BEffpZfamny nap ednlcatalog/ T 788 himl

We ship printed books within 1 business day; personal PDFs are available immediately.

mmmmeesssmenes |Ntellectual Property Issues in Software

Steering Committee for Intellectual Property Issues in
i ﬁ%’ﬁaﬁ Software, National Research Council
ﬂﬁ@ ISBN: 0-309-58288-1, 128 pages, 6 x 9, (1991)

W This PDF is available from the National Academies Press at:

http-/Amnw nap edu/catalog/1788 html

s
.--*"..'-'-’f

==

Visit the National Academies Press online, the authoritative source for all books
from the National Academy of Sciences, the National Academy of Engineering,
the Institute of Medicine, and the National Research Council:

e Download hundreds of free books in PDF

Read thousands of books online for free

Explore our innovative research tools — try the “Research Dashboard” now!
Sign up to be notified when new books are published

Purchase printed books and selected PDF files

Thank you for downloading this PDF. If you have comments, questions or
just want more information about the books published by the National
Academies Press, you may contact our customer service department toll-
free at 888-624-8373, visit us online, or send an email to
feedback@nap.edu.

This book plus thousands more are available at http://www.nap.edu.

Copyright © National Academy of Sciences. All rights reserved.

Unless otherwise indicated, all materials in this PDF File are copyrighted by the National
Academy of Sciences. Distribution, posting, or copying is strictly prohibited without

written permission of the National Academies Press. Request reprint permission for this book.

THE NATIONAL ACADEMIES

Advisers to the Nation on Science, Engineering, and Medicine

http://www.nap.edu/catalog/1788.html
http://www.nap.edu
http://www.nas.edu/nas
http://www.nae.edu
http://www.iom.edu
http://www.nationalacademies.org/nrc/
http://lab.nap.edu/nap-cgi/dashboard.cgi?isbn=0309068371&act=dashboard
http://www.nap.edu/agent.html
http://www.nap.edu
mailto:feedback@nap.edu
http://www.nap.edu
http://www.nap.edu/v3/makepage.phtml?val1=reprint
http://www.nap.edu/catalog/1788.html

Intellectual Property

Issues in Software
Steering Committee for Intellectual Property Issues in Software
Computer Science and Telecommunications Board
Commission on Physical Sciences, Mathematics, and Applications
National Research Council
National Academy Press
Washington, D.C.1991

"uonngule Joj UOISISA SAllejIoyINe 8y} se uoneolgnd siy} Jo uoisiaA juld ay) 8sn ases|d pauasul A|jejuspiooe usaq aaey Aew siolis olydelbodA) swos pue ‘pauiejal
aQ jouued ‘Janamoy ‘Buiewo) oyoads-buiasadAy Jayjo pue ‘sojAis Buipeay ‘syealq pJom ‘syibus| aull ‘{jeuibuo ay) 0} anly ale syealq abed ‘sa|l buiasadAy jeuiblio
a8y} wolj Jou ‘yooq Jaded [eulbLo 8y} wouy pajeald safi X Wody pasodwoosals usaq sey yiom [eulblio 8y} Jo uonejussaidal [e)bip mau siyl @ 4dd SIY} Inoqy

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

not from the

original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book

NOTICE: The project that is the subject of this report was approved by the Governing Board of the
National Research Council, whose members are drawn from the councils of the National Academy
of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of
the committee responsible for the report were chosen for their special competences and with regard
for appropriate balance.

This report has been reviewed by a group other than the authors according to procedures
approved by a Report Review Committee consisting of members of the National Academy of Sci-
ences, the National Academy of Engineering, and the Institute of Medicine.

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distin-
guished scholars engaged in scientific and engineering research, dedicated to the furtherance of
science and technology and to their use for the general welfare. Upon the authority of the charter
granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the fed-
eral government on scientific and technical matters. Dr. Frank Press is president of the National
Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter of the
National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous
in its administration and in the selection of its members, sharing with the National Academy of Sci-
ences the responsibility for advising the federal government. The National Academy of Engineering
also sponsors engineering programs aimed at meeting national needs, encourages education and
research, and recognizes the superior achievements of engineers. Dr. Robert M. White is president
of the National Academy of Engineering.

The Institute of Medicine was established in 1970 by the National Academy of Sciences to
secure the services of eminent members of appropriate professions in the examination of policy mat-
ters pertaining to the health of the public. The Institute acts under the responsibility given to the
National Academy of Sciences by its congressional charter to be an adviser to the federal govern-
ment and, upon its own initiative, to identify issues of medical care, research, and education. Dr.
Samuel O. Their is president of the Institute of Medicine.

The National Research Council was organized by the National Academy of Sciences in 1916 to
associate the broad community of science and technology with the Academy's purposes of further-
ing knowledge and advising the federal government. Functioning in accordance with general poli-
cies determined by the Academy, the Council has become the principal operating agency of both the
National Academy of Sciences and the National Academy of Engineering in providing services to
the government, the public, and the scientific and engineering communities. The Council is adminis-
tered jointly by both Academies and the Institute of Medicine. Dr. Frank Press and Dr. Robert M.
‘White are chairman and vice chairman, respectively, of the National Research Council.

Support for this project was provided by the following organizations and agencies: Air Force
Office of Scientific Research (Grant No. N00014-87-J-1110), Apple Computer, Inc., Control Data
Corporation, Cray Research, Inc., the Defense Advanced Research Projects Agency (Grant No.
NO00014-87-J-1110), Digital Equipment Corporation, IBM Corporation, the National Aeronautics
and Space Administration (Grant No. CDA-860535), the National Science Foundation (Grant No.
CDA-860535), and the Office of Naval Research (Grant No. N00014-87-J-1110).

Library of Congress Catalog Card Number 90-62783

International Standard Book Number 0-309-04344-1

Available for sale from: National Academy Press 2101 Constitution Avenue, NWWashington,
DC20418

S227
Printed in the United States of America

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

il

STEERING COMMITTEE FOR INTELLECTUAL
PROPERTY ISSUES IN SOFTWARE

LEWIS M. BRANSCOMB, Harvard University, Chairman
PAUL GOLDSTEIN, Stanford Law School

ANITA K. JONES, University of Virginia

MITCHELL D. KAPOR, ON Technology, Inc.

MICHAEL O. RABIN, Harvard University

PETER R. SCHNEIDER, IBM Corporation

MARJORY S. BLUMENTHAL, Staff Director

C.K. GUNSALUS, CSTB Consultant

MARK BELLO, CSTB Consultant

DONNA F. ALLEN, Administrative Secretary

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

iv

COMPUTER SCIENCE AND TELECOMMUNICATIONS
BOARD

JOSEPH F. TRAUB, Columbia University, Chairman

ALFRED V. AHO, AT&T Bell Laboratories

JOHN SEELY BROWN, Xerox Corporation PARC

FRANK P. CARRUBBA, Hewlett-Packard Company

DAVID J. FARBER, University of Pennsylvania

SAMUEL H. FULLER, Digital Equipment Corporation

JAMES FREEMAN GILBERT, University of California at San Diego
WILLIAM A. GODDARD I1I, California Institute of Technology
JOHN E. HOPCROFT, Cornell University

MITCHELL D. KAPOR, ON Technology, Inc.

SIDNEY KARIN, San Diego Supercomputer Center

LEONARD KLEINROCK, University of California at Los Angeles
ROBERT LANGRIDGE, University of California at San Francisco
ROBERT L. MARTIN, Bell Communications Research
WILLIAM F. MILLER, SRI International

ABRAHAM PELED, IBM T.J. Watson Research Center

RAY REDDY, Carnegie Mellon University

JEROME H. SALTZER, Massachusetts Institute of Technology
MARY SHAW, Carnegie Mellon University

ERIC E. SUMNER, Institute of Electrical and Electronics Engineers
IVAN E. SUTHERLAND, Sutherland, Sproull & Associates
GEORGE L. TURIN, Teknekron Corporation

VICTOR VYSSOTSKY, Digital Equipment Corporation

WILLIS H. WARE, The RAND Corporation

WILLIAM WULF, University of Virginia

MARIJORY S. BLUMENTHAL, Staff Director

ANTHONY M. FORTE, Senior Staff Officer

RENEE A. HAWKINS, Staff Associate

HERBERT LIN, Staff Officer

DAMIAN M. SACCOCIO, Staff Officer

DONNA F. ALLEN, Administrative Secretary

OPHELIA BITANGA-BRICENO, Project Assistant

CATHERINE A. SPARKS, Senior Secretary

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

COMMISSION ON PHYSICAL SCIENCES,
MATHEMATICS, AND APPLICATIONS

NORMAN HACKERMAN, Robert A. Welch Foundation, Chairman

PETER J. BICKEL, University of California at Berkeley

GEORGE F. CARRIER, Harvard University

HERBERT D. DOAN, The Dow Chemical Company (retired)

DEAN E. EASTMAN, IBM T.J. Watson Research Center

MARYE ANNE FOX, University of Texas

PHILLIP A. GRIFFITHS, Duke University

NEAL F. LANE, Rice University

ROBERT W. LUCKY, AT&T Bell Laboratories

CHRISTOPHER F. McKEE, University of California at Berkeley

RICHARD S. NICHOLSON, American Association for the Advancement of
Science

JEREMIAH P. OSTRIKER, Princeton University Observatory

ALAN SCHRIESHEIM, Argonne National Laboratory

ROY F. SCHWITTERS, Superconducting Super Collider Laboratory

KENNETH G. WILSON, Ohio State University

NORMAN METZGER, Executive Director

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

vi

"uonNguyIe 1o} UOISISA SAlle}lIoyINe 8y} se uonedlignd siy} Jo uoisiaA juld sy} 8sn ases|d pauasul Ajjejuaplooe usaq aney Aew sios oiydelbodA} swos pue ‘pauiejal
aq jouued ‘Janamoy ‘Bumniewloy oyoads-BuiesadAy Jayjo pue ‘sojAls Buipeay ‘syeaiq pisom ‘syibua)| aul| {jeulblio ay) 0} anly aie syeaiq abed ‘sa|i BuimesadAy jeulblo
ay} wolj Jou ‘jooq Jaded [eulbluo 8y} wouy pajeald sajiy X Woly pasodwodas usaq sey yiom [eulbuo ay} jo uonejuasaidal [eybip mau siyl @) 4ad SIY} Inoqy

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

not from the

original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book

PREFACE vii

Preface

Computer software is a remarkable human achievement—whether
measured by its extraordinary power to orchestrate computer hardware to carry
out useful tasks; the creativity, talent, and teamwork required for its creation;
the rapidity with which it is advancing technically; or the phenomenal growth of
software as an economic activity. Nothing in human experience with
technology is quite like it.

Twenty-five years ago sales of computer programs in the United States
totaled an estimated $250 million. Today several thousand U.S. software
producers—ranging from individuals to highly organized teams of hundreds or
even thousands of computer scientists, software engineers, and programmers—
generate revenues in the tens of billions of dollars. The systems and the
application software they produce enable computers to support an ever-growing
number of human activities.

In the early years of the Information Age, advances in computer and
communications hardware drove progress in the computer-communications
industry. Today it is software that adapts the hardware to the infinite range of
human uses that give the computer its personality and exploits its power. The
manufacturers of computer hardware and software still gain a majority of their
revenue from the hardware, but when the software created by users is included,
people spend more on software than on hardware. For vertically integrated
firms like IBM, software is, on the average, more profitable, and revenue from
software is growing faster than revenue from hardware, in spite of the fact that
proven software functions are continuously integrated into new hardware
designs, and software designers move on to tackle yet newer tasks.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

PREFACE viii

Thus the software industry is the enabling "complementary asset” for the
hardware industry; those who master the challenge of creating good software
can expect to be the leaders in the world of information machines and services.
No one is prepared to predict that the extraordinary rate of growth and change is
about to stop, or even slow down substantially. Both new applications and new
computer architecture will continue to change the way we work, create, learn,
communicate, and play.

Why then are computer scientists and software entrepreneurs nervous
about the court decisions that guide the arcane legal world of intellectual
property protection? And why do some intellectual property lawyers become
even more nervous when scientists question the rationale underlying the current
structure of legal protection and even suggest that it may be inadequate or cause
serious problems in the future?

The world of software has changed dramatically since the emergence of
commercial software in the 1950s. Initially the work of mathematicians and
scientists who were intimately involved in building computer hardware,
software was the creative expression of gifted individuals. With IBM's decision
to "unbundle" software—pricing it separately from the hardware—and later the
development of high-level design languages to lower the technical barriers to
programming, the team approach to software production began to look much
more like the modus operandi in the more traditional areas of commercial
product design and testing.

Today in the largest firms, products comprising millions of lines of "code"
are produced in industrial environments against committed plans for function,
cost, and date of delivery. But even in these mature commercial environments,
the role of the designer who is able to keep the conception of system-level
design in mind, and who oversees the integration of hundreds of modules into a
functioning whole, is still the key to product success. An evolving combination
of intuition, prior experience, and expertise in computer and cognitive science
go into the production of "user-friendly," efficient, error-free code.

But the institutional structure of the industry is maturing. There are large
numbers of firms with market positions to protect, with customers dependent on
the continuous, incremental improvement of their applications. The magnitude
of the up-front investments required to create competitive software products,
and of the down-stream investments needed to sell and support them, inevitably
gives rise to conflicting desires to encourage innovation while preserving
stability in a huge, competitive industry.

The maturing of the industry is not the result of saturating growth but
reflects instead the industry's success in becoming integrated into

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

PREFACE ix

the fabric of modern society. End users want to assemble for their needs the
best of the industry's output. They want familiar, reliable, and predictable ways
to do things. They cannot sort through thousands of packages to find the best
ones; they are demanding that the industry—through strategic alliances,
standards development, or simply response to market forces—provide more
interoperability, consistent interfaces, and very high levels of reliability.

Market entry for new innovators is still wide open, however, as far as
industry structure, the legal environment, and emerging markets are concerned.

But the cost of entry is soaring; negotiating compatibility with other
products, testing, advertising, and providing customer support and continuous
product evolution as the hardware and software around the product change—all
entail high risks and heavy up-front investment. No wonder those who spend
millions of dollars to develop and bring to market products that cost virtually
nothing to replicate or manufacture want assurances that they will have a
chance to enjoy the fruits of their labors.

Three fears seem to be dominant in the minds of industry leaders:

e fear of loss of freedom of action,

» fear of litigation over possible infringement of patents and copyrights,
and

» fear of unfair business practices that deny risk-takers the fruits of their
creativity.

A fourth fear is voiced by the scientists and entrepreneurs entering the
market:

» fear that business practices and legal constraints will slow down the
process of shared learning on which future progress rests.

This is the very process that led the framers of the Constitution to enshrine
copyright and patent law with constitutional authority. A fifth fear is less
frequently voiced, perhaps because the public has been so well served by
software innovators of the last 40 years, but nevertheless deserves consideration:

o fear that the public interest in software will be subordinated to the
interests of the industry.

From a bystander's perspective, legal protection of software today may not
seem very complicated, nor in serious difficulty. Relatively few software
patents have been issued, and even fewer have been tested in court. Copyright
protection is almost universally available,

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

PREFACE X

is inexpensive, and little constrains the entry of new firms or the growth of the
industry. Contractual commitments by buyers to sellers are generally respected,
especially in business environments.

Freedom of action has been the hallmark of the first 40 years; its attraction
for innovators is the very factor that breeds fear of its loss. Larger computer
hardware firms extensively cross-license their patents, preserving freedom to
innovate in the hardware. To the extent that software copyright does not grant
exclusivity to ideas or to function, but only to their expression, that freedom of
action is preserved, for the software industry as well.

But for those inclined to worry about the future there are worries enough.
At the practical level, software vendors are using multiple levels of protection:
trade secret rights, copyright law, publishing only in hard-to-understand "object
code," binding users by contract, and—increasingly—seeking patent protection
as well. On the face of it, this defense-in-depth strategy seems to suggest that
the firms are less than fully confident that the property protection system is
robust.

A second concern arises from the tensions of stretching a system designed
for works of art and literature to works of great value for their utility (as well as
occasional intellectual elegance). Is a copyright violated by a product whose
form and function emulate another's but whose code is never identical? Is it
legitimate to use a reverse compiler to create source code from a copyrighted
product shipped only in object code, and then recompile to a different machine
a restructured version of the original? How will the notion of "copying" be
applied when a user's inquiry for information from distributed databases in
communications networks momentarily touches small parts of dozens of
separately copyrighted programs? Lawyers are perhaps more comfortable with
the need to stretch and adapt legal precedents to changes in technology than are
scientists. This happens in every branch of the law. But many scientists and
some legal scholars see the stretching of patent and copyright law to cover the
rapidly changing field of software property as a source of discomfort, if not of
serious concern.

The third concern is seen by some as a little black cloud on the horizon:
the resurgence of patent filings on inventions primarily embodied in software.
Some may see this trend as offering an alternative to the pressure to distort
copyright law to protect the most creative elements of a program rather than just
a boring sequence of hexadecimal numbers. But others ask, with the standards
as yet unsettled for software "inventions," what costs will be added to the
development process when software developers must ensure that the

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

PREFACE xi

protected ideas of others have not been independently created by their staffs.
They fear that software patents, if not strictly managed by the Patent and
Trademark Office, will be a boon to litigators and a nightmare for software
developers. Still others believe that with so many software inventions already in
the public domain, few patents will withstand challenge, but the costs of
challenging will be high. Perhaps these are just "growing pains" of a maturing
industry, and the gains afforded by widespread use of software patents will
more than make up for the costs. But perhaps not.

The fourth, and most important, concern is over the ability of the courts
and the Congress to keep up with the pace of technical change. Although
copyright has proved elastic enough to extend from maps and charts in the 18th
century to books, works of art, movies, and audio and video tapes, none of these
technologies has exhibited the pace of change of software. When computer
scientists and entrepreneurs try to understand the rationales used by judges to
adapt the law to technical change, they get more nervous still. Many cases
whose resolution strikes the layman as fair and judicious are explained in
opinions that describe the technology (often by analogy) in ways the scientists
cannot easily accept. That judges may not think like computer scientists does
not mean they make bad law. But it may amplify the concerns of technical
people trying to guess where the law is going next. And it motivates legal
scholars to try to understand the industry's technical destiny as the reference
frame for evaluating the legal structure on which future decisions will rest.

That lawyers and scientists approach this subject differently will surprise
no one. Technical people set their sights on the future, probing the limits of
today's technology and laying the groundwork for tomorrow's innovations.
Change, surprise, even disruption are not the enemies of science, but rather its
purpose. The law values coherence with the past, predictability, and a broad
consensus. Judges and attorneys build on precedent to deal with questions
arising from new technology. In so doing they build an architecture of
reasoning on which the framework for resolving future issues must rest.
Scientists, engineers, and software designers sometimes question the
appropriateness of that architecture for what they see coming in the technology.

It is not just legal and technical experts who sometimes have differing
views. The perspectives of academic computer scientists sometimes differ from
those of software entrepreneurs; legal scholars tend to be more critical of the
existing protection regime than do the litigators and corporate counsel.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

PREFACE xii

NATURE OF THIS PROJECT

Would a wide-ranging discussion between computer and legal experts help
to clarify the basic issues that set directions for the future in the field of
intellectual property protection for software?

That is the basic question that motivated a workshop held on September
12-13, 1989 (Appendix A), and a forum discussion in December 1989
(Appendix B) sponsored by the Computer Science and Technology Board
(since renamed the Computer Science and Telecommunications Board) of the
National Research Council. About 100 legal scholars, attorneys, computer
scientists, software designers and entrepreneurs, and business and government
executives aired the views that are summarized (with updates as appropriate) in
this report.

The forum discussion did not seek to find a consensus, nor did it entertain
collective recommendations. Rather, the goal was to foster a common
understanding among individuals and groups who have a stake in the issues but
who have had few opportunities to share their points of view. The discussion
did not seek to deal with current controversies, and certainly not with current
litigation. Instead the forum sought to take a step back from the debate and
explore basic concepts—both technical and legal—that are too often obscured
by polemics.

The success of the forum, and of the two-day workshop that preceded it,
lies in the often expressed view at the end of the meetings that a number of
important issues explored there deserved to be engaged by a mixed group of
legal and technical experts in much greater depth. This reflection of confidence
that differing perceptions could be bridged provides a basis for considerable
optimism about the value of this kind of exchange.

ORGANIZATION OF THE REPORT

This publication is based primarily on discussions at the two-day forum
and at the preceding two-day planning workshop attended by many of the
speakers at the forum. It also draws on articles and reports distributed to forum
and workshop participants, as well as on other informational materials. These
additional sources are identified within the text.

The following chapters describe the spectrum of legal and technical
perspectives on intellectual property protection for software. Chapter 1
discusses some of the changing technical, economic, and legal circumstances
that underlie the debate over the adequacy of intellectual property protection for
software. In chapter 2, the underlying

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

PREFACE Xiii

tenets of U.S. copyright, patent, and trade secret laws are described, as are
issues that have arisen in the application of these laws to software. Chapter 2
also discusses international treatment of software as intellectual property. The
attributes of software, the nature of the process for designing and developing
software, and the relevance of both to determining which elements of software
merit protection are examined in chapter 3. Chapter 4 takes a closer look at
legal uncertainties, how software firms are responding to these uncertainties,
and how intellectual property protection can influence standardization,
including ongoing efforts to increase the interoperability of software
applications. The final chapter, Chapter 5, presents some forum participants'
views on how to improve the fit between software and intellectual property law.
The primary authors of this report are C.K. Gunsalus, associate vice
chancellor for research at the University of Illinois at Urbana-Champaign and
consultant to the Computer Science and Telecommunications Board (CSTB),
and Mark Bello, also a consultant to the CSTB. The project was organized by
C.K. Gunsalus in conjunction with Marjory Blumenthal, CSTB staff director.
Their authorship was performed under the supervision of the steering
committee, which was responsible for the conduct of the workshop and the
forum and which expresses its deep appreciation for the work of the staff and
consultants. While the authors and the steering committee members have done
their best to make this account faithful to the views expressed at the meeting
and in other sources, we request that readers not use this document to attribute
the views of forum participants who are quoted. Please contact them directly for
full and in-context accounts of their views.
Lewis M. Branscomb, Chairman
Steering Committee for Intellectual Property Issues in Software

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

Xiv

PREFACE

"uonNguyIe 1o} UOISISA SAlle}lIoyINe 8y} se uonedlignd siy} Jo uoisiaA juld sy} 8sn ases|d pauasul Ajjejuaplooe usaq aney Aew sios oiydelbodA} swos pue ‘pauiejal
aq jouued ‘Janamoy ‘Bumniewloy oyoads-BuiesadAy Jayjo pue ‘sojAls Buipeay ‘syeaiq pisom ‘syibua)| aul| {jeulblio ay) 0} anly aie syeaiq abed ‘sa|i BuimesadAy jeulblo
ay} wolj Jou ‘jooq Jaded [eulbluo 8y} wouy pajeald sajiy X Woly pasodwodas usaq sey yiom [eulbuo ay} jo uonejuasaidal [eybip mau siyl @) 4ad SIY} Inoqy

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

CONTENTS

XV

Contents

1 Changing Contexts for the Software Industry
A Maturing Industry
Changing Technology
Changing Legal Context
Unpredictable Future
Conclusion
Notes

2 Background to Basic Legal Issues
Copyright
Expressions, Ideas, and Functions
What Constitutes Copyright Infringement?
Trade Secret
Patent
Characteristics of Patents
What Is Patentable?
Test for Patentability
Coherent or Incoherent?
The International Situation
Notes

3 Is Software a Special Case?
The Process
Software as a Creative Medium
The Influence of the Market

Copyright © National Academy of Sciences. All rights reserved.

21
22
24
27
29
31
32
34
35
37
38
41

43
43
48
49

http://www.nap.edu/catalog/1788.html

CONTENTS Xvi

[ORO]

£ O :

= c

€8S o

SE3 Symbiosis in the Market 50

B = The Case of Interfaces 51

228 Evolution of User Interfaces 54

_§ 5 Where Does Innovation Lie? 55

5 o o Summary 57

8 S E Notes 57
® .=

®TE®

jé ie} £5 4 A Closer Look at Current Issues 59

S o

o5 3 Protected or Unprotected? 60

< g;j 2 The Patent-Copyright Interface 62

S > *é Patent Problems: Structural or Legal? 63

“Tq,: § 5 Compatibility and Interoperability 66

59T Open Interfaces, a Controversial Suggestion 68

(] = . . .

5 < 5 Immediate Declaration of Rights 69

gca Standardization 70

S o= The Influence of Intellectual Property Law 73
[l S . .

S6 2 Withholding of Source Code 75

£ é g Reverse Engineering 77

i % 2 Conclusion 78

e 2L Notes 79

w £ =

O T A

Q

go2

§ “; ﬁ 5 The Open Agenda 81

- ?3 f Defining a Concept of Value 83

§ 82 Legislative "Solutions"? 84

@ 5 Hybrid System for Hybrid Technologies? 87

< i S Incremental Improvements to Patent System? 89

g 50 Next Steps 90
c c

— 0 £ Notes 93

T — >

C o=

525

= = ox 18

S o 6 Bibliography 95
i . .

2) § Appendix A Intellectual Property Challenges in Software— 101

R c Workshop Program and Participants
(0] . .

S<£28 Appendix B Intellectual Property Issues in Software—Forum 107

S5 3 pp perty

2L Program and Participants

cS2

0 =

o= >

88 E

— 0 P

g5¢

550

= o C

298

25

Fés

Zge

TN % 2

£gz

0 g®

sZ g

- ®© O

> £ £

o]

25¢

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

Intellectual Property Issues in Software

"uonnguyle Joj UOISISA SAllejIoyINe 8y} se uoneolgnd siy} Jo uoisiaA juld sy} 8sn ases|d palasul A|jejuspiooe usaq aaey Aew siolis oiydelbodA) swos pue ‘pauiejal
aq jouued ‘Janamoy ‘Bumnewloy olyoads-BuipesadAy Jayjo pue ‘sojAis Buipeay ‘syeaiq piom ‘syibua)| aul| {jeulblio ay) 0} anly ase syeaiq abed ‘sa|i BuiesadAy jeulblo
ay} wolj Jou ‘Yooq Jaded [euibLo 8y} wouy pajeald safi X Wody pasodwodal usaq sey yiom [eulblio 8y} Jo uonejuasaidal [e)bip mau siyl 9 4dd SIY} Inoqy

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

The question is whether, as to copyright protection for computer
software, ''the sky is falling." ... I submit, ''It just ain't so."

