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PREFACE v

Preface

The symposium "Motion, Control, and Geometry" was held on April 12, 1994, at the National Academy of
Sciences in Washington, D.C. This symposium focused on control theory as a fundamental aspect of motion
generation in many emerging areas. Those areas include microsurgery (for example, involving microrobots or
"snakes" capable of locomotion in confined spaces such as an intestinal tract), spacecraft positioning, biological
and robotic movement, motor miniaturization, and motion engineering (for instance, via coupled-oscillator
pattern generation). Traditional control theory methods have been supplemented by the growing body of
techniques associated with dynamical systems and geometric mechanics.

This symposium addressed the exciting interdisciplinary synergy that is developing on the basis of
theoretical insight and technological inventiveness. The speakers at the symposium discussed both cutting-edge
research and technology developments. The symposium and proceedings will help to inform researchers,
practitioners, federal and state program managers, policy experts, and decision makers, as well as the scientific,
engineering, and technology communities, of important issues in the mathematical sciences and of the relation of
the mathematical sciences to other areas and to national interests. The Board on Mathematical Sciences, which
organized the symposium, hopes the information presented here will help foster increased awareness of how
research on questions of fundamental interest often can naturally connect to practical benefits for the nation and
society.

Copyright © National Academy of Sciences. All rights reserved.
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INTRODUCTION 1

Introduction

Geometry has been associated with motion, either implicitly or explicitly, from very early times in human
history. There are relationships between motion and geometry both in how motion is described and in how it is
harnessed and directed. Geometric notions underlie such mechanical devices as the potter's wheel and the
wheeled cart, the ramp (or inclined plane), the lever, the pulley, and the coil. Although formal geometrical
descriptions and explicit functionality principles were not supplied until centuries after such mechanisms came
into widespread use, their connections with linked linear and circular motion, horizontal and vertical or forward
and sideways motion, and winding-in and-out (spiral) or winding-up and-down (helical) motion are
unmistakable. The substantial interrelationships between motion and geometry have been a continuing focus of
scientific study and technological development from the eras of Archimedes of Syracuse, Leonardo da Vinci and
Galileo Galilei, Rene Descartes, Isaac Newton, Pierre-Louis Moreau de Maupertuis, James Clerk Maxwell, and
Albert Einstein fight through to the present time. Those linkages bear heavily on how motion is modeled and
ultimately controlled, be it by mechanical contrivance (for instance, in a pendulum clock) or through the
discovery of how prevailing conditions influence outcomes (for example, finding the trajectory of an object that
is subject to gravity and that is thrown horizontally off a cliff).

From the construction of the Great Pyramids and of Stonehenge, which both involved the transport and
careful positioning of massive blocks or lintels, to the reckoning of celestial motions; from the Renaissance
design or engineering of a prototype submarine, bicycle, or helicopter to latter-day satellite positioning or in vivo
intestinal exploration and examination; from the movements of subatomic particles to the meanderings of
computer-modeled sidewinding snakes, geometry supplies an indispensable vocabulary for the mathematical
description of whatever motions are observed, achievable, or sought. As mathematics is the language of science,
so geometry is the language of motion. The motivation may have changed from a desire to understand, predict,
or direct motions by way of geometric modeling and analysis to a focus on designing and controlling the
mechanical generation of particular motions on the basis of their geometric description, computer simulation,
and robotic replication. However, the value of this geometric language is undiminished.

Some of the modem developments described in the following chapters include the geometric control of
robot motion and craft orientation, how high-power precision micromotors are engineered for less invasive
surgery and self-focusing lens applications, what a mobile robot on a surface has in common with one moving in
three dimensions, and how the motion-control problem is simplified by a coupled oscillator's geometric grouping
of degrees of freedom and motion time scales.

The four papers in these proceedings provide a view through the scientific portal of today's motion-control
geometric research into tomorrow's technology. The mathematics needed to carry out this research is that of
modem differential geometry, and the questions raised in the field of motion-control geometry go directly to the
research frontier. Some of the mathematical tools that are useful here are Lie algebras of vector fields,
differential forms and exterior algebra, and affine connections. Another tool that has proven useful is gauge
theory remarkably, the same sort of geometry that is used in elementary-particle physics. It is fortunate that
mathematicians have developed the mathematical tools in a general context so that they can be used for many
purposes. In particular, the mathematical notion of the holonomy of a connection has been around for some time—
an idea that links locomotion generation

Copyright © National Academy of Sciences. All rights reserved.
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INTRODUCTION 2

with gauge theory. Interestingly, control and locomotion generation are two of the other areas in which these
ideas can be applied.

Geometry is a mathematical area too often neglected nowadays in a student's education. This publication
will help adjust the control initially imposed about 2,300 years ago on one kind of "motion"— that of students
entering Plato's Academy, where the following caveat was inscribed above the doorway: "Let no one ignorant of
geometry enter here." Readers of these chapters will gain an appreciation of modem geometry and how it
continues to play a crucial role in the context of motion control in cutting-edge science and technology.

Copyright © National Academy of Sciences. All rights reserved.



Motion, Control, and Geometry: Proceedings of a Symposium
http://lwww.nap.edu/catalog/5772.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true

to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please

use the print version of this publication as the authoritative version for attribution.

GEOMETRIC FOUNDATIONS OF MOTION AND CONTROL 3

1

Geometric Foundations of Motion and Control

Jerrold E. Marsden

Department of Control and Dynamical Systems
California Institute of Technology

Some interesting aspects of motion and control, such as those found in biological and robotic
locomotion and attitude control of spacecraft, involve geometric concepts. When an animal or a robot
moves its joints in a periodic fashion, it can rotate or move forward. This observation leads to the general
idea that when one variable in a system moves in a periodic fashion, motion of the Whole object can result.
This property can be used for control purposes; the position and attitude Of a satellite, for example, are
often controlled by periodic motions of parts of the satellite, such as spinning rotors. One of the geometric
tools that has been used to describe this phenomenon is that of connections, a notion that is used
extensively in general relativity and other parts of theoretical physics. This tool, part of the general subject
Of geometric mechanics, has been helpful in the study of both the stability and instability of a system and
system bifurcations, that is, changes in the nature of the system dynamics, as some parameter changes.
Geometric mechanics, currently in a period of rapid evolution, has been used, for example, to design
stabilizing feedback control systems in attitude dynamics. Theory is also being developed for systems with
rolling constraints such as those found in a simple rolling wheel. This paper explains how some of these
tools of geometric mechanics are used in the study of motion control and locomotion generation.

INTRODUCTION

We describe below a geometric framework that leads to a better understanding of locomotion generation
and motion control in mechanical systems. This introduction provides some basic examples that motivate and set
the stage for this framework.

Perhaps the most popular example of the generation of rotational motion is the failing cat, which is able to
execute a 180° reorientation, all the while having zero angular momentum. It achieves this by manipulating its
joints to create shape changes. To understand this, one has to remember that the angular momentum of a rotating
rigid object is its moment of inertia times its instantaneous angular velocity; this

Copyright © National Academy of Sciences. All rights reserved.
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GEOMETRIC FOUNDATIONS OF MOTION AND CONTROL 4

is the angular version of the familiar relation "momentum equals mass times velocity." Shape changes result in a
change in the cat's moment of inertia and this, together with the constancy of the angular momentum, creates the
overall orientation change. However, the exact process by which this occurs is subtle, and intuitive reasoning can
lead one astray. While this problem has been long studied (e.g., by Kane and Shur, 1969), recently new and
interesting insights have been discovered using geometric methods (see Enos, 1993; Montgomery, 1990, and
references therein).

Astronauts who wish to reorient themselves in a free space environment can similarly do so by means of
shape changes. For example, holding one of their legs straight, they can swivel it at the hip, moving their foot in
a circle. When they have achieved the desired orientation, they merely stop their leg movement. Similar
movements for robots and spacecraft can be controlled automatically to achieve desired objectives (see, for
example, Walsh and Sastry, 1995). One often refers to the extra motion that is achieved as the geometric phase.

The history of this phenomenon and its applications is a long and complex story. We shall only mention a
few highlights. Certainly the shift in the plane of the swing in the Foucault pendulum as the earth rotates once
around its axis is one of the earliest examples of this phenomenon. Anomalous spectral shifts in rotating
molecules are another. Phase formulas for special problems such as rigid body motion and polarized light in
helical fibers were understood already in the early 1950s. Additional historical comments and references can be
found in Berry (1990), and Marsden and Ratiu (1994). Gradually the subject became better understood, but the
first paper to clarify and emphasize the ubiquity of the geometry behind all these phenomena was Berry (1985).
It was also quickly realized that the phenomenon occurs in essentially the same way in both classical and
quantum mechanics (Hannay, 1985), and that the phenomenon can be linked in a fundamental way with the
presence of symmetry (Montgomery, 1988; Marsden et al., 1990).

The theory of geometric phases has an interesting link with noneuclidean geometry, a subject first invented
for its own sake, without regard to applications. A simple way to explain this link is as follows. Hold your hand
at arm's length, but allow rotation in your shoulder joint. Move your hand along three great circles, forming a
triangle on the sphere, and during the motion, keep your thumb "parallel," that is, forming a fixed angle with the
direction of motion. After completing the circuit around the triangle, your thumb will return rotated through an
angle relative to its starting position (see Figure 1.1). In fact, this angle (in radians) is given by ® = A-t where A
is the sum of the angles of the triangle. The fact that @& = () is of course one of the basic facts of noneuclidean
geometry—in curved spaces, the sum of the angles of a triangle is not necessarily n (i.e., 180°). This angle is also
related to the area A enclosed by the triangle through the relation ® = A/, where r is the radius of the sphere.

The examples presented so far are rather different from what one finds in many other mechanical systems of
interest in one crucial aspect—the absence of constraints of rolling, sliding, or contact. For example, when one
parks a car, the steering mechanism is manipulated and movement into the parking spot is generated; obviously
the rolling of the wheels on the road is crucial to the maneuver. When a human or a robot manipulates an object
in its fingers (imagine twirling an egg in your fingers), it can reorient the object through the rolling of its fingers
on the object. This can be shown in a demonstration I learned from Roger Brockett: roll your fingers in a rotating
motion on a ball resting on a table—you will find that the ball reorients itself under your finger! The amount of
rotation is again related to the amount of area you capture in the rotating motion. You have generated rotational
motion! (See Figure 1.2.)

Copyright © National Academy of Sciences. All rights reserved.
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FIGURE 1.1 A parallel movement of your thumb around a spherical triangle produces a phase shift.

FIGURE 1.2 Rolling your finger in a circular motion on a rolling sphere generates rotations.
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GEOMETRIC FOUNDATIONS OF MOTION AND CONTROL 6

In all these cases, cyclic motion in one set of variables (often called the internal variables) produces motion
in another set (often called the group variables). This idea is central to the basic geometric framework described
in ensuing sections.

One can generate translational motion as well as rotational motion. For example, microorganisms and
snakes generate translations by a very specific cyclic manipulation of their internal variables (Shapere and
Wilczek, 1987). The reason for this is, in a superficial sense, that in these examples, translation is kinematically
possible (translations are available as group variables) and the controls are such that these variables are activated.
Often translational motion and rotational motion are coupled in interesting ways, as in the snakeboard, a
modification of the familiar skateboard. This modification allows the rider to rotate the front and back wheels by
rotating his feet and this, together with the rotary motion of the rider's body, allows both translational and
rotational motion to be generated. Such motion can be controlled with the objective that desired motions be
generated. We will discuss this example in a little more detail in the section entitled "The Snakeboard," below.

The generation of motion in small robotic devices is very promising for medical applications. In this
context, one seeks devices that can move in confined spaces under variable conditions (flexible walls, tight
comers, etc.). In fact, this general philosophy is one of the reasons one hopes that medical operations in the
future will be much less intrusive than many of them are now.

There are similar links between vibratory motion and translational and rotational motion (e.g., the
developments of micromotors) (Brockett, 1989), on the one hand, and, on the other hand, motion generation in
animals (e.g., the generation and control of waves from coupled oscillators, as seen in the swimming of fish and
in the locomotion of insects and other creatures).

A central question to address in this area is, How should one control motions of the internal variables so
that the desired group (usually translational and rotational) motions are produced? To make progress on this
question, one needs to combine experience with simple systems and strategies—such as steering with sinusoids,
as in Murray and Sastry (1993)—with a full understanding of the mathematical structure of the mechanical
systems, both analytical and geometrical. We also mention the work of Brockett (1981), which shows that for
certain classes of control systems that are controllable via first level brackets, steering by sinusoids is, in fact,
optimal.

CONNECTIONS AND BUNDLES

One of the fruitful ideas from geometry that has been used in the investigation of mechanical systems is that
of a connection. While the notion of a connection is quite precise, connections have many personalities. On the
one hand, one thinks of them as describing how curved a space is; in fact, in the classical Riemannian setting
used by Einstein in his theory of general relativity, the curvature of the space is constructed out of the connection
(in that case, also called the Christoffel symbols). In other, but related, settings developed by Eli Cartan, the
connection is what is responsible for a corrected measure of acceleration; for example, if one is on a rotating
merry-go-round, one has to correct any measurement of acceleration to take into account the acceleration of the
merry-go-round, and this correction can be described by a connection.

In the general theory, connections are associated with mappings, called bundle mappings, that project larger
spaces onto smaller ones, as in Figure 1.3. The larger space is called the bundle and the
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GEOMETRIC FOUNDATIONS OF MOTION AND CONTROL 7

smaller space is called the base. Directions in the larger space that project to zero are called vertical directions.
The general definition of a connection is a specification of a set of directions, called horizontal directions, that
complements at each point the space of vertical directions.

In the example of parallel transport of the thumb around the sphere, the larger space is the space of all
tangent vectors to the sphere, and this space projects to the sphere itself by projecting a vector to its point of
attachment to the sphere. The horizontal directions are the directions with zero acceleration within the intrinsic
geometry of the sphere; that is, the directions determined by great circles.

In the thumb example, we saw that going around the triangle produces a change in the orientation of the
thumb on return. The thumb is parallel transported, that is, it moves in horizontal directions with respect to the
connection. The thumb has undergone a rotational shift from the beginning to the end of its journey.

vertical direction

horizontal directions

bundle

geometric phase

Figure 1.3 A connection divides the space into vertical and horizontal directions.

In general, we can expect that if we have a horizontal motion in the bundle and if the corresponding motion
in the base is cyclic, then the horizontal motion will undergo a shift, which we will call a phase shift, between the
beginning and the end of its path. The shift in the vertical direction is often given by an element of a group, such
as a rotation or translation group. In many of the examples discussed so far, the base space is the control space in
the sense that the path in the base can be chosen by suitable controls. The path above it in the bundle is regarded
as being determined by the condition of horizontality. This condition therefore determines its phase.

This setting of connections provides a framework in which one can understand the phrase we started with:
when one variable in a system moves in a periodic fashion, motion of the whole object can result. Here, the
"motion of the whole object" is represented by the geometric phase. Coming along with
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GEOMETRIC FOUNDATIONS OF MOTION AND CONTROL 8

this notion are plenty of lovely theorems and calculational tools; for example, one of these (based on Stokes'
theorem) shows how to calculate the geometric phase in terms of the integral of the curvature of the connection
over an area enclosed by the closed curve on the base. This is one reason that areas so commonly appear in
geometric phase formulas.

Connections are ubiquitous in geometry and physics. For example, connections are one of the main
ingredients in the modem theory of elementary particles, and are the primary fields in Yang-Mills theory, a
generalization of Maxwell's electromagnetic theory. In fact, in electromagnetism, the equation § =V » 4 for
the magnetic field may be thought of as an expression for the curvature of the connection (or magnetic potential) A.

