes in which future levels are
determined by present levels. The impor-
tance of technology in dealing with tasks of
this type is worth noting. Students should
be able to think and work with iterative
processes, and also should be sufficiently
comfortable with technology to expect, as a
matter of course, to consider long-term
behavior and trends. All high school gradu-
ates need to be comfortable with both the
structure of such tasks and the technological
tools for their investigation.

Iterative models illustrate a mathematical
tool that has become increasingly important
in recent years: difference equations, the dis-
crete-time analogs of differential equations.
In the past, students did not study difference
equations until well into their undergraduate
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or graduate courses. But with the aid of a
spreadsheet or graphing calculator, students
can handle such iterative problems with rela-
tive ease, provided that they can make the
translation from a problem statement to an
equation describing the iterative process,
also called a recursion equation.

One
approach is to create a table of values relat-
ing the number of 8-hour periods to the
amount of the drug remaining in the stu-
dent’s system. To do this, some assumptions
must be made about how quickly the drug
gets into her system after it is taken. The
simplest model assumes that the drug is
active immediately after the medication is
taken.

In this task, the information given is the rate
at which the drug is eliminated by the kid-
ney, whereas the focus of the tasks is on how
much remains. The fundamental unit of time
is an 8-hour period.

If the student takes 440 mg of the anti-
inflammatory drug, after 8 hours her kidneys
have removed 60% of the 440 mg, leaving
40% of the dose in her system. After she has
taken her second 440-mg dose, the total
amount of drug in her system in mg is then:
(.4)(440) + 440 = 616. After 16 hours, she has
40% of the total for 8 hours, plus another
440. After 24 hours, she has 40% of the total
for 16 hours, plus another 440. These calcu-
lations are summarized in Table 1.

One way to generalize this method is to use
Table 1 to see patterns. First, let A, denote
the amount of drug in the system after dose n.
Then the “drug remaining” column may be
represented as in Table 2. The relationship in
Table 2 between the “drug remaining” col-
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umn and the “total in system” column may
then be represented as shown in Table 3,
which can easily be converted into a spread-
sheet. Table 3 also suggests the recursion
equation: .4A,_; + 440 = A,, where A, is the
amount of drug present at the beginning of
the nth 8-hour period (or nth dose).
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More advanced students might begin their
solutions by modeling the process with this
recursion equation, expressing the relation-
ship between A, _; and A,. Such an equation
is well suited for use in a programmable cal-
culator or a spreadsheet, especially in investi-
gating the long-term behavior of the model.

DAY
1
1
1
2

TABLE 1: calculation of amount of drug in system

TIME IN HOURS  DRUG REMAINING

0 0
8 176
16 246.40
24 274.56

+ AMOUNT TAKEN = TOTAL IN SYSTEM
+ 440 = 440

+ 440 = 616

+ 440 = 686.4

+ 440 = 714.56

DOSE n

TABLE 2: calculation of amount of drug in system, first generalization

DRUG REMAINING + AMOUNT TAKEN = TOTAL IN SYSTEM, A,
0 + 440 = 440 A,
(.4)(440) + 440 = 616 A,
(.4)(616) + 440 = 686.4 A
(.4)(686.4) + 440 = 714.56 A,

TABLE 3: calculation of amount of drug in system, second generalization

DOSE n

DRUG REMAINING + AMOUNT TAKEN = TOTAL IN SYSTEM, A,
0 + 440 = A1
(.4)A1 + 440 = A2
(.4)A2 + 440 = A3
(.4)A3 + 440 = A4
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Students who have studied iterative models
may also solve this equation analytically to
find an explicit formula for A,,.

How much of the drug is
in the student’s system after 10 days? The
recursion equation above can be translated
into a spreadsheet to answer this. Students
will notice that the peak levels, A,, don’t get
bigger indefinitely and can investigate ways
of determining the limiting value.

Suppose she doesn't like taking medicine, so
she decides to take only one pill every 8
hours for 20 days. Does this strategy of tak-
ing half the amount of the drug for twice as
long a period result in the same level of drug
in her system? Many drugs have what is
known as a therapeutic level. Unless the
amount of drug in one’s system reaches the
therapeutic level, the drug is not effective. If
the therapeutic level for the drug she is tak-
ing is 650 mg, how effective is her strategy of
taking half the drug for twice as long?

Sometimes doctors suggest that the patient
take a double dose initially, called a loading
dose. A simple variation in the standard
model can illustrate the effect of the loading
dose on the effectiveness of the drug.

In addition to a therapeutic level, drugs also
have a toxic level. If too much of the drug is
in your system, you can become ill as a result.
As you age, the ability of your kidneys and
liver to remove the drug is reduced. Suppose
that, for older patients, only 40% of the drug
is removed in an 8-hour period. What dan-
gers does this pose for older patients? How
would such a patient fare using a strategy of
taking only one tablet for twice as long?
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Once these situations have been examined,
students could explore different dosages
(e.g., two 200-milligram pills); dosage inter-
vals, (e.g., taking one 220-milligram pill every
4 hours); and clearing rates (for example, the
kidneys of most healthy individuals will filter
45% to 65% of the drug from their system
within 8 hours). Though it requires more
sophisticated methods for solution, students
could also explore different models in which
the drug does not get into the bloodstream
immediately.

Some medications, particularly cold capsules,
contain several different drugs. The liver and
kidneys remove nearly 70% of a typical
decongestant in an 8-hour period but only
approximately 20% of a typical antihistamine
during the same period. If a student takes
one decongestant and one antihistamine
every 8 hours for 5 days, how does the level
of decongestant compare to the level of
antihistamine? Once the initial spreadsheet
or calculator formulas are created, this very
sophisticated question is within reach.

Often the information on the rate of filtering
by the liver and kidneys is given in terms of
the half-life of the drug. For example, theo-
phylline, a common asthma drug, has a half-
life of approximately 4 hours. Local pharma-
cists can identify the half-life of drugs that
people typically take during cold and flu
season. Students can rewrite the half-life of
the drugs in terms of the decay rate for the
interval of time between doses of the med-
ication. Since half-life is such a commonly
given measure, it is important that students
be able to use this terminology as well to
compare residual levels over specific time
periods.
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MENTAL MATHEMATICS

In a 6th grade mathematics class, one of
the problems requires the following calcula-
tion: ;)—g + % One student claims, without
using pencil or paper, that the answer is 2
because 15 + 3 =5and 32 + 8 =4. Is the stu-
dent’s answer correct? How can the stu-

dent’s reasoning be explained?

The owners of a manufacturing com-
pany would like to be able to promise one-
week delivery of special orders. The com-
pany is not ready, however, to make this
promise to customers. Of the 56 orders filled
so far this month, 49 were filled in one week
or less and 7 took more than one week to fill,
a success rate of 87.5%. During the weekly
team meeting, the supervisor wants to know
how many subsequent orders must be filled
within one week to increase this month’s
success rate to 90%. Several employees
know that this problem can be solved with
algebra and scrounge around for paper and
pencils. One employee, however, announces
that the answer is 14. She describes her rea-
soning as follows: We want the 7 late orders
so far to be only 10% of the total number of
orders, which therefore must be 70. Sub-
tracting the 49 on-time and 7 late orders so
far yields 14 orders. Is she correct? How can
her reasoning be explained?

Mental arithmetic can
save time, money, and even embarrassment—
such as being caught short of cash at the
check-out counter. In everyday life, people
use mental arithmetic to estimate budgets,
shopping bills, tips in restaurants, and taxes.
On the job, an employee might be asked to
give a quick estimate while talking to a boss
or a colleague. Mental arithmetic depends
not only upon number facts and estimating
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skills but also problem solving skills and
algebraic reasoning skills because the stan-
dard paper-and-pencil algorithms are some-
times hard to do in one’s head. As people
become more familiar with number facts and
gain number sense and symbol sense, their
mental arithmetic can become more precise
and more flexible. A study of 44 mathemati-
cians’ numerical estimation strategies found
considerable variation in the strategies used
(Dowker, 1992). As many as 23 different
strategies were used for the same task!

The value in discussing mental arithmetic in
high school is that number sense and sym-
bol sense can build on each other, leading to
greater facility with and understanding of
both algebra and mental arithmetic. The
examples above have been chosen to illus-
trate this possibility. In beginning algebra
classes, students often arrive at answers
without using symbolic techniques. Further-
more, as these examples illustrate, informal
or non-standard methods can reveal sophis-
ticated algebraic reasoning, even though it
might not be expressed symbolically. Rather
than disregarding such informal methods as
distractions from the goal of teaching stan-
dard algebraic methods, teachers can
exploit informal methods as sources of
meaning for students by establishing con-
nections between informal and formal
methods. Such connections can go in two
directions. First, an informal method may be
expressed symbolically, thereby promoting
algebra as a way of expressing ideas about
numbers. In this way, symbol sense may
build upon number sense. Second, after
some manipulation, symbolic expressions
may be reinterpreted informally, thereby
promoting algebra as a way of thinking
about numbers. In this way, number sense
may build upon symbol sense.
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MENTAL MATHEMATICS (ConTINUED)

For experienced users of algebra, some of
its power of comes from the fact that sym-
bols may be manipulated without concern
for their meaning. Nevertheless, for stu-
dents and experienced users alike, periodic
re-interpretation of symbolic expressions
can shed new light on the context, its
mathematical representations, or its mathe-
matical structure, potentially leading
toward an understanding of algebra that is
more flexible for solving familiar and unfa-
miliar problems.

Each
task is solved separately below.

It is easy to verify that the student’s
answer is indeed correct:

But the calculation does not shed much light
on whether the approach makes sense. One
way of explaining the approach is to note
that if the calculation were 12 + 312 the
answer would be 5, because 15 of anything
divided by 3 of the same things is 5. But
because we are dividing by é, which is 4
times bigger than i, the answer should be
1of 5,or 2, 32
4 4
Another way to justify the approach is
algebraic. The standard method is as
follows:

Sla
Qln
S Q
alQ
SIQ
ﬁlQ_

The student proposes that the answer is =< .
Simplifying this expression according to stan-
dard algebraic rules shows that the answer is

indeed correct:
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The awkwardness of the calculation, how-
ever, suggests that this approach, although
correct, might not be efficient if, for example,
c is not a factor of a.

Other employees might check the
employee’s answer. With 49 successes and 7
failures so far,and 14 future successes, the
success rate will be:

49+14 63 _ o
917514 70 =0.90, or 90%.

So her answer is correct. The deeper ques-
tion is how to explain the employee’s reason-
ing. Her reasoning is clear and understand-
able, too, indicating that there is probably a
general procedure at work. What, then, is the
relationship between her reasoning and the
standard algebraic approach?

A typical way to solve the problem that the
supervisor poses would be to let x represent
the unknown number of subsequent (con-
secutive) orders to be delivered successfully
within one week. Then,

49 + x
9r7ex 00

But this equation is hard to solve mentally.
To generalize this approach, let x be as
above, let r represent the desired success
rate, let s represent the number of successes
so far, and let f represent the number failures
so far. Then, as before,

S+X
S+ f+x
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Solving this for x yields (after some manipulation): tion and several others that follow alge-
braically from it, along with explanations of
_rs+rf-s how the equation might be interpreted.
To1-r
The last equation in Table 1 is close to the rea-
Though it is not immediately clear how to soning that the employee described, and is a
interpret this formula, the denominator, 1 -, general procedure that may be done mentally.
gives a clue about the employee’s reasoning: Thus, algebraic manipulation has provided jus-
if ris the desired success rate, then 1 - ris tification for the employee’s mental procedure.
the desired failure rate, and the employee’s
reasoning began with the failure rate —10% Algebra can also provide suggestions for
in this case. Equation 1, which is based on other mental procedures. Further algebraic
successes, has an analog that is based on manipulation of Equation 2, for example, gives
failures. Table 1 gives the analogous equa- additional possibilities, shown in Table 2.

TABLE 1: Equations relating successes and failures, with interpretations

EQUATION INTERPRETATION
f 1-r The failure rate, the number of failures over the total number of orders
s+f+x this month (past and future), is equal to 1 minus the success rate.

Dividing the number of failures by the target failure rate gives the

— =5+f+x i
1-r total number of orders required.

_f s_f The number of consecutive new successes required can be calcu-
S lated as follows: Divide the number of failures by the target failure

rate (yielding the total number of orders required), and subtract the
number of orders so far (both successes and failures).

TABLE 2: More equations relating successes and failures, with interpretations

EQUATION INTERPRETATION

s+x _ f The number of successes (both past and future) is to the success rate
r 1-r as the number of failures is to the failure rate.

s+tx _ r The ratio of successes to failures must be the same as the ratio of
f T 1-r the success rate to the failure rate.
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MENTAL MATHEMATICS (ConTINUED)

The last equation in Table 2 gives another
way to think about the original problem.

Because the ratio of the desired success rate

and failure rate is 90:10 or 9:1, there must
be 9 times as many successes as failures.
With 7 failures so far, there must be 63 suc-
cesses, or 14 more than the 49 we already
have.

Traditional algebra prob-
lems can present similar opportunities for
students to generate informal solutions. For
example,
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Box + Box + Box + Triangle = 47
Box - Triangle =1

A student might say, “Well, | know from the
second equation that Box is one more than
Triangle. So | imagined that the Triangle in
the first equation was a Box. Then the first
equation would be Box + Box + Box + Box = 48.
So,Box is 12 and Triangle is 11.”

Dowker, A.(1992). Computational estimation strategies
of professional mathematicians. Journal for
Research in Mathematics Education, 23(1), 45-55.
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BUYING ON CREDIT

A credit card company, whose
motto is “see the world on credit,” charges
1.387% interest on the unpaid balance in an
account each month, and requires a mini-
mum payment of 2% of the outstanding bal-
ance each month. Suppose you charge $100
each month and make only the minimum
payment each month. How much will you
owe at the time of your 24th bill? Assuming
you pay the whole bill at the end of that
period, how much will be interest?

Consumer debt is a big
issue in this country. Thanks to the wide-
spread availability of calculators and com-
puters, consumers can easily do the calcula-
tions themselves to better understand the
cost of maintaining credit card balances.

Powerful tools for this job are spreadsheets
and programmable and graphing calculators.
Mathematical analysis is still necessary, of
course, but technology provides an avenue
for mathematical modeling that gives stu-
dents straightforward access to some mathe-
matics that once required much more back-
ground. Once the spreadsheet is set up,
students can explore different payment
options and see the consequences. Spread-
sheets can help demystify mathematics and
provide an exploratory medium for doing
calculations that are both relevant and
meaningful for students.

The
general mathematical structure of this task is
the same as that of Drug Dosage (p. 80), and
solutions can be obtained in similar ways. To
analyze what happens when making only the
minimum monthly payment, one might start
with a table in order to obtain a recursion
equation. That equation can be solved or
used in a calculator or a spreadsheet.

says and Examples for the Education of All Students

In addition to charging interest on the previ-
ous month’s unpaid balance, most credit card
companies charge interest on new pur-
chases, too, when the customer is carrying a
balance. (The typical 25-day, interest-free
grace period applies only if the entire bal-
ance is paid off each month.) The interest is
usually computed based on an “average daily
balance,” so the actual amount of interest
depends upon when the payment arrives
and when the new charge is made. To sim-
plify the calculations, assume that both the
new charge and the payment come in at the
end of the billing cycle and do not affect the
interest that month.

To obtain a recursion equation, let x,, be the
amount of the nth statement. Because the
minimum payment is 2% of x,, then, each
month,

the amount of the payment is .02x,,

the interest charge is .01387x,,, and

there is an additional $100 of purchases.
So to find x,,; (the amount of the (n + 1)st
statement), the payment is subtracted from

and the other amounts are added to x,,, the
amount of the nth statement:

Xpi1 = Xp —.02x, +.01387x, + 100

or

Xps1 = .99387x, + 100.

To find out how much will be owed at the
time of the 24th bill, start with x; = 100, and
repeat the calculation 23 times. Or, with a
programmable calculator, define x; = 100
and x,,; by the formula given above and tell
the program to calculate xy,.
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BUYING ON CREDIT (conTinuED)

To calculate using a spreadsheet, begin with
the first row which probably has cells named
as shown in Table 1. In a spreadsheet, these
cells might be used to contain the informa-
tion shown in Table 2.

In the first month, there is no previous bill,
no minimum payment, no unpaid balance,
and no interest. Enter 100 in cell D1 repre-
senting the new charges and 100 in E1 to
represent the balance at the end of month 1.

In the second row, enter the numbers and for-
mulas shown in Table 3. Then formulas for the
next 22 rows are the same, except that the row
numbers will change. Most spreadsheet pro-
grams will change the row numbers automati-
cally if these cells are copied and then pasted
into the next 22 rows. The spreadsheet will
create a table similar to Table 4.

The spreadsheet can total the columns, too,
as illustrated. Table 4 shows that if you pay
in the way suggested, you will have made
$527.97 in payments on your $2,400 in pur-
chases and still owe $2,238.18 because of
$366.14 in interest.

If the calculations in Table 4 are correct,
the purchases plus the interest minus the
payments should give the outstanding
balance.

Purchases + Interest - Payments =
$2,400 + $366.14 — $527.97 = $2,238.17

so the calculations are off by a penny some-
where. By asking the spreadsheet to display
its results more accurately, it becomes clear
that there is not a mistake, just “round-off”
error.

TABLE 1: nNames of cells in a spreadsheet

TABLE 2: How data might be organized in a spreadsheet

The previous The minimum
bill payment

interest

The new
balance

The new
charges

TABLE 3: Formulas for one row of the spreadsheet’

E1l . 02* A2

.01387*A2 $100

A2—-B2+C2+D2
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TABLE 4: The completed spreadsheet?

PREVIOUS NEW
MONTH BALANCE PAYMENT INTEREST ~ PURCHASES BALANCE
A B c D E
1 $100.00 $100.00
2 $100.00 $2.00 $1.39 $100.00 $199.39
3 $199.39 $3.99 $2.77 $100.00 $298.16
4 $298.16 $5.96 $4.14 $100.00 $396.34
5 $396.34 $7.93 $5.50 $100.00 $493.91
6 $493.91 $9.88 $6.85 $100.00 $590.88
7 $590.88 $11.82 $8.20 $100.00 $687.26
8 $687.26 $13.75 $9.53 $100.00 $783.04
9 $783.04 $15.66 $10.86 $100.00 $878.24
10 $878.24 $17.56 $12.18 $100.00 $972.86
11 $972.86 $19.46 $13.49 $100.00 $1,066.90
12 $1,066.90 $21.34 $14.80 $100.00 $1,160.36
13 $1,160.36 $23.21 $16.09 $100.00 $1,253.24
14 $1,253.24 $25.06 $17.38 $100.00 $1,345.56
15 $1,345.56 $26.91 $18.66 $100.00 $1,437.31
16 $1,437.31 $28.75 $19.94 $100.00 $1,528.50
17 $1,528.50 $30.57 $21.20 $100.00 $1,619.13
18 $1,619.13 $32.38 $22.46 $100.00 $1,709.21
19 $1,709.21 $34.18 $23.71 $100.00 $1,798.73
20 $1,798.73 $35.97 $24.95 $100.00 $1,887.70
21 $1,887.70 $37.75 $26.18 $100.00 $1,976.13
22 $1,976.13 $39.52 $27.41 $100.00 $2,064.02
23 $2,064.02 $41.28 $28.63 $100.00 $2,151.37
24 $2,151.37 $43.03 $29.84 $100.00 $2,238.18
TOTAL $527.97 $366.14 $2,400.00
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BUYING ON CREDIT (ConTINUED)

Purchases + Interest — Payments =
$2,400 + $366.1438 - $527.9651 = $2,231.1787.

See Rounding Off (p. 119) for further discus-
sion of this issue.

The solution above made
several assumptions to simplify the calcula-
tions. Some extensions can bring the solu-
tion closer to the way the credit card compa-
nies actually do their computations:

For which of the above calculations is
rounding necessary? Fix the table in the
spreadsheet to properly account for rounding.

For many credit card companies, the mini-
mum payment is always a whole-dollar
amount. Incorporate this idea into the solution.

