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COVER ILLUSTRATION: The catalytic binding site of the enzyme purine nucleoside phosphorylase, which plays a key rule in immune func-
tion, is shown in gray as a space-filling model. An inhibitor of the enzyme is shown in white. A tight fit between the enzyme and the inhibitor
is required for binding and inhibitory activity, and a goal of structure-based drug discovery is the design of inhibitors that are geometrically
(and chemically) complementary to an enzyme binding site.

The figure was computer generated and resulted from a study that involved calculating geometries of potential inhibitors "docked" in the
enzyme binding site (Montgomery et al., 1993). The study involved energy minimization and Monte Carlo-like conformational searching
using the MacroModel computational chemistry software (Mohamadi et al., 1990). Such a computationally intensive task could not have
been carried out 10 years ago and was an integral part of a structure-based drug design effort (Montgomery, 1993; see also Bugg et al., 1993).

Figure courtesy of W. Guida, Pharmaceuticals Division, Ciba-Geigy Corporation.
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Executive Summary

OVERVIEW

Although much of its discovery process is descriptive and qualitative, chemistry is fundamentally a
quantitative science. It serves a wide range of human needs, activities, and concerns. The mathematical sciences
provide the language for quantitative science, and this language is growing in many directions as computational
science in general continues its rapid expansion. A timely opportunity now exists to strengthen and increase the
beneficial impacts of chemistry by enhancing the interaction between chemistry and the mathematical sciences.

Computational chemistry is a natural outgrowth of theoretical chemistry, the traditional rule of which
involves the creation and dissemination of a penetrating conceptual infrastructure for the chemical sciences,
particularly at the atomic and molecular levels. The mathematical sciences have been indispensable allies and
have provided vital tools for that rule. Theoretical chemistry has also sought to devise and to implement
quantitative algorithms for organizing massive amounts of data from the laboratory, and for predicting the course
and extent of chemical phenomena in situations that are difficult or even impossible to observe directly; thus,
today it is difficult to classify many lines of research as either "theoretical" or "computational." This report tends
toward the term theoretical/computational—any distinction between the two areas is rather misleading because
the subject demands both quantitative characterization and conceptual understanding.

Computational chemistry has its roots in the early attempts by theoretical physicists, beginning in 1928, to
solve the Schrödinger equation using hand-cranked calculating machines. By the 1950s, with the appearance of
digital computers, serious attempts were being made to obtain highly accurate quantitative information about the
chemical behavior of molecules via numerical approximations to the solution of the Schrödinger equation. In
subsequent years, thanks to leaps in computing power and algorithms, methods have evolved from those that
were used to study 1- and 2-atom systems in 1928, through those that were used to study 2- to 5-atom systems in
1970, to the present programs that produce useful quantitative results for molecules with up to 10 to 20 atoms.
Other chemists, whose research can be accomplished with cruder models of the atom, have pushed this limit
much higher. For instance, simpler approximations have long been used in the molecular mechanics approach
that make possible the modeling of biological molecules with thousands of atoms.

Recent decades have witnessed a revolutionary expansion in the breadth and capability of theoretical and
computational chemistry—with a commensurate rise in optimism regarding the ability of theoretical/
computational chemistry to resolve pressing problems both of a fundamental scientific character and of clearly
practical interest. Those outside the field may not realize that theoretical/computational chemistry, broadly
defined, underpins rational drug design, contributes to the selection and synthesis of new compounds, and guides
the design of catalysts. New quantum mechanical techniques underlie the understanding of electronic properties
of materials and have advanced the level of precision at which molecules of at least moderate size can be
modeled. Furthermore, computational chemistry software is a set of tools used increasingly by chemists of many
persuasions. These various abilities and facilities have proved to be very important to U.S. industry, and their
advancement would generate even further industrial benefits. Engaging problems and deep challenges for
mathematical scientists are posed by the needs of theoretical and computational chemists, and the products of
mathematical research in these areas could have farreaching ramifications.

The statement of task given to the Committee on Mathematical Challenges from Computational Chemistry
reads as follows: "The committee will investigate and report on opportunities for
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collaborative and synergistic research in the mathematical sciences that can accelerate progress in theoretical and
computational chemistry and their applications, and make recommendations for promoting this research." It was
clear from the outset that the study could not presume to be exhaustive. However, it seemed realistic to strive for
representative sampling of the two communities involved and to identify instructive examples of past
collaborative successes, likely prospects for interdisciplinary synergy, and barriers to joint research that could be
removed or at least lowered.

A number of fruitful collaborations between mathematical scientists and theoretical/computational chemists
have occurred in the past. Noteworthy examples include the Nobel prize-winning work of Hauptman and Karle
to advance the science of X-ray crystallography, now a basic tool; quantitative structure-activity relationships
have led to the development of at least four commercially successful products (an antibacterial compound, two
herbicides, and one fungicide); and insights into molecular structure have been gained from mathematical results
in group theory and topology.

In scanning the research needs of theoretical/computational chemistry, the committee found opportunities
for synergistic research with almost the entire mathematical sciences community, where that term is used in its
broadest sense to include core and applied mathematicians, statisticians, operations researchers, and theoretical
computer scientists. Many of the mathematical lines of research that, if reoriented, could contribute to chemistry
are already being pursued in other contexts. The matrix in Figure ES.1 displays a subjective assessment of the
depth of potential cross-fertilization between major challenges from theoretical and computational chemistry and
relevant topics in the mathematical sciences. This matrix is based to some extent on intuition because it is an
assessment of future research opportunities, not past results. An "H" in the matrix implies an overlap that appears
clearly promising, while an "M" suggests that some synergy between the areas is likely. The absence of an H or
an M should not be taken to imply that some clever person will not find an application of that technique to that
problem at some point.

CONCLUSIONS AND RECOMMENDATIONS

As a result of its investigations and collective evaluation of the available information, the committee has
reached the following conclusions.

•   Several notable "success stories" can be identified, illustrating the value of interdisciplinary stimulation
and synergistic research collaboration involving cooperation between the mathematical sciences and the
theoretical/computational chemistry communities.

•   Many opportunities appear to exist for further collaborations between the mathematical and chemical
sciences that could result in high-quality scholarship and research progress that would advance national
interests. The productivity of applied computational chemistry would likely be enhanced as a result,
which could be potentially significant for industry.

•   Active encouragement of further collaborations is warranted because it would likely result in an
acceleration of such research progress.

•   Cultural differences between the mathematics and the chemistry communities, involving language,
training, aesthetics, and research style, have tended to act as barriers to collaboration, even in
circumstances that might otherwise suggest the benefit of cooperation.

•   Institutional structures and reward systems in the academic community have often placed significant
difficulties in the way of collaborative research across traditional disciplinary boundaries, which can be
especially inhibiting to those in early career stages.
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•   Government funding agencies have for the most part made constructive efforts to identify and fund
worthy interdisciplinary and collaborative research. However, this process is still somewhat haphazard.
Agencies tend to be organized along traditional disciplinary lines, and the evaluation of interdisciplinary
proposals relies on personal contacts between program managers and on timely and comprehensive
responses from what is typically a small pool of qualified reviewers. The time lapse involved in the
proposal evaluation process thus has often been anomalously long.

•   To a large extent, both mathematical scientists and theoretical/computational chemists are relatively
unaware of the most exciting recent advances in each others' fields. Consequently both groups tend to
be insensitive to the opportunities for interdisciplinary cross-fertilization that could produce intellectual
novelty and productivity enhancements on both sides.

•   The system of prizes and awards administered by the mathematical sciences and chemistry professional
societies is currently not geared to recognize and reward interdisciplinary collaborative research
advances.

•   The national environment—including Congress, funding agencies, and the professional societies (see,
e.g., Joint Policy Board for Mathematics, 1994)—has become perceptibly more conducive to
encouraging and supporting interdisciplinary and collaborative research, particularly as it may concern
industrial innovation and productivity. Government agencies in particular are currently in a mood to
actively encourage joint industrial-academic research, even though proprietary rights barriers to free
collaboration are recognized to exist.

•   The overwhelming volume of specialized technical literature aggravates the communication problems
between fields and occasionally leads to wasted effort, redundancy, and rediscovery. It appears that
well-researched and well-written review articles spanning normally disconnected specialties in the
mathematical sciences and in theoretical/computational chemistry represent a disproportionately small
fraction of the technical literature, in spite of the fact that they can eliminate redundant effort.

In response to these conclusions and to the insights gained from its study, the committee makes the
following recommendations:

Undergraduate Education. The best way to attract scientists to interdisciplinary work is to get them
interested as undergraduates. It is recommended that universities encourage undergraduate interdisciplinary
research courses, seminars, and summer programs.

Graduate Education. Departments in the mathematical and chemical sciences should encourage graduate
degrees (both M.S. and Ph.D.) that involve dual (mathematics and chemistry) mentoring. Dual mentoring
activity between chemistry and physics and chemistry and biology has been successful in many universities. The
committee recommends that mathematics graduate students consider a minor in chemistry instead of a minor in
an area of mathematics related to their research specialty. Theoretical and computational chemistry graduate
students should consider a minor in mathematics or, alternatively, take a core of mathematical courses
appropriate to their interest (perhaps in the framework of a special "interdisciplinary track").

Faculty Interaction. Mathematics and chemistry departments should on occasion invite a person from the
other area to speak in a research seminar or a colloquium. Lists of speakers of potential interest to industry
should be circulated to local industrial laboratories, and vice versa.
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Interdisciplinary Research. The committee recommends that mathematics and chemistry departments
encourage and value individual and collaborative research that is at the interface of the two disciplines. Such
work has the potential for significant intellectual impact on computational chemistry, and hence on the future
evolution of chemical research and its applications to problems of importance in our society.

Professional Societies. Professional meetings in mathematics and chemistry—for instance, those of the
American Mathematical Society (AMS), American Chemical Society, Society for Industrial and Applied
Mathematics (SIAM), and the Chemical Physics Division of the American Physical Society—would benefit
from talks very much like the seminar and colloquium talks described in the recommendation for faculty
interaction above, from shorter presentations in special sessions, and from panel discussions. There are already
some promising moves in this direction as reflected, for example, by recent AMS sessions on mathematics and
molecular biology or SIAM sessions on molecular chemistry problems and optimization. These sessions at
national and regional professional society meetings could ultimately lead to focused interdisciplinary meetings.

Prizes and Awards. The committee recommends that professional societies in the mathematical and
chemical sciences examine the feasibility of establishing awards and named lectureships for work at the
mathematics-chemistry interface. High-level public recognition by peers would be a major step toward breaking
down interdisciplinary barriers.

Expository Articles and Books. Professional journals in mathematics and chemistry could enhance their
quality, appeal, and influence by publishing expository articles on work at the mathematics-chemistry interface.
There is a shortage of books written for someone who is mathematically (chemically) sophisticated and desires
fairly precise but nonrigorous chemical (mathematical) explanations.

Interdisciplinary and Industrial Postdoctorals and Sabbaticals. Mathematics and chemistry departments
should encourage postdoctoral and faculty sabbatical study at the mathematics-chemistry interface. The
committee recommends that the chemical software, pharmaceutical, and chemical industries expand their use of
mathematics postdoctorals and faculty on sabbatical leave, and increase their cooperation with and utilization of
existing National Science Foundation (NSF) programs such as the University-Industry Cooperative Research
Program in the Mathematical Sciences; Industry-Based Graduate Research Assistantships and Cooperative
Fellowships in the Mathematical Sciences; Mathematical Sciences University-Industry Postdoctoral Research
Fellowships; and Mathematical Sciences University-Industry Senior Research Fellowships. Another opportunity
in this regard exists at the Institute for Mathematics and Its Applications at the University of Minnesota, which
has an active industrial postdoctoral research program with the aim of broadening the perspectives of recent
doctoral recipients in the mathematical sciences and preparing them for research careers involving industrial
interaction.

Reference

Joint Policy Board for Mathematics, 1994, Recognition and Rewards in the Mathematical Sciences, American Mathematical Society,
Providence, R.I.
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1

Introduction

Although much of its discovery process is descriptive and qualitative, chemistry is fundamentally a
quantitative science. It serves a wide range of human needs, activities, and concerns, a theme forcefully
documented in the comprehensive Pimentel report, Opportunities in Chemistry (National Research Council,
1985), which presented the status of chemistry as of 1985. The mathematical sciences provide the language for
quantitative science, and this language is growing in many directions as computational science in general
continues its rapid expansion. A timely opportunity now exists to strengthen and increase the beneficial impacts
of chemistry by enhancing the interaction between chemistry and the mathematical sciences.

Computational chemistry is a natural outgrowth of theoretical chemistry, the traditional rule of which
involves the creation and dissemination of a penetrating conceptual infrastructure for the chemical sciences,
particularly at the atomic and molecular levels. The mathematical sciences have been indispensable allies and
have provided vital tools for that rule. Theoretical chemistry has also sought to devise and to implement
quantitative algorithms for organizing massive amounts of data from the laboratory, and for predicting the course
and extent of chemical phenomena in situations that are difficult or even impossible to observe directly; thus,
today it is difficult to classify many lines of research as either "theoretical" or "computational." This report tends
toward the term theoretical/ computational—any distinction between the two areas is rather misleading because
the subject demands both quantitative characterization and conceptual understanding.

Even before the advent of computers as a major component in physical science research, the theoretical
tradition in chemistry had accumulated a substantial membership: in its 1966 report entitled Theoretical
Chemistry, A Current Review, the Westheimer committee estimated that in 1964, approximately 200 theoretical
chemists with faculty appointments in graduate-degree-granting institutions could be identified in the United
States (National Research Council, 1966, p. 3).

The subsequent three decades have witnessed a revolutionary expansion in the breadth and capability of
theoretical and computational chemistry, as well as in its population. These changes, of course, have been driven
by the rapid evolution of computers and by their widespread availability in the scientific community. The
resulting impact has been enormous and has expanded the range of research activity in theoretical/computational
chemistry to encompass the entire spectrum from purely analytical theory, through simulational study of
mathematically well-defined models, to the adroit development of powerful and general computational
algorithms. Indeed, for the purposes of this document, the committee takes the viewpoint that theoretical/
computational chemistry constitutes a seamless continuum of research activities that deserves to be assessed as a
whole.

If the mailing lists of theoretical chemistry conferences can be taken as evidence, the current number of
theoretical/computational chemists working in the United States has grown to approximately 1000 (John C.
Tully, Chairman of 1993 International Conference on Theoretical Chemistry, personal communication). To some
extent, this expansion in population has occurred in the academic community. But more significantly, it
represents a major growth in the industrial and government sectors, and reflects an increasing realization that
theoretical and computational chemistry contributes to the national economic and security welfare. The last three
decades have exhibited a general rise in expectations and optimism surrounding the ability of theoretical/
computational chemistry to resolve pressing problems both of fundamental scientific character and of clear
practical application. The historical record of these expectations can be seen in reports, for example, of
workshops and studies held during the early days of the "supercomputer era" (National Research
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Council, 1974, 1975, 1976; Schatz, 1984; Berne, 1985). Not surprisingly, physics and engineering manifested
similar experiences at the same time (National Science Foundation (NSF) Advisory Committee for Physics,
1981; Lax, 1982; NSF Working Group on Computers for Research, 1983; National Research Council, 1984).

The pervasive significance and widespread applicability of theoretical and computational chemistry may not
always be immediately obvious to those not frequently concerned with this activity. Nevertheless, it is central to
rational drug design, it contributes to the selection and synthesis of new materials, and it guides the design of
catalysts. New quantum mechanical techniques underlie the understanding of electronic properties of materials
and have advanced the level of precision at which molecules of at least moderate size can be modeled.
Furthermore, computational chemistry software is a set of tools used increasingly by chemists of many
persuasions. These various abilities and facilities have proved to be very important to American industry, and
their advancement would generate even further industrial benefits. Engaging problems and deep challenges for
mathematical scientists are posed by the needs of theoretical and computational chemists, and the products of
mathematical research in these areas can have far-reaching ramifications.

The marked growth of theoretical/computational chemistry inevitably has involved a substantial national
investment of skilled human resources and of expensive computing resources (both hardware and software).
Both of these types of commodities are relatively scarce and are subject to competition between alternative
scientific and technological disciplines. Table 1.1 shows, for instance, that software for theoretical and
computational chemistry claims much of the cpu usage on the Cray Y-MP at the San Diego Supercomputer
Center. Data from other NSF supercomputer centers reveals similar patterns. What Table 1.1 does not show is
the heavy dependence of these chemistry codes on mathematical software such as LINPACK and EISPACK.
The productivity of these computational resources, broadly construed, must be an issue for continual analysis
and informed action by policymakers. In particular, the strong mathematical flavor of theoretical/computational
chemistry leads to a natural examination of the efficacy of links between the mathematical and the chemical
sciences, and to the past, present, and future rules of interdisciplinary research at the interface between these
subjects. These issues constitute basic concerns for the present study.

The 14 chemists, biochemists, and mathematical scientists from industry, government, and academia who
attended a 1991 workshop at the National Research Council (NRC) decided that the interface of the
mathematical sciences and theoretical/computational chemistry was an area that deserved encouragement, and
that a fuller study of the issues was warranted. Subsequently, the Board on Mathematical Sciences and the Board
on Chemical Sciences and Technology of the NRC jointly proposed a study to identify research opportunities for
the mathematical sciences relevant to computational chemistry, with the goal of engaging the talent of more
mathematical scientists in the problems of computational chemistry, which should produce advances of benefit
to both the mathematical and the chemical sciences. The phrase "computational chemistry" was to be interpreted
to include those areas related to molecular structure and its determination, broadly defined; it was felt that there
was less need to promote greater participation by mathematical scientists in the areas of computational chemistry
on the macroscopic scale—including such topics as reaction/diffusion modeling and most of chemical
engineering. On securing approval and funding for this study, a Committee on Mathematical Challenges from
Computational Chemistry was selected, with its first meeting held in Washington, D.C. on March 29–30, 1994.
Two subsequent meetings took place: June 910, 1994, in Washington, D.C., and September 911, 1994, in Woods
Hole, Massachusetts.

The statement of task given to the Committee on Mathematical Challenges from Computational Chemistry
reads as follows: "The committee will investigate and report on opportunities for collaborative and synergistic
research in the mathematical sciences that can accelerate progress in theoretical and computational chemistry and
their applications, and make recommendations for promoting this research." It was clear from the outset that the
study could not presume to be
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exhaustive. However, it seemed realistic to strive for representative sampling of the two communities involved
and to identify instructive examples of past collaborative successes, likely prospects for interdisciplinary
synergy, and barriers to joint research that could be removed or at least lowered.

TABLE 1.1 Top ten applications in terms of percentage of CRAY C90 usage at the San Diego Supercomputer Center for
the period December 1, 1993, to August 17, 1994

Time Used (%) Application Description

7.1 ESP Molecular dynamics

6.7 Gaussian Quantum chemistry

5.4 AMBER Molecular dynamics

2.6 TREESPH Galactic dynamics

2.1 GAMESS Quantum chemistry

2.0 ARGOS Molecular dynamics

1.5 CGCM Coupled ocean-atmosphere global climate model

1.5 DMOL Quantum chemistry

1.3 COULMETL Materials science

1.2 DIEL Materials science

SOURCE: Wayne Pfeiffer, San Diego Supercomputer Center, personal communication.

In order to supplement its own breadth of expertise, as well as to reach out to the mathematical sciences
community, the committee invited guests to its first two meetings to learn from their perspectives. At its first
meeting, the committee engaged in a lengthy discussion with Richard Herman, chair of the Joint Policy Board
for Mathematics, learning about the range of attitudes in that community toward interdisciplinary research and
about efforts to adjust the community's priorities on many fronts (Joint Policy Board for Mathematics, 1994). At
its second meeting, the committee invited an optimization researcher (Margaret Wright, of AT&T Bell
Laboratories, incoming president of the Society for Industrial and Applied Mathematics), a statistician (Douglas
Simpson of the University of Illinois at Urbana-Champaign), and a researcher in computational fluid dynamics
(David Keyes from the National Aeronautics and Space Administration's Langley Research Center). These
guests were invaluable, both for their insights about interdisciplinary research opportunities and for their
perspectives on how the committee might influence the mathematical sciences community.

In scanning the research needs of theoretical/computational chemistry, the committee found opportunities
for synergistic research with almost the entire mathematical sciences community, where that term is used in its
broadest sense to include core and applied mathematicians, statisticians, operations researchers, and theoretical
computer scientists in academe, government laboratories, and industry. The common denominator shared by
mathematical scientists who have contributed or could contribute to progress in chemistry is not a particular
background; rather, it is a willingness to truly collaborate.

Readers may wish to note that two other recently issued reports have a strong bearing on matters
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considered herein. The NRC has completed a parallel study entitled Mathematical Research in Materials
Science, which examines many of the same kinds of prospects, barriers, and cures discussed below, although
some key distinctions become clear (National Research Council, 1994). The present report gives a somewhat
heavier emphasis to biological applications of computational chemistry to avoid excessive overlap with that
earlier report. The second is Recognition and Rewards in the Mathematical Sciences by a committee of the Joint
Policy Board for Mathematics (1994), the recommendations of which are consistent with those contained herein.

The committee believes that this report has relevance and potentially valuable suggestions for a wide range
of readers. Several important target audiences and the kinds of benefits they might expect to derive are the
following:

1.  Graduate departments in the mathematical and chemical sciences could glean suggestions for
promising research directions for graduate students and young scientists, ideas about how to foster
interdisciplinary collaborations, and insight into new types of job opportunities that may appear in
the future.

2.  Federal and private agencies that fund research in the mathematical and chemical sciences—
including federal policymakers involved in the high-performance computing and communications,
materials science, and biotechnology initiatives—can find suggested topics that provide links
between the fields, high-priority research topics at the interface, and suggestions for fostering
collaborations.

3.  Selected industrial and government research and development laboratories can learn of ways in
which research from the mathematical sciences could be used to improve the productivity of
theoretical and computational chemists.

4.  Developers of software and hardware for computational chemistry can gain more insight into the
rule that the mathematical sciences could play.

5.  Selected individual researchers can find inspiration and background for promising research
directions (especially for graduate students and young researchers), ways in which their existing
lines of research may have parallels or applications in another field, and suggestions for initiating
collaborations.

Chapter 2 of this report covers some history of computational chemistry for the nonspecialist, while
Chapter 3 illustrates the fruits of some past successful cross-fertilization between mathematical scientists and
computational/theoretical chemists. In Chapter 4 the committee has assembled a representative, but not
exhaustive, survey of research opportunities. Most of these are descriptions of important open problems in
computational/theoretical chemistry that could gain much from the efforts of innovative mathematical scientists,
written so as to be accessible introductions to the nonspecialist. Chapter 5 is an assessment, necessarily
subjective, of cultural differences that must be overcome if collaborative work is to be encouraged between the
mathematical and the chemical communities. Finally, the report ends with a brief list of conclusions and
recommendations that, if followed, could promote accelerated progress at this interface. Recognizing that
bothersome language issues can inhibit prospects for collaborative research at the interface between distinctive
disciplines, the committee has attempted throughout to maintain an accessible style, in part by using illustrative
boxes, and has included at the end of the report a glossary of technical terms that may be familiar to only a
subset of the target audiences listed above.
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2

The Emergence of Computational Chemistry

Computational chemistry has its roots in the early attempts by theoretical physicists, beginning in 1928, to
solve the Schrödinger equation (see Box 2.1) using hand-cranked calculating machines. These calculations
verified that solutions to the Schrödinger equation quantitatively reproduced experimentally observed features of
simple systems such as the helium atom and the hydrogen molecule. Approximate solutions for larger systems
and exact solutions to simple model problems allowed chemists and physicists to make qualitative explanations
of spectra, structure, and reactivity of all types of matter.

During the Second World War, electronic computers were invented, and in the decade after the war these
became available for general use by scientists. At the same time, physicists generally became more interested in
nuclear structure and lost interest in the details of molecular structure and spectra. Hence, beginning in the
mid-1950s, a new discipline was developed, primarily by chemists, in which serious attempts were made to
obtain quantitative information about the behavior of molecules via numerical approximations to the solution of
the Schrödinger equation, obtained by using a digital computer. The present success of this field has come
largely from the enormous increase in speed, and decrease in cost, of computers, with significant improvements
also attributable to many developments in algorithms and methodology. During the 1960s, three major
developments in algorithms and methodology made quantum chemistry a useful tool: computationally feasible,
accurate basis sets were developed; reasonably accurate approximate solutions to the electron correlation
problem were demonstrated; and formulas for analytic derivatives of the energy with respect to nuclear position
were derived. These developments were incorporated into several software packages that were made readily
available to most chemists in the early 1970s, leading to an explosion in the literature of applications of
computations to chemical problems. These programs are used to predict and explain the structure and reactivity
of molecules and to complement the information obtained from many types of spectral measurements.
Refinement of the program packages has, of course, continued, with emphasis on increased accuracy, increased
size of molecules that can be studied, and adaptation to new computer hardware. The present methods have
evolved from those that were used to study 1- and 2-atom systems in 1928 through those that were used to study
2- to 5-atom systems in 1970, to the present programs that produce useful quantitative results for molecules with
up to 10 to 20 atoms. Much of the current research in new methods is aimed at developing methods that are
feasible for even larger molecules.

A classic example of the power of the theoretical/computational approach is the work in the 1960s by W.
Kolos and L. Wolniewicz. Explicitr12 calculations had been introduced for the hydrogen molecule in 1933 by
James and Coolidge, and Kolos and Roothaan, working together in Mulliken's lab, improved these calculations
in 1960. Subsequently, Kolos teamed up with Wolniewicz to author a sequence of papers of increasing accuracy.
Their results diverged from the accepted (experimentally derived) dissociation energy of H2. When all known
corrections were included, Kolos and Wolniewicz's best estimate of the discrepancy (in 1968) was 3.8 cm-1 Thus
prodded, experimentalists reexamined the issue and in 1970 a new spectrum of better resolution and a new
assignment of the vibrational quantum numbers of the upper electronic state were published. Both of these
results were within experimental uncertainty of the best theoretical result.

While the emphasis of one aspect of computational chemistry has been on solving the many-body electronic
structure problem, another group of chemists has focused on using the resulting potential energy surface for
studying nuclear motion. This has led to a collection of programs for doing
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BOX 2.1 THE SCHRÖDINGER WAVE EQUATION

The time evolution of a (nonrelativistic) quantum mechanical system is prescribed by the Schrödinger
wave equation. For a particle with mass m and position r that is moving under the influence of a potential V
(r), this equation reads:

where H is the linear Hermitian Hamiltonian operator:

Here  is Planck's constant divided by 2π and has the very small value 1.05 x 10-27 erg-second
characteristic of the submicroscopic quantum regime. The wavefunction  generally is complex; its amplitude
squared  provides the probability distribution for the position of the particle at time t. The linearity of the
Schrödinger wave equation and the Hermiticity of H guarantees conservation of probability.

Time-independent solutions to the wave equation that have physical significance fall into two
categories and require two distinct boundary conditions. The first (''bound states'') are square-integrable
eigenfunctions of H; they are bounded, vanish at infinity, and provide a discrete spectrum of real energy
eigenvalues for H. The second ("scattering states") are a continuum of solutions that lie in energy above
the infinite-r limit of V(r) (if it exists), and the wavefunction remains nonzero (and oscillatory as a plane
wave or sinusoidal function) in this asymptotic limit.

Quantum mechanical phenomena implied by the Schrödinger wave equation have a strongly
counterintuitive flavor. The discreteness of bound-state energies contrasts starkly with the continuous
energies available to a dynamical system in classical mechanics. The corresponding discreteness of the
energy spectrum of transitions between pairs of quantum bound states has spawned the colloquially
overused and misused phrase "quantum leap." In addition, the wavefunction can be nonvanishing in
regions where V exceeds the total energy, leading to the well-known, but often mystifying, tunneling
phenomenon; this permits particles to pass through potential energy barriers that in classical mechanics
would provide absolute blockage. Less well known, but equally mystifying, is the reverse phenomenon
originally pointed out by von Neumann and Wigner (1929): some potential functions V(r) have the capacity
to trap particles in square-integrable eigenstates at energies above the absolute maximum of V, again in
contradiction to classical mechanical behavior.

The Schrödinger wave equation adapts naturally to the description of many mutually interacting
particles. The case most prominently considered in chemistry is that of two or more electrons, where V
includes Coulombic interactions for electron-electron repulsions and electron-nucleus attractions. However,
it is important to account for the fact that electrons in particular are endowed with intrinsic angular
momentum, denoted by "spin," that is quantized to display only two allowed values, "up" and "down." In the
strictly nonrelativistic regime (chemically, that which involves only atoms with low atomic numbers), these
electron spins are invariants of motion and can be formally eliminated from the mathematical problem,
provided that the remaining spatial wavefunction for the electrons satisfies appropriate symmetry
conditions. In the case of two-electron systems (examples are the helium atom and the hydrogen
molecule), the spatial wavefunction must either be symmetric under interchange of electron positions (if
one "up" spin and one "down" spin are present) or antisymmetric (if both spins are "up" or both are "down").
Analogous, but more complicated, interchange conditions are applicable to the spatial wavefunction when
more electrons are present.

Reference
von Neumann, J., and E. Wigner, 1929, Phys. Z. 30:465.
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classical, semiclassical, and quantum calculations. Since 1980, use of these programs has become a routine
tool for modeling molecules and gas-phase chemical reactions. These computations yield collision cross
sections, both differential and integral, for elastic, inelastic, and reactive events. These approaches require, as
with transition state theory, potential energy surface(s) obtained using quantum chemical methods of solution of
the electronic Schrödinger equation. The Schrödinger equation for nuclear motion is solved subject to a
scattering boundary condition, which takes the form of coupled differential, integro-differential, algebraic, or
integral equation systems. The methods used to solve these coupled systems of equations are drawn from the
applied mathematics literature as well as from algorithm improvements developed by computational chemists.

Meanwhile, simpler approximations have long been used by chemists to estimate the energy of molecules
near their equilibrium geometry. In the molecular mechanics approach (see Box 2.2) the total energy of a
chemical system is approximated by a sum of simple terms involving distances between atoms, bond angles, and
dihedral angles. These terms involve estimated parameters that are assumed to have the same values as similar
parameters obtained by data fitting for simpler molecules. (Chemists have long known that many structural and
energetic features of molecules are nearly transferable between similar subfragments of molecules.) This
representation of the energy has made possible the modeling of biological systems and rational drug design. It is
also at the heart of the computational engine of many programs that produce three-dimensional computer
graphics images of molecules. Molecular mechanics has become so prevalent that many chemists now equate it
with computational chemistry. This approach has allowed the modeling of molecules with thousands of

BOX 2.2 MOLECULAR MECHANICS/MOLECULAR DYNAMICS

Molecular mechanics and molecular dynamics refer to methods for computing certain molecular
properties, particularly molecular structure and relative energy. They both typically use fairly simple
potential energy functions that are derived from classical mechanics (e.g., a parabolic function to calculate
the energy required to stretch or to compress a chemical bond). In addition, they both rely on parameters
that are derived either from experiment (e.g., infrared spectroscopy and X-ray crystallography) or from
quantum mechanics-based calculations (e.g., high-level ab initio molecular orbital calculations). A collection
of potential energy functions and the associated parameters that are employed for molecular mechanics/
molecular dynamics calculations is frequently referred to as a "force field"; thus, calculations that utilize the
molecular mechanics or molecular dynamics approach are often referred to as empirical force field
calculations.

The molecular mechanics method is generally employed to compute the relative energies of different
geometries (conformations) of the same molecule that arise from rotations about chemical bonds as well as
relative energies of intermolecular complexes. Often, energy minima are sought; thus, the molecular
mechanics method is frequently coupled with optimization procedures. On the other hand, in the molecular
dynamics method, Newton's equations of motion are solved by using the gradient of the above-mentioned
potential energy function (force field) to compute the dynamic trajectory of a molecule or of an ensemble of
molecules. Both the molecular mechanics and the molecular dynamics methods have found widespread
use in the modeling of biomolecular systems, for which quantum mechanical calculations are simply not
practical due to the overwhelming number of particles involved. Nonetheless, these methods are quite
accurate for the estimation of certain molecular properties (i.e., those for which classical mechanics is
appropriate), and they have been successfully employed to compute conformational energies (as described
above), to estimate the binding affinity of small molecules bound to a macromolecular receptor, and as an
adjunct for the refinement of structures derived from protein X-ray crystallography and protein nuclear
magnetic resonance spectroscopy.
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atoms. The practical disadvantage is that only structural types previously encountered in smaller molecules can
be parameterized for larger molecules, so many parameters remain unknown. The conceptual disadvantage is
that this is no longer a first principles theory and the connection to the Schrödinger equation is unclear. Hence,
there can be no rigorous estimate of the potential errors in this approach and its success relies on chemical
intuition for finding suitable molecules from which to develop the "transferable" parameters.

BOX 2.3 CHEMIST, MATHEMATICIAN, OR PHYSICIST?

Douglas R. Hartree was an example of a truly interdisciplinary scientist. He invented the self-consistent
field approach in 1927 to approximate the solution of the Schrödinger equation and did a number of
calculations on atomic structure. His undergraduate studies had been interrupted by the First World War,
during which he did ballistics computations. After completing his Ph.D., he held three chairs, first in Applied
Mathematics at Manchester, then in Theoretical Physics at Manchester, then in Mathematical Physics at
Cambridge. In 1934, he built the first differential analyzer in England. From 1939 until 1945, he used this in
support of the war effort. After the war he was a consultant on the ENIAC computer and developed some of
the first computer-based methods for solving partial differential equations. He taught numerical analysis at
Cambridge University and wrote an insightful text on the subject, first published in 1952.

Another important thread in theoretical chemistry has been the study of many-particle systems such as
liquids, solid materials, and biological macromolecules. The major framework for this study has been statistical
mechanics—a subject with its formal roots in the nineteenth century. In the 1930s, the study by physical
chemists of structure and thermodynamics accelerated with the advent of simple ideas about intramolecular and
intermolecular forces. Equilibrium statistical mechanics has offered many questions of principle—for example,
the question of the nature, and even definition, of phase transitions. These questions fostered a long-standing
cross-fertilization between workers in both the mathematical and chemical communities (see Box 2.3). Similarly
the study of phenomena away from equilibrium (e.g., the transport phenomena of hydrodynamics and the
chemical rates) attracted the fundamental thinkers in statistical mechanics starting in the 1950s. Recently,
corresponding deep questions of principle about disordered systems such as glasses have attracted workers from
both communities.