CONSTRAINTS: ANGULAR MOMENTUM AND ROLLING

In many mechanical systems, there are conditions called "constraints." For our purposes, these are of two
fundamentally different sorts. The first is typified by the constraint of zero angular momentum for the falling cat.
The cat, once released, and before it reaches the ground, cannot change the fact that its angular momentum is
zero, no matter how it moves its body parts. We choose the cat's base space to be its shape space, which does
indeed literally mean what it says—the collection of all the shapes of its body, which can be specified by giving
the angles between its body parts. The bundle in this case consists of these shapes together with a rotation and
translation to specify the position and orientation in space. Since the cat is free to manipulate its shape using its
muscles, it can perform maneuvers, some of them cyclic, in shape space. Meanwhile, how the cat turns in space
is governed by the law of conservation of angular momentum. It turns out that this law exactly defines the
horizontal space of a connection! The connection in this case is called the "mechanical connection." That this
corresponds to a connection was discovered through the combined efforts of Smale (1970), Abraham and
Marsden (1978), and Kummer (1981). Thus, when one puts together the theory of connections with this
observation, and throws in control theory, one has the beginnings of the "gauge theory of mechanics." This
theory has been extended and developed by many workers since then.

Observation of the motions of a mechanical system in its shape space shows a relation to the theory of
reduction, a theory that seeks to make the configuration space of a mechanical system smaller by taking
advantage of symmetries. This method has led to many interesting and unexpected discoveries about mechanics,
including, for example, the explanation of the integrability of the Kowaleskaya top in terms of symmetry by
Bobenko et al. (1989). (An algebraic-geometric construction with similar goals was found by Haine, Horozov,
Adler, and van Moerbeke around the same time.) Observing the motion in shape space alone is similar to
watching the shapes change relative to an observer riding with the object. In such a frame, one sees what seem to
be extra forces, namely the Coriolis and centrifugal forces. In fact, these forces can be understood in terms of the
curvature of the mechanical connection. Then the problem of finding the original complete path is one of finding
a horizontal path above the given one. This is sometimes called the "reconstruction problem.”" We conclude that
the generation of geometric phases is closely linked with the reconstruction problem.

One of the simplest systems in which one can see these phenomena is called the planar skater. This device
consists of three coupled rigid bodies lying in the plane. They are free to rotate and translate in the plane,
somewhat like three linked ice hockey pucks. This has been a useful model example for a
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GEOMETRIC FOUNDATIONS OF MOTION AND CONTROL 9

number of investigations, and was studied fairly extensively in Oh et al. (1989), and Krishnaprasad (1989) and
references therein. The only forces acting on the three bodies are the forces they exert on each other as they
move. Because of their translational and rotational invariance, the total linear and angular momentum remains
constant as the bodies move. This holds true even if one applies controls to the joints of the device; this is
because the conservation of momentum depends only on externally applied forces and torques. See Figure 1.4.

The planar skater illustrates well some of the basic ideas of geometric phases. If the device starts with zero
angular momentum and it moves its arms in a periodic fashion, then the whole assemblage can rotate, keeping,
of course, zero angular momentum. This is analogous to our astronaut in free space who rotates his arms or legs
in a coordinated fashion and finds that he rotates. One can understand this simple example directly by using
conservation of angular momentum. In fact, the definition of angular momentum allows one to reconstruct the
overall attitude of the device in terms of the motion of the joints using freshman calculus. Doing so, one gets a
motion generated in the overall attitude, which is indeed a geometric phase. This example is sufficiently simple
that one does not need the geometry of connections to understand it, but nonetheless it provides a simple
situation in which one can test the ideas. For more complex examples, such as the falling cat, the geometric
setting of connections has indeed proven useful.

P,

FIGURE 1.4 The planar skater consists of three interconnected bodies that are free to rotate about their joints.

To indicate some of the flavor of three-dimensional examples, we discuss the rigid body. Each position of
the rigid body is specified by a Euclidean motion giving the location and orientation of the body. The motion is
then governed by the equations of mechanics in this space. Assuming that no external forces act on the body,
conservation of linear momentum allows us to solve for the components of the position and momentum vectors
of the center of mass. Passage to the center of mass frame reduces one to the case where the center of mass is
fixed, so only pure rotations remain. Each possible orientation corresponds to the specification of a proper
orthogonal matrix A. Back in 1740, Euler parametrized the

Copyright © National Academy of Sciences. All rights reserved.



Motion, Control, and Geometry: Proceedings of a Symposium
http://lwww.nap.edu/catalog/5772.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true

to the original; line lengths, word breaks, heading styles

and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please

use the print version of this publication as the authoritative version for attribution.
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matrix A in terms of three (Euler) angles between axes that are either fixed in space or are attached to symmetry
planes of the body's motion.

We regard the element 4 € S(X3) giving the configuration of the body as a mapping of a reference
configuration to the current configuration. The matrix A takes a reference or label point X to a current point x = A
(X). For a rigid body in motion, the matrix A is time dependent and the velocity of a point of the body is
x= AX = ,{-{'lx. Since A is an orthogonal matrix, we can write x = M_'x =p ¥ x, which defines the
spatial angular velocity vector @ .The corresponding body angular velocity is defined by Q = A-10, so that Q is
the angular velocity as seen in a body-fixed frame. The kinetic energy is given by integrating the kinetic energy
expression for particles (one-half the mass density times the square of the velocity) over the reference
configuration. In fact, this kinetic energy is a quadratic function of Q. Writing X =47/} defines the (time
independent) moment of inertia tensor /, which, if the body does not degenerate to a line, is a positive definite 3
x 3 matrix, or better, a quadratic form. Every calculus student learns how to calculate moments of inertia as
illustrations of the process of multiple integration.

The eauations of motion in A space define certain equations in Q space that were discovered by Euler:
IC3 = JC3 < £}, The body angular momentum is defined, analogous to linear momentum p = mv, as I1 = IQ. In
terms of I1, the Euler equations read IT = I1 x Q. This equation implies that the spatial angular momentum vector
n = All is fixed in time. One may view this fact as a conservation law that results from the rotational symmetry
of the problem. These and other facts given here are proven in every mechanics textbook, such as Marsden and
Ratiu (1994).

Viewing the components (IT;,I1,,I15) of IT as coordinates in three-dimensional space, the Euler equations are
evolution equations for a point in this space. A constant of motion for the system is given by the square length of
the total angular momentum vector: I =1 {+I1§+I17%. This follows from conservation of m and the fact that
[ = [} or can be verified directly from the Euler equations by computing the time derivative of Hl'le.

Because of conservation of [[1], the evolution in time of any initial point I1(0) is constrained to the sphere
Il'l"z =|]1'I{0}f= constant. Thus we may view the Euler equations as describing a two-dimensional dynamical
system on an invariant sphere. This sphere is called the reduced-phase space for the rigid body equations.
Another constant of the motion is the Hamiltonian or energy: H=21{II,] T}, Since solutions curves are
confined to the sets where H is constant, which are in general ellipsoids, as well as to the invariant spheres where
[[1] = constant, the intersection of these surfaces is precisely that of the trajectories of the rigid body, as shown in
Figure 1.5.

Let us briefly indicate how geometric phases come into the rigid body example. Suppose we are given a
trajectory II(s) on P, that has period T and energy E. After time T the rigid body has rotated in physical 3-space
about the axis [ by an angle given by
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aB=-h+£+2h.

]

Here is the solid angle enclosed by the curve II(f) on the sphere and is oriented according to the right-
hand rule, and k is an integer (reflecting the fact that we are really only interested in angles up to multiples of 27).

FIGURE 1.5 The solutions of Euler's equations for rigid body motion.

An interesting feature of this formula is the fact that A@ splits into two parts. The term A is the purely
geometric quantity, the geometric phase. It does not depend on the energy of the system or the period of motion,
but rather on the fraction of the surface area of the sphere that is enclosed by the trajectory. The second term, the
dynamic phase, depends on the system's energy and the period of the trajectory.

Geometrically we can picture the rigid body as tracing out a path in its phase space; that is, the space of
rotations (playing the role of positions) and corresponding momenta with the constraint of a fixed value of the
spatial angular momentum. The phase space plays the role of the bundle, and the projection map to the base, the
momentum sphere, is the map we described earlier that takes the orientation A and its velocity (or momentum) to
the body momentum sphere. As Figure 1.5 shows, almost every trajectory on the momentum sphere is periodic,
but this does not imply that the original curve of rotations was periodic, as is shown in Figure 1.6. The difference
between the true trajectory and
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a periodic trajectory is given by the geometric plus the dynamic phase. Although this figure is given in the
context of rigid body dynamics, its essential features are true for any mechanical system with symmetry.

."Inlll

- e trajectory

dynamic phase —\ﬁ I|

geometric phase— 4 jj
Y

~—horizontal lift using the
mechanical connection

y map to body variables
spherical cap with ——
solid angle A e S -2, ),f

reduced trajectory

~— angular mometum sphere

FIGURE 1.6 The geometric phase formula for rigid body motion.

This formula for the rigid body phase has a long and interesting history. It was known in classical books,
such as that of Whittaker, in terms of quotients of theta functions, but not in terms of areas, as above. This aspect
was discovered in the 1950s independently in work of Ishlinskii and of Goodman and Robinson. Montgomery
(1991b,c) and Marsden et al. (1990) showed, following the lead of Berry and Hannay, that the formula can be
interpreted in terms of holonomy of a connection. Further historical details may be found in Marsden and Ratiu
(1994).

It is possible to observe some aspects of the geometric phase formula for a rigid body with a simple
experiment. Put a rubber band around a book so that the cover will not open. (A tall thin book works best.) With
the front cover facing up, gently toss the book in the air so that it rotates about its middle axis. Catch the book
after a single rotation and you will find that it has also rotated by 180° about its long axis; that is, the front cover
is now facing the floor.

In addition to its use in understanding phases, the mechanical connection has been helpful in stability
theory. For example, when a rigid body such as a satellite tumbles about its long or short axis, it does so stably,
but it is unstable when it rotates about the middle axis. When one takes into account small dissipative effects
such as a vibrating antenna, then the rotational motion about the long axis becomes
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GEOMETRIC FOUNDATIONS OF MOTION AND CONTROL 13

unstable as well, but this effect is more delicate. Corresponding statements for systems like rigid bodies with
flexible appendages or interconnected rigid bodies are more subtle than the dynamics of a single rigid body.
There is a powerful method for determining the stability of such solutions called the energy momentum method.
This method is an outgrowth of basic work of Riemann, Poincaré, and others in the last century and more
recently by Arnold; further recent developments were made by Simo et al. (1991), and Bloch et al. (1994, 1996)
and references therein. Here the main problem is to split the variables properly into those that correspond to
internal, or shape, changes, and to those that correspond to rotational and translational motions. Interestingly, the
mechanical connection plays a key role in the solution of this problem and it makes many otherwise intractable
problems soluble.

This gauge theory of mechanics has been successful for a number of important problems, such as the falling
cat problem, as we shall discuss below. Nevertheless, there is another important class of problems that it does not
apply to as stated, namely, mechanical systems with rolling constraints, typified by the constraint that a wheel or
ball rolls without slipping on a plane. One very simple idea ties this type of problem to the zero angular
momentum constraint problem that was just described. This idea is that of realizing the constraint as the
horizontal space of a connection. In fact, the constraint itself defines a connection by declaring the constraint
space to be the horizontal space. This, in effect, defines the connection. In the case of rolling constraints, we call
this connection the kinematic connection to avoid confusion with the mechanical connection described earlier.
This point of view for systems with rolling (and rolling type) constraints was developed by Koiller (1992) and by
Bloch et al. (1997). For example, the equations of motion expressed on the base space again involve the
curvature of the kinematic connection. This shows again that the links with geometry are strong at a very basic
level.

Things get even more interesting when the system has both rolling constraints and symmetry. Then we have
the kinematic connection as well as the symmetry group to deal with, but now they are interlinked. One of the
things that makes systems with rolling constraints with symmetry different from free systems is that the law of
conservation of angular momentum is no longer valid for them. This is already well illustrated by a toy called the
rattleback, a canoe-shaped piece of wood or plastic. When the rattleback rocks on a flat surface like a table, the
rocking motion induces a rotational motion, so that it can go from zero to nonzero angular momentum about the
vertical axis as a result of the interaction of the rocking and rotational motion and the rolling constraint with the
table. One can say that the forces of constraint that enforce the condition of rolling can upset the balance of
angular momentum. This is also the case for the snakeboard discussed below, but nonetheless, this rams out to be
a key point in understanding locomotion generation for this system. One of the interesting aspects of this is that,
as shown by Bloch et al. (1996), there is a very nice equation satisfied by a particular combination of the linear
and angular momentum, which they call the momentum equation. Because of that success, one can imagine that
this understanding will be important for many other similar systems as well.

STABILIZATION AND OPTIMAL CONTROL

Control theory is closely tied to dynamical systems theory in the following way. Dynamical systems theory
deals with the time evolution of systems by writing the state of the system, say z in a general space P, and
writing an evolution equation
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4 2= fiz,p)

for the motion, where p includes other parameters of the system (masses, lengths of pendula, etc.). The
equations themselves include things like Newton's second law, the Hodgkin-Huxley equations for the
propagation of nerve impulses, and Maxwell's equations for electrodynamics, among others. Many valuable
concepts have developed around this idea, such as stability, instability, and chaotic solutions.

Control theory adds to this the idea that in many instances, one can directly intervene in the dynamics rather
than passively watching it. For example, while Newton's equations govern the dynamics of a satellite, we can
intervene in these dynamics by controlling the onboard gyroscopes. One simple way to describe this
mathematically is by making f dependent on additional control variables u that can be functions of ¢, z, and p.
Now the equation becomes

ﬁ:;z= _.Ill-{za Hr""'{“!zr F}}‘

and the objective, naively stated, is with an appropriate dependence of f on u to choose the function u itself
to achieve certain desired goals. Control engineers are frequently tempted to overwhelm the intrinsic dynamics
of a system with the control. However, in many circumstances (fluid control is an example—see, for example,
the discussion in Bloch and Marsden, 1989), one needs to work with the intrinsic dynamics and make use of its
structure.

Two of the basic notions in control theory involve steering and stabilizability. Steering has, as its objective,
the production of a control that has the effect of joining two points by means of a solution. One imagines
manipulating the control, much the way one imagines driving a car so that the desired destination is attained.
This type of question has been the subject of extensive study and many important and basic questions have been
solved. For example, two of the main themes that have developed are, first, the Lie algebraic techniques based on
brackets of vector fields (in driving a car, you can repeatedly make two alternating steering motions to produce a
motion in a third direction) and, second, the application of differential systems (a subject invented by Elie Cartan
in the mid-1920s whose power is only now being significantly tapped in control theory). The work of Tilbury et
al. (1993) and Walsh and Bushnell (1993) typify some of the recent applications of these ideas.

The problem of stabilizability has also received much attention. Here the goal is to take a dynamic motion
that might be unstable if left to itself but that can be made stable through intervention. A famous example is the
F-15 fighter, which can fly in an unstable (forward wing swept) mode but which is stabilized through delicate
control. Flying in this mode has the advantage that one can execute tight turns with rather little effort—just
appropriately remove the controls! The situation is really not much different from what people do everyday when
they ride a bicycle. One of the interesting things is that the subjects that have come before—namely, the use of
connections in stability theory—an be turned around to be used to find useful stabilizing controls, for example,
how to control the onboard gyroscopes in a spacecraft to stabilize the otherwise unstable motion about the
middle axis of a rigid body (see Bloch et al., 1992; Kammer and Gray, 1993).

Another issue of importance in control theory is that of optimal control. Here one has a cost function (think
of how much you have to pay to have a motion occur in a certain way). The question is
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not just if one can achieve a given motion but how to achieve it with the least cost. There are many well-
developed tools to attack this question, the best known of these being what is called the Pontryagin Maximum
Principle. In the context of problems like the falling cat, a remarkable consequence of the Maximum Principle is
that, relative to an appropriate cost function, the optimal trajectory in the base space is a trajectory of a Yang-
Mills particle. The equations for a Yang-Mills particle are a generalization of the classical Lorentz equations for
a particle with charge e in a magnetic field B:

dv=£va,

ar c

where v is the velocity of the particle and where c is the velocity of light. The mechanical connection comes
into play though the general formula for the curvature of a connection; this formula is a generalization of the
formula B =¥ x 4 expressing the magnetic field as the curl of the magnetic potential. This remarkable link
between optimal control and the motion of a Yang-Mills particle is due to Montgomery (1990, 1991a).