Expand on the solution above so that the
dates of payments and new charges could be
varied and so that the interest would be cal-
culated according to an average daily bal-
ance. Investigate how the dates of payments
and new charges affect the interest charges.
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Other extensions could investigate alter-
native scenarios. Suppose, for example,
you spent $2,400 up front and then made
the minimum payment for each of 24
months. What would the accrued interest
be?

The commentary mentioned that the mathe-
matical structure of this task is the same as
that of Drug Dosage (p. 80). Lottery Winnings
(p. 111) also shares the same basic structure.
Once students have sufficient experience
with tasks like these, they might explore the
difference and similarities among the proce-
dures, formulas, and solutions of these tasks.

1. Here, as in many spreadsheet programs, an aster-
isk serves as a multiplication sign. In some
spreadsheet programs, formulas must be pre-
ceded with an equals sign, so that, for example,
the contents of the second cell would instead be:
=.02*A1.

2. The column headings are provided for clarity, but
are not part of the spreadsheet. Conveniently, the
row numbers can function as month numbers.
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DVERVIEL

ny discussion of curriculum assumes, whether implicitly or explicitly, one

of many views of curriculum. College admissions requirements, for exam-

ple, sometimes describe a high school mathematics curriculum as little
more than a list of course titles. Toward the other end of specificity, some
might point to a textbook, looking especially at its table of contents. For the
purposes of this document, a curriculum is a detailed plan for instruction,
including not only the materials used by teachers and students, but also under-
standings of how they fit together and of the important mathematical concepts
embedded within them. Thus, a mathematics curriculum might include—but
must not be limited to—tasks such as those in this volume. The essays in Part
Three in particular go beyond a list of topics, beyond a collection of tasks, to
discuss how curricula might be constructed—how tasks, topics, and “habits of
mind” might be knit together as themes or strands to create a curriculum with
coherence, depth, and rich opportunity for student learning, sense making, and
connections to students’ ways of thinking about the world.

In his essay, Zalman Usiskin discusses the importance of applying knowl-
edge to new situations. When designing curriculum, he begins with a key con-
cept and seeks models—settings, often from the workplace or everyday life,
which embody the mathematical ideas. Of course, for many users of mathe-

GURRICULAR CONSIDERATIONS

93

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/5777.html

says and Examples for the Education of All Students

matics, it is more common to go in the other direction—to begin with a real-
world setting and seek a mathematical model of that setting, perhaps with
graphs or formulas. Chazan and Bethell (p. 35) describe such an approach ear-
lier in this volume. They put students into the workplace and asked them to
find the mathematics. Thus, whether the mathematics models the world or the
world models the mathematics depends upon where you begin. Ultimately,
both directions might be necessary for students to make strong connections
between mathematics and their worlds. In discussing the role of tasks in cur-
riculum, Usiskin suggests organizing curriculum around sequences of such
models and problems that range over many years.

Albert Cuoco takes another approach to organizing curriculum. He sug-
gests that mathematics is more than a collection of topics organized under
broad headings such as geometry and number but, rather, is about ways of
thinking, or habits of mind, such as algorithmic thinking, proportional reason-
ing, and reasoning through thought experiment. Habits of mind, he suggests,
can be threads that help organize curriculum, for without habits of mind,
higher order skills will remain elusive.

Harvey Keynes’ essay discusses a key theme in this document: effectively
preparing students for work and for higher education. Keynes asks two impor-
tant questions: First, what are characteristics of tasks that can prepare stu-
dents both for the workplace and for postsecondary education? Second, what
are the requirements for effective use of tasks like these in the classroom?
Keynes suggests conditions of appropriateness for tasks that can develop both
concrete and abstract thinking.

The tasks in Part Three differ from those in other parts to illustrate that
they may be fruitfully approached at many different times in a student’s math-
ematical career. The discussions of these tasks include multiple solutions,
many extensions, and more connections to other mathematical ways of think-
ing. Some of this discussion is quite deep mathematically, not to suggest that
such depth is appropriate for all students at the same time, but, rather, to sug-
gest that these tasks can provide opportunity for engagement in rich and deep
mathematics to students when they are interested and ready. Tasks that are
sufficiently rich and that satisfy Keynes’ conditions for appropriateness can fit
more than once into a curriculum that is organized around Cuoco’s “habits of
mind” or Usiskin’s sequences of models.

The Lottery Winnings (p. 111) task may be solved at one level with
spreadsheets, for students having little formal algebraic experience, and it
may be used to motivate students to see a need for the general symbolic lan-
guage that algebra provides. At another level, students who are more experi-
enced with the symbolism of algebra might be expected to express the task’s
spreadsheet relationships in standard algebraic notation. Students with even
more sophistication might be expected to find the general formula. In a pre-
calculus course, students might explore these lottery winnings with annual,
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semi-annual, monthly, weekly, and daily payments as excellent background for
the important calculus idea of successive approximation.

The other tasks in this part are similarly rich. In addition to discussion
of probability and Simpson’s paradox, Hospital Quality (p. 115) can lead to
exploration of ideas about rates, ordered pairs, and vectors. Rounding Off
(p. 119) provides opportunities for exploring ideas in algebra and arithmetic,
while serving as an introduction to the idea of using geometry to represent
probability. Rules of Thumb (p. 123) can lead to discussion of modeling and
comparison of linear models, or linear and quadratic models. The many
avenues of approach to these tasks may be exploited by teachers to maximize
connections to students’ thinking and experience.

The idea of periodically revisiting tasks sounds rather like Bruner’s spi-
ral curriculum (Bruner, 1965/1960), an idea that some might argue has lost its
usefulness. Data from the Third International Mathematics and Science
Study (TIMSS) (Schmidt, McKnight, & Raizen, 1996) suggest, however, that
there has been a degeneration of the spiral curriculum as Bruner saw it. The
point of Bruner’s spiral curriculum was not that topics should be repeated for
several years until they “stick” but that, when an idea is revisited in a new
setting or with new tools, if students have opportunity to connect the new
encounter to their understandings of their previous encounters with the idea
(along with all the intervening experiences), then their understanding can
grow.

There are dangers in any statements of standards or suggested visions
of school mathematics, for there is no clear path indicating what should hap-
pen in classrooms. Cuoco warns that the statement, “Students should be
able to solve problems like these,” can become “Students should be able to
solve these problems.” But such a conclusion is contrary to the intention of
this volume. The goals are for students to learn mathematics and to learn
to appreciate the power that mathematics holds for us. Any task or collec-
tion of tasks is merely intended to be a means to those ends. Furthermore,
teaching any task as only a procedure to be memorized will destroy its rich-
ness. Our point—especially in evoking the image of the spiral curriculum—
is that there is value in revisiting tasks such as these at various points in a
student’s career, each time aiming for more sophisticated analysis and
deeper mathematics.

In summary, the tasks in this volume cannot comprise a high school math-
ematics curriculum; no small collection of tasks could. These tasks have been
chosen for their illustrative richness rather than for any collective curricular
coherence. Individually and collectively, these tasks together with the essays
might instead serve as inspiration for those interested in curriculum, but, as
curriculum designers know, there is a lot of work to be done between first not-
ing that there is mathematics in some real-world context and finally develop-
ing good curricular materials.
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il
SURRICULUM

hen I first taught high school, I used to tell my students—even the average

ones—that the real test of learning was not whether they could answer

questions like those they had seen in their textbooks but whether they
could apply their knowledge to new situations they had not encountered. This
aphorism is only partially true and was patently unfair. In applying the prin-
ciple of the aphorism, when I would make up a test, I would purposely choose
items that students had not encountered, items for which they would not have
studied. Those items were not a test of what had been learned from the class
but what had not been learned from the class. They tested some natural or
acquired competence beyond the course.

Those who wish students to apply, synthesize, analyze, and evaluate (to
use the language of higher mental processes found in Bloom’s Taxonomy of
Educational Objectives [1956]) have always found it difficult to invent repre-
sentative items. Those for whom a problem is “a situation which we want to
resolve but for which we do not have an algorithm” (to use the common
researcher definition) have a similar dilemma, for once a problem is solved, the
astute solver has an algorithm to use for the next problem of that type. Invent-
ing good problems has always been an art.

The quandary presented by the desire to have students apply their knowl-
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edge and not just parrot it has been felt by all those whose goals involve more
than routine skills. In the 1970’s, when in a reaction to one of the weaknesses
of the “new math” we began to design curricula in which a main goal was to
have students apply what they knew in real-world situations, the same
dilemma appeared in only slightly different clothing. We felt strongly that stu-
dents were not able to apply algebra because they were not taught the appli-
cations. But if we taught the applications, then were we not changing “appli-
cation” from a higher level process to a lower one?

We decided that the goal of learning to apply was more important than
how that learning had been attained; that is, we decided to teach the applica-
tions. For example, consider the following problem, introduced in Algebra
Through Applications with Probability and Statistics (Usiskin, 1979).

In Chicago there are two monthly rates for local telephone service. Choice 1 has a
base rate of $11.25 for 200 calls plus .0523 for each call over 200. Choice 2 is $24.50
for an unlimited number of calls. How do you decide which plan is better?

Students were asked to write a sentence that would help them decide.
The goal was to think of the sentence 11.25 + .0523(x — 200) > 24.5 (When is
choice 1 better?) or 11.25 + .0523(x — 200) < 24.5 (When is choice 2 better?).
This is not an easy task for students who have never studied problems like
these. But we wanted to make solving such problems routine because they
abound in the real world. The lesson contained similar items involving teacher
salaries (compare $9,000 plus $500 for each year’s experience with $9,750 plus
$350 for each year) and rental cars (compare $15.95 a day plus 14¢ a mile with
$12.95 a day plus 15¢ a mile). Fitting the title of the lesson, “Decision-Making
Using Sentences,” students were not asked to solve the sentences they wrote.
The problems were employed to motivate the next lesson, in which students
were shown an algorithm for solving ax + b < cx + d, and were given additional
problems of the type.

“Problems of the type” is an important phrase to consider. What type is
involved here? A current view is that it is unwise to sort problems by their con-
text, such as has been the tradition in algebra with coin problems, mixture
problems, distance-rate-time problems, age problems, and so on. Yet, on the
other hand, Polya’s advice is also commonly accepted: “If you cannot solve the
proposed problem try to solve first some related problem” (Polya, 1957). When
is a problem to be considered as “related”? How should we group problems for
study?

The consequences of grouping related problems reach far beyond explica-
tion of types. With respect to problem solving, the power of mathematics lies in
its ability to solve entire classes of problems with similar techniques. The
Chicago telephone-cost problem is not an earth-shaking context for mathemat-
ics, but it exemplifies a class of constant increase problems that lead to equations
and functions involving the algebraic form ax + 6. Put another way, if we expect
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students to come up with a mathematical model for a real situation, they need to
know the attributes of the situation that would cause a particular mathematical
model (linear, quadratic, exponential, sine wave, etc.) to be appropriate.

So, in developing the University of Chicago School Mathematics Project
curricula that give strong attention to applications, we have often begun with
the mathematical concept and sought the key mathematical models of that con-
cept (University of Chicago School Mathematics Project, 1989-97; Usiskin,
1991). In a few instances, the content is standard in the curriculum, as with
growth and decay models for exponential functions. In other cases, the math-
ematical conceptualizations of the topic need to be broadened; as with angle,
for example, which in geometry is traditionally “the union of two rays,” but
which in applications may be better conceptualized as a “turn” or as a “differ-
ence in directions.” Freudenthal (1983) has done many analyses of this kind.

In a few cases, we have found that the standard approach to the problem
type to be inhibiting. Consider the following problem, which originates from
an actual situation:

A city charges 8% tax and a restaurant in the city gives a 5% discount for paying cash.
Is it better for a diner if the discount is given first and the tax charged on the discounted
price, or if the tax is charged on the discounted price, and then the discount taken?

Students are customarily taught that taxes (discounts) are added to (sub-
tracted from) original prices to determine total cost. Thinking this way, work-
ing from a meal with original cost M, the first option is represented by the
expression

(M — .05M) + .08(M — .05M).

If, instead, students are taught to think of taxes and discounts as factors,
i.e., to think multiplicatively, that same option is represented by 1.08(.95M).
The multiplicative representation is not only simpler but makes transparent
the desired generalization from doing this sort of problem: it makes no differ-
ence what the specific discounts and taxes are; if they are fixed they can be
done in any order.

Fitting tasks to curriculum involves more than assuring that the scope of
the curriculum is broad enough to accommodate the tasks. There is also the
question of the sequence of topics. The mathematics you will see illustrated in
the Lottery Winnings (p. 111) task involves the general idea of annuities,
which can be viewed as the sums of compound interest expressions, which
themselves trace back to the same multiplicative idea in the restaurant exam-
ple given immediately above, which in turn requires that a student have the
notion that multiplication by a number larger than 1 serves to enlarge a quan-
tity, and multiplication by a number between 0 and 1 serves to contract it.

In the past, the mathematics curriculum has been carefully sequenced
either by algorithmic considerations (to perform long division, you must be able
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to subtract and multiply, so these operations must precede division) or by log-
ical considerations (one proof of the Pythagorean Theorem involves similar tri-
angles, so these must be studied before the Pythagorean Theorem can be con-
sidered). The above analysis suggests that the development of problem-solving
among the populace would be aided by the development of sequences of models
and problems that range over many years of study.

Here is an example of such a development. Begin in the primary grades
with the use of subtraction for comparison and the specific example of change.
When division is introduced, cover the wide range of rates such as
students/class, km/hr, and people/mi2. In middle school, use negative numbers
to represent measures in situations that have two opposing directions, such as
gain and loss, up and down, or north and south, and picture them on the num-
ber line. Introduce ordered pairs, not only for cataloguing the locations of
objects but also for recording pairs of data. Then, by asking how fast some-
thing has changed, introduce the concept of rate of change, picture this in the
coordinate plane, and use both the application and the picture to lead into the
idea of slope. In high school, study situations in which the rate of change is
not constant. Use these to consider limits of rates of change. There is rea-
sonable evidence that such an approach is far more effective in leading to
understanding of the pure and applied mathematics involved than tradi-
tional approaches, in which the idea of slope is introduced by a definition as
(yy — y)/(xy — x;) with no prior buildup or connection to rate of change.

Another example is geometric. In the elementary grades, use the familiar
coordinate square grid to obtain areas of rectilinear figures and associate the
product xy with the area of a rectangle with dimensions x and y. But also mod-
ify the square or rectangular grid to generate tessellations. Point out that a
two-dimensional object that tessellates can be cut from a large sheet without
wasting space. In the middle grades or early high school, use finer and finer
grids to provide better and better estimates of the areas of regions. In high
school, graph the speed of a car or other object over time, and interpret the
area between the graph and the x-axis as the product of the speed and the time,
i.e., as the distance traveled. This paves the way for the many situations rep-
resentable with integrals.

It is significant that the long sequences described in the preceding two
paragraphs are embedded in the traditional content of arithmetic, algebra,
geometry, and elementary analysis. We have yet, however, to develop long
sequences for the teaching of statistics, as it has had a shorter lifetime in the
high school curriculum. To incorporate tasks like those in this volume into the
experience of students is a curricular problem that is currently being under-
taken by some of the mathematics reform curricula.

Even with the analysis of individual tasks and their setting in the cur-
riculum, there remain two particularly knotty curricular problems. First,
there are tasks that involve a range of mathematics too wide to be classified by
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a single mathematical model or even a family of related models. Incorporating
these tasks into a curriculum is on the one hand easy because they can fit in
so many places. On the other hand, without such a broader context in which
to embed them, such tasks become unwieldy if students are not well versed in
the prerequisites to them.

Second is the issue with which this essay began. While a fundamental
goal of mathematics education must remain for students to acquire the compe-
tencies to solve simple and complex problems they are likely to encounter in
their lives, students must also have opportunities to approach problems the
likes of which they have not seen before. A task for curriculum developers is
to accommodate these two competing needs. The corresponding task for
philosophers and policy makers is to consider whether it is fair for everyday
classroom assessments to test students on the latter.
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[IATHEMATICS 5 A WAY OF
16 AB0UT THING

didn’t always feel this way about mathematics. When I started teaching high
school, I thought that mathematics was an ever-growing body of knowledge.
Algebra was about equations, geometry was about space, arithmetic was
about numbers; every branch of mathematics was about some particular math-
ematical objects. Gradually, I began to realize that what my students (some of
them, anyway) were really taking away from my classes was a style of work that
manifested itself between the lines in our discussions about triangles and poly-
nomials and sample spaces. I began to see my discipline not only as a collection
of results and conjectures but also as a collection of habits of mind.
This realization first became a conscious one for me when my family and
I were building a house at the same time I was researching a problem in num-
ber theory. Now, pounding nails seems nothing like proving theorems, but I
began to notice a remarkable similarity between the two projects. The simi-
larity did not come from the fact that house-building requires applications of
results from elementary mathematics (it does, by the way); rather, house-
building and theorem-proving are alike, I realized, because of the kinds of
thinking they require. Both require you to perform thought experiments, to
visualize things that don’t (yet) exist, to predict results of experiments that
would be impossible to actually carry out, to tease out efficient algorithms from
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seemingly ad hoc actions, to deal with complexity, and to find similarities
among seemingly different phenomena.

This focus on mathematical ways of thinking has been the emphasis in my
classes and curriculum writing ever since, and I'm now convinced that, more
than any specific result or skill, more than the Pythagorean Theorem or the
fundamental theorem of algebra, these mathematical habits of mind are the
most important things students can take away from their mathematics educa-
tion (see Cuoco, Goldenberg & Mark, 1996; Cuoco, 1995; and Goldenberg, 1996
for more on this theme). For all students, whether they eventually build
houses, run businesses, use spreadsheets, or prove theorems, the real utility of
mathematics is not that you can use it to figure the slope of a wheelchair ramp,
but that it provides you with the intellectual schemata necessary to make
sense of a world in which the products of mathematical thinking are increas-
ingly pervasive in almost every walk of life. This is not to say that other facets
of mathematics should be neglected; questions of content, applications, cul-
tural significance, and connections are all essential in the design of a mathe-
matics program. But without explicit attention to mathematical ways of think-
ing, the goals of “intellectual sophistication” and “higher order thinking skills”
will remain elusive.

The habits of mind approach seems to be gaining acceptance among other
mathematics educators. Everybody Counts (NRC, 1989) describes it this way:
“Mathematics offers distinctive modes of thought which are both versatile and
powerful. . .. Experience with mathematical modes of thought builds mathemat-
ical power—a capacity of mind of increasing value in this technological age. . ..”

A curriculum that uses workplace and everyday tasks to support the goal
of developing mathematical thinking is less likely to use the tasks as the cur-
riculum; it is less likely to let the message “high school graduates should be
able to solve problems like these” evolve into “high school graduates should be
able to solve these problems.” Conversely, a curriculum firmly rooted in con-
crete problems is less likely to turn the goal of developing mathematical habits
of mind into a “mathematics appreciation” curriculum, that studies little more
than lists of mathematical ways of thinking. The dialectic between problem-
solving and theory-building is the fuel for progress in mathematics, and math-
ematics education should exploit its power. Problems can be both sources for
and applications of methods, theories, and approaches that are characteristi-
cally mathematical. For example, through the work of Descartes, Euler,
Lagrange, Galois, and many others, techniques for solving algebraic equations
developed alongside theory about their solutions. (See, e.g., Kleiner, 1986.)

What does it mean to organize a curriculum around mathematical ways of
thinking? One way to think about it is to imagine a common core curriculum
for all students lasting through, say, grade 10. Students would work on prob-
lems, long-term investigations, and exercises very much as they do now, except
the activities would be aimed at developing specific mathematical approaches.
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In contrast to other kinds of organizers currently in use (applications, every-
day situations, whimsy, even computational skill), the benchmark for deciding
whether or not to include an activity in a curriculum would be the extent to
which it provides an arena in which students can develop specific mathemati-
cal ways of thinking, such as:

Algorithmic thinking: Constructing and using mechanical processes to
model situations.

Reasoning by continuity: Thinking about continuously varying systems.
Combinatorial reasoning: Developing ways to “count without counting.”
Thought experiment: Learning to imagine complex interactions.

Proportional reasoning: Thinking about scaling, area, measure, and
probability.