Although a large part of statistical mechanics can be studied without computers, machine calculations for
many-body simulation made an early impact in the 1950s and have grown to be the dominant mode of
investigation. Monte Carlo methods, invented at the weapons laboratories by workers such as Fermi, Ulam, von
Neumann, Metropolis, and Teller, were used immediately to address the many-body problems relevant to the
thermodynamics of liquids. Such Monte Carlo approaches were adapted quickly to the study of polymers as well.
The numerical solution of Newton's laws for many-particle models, so-called molecular dynamics (see Box 2.3),
was also first carried out by theoretical chemists in the late 1950s and early 1960s. The application of molecular
dynamics and Monte Carlo methods to proteins and other biomolecules in the 1970s has led to their widespread
use throughout the theoretical and experimental chemical communities. Since significant advances in the
efficiency of the algorithms used in molecular dynamics and Monte Carlo simulation are needed to address the
forefront questions such as protein folding, a renewed contact of theoretical chemists with the numerical
mathematics community has recently involved collaborative efforts of mathematicians, chemists, and physicists.

The advent of molecular quantum mechanics was followed by a very successful theory of chemical
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reaction rates that modeled a reactive event as passage over a reaction barrier on a multidimensional potential
energy surface representing the energy as a function of the internal coordinates of the reacting system. In its
simplest form, the model corresponds to the system moving from reactants to transition states (the critical
configuration), from which the system moves to reaction products. This conceptually simple model has remained
the predominant approach for estimating rates of chemical reactions. Because of the multidimensionality of the
reactive system, however, it is computationally difficult to implement rigorously. Over the years, efforts have
focused on improving methods to estimate reaction barriers and properties of the reactants, and these have
required better solutions of the electronic and nuclear transition states.

The roots of much of the mathematics now finding application to computational chemistry extend back at
least to the eighteenth or nineteenth century, although, as illustrated in Chapters 3 and 4 of this report, the most
up-to-date developments in the mathematical sciences can also be very natural tools. Group theory traces its
origin to fundamental studies of geometries, but from it has come the theory of groups of motions, continuous
groups, Lie groups, and Lie theory. The need to understand functions on the sphere and other surfaces led to the
representation theory of groups and to various kinds of function theory. These theories grew up with the creation
of quantum mechanics and fed, and were fed by, quantum mechanics. Much of operator theory and integral
equations came from physics and engineering, as did the general theory of harmonic analysis. Numerical linear
algebra and numerical analysis developed largely as tools for fluid mechanics and military applications, but their
usefulness is vastly more widespread than that.

After World War II the mathematics community entered a period of intense development of its core,
accelerating the growth of fields such as topology, number theory, algebraic geometry, and graph theory.
Advances were largely motivated by questions generated by the internal structure of mathematics and not by
contact with the outside world. In recent years, however, attention has once again turned outward, and the
products of this intense period are now being applied widely in novel ways. The advent of modern computing
capacity has enabled mathematicians to generate computational algorithms that yield answers—when combined
with proper modeling techniques—to important practical problems. Success has been achieved in signal
processing, sound and image compression, flow problems, and electromagnetic theory. Historically,
mathematical scientists have worked more closely with engineers and physicists than with chemists, but recently
many fields of mathematics such as numerical linear algebra, geometric topology, distance geometry, and
symbolic computation have begun to play rules in chemical studies.

Before proceeding to accounts of past and potential contributions that mathematics can make to progress in
chemistry, it should be emphasized that the challenge of interdisciplinary research is not one of scientific content
alone, but also one of scientific process. Neither the chemist nor the mathematician is generally the optimal
person to construct a mathematical model, as the model by its very nature lies at the interface between theory and
observation. To build the model, an iterative process of refinement is required, in which mathematical
considerations motivate approximations that need to be checked against reality, and in which key chemical
insights necessarily force levels of mathematical complexity. It is exactly this need for iterative model
construction that may motivate the collaboration of mathematicians and chemists, against the self-referential and
conservative tendencies of each discipline. Focusing on this process of iterative model construction can help
clarify the rules of the collaborators in interdisciplinary research, and by extension illustrate the goals for their
respective disciplines as attempts are made to lower the hurdles to such collaborations. The model is both the
interface between the disciplinary boundaries and the lingua franca between the cultures.
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3

Examples of Constructive Cross-Fertilization Between the
Mathematical Sciences and Chemistry

USE OF STATISTICS TO PREDICT THE BIOLOGICAL POTENCY OF MOLECULES
LATER MARKETED AS NEW DRUGS AND AGRICULTURAL CHEMICALS

Because the search for new drugs or pesticides typically involves the investigation of thousands of
compounds, many research investigators have sought computer methods that would correctly forecast the
biological properties of compounds before their synthesis. Box 3.1 describes how searches for new drugs or
pesticides are done. There are four well-documented cases of the use of computer methods, particularly
quantitative structure-activity relationship (QSAR) methods, as an integral part of the design of compounds that
are now marketed as drugs or agrochemicals. Not only are these compounds commercial successes for the
companies that developed them, but they benefit mankind by aiding in the treatment of disease or increasing the
food supply. This viewpoint has been so successful that recently a company, Arris, was founded to incorporate
the direct involvement of mathematicians in the development of proprietary drug design software.

The Hansch-Fujita QSAR method (Hansch and Fujita, 1964) was developed in the early 1960s and has
become widely used by medicinal and agricultural chemists. In this method, one first describes each molecule in
terms of its physical properties and then uses statistical methods to uncover the relationship between some
combination of these physical properties and biological potency.

Usually in QSAR methods the relationships are examined with multiple linear or nonlinear regression,
classical multivariate statistical techniques. However, discriminant analysis, principal components regression,
factor analysis, and neural networks have been applied to these problems as well. More recently, the partial least
squares (PLS) method (Wold et al., 1983) has found wide use in both QSAR and analytical chemistry. Although
PLS was originally developed by a statistician for use in econometrics, its widespread utility in chemistry has
prompted additional statistical research to improve its speed and its ability to forecast the properties of new
compounds, and to provide mechanisms to include nonlinear relationships in the equations.

Recently, Boyd described four cases in which QSAR and other computer analysis led to a commercial
product (Boyd, 1990). He documented each case carefully by correspondence with the original inventors. The
first is the antibacterial compound norfloxacin marketed for human therapy in Japan, the United States, and other
countries. It is up to 500 times more potent than previously marketed compounds of this class. Additionally, it is
effective against Pseudomonas, a difficult organism to control. Norfloxacin and its subsequent derivatives
achieve a clinical efficacy of approximately 90%. Norfloxacin was designed at the Kyorin Pharmaceutical
Company in Japan from a traditional QSAR analysis that used regression analysis of about 70 compounds.

The second and third QSAR-designed molecules to reach the market are both herbicides. Metamitron,
discovered by Bayer AG in Germany, was based on a QSAR that involved the multiple linear regression analysis
of 22 compounds. In 1990 it was the best seller in Europe for the protection of sugar beet crops. The other
herbicide, bromobutide, has been marketed in Japan since 1987. It was developed at Sumitomo Chemical
Company in Japan based on QSAR analysis of 74 compounds.

The final example concerns the fungicide myclobutanil, which entered the European market in 1986 for the
treatment of grape diseases and was introduced to the U.S. market in 1989. It was developed by Rohm and Haas
in the United States. The design of myclobutanil involved traditional
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BOX 3.1 RATIONAL DRUG DESIGN

The traditional discovery of new drugs is an empirical process that starts with a compound of marginal
biological activity. This "lead" compound either is discovered serendipitously by the random screening of a
large number of compounds (often obtained from libraries of previously synthesized molecules) or is
obtained by preparing analogues of a natural ligand (i.e., a small molecule such as a hormone that binds to
a biomacromolecule such as an enzyme). Chemical intuition and experience as well as ease of synthesis
serve to suggest other closely related molecules (analogues) for synthesis. This process is iterative and
continues until a compound is discovered that not only possesses the requisite activity toward the target but
also possesses minimal activity toward other biomacromolecules (i.e., it is selective and nontoxic). The
compound must also have a desirable duration of action in a suitable dosage form, its synthesis must not
be too costly so that its use will be cost-effective, it must be patentable, etc. This process can take many
years, can cost millions of dollars, and often does not result in a marketed product. Any method that would
make this process more efficient is clearly useful. Thus, chemists in the pharmaceutical industry have
sought a more rational procedure for the discovery and design of new drugs.

If the three-dimensional structure of the target biomacromolecule has been determined (e.g., by using
X-ray diffraction or nuclear magnetic resonance spectroscopic techniques), a technique that has been
termed structure-based drug design can be used for the design of new molecules with the potential to
become useful therapeutic agents. If the three-dimensional structure of the target is unavailable, then a
hypothetical model is formulated with the goal of describing the molecular features required if a particular
compound is to elicit a desired biological response. This model, of course, can be validated only after a
number of compounds have been synthesized and tested for their biological activity so that a statistical
relationship between biological activity and physical molecular properties (i.e., a quantitative structure-
activity relationship, or QSAR) can be established. Nonetheless, such a model is highly useful for focusing
the synthetic effort on compounds that have the greatest chance of exhibiting increased biological activity.
Rational drug design is heavily dependent on computational chemistry techniques, and advances in rational
drug design are tightly coupled to advances in new algorithms for computer-assisted molecular modeling.

To design a new ligand for a biomacromolecule of interest using the three-dimensional structure of the
target biomacromolecule as a guide, the structure of the target must have been found with sufficient
resolution to be of utility. One must then attempt to predict the bound geometry and intermolecular
interactions responsible for the high binding affinity of novel potential ligands (or molecular fragments)
associated with the biomacromolecular target. Computer algorithms have been developed over the past
few years that aid in the identification of potential docking modes. These algorithms have also been used to
identify, from three-dimensional databases, molecules that can potentially dock (and hence bind) to a
biomacromolecular target. The prediction of biological activity of a potential ligand prior to synthesis
represents another essential activity for the structure-based design of new drugs. This endeavor represents
an enormous challenge for structure-based drug design, but some progress has been made using
statistical mechanics-based free energy perturbation techniques that involve computer simulations
employing molecular dynamics or Monte Carlo methods or by using QSAR methods that rely on the three-
dimensional properties of the bound ligand.

In spite of the obstacles associated with employing an analytical approach to the design of new drugs,
rational drug design has, nonetheless, been of enormous utility to the pharmaceutical industry. The QSAR
method has played a rule in the development of a number of drugs currently undergoing clinical trials and
there are marketed products for which QSAR has been instrumental. A number of potential drugs that have
been discovered using structure-based drug design techniques are currently under preclinical or clinical
investigation for the treatment of diseases that include cancer, AIDS, rheumatoid arthritis, psoriasis, and
glaucoma.
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QSAR on 67 compounds and three-dimensional molecular modeling to explain the QSAR and to provide a
model of how the compounds bind to their biological target.

Although these successes are real accomplishments, researchers in medicinal and agricultural chemistry
would like to extend the methods to more cases; such extensions create an opportunity for creative mathematical
insights. The thrust of new research in QSAR has been to calculate the descriptors of the molecules from their
three-dimensional arrangements of atoms and electrons in space (Kubinyi, 1993). The problem is that one of the
popular methods, the comparative molecular field analysis (CoMFA), generates thousands of descriptors for
each molecule, whereas the dataset typically contains biological activity for only 10 to 30 members. While
partial least squares can properly handle such data, it is sensitive to random noise, with the result that the true
signal may be masked by irrelevant predictors. QSAR workers need a new method to analyze matrices with
thousands of correlated predictors, some of which are irrelevant to the end point. This is an opportunity for a
mathematical scientist to contribute an original approach to an important problem.

The new company Arris was founded on the basis of a close collaboration of mathematicians and theoretical
chemists. They have produced QSAR software that examines the three-dimensional properties of molecules
using techniques from artificial intelligence (Jain et al., 1994). The initial results from this work are promising
and suggest that further improvements in three-dimensional QSAR could result from additional collaborations
between mathematicians and theoretical chemists.
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NUMERICAL ANALYSIS

Since much of current computational chemistry is based on numerical computation, it is not surprising to
find successful transfers of information from the numerical analysis community to computational chemistry.
Subroutine packages such as LINPACK, EISPACK, and those in the NAG and IMSL libraries codify algorithms
for solving linear equations and eigenproblems, developed by the numerical linear algebra community over a
period of decades. These software packages provided reliable and well-documented solutions to common
mathematical problems with a fixed and well-defined user interface. The internal details of these components
have been enhanced from time to time, for example, through the use of the basic linear algebra subroutines
(BLAS) that allowed computer vendors to optimize performance to some extent without requiring significant
changes to the source code of these packages. This allowed them to be used effectively on vector supercomputers
when they were introduced. Many of the EISPACK routines were incorporated into widely used
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quantum chemistry packages such as GAMESS, HONDO, MELD, and COLUMBUS when these packages were
"vectorized."

Recent advances in parallel computing have allowed much larger problems to be addressed cost-effectively.
The LAPACK project funded by the National Science Foundation (NSF) has developed software for solving
linear equations on modern high-performance computers (Demmel et al., 1993). The Defense Department's
Advanced Research Projects Agency is funding a similar project called PRISM to develop scalable
implementations of an eigensolver based on the invariant subspace decomposition approach (ISDA), as well as
parallel implementations of fundamental linear algebra operations such as band reduction, tridiagonalization, and
matrix multiplication.

A more recent advance in numerical analysis is the method of multipole expansions for computing long-
range forces, such as Coulombic forces, more efficiently through the use of very accurate simplified
approximations (Draghicescu, 1994) in the far field. This has been applied successfully in molecular dynamics
with implementations for both sequential and parallel computers (Ding et al., 1992a,b).

Many computational chemistry codes have been adapted to work efficiently on parallel computers by a
variety of techniques. Much of this has been achieved by modifying programs and data structures using
techniques from computer science (Plimpton and Hendrickson, 1994). However in other codes, new parallel
algorithms have been developed. For example, grid-based electrostatics calculations (Davis et al., 1990) provide
one of the most difficult simulations to parallelize with full efficiency, due to the long-range interactions implicit
in such partial differential equations (see Box 3.2). No part of the problem domain can be treated independently
of any other, and so there is no natural parallelism in such problems. Like many algorithms in scientific
computation, parallelism must be created at the expense of communication between processors that would be
absent in the uniprocessor implementation.

BOX 3.2 RESEARCH OPPORTUNITIES IN PARALLEL COMPUTING

Considerable opportunities for advances remain regarding parallel computation that could impact
computational chemistry. For example, multigrid methods solve grid-based electrostatics problems in an
optimal amount of work (and storage) on sequential computers. That is, the unknown potential can be
determined on a grid of n points in O(n) work and storage. However, the standard adaptation of multigrid
methods to parallel computers is not optimally efficient. A significant theoretical problem is whether a
solution technique exists that uses only O(n/p)work on a parallel computer with p processors.

Despite the inherent difficulties in parallelizing such problems, novel domain decomposition methods have
provided effective parallel iterative methods (Ilin et al., 1995). These techniques allow extremely large problems
to be solved in a moderate amount of time on massively parallel processors. They have been incorporated into
the computer code UHBD, which has been used effectively to study biomedically significant enzymes in
different ways, providing critical insight into the discovery of new behavior (Gilson et al., 1994) and even
allowing the engineering of new, more effective enzymes (Getzoff et al., 1992).
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DISTANCE GEOMETRY

The idea of modeling complex molecules by using residue-residue cartesian distances as a guide for
understanding the nature of protein folding and energetics stimulated work in the early 1970s (Kuntz, 1975;
Liljas and Rossman, 1975). It was clear, though, that more mathematical machinery was needed. The area of
distance geometry already existed in the work of Blumenthal (1970), while closely related mathematics, called
multidimensional scaling, was developed by Kruskal and Wish (1978) and incorporated into advanced statistical
packages. In essence, distance geometry is a method to work in spaces with greater than three dimensions,
allowing distance constraints to be satisfied that could not be satisfied in three dimensions. Distance geometry
helps one move from collections of distances between points to possible coordinates for these points. It also
helps one distinguish important information from the standard restrictions imposed on us by living in three
dimensions.

Tools were developed to go from upper and lower bound distances to three-dimensional structures, a
process that required projecting an object from many-dimensional space into three. A seminal paper explored
what distance information was needed to determine a three-dimensional structure to a given resolution (Havel et
al., 1979), and later work concluded that a large amount of imprecise data could be sufficient to determine a
macromolecular structure to a high resolution (Havel et al., 1983). This was the time when nuclear magnetic
resonance (NMR) spectroscopists were beginning to be able to extract atom-atom distances for matter in
solution, which could then be compared with those that could be found in the crystal by X-ray diffraction (Havel
and Wuthrich, 1985). Distance geometry or
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the related approach to refine the molecule in real space (Braun and Go, 1992) turned out to be useful methods to
turn NOE (nuclear Overhauser effect) distances into three-dimensional structures. Distance geometry has
continued to be a key tool in the NMR spectroscopist's arsenal, providing not only the structures, but also a
quantitation of how accurately they are known.

BOX 3.3 PROTEIN MICROTUTORIAL

Proteins are large molecules composed of smaller chemical units (residues), the 20 naturally occurring
amino acids, stably linked together in an ordered linear sequence. The amino acids possess distinct sizes,
shapes, and mutual interactions. Consequently, the ordered sequence (denoted by "primary structure" of
the protein) controls physical and biological properties. In its simplest form, "the protein folding problem"
consists in predicting the three-dimensional stable shape of protein molecules from the primary structure, to
facilitate understanding those physical and biological properties.

While the fixed chemical structure of proteins constrains most of their chemical bond lengths and the
angles between neighboring chemical bonds to lie within tight limits, a substantial number of degrees of
freedom describing the local amino acid packing ("secondary structure") and the overall three-dimensional
shape of the protein (its "tertiary structure'' or ''conformation") remain to be determined. It is believed that
the conformation holds the key to physical and biological properties. An experimentally important type of
information relevant to a protein's preferred conformation is a set of distances between selected amino
acids.

The folded conformation of a protein is analogous to the posture of a human body. Body motion at
skeletal joints plays the rule of protein backbone and amino acid side chain folding degrees of freedom.
Given a selected set of distances between skeletal joints, for instance, one might be able to infer what
posture the human subject had adopted or at least to rule out several possibilities. Similarly, distance
geometry for proteins can be used to reconstruct their three-dimensional conformation.

Distance geometry is an important technique in computational chemistry. The focus of the original work
was to predict protein structure from amino acid sequence (see Box 3.3) and work continues along these lines
using residue-residue potentials (Maiorov and Crippen, 1992). The use of distance geometry in NMR structure
determination is mentioned above. Distance geometry has also been used as a tool in the development of QSARs
in macromolecule-ligand binding (Ghose and Crippen, 1990) and in a docking procedure to find different
orientations that ligands can have when bound to macromolecules (Kuntz et al., 1982).

An example of this last use of distance geometry is its application to the intermolecular docking of a small
molecule to a protein, similar to what was done to produce the cover illustration. Distance geometry is applied by
setting the distances between interacting atoms to their ideal intermolecular distance (in contrast to the bond
length). The result is a general program for solving conformational problems involving one or more molecules
with implicit interatomic constraints taken from the given molecular structure and explicit distance constraints
added by the user. A program by Blaney et al. (1990), for example, allows one to solve model building problems
on complex molecular systems that are very difficult or impossible to solve by conventional methods.

Distance geometry has also been used to establish which, if any, three-dimensional conformations of a set
of molecules can be superimposed. One treats the whole ensemble of molecules simultaneously with
intermolecular distances set to zero if the atoms are

Docking is the fitting and binding of small molecules (ligands) at the active sites of biomacromolecules (e.g.,
enzymes and DNA).
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to be superimposed or to infinity if they need not be. This has become a useful method for analyzing three-
dimensional structure-activity relationships (Sheridan et al., 1986).

In summary, distance geometry is a general and powerful tool for creating three-dimensional structures,
usually by going into a higher-dimensional space and then projecting into three dimensions. Its power lies in
exploring "conformational" space (the universe of all possible spatial arrangements of a molecule) and assessing
how convincingly the data (often experimental) have implied the structure. It has been applied in this guise to
structures from small organic ring systems to proteins in the ribosomal machinery. It is clearly an area in which a
fundamental technique from mathematics was brought to bear in important areas of structural chemistry and
biochemistry (Crippen and Havel, 1988).

Given the importance of all areas in which distance geometry has been applied to date (protein folding,
ligand docking, conformational analysis), future development in this area is likely to be important for
computational chemistry (Crippen, 1991). Some of the remaining major mathematical research challenges in
distance geometry applied to chemistry include (1) the need to develop improved sampling algorithms (e.g.,
partial metrization); (2) the need for practical algorithms to solve tetrangle and higher-order inequalities; (3) the
need to develop biased sampling approaches that avoid previously sampled configurations; and (4) energy
embedding—given a pairwise potential, how can one best solve for the global minimum in N-1 space and then
"squeeze" the system down to 3-space? A perspective on some of these challenges is given in recent reviews
(Crippen, 1991; Blaney and Dixon, 1994).

References

Blaney, J.M., and J.S. Dixon, 1994, Distance geometry in molecular modeling, in Reviews in Computational Chemistry, vol. 5, K.B.
Lipkowitz and D.B. Boyd, eds., VCH Publishers, New York, pp. 299–335.

Blaney, J.M., G.M. Crippen, A. Dearing, and J.S. Dixon, 1990, DGEOM program #590, Quantum Chemistry Program Exchange,
Bloomington, Ind.

Blumenthal, C.M., 1970, Theory and Applications of Distance Geometry, Chelsea Publishing Co., Bronx, N.Y.
Braun, W., and N. Go, 1985, Calculation of protein conformations by proton-proton distance constraints: A new efficient algorithm, J. Mol.

Biol. 186:611–626.
Crippen, G.M., 1991, Chemical distance geometry—current realization and future projection, J. Math. Chem. 6:307–324.
Crippen, G.M., and T.F. Havel, 1988, Distance Geometry and Molecular Conformation, Research Studies Press, John Wiley & Sons, New

York.
Ghose, A.K., and G.M. Crippen, 1990, Modeling the benzodiazepine receptor binding site by the general three-dimensional quantitative

structure-activity relationship method REMOTEDISC, Mol. Pharm. 37:725–734.
Havel, T.F., and K. Wuthrich, 1985, An evaluation of the combined use of nuclear magnetic resonance and distance geometry for the

determination of protein conformations in solution, J. Mol. Biol. 182:281–294.
Havel, T.F., G.M. Crippen, and I.D. Kuntz, 1979, Effects of distance constraints on macromolecular conformation. II. Simulation of

experimental results and theoretical predictions, Biopolymers 18:73–81.
Havel, T.F., I.D. Kuntz, and G.M. Crippen, 1983, The theory and practice of distance geometry, Bull. Math. Biol. 45:665–720.

EXAMPLES OF CONSTRUCTIVE CROSS-FERTILIZATION BETWEEN THE MATHEMATICAL SCIENCES AND CHEMISTRY 25

Mathematical Challenges from Theoretical/Computational Chemistry

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/4886


Kruskal, J.B., and M. Wish, 1978, Multidimensional Scaling, Sage Publishing, Beverly Hills, Calif.
Kuntz, I.D., 1975, An approach to the tertiary structure of globular proteins, J. Am. Chem. Soc. 97:4362–4366.
Kuntz, I.D., J.M. Blaney, S.J. Oatley, R. Langridge, and T.E. Ferrin, 1982, A geometric approach to macromolecule-ligand interactions, J.

Mol. Biol. 161:269–288.
Liljas, A., and M. Rossman, 1975, Recognition of structural domains in globular proteins, J. Mol. Biol. 85:177–181.
Maiorov, V.M., and G.M. Crippen, 1992, Contact potential that recognizes the correct folding of globular proteins, J. Mol. Biol. 227:876–888.
Sheridan, R.P., R. Nilakantan, J.S. Dixon, and R. Venkataraghaven, 1986, The ensemble approach to distance geometry: Application to the

nictotinic pharmacophore, J. Med. Chem. 29:899–906.

MATHEMATICS AND FULLERENES

The structures and properties of the fullerene molecules—"buckyballs" (see Figure 3.1) and related highly
symmetric carbon molecules that are roughly spherical—have been linked with some very central areas of
mathematics.1 Topology can provide insights into the types of such structures that can and cannot exist; the
symmetries of the molecules, which underlie some of their interesting properties, are naturally described with
group theory; and graph theory can give insight concerning the vibrational modes of such molecules.

The prototypical buckyball molecule, C60, is composed of 60 carbon atoms linked into a shape reminiscent
of a soccer ball, mathematically known as a truncated icosahedron. Other fullerenes that have been observed are
composed of more than 60 carbons, except for one member of the family that contains only 44. The "surfaces" of
all members are composed solely of pentagons and hexagons and share the property that each vertex connects
exactly three edges. (This latter property follows from the chemical bonding of carbon atoms.) Such polyhedral
surfaces are subject to a classic topological relationship derived by Euler:

where the summation is over all faces of the polyhedron and fn is the number of faces with n sides. This
expression leads immediately to a property observed in all the fullerenes observed so far in the laboratory: since
n is found experimentally to take only the values 5 or 6, f5 must equal 12. In addition, the formula puts no
restrictions on f6, and indeed a variety of fullerene molecules with a variety of numbers of hexagonal "faces"
have been synthesized.

Group theory provides a methodological way of cataloging the vibrational symmetries of fullerenes, which
can be linked to measurable energy spectra. There are 174 vibrational modes for a C60 molecule, but only 46 of
these are potentially distinguishable. Group theoretic arguments based on irreducible representations and Schur's
lemma pare this number dramatically, explaining why the observed infrared spectrum contains just four
absorption lines. The same principles applied to the

1 See, e.g., Chung and Steinberg (1993), on which this section is based.
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scattering measured by Raman spectroscopy explain why that spectrum should have exactly 10 lines.
Graph theory is applied to fullerenes via Hückel theory, which forms the basis of an algorithm linking

stability properties to the eigenvalues of a so-called adjacency matrix (representing, in this case, which pairs of
carbons are bonded). Computation of the eigenvalues would be straightforward, at least for the smaller
fullerenes, but more understanding comes about through mathematical analysis. Again by using Schur's lemma
and other tools of group theory, the adjacency matrix can be decomposed into much smaller blocks that are
amenable to providing clearer insight. For C60 this technique has led to closed-form solutions of certain matrices
(Chung et al., 1993), which in turn suggest that C60 has a stability even greater than that of benzene.

Figure 3.1
A buckyball.

References

Chung, F., and S. Steinberg, 1993, Mathematics and the buckyball, American Scientist 81:56–71.
Chung, F.R.K., D. Rockmore, and S. Steinberg, 1993, The symmetry and spectrum of the buckyball, 1993, preprint.

QUASICRYSTALS

Interatomic and intermolecular forces have traditionally been central concerns in chemistry, not only
because of the useful properties that they produce, but also because the crystallography that emerges from those
forces when matter is solidified has been a dominant tool for structural analysis (see the section on X-ray
crystallography below). Consequently, any striking deviation from conventional expectation about what
interatomic or intermolecular forces can yield as solid-state ordering automatically concerns chemical
researchers. The recently discovered quasi-crystalline state falls in this category.

That quasicrystals—orientationally ordered solids with local fivefold (or other classically unorthodox)
symmetry but no spatial periodicity—really existed was demonstrated by Cahn et al. (1988) and Gratias et al.
(1988). Their data were obtained from X-ray and neutron diffraction of Al73Mn21Si6 single-phase icosahedral
powder and were analyzed by Patterson analysis. Their work showed that the data were best considered as
representing a "cut" of a periodic six-dimensional Patterson function. This work led to the definition of
quasicrystals by the "cut-and-projection" method.

What is very interesting and perhaps not so well known is that Meyer (1972), 16 years earlier and motivated
by problems in number theory, had built a mathematical structure that he called a "pseudolattice," which turns
out to be the correct mathematical tool for the study of quasicrystals. Meyer's work establishes the basic
harmonic analysis for quasicrystals In his book, he studied socalled Pisot and Salem numbers, which can be
defined as follows: A Pisot number θ is a root of a polynomial with integer coefficients of degree m such that if
θ2, ..., θm are the other roots, then |θi| < 1, i = 2, ..., m. A Salem number is defined in the same way, but some of
the inequalities are replaced by equalities.

One of the relations between Pisot or Salem numbers and quasicrystals is the following. Let   Rn be a
quasicrystal. If θ > 1 and  , then θ is either a Pisot or a Salem number. Conversely, if θ  is either a Pisot
or a Salem number, then there exists a quasicrystal  Rn such that   .
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In order to establish that result, Meyer had to establish a theory of harmonic analysis for quasicrystals.
Recently, Moody and Patera (1993) have used fairly sophisticated Lie group and Lie algebra ideas to study

families of quasicrystals. In their work the mathematics has been used as a means of unifying various physical
models of quasicrystals into one consistent picture.
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CHEMICAL TOPOLOGY

Topology is a branch of mathematics that studies properties of objects that do not change when the object is
elastically deformed. Topology allows stretching, shrinking, twisting—any sort of elastic deformation short of
breaking and reassembling the object. The basic idea in topology is to relax the rigid Euclidean notion of
congruence and replace it with more flexible notions of equivalence. A flexible molecule in solution does not
maintain a fixed three-dimensional configuration. Such a molecule can assume a variety of configurations
(referred to as "conformation" by chemists), driven from one to the other by thermal fluctuations, solvent effects,
experimental manipulation, and so on. For small molecules with complicated molecular graphs, topology can aid
in the prediction and detection of various types of spatial isomers (Walba, 1985; Simon, 1986; Walba et al.,
1988). Recent triumphs in the chemical synthesis of molecules with novel topology include the molecular trefoil
knot (Dietrich-Buchecker and Sauvage, 1989) (Figure 3.2) and the five interlocked rings of the self-assembling
compound "olympiadane" (Amabilino et al., 1994). For larger molecules, given an initial topological state, one
can identify all possible attainable configurations of the molecule and can detect when an agent (chemical or
biological) has intervened to change the topological state (Wasserman and Cozzarelli, 1986).

Combinatorics, Graph Theory, and Chemical Isomer Enumeration

In the nineteenth century, Arthur Cayley produced a body of work involving the enumeration of certain
types of trees (connected acyclic 1-complexes); some of the enumerated trees corresponded to the number of
certain (combinatorially possible) chemical compounds (Cayley, 1857, 1877). This correspondence is obtained
by abstracting a chemical molecule as a molecular graph; the vertices are the atoms, and the edges are the
covalent bonds, with protons (hydrogen atoms) usually suppressed. Structural isomers correspond to the
(abstract) isomorphism types of these graphs. Enumeration of isomorphism types uses group theory (permutation
groups) to count the intrinsic (internal) symmetries of these graphs. This work was continued and expanded in
the twentieth century by Polya (Polya and
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Read, 1987) and others (Balaban, 1976).
A benefit to chemistry of combinatorial enumeration is that one can build a (mathematically) complete list

of molecular graphs satisfying certain similarity (homology) parameters of chemical interest. As discussed in the
section of this chapter beginning on page 37, the mathematical enumeration of possibilities is just the first in a
series of steps that must be taken in order to extract chemically useful information (i.e., which of the molecular
graphs are chemically realizable). Of those that are realizable, how does one store representative graphs in a
database in a manner in which chemically relevant queries are feasible? The abstract (intrinsic) isomorphism
type of a molecular graph carries little information about the three-dimensional (extrinsic) configuration, and
hence the reactivity, of chemical realizations. How does one derive three-dimensional information from an
abstract one-dimensional graph?

Figure 3.2
A synthetic trefoil. Reprinted, by permission, from Dietrich-Buchecker and Sauvage (1989). Copyright 1989 by
VCH Publishers, Inc.

Analysis of Molecular Spectra by Using Cayley Trees

The high-resolution electronic spectra of polyatomic molecules are often very complex, consisting of many
thousands of lines; yet they often contain significant information about molecular vibration/rotation structure and
intramolecular dynamics. Traditionally this information has been extracted by assigning quantum numbers to
lines based on an assumed zeroth-order Hamiltonian. However there are many molecules for which the choice of
zeroth-order Hamiltonian is not clear, or for which the spectra are so strongly perturbed from a known zeroth-
order Hamiltonian that it is not clear how or if a spectrum can be assigned. Statistical methods have been used to
analyze these spectra, but most spectra contain information beyond the simple statistical limit. Another approach
is to examine coarse-grained spectra (Gomez Llorente et al., 1989), as such spectra sometimes reveal hidden
structure associated with short-time molecular dynamics that can easily be interpreted.

Recently there has been interest in using the methods of graph theory, in particular Cayley trees, to study
complex spectra (Davis, 1993). The basic idea is to use the spectra to construct trees by coarse-graining the
spectra over a hierarchy of time scales. An analysis of the statistical properties of these trees using methods taken
from the cluster analysis literature (Gordon, 1987; Jain and Dubes, 1988) then provides a systematic way of
locating hidden structure in the spectra. In addition, when quantum eigenstates are available for the spectra being
studied, it is possible to use the trees to determine "smoothed" states that represent the underlying vibrational
dynamics responsible for the hidden structure. This also provides a short time picture of the vibrational motions
of the highly excited molecule, and in many cases it is possible to relate this to the underlying classical
description of the vibrational motions, including features such as periodic orbits, bottlenecks to intramolecular
vibrational redistribution, and Fermi resonances.

Group Theory, Topology, Geometry, and Stereochemistry

Stereochemistry studies the spatial configuration of molecules. To enumerate and distinguish stereoisomers,
one must study symmetries of the molecule in 3-space (Cotton, 1971; Fujita, 1991).
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Which of the intrinsic symmetries of the molecular graph are realizable by chemically reasonable spatial
transformations? Of particular interest in this situation is the notion of chirality (see Figure 3.3). A molecule in
space is chiral if it is not equivalent to the configuration obtained by a flexible transformation plus reflection in a
plane.

Apart from energy minimization questions, the enumeration of spatial configurations and physical
symmetries and chirality of relatively small molecules requires group theory, geometry, and topology. For small
molecules, group theory is useful in distinguishing stereoisomers obtained by ligand substitution and in the study
of dynamic symmetry of fluxional molecules (Longuet-Higgins, 1963; Smeyers, 1992). Group theory techniques
include representation theory, group characters, and so on. Group theory has also been applied to quantum
chemical problems such as symmetry-adapted functions for molecular orbital theory, ligand field theory, and
molecular vibrations (Cotton, 1971; National Research Council, in preparation). By using group theory and
representation theory, symmetry-invariant properties of physical interest can be studied (Kramer and Cin, 1980).
Mulliken (1933), for example, used ideas from finite point groups and molecular orbital theory to assign "term
symbols" (i.e., irreducible representation labels) to many excited states of small, highly symmetrical molecules.