—DMorton David Goldberg, Partner, Schwab, Goldberg, Price, & Dannay

[M]y answer to that is, the truth is the sky is falling all around you. It
just hasn't hit you yet.

—Jerome H. Reichman, Professor of Law, Vanderbilt University

I don't think the sky is falling. I think it is sagging in a few places, and
primarily because the law hasn't been properly applied.

—Ronald S. Laurie, Partner, Irell & Manella

Market-mediated innovation is definitely the way to go, and my
bottom line on the intellectual property front is let us not screw it up. The
agonizing thing is, I cannot tell whether that means do nothing or do
something radical.

—Mitchell D. Kapor, Chairman, ON Technology, Inc.

I thought of concluding today with the adage, 'If it ain't broke, don't
fix it." But that does not truly reflect my views, which are stronger than
that. So, I will conclude with a new adage, "If it ain't broke, don't break it."

—Howard G. Figueroa, Vice President, Commercial and Industry Relations,
IBM Corp.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

CHANGING CONTEXTS FOR THE SOFTWARE INDUSTRY 3

1

Changing Contexts for the Software
Industry

An idea and a computer. Those two items, it has often been said, are all
that is needed to enter the software industry. Although this characterization fails
to convey the enormous range in the size of software firms, as well as in the
complexity of computer programs and the underlying design and development
efforts, it is accurate insofar as it captures the industry's vitality and its
propensity for innovation.

Indeed, the software industry possesses all the attributes of a vigorous
economic sector: stiff competition, a diverse mixture of firms, rapid sales
growth, high rates of commercial innovation, strong performance in
international markets, and, as the "idea and a computer" adage suggests, low
barriers to entry. Market statistics vary, but they suggest that over the past
twenty-five years the number of U.S. software firms has quadrupled, and the
size of the product market has been doubling about every five years. In 1990,
sales of packaged software alone by U.S. software firms totaled nearly $20
billion and accounted for more than 40 percent of the world market
(International Data Corporation estimate cited in U.S. Department of
Commerce, 1991); U.S. purchases of "software products” (excluding custom-
developed software) amounted to $35 billion in 1990 according to another
estimate (personal communication, INPUT, March 6, 1991).

Given this enviable track record and the outlook for continued rapid sales
growth, it would seem that the industry faces a bright future. But some see the
path to that future obstructed by uncer

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

CHANGING CONTEXTS FOR THE SOFTWARE INDUSTRY 4

tainty over intellectual property protection for software and by the adversarial
behavior that has arisen in this climate of uncertainty. The result, said Robert
Spinrad, director of corporate technology at Xerox Corp., is confusion, which is
having a "stultifying, dulling effect" and "slowing down the activity" of firms
big and small.

There are clear signs that legal concerns have become matters of
paramount importance in an industry that, for most of its history, was unfettered
by such concerns. One sign is the recent spate of copyright- and patent-
infringement cases, in which firms are charging that the commercial fruits of
their innovative efforts have been unfairly usurped by others. Another is the
flurry of filings for patents on software-related innovations. Until only a few
years ago, it was widely believed that patents were largely unavailable for
software. The result, according to critics of patent protection for software, is a
fundamental change in the rules that have governed the behavior of software
firms. A third sign is in evidence in Europe. There, software firms have divided
into two camps and squared off over a European Commission proposal that
would codify the application of copyright law to software (Verity, 1990).

Diagnoses of the current state of affairs vary widely, as do prognoses of
how intellectual property concerns will affect the pace of innovation in software
and the health of the industry. The quotations presented at the beginning of this
chapter are representative of the diversity of opinion. Most notable about this
spectrum of perspectives, perhaps, is not the viewpoints themselves, but rather
the fact that in every quarter of software-related activity—business,
government, and academia—people have strongly held opinions on what and
how rights of ownership should be applied to software.

Until only recently, intellectual property concerns were limited almost
entirely to piracy, or the direct copying of software. Independent software
developers and firms had wide latitude of action, and many software inventions
were believed to be in the public domain, available for all to use and to build
upon. Some new software products—for example, the first database
management systems, the first Fortran compiler, or the first timesharing
operation system—represented major advances. Most, however, offered
incremental improvements, such as support for new hardware models,
adaptation to a new market niche, or greater ease of use.

This environment accommodated independent innovation, in which
different developers created separate products to accomplish the same task. One
need only peruse the variety of offerings for two of the most common software
applications—word processing and spreadsheets—to find evidence of this
phenomenon. The freewheeling atmosphere also

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

CHANGING CONTEXTS FOR THE SOFTWARE INDUSTRY 5

fostered successive rounds of improvement in products with established
markets. For a firm to be satisfied with the performance and functionality of an
existing product was to risk losing market share to a competitor that targeted the
same market niche. The nature of competition in the industry has been such
that, if there is a perceived market for a particular software product, "someone
will build it, and someone else will, as well," said Harry C. Reinstein, chairman
and chief executive officer of the Aion Corp.

While many software firms were aware of what intellectual property
protection applied to software—primarily trade secret law and copyright law—
the actions of most firms suggested that legal concerns rarely entered into
product-development decisions. The collective behavior of firms served to
achieve the constitutional aim on which intellectual property law is based: "to
promote the progress of science and the useful arts." More specifically, the
software industry achieved the intent of intellectual property law, that is, to
advance the public good, an objective widely interpreted to mean the generation
and wide dissemination of ideas and innovations.

Today's legal ferment indicates that software firms are much more attuned
to intellectual property issues. And why not? Copyright law and patent law exist
to encourage innovation. Both award limited monopolies to those who invest
their resources, effort, and ingenuity in developing products that society may
deem useful. Thus intellectual property law offers the potential for private
financial gain as an incentive for undertaking the risks of innovation.

To Francis D. Fisher, adviser to the Educational Technology Group at the
Harvard Law School, concerns that innovation in software will diminish
without strong intellectual property protection seem at odds with the industry's
historically high rate of innovation. "It is not enough to suggest that the
incentives of monopoly are needed,” Fisher maintained. "We need evidence.
We need to shift the burden of proof, so that those who believe that the public
interest gains from extending property rights to software must prove their case."
Among those who believe this case is unproven is Richard Stallman, whose
Free Software Foundation and League for Programming Freedom provide a test
of his conviction that innovation is best served absent prices based on
commercial monopoly.!

While Fisher may be unconvinced of the need to accord strict intellectual
property rights to software, the perception that software is vulnerable to abuses
by competitors market to earn returns on their investment often devote
considerable and users is widespread. Firms trying to position themselves in the
thought to protection strategies. But in the end, said Peter R. Schneider, IBM
Corp. vice presi

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

CHANGING CONTEXTS FOR THE SOFTWARE INDUSTRY 6

dent for systems and programming, "this is a crap shoot.... I cannot depend on
my lawyers or the legal system" to identify a single measure that, on its own,
will provide adequate protection. As a result, a firm may take advantage of all
the available protections.” "[I]t is like there is a disease out there," Schneider
explained, "and massive doses of mixed antibiotics are best, because I am not
sure which one of them is going to be the silver bullet."

The uncertainty that Schneider expresses stems from doubts about the
scope of intellectual property law and, in particular, how patent and copyright
laws apply to the innovative elements embodied in a software product. "The
current environment is such that you don't know the right thing to do," said
Anita K. Jones, head of the University of Virginia Computer Science
Department and co-founder of a small software firm. "So, you act in a very
protective fashion."

Assertions like those made by Jones and Schneider raise two fundamental
questions. Why do firms—even large ones with access to the best legal advice—
perceive the need to act so protectively, and why are they unsure of the
applicability of the 200-year-old body of intellectual property law to software?
Some insight into these questions can be gained by examining the changing and
often unpredictable economic, technical, legal, and social influences that are
shaping the industry.

A MATURING INDUSTRY

Software is big business, and if forecasts of continued rates of sales growth
exceeding 10 percent are accurate, it will become a much bigger business
during the next decade. Japan, the nations of Western Europe, and other
countries have taken steps to foster the development of internationally
competitive software industries. Not coincidentally, many of these nations are
also wrestling with questions concerning intellectual property protection for
software.

The economic importance of software has risen dramatically over the last
three decades. During the 1960s, computer manufacturers provided little
software beyond the operating system, which was necessary to the functioning
of the machine. In the mid- to late-1960s, IBM began "unbundling" software
from its hardware products, and other computer makers followed the example
of the industry leader. In addition, the service bureaus of computer
manufacturers and independent automated data processing firms were major
sources of leased software, as were computer users who developed their own
programs. The best of the user-developed software was marketed and supported
by computer manufacturers.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

CHANGING CONTEXTS FOR THE SOFTWARE INDUSTRY 7

These changes sowed the seeds of the software industry. In 1970 U.S.
expenditures for software products totaled an estimated $500 million. That
number grew to an estimated $1 billion in 1975 and approached $3 billion in
1980 (CBEMA, 1990). In succeeding years, as noted above, sales, the number
of firms, and the number of software applications mushroomed.

At some point in the evolution of most industries, annual increases in sales
begin to taper off, and product niches become crowded with competitors. In the
software industry, the growing tide of litigation may mark the early stages of
this maturation process, when firms devote less time to prospecting, begin to
stake out their territories, and start prosecuting trespassers. The competitive
landscape fills up.

Such a scenario is, of course, highly speculative. The general expectation
is that innovation and new product development will proceed at a rapid clip. As
Bruce Tognazzini, designer of dozens of programs for Apple Computer, Inc.,
said in regard to human interfaces, "You ain't seen nuthin' yet," and he
reminded that "little companies are the major innovators out there, still."
Tognazzini's outlook, with which many software industry analysts would
concur, suggests that there is still much new territory for software firms to
explore.

Nonetheless, the steadily growing number of software firms, both in the
United States and abroad, means that the population of prospectors combing the
terrain for new commercial opportunities is also increasing. Moreover,
established firms have already made substantial investments in developing
products and building a customer base for those products. For these firms,
innovation can have some negative consequences. If an innovation by a
competitor has the potential to supplant existing products, it jeopardizes the
established firm's revenue stream and, thus, its return on past investments. And
for the established firm to stay competitive, it will have to make new
investments in research, development, and marketing. Even if the innovation is
the established firm's own creation, it may not translate into substantial new
revenue growth. Rather, it may help the firm maintain its customer base and
avert a loss in sales.

Start-up firms, in contrast, are not constrained by past investments, nor
must they worry about carving up an existing customer base. In relative terms,
start-up firms may realize greater returns on innovation than do firms with
established product lines.

Compared with the early days of the software industry, explained Lewis
M. Branscomb, director of the Science, Technology, and Public Policy Program
at Harvard University's John F. Kennedy School of Government, "there are
more stakeholders, and the stakeholders are generally more heavily invested
than before. Large investments pro

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

CHANGING CONTEXTS FOR THE SOFTWARE INDUSTRY 8

duce new inelasticities in the system. Technological changes create conflict
because they are harder to accommodate."

To protect their investments and maintain their position in the market,
firms will take advantage of whatever tools are available, including intellectual
property law. Although the law is not intended to guarantee profits, ownership
rights accorded through the law do provide innovators the opportunity to earn a
return on their creative efforts in the market, the ultimate judge of the
commercial value of a particular innovation.

Eliminate the financial incentive for making software, suggested John F.
Shoch, general partner at the Asset Management Co., and today's intellectual
property disputes would disappear, but so would the pipeline of products that
add new capability after new capability to the computer. "If software had no
value and nobody wanted to buy it, this would be a very academic discussion,"
Shoch maintained. "It would be a wonderful hobby. It wouldn't be a business,
and nobody would care where intellectual property boundaries are drawn
because no one would be making any money, and no one would bother filing a
lawsuit."

Economic analyses provide support for Shoch's contention. Schumpeter,
Scherer (1984), and other economists, Branscomb explained, have clearly
shown that without some form of temporary protection for inventions, the
market, by itself, "will not support the risks and costs of technical progress."
This may be especially true for software, which can require large expenditures
for development but costs virtually nothing to manufacture—or to copy.

Software's inherent vulnerability to copying seems to underscore the need
for protection that encourages individuals and businesses to pursue new ideas
and new computer applications, producing benefits for the larger society. But
the prospect of private gain, intellectual property law's incentive for innovation,
spawns vested interests and the inclination for firms to act according to their
own needs, which may not coincide with the public's or even the industry's best
interests. Thus there is also the inclination for firms to wield intellectual
property protection as a tactical weapon against competitors.

There are some indications—and even more allegations—of such behavior
in the software industry. In a recent law suit, one firm claimed that a competitor
was "using its copyrights to hold the computer industry hostage by its licensing
and litigation practices" (Pollack, 1990). At issue in several pending law suits is
retroactive declaration of ownership rights. According to some industry
observers, firms that initially promoted widespread use of particular innovations
to cultivate the market for their own commercial implementations, later

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

CHANGING CONTEXTS FOR THE SOFTWARE INDUSTRY 9

have declared the innovations proprietary and demanded royalties for their use.

Thus questions about the applicability of intellectual property protection to
software must be considered in the context of how firms are likely to use the
available protection to advance their position in the market.

CHANGING TECHNOLOGY

As the power and speed of computers have increased, so have the utility,
complexity, and, ultimately, the importance of software. Advances in hardware
stimulate new rounds of software innovation, resulting in new applications that
expand the role of software and move the computer toward its projected
incarnation as the universal machine.

"In every new generation of hardware," Branscomb said, "function that
was previously provided in software is often incorporated in the hardware,
where it can be more efficiently executed. Nevertheless, as the technology
evolves, new layers of software are developed, which bring new functions to the
hardware, and this ever-growing bubble of capability seems not only to be
adding new function, but an even larger fraction of the function is delivered
through layers of software."

One consequence of this evolution is software's growing share of the
expense associated with computer systems. Another is difficult questions about
where value, or the intellectual property, lies in software and how best to
protect those elements that surpass a certain threshold of creativity. While once
proscriptions against outright copying of program code might have been
accepted as sufficient means to address abuses that undermine intellectual
property rights, today the concepts of value and sufficient creativity require
clarification to guide the application of the law to issues that go well beyond the
copying of code.

Although these concepts are subject to interpretation, a recognized
criterion of value is the nature of the interaction between a software application
and the user. "As time has moved on," explained Schneider of IBM, "more and
more of the creative output has been focused on interfaces, and that is simply a
reflection of the fact that in order to grow in our industry we are spending less
energy figuring out how to do task dispatching and memory management and
more energy focusing on how to interface with the end user and how to expand
the marketplace."

The emphasis on developing software that mimics and comple

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

CHANGING CONTEXTS FOR THE SOFTWARE INDUSTRY 10

ments the behavior of the human user makes ergonomic factors important
determinants of value in software. Many in the industry believe that limiting
intellectual property protection solely to the copying of code is an inadequate
safeguard for the creativity, as well as the underlying financial investment,
embodied in software that, in effect, meshes with the intuitions, needs, and
predilections of the user. While charges of verbatim copying have not
disappeared, software firms are now asking the courts to determine whether
competitors copied the "look and feel" or "structure, sequence, and
organization" of a software product, despite substantial differences in the code
of the original and competing products. While all courts agree that a program's
functionality is not copyrightable, courts disagree on the extent to which
particular elements of a computer program constitute functional subject matter.

Interfaces, generally defined as the boundary between two environments,
are critical to satisfying user demand for achieving the compatibility and
interoperability of independent software applications. As the web of computers
and related information technologies grows, the value and utility of software are
largely defined by its role in some larger system—by its ability to interface and
work with other applications. As a result, users are objecting to obstacles to
interoperability imposed by the idiosyncrasies of proprietary system interfaces.

Computer manufacturers and software developers are responding to this
demand, as the rapid growth of networking attests and the momentum for so-
called open systems also grows. But, again, these technological changes are
altering the identity of software and generating new questions, including how to
price software.

Software applications, according to Esther Dyson, publisher of the
software industry newsletter "Release 1.0," are evolving from discrete packages
of functionality into collections of functions that users can invoke individually.
"Software is going to be much more fluid," she said. "You won't know what
computer it runs on. You are going to sit at a terminal and ask for a service.
Where that service gets executed you probably won't know." And during the
execution of that service, Dyson continued, functions performed by many
different pieces of software—residing perhaps on many different machines—
may participate in accomplishing a specific task. In essence carrying out a user
request will create the software equivalent of "going to a prime contractor who
uses a variety of subcontractors." Such fluidity and interoperability among
software applications will undermine existing pricing systems. "If I use three
pieces of software but only a small part of the functionality of each," Dyson
asked, "whom do I pay? How do I get charged?"

The answers are not clear. "We are not at all sure we know how to

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

CHANGING CONTEXTS FOR THE SOFTWARE INDUSTRY 11

control the assets"—software—once they are available in a distributed
computing network, said Schneider of IBM. "The free flow through LANs
[local area networks] says we have gotten to the point where we are not sure
how to bill for software anymore." One potential pricing mechanism is an
enterprise-wide contract, in which software suppliers receive a fraction of client
revenues. If software pricing is troublesome, so too will be the allocation of
royalties for its use.

Even more problematic are questions about the rights of ownership
accorded to each of the application components that are combined and
recombined to create a customized work of software at the user's behest. Today,
questions about what constitutes fair use of software elements and what
distinguishes a derivative work from an original one focus primarily on the
behavior of designers and program implementors. Tomorrow, Dyson noted,
users who create software as a byproduct of running a business (and potentially
a product or source of competitive advantage) will become part of the
conundrum.

In this fluid environment, the corollary to the question of what elements of
software warrant protection becomes a critical issue. That is, if the goal of
interoperability is to be fully realized, then the software industry will have to
determine what elements should not be protected, and therefore freely licensed.
For example, several forum participants advocated "open" program-to-program
interfaces. Objectors to this proposal argued that the decision of whether to
declare an interface proprietary or open should rest with the innovator. The
popularity of a widely used interface should be incentive enough to make it
generally available. However, software vendors want to be reassured that they
do not lose the rights to the underlying code when they publish the interfaces,
and users want reassurances that a royalty for the interface will not be imposed
once its popularity is established and its use becomes a necessity.

Yet another technological development—automated reverse engineering
technology—has the potential to complicate the application of intellectual
property law to software. Already available technology can in certain
circumstances decompile, or translate, computer code into a higher-level
language, mechanically restructure the program, and generate new computer
code that, by appearance, is substantially different from the original. Some
forum participants minimized the potential for abuses posed by this technology,
at least in its current form. Branscomb, for example, noted that the technology
"works only on clean, well-structured object [machine-readable] code." The
recompiled code, he added, "is still undocumented and will be very hard to
maintain." But if abuses do arise, several legal experts pointed out, intellectual
property law may not be an effective means of re

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

CHANGING CONTEXTS FOR THE SOFTWARE INDUSTRY 12

dress. If the copied version and the original are substantially dissimilar and
there is no evidence of reverse compilation, they said, judges and juries will be
hard pressed to find infringement.

CHANGING LEGAL CONTEXT

The constitutional foundation of intellectual property law precedes by
nearly two centuries the introduction of computers and software. Obviously, the
framers of this body of law never anticipated computer software. Nor, however,
did they foresee such developments as motion pictures, record albums, compact
disks, and numerous other technologies and expressions now protected by
copyright law. To some, the demonstrated flexibility of intellectual property law
strongly indicates that the legal system can continue to adapt to new
technologies and to handle questions related to software. Unlike most other
technologies, however, software may be eligible for both patent and copyright
protection, which introduces a significant source of uncertainty.

"[P]atent and copyright law have survived as long as they have survived,"
maintained Frank Ingari, head of marketing and development in the Spreadsheet
Division of Lotus Development Corp., "because they have shown a remarkable
capability to deal with wave upon wave of technology and wave upon wave of
innovation and industrial development."

Those who are confident in the providence of the legal system see today's
intellectual property disputes as the consequence of an inevitable gap between
the rate of technological progress and the pace of the law. Confusion and
uncertainty will diminish, according to this view, as courts resolve today's
issues. Ideally, the decisions will yield predictable rules for firms to follow and
guideposts for addressing unforeseen issues that are certain to arise with new
developments in the rapidly changing field.

Computer scientists respond, however, with "What about tomorrow's
issues?" Many technical and legal experts are not convinced that today's
disputes are the manifestations of transient legal problems. They are less
confident in the ability of existing intellectual property law to be stretched to
accommodate features of software that, they contend, are ill-served by the
traditional models of legal protection. Vanderbilt University law professor
Jerome H. Reichman went so far as to predict that continuing to stretch
copyright and patent laws beyond their traditional scope will lead to
"unsupportable restraints of trade and a breakdown of the world's intellectual
property system."

Others troubled by the current state of affairs in the software industry
called for a reassessment. "We need to think again and we need to

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

CHANGING CONTEXTS FOR THE SOFTWARE INDUSTRY 13

be willing to question some of the most fundamental assumptions" of
intellectual property law, said Randall Davis, associate director of the Artificial
Intelligence Laboratory at the Massachusetts Institute of Technology.

Branscomb of Harvard suggested that the technical community's
discomfort with the law may stem from a seeming incongruity between law and
science. Therefore one might question the validity of applying legal precedents
to what many technical experts believe is an unprecedented technology. "It is
entirely possible," Branscomb said, "speaking from the scientist's point of view,
that judges make correct and just findings in each case, while the opinions that
give the rationale may look to the scientist as though they are stretching
paradigms of early technologies to fit the frame of new ones, perhaps in an
awkward way. Thus it is not unreasonable to ask, if the courts give us the right
—that is, fair and just—answers, based on ill-fitting models: Does that matter?"

It does matter, according to Stanford University law professor Paul
Goldstein, if the decisions do not clarify the law. "One of the law's roles in
society is to reduce uncertainty,” he said, distinguishing legal risks from the
uncertainties of the marketplace, which are inherent to all forms of business. To
software industry commentator Dyson, clarity and consistency may be as
important as legal content. "I don't think anyone really cares what the rules are
as long as it is clear what they are," she said. "The market can adjust."

So far, however, judicial decisions in software-related copyright
infringement cases have not been consistent, maintained Ronald S. Laurie, head
of the computer law group in Irell & Manella's Northern California office. This
same problem, Laurie predicted, is likely to emerge in the application of patent
law to software.

"] submit," he said, "that all of the issues that we are familiar with and that
have caused such controversy and emotion in the copyright area concerning
'structure, sequence, and organization' and levels of abstraction are going to be
reenacted in the patent context of the doctrine of equivalents." (See chapter 2
for a discussion of this doctrine.)

Patent protection, itself, exemplifies how the application of intellectual
property law to software has changed. Following a 1972 Supreme Court
decision, Gottschalk, Acting Commissioner of Patents v. Benson et al. (409 U.S.
63, 93 S. Ct. 253 [1972]), widely interpreted as rendering software as
unpatentable subject matter separate from novel hardware, producers were
discouraged from filing patent claims for their inventions. A 1981 Supreme
Court decision, Diamond v. Diehr (450 U.S. 175), however, has been
interpreted as restoring the protection for software that meets the stringent
standards of patent law. Since then,

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

CHANGING CONTEXTS FOR THE SOFTWARE INDUSTRY 14

the U.S. Patent and Trademark Office has been awarding patents for software-
related inventions, and the number of claims filed for patents has been
increasing steadily.

Many in the software industry welcome the protection, believing that
patent law is the proper legal context in which to address some issues that,
because of the presumed unavailability of patent protection, were forced into
the domain of copyright law. Critics argue, however, that making patent
protection available now amounts to changing the rules in the middle of the
game. Some of these critics predict that patent protection will lead to a
restructuring of the software industry.

"We don't have right now a clear notion about the boundaries of either
patent or copyright [law]," said Pamela Samuelson, law professor at the
University of Pittsburgh. "And we don't have a sense of the relationship
between those two laws.... The lawyers out there have radically different views
about that, and since they will give advice based on those very different views,
we are in for some litigation in the future."

UNPREDICTABLE FUTURE

Questions concerning intellectual property protection are a wedge that
opens the door to an even larger and perhaps more complex set of issues that
arise as society proceeds in the Information Revolution. "We still are in a stage
of implementing the obvious in new ways," said Ernest E. Keet, partner at
Vanguard Atlantic Ltd., the Connecticut-based merchant banking firm. "We
really still have a long way to go to apply this new technology—the computer
and software...."

Today's debate focuses primarily on software as a tool for storing,
processing, and presenting textual information in alphanumerical or graphical
form. But tomorrow, the debate will almost certainly be expanded to include
questions about rights of ownership to information itself and to the ideas
embodied in that information. And that information will not only be blocks of
text and tables of numbers, but also sounds and images combined and packaged
in digital form. The possibilities for new products and service created by freeing
information from the constraints of analog media—for example, sound from
vinyl and tape, and images from photographs, tape, and film—are seemingly
endless, barely hinted at by such terms as multimedia, hypermedia,
infotainment, and edutainment.

"In the 30 years I have been in this business," said Harry Reinstein of
Aion, "I know of no time that I could have accurately predicted where we
would be in 5 years."

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

CHANGING CONTEXTS FOR THE SOFTWARE INDUSTRY 15

Reinstein is hardly alone. Consider a prediction made in the Wall Street
Journal in a series of future-looking articles appearing during the mid-1960s:
By the year 2000, the United States would have about 220,000 computers.
Compare the reality: In 1990, an estimated 50 million computers were in U.S.
homes and businesses. Wholly unanticipated by virtually everyone was the
emergence of the personal computer, as well as a host of other information-
related technologies. The more than 200-fold difference between projection and
reality at the start of the decade leading into the next century is testimony, the
Wall Street Journal said 25 years later, that the "electronic revolution has
exploded beyond the dreams of even the most breathless early enthusiasts'
visions of the future" (Miller, 1989).

To a great degree, prospects for realizing the possibilities now germinating
in the minds of scientists, engineers, designers, and investors hinge on advances
in software. If computers are truly to become the universal machine in the
global information-based economy that is now evolving, it is software that will
match the ever-increasing computational power of hardware with ever-more-
sophisticated human needs and expectations.