Reasoning about calculations: Developing algebraic thinking about
properties of operations in various symbol systems.

Topological thinking: Generalizing notions of closeness and approxi-
mation to non-metric situations.

These themes would run throughout the K-10 experience. They would be
discussed explicitly in class, in diverse contexts, while students were working
on problems. For example, an investigation involving topological reasoning
might ask students to improve on the way users are allowed to organize their
desktops in Macintosh and Windows environments.

After a decade of this core curriculum, students could choose from a set of
electives that would vary from school to school and from year to year. Courses
in probability, geometry, physics, history, algebra, cryptography, linear algebra,
art, data-analysis, accounting, calculus, computer graphics, trigonometry, and
whatever else interests teachers and students are all candidates. If students
have a solid foundation in mathematical thinking, they will be prepared for a
wide array of high-powered courses designed to meet the interests and needs
of the entire spectrum of students. This is a genuine alternative to the current
system of tracking: it would give students a choice and a chance to pursue their
interests (16-year-old students do have well-developed interests). But no mat-
ter what choices they made, students would be assured of a substantial math-
ematics program that built on a core curriculum centering around mathemati-
cal habits of mind.

Such a curriculum would help students develop general strategies for
doing mathematics, establish underlying mathematical (not just contextual)
connections among the tasks, and help students develop the intellectual
prowess necessary to deal with the kinds of problems they’ll face after gradua-
tion. For example, a strand on algorithmic thinking would be a good context
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for investigating problems such as Lottery Winnings (p. 111) or Buying on
Credit (p. 87). Whereas the contextual similarity of these tasks is evident
even at a superficial level, they also share a deeper mathematical similarity
based on a kind of algorithmic thinking that is somewhat removed from the
mathematics backgrounds of most adults.

Show a group of eighth graders a table like Table 11-1. Then ask these
eighth graders to describe what is going on. Their responses will be quite dif-
ferent from those of most adults who have been schooled in algebra. Adults
immediately search for a “rule”—a procedure that can be performed to the
“Input” column to produce the “Output” numbers. (In this case, multiplying by
5 and subtracting 1 does it). Young students are much more likely to see other
patterns (the last digits on the right, for example), and very often they’ll notice
that every number in the right-hand column is 5 more than the one preceding
it. This is the germ of recursive thinking, a very important way of looking at
things. Rather than extinguish it during high
school, a strand on algorithmic thinking would
develop it in tandem with the more traditional
“closed form” (multiply by 5 and subtract 1) way

TABLE 11-1:

An input/output table

of modeling the data. Recursive approaches are INPUT OuTPUT

ideal ways to build spreadsheets and model 1 4

processes using computer algebra systems like

Mathematica. And investigating the connections 2 9

between recursive and closed form models can 3 14

become a theme that organizes a great many of

the topics in traditional high school mathematics. 4 19
Recursive thinking also gives students gen- 5 24

uine intellectual power. Listen to a group of

adults discussing the question, “How does the 6 29

bank figure out the monthly payment on my car
loan?” You’ll hear qualitative statements, but you’ll seldom hear a satisfactory
mathematical description of what goes on behind the button on the calculator.
Students accustomed to thinking in algorithms would ask themselves how the
bank constructs a spreadsheet for computing the balance owed at the end of
each month. They’d articulate an algorithm something like, “The amount you
owe at the end of a month is the amount you owed at the beginning, plus 1/12
of the yearly interest on that amount, minus whatever you make for a pay-
ment.” This simple model is easily executed on a spreadsheet, and it quickly
leads to an algorithm for calculating the monthly payment on a loan. This can
be refined in calculus to the method that is used in practice, and it can be mod-
ified well before calculus is known to handle tasks like those in this volume.
The usefulness of this kind of algorithmic thinking transcends the analy-
sis of a particular context; algorithmic thinking is used by chefs, construction
workers, librarians, and people surfing the Internet. A curriculum that focuses
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on developing similar mathematical habits will go a long way toward achieving
the goal of preparing students for challenges that don’t yet exist. And it offers
a mathematical framework that meets the goal of providing tasks that prepare
students both for the world of work and for postsecondary education, that
“exemplify central mathematical ideas,” and that “convey the rich explanatory
power of mathematics.”
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POSTSECONDARY LOUCATION

he goals of High School Mathematics at Work are broad and ambitious as

well as somewhat novel. This collection of essays discusses issues and

potential themes for mathematical curricula that might be appropriate for
both those students heading to the world of work and those headed into post-
secondary education in the mathematical sciences. These issues and themes
are illustrated by tasks that are intended to “exemplify central mathematical
ideas” and “convey the rich explanatory power of mathematics.”

One can hardly argue with any of these goals. But we also expect that
the use of mathematics in the world of work by students who have completed
their mathematics education in high school will probably be different (though
not necessarily easier) than for students continuing in postsecondary educa-
tion. In the first instance, technical workers might be expected to do concrete
multi-step computations using numerical methods, probably with technologi-
cal support, and to understand and use some algebraic and geometric meth-
ods, and symbolic arguments that are job-specific. They generally will not be
expected to abstract and symbolically model mathematics embedded in work
situations, to reason and communicate symbolically, or to use abstract math-
ematical reasoning or advanced mathematical tools in applications to other
disciplines.
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On the other hand, students moving on to postsecondary education, espe-
cially in careers that use mathematics in a professional capacity, will be
expected to have these more conceptual skills as well as the some of the same
concrete skills of students who enter the work force. Certainly in college
courses, many of these more conceptual and abstract skills will be prerequi-
sites. So a major issue for postsecondary preparation is whether tasks such as
those in this volume can be used to effectively prepare students to engage in
symbolic and abstract mathematical reasoning in algebra, geometry, and
analysis as well as to explore concrete and numerical methods.

When selecting or designing tasks for inclusion in a curriculum, one must
ask not only whether the tasks are based on rich and deep mathematics but
also whether they can be used effectively in the typical classroom to exemplify
central mathematical ideas and to contribute to an integrated whole. Can the
rich and deep mathematical ideas embedded in tasks be exposed and effec-
tively explored conceptually, visually, and analytically, as well as numerically
and technologically, so that they contribute in meaningful ways to students’
preparation for college calculus, combinatorics, and linear algebra? These
questions depend on (a) the classroom teacher’s interest and capability, (b) the
mathematics curriculum, (c) classroom dynamics, (d) school and family expec-
tations, and (e) the inherent mathematical ideas embedded in the tasks them-
selves. Any task must be viewed in this larger perspective to see if it can really
be useful in helping students learn mathematics at both the concrete/compu-
tational and symbolic/conceptual levels.

It does not take very long to realize the difficulty of finding tasks that can
effectively illustrate the major objectives of this document. Such tasks must,
at a minimum,

be presented in a practical context in language that is easily under-
stood but precise;

be amenable to analysis on several different levels: numerically, geo-
metrically, symbolically, and conceptually;

be based at least partially on mathematics that is of central impor-
tance in the high school curriculum; and

allow for more extended mathematical interpretations.

The first point, which concerns linguistic style and clarity of mathemati-
cal goals, needs some amplification. Poorly worded and mathematically vague
tasks actually discourage students from seeking to develop and analyze the
mathematical models behind these questions and encourage them simply to
resort to ad hoc or strictly computational solutions. If high school students were
really able to interpret mathematically these verbal descriptions, many of the
widespread student difficulties with “story” problems would suddenly vanish.
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One needs to remember that the abstraction of the mathematical phenomena
described by seemingly straightforward language is one of the most difficult
tasks of applied mathematics, even for professional mathematicians.

In examining a task, our primary concern is to determine what mathe-
matics students can learn from it. Many of the tasks in this document have
the capacity to be mathematically analyzed both concretely and conceptually
at levels that support both work force and post-secondary goals. Lottery
Winnings (p. 111) is an excellent illustration: one can feel reasonably confi-
dent that many teachers will encourage students both to explore numerical
solutions and also to conceptualize the important mathematical ideas embed-
ded in this task.

Given a collection of tasks, one important measure is the breadth of math-
ematics present in the tasks. Clearly, any small collection of tasks will neces-
sarily need to make choices and de-emphasize certain aspects. As a whole, the
tasks in this volume use classical geometric patterns and some level of pictor-
ial representations. Algebraic reasoning at a classical level is also addressed.
On the other hand, newer uses of geometric and visual reasoning—information
embedded in pictures or graphs—are downplayed. Moreover, the breadth
required for vocational training or direct entry into the work world is certainly
different for students who will become professional users of mathematics.
These tasks can provide a piece of the picture but not the entire spectrum of
mathematical expectation for all postsecondary students.

Many of the tasks in this document meet conditions listed above. Here
are three more tasks:

You are installing track lighting in an old warehouse that is being
remodeled into a restaurant. The lights can adequately illuminate up
to 15 feet from the bulbs and, at that distance, illuminate a circle with
a 6 foot diameter. Figure out where to place the tracks and the bulbs
for maximum illumination of the customer area. This task uses geome-
try, trigonometry, solid geometry (looking at the cone of illumination
from a constrained light bulb), and proportional reasoning. It could be
modeled with computer software or solved analytically. All of the math-
ematics involved is within the scope of the high school curriculum.

Your employer at your first job has given you a choice of where to
invest your retirement funds: in a mutual fund that is expected to
grow at 10% per year or at the local bank, which charges a 1% yearly
service rate for a similar fund, also rated at 10%. You would like to
deal with your local bank but don’t want to lose too much money. Sup-
pose you expect to put $1,000 each year into the fund. How much will
you lose over 10 or 20 or 30 years if you invest at your local bank?
This task, which can be modeled in many different ways, illustrates
the famous rule that a 1% difference in interest grows very rapidly in
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compounding over time. It can also lead to some interesting graphs
and comparisons of growth rates of functions. Finally, it can be
explained in language appropriate for a high school classroom.

Analyze a contour map with peaks and flat areas. This will provide an
opportunity to study curves and shapes in two-dimensions, explore
rates of change (closely packed contours), preview functions and
graphs on the plane, and examine the geometry of three-space. Prac-
tical aspects from cartography and local area maps can provide an
everyday context.

The overall goal of High School Mathematics at Work—to call attention to
rich and compelling manifestations of high school mathematics all around us—
is enticing and potentially very important. And, in addressing a broad and
diverse set of students, it is reasonable to downplay the role of abstraction. Yet
many mathematicians and mathematics educators would argue that mathe-
matics without abstraction is not mathematics. While this dictum could be
argued as applying to all students, it is probably less controversial to apply it
to postsecondary students who will be professional users of mathematics.

The process of developing tasks with “real life” contexts that are relevant
and mathematically significant both for students directly entering the techni-
cal work force and for students going on to mathematics-based careers is both
difficult and daunting. We must continue to discuss issues and directions, such
as scope, breadth, language, and complexity of the mathematics. The tasks in
this volume do, however, provide an excellent core framework and standard of
quality in which to continue the discussion.

received his B.A. in 1962 from the University of Pennsylvania and the Ph.D. in
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LOTTERY WINNINGS

A lottery winner died after five of
the twenty years in which he was to receive
annual payments on a $5 million winning. At
the time of his death, he had just received
the fifth payment of $250,000. Because the
man did not have a will, the judge ordered
the remaining lottery proceeds to be auc-
tioned and set the minimum bid at $1.3 mil-
lion. Why was the minimum bid set so low?
How much would you be willing to bid for
the lottery proceeds?

This task engages stu-
dents in exploration of interest rates, expo-
nential growth, and formulating financial
questions in mathematical terms. These
ideas introduce students to an important
way of thinking about decisions they will
have to make throughout their lives. For
example, students will need to decide
whether they can afford to buy a car and, if
so, whether it would be better to lease; or
whether to go to college now versus work-
ing first. Later in life, sound decisions can
come from an understanding of annuities
and, more generally, the present value of
future money. Many will live in homes for
which funds need to be saved for future
repairs; others will need to consider the pros
and cons of renting versus buying. Students
should learn to consider all aspects of such
decisions, including cost of loans, loss of
earning power, and effects of inflation.

These issues bear directly on civic life as well.
Every community thinks about bond issues
that provide money for capital improve-
ments. This involves, among other things,
depreciation of capital expenditures. How
do you think about borrowing vs. paying up
front? Consideration and discussion of these
issues can make students better citizens and
more informed voters.

says and Examples for the Education of All Students

The mathematical formulation of the prob-
lem depends on recursive thinking, an
important tool in many applications of math-
ematics. This task is especially appropriate
because it can be explored at many levels of
mathematical sophistication. The solution
presented below, however, assumes only
enough algebra to be able to enter formulas
in a spreadsheet.

One
way to think about this problem is to imag-
ine an equivalent scenario. Suppose you
make an initial deposit in a bank account at
a fixed rate of interest and then withdraw
$250,000 each year for 15 years. This is
equivalent because buying the lottery pro-
ceeds will produce the same stream of pay-
ments. The question, then, is how much
must be deposited at the beginning so that
there will be enough to last exactly 15 more
years.

There are 15 remaining payments of
$250,000 each, totaling $3,750,000. But a
deposit of $3.75 million would be more than
is necessary because it would collect a sub-
stantial amount of interest, especially in the
beginning years. In order to make some spe-
cific calculations, one can assume a fixed
interest rate of 8% and then ask whether the
judge’s suggested $1.3 million will be enough.
Since the year five payment has just been
made, one can reasonably assume that the
year six payment will occur exactly one year
later. At year six, then, the initial deposit will
have accrued 8% interest, which amounts to
.08 x $1,300,000 = $104,000. At the same
time that interest payment is made, however,
one would be withdrawing the year six pay-
ment of $250,000. That leaves $1,300,000 +
$104,000 - $250,000 = $1,154,000 remaining
in the account at year six. A spreadsheet

GURRICULAR CONSIDERATIONS

111

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/5777.html

says and Examples for the Education of All Students

LOTTERY WINNINGS (ConTINUED)

can be used to continue these calculations
for subsequent years. If the initial payment
is in cell G5, the formula for cell G5 is
C5+C5*. 08—-250000. That formula may
then be copied to cells C7 and below.

TABLE 1: Remaining principal by year,

first attempt

PRINCIPAL

YEAR PAYMENT REMAINING
5 $1,300,000.00
6 $250,000 = $1,154,000.00
7 $250,000 $996,320.00
8 $250,000 $826,025.60
g $250,000 $642,107.65
10 $250,000 $443,476.26
11 $250,000 $228,954.36
12 $250,000 -$2,729.29

Table 1 shows that if the initial deposit is $1.3
million, and the interest rate is 8%, there will
not be enough to make the payment in year
12, never mind years 13 through 20. Note
that although 1.3 million could provide only
a little more than 5 payments of $250,000 if
there were no interest, it can provide almost
8 payments at an interest rate of 8%. Thus,
The judge’s initial bid is lower than $3.75 mil-
lion in order to account for the interest that
will accrue. If an interest rate of 8% is reason-
able, however, $1.3 million is far too low.

What we want to find is an initial deposit
that will leave exactly $0 at the end of the
year 20. We know that $3.75 million is too
high, and $1.3 million is too low. By choos-

HIGH SCHOOL MATHEMATICS AT WORK

112

ing initial deposit amounts between these,
and keeping track of which are too low and
which are too high, we can “zero in” on the
desired value. According to Table 2,
$2,139,869.67 almost works. In fact, to the
closest penny, it is the best answer.

Thus, assuming a fixed 8% interest rate, this
stream of payments is worth $2,139,869.67
today. Another way to say this is that assum-
ing an 8% discount rate, the present value of
the payments is $2,139,869.67.

One of the nice features of this task is that
there are many answers, depending upon
the interest rate chosen, and many
approaches to solutions, depending upon
the students’ knowledge. The discussion
above, for example, can be phrased in more
sophisticated mathematical notation. The
spreadsheet formula might be written D,,,; =
(1+i) D, — P, where i is the annual interest
rate, P is the $250,000 annual payment the
lottery winner was receiving and D,, is the
amount of money still invested at year nin
order to produce the annual payments. Then
the goal would be to find what initial invest-
ment in year five, Ds, just covers the 15 years
of payments, leading to D,, being $0.

Students who are prone to exploring the
capabilities of their spreadsheet software
might find a “Present Value” function which
gives the desired initial investment directly.
Other students, after studying geometric
series, might derive or use the present value
formula,

(1 +i)N-1 p
i1+

D =

where N is the number of payments, and
the other variables are as above. Many
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TABLE 2: Remaining principal by year,

final attempt

PRINCIPAL

YEAR PAYMENT REMAINING
5 $2,139,869.67
6 $250,000 = $2,061,059.24
1 $250,000 @ $1,975,943.98
8 $250,000  $1,884,019.50
9 $250,000 = $1,784,741.06

10 $250,000 @ $1,677,520.35
11 $250,000
12 $250,000

13 $250,000

$1,561,721.97
$1,436,659.73
$1,301,592.51

14 $250,000 = $1,155,719.91

15 $250,000 $998,177.50
16 $250,000 $828,031.71
17 $250,000 $644,274.24
18 $250,000 $445,816.18
19 $250,000 $231,481.48
20 $250,000 -$0.01

mathematics of finance texts contain
derivations of this formula. This task could
be used to motivate such formulas and
functions.

Explore what the neces-
sary initial payment would be when different
interest rates are assumed. Does the initial
payment go up or down as the interest rate
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goes up? Why does the answer make sense?
Find the interest rate, if possible, for which
the judge’s suggested bid of $1.3 million
makes sense.

Assuming that students use a “search” proce-
dure for finding the initial payment, ask
about the efficiency of different methods of
searching. Some students, for example,
might try $1.4 million, $1.5 million, $1.6 mil-
lion, and $1.7 million—clearly an inefficient
approach when $1.3 million was already
known to be far too low. Explore the mathe-
matics behind the binary search method, in
which the next guess is always the average
of the best high and low guesses so far.
Explore the mathematics behind the linear
interpolation search method, in which the
next guess is determined by finding the
intercept of the line between the best high
and low guesses so far.

If students are impatient with a “search” pro-
cedure, ask them to use algebra to find a for-
mula. The algebra involved in the derivation
of the formula requires use of some standard
facts about geometric series, and might pro-
vide motivation for the usefulness of such
formulas.

Suppose a student inherits money or wins
a lottery. This money provides a certain
annual income for a fixed number of years.
How much of the income should be put
aside so that the winner will still have sav-
ings long after the annual payments cease?
Can it last a lifetime? Can it last indefi-
nitely? Itis also interesting to consider the
impact of taxes and inflation. (These are
serious problems. A research study of the
early winners of lotteries showed that
more than 75% were broke 20 years after
winning.)
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LOTTERY WINNINGS (ConTINUED)

This task and its extensions can provide
opportunities for exploration and discussion
of other financial instruments, such as annu-
ities, pensions, mortgages, and other savings
and borrowing plans, and also economic
issues, such as interest rates, other rates of
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return, the trade-off between risk and
expected return, and the liquidity of an
investment. Rather than leading to a unit on
finance, questions about these issues can
lead students to be interested in the mathe-
matics behind them.
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HOSPITAL QUALITY

As health care director for your
company, your job is to select which of two
local hospitals you will send your employees
to in case of emergency. Mercy Hospital is
the larger of the two and a local emergency
care facility. It had 2,100 surgery patients
last year, many of whom entered the hospital
in poor condition. Of its surgery patients, 63
died. Excelsior is smaller. It had 800 surgery
patients last year, a smaller percentage
entered in poor condition, and 16 of its
surgery patients died. The detailed informa-
tion is given in Table 1.

says and Examples for the Education of All Students

This is a decision-mak-
ing situation that might actually arise in the
workplace, but its relevance is much broader.
Drawing sound conclusions in such situa-
tions requires understanding and careful
thinking. In the news and in everyday life,
we are inundated with statistics supporting
various positions. Thus, it is important that
students learn to look for complexities that
are often hidden behind the statistics.