Figure 3.3
A chir al pair of synthetic Möbius molecules. Reprinted from Simon (1992) by permission of the American
Mathematical Society.

New techniques for the efficient computation of the fast Fourier transform (FFT) for finite groups (Gordon,
1987; Diaconis and Rockmore, 1990) have potential applications in molecular spectroscopy and in understanding
the symmetry of nonrigid molecules. The unitary group has been used in electronic structure theory to develop
formulas for matrix elements, perturbation expansions, and coupled cluster expansions of the Hamiltonian
written in second quantized form. For larger, more flexible molecules, the descriptive and computational ability
of topology can be used to find topological barriers to the interconversion of a pair of spatial configurations or to
the interconversion of protons in the molecule. Given the completely flexible equivalences of topology, in which
energy, bond lengths, divalent vertices, and so on are disregarded, if two spatial molecular configurations (or
specific atoms in the configuration) are topologically inequivalent, then they are physically inequivalent.
Knowledge of the topological inequivalence of certain protons is useful in the analysis of NMR spectra (Walba,
1985; Walba et al., 1988). Topological considerations are sometimes very effective in detecting chirality of
chemical compounds (Walba, 1985; Simon, 1986).

Topology of Polymers

Macromolecules such as synthetic polymers and biopolymers such as DNA, RNA, and proteins are very
flexible and can exhibit high degrees of spatial complexity. Synthetic polymers can be very large, in some cases
having on the order of 106 monomers in a polymer strand (e.g., polystyrene). Biopolymers (DNA, RNA,
proteins) can also be extremely large, having hundreds to thousands of monomers. For example, in prokaryotes,
DNA plasmids are on the order of 104 nucleotides, and
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bacterial chromosomes are on the order of 105 nucleotides. The effects of microscopic topological entanglement
(knotting and linking) of polymer strands in a polymer melt are believed to be trapped by quenching (driving off
the solvent, or cooling) and (in principle) will be observable in the macroscopic physical and chemical properties
of the quenched polymer network (Edwards, 1968; Flory, 1976; deGennes, 1984).

Polymers in dilute solution can be modeled by means of self-avoiding walks on a lattice or piecewise-linear
curves in 3-space. The lattice spacing serves to simulate volume exclusion; in the piecewise-linear case, volume
exclusion can be modeled by assigning thickness to the linear segments of the chain. The degree of entanglement
complexity of a polymer with itself (knotting) or with other polymers (linking) is believed to play a significant
rule in many physical and chemical processes, such as crystallization behavior and rheological properties
(Edwards, 1968; Flory, 1976; deGennes, 1984). A linear polymer can be modeled as a self-avoiding walk (SAW)
on the simple cubic lattice Z3; a ring polymer can be modeled as a self-avoiding polygon (SAP) on Z3. One can
experimentally generate randomly embedded ring polymers by performing a cyclization (random closing)
reaction on a dilute family of linear polymers of the same length N (Shaw and Wang, 1993; Rybenkov et al.,
1993). A fundamental mathematical problem is to describe the yield of such a reaction: What is the distribution
of knots and links produced by a random closing reaction, as a function of the length N and the concentration of
linear substrate? A long-standing fundamental conjecture in this area was the Frisch-Wasserman-Delbruck
(FWD) conjecture (Frisch and Wasserman, 1961; Delbruck, 1962): The probability that a random polygon
contains a knot tends to one as the number of edges tends to infinity.

The FWD conjecture was recently solved with the development of a rigorous proof of the asymptotic
inevitability of knotting (Soteros et al., 1992). The mathematical quantization of topological entanglement for
short chains can be done by Monte Carlo simulation (Klenin et al., 1988). In Monte Carlo simulations, knotting
and linking of random chains are computed in various models that include volume exclusion and some energetic
terms; rigorous results in various models include the asymptotic inevitability of knotting in random chains and
the (at least linear) growth of certain entanglement parameters with chain length. Monte Carlo simulation can
also elucidate dynamic chemical phenomena such as electrophoresis (Slater and Noolandi, 1986) and adsorption
(Smit and Siepmann, 1994). Recent striking advances in observation techniques such as fluorescence microscopy
for single DNA molecules (Bustamante et al., 1990) make possible the verification and fine tuning of some of
these mathematical theories of molecular conformation and dynamic molecular properties.

Knots, Links (Catenanes), and DNA

Mathematics and molecular biology continue to benefit from productive interaction, as described in the
upcoming report Calculating the Secrets of Life (National Research Council, in press). One area of interaction is
in the topology and geometry of DNA, because the spatial configuration of biopolymers is intimately related to
function. For example, the DNA of all organisms has a complex and fascinating topology. Duplex DNA consists
of a pair of DNA backbone strands (each strand is an alternating linear arrangement of sugar and phosphate
moieties), and attached to each backbone are the nucleotides adenine, thymine, cytosine, and guanine. Adeninc
(A) binds only to thymine (T) by means of a double hydrogen bond, and cytosine (C) binds only to guanine (G)
by means of a triple hydrogen bond; the bonded pairs A-T and C-G are called base pairs. The hydrogen bonds
form the rungs of a ladder, and this ladder is twisted in space in the form of a right-hand helix (the usual Crick-
Watson model for the primary structure of the double helix). In the double helix, one backbone strand winds
around the other on the average of every 10.5 base pairs. The human genome is on the order of 3 × 109 base
pairs, which amounts to some 3 × 108 interwindings. So, human
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chromosomal DNA can be viewed as two very long curves that are intertwined millions of times, linked to other
curves, tied into knots, and subjected to four or five successive orders of coiling to convert it into a compact form
for information storage. For information retrieval and cell viability, some geometric and topological features
must be introduced, and others quickly removed. Some enzymes maintain the proper geometry and topology by
passing one strand of DNA through another via an enzyme-bridged transient break in the DNA; these enzymes
play crucial rules in cell metabolism, including segregation of daughter chromosomes at the termination of
replication, and in maintaining proper in vivo (in the cell) DNA topology. Other enzymes break the DNA apart
and recombine the ends by exchanging them. These enzymes regulate the expression of specific genes, mediate
viral integration into and excision from the host genome, mediate transposition and repair of DNA, and generate
antibody and genetic diversity. These enzymes perform incredible feats of topology at the molecular level; the
description and quantization of spatial configuration and enzyme action require the language and computational
machinery of geometry (White, 1992; Wolffe, 1994) and topology (Sumners, 1992).

Figure 3.4
A DNA trefoil. Courtesy of N.R. Cozzarelli and A. Stasiak.

In the topological approach to enzymology (Wasserman and Cozzarelli, 1986), the topological invariance of
knotted (see Figure 3.4) and catenated DNA during experimental work-up and the computational power of
topology are exploited to capture information on enzyme action. For in vitro (in a test tube) experiments, an
enzyme extracted from living cells is reacted with circular DNA substrate produced by cloning techniques. The
enzyme reaction produces a topological signature in the form of an enzyme-specific family of supercoiled DNA
knots and links (catenanes). By observing changes in DNA geometry (supercoiling, or interwinding of the DNA
upon itself) and topology (knotting and linking) by means of gel electrophoresis and electron microscopy of the
reaction products, the enzyme mechanism can be characterized mathematically (Sumners, 1992). Because of the
enormous variety of knot and catenane structure, fine details of DNA structure and enzyme action can be
selectively assayed.
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GRAPH THEORY

Application of Graph Theory to Organizing Chemical Literature

To organize the chemistry literature for research or patent purposes, it is essential that scientists be able to
search this literature by the chemical features of interest as well as with traditional text queries. Accordingly, a
body of experience has been developed for using computers to recognize either total chemical structures or parts
of them from an input structural diagram and to quickly identify in databases of millions of compounds those
that match the search criteria (Ash et al., 1985). Currently there are several large comprehensive chemical
databases such as those maintained by Chemical Abstracts (Dittman et al., 1983) and the Beilstein Institute. (The
Chemical Abstracts substance database, for example, contains information on 13 million substances, including
molecular formulas and structure diagrams where available.) Chemical and pharmaceutical companies maintain
such chemical information databases of their own compounds using either commercial (e.g., MDLI,
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DARC, Daylight) or self-written software.
A key element to the success of such chemical information systems was the recognition that a two-

dimensional chemical structure diagram can be treated as a labeled graph (Sussenguth, 1965). Many algorithms
and concepts from graph theory (Harary, 1976) have been applied to chemical information problems, for
example, the concepts of graph isomorphism to identify whether a particular compound is in a database and
subgraph isomorphism to identify compounds that contain substructures of interest, algorithms to detect the
smallest set of smallest rings as an aid to unique atom numbering heuristics, and subgraph (''clique-detection''—
see Box 3.4) algorithms to detect the maximum common substructure in two molecules. These ideas have
recently been extended to provide rapid searches of databases of tens to hundreds of thousands of molecules to
find those that match a three-dimensional query—typically based on distances, angles, and torsions between
points in the stored three-dimensional structure of the molecules (Borman, 1989; Bures et al., 1994). Generally
there are between 4 and 20 distance and angle constraints to be matched in a three-dimensional query: the
number of hits decreases with the number of constraints. Recently, commercial programs have been updated to
include consideration of conformational flexibility.

Graph algorithms are used increasingly to solve similar problems in molecular modeling and computational
chemistry (Martin et al., 1992). For example, to use a molecular mechanics program to optimize a molecular
structure, each atom must be assigned an atom type based on its substructural environment. Chemical
information tools are used to recognize such substructures. Modeled three-dimensional structures are stored in a
chemical information database with the result that it is easy to find a prebuilt analogue of a new compound one
wishes to build. Others have devised programs that build three-dimensional structures of molecules from their
two-dimensional structures by finding the maximum common overlapping substructures in a database of three-
dimensional structures and piecing these together (Wipke and Hahn, 1988; Leach et al., 1990).

Methods based on graph theory have also been used to find common three-dimensional features within a set
of molecules (Crandell and Smith, 1983; Brint and Willett, 1987; Martin et al., 1993). In particular, the Bron-
Kerbosh clique-detection algorithm has been found to be especially fast (Brint and Willett, 1987). Such common
three-dimensional features might represent a pharmacophore, the set of three-dimensional features that
determines whether or not a molecule will show a particular biological activity. For example, Figure 3.6 depicts
three different molecules that activate the D2 dopamine receptor. The figure shows that although these molecules
look different in two dimensions, in three dimensions they share the arrangement of a hydrogen bond donor, its
projection to a receptor hydrogen bond acceptor, a positively charged nitrogen, and its projection to an anionic
site on the receptor (Martin et al., 1993).

Two-dimensional structures describe the connectedness of the atoms in a molecule. The training of a
chemist involves learning how to translate these two-dimensional pictures into chemical properties. Thus, an OH
means one thing to a chemist, but something different to other folks. Since molecules are really three-
dimensional (with added dimensions of properties), it is important to translate the two-dimensional structure into
three dimensions for computer processing. People have used the same type of graph-processing algorithms to
detect parts of molecules that have certain three-dimensional properties and to then glue the three-dimensional
pieces together much as when using a Tinkertoy. The methods are expert systems in that they use other
knowledge, not first principles. They operate by using graph-matching ideas.

Clique-detection methods are also used to propose docking orientations of small molecules to
macromolecules (Kuntz et al., 1982; Kuhl et al., 1984; Smellie et al., 1991; Kuntz, 1992). The computer program
DOCK searches databases of tens of thousands of molecules to find those that fit into a macromolecular binding
site of known three-dimensional structure (Kuntz, 1992). A number of structurally novel enzyme inhibitors have
been identified by this means.
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BOX 3.4 CLIQUE DETECTION

In graph theory terms, a clique is a subgraph in which every node is connected to every other node.
For three-dimensional molecular structures, the nodes of the graph might typically be the atoms of the
structure labeled according to atomic symbol and the edges are the distances between the points. Clique-
detection algorithms find cliques in an input graph that match a clique in a reference graph. That is, they
find corresponding points in the two three-dimensional structures such that corresponding points are of the
same type in the two structures and all corresponding interpoint distances are identical within some
tolerance.

In Figure 3.5, two different cliques in the same molecule are indicated, as is one clique of a second
molecule. As shown, the matching cliques in the two molecules can be superimposed. Notice that the
points do not superimpose exactly since the lengths of the edges need only be identical within some
tolerance.

Figure 3.5
The basic operation of clique detection.

In general, these advances have not been the result of active collaborations between graph theorists and
chemical information specialists. Rather, the chemical information specialists have followed the graph theory
literature, and when a particular concept or algorithm seemed the appropriate solution for some problem, they
would attempt to implement it. Sometimes this meant waiting until a graduate student with the particular skills
was available. For example, in the case of the Ullman subgraph isomorphism algorithm (Ullman, 1976), Peter
Willett suspected that it would be an improvement over the one used in chemical information systems at that
time, and several graduate
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students tried to implement it. It was not successfully implemented, however, until Andrew Brint, who was well
trained in mathematics, took up the challenge. Since that time, 1986, the Ullman subgraph isomorphism
algorithm has replaced the previous algorithms in all commercial chemical information systems (Willett, 1987).

2D chemical structures of three molecules that activate the D2 receptor.

3D overlay of these molecules in the proposed pharmacophore map. The points for superposition are marked with
an arrow.

Figure 3.6
Development of a pharmacophore map. Reprinted (with adaptions) by permission from Martin et al. (1993).
Copyright 1993 by ESCOM Science Publishers B.V.

Application of Graph Theory to Representation of Chemical Reactions

The synthesis of organic chemicals is an art that takes many years of training and experience to master.
There are two aspects to synthesis: design of the synthetic pathway (what precursors and general reaction
conditions will be used) and laboratory execution of the actual synthesis. Experienced synthetic chemists design
the synthesis of new molecules based on their knowledge of the hundreds of types of reactions that can be done,
their limitations in terms of the other structural features of the molecules that will survive the reaction conditions,
and the usual success of the reactions in terms of side products and yield.

The complication with using the computer to aid in this process is that synthetic organic chemists
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rely primarily on information contained in two-dimensional chemical structure diagrams. A chemical reaction is
simply a transformation of one diagram into another by combining and transforming starting materials into
products. Hence, the expertise is organized intellectually in pictures, not numbers. The key insight that these
structure diagrams can be described as labeled graphs enabled the use of the computer to process structure
diagrams.

Computer programs for designing the synthesis of compounds also rely heavily on these algorithms (Wipke
et al., 1978; Wipke and Rogers, 1984; Hanessian et al., 1990; Pensak and Corey, 1977; Johnson et al., 1992;
Gasteiger et al., 1992). For example, it is essential to detect the smallest set of smallest rings since these form the
basis of the synthetic strategy. Structure searching is used to ascertain if a proposed precursor is commercially
available. Substructure searching identifies labile bonds to be broken in a retrosynthetic fashion. Maximal
common subgraph algorithms have been used on the two-dimensional structures of products and reactants to
perceive the part of a molecule unchanged in a chemical reaction (McGregor and Willett, 1980)—what is
common between product and reactant is unchanged.

Two approaches have been used to apply the computer to the design of chemical syntheses. The first simply
catalogues literature chemical reactions, transformations, with the associated starting materials and product(s),
conditions, yield, and literature reference. For this application, the chemical reaction can be input as normally
written and the computer can be used to detect which parts of the molecule are not changed. By definition, then,
the parts of the molecular graph that change represent the chemical reaction. The unchanged parts represent the
chemical context in which the reaction occurs. In graph theory terms, the unchanged parts are the maximum
common subgraph of the reactants and products. The second type of computer program to aid the planning of
synthesis involves the actual disconnection of the synthetic target into the proposed starting materials. Such
computer programs treat molecules as labeled graphs but use rules encoded by experts to guide the proposed
synthetic route. Because of the large number of rules to be encoded, such retrosynthetic programs are much less
complete and of less general use than the reaction library programs.
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X-RAY CRYSTALLOGRAPHY

An excellent source on the topic of X-ray crystallography is the article by Nobel laureate Herbert A.
Hauptman (1990), from which the following is excerpted with permission of Plenum Publishing Corporation.

"It was recognized almost from the beginning that the diffraction pattern, the directions and intensities of the X-
rays scattered by a crystal, is uniquely determined by the crystal structure; which is to say that if one knew the
crystal structure—the arrangement of the atoms in the crystal—then one could calculate the diffraction pattern
completely. It turns out that, conversely, diffraction patterns determine, in general, unique crystal and molecular
structures, although this fact was not known until many years later. In short, the information content of a typical
molecular structure coincides precisely with the information content of its diffraction pattern. It is a measure of the
great advances made by the new science of X-ray crystallography that, nowadays, one can routinely transform the
information content of a diffraction pattern into a molecular structure, at least for the so-called "small" molecules,
that is those consisting of some 150 or fewer non-hydrogen atoms.
"Since X-rays, like ordinary visible light, are electromagnetic waves, they have a phase as well as an intensity, just
as any other wave disturbance. In order to work backwards, from diffraction patterns to crystal and molecular
structures, it turns out to be necessary to measure not only the intensities of the X-rays scattered by the crystal but
their phases as well. However, the phases cannot be measured in the ordinary kind of diffraction experiment; they
appear to be irretrievably lost. Only the intensities can be directly measured. This then gives rise to the central
problem of X-ray crystallography, the so-called phase problem, how to deduce the values of the phases of the X-
rays scattered by a crystal when only their intensities are known . . . .
"Because the needed phase information was lost in the diffraction experiment, it was thought that one could use
arbitrary values for the phases associated with the measured intensities of the scattered X-rays. In this way one
obtains a myriad of different crystal structures, all consistent with the known intensities. It therefore came to be
generally believed that a procedure for going directly from the measured intensities to crystal structures could not,
even in principle, be devised. By the same thinking, the problem of deducing the values of the individual phases
from the diffraction intensities, the so-called phase problem, was also thought to be unsolvable, even in principle. It
wasn't until the early 1950's, through the exploitation of special properties of molecular structures and through a
simple mathematical argument, that these erroneous conclusions were finally refuted.
''My work on this problem started in 1948 about a year after I joined the Naval Research Laboratory in Washington,
D.C. and initiated my collaboration with Jerome Karle. . . . The
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first important contribution that Karle and I made was the recognition that it would be necessary to exploit prior
structural knowledge to transform the phase problem from an unsolvable one to one that was solvable, at least in
principle. Our first step in this direction was to exploit the nonnegativity of the electron density function p(r).
Before our analysis was complete, however, David Harker and John Kasper [1948] published their famous
paper . . . in which they derived inequalities in which the measured intensities restrict the possible values of the
phases. This was a very mysterious paper, because nowhere in it does there appear any explicit mention of the basis
for the inequality relations, and indeed the most important fact is conspicuous by its absence. It is simply that the
electron density function is nonnegative everywhere. This fact is, however, implicit in Harker and Kasper's work. In
very short order Karle and I completed our own analysis and derived the complete set of inequality relationships
based on the nonnegativity of the electron density function [Karle and Hauptman, 1950] . . . . It includes the Harker-
Kasper inequalities as a special case, and many others besides. Although the complete set of inequalities greatly
restricts the values of the phases, the relations appear to be too intractable to be useful in applications, except for
the simplest structures, and their potential has never been fully exploited . . . .
"Beyond any doubt our most important contribution during the early 1950's was the introduction of probabilistic
techniques—in particular, use of the joint probability distribution of several diffraction intensities and the
corresponding phases—as the central tool in the solution of the phase problem [Hauptman and Karle, 1953]. . . .
We assumed to begin with that all positions of the atoms in the unit cell of the crystal were equally likely, or, in the
language of mathematical probability, that the atomic position vectors were random variables, uniformly and
independently distributed. With this assumption the intensities and phases of the scattered X-rays, as functions of
the atomic position vectors, are also random variables, and one can use the methods of modern mathematical
probability theory to calculate the joint probability distribution of any collection of intensities and phases. A
suitably chosen joint probability distribution leads directly to the conditional probability distribution of a specified
structure invariant, assuming again an appropriately chosen set of diffraction intensities. The conditional
distribution in turn leads to the structure invariant, an estimate of which is given, for example, by its most probable
value. Once one has a sufficiently large number of sufficiently reliable estimates of structure invariants, one can use
standard techniques to calculate the values of the individual phases, provided that the process incorporates a recipe
for specifying the origin.
"Although probabilistic methods played an essential rule in the development of the direct method and provided it
with its logical foundation, it must also be pointed out that nonprobabilistic methods also played an important
part . . . . In particular the well known Sayre equation, a relationship of fundamental importance among measured
magnitudes and unknown phases, continues to be useful to the present day and lies at the heart of some of the more
successful computer programs for solving crystal structures.
"I cannot conclude this brief account of the early history of the direct methods of X-ray crystallography without
also describing the reception this work received at the hands of the crystallographic community. This was, simply,
extreme skepticism, if not outright hostility. . . .
"Today some 100,000 molecular structures are known, most determined by the direct methods, and about 5,000
new structures are added to the list every year. It is no exaggeration to say that modern structural chemistry owes its
existence to this development . . . .
"Work on the phase problem continues to this day and applications to structures of ever increasing complexity
continue to be made. It still appears that progress is made only in proportion to our ability to bring more powerful
mathematical techniques to bear on this fascinating problem."
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Remark

The committee can only add its belief that the last quoted sentence from Hauptman's account has wide
applicability to problems of chemical interest, some of which are described in the next chapter.
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4

Mathematical Research Opportunities from Theoretical/
Computational Chemistry

INTRODUCTION

This chapter highlights some of the most prominent research challenges from theoretical/computational
chemistry that appear to be amenable to attack with the help of reasonable advances in the mathematical
sciences. Most of the sections have as their starting point a challenge facing the chemical sciences, which is
described in terms that should be accessible to the nonspecialist. The remaining sections—"Molecular Dynamics
Algorithms," "Multivariate Minimization in Computational Chemistry," and "Fast Algebraic Transformation
Methods"—contain discussions of topics from the mathematical sciences with specific insight into their
relevance to theoretical/computational chemistry. Expositions and references are meant to give the mathematical
reader sufficient insight and direction to be able into subsequently investigate the topic via deeper reading and
especially by discussions with colleagues from the chemical sciences. Note that the topics surveyed in Chapter 3
are also sources of continuing research opportunity, some of which are identified therein.

As an overview of this chapter and a guide for navigating through it, the matrix in Figure 4.1 displays a
subjective assessment of the depth of potential cross-fertilization between major challenges from theoretical and
computational chemistry and relevant topics in the mathematical sciences. This matrix is based to some extent on
intuition because it is an assessment of future research opportunities, not past results. An "H" in the matrix
implies an overlap that appears clearly promising, while an "M" suggests that some synergy between the areas is
likely. The absence of an H or an M should not be taken to imply that some clever person will not find an
application of that technique to that problem at some point.

Two topics, polymers and protein folding, are consciously underrepresented in this report because the
mathematical research opportunities related to these topics have been surveyed very recently by other reports
from the National Research Council. For a discussion of mathematical opportunities related to the frontiers of
polymer science, see pages 153–168 of Polymer Science and Engineering: The Shifting Research Frontiers
(National Research Council, 1994). A chapter devoted to mathematical research into protein folding may be
found in Calculating the Secrets of Life (National Research Council, 1995).
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NUMERICAL METHODS FOR ELECTRONIC STRUCTURE THEORY

Most of the recent progress in theoretical chemistry has come from computation of numerical
approximations to the solutions of realistic model problems. This has largely replaced earlier approaches based
on analytic solutions to simplified model problems. Although there are interesting
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intellectual problems involved with analytic properties of the exact solutions, progress to date with this
approach has had little impact on chemistry.

In quantum chemistry, improved numerical approximations made possible by the greatly decreased cost (in
dollars and personnel time) of computing have had an enormous impact. The Journal of the American Chemical
Society, which once reluctantly accepted a limited number of articles reporting computational results, now has
some computational aspect coupled with experimental results in more than half of the articles published.

The Schrödinger wave equation was introduced earlier, in Box 2.1. The primary method now used to obtain
useful results may be described briefly as follows. The time-independent, nonrelativistic Schrödinger equation
for a system of N electrons in the Coulomb field generated by K nuclei may be written in the Born-Oppenheimer
approximation (using reduced units to eliminate mass and Planck's constant) as

where

is the Hamiltonian operator with

where ri is the position vector for the ith electron and Ri is the position vector for the ith nucleus with
charge Zi.

This is a partial differential eigenvalue equation in 3N variables. The equation and its solutions are
parameterized by the nuclear positions and charges. The eigenvalues Uk, viewed as functions of Ri, yield the
potential energy surfaces for the molecule in its ground and excited states after including the repulsive
internuclear interactions. The lowest eigenvalue, in particular, plays a fundamental rule in understanding the
chemical properties of a chemical system.

Equation (1) may be solved subject to either bound state or scattering boundary conditions. For a bound
state, the function  should give finite values for the integrals  * d3r1d3r2 ... for θ = 1, T, or V, where the
asterisk denotes complex conjugation. For a scattering state, the wavefunction may have an exp (ik r) behavior
for large |r|. The wavefunction is further subject to conditions of continuity everywhere and differentiability
except at the singularities in V.

The Hamiltonian is symmetric under permutation of the electron coordinates. Consequently, the
eigenfunctions can be chosen to form bases for irreducible representations of the permutation group. It has been
found empirically that only a few irreducible representations actually correspond to physical reality and the rest
are ''excluded." This observation is summarized in the Pauli exclusion principle. In the standard labeling of the
irreducible representations of the symmetric group by a partition of N into the sum of integers, only those
partitions containing no integers greater than 2 are observed.
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In quantum chemistry, this observation is usually implemented by introducing an additional discrete value,
called the spin ξi, for each electron. This variable takes only the values ±1/2. The permutation operator is then
defined to interchange the spin and position of a pair of electrons in the extended function ( r1ξ1, r2 ξ 2, . . .).  The
Pauli exclusion principle then is simply stated by observing that the only  that occur in nature change sign
under every pairwise permutation of the electron coordinates.

Equation (1) has no closed-form solutions for nontrivial chemical systems. The most important problem in
electronic structure theory is the rapid construction of useful approximate solutions to this equation. While
chemists have made much progress on this problem, there is always the possibility that a fresh approach by
mathematicians would lead to novel approaches. There is less possibility that changing the implementation of the
methods now in use would lead to great improvement.

The dominant approach for obtaining approximate solutions at present is based on multiple expansions.
First, a basis set is selected in three-dimensional space. Then this is transformed by a similarity transform to an
orthonormal set of functions called "molecular orbitals." These orbitals are then used to construct Slater
determinants, which are the simplest functions in 3N dimensions that obey the Pauli condition of antisymmetry
under permutation of the positions and spins of the electrons. Finally, the wavefunction  is expanded as a linear
combination of Slater determinants. Often, the transformation from basis functions to molecular orbitals is
chosen to optimize an approximation to the wavefunction from a severely truncated expansion in Slater
determinants. The coefficients in the Slater determinant expansion and the approximate eigenvalue U may be
computed by the Rayleigh-Ritz variational principle, perturbation theory, cluster expansions, or some
combination of those methods.

Slater determinants are determinants whose elements are n distinct orbitals for n distinct electrons.
In the Hartree-Fock approximation an exact Wavefunction is replaced with an antisymmetrized product of single-
particle orbitals (i.e., a Slater determinant).

All of these methods require formation of matrix elements of the Hamiltonian in the Slater determinant basis,

where  is a Slater determinant and the integration is over 3N dimensions. For a finite basis of orthonormal
molecular orbitals, it is possible to replace this equation by a different one that gives the same matrix element

This is accomplished by utilizing an operator algebra that facilitates manipulation of Slater determinants, in
which ai is an annihilation operator and ai  is a creation operator. A correspondence can be established between
the function space formed by all possible linear combinations of Slater determinants and the vector space formed
by the creation operators so that

That is, the Slater determinant, I, in which the orbital labels i1 . . . iN appear, corresponds to the abstract
element | I>. The operator , called the "second quantized Hamiltonian," takes the form
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where, in terms of the orbitals φi,

A major bottleneck in the present approach is the calculation of a large number of six-dimensional integrals
gijkl. The choice of basis set is limited to those functions for which these integrals are readily computed.

The second major bottleneck is the actual calculation of U for this second quantized Hamiltonian. Although
the values of |U| for various chemical systems vary from 0 to several thousand, the range of U for interesting
variations in the parameters for a given system is typically only 10-1 to 10-3. Most programs determine U to a
precision of 10-6, regardless of the absolute magnitude. Because of the multiple expansions involved, the error in
U is often 10-1 to 10-2, but the error is often constant over the interesting range of nuclear position parameters to
within ±10%.

A major advantage of some of these procedures for obtaining U is that first and second derivatives with
respect to the nuclear coordinate parameters can be obtained analytically. This has greatly facilitated searching U
in this parameter space for minima, saddlepoints, and so on. The major disadvantage has been the very steep
dependence of computer time on the number of electrons. Evaluating U for one set of parameters typically takes
computing time proportional to Nk, with k ranging from 3 for the least accurate methods to 7 for the best methods
now in common use. Finding one eigenvalue of  in the full vector space is even more costly, with computer
time proportional to MN+4, where M is the number of basis functions. Consequently, accurate calculations are
limited to about 40 electrons and an improvement of a factor of 10 in computer speed will not change this very
much.

Although this approach is very productive, it is also limited to small chemical systems. Progress for
somewhat larger systems can be made by use of the Hohenberg-Kohn and Kohn-Sham theorems to give a useful
density functional theory. These assume that it is possible to find an effective one-body potential σ so that, by
solving the one-electron Schrödinger equation

where ρ is the exact charge density of the system as defined by Equation (13) below, using the exact
wavefunction defined by Equation (1). As before, σ, , and εi are parameterized by the nuclear charges and
positions. Here σ is a functional of ρ. From ρ, the lowest potential energy surface U can be formed. The difficulty
is that there is only an existence proof for σ and no systematic constructive procedure is yet known.
Nevertheless, much progress has been made by choosing σ empirically so it will correctly reproduce the
properties of simple model systems such as the uniform electron gas and free atoms. The attraction of this
method is that the computational cost grows only as N3. Effort is being made to improve this even further to
obtain methods whose costs grow as N2 or N.
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Progress with density functional theory has been rapid in recent years. Direct solution of the Kohn-Sham
equation on a three-dimensional grid now is possible, although basis set expansions are still more commonly
used. The major limitation in this field is still the lack of a scheme for finding the effective potential that can
guarantee the desired accuracy in U for all chemical systems of interest.

For even larger systems, solution of the Schrödinger equation seems hopeless. In this case, U is usually
directly approximated by taking advantage of empirically observed near-transferability of parameters between
similar chemical systems. This requires some input from the user of these programs to decide which atoms are
bonded. Then, near a local minimum in U, it is possible to approximate U as a sum,

Each pair of nonbonded atoms can be assigned parameters transferred from experimental data to allow a
calculation of a ∆U(RAB) energy contribution. Similarly, each chemically distinct type of bond can be assigned
an energy for displacement from its usual bond length. Functions constructed in this way have accuracy
approaching the desired 10-3 level needed for chemical prediction. This approach is now used for widely
different problems, such as rational drug design, structure of liquids, predicting the shape of moderate-sized
organic molecules, and protein folding.

There are many problems in numerical analysis and data handling associated with the present methods.
These include the generation and manipulation of large numbers of six-dimensional integrals, finding
eigenvalues and eigenvectors of large matrices, and searching a complicated function for global and local
minima and saddle points. There are also important questions about the construction of optimum expansion
functions for most rapid convergence. At present, there are no useful error bounds for the energy or other
properties derived from the wavefunction.

THE N-AND V-REPRESENTABILITY PROBLEMS

Conventional approaches for computing the solution to the wavefunction have a strong dependence on the
number of electrons. Therefore, searches are constantly under way for methods of comparable accuracy with a
better scaling. In this regard, people have considered methods based on density matrices, density functionals,
Monte Carlo diffusion equations, effective core potentials, and so on. In particular, because the energy of an
atom or molecule is a linear function of the density matrix and the one-and two-body distribution functions
derived from it, density matrix methods raise the hope that one could dispense with computing the associated 3N-
dimensional Wavefunction and deal with simpler three-dimensional density functions. A number of
mathematical issues are raised by the attempt to reformulate computational chemistry in terms of particle
distribution functions instead of wavefunctions.

The N-body distribution function is given simply as the product of the wavefunction and its complex
conjugate,

Here, x symbolizes the collection of coordinates x1, x2, . . ., xN, describing the positions ri and spins ξi of all
N particles. In the chemical literature, this quantity is usually called the N-body density
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matrix. This may be averaged over an ensemble with an arbitrary set of probabilities (weights) wi to give the
ensemble distribution,

Because of permutational symmetry, all identical particles enter this distribution in an equivalent way. From
the N-body distribution, one-and two-body position distribution functions can be obtained by integration over the
other coordinates:

The distribution function P(x1,x2) is also called the two-body reduced density matrix. Similarly, the density
matrix may first be Fourier transformed and then used to derive the one-body momentum distribution

For most cases of interest, knowledge of the one-and two-body position distribution functions and the one-
body momentum distribution function suffices to determine the energy. For the Hamiltonian H with given
external potential Vex(ri) and given two-body interaction potentials g(rij),

the energy is given by

There are a number of outstanding mathematical problems associated with these distributions. For many
potentials, the behavior of ρ( r) is known near the singularities of the potential. Similarly, the behavior of γ(r12) is
known for a Coulomb interaction near the singularities, and the form of π(p) is known for large and small p. The
N-representability problem consists of finding the conditions on this set of three functions such that they could
all come from the same N-body density matrix. Many inequalities are known, but no general solution has been
obtained. The V-Representability problem consists of determining the further restriction imposed by considering
only those distributions that can come from a wavefunction that is the eigenfunction of some H for a fixed g.

The two-body reduced density matrix (2) can be integrated to give the one-body reduced density matrix
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Density matrices may be treated as integral kernels and factored in terms of their eigenfunctions

where

These functions fi are known as natural orbitals. It is conjectured, but not proved, that they form a complete
set when (1)(1) is derived from an exact eigenfunction of H with Coulomb interactions. The complementary
functions

are certainly not complete in the 3(N — 1) dimensional space. The extended Koopmans theorem claims,
however, that if  is the exact eigenfunction of H for an N-electron system, then the ground state wavefunction
of the N — 1 electron system may be expanded exactly in the set of Fi. Both ''proofs" and "disproofs" of this
conjecture exist in the literature (see Morrison, 1993, and Sundholm and Olsen, 1993, for a recent exchange of
opinions and a list of relevant earlier papers).

Because the energy is a linear function of the one-and two-body distribution functions, the variational
minimum will lie on the boundary determined by the N-representability conditions. Unfortunately, only an
incomplete set of necessary conditions are known, but these are already so complex that further work in this area
has been abandoned by chemists.