For example, many experts believe that the next great leap in the problem-
solving capabilities of computers will spring from parallel computing, in which
interconnected machines, from two to tens of thousands, work on separate
pieces of the same problem. Although embryonic versions of parallel computers
already exist, the utility of such machines is constrained. "We do not have the
algorithms that allow us to take some data-processing problem or transaction-
processing problem and effectively break it up into small pieces and bring 1,000
or even 5,000 processors to bear on the problem," explained Michael O. Rabin,
professor of computer science at Harvard University and Hebrew University.
What is needed, he added, are "completely new algorithms." In Rabin's view,
one potent incentive would be to provide stronger intellectual property
protection. He expressed concern that without the incentive of exclusive rights
of ownership, innovators might ignore the need for algorithms, and progress
toward effective parallel computing and its numerous anticipated benefits might
be impeded. Others do not share this view, citing the healthy growth of the
research community in this area.

But a corollary to Rabin's assertion, one often raised as an objection to the
patenting of algorithms and so-called software-related inventions, is that
exclusive ownership of innovations grants monopoly power to inventors.
Monopoly control, goes the argument, may cordon off the rest of the industry
from building on fundamental breakthroughs. The public, in turn, might not
reap the full commercial

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

CHANGING CONTEXTS FOR THE SOFTWARE INDUSTRY 16

benefits of major advances until after the 17-year period of patent protection
expires.

Other issues lurking on the horizon stem from the differing legal treatment
given to different manifestations of information. Unlike numbers and words,
noted Francis Fisher, images, under existing law, can be subject to rights. Yet,
property rights in images may be inconsistent with the degree of freedom we
want in communicating ideas that are incorporated in images.

Images are just the beginning. Observed Fisher, "We can even foresee the
not distant day when the stuff of communications will include expressions and
ideas that themselves are intelligent. That is, they will incorporate some sort of
computer program. There may then be little distinction between what is a piece
of software program and what is a piece of information on which that program
operates."

In business and other realms of human activity where information is the
fundamental item of value, notions of what software is will become all
encompassing, predicted Esther Dyson. "The software business is virtually
everybody," she said; "it is not a type of intellectual property. It is the
representation of most intellectual property." Increasingly, software defines and
embodies business practices, she said. For example, tax accounting and other
procedures are represented and embodied not just in manuals but also in the
applications that perform them.

CONCLUSION

The path into the Information Age is not well marked, but innovation in
software is necessary to pave the way and to ensure a steady rate of progress.
Indeed, software not only sets the pace but also limits it. While the speed and
power of computers double about every two years, software applications that
harness this power for human uses evolve at a much slower rate, creating an
ever-widening gap between expectation and reality.

"[Clompared to computer hardware," said Harvard's Branscomb, "software
is still the Achilles heel of the computer and communications industries,
responsible for more shipment delays, cost overruns, and user frustrations—by
a mile."

Branscomb later warned against the complacency that can arise when the
software industry's past is used as the basis for projecting its future
performance. "There is plenty of need," he said, "for new creative ideas, for the
skills, tools, and effort to realize software ideas in code that is elegantly and
reliably expressed. It is, in other words, not sufficient, in my opinion, to simply
say that because software

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

CHANGING CONTEXTS FOR THE SOFTWARE INDUSTRY 17

revenue doubles every five years and the United States has a preponderantly
favorable position in world markets, then everything is therefore as good as it
either could be or should be."

Intellectual property law figures prominently in the industry's future,
setting the rules that guide the behavior of firms and individual inventors.
Although optima are rarely achieved in real life, the law helps set the course
toward achieving the goals that are deemed to be in the public interest. Among
these goals, according to Branscomb, are encouraging the creation and diffusion
of new concepts and ideas, as well as the dissemination of useful innovations
based on these new ideas; encouraging the development of interoperability and
connectivity in the interest of equitable public access to the fruits of information
technology; generating the investments needed to advance the industry and the
knowledge infrastructure on which the industry's technological progress is
based; and assuring equitable allocation of the benefits of investment, creative
genius, and hard work in an efficiently functioning marketplace.

"All of that needs to be accomplished on a worldwide level," Branscomb
said, "because software is, of course, a major element in international trade,
having not only the feature that it is cheap to replicate but also that it is cheap to
communicate."

At this juncture, well-intentioned people disagree strongly on what legal
environment is best for the technology, the industry, and, most important, for
the public—today and tomorrow. What is clearly needed is balance: balance
between private and public interest, balance between the need to protect the
essence of innovation and the need to share for the sake of compatibility and
interoperability, and balance between the need to foster leaps in the technology
and the need to allow incremental improvements in the existing base of
technology.

The legal uncertainties that cloud the software industry today indicate that
the proper balance has yet to be achieved. Determining where to position the
fulcrum of intellectual property law will not be easy. "I can see how too-
protectionist a view could hurt our company,” said Ingari of Lotus, "and,
obviously, I can see how not enough protection could hurt our company."

Added ON Technology, Inc.'s Chairman Mitchell Kapor: "The digital
revolution has just started. I cannot tell you how it is going to come out. I can
see some of the dynamics. Market-mediated innovation is definitely the way to
go, and my bottom line on the intellectual property front is let us not screw it
up. The agonizing thing is, I cannot tell whether that means do nothing or do
something radical. So, I am here to sort that out, but I know that the stakes are
large."

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

CHANGING CONTEXTS FOR THE SOFTWARE INDUSTRY 18

NOTES

1. Indeed, the Free Software Foundation (FSF) uses copyright in the form of a licensing agreement
Stallman calls "Copyleft," but for an opposite purpose: to prevent its software from being
incorporated into a priced. product. FSF work revolves around products labeled GNU, for GNU's
Not Unix. GNU software can run on Unix without being Unix and therefore without being subject
to Unix licensing constraints (Garfinkel, 1991).

2. Use of multiple forms of protection may also stem from other causes. After all, a homeowner who
installs strong locks and a burglar alarm does not do so because of uncertainty about the laws
regarding burglary. However, the uncertainty that prevails in the software industry adds to the
motivation for seeking multiple legal protections.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

19

CHANGING CONTEXTS FOR THE SOFTWARE INDUSTRY

"uonNguyIe 1o} UOISISA SAlle}lIoyINe 8y} se uonedlignd siy} Jo uoisiaA juld sy} 8sn ases|d pauasul Ajjejuaplooe usaq aney Aew sios oiydelbodA} swos pue ‘pauiejal
aq jouued ‘Janamoy ‘Bumniewloy oyoads-BuiesadAy Jayjo pue ‘sojAls Buipeay ‘syeaiq pisom ‘syibua)| aul| {jeulblio ay) 0} anly aie syeaiq abed ‘sa|i BuimesadAy jeulblo
ay} wolj Jou ‘jooq Jaded [eulbluo 8y} wouy pajeald sajiy X Woly pasodwodas usaq sey yiom [eulbuo ay} jo uonejuasaidal [eybip mau siyl @) 4ad SIY} Inoqy

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

20

How do you get innovation to happen faster? Do you allow people
really strong protection of their ideas so that it is worth the effort to take
giant leaps? Or do you make protection weak so that innovation can be
done all incrementally?

—Bruce Tognazzini, Evangelist, Apple Computer, Inc.

We have few phenomena more harmful to technological progress than
[legal] uncertainty.

—Paul Goldstein, Stella W. and Ira S. Lillick Professor of Law, Stanford

University

Copyright does not protect function. It does protect form, and if the
two are bound together, we have a heck of a problem.

—Dennis S. Karjala, Director, Center for the Study of Law, Science, and

Technology, Arizona State University

Until we have a clearer picture about the patent-copyright interface, I
think we are going to be in some trouble.... Copyright is not supposed to
pick up for what is to some extent the bad business of the patent system.

—Pamela Samuelson, Professor of Law, University of Pittsburgh

If we continue to stretch these paradigms [patent and copyright law]
too far in order to accommodate the subject matters, ... I'm afraid we are
going to have a breakdown and a lot more problems than we think we are
solving.

—Jerome H. Reichman, Professor of Law, Vanderbilt University

If you think you are getting inconsistent and irrational decisions in the
courts now, create a new statute with no precedents and watch what
happens.

—Ronald S. Laurie, Partner, Irell & Manella

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

BACKGROUND TO BASIC LEGAL ISSUES 21

2

Background to Basic Legal Issues

Like other industries, the software industry operates within a large legal
framework of which intellectual property laws are only a part, albeit a crucial
one. Tax laws, the Uniform Commercial Code, and antitrust laws, among
others, also regulate the behavior of software firms, and they too can influence
the scope of inventive activity and the dissemination of innovations to the public.

Most legal debate in the software industry, however, is confined to
copyright, patent, and trade secret laws. That the debate encompasses both the
copyright and patent domains of intellectual property law seems to provide
some support for the contention of software developers that their technology is
unique. "Software is perhaps the first patentable subject matter which is also
copyrightable," writes Duncan Davidson (Davidson, 1986, p. 1055). "No one
yet knows what this means, if anything." But Vanderbilt University law
professor Jerome Reichman questions the historical accuracy of this assertion.
"Industrial designs,” Reichman said, "are, to varying degrees, covered by both
copyright and patent laws in all industrialized countries. Indeed, efforts to
broaden copyright protection of industrial designs in the period 1900 to 1950
and the corresponding tensions this generated seem to anticipate the present
tensions concerning software in almost every respect."

Under the three major domains of intellectual property law, protection is
awarded to software not as a class, explained Ronald Laurie, head of Irell &
Manella's computer law group, but on the basis of whether a program, language,
interface, or other software element

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

BACKGROUND TO BASIC LEGAL ISSUES 22

"possesses attributes or characteristics that fall into one or more of the
statutorily prescribed categories of protectable subject matter." For copyright
law these hallmarks are expressions of ideas embodied in original works of
authorship. Patent protection is awarded for products and processes that are
novel, nonobvious, and useful. Trade secret law can be invoked to protect secret
information that is used by a business and contributes to its commercial
advantage. The extent to which software products satisfy these criteria is, of
course, a matter of interpretation, which is where much of the uncertainty
arises. Failure to satisfy the criteria means a work is available for all to use.

Within copyright law and, to some extent, patent law, these broad defining
characteristics of protectable subject matter may have finer gradations.
Particularly relevant to software are subcategories of copyrightable literary
works, such as works of fiction, works of history, manuals, and telephone
directories. The scope of protection varies according to the range of creative
expression found in each type of work. (See Box 2.1.)

COPYRIGHT

Copyright has been advanced as the preferred intellectual property
protection for software in the United States and, with this nation's strong
encouragement, internationally. In the 1980 amendments to the Copyright Act
of 1976 (P.L. 94-553), Congress confirmed its intention that copyright
protection applies to computer programs, but the 1976 revision of the federal
copyright law did not stipulate the manner in which the protection applied.
Through the 1980 Software Amendments, and acting on the recommendations
of the National Commission on New Technological Uses of Copyrighted Works
(CONTU), Congress placed software more squarely within the embrace of
copyright by providing a definition of computer programs. In so doing,
Congress continued a long tradition of extending copyright protection to new
media of expression. Only books, maps, and charts were singled out in the first
copyright law, passed in May 1790. Subsequent additions to the law included
protection for musical compositions, photographs, drawings, statuary, paintings,
motion pictures, and sound recordings. Reichman pointed out, however, that
statutory authority to protect industrial designs—a category that, he believes,
corresponds closely to software—was never implemented until 1954, and from
1958 to the present, the separability doctrine put forward by the U.S. Copyright
Office "has effectively denied copyright protection to functional 'high-tech’
designs of useful articles of high technology that have three-dimensional
embodiments."

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

BACKGROUND TO BASIC LEGAL ISSUES

23

BOX 2.1—LEGAL PROTECTIONS AS ISLANDS IN THE
SEAOF FREE COMPETITION

To give forum participants the lay of the intellectual property law
landscape, attorney Ronald S. Laurie of Irell & Manella used a metaphor-
based model to describe the conceptual underpinnings of copyright and
patent laws and their application.

Intellectual property protections are like islands in a sea of free
competition... [I]f one is not able to place the fruits of one's investment,
ingenuity, or creativity on one or more of the islands, then one is in the
sea, and we all know what lives in the sea.

The model is, of course, simplistic and imperfect because it assumes
that one can always tell when one is on dry land and one is in the water of
unrestricted competition. In fact, the copyright island, which is low and
sandy, has a gradual sloping beach called the merger of idea and
expression. Thus, opinion may differ on how far out one has to wade
before the boundary is crossed; that is, when the water is up to your neck,
are you still on the island? This is especially true where the tide (read:
inconsistent judicial decisions) varies with the time of day.

The patent island is a volcanic island with sheer cliffs rising to a
commanding view of the surroundings. But the patent island also has a
sandy beach, tucked away in a corner. It is called the doctrine-of-
equivalents beach. | think we are going to hear a lot more about this area
with the rising tide of software patents that are being issued and, of
course, the consequent flood of software patent litigation.

One of the often-cited differences between patents and copyrights is
that patents offer a much more predictable right—that patents have claims
and, within certain limits, adverse parties can look at claims and decide
whether they are on the right side or wrong side of the infringement rule.
Whereas, as we all know, no one knows the scope of a copyright until a
judge tells us what it is, and different judges will tell us different things
about the same copyright.

| suggest that this reassuring element of predictability in the case of
patent law is not as sure as you might think.

Indeed, Laurie predicted that interpretation of the doctrine of
equivalents is likely to spawn controversies and appeal to levels of
abstraction akin to those encountered in arguments of substantial
similarity invoked in copyright infringement cases involving the structure,
sequence, and organization of programs.

“| suggest," Laurie continued, "that as we discuss some of the difficult
legal and technical issues, such as the protection of interfaces,
communication protocols, and languages, the relevant question is not
whether these areas are generally protectable as a class, but whether
they may possess attributes or characteristics that fall into one or more of
the statutorily prescribed categories of protectable subject matter."

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

BACKGROUND TO BASIC LEGAL ISSUES 24

Owners of copyrighted software are awarded exclusive rights to their
works for varying periods, but typically with a 75-year maximum. Procedurally,
copyright is an automatic protection, conferred as soon as an expression is fixed
in a tangible medium, even if the work is never published. Registration with the
Copyright Office is not required, nor is full disclosure necessary. To secure a
registered copyright, the creator of a program need only submit descriptive
materials on the first and last 25 written pages of the work, which usually do not
constitute the entire program.

Copyright gives the creator control over several activities, including
reproduction, distribution, and adaptation or translation into derivative works.
Several recent and ongoing lawsuits' are testing the limits of these rights by
raising the issue of what constitutes "substantial similarity," the basis for
determining copyright infringement.

Expressions, Ideas, and Functions

Copyright protection is extended only to expressions of ideas, not to the
underlying ideas themselves. This distinction is especially critical for the
software industry, where independent invention is common. Two designers may
set out to tackle the same problem, each one creating different programs that
accomplish essentially the same task. There are no grounds for copyright
infringement if neither competitor copied the other's work. The situation is akin
to one that might exist for two writers of romance novels, both of whom have
the same general idea for a plot but whose finished works, although comparable
at an abstract level, differ greatly in style, character development, and other
literary aspects.

Allowance for independent invention distinguishes copyright law from
patent law, which, as is described below, provides protection for ideas at some
level. Thus copyright protection is said to be narrow, or "thin," because it
permits duplication of function, a feature that becomes apparent when one
shops for a word-processing program.

Not all copyrightable works are accorded the same extent of copyright
protection. Artistic or fanciful works are considered to have a broad scope of
protection by copyright because they are predominantly expressive in character.
Factual works have a somewhat narrower scope of protection, because the facts
and theories they contain are not protected by copyright. Works of a more
functional character, such as architectural plans, recipe books, rule books, and
the like, have traditionally been considered to contain little expression.
Copyright law has regarded the functional content of such works to be among
their unprotectable features, and hence the scope of protection for

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

BACKGROUND TO BASIC LEGAL ISSUES 25

such works has been quite narrow, requiring exact or near-exact copying of the
expressive aspects of the work for infringement to be found.

Some commentators on software copyright law would compare the
complex structure of a computer program to the complex structure of novels,
and would argue that just as the complex structure of a novel might be
protectable expression under copyright law, so too should the complex structure
of a program be protectable. Others would argue that the functional character of
computer programs would suggest that a narrower scope of protection is
appropriate under copyright law on the theory that the design of software is
more akin to the engineering design for a bridge (which a copyright on a
drawing would not protect) than to the design of a novel.

Software's peculiarities have spawned uneasiness in some quarters about
the ability of copyright law to provide effective protection , a term with many
interpretations. Indeed, Paul Goldstein, Stella W. and Ira S. Lillick Professor of
Law at Stanford University, reflecting on the many changes in the industry,
speculated that if CONTU had had the benefit of today's understanding of
software, that body's recommendations would have been markedly different
from those actually made a decade ago.

One source of vexation, at least for some, is the dissimilarity between
software and its copyright analogue, literary works. Only rarely, for example,
are computer programs sold or licensed in a written form even remotely
understandable to people other than expert computer programmers. Most
software is distributed as machine-readable object code, written as sequences of
numbers. Except for the user interface, software—unlike literary works—does
not reveal its expression to the consumer. Not all find this objection compelling.
"The fact that it requires a certain competence to read a computer program with
appreciation,” Anthony L. Clapes, IBM's senior corporate counsel, has written,
"merely puts computer programs in company with foreign language texts and
other specialized literature: the ideas in them are not unintelligible; they simply
do not yield themselves up to those untrained in the language in which the ideas
are expressed” (Clapes, 1989, p. 143).

Also grounds for debate is the functionality of software, a property that
further blurs copyright law's already fuzzy line between idea and expression.
For practical purposes, idea and function are virtually synonymous, falling
within the realm of patent law. Thus, in theory, copyright law does not protect
the functionality of programs, but rather the expressions that result in the
accomplishment of a given task. But the question of the extent to which
copyright protects the functional elements software possesses, such as the
command sequence for footnoting text, the arrangement of graphical symbols

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

BACKGROUND TO BASIC LEGAL ISSUES 26

on a display, or other behavioral components of a program, will turn on the
courts' judgments as to whether nonfunctional elements have been copied.

Goldstein attributed the legal uncertainty besetting the software industry to
the "tension between the essential functionality of computer programs and
copyright law's historic refusal to protect functional elements of otherwise
qualifying works." Morton David Goldberg, of the New York law firm Schwab,
Goldberg, Price, & Dannay, disagreed with this contention. He noted that
copyright applies to several types of utilitarian works, including maps and
charts. Pamela Samuelson of the University of Pittsburgh contended, however,
that copyright law has traditionally not considered maps and charts to be
"utilitarian" in character, for they merely convey information or display an
appearance. "Works that have functions—in addition to conveying information
or displaying an appearance—have been utilitarian in a copyright sense, and
hence unprotectable by copyright,” she said. "Computer programs are the first
truly utilitarian work to be protectable by copyright."”

Copyright law recognizes the "merger of expression and idea,” an
argument raised in many copyright-infringement cases but one that seems to
have particular relevance for software. The merger doctrine holds that if an idea
is inseparable from its expression, then only one or a few options exist for
accomplishing a specific function. Therefore the expression is not protected,
and copying is permissible. To do otherwise would grant monopoly control over
an idea. Here, the machine side of software's dual nature becomes the focal
point. The ability to do work, it is often argued, entangles idea and expression.
If two programs are designed to perform the same function, will not the range
of expression be limited, dictated by the task? After all, other machines—cars,
for example—vary in style and detail, but their form is constrained by their
function, necessitating many shared features.

The validity of the argument that expression is idea in software hinges on
circumstances and, thus, judicial interpretation. In one case, for example, the
court ruled that duplication of the sequence of data-input formats for a
structural-analysis program did not constitute infringement, finding that the
sequence was not expression, but an idea. The merger of idea and expression
also was found to underlie the similarities in the "sequence and organization" of
competing marketing information programs for cotton farmers. In this case,
Synercom Technology, Inc. v. Unni Computing Co. (462 F. Supp. 1003 [N.D.
Tex. 1978]), the need to conform with the conventions of the cotton market was
thought to constrain the range of expression. The "merger”

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

BACKGROUND TO BASIC LEGAL ISSUES 27

argument has also been rejected in many software cases, including those in
which the issue was not literal copying but nonliteral similarity.

What Constitutes Copyright Infringement?

Until only recently, intellectual property concerns in software were limited
largely to literal copying. In the 1980s, new issues arose and, with them, a
diversity of views on the scope of copyright protection. One boundary on this
wide spectrum of opinion, the minimalist argument, posits that extending
protection beyond the computer code and perhaps some audiovisual and tutorial
features of the user interface will encourage monopoly and stifle competition.
Maximalists, who reside at the opposite boundary, counter that such limited
protection will remove the incentive to innovate.

Although some may align themselves with one view or the other, most
software firms are not likely to endorse either one, preferring a practical view
consistent with the realities and behavior of the industry. They recognize the
need for programs to work with other programs, as demanded by users. Meeting
this need will require using parts of others' software, as has been the industry's
practice for much of its history. Overly broad protection would present a major
obstacle, with each effort to create compatibility carrying the risk of a lawsuit. ,
however, could create a paradise for free riders, producers of "knock-off," or
cloned, programs.

Some lawyers see the law as steadily evolving to workable compromise
that will accommodate software. In a review of decisions on the protectability
of the "structure, sequence, and organization" of programs, Goldberg contends
that the "developing body of case law in this area does provide helpful
guidance, and will do so increasingly as more cases are decided" (Goldberg and
Burleigh, 1989, p. 296). In her review of the situation, Samuelson draws the
opposite conclusion, finding consensus extending only to copyright ability of
computer programs. "Almost all of the important questions about what
copyright protection means for software have yet to be answered definitively,"
she has written (Samuelson, 1988, p. 61).

Not surprisingly, these two legal experts also disagree on the
appropriateness of, arguably, the most influential decision handed down thus far
on the scope of copyright protection for software, that of the Third Circuit Court
of Appeals in Whelan Associates, Inc. v. Jaslow Dental Laboratory, Inc., et al.
(U.S. District Court for the Eastern District of Pennsylvania, 797 F. Supp. 1222
[1985]). Goldberg's and Samuelson's differences are explored below, with the
aim of elucidating some of

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

BACKGROUND TO BASIC LEGAL ISSUES 28

the disagreements in assessments of the applicability of copyright law to
software.

At issue in Whelan was whether a business-management system developed
for a dental laboratory and written for an IBM PC computer was a copy of a
predecessor system that operated on an IBM Series 1 computer. The court held
that "copyright protection of computer programs may extend beyond the
programs' literal code to their structure, sequence, and organization." By the
court's parsing of the dichotomy between idea and expression, an idea in a
program is its "purpose or function"; the expression of the idea is "everything
that is not necessary to that purpose or function.” File and data structures, data
flow, and the structure and sequence of screen displays that manifested program
routines were construed as protectable expression.

In endorsing the appellate court's ruling that "substantial similarity" of
nonliteral elements of programs can be proof of infringement, Goldberg
suggests that limiting protection only to code "would be equivalent to
permitting one freely to publish a copyrighted English-language novel in an
unauthorized French translation, or to dramatize it or make it into a motion
picture without authorization" (Goldberg and Burleigh, 1989, p. 301). He also
dismisses arguments that the Whelan decision confers protection on all elements
of a program except its underlying idea. Goldberg notes that the court based its
finding of comprehensive nonliteral similarity on its review of data structures,
screen outputs, and five subroutines or modules. The court considered the
possibility of "merger of idea and expression" but dismissed it, pointing to
evidence cited by the district court that competing, commercially available
programs had different structures and designs and yet had the same purpose. As
evidence that the Whelan decision does not imply blanket protection to
programs, Goldberg points out that a number of plaintiffs have lost "structure,
sequence, and organization" cases decided after Whelan.

Goldberg also concurs with the court's rejection of the view that the
incremental nature of progress in software development necessitates some
copying. The court did not see any qualitative difference between progress in
the development of software and progress in other areas of science and the arts
where copyright law applies.

Samuelson, in contrast, contends that the Whelan decision not only takes
the "radical step" of regarding the overall structure of a program, which she
regards as a functional design, to be protectable expression under copyright law,
but more radically than that, adopts a test for software copyright infringement
that would recognize everything about a program except its general function or
purpose as copyrightable "expression." Samuelson points out that the appellate
court quoted

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

BACKGROUND TO BASIC LEGAL ISSUES 29

with approval a passage from the trial court decision that described as
protectable expression "the manner in which the program operates, controls, and
regulates the computer in receiving, assembling, calculating, retaining,
correlating, and producing useful information." Such wording, she adds, would
make the functionality of a program into protectable expression, ignoring
copyright law's exclusion from protection of processes, procedures, methods of
operation, and systems that might be described in a copyrighted work.
Functional processes and designs have traditionally been within the domain of
patent law, not copyright.

Finally, Samuelson suggests that applying the Whelan decision's test for
differentiating between idea and expression seems to have "swept" algorithms
"into the fold of 'expression." Within recent years, the U.S. Patent and
Trademark Office has begun awarding patents for "method algorithms"
embodied in software-related inventions, providing protection for 17 years.
However, if the Whelan decision is to be taken seriously, copyright protection
and its 75 years of coverage could be extended to algorithms, Samuelson
maintains, "particularly if a software copyright plaintiff's lawyer is astute
enough not to call the algorithm an algorithm, but rather the structural backbone
of the software."

To Samuelson, copyright law's aversion to technology is manifested in the
way the courts have chosen to address software-related issues. Virtually all
courts have treated software entirely by analogy to literary works, ignoring its
status as technology. While acknowledging that certain aspects of software fall
clearly within the province of copyright law, Samuelson advises that, for the
law to embrace the technological aspects of software, fundamental changes in
the copyright system would be required. "Judges have been blind to the fact that
software is a technology and that progress in the field of technological arts may
more easily be impeded by strong copyright protection than might be the case in
the field of the literary arts," she maintains.

TRADE SECRET

A commonly used protection, trade secrets are often used in conjunction
with copyright, which serves as a first line of defense in the event that a
program is "reverse engineered" by a competitor. Indeed, the Copyright Office
accommodates the software industry's heavy reliance on trade secrets by
allowing registration with descriptive, identifying materials that do not reveal
confidential information.