Both directors of public relations are correct,
despite their seemingly contradictory state-

TABLE 1: Ppatient mortality, two hospitals

PATIENTS
In Good Condition 600
In Poor Condition 1,500
Combined Total 2,100

MERCY HOSPITAL

DEATHS PATIENTS DEATHS
6 600 8
57 200 8
63 800 16

EXCELSIOR HOSPITAL

The director of public relations at Excelsior
claims that the overall death rate at Excelsior
is smaller than the overall death rate at
Mercy and that the intimacy of a small hospi-
tal is preferable to the hustle and bustle of a
large facility. The director of public relations
at Mercy claims that if you look at the death
rates more carefully, you will see that they
are a better facility—they simply treat a lot
of patients who are more seriously ill.

Analyze the given data and make a recom-
mendation to your board of directors.
Make the recommendation in the form of a
memo in which you clearly justify your
decision, knowing that the director of the
hospital you do not choose may appeal
your decision.

ments. These data provide an example of an
occurrence known in probability as Simp-
son’s paradox; it can also occur in other situ-
ations involving “weighted averages.” Similar
apparent paradoxes arise, for example, in sit-
uations where women or minorities in vari-
ous jobs earn about the same as their male
counterparts, but their overall average earn-
ings may be far less. (This can happen if
most women are employed in low paying
jobs, for example.)

Because of the apparent paradox, this task
provides an intriguing context for discussing
more fundamental notions, such as probabil-
ity, rates, and weighted averages. Working
through such examples can sensitize stu-
dents to the need to understand the num-
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HOSPITAL QUALITY (ConTINUED)

bers and trends that give rise to statistics. It
will also give them a better sense of what to
believe and what to question when con-
fronted with statistical assertions.

To
check the directors’ assertions, one must
compute death rates. For example, the death
rate for patients in good condition at Mercy
is 6/600 or 1%. The other results are shown
in Table 2.

recruit women for the low-paying positions,
and hard to recruit them for the high-paying
positions, it is possible that the average salary
for women will still be lower than the average
salary for men, seemingly contradicting the
company’s intent to pay women more.

Students might find and
analyze employment and salary patterns in
various professions. They might look at
admissions rates at a university by gender or

TABLE 2: patient mortality, two hospitals, with rates

PATIENTS
In Good Condition 600
In Poor Condition 1500
Combined Total 2100

MERCY HOSPITAL
DEATHS

EXCELSIOR HOSPITAL
RATE  PATIENTS DEATHS  RATE

1% 600 8 1.33%
3.8% 200 8 4%
3% 800 16 2%

Looking only at the combined death rate, it
looks like Excelsior is the better hospital, for
a 2% death rate is better than 3%. Looking
at the separate death rates, however, the pic-
ture is different. For patients in good condi-
tion, the death rate is lower at Mercy. Simi-
larly, a patient in poor condition is better off
at Mercy. So the public relations director at
Mercy is correct: Mercy Hospital has a better
success rate both with patients in good
health and with those in poor health. The
reason Mercy loses more patients overall is

that it treats many more seriously ill patients.

Here'’s an easy way to see how averages
based on aggregates can deliver a different
message than averages based on compo-
nents. Suppose a company, in an attempt to
recruit women into all positions, pays them
more than men in all positions. If it is easy to
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by race, for the university as a whole, and
then separated by college or by department.
Such assignments should not be given, how-
ever, without allowing for discussion of
equity issues that can be raised by such data.

Students might construct data that illustrates
analogous paradoxes in contexts that appeal
to them. In baseball, for example, it is possi-
ble for a batter to have the best batting aver-
age before the all-star break and the best
average after the all-star break and yet fail to
have the best average for the whole season.

Students might also explore other instances
of weighted averages, perhaps first as simple
ways of computing more familiar averages.
For example, if a teacher explains that home-
work counts 50%, each of three exams count
10%, and the final exam counts 20%, a stu-
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dent can determine his or her average going
into the final as follows:

50 - Homework + 10 « Examq + 10 « Exam, + 10 « Exams

50+10+10+10

The arithmetic in this task deserves comment.
If one thinks of the death rates as fractions,
then one might consider the relationship
between the separate death rates and the
combined death rate to be like addition. In
the case of Mercy hospital, the “addition”
looks as follows, where the [0 indicates that
this is not the standard addition of fractions.

6 57 63

— [ —— = ——

600 ~ 1500 2100

Notice that this “addition” is performed
by adding the numerators and adding
denominators—one of the mistakes that stu-
dents make when they are supposed to per-
form the standard addition of fractions. Yet,
this “addition” is used in many contexts, from
computing batting averages in baseball to
computing terms in Farey sequences, an
advanced topic in number theory.

Students might be asked,“Why does this
‘addition’ make sense here?” “What is the dif-
ference between this and the standard addi-
tion of fractions?” “What is different about
the contexts that gives rise to a different
kind of addition?” Discussion of such ques-
tions can provide for a firmer understanding
of the concepts of fraction, rate, and average.

This kind of “addition by component”is remi-
niscent of addition of vectors, which gives us
a geometric model of the situation. The data
for patients in good condition at Mercy (600
patients, 6 deaths) can be represented as the
vector (600, 6) which can be represented

says and Examples for the Education of All Students

geometrically as an arrow from the origin to
the point (600, 6) on a coordinate plane.

(See Figure 1.) Then the death rate, 6/600, is
precisely the slope of the vector. By similarly
representing the data for patients in poor
condition as the vector (1500, 57), the sum of
the vectors is given by adding the components
of the vectors. That is, (600, 6) + (1500, 57) =
(2100, 63). Geometrically, the sum of these
vectors is the diagonal of the parallelogram
formed by the vectors. (See Figure 1.) Note
that because the death rate is represented
by the slope of the vector, a steeper vector
corresponds to a higher death rate. We can
similarly represent the data from Excelsior
Hospital (Figure 2).

FIGURE 1: patient mortality at

Mercy Hospital

(2100, 63)

Deaths (1500, 57) _ .-

’ (600, 6)

Patients

FIGURE 2: patient mortality at

Excelsior Hospital

Deaths

(800, 16)

(200, 8)_ . 2%
(600, 8)

Patients
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Superimposing the data from Excelsior Hos-
pital upon that from Mercy (Figure 3) shows
that the sides of the Excelsior parallelogram
are steeper than the corresponding sides of
the Mercy parallelogram, but Mercy has a
steeper diagonal. To gain a spatial and
kinesthetic sense of this paradox, students
might use dynamic geometry software to
draw such a picture to construct data that
exhibit this paradox.

Observe that the diagonal representing the
sum must be between the two vectors, indi-
cating that the slope of the sum must be
between the other slopes. This provides a
compelling geometric argument for the alge-
braic fact that§ 00 5, defined as above, is
always between the two fractions a/b and
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c/d,as long as g, b, c,and d are all positive.
Proving this algebraically, on the other hand,
requires some non-obvious techniques.

FIGURE 3: Patient mortality, two hospitals

(2100, 63)
(1500, 57) _ . - 2

-

Deaths

Patients
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ROUNDING OFF

In a certain multi-million dollar
company, Division Managers are required to
submit monthly detail and summary expense
reports on which the amounts are rounded,
for ease of reading, to the closest $1,000.
One month, a Division Manager’s detail
report shows $1,000 for printing and $1,000
for copying. In the summary report, the total
for “printing and copying”is listed as $3,000.
When questioned about it by the Vice Presi-
dent, he claims that the discrepancy is
merely round-off error. In subsequent
months, the Vice President notices that such
round-off errors seem to happen often on
this Division Manager’s reports. Before the
Vice President asks that the Division Man-
ager re-create the reports without rounding,
she wants to know how often this should
happen.

We are often quoted
rounded numbers that do not then turn out
to be quite exact. Even a bank’s approximate
computational program for principal and
interest can eventually drift far enough off
the actual payment for the difference to be
important. In any problem, we have to be
concerned about which numbers are exact
and about the accuracy of those that are not.

People don’t often realize how huge the con-
sequences of rounding numbers can be.
Suppose, for example, that a company’s
board of directors has received a report indi-
cating that each of the machines manufac-
tured by their company will take up 2% of
the freight capacity of their cargo planes,
and the board wants to know how many
machines can be shipped on each plane. In
our standard notation, 2% represents a num-
ber somewhere between 1.5% and 2.5%.
Solving the problem with each of these two
exact percentages yields answers that are
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quite different. Using 1.5%, the board

will find that the plane can hold 100% +
(1.5%/machine) = 66 machines; but by using
2.5%, the board will find that the plane can
hold 100% + (2.5%/machine) = 40 machines.
So, in truth, all the board can say is that the
answer is between 40 and 66 machines!
Clearly, the report has not supplied accurate
enough information, especially if the prof-
itability of the shipment depends strongly
on the number of machines that can be
shipped.

If, on the other hand, the report had indi-
cated that the board could assume another
decimal place of accuracy, by stating that
each machine accounted for 2.0% of the
plane’s capacity, then, with rounding, the
board can be sure that the exact portion is
somewhere between 1.95% and 2.05%.
Using these exact percentages, the board
can conclude that the plane can hold
between 48 and 51 machines. One decimal
place of additional accuracy in the reported
data reduced the uncertainty in the answer
from 26 machines to 3.

This problem is important for another rea-
son as well, for its solution introduces a use-
ful mathematical connection: the notion of
geometric probability, where the range of
options (technically, the “sample space”) is
represented by a geometric figure so that
the probability of certain events correspond
to the areas of certain portions of that fig-
ure. Geometric probability enables us to use
our knowledge of the area (or length or vol-
ume) of geometric figures to compute prob-
abilities.

Funda-
mental to an understanding of geometric
probability is the idea that on a portion of a
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line, probability is proportional to length,
and on a region in a plane, probability is pro- FIGURE 2: A linear representation of
portional to area. For example, suppose that
in Figure 1, the areas of regions A, B,and C
are 2, 1,and 3 respectively, for a total area of
6. Then a point picked at random from these | — |
regions would have probability of 2/6, 1/6, 0 1 2
and 3/6 of being in regions A, B,and C

respectively.

numbers that round to 1

To state this a bit more formally, a number x
will be rounded to 1if .5 < x < 1.5. (Again,
FIGURE 1: An area model for prohability we can ignore the boundaries, .5 and 1.5,
because the probability that a number will
be exactly on the boundary is zero.) Suppose
A B c y also rounds to 1,so that .5 <y < 1.5. If we
consider a coordinate plane with points (x, y),
these two inequalities determine a square of
side 1. This square (Figure 3) represents all

] ) pairs of numbers where both could be
Note that the boundaries of the regions are rounded to 1. For example, point A repre-

not significant in the calculations because sents (.8,.6), B represents (1.1, 1.1),and C rep-
they have no area. Ideally (as opposed to in resents (1.3, 1.4).

a physical model) these boundaries are lines
with no thickness. Thus, the probability that
a point from this rectangle will lie exactly on
one of these boundaries, rather than close to
a boundary, is zero.

FIGURE 3: An area representation

for 1 +1

In order to answer the question at hand, it
must be stated more mathematically: Given
a pair of numbers that both round to 1, and
assuming that all such pairs are equally
likely, find the probability that their sum
rounds to 2. This assumption may or may
not be reasonable in a particular business
and would require some knowledge of typi-
cal expenses and some non-mathematical
judgment.

A number that rounds to 1 is somewhere
between .5 and 1.5. These numbers may be 2
represented by a line segment, shown as the

shaded portion of the number line in Figure 2.
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What can we say about x + y for points inside
the square? Most of the time, x + y will
round to 2, but sometimes it will round to 3,
and sometimes it will round to 1. Note that
the components of A add to 1.4, which
rounds to 1; the components of B add to 2.3,
which rounds to 2; and the components of C
add to 2.7, which rounds to 3.

The probability that 1 + 1 rounds to 1 is
the fraction of the square containing pairs
that, when added, round to 1. Now, x + y
rounds to 1 if x + y < 1.5, which will occur
for points below the line x + y = 1.5. Simi-
larly, x + y rounds to 3 for points above the
line x + y = 2.5. These conditions each cut
off a triangular corner of the square
(shown as the darker shaded regions in
Figure 4).

The legs of these right triangles are each of
length 1/2, so they each have area 1/8. Thus,

FIGURE 4: nan area representation

for 1 + 1, with rounding boundaries
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the probability that 1 + 1 =3 is 1/8,and the
probability that 1 + 1 = 1 is also 1/8. Finally
the probability that 1 + 1 = 2 is 3/4, the
remaining fraction of the square.

What's the probability
that 1 x 1 = 2?7 This requires calculating the
portion of the square that satisfies xy > 1.5
(Figure 5). Is this bigger or smaller than 1/8,
calculated as the area of the upper triangle
in Figure 4? A comparison of Figures 4 and 5
shows remarkable similarity. What is the pre-
cise relationship between the line x + y = 2.5
and the curve xy = 1.57 Solving the first
equation for y and substituting into the sec-
ond yields x(x — 2.5) = 1.5, a quadratic which
simplifies to —x?> + 2.5x -1.5=00r 2x> -5x + 3=0.
This second equation factors easily as
(2x - 3)(x = 1) = 0, yielding solutions x = 1.5
and x = 1. These solutions imply that the line
x +y=2.5 and the curve xy = 1.5 intersect the
square at the same points. By the concavity

FIGURE 9: An area representation
for 1 x 1, with rounding boundaries

revised
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of the curve xy = 1.5, the curve must lie
below the line inside the square. So the
answer should be a little bigger than

1/8 =.125.

Calculus allows us to calculate the shaded
area as precisely:

15
_[1 (1.5-1.5/x)dx =.75-151In1.5=.142.
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Similarly,if x=.6 and y = .7, then xy = 42 < .5,
which would round to 0. The probability that
xy rounds to 0 is .5 In 2 - .25 = .097.

What about 1/1? It rounds to 0 with proba-
bility .0625, to 1 with probability .75, to 2
with probability .175, and to 3 with probabil-
ity .0125. These calculations require only
geometry, no calculus.
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RULES OF THUMB

Some drivers learn the rule of
thumb, “Follow two car lengths behind for
every 10 miles per hour.” Others learn,“Stay
two seconds behind the car ahead.” Do
these two rules give the same results? Is one
safer than the other? Is one better for roads
with speed limits of 45 or 50 miles per hour
and another for highways on which the
speed limit is 65 or 70 miles per hour?

Obtaining a driver’s
license has become one of the “rites of pas-
sage”in the U.S. On almost every written dri-
ver's test, applicants are asked how closely
one driver should follow another on the
highway. We all appreciate the dangers of
tailgating—not enough stopping time and
not enough space to avoid an accident.
However, it is not clear that there is agreement
about what actually constitutes tailgating—
how far apart cars should be.

Rules of thumb are helpful guidelines—
sometimes derived from experience—that
are calculated using easily available mea-
surements. Often they are developed under
particular conditions and may be extremely
inaccurate if those conditions are not ful-
filled. The existence of two rules of thumb
for the same situation suggests a natural
question: Are the two rules simply two dif-
ferent ways of saying the same thing or are
they offering different advice? As stated, the
rules may provide visual images of how far
to stay behind another car, but translating
that understanding into practice on the road
may be quite a different matter. The exercise
of interpreting rules of thumb and compar-
ing their results with real data could help
students realize that the rules they use have
implications for their actions. Also, there is
the reality of high incidences of automobile
accidents among new drivers. This exercise
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may help students examine and improve
their driving habits.

In order to do the task, students need to
know what it means to make a comparison.
They have to identify the quantities needed
in order to calculate the following distances
given by the two rules and represent the
rules mathematically. There are many ways
to do this—written descriptions, tables,
equations, or graphs, all basic tools of mathe-
matical literacy. A comparison requires that
the two representations use the same units
of measurement—hence some conversions
are necessary from the units used in the
original rules of thumb. Such conversions
are an essential part of many everyday situa-
tions, both at work and at home.

To
begin, students might be well advised to con-
sider the case in which two automobiles are
traveling at a steady rate. The information pre-
sented is not complete and students will find
that they have to seek out missing data. Natu-
rally, what students seek will depend on their
interpretation of the task. One necessary piece
of information may be average car length.

The units for the car-length rule are miles
per hour and car lengths, and the units for
the two-second rule are miles per hour and
seconds. To compare the two rules, both
need to be written in the same units. A typi-
cal sedan is about 14 feet, so the car-length
rule might be translated as “follow about 28
feet behind for every 10 miles per hour” or as
the equation y = 28(x/10), where x is the
speed of the car in miles per hour and y is
the following distance in feet.

If a car is traveling at x mph, then it travels x

miles in one hour—in other words, x/3600
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miles in one second. The two-second rule is
then "if your speed is x mph, follow about
2x/3600 miles behind.” As an equation, it is
z = 2(x/3600), where x is again the speed of
the car in miles per hour, but this time z is
the following distance in miles (not feet as in
the previous equation), and we use a differ-
ent letter to distinguish it from y above.

Now the rules are both in terms of miles per
hour and units of distance but not the same
units of distance. The car-length rule is as
follows:

y =28(x/10),

where y is the following distance in feet.The
two-second rule is

z = 2(x/3600),

where z is the following distance in miles.
Simplifying the car-length rule gives

y = 2.8,

where y is the following distance in feet.
Simplifying the two-second rule gives

z =x/1800,
where z is the following distance in miles.

Now it's a matter of converting z to feet (or y
to miles). There are 5,280 feet in a mile, so
x/1800 miles is 5280(x/1800) feet. That's
about 2.93x feet—very close to the distance
given by the car-length rule!

Some driver’s manuals give data on the dis-
tance cars travel before they are able to
come to a complete stop. Often the distance
is broken into two components, the reaction
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distance and the braking distance. The reac-
tion distance is the distance traveled while
the driver reacts to a situation and hits the
brakes. The braking distance is the distance
traveled from the time the brakes are
applied until the car comes to a stop. A sim-
plified version is given in Table 1.

TABLE 1: Reaction and braking distances

for various speeds

REACTION BRAKING
SPEED DISTANCE DISTANCE
20 mph 20 feet 20 feet
30 mph 30 feet 45 feet
40 mph 40 feet 80 feet
50 mph 50 feet 125 feet
60 mph 60 feet 180 feet

This table allows a comparison of the dis-
tances given by the rules of thumb with
actual stopping distances. But the stopping
distances are the distances required for a car
to stop before hitting an immovable object
blocking the road, whereas the rules of thumb
assume that the car in front is also moving
forward. This table suggests some questions
about the rules of thumb: How much reaction
time does each rule allow? Why are the rules
of thumb linear and the stopping distances
non-linear—and does this matter?

In 1977, a National
Observer article stated, “The usual rule of
thumb in the real-estate business is that a
family can afford a house 2 to 2 1 times its
income.” Incomes and housing prices have
changed considerably since 1977, and real-
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estate agents’ rules of thumb may have
changed as well. Every subject—from shop
to physics, from auto mechanics to economics—
introduces rules of thumb that work well in
appropriate situations. Even in mathematics,
practices that students don’t understand
may acquire the status of rules of thumb for
them and may be misapplied.

The original rule of thumb gave the mea-
surement of a person’s waist in terms of the
measurements of their thumb, wrist, or neck.
“Twice around the thumb is once around the
wrist. Twice around the wrist is once around
the neck. Twice around the neck is once
around the waist.” (The Dutch refer to “rules
of fist,” possibly for similar reasons.) The dif-
ferences in body proportions at different
ages (see Figure 1) suggest that this rule
may have been developed for adults and
may not be useful in designing clothes for
young children. Students can be asked to

FIGURE 1: changes in shape between
infancy and adulthood, by age in years

SOURCE: Peitgen et al., 1992, p. 160.
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create a rule that would work for young chil-
dren. Because children’s proportions change
so rapidly with age, such a rule might
include age as a variable.

There are numerous other rules of thumb:
“The rule of 72" in finance,“Double the tax to
get the tip”in a restaurant,“Magnetic north
is true north” in navigation, and so on. Stu-
dents can compare the results of these rules
with actual data or investigate the accuracy
and derivation of such rules in their areas of
interest. For instance, The Joy of Cooking pro-
vides the following rule of thumb for cook-
ing turkeys, “allow 20 to 25 minutes per
pound for birds up to 6 pounds. For larger
birds, allow 15 to 20 minutes per pound. For
birds weighing over 16 pounds, allow 13 to
15 minutes per pound. In any case, add
about 5 minutes to the pound if the bird you
are cooking is stuffed” (Rombauer & Becker,
1976). Students could explore the reason-
ableness of such predictions: might one
conclude that a 5.9 pound bird requires (5.9)
X (25) = 147.5 minutes, while a 6.1 pound
bird requires no more than (6.1) x (20) = 122
minutes?