One would like to make use of results like this for systems with rolling constraints as well. For example,
one can (probably naively, but hopefully constructively) ask what is the precise connection between the
techniques of steering by sinusoids mentioned earlier and the fact that a particle in a constant magnetic field also
moves by sinusoids, that is, moves in circles. Of course if one can understand this, it immediately suggests
generalizations by using Montgomery's work. This is just one of many interesting theoretical things that requires
more investigation. One of the positive things that has already been achieved by these ideas is the beginning of a
deeper understanding of the links between mechanical systems with angular momentum type constraints and
those with rolling constraints. The use of connections has been one of the valuable tools in this endeavor. One of
the papers that has been developing this point of view is that of Bloch et al. (1997). We shall see some further
glimpses into that point of view in the next section.

THE SNAKEBOARD

The snakeboard is an interesting example that illustrates several of the ideas we have been discussing (see
Lewis et al., 1997). This device is a modification of the standard skateboard, the most important of which is that
riders can use their feet to independently turn the front and back wheels—in the standard skateboard, these
wheels are of course fixed to the frame of the skateboard. In addition, one can manipulate one's body using a
swivelling motion and this motion is coupled to the motion of the snakeboard itself. We show the snakeboard
schematically in Figure 1.7.

One of the fascinating things about the snakeboard is that one can generate locomotion without pedaling,
solely by means of internal motions. When the user's feet and body are moved in the right way, rotational and
translational motion of the device can be generated. The snakeboard is simple enough that one can study many
parts of it analytically and numerical simulations of its motion are reasonably economical to implement. On the
other hand, it seems to have all of the essential features that one would want for more complex systems, the main
one for the present goals being its ability to generate rotational and translational motion. From the mathematical
and mechanical point of view, it is rich in geometry and
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in symmetry structure, which also makes it attractive. Thus, it provides a good testing and development ground
for both theoretical and numerical investigations.

From the theoretical point of view, one feature of the snakeboard that sets it truly apart from examples like
the planar skater and the falling cat is that even though it has the symmetry group of rotations and translations of
the plane, the linear and angular momentum is not conserved. Recall that for the planar skater, no matter what
motions the arms of the device make, the values of the linear and angular momentum cannot be altered. This is
not true for the snakeboard and this can be traced to the presence of the forces of constraint, just as in the
rattleback mentioned earlier. Thus, one might suspect that one should abandon the ideas of linear and angular
momentum for the snakeboard. However, a deeper inspection shows that this is not the case. In fact, one finds
that there is a special component of the angular momentum, namely that about the point P shown in Figure 1.8.

If we call this component p, one finds that, due to the translational and rotational invariance of the whole
system, there is a "momentum equation" for p of the form

‘é-f;F= f(x,x,p),

FIGURE 1.7 The snakeboard has three movable internal parts, the front and back wheels and the angle of the rider's
body.

where x represents the internal variables of the system (the three angles shown in the preceding figure). The
point is that this equation does not depend on the rotational and translational position of the system. Thus, if one
has a given internal motion, this equation can be solved for p and, from it, the attitude and position of the
snakeboard calculated by means of another integration. This strategy is thus parallel to that for the falling cat and
the planar skater.

With this set-up, one is now in a good position to identify the resulting geometric phase with the holonomy
of a connection that is a synthesis of the kinematic and mechanical connection. Carrying this out and
implementing these ideas for more complex systems is in fact the subject of current research.
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FIGURE 1.8 The angular momentum about the point P plays an important role in the analysis of the snakeboard.
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2
Cycles That Effect Change

Roger W. Brockett

Division of Applied Sciences
Harvard University

New generations of motors are needed for applications where, due to small dimensions, a need for
high torque, a need for precise control, or all of these factors, conventional electric or internal combustion
motor technology cannot be used. In some instances, engineers desire suitable analogs to the high force
and precise control provided by muscle tissue. We discuss the geometrical ideas that underlie a new
generation of precisely controllable high-force actuators based on suitably patterned high-frequency
vibrations. Current and planned applications of such actuators include their use in automatic focusing
lenses and in endoscopic surgery.

INTRODUCTION

Prevailing modes of thought in subjects, ranging from economics to biology, show the influence of ideas
originating in the study of feedback control. The linear analysis that underlies the theory of single and multiple
feedback loops has played an important role in explaining both stable regulation and exponential growth. There
are, however, a variety of problems involving automatic control that cannot be explained on the basis of this
body of results. For example, at least since the work of Graham Brown in 1911, it has been recognized that some
provision for pattern generation must be incorporated in the neural circuitry used to generate and control various
animal movements such as walking, breathing, blood circulation, and peristalsis. Pattern generation also plays an
important role in the design of mechanical and electrical systems. The wheels of a steam locomotive should
rotate steadily, yet their motive power comes from periodic processes involving the filling and emptying of the
cylinders with steam and the corresponding motion of the pistons. In fact, both conventional piston-type steam
engines and internal combustion engines depend on a carefully orchestrated, repetitive motion pattern as an
intermediate step in the generation of steady rotational motion; the recently introduced vibratory motors depend
on an even more subtle type of pattern generation. Similar ideas play a role in certain types of electrical circuits.
Technologically important examples include parametric amplifiers, switched capacitor

Note: This work was supported in part by the National Science Foundation under grant NSF D CDR-8803012
(Engineering Research Center Program), and by the U.S. Army Research Office under grant DAAL03-86-K-0171 (Center for
Intelligent Control Systems).
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filters, and DC to DC transformers that make use of periodic switching to transform the voltage available from
some supply, such as a battery, to the voltage required by the transistor or motor that is being powered. In many
cases, the explanation of the behavior of these types of examples is much more subtle than the explanation of
ordinary linear regulation. In this paper we use examples from various domains to illustrate the mathematical
ideas that lie at the heart of these problems.

Perhaps the most fundamental arguments as to why periodic processes are required to produce nonperiodic
effects seem to be based on considerations of kinematics and force amplification. Animals and automobiles need
to cover distances that far exceed the longest linear dimension in their makeup. They cannot simply reconfigure
their bodies to cover the distances involved. Moreover, muscles, magnets, and expanding gases can only
generate their significant force over a limited range of displacements. Having generated a force over this range, it
is necessary to reconfigure before being able to generate the same level of force again. Among the possible
temporal patterns of reconfiguration, some are more effective than others. Having found an effective one, it can
be repeated over and over, giving a cyclic process that enables the coverage of large distances by means of
repeated short distance movements.

Within this overall paradigm there is a further important distinction to be made. Certain periodic processes
operate with a fixed amplitude, piston engines being a good example. Other periodic processes, such as the
motion of an inchworm and the swimming motion of a fish, can operate at a variety of amplitudes. In the case of
variable amplitude devices it may happen that the mechanical advantage increases as the amplitude decreases.
Theories dealing with nonlinear controllability provide considerable insight into the capabilities of systems of
this latter type. Understanding the dynamics of their regulatory processes requires more study, and only recently
has there been an appropriate mathematical formulation of a control problem in which pattern generation plays a
decisive role. We touch on this in our final section.

ORDER SOMETIMES MATTERS

In choosing from various possible actions that one may take, it sometimes happens that a particular set of
actions applied in one order has an overall effect that is different from that obtained when the same set of actions
is applied in a different order. The order in which we make deposits and withdrawals in a checking account does
not affect the end-of-the-month balance. Driving in a city laid out on a rectangular grid, we can go north for one
block then east for one block and get to the same location as we would if we first went east for one block and
then north for one block. On the other hand, there are situations in which order matters very much. The most
obvious examples, such as opening a door and then walking though it versus walking through the door and then
opening it, do not lead to very interesting, or general, mathematical models. However, the situation shown in
Figure 2.1 does embody a rather general mathematical/physical principle. Because it is illustrative of several of
the main points we will analyze it in detail.

The illustration depicts a pair of tanks. The top tank holds fluid in a vessel that is fitted to create a sealed
chamber below it. The lower chamber is full of fluid. Fluid can be pumped into or out of the tanks. For the
purposes of exposition, we suppose that there are individual agents responsible for the
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management of the flow rates u and v. One agent, associated with the flow rate u, adds or removes fluid to the
top tank. The second, associated with flow rate v, adds or removes fluid to the lower chamber. One of the
fundamental ideas in hydrostatics is that the pressure produced by a column of fluid is independent of the shape
of the column and is proportional to the height of the column. The power required to pump a fluid is the flow
rate times the pressure. Applying these facts to the situation at hand, we see that, when expressed in suitable
units, the energy supplied by the agent responsible for the flow u# must provide energy at the rate u(x + y) per
unit time whereas the agent responsible for flow v must provide energy at rate v(x + y) per unit time.

FIGURE 2.1 A simple flow-level model of a nonholonomic system.

The virtue of having a model that can be visualized this concretely is thin the differential equation
description can be related to common sense in a direct way. For example, it is clear that the time rate of change
of y, the height of the fluid in the bosom chamber measured from the base, is proportional to the flow rate v. The
time rate of change of x, the height of the fluid in the top tank, measured from the bosom of thin tank, is
proportional to u. Denoting the time rate of change of a variable x by means of an overdot, e.g., x, we may
summarize the statements about flow rate and levels as

(1) = u(t)
MOy =wi).

Now suppose that the agents are concerned with the energy they must expend to manage the levels in the
ranks. The corresponding equations describing the time rate of change of the energy that must be expended by
the agent controlling u, call it e,, and the time rate of change of the energy that must be expended by the agent
controlling v, e, satisfy the equations

€, = (x(1) + y(e)hu(t)
é, = (x(r) + WONw(r).
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Simple as this system is, by analyzing the flow of energy one comes to conclusions that are not entirely
obvious. To begin with, it is clear that if it is necessary to bring the levels in the tanks to specific values, the
bottom tank to the level y = yo, and the top tank to x = xo, different courses of action on the part of individual
agents will result in different expenditures of energy by the individual agents. For example, if the tanks are
initially empty and if the bottom tank is filled to the level y = 1 while the top tank remains empty and then the
top tank is filled to the level x = 1 while the bottom tank remains at y = 1, then agent u supplies energy 1/2 and
agent v supplies energy 3/2. If we reverse the order, i.e., if agent v fills the top tank first and then agent u fills the
bottom tank, it follows that the energy requirements of the agents are just reversed. A similar analysis applies to
pumping fluid from the tanks.

By making use of periodic filling and emptying, the difference between the energy requirements for # and v
can be made as large as one wants and can favor either agent. There is no limit on the energy difference. We can
find filling policies that take an arbitrary amount of energy e from agent u and take energy 2- e from agent v. We
can use this device as a way to transfer energy from one agent to the other. The important point is that the
difference between the energy supplied by u and the energy supplied by v is not just a function of the final state,
but rather depends on the order, now interpreted in some infinitesimal sense, in which the tanks are filled. This is
an example of what is meant by the phrase path dependent. The infinitesimal relationships between x, y and e -e,
are nonintegrable. In a mechanical context they could be said to define a nonholonomic system.

Before leaving this example we want to recast, slightly, the energy equations. First of all, because the sum
of the energies supplied by the two agents is just the difference between the initial and final value of x + y, there
is no need to keep track of the sum of the energies supplied by the agents. However, the difference in the
energies supplied by the agents is dependent on the path and, therefore, requires us to use a differential equation
to keep track of it. This means that we can use just three equations for the levels and the energy relationships, not
four. Finally, it will simplify the equations if we focus on the difference in the supplied energy plus the
difference in the energy available to the individual agents, should they wish to empty their tanks. With this in
mind, we define z as 7 = e,-e, + x>-y*/ 2 and describe the system by

() =uit)
M) = w(r)
2 = v{)x(r) — wle)p(r).

Expressed in this form, the energy flow relationships of the situation depicted in Figure 2.1 can be
explained in terms of a remarkably simple geometric picture to be developed in the next section.

SIMPLE MACHINES AND THE AREA RULE

We emphasized, in the case just analyzed, that the difference between the energy supplied by u and the
energy supplied by v is strongly dependent on the path taken to accomplish the task. In fact, the way that it
depends on the path is particularly simple: the difference between the amount of energy
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supplied by u and the amount of energy supplied by v is proportional to the area of the closed path defined by
going around a cycle in (u, v)-space. It is characteristic of the simplest class of nonholonomic systems to exhibit
such a proportionality. (See Figure 2.2.)

Physically speaking, the area in (u, v)-space has the units of flow rate squared. To equate this to energy flow
one needs a constant factor having suitable units. This factor can be expressed in terms of the value of a certain
component of the Lie bracket of two vector fields; as u and v vary in a cyclical way, z increases monotonically
with a rate proportional to the product of this factor and the area in (u, v)-space.

LR

Dofin, 0N

FIGURE 2.2 The area rule in x-y and x-y-z coordinates.

The tank analysis carried out above may seem far removed from mechanics and the basic mechanisms of
mechanical engineering. However, there are mechanical realizations of the same mathematical model based on
spheres rolling on planes. In Figure 2.3 we illustrate an elementary and useful mechanical device, consisting of a
screw engaging a slider having regularly spaced gear teeth. This configuration couples the rotational motion of
the screw to the horizontal motion of the slider. If z represents the position of the slider and if x and y are the
coordinates of a point on the crank handle, then the equations relating x, y, and z are just a rescaled version of the
ones introduced above. More precisely, if the screw has p threads per unit length, then we may describe the
kinematics by

) =ui(r)
i ) =w(r)
= = (v )x(2) — w(g)wi)

subject only to the constraint that x?> + y* = a®. Thus a suitably restricted version of the equations relating
height and energy flow in the tanks also describes the relationship between the rotational motion and the
translational motion of this mechanical system.
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FIGURE 2.3 Converting rotational motion to rectilinear motion with a screw and slider.

P

A

O

FIGURE 2.4 Rotating wheels and the corresponding covering space.

Of course the fact that this screw and slider mechanism represents only the case in which x? + y> = a> means

that the overall behavior of this system is just a subset of the possible behaviors of the tank system. In this case
we can say that for each point on the circle x> + y> = a? there are (in the case of an infinitely long slider extending
in both directions) a countably infinite number of possible locations for the slider and that these locations are
discrete, separated by the distance that the slider travels when the screw rotates by one full turn. Thus this
mechanism displays a kind of discrete path dependence. In the language of topology, one would say that the
space of possible z coordinates forms a coveting space for the space of possible (x, y) values. We illustrate this
idea in a somewhat simpler setting also involving the kinematics of machines. In Figure 2.4 we show two
wheels, one having twice the diameter of the other, rolling on each other without slipping. If we are told that a
particular mark on the small wheel lies at 9 o'clock then we can say that a particular mark on the bigger wheel
lies at one of two possible locations, separated by 180 degrees. Again, the space of possible configurations of the
bigger wheel forms a covering space for the set of configurations of the smaller one.

A significant difference between the way the set of configurations of the slider covers the set of
configurations of the screw versus the way that the set of configurations of the large wheel covers the set of
configurations of the small wheel is illustrated on the tight side of Figure 2.4, which shows that there are only
two points "sitting over" each point on the small circle, not a countably infinite number as in the screw-slider
case. Of course the situation represented by the basic nonholonomic model is even more extreme. In that case
there is a continuum of z-values corresponding to a given value of x and y. In fact, any z value can sit above a
given value of x and y. In this sense we can think of the nonholonomic system as having the capability of
generating any relationship between these variables, containing any fixed-gear ratio system as a special case.
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VIBRATIONAL, ROTARY, AND LINEAR MOTION

It is a familiar story that Hero of Alexandria invented a simple steam engine in the first century AD. The
drawings of it found in history books show it spinning smoothly over the fire, producing motion but not much
torque. Hero's invention did not enable any industrial revolution; the greater part of two thousand years elapsed
before that occurred. And when steam power did become useful, it was through the more indirect designs of
Newcomen and Watt, based on the generation of reciprocating motion that proved to be effective. In fact, there
are a great many examples, ranging from biped locomotion to ratcheting, in which the generation of motion
involves the conversion of force developed by a periodic process into some desired steady translation or rotation.