Under state trade secret laws, firms use licensing contracts that stipulate
conditions under which software can be used, copied, modi

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

BACKGROUND TO BASIC LEGAL ISSUES 30

fied, translated, or transferred. Such contractual prohibitions can be
circumvented, however, and enforcement problems are magnified by the
growing prevalence of distributed computing, which makes licensed programs
easily accessible to nonlicensed users. The reverse-engineering proscriptions
are not necessarily binding on nonlicensed users, a problem with potentially
disastrous consequences for innovators who rely on this form of protection
alone. Unlike machines and other technologies that have a material
manifestation, software, as already noted, can be disassembled and reassembled
into a form that bears little resemblance to the copied work, thus defeating the
trade secret protection. In addition, a competitor could independently develop
and then patent a software-related process that a company had protected
through trade secret. Since patent law does not recognize trade secrets as prior
art, the original innovator would be forced either to stop selling the software
product or to license the process from the competitor that holds the patent.

Sellers of off-the-shelf software often attempt to impose agreements
—"shrink-wrap licenses"—upon purchasers opening the plastic wrapper that
encases the disk on which the program is stored.? Buyers are allowed to make
archival copies, but self-executing shrink-wrap licensing agreements may
prevent them from copying the program and distributing it to others. To treat
programs sold in volumes of hundreds of thousands and even millions as trade
secrets, according to one commentator, "offends common sense—the fact that
so much copying takes place indicates how few users take the agreement
seriously” (Branscomb, 1988, p. 43).

Software firms are becoming increasingly concerned about the viability of
contracts applied to large numbers of users. On the one hand, wide-scale
distribution may render the claim of trade secret meaningless. On the other,
there are fears that the "first sale doctrine" will undermine licensing agreements.
Under the doctrine, the purchaser of a copyrighted work is free to disseminate
that work, although copying is limited to certain prescribed circumstances. Such
circumstances include those cited in the copyright law's "fair use doctrine,"
which allows copying for the purposes of research and criticism. Both
doctrines, some observers speculate, could serve as the means to erode the
scope of trade-secret protection, as well as copyright protection. Another
concern is that federal copyright law will preempt state trade secret laws.
Indeed, in a closely related area, a federal appellate court in Louisiana ruled in
1988 that portions of that state's shrink-wrap enforcement law are preempted by
copyright law (Samuelson, 1988).

Uncertainty over the legitimacy of shrink- wrap licenses hangs over the
entire industry, said Charles M. Geschke, president and chief

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

BACKGROUND TO BASIC LEGAL ISSUES 31

operating officer of Adobe Systems, Inc. He warned of the potential danger that
competitors could "take what I have licensed to them and use it as a weapon to
come back and compete with me by [automated] reverse engineering. That is
very hard, from a developer's point of view, to accept as a really fair form of
competition."

PATENT

In the 1972 case Gottschalk v. Benson, the U.S. Supreme Court ruled that
mathematical algorithms were not patentable, spawning the view that software-
related inventions, the essence of which is often an algorithm, were not eligible
for patent protection. In fact, CONTU, in its analysis of potential intellectual
property protections for software, shared this perception and dismissed patents
as an option (Samuelson, 1988). A year after Congress enacted CONTU's
copyright recommendations, however, the Supreme Court opened the patent
door to software, ruling in Diamond, Commissioner of Patents and Trademarks
v. Diehr et al. (Supreme Court of the United States, 450 U.S. 175 [1981]) that
the use of an algorithm does not render unpatentable an invention that would
otherwise be eligible for the protection (Kahin, 1989).

The decision in Diamond v. Diehr, which concerned the patentability of a
rubber-curing process directed with the aid of a computer program, was hardly
an unequivocal endorsement of the patenting of software. Some commentators
suggest that the wording in the 5 to 4 decision allows the court sufficient room
to reassess the issue in the future. But in the nearly 10 years since Diamond v.
Diehr, the high court has chosen not to revisit the matter. Meanwhile, the
number of software-related patents awarded by the Patent and Trademark
Office rose from none in 1980 to about 200 annually in recent years, according
to estimates prepared for the Computer Law Committee of the State Bar of
Texas (cited in Brian Kahin, "The Case Against Software Patents," unpublished
paper, 1989, p. 1).

As is true for the copyright ability of software, the patentability of
software-related inventions may be viewed as a boon or a bane, depending on
one's perspective. A simplified pro-patent argument holds that the protection is
most appropriate for addressing the technological aspects of software, while
providing a powerful incentive for innovation. The contrary argument views
patents as anticompetitive because, unlike copyrights, they do not allow for
independent invention, and as increasing the risk of litigation because of the
secrecy of the patent-approval process.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

BACKGROUND TO BASIC LEGAL ISSUES 32

Characteristics of Patents

A patent provides 17 years of protection to owners of inventions—works
that are nonobvious, novel, and useful—in exchange for full disclosure of the
inventions at the time of application. Because it precludes independent
invention, patent law is said to provide "thicker" protection than does copyright
law, forcing competitors to "invent their way around" a patented innovation.

Donald S. Chisum, professor of law at the University of Washington,
maintained that, compared to copyrights, patents are a "nobler" form of
protection. By "dangling out a reward, the right to exclude others from using
useful processes and products," he said, the first-to-file requirement and its
winner-take-all result hasten the pace of innovation. Even companies with large
market shares cannot be content to rest on past accomplishments because,
according to Chisum, they run the risk of being "completely knocked out of the
market by a technological innovation that is developed and patented" by a
competitor. Moreover, the disclosure requirement provides competitors with a
clear understanding of the inventive hurdle they must leap to compete with the
patent holder, thereby setting the stage for the next round of innovation.

Unlike the protection provided by copyright law, patent protection extends
to functionality. Different implementations of an idea or incremental
improvements to a patented invention are not eligible for protection because
they do not satisfy the patent law's requirement for nonobviousness. Indeed,
such implementations or improvements, if undertaken by a competitor,
constitute infringement of the patented innovation. In theory, the monopoly
grant awarded to the patent holder fosters more efficient development within
industry by discouraging duplication of effort.

The scope of patent protection is subject to uncertainty, however, in the
guise of the doctrine of equivalents, patent law's counterpart to copyright's
doctrine of substantial similarity. Determining whether two inventions are
substantially similar is a matter for judicial interpretation, and the reasoning
applied in the few software-related cases that have reached the courts thus far
has not always been consistent.

"Courts are essentially schizophrenic about patents," Chisum explained.
"On the one hand, we say that it is the function of the patent claim to delineate
what is covered. If you don't claim it, you don't have any exclusive rights over
it, and yet on the other hand, they [the courts] apply ... the doctrine of
equivalents. In some circumstances, something that literally does not conform
to the verbal statement in the patent is nevertheless found to be an infringement,
and as you can imagine, that is a great source of ambiguity."

Added Ronald Laurie, of Irell & Manella, "I think we are going to

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

BACKGROUND TO BASIC LEGAL ISSUES 33

be hearing a lot more about this area [doctrine of equivalents] with the rising
tide of software patents that are being issued and, of course, the consequent
flood of software-patent litigation."

Proponents of patent protection for software suggest that some of the
issues now being contested in copyright cases stem from the presumed
unavailability of the protection following the Supreme Court decision in
Gottschalk v. Benson. People have tried to "stretch the boundaries of copyright
protection to fill in for the fact that no one [had] patent protection,” said John
Shoch, general partner at the Asset Management Co. He cited the current spate
of "look and feel" cases as symptomatic of the problems that arise when
copyright law is used to address issues that belong in the domain of patent law.

"[W]e find ourselves in this tremendous fight about look and feel, and
function, and interfaces in the copyright domain, which is absolutely the wrong
place to have much of this fight," Shoch contended. The proper legal arena for
these issue, he added, is patent law. In his view, the software industry will
benefit if patent protection is made fully available, alongside copyright and
trade secret protection.

Not everybody sees the emergence—or reemergence—of patent protection
as a positive development. Brian Kahin, adjunct research fellow at Harvard
University, argued that the late arrival of patent protection is potentially
disruptive, suggesting that the virtual absence of patenting until recent years
may undermine the highly decentralized structure of the software industry.

"If software had clearly been protectable from the outset, there would be
no surprise, no defeated expectations,” Kahin has written (Brian Kahin, "The
Case Against Software Patents," unpublished paper, 1989, pp. 8-9). "But now it
appears that the industry may have to be reshaped to fit the patent system and
that the rapid development of software products may have to be slowed to fit
the review, processing, and publication cycle of the Patent and Trademark
Office."

Yet, the nature of software is such that many of its components satisfy
patent law's eligibility criteria, Laurie maintained, noting the interchangeability
of function between software and hardware. "If you say that hardware is
patentable and software isn't," he said, "then you are saying to developers and to
engineers that depending ... on how they resolve the design trade-off, they may
get protection or they won't get protection” even though they are solving
identical problems in virtually identical ways. "That is injecting, in my opinion,
too many legal considerations." Adds IBM vice president for systems and
programming Peter Schneider, "The most disturbing part about patent
protection as it relates to software is that it is an indicator of how fast the legal
community changes its mind."

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

BACKGROUND TO BASIC LEGAL ISSUES 34

What is Patentable?

What is eligible for patent protection? According to the U.S. Supreme
Court decision in Diamond, Commissioner of Patents and Trademarks v.
Chakrabarty (447 U.S. 303, 100 S. Ct. 2204 [1980]), Congress intended patent
law to embrace "anything under the sun that is made by man"—anything, that
is, falling into any one of the four categories of statutory subject matter:
process, machine, manufacture, or composition of matter. Among the items not
sheltered by the broad umbrella of patentable subject matter are laws of nature,
physical phenomena, abstract ideas, "mental steps," and methods of doing
business.

Software clearly qualifies as a human-made artifact. But the technology's
critical dependency on mathematical algorithms, which patent law views as
akin to laws of nature, positions software right at the drip line of the umbrella of
patentable subject matter. Thus the Supreme Court ruling in Gottschalk v.
Benson, holding that "an algorithm, or mathematical formula, is like a law of
nature, which cannot be the subject of a patent," was widely interpreted as
excluding software from patent protection. In Diamond v. Diehr, the high court
did not reverse its 1972 decision, but rather it said the mere presence of an
algorithm did not automatically render a process or machine ineligible for a
patent. It did not say categorically, however, that computer programs are
patentable. Nevertheless, the highest specialized court in the domain of patent
law, the Court of Customs and Patent Appeals (CCPA; the predecessor to the
Court of Appeals for the Federal Circuit), "has held that computer processes are
statutory unless they fall within a judicially determined exception" (U.S. Patent
and Trademark Office, 1989, p. 6).

Using the somewhat equivocal guidance provided by the courts, the Patent
and Trademark Office has developed an operational concept of what software
elements are eligible for patents, giving rise to such terms as software-related
inventions, computer processes, and computer algorithms—a classification
distinct from unpatentable mathematical algorithms. The upshot, according to
Michael S. Keplinger, an attorney advisor in the Office of Legislation and
International Affairs at the Patent and Trademark Office, is that patents are not
awarded for computer software. "We grant patents,” he explained, "on computer
processes, processes that may be implemented in a computer, just as they might
be implemented in a production-line machine or in any other hardware
embodiment." Abstract descriptions of computer processes do not qualify,
Keplinger added. Only specific implementations of processes in hardware are
eligible.

Nor does the Patent and Trademark Office's parsing render math

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

BACKGROUND TO BASIC LEGAL ISSUES 35

ematical algorithms patentable. "We used to say that we didn't issue patents on
algorithms," Keplinger explained, "but you can't say that, because any process
is an algorithm. It is a difficult line to [draw]—for a patent examiner to
determine where you draw the dividing line between a purely mathematical
algorithm, which we won't issue a patent for, and a process that may be
expressed in mathematical terms," which will receive a patent if it is sufficiently
useful, novel, and nonobvious.

To help inventors and their attorneys, the Patent and Trademark Office
recently published a legal analysis that describes a two-part test to determine
whether a product or process containing an algorithm is eligible for patent
protection. The test is the evolutionary product of decisions made by the
Supreme Court and the CCPA (U.S. Patent and Trademark Office, 1989).

Test for Patentability

The first step, determining the presence of a "mathematical algorithm," is
relatively straightforward, although, on occasion, ascertaining whether an
algorithm is included in a claim may require some interpretation. The
description of a mathematical algorithm, defined as a procedure for solving a
given type of mathematical problem, is inconsequential. It may be in the form
of a mathematical equation or it may be described in prose. More significant is
the nature of the claim, whether it is for a process or a machine. By themselves,
algorithms are considered processes that are ineligible for patents. To enhance
their chances for securing a patent, some innovators have filed machine, or
apparatus, claims that typically describe an algorithm as a means for
accomplishing a task. The label is often not convincing. The applicant must
demonstrate that functions described in the claim can be performed with a
specific apparatus only. Most applicants fail to prove this specificity, and so
most machine claims embodying algorithms are treated as process claims.

The second step in the test, distinguishing "between patentable process and
unpatentable principle,"” is not free of ambiguity, as the Supreme Court noted in
the 1978 case Parker v. Flook (437 U.S. 584, 593; 198 U.S.P.Q. 193, 198-99
[1978]). Lacking definitive tests for making the distinction, the Patent and
Trademark Office's analysis offers several guidelines that it "synthesized" from
court decisions. Apparently key to the final determination, however, is the
specificity with which an algorithm is applied to steps in a physical process or,
in the case of a machine claim, to physical elements. This implied penchant for
specificity stems from the desire to prevent preempting the use of an

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

BACKGROUND TO BASIC LEGAL ISSUES 36

algorithm in other applications. That is precisely the result the Supreme Court
sought to avoid in Gottschalk v. Benson and in Parker v. Flook, noting in the
former case that "the practical effect" of excluding broad areas of use "would be
a patent on the algorithm itself."

Especially influential here is a CCPA decision in an appeal of a claim
denied by the Patent and Trademark Office, Lever Brothers Company v. Thrift-
D-Lux Cleaners, Inc. (U.S. Court of Customs and Patent Appeals, 46 CCPA
798, 263 F.2d 842 [1959]). In In re Abele (684 F.2d 902, 214 U.S.P.Q. (BNA)
682 [CCPA 1982]), the CCPA suggested reviewing a claim without the
algorithm. If the remaining process or machine qualifies as patentable subject
matter, according to the court, then inclusion of an algorithm should not alter
that determination. This procedure does not suggest, the Patent and Trademark
Office stresses, that the inventive merits of the claim be assessed in this manner,
since the entire process or machine must be evaluated to determine novelty and
nonobviousness.

A computer process is not patentable if the claim merely lists potential
applications. The Patent and Trademark Office, referring to the decision in
Parker v. Flook, classifies such a listing as "insignificant or non-essential post-
solution activity." Similarly, a process is not eligible if the end product is
simply the recording of the results of a calculation, nor is a process that is
confined to assembling data for assigning values to variables in an algorithm. If,
however, data gathering is dictated by steps other than the algorithm, then the
process may be eligible. Less ambiguous are processes that transform
"something physical into a different form," as compared with those that, by
means of computation, transform one set of numbers into a different set. Thus
the court has ruled as patentable a process that transforms "spherical seismic
signals" into a "form representing the earth's response to cylindrical or plane
waves" (Mehmet Turhan Taner, Fulton Koehler, Nigel A. Anstey and Michael J.
Castelberg, U.S. Court of Customs and Patent Appeals, 681 F.2d 787 [1982]).
Such processes have been deemed analogous to the conversion of sound into
electrical signals or other transformations of signals accomplished with
electrical circuitry.

Once one leaves the fairly well defined domain of signal transformation
and other discretely defined processes, uncertainty begins to intrude. For
example, the Patent and Trademark Office notes that claims can be rejected as
nonstatutory if the process represents business methods and mental steps, and
"not a true computer process.” Amplifying this point, the analysis cites a 1977
appeal (Gaetan de Coye de Castelet , U.S. Court of Customs and Patent
Appeals, 562 F.2d 1236 [1977]): "Claims to nonstatutory processes do not
automatically and invariably become patentable upon incorporation of reference
to ap

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

BACKGROUND TO BASIC LEGAL ISSUES 37

paratus." But closer examination may determine such machine-implemented
processes to be eligible. Indeed, the analysis goes on to say that several cases
decided during the 1970s indicate that "machine or computer implementation of
mental steps is statutory subject matter." Thus the CCPA deemed a computer
process translating natural languages as patentable. Indeed, a substantial
number of people in the software industry would probably concur with that
opinion.

Grounds for greater debate may be a federal district court's decision
regarding the patentability of a cash management system. If carried out
manually, the system would not be eligible, but in its incarnation as a computer
process, the system was found to qualify for protection. The court concluded
that the process was not a business method but rather a "method of operation on
a computer to effectuate a business activity" (Paine, Webber v. Merrill Lynch,
564 F. Supp. 1369, 218 U.S.P.Q. 220 [1983]). This distinction has mystified
some in the industry.

Coherent or Incoherent?

Meanwhile, despite the great effort expended by the courts and the Patent
and Trademark Office to elucidate the nature of computer processes, some legal
experts believe that the system can be manipulated to secure patent protection
for mathematical algorithms. "As long as you don't call it an algorithm," said
Chisum, "it is probably going to be patentable as a method, even though it
really is an algorithm." The Supreme Court decision in Gottschalk v. Benson, he
maintained, remains as a source of lingering confusion and incoherence, making
such behavior necessary. To avoid invoking that decision, Chisum explained,
patent attorneys "dress up" algorithms "with language that makes it into a
method or process."

Mitchell D. Kapor of ON Technology, Inc., questioned the "intellectual
coherence" of the patent system as characterized by Chisum. "[O]ne's business
strategy may hinge on legal subtleties that are apparently disconnected from
anything that makes sense to us," he said.

Another technical expert who fails to see conceptual clarity in the law's
and the Patent and Trademark Office's treatment of algorithms is Allen Newell,
a professor of computer science at Carnegie Mellon University. In an oft-cited
article, Newell maintains, "The models we have for understanding the entire
arena of the patentability of algorithms are inadequate—not just somewhat
inadequate, but fundamentally so. They are broken" (Newell, 1986). Many of
Newell's numerous criticisms center on the practical utility of most discover

[

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

BACKGROUND TO BASIC LEGAL ISSUES 38

ies of computer science, an attribute that distinguishes the field from other
research areas. "With rare exceptions," he writes, "scientific knowledge in
computer science is in the form of means-end relationships—what to do to
obtain something of value. Indeed this is just the essence of algorithms: what to
do to perform a task. But algorithms, far from being an applied part of computer
science, are at the center of its basic theoretical structure.”

Therein lies a problem. It is plausible, Newell maintains, that for any
process a limited number of reasonably efficient algorithms may exist. To grant
monopoly over these efficient processes would impose a "stranglehold" on
additive inventive activity that would otherwise build on important algorithms.
In some technological domains, Newell speculates, all inventive activity may
involve algorithms, and the entire realm of invention "would come to reside in a
computer."”

"If methods and processes over large technological domains become an
exercise in algorithms," Newell explains, "then it is extraordinarily dangerous
not to patent algorithms." Therefore, patents for algorithms may indeed be
necessary, but that determination cannot be made with existing legal models of
algorithms, he argues.

At the forum, Michael O. Rabin, a professor of mathematics and computer
science at Harvard University and Hebrew University, strongly endorsed patent
protection for mathematical algorithms because of their increasingly influential
role in technology development. Algorithms, he said, are human inventions, not
discoveries, which are unpatentable. Incentives and, therefore, protection are
required to encourage people to aspire to tackle important problems whose
solutions require new algorithms.

If algorithms are viewed from this perspective, Rabin said, patent criteria
that necessitate linking an algorithm to a specific process or a specific device
will be found to be too confining. "I have a feeling," he said, "that this is going
to be too narrow," reflecting, perhaps, the time lag between technological
advance and legal response. "We do understand devices, linkages, values, and
differentials, and so on, but we are moving to the edge of information and to the
edge where the tools ... are mathematical," he continued. "Yes ..., they are
ephemeral, but they are all powerful, and I think these innovations ..., these
tools, deserve at least as much protection as ... the protection afforded to the
cap on a soft-drink bottle, and so, this is my proposition and my plea."

THE INTERNATIONAL SITUATION

With the strong urging of the United States, many foreign nations—more
than 40 as of late 1989—have adopted copyright or roughly

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

BACKGROUND TO BASIC LEGAL ISSUES 39

equivalent protection for software. Although a smaller number of countries,
including Japan, also allow patenting of software, there is growing international
consensus that copyright should be the primary means of protection and that
software should be treated like other copyrighted works, according to
Keplinger, of the U.S. Patent and Trademark Office.

Two treaties, the Paris Convention for the Protection of Industrial Property
and the Berne Convention for the Protection of Literary and Artistic Property,
serve as the basis for international treatment of copyrighted and patented works
and are administered primarily by the UN's World Intellectual Property
Organization (WIPO). Most relevant to software is the Berne Convention,
which the United States signed in 1988, thereby supplanting most, but not all, of
the bilateral copyright agreements it had negotiated with other nations.
Signatories to the Berne Convention agree to meet a minimum set of legal
requirements and, more important, to afford "national treatment" to works
produced by authors in member nations. Thus French authors of computer
programs imported into the United States, for example, are awarded the same
exclusive rights of ownership as U.S. software publishers who market their
programs domestically. Conversely, U.S. software exported to France would be
accorded full copyright protection under that nation's laws.

Keplinger noted that the international conventions do not explicitly
mention software. Rather, protection for the technology stems from treaty
wording that applies comprehensively to works of authorship. Although a
WIPO initiative to develop a model law specific to the protection of software
has not advanced, Keplinger said, one can "make a credible argument that the
Berne Convention already requires its members to protect computer programs
under copyright law, because they are generally regarded as protectable subject
matter by countries that have addressed the problem." (See Box 2.2.)

Nevertheless, copyright laws do vary among nations, creating some
uncertainty. Keplinger explained that a German Supreme Court ruling seems to
require "a relatively high degree of originality for computer programs, with the
result that some German lawyers feel that many programs will be ineligible for
protection under this high standard...." France has chosen to classify software
as an applied art—rather than a literary art—and provides protection for a term
of 25 years, compared with 50 years for most other treaty nations. However, the
European Economic Community (EEC), of which France is a member, is
preparing a directive on intellectual property protection for software that may
(based on the content of drafts) propose full copyright coverage for software,
including protection for 50 years.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

BACKGROUND TO BASIC LEGAL ISSUES 40

BOX 2.2—UNFAIR COMPETITION LAW

In many countries, slavish imitation of intangible creations is still
regarded—overtly or covertly—as a wrongful act in its own right,
according to Jerome H. Reichman of Vanderbilt University. This
controversial business tort, known as misappropriation, is widely
recognized in state unfair competition laws, but these laws often conflict
with federal intellectual property protections. As a result, the U.S.
Supreme Court has on several occasions reduced the scope of state
laws. Recently, Switzerland enacted a new misappropriation law
deliberately aimed at preventing theft of new technology. This use of
unfair competition law in this capacity has greatly influenced foreign
intellectual property law, Reichman said, but so far, it has attracted little
attention in the United States.

Reichman suggested that it might be easier and more effective to add
an antipiracy clause to the Paris Convention (to which more than 90
countries adhere) than to "stuff' computer programs into the Berne
Convention, which governs literary and artistic works. (See text.) This
would be feasible, he said, if a GATT agreement on intellectual property
ultimately strengthened international arrangements covered by the Paris
Convention, which covers industrial property.

The proposed EEC directive, which specifies how copyright protection
applies to software, contains a controversial measure that, opponents contend,
would "drastically limit rivals' ability to decipher software interfaces and build
compatible products" (Verity, 1990, pp. 138 and 140). Proponents argue that the
measure would be an effective deterrent to "commercial copying" of software.

In December 1990, the Council of Ministers of the European Community
adopted a "Common Position" on the Directive on the Legal Protection of
Computer Programs, which permits more extensive reverse analysis than earlier
drafts of the directive. The Common Position would permit decompilation to
the extent necessary to develop competitive—but themselves noninfringing—
interoperable products. A final directive is expected to be adopted by late
summer or early fall, 1991, after it is reviewed again by the European
Parliament, the Council of Ministers, and possibly the Commission of the
European Community.

Meanwhile, Japan has excluded algorithms, rules, and programming
languages from copyright protection, a revision that observers inside and
outside of Japan speculate will abet widespread copying. A 1989 decision by
the Japanese high court, the first ruling under the amended copyright law, found
that copying a program's "processing

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

not from the

original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book

BACKGROUND TO BASIC LEGAL ISSUES 41

flow"—the court's interpretation of an algorith—did not constitute
infringement, according to Dennis S. Karjala, director of Arizona State
University's Center for the Study of Law, Science, and Technology. Compared
with the ruling in the U.S. case of Whelan v. Jaslow, however, the Japanese
court's decision "did not go nearly as for in protecting nonliteral features of
programs,” Karjala said.

To assure reasonable levels of protection for software and other forms of
intellectual property worldwide, the United States and other nations have
proposed including an intellectual property code in the General Agreement on
Tariffs and Trade (GATT), which has about 100 nations as signatories.
Incorporated into this proposal are clarifications of the rights accorded to
owners of software under copyright law, as well as mechanisms for
enforcement, which are lacking in the Berne Convention. A benefit of
addressing intellectual property issues through the GATT, Keplinger said, is the
treaty's dispute-resolution process, which entails convening a panel to determine
whether a member state is living up to its obligations. In contrast, disputes that
arise under the Paris and Berne Conventions are referred to the World Court,
which does not have enforcement powers. While Keplinger said that
inconsistencies and other deficiencies in international conventions for
protecting intellectual property need to be improved, he strongly advised
against measures that would deviate from international norms of copyright and
patent protection. Abandoning these norms, rather than "fine-tuning" them, he
warned, would jeopardize past progress in "getting meaningful levels of
protection for our works and our technology abroad."

NOTES

1. Lotus Development Corpporation v. Paperback Software International and Stephenson Software,
Limited (Civil Action No. 87-76-K, U.S. District Court for the District of Massachusetts, 740 F.
Supp. 37 [June 28, 1990]), for example, addressed this issue in considerable deatil. In October 1990,
Paperback agreed not to appeal the decision (Keefe, 1991).

2. The legal status of shrink-wrap licenses is quite uncertain. One school of legal analysts believes
they are clearly unenforceable without the consent of the buyer. Others belive this is still an open
question.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

42

What is it that we want to protect? First ... is the brilliant invention,
the idea, the notion that makes a new product and the insight that makes a
whole new industry....[TThe second thing we want to protect is the
investment and the hard work. This is the grunt work. This is the pick-and-
shovel engineering that turns the idea, the prototype, into a reliable,
distributable, maintainable, documented, supportable product.