There are many other natural variations on
the original problem as well. How sensitive
is the car-length rule to what is assumed
about the length of a car? Is the difference
in average length of European versus U.S.
sedans important to this rule of thumb?
How should the two rules be modified for
use on wet pavement? Questions might be
raised about what happens if one car is
traveling faster than the other or about the
relationship between age and reaction time.
In a state with a large number of retirees
such as Florida, should the rules of thumb
be the same as those in states with younger
populations?
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Another issue concerns the usability of the
two rules for following distance. If the two
rules give essentially the same advice, is one
easier to use in practice than the other? Is it
easier to think in terms of distance measured
in car lengths, picturing the space filled with
cars, or to pick a marker such as a road sign
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or billboard, and count seconds? Opinions
will vary as to which is the easier method.

Peitgen, H.-O. et al. (1992). Fractals for the classroom.
New York: Springer-Verlag.

Rombauer, I.S. & Becker, M.R.(1976). The joy of cooking.
New York: Bobbs-Merrill Company.
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DVERVIEL

or many experienced and prospective teachers, tasks like those in High
School Mathematics at Work pose several inter-related challenges involving
curriculum, pedagogy, and assessment.

In planning the class: How can I tell if a task is appropriate for my
students? How would such tasks fit in my curriculum? After choosing
a task, what are the mathematical concepts and big ideas that can be
approached with the task?

During class: How do I get students working on the task I've chosen?
What can I expect from classroom discussion? How can I engage all
students in the big mathematical ideas?

After class: What can I expect from student work? What should 1
expect from student work? How should I provide feedback?

These questions speak to the broad demands that today’s students and
curricula place on teachers. To respond adequately to these demands, teachers
must be very resourceful and must have the skills and inclinations to create an
intellectual community in their classrooms. What is needed is teachers who
are mathematically confident and have the tools to learn mathematics as they
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need it, so that they and their students may thrive when either the curriculum
or the students take them into uncharted territory. Furthermore, teachers
need professional support in creating learning communities of teachers in their
schools, districts, and states.

Working with both preservice and inservice teachers, the authors of the
essays in Part Four find that tasks like those in this document have changed
teachers’ ideas about students’ capabilities, about how a curriculum might be
organized, and about what it means to do mathematics. In each case, such
change requires time and support.

The Professional Standards for Teaching Mathematics (National Council
of Teachers of Mathematics, 1991) acknowledges the important role that teach-
ers have in choosing tasks in their curriculum. Under the heading “Worth-
while Mathematical Tasks,” it asserts that

The teacher of mathematics should pose tasks that are based on—
sound and significant mathematics;
knowledge of students’ understandings, interests, and experiences;

knowledge of the range of ways that diverse students learn mathe-
matics. (p. 25)

In her essay, Glenda Lappan suggests that “teachers are architects of cur-
riculum,” for what is learned depends upon the context in which it is taught.
She acknowledges that the use of complex problems creates more complexity in
classrooms, and she notes that if preservice teachers work through complex
problems themselves, they receive some of the background and confidence they
need to handle such complexity. After describing problem-centered teaching
and some of the issues that it raises, Lappan suggests that “teachers will find
that learning alone is unlikely to be as powerful as engaging in dialogue with
other teachers.”

Like Lappan, Gilbert Cuevas acknowledges that with scant experience
solving complex mathematical tasks, many preservice teachers are uncertain
about using such tasks in their classrooms. He presents five principles for the
preparation of teachers, such as providing “opportunity for reflection about
their tasks and their implementation with students,” and emphasizing com-
munication, discussion, and orientation toward problems.

Paul LeMahieu and Marsh4 Horton note that assessments alone are not
effective agents of educational reform. When extended, open-ended tasks are
included in assessment, however, there is an opportunity for a different and
powerful role, if teachers are involved in the evaluation of student work
responding to these items. LeMahieu and Horton discuss how teachers
develop consensus about quality and rigorous expectations for quality through
discussions of student work on assessments. Furthermore, they note, inser-
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vice teachers’ expectations for students change when they participate in such
scoring.

The tasks in Part Four might be used in the professional development of
teachers, both as a site for discussion of student work, as suggested by
LeMahieu and Horton, and as a complex task for their own exploration, as sug-
gested by Lappan and Cuevas. Because these tasks are more open-ended than
most in previous sections, the mathematical analysis sections do not include
complete solutions, but instead suggest some of the mathematical and peda-
gogical issues and some sources of data or other useful information. Estimating
Area (p. 145) brings to light mathematical ideas such as the distinction
between distance, area, and volume, scaling factors, and estimation, possibly
leading to calculus ideas such as limit and integration. Like the tasks in Part
Three, this is a task that may be fruitfully revisited several times in a stu-
dent’s career.

Timing Traffic Lights (p. 147) concerns a workplace situation usually
considered by town and city planners. The ideas are similar to the ideas
behind scheduling trains, airplanes, and canal-boats. The potential interest
for students is that city planners’ solutions (both the good and the bad) can be
seen in everyday life. This task may be used to explore mathematical ideas
such as distance, rate, time, velocity, modeling, and representation.

Buying a Used Car (p. 153) is an everyday situation about which people
do not often think mathematically. Yet, by considering in the analysis not only
estimates of the purchase price and repair costs but also insurance, taxes,
depreciation, interest on a loan, and inflation, there is high potential for rich
mathematical discussion.

National Council of Teachers of Mathematics. (1991). Professional standards for teaching mathe-
matics. Reston, VA: Author.
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PHIAGOGICAL IMPLICATIONS £0R
PROBLEM-GEMTERED TEACHING

o other decision that teachers make has a greater impact on students’

opportunity to learn and on their perceptions about what mathematics is

than the selection or creation of the tasks with which the teacher engages
the students in studying mathematics. Here the teacher is the architect, the
designer of the curriculum:

The activity in which knowledge is developed and deployed . . . is not separate from or

ancillary to learning and cognition. Nor is it neutral. Rather, it is an integral part of

what is learned. Situations might be said to co-produce knowledge through activity.
(Brown, Collins, & Duguid, 1989)

In order to develop productive notions about mathematics, students must
have opportunities to be actually involved in doing mathematics—to explore
interesting situations that can in some way be mathematicized; to look for pat-
terns; to make conjectures; to look for evidence to support their conjectures; to
make logical arguments for their conjectures; to make predictions or reach con-
clusions supported by evidence; to invent new ways to use their mathematical
knowledge and tools to solve problems; and to abstract from experiences with
solving problems the common mathematical concepts, ideas, skills, procedures,
and structures that have more universal application.

In selecting a mathematical task, a teacher judges how well the task rep-
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resents the embedded concepts and procedures that are the goals of instruction,
how likely the students are to bump into the mathematics in the course of inves-
tigating the task, how well the task represents what is entailed in doing math-
ematics, and what skill development the task will or can support. An experi-
enced teacher asks the question, “With what mathematics does the task
surround the students?” Teachers also have to balance their selection of math-
ematical tasks to include tasks that allow and promote the usefulness of math-
ematics in solving authentic problems with all of their inherent messiness.

Here is an example of such a task. Consider the data in Table 13-1, taken
from an advertisement in a Florida newspaper.

TABLE 13-1: montnly charges for various Internet access providers

ACCESS MONTHLY HOURS COST OF

PROVIDER RATE INCLUDED ADDITIONAL HOURS
TDO Online $24.94 100 $2.00
America Online $9.95 5 $2.95
CompuServe (Basic) $9.95 5 $2.95
CompuServe (Super Value) $24.95 20 $1.95
Prodigy (Basic) $9.95 5 $2.95
Prodigy (30/30) $30.00 30 $2.95

Suppose you are in the market for an Internet access provider. Which of
the services in the table would be the best option for you to choose? The
answer to this question is, “It depends!” One way to approach the problem
would be to build tables and form graphical representations of each plan for
different number of hours of use. Creating representations that allow compar-
isons is desirable. Tools such as graphing calculators or spreadsheets could be
used. The solution is, of course, not a resounding endorsement for one of the
services, but a more serious analysis of what ifs; an analysis that shows which
plan is optimal when a desired number of hours of access is specified.

If teachers make the decision to use such a task in their classrooms, they
have the responsibility to determine its mathematical potential. What mathe-
matics can students learn from analyzing this situation? What mathematics
are they most likely to use? Each of the plans can be represented by a piece-
wise linear relationship between cost and hours of use. This engages students
in identifying variables and writing equations describing relationships that
are constant for a number of hours and that change in a predictable fashion
after that time. This is the essence of mathematical modeling. After modeling
the situation with equations, tables of values, or graphs, students have to ana-

IMPLICATIONS FOR TEACHING AND TEACHER EDUCATION

133

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/5777.html

says and Examples for the Education of All Students

lyze the representation to make comparisons. They are likely to have to find
points of intersection for the relationships. They may look at rates of change
or slopes of lines. The important thing is that the task is rich with important,
useful, connected, applicable mathematics.

While the payoff for students can be very great, teaching through big problems
increases the complexity of classroom instruction for teachers who are often
imbued with the traditional view that mathematics is a well-ordered sequence
of rules and procedures, mostly concerned with numbers and number opera-
tions. Many prospective and some practicing teachers do not expect mathe-
matics to make sense, but they do expect to be able to remember a rule from
which a solution can be swiftly found. They view the role of the teacher as
explaining how to do the tasks and telling students when they are correct.
Teachers with the traditional view can teach traditional classes confidently if
they know the rules, the procedures, and when to apply them. Unless the
teacher’s mathematical understanding is deep and connected, however, such
an approach often misses opportunities to make connections with other math-
ematics and with student thinking.

It takes a great deal of effort, and time, to create a new vision of what
mathematics learning could be. Experience in working on “big problems” helps
change how preservice teachers see themselves as learners of mathematics.
“We were trained for so many years,” reported Tamara, an older woman with
weak mathematical background. “This is the way you do it. It becomes a way
of thinking. This was the way I had always done mathematics so I've had to
totally reorient myself. You have to restructure your whole way of thinking
about mathematics and that alone is a big job. ... To know mathematics means
being able to say, ‘this would make sense.” To know why something works and
to be able to express it, you have to be able to communicate it. . . . You have to
experience math, interact with it. You have to struggle to put things together
and take them apart. If something doesn’t work, you just try something else. . . .
You need to experience it and talk about it, not just memorize it.” (Schram,
1992, pp. 26, 34)

Another prospective teacher, Kim, struggled throughout the first two
courses in her program. In her later courses, she began to gain confidence in
her ability to think about the problems posed. “Math 201 was the hardest of
the courses in the sequence because I really struggled with trying to think
about math differently. . . . Now I am willing to continue working on a prob-
lem for a long time. Before, just forget it, if I didn’t know the answer when I
looked at a problem. I didn’t even try further.” (Schram, 1992, p. 32)

Preservice and inservice teachers who work on big problems become more
willing to persevere with them. They develop mathematical resources, both
intellectual and personal, that give them confidence in their ability to tackle
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real problems. They move from approaching mathematics as a technical sub-
ject to approaching mathematics as a sense-making enterprise based on care-
ful observation, invention, making connections, gathering data, making con-
jectures, and seeking evidence.

Teachers face enormous complexities in attempting to create environ-
ments for learning mathematics in which students engage in making sense,
individually and in groups, of big problems. Problem-centered teaching is
demanding and requires of teachers an understanding of mathematics that will
enable them to help students in their search to make sense of and use mathe-
matics. Such instruction values students’ thinking. Students are seen as
“thinkers with emerging theories about the world” (Brooks & Brooks, 1993)
rather than as passive recipients of information.

As the nature of the mathematical tasks changes, teachers must develop new
classroom roles. If students are to have opportunities to explore rich problems
within which mathematics will be confronted, teachers have to learn how to be
effective in at least four new roles:

Engaging students in the task;
Pushing student thinking while the exploration is proceeding;

Helping students to make the mathematics more explicit during
whole-class and group interaction and synthesis;

Using and responding to the diversity of the classroom to create an envi-
ronment in which all students feel empowered to learn mathematics.

A reflective teacher realizes that engaging students in a task does not
mean just having fun with its context. It is important, of course, for students
to understand the context. But having an inclination to seek ways to mathe-
maticize the situation they are exploring is critical. The teacher has to work
with the students to help them understand which questions mathematics can
help answer in the situation. This means keeping an eye on the mathematical
goal in posing the task. This does not mean that the teacher structures the
mathematical questions so that no thinking or work is left to the student. It
means that the teacher keeps the focus on the big question embedded in the
task and uses his or her judgment about whether this is a time when the stu-
dents are to formulate questions for themselves or to find answers to problems
in the situation that are posed by the situation or the teacher.

As the students work on the task posed—often in groups, always using tools
such as calculators, computers, and physical manipulatives, as well as intellec-
tual tools such as analogies—the teacher can assess what sense the students are
making of the task and of the mathematics. By circulating among groups of stu-
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dents the instructor can ask students for evidence to support their conjectures
and can redirect groups that are off-task or floundering. Here the teacher is a
coach, a guide, an interlocutor, and an assessor of student progress and problems.

After groups have made progress on the task, the teacher and the class
can come together to look at the different answers, to examine the data col-
lected, to look at the strategies used, to examine the conjectures the groups
have made and their supporting evidence, and to look at the proposed solutions
and the reasoning to support the conclusions reached. It is during group sense-
making that the teacher must be alert to the mathematical goals embedded in
the task—to bring the mathematics alive, to help students make it more
explicit and powerful, and to help students connect what they have learned to
things they already know. This is where the teacher can work most effectively
to set high expectations, both for students’ mathematical performance and for
the ways in which students engage in discussions with each other.

For teachers, it is daunting to examine what they need to know in order
to help develop mathematical power for all students. Few teachers know
enough to feel comfortable with this type of self-examination. However, a first
step is to recognize that we all have things to learn. As students often learn
most effectively in groups, so teachers will find that learning alone is unlikely
to be as powerful as engaging in dialogue with other teachers. In order to get
started, teachers need motivation for engaging in a daily search for tasks,
materials, questions, and responses that will enable students to learn. Teach-
ers have to focus on what students are learning rather than on simply “cover-
ing” the curriculum. Part of this has to do with the professionalism of teach-
ers. Being professional includes managing the dilemmas of teaching in a
thoughtful way, constantly trying to get smarter about the possibilities.

Brooks, J. G. & Brooks, M. G. (1993). The case for constructivist classrooms. Alexandria, VA: Asso-
ciation for Supervision and Curriculum Development.

Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Edu-
cational Researcher, 18(1), 32-42.

Schram, P. (1992). Learning mathematics to teach: What students learn about mathematical con-
tent and reasoning in a conceptually oriented course. Unpublished doctoral dissertation, Michi-
gan State University, East Lansing.
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he NCTM Curriculum and Evaluation Standards promotes increased

emphasis on problem solving, mathematical communication, thinking, and

reasoning. The resulting gap between a “traditional” and a reform-based
approach to mathematics instruction poses a challenge for teacher educators
as they develop strategies to help both preservice and classroom teachers
implement the Standards. To help teachers become thoroughly familiar with
the kinds of instructional activities that reflect the Standards, mathematics
educators in teacher preparation programs can focus on processes similar to
those recommended for students. The use of complex mathematical tasks can
play a very important role in closing the gap between what teachers have tra-
ditionally done in the mathematics classroom and the approaches emphasized
in the Standards.
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A primary purpose of such tasks is to engage students in meaningful and
worthwhile activities that lead to understanding of mathematics as a subject
matter that has real-life applications. Complex mathematical tasks have sev-
eral noteworthy aspects. First, they can be thought of as instructional activi-
ties that focus on specific sets of ideas and skills. Second, they demand active
involvement by both students and teachers. Finally, such tasks should provide
opportunities for expansion and reinforcement of learning. This learning
should focus on the exploration of concepts being addressed in class, on the
reinforcement of skills and ideas, on connections between ideas, and on the
promotion of student communication through discussion, justification of solu-
tions, and explanations of mathematical processes.

My personal experience in teaching mathematics methods courses has
convinced me that the use of complex tasks helps teachers become oriented
toward a Standards-based approach. Such tasks encourage classroom teachers
to explore instructional strategies that reflect a problem-solving approach to
mathematics education. In addition, they help teachers to see the value of
classroom discourse for student learning and also to develop strategies that
will assist students in improving their communication skills. Just as students
need time to acquire the knowledge, strategies, and skills needed to deal effec-
tively with tasks at different levels of complexity, teachers also need opportu-
nities to develop a mental picture of how such tasks can be integrated into typ-
ical classroom activities.

Teachers who have limited experience with complex tasks regularly raise
certain questions primarily concerning their desire to know how to implement
these instructional activities in their classrooms effectively and how to help
students get the most out of the experiences. Teachers ask questions such as
the following:

How can I know if the level of the mathematics addressed by the task
is too difficult for my students?

How can I help my students see that a task may be approached in
more than one way?

In what ways can I incorporate complex tasks into the curriculum that
I am supposed to teach?

How do I grade students on this?

How do I make sure that all the skills and concepts in the curriculum
are addressed?

Other questions have focused on helping students learn from the tasks:

How do I know that the approaches the students have used are appro-
priate and lead to correct solutions?
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How do I provide feedback to students on their performance?

What do I do if students cannot begin the task or are not able to describe
what they have done, to draw conclusions, or to justify their solutions?

In the search for the answers to these questions I have found five guiding
principles for the preparation of teachers. They are as follows.

Model a problem-oriented classroom environment. In methods courses for pre-
service teachers, complex tasks and “big problems” can be used throughout. They
can be integrated into classroom activities to begin the study of particular mathe-
matical topics. For example, the following task introduces the number concept:

Suppose a friend told you she had a suitcase large enough to hold one million one-dollar bills.
She asked you to help her bring the suitcase to a bank. Could you lift such a suitcase?

Complex tasks also can be used to summarize and reinforce ideas and con-
cepts dealt with at different times during the course. Some tasks are used for
assessment purposes. Preservice students work in small groups on these tasks
and, upon completion, present their solutions to the class. Members of the
class provide the group with evaluation feedback through the use of a prede-
termined rubric.

Provide experiences with tasks at all levels of mathematical complexity.
Some secondary students will find certain tasks difficult for reasons ranging
from inexperience with the activities involved to lack of appropriate mathe-
matical background. Teachers should develop strategies to identify tasks that
provide a challenge to students without being impossible to complete. Such
strategies and sensitivity to the level of task difficulty can be acquired through
exposure to a variety of mathematical tasks of different levels of complexity.
Preservice as well as classroom teachers need to have numerous opportunities
to engage in mathematical tasks, to analyze their mathematical content, and
to develop solution strategies. Throughout these experiences, teachers must be
guided to develop a framework by which they make decisions about the math-
ematical content of a task and its difficulty level. I have found that this is best
accomplished when teachers reflect on and discuss the tasks.

Promote discussion of mathematical tasks, their content, and solutions. 1
have found three successful approaches to promote classroom discourse: small-
group exploration and discussion of a given task, individual or group presenta-
tions of solutions to the whole class, and class discussion of students’
approaches and solutions to tasks. For the latter, I present the class with sam-
ples of student work that I have collected in the local schools. The preservice
teachers first analyze the work individually, then discuss it in small groups,
and, finally, present their comments to the whole class. These experiences pro-
vide teachers with opportunities to explore a variety of student approaches to
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the tasks—some more effective than others—and to identify errors in mathe-
matics or reasoning. Also, these exercises allow teachers to construct feedback
as if they were communicating with the students whose work was examined.

Emphasize development of communication skills. Communication skills
and the promotion of classroom discourse in mathematics should be
approached developmentally. We cannot assume that if we give students an
unstructured task such as “use data from current newspaper advertisements to
examine the economics of buying a car versus leasing” that they will give com-
plete explanations of procedures, solutions, and conclusions. Teachers should
guide students in the development of mathematical communication until stu-
dents achieve the skills and comfort level to communicate mathematical ideas
effectively. A teacher using the buying versus leasing task might structure
communication with a framework such as the following:

Describe the facts stated in the newspaper advertisements.