The standard way to convert rotational motion into reciprocating motion is by means of a crank and slider
mechanism illustrated in Figure 2.5. As the crank turns in a circle, steadily advancing, the connecting rod
connected to the crank moves back and forth. Thought of from the opposite point of view, as the connecting rod
moves back and forth, the crankshaft rotates in a steady advance. Thus the same mechanism converts
reciprocating motion to circular motion. Figure 2.6 illustrates a different means for converting rotary motion into
translational motion. These ideas are relevant to a discussion of nonholonomic systems because they provide a
useful basis for comparison to the way in which nonholonomic systems convert oscillatory inputs into steady
unidirectional motion.

Recently there has been renewed interest in a variety of rather different mechanisms for the generation of
motion. Figure 2.7 provides some insight into the nature of one of these new ideas. An elastic member is shown
supported at each end in such a way as to permit it to vibrate in two different modes. The first of these may be
characterized as a general vertical motion, larger in the middle and smaller toward the supports. The second
mode is an asymmetrical motion characterized by a shape such that when the elastic is raised on the fight it is
lowered on the left and vice versa. If these modes were to vibrate at the same frequency and with the correct
phase relationship, the overall motion of the tip protruding upward from the center would produce an elliptical
path as shown at the bottom of the figure. Just as it takes two agents to manipulate the energy flow in the tank
example, it takes two modes having the same frequency and appropriate phase relationship to generate the
elliptical motion with nonzero area.

In Figure 2.8 we illustrate how this type of two-mode motion can be coupled to a rigid member in such a
way as to generate translational motion. The operation of the vibratory motors referred to in the introduction can
be explained in this way.

FIGURE 2.5 Converting rotary to reciprocating motion.
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FIGURE 2.6 A mechanism for converting rotational to translational motion.
Moda 1
Made 2
Modes 1 and 2
FIGURE 2.8 A mechanism for converting vibrational to translational motion.

FIGURE 2.7 A multimode vibration of a beam.
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ELECTRICAL CIRCUITS WITH SWITCHES

The scope of the above arguments, based as they are on simple geometric ideas, is quite wide and can be
applied in a variety of circumstances. One of the especially important areas is that of electrical networks whose
behavior is controlled by switches. Nearly every personal computer contains one or more subsystems of this type
to provide electrical power at the various voltage levels appropriate for memory chips, disk drive motors, etc. In
the recent past, different, more expensive, and less efficient methods based on linear analysis were used.
Although our treatment here is brief, we will try to give the reader a feeling for this type of application by
recasting some of the arguments given above in terms of electrical circuits.

Electrical engineers often deal with periodic signals such as sine waves and square waves. In some cases it
is natural to think of smoothly modulated vector fields, as suggested by

(1) = sin(wr) g, (x(¢)) + cos(wit) g, (x(2)),
whereas in other cases it might be more useful to think of
(1) = ssq(n)g, (x(1)) + csq(wi)g, (x(1)) ,

with the understanding that csq (®?) is a square wave, taking on the values =1 and -1 and having a sign that
agrees with that of cos (ot). Similarly, ssq (®f) is a square wave whose sign always agrees with the sign of sin
(of). The above system can be thought of as one whose time evolution is governed by two vector fields. In
operation, one switches periodically among the set g; + g, 81-82-81 + &2, and-g-g,. According to the area rule,
the response to the sinusoidal system and the response of the square wave system will be nearly the same,
provided that the inputs are scaled so as to make the area, in the sense described in the section "Simple Machines
and the Area Rule," the same.

Electrochemical batteries generate a steady voltage, which, in the presence of suitable external circuit, will
cause a current to flow through them, always in the same direction. By contrast, in almost all cases, electrical
power from utility companies is distributed to customers in the form of alternating current, that is, in the form of
a current that alternates between the two possible directions of flow many times per second. In some important
applications, such as powering electronic equipment and charging rechargeable batteries, it is necessary to
convert this alternating current into direct current before it can be used. This process of conversion, called
rectification, used to be a relatively inefficient and expensive process, requiting bulky equipment and producing
unwanted heat. Today there exist solid state electronic devices capable of providing elegant and efficient
solutions to this problem at modest cost. A pervasive problem in electronics is that of producing the required
voltages for various applications from a given source. In some cases this means converting battery voltage of 1.5
volts to 12 volts as required for typical electronics applications. To do this one now uses switching converters ,
which can be thought of as electrical analogs of the problems we have been discussing. In electrical terms, we
may say that their operation is based on a sort of "inverse rectification" in which switches are used to generate
alternating current. Figure 2.9 shows a circuit with two switches, two inductors, a capacitor, and a battery. The
switches allow one to control the evolution of the divers variables that describe the network. The labels u
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and v refer to the two switches and denote variables that represent the position of the switches in the diagram.

The time evolution of this network is governed by a set of equations that are similar to those describing the
tanks, although the meaning of the control terms is now different. In terms of the assignments given below, they
take the form

(1) = 1-v(t)+ (1 - u{))=(s)
30) = v(0) - u(1)a(2)
H0) = Yule)— (L - w()x(o).

If the switch labeled u is closed to the left, then u = 0; if it is closed to the right, then u = 1. We use the same
convention for v. We attach no meaning to other values of u and v. The variables x, y are the currents through the
inductors. The variable z is the voltage across the capacitor. For simplicity, we take the voltage on the battery to
be one. If the voltage across the capacitor is small compared to the voltage on the battery, then the vz term in the
first equation and the uz term in the second equation can be ignored and, after a relabeling of the controls, the
equations become identical to those discussed above.

FIGURE 2.9 An electrical network controlled by switches.

THREE THINGS FROM TWO THINGS

One important aspect of nonholonomic systems, not brought out in our discussion above, is the
extraordinary possibility of using a relatively small number of inputs to force the system to follow paths in a high
dimensional space with small error. We begin our discussion with an analogy from telecommunications.

A single pair of telephone wires can carry many distinct conversations at the same time. Years ago,
engineers demonstrated that it is possible to superimpose multiple signals, send them to their
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destination, and then disentangle them for delivery to their intended recipient. This is accomplished by
recognizing that a speech signal carries most of its useful information in a limited frequency range whereas
copper wires can reliably carry signals whose energy occupies a much wider range of frequencies. By mapping
different telephone conversations into different, nonoverlapping frequency bands at the sending end, and then
reversing the process at the receiving end, one can use the transmission line more efficiently. This is an example
of a more abstract circle of ideas involving a general theory of multiplexing, i.e., combining many independent
signals into one, and demultiplexing, i.e., separating one signal into many independent ones.

The model nonlinear system we have been using for the purposes of this exposition displays a capability for
demultiplexing. It is possible to use it to extract three signals, having a surprisingly high degree of independence,
from the two inputs. In Figure 2.10 we diagram the relationship between the various causes and effects
represented by the differential equations of our standard model. This type of block diagram differs from the usual
physical diagrams, such as that shown in Figure 2.1, in that one does not attempt to be faithful to the physics or
spatial relationships but, as happens when one represents natural phenomena in terms of equations, attempts to
express the abstract relationships clearly. In this sense such diagrams are just mathematics all over again but now
arranged in such a way as to make certain types of interrelationships more obvious.

This diagram depicts a system with two independent inputs and three outputs. Intuition, in many cases
backed up by theorems in topology, suggests that one should not be able to control three things with two things.
Indeed, if the spaces are finite dimensional and/or the relationships are linear, this idea can be made into a
precise statement and proven. The present situation is different. We can get some feeling for it by examining the
response to a class of inputs of a particularly simple type. Suppose that we apply the inputs

w(t) = vJoa cos(wr)
(1) = b cos(er + ¢).

Assuming the appropriate initial conditions, the resulting response is

X(1) = —=sin(o (1))
L]

bJ_
wi)= E-sirr[m{r] * )
z(1) = abtsind.

This shows that the effect of such an input on x and y can be made as small as we wish by increasing the
frequency o, whereas its effect on z is independent of ®. In fact, one may see here the shadow of a very general
fact proven by Liu and Sussmann showing that, in our language, a very wide class of nonlinear controllable
systems can act as demultiplexers.

One of the possible interpretations of this idea is that systems such as the two-input, three-output system in
Figure 2.10 have approximate inverses. In this case the inverse takes the form of a three-input, two-output
precompensator, such that the overall precompensated system is, for low-frequency inputs,
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nearly the identity operator. One interesting aspect of these inverse systems is that they are necessarily time-
varying even though the original system is described by time-invariant differential equations. This can be
interpreted as supporting the need for pattern generation. When one approaches the difficult problem of
designing stabilizing feedback control laws for nonholonomic systems from this point of view, it often becomes
much easier to understand.

FIGURE 2.10 A block diagram representation of the basic system.

CONCLUSIONS

New ways of thinking about nonlinear systems have lead to new ways of taking advantage of their
properties. Nonholonomic systems, a particularly interesting class of nonlinear systems that were once cause for
alarm because of their counterintuitive properties, are now being incorporated in practical systems. Some ideas
from differential geometry, algebra, and other areas of mathematics have played an important role in this
process. In the not too distant future we expect to see some of these ideas being applied to new problems in
biological motion control, mechanical design, electronics, and in areas we cannot yet anticipate.
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Geometric Phases, Control Theory, and Robotics

Richard M. Murray

Department of Control and Dynamical Systems and
Department of Mechanical Engineering
California Institute of Technology

Differential geometry and nonlinear control theory provide essential tools for studying motion
generation in robot systems. Two areas where progress is being made are motion planning for mobile
robots of factory floors (or on the surface of Mars), and control of highly articulated robots—such as
multifingered robot hands and robot "snakes"—for medical inspection and manipulation inside the
gastrointestinal tract. A common feature of these systems is the role of constraints on the behavior of the
system. Typically, these constraints force the instantaneous velocities of the system to lie in a restricted set
of directions, but they do not actually restrict the reachable configurations of the system. A familiar example
in which this geometric structure can be exploited is parallel parking of an automobile, where periodic
motion in the driving speed and steering angle can be used to achieve a net sideways motion. By studying
the geometric nature of velocity constraints in a more general setting, it is possible to synthesize gaits for
snake-like robots, generate parking and docking maneuvers for automated vehicles, and study the effects
of rolling contacts on multifingered robot hands. As in parallel parking, rectification of periodic motions in
the control variables plays a central role in the techniques that are used to generate motion in this broad
class of robot systems.

INTRODUCTION

The earliest robots consisted of simple electromechanical devices that could be programmed to perform a
limited set of tasks. They were a cross between numerically controlled milling machines and the master-slave
teleoperators developed for handling radioactive material. These robots are the

Note: Research supported in part by grants from the Powell Foundation, the National Science Foundation, and the National

Aeronautics and Space Administration.
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precursors to the automated machines used for painting, welding, and pick-and-place operations in today's
factories. For these types of automation and manufacturing tasks, the complexity of the robot can be minimized
since the workspace of the robot can be carefully controlled and the robots are not required to perform
particularly dextrous manipulation of objects. However, many future applications of robotics are moving toward
more autonomous operation in highly uncertain environments. The robots being developed for these applications
are increasingly complex and have a high degree of interaction with their environment.

Examples of the next generation of robots range from miniature robots for medical inspection and
manipulation inside the human body to mobile robots for exploration in hazardous and remote environments. All
these robots will require sensing, actuation, and computational capabilities that were unheard of just a few years
ago. However, as we seek to design robots that can act with increasing autonomy, we move closer to endowing
robots with human-like capabilities. And we begin to become limited by our own ability to understand and
analyze the highly complex systems that we are trying to control.

As the complexity of robots increases, so does the importance of abstraction and theory in understanding
and analyzing robot motion. One approach that has begun to yield new insights is the use of differential
geometry, in the context of both geometric mechanics and nonlinear control theory. Two specific areas where
progress is being made are locomotion and manipulation in robot systems.

Locomotion is defined as the act of moving from one place to another. For robots, there are several
mechanisms by which this movement can occur. The use of wheels and of legs are the two traditional methods,
but other possibilities, such as undulatory gaits in snake-like robots, have also been proposed and implemented.
Each of these mechanisms has certain advantages over the others, but all of them fundamentally involve
interaction with their environment. Locomotion is achieved by pushing, sliding, rolling, or a combination of all
of these.

Robotic manipulation involves motion of an object rather than motion of the robot itself. The prototypical
example is a multifingered hand manipulating a grasped object. Once again, the fundamental mechanisms that
govern motion involve pushing, rolling, and sliding. The motion of a set of fingers grasping an object is
constrained in much the same way as the motion of a legged robot is constrained by the contacts between its feet
and the ground. Indeed, many of the tools that are used to analyze manipulation and grasping problems are easily
adapted to analyze locomotion.

The most basic problem in all locomotion and manipulation systems is to devise a method for generating
and controlling motion between one configuration and another. The common feature is that motion of the robot
is constrained by its interactions with the environment. For example, in wheeled mobile robots the wheels must
roll in the direction in which they are pointing and they must not slide sideways. In grasping, the motion of the
fingers is constrained by the object being held in the grasp: motion of one finger affects the others since forces
are transmitted between the fingers by the object. Even in legged robots, one usually assumes that the feet do not
slip on the ground, allowing the robot to propel itself. These constraints on the motion of the system are the
defining features for how locomotion and manipulation work in these systems.

Furthermore, in most locomotion and manipulation systems, the range of the actuators is small, while the
desired net motion for the system may be large. A good example of this is using your fingers to screw in a light
bulb: repeated grasping and twisting of the bulb is required in order to fully insert it into the socket. A large
motion of the light bulb (multiple revolutions) is accomplished by repeated (i.e., periodic) small motions in your
fingers.
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In this paper we consider locomotion and manipulation using the notion of geometric phases as a central
theme. Intuitively, geometric phases relate the motion of one parameter describing the configuration of a system
to other parameters that undergo periodic motion. A simple example of geometric phase is the motion of an
automobile performing a parallel parking maneuver. By moving the car backwards and forwards and turning the
steering wheel in a periodic fashion, a driver is able to achieve a net sideways motion of the car even though the
car cannot move sideways directly. This net sideways motion is the geometric phase associated with this choice
of the car velocity and steering wheel angle.

The role of geometric phases as a means of analyzing locomotion is a relatively new perspective. One of the
earliest works is that of Shapere and Wilczek (1989), who studied the motion of paramecia swimming in a highly
viscous fluid. They show that periodic variations in the shape of an organism can be used to achieve net forward
motion. This is very reminiscent of the type of motion present in parallel parking and this similarity can be made
precise by using geometric phases.

There has also been an increased interest in the use of geometric phases for understanding motion in other
biological systems, such as snakes and insects. Here again, periodic changes in one set of variables, which
describe the shape of the system, are used to obtain net motion. The phasing of the inputs plays a central role,
generating different gaits for achieving different types of motion. The interpretation of locomotion in terms of
geometric phases is still far from complete, but it is providing a unifying view of locomotion and manipulation
that has already yielded new insights and has impact on several challenging applications.

LOCOMOTION IN MOBILE ROBOTS

Locomotion involves movement of a mechanical system by appropriate application of forces on the robot.
These forces can arise in several ways, depending on the means of locomotion used. The simplest form of
locomotion is to apply the forces directly, as is done in a spacecraft, where high-energy mass is ejected in the
direction opposite to the desired motion. A similar technique is the use of jet engines on modem aircraft.

For ground-based systems, a much more common means of locomotion is the use of forces of constraint
between a robot and its environment. For example, a wheeled mobile robot exerts forces by applying a torque to
its drive wheels. These wheels are touching the ground and, in the presence of sufficient friction, are constrained
so as not to slip along the ground. This constraint is enforced by the application of internal forces, which cause a
net force on the robot that propels it forward. If no constraints existed between the robot and the ground, then the
robot would just spin its wheels. Similarly, for legged and snake robots, the parts of the robots in contact with the
environment are used to exert net forces on the robot. In fact, for a large class of robotic systems we can view
constraints as the basis for locomotion.