In density functional theory, only the density ρ (r) is used. Hohenberg and Kohn showed that the energy is a
functional of this density for a fixed two-body potential g(rij). Density functional theory has become of practical
importance, but progress is hindered by lack of knowledge of the properties of the functional and lack of a
systematic procedure for constructing a convergent sequence of functionals. Some past work in this field has
been summarized in several monographs (Davidson, 1976; Dahl and Avery, 1984; Kryacho and Ludena, 1989;
March, 1989; Parr and Yang, 1989; Sham and Schlinter, 1989; Gadre and Pathah, 1991).
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MELDING OF QUANTUM MECHANICS WITH SIMPLER MODELS

A daunting challenge for the future is to accurately model chemical reactions in phases and at the active site
of enzymes. An ability to do so would be of great importance in designing new biological catalysts as well as
fully understanding the chemical mechanism of those that already exist. This would be of significant
technological as well as scientific importance. One could imagine that many new molecules could be made and
made much more efficiently by such catalysts.

Methods to do this in an approximate way have been available since 1976 (Warshel and Levitt, 1976) and
have involved using the Schrödinger equation (Equation 1 or a variant or empiricized form of it) for the parts of
the system where bonds are being made or broken and thus the electronic structure is changing, combined with
representations such as Equation (10), which assume transferable electronic structure, for the remaining atoms of
the system. Typically, the number of atoms for which Equation (1) must be solved is much smaller, of the order
of 20 to 30, than the number in the whole system, which for the chemical reactions mentioned is typically more
than a thousand.

In fact, some exciting results for simple reactions involving organic molecules in different solvents have
been achieved (Blake and Jorgensen, 1991). In these cases, one has solved Equation (1) to high accuracy for a
simple reactive pathway in vacuo and then, employing these energies, has used free energy calculation methods
to evaluate the solvation free energy of different structures along the reactive pathway. This is in some sense a
proof of concept for the combined application of Equations (1) and (10) because impressive agreement with
experiment has been achieved in these simple, welldefined cases.

For more complex cases, such as enzyme reactions, the reaction pathway might involve many steps, and
some of the reacting groups are chemically bonded to the protein, thus requiring some additional technical
challenges in simulating the atoms at the junction between those that are participating in the chemical reactions
and those that are not. In addition, one might have to consider many conformations of the enzyme and its
substrate and accurately represent their relative energy by using the energy function of Equation (10), all the
while considering the electronic energy (Equation 1) and the relative total free energy of the system.

As noted above, progress on this problem has been made when employing much simplified representations
of the electronic structure of the system, which enable the solution of equations such as Equation (1) for the few
"quantum mechanical" atoms as rapidly or more so than the classical molecular dynamical equations of motion,
using Equation (10) as a potential energy (Field et al., 1990; Warshel, 1991).

These methods use semi-empirical or empirical valence bond approximations to solve Equation (1).
Although these methods are not highly accurate, the use of non-empirical quantum mechanical
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BOX 4.1 ELECTRONIC PHASE TRANSITIONS

The electronic properties of extended bulk materials such as metals and superconductors have been
studied extensively by physicists. However, as the field has progressed from simple elemental materials to
more complex synthetic ones, computational chemistry has come to the fore in addressing these problems.
The "exotic materials" include the organic superconductors such as Bechgaard salts, polyacetylene, the
fullerenes, and the high-temperature superconductors based on copper oxides. In addition, many new
amorphous materials are technologically interesting in their electronic properties. For instance, electronic
conduction in polymers, such as polyvinylcarbazole, is essential to some xerographic processes. The
chemical complexity of these systems puts a premium on understanding the fundamental physics in new
ways that do not usually rely on the simple symmetries present in elemental materials. All of these systems
exhibit electronic phase transitions as the chemical composition or doping is changed: their electronic
states change qualitatively. Sometimes this transition is from being an insulator to a metal, sometimes from
a metal to a superconductor or to some complex magnetically ordered structure.

One of the simplest electronic phase transitions is the transition between extended and localized states
of a single electron moving in a random potential. Even though this problem is at the heart of the study of
the electronic properties of any disordered material, the traditional methods of simply combining rough
semiquantitative theories and experiment have been insufficiently powerful to resolve all of the important
issues. One reason is that real materials have many physical influences in addition to disorder, such as
interactions of vibrations and interactions between different electrons in the same material. Some
mathematical work, such as rigorous theorems related to one-dimensional Anderson localization, has
already helped in understanding this problem. On the other hand, loopholes in these theorems have been
uncovered when the disorder is of a special, correlated kind. For instance, certain 1-D systems do not have
only localized states as the simple theorems had indicated. These unusual sorts of extended states arise in
systems with certain kinds of correlated disorder or with quasi-periodic Hamiltonians.

Interestingly, far from being a mathematical curiosity, these exceptions to the simple theorems about
one-dimensional localization seem to be at the heart of understanding the behavior of materials such as
polyacetylene. In two-or three-dimensional materials, experiment has amply demonstrated the existence of
both extended and localized states. However, there are still numerous controversies about the applicability
of simple phase transition ideas to these electronic phase transitions. Are they described by the usual
scaling phenomenology of ordinary thermal phase transitions?

It has been argued that, in fact, such descriptions may break down because the wavefunctions at the
transition are multifractal. Thus, the study of these electronic phase transitions has much in common with
problems addressed in quantum chaos, where the structure of the wavefunctions needs to be understood
in a statistical way. The interacting electron systems and their phase transitions also carry mathematical
challenges. In one dimension, the interactions between electrons again can cause them to behave as if
they were insulating. These one-dimensional many-electron problems lead to exactly solvable Schrödinger
equations. The exact integrability of these classical models is connected with conformal invariance and the
existence of solitons of nonlinear partial differential equations in one dimension. The question of whether
such electronic interaction effects give rise to new phases for higher-dimensional systems doubtless has
connections with the problem of solitons and exact integrable systems in higher dimensions—a problem
that has attracted many in the area of partial differential equations.

Finally, a large number of interesting phase transitions occur in disordered systems that also have
interactions. These include the Kondo effect in which isolated electronic sites behave as if they have spins
that can be quenched, as well as the exotic spin glass phases that have proved useful at least as analogies
in many other areas of chemistry and biology. At the moment, the most useful theory of these system is
based largely on the use of the unrestricted Hartree-Fock approximation. There are numerous
mathematical questions connected with the Hartree-Fock problem for such disordered systems. Many of
the ideas invented by Lieb in his proof of the stability of matter may have practical use here. Again, the
rigorous mathematical analysis can be of significant help in understanding whether or not certain
approximations can be used confidently in elucidating the qualitative physics. In addition, the same issues
will arise when quantitative calculations are contemplated for specific materials.

The study of electronic phase transitions in dusters will make these issues even more pronounced.
The usual theory of phase transitions concentrates on infinite systems, and only dominant thermodynamic
contributions are computed. For clusters, the finite size effects and the asymptotics of the approach to the
infinite limit become important mathematical problems.
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methods for systems of 20 to 30 atoms (the traditional ab initio approach) requires 104 to 106 more
computations than the semi-empirical or empirical approaches and much more time than it takes to solve the
classical equations of motion for the rest of the system (Singh and Kollman, 1986).

To elaborate, calculation of the free energy of a complex chemical system by using classical molecular
dynamics (Kollman, 1993) requires one to calculate the energy of the system and its gradient with respect to all
the 3N coordinates. This can be done for noncovalent processes (those using only Equation 10) quite efficiently
because the energy function in Equation (10) is very simple and its derivatives are quick and easy to evaluate.
When one adds quantum mechanical (bond making or breaking) effects via Equation (1), in order to make the
calculation of the free energy tractable, one must be able to evaluate the quantum mechanical energy and its
gradient for the few quantum mechanical atoms as rapidly as the classical molecular mechanical energy and
gradient for the thousands of atoms in the remainder of the system. This can be done by using simpler empirical
(Warshel, 1991) and, to a reasonable approximation, semi-empirical (Field et al., 1990) quantum mechanical
methods, but not with the first principle ab initio methods.

Density functional methods (Labanowski and Andzelm, 1991), particularly the divide-and-conquer strategy
(Yang, 1991), show promise in leading to accurate and rapid solutions of Equation (9) for the electronic
structure, but they are still a long way from being fully developed, so one cannot tell how efficient and useful
they will be in this regard.

Thus, accurate simulation of chemical reactions at the active sites of macromolecules will likely require
significant progress in the conformational search problem, even if one considers only the active site of the
enzyme. As should be emphasized, the "conformational search problem" requires one not only to consider many
conformations, but also to rank their relative free energy in solution. On top of this, one places the problem of
accurate and very rapid electronic structure calculations. The above problems are very challenging conceptually,
practically, and computationally.
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MOLECULAR DYNAMICS ALGORITHMS

Enhanced Sampling

The multiple minima problem, discussed elsewhere in this report, can be addressed by approaches other
than optimization. Specifically, reasonable sampling strategies can be devised to scan configuration space in the
hope of obtaining information about many local minima, maxima, and saddlepoints. Moreover, these strategies
can incorporate a variety of chemical information, such as interproton distances from NMR, van der Waals radii
(for hard-core exclusion), and secondary-structure elements. Useful search strategies today involve Monte Carlo,
molecular dynamics (MD), Brownian and Langevin dynamics, calculations of free-energy perturbations, high-
temperature simulations, normal-mode analyses, and various enhanced sampling techniques that involve hybrids
of all of the above. As reflected by those many approaches, the problem of inadequate sampling of
configurational space is receiving increasing attention as a realization emerges that faster and more powerful
computers alone cannot solve this problem in the near future. New methodologies and a hierarchy of approaches
at different levels of resolution—in combination with experiment—are needed to attack this sampling problem to
advance current capabilities of computational chemistry in connection with biomolecules.

A specific problem involves numerical integration in the context of MD simulations. In this technique,
molecular motion is propagated by numerically integrating the classical equations of motion governing a
molecular system under the influence of a specified force field (McCammon and Harvey, 1987; Allen and
Tildesley, 1990). In theory, MD simulations can provide extensive spatial and temporal information. However,
inadequate sampling limits the scope of the results that can be obtained in practice. Similar issues arise in other
chemical applications, such as quantum mechanics, and the development of improved integration schemes will
advance the systems and types of processes that can be simulated on modern computers.

Numerical Methods for Solving Ordinary Differential Equations

Many problems in chemistry can be reduced to the solution of systems of coupled ordinary differential
equations (ODEs). Examples include classical and Langevin dynamics, rate equations of kinetic theory, and the
time-dependent Schrödinger equation when expanded in a basis set. Thus, numerical integrators used to solve
these equations are fundamental tools in computational/theoretical chemistry, and any significant improvement
in these integrators (e.g., speedup, long-time stability) results in advances throughout the field.

The technology of numerical integrators for solving ODEs has a long history with significant interplay
among mathematics, physics, and chemistry. Many of the earliest integrators, such as Runge-Kutta and predictor-
corrector integrators, are still in common use, but there have also been recent advances, driven in part by the
need for methods that can treat multiple time scales and have greater stability for large-scale coupled nonlinear
oscillators commonly found in MD of polymers and biological macromolecules. The long-time stability of
integrators for such systems is a challenging area of mathematical analysis research; perhaps the chemical
applications described here will stimulate important developments.

Symplectic Integrators

Symplectic integrators have recently gained attention in the mathematical community and were quickly
adapted for use in dynamics calculations in chemistry because of their favorable properties. In applications to
Hamiltonian systems, symplectic integrators have the property of building in Liouville's theorem, whereby areas
in phase space are preserved as the system evolves in time. This strong conservation property translates into
stability over long-time integrations, an important
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property in MD calculations involving millions and more steps. One consequence of this for constant-energy
MD simulations is that except for fluctuations, symplectic integrators with small time steps conserve energy for
very long times, whereas nonsymplectic integrators typically introduce a systematic drift in the total energy.
Time reversibility is another useful practical property of symplectic integrators.

A symplectic integrator is any of a class of numerical algorthms for the integration of classical many-body
equations of motion that possess favorable properties such as area preservation, energy conservation, and time
reversiblity.

Symplecticness may also be used in determining numerical solutions to the Schrödinger equation. There is
an equivalent representation of quantum mechanics in terms of Hamilton's equations (Gray and Verosky, 1994)
that makes possible the use of integrators for the quantum dynamics studies that are used for classical dynamics.
Area-preserving mapping are also of interest in their own right in studies of dynamical systems (Meiss, 1992).

Symplectic integrators may be implicit or explicit. In explicit methods, the solution at the end of the time
step is obtained by performing operations on the variables at the beginning of each time step. Symbolically, we
write yn+1 = f(yn, ∆t, ...), where f is some nonlinear function, ∆t is the time step, yn is the approximation to the
solution y at time n∆t, and the dots indicate other parameters or previous solutions (e.g., yn-1, yn-2). With implicit
integrators, the final solutions are functions of both the initial and the final variables (yn+1 = f(yn+1,yn, ∆t, ...)), and
so coupled nonlinear equations must generally be solved at each time step to propagate the trajectory. The
explicit versions generally involve simple algorithms that (for propagation only) use modest memory, while
implicit methods involve more complex algorithms but are often more powerful for treating systems with
disparate time scale dynamics, as discussed below.

The development of symplectic integrators has involved significant interplay among mathematicians,
physicists, and chemists. Seminal work on symplectic integrators was done by both physicists and
mathematicians (Ruth, 1983; Feng, 1986; Candy and Rozmus, 1991; McLachlan and Atela, 1992; Okunbor and
Skeel, 1992; Calvo and Sanz-Serna, 1993) based on second-and third-order explicit approaches and Runge-Kutta
methods. Implicit approaches were developed in parallel (Channell and Scovel, 1990; De Frutos and Sanz-Serna,
1992). Recently, these ideas have found their way into the chemistry community (Gray et al., 1994) with
promising results. The Verlet integrator (Verlet, 1967), already in common use, was found to be symplectic,
thereby explaining the good associated stability observed in practice. However, symplectic integrators that
improve on previously available methods have also been developed (Gray et al., 1994). Initial applications using
these methods suggest that they may become favored for simulations of polymer dynamics and related problems
with small time steps.

The Time Step Problem in Molecular Dynamics

Although standard explicit schemes, such as the Verlet and related methods, are simple to formulate and
fast to propagate, they impose a severe constraint on the maximum time step possible. Instability—
uncontrollable growth of coordinates and velocities—occurs for step sizes much larger than 1 femtosecond (10-15

second). This step size is determined by the period associated with high-frequency modes present in all
macromolecules, and it contrasts with the much longer time scales (up to 102 seconds) that govern key
conformational changes (e.g., folding) in macromolecules. This disparity in time scales urges the development of
methods that increase the time step for biomolecular simulations. Even if the stability of the numerical
formulation can be ensured, an important issue concerning the reliability of the results arises, since vibrational
modes in molecular systems are
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intricately coupled.
Standard techniques of effectively freezing the fast vibrational modes by a constrained formulation

(Ryckaert et al., 1977; van Gunsteren and Berendsen, 1977; van Gunsteren, 1980; Miyamoto and Kollman,
1992) increase the time step by a small factor such as two, still with added complexity at each step. The multiple
time step approaches for updating the slow and fast forces provide additional speedup (Streett et al., 1978;
Grubmüller et al., 1991; Tuckerman and Berne, 1992; Watanabe and Karplus, 1993), although some stability
issues are also involved (Biesiadecki and Skeel, 1993).

Implicit Integration Schemes

There are well-known numerical techniques for solving differential equations describing physical processes
with multiple time scales (Gear, 1971; Dahlquist and Björck, 1974). Various implicit formulations are available
that balance stability, accuracy, and complexity. However, the standard implicit techniques used by numerical
analysts (Kreiss, 1991) have not been directly applicable to MD simulations of macromolecules, for the
following reasons.

First, such implicit schemes are often designed to suppress the rapidly decaying component of the motion.
This is a valid approach when the contribution of these components becomes negligible for sufficiently long
times, as is the case for the second term in y(t) = exp (-t) + exp (-100t). However, this situation does not hold for
biomolecular systems because of the intricate vibrational coupling. It is well recognized that concerted
conformational transitions (e.g., in hinge-bending proteins) require a cooperative mechanism driven by small-
scale fluctuations to make possible a large-scale collective displacement. Thus, although the absence of the
positional fluctuations associated with these high-frequency modes may not by itself be a severe problem, the
absence of the energies associated with these modes may be undesirable for proteins and nucleic acids, since
cooperative motions among the correlated vibrational modes may rely on energy transfer from these high-
frequency modes.

Second, implicit schemes with known high stability (e.g., implicit Euler) can introduce numerical damping
(Zhang and Schlick, 1993). This has prompted the application of such implicit schemes to the Langevin
dynamics formulation, which involves frictional and Gaussian random forces in addition to the systematic force
to mimic molecular collisions and therefore a thermal reservoir. This stabilizes implicit discretizations and can
be used to quench high-frequency vibrational modes (Peskin and Schlick, 1989; Schlick and Peskin, 1989), but
unphysical increased rigidity can result (Zhang and Schlick, 1993). Therefore, more rigorous approaches are
required to resolve the subdynamics correctly, such as by combining normal-mode techniques with implicit
integration (Zhang and Schlick, 1994); significant linear algebra work in the spectral decomposition is necessary
for feasibility for macromolecular systems. For example, banded structures for the Hessian approximation (see
related discussion in the section on multivariate minimization beginning on page 68) can be exploited in the
linearized equations of motion. There has also been some work on implicit schemes that do not have inherent
damping, but preliminary experience suggests that for nonlinear systems, desirable energy conservation
properties can be obtained only up to moderate time steps (Simo et al., 1992; Zhang and Schlick, 1995). In
particular, serious resonance problems have been noted (Mandziuk and Schlick, 1995).

Third, implicit schemes for multiple time scale problems increase complexity, since they involve solution of
a nonlinear system or minimization of a nonlinear function at each time step. Therefore, very efficient
implementations of these additional computations are necessary, and even then, computational gain (with respect
to standard ''brute-force" integrations at small time steps) can be realized only at very large time steps.
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Future Prospects

The preceding subsections have described several recent accomplishments in the development of integration
methods in MD simulations and have also outlined several important challenges for the future. What makes these
integration problems particularly challenging is the fact that solutions demand much more than straightforward
application of standard mathematical techniques. At this point it appears that the optimal algorithms for MD will
require a combination of methods and strategies discussed above, including symplectic and implicit numerical
integration schemes that have minimal intrinsic damping, and correct resolution of the subdynamics of the
system by some other technique (e.g., normal-mode analysis). Undoubtedly, high-performance implementations
will make possible a gain of several orders of magnitude in the simulation times, and there are certainly
additional gains to be achieved by clever programming strategies.
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N-AND V-REPRESENTABILITY PROBLEMS IN CLASSICAL STATISTICAL MECHANICS

Classical equilibrium statistical mechanics presents a class of unsolved N-representability problems
analogous to those in the quantum mechanical regime discussed earlier in this chapter. In this case, N refers to
the number of particles (atoms or molecules) present, rather than the number of electrons The most
straightforward version of this classical problem concerns a single-species monatomic system (i.e., spherically
symmetric identical particles) and revolves the pair correlation function g(r). This nonnegative function of
interparticle distance r is defined by the occurrence probability of particle pairs at r, relative to random
expectation, Consequently, deviations of g(r) greater than 1 indicate that interparticle interactions have biased
the distance distribution to a greater-than-random expectation, while deviations less than 1 indicate the Opposite.

For many cases of interest, the interparticle potential energy function V can be regarded as a sum of terms
arising from each pair of particles present:

The pair potentials v(r) typically are taken to satisfy the following criteria:

(b) v(r) is bounded, and is piecewise continuous and differentiable for r > 0;

Under these circumstances, g(r) plays a special rule in the thermodynamic properties of the N-particle
system (Hansen and McDonald, 1976). This fundamental quantity appears in closed-form expressions giving the
pressure and mean energy at the prevailing temperature and density. Furthermore, it appears in expressions for
the X-ray and neutron diffraction patterns for the substance; consequently, these diffraction measurements
constitute an experimental means for measuring g(r) for real substances. It should be added that g(r) is also one
of the traditional results reported from computer simulations of N-body systems (Ciccotti et al., 1987).

The experimentally, or computationally, adjustable parameters are temperature; particle number density;
container size, shape, and boundary conditions; and number N of particles. For most cases of interest, one
focuses on the infinite-system limit, where the container size and N diverge, while temperature, number density,
and container shape are held constant. The central problem then concerns the mapping between the pair of
functions v(r) and g(r), where the latter is interpreted as the infinite-system limit function.

Historically, the fundamental theory of classical systems (particularly in the liquid state) concentrated
heavily on prediction of g(r) for a given v(r), that is, the mapping from v to g. This has generated several well-
known approximate integral equation predictive theories for g(r), including those conventionally identified in the
theoretical chemistry literature by the names Kirkwood (1935), Bogoliubov-Born-Green-Yvon (Born and Green,
1949), Percus and Yevick (1958), and hypernetted chain (van Leeuwen et al., 1959) integral equations, each of
which has spawned successor refinements. However, in all cases the respective approximations invoked have,
strictly speaking, been uncontrolled. Consequently, the local structure and thermodynamic property predictions
based on these various integral equations have had only modest success in describing the dense liquid state,
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BOX 4.2 TUTORIAL ON STATISTICAL MECHANICS AND THE IMPORTANCE OF MINIMA
AND SADDLEPOINTS IN CONDENSED MATTER SYSTEMS

A large part of computational chemistry is concerned with the properties of systems at or near thermal
equilibrium. The statistics of configurations at thermal equilibrium therefore dominate many of the questions
studied by chemists. The principles of the statistical mechanics of equilibrium systems are quite simple to
state but are profound and sometimes surprising in their results.

A fundamental postulate of equilibrium statistical mechanics is that in the long run, all states of an
isolated system that are consistent with conservation of energy will be observed with equal probability. The
thermodynamic quantity S, the entropy, is simply a measure of the number Ω of these equally probable
states that the system might access, S = kB log Ω. Here kB is Boltzmann's constant. Thus, combinatorial
and various counting problems play a special rule in our thinking about the thermodynamics of chemical
systems. Although each of the states of an isolated system is equally probable, this is not the case when
we consider only a part of a system. When only part of a system is being examined, we must ask the
question, How many states of the entire system are accessible when a subsystem is in a given
configuration? The answer is given by

where X refers to the specified subsystem and the entropy refers to the subsystem's environment.
A very interesting and powerful special case of his formula is used constantly in equilibrium statistical

mechanics. If the subsystem considered is only weakly coupled to the rest of a much larger system, we can
decompose the total energy of the entire system into parts:

The energetic coupling is small and can be neglected if we are considering a system that is itself fairly
large and therefore has a relatively small surface of interaction with the remainder of the system. In this
case the counting problem can be solved since we know that the entropy of the environment is a smooth
function of its total energy. This then gives a count of states expressed by

The probability then of an exactly specified state of a subsystem that is part of a larger one is
proportional to this number of states. It is given by the Boltzmana distribution law

The temperature entering here is the thermodynamic derivative of the entropy and is proportional to
the average kinetic energy of each particle in the system. This distribution law contains within it many of the
great phenomena of chemistry and physics. First we see that the most important states are those that have
the lowest energy. If the energy then is a continuous function of the coordinates of part of the system, the
most probable configurations are those that give minima this potential. Indeed, the coefficient 1/kBT in the
Boltzmann distribution law ensures that at the lowest temperatures only the deepest or global minima are
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important. Chemistry is usually a low-temperature phenomenon—most chemical reactions are studied
around room temperature, although, of course, many do occur under greater extremes of conditions—and
room temperature corresponds to only one-fortieth of the typical energy scale of chemical bonds. Thus, the
Boltzmann distribution law tells us that chemistry will mostly concern itself with the specific configurations
that minimize the energy.

Of course, if molecular systems remained entirely at their energy minima, little would go on.
Occasionally, a molecular system must make a transition between one minimum on the energy surface and
another. To do this, the system must occasionally find itself in an intermediate high-energy configuration,
which the Boltzmann distribution law tells us is rather improbable. If we ask which of the relatively
improbable intermediate states between two minima are the most probable, it is clear that these should
correspond to saddlepoints of the energy. These saddlepoint configurations are known as transition states
to chemists. The probability of a system being found at a transition state determines the rate of a chemical
transformation. We see, therefore, that the geometry of minima and saddlepoints of potential energy
surfaces is extremely important in determining the chemical properties of a molecular system.

Sometimes only certain aspects of a system are considered explicitly. For example, when we study the
shapes, structures, and motions of a biological molecule (e.g., a protein immersed in water), we are
interested only secondarily in the configurations of the water molecules around this macromolecule.

A special case of these geometrical problems arises when the subsystem being considered is itself
rather large and involves strong interactions between its molecular subunits. In this case, it sometimes
happens that the minimum-energy saddlepoint actually possesses an extremely high energy. We then say
that the transformation between two minima has a large barrier and the transformation will be extremely
slow. Sometimes as the subsystem studied grows larger and larger, the transformation barrier itself also
grows larger and larger. Thus, for a macroscopic system, certain transformations may actually take place
effectively only on infinite time scales. We can then treat each part of the configuration space very nearly as
separate regions. This situation arises when a phase transition occurs. The theory of phase transitions is
then concerned with the problem of how a many-dimensional configurational space gets fragmented into
parts that are separated by very high energy barriers.

The Boltzmann distribution law applies only to a completely specified subsystem that is interacting
weakly with its environment. The biological macromolecule is interacting strongly with its solvent
environment, and so the Boltzmann distribution law using the energy alone is inappropriate for describing
its configurations. On the other hand, for different configurations of the biomolecule, we can in principle
compute the number of configurations of the surrounding solvent that are compatible with that configuration
of the biomolecule. Thus, the probability of a particular configuration of the biomolecule would have the form

where the probability has been rewritten in a Boltzmann-like form in which the energy of the molecular
system is combined with the entropy in its environment to form a free energy F(x) = E(X)-TS(X), which
gives the probability of the subsystem's configuration. For this reason, the geometry of free energy surfaces
is often also of great interest to chemists and physicists.

Occasionally the distinction between energies and free energies is blurred in offhand writing by
chemists and physicists, and the uninitiated reader must be careful about these distinctions when
applications are made.
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they have failed to predict the so-called nonclassical singular behavior at the liquid-vapor critical point
(Widom, 1965), and they have been largely useless for the study of freezing and melting transitions. Perhaps as a
result of these shortcomings, the recent trend in classical statistical mechanics has been to rely heavily on direct
computer simulation of condensed-phase phenomena. Because these simulations often require massive
computational resources, a case can be made that revival of analytic predictive theory for g(r) would be
favorable from the point of view of the ''productivity issue" in theoretical and computational chemistry.

In some respects, the inverse mapping of g to v is even more subtle, intriguing, and mathematically
challenging. At the outset, one encounters the obvious matter of defining the space of functions g(r) that in fact
can be generated by a pairwise additive potential energy function V. A few necessary conditions are
straightforward; as already remarked, g(r) cannot be negative. It is generally accepted (but not rigorously
demonstrated) that g must approach unity as r diverges if the temperature is positive, even though the system
itself may be in a spatially periodic crystalline state. In addition, the Fourier transform of g(r) — 1,

is also subject to necessary conditions stemming from the nature of the linear equilibrium response of the
system to weak external perturbations: for all k > 0 one must have (Percus, 1964)

1 + ρ G(k) ≥ 0 (ρ = number density).
These generic conditions can be supplemented by others that are necessary if v(r) has an infinitely repelling

hard core, that is,

This hard-core property prevents neighbors from clustering too densely around any given particle, and from
the geometry of hard-sphere close packings it is possible to bound the integral of r2g(r) over finite intervals of r.

A primary challenge concerns formulation of sufficient conditions on g(r), given that V possesses the
pairwise-additive form displayed above. At present we have no rational criterion for deciding whether a given g
(r), however "reasonable" it may appear to be by conventional physical standards, corresponds to the thermal-
equilibrium short-range order for any pairwise additive V. It is not even clear at present how to construct a
counterexample, namely, a g(r) meeting the necessary conditions above that cannot map to a v(r) of the class
described. In any case, formulation of sufficient conditions would likely improve prospects for more satisfactory
integral equation (or other analytical) predictive techniques for g(r).

Several directions of generalization exist for this classical V-Representability problem; these include the
following matters:

1.  Properties of triplet and higher-order correlation functions gn for occurrence probabilities of particle
n-tuples;

2.  Properties of correlation functions for particles (molecules) with internal degrees of freedom
(rotation, vibration, conformational flexibility);

3.  Effects of specific nonadditive potentials, which would be the case when including
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three-particle contributions in V; and,
4.  Multicomponent (several species, or mixture) systems, in particular the important case of

electrostatically charged particles (ions) with their long-ranged Coulombic interactions.
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IMPLICATIONS OF TOPOLOGICAL PHASES

The Born-Oppenheimer approximation dates from the 1920s, and the entire notion of molecular structure
can be based upon it. It is thus a surprise that significant qualitative physics has been ignored by most chemical
physicists in applying the Born-Oppenheimer approximation to systems with degenerate electronic states. The
basic idea behind the Born-Oppenheimer approximation is that nuclei move much more slowly than electrons.
Thus, the Schrödinger equation for electrons can be solved at fixed nuclear configuration and the resulting
energy can be used as a potential for studying the motions of the nuclei themselves.

Generally, when nuclear motion itself is quantized, one assumes the usual Schrödinger equation with a
classical scalar potential for the nuclear motions. This has proved valid for systems that do not have significant
electronic degeneracy. A serious mathematical problem is the uniqueness of the wave function for the nuclei.
The Born-Oppenheimer approximation really assumes a single path for the slowly moving nuclei. If there is an
electronic degeneracy, topologically distinct paths may connect two different positions on the same electronic
surface. Thus, in addition to the phases that one develops for the quantum dynamics through the simple scalar
potential dynamics, there is an additional topological phase. The existence of this topological phase, which
depends on the path between two points, has been known since at least the p, when Longuet-Higgins studied it in
the context of Jahn-Teller distortions. Only in recent years has its significance been truly appreciated, however.
One of the leaders in bringing out the significance of topology in quantum molecular dynamics was M. Berry.
However, it was appreciated somewhat earlier by Truhlar and Mead that this topological phase plays a rule in
chemical reactions. Indeed it is important even in the most fundamental of chemical reaction problems, the H +
H2 reaction. Very recently, the discrepancy
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BOX 4.3 IMPLICATIONS OF DYNAMIC CHAOS FOR QUANTUM MECHANICAL SYSTEMS

Many phenomena in chemistry are at the border of applicability of classical mechanics. Quantum
mechanical phenomena, such as tunneling and interference, certainly are relevant to many chemical
reactions. Thus, in addition to purely classical dynamical methods, semiclassical approximations are used
quite commonly in chemical physics.

Semiclassical methods work fairly well for low-dimensional systems such as those encountered in
gasphase chemical reactions, because the collisions that act as randomizers are infrequent and the chaotic
character of the processes may often be neglected. On the other hand, in attempting to extend
semiclassical methods to condensed-phase systems, one is immediately faced with the problem of the
underlying classical chaos, No completely adequate semiclassical quantization of chaotic systems yet exists.

Most of the effort of theoretical chemists working in this area has been devoted to understanding
simple themes that may give some qualitative insight to phenomena that occur in the quantum mechanics
of systems that are classically chaotic. Several important themes have been developed, one of the most
notable being the connection of quantum chaos to random matrix theory. The notions behind this have their
roots in Wigner's use of random matrices to describe nuclear systems, but the application of these ideas to
molecules has been equally rewarding. One can examine the evolution of the energy levels of a system
under perturbation in order to understand its quantum chaotic nature. It has been shown that a random
matrix description could arise from multiple level crossings. This approach has also been shown to be
related to some exactly integrahie systems of particles moving in one dimension. The great irony is that the
random matrix description arises from a problem that, in another guise, leads to exactly integrable equations.

Very interesting connections exist to the theory of solutions of nonlinear partial differential equations.
Classical systems in many dimensions, when they are chaotic, often exhibit diffusive dynamics. Arnold has
shown how weakly coupled systems of dimension higher than 2 exhibit such diffusion. It has recently been
argued that a phenomenon analogous to Arnold diffusion in the classical limit arises in quantum problems
and that weakly coupled systems of quantized oscillators are analogous to local random matrix models.
These local random matrix models are closely tied to the problem of Anderson localization, which concerns
itself with the nature of eigenfunctions of random differential operators.

A most enticing development in the understanding of quantum chaos has been the connection of
problems in quantum chaos with deep problems in number theory. One of the most picturesque
approaches for obtaining quantum mechanical energy levels is to calculate the Green's function of the
Schrödinger equation through a sum over classical paths. For chaotic systems these classical paths are
extremely numerous and the Green's function is indeed the sum of a statistically fluctuating quantity that
itself presents interesting mathematical problems to be discussed later.

One model for the classical paths represents them as repetitions of some fundamental periodic orbits.
Some very simple special models of the actions of these orbits lead to a Green's function that is closely tied
to the Riemann zeta function. The prime numbers represent the fundamental periodic orbits. This has
suggested that the zeros of the Riemann zeta function are related to the quantum mechanical eigenvalues
of some Hamiltonian that is classically chaotic. This ansatz has led to interesting predictions about the
spacing of zeros of the Riemann zeta function and other statistics that seem very much in keeping with the
random matrix theories being used to describe quantum chaos. Thus, it seems that problems in quantum
chaos might be clarified considerably by considerations from probabilistic number theory and, conversely,
that deep number theoretic questions might be addressed by using ideas from the quantum mechanics of
chaotic systems. Although significant progress has already been made in developing conjectures based on
these ideas, there is still a tremendous amount to do and many deep mysteries remain.
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between experimental results for H + H2 and large-scale computations of the scattering cross sections was
shown to arise from neglect of this topological phase.

For problems with small amounts of degeneracy, the topological phase is easy to handle with little
mathematical sophistication. Either a trajectory encircles a conical intersection (of Born-Oppenheimer energy
surfaces) or it does not, leading to two values of the phase. This encircling of singularities can be described by
using the idea of a gauge potential. With higher degeneracies, however, very difficult topological problems may
be encountered since many surfaces can make avoided crossings in many locations. The paradigm of such
complicated topology problems may well be metal clusters. For metals in the thermodynamic limit, there are
numerous energy levels corresponding to the excitation of electrons just below the Fermi sea to just above it.
Since the electronic levels are highly delocalized, these energy changes are quite small and the energy surfaces
are close together. The actual dynamics of the nuclei must involve the coupling of several surfaces. There are
many possible interchanges of the metallic ionic cores, and complicated topologies can result.