Describe the differences and similarities in the facts among these
advertisements.

Describe the factors you need to take into account to begin your com-
parison of buying versus leasing.

Describe how you decide whether it is more economical to buy or lease a car.
Write your conclusions and your reasons that support your conclusions.

Provide opportunities for reflection about the tasks and their implementa-
tion with students. Teachers need time to reflect on the mathematical content,
thinking and reasoning requirements, student solutions, and communication
demands of each task. In this way, teachers will develop strategies to address
the concerns posed earlier in this essay. In methods courses, I require students
to write reflections about tasks they have completed. These reflections are then
shared in small groups during class time. In workshops, I give participants
opportunities to reflect on task features and possible implementation strategies.

Rather than concluding with a personal thought on the role of complex
mathematical tasks in teacher education, I will share a comment made by a
teacher on this matter: “By working through the tasks, I became confident of
my mathematical ability, developed ideas for using them with students, and I
am now more sensitive to the difficulties and obstacles students may have in
their learning of mathematics.”

is a Professor of Mathematics Education in the School of Education at the Uni-
versity of Miami. He has directed a number of professional teacher development projects in bilin-
gual, mathematics, and science education. He has also served as a member of the Mathematical Sci-
ences Education Board.
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ASSESSIIENT CONVERSATIONS
A TO0L FOR REFORT

hat role might extended, open-ended tasks play in assessment? Through

the good efforts of many individuals and the reform of large-scale assess-

ment initiatives, we have begun to ask such questions. While there is yet

much to be done to bring technical quality and intellectual rigor to this particu-
lar aspect of a more general reform movement, it is clear that we will never again
think of assessment in precisely the same terms as those that have dominated our
thinking for the past century or more. What is less certain is what role assess-
ment should play in order to maximize its contribution to broader reform efforts.
Some see assessment as an agent of reform, as a lever that, when properly
applied, lifts the system (and the individuals within it) to improved perfor-
mance by increasing accountability. This view is based on a well-established
logic about the force and influence of assessment and accountability: clear
articulation of goals will make public the expectations for individuals and the
education system; appropriate and adequate assessments will reveal the per-
formance of individuals, schools, and systems; and appropriate sanctions and
rewards will provide the motivation to improve effectiveness and productivity.
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This “lever view” is plausible and quite possible. We are not too optimistic,
however, about assessments (reformed or otherwise) used solely in this way and
detect an underlying cynical assumption: that those who work in our schools
have the skills and the capacities to help their students learn better, but for
some reason choose not to do so. Our experience within schools does not sup-
port this cynical view. We have encountered some who (sad to say) lack the req-
uisite familiarity with national, state, or local standards for student learning;
more who have not had the opportunity to develop or refine the skills necessary
to ensure their students’ success; and still more who are constrained by a lack
of intellectual or material support from their school districts or systems for the
kinds of practice necessary to prefigure accomplishment of the standards. We
have not encountered many who willfully choose not to perform well.

However, tasks like the ones in this volume, if we assume that these are
assessment tasks, do offer a potentially powerful but very different role for
assessment in reform. They might play an “instrumental” role, in which teach-
ers work with such tasks in a variety of ways that challenge their practice.
First and most obvious is the signaling function, helping to make the standards
concrete. This is particularly important as the concepts (curricular and
instructional) underlying the standards become more complex and more subtle.

There is a second instrumental use for tasks like those documented here,
also related to teachers’ growth and development. Such tasks can be strategi-
cally used to stimulate and discipline what we have come to term the “assess-
ment conversation.” Making these tasks (as well as the student work that they
elicit) central to professional discourse can challenge teachers’ notions of stu-
dents’ capacities. Appropriate professional development focused on the use of
these tasks can powerfully shape teachers’ notions about what constitutes
high-quality student work and what serves as adequate evidence of such qual-
ity. Our experience with the instrumental use of tasks like these is instructive:
assessment and the development and use of tasks such as these can be
approached so as to maximize the beneficial impact on instructional practice.

Just as standards-based reform requires so much more by way of profes-
sional judgment, there is a need to warrant that judgment. Given the very com-
plex systems within which educational professionals work, faith and trust must
be located somewhere. That confidence can be placed in the people who work
within the system or can be placed in mechanisms designed to control people and
their behaviors. The current reform movement places faith in people rather than
mechanisms. Whether one considers local democratization and site-based man-
agement; teacher empowerment and shared-decision making; the increased role
of teachers in curriculum definition and selection; efforts at organizational
development founded upon continuous improvement and learning community
ideals; or the advent of assessment approaches that more explicitly privilege
human judgment—in all of these cases the trust and the hopes for a high-perform-
ing system are vested in the teachers and other professionals who serve within it.
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However, the call for placing our trust in the empowerment of profession-
als requires that serious action be taken to warrant that trust. This is the
basis for the persistent urging for investment in capacity building at the sys-
tem level and in the professional development of individuals. As part of that
professional development, we are optimistic about the potential of well-
designed “assessment conversations” as instruments to shape teachers’ expec-
tations, beliefs, and practices.

Assessment systems offer important opportunities to show that our trust
in teachers is warranted and thereby facilitate beneficial change. Well con-
structed assessment activities and the efforts to employ them strategically in
professional development activity permit teachers to engage in review of stu-
dent work; develop shared notions of high-quality student performance; deter-
mine what constitutes adequate evidence of high quality; and ultimately to
reflect upon the kinds of learning experiences that challenge traditional prac-
tice and produce the desired performances.

We see immense potential for the use of tasks, such as those in this vol-
ume, as assessments within a process of ongoing and sustained development
designed to support professional growth. We have done so involving large
numbers of teachers who meet regularly (at least monthly for up to two days
at a time) over an extended period (two years) to develop assessment tasks and
to pilot and refine them in their classrooms. In these assessment-development
conversations, teachers share and closely examine students’ work. A profes-
sional discourse is provoked by the simple guiding question, “What can we tell
about this student as a learner in mathematics?”

The ensuing discussions are closely documented and analyzed for “points
of evaluative judgment.” These points of judgment represent the beginnings of
a framework or rubric for evaluating student work. Over time, insights grow
in number, depth, and sophistication, and are synthesized into a framework
that teachers use and refine.

Can an evaluative framework derived from one collection of student work
be applied meaningfully to others? Will it hold up across a diverse array of stu-
dents (with respect to abilities, levels of performance, cultural and linguistic
backgrounds, gender, etc.)? Can it be applied with discipline and consistency
(yet insight and sophistication) by many teachers? These and similar ques-
tions are addressed by taking the evaluative framework and applying it to new
and broader collections of student work. At the same time that an evaluative
perspective is being validated in this way, the sophistication, consistency, and
reliability of shared interpretations are also being refined. Over time, these
conversations, begun with a group of teachers involved in assessment develop-
ment, are replicated in professional development activities on a broader and
more extensive scale.

In our experience, two things have invariably been realized through these
“assessment conversations.” First, all who participate in them leave with
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higher and more clearly articulated aspirations for student performance. This
should not be the least surprising, as the derivation of criteria and expecta-
tions for quality in mathematical performances is essentially additive. One
teacher sees certain things in a piece of student work, while the next recog-
nizes some (but perhaps not all) of them and adds others. These assessment
conversations proceed until the final set of aspirations (criteria of quality) are
far greater than the initial one or that of any one teacher at the outset. Sim-
ply put, these assessment conversations increase the expectations of all those
who participate in them.

The second effect of these assessment conversations is that a shared
framework for interpreting and evaluating student work emerges. The aspira-
tions and expectations associated with this framework become commonly
understood by the teachers and more consistently applied to all their students.
Again, the nature of these conversations (long-term shared encounters and
reflections) supports this outcome.

These two outcomes of assessment conversations—elevated aspirations
and more consistently held and applied aspirations—are key ingredients in a
recipe for beneficial change. Educational research is nowhere more compelling
than in its documentation of the relationship between expectations and stu-
dent performance. Where expectations are high and represent demanding yet
attainable goals, students strive to respond and, ultimately, they do achieve.
Assessment conversations, focused upon tasks such as those in this volume and
student work produced in response to them, provide a powerful device through
which to warrant investment in the human side of the educational system. It
is when assessment is used to provoke conversations of this kind that we find
cause for optimism about the role of assessment in reform.

currently serves as Director of the Delaware Education Research and Develop-
ment Center and as Associate Professor of Educational Studies at the University of Delaware. He is
currently the principal investigator of Delaware’s Statewide Systemic Initiative for Mathematics and
Science Reform. He also holds a senior staff appointment in the Delaware Department of Education
as Special Undersecretary of Education for Policy Research and Development. LeMahieu has received
a number of major awards for his contributions to educational theory and practice from the American
Educational Research Association, the Evaluation Research Society, the Buros Institute of Measure-
ment, the National Association of Test Directors, and the Association for Supervision and Curriculum
Development. He is a former member of the Mathematical Sciences Education Board, having served
on its Executive Committee and as Chair of its National Forum on School Mathematics.

is the Associate State Superintendent of Assessments and Accountability for the
Delaware Department of Education. In this position, Horton coordinates the design and implemen-
tation of the Delaware State Testing Program and coordinates the department’s teacher certification
and licensure responsibilities. She has served on the National Reading Research Center National
Advisory Board, the Sweet Briar College Board of Directors, and the New Standards Project Liter-
acy Advisory Panel. She recently co-authored a paper with Dr. Paul LeMahieu on standards-based
accountability and has served as a consultant to many school districts and national organizations.

HIGH SCHOOL MATHEMATICS AT WORK

144

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/5777.html

ESTIMATING AREA

In medicine, calculation of body
surface area is sometimes very important.
For example, severe burns are usually
described as covering a percentage of the
body surface area. Some chemotherapy
drug dosages are based on body surface
area. How might body surface area be mea-
sured? What factors influence the accuracy
of the estimates?

Three main mathemati-
cal themes could be emphasized in this task:
estimation, partitioning, and successive
approximation. These need to be combined
with an understanding of the relationships
among measurements of distance, area, vol-
ume, and weight. This task might also be
used as an introduction to the calculus topic
of integration.

In everyday life, we estimate area in order to
determine how much paint to use in paint-
ing our homes, how much carpet to buy for a
room, how many plants to buy for a garden,
or how much grass seed or fertilizer to buy
for our lawns. Some approaches to this task
can also lead to discussion of proportion and
scale. Highway designers, landscape design-
ers, interior designers, and architects all
make and interpret diagrams drawn to scale.

An important component of this task is esti-
mating the error in measurement—perhaps
finding both upper and lower bounds, which
lays some of the groundwork for calculus. In
some cases, upper and lower bounds may
lend themselves to further refinement.

There
are many possible avenues of approach for
this task. One possibility is to consider the
human body as a collection of cylinders.
Each limb, the head, and the midsection, for
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example, might be approximated as cylin-
ders. Finding the sum of the lateral surface
area of each of these would give a good first
approximation. This procedure could be
refined by adding the areas of the “ends” of
the cylinders and subtracting the areas
where the cylinders are attached together.
The procedure could be further refined by
considering, for example, the head and the
neck to be a sphere and a cylinder, respec-
tively, and eventually by approximating the
fingers as individual cylinders.

A very different approach would be to take
pictures of a person—front, lateral, and top
views—and to superimpose a flat grid on the
pictures to approximate the surface area.
This approach would require additional dis-
cussion of proportions due to the scale of
the picture. The accuracy would depend not
only on the size of the grid relative to the
dimensions of the person in the picture, but
also on the reasonableness of projecting a
three-dimensional human onto two-dimen-
sional pictures to estimate surface area.
Using smaller and smaller grids to achieve
successively better approximations foreshad-
ows some of the ideas of calculus.

An approach that also foreshadows calculus
but doesn't involve scaling is to cover the
body with patches of cloth of known area. If
the pieces of cloth are all the same size, the
accuracy of the approximation would
depend on the size of the pieces. Covering
the body with cloth suggests a very elegant
approach that doesn’t involve calculus at all.
If the entire body is clothed with close-fit-
ting, non-stretch cloth of consistent thick-
ness and density, the surface area may be
determined by weighing the cloth and then
dividing by the weight of a piece of cloth of
unit area.
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ESTIMATING AREA (ConTINUED)

From any of the above approximations, stu-
dents would be afforded experience and data
from which to discuss the adequacy of the
standard medical practice of approximating
surface area by using the following formula:

Height x Weight
3600

where height is measured in centimeters and
weight is measured in kilograms. The result
of the calculation gives an approximation for
body surface area in square meters. Thus, for
example, a person who is 5'10” (177.8 cm) tall
and weighs 180 Ibs. (81.8 kg) has a surface
area of approximately \177.8 x 81.8/3600 =
2 square meters. This calculation is based in
part on the assumption that, for humans,
weight is roughly proportional to volume, an
assumption that is also worthy of investigation.
The formula has a certain dimensional con-
sistency in that the product of height (one-
dimensional) and weight (three-dimensional)
gives a four dimensional quantity. Taking the
square root then gives a two-dimensional
result, consistent with the fact that surface
area is a two-dimensional quantity.

Given a map of the
United States, students might estimate the
area in square miles of the states of Col-
orado, Texas, Florida, and Vermont and com-
pare their estimates to the actual area of
each state given in an almanac or an ency-
clopedia. The students might discuss the
accuracy of their estimates and why the
process is easier for some states than for oth-
ers. If the students are using a square grid to
do the approximation, they can ask: What
size grid is needed to estimate the area to a
given accuracy?
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Using a map causes another kind of mea-
surement error. Because a map is a flat rep-
resentation of the curved surface of the
earth, there is some inevitable error in the
way it shows angles or areas. How big an
area on the earth must be considered before
such errors are measurable? Understanding
the reason for this distortion and some of
the projections used by map makers involves
solid geometry and spherical trigonometry.

Students also could explore the extent to
which a state’s topography affects its surface
area. Is the surface area of a 100-mile square
section of western Colorado the same as a
100-mile square section of eastern Colorado?
This leads to interesting questions about
how surveyors actually calculate the area of
steeply sloped land.

Other extensions might concern volume or
perimeter, estimating, for instance, the amount
of air in a school building to determine how
often the ventilation system refreshes the air.
Approximating the perimeter of a territory can
lead to some interesting findings. When the
coastline of Britain on a geographical map is
approximated by line segments corresponding
to 500 km on the map, the result is 2600 km.
When the coastline is approximated by seg-
ments corresponding to 17 km, the result is
8640 km—more than a three-fold increase. In
contrast, when the border of Utah is measured
in the same ways, the estimated length goes
from 1450 km to about 1890 km—not even a
two-fold increase. Fractal dimension is con-
cerned with characterizing differences like
these (Peitgen et al., 1992).

Peitgen, H.-O. et al. (1992). Fractals for the classroom.
New York: Springer-Verlag.

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/5777.html

TIMING TRAFFIC LIGHTS

A stretch of a suburban road lined
with shopping plazas carries heavy com-
muter traffic. The road has 15 traffic signals,
unevenly spaced, at the intersections with
cross streets and mall entrances. Figure out
how to time the lights in order to maximize
the flow of commuter traffic.

One approach to this
task uses a very powerful geometric tech-
nique to model the situation. The technique
combines the information for cars (given by
two-dimensional position versus time
graphs) with the information given for traffic
lights (given by one-dimensional time
graphs showing how long they are red,
green, and yellow). Similar diagrams are
used in the planning of highways, railroad
schedules, and canals. This task and the
techniques in the solution below provide
opportunities for geometric thinking, reason-
ing from graphs, and connections between
slope and velocity.

Rather
than a complete solution, which would
require precise data about placement of
lights and about typical traffic flow and con-
sideration of many alternatives, this section
discusses a solution for a simple case. This
simple case can provide understanding of
the geometric model and insights into the
general case.!
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Suppose the road travels north-south and
has only three lights. Label the lights A, B,
and C, and suppose that lights B and C are
0.25 and 0.38 miles north of light A,
respectively. First consider only light A.
Suppose that it follows a 1-minute cycle—
green for 30 seconds, yellow for 5 seconds,
and red for 25 seconds. The pattern of the
light can be represented graphically on a
line (Figure 1).

To show the position of cars over time, the
distance from light A may be represented on
a vertical axis with time represented on a
horizontal axis as in Figure 1. For smooth
traffic flow, cars going a moderate speed
should be able to go through all three lights
without stopping. Consider first only cars
traveling north and assume that all cars travel
at a constant speed of 30 mph. Figure 2
shows possible positions of 12 north-bound
cars over the first 120 seconds after the
beginning of a cycle of light A. The first car
goes through light A 5 seconds after it turns
green and the sixth goes through at 30 sec-
onds, just as the light turns yellow. The
white space in the middle of the graph
shows that light A, when it is red, causes
“spaces” in the traffic flow, if traffic entering
from other roads is ignored. In this represen-
tation, the slope of a line is equal to the
speed of the car it represents. Here, the
slopes are 0.5 miles/60 seconds, or 30 mph.

FIGURE 1: The green-yellow-red cycle of light A
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TIMING TRAFFIC LIGHTS (conTINUED)

FIGURE 2: cars going north through light A when it is green
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The lines are parallel because all of the cars
are assumed to be traveling at the same
speed.

Lights B and C are represented as horizontal
lines in Figure 3. The lines have been par-
tially dotted to show “windows”—time inter-
vals during which the light should be green
to allow unimpeded flow of the 12 cars from
Figure 2. Each light should turn green
shortly before the first car arrives at the light
so that the car will not need to slow down

before reaching the light. The diagram
shows that light B should be green from
about 30 until 60 seconds and again from 90
until 120 seconds. Allowing for a 5-second
yellow light, this implies a 25-second red
light between the green intervals. Thus, light
B should follow the same cycle as light A, but
the cycle is shifted in phase by 30 seconds.
Light C should be green between about 45
and 75 seconds and then again at 105 sec-
onds. Thus, this light should also follow the
same cycle, but phase shifted by 45 seconds.

FIGURE 3: Dpetermining when lights B and C should be green for north-bound traffic
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This is a sufficient one-directional solution
for three lights. In fact, with this sort of
phase-shifting of the same light pattern, any
number of lights could be added to this
road and still allow for unimpeded flow of
traffic in the north-bound direction. Lights
on one-way streets are often timed in a
manner similar to this, although the
expected speed may be different from the
30 mph used here.

Allowing for similarly smooth flow of traffic
in two directions is much more difficult. Fig-
ure 4 shows both north-bound traffic as in
Figure 2 and also some south-bound traffic
that would go through light A when it is
green. Note that if light B uses the same
green intervals as in Figure 3, it will allow
both north- and south-bound traffic to flow
unimpeded. In order to allow all the north-
and south-bound traffic to flow through
light C, however, it must be green all the
time, which would not be practical.

One solution to this dilemma is to give prior-
ity to the north-bound traffic and time the
lights as indicated in Figure 3. Then north-
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bound traffic can flow unimpeded, but the

south-bound traffic will always have to stop at
at least one of the lights. Alternatively, prior-
ity could be given to the south-bound traffic.

Another approach is to change the period of
the light cycles. If the lights are on a 90-sec-
ond rather than a 60-second cycle, then light
C can be timed to accommodate both north-
and south-bound traffic, as shown in Figure 5.
Now, however, light B needs an excessively
long green interval to accommodate both
directions of traffic.

Neither a 60-second light cycle (Figure 4) nor
a 90-second light cycle (Figure 5) can accom-
modate traffic in both directions at both
lights B and C. Figures 4 and 5 do, however,
suggest a compromise: a 75-second light
cycle.

Figure 6 shows that with a 75 second light
cycle, if both lights B and C are green from
about 30 to about 75 seconds after the
beginning of light A’s cycle, most of the
north- and south-bound traffic will flow
unimpeded.