A second common feature in robot locomotion is the notion of base (or internal) variables versus fiber (or
group) variables. Base variables describe the geometry and shape of the robot, while fiber variables describe its
configuration relative to its environment. For example, in a snake robot the fiber variables might be the position
and orientation of a coordinate frame fixed to the robot's body, while the base variables would be the angles that
describe the overall shape of the robot. These base and fiber
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variables are coupled by the constraints acting on the robot. Hence, by making changes in the base
variables, it is possible to effect changes in the fiber variables.

In this paper we concentrate on a particular type of constraint on the configuration variables of the robot,
known as a Pfaffian constraint. Consider a mechanical system with configuration space ()= R" and
configuration g € (J. A Pfaffian constraint restricts the motion of the system according to the equation

©(g)g =0,

where w(g) is a row vector that gives the direction in which motion is not allowed. Pfaffian constraints arise
naturally in wheeled mobile robots: they model the ability of a wheel to roll along the ground and spin about its
vertical axis but not slide sideways. Pfaffian constraints typically do not provide a complete model of the
interaction with the environment, since frictional forces are present in both rolling and spinning, but they do
capture the basic behavior of the system.

As an example, consider a simple kinematic model of an automobile, as shown in Figure 3.1. The
constraints are derived bv assuming that the front and rear wheels can roll and spin (about the center of the axle)
but not slide. Let g = (x,¥,8,d) R4 denote the configuration of the car, parameterized by the xy location of
the center of the rear axle, the angle of the car body with respect to the horizontal, 6, and the steering angle with
respect to the car body, ¢. To simplify the derivation, we model the front and rear pairs of wheels as single
wheels at the midpoints of the axles. The constraints for the front and rear wheels are formed by setting the
sideways velocity of the wheels to be zero. A simple calculation shows that the Pfaffian constraints are given by

©,(g)g
o,(q)d

sinfx — cosBy =0
sin(B +§)x —cos(B + )y —lcoséb = 0.

FIGURE 3.1 Kinematic model of an automobile. The configuration of the car is determined by the Cartesian
location of the back wheels, the angle the car makes with the horizontal, and the steering wheel angle relative to the
car body. The two inputs are the velocity of the rear wheels and the steering velocity.
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For simplicity we take [ = 1 in the sequel.

To study the motion of a system subject to a set of Pfaffian constraints {ay,...,;, it is convenient to
convert the problem to a control problem. Roughly speaking, we would like to shift our viewpoint from
describing the directions in which the system cannot move to describing those in which it can. Formally, we
choose a basis for the right null space of the constraints, denoted by g(x} eR"i=1,..,n—k. The
locomotion problem can be restated as finding an input function, u(t) e R” , such that the control system

I=gx)u+otg, (0,
achieves a desired motion. The g;'s can be regarded as vector fields on JR.", describing the allowable motion
of the system. This type of control system is called a driftless control system since setting the inputs to zero stops
the motion of the system.

For the kinematic car, this conversion yields the control system

x Fwsﬂ 0

a
218 )=|tané 1 +[0 1a-
ol | 0 1

For this choice of vector fields, u#; corresponds to the forward velocity of the rear wheels of the car, and u,
corresponds to the velocity of the steering wheel.

The first question one must consider when analyzing a control system is whether the system is controllable.
That is, given an initial state x; and a final state x;, does there exist a choice of inputs u that will steer the system
from one state to the other? A geometric interpretation of this question can be formulated by studying the
properties of the vector fields that define the control system. A set of vector fields which is not controllable is
shown in Figure 3.2. For these vector fields, there exists a surface whose tangent space contains the span of the
vector fields: Hence, any motion of the system is necessarily restricted to this surface and it is not possible to
move to an arbitrary point in the configuration space (only to other points on the same surface).

To test whether a set of vector fields are tangent to some surface, we make use of a special type of motion
called a Lie bracket motion . Roughly, the idea is to choose two vector fields, say g; and g,, and construct an
infinitesimal motion by first flowing along g; for & seconds, then flowing along g, for & seconds, and then
flowing backwards along g; for € seconds and backwards along g; for € seconds. This motion is illustrated in
Figure 3.3. A simple Taylor series argument shows that the net motion given by this strategy is

8
g(4e) = gy +$’(§&w¢}— %gﬁqﬁ}] +Oe").
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FIGURE 3.2 A set of vector fields that are tangent to a hypersurface in the configuration space. The system
described by this set of vector fields is not controllable since motion is restricted to a hypersurface.

FIGURE 3.3 A Lie bracket motion.

(See Murray et al., 1994, pp. 323-324 for a derivation.) Motivated by this calculation, we define the Lie
bracket of two vector fields g; and g, as

(e e)= g - S, 3.1)

The Lie bracket of g; and g, describes the infinitesimal motion due to cycling between the inputs
corresponding to g; and g,.
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The Lie bracket between two vector fields gives a potentially new direction in which we can move. In
particular, if [g;,g, ] is not in the span of g; and g,, then it is not possible for g; and g, to be locally tangent to a
two-dimensional surface, since we could move off such a surface by executing a Lie bracket motion.
Furthermore, from a controllability point of view we can treat g; = [g1,8>] as a new direction in which we are
free to move, and we can look at higher order bracket motions involving g;. A fundamental result, proven in the
1940s by the German mathematician W.-L. Chow (1940), is the central result in controllability for control
systems of this type. Let A 5 be the set of all directions that can be achieved by the input vector or repeated Lie
brackets. That is,

Ay =span{g (). [2.2, }0). 22, ][@).etc].

Theorem 1 (Chow) A driftless control system is controllable in a neighborhood of § € R" jrfiq =R"
We can verify that the kinematic car satisfies Chow's theorem by direct calculation. The input vector fields
are given by

cosf 0
_|sin@ | _|Q
g =|tang & =|0|

0 1]

We call g, the drive vector field, corresponding to the motion commanded by the gas pedal, and g, the steer
vector field, corresponding to the motion of the steering wheel.! The Lie bracket between the drive and steer
vector fields turns out to be

g =lg.8]= 24

-:Ec:-c:r

|

I —
We call g3 the wriggle vector field; it gives infinitesimal rotation of the car about the center of the rear

wheels. Finally, we compute the Lie bracket between drive and wriggle, which yields

! These names for the vector fields are due to Nelson (1967), who considered this system as part of an example in a book
on differential geometry.
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This vector field is called the slide vector field since it corresponds to motion perpendicular to the direction
in which the car is pointing.

The four vector fields gy, g,, g3, and g, span R as long as § # + m /2 (at which point g, is not defined).
By Chow's theorem this means that we can steer between any two configurations by an appropriate choice of
input.

What Chow's theorem does not tell us is how to synthesize an input that causes the car to move to a given
location. Of course, humans are very good at synthesizing trajectories for automobiles, but for more complicated
situations (such as backing a truck with two or three trailers into a loading dock), the solution to the locomotion
problem is not so intuitive.

One method for synthesizing trajectories is to use the Lie bracket motions described earlier. The problem is
that these motions are only piecewise smooth in the inputs (a problem here since we are commanding velocities)
and they only generate infinitesimal motions. A partial solution to these issues was explored in Murray and
Sastry (1993), where we suggested the use of sinusoids to steer control systems of this form. The basic idea was
to use sinusoids at integrally related frequencies to generate motion in the Lie bracket directions. In essence, one
replaces the squares of a Lie bracket motion with circles. By varying the relative frequencies of the inputs,
motion corresponding to different combinations of brackets between the inputs can be obtained. These
calculations were motivated by results of Brockett (1981), who showed that under certain conditions these types
of inputs are actually optimal.

An example of this type of motion is shown in Figure 3.4. The input, shown in the lower right, consists of a
sequence of sinusoidal input segments with different frequencies. The first part of the path, labeled A, drives x
and § to their desired values using a constant input. These are the states controlled directly by the inputs, so no
periodic motion is needed.

The second portion, labeled B, uses a sine and cosine to drive 8 while bringing the other two states back to
their desired values. Thus, choosing u; = a sin ¢ and u, = b cos ¢ gives motion in the wriggle direction, [g{,g1]. By
choosing a and b properly, we can control the net change in orientation. However, a careful examination of the
motion reveals that some motion also occurs in the y direction. This is due to the higher order terms that appear
in the expression for a Lie bracket motion. However, the input directions, x and §, return to their original values.

The last step, labeled C, uses the inputs u; = a sin ¢ and u, = b sin 2 ¢ to steer y to the desired value and
returns the other states back to their correct values. This choice of inputs moves the car back and forth once
while rotating the steering wheel twice in the proper phase. It generates motion in the bracket direction
corresponding to slide, g, = [g1[g1.8>]]- Notice that the Lie bracket expression contains two copies of g; and one
copy of g,, while the inputs move twice in u, versus once in u;.

Copyright © National Academy of Sciences. All rights reserved.



Motion, Control, and Geometry: Proceedings of a Symposium
http://lwww.nap.edu/catalog/5772.html

GEOMETRIC PHASES, CONTROL THEORY, AND ROBOTICS 41

0.8
B
Ak i 1
o3 : 4
A 1
= 03 14 1
3 g
;‘E a1 :
o o« : =
oo | =
a1
8.3 -
[l bt 0 H 4 [
=, meters
g
0.3 H
| A B C | =
0.z 1 g8
2 | E
E o 3
E -
< '; :
H —
4.3 1 ]
0.3 : a
-8 i H -] H L] L] a

I, meters

FIGURE 3.4 Motion of a kinematic car. The trajectory shown is a sample path that moves the car form (x, y,9,¢) =
(5,1, 0.05,1) to (0, 0.5, 0, 0). The first three figures show the states versus x, and the boom right graphs show the
inputs as functions of time. Repented, by permission, form Murray and Sastry, 1993. Copyright © 1993 by Institute
of Electrical and Electronics Engineer.

The Lissajous figures obtained from the phase portraits of the different variables are quite instructive.
Consider the part of the curve labeled C. The upper left plot contains the Lissajous figure for x, § (two loops);
the lower left plot is the corresponding figure for x, 8 (one loop); and the open curve in x,y shows the increment
in the y variable. The interesting implication here is that the Lie bracket motions correspond to rectification of
harmonic periodic motions of the driving vector fields, and the harmonic relations are determined by the order of
the Lie bracket corresponding to the desired direction of motion.

It is instructive to reinterpret this example in terms of geometric phases. To do this, we rewrite the equations
of motion for the system as

) 5, = COS 5.5,
= L ; Ea]
Ha = SIN 555
i =tankF

Note that the right-hand set of equations have the form of a set of Pfaffian constraints. One can directly
verify that these equations describe the motion of the system by identifying (sy, s, s3) with (x, y,0) and
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of u; and u, with the driving, steering, and velocity. The variable r; represents the (signed) distance traveled by
the car and r, the angle of the steering wheel.

The decomposition of the problem into a set of independent variables, r = r2, and dependent variables,
5 e Ra, is an example of a fiber bundle decomposition of the system. We call r = 'R_z the base variables and
we call 5 R3 the fiber variables. Looking back at Figure 3.4, we see that the motion of the fiber variables in
segments B and C is obtained by using closed loops in the base variables. The amount of motion in the fiber
variables, due to a trajectory in the base variables, is the geometric phase associated with the path in the base
space. Parallel parking corresponds to a phase shift in the y direction, while making a U-turn corresponds to a
phase shift in the 0 direction (sometimes combined with y).

The trajectories shown in Figure 3.4 show how geometric phases can be used to understand car parking, but
they are not very good examples of parallel parking maneuvers. In fact, it is possible to get much better
trajectories for this system by using some obvious tricks, such as using the sum of a set of sinusoids instead of
applying simple periodic inputs in a piecewise fashion. One can even solve for the optimal trajectories in simple
examples such as this one. Reeds and Schepp (1990) showed that the optimal trajectory between any two
configurations can be obtained by following a path comprising up to five segments consisting of either straight,
hard left, or hard right driving in either forward or reverse. Furthermore, they were able to show that no more
than two backups are required and that only 48 different input patterns are needed to construct minimum length
paths (this number has since been reduced to 46 by Sussmann and Tang, 1991).

GRASPING AND MANIPULATION

A somewhat more complicated example of geometric phases occurs in the area of dextrous manipulation
using multifingered robot hands. Here the basic issues involve the use of phases for repositioning the fingers of a
hand without removing the fingers from the object. In fact, one is usually more interested in making sure that
geometric phase is not generated, so that periodic motions of the object cause the fingers to return to their
original positions. We start by discussing the repositioning problem and then make some brief comments about
generating cyclic motions.

Consider the grasping control problem with rolling contacts, such as the system shown in Figure 3.5.
Assuming that the fingers roll without slipping on the surface of the object (a very useful assumption to enforce,
since control of sliding is very tricky), the constraints on the system can be described by a set of equations of the
form

Jy(8,x0 =G7(8,x)%, (3.2)

where 0 is the vector of finger joint angles and x specifies the position and orientation of the grasped object.
In the robotics literature, J, is called the hand Jacobian and G is the grasp map (see Murray et al., 1994, for a
detailed discussion).
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Sl' P SJ:

FIGURE 3.5 Multifingered hand grasping an object. Reprinted with permission from Murray et al., 1994.
Copyright © 1994 by CRC Press, Boca Raton, Florida.

A detailed calculation of the hand Jacobian and grasp map is quite involved and makes use of a large
amount of specialized machinery. However, the basic idea behind the grasp constraint is quite straightforward:
the left-hand side of equation 3.2 is the vector of fingertip contact velocities for the robot hand, expressed in an
appropriate frame of reference. The right-hand side of equation 3.2 is the vector of velocities for the contact
points on the object, expressed in the same frame of reference. The condition that the fingers roll without
slipping is obtained by equating these sets of velocities.

If the fingers of a grasp have sufficient dexterity, they can follow any motion of the object without slipping.
A grasp of this type is called a manipulable grasp. For manipulable grasps, any object velocity * can be
accommodated by some finger velocity vector 6. However, the vector 6 may not be unique in the case that the
null space of J,—that is, the set of vectors that J;, maps to the zero vector—is nontrivial. This situation
corresponds to the existence of internal motions of the fingers that do not affect the motion of the object. If we
let u; be an input that controls the velocity of the object and let u, parameterize the internal motions, then
equation 3.2 can be written as

o
Il

u
! (3.3)

0 = J'G'u+Ku,
L] ] 2

where Ji=J7 (J,J7 )" is the right pseudo-inverse of J;, and K is a matrix whose columns span the null
space of Jj,.

Equation 3.3 describes the grasp kinematics as a control system. The input #; describes the motion of the
object, whose position is given by x. The effect of u; on 0 describes how the fingers must move in order to
maintain contact with the object. If the fingers have any extra degrees of freedom, u, can be used to control the
internal motions that affect the shape of the fingers but leave the object
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position unchanged. The dynamic finger repositioning problem is to steer the system from an initial
configuration (0y,x) to a desired final configuration (6,xs). The explicit location of the fingertip on the object at
the initial and final configurations can be found by solving the forward kinematics of the system.

The general case of finding u; (¢) and u, () such that the object and the fingers move from an initial to final
position (while maintaining contact) can be very difficult. A special case is when the object position is kept fixed
by setting u; at zero. If there are still sufficient degrees of freedom available for the fingers to roll on the object,
then the internal motions parameterized by u, can be used to move the fingers individually around on the object.
With the object position held fixed, each of the fingers can be controlled individually without regard to the
motion of the others, simplifying the problem somewhat.

An example of such a path moving a spherical fingertip down the side of a planar object is shown in
Figure 3.6. In this figure we consider the motion of a finger with a spherical tip on a rectangular object. The plots
show trajectories that move a finger down the side of the object. The location of the contact on the finger is
unchanged, as shown in the right graph, which plots the finger contact configurations (uy, v), while the location
of the contact on the face of the object (1,v,) undergoes a displacement in the v, direction.