Another place in which topology enters is when an underlying approximate wave function is built up out of
many degenerate electronic wave functions and the dynamics of electronic excitations is studied. The paradigm
for this is the recent interest in resonating valence bond descriptions of metallic and superconducting materials.
Here, reorganization of the different valence bond structures as an excited electron or hole moves around gives
rise to topological phases and gauge fields. It has been argued that these effects are at the heart of the new high-
temperature superconductors and represent a real breakdown of the traditional band structure picture of metals.
Most models studied by physicists, however, have been very simple, and it will be necessary to understand how
the topological phases arise in completely realistic electronic structure calculations if one is to make predictions
of new high-temperature superconductors on the basis of these ideas.

THEORETICAL AND COMPUTATIONAL CHEMISTRY IN SPACES OF NONINTEGER
DIMENSION

A major mathematical landmark in the eighteenth century was Euler's introduction and exploitation of the
famous gamma function. One of its basic and striking properties is that it provides a natural "smooth" extension
of the factorials n! that are defined nominally just for the positive integers to all positive numbers, and indeed
even into the complex plane. The pervasive appearance of the Euler gamma function throughout classical
mathematical analysis constitutes a powerful paradigm suggesting that analogous extensions from the discrete
positive integers to the complex plane in other contexts might generate analogous intellectual benefits.

During roughly the last two decades, simultaneous developments in several distinct areas of physical
science appear to point to the necessity (or at least the desirability) of just such an extension. Specifically, this
involves generalizing the familiar notion of Euclidean D-dimensional spaces from positive integer D at least to
the positive reals, if not to the complex D-plane. This is not an empty pedantic exercise; at least one serious
proposal has been published (Zeilinger and Svozil, 1985) claiming that accurate spectroscopic measurements of
the electron "g-factor" indicate that the space dimension of our world is less than 3 by approximately 5 x 10-7.
Furthermore, in various theoretical applications that have so far been suggested for the continuous-D concept, D
itself or its inverse appears to be a natural expansion parameter for various fundamental quantities of interest.
However, most of the work along these lines thus far has been ad hoc, lacking rigorous mathematical
underpinning. Naturally this calls into question the validity of claimed results.

Three physical science research areas deserve mention in this context. The first is quantum field theory;
dimension D has been treated as a continuously variable "regularizing parameter" whose
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manipulation avoids embarrassing divergences in perturbation expansions (Bollini and Giambiagi, 1972; t'Hooft
and Veltman, 1972; Ashmore, 1973). The second is the statistical mechanics of phase transitions (specifically
involving critical point phenomena); because of rigorously known results for D = 2 and D = 4, 5, 6, . . . , series
expansions in the quantity 4 — D have been developed for various quantities of interest to access the physical
case D = 3 (Wilson and Fisher, 1972; Gorishny et al., 1984). The third area holds perhaps the greatest promise
for chemical progress, namely, the development of atomic and molecular quantum mechanics (with useful
computational algorithms) in spaces of arbitrary D (Goodson et al., 1992; Herschbach et al., 1992).

As in the other applications, the notion of atomic and molecular quantum mechanics is unambiguously
defined for D a positive integer; in other words, the Schrödinger wave equation and its boundary conditions have
an immediate and clear meaning. The desire to embed these problems in the arbitrary-D context arises primarily
from the observation that solutions to the Schrödinger equation adopt a simple limiting form as D approaches
infinity, namely, those for simple harmonic oscillators localized in multidimensional space (Goodson et al.,
1992; Herschbach et al., 1992). Eigenfunction and eigenvalue expansions in 1/D have then been formally
generated, with the hope

BOX 4.4 NODAL PROPERTIES OF WAVEFUNCTIONS

Knowledge of the nodes of the many-fermion wavefunction would make possible exact calculation of
the properties of fermion systems by Monte Carlo methods. Little is known about nodes of many-body
fermion systems even though the one-dimensional case is ubiquitous in textbooks on quantum mechanics.
The nodes referred to here are the nodes of the exact many-body wavefunction and are very different from
the nodes of orbitals.

In the absence of a rigorous simulation method for fermion systems, the fixed-node approximation has
been found to be a useful and powerful approach. One assumes knowledge of where the exact
wavefunction is positive and negative based on the nodes of a trial wavefunction. The Schrödinger
equation in imaginary time is solved by simulating the diffusion process with branching within the regions
bounded by the assumed nodes.

For the ground state, Ceperley (1991) has proved that ground state nodal cells have the tiling property
(i.e., there is only one type of nodal cell, all other cells being related by permutational symmetry). The tiling
property is the generalization to fermions of the theorem that a bosonic ground state is nodeless.

The nodal hypervolumes of a series of atomic N-body Hartree-Fock level electronic wavefunctions
have been mapped by using a Monte Carlo simulation in 3N-dimensional configuration space (Glauser et
al., 1992). The basic structural elements of the domain of atomic and molecular wavefunctions have been
identified as nodal regions and permutational cells (identical building blocks). The results of this study on
lithium-carbon indicate that Hartree-Fock wavefunctions generally consist of four equivalent nodal regions
(two positive and two negative), each constructed from one or more permutational cells.

A generalization of the fixed-node method has been proposed that could solve the fermion problem at
finite temperature if only the nodes of the fermion density matrix were known (Ceperley, 1991).
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that series summation techniques (e.g., Padé approximants) would permit extension to the case of ultimate
interest D = 3. This strategic approach to real chemistry in the real world is emboldened by the facts that (a) D =
1 is often an exactly solvable case (or at least amenable to very accurate numerical study), and (b) exact
interdimensional identities for D and D + 2 are known (Herrick, 1975). These latter afford convenient fixed
points for refining the series summation attempts.

The presumption that spaces with noninteger dimension were available as analytic tools for atomic and
molecular quantum mechanics rests largely on simple observations such as the fact that the D-dimensional
(hyper) spherical volume element,

is an obvious analytic function of the variable D. The implicit assumption in the various applications to
date, quantum mechanical and otherwise, seems to have been that the same expression can be invested with
mathematical legitimacy for noninteger D, in the sense that it is an attribute of a family of precisely defined
spaces. This is by no means an obvious proposition, since any quantity such as K(D) above could be augmented
by any function of D that vanishes at the positive integers, such as sin (2πD), without affecting the situation for
conventional Euclidean geometry.

The published literature reveals some attempts to axiomatize spaces of noninteger dimension (Wilson,
1973; Stillinger, 1977), but it is clear that the subject requires deeper mathematical insight than it has thus far
experienced. In particular, it is desirable to determine the extent to which arbitrary-D spaces are uniquely
definable as uniform and isotropic metric spaces and what their relation to conventional vector spaces might be.
It has been suggested (Wilson, 1973) that noninteger-D spaces can be viewed as embedded in an infinite-
dimensional vector space, but whether this is uniquely possible or even necessary to perform calculations
remains open.

It is important to stress the distinction between the general-D spaces that may be obtained by interpolation
between the familiar Euclidian spaces for integer D on the one hand and the so-called fractal sets to which a
generally noninteger Hausdorff-Besicovitch dimension can be assigned (Mandelbrot, 1983). The latter are
normally viewed as point sets contained in a Euclidean host space; furthermore, they fail to display translational
and rotational invariance, and are therefore not uniform and isotropic.
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MULTIVARIATE MINIMIZATION IN COMPUTATIONAL CHEMISTRY

Introduction

Mathematical optimization is a branch of mathematics that seeks to answer the question ''What is best?" for
problems in which the quality of the answer can be expressed as a numerical value (see, e.g., Gill et al., 1983b;
Fletcher, 1987; Ciarlet, 1989). This question might refer to the "best" approximation in some local sense (i.e., a
local solution) or to the global solution over the entire feasible space (i.e., the global minimum) (see, e.g.,
Nemhauser et al., 1989; Floudas and Pardalos, 1991). A common problem arises when a complex physical
system is described by a collection of particles, or combinations of states, in a multidimensional phase space. An
energy or cost function is associated with each different configuration, and the challenge is to find sets of points
that minimize (or maximize)1 the objective function. Such applications arise frequently in molecular modeling,
rational drug design, quantum mechanical calculations, mathematical biology models, neural networks,
combinatorial problems, financial investment planning, engineering, electronics, meteorology, and
computational geometry. In applications that arise in computational chemistry (Scheraga, 1992; Schlick, 1992),
the feasible space is often very high in dimensionality and complexity, so both local and global minima are of
interest.

There are many optimization techniques available for the computational scientist. Nonetheless,
implementation of the more sophisticated techniques requires considerable computing experience, algorithm
familiarity, and intuition. While software vendors offer a variety of "black-box" codes, serious practitioners
frequently discover that a good deal of understanding and modification is required for successful applications.
Such modifications involve tailoring the algorithm to features of the problem at hand—such as function
separability—or exploiting available experimental information that might guide the optimization path—such as
nuclear magnetic resonance (NMR) distance restraints in molecular mechanics. Moreover, successful new
optimization schemes may be not be known or available to nonspecialist mathematicians, let alone to scientists
in allied fields.

Thus, the transfer of knowledge, its application to real problems, and its further developments will greatly
benefit from increased interdisciplinary interactions. In particular, it may be useful to

1 These are equivalent problems. The minimum of a function f is the maximum of the function-f.
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stimulate algorithmic developments in optimization toward important scientific problems, such as arise in
chemistry, that would involve synergistic efforts on both parts: the application-oriented scientist and the
algorithm developer. Such collaborations are likely to be fruitful to both parties, since testing of new methods
will be possible on real-life problems and might generate an evolving body of solutions that take into account the
available physical data. There is recent evidence (e.g., in special sessions of meetings of the Society for
Industrial and Applied Mathematics) that mathematicians have discovered the challenges in "mathematical
chemistry problems" and protein folding, but many frontiers lie ahead.

Problem Classification

The available optimization algorithms are classified according to the features of the target problem. The
objective function to be minimized (or maximized) may be formulated in terms of integer variables (discrete
optimization), integers in permutations (combinatorial optimization), continuous real numbers (continuous
optimization), or both continuous real numbers and integers (mixed integer optimization). Examples from these
four classes involve, respectively, order planning for organizations (the integers may denote, for example, the
number of units of each item to be purchased monthly for a restaurant); the traveling salesman problem (the
ordered list of N integers represents a cyclical itinerary for visiting N cities); molecular structure prediction (the
real numbers may denote nuclear or electronic positions of the particles, or a set of internal variables describing
the molecular system); and airline crew scheduling (the integers may identify particular flight routes and the real
numbers may refer to the hours of shift for the flight crew). For computational chemistry, continuous
optimization is the most important type of problem.

In addition to the nature of the control (or independent) variables, the objective function may be linear,
quadratic, or nonlinear (the latter in varying extent). The problem may be formulated as unconstrained or
constrained, with constraints involving equality or inequality conditions, which may be linear, quadratic, or
nonlinear. Thus, for the above examples, constrained formulations may introduce upper and lower bounds for the
Cartesian positions or specified values for certain internal variables that should remain fixed; the airline crew
scheduling problem will incorporate into the optimization formulation the total number of scheduled flights,
lower and upper bounds for the lengths of shifts, enforced limits on gaps between transatlantic flights, and so on.
In addition to functional form and constraints, other important considerations involve the cost of evaluating the
objective function and the availability (or lack) and associated cost of derivatives. In some cases, the derivatives
may be discontinuous, and special techniques may be required. Derivative information can often be exploited
significantly for the optimization algorithm, but the benefits must be balanced with the additional costs involved.

The Complexity of Computational Chemistry Problems

Optimization problems frequently arise in molecular and quantum mechanical calculations in chemistry.
These problems are typical of optimization applications seeking favorable configurational states of a physical
system. The large-scale nature of these problems together with the lack of convexity rules out exhaustive
sampling in the feasible space except for very small systems. Therefore, clever optimization methods are a
necessity, and their improvement translates into the ability to model larger physical systems and generate
important structural predictions.

The expense of calculating the function and the associated derivatives also introduces difficulties that limit
the type of algorithm that may be utilized. In many molecular mechanics applications, it may be tedious but
possible to calculate the derivatives; often, the additional computational cost involved in computing the gradient
is only a small factor more (e.g., 4 to 5) than computing the function (and guaranteed by automatic
differentiation, which also saves coding efforts; see Box 4.5).
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Computational intensity often stems from the long-range interactions among the N particles in the system
(e.g., Coulombic forces). In molecular mechanics, the direct evaluation requires on the order of N2 operations,
and even if a cutoff radius is introduced, computation of the nonbonded terms dominates computation time.
Implementation of fast particle methods (Greengard, 1994) in molecular mechanics and dynamics calculations
(Grubmüller et al., 1991; Board et al., 1992) is clearly important for reducing the severity of this problem and
allowing more accurate representation of the

BOX 4.5 AUTOMATIC DIFFERENTIATION

Automatic differentiation, essentially a new algebraic construct (Rall, 1981; Griewank, 1988; Griewank
and Corliss, 1991), provides a way to compute exact derivatives of a function whose calculation is
expressed by a computer program. This technique may be useful for minimization of computational
chemistry problems. Finite-difference techniques have been used for this purpose for a long time, but they
require judicious choices in the finite-difference interval (Gill et al., 1983a); even with optimal choices,
errors are inevitable in regions where the gradient is very small or in those where function curvature
changes very rapidly. Finite differences also become very expensive in large dimensions, unless partial
separability is exploited.

There have been some "computer algebra" approaches based on symbolic computations (e.g.,
packages like Macsyma, Mathematica, or Maple) that can actually handle some differentiation tasks when
the functional form is specified. Parenthetically, the reduction in mathematical errors and ready availability
of graphics due to such symbolic computing tools have enhanced productivity in a number of areas of
chemistry. However, while simplifying the programmer's work considerably, symbolic programs are not
practical to use in the context of large-scale computer programs that require repeated evaluation and
differentiation of a complex function. Moreover, this approach cannot be applied to full Fortran, C, or C++
programs directly, only to simplified or special syntax.

In contrast to finite differences and symbolic algebra, the more recent approach of automatic
differentiation is based on compiler techniques. Specifically, compiler transformations are applied to
compute rigorously the derivative of a function defined by a program. The basic idea is to use the chain rule
from calculus to compute the derivative of a composition of functions. Mathematically, this is similar to
using symbolic algebra, but the chain rule is applied to the numerical intermediate results instead of to the
expressions themselves, which makes it much more efficient. Automatic differentiation can be applied to
complete programs including common blocks, equivalence statements, GOTO statements, and other
features beyond the scope of existing symbolic algebra systems. Any code can be viewed as such a
composition of elementary functions and algebraic operations, with the dependencies of one variable upon
another being traced with modern compiler techniques. A code may have conditional branches that depend
on the values of the independent variable (either explicitly or implicitly). The differentiation software must
generate corresponding conditional branches. Originally, packages were developed for programs written in
C and C++, but recent efforts have extended this to include Fortran programs as well (Bischof et al., 1992).

Because the derivatives are expressed in exact symbolic form, their calculation is subject only to
rounding errors. However, if a function is nondifferentiable at some point, it is not entirely clear what the
result of automatic differentiation will be; in many cases, it corresponds to the derivative computed from one
side of the nondifferentiability. If a function is defined by table-lookup, then the derivative returned by
automatic differentiation may well be zero. Some cases of anomalous behavior in differentiating specific
codes are the subject of ongoing research.

Significantly, automatic differentiation techniques turn out to be competitive with the finite difference
approach computationally. Their application to computational chemistry codes is just beginning.
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long-range interactions; the advantage of such an approach has already been demonstrated in other scientific
applications (Greengard, 1994), for example in the context of integral equations in engineering problems (Nabors
et al., 1994).

The multiple-minimum problem is a severe hurdle in many large-scale optimization applications. The state
of the art today is such that only for small and reasonable problems do suitable algorithms exist for finding all
local minima for linear and nonlinear functions. For larger problems, however, many trials are generally required
to find local minima, and finding the global minimum cannot be ensured. These features have prompted research
in conformational-search techniques independent of, or in combination with, minimization (Leach, 1991). To
illustrate, consider a simple model for an alkane chain of m units (residues). From combinations or rough
partitions in favorable structures of the individual building blocks, the number of possible starting points
produces 3m starting configurations. For polypeptides and polynucleotides, the flexibility of the monomer
(building block) configurations increases, producing a rough range of 10m to 25m reasonable starting points by
coarse subdomain partition (e.g., combinations of typical side chain, main chain, backbone, or sugar dihedral
angles). Exhaustive searches are clearly not feasible.

A molecular configuration is described by a list of numbers that specifies the relative position of the atoms in
space. By definition, the configuration is unchanged when the molecule as a whole is subjected to rigid-body
motion (translation or rotation). If the molecule consists of N atoms, 3N-6 numbers are required to specify its
configuration uniquely. These numbers may consist of 3N-6 Cartesian positions (with 6 values fixed for
uniqueness) or some combination of bond lengths, bond angles, and dihedral angles (angles defining the rotation
between two groups with respect to the bond connecting them). The term conformation is typically used by
chemists to describe the spatial configuration of a molecular system—strictly speaking, one with fixed bond lengths
and valence angles.

The buildup technique is a related configurational search strategy, used in studies of proteins (Pincus et al.,
1982) and nucleic acids (Hingerty et al., 1989). Reasonable starting points are constructed by combining minima
of conformational building blocks. This rational strategy has performed rather well in practice, but there is no
guarantee that all biologically important local minima, much less the global minimum, are revealed. One of the
problems is the nonlocal nature of the interactions in the folded macromolecule. That is, segments far apart in the
linear sequence will make close contact upon folding; thus, the collective minimum may not correspond to any
minima of the constituent building blocks. Furthermore, the number of starting points is still exponential in the
number of building blocks. This buildup technique might be an interesting mathematical area to explore further,
perhaps through techniques of interval analysis (see below under global optimization methods).

Molecular dynamics, discussed on pages 54–58, can also be viewed as a technique for obtaining structural
information (e.g., mean atomic fluctuations, dynamical pathways, isomerization rates) that is complementary to
potential energy minimization. While in theory information on all thermally accessible states should be
observable, the restriction of the integration time step to a very small value with respect to time scales of
collective biomolecular motions limits the scope of molecular dynamics in practice.

Local Optimization Methods

Local methods are defined by an iterative procedure that generates iterates {x0, x1, ..., Xk,... } intended to
converge to a local minimum x* from a given x0. Their performance is clearly sensitive to the choice of starting
point in addition to search direction and algorithmic details. In the
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line-search subclass, a search vector pk is computed at each step by a given strategy, and the objective function f
is minimized approximately along that direction so that ''sufficient decrease" is obtained (see, e.g., Dennis and
Schnabel, 1983; Luenberger, 1984). In trust-region approaches, a local quadratic model of the function is
minimized at every step using current Hessian information, and an optimal step is chosen to lie within the "trust
region" of the quadratic model (Dennis and Schnabel, 1983).

Local deterministic optimization methods have experienced extensive development in the last decade (e.g.,
Nocedal, 1991; Wright, 1991). Studies have produced a range of robust and reliable techniques tailored to
problem size, smoothness, complexity, and memory considerations. Many variants of Newton's method have
been produced that extend applicability far beyond small or sparse problems. Nonderivative methods are
generally not competitive, but significant developments have been made in nonlinear conjugate gradient (CG)
methods (generally recommended for very large problems whose function is very expensive to evaluate) and
Newton methods.

The classes and extensions of Newton's method, the prototype of second-derivative algorithms, include
discrete Newton, quasi-Newton (QN) (also termed variable metric), and truncated Newton (TN) (e.g., Dennis
and Schnabel, 1983; Gill et al., 1983b). Historically, because of the O(n2) memory requirements, where n is the
number of variables in the objective function, and the O(n3) computation associated with solving a linear system
directly, Newton methods have been most widely used (1) for small problems, (2) for problems with special
sparsity patterns, or (3) when near a solution, after a gradient method has been applied. Fortunately, advances in
computing technology and algorithmic developments have made the Newton approach feasible for a wide range
of problems. Indeed, effective strategies have been tailored to available storage and computation, exhibiting
good performance in theory and practice, and this trend will undoubtedly intensify.

Two specific classes are emerging as the most powerful techniques for large-scale applications: limited-
memory quasi-Newton (LMQN) and truncated Newton methods. LMQN methods attempt to retain the modest
storage and computational requirements of CG methods while approaching the superlinear convergence
properties of standard (i.e., full memory) QN methods (Gilbert and Lemaréchal, 1989; Liu and Nocedal, 1989;
Nash and Nocedal, 1991; Zou et al., 1993). Similarly, TN algorithms attempt to retain the rapid quadratic
convergence rate of classic Newton methods while making computational requirements feasible for large-scale
functions (Dembo and Steihaug, 1983; Nash, 1985; Schlick and Overton, 1987). With advances in automatic
differentiation (see Box 4.5), the appeal of these methods will undoubtedly increase even further (Dixon, 1991).

Both limited-memory QN and TN methods are promising for computational chemistry problems. Moreover,
they can be adapted to both constrained and unconstrained formulations and can exploit the special composition
(distinct components) of the potential energy function to accelerate convergence (Derreumaux et al., 1994). This
issue involves a natural separation of the objective function into components of differing complexity (e.g., local
and nonlocal interactions). This special composition can be exploited to construct banded or other sparse
preconditioners in the context of CG and TN. Such problem tailoring requires some familiarity with the
algorithmic modules and also demands knowledge of the theoretical and practical strengths and weaknesses of
the different minimization methods. With rapidly growing improvements in high-performance vector and
massively parallel machines, application-tailored software may be even more important in combination with
parallel architectures whose design is motivated by specific applications.

Global Optimization Methods

In their attempt to find a global rather than local minimum, global optimization methods tend to explore
larger regions of function space (see, e.g., Dixon and Szegö, 1975; Floudas and Pardalos, 1991). The global
minimum of a function can be sought through two classes of approaches:
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deterministic and stochastic. Deterministic methods usually require the objective function to satisfy certain
smoothness properties; they construct a sequence of points converging to lower and lower local minima. Ideally,
they attempt to "tunnel" through local barriers. Local minimization methods are often required repeatedly in the
framework; hence, developments in local methods are likely to have an important impact on global techniques as
well. Computational effort tends to be very large, and a guarantee of success can be obtained only under specific
assumptions.

Stochastic global methods, on the other hand, involve systematic manipulation of randomly selected points
(Nemhauser et al., 1989; Rinnooy Kan and Timmer, 1989; Schnabel, 1989; Törn and Zilinskas*, 1989; Byrd et
al., 1990). Success can be guaranteed only in an asymptotic, stochastic sense, although in practice many
applications are very promising.

In the early days of global optimization (mid-1970s), most efforts focused on stochastic or heuristic
approaches (Dixon and Szegö, 1975). In chemical applications, simulated annealing (Metropolis et al., 1953;
Kirkpatrick et al., 1983; Dekkers and Aarts, 1991) is an appealing method of this class and is effective for small
to medium molecular systems. It is also very easy to implement and generally requires no derivative
computations. Indeed, there has been a wide application of this method to chemical systems.

More recent efforts have focused also on deterministic global optimization methods. Interesting examples
include the tunneling method (Levy and Gomez, 1985; Levy and Montalvo, 1985) and several innovative
deterministic approaches in chemical applications (Purisima and Scheraga, 1986; Piela et al., 1989; Scheraga,
1992; Shalloway, 1992). In particular, in the mathematical community, two recent powerful methods have been
identified that might be useful to chemical applications. One exploits convex properties and is based on
differences of convex functions (Pardalos and Rosen, 1987; Horst and Tuy, 1993); the other is based on interval
analysis (Hansen, 1980, 1992; Neumaier, 1990; Schnepper and Stadtherr, 1993). The convexity approach has
been successful for global quadratic problems of up to approximately 300 variables and 50 constraints (Pardalos
and Rosen, 1987; Horst and Tuy, 1993). Interval analysis, a field little known even to mathematicians, was
pioneered by Hansen, among others. It involves computation of strict bounds to bracket the global minimum of a
function. The algorithms involve various branch and bound techniques that recursively split the configuration
space, aiming at bracketing the minimum as tightly as possible. Other information, such as bounds on
derivatives, may also be generated. This class of methods can be applied to the solution of nonlinear systems, as
well as global constrained and unconstrained optimization. However, these methods require second-derivative
information (Hessians for optimization problems) and, moreover, the inverse of a preconditioning matrix to
produce realistic bounds. For these reasons, interval analysis has been applied only to relatively small problems
thus far. However, future research may be promising with preconditioning techniques that are now well
developed for local optimization.

Perspective

In sum, the optimization applications that arise in computational chemistry offer challenging and rewarding
problems to mathematicians. There is a need for the development of both local and global methods (the latter
stochastic as well as deterministic) and for transferring the technology rapidly from one discipline to another. In
particular, optimization schemes will be more effective when all available chemical information (e.g., function
separability, availability of derivatives, additional experimental data) is taken into account in design of the
algorithm, as is possible by preconditioning in both limited-memory quasi-Newton and truncated-Newton
algorithms. Multigrid approaches (Kuruvila et al., 1994) and functional transformations (e.g., Piela et al., 1989;
Wu, 1994) appear promising to global optimization problems in computational chemistry, and further
developments might be fruitful.
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Areas of mathematics that may have an important impact on the field are interval analysis and automatic
differentiation. While the field of deterministic global optimization is still in its infancy in terms of general large-
scale applicability, it is anticipated that the exploitation of vector and massively parallel computing environments
for algorithm design will lead to significant progress in the coming years. Technological advances will clearly
improve the range of global optimization strategies that can be considered, but greater efforts in parallel
programming skills will be essential so that these high-performance platforms will have a true impact on these
important scientific problems.
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LOCATING SADDLEPOINTS

The potential energy hypersurface of an individual molecule describes its minimum energy (i.e., stable)
states as well as the transition structures linking these states. In other words, the local minima on the potential
energy surface correspond to the minimum energy conformations of a molecule, and first-order saddlepoints on
the surface correspond to transition states. These concepts can be extended to interacting molecular assemblies as
well (e.g., clusters, biomolecular systems with solvent).

With the advent of modern computational techniques, it has become possible to exhaustively search the
potential energy surface of individual molecules containing fewer than about 12 rotatable bonds (i.e., degrees of
freedom for the dihedral angles that define molecular geometry, along with bond lengths and bond angles, in
internal coordinate space) when classical (molecular mechanics-based) potential energy functions are employed.
The previous section has broadly described the issues and various algorithmic techniques for finding local and
global minima on such complex multidimensional energy surfaces. This section focuses on another aspect of
conformational searches: the identification of saddlepoints and their connection to chemical reactions.

In addition to a description of the conformational properties of individual molecules, the potential energy
surface can be employed to describe the energetics of chemical reactions. Therefore, searches on the potential
energy hypersurface of a molecule can extend to molecular reactions as well (Eksterowicz and Houk, 1993).
Reactants and products correspond to energy minima, whereas transition states linking products to reactants
usually correspond to first-order saddlepoints on the energy surface (although unusual symmetries can produce
higher-order transition states, including those of the "monkey-saddle" type). Thus, the location of stationary
points (particularly minima and saddlepoints) on potential energy surfaces represents an important and
challenging problem in computational chemistry.

In chemical applications, special conformational-space search methods have been devised for locating
minima on molecular mechanics-based potential energy surfaces. These methods include stochastic (Saunders,
1987; Chang et al., 1989; Ferguson and Raber, 1989) and deterministic, gridbased (Motoc et al., 1986; Lipton
and Still, 1988; Dammkoehler et al., 1989) approaches. Yet, with rare exception (Kolossvary and Guida, 1993),
conformational searches have not been performed in such a way that saddlepoints are located. Nonetheless, the
utility and indeed necessity of determining the conformational transition states that link these minima have
recently been emphasized (Anet, 1990). Whereas in the past, conformational searches have been synonymous
with location of energy minima, it is clear that in order to adequately study the conformational properties of
molecules it is essential to locate first-order saddlepoints as well.

Significant effort has addressed the problem of locating transition states on potential energy surfaces
derived from quantum mechanics calculations. A number of algorithms have been developed such as those that
rely on eigenvector-following techniques (Cerjan and Miller, 1981; Simons et al., 1983, 1984; Bell and Crighton,
1984; Simons, 1985; Baker, 1986). In these methods one begins a
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saddlepoint search at or near a local minimum that is found by standard minimization techniques. A spectral
decomposition is performed to find all the normal modes of the system (mass scaled eigenvalues and associated
eigenvectors of the Hessian matrix (i.e., second-derivative matrix of the potential energy); then one of the normal
modes is selected and followed in an ''uphill" direction (i.e., a direction that leads to an increase of potential
energy) until a saddlepoint is located. Evaluation of the energy gradient and Hessian matrix at each step of the
search is performed until a point on the surface is located at which the gradient is zero and the Hessian possesses
only one negative eigenvalue. In another approach, the linear synchronous transit method (Halgren and
Lipscomb, 1977) has been employed to aid in the location of saddlepoints. It locates a maximum along a path
connecting two structures and thus can be used to provide an initial guess for the transition state structure that
connects them. Methods that find the location of saddlepoints by beginning the search at points on the potential
energy surface that are of higher energy than the saddlepoint one wishes to locate have also been described
(Berry et al., 1988). Recent developments (Jorgensen et al., 1988; Culot et al., 1992) have led to improved
efficiency in locating transition states in calculations based on quantum mechanics-derived potential energy
surfaces. Nonetheless, the aforementioned saddlepoint searches sometimes fail to converge, or they converge to
critical points that are minima. Clearly, more robust algorithms are still needed, and this is an area that
mathematical optimizers may find very interesting.

It is conceivable that algorithms for locating transition states on potential energy surfaces derived from
calculations based on quantum mechanics could be employed for the location of conformational transition states
on molecular mechanics-derived potential energy surfaces once the minima have been located. However, these
algorithms have generally been used to study mechanisms of chemical reactions and have not been adequately
tested for locating such conformational transition structures. In a typical conformational search procedure, the
potential energy surface is scanned randomly or systematically and a large number of trial structures are
generated for energy optimization. These structures can be severely "distorted" geometrically in the sense that
bond lengths and angles lie out of the ranges observed experimentally, and van der Waals radii of atoms may
overlap. These structures must then be optimized by the standard, "greedy" descent methods of local
minimization toward a local minimum or toward a saddlepoint. However, for the quantum chemical calculation
of a reaction mechanism, the reactant and product are usually known, and uphill movement toward the
interconnecting saddlepoint is sought.

Conformational search procedures that locate first-order saddlepoints and minima with equal efficiency
would be of enormous utility. Even though advances in this area have been slow, some progress has been
achieved. For example, the so-called self-penalty walk method (Czerminski and Elber, 1990) provides an
example of an algorithm for the calculation of reaction paths in complex molecular systems when molecular
mechanics-derived potential energy functions are employed. However, it is likely that additional work will be
required to develop methods for the efficient conformational searching of saddlepoints. New algorithms for
conformational searches in which firstorder saddlepoints are efficiently located are clearly urgently needed.
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SAMPLING OF MINIMA AND SADDLEPOINTS

Many problems in computational chemistry require a concise description of the large-scale geometry and
topology of a high-dimensional potential surface. Usually, such a compact description will be statistical, and
many questions arise as to the appropriate ways of characterizing such a surface. Often such concise descriptions
are not what is sought; rather, one seeks a way of fairly sampling the surface and uncovering a few representative
examples of situations on the surface that are relevant to the appropriate chemistry. Some specific examples
include finding snapshots of crucial or typical configurations or movies of kinetic pathways. This allows what
one might call an artistic description of the chemical situation. Such a description is often looked down upon by
quantitative scientists as being "anecdotal," but it is important not to cut ourselves off from any route to
understanding. To make this point one might compare the kinds of understanding of ancient cultures that are
obtained from the numerous scholarly statistical studies of bookkeeping accounts and what we learn from the
great paintings of the same periods, which give us different perspectives on social life. The main danger of such
artistic representations is that one must have some guarantee that they do not simply represent a kind of beautiful
propaganda for an incorrect qualitative viewpoint. Clearly, statistics must be used to validate such individual
samples of a system's behavior.

Several chemical problems truly demand the solution of these mathematical problems connected with the
geometry of the potential surface. Such a global understanding is needed to be able to picture long time scale
complex events in chemical systems. One area in which this is clearly essential is the understanding of
conformational transitions of biological molecules. The regulation of biological molecules is quite precise and
relies on sometimes rather complicated motions of a biological molecule. The most well studied of these is the
so-called allosteric transition in hemoglobin, but indeed, the regulation of most genes also relies on these
phenomena. These regulation events involve rather long time scales from the molecular viewpoint. Their
understanding requires navigating through the complete configuration space. Another such long time scale
process that involves complex organization in the configuration space is biomolecular folding itself. By what
process is the structure of a biological molecule determined? In order to function, enzymes require a fairly
precise three-dimensional positioning of different chemical groups in the protein molecule. To achieve this
precise positioning of only a few groups, the collective interactions of the rest of the molecule must conspire to
form such a fairly rigid construction. Although the three-dimensional structures of protein molecules exhibit
some symmetries, they are exquisitely complex, and in addition, the architectures of folded protein are formed
from molecules that have no simple pattern in their one-dimensional sequence.

Understanding how the Brownian motion on an energy surface can funnel such a molecule to a very precise
structure is a major puzzle requiring a global analysis of the many-dimensional energy surface. The global
geometry of the potential energy surface also enters into the study of nonbiological chemical problems such as
those involving the structure and mechanical properties of amorphous materials. While crystalline solids can be
studied through the analysis of the ground state and the first few excited states, glasses and other amorphous
materials have a huge number of local structural configurations. Unlike a typical liquid, however, these
individual configurations last for incredibly long periods of time, and one must understand the statistics of the
different minimal energy structures and the nature of the transitions between them in order to quantify the slow
relaxations of such systems. The aging of amorphous materials in glasses shows that they do not obey the simple
equilibrium statistical mechanical laws so often used to characterize simple materials. At the same time, these
aging phenomena have great practical significance to the macroscopic properties (e.g., long time stability) of
materials important to such applications as fiber optics. The local minima are the mathematically simplest
objects to characterize statistically the potential energy surface. The
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crucial questions here are first, what do the minima look like and, second, how many of the different kinds of
minima exist on the surface? Sampling many minima of a potential energy surface can be carried out with
gradient descent techniques, and a great deal has been learned about the qualitative structural characteristics of
these minima for both biomolecules and glasses. The counting of minima seems to be of crucial importance as
well, since at the phenomenological level, the kinetics of amorphous materials are highly correlated with their
configurational entropy. At this point, no very good algorithm yet exists for doing this sort of counting in an
objective and reliable way, even on a computer.