FIGURE 4: petermining when lights B and € should be green for two-way traffic
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TIMING TRAFFIC LIGHTS (conTINUED)

FIGURE B: Two-way tratfic, assuming a 90 second light cycle?
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FIGURE B: Two-way traffic, assuming a 75 second light cycle
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The discussion and dia-
grams above suggest that when there are
only two lights or when the lights are evenly
spaced, the light cycle may be adjusted to
accommodate good traffic flow in both
directions. When there are more than two
lights and they are unevenly spaced, how-
ever, it is not always possible to allow for
stop-free traffic in both directions on a two-
way road. Is it possible to ensure that all cars
stop at at most one of three lights? Some
drivers get frustrated when they must stop
at two or more consecutive lights. On a road
with many unevenly spaced lights is it

HIGH SCHOOL MATHEMATICS AT WORK

150

always possible to time the lights so this
won’t happen? On some two-way streets,
five or more consecutive lights change as a
group, allowing for most cars to pass
through all the lights in the group without
stopping. How does this approach compare
to more flexible optimization?

The above discussion has not taken into
account the east-west traffic. How should
these requirements be factored in? If some
of the east-west roads are major roads with
much traffic, these requirements should be
considered in any decisions about timing the
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lights. On the other hand, if they are minor
roads, it is probably safe to assume that traf-
fic from these roads will not benefit from
long red signals on the north-south road.

The discussion above began with positions
of the lights and tried to find a reasonable
way to time the lights for traffic going 30
mph. What about the reverse? Given the
timing of some traffic lights, what are the
speeds that must be traveled so that cars do
not have to stop? As shown in Figure 7, cars
can be given positions by tilting the lines to
fit the “windows” represented by green
lights. The trick is to find slopes that corre-
spond to appropriate driving speeds.

Under the scenario represented by the solid
line in Figure 7, it takes the car 60 seconds to
travel from light A to light B. If B - A repre-
sents the distance between the two lights,
then the speed is (B - A)/60 feet per second
(fps). If the distance between A and B is
2400 feet, then the speed is 40 fps, which is
about 27 mph, and that’s fine. But suppose
the distance between A and B is 6000 feet.
Then the speed would be 100 fps, or about
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70 mph, and that’s not sensible. In this case,
the dotted line in Figure 7 might represent a
more realistic possibility. Passing through
the second “window” in the line representing
light B corresponds to allowing two cycles of
the lights to get from A to B. This doubles
the time that it takes for the car to travel
from light A to light B and cuts the speed in
half to about 35 mph, which might be
acceptable. In general, if N is a positive inte-
ger representing a number of cycles of light
B, then the speed will be (B - A )/(60N) feet
per second. Just pick N to get the speed into
a sensible range.

What if the road carries heavy commuter
traffic northbound in the mornings and
southbound in the evenings? Would it make
sense to have different timings of the lights
for the different rush hours? Does it make
sense in very heavy traffic to slow down the
expected speed of travel? What needs to
happen to the timing of the lights to accom-
modate the slower speeds?

Much of the discussion has aimed to allow
cars to pass through many lights without

FIGURE 7: Two scenarios for a car traveling from light A to light B
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TIMING TRAFFIC LIGHTS (conTINUED)

FIGURE 8: marey's train schedule

SOURCE: Tufte, 1983, p. 115.
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stopping. What about maximizing the capac-
ity of the road? Will the solution be the
same or different?

This sort of diagram is used in other situa-
tions, such as train scheduling (see Figure 8).
For a one-track railroad line, or a canal like
the Suez Canal which is one-way much of the
way, you locate sidings (bypasses) on the dis-
tance axis where traffic in opposing direc-
tions can pass, and schedule trains (convoys)
to get there at the right times. The planners
of traffic for the Suez Canal use a similar dia-
gram, but with the time and distance axes
interchanged for historical reasons.
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Tufte, E. (1983). The visual display of quantitative infor-
mation. Cheshire, CT: Graphics Press.

Walker, J. (1983). Amateur scientist: How to analyze a
city traffic light system from the outside looking
in. Scientific American, 248(3), 138-145.

For other ideas and approaches, see Walker (1983).

. A 90-second light cycle would likely include a
longer green portion, allowing for more than 6
cars, at 5-second intervals, to pass through the
green light. Nonetheless, Figure 5 includes only 6
cars through each cycle to allow for easier com-
parison with the other figures.
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BUYING A USED CAR

How does the age of a used car
affect its price? How does its age affect its
repair costs? What is the best age at which
to buy a used car?

Many people in the
United States are dependent on cars, and
students are no exception. This task may be
particularly meaningful to students as they
become consumers of cars.

Although this task begins with data collec-
tion, it leads quickly to other important
mathematics, including graphs and scatter-
plots, linear regression, amortization, and
optimization—to balance rising repair costs
against falling purchase prices.

Data
for this task may be collected from consumer
magazines, from car buying guides, or from
the Internet. If data are gathered about
prices and repair costs for used cars, they
reveal opposite trends: newer cars tend to
have lower repair costs, but older cars gener-
ally have lower purchase prices. Purchase
price is a one-time cost, and repair costs are
likely to be on-going. So to combine this
information, students might first convert it to
a common basis—either annual expenses (if
the purchase price is paid out over time) or
total costs (by adding up total expected
repairs for the likely life of the car).

Once these data are combined, either in a
spreadsheet or on a graph, it should be clear
visually where the total costs are least. This
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may be somewhere in the middle of the age
or price range being examined, or it might
be at one end or the other. For example,
among cars older than ten years, it might be
that the newest cars are the best buy
because repair costs rise more rapidly than
the drop in price as cars age.

Many people who are buying a used car may
expect that their incomes will rise. In that
case, they may not want to minimize the
total cost but might be willing to bear larger
repair expenses down the road in return for
a lower purchase price.

What is the relation
between age and mileage? How much more
value is there in a low-mileage car of a certain
age? By collecting repair costs and plotting
them by age and by mileage, it is possible to
determine whether age or mileage is the bet-
ter indicator of the reliability of the car. (Such
data may be available—at least for specific
brands—from the computerized repair
records of automobile dealers.) Other exten-
sions could look at differences between cars
repaired at dealers’ shops or at independent
garages or in different regions of the country.

Another question a prospective car-buyer
might want to consider is whether to buy or
lease.

Finally, if the data are available, it would be
interesting to find out how old a car needs
to be before its price begins to rise—
because it is becoming an antique.
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tPIL0GUE

he introduction to High School Mathematics at Work begins by asserting

that today’s world provides rich and compelling examples of mathematical

ideas in everyday and workplace settings. In short, workplace-based
mathematics can be good mathematics for everyone. The volume goes on to
explore opportunities and challenges posed by developments in the world out-
side of the classroom. Several points deserve mention and special emphasis.
Because this document is part of a larger reform movement, some concerns
must be addressed about the reform movement in general and also about the
scope of the tasks in this volume. Once again, the tasks in this volume are not
prescriptions for curriculum but examples that are intended to illuminate pos-
sibilities.

At the heart of some of the recent concerns about K-12 education reform efforts
are issues of subject matter content: scope, depth, and levels of conceptual rea-
soning and technical proficiency. Concerns have been raised, for example, that
some proposed revisions of curricula omit important topics and place insuffi-
cient emphasis on technical proficiency to promote understanding. High School
Mathematics at Work aims neither to broaden nor restrict the scope of the high
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school mathematics curriculum. Furthermore, technical proficiency and depth
of content coverage are not necessarily reduced by inclusion of workplace and
everyday applications of mathematics. To the contrary, such an approach can
provide meaning that increases the depth of students’ understanding as well as
their levels of conceptual reasoning and technical proficiency. Of course, a nec-
essary condition for such an outcome is that students have sufficient opportu-
nity for mathematical closure—extracting and conceptualizing the mathemat-
ics underlying the problems.

By emphasizing connections between mathematics and workplace and every-
day contexts, the mathematical content of this volume emphasizes some topics
that have particularly striking, valuable, or widespread applications outside
the classroom. Despite the broad range of tasks in this volume, statistics, dis-
crete mathematics, and spatial reasoning receive little attention, and yet their
relevance for today’s world is without question. High School Mathematics at
Work flags places in hospitals, banks, homes, and other familiar settings where
important mathematical ideas are used. Many of these settings employ tech-
niques which depend upon and lead to aspects of algebraic, geometric, and
functional reasoning that have been and will always be recognized as crucial
elements of a high school education.

A careful look at algebraic reasoning illustrates this point. Linear pro-
gramming (a subset of algebra), for example, has many beautiful, important,
and time-tested applications. That is why many textbooks already contain
problems on this subject. More generally, algebraic reasoning is often
addressed in High School Mathematics at Work through spreadsheets (rules for
combining the entries of certain cells to produce the quantity that goes into
another cell are just algebra in a new form). That some aspects of classical alge-
bra do not appear more explicitly in High School Mathematics at Work should
not be taken as a statement about their mathematical or practical value. Stu-
dents heading to technical careers of any sort should understand how to use and
interpret symbols. In fact, for all students, understanding of core algebraic
skills and reasoning continues to be a key mathematical prerequisite.

Similar comments could be made about many other mathematical topics
not explicitly mentioned in High School Mathematics at Work. Indeed, the
Task Force for this volume identified quite a large number of mathematically
important and delightful problems that were eventually not recommended for
inclusion because their connection to workplace or everyday applications was
less apparent than for others. Among the favorites not included were the fol-
lowing: calculating into how many regions n lines drawn at random divide the
plane; and using probability calculations to see how the length of a play-off
series affects the chances of the weaker team pulling off an upset by winning
the series.
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When one addresses concerns about reform-based materials as well as the fact
that not all important high school mathematics is represented here, it is nec-
essary once again to caution that the tasks in High School Mathematics at
Work constitute neither a complete curriculum nor even student-ready curric-
ular materials. All readers are welcome to see in these tasks potential for
strengthening the mathematics education of all students, but no one should
conclude that it is enough to teach these tasks or even a collection of exercises
inspired by them. Any tasks need to be embedded in a coherent, well-devel-
oped mathematics curriculum that provides the mathematical understanding
that a high school graduate should have. In the end, mathematics is “more
than a toolbox,” as Hugo Rossi recently put it. The act of abstraction is what
makes it so powerful. After completing a series of workplace or everyday prob-
lems with students, we must always remember to help them understand that
what we call mathematics comes from generalizing and organizing the common
features among the solutions into a coherent structure. A quality mathemat-
ics curriculum is not crafted out of tasks alone but also depends upon how
these tasks are knit together and what kinds of opportunities students are
afforded for abstraction and deep conceptual development.
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5 Of PROBLEMS
il [ASHS

otential tasks for High School Mathematics at Work were solicited from

many sources. Printed announcements of the project were distributed at

national meetings of various professional societies; e-mail invitations were
sent to many mathematicians, educators, and policy leaders; special invitations
were extended to leaders of major high school curriculum and assessment pro-
jects, both academic and vocational; panel presentations were arranged to
address the key question of what mathematics every high school graduate should
know and be able to do; and visits were made to corporations to solicit examples
of typical work tasks that require mathematical knowledge and insight.

From this enormous volume and variety of problems, the Task Force and
its consultants shaped tasks for inclusion in the volume—Dby selection, by revi-
sion, by combination, and by creation. Virtually none of the tasks presented
here are the same as originally proposed: each has been transformed to fit the
context of this volume. Similarly, teachers who may wish to use these or other
tasks will need to adapt them to their own contexts. The process of adaptation
reinforces one of the key lessons of High School Mathematics at Work, namely,
that context is important for mathematics.

That said, we list below the types of sources we found helpful in prepar-
ing High School Mathematics at Work. Though this list is intended to be illus-
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trative rather than exhaustive, we apologize for omitting any particularly
fruitful sources. Similar lists tied to regional contexts should be of help to
teachers who want to offer their students more locally relevant but similar
tasks.

Big companies and government agencies are awash in data, from the manufac-
turing floor to the sales office: effective companies expect all their employees to
use these data for planning and quality control. For this project, we found
interesting examples from different industrial and governmental sectors: trans-
portation (Boeing), electronics (Motorola), entertainment (Disney), food (Star-
bucks), construction (Hilti), and health (Oregon Center for Health Statistics).

Many organizations are working to develop effective school-business partner-
ships. These programs operate under titles such as “tech-prep” and “school-to-
work.” They include regional education consortia (e.g., the East San Gabriel
Valley Regional Occupational Project or the Pennsylvania Youth Apprentice-
ship Program), regional corporate consortia (e.g., the Washington State Manu-
facturing Technology Advisory Group or Craftsmanship 2000 in Tulsa, Okla-
homa); and curriculum development organizations (e.g., the Consortium on
Occupational Research and Development [CORD] in Waco, Texas, or the
School-to-Work project of the Learning Research and Development Center
[LRDC] at the University of Pittsburgh).

Many districts have special high schools devoted to vocational or technological
education. Some (e.g., Rindge School of Technical Arts in Cambridge, Massa-
chusetts; Leander High School in Leander, Texas; the Williamson Free School
of Mechanical Trades in Philadelphia) provide a comprehensive philosophy
uniting vocational and academic education. Others (e.g., Franklin High School
in Portland, Oregon, Brooklyn Technical High School in New York) have special
projects (STELLA at Franklin, Design Challenge at Brooklyn Tech) that offer
stimulating ideas for how mathematics relates to other subjects.

Although High School Mathematics at Work is about high school mathematics,
many programs with similar tasks can be found at two- and four- year colleges.
Some of these have been supported by federal grants, others with local funds.
Among those that contributed to High School Mathematics at Work are the
Mathematics in Industry project at Henry Ford Community College, Dearborn,
Michigan (Barbara Near, Project Director), Snapshots of Applications in Math-
ematics at SUNY College of Technology in Delhi, New York (Dennis Callas,
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Project Director), and Interactive Mathematics at Mt. Hood Community Col-
lege in Oregon (Penny Slingerland et al., project directors). More recent pro-
jects supported by the National Science Foundation’s (NSF) Advanced Techno-
logical Initiative (ATE) program can be found at Wentworth Institute (Gary
Simundza, Director) and Johns Hopkins University (Arnold Packer, Director).

Many innovative tasks can be found in the material produced by the several
nationally funded curriculum and assessment projects. High School Mathe-
matics at Work benefited especially from ideas submitted by the Balanced
Assessment Project, the Interactive Mathematics Project, the New Standards
Project, and the Connecticut Academic Performance Test in Mathematics.

Many individuals contributed special ideas to High School Mathematics at
Work—far more than can be named here or even recalled. We do mention, how-
ever, a few individuals who direct centers or projects that we found to be par-
ticularly rich sources of ideas: Dick Stanley, Charles A. Dana Center, Univer-
sity of California, Berkeley; Peter Costa, Center for Applied Mathematics,
University of St. Thomas; Avner Friedman, Director of the Institute for Math-
ematics and Its Applications at the University of Minnesota; Cindy Hannon,
Tech Prep Coordinator, Maryland State Department of Education; Thomas
Hsu, Cambridge Physics Outlet, Woburn, Massachusetts; and Martin Nahe-
mow, Director of School-to-Work Programs, LRDC, University of Pittsburgh.

Several organizations serve as helpful sources of contacts for particular projects
and programs. These include Schools that Work, a project directed by Gene Bot-
toms for the Southern Regional Education Board; the Advanced Technological
Education (ATE) Program of the NSF (Elizabeth Teles and Gerhard Salinger,
Program Directors); the National Center for Research in Vocational Education
(NCRVE) at the University of California, Berkeley (Norton Grubb and David
Stern, Directors); the Institute on Education and the Economy at Columbia Uni-
versity (Thomas Bailey, Director); and Jobs for the Future in Boston (Hilary
Pennington, President and Susan Goldberger, Program Director).

Ideas for tasks in High School Mathematics at Work also came from the
National Security Agency’s Summer Mathematics Teacher Institutes (Fort
Meade, Maryland) and the TEAMS Competition of the Junior Engineering
Technical Society (JETS). For similar problems from new sources, we sug-
gest some of the NSF ATE projects, for example, the Sinclair Center and the
Center for Image Processing in Education. Of course, some of the very best
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sources are the members of the Task Force for High School Mathematics at
Work, who worked extensively with the many tasks that were reviewed in
the process of preparing this volume.

These diverse institutions and programs illustrate both the particular
sources from which High School Mathematics at Work was developed, and also
the enormous variety of places that educators should look to in their search for
tasks that are mathematically rich and contextually relevant.
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TS TORCE MTIEMBERS

is Professor of Mathematics at Columbia University. He is Chair of
the Mathematical Sciences Education Board (MSEB), has served on the Exec-
utive Committee for the American Mathematical Society, and was Chair of the
Board of Trustees for the Mathematical Sciences Research Institute, Berkeley.
He is a member of the National Academy of Sciences.

taught at Laney College in the Peralta Community College District
for 24 years. During that time, he served as Director of the Experimental Col-
lege, as Chairperson of the Mathematics Department, and as Director of Pro-
ject Bridge, an integrated basic skills program that has been nationally recog-
nized. Jacobs has served as a consultant to library literacy programs working
on basic mathematics skills and with programs working with the deaf and
other disabled people. He has also served on a State of California Work Team
designing a State School-to-Work plan.

has been teaching at Leander High School since 1982 and is
currently the Mathematics Department Chair. During this time, he has imple-
mented CORE Applied Mathematics and has served as a nationally recognized
teacher trainer for the curriculum. Martinez has served on the Texas Educa-
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tion Agency’s Item Review Committee for the Texas Assessment of Academic
Skills and has most recently been selected as a Master Teacher for the
National Teacher Training Institute for Math, Science, and Technology. He is
currently a member of the Austin Area Council of Teachers of Mathematics, the
Texas Council of Teacher of Mathematics, the Texas Association of Supervisors
of Mathematics, and the National Council of Teachers of Mathematics.

is a faculty member at American University and was a com-
munity college instructor for 25 years. As an administrator at Mt. Hood Com-
munity College, she was the Principal Investigator of the National Science
Foundation’s Advanced Technological Education project, “An Application-
Based, Technology-Supported, One-Track Mathematics Curriculum.” She
serves on the Mathematical Association of America’s Committee on the Teach-
ing of Undergraduate Mathematics and was a member of the National Council
of Teachers of Mathematics and American Vocational Association’s Joint Task
Force on Mathematics and Vocational Education. She serves on the Executive
Committee of the MSEB and on the National Advisory Committee of the Los
Angeles Collaborative for Teacher Excellence, a National Science Foundation
funded project. She was on the writing team of the National Research Coun-
cil’s publication, Mathematics and Science Education Around the World: What
Can We Learn from the Survey of Mathematics and Science Opportunities
(SMSO) and the Third International Mathematics and Science Study (TIMSS)?.

is Systems Project Leader at G.D. Searle & Co., Monsanto. He
is a member of the American Mathematical Society (AMS) Short Course Sub-
committee and has served as Chair of the committee. He has served as Gover-
nor-At-Large on the Mathematical Association of America (MAA) Board of Gov-
ernors, and as a member of the MAA Taskforce on Board Effectiveness. At the
state level, he has served as Chair of the Illinois Section of the MAA and as
Editor of its newsletter, Greater than Zero. In addition to belonging to the AMS
and MAA, McCray is a member of the Association for Women in Mathematics,
the Association for Computing Machinery, and the Institute of Electrical and
Electronics Engineers’ Computer Society.

has been in secondary education for 33 years. She is the
Upper School Mathematics Chair at the Langley School in McLean, Virginia.
In addition, she holds an Adjunct Faculty position at George Mason University.
She is a Presidential Awardee for Excellence in Mathematics Teaching.

was a research mathematician at Bell Laboratories for 32 years
and an Assistant Vice-President at Bellcore for three years. He retired in 1986
and is now a visiting Professor of Mathematics Education at Teachers College,
Columbia University.