—Robert Spinrad, Director, Corporate Technology, Xerox Corp.

Since the Industrial Revolution we have had copyright to protect
printed works and patent to protect machines made out of iron and steel.
The problem is that software is really some of both. It is the first
technology that has content.

—Mitchell D. Kapor, Chairman, ON Technology, Inc.

We have managed to lay down the flooring, so we don't have to stand
in the mud. But the problem is we are trying to build cathedrals and the
ceiling is still a ways up there.... Every time the floor comes up a little bit,
the ceiling shoots up higher because aspirations keep getting higher.

—Randall Davis, Associate Director, Artificial Intelligence Laboratory,

Massachusetts Institute of Technology

We have some wonderful arrogance in thinking that the world of
software is so much different from mechanical engineering or the new
biological and pharmaceutical disciplines. I, in fact, don't believe that is the
case.

—John F. Shoch, General Partner, Asset Management Co.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

IS SOFTWARE A SPECIAL CASE? 43

3

Is Software a Special Case?

For the purposes of the law, the relevant question is not whether software
is different from other technologies and creative works that now come under the
protective umbrella—it clearly is. Rather, the issue is whether software is so
different that extensions or modifications of existing legal constructs are
needed. Opinions abound on this question. Said Stanford University law
professor Paul Goldstein, "Any time you are dealing with creative artists—and
that, to an extent, is what you are talking about here—you are talking about
people who genetically believe their work is different.... [T]he history of
copyright suggests that those differences will be taken account of." Some
experts in patent law echoed that reasoning.

Not all legal and technical experts attending the forum, however, were as
confident in the providence of the legal system. For example, Mitchell Kapor,
chairman of ON Technology, suggested that software is so "fundamentally
different" from works on paper, the traditional realm of copyright law, that a
"first-principle reconsideration" of the law may be more appropriate than
determining "how to stretch copyright." Added Pamela Samuelson, law
professor at the University of Pittsburgh, confusion about the expressive and
functional elements of software contributes to the blurring of boundaries
between copyright law and patent law.

THE PROCESS

Depending on whom you ask, software is either written, engineered, built,
or grown—each term capturing some aspect of the process. Per

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

IS SOFTWARE A SPECIAL CASE? 44

haps the most distinguishing feature of the process, however, is the
insignificance of manufacturing as a component, a factor that underlies
software's inherent vulnerability to copying.

"It is all design and no manufacture," explained Randall Davis, associate
director of the Massachusetts Institute of Technology's Artificial Intelligence
Laboratory. "Reproducing it is trivial. Building it ... is the hard part. There is no
significant added effort in building [a multitude of identical products] once you
have built the first one."

The process is so different from that in other fields of engineering, Duncan
M. Davidson has written, that it warrants revising Thomas Edison's famous
characterization of invention as "one percent inspiration and ninety-nine percent
perspiration.”" For software, according to Davidson, the proper equation may be
"fifty percent inspiration and fifty percent perspiration”" (Davidson, 1986, p.
1062).

While those in the field may quibble about the exact proportions of the
creativity and toil that go into a successful software product, they do agree that
both elements are essential. A "brilliant idea" gives birth to a new product and,
perhaps, even an entire industry, Xerox's Robert Spinrad explained, but its
potential cannot be realized without the "pick-and-shovel engineering that turns
the idea, the prototype, into a reliable, distributable, maintainable, documented,
supportable product.”

To Kapor, design is an underappreciated element of software development,
even though it is the primary determinant of a product's value. "I believe more
and more of the economic fortunes of computer companies...[will] depend on
how well designed the programs are, not merely on how well they are
implemented," he said. "[W]e had better worry seriously, if that is the crucial
economic element, about what we want to do about protecting the design of
software, independent of all the other factors."

Jerome Reichman agreed with Kapor and predicted that no long-term
solution to the legal problems associated with protecting software will emerge
until lessons drawn from the 200-year history of design protection law are
brought to bear on this new subject matter, which he calls "industrial literature."

Yet, the importance of those other factors should not be diminished. An
idea, no matter how brilliant, will not reach commercial fruition, Spinrad said,
without the "detailed work" that goes into making a practical marketable
product. Design and implementation, however, are not separate spheres of
software development. The two activities are interactive.

The path that leads from idea to product is usually circuitous, and progress
can be painstakingly slow, as evidenced by the field's ap

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

IS SOFTWARE A SPECIAL CASE? 45

parent resistance to major enhancements in productivity. In fact, software
development entails going down many paths simultaneously, retracing one's
steps, and starting out anew with a slightly revised objective in mind. Dan
Bricklin, co-developer of VisiCalc, the first spreadsheet program for a personal
computer, broke the process down into eight stages, as described in Box 3.1.
"This is a constant iterative process," he said, and testing is nearly continuous.
"Every time you test, you end up changing your design, your constraints [such
as the amount of memory required or the speed of executing an operation], or
your statement of the problem." Each cycle results, Bricklin explained, in
"greater understanding of what you are trying to do."

"You can't just specify [a product], give it to a coder, and say it will work,"
he added. "You will end up with lousy programs."

The seeming circularity of software development stems from a difficulty
that exists from the outset—the difficulty of clearly defining the problem that
the product is intended to solve. Studies of the process suggest that at least 50
percent of the errors that arise during development stem not from coding
mistakes, according to MIT's Davis, but rather from inadequate formulation of
the problem and incomplete understanding of human behavior.

"We try to build things," he said, "and we really don't know what they are
until we start to build them. So, one punch line here is, it isn't the programming
that is hard; it is figuring out what we're trying to do that is hard."
Consequently, the problem that motivated the development effort may not be
fully specified until the final code is written. And even then, future changes are
inevitable because customers are bound to discover errors that were not exposed
during testing and debugging, no matter how rigorous the testing. "What we can
test," Davis said, "is the match between the program and the specification,
which is not at all the same thing as the specifications and what the world is."

Software development is often likened to architecture, another design-
intensive activity. Kapor noted that both activities are devoted to
accommodating human needs and motivations, as well as to satisfying aesthetic
tastes. Davis pointed to a fundamental difference, however. Software does not
have a physical embodiment that can be represented pictorially, as in blueprints
or architectural diagrams. Details often cannot be pinned down in advance.
"There is almost no way to visualize software," Davis explained. "Sure, we
have flow charts, we have data-flow diagrams, we have control-flow diagrams,
and everybody knows how basically useless those are. Flow charts are
documentation you write afterward—because management requires them, not
because they are a useful tool."

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

IS SOFTWARE A SPECIAL CASE?

46

BOX 3.1—CONSTANT ITERATION: STEPS IN DEVELOPING
SOFTWARE’

Specify the problem and define the constraints.

The process begins with a general description of the intended
application, which then must be evaluated and reevaluated in light of such
constraints as memory requirements, speed of execution, ease of use,
and desired completion date.

Design externals.

Determine how the program will interact with the outside world—
users, input devices, other programs, output devices. Will the program
inputs, for example, be entered by keyboard or voice commands? How
will data on disk files be handled?

Design internals.

Set up the data structure, organize movement and processing of the
data, and identify the critical points of data control, as well as the
languages and algorithms to be used.

Transform the design into code.

Use own existing code or license it from others, when feasible; write
new code. Assemble these elements into a prototype program for testing.
Respecify the problem on the basis of new understanding, and change
the design accordingly.

Test, retest, and test again.

Evaluate the prototype's performance with real users and real data.
Identify bugs and performance trade-offs. As needed, change the code,
design, constraints, and problem description.

Document for the user.

Explain how to use the program, how it works, and how to modify it.
Change the program to improve the documentation, if necessary.

Package and market.

Adapt the product, if necessary, to fit the distribution medium, such as
a floppy disk or compact disk. Prepare manuals. Advertise and position
the product in the market. Change the product to accommodate new
hardware or to adjust to new market conditions.

Support the product.

As appropriate, create user groups and provide on-site training,
telephone help lines, and informational publications. Track user feedback,
correct bugs, identify incompatibilities, and begin evaluating features to
include in the next product version.

*Abstracted from a talk given by Dan Bricklin, Software Garden, Inc., at CSTB's
December 1989 forum.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

IS SOFTWARE A SPECIAL CASE? 47

Taken together, two attributes ascribed to software—the uniqueness of
each product and the incremental, additive nature of the development process—
appear to be contradictory. "You use code that worked before—bags of tricks,"
Bricklin explained. "You license code from others or use stuff that is built into
the operating system.... You write new code. You tie it all together with all
sorts of different types of glue."

If the code underlying a specific function, such as methods for searching
databases, can be used in many applications, then where does the uniqueness, or
originality, in a product lie? Often, Bricklin and others maintained, reusable
components require very specific tailoring to be incorporated into new
applications. If cars were built in the same manner, Davis explained, the size of
each screw used in their construction would be different.

More important, however, is the composite nature of the product. "Most
software is an accretion of pieces of software that have been previously
developed, used in ways the original innovator never contemplated,”" explained
Francis Fisher, adviser to the Educational Technology Group at the Harvard
Law School. "This reassembling of bits and pieces is greatly in the public
interest. That is how software progresses."

Thus each new development project begins at a "higher jumping-off
point," Kapor added, "because there are more layers" to integrate. "But once
you actually sit down to write your piece, your program, it is still grinding code,
and testing and debugging."

This peculiarity of software poses a quandary for intellectual property law.
A large number of companies are in the business of producing reusable software
components. This market illustrates the problem of balance: on the one hand,
overly rigid protections could undermine a slowly growing foundation of
reusable components. On the other hand, without intellectual property
protections, these companies could not exist. Although those in the field
disagree on the depth and breadth of the foundation, software developers would
like to exploit whatever experience is accumulating. "You have to be careful
about protecting [code] that can be used all over the place—very careful,”
Bricklin warned. The law, he added, should encourage developers to pursue
successively higher levels of innovation, but without preventing them from
exploring and implementing new iterations of existing ideas and methods. If
protection confers monopoly at too high a level in Bricklin's tree-like scheme of
software innovation, access to branches leading to new designs and applications
would be blocked, he said.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

IS SOFTWARE A SPECIAL CASE? 48

SOFTWARE AS A CREATIVE MEDIUM

At its most abstract, software is "the ultimate creative medium," said MIT's
Davis. It is, according to Davis, "a tangible form of dreams and imagination."

Yet in software, abstraction and metaphor are embodied within the
product. The popularity of Apple's Macintosh computer, for example, is
attributed to a graphical user interface that mimics the desktop work
environment—in visual imagery, in the behavior of the file folders, trash cans,
and other objects depicted on the screen, and in the interaction between the user
and these objects. Indeed, a major aim of software development is to create user
interfaces in which "electronic reality and actual reality completely overlap and
reinforce each other," said Bruce Tognazzini, who started the human interface
group at Apple Computer. Thus software seeks to simulate reality and to
achieve cognitive compatibility with computer users, a combination of features
that, many software designers maintain, distinguishes it from other technologies.

Reichman of Vanderbilt disagreed with this claim. Industrial designers, he
suggested during the forum, would argue that software design is merely one
application of advanced techniques that are routinely applied to other innovative
products.

Another hallmark of software is its malleability as a creative tool and,
consequently, its nearly unlimited utility. In a technical sense, said MIT's Davis,
"software is the universal machine.... We can really do anything with the
machine, and as a consequence, we, in fact, try to do everything with it." The
results are products that enable a computer user to perform given tasks, not
unlike, as Kapor pointed out, conventional machines made of iron, steel, or
plastic. Yet, for the purposes of copyright law, software is treated as analogous
to a literary work.

Several software attributes, according to Kapor, strain the analogy to
literary works. Books and other works on paper, he said, are fixed in form,
sequential, noninteractive, uncoupled from the real world, and nonfunctional in
the sense of performing work. In contrast, software is a dynamic composite—an
assembly of many different programs—that, unlike pages in a book, can change
its working order at the beckoning of the user. Software, therefore, has a
chameleon-like identity, as "literary expression that does useful work," Kapor
said. He added, however, that identity cannot be ascribed on the basis of
function, because the tasks performed by a particular piece of software are
invoked at the direction of the user.

Because of software's underlying fluidity, however, definitional

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

IS SOFTWARE A SPECIAL CASE? 49

schemes can quickly become meaningless, Esther Dyson cautioned. For
example, she said, the popular spreadsheet program Lotus 1-2-3 was initially
viewed as a user application for performing accounting operations. But users
have discovered the broader utility of the software. "It isn't just interactive; it's a
creative tool. If you perform a sequence of actions in 1-2-3," she explained,
"you may end up creating [a new] application. You define the sequence of
application actions, give it a name—call it a macro—and you are suddenly
using an application as a language, and you have created—potentially—a new
piece of intellectual property within the old one.

"So, the stuff is very fluid. You can't say this is an application; this is a
language." Therefore, she said, "[Y]ou don't want to make rules that apply to
applications versus language versus interfaces without understanding that in the
end these might be the very same things."

Similarly, particular functions can be embodied in either software or
hardware, and "in most cases the preferred embodiment will change over time,"
said John Shoch, general partner at the Asset Management Co. Still, each
advance in hardware has the direct effect of expanding the role of software.

Because of this continuing evolution, Harry Reinstein of Aion prefers to
conceptualize software as componentry incorporated into a never-finished
product. He suggested that very few software products, even the largest ones,
are fully independent entities. "We no longer build complete systems...,"
Reinstein said. "We build components that must, to be useful, work with other
components, and that is why the issue of interfaces is absolutely critical to this
industry." Restricting access to software components, he maintained, would
suppress innovation, hamper the entry of new firms into the industry, and limit
the utility of software. Again, the issue is one of balance. Protections should
prohibit copying of components, he said, but they should not dampen
competitive activity that builds on existing software to develop new applications.

THE INFLUENCE OF THE MARKET

Although they confer ownership rights that vary in nature, copyrights,
patents, and trade secrets are, in part, measures that help ensure the lead-time
advantage. Exclusivity, however, carries a risk, especially if it results in a
product whose functionality is isolated from that of other offerings on the
market. Interoperability, achieved by licensing or by allowing the free use of
program-to-program interfaces, protocols, languages, and other types of
interfaces, can enhance the value of an individual software offering. It increases
utility for computer

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

IS SOFTWARE A SPECIAL CASE? 50

owners who may use the products of several vendors and who, for example,
may want one program to generate data that will be processed by another
application. In contrast, a product that is an entity unto itself limits user choices
and, consequently, restricts the size of the product's potential market.

Therefore the marketplace sometimes provides incentives that
counterbalance inclinations to be overly protective and to regard all "home-
grown" innovations as proprietary. A firm that deems an interface as proprietary
to safeguard against the copying of the application behind the interface may be
making a tactical business error. Instead of protecting the "corporate jewels,"
said Scott G. Davis, senior consulting engineer at the Digital Equipment Corp.,
a proprietary stance on interfaces may be "protecting the corporate fool's gold."
Yet, understandably, the more money, time, and personnel a firm has devoted to
developing an interface, or the more effectively it has established a dominant
market position, the stronger its urge to protect the interface for exclusive use.

In common with other industries, the software industry can find especially
precarious the footing on the tightrope between the need to guard proprietary
interests and the desire to cultivate a large product market. In the software
industry, however, the lack of common understanding of what constitutes an
interface can escalate "normal" problems of contract interpretation when firms
disagree on whether an interface is open or on the nature of the rights of use
accorded in licensing contracts. In the view of some industry observers, firms
have promoted widespread use of particular innovations to cultivate the market
for their commercial implementations, but then have reversed themselves by
declaring the innovations proprietary and demanding royalties for their use.
These and other misunderstandings arise, according to a position paper issued
by the Association of Data Processing Service Organizations (ADAPSO),
because of "assumptions that are founded on differing views regarding the
extent of intellectual property claims."

SYMBIOSIS IN THE MARKET

In the personal computer side of the software industry, the competitive
environment has given rise to a new form of business behavior that, according
to Kapor of ON Technology, should not be jeopardized by legal concerns.
When Apple and then IBM disclosed the architectures of their personal
computers, they provided independent software developers with the opportunity
to write applications for the machines without entering into a contractual
relationship with

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

IS SOFTWARE A SPECIAL CASE? 51

the manufacturers. Thousands of software applications were written by third-
party developers, motivated by the prospect of market success. In turn, those
who succeeded by writing high-quality programs benefited the hardware
manufacturers by increasing the utility and value of their computers.

"The economic cost of trying to achieve the same result—if each and every
relationship between the software company and hardware company had had to
be negotiated—would have been so high that, as a practical matter, it would
have been completely impossible," Kapor said. All of this innovative, value-
adding activity, he added, is mediated through open interfaces, creating a "new
industrial ecology." This style of business relationship—Kapor calls it a
"nonrelationship relationship"—is a "very good way for pushing the whole
system forward."

This symbiosis is also reflected in the composition of personal-computer
software. "If you are running an application...," Kapor explained, "you are
actually using software that is made by about four or five different companies,
each of which is calling the other's interface." But as in all segments of the
industry, developers of applications for personal computers are becoming
increasingly aware of the risk of copyright and patent infringement, which
could undermine this form of business relationship and reduce the flow of
benefits it generates for users.

THE CASE OF INTERFACES

From single routines to large compilations of many programs, elements of
software owe their value to their role in some larger system. Within a single
program, for example, individual routines are inter-dependent, each one's task
shaped by the functions performed by others. In software systems,
interdependency is magnified, as the number of interacting entities multiplies to
include many different users, many different pieces of hardware, and many
different programs, remote and internal.

Interfaces account for much of the utility and behavior—the value—of
software and hardware. Points of interaction between otherwise independent
components, interfaces link machine to machine, software to machine,
application to application, and user to computer. As the complexity of hardware
and software has grown and as the push for interoperability has gained
momentum, the number of interfaces of all types has multiplied, as have
questions about the appropriateness of available intellectual property protections.

By design, external interfaces (as opposed to internal interfaces

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

IS SOFTWARE A SPECIAL CASE? 52

that interconnect modules within a single software product) facilitate
cooperation with the outside world. From the perspective of users, more
cooperation, or compatibility, translates into greater value by enhancing the
capability of computers and by expanding access to the software offerings of
many different vendors. For vendors that have invested in defining interfaces
between proprietary applications, evolving compatibility poses a quandary.
Software interfaces are often the product of significant investment, creative
activity, and engineering effort. To make an interface public is to share the
fruits of this work with the entire industry. And to the extent that functions are
bound up within an interface, they become vulnerable to copying. However,
companies that designate an interface as proprietary run the risk of restricting
the size of the market for their products.

The debate over proprietary interests in program code that expresses
external interfaces is intense and often divides the industry. Those firms
offering integrated systems solutions to computer communications
environments see component interfaces as crucial elements of proprietary value
added. Those who produce software and hardware components that must attach
to and work with complex information systems see proprietary interfaces as a
barrier to market entry. Thus, even if intellectual property law provides
reasonable protection for interfaces—the subject of a wide spectrum of opinion
—business strategies dictate whether a firm will deem an interface as open or
proprietary.

Complicating the situation is the slippery identity of the various classes of
interfaces (see Box 3.2). Peter Schneider, IBM's vice president for systems and
programming, joked that interfaces are as difficult to define as pornography.
"We all know what an interface is," he said, "but none of us will have the same
definition." What to the original designer is a self-contained subroutine—and
not an interface—may be a convenient point of attachment to the designer of
another product, who may also want to exploit some of the functions performed
by the original.

The issue of whether a specific interface should be viewed as proprietary
or, because of its utility to users, as open and appropriate for public use has
many facets. For example, computer languages function as interfaces in that
they are used to interpret electronic input and to formulate messages that direct
a computer to carry out a sequence of actions. Obviously, languages have great
utility, but opinion is divided on whether they can be protected by copyright
law. A related issue concerns the protectability of specific language phrases, or
sequences of keystrokes, that direct a computer to perform a specific function.!
For users, copyrighting of keystroke sequences might mean

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

IS SOFTWARE A SPECIAL CASE? 53

that commands for the same function will vary from program to program.

BOX 3.2—INTERFACES AND SPECIFICATIONS

An interface is the boundary between two environments. An interface
specification describes what happens on the "other side" of the interface
when certain specified information is moved through the interface; the
specification also describes what the responses might be to the
environment from which the stimulus came.

The specification of a human interface might tell you what the
meaning is of what you see on a screen and what will happen when
certain actions are taken. The specification might also describe the kinds
of information that can be dispatched from the environment on the other
side of the interface. Similarly, the specification of a networking interface
might describe the format of messages required for sending and receiving
information through the interface.

The key is the specification of the form of information that crosses an
interface, plus a description of the meaning of the information crossing the
interface. The specification says nothing about implementation, only
information and behavior.

—Scott G. Davis, Senior Consulting Engineer, Digital Equipment Corp.

Issues such as these, said Ingari of Lotus, have made interfaces "one of the
nastiest and most difficult areas" for the software industry to reckon with. And
nowhere do the issues become more problematic and more contentious than in
the visual and behavioral domain where machine and human interact, the user
interface. Increasingly, the "look and feel" of the user interface is becoming the
definitive attribute of software: the more intuitive an application's method of
operation and the more appealing and the more informative its graphical
display, then the better the working relationship between user and software and
the more powerful a tool the computer becomes.

User interfaces are also emerging as the primary asset of firms that
specialize in software development and of those that offer entire information
systems. "Increasingly, the economic value is absolutely inseparable from that
part of the program that the user directly interacts with and experiences," Kapor
said.

Debate over what is and what is not protectable in user interfaces has
spawned a rash of "look and feel" lawsuits. The central challenge to judges in
these cases (who will vary in their technical sophistication) is distinguishing the
elements of interfaces that are protectable

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

IS SOFTWARE A SPECIAL CASE? 54

expressions from their underlying ideas, which should reside in the public
domain. But some software designers doubt whether the distinction can be made.

"There is something funny about interfaces in which idea is bound with
expression,"” Aion's Reinstein said. Added Kapor, "The problem is that our
traditional distinctions between idea and expression, as far as I can tell, always
wind up tripping all over themselves when it comes to software." And in user
interfaces all of the peculiarities of software as a technological entity are
magnified.

The sections that follow provide a brief overview of the evolution of user
interfaces and discuss some of the factors that underlie innovation in this
important area of software.

Evolution of User Interfaces

User interfaces have been called the last frontier in software design (Foley,
1987). As they improve, so does our adroitness in wielding the computer as a
tool. Simply put, each generation of improvements in the graphical display and
the behavior of programs has made computers easier to use.

These advances stem from the ability of designers, artists, and engineers to
encapsulate useful metaphors in electronic form. Perhaps today's best known
metaphor-based interface is the desktop, as embodied in Apple's Macintosh
computer and in several other systems. Another successful interface is the
electronic spreadsheet's two-dimensional field of rows and columns and its
internal logic that meshes with the user's natural way of thinking and working.

Both examples demonstrate the benefits that result when appearance and
behavior are successfully mated in a well-designed interface. The first
electronic displays, in contrast, did not achieve this match. According to Apple's
Tognazzini, these early interfaces resembled mechanical teletype machines, but
with an important difference that frustrated more than a few users. "Things
came 'kerchunking' up from the bottom of the display," he recalled, "and
eventually kerchunked off into infinity at the top of the display forever....
When somebody wrote a routine that would allow you to scroll downwards, we
were all blown away. By slavishly adhering to a limited metaphor, the original
designers had lost a new power that an electronic display could have provided—
namely, downward review and scrolling."

Although today's interfaces mark a significant advance over the "Stone
Age" of interactive computing, they too will be deemed primitive by the
standards of the not-too-distant future. The most ambitious developmental
efforts seek to create artificial, or virtual, realities,

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

IS SOFTWARE A SPECIAL CASE? 55

three-dimensional renderings that simulate actual environments and are
responsive not only to keyboard commands, but also to speech, touch, and even
eye contact. Advanced flight simulators, which produce the imagery and
"orchestrate the sound, force, and motion that approximate the aerodynamic
behavior of an airborne plane" (Foley, 1987, p. 127), serve as an example.
Industry visionaries predict advances that will enable personal computer users
to make their own animated movies and, in essence, their own artificial
realities. "So, 'you ain't seen nuthin' yet," said Tognazzini.

Where Does Innovation Lie?

While creativity, superior design, and sweat-of-the-brow programming
effort underlie all good software, high-quality user interfaces may rank as the
superlative example. An embodiment of art, human intuition, and elements of
various science and engineering disciplines, interfaces are the products of a
process that stands out because of the intensiveness and complexity of the
design effort required to produce what some call "aesthetic functionality."

Compared with software applications alone, said Spinrad of Xerox, "there
is a different kind of invention and a different kind of creativity required" to
develop a user interface that complements the way people think. Interface
designers, he continued, must have the skills of cognitive scientists and a "gut
understanding of what you can or cannot achieve computationally."

Tognazzini characterized interface designers as illusionists who,
unconstrained by their medium, create their own natural laws. The goal, he said,
is to "create an illusion that doesn't break down." That is, the behavior and the
visual appearance of the objects in the illusion created on a computer screen, be
it a spreadsheet display or a flight simulation, must mesh perceptually with all
applications that use the interface. "There is a paradox," Tognazzini said. "The
simpler the system that you sit down to use, probably the more complex the
design process that went into it. The more obvious the feature, the more
difficult or creative it was to generate that feature. For example, pull-down
menus and overlapping windows seem like obvious solutions, but they required
years and years of careful experimentation and playing before we hit upon them."

Iteration, experimentation, and research on user behavior and psychology
are involved in the selection of graphical symbols that best represent functions,
objects, or ideas on the screen, according to Ingari of Lotus, who likened the
process to the evolution of written language from hieroglyphic figures. But
efforts devoted to achieving a visual

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

IS SOFTWARE A SPECIAL CASE? 56

connection with the user constitute only one element of the process. In tandem,
the design team must also work on the "back side" of the interface, conceiving,
structuring, and implementing the data structures and other software layers that
underlie the behavior of the interface and complete the cognitive link to the
user. If successful, the development effort results in an organic work, a merger
of form and function.

"The original version of [Lotus] 1-2-3 and its interface required a great
deal of hard work—hundreds of hours, multiple iterations," explained Kapor, co-
developer of the popular spreadsheet program. "It was very nonobvious, and it
was tested on users.... It would certainly require a lot less effort to design a
spreadsheet that used the same menu tree because you wouldn't have to go
through that."