Statistical mechanics is the study of the collective behavior of large numbers of interacting particles. Properties of
interests include those describing time-dependent, irreversible process. The basic principles of this discipline were
laid down in the nineteenth century by Ludwig Boltzmann, James Clerk Maxwell, and Josiah Willard Gibbs.

The very deepest minima of systems can be characterized by using techniques superficially similar to those
of thermodynamics and equilibrium statistical mechanics. Generalization of mean field theory for random
Hamiltonians is used. The low-lying states of heteropolymeric biological macromolecules have been studied in
this way. There is a very clear analogy to the phenomenon of broken ergodicity studied in spin glasses by the
quasi-equilibrium statistical mechanical methods. The problem of broken ergodicity is one that is central to
understanding the global topology of potential energy surfaces for such "random" systems. This problem plays a
rule both in the issues discussed here of biological macromolecules and amorphous materials, and in other
optimization problems as well. There are deep connections with the theory of NP-completeness, a fundamental
question in theoretical computer science. The formal questions of broken ergodicity in spin glasses (i.e., the
topology of low-energy states) have not been answered entirely unambiguously by experiment, and the question
of the nature of the low-lying states is one that is still hotly debated. An important route to understanding this
sort of broken ergodicity has been by the methods of rigorous statistical mechanics pioneered by mathematicians.
It has been shown rigorously in some higher-dimensional problems that the broken ergodicity imagined in
simple phenomenological theories of protein folding can, in fact, occur. It is still an open question, however, how
ergodicity is broken for three-dimensional systems, spin glass systems, or for the random heteropolymers
themselves.

Ergodicity is the capacity of a dynamical system spontaneously to sample all of its phase space.

One of the most interesting results of the theory of broken ergodicity based on quasi-equilibrium statistical
mechanics is that the low-energy states of a typical Hamiltonian are related to each other in a fashion that is
characterized by an ultrametric distance. This ultrametricity concept arose earlier in the study in pure
mathematics. The ultrametric organization may well play a rule in the dynamics on such surfaces, and
ultrametric hopping models have been widely discussed.

While the use of statistical energy surface topography is now coming to be accepted in the context of
biomolecules, there is a still deeper mathematical question in its application to glasses. This question is, How
does a Hamiltonian that is perfectly regular, having no explicit randomess, possess solutions that appear to be
totally irregular and aperiodic? A long-standing issue for the purist has been whether even hard spheres have, as
their most dense state, the simple regular packing characteristic of face-centered cubic (FCC) crystals. Recently a
proof of this was announced, but it has apparently been retracted. In fact, for the three-dimensional situation
there is little doubt from the experimental input that the dense state is in fact periodic. The question of the closest
packings in
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BOX 4.6 COMMENTS ON THE AMBIGUOUS CONCEPT OF ''STRUCTURE" FOR COMPLEX 
MOLECULES AND MACROMOLECULES

Owing to the special nature of their rules in life processes, biological macromolecules such as proteins,
nucleic acids, and carbohydrates have evolved into systems exhibiting a high degree of structural diversity
and complexity. Theoretical/Computational chemistry bears the responsibility of predicting, characterizing,
and explaining the biological reasons for the three-dimensional shapes or "structures" adopted by those
macromolecules.

However, researchers should be aware (particularly on first entering this problem area) that the
concept of "structure" has multiple interpretations that depend on the physical and chemical circumstances
involved.

As explained in the main text, prediction of the preferred structure adopted by any given molecule is
usually reduced in principle, if not in practice, to the study of minima on a suitable energy surface in a
multidimensional space of configurational coordinates. In many—but not all—cases, the global minimum
corresponds to the biologically active structure, while higher-lying relative minima correspond to inactive
denatured forms.

The figure below shows, in simple cartoon fashion, three generic energy surfaces. The simplest (a)
contains but a single minimum that would be easy to locate numerically. The next (b) shows multiple
minima and requires more effort if a full classification of extrema is warranted by the problem it represents.
Case (c) is most representative of the situation with biological macromolecules, with a vast array of minima
arranged in basins or valleys over a wide range of length scales. In this last circumstance, the concept of
"structure" depends in part on the level of accuracy that is warranted, and that level is strongly dependent
on temperature.

At very low temperature (e.g., a protein frozen in its aqueous medium), thermally excited vibrations will
be so feeble that the system of protein and water molecules would be trapped in the vicinity of a single
finegrained minimum. Raising the temperature stimulates transitions between neighboring microbasins, so
the relevant notion of ''structure" entails the average configuration for the broadened distribution. A simple
view would be that raising the temperature effectively smooths out the finer features of the complicated
energy surface. This amounts to passage from (c) to (b) in the figure.
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high-dimensional systems has many contacts with group theory and the theory of optimal coding.

In the vicinity of room temperature, where the aqueous medium is liquid, it is traditional to average over
the solvent degrees of freedom and to utilize the resulting "free energy surface" for biological
macromolecule studies. Consequently, the configuration space undergoes a reduction in dimensionality to
that of just the macromolecule's flexible degrees of freedom. At the same time, the surface to be searched
for minima becomes temperature dependent, so the number of minima it exhibits, where they are located,
and indeed which is the absolute minimum can vary. Furthermore, interbasin transitions can produce
substantial configurational fluctuations even in this reduced-dimensionality representation, requiring a
correspondingly permissive definition of "structure."

The existence of quasicrystals has made the problem an even richer one since even the existence of such
quasi-periodic structures was ruled out by "folk theorems" of physicists. It is likely that truly aperiodic crystals
can, in principle, exist in three dimensions. An important argument for this is based on tiling theory. It has been
shown that certain tiling problems are NP-complete. This implies that it is certainly very difficult to figure out
whether a periodic packing of such a tiling is possible. Thus, it seems that the problem of totally aperiodic crystal
phases for regular structures may be itself tied to the NP-completeness question.

The problem of transitions between minima on such a high-dimensional surface is in a still more primitive
state than the characterization of minima. The search for minima is itself a relatively stable computational
problem. The search for saddlepoints that connect individual minima is computationally much more difficult.
This is certainly a consequence of the unstable mode at such saddlepoints. Despite numerous efforts, there are no
entirely reliable methods for carrying out such a search. For many simple problems, finding a reasonably good
transition state is possible, but these techniques become still more complicated and less reliable as system size
increases. On the purely theoretical side, very simple models that relate the heights of barriers to the statistics of
minima have been developed, but almost no truly rigorous work has been done. Simply characterizing the
minima and the saddlepoints connecting a few of them does not give an entire description of significant
processes on a complex energy landscape. It is clear that one must understand something more about the basin of
attraction of any given minimum. If the nearby minima are not entirely uncorrelated, this basin of attraction will
depend on their structure as well. A characterization of the size of such funnels in biomolecular problems is
essential to understanding protein folding.

Similarly, in many such complex problems it has been imagined that specific kinetic pathways are
important. Again some work has already been done on the question of how specific pathways can emerge on a
statistical energy landscape. These ideas are, however, based on the quasi-equilibrium statistical mechanics of
such systems, and there are many questions about the rigor of this approach. Similarly, a good deal of work has
been carried out to characterize computationally pathways on complicated realistic potential energy surfaces.

Techniques based on path integrals have been used to good effect by Elber in studying the recombination of
ligands in biomolecules and in the folding events involved in the formation of a small helix from a coiled
polypeptide. These techniques tend to focus on individual optimal pathways, but it is also clear that sets of
pathways are very important in such problems. How these pathways are related to each other and how to
discover them and count them is still an open computational challenge.
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BOX 4.7 IMPLICATIONS OF DYNAMICAL CHAOS AT THE CLASSICAL LEVEL

A large part of modern computational chemistry is based on the solution of the equations of classical
mechanics for many-body systems. For these problems, the standard numerical integration techniques
found in classic textbooks only provide a simple framework for application and analysis. This is because
most of the theory of numerical analysis provides criteria for long-time stability for these smaller systems
with regular dynamics. Nevertheless, it is clear that for most many-body chemical systems, the differential
equations may have chaotic solutions primarily. Thus, it is of little use to talk about the stability of an
individual trajectory for tong times, particularly when methods with some stochastic elements (e.g.,
Langevin dynamics) are involved.

A necessary mathematical advance is an understanding of error estimation and long-time stability for
chaotic systems. In fact, one seeks a way of characterizing the accuracy in some statistical sense from
such a simulation, or collection of simulations, since an individual trajectory's details are certainly predicted
incorrectly. The classical theory of error estimates in numerical analysis is clearly inadequate for most
purposes and the theory of long-time stability for complex systems is rather at its infancy (Stuart and
Humphries, 1994).

A most striking example is in the old simulations of hard-sphere molecular dynamics showing
trajectories for times encompassing many, many collisions of a dilute gas (e.g., Alder and Wainwright,
1970). One can easily show that the trajectories were numerically inaccurate beyond the limit of machine
precision, even after only 10 collisions. Nevertheless, when the velocity correlation function was computed,
it exhibited a long-time tail that persisted out to 30 collision times, and this long-time tail's form as well as
amplitude agreed precisely with kinetic theory calculations. Thus, statistical properties can be accurate
even when individual trajectories are entirely incorrect.

A similar problem enters when one considers the use of "stochastic dynamics" methods in simulation
(e.g., pseudorandom forces are added to the systematic force to mimic a thermal reservoir). When only a
subsystem of a larger system (e.g., biomolecule pius solvent) is being studied, the appropriate equations of
motion are stochastic or Langevin equations. The most familiar example is the diffusion of biomolecules in
water. The theory of quadratures for such stochastic equations has long been of interest, but
comprehensive analyses of associated error estimates have been developed mainly from a relatively
simple point of view, such as via analysis of harmonic oscillators (Pastor et ai., 1988; Tuckerman and
Berne, 1991).

However, there are many important mathematical issues that arise in this connection. What is the
meaning of error analysis in this stochastic framework? Is it appropriate to compare results to parallel
approaches, such as molecular dynamics, where the stochastic forces are zero? Are asymptotic results as
the time step approaches zero relevant to practical problems? As discussed elsewhere in this report, the
complexity of biomolecular systems involves multiple conformations and numerous biologically relevant
pathways. And, given the severity of the time step problem in molecular dynamics (see pages 54–58), how
can qualitative and quantitative theories for evaluating simulation results be merged? Clearly, there is a
strong need for both aspects, but one can imagine that different numerical models in combination with
different integration or propagation methods could be designed to address various aspects of the dynamical
problems. Therefore, an organized theory for simulation evaluation, including local error analysis, longtime
behavior, and some kind of broader or "global" framework for evaluation, would be extremely valuable.
Such a theory could clearly aid in evaluating new models and methods as they arise, identifying the
appropriate tests for the various simulation protocols, and putting in perspective the biological results that
may emerge from any computer simulation.
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EFFICIENT GENERATION OF POINTS THAT SATISFY PHYSICAL CONSTRAINTS IN A
MANY-PARTICLE SYSTEM

Prototypical Problem

Consider N particles in a cube in three-dimensional space, each with x, y, and z coordinates in the range [O,
L]. The state of the system is then given by specifying the positions ri of all N points.

In the statistical mechanics modeling of condensed phases, one typically is interested in restricted sets of
particle configurations. For instance, one's interest is often restricted to only those states for which

Imagine that the points represent the locations of the centers of hard spheres of diameter unity. The
conditions state that the hard spheres do not overlap one another; that is, the spheres repel each other strongly
when they are close together, so that each center-center distance must be greater than unity.

For the present problem, we are interested in the regime where N is large, of the order of 102 to 106. The
volume is large enough so that N/L3 is in the range (0,21/2). In the actual problem of common interest for
computer simulation of materials, the system will satisfy periodic boundary conditions. In effect, this means that
the restriction above is more precisely stated as

and all vectors n with integer components.
The problem is to generate efficiently states of the system that satisfy these constraints. The states will more

than likely be generated by a stochastic process of some sort. A more ambitious goal is to generate states such
that all states that satisfy the constraints are equally likely to be generated. (More precisely, if the set of positions
{r1, ..., rN} is regarded as a set of random variables, the joint distribution function for these variables, which is
zero when one or more of the constraints is violated, should be a constant for values that satisfy the constraint.)

This is an example of a problem for which each constraint is relatively easy to state and express in terms of
a small number of the variables in the problem, and the number (or measure) of states that are consistent with the
constraints is very small compared with the total number of states, in fact vanishing exponentially as N increases.
This problem is related to that of generating possible states for an atomic fluid whose interatomic potential
precludes two atoms from getting close to one another. The rigid-sphere interpretation relates to the challenging
mathematical problem of existence and characterization of random sphere packings.

Variations on the Prototypical Problem

First Variation. Consider a random walk in a three-dimensional space that consists of N steps of unit
length and random direction. Let si for i > 1 be the ith step. The position

is the location of the random walker after the ith step, with r0 being equal to the origin. The only
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states of interest are those for which these positions never come close to one another. More precisely,

This problem is related to specifying the possible structures of a polymeric molecule. The goal is to
generate random walks that satisfy these conditions. As in the previous problem, the method of generation is
likely to be probabilistic. A stronger goal would be to generate states with a process such that all states that
satisfy the constraint are equally likely to be generated. (More precisely, if each step si of the random walk is
specified by a location on the surface of a unit sphere, the joint distribution function of the N steps should be zero
for sets of steps that violate the constraints and a constant for sets that satisfy the constraints.)

Second Variation. In problems of interest, there may also be some additional constraints on the locations;
for example, for some pairs of locations, there might be restrictions of the form

When the number of these restrictions is large enough to imply that only a small range of structures can
satisfy all the constraints, the problem becomes a special case of the problems that are solved by using the
methods of distance geometry, which is discussed in more detail in Chapter 3.

Third Variation. The various steps in the random walk of the previous problem might be correlated in the
sense that the probability distribution for si might depend on the value of si-1 or perhaps both si-1 and si-2.

In these problems, there are some constraints that are "easy" to satisfy (e.g., in the first problem each
particle must be inside the cubic box; in the second problem, each step must have unit length). Then there are
others that are "harder" to deal with. Whether a constraint is hard or easy to deal with is related, in general, to
whether it is concerned with just one of the basic vectors of the problem or with more than one.

Simplest Strategy

The simplest strategy for generating states that satisfy all the constraints is obviously to generate states that
satisfy the easy constraints and then delete those states that violate the hard constraints. This solution is practical,
if at all, only for relatively uninteresting situations. It works for the first problem, for example, only when the
density N/L3 is much lower than the maximum density allowed. The problem is that almost all of the states
generated will subsequently be deleted by this process.

More precisely, in the first problem one might imagine generating sets of N points, each of which is
randomly distributed in the cube, and then discarding sets that violate the conditions specified. The sets not
discarded then should be uniformly and randomly distributed among the states that do satisfy the conditions. The
difficulty with this approach is that the probability that a set of randomly generated points satisfies the condition
is of order exp(-aN) for large N, where a is a constant that depends on the density N/L3. For large N, therefore,
much of the computational effort is wasted.

An obviously more efficient procedure is to generate the set of positions one at a time and test each one to
ensure that it is far enough from the previous positions before generating the next position. If one violation of the
conditions is found this way, no effort need be expended to generate the remaining positions in the set or to test
them. Even this is not efficient enough. A significant
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amount of effort will be expended in generating partial sets of positions, only to find that the set must be
discarded because of the value of some position generated late in the sequence. This difficulty is sometimes
referred to as the problem of "exponential attrition" because of the exponentially small fraction of sets of
positions that are generated successfully.

Metropolis Monte Carlo Method

In this strategy one first generates one state that satisfies all the constraints; then this is used as the
beginning of a Markov process whose transition probabilities are such that transitions are allowed only to other
states that satisfy the constraints. In practice, this means that each transition typically involves a change of, at
most, one of the coordinates by a very small amount. The two difficulties with this method are the following:

1.  The set of states that satisfy the constraints may not be connected, so that with a particular initial
state it will be impossible to generate a very large fraction of the states.

2.  Even if the set of states that satisfy the constraints is connected, typical Markov processes explore
the range of accessible states relatively slowly.

Therefore, some entirely new ideas for dealing with this class of problems would be worthwhile.

Relationship of These Problems to More General Optimization Problems

Some special cases of these problems, especially the first and second variations described above, are closely
related to optimization problems that arise in chemical calculations. Chemical optimization problems typically
involve minimization of an energy or free energy that depends on the positions of atoms or groups of atoms. (See
pages 68–77 for a discussion of optimization problems and methods.) In more general problems, the object is not
to minimize the energy or free energy but to calculate the typical properties of all the states of low enough
energy that they might be populated at the temperature of interest. Such functions typically are very large and
positive for certain configurations in which atoms or molecules are very close. It is typically true that a
configuration in which any one pair of atoms is too close to one another has a high enough energy to make the
total energy of the configuration so high that it cannot possibly be a solution of the optimization problem (or so
high that it is not thermally populated). Thus, identification of states that are consistent with constraints of the
type mentioned can be a useful first step toward solving optimization problems in chemistry.

MOLECULAR DIVERSITY AND CORNBINATORIAL CHEMISTRY IN DRUG DISCOVERY

Overview of the Drug Discovery Process

The discovery of new drugs is a time-consuming, risky, and expensive process. These things are true even
though in the past 15 years there has been a dramatic increase in the number of three-dimensional structures of
proteins that can be used as scaffolds for the conceptual and computational aspects of drug design. The discovery
traditionally moves through several stages once the biological target has been chosen (see Science, 1994).

First, a moderately active compound, a "lead," is identified from clues provided by the literature, through
"random" screening of many compounds or through targeted screening of compounds identified by three-
dimensional searching or docking. If the three-dimensional structure of the biological target macromolecule is
known, then one may use three-dimensional searching to identify
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existing compounds that are complementary to the binding site in the target (Kuntz, 1992; Martin, 1992).
Alternatively, if a number of structurally unique compounds bind to the target, one may propose a three-
dimensional pharmacophore and search databases for matches to it (Martin, 1992).

Once a lead has been identified, hundreds to thousands of additional compounds are designed and
synthesized to optimize the biological profile. The cost and environmental impact of synthesis and patentability
are also important issues. If the three-dimensional structure of the biological target is known, then molecular
modeling might be used in the design (Erickson and Fesik, 1992). As testing data are accumulated, statistical
three-dimensional quantitative structure-activity relationships (three-dimensional QSAR) may help set priorities
for synthesis. Any attractive compounds found are tested in more detail through advanced protocols that more
reliably forecast therapeutic and toxicity potential.

A pharmacophore is a chemical identity and geometrical arrangement of the key substituents of a molecule that
confer biochemical or pharmacological effects.

Lastly, the surviving compounds are prioritized, and the best compound known at that time is prepared for
clinical trial.

New mathematical techniques could have an impact on the rate of new compound discovery if the potency
of compounds could be forecast more quickly and accurately before their synthesis. Many of the improvements
in computational chemistry discussed elsewhere in this report would also impact the ability to forecast affinity
based on the structure of the ligand and the macromolecular target. However, additional opportunities exist for
cases in which the structure of the macromolecular target is not known, cases for which the forecast is based on
three-dimensional QSAR investigations (Kubinyi, 1993). The most explored method is comparative molecular
field analysis (CoMFA; Cramer et al., 1988). With CoMFA, molecules are aligned with each other; then for each
molecule, the interaction energies with various probes are calculated at intersections of a three-dimensional
lattice that encloses all the molecules. The relationships between these thousands of energy values and the
potencies of the 10 to 100 molecules are established by the statistical method of partial least squares (PLS) with
leave-one-out cross-validation (see Frank and Friedman, 1993, for background on PLS and comparisons of the
method to other statistical procedures). When a CoMFA model is found, it generally has quite robust forecasting
ability: the average error in forecasting the potency of 85 compounds in eight datasets is 0.55 logs or 0.8
kilocalories per mole (Martin et al., in press).

However, there are indications that one may fail to find a model, even though one exists, because of the
coarseness of the lattice spacing (2 Å) and the sensitivity of PLS to noise. PLS can find only linear relationships
between properties and biological potency; a method that could detect nonlinear relationships would be an
improvement and might model more sets of data. Limited experiences with neural nets have shown no
improvement over PLS. There might be an optimization method that could select the relevant variables from a
pool of thousands. It would have to be roughly as fast as PLS (a minute or so to do leave-one-out cross-
validation on 25 compounds) since one of the elements of the analysis is to compare results with different
properties calculated at the lattice points, adding whole molecule properties, comparing alignment rules,
investigating outliers, and combining and separating subseries of molecules.

Sources of Molecular Diversity

The weak point in the whole scenario of new drug discovery has been identification of the "lead." There
may not be a "good" lead in a company's collection. The wrong choice can doom a project to never finding
compounds that merit advanced testing. Using only literature data to derive the lead may mean that the company
abandons the project because it cannot patent the compounds found. These concerns have led the industry to
focus on the importance of molecular diversity as a key
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ingredient in the search for a lead. Compared to just 10 years ago, orders of magnitude more compounds can be
designed, synthesized, and tested with newly developed strategies. These changes present an opportunity for the
imaginative application of mathematics.

Automated testing methods employing, simplifed assays, mixing strategies, robotics, bar-coding, etc., have
led many pharmaceutical and biotechnology companies to test every available compound, perhaps 105 to 106 of
them, in biological assays of interest (Gallop et al., 1994; Gordon et al., 1994). Testing a collection generally
takes approximately six months. This operation presents several challenges: (1) Is it really necessary to test all of
the compounds in order to identify the series of compounds that will show the activity? (2) Should a pilot set of
compounds be tested first to adjust the assay conditions and forecast how many active compounds will be found?
If so, how would this set be selected (3) What compounds, available from outside vendors, should be selected for
purchase to complement the set of in-house compounds? Is there a way to quantify their worth other than the
cost to synthesize in-house?

Concurrently, synthetic chemists developed new strategies that provide large numbers of compounds for
biological testing typically as mixtures. Such libraries, synthesized in a few months, can contain 104 to 10 7

different chemical structures (Baum, 1994). Although this number of compounds seems high, note that it has
been estimated that there are 10200 stable chemical compounds of molecular weight less than 750 that contain
only carbon, hydrogen, nitrogen, oxygen, and sulfur. Even factoring in their possibility of synthesis and realistic
chemical and physical properties still leaves on the order of 10180 compounds to consider. How, then, does one
choose which 104 compounds should be included in the first library, or the second?

A final strategy to enhance molecular diversity results from computer programs that design molecules to
meet specified three-dimensional criteria, typically based on the experimental structure of a protein binding site
(Rothstein and Murcko, 1993). The programs design molecules to meet geometric criteria and include
electrostatic complementarity at the level of force fields such as those used for molecular dynamics. The
diversity arises from the combinatorics: a protein binding site usually contains at least four or five hydrogen-
bonding or charged groups; a ligand might interact with most or all of them, and many different templates might
be able to fit into the binding site and orient polar groups for optimal interaction. Hence, it is expected that a
huge number of nicely fitting molecules might be designed. Although design programs could be set up to
produce only those molecules that could be synthesized readily, this severely limits the diversity. Hence, it is
likely that the designed molecules will have to be made by traditional synthesis. This places a realistic upper
limit of 25 molecules to be selected. Even if binding affinity could be forecast precisely, we are a long way from
forecasting every type of toxicity or drug metabolism quirk that a molecule might possess. Again, we face the
problem of selection of the most diverse sample from a population.

Current Computational Approaches to Compound Selection

There are three aspects to the problem of selecting samples from large collections of molecules: First, what
molecular properties will be used to describe the compounds? Second, how will the similarity of these properties
between pairs of molecules be quantified? Third, how will the molecules be grouped or clustered?

For datasets of size 104 and higher, the standard method of describing the molecules for clustering encodes
the presence or absence of substructural features in a bit-string, typically of length 256–1024 (Willett, 1987;
Hodes, 1989). In modern systems, these substructural features are recognized by enumerating all paths of length
07 in the molecular graph and using these to populate one or more of the bits (Weininger et al., 1994). It
typically takes one to two hours on a modern workstation to generate such fingerprints of a database of 105

compounds. The time required for this process increases linearly with the number of compounds.
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BOX 4.8 POSSIBILITY OF INTELLIGENT ALGORITHMS TO DETECT NOVEL PHENOMENA 
AUTOMATICALLY

The total amount of numerical information generated in a typical computer simulation is immense.
Whether the model system under study is inorganic or biological, classical or intrinsically quantum
mechanical, in thermal equilibrium or violently nonstationary, the processing of the data created is usually
structured to address a small set of often conceptually orthodox questions that have been selected
beforehand. Given the inappropriateness of trying to examine raw numerical information in tabular form,
this is entirely reasonable. Nevertheless, serendipitous discoveries that fall outside the preselected query
set indeed do occasionally occur, and their consequences can produce significant advances.

The usual procedures for carrying out computer simulations probably are far from optimal in detecting
initially unsuspected correlations and phenomena. This leads one to suspect that generic pattern-
recognizing algorithms might be constructed that would operate in conjunction with Monte Carlo or
molecular dynamics simulations and would effectively amplify the human scientist's limited capacity to pull
novel correlations out of huge files of numerical data. Generally speaking, humans are best at recognizing
visual patterns—after all, the human visual apparatus has been honed to exquisite sensitivity by
approximately a billion years of evolutionary trial. But in the scientific context this requires that just the right
graphs or figures be presented to the investigator, and in one respect it presupposes something about the
nature of the correlations to be examined. One hopes to transcend such human limitations, perhaps with a
carefully crafted form of open-ended artificial intelligence that incorporates pattern-detecting capacity free
from our human biases and limitations. In particular, computers ought to be able to "see" in spaces of
dimension higher than three and pick out significant patterns whose projection into two or three dimensions
would obscure the phenomena of interest.

This opportunity is not so much intended as an attempt to replace human researchers as it is to
magnify their wisdom and insight. In this respect, generic pattern-detecting software could be a powerful
device operating to maximize productivity. And it should not escape notice that such a tool is not restricted
just to simulation data, but in principle could also apply to other classes of large chemical databases
discussed elsewhere in this report.

The second step is to calculate the similarity of every molecule to every other molecule in the dataset. The
similarity measure traditionally used, the Tanimoto coefficient, is expressed as

where Simij is the similar i to molecule j, Fij is the number of features (bits set to 0 or 1) in common
between molecule i and molecule j, Fi is the number of bits set in molecule i, and Fj is the number of bits set in
molecule j. For the same 105 compounds, this process takes on the order of 24 hours. Since every molecule is
compared with every other, it scales as the square of the number of compounds. Lastly, the Jarvis-Patrick
clustering method (Jarvis and Patrick, 1973) is used to group the compounds. This method is based on
comparing the nearest neighbors of compounds and is very fast, taking only seconds to accomplish. Although
each of these steps is feasible, none is optimal.

Opportunities for Improvements in Computational Approaches to Compound Selection

Molecular fingerprints are not the best descriptor to use to select compounds for bioactivity since the
biological properties of compounds depend on their three-dimensional complementarily of shape and electronic
properties with those of the target biomolecule. Clearly, we would like to consider the
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three-dimensional structures of the molecules—shape, the location of intermolecular recognition sites such as
hydrogen-bonding or charged groups, and the way in which the position of these features changes with changes
in conformation. Speeding up such calculations or representations of the results would be a big help.

However, the problem of how to represent conformational flexibility in this context is a bigger challenge—
do we need a totally different way to represent the structures than coordinates or distances between pairs of
atoms? It is important to recognize that two-dimensional molecular structure is the basis of both chemical
synthesis strategy and patent claims, and so the representation must also include the two-dimensional structure.
This is a clear example where the choice of model is significant and must be the result of close collaboration
between mathematical and chemical scientists.

Any new molecular descriptor will require that one define a corresponding metric for the similarity or
distance between compounds to be used in grouping them. For example, in contrast to substructural features,
which are either present or absent, distances are continuous and do not fall so easily into a bit-string. Should
distances be binned—if so, should the bins be fuzzy or overlapping? How is similarity evaluated in such cases?

On the other hand, one might quantitate the similarity of two molecules by the size and composition of the
maximum common substructure. Experience with the Bron-Kerbosh algorithm (Bron and Kerbosh, 1973) has
shown a rate of 106 comparisons per hour. For a dataset of size 105, it would take 1010 comparisons or 104 hours
to prepare the similarity matrix! Similarly, 106 molecules would require 1012 comparisons and 106 hours.
Although parallelization might allow one to perform the calculations, a better algorithm might accomplish the
same thing with greater efficiency. It might be possible to eliminate most of the comparisons while retaining all
important ones.

Improvements in the grouping of compounds are sorely needed. The Jarvis-Patrick algorithm performs
poorly on sets of very diverse compounds. For example, a typical result produces a few large clusters, each
containing very different compounds, and many singletons. There are sometimes clusters that contain
compounds with a similarity of 0.2 on a scale of 0.0 to 1.0, with 1.0 the upper limit. Clearly, this is not clustering
similar compounds together.

Much better results are found, albeit with datasets of 1000, by using statistically based agglomerative
clustering methods. For 1000 compounds, the clustering takes approximately one day and would scale roughly as
the square of the number of compounds. Since we typically would expect to investigate no more than 1/100 as
many clusters as original compounds, divisive methods might have an advantage because in this approach,
clustering starts with one huge cluster, divides clusters into tighter ones, and could stop once the target number
of clusters was formed.

At this time, no method other than Jarvis-Patrick is known to the computational chemistry community that
will group 105 or 106 objects in a time scale of less than a week (Willett et al., 1986; Willett, 1987; Whaley and
Hodes, 1991). There are unpublished reports that the divisive Guenoche (1991) algorithm classifies 104

compounds overnight on a personal computer once the pairwise similarities have been calculated. However, it
seems possible that there may be better ways to discover the groups of compounds in a dataset.
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STATISTICAL ANALYSES OF FAMILIES OF STRUCTURES

The diversity of chemical structures is one of the hallmarks of modern experimental chemistry. The
problems of diversity and similarity are most prevalent in the study of biological molecules for which very
different sequences—that is, fundamental structures—give rise to molecules that have very similar overall three-
dimensional structures and often very similar functional properties. The Human Genome Project is devoted to
characterizing the myriad of proteins encoded in humans, but a still larger universe of proteins exists in other
living beings. Furthermore, it is easy to understand that the existing proteins are just a small subset of all possible
random heteropolymers. The same type of combinatorial complexity exists for many other classes of molecules.
In nature, we are familiar with the complexity of alkaloids or terpenes.

More and more molecular scientists are trying to understand how to use the information from a variety of
different molecules to understand the structure and function of a given one. It is now becoming possible, by
using combinatorial syntheses in the laboratory, to make 10 million variants of a single protein or 10,000
covalently connected frameworks such as those in a natural product. The most well known of these techniques is
that employed to make catalytic antibodies, but many other approaches are possible. A variety of mathematical
problems arise when one tries to make use of these resulting longitudinal data about molecular systems.

For naturally occurring biomolecules, one of the most important approaches is to understand the
evolutionary relationships between macromolecules. This study of the evolutionary relationship between
biomolecules has given rise to a variety of mathematical questions in probability theory and sequence analysis.
Biological macromolecules can be related to each other by various similarity measures, and at least in simple
models of molecular evolution, these similarity measures give rise to an ultrametric organization of the proteins.
A good deal of work has gone into developing algorithms that take the known sequences and infer from these a
parsimonious model of their biological descent.

Similar analyses based on the three-dimensional structure of molecules also present ongoing mathematical
problems. At the moment, the use of evolutionary similarity to infer three-dimensional structure is a common
and very important algorithm for people who have practical interests in the prediction of biomolecular structure.
Use of the theory of spin glasses to characterize random heteropolymers has also allowed the phrasing of
interesting questions such as the probability in a single experiment of obtaining a foldable protein molecule. This
is a question in which the statistics of low-lying energy states on the surface and the statistics of sequences must
be analyzed jointly and related to each other. Experiments of this type have recently been done and seem to agree
in many respects with the results of theory, but there are many questions of physicochemical principle and of
mathematical analysis for this theory.

An emerging technology is the use of multiple rounds of mutation, recombination, and selection to obtain
interesting macromolecules or combinatorial covalent structures. Very little is understood as yet about the
mathematical constraints on finding molecules in this way, but the mathematics of such artificial evolution
approaches should be quite challenging. Understanding the navigational problems in a high-dimensional
sequence space may also have great relevance to understanding natural evolution. Is it punctuated or is it gradual
as many have claimed in the past? Artificial evolution approaches may obviate the need to completely
understand and design biological macromolecules, but there will be a large number of interesting mathematical
problems connected with the design of efficient artificial evolution experiments.
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QUANTUM MONTE CARLO SOLUTION OF THE SCHRÖDINGER EQUATION

Many-body problems in physics are often treated by a Monte Carlo (MC) approach (e.g., Hammersley and
Handscomb, 1964; Kalos and Whitlock, 1986). The Monte Carlo method is statistical and draws its name from
the famous gambling casinos of Monaco because of the rule of random numbers or coin tosses in the method.

Problems handled by Monte Carlo are generally of two types, probabilistic or deterministic, depending on
whether they are connected with random processes. In the probabilistic case, the simple Monte Carlo approach is
to observe the occurrence of random numbers, chosen in a way that they directly simulate the physical random
processes of the original problem, and to infer the desired solution from the behavior of these random numbers.
In the deterministic case, the power of the Monte Carlo approach is the capability of carrying out numerical
calculations in cases where the equations that describe the essence of a problem and its underlying structure are
not solvable by alternative means. The underlying structure or formal expression also describes some unrelated
random process, and therefore the deterministic problem can be solved numerically by a Monte Carlo simulation
of the corresponding probabilistic problem.

The essential feature common to all Monte Carlo computations is that at some point one will need to
substitute for a random variable a corresponding set of values with the statistical properties of the random
variable. The values that are substituted are called random numbers. They are not really random, however,
because if they were it would be impossible to repeat a particular run of a computer program. An absolute
requirement in debugging a computer code is the ability to repeat a particular run of the program. If real random
numbers were used, no calculation could be repeated exactly, and attempts to check for errors would be
extremely difficult. It is essential that one be able to repeat a calculation when program changes are made or
when the program is moved to a new computer.

For electronic computation it is desirable to calculate easily by a completely specified rule a sequence of
numbers as required that will satisfy reasonable statistical tests for randomness for the Monte Carlo problem of
interest. Such a sequence is called pseudorandom and clearly cannot pass every possible statistical test.

Most of the pseudorandom number generators now in use are special cases of the relation (Heermann, 1986;
Kalos and Whitlock, 1986)

One initiates the generator by starting with a vector of j + 1 numbers x0, x1, . . . , xj. The generators are
characterized by a period τ that in the best case cannot exceed Pj+1. The length of τ and the statistical properties
of the pseudorandom sequences depend on the values of aj, b, and P.