In addition to describing how the fingers can be repositioned on the object without releasing contact,
geometric phases can also be used to understand when control laws keep the fingers from drifting, in case this is
not desired. Imagine, for example, performing a complicated manipulation of an object. Depending on the
geometry of the object and fingers, it is possible that the object might return to its starting configuration while
the fingers would have shifted to a new location. In many cases we are interested in choosing control laws to
ensure that this does not happen. Thus, we want to control the fingers in such a way that there is no geometric
phase associated with any closed loop motions of the controls.

Object sontact location

Finger contact location
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’

[

o
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FIGURE 3.6 Steering applied to the multifingered hand shown in Figure 3.5. The left plot shows the location of the
contact point on the object, and the right plot shows the corresponding contact point on the finger. The object
contact moves down and slightly to the right, so the object is shifted slightly in the grasp after executing the
steering maneuver.
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A controller that always returns the fingers to their original configuration when the object returns to its
original configuration is said to be cyclic. The same type of problem can occur in resolving motion in redundant
robots, and has been studied a great deal in that context. In terms of the point of view described in this paper, the
work of Shamir and Yomdin (1988) gives necessary and sufficient conditions in terms of Lie brackets that
guarantee that a controller is cyclic. The same basic ideas can be used in the grasping case.

Using the kinematics described in equation 3.3, the input #; describes the motion of the object. To make the
overall controller cyclic, we must choose u, so that any cyclic motion of u; gives a cyclic motion in 0. Thus, we
wish to choose a feedback law u, = a (x,0) such that the geometric phase associated with u; is always zero.

While dynamic finger repositioning provides a direct connection between geometric phases and
manipulation, the basic ideas behind phases are present in other types of manipulation as well. Consider the
problem of inserting a light bulb into a threaded hole using your fingers. One way to do this would be to grab the
bulb and then walk around in circles to insert it. This obviously requires a large workspace and is completely
inappropriate for manipulation inside a cluttered environment (like the inside of a refrigerator).

A much more natural way to insert the bulb is to rotate your fingers, release the bulb, and then move your
fingers back to perform another rotation. If we treat "twisting" and "grasp/release" as inputs, then this type of
motion corresponds exactly to a Lie bracket motion where the bracket direction corresponds to the motion of the
bulb into the socket. The description of this problem does not quite fit into the differential framework described
above without some modification of the underlying mathematics, but the basic notion of a Lie bracket motion is
still present.

Another example along these lines is using a (miniature) multifingered hand for sewing stitches in tissue.
To understand how such a hand should be designed and how such a task might be accomplished, we can use the
tools from geometric phases to guide our insights and uncover the fundamental principles that govern the
behavior of the system. Since these systems tend to be highly complex, it is important to understand the essential
geometry of the system and its role in satisfying the overall task. The implications of some of these ideas in areas
such as planetary exploration and medicine are discussed in the next section.

APPLICATIONS

We now discuss two specific applications of the techniques outlined above to existing and future robotic
systems.

Exploration of Mars

In 1996 NASA is scheduled to launch a spacecraft to Mars containing the Microrover Flight Experiment
MFEX (Pivirotto, 1993). A major part of the mission consists of landing a semiautonomous rover on the surface
of Mars and using the rover to analyze soil and rock samples on the Martian surface.
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Due in part to funding cuts in the program, the size of the rover has been reduced from an initial mass of
800-1000 kg to a "mini" or "micro" rover in the 5-50 kg range.

The starting point for the MFEX rover design is the Rocky IV rover pictured in Figure 3.7. Rocky IV has a
mass of 7.2 kg and is approximately 60 cm in length. It uses a novel "rocker-bogie" design for the wheels, which
allows it to climb over obstacles that are as much as 50 percent larger than the wheel diameter. Rocky IV is
equipped with a color video camera and numerous proximity sensors. The flight version of the rover will also be
equipped with an alpha proton X-ray spectrometer (AXPS), to be used to analyze the composition of Martian soil
and rocks.

The three primary goals of the MFEX rover mission are to complete a set of technology experiments in at
least one soil type, complete an AXPS measurement on at least one rock with a video image of that rock, and
take at least one full image of the lander. When these goals are met, the rover will complete additional
experiments on different soil and rock types and attempt to take two more pictures of the lander, giving a
complete view from all sides.

Figure 3.7 Rocky IV rover. Used by permission of the Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, California.

The basic mode of operation for the Mars rover mission involves humans providing overall planning and
guidance while the rover itself will be responsible for low-level navigation and control. This level of autonomy
in the control of the rover is necessitated by two factors: communication delays to Mars and limited
communications bandwidth. The round-trip travel time for a signal to Mars can
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range from approximately 10 minutes to as long as 40 minutes. This makes direct teleoperation of the rover
impossible. Furthermore, the communications bandwidth of the lander is limited to approximately 4 megabits/
day, or the equivalent of 10 bytes every 1.7 seconds, and can only be sustained while Earth is visible from the
lander sight.

Because of these communications limitations, the Mars rover will be given commands once per day
describing a sequence of actions to be carried out. Onboard computation will be used to provide low-level
trajectory tracking and to ensure obstacle avoidance. Due to power constraints on the rover and the need to use
flight-qualified hardware, the amount of computational power onboard the rover is quite low. Current earth-
based experiments employ an 8-bit microprocessor capable of performing only 1 million operations per second
and containing less than 40K of memory. Behavioral control is being explored as a means of implementing the
controller and has shown good reliability in autonomous navigation and manipulation tasks in both indoor and
outdoor rough-terrain environments (Gat et al., 1994).

Path planning for the Mars rover involves finding paths that satisfy the basic kinematics of the rover and
also avoid obstacles. To a rough degree of approximation, the constraints on the rover can be described by a set
of Pfaffian constraints and hence the geometric machinery described above can be used to understand the vehicle
motion and to plan maneuvers. Examples of path planners for mobile robots in the presence of obstacles can be
found in Latombe (1991) and Laumond et al. (1994).

Future Mars missions are expected to include a sample and return scenario, in which a soil sample from
Mars will be returned to the lander for further analysis. Since the lander can house much larger and heavier
measurement apparatus than the rover can, returning a soil sample to the lander allows much more detailed
experiments to be run. In returning to the lander, the rover must accurately position itself to dock with the lander.
This must be done in the presence of unknown terrain and with a reasonably high degree of precision.

One approach to this problem is the use of controllers that use real-time feedback to guide the rover to the
docking bay. Stabilization of constrained systems of this type turns out to be a challenging theoretical problem
that has received a large amount of attention in the controls community over the past several years (see
M'Closkey and Murray, 1994, for a recent list of papers and experimental results in active stabilization). These
results have relied heavily on the geometric point of view, which has evolved over the past few years and will no
doubt continue to make use of these tools.

Medical Robotics: Minimally Invasive Surgery

One of the exciting applications of robotic manipulation and locomotion is in medicine, particularly in
minimally invasive surgery. Over the past ten years, the use of minimally invasive surgical techniques has
increased dramatically in the U.S. and abroad. These techniques offer several advantages over conventional
surgery, including reduced hospital stays after an operation and decreased risk of infection and other
complications.

A typical minimally invasive surgical operation is a laparoscopic cholecystectomy (gall bladder removal).
In this procedure, a doctor removes the gall bladder through several small incisions in the patient's abdomen.
One of the incisions is used to insert a tube that inflates the abdominal cavity with gas, while the other incisions
are used to insert medical instruments. The gall bladder is removed by cutting it with a pair of scissors and
extracting it through one of the incisions.
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Gall bladder removal is one of the most common surgeries performed in the United States. Ten to fifteen
years ago, the percentage of such surgeries that were done using minimally invasive techniques was negligible.
However, with new techniques and new medical instruments, the use of minimally invasive techniques has
surged, and this is by far the most common method currently in use for gall bladder removal.

Another minimally invasive surgical technique is the use of an endoscope for inspection and removal of
tissue or polyps from the gastrointestinal tract. One example is an endoscopic polypectomy. In this procedure, a
flexible endoscope is maneuvered near a polyp on the interior of the colon. Using a video display connected to a
camera at the end of the endoscope (via fiber optics), the surgeon is able to snare the polyp and cut it off with
electrocautery while drawing the snare closed.

While the use of minimally invasive techniques has progressed rapidly, it is currently limited by several
factors. Among them is the limited dexterity of the tools used by the surgeons and the large portions of the body
that cannot be reached with an endoscope or laparoscope. One of the applications of the work described here is
toward extending the abilities of surgeons in these directions.

Researchers at the University of California-Berkeley, Harvard, and other institutions are working to develop
a teleoperative surgical workstation, which would allow surgeons more dexterity and ease of use than current
minimally invasive technology (Cohen et al., 1994). These researchers are focusing on a number of different
problems, including the design, fabrication, and control of miniature robotic hands and the use of instrumented
data gloves to allow the surgeon to control the hands in a natural way. A photograph of one of the hands that has
been fabricated is shown in Figure 3.8.

Figure 3.8 Three-fingered laparoscopic manipulator designed for tendon actuation (tendons omitted for clarity).
The manipulator is shown in a 10 mm diameter laparoscopic trocar. Reprinted with permission from Michael Cohn,
University of California-Berkeley.

The design and control of these complicated machines require a thorough understanding of the basic
mechanisms that are present in manipulation tasks. A fairly simple miniature hand such as the one shown in
Figure 3.8 might have up to 9 degrees of freedom, which, when combined with the dynamics of the object, can
give a phase space with as many as 24 states (configurations plus velocities). The
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dynamics for such a system cannot be easily studied without understanding the basic structure that the dynamics
inherit from the specific manipulation problem under consideration.

A second area of research in medical robotics is the development of small locomotion robots capable of
navigation and inspection in the gastrointestinal tract. J. Burdick and his students at Caltech have built several
prototype devices for locomotion inside an intestine, and clinical trials on pigs are in development (Burdick, J.W.
and B. Slatkin, 1994, personal communication). The motion of their devices relies on the geometric phases
associated with alternately inflating and deflating a set of gas-filled bags coupled with shortening and
lengthening the robot along its longitudinal axis.

Other possibilities for gastrointestinal robots include the use of hyperredundant (or "snake") robots. Over
the past five years, a complete theory for these robots has been developed by Chirikjian and Burdick (1994).
They have explored the use of hyperredundant robots not only for locomotion tasks, but also for manipulation
tasks in which the robot wraps itself around the object that it is manipulating. This provides a very stable grasp
while still allowing the object to be manipulated within the grasp.

CONCLUSIONS AND DISCUSSION

In this paper we have indicated some of the roles that geometric phases play in modern robotics,
concentrating on applications in robotic locomotion and dextrous manipulation. As the robotic systems that we
seek to control become increasingly complex, our ability to understand and program them is forced to rely more
and more on the use of abstraction and advanced analysis. Further development of relevant theory, and
applications of that theory to engineering problems, will help promote the use of advanced technology in many
areas.

In addition to the specific applications discussed above, there are many other areas that overlap with the
ideas presented here. For example, the use of geometric phases to understand biological motion is starting to
become more clear. The use of central pattern generators (CPGs) to generate repetitive motion is common to
many types of animals. One can view CPGs as the driving input to a set of kinematic constraints. Intuitively, the
geometric phase associated with a particular gait pattern determines the direction and amount of motion of the
system.

The explicit connection between CPGs and geometric phases remains to be established, but there are several
clues that indicate that some new advances in theory might help. One such clue is the motion of the snakeboard,
a commercial variant of a skateboard, which is discussed by Marsden in his paper and is described in detail in
Lewis et al. (1994). The snakeboard relies on coupling between angular momentum and Pfaffian constraints to
generate motion. Different gaits can be achieved in the snakeboard by using integrally related periodic motions
in the input variables of the system. As its name indicates, the snakeboard provides an important link between
wheeled mobile robots and more complicated snake-like robots. By studying the geometry of the snakeboard we
are able to understand one of the mechanisms by which locomotion occurs.

In order to expand this geometric point of view to other locomotion and manipulation problems, a slightly
more general framework is required. In particular, while the notion of periodic motions for locomotion is fairly
ubiquitous, the generation of trajectories via Pfaffian constraints is limited. For snake-like robots, a more general
framework would allow different friction models and discontinuous dependence on the velocity of the snake. For
legged locomotion, a completely different approach may be
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required since the contacts occur in piecewise fashion. These problems are the subject of current work by
researchers in the United States and around the word, and we can expect to see exciting new insights and
applications in the years to come.
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4
Motion Control and Coupled Oscillators

P. S. Krishnaprasad

Department of Electrical Engineering and
Institute for Systems Research
University of Maryland

It is remarkable that despite the presence of large numbers of degrees of freedom, motion control
problems are effectively solved in biological systems. While feedback, regulation, and tracking have served
us well in engineering as useful solution paradigms for a wide variety of control problems, including motion
control, it appears that nature gives prominent roles to planning and coordination as well. There is also
complex interplay between sensory feedback and motion planning to achieve effective operation in
uncertain environments (in movement on uneven terrain cluttered with obstacles, for example). Recent
investigations by neurophysiologists have brought to increasing prominence the idea of central pattern
generators (a class of coupled oscillators) as sources of motion "scripts" as well as a means for
coordinating multiple degrees of freedom. The role of coupled oscillators in motion control systems is
currently under intense investigation. In this paper we examine some unifying themes relating movement in
biological systems and machines. An important insight in this direction comes from the natural grouping of
degrees of freedom and time scales in biological and engineering systems. Such grouping and separation
can be treated from a geometric viewpoint using the formalisms and methods of differential geometry, Lie
groups, and fiber bundles. Coupled oscillators provide the means to bind degrees of freedom either directly
through phase locking or indirectly through geometric phases. This point of view leads to fresh ways of
organizing the control structures of complex technological systems.

INTRODUCTION

In optics, lithography applications in microelectronics, and in a variety of other contexts, the need for high-

Copyright © National Academy of Sciences. All rights reserved.

resolution motion control with high accuracy is met by specialized actuators that are quite different in their
principles of operation from everyday devices such as electromagnetic motors. One
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such device, manufactured by Burleigh Instruments under the trademark INCHWORM™™, is illustrated in
Figure 4.1.

FIGURE 4.1 INCHWORM™ clamps C;, C,, stretcher S, and armature A.

This actuator, consisting of three sleeves/tubes made from piezoelectric material mounted on a frame and
enclosing a linear armature, works on the physical principle that the piezoelectric material deforms under
electrical stimulus (the outer sleeves independently clamp down, and the middle sleeve stretches in length).
Running the actuator through a succession of clamp-stretch-unclamp-unstretch cycles, one generates incremental
motion of the armature in a specified direction. It is possible to make linear movements as small as 4
nanometers. Other actuators based on piezoelectric effects are increasingly finding their way into consumer
products, including ultrasonic motors for autofocusing in cameras based on surface wave excitation (see Ueha
and Tomikawa, 1993, for detailed discussions of these devices). A common design principle in these devices is a
type of rectification of small cyclical motions to produce gross motions.

Turning to the natural world, much attention has been devoted to the systematic understanding of how
various microscopic organisms move in fluids under various conditions. Since movement is essential to reaching
food particles, efficiency considerations have also been of interest (see Childress, 1981, for related discussion).
Apparently, the paramecium gets around in a fluid under conditions of a very low Reynolds number through a
process of cyclical change in its boundary contour (or more precisely, the envelope determined by the oscillating
cilia that make up the contour). (See Figure 4.2.) In the work of Shapere and Wilczek (1989) this has been
shown, under appropriate fluid mechanical assumptions, via the mathematics of gauge theory (which has played
an important role elsewhere in modem physics and geometry over the last three decades). Here again a type of
rectification is at work.

Copyright © National Academy of Sciences. All rights reserved.
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Figure 4.2 Illustration of paramecium in a fluid.

Although the low Reynolds number regime permits an essentially kinematic treatment of the paramecium,
in other contexts of animal movement dynamic influences play an important part, e.g., in walking, trotting, and
galloping gaits of quadrupeds (Alexander, 1968), in the swimming movement of the lamprey (Bowtell and
Williams, 1991), etc. A rather striking illustration of this occurs in the Basiliscus plumifrons, a type of lizard
found in Central America that is capable of engaging in short bursts (less than 10 meters) of walking on water,
supporting itself by rapidly pushing down (at 30 Hz frequency) its hind feet on the water. The reaction forces
thus generated are sufficient for support (see Lambert, 1994).