Ingari maintained that understanding the complexity of the design and
development process will give a "very clear sense of the difference between the
pieces of interfaces that should be and will be in the public sphere and the
pieces of the interface that must be protected because they represent the essence
of the work that is done to create value." But others were less certain that the
innovation within a user interface can be dissected from the entirety of the
work. "We have this problem," said Davis of MIT, "that the innovation is the
expression, is the value, and they become inseparable."

Under copyright law, however, some courts have split user interfaces into
two components—the screen display, which is viewed as a pictorial or an
audiovisual work, and the underlying program, which is deemed a literary work.
Even though they are embodied in a single technical product, the two copyright
categories are accorded different rights under the law, explained Goldstein of
the Stanford Law School. The Copyright Office has taken the position that "...
all copyrightable expression owned by the same claimant and embodied in a
computer program, or first published as a unit with a computer program,
including computer screen displays, is considered a single work and should be
registered on a single application form."

To Kapor, this legal parsing ignores the "organicity" of the user interface,
akin to describing the human senses of touch, vision, and speech without
recognizing the role of the brain. The user interface—both its appearance and
its behavior—"is not separable from the program. It has roots potentially in
every single line of code, in every algorithm...." Yet, said Reichman, "A
merger of form and function is precisely why copyright laws everywhere tend
to reject industrial designs. In the United States, this rejection is accomplished
by a doctrine of separability that was applied to industrial art, but not to

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

not from the

original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book

IS SOFTWARE A SPECIAL CASE? 57

industrial literature. This distinction is totally incoherent and ultimately
indefensible."

The unitary nature of user interfaces notwithstanding, the issues at the
heart of pending "look and feel" suits entail disentangling the innovative
elements of products from those elements that do not merit protection because,
for example, they are more appropriately viewed as ideas or they do not reach
the legal threshold for originality. For now, these issues seem to lack conceptual
clarity. Yet, as Dyson explained, resolving the legal ferment that surrounds
software in general and user interfaces in particular requires assigning value to
the elements or combination of elements spawned by creativity and superior
engineering. "This," she said, "is what we want to provide incentives for."

SUMMARY

Is software a special case, different from other technologies in the ways it
is designed, made, and used? Or, as Reichman contended, is it another subset of
advanced industrial design whose uncertain status in systems of intellectual
property law has never been effectively addressed?

Software's characteristics—both positive and negative—are relevant to
assessments of the adequacy of intellectual property protections for the
technology. Some familiarity with the distinguishing features of software is
essential for assessing how well law and technology mesh. Likewise,
appreciation for the process of creating software—from idea to marketable
product—aids understanding of how the law can foster or hinder innovation.

NOTE

1. The Lotus Development Corporation v. Paperback Software International and Stephenson
Software, Limited (Civil Action No. 87-86-K, U.S. District Court for the District of Masssachusetts,
740 F. Supp. 37 [June 28, 1990]) case addressed this issue at length.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

58

Even the possibility that the legal basis for a stable, functional
marketplace for computer software might be threatened is enough to
create alarm in the industry, ... one of the few high-tech industries in
which U.S. firms still enjoy a commanding position in international trade.

—Lewis Branscomb, Director, Science, Technology and Public Policy

Program, Harvard University

As an attorney, I want to make it possible for him [the businessman] to
be able to get back something on the R&D investment, which today can run
millions and millions of dollars.

—1. Jancin, Jr., Counsel, IBM Corp.

The purpose of the Constitution is to protect originality and useful
originality. So, if you spend $3 billion doing something fundamentally
useless, the Constitution doesn't really care.

—Esther Dyson, Publisher, "Release 1.0"

[T]here is a stultifying, dulling effect—in some cases subtle, [in others]
not so subtle—[resulting from] the confusion that has arisen in this field,
which is slowing down activity. It is slowing down the small companies, ...
and it is slowing down the large companies.

—Robert Spinrad, Director, Corporate Technology, Xerox Corp.

Copyright is procompetitive. It allows the competitor to enter a
market by independently creating, via his own R&D, a competing product.

—Howard G. Figueroa, Vice President, Commercial and Industry Relations,
IBM Corp.

We can be hurt in our company by too much protection or too little
protection.

—Frank Ingari, Vice President, Spreadsheet Division, Lotus Development Corp.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

A CLOSER LOOK AT CURRENT ISSUES 59

4

A Closer Look at Current Issues

Legal uncertainty can take many forms: Is a particular software element
"prior art" and thus freely available, or is it wending its way through the patent
process, emerging months from now as exclusively owned intellectual
property? What protection—patent or copyright—is most appropriate for a
particular innovation? Will either one provide adequate protection, or should
the innovation remain a trade secret? Is the specification of a software
application an idea or is it expression? What constitutes "comprehensive
nonliteral similarity"? Is the goal of compatibility a legally valid argument for
adopting others' ideas and even parts of their implementation? This litany of
questions could go on and on. The lack of clear answers to most underlies the
"stultifying, dulling effect" that Xerox's Robert Spinrad complained intellectual
property concerns are imposing on the industry.

Because so many questions are unresolved, according to Francis Fisher,
adviser to the Harvard Law School's Educational Technology Group, the
software industry often cannot predict how intellectual property law applies to
specific types of behavior shown by firms in the marketplace, to concerns about
specific elements of software, or industry-wide issues, such as compatibility and
interoperability. As a result, Fisher said, developers are forced to "gamble on
unpredictable judicial interpretation."

While the hope is that decisions in pending litigation and in cases yet to
come will eventually yield predictable guides, another outcome might be
inconsistent decisions, which could generate in their after

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

A CLOSER LOOK AT CURRENT ISSUES 60

math greater uncertainty and more law suits. A single decision can have far-
reaching effects, perhaps changing the behavior of the entire industry, and a
hasty search for legislative remedies would likely ensue, advised Michael J.
Remington, chief counsel for the Subcommittee on Intellectual Property in the
U.S. House of Representatives. "If disaster strikes," he said, "bills will be
introduced in the Congress that will not be thought through, and we may end up
with another statutory scheme that we may live to regret in the long run."

This scenario is, of course, speculative. Indeed, one could argue, as did
Howard G. Figueroa, IBM Corp. vice president for commercial and industrial
relations, that such speculation should not obscure evidence indicating that the
software industry has prospered under the current intellectual property system.
Statistical measures show, he said, that the software industry is an increasingly
important segment of the U.S. economy, contributing as a "wealth producer and
as a trade-balance enhancer."

"Industry-wide in the United States," Figueroa added, "the copyright
system has worked well, inspiring the authorship of original programs" and
engendering "head-on competition."

Yet another perspective suggests it is precisely because of the industry's
strong performance, as well as because of the growing utility and value of
software, that today's legal issues are regarded with urgency by many. "Even
the possibility that the legal basis for a stable, functional marketplace is
threatened,” noted Lewis Branscomb of Harvard University, "is enough to
create alarm in the industry, ... one of the few high-tech industries in which
U.S. firms still enjoy a commanding position in international trade."

Point and counterpoint largely characterize discussions of the adequacy of
intellectual property protection. In the remainder of this chapter, some of the
issues fueling this debate are examined in more detail.

PROTECTED OR UNPROTECTED?

The software industry consists of followers and leaders. The most
innovative firms open new product areas, creating applications that add new
dimensions of utility and value to computers. Follower firms, recognizing the
opportunity to increase revenues by moving into a new market, respond to
commercially promising innovation by developing products that embody
variations of the original inventor's idea. Sometimes the products of follower
firms are better embodiments of the idea—superior, perhaps, in performance
and function or lower in price—than those of the pioneering firm. Occasionally,
a follower

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

A CLOSER LOOK AT CURRENT ISSUES 61

might introduce a product that is a "knock off" of the original, a mere copy that
might be altered to avoid the suspicion of duplication.

Between the extremes of "knock offs" and products that are the result of
major leaps in innovation is a vast middle ground where some of the most
difficult business and legal decisions lie. As discussed in chapter 3, software
designers and programmers often use techniques, data structures, algorithms,
and even lines of code developed by others, but for entirely different
applications. Some of these bits and pieces reside in the public domain or, in the
terms of patent law, would be recognized as prior art. But the status of other
borrowed elements may not be clear. Software designer Dan Bricklin noted that
designers may use elements that they believe are prior art only to find later that
those elements have been patented. The designers may prevail in an
infringement case, but the cost of pursuing those objections in court can be
prohibitive.

Frank Ingari, who oversees software development in Lotus's Spreadsheet
Division, described the dilemma. He said he has "concerns on both sides of
protection, as in, 'Are my guys using something they shouldn't be using?' which
I have to worry about as much as the other side of the discussion—'Am I
protecting what I am developing?""

Often the answers to these questions are not clear because of grey areas in
intellectual property law. Under patent law's doctrine of equivalents or
copyright law's concept of substantial similarity, for example, an independently
developed and arguably dissimilar software component might be deemed
similar enough to constitute infringement. Thus far, developers have little
guidance to help them assess, before investing creative effort and financial
resources, the likelihood of such an outcome.

Without adequate direction on the scope, durability, and application of
patent and copyright protections, firms may operate on the presumption that
their products and innovations are vulnerable to theft by a competitor. The
tendency may be to rely on trade secrets, and the result, warned Esther Dyson,
will be a "world of stagnation. Remember, too, we're talking not just about
vendors, but about users creating and either sharing or hiding valuable
technology. Without an assumption of protection, we probably won't have, say,
shared airline reservation systems, efficient money markets, and so forth."
Whether lack of sharing and interaction will occur is yet to be seen; in some
aspects of the market, a steadily increasing proportion of software sales has
been of non-trade secret software.

One indication that firms are either wary or uninformed of the protection
accorded by patents and copyrights can be seen in the

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

A CLOSER LOOK AT CURRENT ISSUES 62

results of a survey sponsored by the Massachusetts Software Council.! About
75 percent of the respondents said that they relied on trade secret law, and only
25 percent relied on copyright, even though this latter protection applies to
works of authorship, published and unpublished, and can be used in conjunction
with trade secrets. Only 8 percent of the software vendors said they used
patents. Heavy reliance on trade secret law can pose considerable risk since
innovations protected in this manner do not qualify as prior art and, therefore,
may be eligible for patenting, perhaps by a competing firm.

THE PATENT-COPYRIGHT INTERFACE

If for no other reason, the status of software as both patentable and
copyrightable intellectual property makes the technology unusual. As has long
been true of some industrial designs in developed countries, explained Jerome
Reichman of Vanderbilt University, treatment in both legal domains poses the
potential for a conflict between two conceptually separate branches of the law—
copyright and patent—at both the domestic and the international levels.
Stressing the need for a "holistic approach" to the different forms of intellectual
property protection, John Shoch of the Asset Management Co. said that the
seeming division of legal perspectives frustrates those within the industry. "[W]
e can have a wonderful discourse on the impact and limits of copyright law," he
said, "and we can have another wonderful discourse on the limits of patent law,
and it is right at the edge where things get interesting." Treatises on copyright,
Shoch added, focus on distinguishing between protectable expression and idea,
the point at which patent lawyers are likely "to pick up the gaunlet.”

Yet software seems amenable to both protections, sometimes
simultaneously. For example, copyright attorneys can argue cogently that
disputes over the ownership of graphical displays and the sequencing of
commands—that is the look and feel of user interfaces—should be resolved in
the copyright arena because the issues center on creative expression. Objecting
to the subjectivity of copyright concepts, such as "look and feel" and "structure,
sequence, and organization," patent attorneys argue just as persuasively that the
issues can be addressed more concretely by assessing the novelty and
nonobviousness of useful processes incorporated into interfaces.

A major challenge, according to Branscomb of Harvard University, is to
differentiate between the "elements of the technology that seem to take you, on
the one hand, to copyright and, on the other hand, to patent." Moreover, some
elements seem to be "inexorably linked" to both laws, "so that you have to
figure out a way to invoke both sets of principles," he said.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

A CLOSER LOOK AT CURRENT ISSUES 63

PATENT PROBLEMS: STRUCTURAL OR LEGAL?

Even the most ardent advocates of patent protection for software find the
current patent system to be deficient in some structural and administrative areas.
Those who question the appropriateness of patents for software-related
inventions include these shortcomings in their appraisals, but only as a starting
point that leads to more fundamental concerns.

University of Washington law professor Donald Chisum, a strong
proponent of patents for software, listed six problems in the procurement and
enforcement of patents, none of them peculiar to software. The first is the
expense of searching for previously patented inventions as a precautionary step
to avoid infringement and then of preparing, filing, negotiating, and maintaining
a patent. Estimates of these costs range from about $15,000 to more than
$25,000 (Kahin, 1989). Second is the length of the patent review and approval
process, averaging about 30 months, or nearly a year longer than the average for
other inventions. During this period, the patent application remains confidential,
undisclosed to other inventors who may also wish to patent a similar
innovation. Except for the United States, said Chisum, every industrial nation
"has a procedure for publishing patent applications 18 months after they are
filed." He added, however, that firms compound the delay by waiting too long
before applying for a patent.

The third problem Chisum cited is "inadequate examination by the Patent
and Trademark Office," contributing to delays and the issuance of patents for
ambiguous claims. Additional training for patent examiners and creation of
advisory boards composed of representatives from industry and academia could
remedy this deficiency, he suggested. Imprecise claims, at the heart of Chisum's
fourth concern, ambiguity in the scope of issued patents, in turn spawn lawsuits.
Chisum said there can constitute a fifth problem, "arguably groundless suits, in
some instances financed either by attorneys on a contingency-fee basis or by
simply going out and openly raising money from investors to speculate on the
outcome of a patent suit against a major company.” Completing his list of
shortcomings, Chisum noted that patent enforcement is country specific, a
problem for companies selling products in international markets. Not only must
firms seek patents in each nation where they sell their product, but they also
must conform to procedures and requirements that vary among countries. For
software firms this variability is especially problematic, because not all nations
extend patent protection to software.

While Chisum sees these problems as affecting all technologies, others
view the consequences as more severe for software. An over

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

A CLOSER LOOK AT CURRENT ISSUES 64

riding concern is the danger of being blindsided—of pursuing an innovation
that may already be patented or that may be in the patent-review pipeline. The
first difficulty, according to Dyson, publisher of "Release 1.0," could be
assuaged with a "meaningful, automatically updating electronic database that
contains information on patented technologies." Currently, searches of patent
literature are error-prone exercises, incurring a high risk of overlooking relevant
subject matter because of the fragmented, disorganized state of patent
information. The second issue, that of losing out to a competitor whose
application was submitted earlier, is more problematic because of the short life
cycle of software products. Thus the competitor who loses out on a patent has
the option of licensing the innovation from the patent holder, if that option
exists, or of foregoing the next generation of the product-development cycle.

Eventually, claims Brian Kahin, the rapid rate of innovation in the
software industry will be slowed to conform with the pace of the patent review
and approval process. More worrisome to Kahin and others are the combined
effects of the approval of overly broad claims and the scope of patent
protection. Software innovator Bricklin, creator of the original spreadsheet
program, VisiCalc, believes that the combination could be "very bad for the
industry," antithetical to the industry's propensity for "frequent independent
innovation." Had patents been available when he and his collaborator developed
VisiCalc, Bricklin speculated, their company, Software Arts, would have sought
the protection. The consequences of such a decision, he further speculated,
would have been to prevent other innovators from exploring different
expressions of the spreadsheet idea and to handicap the competition, blocking
the development of today's successful spreadsheet programs, such as Excel and
Lotus 1-2-3. The consequence of foregoing a patent in this hypothetical
situation, however, would be to eliminate a sizable source of revenues. "There
are not many," Chisum said, "who will say, 'T knew I could get a patent worth
$200 million, but I think T will pass it up this time'; in fact, Chisum added, the
potential for such a loss strikes fear in the heart of most companies and should
motivate them to file for patents promptly, thereby resulting in timely disclosure
and hastening the pace of development.

Several forum participants were unwilling to dismiss the awarding of
patents for overly broad claims as simply a structural problem that will diminish
as the Patent Office becomes more experienced with software-related
inventions and as rulings by the District Courts and Court of Appeals for the
Federal Circuit (CAFC) clarify issues pertaining to the patenting of software.
To them, such patents have the potential to inflict long-term damage if they are
upheld by the courts.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

A CLOSER LOOK AT CURRENT ISSUES 65

The evidence, though limited and often circumstantial, suggests that the
courts will look favorably on at least some of these claims. For example, in a
case cited by Fisher (Magnavox Co. v. Activision, Inc., 848 F.2d 1244 [Fed. Cir.
1988], the courts held that Activision, the maker of a video game in which an
animated track runner fails to clear a hurdle and knocks it down, infringed on a
patent (licensed exclusively to Magnavox) on the idea in software of having one
object hit another, causing it to move.

Patents have been granted for products or software-directed processes that
some believe do not satisfy the patent law's criterion of nonobviousness, either
because they are too abstract or are merely descriptions of ideas that are already
in the public domain. Such objections have been raised over patents issued for
footnoting, redlining (text comparison), merging of documents, and other
processes. Extrapolating from these instances, Kahin anticipates that patents
will eventually be awarded for automated methods of performing common
business practices and for interactive learning techniques. It remains to be seen,
however, whether the courts will uphold patents based on broad claims. As a
rule of thumb, patent attorneys estimate that the CAFC, which has jurisdiction
over appeals of patent decisions made by the District Courts, upholds about half
of all patents. Even if the courts to find an ambiguous software patent to be
valid, however, it is not certain whether they will rule that a competitor's
specific implementation of ideas expressed in a patent constitutes infringement.

To Mitchell Kapor of ON Technology, this wait-and-see attitude is
unsatisfactory, inserting more uncertainty into an already uncertain legal
situation. Waiting for rulings on the validity of broad claims, he said, creates a
situation akin to the "greenhouse effect,” the controversial projection of global
warming due to growing atmospheric concentrations of carbon dioxide and
other heat-absorbing gases. "The sense that I have now," Kapor said,
acknowledging opinions to the contrary, "is that we face, potentially, some
disasters from inappropriate software patents."

If the software industry's "greenhouse effect is real," he continued, "then
we have a very, very, very serious problem, disrupting the activities of large and
small companies. [D]oing nothing and letting matters work themselves out in
the courts seem to be unwise." At this stage, according to Chisum, only a few
general trends that have unfolded under the relatively recent influence of
software-related patents are discernible. "We will see more procuring of
patents,” he said. "We will see more licensing and then eventually litigation."

Chisum's scenario is suggestive of conditions that already exist in the
hardware industry, where patents and licensing are a regular

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

A CLOSER LOOK AT CURRENT ISSUES 66

part of doing business. Most manufacturers of computer hardware maintain a
portfolio of patents, which are cross-licensed with the portfolios of major
competitors. Typically, a manufacturer will require access to other firms'
innovations to make a product, and yet that same manufacturer will hold patents
essential to competitors' products. In making an integrated circuit, for example,
a semiconductor manufacturer may use technologies patented by 20 companies.
Because of this interdependency, patents on hardware only occasionally impede
the product-development efforts of established firms. But start-up firms, lacking
a patent portfolio of sufficient size and, therefore, the associated leverage for
bargaining with competitors, are likely to be at a disadvantage.?

If patenting becomes as pervasive in software as it is in hardware, Kahin
predicts that the software industry will undergo rapid consolidation. "Although
cross-licensing allows efficient, competitive exploitation of patents in industries
where there are relatively few firms of roughly similar size," he has written,
"cross-licensing will not work for the many thousands of small firms and tens of
thousands of individuals in the software industry, because these small players
have little or nothing to bring to the table. The vision of cross-licensing as a
solution to the problem of software patents implicitly assumes a whole-sale
shakeout and restructuring of the industry" (Kahin, 1989, pp. 9-10).

Not all small software producers agree with this prognosis. Indeed,
presidents of six California-based software firms painted quite a different
picture in a letter to the New York Times: "By making an invention the
temporary property of its inventor, patents become the lifeblood of small
innovative technology companies. It [patents] lets them attract investors and
gives incentive to improve the property, educate the market, and market the
product. Without patents, an entrenched competitor can merely wait for others
to innovate and incorporate innovations into its products only when inventions
are proved and market share is threatened" (Gaspar et al., 1989).

COMPATIBILITY AND INTEROPERABILITY

While it is clear that the public interest is served by industry behavior that
yields a wide variety of high-quality, reasonably priced software, it is also clear
that consumers want to be freed of the constraints of incompatible proprietary
systems, which prevent them from realizing the full fruits of the diversity of
software offerings. After purchasing a vendor's system, users often discover that
a particular set of needs would be best served by applications designed to run on

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

A CLOSER LOOK AT CURRENT ISSUES 67

another proprietary system. Precisely because of this variability in the utility
and quality of software applications, organizations may purchase hardware from
several different vendors. Incompatibilities, however, prevent users from
exchanging the results of applications between unlike machines or from using
the same graphical display on different machines or with different software—
unless they make a hefty investment in systems integration.

Underlying the crescendo of user demand for compatibility is a facet of
software use that, apart from its technological and design underpinnings,
distinguishes it from other media, such as paintings and literary works. Once
they become accustomed to the look and feel of an interface, users would rather
stick with the same interface than use a different one for each new application.
For works of art, in contrast, such imitation would be regarded as offensive, as
well as make for dull art museums. In addition, Aion's Harry Reinstein pointed
out that once users have selected a computer operating system or a database
management system, they are, by analogy, committing themselves to one
artistic genre, a specific user interface.

A parallel situation in book buying was hypothesized by Reinstein. "If 1
buy a mystery story," he said, "I will forever limit myself to buying mystery
stories with that set of characters, that major detective, and, therefore,
presumably that author. That is exactly the situation in which we find ourselves
in commercial software. By and large, if you buy an operating system you don't
trivially change it."

Demand for interoperability arises from the usefulness, or machine-like
nature, of software, rather than its aesthetics. For machines, compatibility is a
well-recognized virtue. "It is in the public interest that the brakes and clutch of
an automobile be in the same relative position on every car we drive," Fisher
explained. "Yet under existing law, one who holds the rights to a computer
interface may find it in his interest not to share that interface with others on
reasonable terms. Not sharing interface designs will be particularly appealing to
a rights holder that already has a substantial share of the market."

Recognizing the importance of compatibility and interoperability as a
selling feature, most vendors now participate in standards-setting organizations,
seeking to foster the agreement on standards that complement their products
and their development and marketing strategies. The process of setting
standards, however, is a delicate one, as described below. While nurturing
compatibility, standards also present the risk of freezing technology at a
premature stage. Once in place, standards—even bad ones—are hard to change,
perhaps resulting in costs that exceed the benefits of interoperability. Thus,
factored into the complex calculus of protections for software must

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

A CLOSER LOOK AT CURRENT ISSUES 68

be considerations of how the law accommodates or inhibits interoperability, as
well as flexibility in changing standards in tandem with technological advances.

Open Interfaces, a Controversial Suggestion

Building on the notion that software is unfinished componentry, part of a
larger system. Aion's Reinstein advocated that all interfaces be classified as
"open." Noting that ideas are often an inseparable part of the interface
definition, Reinstein said, "The simplest, most disentangling position I can take
is let us just not protect interfaces. Let us invest in the expression of them
underneath, and have that be the protected part" of the software product.
"Interfaces are legitimate points of competitive entry," and "openness" is a
"critical element of software competitiveness," he said.

Copying of interface code, including automated reverse engineering,
should not be allowed, he explained. Rather, the implementation should be
licensable, and the specification of an interface should be available for others to
implement independently. Third parties would avoid the cost of development
incurred by the innovator, Reinstein acknowledged, but they would have to
invest in writing the code to support the interface.

Those opposed to a flat declaration that all interfaces should be open
maintain that the decision of whether to make the specification publicly
available is a choice for firms to make. In addition, objectors contend that
nearly all elements of a program, including those that connect subroutines and
other internal parts of the program, can be construed as interfaces.
Consequently, an open-interface rule would render all expressions within a
program vulnerable to copying and to misappropriation of the program's
functionality. Copyright protection, say those who object to the notion of open
interfaces, would become meaningless. It is therefore not surprising that
industry views on this issue are very strongly held, because the commercial
interests at stake are perceived as vital by many firms.

Addressing these latter concerns, Reinstein defined three categories of
"public" interfaces. The first category, and least controversial one, includes
interfaces that innovators, perhaps motivated by marketing considerations, have
declared to be open. In his second category, Reinstein places interfaces that are
"clearly discernible through normal use," a characterization most relevant to
user interfaces. This is a determination for the industry to make, he said, but if
there is "general agreement” that a user interface, particularly its appearance,
fits in this category, then it should be available for others to use or emu

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

A CLOSER LOOK AT CURRENT ISSUES 69

late. Finally, interfaces that are "separately priced, separately distributed, or
separately packaged" (a language or database management program, for
example) are legitimate points of competitive entry, and they should be
classified as public, Reinstein said.

Open interfaces, concurred Scott Davis of Digital Equipment Corp., would
focus competition on providing "better implementations of standards. That is
where the competition can be, and a better implementation may mean
something like improved performance, or it might mean security features" that
are not offered with other implementations.

Vanguard Atlantic's Lee Keet was among those who faulted the proposal.
"I generally agree," he said, "that the utilitarian aspect of the interface should be
open for all to use, but I do point out that, in many cases, interfaces have ...
artistic aspects,” which warrant protection.

Immediate Declaration of Rights

The Association of Data Processing Service Organizations (ADAPSO) has
been considering a proposed seven-point set of guidelines to clarify whether
interfaces and languages are public or proprietary. "Declarations or waivers of
proprietary interest in an external interface or language," the proposed
guidelines recommend, "should be made specifically and separately, and on a
timely basis." Among the problems that would be eliminated with industry-wide
adherence to this general rule would be disputes that arise when claims of
ownership are delayed and, in the interim, firms presume that use is condoned.

Esther Dyson, while stressing that protection should be accorded only to
software elements that meet "high standards of originality," also endorsed
immediate declaration of ownership rights. "[T]he job of the vendor is to define
his product, to define what he considers to be original, and to sell that. The
changes you are seeing in software mean that specification is almost
indistinguishable from the implementation. That is why you need [a high
standard of] originality, because if anything you specify ends up being
protectable, you have a mess. But you can't just protect the implementation ...
[when specification and implementation are] transformable into each other."