With the choice of aj = 0, j >1, and b = 0, one obtains the multiplicative congruential generator,

Recent work has shown that a set of parameters λ and P can be chosen with confidence to give desired
statistical properties in many-dimensional spaces (Kalos and Whitlock, 1986). There are many other generators
available; the interested reader should consult the references.

With parallel computers and supercomputers capable of very large calculations, very long pseudorandom
sequences are necessary. In addition, there remains the desire to have reproducible

MATHEMATICAL RESEARCH OPPORTUNITIES FROM THEORETICAL/COMPUTATIONAL CHEMISTRY 94

Mathematical Challenges from Theoretical/Computational Chemistry

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/4886


runs. The question of independence of separate sequences to be used in parallel remains a research issue.
Quantum Monte Carlo (QMC), as used here, refers to a set of methods to solve the Schrödinger equation

(exactly, in two of the three variants listed below) to within a statistical error by random walks in the many-
dimensional space. These methods—variational MC, diffusion MC, and Green's-function MC—are based on the
formal similarity between the Schrödinger equation in imaginary time and a multidimensional classical diffusion
equation.

Variational Monte Carlo (VMC)

For ΨT(R) a known approximate (trial) wavefunction, where R is the 3N set of coordinates of the N-particle
system, VMC (Kalos and Whitlock, 1986; Hammond et al., 1994) uses the Metropolis algorithm (Hammersley
and Handscomb, 1964; Heermann, 1986; Kalos and Whitlock, 1986; Hammond et al., 1994) to sample | ΨT

|2.
Therefore, any expectation value with respect to this trial function can be computed including the variational
energy of ΨT. To begin a calculation, an initial distribution of walkers is generated. In order to create a
distribution of |ΨT| 2, these walkers take a series of Metropolis steps to equilibrate, followed by another series of
Metropolis steps at which the local energy

is calculated for each walker; here H is the Hamiltonian. Averaging the local energy over the walkers at the
sampling points yields the variational energy, which is an upper bound to the exact energy of the ground state.
An alternative strategy is to minimize the variance of the local energies. A strength of the VMC method is the
capability of treating trial functions that depend explicitly on interelectronic coordinates—there is no integral
problem associated with the use of trial functions containing such coordinate dependence for many-electron
systems.

Diffusion Monte Carlo (DMC)

If one multiplies the time-dependent Schrödinger equation in imaginary time by ΨT and rewrites it in terms
of a new probability distribution f(R,t)   (R,t)ΨT(R), one obtains

where Di  2/2mi,  EL is the local energy, and ET (the trial energy) represents a constant shift in the zero
of energy. At large simulation (imaginary) time, the function (R,t) tends to the ground state wavefunction.

The algorithm (Hammond et al., 1994) is initiated with a distribution (ensemble) of several hundred walkers
taken from f(R,0) = |ΨT(R)|2, which is then evolved forward in time after a sequence of equilibration steps. The
three terms on the right-hand side then correspond to diffusion with diffusion constant Di, a drift term associated
with the trial function, and a branching term that derives this designation from the DMC equation being, in the
absence of the first two terms on the right-hand side, a first-order kinetic equation. Because f can, in general,
assume both positive and negative values, which would preclude the interpretation of f as a probability for
fermion systems, one alternative is to impose the nodes of the ground state wavefunction ΨT on  so that f is
always positive. This is the fixed-node approximation, which can be shown to give an upper bound to the ground
state energy.
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After sufficiently long simulation time in which the steady-state solution of the DMC equation has been
attained, the ground state energy is obtained as the average value of the local energy now averaged over the
mixed distribution (R)ΨT(R). This is an improvement over VMC and associated sampling from |ΨT|2 because
DMC contains information on the exact ground state  (in the fixednode approximation). The ground state
energy has the zero-variance property of QMC; that is, in the limit that ΨT approaches , the variance of the MC
estimate of the energy approaches zero.

Green's Function Monte Carlo (GFMC)

The integral equation form of the Schrödinger equation can also be modeled by a stochastic process, which
leads immediately to the consideration of Green's functions. GFMC approaches (Kalos and Whitlock, 1986)
have been investigated for the time-independent as well as the time-dependent Schrödinger equations. In
practice, however, there are only convergent when the Fermi energy is close to the Bose energy and the trial
function has sufficiently accurate nodes. New directions with GFMC that overcome these limitations still
encounter limitations that restrict their application, at present, to first-row atoms. Nevertheless, GFMC remains
an area for continued scrutiny.

Research Opportunities

The various forms of Monte Carlo for solving the Schrödinger equation (VMC, DMC, and GFMC) could
each be improved by better sampling methods. Wavefunctions typically used for importance sampling often
recover at best 80 to 95% of the correlation energy, the energy difference between the Hartree-Fock
approximation and the nonrelativistic limit, for molecules consisting of first-row atoms. Beyond the first row,
computer time dependence on atomic number, which has been estimated as za where α = 5.5 to 6.5, is a major
limiting factor that has led to the introduction of analytical functions to describe inner-shell electrons (i.e.,
pseudopotentials or effective core potentials). Another area in which improvements are eagerly sought is in
methods that go beyond the fixed-node approximation. Currently, these methods are limited to atoms and
molecules containing no more than 6 to 10 electrons.
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NONADIABATIC PHENOMENA2

The Born-Oppenheimer (BO) adiabatic approximation is the basis of the well-known separation of the
many-body problem of electronic and nuclear motion into two separate many-body problems. It is

2 This presentation follows Hirschfelder and Meath (1967).
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also applied to separate other ''fast'' and "slow" subsystems including vibrational and rotational modes of
molecules. The combination of these approximations leads to the double adiabatic approximation that has been
applied in the study of solids as well as molecules.

For most applications, the approximation of separation of electronic and nuclear motion does not lead to
appreciable error. For high precision, however, the BO energy has to be corrected for the coupling of electronic
and nuclear motions. The coupling is important if, for example,

•   two potential energy surfaces of the same symmetry cross in the BO approximation—correction terms
prevent such crossings—or are close and more-or-less parallel over a moderate range of configuration
space;

•   the electronic state of a polyatomic molecule is degenerate for a symmetric arrangement of nuclei;
coupling leads to Jahn-Teller and Rennet-Teller effects;

•   the nuclear velocities are large as in high-energy molecular collisions;
•   the molecule is in a high rotational state and has nonzero electronic angular momentum.

There are two kinds of correction terms for the coupling of electronic and nuclear motions. The diagonal
corrections shift the energy levels. The nondiagonal corrections produce and broaden the natural line width to the
energy levels and cause transitions between quantum states. The energy corrected for the diagonal coupling
terms is called the adiabatic energy and gives the best possible energy curves and surfaces.

A number of problems arise in the inclusion of nondiagonal corrections. They occur because of divergences
in coupling matrix elements in regions where potential energy surfaces approach very closely or because the BO
electronic basis functions may not be appropriate for the region of close approach.

BO deviations arise for two reasons. First, coupling terms appear in the kinetic energy when the coordinates
are transformed from the laboratory-fixed axes to the body-fixed (molecular) axes. Second, the Breit-Pauli
relativistic corrections to the electrostatic Hamiltonian lead to spin-spin, spin-orbit, and other magnetic coupling
terms. The present discussion neglects the latter and focuses on the former.

The Hamiltonian in the laboratory-fixed frame may be written

where primes denote the laboratory frame, ma is the mass of the α-th nucleus in units of electron mass, and
U is the potential energy given by the Coulomb interactions (nuclear, electronic-nuclear, and electronic) of all
the particles of the system. Since U is a function only of relative distances between the particles, one separates
out the center-of-mass motion and is left with 3(n+N)-3 relative coordinates for an n-electron and N-nucleus
molecular system. The choice of optimum coordinates for polyatomic molecules is not straightforward, and so
the focus here, for simplicity, is on the diatomic molecule case. Then the Hamiltonian takes the form

where µ = ma. mb/(ma + mb) and
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Here Za and Zb are the nuclear charges, rai is the distance separating nucleus a from electron i, and R is the
distance between nuclei a and b.

If one assumes that the electronic Schrödinger equation,

can be solved exactly for the complete set of eigenfunctions k (r,R) and eigenvalues Ek(R), then the total
Schrödinger equation for nuclear and electronic motions,

can be solved by expanding Ψ as follows,

Here r represents all the coordinates of the electrons and k is the set of electronic quantum numbers. This
leads to a set of equations for the functions φk(R) that determine the nuclear motion of the system,

An a sterisk denotes complex conjugate. The quantities defined by Equation (28) give rise to velocity-
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dependent forces on the nuclei. For real l, however, the diagonal term vanishes.
In practice, Equation (27) is extremely difficult to solve and various approximations to it are introduced.

The BO approximation corresponds to neglecting all of the coupling terms. Equation (27) then becomes a
Schrödinger equation for nuclear motion,

In this approximation, the El(R) determined from Equation (24) become the potential energy for the nuclear
motion.

The adiabatic approximation corresponds to neglecting all nondiagonal terms in Equation (27), which
results in a Schrödinger-type equation for nuclear motion,

where the potential for nuclear motion is

The diagonal elements Ell (R) are effectively a correction to the potential energy due to the coupling
between the electronic and nuclear motions.

The adiabatic approximation gives the best potential energy function. As defined here the adiabatic
approximation to the energy is an upper bound to the true energy since it can be expressed as the expectation
value to the correct Hamiltonian for the molecule evaluated with an approximate wave function.

The nonadiabatic approximation corresponds to consideration of the nondiagonal as well as the diagonal
elements Elk (R). This is extremely difficult to carry out but has been accomplished for H2 by using variational
basis set (Kolos and Wolniewicz, 1960) and quantum Monte Carlo approaches (Traynor et al., 1991; see also
Ceperly and Alder, 1987).

For processes occurring in excited states, it appears clear that for molecules more complicated than H2

alternative approaches must be found. This is an area demanding fundamental improvements if breakthroughs
are to be achieved.
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EVALUATION OF INTEGRALS WITH HIGHLY OSCILLATORY INTEGRANDS:
QUANTUM DYNAMICS WITH PATH INTEGRALS

The solutions of many quantum dynamics problems can be formulated in terms of path integrals. Indeed,
there is a formulation of quantum mechanics (less familiar than the Schrödinger wave function formulation, the
Heisenberg matrix formulation, or the Dirac Hilbert space formulation) based
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entirely on the use of path integrals (Feynman and Hibbs, 1965). Path integrals are closely related to some of the
mathematical approaches used to describe classical Brownian motion. A prototypical mathematical problem and
a class of methods for solving it are described first; then a more general discussion of the problem is presented.

Prototypical Problem

This discussion of the prototypical problem follows closely the discussion of Doll et al. (1988). Consider
the integral I(t) =  dx ρ(x) eitf(x) where t is a real parameter corresponding to the time, x is the set of
coordinates for a many-dimensional space, and ρ(x) and f(x) are functions in that space. The function ρ(x) is
positive semidefinite and can without loss of generality be taken as normalized to unity. Thus, it can be regarded
as a probability density in the space. The function f(x) is real (for this prototype problem).

For problems of interest, the dimensionality of the space can be very large (from 1 to a hundred to
thousands), and the complexity of the function precludes analytic integration. For any particular x, ρ(x) and f(x)
can be evaluated numerically, and typically there is much more computation required for the evaluation of ρ than f.

The range of the x integration may be bounded, but more often it is unbounded. For typical problems of
interest, however, integrals of the form  dx ρ(x) (f(x))n exist for all positive integers n.

The goal is usually to evaluate the integral for a specific value of t (or for a set of values of t) by making use
of calculated values of ρ and f at appropriately chosen points and to estimate the accuracy of the answer. In some
cases, the desired quantity is the area under the function

or perhaps the Fourier transform

Techniques for evaluation of such integrals of I would be extremely worthwhile, but this discussion focuses
on the evaluation of I(t) for specific values of t.

Discussion of the Problem

A standard way of attacking this problem would be a Monte Carlo integration scheme in which points x are
generated with a probability distribution of ρ(x) and f is evaluated at these points. Then

where N points are generated and xn is the nth point. For small values of t, this can be a practical procedure.
For large values of t, however, this procedure is extremely inefficient because of the large amount of cancellation
among the various terms.

If t is large and f is not a constant, it is clear that the integrand is highly oscillatory; thus, small regions of
space where f is varying will tend to contribute small net amounts to the integrand for large t. Nevertheless,
individual points in such a region will contribute to the sum an exponential whose magnitude is unity.
Cancellation among the various terms will give an accurate and small answer only when each such small region
is sampled many times in the Monte Carlo evaluation.
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The regions of the space in which df(x)/dx is zero or small will make the major contributions to the integral
for large t. Thus, a scheme that concentrates the Monte Carlo sampling at and near such regions would be
desirable. Such schemes are useally called "stationary-phase" methods, since at such points the phase of the
exponential is stationary.

Stationary-Phase Monte Carlo Methods

A variety of sampling methods have been developed that focus on the stationary-phase points (Doll, 1984;
Filinov, 1986; Doll et al., 1988). Here the approach of Doll et al. (1988), which is similar to the others, is outlined.

The integral of interest can be rewritten identically as

where

and P(y) is an arbitrary normalized probability distribution. (This result is exact if the range of integration is
over all positive and negative values of the integration variables.) The function P( y) is typically chosen to be a
Gaussian distribution centered at y = 0. D(x,t) is called a "damping function," because for such a typical choice
of P(y), D(x,t) is largest where f is stationary and hence it damps the integrand in Equation (29) away from the
stationary points.

An evaluation of D(x,t) poses the same problems as evaluation of I(t). However, for specific choices of P,
various approximations for D can be constructed and used as the basis for a more efficient sampling method for
the evaluation of I. For example, if P(y) is a narrow Gaussian function with a maximum at y = 0, then for large t
an approximation can be constructed by replacing ρ(x-y)/ρ(x) by unity and performing a Taylor expansion of the
exponent. One then obtains an approximation for D called the "first-order gradient approximation":

Then

This integral, which is the major contribution to the correct answer, is generally more amenable to
evaluation by sampling, in this case by using ρ(x)D0(x,t) as the probability distribution. A complete method
would require the development of procedures to estimate the correction terms that must be added on the right to
make this an equality (see Doll et al., 1988, for additional details). The essential idea of these procedures is that
use of a precise approximate formula for D automatically includes much of the cancellation responsible for
decreasing the value of I.

The stationary-phase Monte Carlo methods provide some useful ideas for formulating tractable sampling
methods for solving some problems of interest. It would be worthwhile to develop better versions of these
methods both for I(t) and for its Fourier transform.
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Alternative Approaches to the Prototype Problem

In many cases of interest, the function I(t) is known to be an analytic function of t at the origin. This
knowledge may be of use in developing approximate evaluation techniques based on analytic continuation. Most
analytic continuation methods are based on a more detailed formulation of the problem of interest that is tied
closely to the physical nature of the problem. But even for this simple formulation of the prototype problem, one
might ask whether the fact that I(t) is an analytic function of (complex) t for some region that includes the origin
suggests any alternate ways of calculating I(t) accurately.

For example, one might consider the use of Padé approximants (i.e., ratios of polynomials; Baker and
Gammel, 1970), which are often used for approximate analytical continuation of analytic functions, especially
meromorphic functions. Expanding the exponential in I(t) gives

where

The first few Taylor series coefficients can then be estimated by sampling on ρ(x) in the usual way, but the
difficulty of making accurate estimates grows as n increases. These coefficients might then be used to fit I(t)
with a Padé approximant.

This approach raises a number of mathematical questions.
Are there any sampling techniques that would be especially effective in evaluating the coefficients for large n?
Does the statistical error in the αn make it inappropriate to use Padé approximants to fit the function? Are

there better alternatives?
If the Padé approximant method is valid, how is the uncertainty in I(t) related to the statistical uncertainty of

the individual αn?
Does the fact that the integral expression for I(t) is dominated by stationary points in the x space give any

insights into how to evaluate αn or how to construct appropriate Padé approximants?

Other Formulations and Solutions of the Basic Problem

The nature and dimensionality of the x space and the specific form of the ρ(x) function are determined by
the nature of the quantum mechanical problem to be solved. In general, however, the coordinates of x are
Cartesian (or other) coordinates for a mechanical system. Similarly, the form of the function f(x) is determined
by the nature of the problem. Various analytic continuation techniques have been applied to attack specific
special cases of the prototype problem. The question then arises as to whether these are isolated solutions of
specific problems or special cases of an underlying, not yet discovered, general method for solving problems of
this type. This is not the place to delve into the details of specific problems; instead, some of the relevant
mathematical principles involved are highlighted. For additional discussion of related problems, the reader is
referred to Doll (1984), Makri (1991), and Wolynes (1987).
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Analytic Continuation in Time. In some problems, the goal is to evaluate a function of time t of the form

More generally, there is a function of a complex variable z of the form

that is analytic in a region including the positive real axis and part of the positive imaginary axis, and for
which h(t) = lim   0+ H(  + it). The function g(z,x) is an analytic function of all its arguments, and f(x) is
real (for real x]). In many cases, the formulation in Equation (31) is required to make the problem well defined,
because g(it, x) is purely imaginary and the integrals in Equation (30) are not absolutely convergent (for an
infinite range of integration).

The calculation of H(z) for real z presents a tractable sampling problem because g(z,x) is real for real z.
Then, sampling a set of points distributed with a probability density proportional to g(z, x) and calculating f at
those points allow H to be calculated for real z. In fact, as long as z has a positive real part, the problem of
evaluating H can be converted to a well-defined sampling problem, because g(z,x) -  for large positive
and negative values of the integration variables. Then g(z,x) can be used as a probability distribution, and the
right side of Equation (31) can be expressed as a ratio of two averages over this distribution:

For complex values of z, however, this sampling problem may become intractable because the quantities to
be averaged, exp [i g(z,x)]f( x  )  and  exp , are complex and oscillatory. This can pose the same difficulty as that
discussed for the prototypical problem above. This difficulty becomes acute in the limit that z becomes purely
imaginary, because the "probability distribution function" approaches unity and is not normalizable.

A variety of analytic continuation methods have been used to solve problems of this type. One strategy is to
perform tractable sampling calculations to obtain H(z) for real z and then use Padé approximant techniques to
estimate H as z approaches the imaginary axis (Miller et al., 1983; Thirumalai and Berne, 1983; Jacquet and
Miller, 1985; Yamashita and Miller, 1985; Makri and Miller, 1989). These techniques motivate the same sorts of
mathematical questions as those listed above for a different approach to analytic continuation.
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Deformation of the Integration Contours. Another technique has been used in certain situations in which
the integrand is an analytic function of all the variables in x. The integration is from-  to along the real line
for each of these variable. Deformation of these contours of integration and evaluation of the resulting integrals
by sampling methods can be an effective technique if the deformed contours come near or pass through
stationary-phase points of the integrand (Chang and Miller, 1987; Mak and Chandler, 1991). In one situation in
which this was used (Mak and Chandler, 1991), the contour was described by a set of parameters that were
varied during the calculation to maximize some measure of the success of the sampling process being used to
calculate the integral.

Most General Formulation. Perhaps the most general formulation of these problems is the following one.
Given a set of complex variables z1, ..., zn and a function of these variables g(z1, ...., Zn) that is an analytic
function of all these variables for a domain that includes the real axis for each of them, calculate the following
complex function of m complex variables:

The method should work for highly oscillatory functions and should take into account the fact that each
evaluation of g and the location of stationary-phase points are expensive. Here z1, . . . , zm are analogous to the t
in previous examples, and zm+1, ..., zn are the integration variables.
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FAST ALGEBRAIC TRANSFORMATION METHODS

Numerous problems require rapid evaluation of a product of a matrix and a vector,

This arises in the transformation from one basis in a linear space to another. If computed as written, this
transformation computes the n values of the transform in an amount of work proportional to n2. However, there
are both exact and approximate methods that can compute such a transform much more efficiently in a variety of
cases.

One of the most famous is the Fourier transform, which is frequently used to transform from physical space
to frequency space. The fast Fourier transform (FFT) is a well-known algorithm for computing the n values of
the transform in an amount of work proportional to n log2 n. The FFT is an exact method, not an approximation:
in exact arithmetic, it computes the sum exactly by a reordering of the summands. Although this algorithm is
remarkably successful, recent advances have been made by further exploiting its algebraic structure.

Efficient implementation of large multidimensional FFTs on modern computers is memory bound This can
be seen from the following timings for a Sun Sparcstation 10 performing an FFT on a two-dimensional image of
size 2K by 2K words using the standard FFT algorithm. When carried out on a machine with 64 megabytes of
random access memory (RAM), the algorithm executes in 66 seconds. However, on a machine with only 32
megabytes of RAM, the algorithm takes more than two hours, due to the fact that the 2K by 2K dataset cannot fit
in RAM and data must be moved in and out of memory during the calculation. Recently, J.R. Johnson and R.W.
Johnson (private communication, June 1994) reported that a truly multidimensional version of the FFT algorithm
has been developed that accomplishes the same computation in only 75 seconds on a 32-megabyte machine and
47 seconds on a 64-megabyte machine.

A recent example of approximate methods is the fast multipole expansion technique, which takes advantage
of special properties of the matrix (aij). This technique has been successfully applied to evaluate Coulombic
potentials in molecular dynamics simulations (Ding et al., 1992). This idea has been extended (Draghicescu,
1994) to a broad class of matrices using a general approximation procedure. These more general techniques
would apply directly to the non-Coulombic potentials
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arising in periodic problems through the use of Ewald sums.
A closely related algebraic operation occurs in the evaluation of multilinear forms such as those that appear

in density functional methods for calculating ground electronic states in quantum electronic structures. A bilinear
form B((zi), (xi)) can always be written in terms of a matrix:

As written, the bilinear form would require O(n2) operations to evaluate. It can be computed instead by
using the intermediate vector (yi) defined above, calculation of which requires O(n) operations, as

This way of evaluating a bilinear form can greatly reduce overall computation time, depending on how
efficiently yi can be computed.

In density functional methods for calculating ground electronic states in quantum electronic structures, it is
desired to approximate multilinear forms including integrals of the form

where

(Here, µi denotes a multi-index, say (pi,qi, ri) so that 
In particular, such a representation arises via an expansion

Hence,

The evaluation of ρ at a single point provides an example of the alternatives for evaluating a bilinear form.
Using the representation involving the matrix (Cij requires n2 operations, whereas the expression involving the 's
requires m·n operations. If m  n, the latter approach will be more efficient.

The above integral can be viewed as a quadrilinear form involving the coefficients . Multilinear forms
can be evaluated in a variety of ways. It is tempting to represent them in terms of a precomputed tensor (a matrix
for a bilinear form). Recently, Bagheri et al. (1994) have observed that it can be more efficient, in both time and
memory, not to precompute expressions.
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The original integral can be written

By using a suitable quadrature rule, this could be approximated via

Let Q = q2 denote the total number of quadrature points; the quadrature approximation can be calculated in
an amount of work proportional to Qnm.

On the other hand, the original integral can be expressed as

where computation of the intermediate quantities

has been introduced, which adds only O(n2m) work. The summation over i, i', j, j' requires an amount of
work and storage proportional to n4 to evaluate. It would be more efficient to use the former technique if the
quadrature could be done sufficiently accurately with Q  n3 /m points.

The integral form involving ρ can be written as

where K is an operator defined by

If one thinks of an integral simply as a very large summation, the analogy between the integral form and the
original bilinear form is apparent. With a rapid way to evaluate K, there might be a faster way to evaluate the
bilinear form. (Alternative ways to evaluate ρ, based on similar considerations, have already been discussed.)

Observe that K is simply the solution operator for Poisson's equation
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With this in mind, there are numerous ways to evaluate the action of K approximately, using discrete
methods for approximating the solution of Poisson's equation. For example, the multigrid method can be used to
do this in a very efficient way. The analogy with quadrature suggests using a grid with q points and solving
Poisson's equation, with a multigrid method in O(q) work. Then the complete evaluation could be done in O
(qmn) work. This potentially would be faster than direct evaluation of the integrals.
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5

Cultural Issues and Barriers to Interdisciplinary Work

The disparate natures of the fields of mathematics and chemistry have led to quite different training
frameworks, which in turn continuously influence and are influenced by the research styles and practices that are
most common in the two communities. Both fields are highly heterogeneous, containing many distinct research
subfields, each with its own style, technical language, and point of view. While sweeping generalities are
consequently inaccurate, broad stylistic differences can be identified in the ways in which mathematicians and
chemists think, approach problems, and interact with their own and other communities. This chapter attempts to
identify specific impediments to interactions between mathematics and chemistry, beyond the general factors
affecting interdisciplinary research (see National Research Council and Institute of Medicine, 1990, for example).

MOTIVATION AND CONNECTIONS

Many of the problems that interest and drive computational/theoretical chemists are practical (chemical
syntheses, understanding of structure-function relationships in macromolecules, drug design, and so forth). To
investigate these problems, chemists must build theories and perform numerical simulations to aid in
understanding phenomena that can potentially be verified by experiment or yield new (predictive) data. The
importance of mathematics in chemistry is revealed by the success of chemists in developing effective
algorithms not only for specialized problems in chemistry, but also for generic mathematical problems—for
example, evaluating integrals, calculating matrix eigenvalues, storing and compressing data, finding
multidimensional optima and stationary points, and generating numerical solutions to the one-dimensional
Schrödinger equation.

The key rule of mathematics in computational chemistry highlights an anomaly: although theoretical
chemists understand sophisticated mathematics and make heavy use of the mathematical literature, they have
typically not involved mathematicians directly in either the development of models or algorithms or the
derivation of formal properties of equations and solutions. In fact, theoretical chemists have become accustomed
to self-reliance in mathematics. To date, this system has worked because most leading computational chemists
have significantly more training in mathematics than the minimum recommended today for an American chemist
(see Box 5.1).

By contrast to the situation in chemistry, the motivation for studying problems in much of pure mathematics
does not depend on any connection to an application. Mathematical problems are often studied because of their
inherent beauty, richness, and depth, without considering utility or relevance in any time frame. Even when
addressing real-world applications, mathematicians tend to view problems as generic rather than specific.

In particular, ''real'' problems, whether from the biological or physical sciences, criminology, or
cryptography, are almost always posed incompletely in a strictly mathematical sense. The transformation of a
real-world problem into a tractable mathematical form involves increasing levels of abstraction and assumption;
the physical terms are defined in a mathematical framework, and various components of the problem may be
removed or idealized to build a model that emphasizes what are believed to be the most crucial features.
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At its best—which is usually when the model building is done collaboratively, drawing on the particular
insights and strengths of both mathematical and chemical scientists—this diagnostic approach is extremely
valuable, leading to both theoretical and numerical understanding of the model, which can then return both
quantitative information and conceptual understanding about the original physical problem. Indeed, carefully
designed models can suggest and explain properties that are counterintuitive or unexpected to the problem posers
themselves. An example is found in macroscopic models of supercoiled DNA, in which higher buckling
catastrophes, as extensions to elasticity theory, were recently found. Furthermore, analysis of mathematical
models can indicate directions for additional physical and numerical experimentation, as well as for extensions to
the model. A potentially negative effect of mathematical abstraction, however, is that the theoretical formulation
may lose its relevance to the original application that motivated it.

EFFECTS OF DISCIPLINARY BOUNDARIES

Beyond the "cultural" differences just described, attempts to build collaborations between mathematicians
and chemists encounter boundaries imposed within most universities as well as within other structures in which
disciplinary divisions are strong. These borders are especially difficult to cross early in a scientist's career,
ironically when the potential for interdisciplinary work may be greatest because of the appeal of "new frontiers."
Institutional practices influence the style of work that is valued (and hence often pursued) in each discipline, as
well as the level of regular interaction and communication. Since many computational chemists and
mathematicians are faculty members at research universities, both fields are affected by the value system of
academia, in which recognition (promotion and tenure) requires a record of individual accomplishment judged as
outstanding by one's peers. During the process of creating a portfolio of publications, any perceived dilution of a
faculty member's personal contribution through collaborations may be seen as undesirable. This discouragement
of collaborative work early in one's career applies to both mathematics and chemistry, although chemists have a
strong countervailing tradition of working in groups.

For mathematicians, the potential career damage of collaboration rises when it involves work in a field seen
as peripheral to mathematics. In some instances, interdisciplinary work may be regarded by one's mathematical
colleagues as "not real mathematics" or as less valuable than traditional mathematics. Most academic
mathematicians would agree that it is difficult to obtain accurate and convincing evaluations of
"interdisciplinary" work (meaning work that involves significant contributions from other sciences) and research
in nontraditional areas of mathematics. In this connection, there is a recent report on the recognition and reward
system in the mathematical sciences (Joint Policy Board for Mathematics, 1994). Such issues are particularly
worrying for junior mathematicians, since it would be unusual for nonmathematicians to be asked for help in a
tenure or promotion evaluation; mathematics departments might well be reluctant to rely on outsiders for
judgments and decisions viewed as a departmental prerogative. Another related issue is the value attached to
work in which an existing body of mathematics is applied to another scientific problem area; even if the impact
is great and the work represents a significant scientific advance, it is not ''new mathematics,'' and hence may be
accorded little weight in an evaluation of research contributions.

Because of the tendency to preserve and protect departmental boundaries, mathematics departments are ill-
equipped to cope with questions that inevitably arise if mathematicians become seriously interested in
interdisciplinary problems. For example, if a young mathematician is hired as a
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numerical analyst and subsequently becomes interested in chemical statistical mechanics, should this be viewed
as a loss or a gain?

BOX 5.1 AMERICAN CHEMICAL SOCIETY CURRICULUM STANDARDS FOR
MATHEMATICAL COURSE WORK

"Students should emerge from an ACS-approved program in chemistry with:

•   A firm foundation in the fundamentals and applications of calculus, including knowledge of differential
equations and proficiency with partial derivatives.

•   An understanding of the basic principles of linear algebra and practical knowledge of statistics with
applications to such problems as experimental design, validation of data, and optimization procedures.

•   Experience with computers, including programming, numerical and non-numerical algorithms,
simulations, data acquisition, and use of databases for information handling and retrieval."

SOURCE: Undergraduate Professional Education in Chemistry: Guidelines and Evaluation
Procedures, American Chemical Society, Washington, D.C., 1992, p. 11.

For academic chemistry departments, analogous principles of departmental autonomy can affect chemists
seeking to work with mathematicians. Because theoretical/computational chemists must often demonstrate the
applications of their work to experimental areas of chemistry, fundamental work of a mathematical nature—for
example, algorithm development or identification of problem features amenable to mathematical attack—may be
undervalued. On balance, chemistry departments have more experience in evaluating multidisciplinary research,
soliciting judgments as needed from a variety of scientists both inside and outside the department. A further
positive effect on interdisciplinary work is that chemistry departments tend to value research that has a
significant impact on thinking, research, and practice in chemistry and other areas.

For both fields, the difficulty of interdisciplinary collaboration is exacerbated by the lack of a well-
established network of contacts between mathematicians and chemists. On most university campuses, chemistry
and mathematics departments are physically separate, so casual daily contact does not occur. An effort is
typically required for faculty to attend all the seminars in their own department, let alone in other departments.
This reality aggravates the difficulty not only of initiating a collaboration, but also of developing an appreciation
of the other discipline's challenges. Faculty members are not immune to misperceptions and stereotypes:
chemists may regard mathematicians as unapproachable or uninterested in chemistry problems; mathematicians
may not realize that chemistry problems contain interesting and novel mathematics.

There are, however, exceptions. For instance, in the United Kingdom there is a long fruitful history of
productive mathematical research being initiated by theoretical scientists ("natural philosophers") employed as
faculty members of mathematics departments. This goes back to Newton, but the tradition continues to modern
times. D.R. Hartree and P.A.M. Dirac are recent examples at Cambridge, and C.A. Coulson spent most of his
career as a professor of mathematics at Oxford. Some departments in the United States also have established
atmospheres that are conducive to collaborative work.

Outside of academia (e.g., pharmaceutical companies), cross-disciplinary work between chemists and
mathematicians has succeeded because the problems of disciplinary boundaries are less pervasive in many
instances, and team efforts are often the norm. Issues of tenure, grants, and promotion are nonexistent or less
important. These settings should provide models for collaborative research.

CULTURAL ISSUES AND BARRIERS TO INTERDISCIPLINARY WORK 111

Mathematical Challenges from Theoretical/Computational Chemistry

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/4886


EFFECTS OF THE CURRICULUM

The disparate natures of mathematics and chemistry have led to different training frameworks, which in turn
continuously influence and are influenced by the research style and practices in the two fields. The typical
curricula encountered by students of chemistry and mathematics, both undergraduate and graduate, do not help
to decrease the gaps described above.

In mathematics, basic courses rarely involve exposure to the physical "roots" of problems; mathematicians
study idealized problems as exemplars, not for details of the real-world problem. Part of the gap specifically
between mathematics and chemistry can be explained by long-standing pedagogical practices in mathematics.
Much of classical applied mathematics is based on constructions associated with mechanics and physics: every
student of mathematics studies the heat equation, elastic rods, electrical networks, and fluid flow. However, no
problems explicitly associated with chemistry are widely taught to or recognized by mathematicians.

There is little time or incentive for mathematics students to learn chemistry at a substantive level, let alone
to study interesting chemistry problems. At the undergraduate level, some mathematics curricula require courses
in a physical science, but these are more often in physics than chemistry. Although undergraduate
mathematicians sometimes take freshman chemistry (frequently a descriptive course), they are unlikely to study
physical or organic chemistry. Graduate students in mathematics do not typically take many courses outside their
own department and hence have no convenient mechanism for learning about mathematical problems in
chemistry.

Education of chemists currently involves little exposure to advanced concepts in modern mathematics (see
Box 5.1). Undergraduate chemists take calculus and (perhaps) ordinary differential equations, linear algebra, or
numerical methods, but seldom study abstract algebra, differential geometry, numerical analysis, partial
differential equations, probability, or topology. Graduate students in chemistry rarely take courses in
mathematics departments. Some chemists believe that undergraduate chemistry courses do not require high-level
mathematics and prefer instead to build chemical intuition by descriptive methods. For chemistry students and
faculty interested in learning modern mathematics, the mathematics curriculum is structured like a tree, with
courses of potential interest to chemists at the end of a very long branch of prerequisites; the effect is to
discourage chemists from obtaining any knowledge of advanced topics.

LANGUAGE DIFFERENCES

Language barriers ranging from conspicuous to subtle must be overcome by anyone who wishes to pursue
interdisciplinary work between mathematics and chemistry. At the most obvious level, specialization and the
internal communication requirements of mathematics and chemistry have created two technical languages. Thus,
fundamental concepts that occur in only one field need to be defined either in the technical language of the other
or in a common natural language. Mathematical examples include Pisot numbers, ambient isotropy, and
wavelets; chemical examples include ligand, pharmacophore, and racemate.