Our examples are meant to underscore the principle of movement generation by repetitive, cyclical
variation in certain degrees of freedom (of a machine or an organism) while constrained by interactions with the
environment (e.g., ground contact, friction). Understanding this principle has had an important influence on
recent research in control theory and in robotics, as also explained by the companion papers of R.W. Brockett,
J.E. Marsden, and R.M. Murray in this report. Turning this principle into a quantitative tool requires an
understanding of the rectification mechanism mentioned above. It is precisely this mechanism, variously
associated with geometric phases, area rules, and Lie bracket generation, that has had a crucial role as a tool for
designing machines and algorithms to control them. In the context of motion generation, Brockett's paper (1989)
appears to be the first to state clearly and prove a version of the rule (see Murray et al., 1994; Murray and Sastry,
1993).

Placing the rectification principle in the broader context of motion control architectures for systems with
many degrees of freedom is one of the goals of this paper. To clarify matters further, an example is given in the
following section, "From Shape Change to Global Movement," involving a unicycle and oscillations.

There is already a rich tradition in the biology and neuroscience of modeling movement via coupled
oscillators. It is noteworthy that even in the presence of large numbers of degrees of freedom, motion control
problems are effectively solved in biological systems of extraordinary variety. The work of Brown (1914) on
half-centers, and the fundamental investigations, starting in the 1930s, of Bernstein (1967) on strategies for
motion control, continue to have an influence in modem work (see Pearson,

Copyright © National Academy of Sciences. All rights reserved.
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1993, for a modern perspective). Bernstein clearly identified a role for planning (i.e., feedforward control) along
with feedback, regulation, and tracking in motion control. In Bernstein's scheme, adaptive restructuring of
motion programs on the fly, through the use of afferent feedback pathways from mechanoreceptors and other
sensory modalities, had a prominent place. More recent work of neurophysiologists has focused attention on
central pattern generators (CPGs) in the nervous system as key to understanding the control of movement and
posture (Cohen, 1988; Cohen et al., 1982, 1988; Kopell and Ermentrout, 1988; Kopell, 1988). As mathematical
objects, CPGs are networks of coupled oscillators and can be incorporated in the control architecture of a
complex machine. Thus, if the state variables of the nodes of a CPG are in turn coupled to the degrees of
freedom of the system to be controlled, it is possible to achieve coordination of the latter by prescribed phase
coherence of the oscillators. The system to be controlled may be a multilegged walking machine or a
multifingered, anthropomorphic mechanical hand with built-in tactile sensors on the fingers. Sensory feedback
paths to correct CPG dynamics would be necessary to provide a level of robustness to changes in the
environment (e.g., obstacles, failures). These elements lead us to the architecture of Figure 4.4, discussed further
in "Scripts and Oscillators" below.

In the section on "Unifying Geometry," we present a unifying geometric-mechanical picture of the ideas on
rectification. The language of principal bundles and connections goes hand in hand with the mechanical notions
of configuration spaces, symmetries, and constraints. Complementing the perspectives presented in the
companion papers in this report, we focus attention on the notion of averaging in Lie groups and its relation to
rectification. In the section below on "Some Interesting Machines," we discuss novel machines that illustrate the
main ideas of this paper and point the way to further extensions.

FROM SHAPE CHANGE TO GLOBAL MOVEMENT

Our purpose here is to show how suitable notions of shape, together with cyclical shape change, can yield
global movement. In the case of the INCHWORM™ actuator, the concept of shape can be identified with two
pieces of information: the continuous elongation/contraction of the middle sleeve and the discrete state of the
clamp-pair (which one is on or off?). For each such "shape," there is an associated holonomic constraint, and
coordinated shape change together with switching of constraints leads to rectification and the travel of the
armature. In a setting more natural for geometric arguments, piecewise holonomic constraints may be replaced
by nonholonomic constraints. This is best illustrated by classical mechanical examples involving the constraint
of no sliding of a knife edge or rolling without slipping of a wheel on a surface. Consider, for instance, the
geometry of motion of a unicycle with rider, as shown in Figure 4.3. The kinematic equations of the unicycle are
given by

i = cosld Ju,
= sin(8 huy @D
6 =u,.

Copyright © National Academy of Sciences. All rights reserved.
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Z

FIGURE 4.3 Geometric model of a unicycle.

Here x and y denote the position of a fixed reference point on the unicycle and § denotes the orientation of
the unicycle relative to a fixed laboratory/observer frame. Further, u; denotes the steering speed and u, denotes
the heading speed, and these are assumed to be controllable by the unicyclist. From equation 4.1, it is clear that
the constraint of no sliding

—xsin(@) + peos(p) =0 4.2)

is maintained at all times.
Equations 4.1 and 4.2 can also be recast in the following equivalent form:

g=g(4y +4u), (4.3)

where

cos(d) —si
g=[ sin(d) xJ s

sin(p) cos(g) ¥
0 ] 1

evolves in the group of rigid motions in the plane, with

R
4=|1 0 0
0 0
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] : 4.5)

=11
i=l=l=1
=1=1

Imagine a typical unicyclist implementing pedaling and steering maneuvers that give rise to u;(¢) = ¢ fi(t),
where fi(.) are zero-mean periodic functions of time witl} a common period T, and & > 0 is a small amplitude
parameter. In this instance, the "shape variables" # ()= [u, (o )da are also periodic/oscillatory. Where does the

unicycle end up? To get a decent approximation to the exact solution, one resorts to averaging theory (Leonard
and Krishnaprasad, 1994a; Leonard, 1994). In fact, g(t) is approximated up to quadratic terms in € by the formula

3
g = g(ﬂ}-exp[Ezfz}Af} (4.6)
i=1

where, fori=1, 2,

=g +:9, (4.7)

and

I
#)= = Area, , (1) + 212, (4.8)

Here, the zf.;” are initial conditions, and the matrix

00 0
Ay = A dy = Ay 4, =l1] 0
W0 oo
is the Lie bracket of A; and A,, and
T
1 e, ot P
Areay (1) = = (iGN o)~ Ta(oi(o))do (4.9)

o

and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please

is the area of the loop in shape space executed by the unicyclist in the course of the chosen oscillatory
maneuver.

Equation 4.6 predicts a secular drift in the direction of the Lie bracket A; and, following 4.8 and 4.9,
illustrates the rectification principle as an area rule. By a succession of oscillatory maneuvers, the unicyclist can
get around anywhere and manage parallel parking! (For related ideas and references, see the paper by Murray in
this report.) This hinges on the fact that the constraint (4.2) is nonholonomic or, equivalently, the Lie bracket A5
is linearly independent of A; and A,, the directions trivially controllable by the unicyclist. It is, however,
important that the phase relations between the pedaling
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oscillations and the steering oscillations be right, or else the Area,; , (T) will vanish, killing the secular drift. This
brings up the need for coupled oscillations. Appropriate shape variations may be drawn from solutions to
variational problems.

The unicycle example illustrates a geometric interpretation of shape and shape change. For a six-legged
insect (or machine) with legs capable of lift and swing, the shape space may be a submanifold of a 6 x 3-
dimensional toms. Shape change in that case is achieved via successively lifting and swinging the legs before
returning to ground contact.

SCRIPTS AND OSCILLATORS

Area rules of the type discussed in the last section have been used in developing computer programs to
synthesize feedforward control laws (motion scripts) in Leonard and Krishnaprasad (1994a) and Leonard (1994).
We think of such programs as script generators, producing detailed streams of instructions to machines. One
such program is used to control an underwater vehicle (Leonard and Krishnaprasad, 1994b; Leonard, 1994).
Integrating script generators into a larger framework for intelligent control of movement is a major challenge
(the framework has to accommodate uncertainty, limited sensing of the environment, obstacles that move about,
rough terrain, etc.) and we argue that there is much insight to be gained from deeper study of biological motion
control systems.

The Russian physiologist N. Bernstein, in his studies of the movement problem, proposed a variety of
architectural principles. Given the large numbers of degrees of freedom involved in even elementary motor acts,
binding (or synchronization) of the degrees of freedom into groups is necessary. Such binding has to be dynamic
to accommodate varying stages in a movement. Bernstein viewed rhythm generators or oscillators as the means
to implement binding. Bernstein also viewed as central to motor control the ability to change a motor program in
the middle of a movement, possibly based on data from afferent sensory pathways. Much work since Graham
Brown's proposal of half-centers has gone into understanding how neural circuitry could be organized to produce
temporal patterns of neuronal firings that seem to be responsible for rhythmic movements. See, for instance, the
compendium of papers in Cohen et al. (1988). The oscillations in the temporal patterns are assumed to be in
correspondence with actual movements produced, for instance, a particular gait, i.e., thythmic stepping, in a
quadruped. A complex movement could be segmented into distinctive gaits and modules capable of piecing
together such segments prior to initiation of a movement and altering them "on the fly" are essential to intelligent
control. Further, it is plausible that in biological systems, the higher cognitive elements engaged in movement
control pay attention primarily to a symbolic description of movement, ignoring detailed timing information. For
instance, in the case of a six-legged insect, by identifying the legs on the left and right sides of the body with the
symbols L; and R;, where the index i rims from 1 to 3 (3 stands for the hind legs, 2 for the middle legs, and 1 for
the front legs), one can refer to a gait pattern by a string of symbols, as in

Copyright © National Academy of Sciences. All rights reserved.
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(a) Ry.Ry. Ry, L, L, L
(b) LiRyly, Ry, Ry Ly
(©) Rl R, LR, I,

These strings are to be interpreted as defining the sequence in which each leg is lifted from the ground, and
symbols in a group not separated by a comma correspond to synchronized leg-lifts. Thus string (c) above
represents the so-called alternating tripod gait, being the fastest, and string (a) above stands for the slowest. Both
timing and step length information are hidden, although it is experimentally observed that swing times are
independent of gait. A suitable control framework would need to be able to accommodate descriptions of
movement both at the symbolic and at the detailed timing level. In fact, one can even work out an admissible
language for movements by stringing together "words" as in (a) (b)(c).

e swaﬂuc 5‘”!" Global
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FIGURE 4.4 Architecture for motion control.

Based on these insights from biology, one is led to a possible architecture for intelligent control of
movement as in Figure 4.4. Here the command center communicates a prescribed global movement command to
be transformed into symbolic and timing instructions, which are then implemented by a network of coupled
oscillators that produce the script for shape change. The rectification path produces the desired global movement.
Sensory information is returned to the command center and possibly to the oscillators to modify/correct the
motion commands and scripts. In practice, in legged animals or machines, this afferent pathway may lead to
script change (gait switching). For a robust, model-independent approach to gait switching on the basis of
bifurcation theory in the presence of symmetries, see Collins and Stewart (1993). In our own work, the change in
control authority that accompanies the failure of actuators is one of the sources of script change (Leonard and
Krishnaprasad, 1994b).

The architecture sketched out here gives prominence to what may be a missing ingredient in much of the
discussion of rhythmic movements in biology, namely, the rectification module. In his paper in the present
volume, Brockett takes the view that rectification is a tool for "approximate inversion" of motion specifications
over time and shows how oscillators do the job. It may be possible to suggest some biological experiments to
determine if indeed such approximate inverses are learned from repeated trials,

Copyright © National Academy of Sciences. All rights reserved.
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thereby lessening the need to store motion scripts. Finally, it should be added that there is some software
involved in the control architecture we discussed that corresponds to current thinking in reconfigurable software
for robotics (Stewart et al., 1993).

We close this section by pointing out exciting new developments toward incorporating a combination of
pattern-generating oscillators, elastomechanics-based models of body movement and muscle response, and
models of fluid interaction with the skin to capture the complexities of lamprey movement (Bowtell and
Williams, 1991). In at least one machine that we have studied (see "Some Interesting Machines"), all these
ingredients prove to be necessary for complete understanding.

UNIFYING GEOMETRY

The model (4.3) of the unicycle is not so special as it might seem at first glance. In practice, the models of
mechanics governing the behavior of a wide variety of machines admit certain unifying geometric elements. The
possible system configurations constitute the space Q. There is always the symmetry of Newtonian mechanics,
namely, indifference of the dynamics to change of inertial observer. More generally, one has a Lie group G of
invertible transformations acting on Q that leave the Lagrangian of the system invariant and possibly any
applicable constraints as well. The equivalence classes defined by the orbits of G can be brought to one-to-one
correspondence with the space S = Q/G of shapes. The triple (Q,G,S) is known as a principal bundle. Most of the
examples one encounters in mechanical settings can be given the structure of a trivial principal bundle, i.e., the
configuration space looks like a product of S x G, a simplification we shall assume from here on. Each
configuration will then be a pair g = (x,g).

If sufficiently many independent constraints (analogous to the constraint of no sliding in the unicycle
example) are present then, it is possible to construct a well-defined splitting of the space of velocities (tangent
bundle TQ of the configuration space) at every configuration, into a set of symmetry directions along group
orbits (also called vertical directions) and a set of complementary directions (called horizontal directions)
isomorphic to the space of directions along which one can change the shape. One then says that the bundle
(O,G,S) has acquired a principal connection (see Figure 4.5 for a sketch of the geometric set-up). The curvature
of the connection has a great to deal to say about the following question. In analogy with the unicyclist's
problem, where do we end up in the configuration space Q when we make a cyclic movement in the space of
shapes? The constraints are sufficient to determine a relation between the evolution of g(#) and the shape
trajectory x(¢), of the form

g=-g-&(x1), (4.10)

where & represents the comnection form and is linear in x. Despite the complication arising from the
connection form, equation 4.10 is a good deal like equation 4.3. The concept of holonomy in differential
geometry gives a formal answer to the above question. Drift in the group variables can be built up by repetitively
traversing the same loop in shape space. If the shape velocity is of the form % =g - f(t), where € is a small
amplitude parameter, then, as discussed above in "From Shape Change to Global Movement," one can give an
approximate solution to equation 4.10 using the theory of averaging. This is

Copyright © National Academy of Sciences. All rights reserved.
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done in Leonard and Krishnaprasad (1994a,b) and in Leonard (1994), leading to area rules. Once again the area
rules yield constructive procedures for generating suitable movements in shape space to achieve required
transport in configuration space.

The unifying geometric point of view of this section is very useful in formulating answers to constructive
controllability questions arising in the study of maneuvers of space-based robotic devices (Krishnaprasad, 1990),
the problem of the paramecium at low Reynolds number studied by Shapere and Wilczek (1989), and a wide
variety of nonholonomically constrained problems. There is much that needs to be done to integrate this
geometric viewpoint into the control architecture presented above in "Scripts and Oscillators." In particular, the
capability to adapt motion scripts in this level of generality, based on sensory inputs, probably needs new
mathematical apparatus.

FIGURE 4.5 Principal bundle with connection.

SOME INTERESTING MACHINES

Some of the ideas we presented here have been tested in the laboratory and in simulation. In the thesis of
Manikonda (1994), motion planning for nonholonomic robots in the presence of obstacles is investigated from a
perspective close to the one we discuss. Over the years, there has been growing interest in robotic machines that
exploit principles of movement found in biological systems. The excellent book of Hirose (1993) contains many
examples of successful designs and algorithms. Encouraged by certain designs for redundant manipulators
developed by Joel Burdick and his students at

Copyright © National Academy of Sciences. All rights reserved.
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Caltech, we investigated a variety of machines that could be controlled via shape change. One such instance is
the nonholonomic variable geometry truss (NVGT) in Figure 4.6. This machine consists of a pair of modules on
idle wheels, rolling without slipping on a surface, with deformable bodies. The intent is to drive this machine
entirely by deformations of the body using the connecting links, without any direct actuation of the wheels.