HIGH SCHOOL MATHEMATICS AT WORK

168

Copyright © National Academy of Sciences. All rights reserved.


http://www.nap.edu/catalog/5777.html

says and Examples for the Education of All Students

is Professor of Mathematics Education and Co-director of the Center
for Education and Equity in Mathematics, Science, and Technology in the Col-
lege of Science, California State Polytechnic University, Pomona. He is the
immediate past President of the National Council of Teachers of Mathematics
(NCTM).

is the Elizabeth and Edward Conner Professor of Education
and Professor of Mathematics at the University of California, Berkeley.
Schoenfeld’s research is on mathematical thinking, teaching, and learning. He
has focused on problem solving and assessment and is currently a writing
group leader for the NCTM’s Future of the Standards project, also called “Stan-
dards 2000.”

has recently served on the MSEB, on the Editorial Board of
NCTM’s Student Math Notes, as the technology consultant for the NCTM Sec-
ondary Level standards Addenda Projects, and as a member of NCTM’s Com-
mission on the Future of the Standards. From 1985 to 1991 and again in 1993,
Mr. Teague served as Co-director of the Woodrow Wilson Summer Mathematics
Institutes. Teague and Helen Compton are section editors of “Everybody’s
Problems” for the Consortium for Mathematics and Its Applications (COMAP).
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AAAS, see American Association for the
Advancement of Science
Abstraction, 15, 90, 107-110, 132, 159
Academic education
vocational education and, 11, 12, 15, 2429,
164
ACT, 61, 69, 71
Adult learners, 11
Advanced Technological Education program, 3,
165
Aesthetic value of mathematics, 4, 35, 36
Agriculture, 26, 27, 39
Algebra, 2, 12, 31-34, 35-41, 69
curricular design, 94-95, 98-100, 103,
104-105
mental mathematics, 83—86
representations, 39-40, 55, 80-82, 87-90,
105, 109-110, 111-114, 124, 133
school-to-work experiences, 2, 12, 37-40
spreadsheets, 32, 80-82, 87-90, 94-95, 105,
111-112, 133, 158
tasks, 32, 33-34, 54-56, 76, 80-82, 8386,
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87-90, 98, 99, 100, 109-110, 111-114,
117, 118, 121-122, 123-124, 133, 158
Algorithms and procedures, 9, 64, 69
adult learners, 11
algebra, 37, 39, 83-86
concepts and understanding, relation to,
32-34, 54, 59, 95, 134
curricular design, 94, 99-100, 102-103,
104-106
mental mathematics, relation to, 83—86
problem solving, relation to, 11, 97
recursion, 62, 75, 76, 80-82, 87-90, 105,
111-114
similarities among, for abstraction, 62, 90,
132
AMATYC, see American Mathematical
Association of Two-Year Colleges
American Association for the Advancement of
Science, 60
American College Testing, see ACT
American Mathematical Association of Two-
Year Colleges, 60
see also Two-year colleges
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Carl Perkins Vocational and Technical
Education Act, 29
Center for Education Research (Wisconsin), 26
Charts and tables, see Graphical
representations and tables
Clinton, William, 59, 69
Coalition of Essential Schools, 25
Collaborative learning, see Group learning
Colleges and universities, see Post-secondary
education; Two-year colleges
Commission on Achieving Necessary Skills, see
Secretary's Commission on Achieving
Necessary Skills
Communication skills, 1, 27, 30, 32, 34, 54, 107,
130, 138, 140
standards, 60, 62, 64, 66, 68, 69, 78-79, 137
see also Standards see also Group learning
ATE, see Advanced Technological Education Computers and calculators, viii, 1, 10, 30, 34,
program 36, 80-82, 87, 105, 109, 133, 135, 153
Attitudes, see Motivation see also Spreadsheets
Automobiles Conceptual understanding, 2, 9, 10, 30, 37, 62,
car purchase, 105, 131, 140, 153 95, 159
driving, braking distances, 123-124, 125 skills and procedures, relationship with,
traffic control, 147-152 9-11, 24-26, 32-34, 54, 59, 62, 66, 68,
75, 79, 83, 107-109, 132-134, 138,
157-158
Cost analysis
business plan, 20-23, 68
car purchase, 105, 131, 140, 153
credit, 87-90, 105
optimization, 53
procurement, 45, 46—-47, 119-121
sales tax, 99
schooling costs, 16
see also Tasks, mathematical, by context
Credit, 62, 87-90, 105
see also Financial applications
Crossroads in Mathematics: Standards for
Introductory Mathematics Before
Calculus, 60
Curriculum and curricular design, 1, 2, 3, 4, 10,
93-126, 157-158, 159

Annuities, 109, 111-114
Apprenticeships, see Vocational education
Area, geometry, 16, 38, 39, 47, 131, 145-146
Assessment, 3, 16, 59-90, 138, 165
ACT, 61, 69, 71
adequacy for purposes, 61, 70-71
curriculum, influence by, 61-62, 70-74
eighth grade test, national voluntary, 59, 69
international context, 75-76
item development, 97-98
NAEP, 62, 73, 77-79
parents, concerns of, 61, 70 74
SAT, 61, 71-74
standards, relation to, 59, 61
teacher development, role in, 130, 141-144
TIMSS, 4, 95

Back-of-the-envelope estimates, see Estimation
Baseball, 116, 158
Benchmarks for Science Literacy, 60
Body proportions, 125, 145-146
Business applications, 11-13, 30, 32
tasks, 18-23, 45, 46-47, 49-53, 76, 83,
84-86, 119-121
see also School-to-work experiences; Tasks,
mathematical, by context

Calculations, mental, see Mental mathematics
Calculators, see Computers and calculators
Calculus, 69

high school, in, 31, 104

international context, 75-76

NCTM standards, role in, 28
preparation for, 3, 28, 60, 95, 108, 131, 145

student performance on an algebra problem,

33
tasks, 54-56, 121-122, 145-146
California, 59

Careers, preparation for, 2, 4, 9, 10, 30-31, 34,

67-69, 107-110, 158

see also Business applications; School-to-
work experiences; Tasks, mathematical,
by context; Vocational education

INDEX

172

academic/vocational education related, 11,
12, 15, 24-25

algebra, 94-95, 98-100, 103, 104-105

algorithms, 94, 99-100, 102-103, 104-106

Bruner's spiral, 95

calculus, 28

computers and, 10

defined, 93

geometry, 100, 104, 109

habits of mind, 94, 102-106

modeling, 93-94, 99-101, 104
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post-secondary education preparation, 93,
107-110

problem solving, 97, 98, 100, 103

standards, 60-62, 63—66, 95, 104, 107-108,
137

tasks, inclusion in, 94-95, 97-101, 104,
108-110, 138, 159

teaching, relationship to, 129-130, 132-133

testing, influence on, 61-62, 70-74

tracking, educational, 11, 12, 15, 24-29, 73

see also Tasks, mathematical, by content

Curriculum and Evaluation Standards for

School Mathematics, 60, 65, 137

Data analysis, 4, 12, 21, 22, 68, 75
tasks, 16, 18-23, 27, 42-44, 56, 64, 71-74,
115-116, 153
see also Graphical representations and
tables; Spreadsheets; Tasks,
mathematical, by content
Data representation, see Graphical
representations and tables
Department of Education, 3
Department of Energy, 56
Department of Labor, 3
Developmental education, 3, 15, 35, 36
Diagrams, see Graphical representations and
tables
Discrete mathematics, 158

Economic factors, see Cost analysis;
Employment and employers; Financial
applications; Wages and salaries

The Education Imperative, 2

Employment and employers

academic/vocational tracking, 25

see also Business applications; Careers,
preparation for; School-to-work
experiences; Wages and salaries

Energy conservation, 13, 33, 54-56

Engineering, 3, 37-38, 47, 77

Environmental science, 27, 31, 32, 47, 49

Equity issues, 11, 73, 116

Error of measurement, 22, 119, 145, 146

Estimation, 12-13, 21, 30, 31, 76, 131, 145

tasks, 37-38, 45-48, 119-122, 123-126, 139,
145-146

Evaluation, see Assessment; Standards

Everybody Counts, ix, 9, 103

Exponential functions, 4, 76, 99, 109-110, 111
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Federal government
assessments, 59, 62, 69, 73, 77-79
legislation, 3, 26, 29, 60
see also Carl Perkins Vocational and
Technical Education Act; School-to-Work
Opportunities Act of 1994; headings
beginning "Department of . . ."
Fermi problems, see Estimation
Financial applications, 87-90, 98, 99, 105,
109-110, 111-114, 124-125, 133
Foreign countries, 18-23, 7678
Formulae, 9, 16, 69, 81, 84-86, 87-88, 90, 112,
113, 117, 121-122, 146, 151
rules of thumb, 39, 95, 123-126
Fractals, 146
Functions, 22, 39, 40, 56, 75-76, 98-99, 110,
112-113, 158
concept of, 37
exponential, 4, 76, 99, 109-110, 111
linear, 33-34, 54-56, 78, 95, 98, 99, 105, 108,
113, 123-126, 133, 147-152, 158
quadratic, 32, 69, 95, 99, 121, 124
trigonometric, 12, 31, 75, 109

Gender issues, see Equity issues
Geometry
area calculations, 16, 38, 39, 47, 131,
145-146
curricular design, 95, 100, 104, 109
fractals, 146
representation, 65, 77, 95, 117-118, 119-122,
147-152
mapmaking, 110, 146
ordered pairs, 95, 120
tasks, 39, 64-65, 76, 77, 109, 110, 117-118,
119-122, 145-146, 147-152, 158
topology, 104
vectors, 95, 117-118
Germany, 76
The Goals 2000: Educate America Act, 29(n.5),
60
Government role, see Federal government; State
government
Graphical representations and tables, 30, 37,
76, 108, 133-134
algebra, 3940, 55, 80-82, 87-90, 105,
109-110, 111-114, 124, 133
data analysis, 12, 21, 42-44, 115-116, 153
geometry, 65, 77, 95, 117-118, 119-122,
147-152
modeling, 49-53, 55
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Group learning, 1, 12, 25, 32, 49, 68, 69
assessment of, 61
business planning, 18-23
teacher involvement, 135-136, 139-140

Habits of mind, 94, 102-106
Health care, 12, 26, 30, 62
tasks, 39—40, 42—-44, 80-82, 115-118,
145-146
Higher education, see Post-secondary education

Incentives, see Motivation

Interactive Mathematics Program, 73
International issues, see Foreign countries
Interpersonal skills, see Communication skills

Japan, 18-23, 76-78

Legislation, Federal, 3, 26, 29, 60

Life by the Numbers, 30

Linear functions, 33-34, 54-56, 78, 95, 98, 99,
105, 108, 113, 123-126, 133, 147-152,
158

Mapmaking, 110, 146
Mathematical Preparation of the Technical Work
Force, ix, 2
Mathematical Sciences Education Board, ix, 9
Mathematical tasks, see Tasks, mathematical
Measuring Up, ix
Medicine, see Health care
Memorization, 15, 95, 134
see also Algorithms and procedures;
Conceptual understanding
Mental mathematics, 62, 83—86
see also Conceptual understanding; Habits of
mind; Rules of thumb
Minority groups, see Equity issues
Models and modeling, 11, 13, 22, 64
curricular design, 93-94, 99-101, 104
energy conservation, 13, 33, 54-56
linear, 54, 133-134
optimization, 49-53
problem solving, 98-99
solar system, 64—65
trigonometry, 31
see also headings beginning “Tasks . . .
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Motivation
aesthetic value of mathematics, 4, 35, 36
science, connection with, 25, 26, 64, 66
students, 10-11, 36-37, 77, 79, 98, 108, 113
negative, 12, 15, 24, 36
teachers, 134135, 136, 140, 141-144

NAEP, see National Assessment of Educational
Progress

National Assessment of Educational Progress,
62, 73, 77-79

National Center for Restructuring Education,
Schools, and Teaching, 25-26

National Council of Teachers of Mathematics,
28, 137

standards, 28, 61, 63-64, 137

National Science Education Standards, 60,
64-66

National Science Foundation, 3, 168

National Skills Standards Board, 29(n.5), 60

A Nation at Risk, 25, 60

NCTM, see National Council of Teachers of
Mathematics

NSES, see National Science Education
Standards

Open-ended problems, 12, 25-26
assessment using, 61, 70-71, 78
standards, 63—64
teacher involvement in assessment,

130-131, 141-144

Optimization problems, 49-53

Ordered pairs, 95, 120

Order of magnitude, 45

Partitioning, 145
Post-secondary education, 2, 3, 16, 107-110, 164
admissions tests, see ACT; SAT
preparation for, 93, 107-110
school-to-work experiences and, 12
vocational education and, 24-29
see also Two-year colleges
Preparing for the 21st Century: The Education
Imperative, 1
Probability, 21, 76, 95, 104, 115-118, 119-122,
158
Problem-centered teaching, 9-11, 12, 33, 130,
132-140
research support, 11, 73
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Problem solving, 1, 3, 10-11, 12, 16, 27-28, 31,
79, 132
assessment of, 61
business/marketing application, 18-23
classroom environment, 139
curricular design, 97, 98, 100, 103
difficulty level, 138, 139
mental mathematics, 83-84
research support for problem-centered
teaching, 11, 73
skills, relationship with, 59, 95, 97, 103
standards, 60, 61, 64, 68
teacher involvement, 130, 132-140
theory, relationship with, 103
types of problems, 98-99
see also Algorithms and procedures; Open-
ended problems; Word problems;
headings beginning “Tasks . . .”
Procedures, see Algorithms and procedures;
Conceptual understanding
Professional education, see Teacher education
Professional Standards for Teaching
Mathematics, 130
Proportional reasoning, 4, 38, 54-56, 78, 94,
104, 115-118
Psychological factors, see Motivation

Quadratic functions, 32, 69, 95, 99, 121, 124

Rates, 62, 78, 80-82, 87-90, 95, 100, 110,
111-114, 115-118, 147-152
Reasoning, see Conceptual understanding;
Habits of mind; Mental mathematics;
Problem solving
Recursion, 62, 75, 76, 80-82, 87-90, 105,
111-114
Remedial education, see Developmental
education
Research
science/math integration, 64
supporting problem-centered teaching, 11, 73
Reshaping School Mathematics, ix, 10
Rote learning, see Memorization
Rounding off, 76, 90, 95, 119-122
Rules of thumb, 39, 95, 123-126

Salaries, see Wages and salaries
Sampling, 19-20, 22, 44
SAT, 61, 71-74
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SCANS, see Secretary's Commission on
Achieving Necessary Skills
Scholastic Aptitude Test, see SAT
School-to-work experiences, 3, 10, 12-13, 2627
algebra, role in, 2, 12, 35-41, 94
interdisciplinary collaboration, 26, 27
sources of, 164
see also Tasks, mathematical, by context
School-to-Work Opportunities Act of 1994, 3, 26
Science education, 10, 47
basis for careers, 1, 9, 12, 30, 34
mathematics, relationship with, 3, 24,
25-27, 31, 75-77
standards, 60, 63—-66
tasks, 64-65, 80-82
TIMSS, 4, 95
Secretary's Commission on Achieving Necessary
Skills, 60-61, 67-69
Simpson's paradox, 95
Skills, see Algorithms and procedures;
Communication skills; Conceptual
understandings; Memorization
Spreadsheets, 32, 68, 80—-82, 87-90, 94-95, 103,
105, 111-112, 133, 153, 158
Standards, 3, 59-90
academic/vocational education integrated, 28
assessments, relation to, 59, 61, 141-144
calculus, 28
communication skills, 60, 62, 64, 66, 68, 69,
78-79, 137
curricular design, 60-62, 63—66, 95, 104,
107-108, 137
definitional issues, 60
national, 59, 61
National Skills Standards Board, 29(n.5), 60
NCTM, 28, 61, 63-64, 137
NSES, 60, 64-66
parents’ role in standardized testing, 61, 70,
74
problem solving, 60, 61, 63—64, 68, 130,
137-138
SCANS, 60-61, 67-69
State government role, 59, 60
teaching methods, 130, 137-140, 142
technical education, 2
see also Assessment; Curriculum and
curricular design
State government
assessment and standards, 59, 60
local support for teachers, 130
State-to-state comparisons, SAT testing, 71-74
Statistics, 4, 74, 75, 100, 115-116, 158
sampling, 19-20, 22, 44
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tasks, 18-23, 4244
see also Data analysis; Estimation;
Probability
Successive approximation, 75, 145

Tables and charts, see Graphical
representations and tables
Tasks, mathematical, 4, 9
curriculum, selection of, 94-95, 97-101, 104,
108-110, 138, 159
source of, 163-166
see also Open-ended problems; Problem
solving; Tasks, mathematical, by content;
Tasks, mathematical, by context
Tasks, mathematical, by content, 4, 9
algebra, 32, 33-34, 54-56, 76, 80-82,
83-86, 87-90, 98, 99, 100, 109-110,
111-114, 117, 118, 121-122, 123-124,
133, 158
calculus, 54-56, 121-122, 145-146
data collection and analysis, 16, 18-23, 27,
42-44 56, 71-74, 115-116, 153
estimation, 37-38, 45-48, 119-122, 123-126,
139, 145-146
fractals, 146
geometry, 39, 64-65, 76, 77, 109, 110,
117-118, 119-122, 145-146, 147-152, 158
optimization, 49-53
probability, 21, 76, 115-118, 119-122, 158
proportional reasoning, 38, 54-56, 78,
115-118
rates, 78, 80-82, 87-90, 100, 110, 111-114,
115-118, 147-152
recursion, 80-82, 87-90, 105, 111-114
representation, 39-40, 42—44, 49-53,
109-110, 115-118, 119-122, 133, 147-152
statistics, 18-23, 42-44
vectors, 117-118
weighted averages, 115-118
see also Functions; Open-ended problems;
School-to-work experiences; Spreadsheets
Tasks, mathematical, by context
agriculture, 39
automobiles, 105, 123124, 125-126, 140,
147-152, 153
baseball, 116, 158
body proportions, 125, 145-146
business, 18-23, 45, 46-47, 49-53, 76, 83,
84-86, 119-121
construction, 37-38, 39, 109
cooking, 125
energy conservation, 33, 54-56
environmental science, 27, 31, 32, 47, 49
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finance, 87-90, 98, 99, 105, 109-110,
111-114, 124-125, 133
health care, 39-40, 42—44, 80-82, 115-118,
145-146
hypothetical, 139
mapmaking, 110, 146
mathematics, 76, 77, 83, 84, 105, 121-122,
158
piano tuning, 45
police protection, 47
salaries, 45, 115, 116
school and education, 16, 33—34, 45, 46,
71-74, 116-117
science, 64—65, 80—-82
tax, 47-48, 78, 99, 125
wages and salaries, 45, 115, 116
Tax calculations, 47-48, 78, 99, 125
Taxonomy of Educational Objectives, 97
Teacher education, 3, 4, 127-153
inservice teachers, 141-144
preservice teachers, 130, 134-135, 137, 139
Teachers, 3, 4
assessment, involvement in, 130, 141-144
attitudes, 134, 140
communication skills, 134, 139-140
local support for, 130
motivation, 134-135, 136, 140, 142143
problem solving, 132-140
student interactions, 10, 129, 135-136,
139-140
Teaching, 3, 14-15, 129-153
curricular design, 129-130, 132-133
feedback, 129, 139
interdisciplinary collaboration, 26, 27
memorization, 15, 95, 134
standards, 63-64, 130, 137-140, 142
see also Curriculum and curricular design;
Group learning; Memorization; Models
and modeling; Problem solving; Tasks,
mathematical
Technical applications, see Tasks, mathematical,
by context
Technical education, 2, 3, 164
Tests and testing, see Assessment
Theory, relationship with problem solving, 103
Third International Mathematics and Science
Study, 4, 95
TIMSS, see Third International Mathematics
and Science Study
Tracking, vocational/academic, 11, 12, 15,
24-29, 73
Trigonometry, 12, 31, 75, 109
Two-year colleges, 2, 3, 15, 26, 27, 29, 60, 140,
164
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Uncertainty, 20, 21, 23, 25
error of measurement, 22, 119, 145, 146
Universities and colleges, see Post-secondary
education; Two-year colleges
University of Chicago School Mathematics
Project, 99

VATEA, see Carl Perkins Vocational and
Technical Education Act

Vectors, 95, 117-118

Visual aids, see Graphical representations and
tables
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Vocational education, 2, 109, 164
academic education and, 11, 12, 15, 24-29, 164
see also Technical education

Wages and salaries, 26
tasks, 45, 115, 116
Weighted averages, 115-118
What Work Requires of Schools, 60, 67, 68—69
Word problems, 15, 32-33, 69, 98, 108
see also Tasks, mathematical, by content;
Tasks, mathematical, by context
Workplace, see Careers, preparation for;
Employment and employers; School-to-
work experiences
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