Within mathematics, each research subdiscipline continually refines concepts and introduces new technical
jargon, making it very difficult even for mathematicians in slightly different research areas to communicate with
each other. Similar language problems exist in chemistry, though perhaps to a lesser degree. On the
mathematical side, the problem is compounded by preferences for an abbreviated writing style. The "abstract
minimalism" approach to writing taken in much of the mathematics literature can make graduate texts and
research papers in mathematics almost impenetrable except to the most determined readers.
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BOX 5.2 INFORMATION SOURCES ABOUT THEORETICAL/COMPUTATIONAL CHEMISTRY

For a mathematician who wants to get involved with theoretical and computational chemistry, the best
source of information should be the chemists at his or her own institution or research center. The American
Chemical Society (ACS) publishes a directory (Directory of Graduate Research) that lists the research
interests and recent publications of academic chemists, if one wishes to look further afield. Those
mathematical scientists who have established productive collaborative or interdisciplinary lines of research
often observe that one must be a good listener and be willing to devote time and energy to learning
nuances of language and concepts.

There are a number of printed reviews available. For molecular modeling, the book series Reviews in
Computational Chemistry (D. Boyd and K. Lipkowitz, eds., VCH Publishers, New York), gives a good
overview of the field. Also, a visit to the exposition at an ACS national meeting (held twice a year) will give a
feeling for the large number of software vendors in this field, the type of software available, and the types of
problems of interest to chemists. The November 1993 issue of Chemical Reviews was also devoted to this
subject. A variety of approaches to computer-based drug design are discussed in the series
Comprehensive Medicinal Chemistry (Pergamon Press, Oxford).

For electronic structure problems, the literature is very scattered. The book series Advances in
Quantum Chemistry reviews the more mathematical aspects of the field along with some very applied
results. The July/August 1991 issue of Chemical Reviews contained reviews on a wide range of
applications. There is unfortunately no comprehensive review of the algorithms involved in popular
programs, although the user's guides to GAUSSIAN, MELD, and HONDO list many of the papers on which
these programs are based. Also, the Modern Techniques in Computational Chemistry reports (E. Clementi,
ed., ESCOM Science Publishers, The Netherlands) discuss many algorithms. The book series Relativistic
and Electron Correlation Effects in Molecules and Solids (G.L. Malli, ed., Plenum Press, New York) and the
series Methods in Computational Molecular Physics (G.H.F. Diercksen and S. Wilson, eds., Reidel
Publishing, Dordrecht) also contain several volumes devoted to methods for quantum chemistry. The
annual "Sanibel" meeting organized by the Quantum Theory Project at the University of Florida (and now
held at St. Augustine, Florida) is a good place to meet quantum chemists. The papers from that meeting
are published annually in a special symposium series from the International Journal of Quantum Chemistry.

An excellent discussion of the molecular dynamics method, Monte Carlo calculations, and related
methods for computer simulation studies of materials is contained in Computer Simulation of Liquids (M.P.
Allen and D.J. Tildesley, Oxford University Press, 1987). This monograph is a useful resource for learning
about the theory of such simulations as well as the algorithms used in research.

Finally, the Computational Chemistry List is a very active electronic clearinghouse for information on
that subject. Interested readers may subscribe by sending their name, affiliation, and electronic mail
address to chemistry-request@osc.edu.

In addition to separate sets of terminology, mathematicians and chemists face several varieties of linguistic
confusion. Similar concepts in both disciplines are sometimes denoted by different words. For example, a
(nontrivial) "link" to a mathematician is a collection of elastic circles that are mutually entangled and cannot be
separated spatially into subcollections; to a chemist, a "catenane" (from the Latin "catena" or chain) is a
collection of circular molecules held together by topological bonds, not by chemical bonds. Mathematics invokes
the concept of graph isomorphism type, whereas chemists speak of connectivity of the molecular graph.

At the other extreme, identical technical names may be used by the two disciplines for different concepts or
for concepts that are similar but vary in precision. For example, the term "topology" is
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used in science as a catchall word describing shape phenomena, but it has an exact technical meaning in
mathematics. The word "homotopic" can refer to deformation of paths in mathematics and to interconvertible
protons in nuclear magnetic resonance (NMR) spectroscopy.

BOX 5.3 INFORMATION SOURCES ABOUT THE MATHEMATICAL SCIENCES

Journals and Newsletters

•   Acta Numerica contains an annual review article on important developments in numerical analysis.
•   Bulletin of the Institute of Mathematical Statistics contains information on meetings and articles on items

of current interest in statistics.
•   Mathematical Reviews contains short reviews of articles on a wide spectrum of mathematical topics.
•   Proceedings of the International Congress of Mathematicians is published every four years and contains

invited survey articles by leading mathematicians on recent mathematical progress.
•   Notices of the American Mathematical Society contains information on meetings and articles on items of

current interest in core mathematics.
•   SIAM News is the news journal of the Society for Industrial and Applied Mathematics, containing

information on meetings and items of current interest in applied and applicable mathematics.
•   SIAM Review contains technical review papers on subjects in applied and numerical mathematics.

Electronic Information

•   e-MATH is the electronic information connection to the American Mathematical Society. Information is
available on meetings, membership, electronic sources of mathematics information, etc. Telnet e-
math.ams.org; login and password are both "e-math" (lower case).

•   NA DIGEST is a numerical analysis electronic newsletter; for information, send e-mail to na.help@na-
net.ornl.gov.

•   NETLIB is a database of public-domain computer programs with e-mail address netlib@ornl.gov.

TOWARD A FRUITFUL COLLABORATION

Because research inherently moves into the unknown, there is no way to predict reliably which areas of
mathematics and chemistry might work together effectively. Interactions between computational chemists and
computational mathematicians are perhaps the most obviously rewarding today for addressing large-scale
computational problems that occur in quantum chemistry, molecular mechanics, and molecular dynamics; these
areas seem promising for serious collaborations since progress is likely to be made only by combining
significant expertise in chemistry, mathematics, and computer science. However, the ranges of opportunity and
success stories are very broad (see Chapters 3 and 4 of this report), and fruitful interactions may emerge between
chemists and mathematicians in any subfield.

The ideal interdisciplinary collaboration often begins with personal contacts between two or more scientists
who share an interest in a particular problem. Just as the experimental chemist might tend to approach the
theoretical/computational chemist for assistance in certain areas, it is perhaps more
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common for a chemist to initiate a mathematics-chemistry collaboration. Recently, however, there has been an
increasing emphasis on involvement by mathematical scientists in "grand challenge" problems, and some applied
mathematicians have actively sought connections with chemistry.

Once a contact has been initiated, the success of a collaboration depends on a strong sense of mutual respect
and benefit among the participants. These feelings are essential so that each partner is willing to learn new
science as needed (e.g., protein chemistry for the mathematician, optimization theory for the chemist) and to
adapt to a somewhat different style than he or she is accustomed to, welcoming a combination of theory,
computation, and physical intuition toward solution of a problem. Such a synergistic process allows an
"evolution" of solutions that can progressively address more of the complexity of the realistic problem and
incorporate new physical data as they become available.
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6

Conclusions and Recommendations

The committee has examined evidence supplied to it in the form of prior reports, expert testimony at its
meetings, selected studies of the scientific literature, and personal contacts in the mathematical sciences and
chemistry communities. As a result of these investigations and its collective evaluation of the available
information, the committee has reached the following conclusions.

•   Several notable "success stories" can be identified, illustrating the value of interdisciplinary stimulation
and synergistic research collaboration involving cooperation between the mathematical sciences and the
theoretical/computational chemistry communities.

•   Many opportunities appear to exist for further collaborations between the mathematical and chemical
sciences that could result in high-quality scholarship and research progress that would advance national
interests. The productivity of applied computational chemistry would likely be enhanced as a result,
which could be potentially significant for industry.

•   Active encouragement of further collaborations is warranted because it would likely result in an
acceleration of such research progress.

•   Cultural differences between the mathematics and the chemistry communities, involving language,
training, aesthetics, and research style, have tended to act as barriers to collaboration, even in
circumstances that might otherwise suggest the benefit of cooperation.

•   Institutional structures and reward systems in the academic community have often placed significant
difficulties in the way of collaborative research across traditional disciplinary boundaries, which can be
especially inhibiting to those in early career stages.

•   Government funding agencies have for the most part made constructive efforts to identify and fund
worthy interdisciplinary and collaborative research. However, this process is still somewhat haphazard.
Agencies tend to be organized along traditional disciplinary lines, and the evaluation of interdisciplinary
proposals relies on personal contacts between program managers and on timely and comprehensive
responses from what is typically a small pool of qualified reviewers. The time lapse involved in the
proposal evaluation process thus has often been anomalously long.

•   To a large extent, both mathematical scientists and theoretical/computational chemists are relatively
unaware of the most exciting recent advances in each others' fields. Consequently both groups tend to
be insensitive to the opportunities for interdisciplinary cross-fertilization that could produce intellectual
novelty and productivity enhancements on both sides.

•   The system of prizes and awards administered by the mathematical sciences and chemistry professional
societies is currently not geared to recognize and reward interdisciplinary collaborative research
advances.

•   The national environment—including Congress, funding agencies, and the professional societies (see,
e.g., Joint Policy Board for Mathematics, 1994)—has become perceptibly more conducive to
encouraging and supporting interdisciplinary and collaborative research, particularly as it may concern
industrial innovation and productivity. Government agencies in particular are currently in a mood to
actively encourage joint industrial-academic research, even though proprietary rights barriers to free
collaboration are recognized to exist.

•   The overwhelming volume of specialized technical literature aggravates the communication problems
between fields and occasionally leads to wasted effort, redundancy, and rediscovery. It appears that
well-researched and well-written review articles spanning normally disconnected specialties in the
mathematical sciences and in theoretical/computational chemistry represent a disproportionately small
fraction of the technical literature, in spite of the fact that they can eliminate redundant effort.
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In response to these conclusions and to the insights gained from its study, the committee makes the
following recommendations:

Undergraduate Education. The best way to attract scientists to interdisciplinary work is to get them
interested as undergraduates. It is recommended that universities encourage undergraduate interdisciplinary
research courses, seminars, and summer programs. For example, mathematical sciences departments could
institute seminars for undergraduates in which chemists (and other scientists) would be invited to discuss
chemistry research areas that might benefit from interaction with mathematics. The committee recommends that
chemistry departments establish seminars for undergraduates in which mathematical scientists would be invited
to discuss modern mathematics. Graduate students (and interested faculty) would of course be welcome to attend
these seminars.

In the experience of the committee members, one very successful vehicle for getting mathematics and
chemistry undergraduates interested in research is the REU (Research Experience for Undergraduates) program
sponsored by the National Science Foundation (NSF). In addition to fostering interdisciplinary undergraduate
activity at research universities, there is a real educational opportunity here for four-year liberal arts institutions
that traditionally encourage undergraduates to write senior honors theses and to otherwise construct, expand, and
explore their own undergraduate education.

Graduate Education. Departments in the mathematical and chemical sciences should encourage graduate
degrees (both M.S. and Ph.D.) that involve dual (mathematics and chemistry) mentoring. Dual mentoring
activity between chemistry and physics and chemistry and biology has been successful in many universities. The
committee recommends that mathematics graduate students consider a minor in chemistry instead of a minor in
an area of mathematics related to their research specialty. Theoretical and computational chemistry graduate
students should consider a minor in mathematics or, alternatively, take a core of mathematical courses
appropriate to their interest (perhaps in the framework of a special "interdisciplinary track"). One way to
encourage cross-disciplinary graduate education is to allow graduate students in one area to enroll in upper-level
undergraduate courses in another area for graduate credit.

Faculty Interaction. Mathematics and chemistry departments should on occasion invite a person from the
other area to speak in a research seminar or a colloquium. Lists of speakers of potential interest to industry
should be circulated to local industrial laboratories, and vice versa.

Interdisciplinary Research. The committee recommends that mathematics and chemistry departments
encourage and value individual and collaborative research that is at the interface of the two disciplines. Such
work has the potential for significant intellectual impact on computational chemistry, and hence on the future
evolution of chemical research and its applications to problems of importance in our society.

Professional Societies. The American Mathematical Society (AMS) issued a policy statement in 1994 that
supports interdisciplinary research. The second goal of that statement is to "connect the power of mathematics
and mathematical thinking to problems in science, technology, and society." This policy statement is reinforced
by specific recommendations to "enlarge the scope and extent of interdisciplinary research connecting
mathematics with other fields" and to "emphasize the value of such connections during the mathematical training
of both undergraduate and graduate students" (American Mathematical Society, undated).

Professional meetings in mathematics and chemistry—for instance, those of the AMS, American
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Chemical Society, Society for Industrial and Applied Mathematics (SIAM), and the Chemical Physics
Division of the American Physical Society—would benefit from talks very much like the seminar and
colloquium talks described in the recommendation for faculty interaction above, from shorter presentations in
special sessions, and from panel discussions. There are already some promising moves in this direction as
reflected, for example, by recent AMS sessions on mathematics and molecular biology or SIAM sessions on
molecular chemistry problems and optimization. These sessions at national and regional professional society
meetings could generate a mailing list of interested mathematicians and chemists, which could be the kernel of a
community of people interested in interdisciplinary research. Appropriate specialized interest groups such as
already exist for other fields might be established. One way to encourage these interests is by initiating small
interdisciplinary workshops, perhaps incorporating tutorials for students. Examples of successful
interdisciplinary meetings are the mathematics and molecular biology series in Santa Fe and the mathematical
physiology series held at the Mathematical Sciences Research Institute at the University of California at
Berkeley. Funding agencies have in the past funded carefully planned interdisciplinary meetings.

Prizes and Awards. The committee recommends that professional societies in the mathematical and
chemical sciences examine the feasibility of establishing awards and named lectureships for work at the
mathematics-chemistry interface. High-level public recognition by peers would be a major step toward breaking
down interdisciplinary barriers.

Expository Articles and Books. Professional journals in mathematics and chemistry could enhance their
quality, appeal, and influence by publishing expository articles on work at the mathematics chemistry interface.
There is a shortage of books written for someone who is mathematically (chemically) sophisticated and desires
fairly precise but nonrigorous chemical (mathematical) explanations. The committee encourages mathematicians
and chemists to write expository books aimed at this interdisciplinary area.

Interdisciplinary and Industrial Postdoctorals and Sabbaticals. Mathematics and chemistry departments
should encourage postdoctoral and faculty sabbatical study at the mathematics-chemistry interface. The
committee recommends that the chemical software, pharmaceutical, and chemical industries expand their use of
mathematics postdoctorals and faculty on sabbatical leave, and increase their cooperation with and utilization of
existing NSF programs such as the University-Industry Cooperative Research Program in the Mathematical
Sciences; Industry-Based Graduate Research Assistantships and Cooperative Fellowships in the Mathematical
Sciences; Mathematical Sciences University-Industry Postdoctoral Research Fellowships; and Mathematical
Sciences University-Industry Senior Research Fellowships. Another opportunity in this regard exists at the
Institute for Mathematics and Its Applications at the University of Minnesota, which has an active industrial
postdoctoral research program with the aim of broadening the perspectives of recent doctoral recipients in the
mathematical sciences and preparing them for research careers involving industrial interaction.
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Afterword

In the course of its study the committee returned several times to the question of how to maximize the
impact of its work and how to measure that impact. To achieve maximum influence, leaders of the mathematical
sciences community and researchers at the interface of the mathematical sciences and chemistry were invited to
supply input to the committee to ensure that a broad range of experience and expertise was sampled. Emphasis
was put on writing a report that would appeal both to mathematical scientists and to theoretical/computational
chemists. A dissemination effort including electronic and hard-copy publication was planned to make the report
widely available and to convey its recommendations to a variety of community leaders and policymakers.

Because the promise of interdisciplinary work between the mathematical sciences and theoretical/
computational chemistry is so great, the committee suggests that the cognizant boards of the National Research
Council (NRC) invite testimony five years hence from community leaders and federal program managers to
assess whether progress has been made in achieving this promise. It would be worth attempting to gauge
specifically whether the present report helped to bridge the stylistic and linguistic gap between the two fields
addressed, especially since future NRC studies on interdisciplinary topics might benefit from the committee's
experiences.

AFTERWORD 121

Mathematical Challenges from Theoretical/Computational Chemistry

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/4886


AFTERWORD 122

Mathematical Challenges from Theoretical/Computational Chemistry

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/4886


Glossary

The following entries represent words, phrases, abbreviations, and acronyms that appear in this report. In
many cases, definitions have been given in the text itself, but not with each occurrence. This collection is not
offered as an exhaustive mathematics-chemistry bilingual dictionary, but rather as a representative guide to the
kinds of technical terms often used by the respective communities and an aid to the reader. It contains examples
of multiple meanings that can degrade communication between well-intentioned, but differently trained,
professionals. Even without reading the main text, a perusal of this Glossary may convey a sense of the linguistic
barriers that occasionally inhibit effective collaboration.
Ab initio method— Usually, quantum chemical computation procedures that explicitly include all electrons and utilize

their full Hamiltonian operator; occasionally used to describe pseudopotential methods or other
approaches with minimal semi-empirical input.

ACS— American Chemical Society.

Adiabatic— Sufficiently slow variation of the externally controllable parameters of a quantum mechanical
system so that the quantum eigenstate occupation probabilities remain unchanged over time.

Adjacency matrix— For an n-atom molecule, an n × n matrix with unity as the i, jth entry if atoms i and j share a
covalent bond; otherwise it is zero.

Advection— Similar in spirit to ''convection,'' but referring to forced flow under more general circumstances.

Affinity— Capacity for binding between two molecular units that leads to a more or less stable chemical
combination.

Alkaloids— Nitrogen-containing organic compounds of natural origin that act as bases in solution; examples
are nicotine, quinine, morphine, and lysergic acid.

Alkane— Saturated hydrocarbon (i.e., containing only single bonds between pairs of carbon atoms and
carbon-hydrogen pairs). In the strict usage this refers to molecules in which the skeleton of carbon-
carbon single bonds has the form of a Cayley tree and so exhibits the chemical formula CnH2n+2;
occasionally it refers to saturated hydrocarbons with cyclic skeletal closures (cycloalkanes) that
have lower relative hydrogen content.

Amino acid— Organic acid containing an amino (nitrogen-hydrogen) group and a carboxyl group, usually in
neighboring locations; the modular building blocks of polypeptides and proteins.

AMS— American Mathematical Society.

Anionic site— Location in a protein, gel, catalytic solid, etc., that bears an excess negative charge of one or more
fundamental units (the electron charge).
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APS— American Physical Society.

Assay— Experimental procedure to determine the magnitude of a property of a substance. Usually used in a
biological or biochemical context.

Band reduction— Algorithmic process applied to matrices to result in all nonzero terms being close to the diagonal.

Bar-coding— Familiar supermarket technology applied to efficient automated screening of compounds in the
pharmaceutical industry: physical labels for packages with patterns of black and white parallel bars
that encode text and numeric information.

Bechgaard salts— Organoselenium ionic compounds exhibiting low-temperature superconductivity.

Biological assay— An experimental procedure to test molecules for their ability to elicit a biochemical or
pharmacological response.

Born-Oppenheimer ap-
proximation, potential
surface—

Approximate separation of variables in atomic and molecular quantum mechanics justified by the
large ratio of nuclear to electron masses; also the potential energy surface resulting therefrom, as a
function of nuclear positions.

Breit-Pauli relativistic
corrections—

An approximate correction for relativistic effects, used as a perturbation to solutions of the
intrinsically nonrelativistic Schrödinger wave equation.

Buckyball— Nickname for fullerene (see below). Usually applied to the prototypical C60 molecule.

Catalytic antibodies— Proteins central to the immune response that have been artificially endowed with catalytic
properties.

Catenane— Chemical compound consisting of two or more ring molecules that are unconnected by chemical
bonds but linked by topological entanglement.

Cayley tree— Linear graph (vertices linked by bonds) that is connected but contains no closed polygons.

Chirality— Geometric or topological property of a molecule or other structured object distinguishing it from
its mirror image (i.e., "handedness").

Clique detection— Computational procedure to identify the common subgraph(s) of a pair of graphs, especially the
maximal common subgraph.

Cluster analysis, cluster-
ing—

The grouping of chemical compounds, usually on the basis of many distinct attributes, so that
members of any one grouping resemble one another, but are clearly different from those of all
other groupings.

COLUMBUS— Software package for quantum chemical calculations.

Combinatorial synthesis
(combinatorial chem-
istry)—

A procedure for the simultaneous synthesis of a collection of related molecules, usually
accomplished on a polymeric support.
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Condensed phase— A state of matter in which the constituent particles (atoms or molecules) are densely packed in
space and in constant interaction with neighbors; usually refers to liquids, liquid crystals, glasses,
crystalline solids, or quasicrystals.

Conformation, confor-
mation space—

Geometric specification of the spatial arrangement of a molecule, possibly flexible; the space of all
possible arrangements.

Cut-and-projection
method—

Technique for generating quasi-crystal structures by isolating slabs from higher-dimensional
periodic structures and projecting them into three-dimensional space.

DARC— Commercial software for managing chemical information databases.

Daylight— Chemical database software.

Density matrix— Hermitian matrix composed as the direct product of a wavefunction and its complex conjugate.
"Reduced density matrices" are obtained by integrating over some of the variables in the full
density matrix.

Distance geometry— Reconstruction of the full three-dimensional shape of a protein or other biopolymer from a given
set of intramolecular distances, which in some applications are known only between limits.

DNA plasmid— An autonomously replicating circular DNA molecule.

Docking— The fitting and binding of small molecules (ligands) at the active sites of biomacromolecules (e.g.,
enzymes and DNA).

Dopamine receptor— The protein on the cell surface that recognizes the neurotransmitter dopamine and turns on cell
responses as a consequence of this recognition.

Electrophoresis— An experimental technique to fractionate (separate) charged molecules that relies on differential
migration velocities through an obstructive medium (gel), under the influence of an applied electric
field.

Enantiomer— Mirror image counterpart of a chiral molecule.

Ergodicity— Capacity of a dynamical system spontaneously to sample all of its phase space.

Euler's gamma function
—

Analytic extension of the factorial function from the positive integers to the complex plane.

EVB— An approach to an approximate solution of the electronic Schrödinger equation, using an empirical
valence bond wave function.

FCC crystal— Face-centered cubic crystal, one of the close-packed arrangements of rigid spheres in three-
dimensional space.

Fermi resonance— Coupling between normal modes of vibration due to anharmonic potential energy contributions,
when a resonance condition is satisfied (rational ratio of normal mode frequencies).
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Fermion— Particle with half-integer spin, and therefore exhibiting wavefunction antisymmetry and Fermi
statistics.

FFT— Fast Fourier transform.

Fluxional molecule— Flexible molecule, capable of substantially changing its conformation (shape) under the prevailing
temperature and surrounding-medium conditions.

Fullerene— Stable molecule consisting entirely of carbon atoms arranged at the vertices of a convex polyhedron.

GAMESS— Software package for quantum chemical calculations.

GAUSSIAN— Software package for quantum chemical calculations that emphasizes use of Gaussian basis
functions.

Hamiltonian— In classical mechanics, the sum of kinetic and potential energy functions (i.e., the total energy); in
quantum mechanics, the corresponding linear Hermitian operator.

Harmonic analysis— A mathematical theory that aims to decompose complex phenomena into the superposition of
simpler phenomena (such as wave forms).

Hartree-Fock approxi-
mation—

Replacement of an exact wavefunction with an antisymmetrized product of single-particle orbitals
(i.e., a Slater determinant).

Hermitian operator— Linear operator whose matrix elements exhibit the property that reflection across the diagonal is
equivalent to complex conjugation.

Hessian matrix— Symmetric matrix of second partial derivatives, often used in optimization routines for many types
of objective functions. A frequently encountered application involves searching for extremes on
potential energy surfaces.

Heteropolymer— A polymer formed from nonequivalent monomer units.

High-performance com-
puters—

A phrase adopted to refer to emerging computers of a variety of designs (parallel, vector, and
others) that reflects the convergence of many of these design concepts.

Homotopic paths— Paths that share the same end points and can be continuously deformed into one another while
those end points are kept fixed.

HONDO— Software package for quantum chemical calculations.

Hückel theory— An approximate theory of molecular electronic structure that uses a minimal basis of atomic
orbitals, and simplified Coulomb and exchange integrals.

Human genome (project)
—

The 3 × 109 base pairs that constitute the entire human genetic heritage; the Human Genome
Project aims for a complete mapping of the human genome, identifying and sequencing regions of
chromosomes that code for individual proteins.
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Hydrogen bond— Weak noncovalent interaction (mainly electrostatic) bond between a significantly positive
hydrogen atom and an electronegative atom (usually nitrogen, oxygen, or fluorine); consequently,
an important structural element in water, proteins, and other biopolymers, as well as in the
recognition (specific binding) of small molecules by biopolymers.

Interval analysis— A mathematical technique that involves computation of strict bounds to bracket the global
minimum of a function.

Irreducible representa-
tion—

Group representation (e.g., as matrices) that does not admit of decomposition into a direct product
of elements of lower dimension.

JPBM— Joint Policy Board for Mathematics.

Koopmans's "theo-
rem"—

Asserts that orbital eigenvalues of the Hartree-Fock approximation provide good estimates of the
vertical (fixed nucleus) ionization energies of atoms or molecules.

Langevin equation, dy-
namics—

An approach for analysis and simulation of molecular motion in which the molecular forces in
Newton's classical equations are modified by additional terms (a frictional kernel and stochastic
forces) that attempt to describe in a simple and computationally feasible way the effects of
surroundings (e.g., solvent medium) on motion of the molecule of interest.

Lie group— A differentiable manifold that has a group structure on its elements, with the property that the
group operations (multiplication and inversion) are continuous. A standard and useful example is
the set of nonsingular real n × n matrices. Other examples are the group of rigid motions in
Euclidean space and the group of equivalence classes of transformations that agree on some
neighborhood of the identity. The last was the original object of study by Sophus Lie around 1890.

Ligand— A molecule or other chemical grouping attached to a larger molecular structure. In the case of a
small molecule that binds to a biomacromolecule, the latter is frequently referred to as the
"receptor."

MAA— Mathematical Association of America.

MDI— Commercial software for chemical information databases (Molecular Design Incorporated, San
Leandro, California).

MELD— Software package for quantum chemical calculations.

Molecular dynamics
(MD)—

Computer simulation technique for many-body systems that relies on numerical solution of
classical equations of motion for atoms or molecules and evaluates thermodynamic, kinetic, and
structural properties as time averages.

Molecular mechanics— The field encompassing molecular statics, or the construction of appropriate force fields for
representing molecular systems and the associated potential energy minimizations.

Molecular modeling— The art of representing and analyzing molecular systems by using mathematical concepts and
techniques, numerical computation, graphics, etc.

Monte Carlo methods— Numerical evaluation procedures relying on probability and the repeated use of random number
generators.
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NMR— Nuclear magnetic resonance.

Nodal cells— Connected regions of the configuration space for a set of electrons, over which their wavefunction
maintains constancy of sign.

NOE— Nuclear Overhauser effect.

Normal modes— Independent harmonic motions of a mechanical system that possesses a quadratic potential energy
function; alternatively, such motions of small amplitude on a more complicated surface that can be
locally approximated as quadratic.

N-representability— Attribute of candidates for reduced density matrices (in quantum mechanics) or for molecular
distribution functions (in classical statistical mechanics) that they correspond to the contraction of
some legitimate N-body wavefunction or distribution function.

NSF— National Science Foundation.

Nucleotide— Hydrolysis product (monomeric unit) of nucleic acids.

n-valent vertices— Vertex of a linear graph at which n bonds (edges) are attached.

Padé approximant— Rational function approximation to an analytic function, usually determined by matching power
series coefficients.

Parallel computer— A computer with multiple processors working in parallel on portions of one computation.

Path integral— An appropriately weighted sum over a family of line integrals connecting fixed end points.
Applications include descriptions of Brownian motion and quantum transition probabilities.

Pauli exclusion principle
—

The requirement for electrons (or other fermions) that the wavefunction for a collection of such
particles is antisymmetric under interchange of the position and spin coordinates of any pair of
identical particles. In the case of noninteracting or uncorrelated particles, it leads to the
requirement that at most, one particle can be in each single-particle state.

Pharmacophore— The chemical identity and geometrical arrangement of key substituents in a molecule that confer
biochemical or pharmacological effects.

Phase— In quantum mechanics, the phase angle of a complex wavefunction or order parameter; in
statistical mechanics, the state of aggregation of matter (e.g., crystal, liquid, vapor, quasicrystal,
liquid crystal); in dynamics, the position-momentum specification.

Phase space— The joint space of configurational coordinates and their conjugate momenta for a classical
dynamical system.

Pisot numbers— Root of a polynomial with integer coefficients, all of whose other roots have absolute values less
than unity.
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Polyacetylene— Linear polymer bearing delocalized electrons, formed from acetylene (C2H2).

Polyvinylcarbazole— Photoconductive polymer that has been used as an active material in xerographic applications.

Potential energy surface
—

Surface (hypersurface) in (3N + 1)-dimensional space expressing the potential energy of
interaction within an N-particle system, as a function of the 3N position coordinates; see Born-
Oppenheimer approximation.

Prokaryote— A single-cell organism that has no distinct nucleus.

Protein folding— Spontaneous development, under ambient conditions, of the natural three-dimensional shape of a
protein molecule that facilitates its biological function.

Pseudorandom number
generator—

Numerical algorithm to approximate an ideal generator of statistically independent, uniformly
distributed, random numbers.

QSAR— Quantitative structure-activity relationship. A statistical method that relates biological potency to
physical properties of molecules.

Quantum chaos— Dynamical evolution of a quantum mechanical system that displays irregular motions and extreme
sensitivity to initial conditions.

Quasicrystals— Solids exhibiting long-range orientational coherence of local atomic coordination geometry but no
crystallographic periodicity or unit cell.

Quasi-ergodic— Property of a dynamical system that it eventually visits a well-defined neighborhood of any
kinematically accessible point in its phase space.

Racemates— Mixtures containing equal amounts of enantiomeric (mirror-image stereoisomer) molecules.

Raman spectroscopy— Technique of molecular spectroscopy enabled by the coupling of vibrations to electronic
polarizability.

Random number gener-
ator—

A random number generator is a computer procedure that scrambles the bits of a current number or
set of numbers in such a way that the result appears to be randomly distributed among the set of
possible numbers and to be independent of the previously generated numbers. The lagged-
Fibonacci random number generator, for instance, uses a shift operation and a binary operation on
n-tuples from a finite set (usually the integers mod m).

Reaction coordinate— Configurational coordinate measuring distance across a transition state saddle point on the
potential surface of a chemically reactive system.

Residue— A chemical unit, such as an amino acid, of a large molecule.

REU— The Research Experience for Undergraduates program of the National Science Foundation.

Ribosome— Cellular structure that is the usual site of protein synthesis in living organisms.
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Riemann zeta function—Sum of the inverse sth powers of the positive integers, viewed as an analytic function of s.

Salem numbers— Root of a polynomial with integer coefficients, all of whose other roots have absolute values equal
to or less than unity.

Scalable parallel algo-
rithms or parallel com-
puters—

Those that can continue to perform efficiently as both the problem size and the number of
processors increase.

Schur's lemma— Relation between irreducible representations of a finite group.

Semiclassical approxi-
mation—

Treatment of dynamics in which quantum effects are regarded as a weak perturbation on classical
mechanics; often implemented formally as the limit at which Planck's constant approaches zero.

Sequence space— The set of possible ordered monomer sequences for a biopolymer. For proteins this is the "primary
structure," the amino acid sequence along the molecular backbone; for DNA it is the sequence
gene-encoding bases (adenine, cytosine, guanine, thymine).

Sequential computers
(uniprocessors)—

Computers that operate on individual pieces of data in sequence. Contrast with vector processing
and parallel computers.

SIAM— Society for Industrial and Applied Mathematics.

Slater determinant— Determinant whose elements are n distinct orbitals for n distinct electrons.

Solitons— Stable pulse or particle-like solutions of some nonlinear wave equations.

Spin glass— A large collection of spins whose interactions frustrate simple ordering and thus create many deep
potential energy minima that are nearly degenerate.

Statistical mechanics— The study of the collective behavior of large numbers of interacting particles. Properties of interest
include those describing time-dependent, irreversible process. The basic principles of this
discipline were laid down in the nineteenth century by Ludwig Boltzmann, James Clerk Maxwell,
and Josiah Willard Gibbs.

Stereoisomers— Molecules that differ only by mirror inversion of bonds at chiral centers (usually carbon atoms).

Stochastic dynamics— A framework for expressing the dynamics of a molecular system that includes stochastic elements
(e.g., random forces that mimic effects of the environment); see Molecular dynamics and
Langevin equation.

Supercoiling— The interwinding of double helical DNA upon itself; also called supertwisting.

Symplectic integrator— Class of numerical algorithms for integrating classical many-body equations of motion, that
exactly preserve phase space volume and other classical invariants of motion.

Terpenes— Unsaturated (double-bond-containing) hydrocarbons with composition C10H16; typically aromatic
oils of natural origin.
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Topological (geometric)
phase—

Phase factor appearing in a nuclear wavefunction that arises from, and varies continuously around,
a conical intersection of two electronic potential surfaces.

Transition state— Saddle point on a potential energy surface separating chemical reactants from products.

Tridiagonalization— Transformation of a symmetric matrix so that the only nonzero elements are those along the
principal diagonal and its two immediately flanking diagonals.

Ultrametric, ultra-
metricity—

Distance (metric) structure applied to a set of objects arrayed on a Cayley tree; for a given pair of
objects it is the minimum number of steps along branches of the tree necessary to effect connection.

Unrestricted Hartree-
Fock approximation—

Use of an approximate wavefunction consisting of a sum of Slater determinants, wherein distinct
spatial orbitals are employed for distinct spin directions.

Upwinding schemes— Techniques for solving advection problems that take into account force direction to produce more
accurate results.

Vectorization— Adaptation of a computer program to take advantage of vector processing capacity.

Vector processing— A mode of computing (using "vector computers") that relies heavily on the concurrent processing
of the elements of (possibly large) linear arrays.

V-representability— Special form of N-Representability (see above) guaranteeing that the density matrix or molecular
distribution function of interest corresponds to an N-body system with additive pair interactions
(specifically Coulomb interactions in the atomic or molecular quantum cases).

Wavelets— Basis functions selected to represent efficiently certain types of frequently encountered pattern
elements, such as discontinuities.

Yield— Fraction (normally expressed as a percentage) of the chemical reactants that proceed to the desired
product substance.

Zeolite— Solid silicates with open crystal structures permitting action as ion exchange media, catalysts, or
molecular sieves.
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