The NVGT fits nicely into the framework of this paper. The configuration space is the Cartesian product of
three copies of the rigid motion group SE(2), and the symmetry group is also SE(2). Thus the shape space is S = SE
(2) x SE(2), representing the freedom to alter the shape by changing the lengths of the connecting links in each
module. Apart from certain singular configurations, determined as those for which all three axles intersect
(possibly at infinity), the unifying geometry discussed previously applies and the "no sliding" constraints fix a
principal connection. Cyclical shape changes produce snake-like movement of the machine (Krishnaprasad and
Tsakiris, 1994; Tsakiris, 1995).

It should be clear that additional modules could be attached to the NVGT of Figure 4.6, thereby increasing
the number of constraints and the number of degrees of freedom. In that case, as shown in Krishnaprasad and
Tsakiris (1994b), and Tsakiris (1995), the problem becomes over constrained, thus limiting the allowable shape
changes. This in itself is not a disadvantage in selecting shape change scripts.

FIGURE 4.6 Two-module nonholonomic variable geometry tress. Reprinted, by permission, from Krishnaprasad
and Tsakiris, 1995. Copyright © 1995 by Institute of Electrical and Electronics Engineers.

Suppose now that one of the modules in Figure 4.6 is detached and we are left with just one module. In this
case the problem is under constrained, and one does not quite have the unifying geometry described above. One
does not obtain a principal connection from the "no sliding" constraints alone. There is a subtler symmetry in the
problem that arises from the interaction between the original Newtonian symmetry and the constraints, which
yields a new momentum equation that the trajectories of the system must obey. The main ideas behind this new
symmetry have only recently become clear in the work of Bloch et al. (1996). To illustrate this, a machine
modeled on the patented toy Roller Racer (U.S. patent # 3663038 of May 16, 1972) was built (see Figure 4.7).
This device is a special case of the single module nonholonomic variable geometry truss on wheels, with only a
single degree of shape freedom.
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The shape space in this case is the circle S'. It is remarkable that in this case the full theory of
nonholonomic momentum equation applies and using this extra equation, one formulates a principal connection
on the bundle (S' x SE(2), SE(2), S'). Motion control by periodic forcing of one degree of shape freedom is
accomplished. Details can be found in Tsakiris (1995).

The last-mentioned example uses dynamical information in an essential way, and in some sense there are
parallels between this investigation and the work of Bowtell and Williams (1991) on the lamprey. The rich
variety of global motions can be best understood by the proper synthesis of kinematic, geometric, and dynamic
information, and the principle of rectification applied to cyclical shape variations is an effective guide even in
this mathematically complex setting. An intelligent control architecture based on such synthesis would be of
great interest. Again nature would have taught us to build better machines.

FIGURE 4.7 Computer-controlled roller racer.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge fruitful collaborations on the subject matter of this paper with Anthony
Bloch, Roger Brockett, Naomi Leonard, Vikram Manikonda, Jerrold Marsden, Richard Murray, Dimitris
Tsakiris, and Rui Yang. Conversations with Joel Burdick and Avis Cohen on the subject of rhythmic movement
have been a source of inspiration. The theses of Mishra and Marvin were influential in the development of the
ideas here. Tom Finan got us thinking about the Roller Racer. This research was supported in part by the
National Science Foundation's Engineering Research Centers Program, NSFD CDR 8803012; by the AFOSR
University Research Initiative Program under grant AFOSR-90-0105 and by grant AFOSR-F49620-92-J-0500;
and by the Army Research Office under Smart Structures, URI Contract No. DAAL03-92-G-0121.

Copyright © National Academy of Sciences. All rights reserved.



Motion, Control, and Geometry: Proceedings of a Symposium
http://lwww.nap.edu/catalog/5772.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true

to the original; line lengths, word breaks, heading styles

and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please

use the print version of this publication as the authoritative version for attribution.

MOTION CONTROL AND COUPLED OSCILLATORS 64

REFERENCES

Alexander, R., 1968, Animal Mechanics, Seattle: University of Washington Press.

Bernstein, A., 1967, The Coordination and Regulation of Movements, Oxford: Pergamon Press.

Bloch, A.M., P.S. Krishnaprasad, J.E. Marsden, and R.M. Murray, 1996, "Nonholonomic Mechanical Systems with Symmetry," Archive for
Rational Mechanics and Analysis (in press).

Bowtell, G. and T.L. Williams, 1991, "Anguilliform Body Dynamics: Modelling the Interaction Between Muscle Activation and Body
Curvature," Philos. Trans. R. Soc. Lond. B. Biol. Sci. 234, 385-390.

Brockett, R.W., 1989, "On the Rectification of Vibratory Motion," Sensors and Actuators 20(1-2), 91-96.

Brown, T.G., 1914, "On the Nature of the Fundamental Activity of the Nervous Centres, Together with an Analysis of the Conditioning of
Rhythmic Activity in Progression and a Theory of Evolution of Function in the Nervous System," J. Physiol. Lond. 48, 18-46.

Childress, S., 1981, Mechanics of Swimming and Flying, Cambridge: Cambridge University Press.

Chirikjian, G. and J.W. Burdick, 1995, "Kinematics of Hyper-redundant Locomotion with Applications to Grasping," Proceedings of the
IEEE International Conference on Robotics and Automation, New York: IEEE, 720-727.

Cohen, A.H., 1988, "Evolution oft he Vertebrate Central Pattern Generator for Locomotion." In: Neural Control of Rhythmic Movements in
Vertebrates , A.H. Cohen, S. Rossignol, and S. Grillner (eds.), New York: John Wiley and Sons Inc.

Cohen, A.H., P.J. Holmes, and R.H. Rand, 1982, "The Nature of the Coupling Between Segmental Oscillators of the Lamprey Spinal
Generator for Locomotion: A Mathematical Model," J. Math. Biol. 13, 345-369.

Cohen, A.H., S. Rossignol, and S. Grillner (eds.), 1988, Neural Control of Rhythmic Movements in Vertebrates, New York: John Wiley and
Sons Inc.

Collins, J.J. and L. Stewart, 1993, "Hexapodal Gaits and Coupled Nonlinear Oscillator Models," Biol. Cybern. 68, 287-298.

Hirose, S., 1993, Biologically Inspired Robots: Snake-Like Locomotors and Manipulators, Oxford: Oxford University Press.

Kopell, N., 1988, "Toward a Theory of Modelling Central Pattern Generators." In: Neutral Control of Rhythmic Movements in Vertebrates,
A.H. Cohen, S. Rossignol, and S. Grillner (eds.), New York: John Wiley and Sons Inc.

Kopell, N. and G.B. Ermentrout, 1988, "Coupled Oscillators and the Design of Central Pattern Generators," Math. Biosci. 90, 87-109.

Krishnaprasad, P.S., 1990, "Geometric Phases and Optimal Reconfiguration of Multibody Systems," Proceedings of the American Control
Conference , American Automatic Control Council, Philadelphia, 2440-2444.

Krishnaprasad, P.S. and D.P. Tsakiris, 1994a, "2-Module Nonholonomic Variable Geometry Truss Assembly: Motion Control," Proceedings
of the 4th IFAC Symposium on Robotics Control, 263-268.

Krishnaprasad, P.S. and D.P. Tsakiris, 1994b, "G Snakes: Nonholonomic Kinematic Chains on Lie Groups," Proceedings of the 33rd IEEE
Conference on Decision and Control, IEEE, New York, 2955-2960.

Copyright © National Academy of Sciences. All rights reserved.



Motion, Control, and Geometry: Proceedings of a Symposium
http://lwww.nap.edu/catalog/5772.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true

to the original; line lengths, word breaks, heading styles

and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please

use the print version of this publication as the authoritative version for attribution.

MOTION CONTROL AND COUPLED OSCILLATORS 65

Krishnaprasad, P.S. and D.P. Tsakiris, 1995, "Oscillations, SE(2)-snakes and Motion Control," Proceedings of the 34th IEEE Conference on
Decision and Control, IEEE, New York, 2806-2811.

Lambert, C., 1994, "To Run Atop the River," Harvard Magazine, May-June, 14-15.

Leonard, N.E., 1994, Averaging and Motion Control of Systems on Lie Groups, Ph.D. thesis (Institute for Systems Research Technical
Report, Ph.D. 94-09), University of Maryland, College Park.

Leonard, N.E. and P.S. Krishnaprasad, 1994a, "Motion Control of Drift-Free Left-Invariant Systems on Lie Groups: Parts I & II," Institute
for Systems Research Technical Reports, 94-8 and 94-9, University of Maryland, College Park. (Also IEEE Transactions on
Automatic Control 40(9), Sept. 1995, 1539-1554.)

Leonard, N.E. and P.S. Krishnaprasad, 1994b, "Motion Control of Autonomous Underwater Vehicle with an Adaptive Feature," Proceedings
of a Symposium on Autonomous Underwater Vehicle Technology, IEEE Oceanic Engineering Society, 283-288, IEEE, New York.

Manikonda, V., 1994, A Hybrid Control Strategy for Path Planning and Obstacle Avoidance with Nonholonomic Robots, M.S. thesis,
Institute for Systems Research Technical Report, M.S. 94-8, University of Maryland, College Park.

Murray, R M., Z. Li, and S.S. Sastry, 1994, A Mathematical Introduction to Robotic Manipulation, Boca Raton, FL: CRC Press.

Murray, R.M. and S.S. Sastry, 1993, "Nonholonomic Motion Planning: Steering Using Sinusoids," IEEE Transactions on Automatic Control
38(5), 700-716.

Pearson, K.G., 1993, "Common Principles of Motor Control in Vertebrates and Invertebrates," Annu. Rev. Neurosci. 16, 265-297.

Shapere, A. and F. Wilczek, 1989, "Geometry of Self-Propulsion at Low Reynolds Number," J. Fluid Mech. 198, 557-589.

Stewart, D.B., R.A. Volpe, and P.K. Khosla, 1993, "Design of Dynamically Reconfigurable Real-Time Software using Port-Based Objects,"
Carnegie Mellon University Tech. Report CMU-RI-TR-93-11, July.

Tsakiris, D.P., 1995, Motion Control and Planning for Nonholonomic Kinematic Chains, Ph.D. thesis, University of Maryland, College Park.

Ueha, S. and Y. Tomikawa, 1993, Ultrasonic Motors: Theory and Applications , Oxford: Clarendon Press.

Copyright © National Academy of Sciences. All rights reserved.



Motion, Control, and Geometry: Proceedings of a Symposium

http://lwww.nap.edu/catalog/5772.html

66

MOTION CONTROL AND COUPLED OSCILLATORS

‘uonnNguyle 1o} UOISIaA aAlle}lIoyINe sy} se uonedlgnd sy} Jo uoisiaa julid ayj asn
aseo|d ‘paMasul Ajjeluspiooe usaq aAey Aew siolid olydesbodA} swos pue ‘paulelal 8q jouued ‘Janamoy ‘Buijewloy ooads-buiiasadAy Jayjo pue ‘sojA}s Buipeay ‘syealq piom ‘syjbus| aui| ‘[euibuo ay} 0}
anJ} ale syealq abed "sajiy BuiasadAy [euibuo sy} wody jou ‘yooq Jaded [euiblo sy} woly pajeald sajl X wolj pasodwooal usaqg sey ylom |eulblio sy} jo uonejuasaidal [eybip mau siyl :8J 4ad SIUl Inoqy

Copyright © National Academy of Sciences. All rights reserved.



Motion, Control, and Geometry: Proceedings of a Symposium

http://lwww.nap.edu/catalog/5772.html

67

Appendixes

APPENDIXES

‘uonnNguyle 1o} UOISIaA aAlle}lIoyINe sy} se uonedlgnd sy} Jo uoisiaa julid ayj asn
aseo|d ‘paMasul Ajjeluspiooe usaq aAey Aew siolid olydesbodA} swos pue ‘paulelal 8q jouued ‘Janamoy ‘Buijewloy ooads-buiiasadAy Jayjo pue ‘sojA}s Buipeay ‘syealq piom ‘syjbus| aui| ‘[euibuo ay} 0}
anJ} ale syealq abed "sajiy BuiasadAy [euibuo sy} wody jou ‘yooq Jaded [euiblo sy} woly pajeald sajl X wolj pasodwooal usaqg sey ylom |eulblio sy} jo uonejuasaidal [eybip mau siyl :8J 4ad SIUl Inoqy

Copyright © National Academy of Sciences. All rights reserved.



Motion, Control, and Geometry: Proceedings of a Symposium

http://lwww.nap.edu/catalog/5772.html

68

APPENDIXES

‘uonnNguyle 1o} UOISIaA aAlle}lIoyINe sy} se uonedlgnd sy} Jo uoisiaa julid ayj asn
aseo|d ‘paMasul Ajjeluspiooe usaq aAey Aew siolid olydesbodA} swos pue ‘paulelal 8q jouued ‘Janamoy ‘Buijewloy ooads-buiiasadAy Jayjo pue ‘sojA}s Buipeay ‘syealq piom ‘syjbus| aui| ‘[euibuo ay} 0}
anJ} ale syealq abed "sajiy BuiasadAy [euibuo sy} wody jou ‘yooq Jaded [euiblo sy} woly pajeald sajl X wolj pasodwooal usaqg sey ylom |eulblio sy} jo uonejuasaidal [eybip mau siyl :8J 4ad SIUl Inoqy

Copyright © National Academy of Sciences. All rights reserved.



Motion, Control, and Geometry: Proceedings of a Symposium
http://lwww.nap.edu/catalog/5772.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the original typesetting files. Page breaks are true

to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be retained, and some typographic errors may have been accidentally inserted. Please

use the print version of this publication as the authoritative version for attribution.

APPENDIX A 69

Appendix A
Speakers

Roger W. Brockett is An Wang Professor of Electrical Engineering and Computer Science in the Division
of Applied Science at Harvard University. He has contributed extensively to the theory of automatic control with
work on stability, nonlinear control, feedback linearization, system identification, nonlinear estimation, and
design by pole placement. More recently his work has involved problems arising in the study of intelligent
machines. Areas of particular interest include the problem of motion control and the investigation of new
computational paradigms appropriate for control in the high-data-rate, sensory-rich environments that
characterize vision-guided systems. Professor Brockett has been recognized by the American Automatic Control
Council and the IEEE through their Richard Bellman Award and the Control System Science and Engineering
Award, and he is a member of the National Academy of Engineering.

P.S. Krishnaprasad is Professor of Electrical Engineering at the University of Maryland, with a joint
appointment at the Institute for Systems Research, and a member of the faculty of the Applied Mathematics
Program. His research interests lie in the broad area of geometric control theory and its applications. He has
contributed to the understanding of parametrization problems in linear systems, the Lie algebraic foundations of
certain nonlinear filtering problems pertaining to system identification, the Lie theory and stability of
interconnected mechanical systems, and symmetry principles in nonlinear control theory. In the last few years,
Professor Krishnaprasad has undertaken a deeper study of the role of artificial neural networks in solving a
variety of problems, and he is currently actively exploring the use of networks of coupled oscillators as a
framework for perception and control in nature and in machines.

Jerrold E. Marsden is a professor in the department of Control and Dynamical Systems at the California
Institute of Technology. He has done extensive research in the area of geometric mechanics, with applications to
fluid mechanics, elasticity theory, plasma physics, and general field theory. He also works in the area of
dynamical systems and control theory, focussing on how it relates to mechanical systems and systems with
symmetry. He is one of the original developers (in the early 1970s) of reduction theory for mechanical systems
with symmetry, which remains an active and much studied area of research today. He was the recipient in 1990
of the prestigious Norbert Wiener prize of the American Mathematical Society and the Society for Industrial and
Applied Mathematics.

Richard M. Murray is an assistant professor of mechanical engineering at the California Institute of
Technology. His major research interests are in nonlinear control of mechanical systems, with recent emphasis
on the dynamics and control of mechanical systems with nonholonomic constraints. His application areas include
mobile robots, nonlinear flight control, multifingered robot hands, and active control of high-performance
turbomachinery. Dr. Murray was instrumental in the creation of the new Control and Dynamical Systems
Department at Caltech, which emphasizes the interdisciplinary nature of dynamical systems and control, and the
application of advanced theory to complex problems in engineering and science.
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