Uncertain of the practicality of such an approach, Pamela Samuelson of the
University of Pittsburgh explained that firm-initiated declarations of originality
and ownership would be inimical to the procedures required for securing a
patent. Patent law, she pointed out, requires owners to show that an innovation
satisfies the conditions necessary for protection. Particularly for software
elements

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

A CLOSER LOOK AT CURRENT ISSUES 70

that have features that seem to fall in the gap between copyright and patent law,
"I don't think the right solution is ... just to say it is your property, and then
everything will work out,” Samuelson said. "In the Anglo-American tradition,
the government, through its patent and copyright laws, defines the kinds of
innovations that are eligible for protection, the criteria that must be met to
qualify for protection, and the extent of protection the law will give to the
innovation (both as to duration and as to scope). If you don't follow the
procedures, you don't qualify under the criteria, or the thing you want to protect
is considered by the law to be unprotectable; in general, the innovation can be
freely copied by competitors, whether the innovator likes it or not."

Concerns about the lenght of protection afforded by patents (17 years) and
copyrights (50 years or more) were expressed by several forum participants,
who preferred terms that reflected the rapid pace of development in the
industry. To assure that important innovations are available for others to build
on, a few suggested that mandatory licensing of patented and copyrighted works
be required after an initial one-or two-year period of exclusive use. And to spur
dissemination of innovations and to encourage firms to offer their best
technologies as industry standards, some participants recommended that
standards bodies allow the innovators of standards to receive royalties in return
for use of their technology. Some of these bodies now make no- or low-cost
licensing a condition for adopting a technology as a standard.

Standardization

By one estimate, more than 1,000 standards pertaining to computer-related
technology have either been adopted or are pending before national and
international standards-setting bodies (Gantz, 1989). This high level of acitivity
is symptomatic of snowballing consumer demand not only for compatibility of
information-related equipment, but also for interoperability of software,
allowing independent, perhaps geographically isolated applications to work
cooperatively.

Unsatisfied with the computer sector's progress toward these ideals, groups
of users are nudging vendors toward standardization—sometimes forcefully.
General Motors and other manufacturing concerns organized to develop the
manufacturing automation protocol, or MAP, which specifies the standards that
vendors of software and information-related equipment must conform to if they
wish to sell their products to consortium members and other firms that are
following the MAP lead. Another large customer, the U.S. Department of

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

A CLOSER LOOK AT CURRENT ISSUES 71

Defense, continues to forge ahead with its 16-year-old effort to impose a
universal computer language—Ada—on its suppliers.

Given the intensity of user wants, companies face a "real risk of being
bypassed by the marketplace by being too restrictive in authorizing the use of
the expression in [their] protocols," IBM's Figueroa explained.

Yet standardization can be a contentious affair, influenced to some degree
by the nature of intellectual property protection. Companies jockey to have their
way of doing things accepted, formally or informally, as the industry standard.
Losing a standards "battle" means either that a firm will be forced to jettison
part or all of its particular approach and to begin anew, or that it can proceed
with its proprietary technology, hoping to convince users that the merits of its
approach exceed the benefits of compatibility. Moreover, as already mentioned,
a firm that has invested heavily in developing a new technology may balk at the
prospect of making freely available an innovation that, if made a standard,
could make other companies more competitive.

In the international arena, national interests can undermine formal
standardization efforts. With each participating country accorded an equal vote,
members of international standards-setting bodies may endorse
implementations that are perceived to be most beneficial to regional business
interests. Compromise is difficult, and if it is reached, the resultant standards
may be based on inferior technology. This danger, however, is also present in
national standardization efforts.

Users tend to favor standardization because it allows them to choose from
among the offerings of different vendors, freeing them from the idiosyncrasies
and, thus, incompatibilities of proprietary systems. In turn, compatibility fosters
the growth of computer networks that, at the beckoning of the user, can
integrate applications unhampered by worries about which vendors made the
various software elements needed to solve a specific problem and whether the
necessary elements can work together. From the vantage point of individual
software products, compatibility greatly increases value because of so-called
network externalities—the benefits that accrue to being part of a larger system.
Therefore small companies are also likely to be proponents of standardization
because their product lines rarely attain the critical mass of offerings necessary
to address the majority of user needs. Compatibility affords the opportunity to
compete by adding value in areas neglected by dominant firms. Large firms, in
contrast, provide a diversity of products that, in effect, already compose a
network. Thus the benefits that accrue with compatibility—principally,
expanded markets—are likely to be smaller for compa

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

A CLOSER LOOK AT CURRENT ISSUES 72

nies that already have significant shares of the market. "The gains you get from
making your market a little bigger," explained Stanley M. Besen, senior
economist at the Rand Corporation, "may be relatively small compared to the
losses you get by making your market more competitive."

In theory, standardization reduces redundant variety and inefficiency. "We
might be better off with fewer things created if they were more widely
disseminated," Besen said. "The idea is not to maximize the number of things,
but to maximize the value of the things that are created, and that might, in fact,
involve fewer things that are more widely disseminated.”" Without standards,
firms may engage in strategies that result in spurious differentiation of products;
innovation may be devoted less to adding value and more to creating difference
for difference's sake.

Once an industry agrees on a standard, firms can focus their research and
development efforts on areas that are said to be "on top" of the standard, where
innovation is likely to produce greater functional benefits. In other words,
standards are like a foundation upon which innovation can build. "What you
want to do," said Scott Davis, senior consulting engineer at the Digital
Equipment Corp., "is build on what somebody else has built and not reinvent
what was on the bottom."

But variety also has positive attributes that can be erased by
standardization. The primary argument against standardization posits that it may
freeze technology at a premature stage of development. Standards should not be
regarded as the final "best solution, but as temporary rigidity," advised Esther
Dyson, publisher of "Release 1.0." "They are like the San Andreas fault. They
hold things together for a while, but underneath and around and ahead of the
standards, things are changing. You don't want to ratify standards so strongly
that they prevent progress.... So, standards are not forever. Standards get
superseded."”

In fact, added Davis, standards are rarely the best solution to a particular
need, even when they are new. "Standards tend to be least-common-
denominator kinds of solutions," he said, "so that you are not able to take full
advantage of the underlying system, the underlying implementation." In the
case of de jure standardization, part of the reason why standards fall short of the
technological optimum stems from the need for compromise among the many
participants in the process. In the case of de facto standardization, the candidate
that prevails may be the product of chance occurences, or the decision may be
dictated by the actions of a dominant firm. In either situation, the resultant
standard is not necessarily the best of the options available.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

A CLOSER LOOK AT CURRENT ISSUES 73

THE INFLUENCE OF INTELLECTUAL PROPERTY LAW

Although easy access to innovations and widespread dissemination of
ideas are generally recognized goals of intellectual property law, it does not
necessarily follow that compatibility, a means to achieving these goals, is also
an aim of the law. Indeed, the courts have been somewhat equivocal in their
handling of the issue. In Apple Computer, Inc. v. Franklin Computer Co. (545
F. Supp. 812 [E.D. Pa. 1982], Affd. 714 F.2d 1240 [3rd Cir. 1983]), in which
Franklin was found to have copied Apple's operating system, the Court of
Appeals for the Third Circuit found the copyright infringer's compatibility
argument less than compelling.

"Franklin," it said, "may wish to achieve total compatibility with
independently developed applications programs written for the Apple II, but
that is a commercial and competitive objective which does not enter into the
somewhat metaphysical issue of whether particular ideas and expression have
merged."

In another case, E.F. Johnson Co. v. Uniden Corp. (623 F. Supp. 1485 [D.
Minn. 1985]), the Federal District Court in Minnesota was more sympathetic to
compatibility concerns. At issue was whether the Uniden Corporation copied
the software in the E.F. Johnson Company's mobile radio system and, in so
doing, infringed Johnson's copyright. Uniden contended that it copied only
those elements necessary to achieve compatibility. Duplication of one element
of Johnson's software was necessary to achieve compatibility, the court found,
but "virtually all other aspects of the defendant's [Uniden's] program could have
been independently created, however, without violence to defendant's
compatibility objective." The court ruled that Uniden did violate Johnson's
copyright, but the decision suggests that copying is permissible when it is the
"only and essential means of creating" compatible software.

"The issue of whether the merger-of-ideas-and-expression defense should
prevail in cases involving the need for compatibility is an important one," Besen
said, "especially for software."

Not everyone agrees, however, that software compatibility is an overriding
need, dismissing this claim as a guise for abetting wide-spread copying of
successful products. John Shoch said he regarded as "specious, even pernicious"
the argument that an innovator whose product holds sizable market share must
surrender his intellectual property to competitors. For a competitor to assert that
his program must be compatible with the market leader, who, therefore, "must
lose some of his protection ... ," he said, "is the silliest thing I have ever heard
of. The fact that you have been successful does not, by definition, expose you to
that loss of your rights."

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

not from the

original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book

A CLOSER LOOK AT CURRENT ISSUES 74

Promoting compatibility may make business sense, Shoch said, but the
decision of whether to pursue this strategy should rest with companies, not with
the law.

Intellectual property law, however, does influence the pace at which
software compatibility and interoperability evolve in the industry, as well as the
nature of the standards that are adopted. "Standards are a strategic tool [that]
can be used to [a firm's] advantage or disadvantage,” Besen said. The
magnitude of either one is determined in large part by the scope of protection
for the standardized technology.

With weaker protection, which makes it easier to adopt parts of another's
invention, "participants' interests are more closely aligned," access to the
standardized technology is not impeded, and competition is more likely to be
within the standard, Joseph Farrell, a professor of economics at the University
of California, Berkeley, has written (Farrell, 1989, p. 16). Strong protection for
the standardized technology, in contrast, would force competition into
incompatible channels. Such a situation could either foster spurious
differentiation of products, or it could push product development into new
directions, resulting in socially useful innovations. In his paper, Farrell further
elaborates on how intellectual property protection influences standardization,
suggesting that copyright may impede the process because of its presumed
aversion to function:

[Slince copyright protection is broadest where the expression is most
arbitrary, useful innovations may go unprotected while arbitrary choices of
user interface, for instance, may be held to be protected and may generate large
rents if they become de facto market standards.

In the case of traditional creative works, such as novels, protection of an
arbitrary creation does not constrain later innovators. If the first innovator's
choice of expression is "arbitrary," she could equally well have made any of a
number of other choices, and it might seem to follow logically that a later
innovator's options are not unduly constrained: he need only avoid consciously
doing the same as the first innovator, and this might not seem unduly
burdensome. Indeed, in a traditional "decreasing-returns" economy, he will
prefer to avoid direct competition with the first innovator, and would have no
motive to imitate except for the wish to save costs by slavish copying rather
than performing independent work.

But this argument fails to hold in a market characterized by dynamic
increasing returns, such as market externalities. Then, the mere fact that a
previous innovator used a certain arbitrary expression, and customers have
grown used to it, makes that arbitrary expression an important and no longer
arbitrary aspect of design. Although, ex ante, English could just as well have
been written right-to-left as left-to-right, a publisher who tried to introduce that
convention now would surely fail.

Left unanswered in this analysis, however, is the recurring question of how
to distinguish between useful innovations, ideas, and

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

A CLOSER LOOK AT CURRENT ISSUES 75

creative expression. In the copyright area, for example, controversy surrounds
the granting of protection for the "look and feel" and the "structure, sequence,
and organization" of programs. Critics of the decision in Whelan v. Jaslow, for
example, argue that the decision awarded protection for an idea, not the
expression of the idea. Because of the presumed unavailability of patent
protection for software, say others, the court was forced to rely on copyright
law to address a matter of software functionality—"structure, sequence, and
organization"—that is more appropriately an issue for patent law. Meanwhile,
as the number of software-related patents mounts, there are fears that broad
ideas, rather than useful innovations or embodiments of ideas, are being granted
monopoly-like protection. Making the waters even murkier is the lack of clarity
in court rulings on whether firms can adopt elements of competitors' software to
achieve compatibility.

WITHHOLDING OF SOURCE CODE

In his book The Mythical Man-Month, Frederick P. Brooks, Jr., a professor
of computer science at the University of North Carolina at Chapel Hill and
former IBM project manager who directed the development of the operating
system for the IBM System/360 line of mainframe computers, extols the virtues
of comprehensive, easily understood documentation of computer programs.
Such documentation, Brooks writes, tells the program's "story to the human
user" (Brooks, 1975, p. 164). Moreover, "the intimate availability of the source
program, line by line, to the reader of the documentation makes possible new
techniques" (p. 169).

Brook's essay preceded by nearly a decade his former employer's decision
to adopt what was becoming the standard practice of shipping software products
without source code. It was a difficult decision, according to IBM's Peter
Schneider, and not only because of its perceived negative impact on users.
Schneider noted that many of the improvements IBM had made in its software
and some commercially successful products were, in effect, developed by the
company's field force and its customers. "The opportunity to do that is now
precluded,” he explained, "because to build those products they had to have
access to our source code, and we no longer allow source code out of our
laboratories."

These costs notwithstanding, IBM perceived the need for a "safety net—
namely, going to object code only and more restrictive contract terms and
conditions"—as more compelling, Schneider said. "The reaction to become
more secretive because of the uncertainty of the legal system was a prudent
business decision."

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

A CLOSER LOOK AT CURRENT ISSUES 76

The fallout from this nearly industry-wide decision has materialized in
several forms. For example, advocates of no or, at most, weak intellectual
property protection for software have argued that the withholding of source
code vitiates the analogy between literary works and computer programs, the
basis for extending copyright protection to software. If software products are
not delivered in a human-readable form, the argument goes, the expression is
not revealed to users, and copyright protection is not warranted.

Users most affected by the denial of source code are those who would like
to adapt or customize vendor-supplied software to their own peculiar
circumstances or to changing organizational needs. In some instances, vendors
will acquiesce to those needs and supply the source code, but only after they are
convinced of the integrity of clients' security measures and restricted conditions
of use are stipulated in a contract. This compromise solution, however, does not
work for all customers, including one of the largest, the federal government.

As part of its "data rights" requirement, the federal government generally
requires software vendors to relinquish the source code along with the products
they sell to the government. Unconvinced that, in using the source code for its
own purposes, the government would not jeopardize their trade secrets, many
companies have refrained from doing business with federal agencies, according
to Anita Jones of the University of Virginia, who was one of the founders of a
small software firm that made such a decision. Other firms have taken a
different tack in addressing this concern. They withhold their most advanced
technology and sell to the government only hardware and software that are not
the state of the art and therefore are cause for less concern if inadvertently
revealed to competitors.

This practice is not limited to small business, Jones asserted. "Some very
large companies that sell both hardware and software," she said, "have separate
divisions to do business with the government [These firms] do not give
those divisions access to their best technology.... They phase their commercial
divisions into the government divisions as the technology and the
manufacturing plants age. I submit to you that that is not in the public's interest
and a major reason for that is the government's stance on data rights."

Universities are also hampered by the withholding of source code, Jones
maintained, contending that distributing object code only "inhibits the flow of
ideas in the university research community. Without source code, and barring
reverse engineering of programs," she said, researchers cannot "get the
maximum benefit out of new ideas that are in the form of software. That is the
only form that is maximally useful."

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

A CLOSER LOOK AT CURRENT ISSUES 77

Through contractual arrangements, some companies will supply source
code to scientists, allowing them to make alterations and to experiment with
new applications. But contract-imposed restrictions often prevent researchers
from sharing this altered code and the resultant innovations with their peers,
Jones said. As a consequence of these actions, the industry is handicapping the
ability of universities to contribute to software research and development, she
claimed. "The universities have fed the high-technology software business to a
very large and rich extent, and I don't like to see any constraints on that," Jones
said.

The introduction of trade secret law into the academic environment in
connection with software and other new technologies can have serious
consequences for the traditional academic mission, Reichman maintains.
"University professors are habitually slow to consider that they may have
illicitly borrowed software solutions covered by proprietary rights," he said.
"Copyright law can magnify the ensuing difficulties because it is a field in
which innovation occurs through sequential and cumulative improvements, and
every researcher making use of another researcher's prior art can expose himself
to potential liability for infringement or at least to litigation, absent explicit
authorization for use."

Others at the forum questioned whether rigid restrictions on the
distribution of source code were inimical to copyright law's fair use doctrine,
which permits copying and, perhaps, reverse compilation for research and other
noncommercial purposes. Contractual stipulations, however, might block the
rights normally afforded by the fair use exception.

REVERSE ENGINEERING

Copyright's allowance for independent development provides a safe haven
for follower firms. For some firms, this safe haven takes the form of a "clean
room,"? a means of avoiding charges of infringement or at least improving the
chances of prevailing against such charges. A firm that desires to copy the idea
but not the expression of a competitor's program can isolate its programmers,
providing these workers only with a description of the software application they
are to emulate. Outside the clean room, other workers may study the manual
and other documentation provided with legally obtained software, and they may
observe and test the original program while it is running on a computer. These
benchmark test results and observations are used to assess the performance and
functionality of code written in the clean room. Code that does not achieve the
desired level of

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

A CLOSER LOOK AT CURRENT ISSUES 78

functionality may be returned to the clean room, perhaps with a more detailed
description of the problem, for modification.

This description applies to the purest form of the clean room concept, and
it is the software industry counterpart to reverse engineering in industries that
manufacture machinery, including computers. In hardware industries, reverse
engineering is a common practice, but makers of machinery must not only
figure out how the targeted product works, but they must also determine how to
manufacture it and develop the necessary assembly process, all of which can
take substantial amounts of time and money. Similar investments in
manufacturing and technology are not required to reproduce software products.
The "purity" of the software clean room is determined by the level of detail in
the information that is passed into the room: the more detailed the information
—"chunks" of code from the target program, for example—the more suspect
the process may become and the more likely the clean room program will be
similar to the original.

The great temptation in developing software, of course, is to use reverse
compilation technology, which, as IBM's Figueroa explained, "facilitates the
low-cost adaptation of the protected expression in the original program,
resulting in the quick and cheap generation of a competing program. Thus, the
program creator has his lead time erased, his price undercut, and his market
reduced for the very thing he created."

According to Schneider, also of IBM, reverse compilation and subsequent
changes in code, data structure, or other components can yield a program that,
although the product of illegal copying, bears little, if any, provable
resemblance to the original. If the designers and programmers of the original
work find it difficult to determine whether a program is a copy, as Schneider
maintained is often the case, then judges, who are not schooled in the
technology, may have an especially hard time assessing whether a program is a
derivative work and, therefore, infringes on the original.

CONCLUSION

Ideally, explained Francis Fisher, incentives, or the monopoly rights that
serve as the "carrot" to induce innovation, will yield "access to goods and
services, including ideas and expressions, for a price that is as close to cost as
possible.... Monopoly profits beyond those needed to cover costs are not in the
public interest." Thus an effective intellectual property system should contribute
to efficiently operating national and international markets, and at the same time
fairly reward investment, creative genius, and hard work and drive firms to pur

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

not from the

original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book

A CLOSER LOOK AT CURRENT ISSUES 79

sue successive rounds of innovation. But it cannot do so unless the costs
associated with unsuccessful risks are included. It is the risk in creation, not the
cost of production, that intellectual property protection must reward.

Yet in the real world, optima are rarely achieved, forcing a pragmatic
consideration that recognizes that a productive balance between protection and
dissemination is a shifting target. "What bad behavior will be tolerated," asked
Bricklin, "so as not to throw out the baby with the bath water?" Measures
crafted to address one wrong, such as automatic cloning of programs, could
have the wunintended, negative consequences of inhibiting independent
innovation—a common occurrence, according to Bricklin, in software
development—or of discouraging other desirable aspects of the behavior of
innovators and investors.

Even if the existing framework of intellectual property law is eventually
deemed satisfactory, clarification of the scope and applicability of both patent
and copyright law was described by forum participants as a critical need. "What
we are looking for," said John Shoch, "is a consistent and unified way to deal
with the issues of software and intellectual property." Because such a holistic
perspective, one that provides a comprehensible set of guidelines for investors
and software developers, does not now exist, more litigation is a prospect for
the software industry. According to several legal experts at the forum, that is an
almost absolute certainty. But the likelihood of more legal disputes should not
be surprising, given the inevitable lag between the rate of technological advance
and the slower pace at which the law responds.

NOTES

1. Results of the survey were reported in "Release 1.0," August 21, 1989, 89-8, p. 3.

2. Paraphrase of comments made by Gordon Moore, chairman, Intel Corp., at the May 1989 CSTB
Colloquium on Competitiveness.

3. In this usage, clean room is a metaphor for a software development workplace uncontaminated by
familiarity with the expression of a competitor's product. In the manufacture of semiconductors,
great expense is taken to isolate workers from contamination by minuscule amounts of dust. Hence
the metaphor.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

not from the

original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book

80

If you limit protection, you are going to end up in a world of
stagnation and trade secrets.

—Esther Dyson, Publisher, "Release 1.0"

The bottom line is that we decided to invest in software development
as a separate business, and we based our decision to put significant
resources into that business on the expectation that we could protect the
expression in our programs from copying.

—Howard G. Figueroa, Vice President, Commercial and Industry Relations,

IBM Corp.

Saying it is okay to do nothing because things will work out strikes me
as analogous to the response given by the man who jumped off the top of
the Empire State Building. When asked as he passed the 50th floor, '"How's
it going?', he replied, "So far, terrific." So cautious, thoroughgoing
inquiry seems to me to be really justified here.

—Mitchell D. Kapor, Chairman, ON Technology, Inc.

I am appalled by the crudity of the discussion right now in the
industry around what is interface and what is functionality. I think that we
should do a whole lot more worrying about the way these expressions and
the way this creativity break out in pieces and in components.

—Frank Ingari, Vice President, Spreadsheet Division, Lotus Development Corp.

There has to be some way of recognizing the economic value and
importance of existing standards, conventions, and user interface models,
and yet be able to build on it at a reasonable cost.

—Robert Spinrad, Director, Corporate Technology, Xerox Corp.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

THE OPEN AGENDA 81

5
The Open Agenda

The aim of this project was to advance the state of knowledge and the
quality of the public policy debate on intellectual property protection issues for
software by bringing together an array of interested parties. This area of
technology remains in rapid transition, and there are not simple solutions to the
complex problems it presents. While a broad analytic structure remains a future
goal and a worthy objective of public policy research, the two-day forum whose
discussions are summarized here was an important step in aiding the
communications among the technical and legal experts who often use different
vocabularies and have conflicting problem-solving approaches.'

Software is evolving from a technology originally conceived as a flexible
and inexpensive mechanism for controlling computer hardware to products that
embody the functional processes and knowledge base of entire industries and
dominate the costs of computer usage. Thus the intrinsic value of software,
apart from its form of expression, is hard to quantify, but it is rapidly growing
and constitutes the asset end users as well as software vendors seek to protect.

A snapshot of the current technology shows evidence of the evolution of
the field, with different strands overlapping. That picture reveals that part of the
enterprise resembles the highly experimental and entrepreneurial situation of 25
years ago, complete with computer hackers, developers producing "freeware,"
and highly innovative individuals working in isolation. At the same time,
however, it also reflects a major industry dedicated to building reliable, well-main

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

THE OPEN AGENDA 82

tained software for the efficient execution of well-established applications.
Software users cover an equally broad range, from millions of novice users to
giant corporations whose software expertise rivals (and sometimes exceeds) that
of their software suppliers.

With as much diversity and heterogeneity as are found in this sector, it
should not be a surprise that discussions involving intellectual property
protection for software should generate great controversy and complicate
agreement on a national policy agenda. The questions involved in the debate—
what to protect, how to protect it, and for how long—call for value judgments in
a large community with few shared values.

Because software is so malleable, representing information in many forms
(images, sounds, data, and words) and providing the means for creating as well
as transmuting and transmitting it, there was little agreement except in general
terms on how to describe the values embodied in software. Thus there is less
agreement on what aspects of software should, in the public interest, be
protected as personal or business property. Complicating the discussion further
is the absence of unambiguous technical or legal definitions of some of the key
terms of the discussion, for example, a software interface. Not only did the
technical and legal experts use the word very differently on occasion, but even
the experts also used the term slightly differently, depending on their
professional perspective or segment of the industry.

Software is of great economic and functional value to society. It is
important that software protection not be thought of as an end in itself, but
rather as a part of the incentive structure leading to the creation, diffusion, and
use of software innovations. Differences of opinion over software protection
should not be seen as a battle between opposing economic interests—a struggle
among vendors and between them and their customers. Rather, the pressing
issues revolve around the incentives—and disincentives—that are provided for
creativity, for entrepreneurial risk, for quality services to end users, and for a
stable, competitive marketplace.

Few would deny that the pace of software innovation and the growth of the
industry attest to the strength of the incentives and the adequacy of safeguards
to date. The question is whether technological and legal developments in the
future will combine to enhance or undermine those incentives and safeguards.
At the root of the debate about software protection is not the preservation of the
property rights of its creators, but the extent to which protection of those rights
will promote innovation without retarding technical progress or inducing in the
market an instability that might deprive software users of good service as well
as new capabilities.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

THE OPEN AGENDA 83

Just as technological change affects the evolution of legal principles, so
also will legal rulings affect the manner in which technical progress unfolds.
For technological reasons, progress in computer hardware has been even more
rapid than that in software for many years. Thus, in spite of extraordinary
industry growth, software costs and complexity have become the pacing factor
in the implementation of many worthwhile applications. At issue now is
whether legal developments will widen or narrow the software bottleneck to
progress.

While recognizing that questions arise at the margins of copyright and
patent law, several legal experts advised that the current level of uncertainty
should not be interpreted as proof of the inadequacy of either body of law. "One
of the factors that is operating here," Goldberg suggested, "is perhaps a
philosophic discomfort with things or concepts that can't be easily pigeon-holed

. in the fashion of binary digits—being either-or." He continued, "It is the
nature of the legal process that it develops. It cannot be handed down from
Capitol Hill with pristine purity and crystalline clarity in its application to all
circumstances for all time."

Indeed, most should not be and some cannot be. Automated reverse-
engineering and recompilation techniques, for example, may be used to create
derivative products that offer the same functionality as the original software but
are so dissimilar in appearance and structure that even the most astute judges
and juries will be hard-pressed to identify illegal copying. The answer to that
problem may be technological, such as "fingerprinting" or otherwise identifying
the source of derivative works. Or it may be the fact that products created this
may be more costly to maintain and evolve than is original software created
from scratch. Yet other important questions fall squarely within the realm of the
law, or into the gray area between accepted business practices and law.
Different views exist on how best to proceed.

DEFINING A CONCEPT OF VALUE

Lotus's Frank Ingari struck a responsive chord when he asserted the need
to define for software a concept of value that can serve as a lens for evaluating
intellectual property issues. Too little discussion, he maintained, is devoted to
determining what to protect and why.

"We are sort of at the second-order discussion already," he explained. "Is
copyright better? What is good for the industry? What is good for the Third
World? Everybody is taking positions on what is good for whom, and I don't
see much discussion of what we are trying to protect in the first place."

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

THE OPEN AGENDA 84

Esther Dyson, publisher of "Release 1.0," concurred. "The real issue here
is defining intellectual property," she said. "We can work out what the law does
if we can define the stuff that we are trying to protect." Dyson advised,
however, that the value of different software components will change as the
technology advances, making value an evolving concept.

Initially, she said, "virtually the only thing you wanted to protect in
software was the code. Then we got into the 'look and feel issue.' As we move
on toward object-oriented code, we are going to have these modules of
functionality that are specifically designed to be reused. But the people who
design them are still going to want to protect them, charge for them, and so we
are going to have a much more complicated problem in the future, ... when bits
of software have to work together."

Before deferring intellectual property matters to lawyers, it was suggested,
software firms may be better served by first determining what elements of
software are most beneficial to users, the ultimate judges of value. "I am
appalled by the crudity of the discussion right now in the industry around what
is interface and what is functionality," Ingari said. "I think we should do a
whole lot more worrying about the way these expressions and this creativity
break out in pieces and components."

Establishing a common understanding of software, as both a functional,
marketable good and as the product of a complex design and engineering
process, serves two necessary purposes. First, it provides perspective on where
the value, or intellectual property, lies in a particular piece of software and,
therefore, on what elements warrant protection. Second, a broadly accepted
notion of software—one that embraces its numerous manifestations and its
complex underpinnings—can guide the application of intellectual property law.

LEGISLATIVE "SOLUTIONS"?

Few would quibble with the goals for the intellectual property system
Robert Spinrad suggests (Box 5.1), but most would argue about measures
proposed to achieve them, which range, as Mitchell Kapor pointed out, from
"doing nothing" to "doing something radical."

Most radical of all perhaps are proposals to create a sui generis system, a
body of law specific to software. An argument advanced in support of this
notion contends that, at least in the copyright area, attempts to address issues
related to the functionality of software are distorting the law. As a result, the
argument continues, a sui generis system for software is evolving piecemeal
through the case law—

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

THE OPEN AGENDA 85

without the benefit of the foresight that would go into a deliberately crafted set
of laws.

BOX 5.1—SUGGESTED GOALS FOR THE
INTELLECTUALPROPERTY SYSTEM

While leaving legal specifics for others to debate, Robert Spinrad of
Xerox Corp. offered a set of general goals for the intellectual property
system to achieve. Comments by forum participants suggested that
Spinrad's desiderate encapsulated the essential requirements of
innovators and investors. His criteria—"The Five Cs"—are summarized
below.

Coverage, or protection, should extend to the ‘"brilliant idea"
embodied in a software product. "This is certainly something you want to
be able to protect and own and control the future of," Spinrad said.
Protection should also be accorded the programming efforts, the "hard
work" that transforms the idea into a marketable product.

Continuity, "the ability to build on existing standards and
conventions at reasonable cost," is necessary to create a foundation upon
which the software industry can build. "Access, not appropriation [is key],"
Spinrad said, acknowledging that "reasonable cost" is not easily defined.
Yet, he added, arbitrary rules or constraints should not "force the
programs that work on [the user's] behalf to use different interfaces, to
meet different standards,... to follow different protocols. So, there has to
be some way of being able to build one brick on top of another."

Consistency in the application and scope of intellectual property
protections affords the "predictability, the calculability" that firms require to
make the marketing and development decisions that dictate the allocation
of financial resources and personnel. Surprises, such as those that might
result as belated declarations of property rights, compound the
unavoidable uncertainties of the marketplace.

Cognizance, "the timely awareness of other intellectual property
rights claims," minimizes the danger of being blindsided by competitors. "I
don't want to be put in a position of developing a product," Spinrad
explained, "only to discover a year after it is on the market—or, even more
frightening, just as it is about to hit the market—that an essential element
of it is something that had been percolating through the patent process
and that, because of the confidentiality [of the process], | didn't know it
was coming."

Convenience, or a straightforward intellectual property system that
minimizes the need for litigation, may be the equivalent of "asking for the
moon," Spinrad said. Nonetheless, he added, "I would like a minimum
amount of conflict about which set of rules or... statutes cover" which
aspects of software.

Mention the term sui generis at a gathering devoted to software-related
legal issues, however, and strenous objections are sure to

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

THE OPEN AGENDA 86

follow. One frequent criticism holds that abandoning a long-standing body of
laws—albeit laws that did not anticipate the development of software—for an
entirely new system would increase uncertainty, not reduce it.

"I think what we might be faced with," said Ron Palenski, counsel for the
Association of Data Processing Service Organizations (ADAPSO), "is a conflict
between a slower societal process to resolve these issues in a more rapidly
moving marketplace and more rapidly moving technology. I would submit,
even if you went to a different system, you would still find the same problems."

Added attorney Ronald Laurie of Irell & Manella, "I buy coryright, as
opposed to intermediate solutions, because the law in this country, whether we
like it or not, evolves interstitially in court. And as someone who spends a lot of
time in court, I would feel much more comfortable arguing my case by
analogy." Moreover, laws drafted to address today's concerns could be rendered
obsolete by future advances in technology, which will engender unanticipated
legal issues.

That most litigators present at the forum prefer evolutionary development
of case law, within the framework of current copyright and patent statutes,
reflects more than confidence that the law is sufficiently elastic to fit evolving
circumstances. Their preference may also indicate a lower confidence in the
legislative process as the alternative. These litigators share with the scientists an
awareness of rapid technological change in the industry but tend to opt for a
more surprise-free venue for legal change, while the scientists more willingly
contemplate the sui generis approach.

The chorus of objections that greets proposals for new legal approaches
shifts attention to the other pole in the range characterized by Kapor—the "do
nothing" option. Howard Figueroa espoused this view, noting that many of the
issues and concerns now being debated were addressed more than 20 years ago,
when firms first contemplated "unbundling" software from their hardware
products.?

"The bottom line is that we decided to invest in software development as a
separate business," Figueroa explained," and we based our decision to put
significant resources into that business on the expectation that we could protect
the expression in our programs from copying. "Copyright protection would
apply to that product expression per se. It would require no up-front expenditure
to obtain that protection, and it was and is international in scope. We felt that
we could build a separate business on this type of protection.”

Figueroa maintained that the existing intellectual property system works,
and he recommended a hands-off approach toward copyright

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

THE OPEN AGENDA 87

law. "I fundamentally believe," he said, "that there is no reason to make any
specific changes in relationship to the copyright law as it is currently
constituted.... I think that what we should be relying upon is the evolution of
the law as it is interpreted in the courts...."

While many in the software industry favor staying within the existing legal
structure, a substantial number believe that the system should provide better
guidance and that copyright and patent laws could be applied more coherently.
Thus it is the vast middle ground between the extremes of a do-nothing
approach and a sui generis system where most of the discussion and most of the
disagreement occur.

Kapor was among several technical experts who stressed the need at least
to reassess the appropriateness of maintaining the status quo. "[S]aying it is
okay to do nothing because things will work out," he said, "strikes me as
analogous to the response given by the man who jumped off the top of the
Empire State Building. When asked as he passed the 50th floor, 'How's it
going?', he replied, 'So far, terrific.'" So cautious, thoroughgoing inquiry seems
to me to be really justified here."

HYBRID SYSTEM FOR HYBRID TECHNOLOGIES?

Perhaps neither set of principles is appropriate for software—at least not in
their current form. This view is espoused by Vanderbilt University law
professor Jerome Reichman, who distinguishes between the mature copyright
paradigm of artistic property law and a modified copyright approach better
suited to what he calls "intermediate technologies" falling below the patent and
copyright paradigms (Reichman, 1989). His review of international intellectual
property laws leads him to conclude that software is the most recent
manifestation of "hybrid technologies" that reside in the murky region between
patentable inventions and copyrightable creative works. The intellectual
property system, he said, carves the universe of created works into art, the
province of copyright law, and inventions, the province of patent law. But
software, like industrial designs and architectural and engineering drawings,
embodies properties of both categories and, therefore, distorts the tenets of
patent and copyright law. Historically, nations have different in their legal
treatment of these hybrid technologies, placing them in one category or the
other and sometimes oscillating between categories. The results, Reichman said,
have never been satisfactory, generating a "cycle of overprotection and
underprotection."”

Problems have been most acute for industrial designs and works of applied
art, which are governed concurrently by the copyright and

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

THE OPEN AGENDA 88

the industrial property treaties. According to Reichman, both industrial art (i.e.,
designs) and industrial literature (i.e., software) "bear technological and applied
scientific know-how on their face." The ingenuity and skilled effort that go into
making software and other design-intensive works cannot be hidden, he said.
Rather, they are transferred along with the product.

Recognizing this vulnerability to easy duplication, many nations have
chosen to protect these works through copyright law because, for one reason, it
does not discriminate on the basis of merit. According to Reichman, copyright
law accepts all comers and it allows the market to determine value, the very
opposite of patent law, which requires the patent examiner to determine merit
according to the novelty and nonobviousness standards. From a behavioral
standpoint, investors in applied scientific know-how find copyright attractive
because of its inherent disposition to supply artificial lead time to all comers
without regard to innovative merit (Reichman, 1991). While the protection
afforded by the full copyright paradigm attracts investors in applied scientific
know-how, Reichman finds that this paradigm becomes counterproductive over
time because its wide protective net soon frustrates the very incremental
innovation that sought copyright protection in the first instance.

Efforts to protect design-intensive works under patent law are undermined
by that law's standards of nonobviousness and novelty. Although the works are
largely utilitarian and sold in markets for non-artistic and nonliterary products
(properties that align them with patented inventions), they usually embody
incremental improvements on known solutions, Reichman said. Incremental
innovation is legally obvious by definition and therefore is unprotectable. To
grant patents for works that do not attain the high level of originality required
for other technologies is to disrupt the patent system, he said.

Thus Reichman proposes that a modified copyright approach is more
appropriate for applied scientific expertise, including software, and other hybrid
technologies than either the mature copyright or patent models that underlie the
world's intellectual property system as it stands. He underscores the need to
reckon with what he believes is a potentially serious problem, the danger of
unreasonably long periods of protection for useful works and the consequent
danger of disrupting market competition. Under copyright law, owners of
software innovations, which have an essentially machine-like utility, would
hold exclusive rights for up to 100 years. "No industrial property, no innovation
—whether a computer program or a cancer cure or a gene splice—should
conceivably be protected for 75 to 100 years on the products market,"
Reichman said.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

THE OPEN AGENDA 89

Although protection for the better part of a century does seem excessive
for any utilitarian product, the discomfort may derive more from appearances
than actual harm. Given the rate of progress in computer technology, it is hard
to imagine any piece of utilitarian software having market value after 10 or 20
years at most. In any case if only the expression is protected, and not the
function, the independent implementation of that function in new software need
not be seriously impeded by an overlong period of copyright protection. And all
users of the software can experience and learn from the functional utility of a
program. An approach to correcting the deficiencies that Reichman perceives in
the legal treatment of software and other design-intensive works is to create a
third category of intellectual property for hybrid technologies.

Echoing Reichman's reasoning, L. Thorne McCarty, a professor of
computer science and law at Rutgers University, suggested that software may
represent a new type of intellectual effort. The skilled effort that software
development requires, he said, "does not rise to patent-level protection, not on
obvious things." Yet, McCarty added, copyright in its current form might not
offer sufficient protection against reverse engineering methods that make it
increasingly difficult to distinguish between copying and independent
innovation.

INCREMENTAL IMPROVEMENTS TO PATENT SYSTEM?

Defenders of the current system counter that it is far better to adapt known
approaches evolutionarily than to create a new category of protection with all
the attendant uncertainties that would ensue. Although there is sharp
disagreement over the appropriateness of patent protection for software, even its
most ardent advocates find the current patent system to be deficient in some
structural and administrative areas. Donald Chisum of the University of
Washington, a strong proponent of patents for software, listed problems in the
procurement and enforcement of patents, none of them peculiar to software.
While Chisum sees these problems as affecting all technologies, others view the
consequences as more severe for software.

The need to improve and speed the Patent and Trademark Office's
handling of applications is often cited as one such concern. Chisum noted that
virtually all other countries publish claims within 18 months of the filing date.
In the United States, the patent approval process takes nearly twice as long,
greatly increasing the chance that an innovator will be blindsided by a
competitor whose application was filed earlier. The danger is substantially
increased by the prevailing practice of shipping software products in object
code. A notification of

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

THE OPEN AGENDA 90

"patents pending" is of little assistance to a competitor who is unable to reverse
compile the product and understand it.

Participants also complained of the difficulty of tracking existing software
patents, a problem that also increases the risk of unintentional infringement.
The dangers of pursuing an innovation that may already be patented or that may
be in the patent-review pipeline are of grave concern to developers. According
to Dyson, publisher of "Release 1.0," the first concern could be assuaged by a
"meaningful, automatically updating electronic database that contains
information on patented technologies."

Currently, searches of patent literature are error-prone exercises, incurring
a high risk of overlooking relevant subject matter because of the fragmented,
disorganized state of patent information. To correct this shortcoming, Esther
Dyson proposed that the Patent and Trademark Office create a database that
describes existing software, which would help innovators determine the "prior
art" in the field.> The second issue, that of losing out to a competitor whose
application was submitted earlier, is more problematic because of the short life
cycle of software products. Thus the competitor who loses out on a patent has
the option of licensing the innovation from the patent holder, if that option
exists, or of foregoing the next generation of the product-development cycle.
Eventually, warns Brian Kahin, the rapid rate of innovation in the software
industry will be slowed to conform with the pace of the patent review and
approval process.

Finally, several participants advocated establishment of an industrial
advisory board to help Patent and Trademark Office personnel improve their
expertise in the software area. Those who question the appropriateness of
patents for software-related inventions include these shortcomings in their
appraisals, but only as a starting point that leads to more fundamental concerns.

Even the most ardent advocates of software patents acknowledge that
patents issued for broad ideas pose potential problems for the industry. Kapor,
who counted himself as neither proponent nor opponent, believes this to be an
especially serious problem, the impact of which has yet to be felt. A single
patent decision that affirms protection for a broad idea, Kapor said, "could
change the industry mood from sanguinity to terror."

NEXT STEPS

The forum discussion reflected a high degree of discomfort by many
computer scientists with the intellectual basis for the protection system as it
exists. There was considerable uncertainty about how

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

THE OPEN AGENDA 91

well the system will cope with a wide variety of emerging issues. Many features
of the present system—such as the duration of protection for utilitarian software
—are recognized as anachronistic. But few would argue that a demand for
royalties for use of a 1970-vintage word processor would generate any revenue
in 2045. Others were critical of the incremental, somewhat stochastic evolution
of legal principles based on case law, but no one presented an attractive
proposal for near-term legislative action. Nor did anyone advance evidence that
the system the United States has lived with for 30 years has thwarted innovation
or failed to produce a business environment that supports rapid growth. Thus
considerable common ground united the participants.

Nevertheless, there is much work to be done by technically qualified
experts who understand the underlying legal principles and policy issues. Legal
scholars will have to continue to pursue the questions that fall within their
domain. But the Computer Science and Telecommunications Board, although
not competent in the law, has access to a broad range of technical experts, many
of whom have been deeply engaged in the legal and political dimensions of
their trade. These suggestions for further exploration are addressed to the board.

When the steering committee began preparing for the forum project early
in 1989, it was struck by the paucity of scholarly literature on the nature of
software, the values it may embody, and the balance of creativity, discipline,
structure, and knowledge of applications that underpin those values and lead to
excellent products. Copyright protection has operated in the software market
during many years when most system software was unique to the hardware it
ran on and when there were dozens of word processors, accounting programs,
spreadsheets, and device controllers of more or less equivalent merit. Copyright
is hospitable to genius and mediocrity alike. End users, not patent examiners,
judge the social merit of copyrighted software. Bad programs enjoy the same
protection as excellent ones, but so long as it is only their expression that is
protected, they are discarded without harm to the industry. The market, not the
privilege of limited monopoly, has driven the industry's growth.

But the magnitude of the assets required to launch a successful software
project is growing very rapidly, and the constraints on substitution of
independent implementations of needed function are rising, too. Barriers to
product substitution are rising as industry standards aimed at increased
interoperability gain acceptance and end users insist on familiar interfaces. The
qualities that are associated with successful products will depend increasingly
on collections of talent of a quite unique kind. The incentive to imitate, if not
copy, the

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

THE OPEN AGENDA 92

work of successful software providers will grow. Whether the attributes of
patentable invention have their equivalents in software is a matter for debate.
But the clamor for incentives to nurture that talent is sure to rise. How then is
the rationale for awards of limited monopoly aimed at "advancing the useful
arts and sciences" of software to be developed in the absence of a deeper
understanding of those unique talents and qualities?

A second, more practical task for computer scientists and lawyers in
collaboration is to develop operationally useful characterizations of software
attributes that require legal interpretation. Examples might include system-level
and user interfaces; languages; the concepts of compilation, decompilation, and
restructuring; the distinction between architecture, design, and implementation;
and the distinctions between mathematical principles, algorithms, and
procedures. These characterizations need to be designed to be adaptable, if not
invariant, in the presence of rapid technological change. The value of this effort
lies in increased clarity of communication and debate, in court and beyond.

A third area needing study is the implications of a rapid increase in the rate
of issuance of patents covering functions embodied in software. Because the
increase in rate of filings and the courts' seemingly growing receptivity to the
legitimacy of software patents are relatively recent events, it is not possible to
point to past growth of the software industry as proof that this growth will not
be inhibited or the market disrupted in the future. There are both abstract and
practical problems to be addressed. When are clever mathematical procedures
intrinsic properties of nature, like Newton's laws of physics, and thus
unpatentable? On the practical side, how is either the patent examiner or the
software entrepreneur to determine whether a potentially patentable software
idea has already been used in available computer code, and is thus part of the
prior art? How is the developer of a commercial software offering to be able to
ensure that the company's programmers are not reinventing ideas that have been
submitted for patents not yet issued? What, indeed, are to be the criteria for
"nonobviousness" in software?

What is at stake? The future success of American innovators in an industry
with clear global leadership will hinge in large measure on developments in
software design houses and the marketplace. The courts and the Congress,
however, will delimit the playing field on which software developers compete.
They will do this through the rules that they do or do not make or alter. Given
the American propensity to litigiousness, and the drag on productivity that many

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

not from the

original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book

THE OPEN AGENDA 93

industries have experienced as a result, the software industry is vulnerable. The
delicacy of the current balance of protection arrangements for computer
software requires respect, even as the issues are vigorously examined. The open
and constructive discussion at the forum and the preparatory workshop have
made a useful contribution toward a broader understanding of that balance and
its implications.

NOTES

1. The forum started a dialogue that should be continued. The Computer Science and
Telecommunications Board is exploring options to further address the issue.

2. The "unbundling" of software and service from hardware sales by IBM was undoubtedly a wise
business decision that depended for its success on IBM's copyright in the system software. As
described by Howard Figueroa, Thomas Watson, Jr., ascribed the decision in June 1969 to general
counsel Burke Marshall's warnings about antitrust exposure. See Watson and Petre (1990).

3. The LEXPAT database can provide easy and rapid access to copies of software patents, if the
searcher wishes to examine a particular patent and knows its patent number. Dyson's suggestion
differs in that it is proposing a content/area search capability that does not currently exist.
Developing the proposed capability would be a major undertaking.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

94

THE OPEN AGENDA

"uonNguyIe 1o} UOISISA SAlle}lIoyINe 8y} se uonedlignd siy} Jo uoisiaA juld sy} 8sn ases|d pauasul Ajjejuaplooe usaq aney Aew sios oiydelbodA} swos pue ‘pauiejal
aq jouued ‘Janamoy ‘Bumniewloy oyoads-BuiesadAy Jayjo pue ‘sojAls Buipeay ‘syeaiq pisom ‘syibua)| aul| {jeulblio ay) 0} anly aie syeaiq abed ‘sa|i BuimesadAy jeulblo
ay} wolj Jou ‘jooq Jaded [eulbluo 8y} wouy pajeald sajiy X Woly pasodwodas usaq sey yiom [eulbuo ay} jo uonejuasaidal [eybip mau siyl @) 4ad SIY} Inoqy

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

not from the

original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book

BIBLIOGRAPHY 95

6
Bibliography

Branscomb, Anne W.1988. "Who owns creativity?"Technology Review , May/June, p. 43.

Branscomb, A.W.1989. Protecting the crown jewels of the information economy—The legal
protection of computer software as an intellectual asset: An overview of policy issues for
congressional oversight. Statement given before the Subcommittee on Courts, Intellectual
Property, and Administration of Justice, U.S. House of Representatives, Washington, D.C.,
November 8.

Brooks, Frederick P., Jr.1975. The Mythical Man-Month, Addison-Wesley, Reading, Mass.

Chronicle of Higher Education. 1989a. "Electrocopies' seen surpassing photocopies as threat to
copyright,"March 1.

Chronicle of Higher Education. 1989b. "Court will not hear case accusing UCLA of copying
software,"March 29.

Clapes, Anthony Lawrence. 1989. Software, Copyright, & Competition:The "Look and Feel" of the
Law, Quorum, New York, p. 143.

Cleveland, H.1989. "Can intellectual property be protected?"Change , May/June, pp. 10-11.

Computer and Business Equipment Manufacturers Association (CBEMA). 1990. The Information
Technology Industry Data Book 1960-2000, CBEMA, Washington, D.C.

Computer Week. 1989. "Criticism builds over impact of look-and-feel litigation,"May 1.

Computerworld. 1989. "Copyright regulations revised,"April.

COPP Report. 1989. Intellectual Property Protection—a COPP HistoricalResume, IEEE, New York.

Davidson, Duncan M.1986. "Common law, uncommon software,"Universityof Pittsburgh Law
Review, Vol. 47, pp. 1037-1117.

Dyson, E.1989. "Three weeks that shook my world,"Forbes, June 12, pp. 103—108.

Farrell, Joseph. 1989. "Standardization and intellectual property."Reprint of a talk given at the
CESLaST conference, Phoenix, Ariz., February 1989p. 16.

Federal Computer Week. 1989. "Microsoft Corp. downplays Apple display lawsuit," April 10.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

not from the

original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book

BIBLIOGRAPHY 96

Fisher, F.D.1989. "The electronic lumberyard and builders' rights: technology, copyrights, patents,
and academe,"Change, May/June, pp. 13-21.

Foley, James D.1987. "Interfaces for advanced computing,"ScientificAmerican, October, pp. 127—
135.

Gantz, John. 1989. "Standards: What they are. What they aren't," Networking Magazine,May, p. 23.

Garfinkel, Simson L.1991. "Programs to the people,"Technology Review94(2), February-March, pp.
52-60.

Gasper, Elon, Ed Harris, Paul Heckel, William Hulbig, Larry Lightman, and Mike O'Malley. 1989.
"Vital to small companies,"New York Times , June 8.

Gilbert, S.W. and P. Lyman. 1989. "Intellectual property in the information age: issues beyond the
copyright law,"Change, May/June, pp. 23-28.

Goldberg, Morton and John F. Burleigh. 1989. "Copyright protection for computer programs: Is the
sky falling?"America Intellectual Property Law Association, Computer Law Association,
New York.

Jorde, T.M. and D.J. Teece. 1989. "Competition and cooperation: Striking the right
balance," California Management Review Reprint Series31(3):25-37.

Kahin, Brian. 1989. "Software patents: franchising the information structure,"Change, May/June,
pp. 24-25.

Keefe, Patricia. 1991. "Paperback pulls spreadsheet, won't appeal Lotus victory," Computerworld,
Oct. 22, p. 7.

Miller, Michael W.1989. "A brave new world: Streams of 1s and 0s,"Wall Street Journal,
Centennial Edition, p. A-15.

Newell, Allen. 1986. "Response: The models are broken, the models are broken,"University of
Pittsburgh Law Review, Vol. 47, pp. 1023-1035.

Pollack, Andrew. 1990. "Most of Xerox's suit against Apple barred,"New York Times, March 24, pp.
31 and 33.

Reichman, J.H.1989. "Computer programs as applied to scientific know-how: Implications of
copyright protection for commercialized university research,"Vanderbilt Law Review42
(3):639-723.

Reichman, J.H.1991. "Design protection and the new technologies: The United States experience in
a transnational perspective," 19 University of Baltimore Law Review, Part 111, B-3, "Logic
of a Modified Copyright Approach" (forthcoming).

Samuelson, P.1985. "Creating a new kind of intellectual property: Applying the lessons of the chip
law to computer programs,"MinnesotaLaw Review70(2):471-531.

Samuelson, P.1989a. "Why the look and feel of software user interfaces should not be protected by
copyright law," Communications of theACM32(5):563-72.

Samuelson, P.1989b. "Report on AIPLA survey on the patent/copyright interface for computer
programs,"May 12, draft.

Samuelson, Pamela. 1988. "Reflections on the state of American software copyright law and the
perils of teaching it," Columbia-VLA Journalof Law & the Arts, Vol. 13, p. 61.

Scherer, F.M.1984. Innovation and Growth, MIT Press, Cambridge, Mass.

Teece, D.J.1989. "Inter-organizational requirements of the innovation process,"Managerial and
Decision Economics, Special Issue (John Wiley & Sons, New York), pp. 35-42.

U.S. Department of Commerce. 1991. "Computer equipment and software,"7990 U.S. Industrial
Outlook, pp. 26-31.

U.S. Patent and Trademark Office. 1989. "Patentable subject matter: Mathematical algorithms and
computer programs,"Official Gazette, 1106 OG, September 5.

Verity, John W.1990. "Defense against pirates or death to the clones?"Business Week, May 7.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

BIBLIOGRAPHY 97

Wall Street Journal. 1989. "Software company wins case alleging violated copyright,"March 6.

Wall Street Journal. 1989. "U.S. companies curb pirating of some items but by no means all,"March
16.

Wall Street Journal. 1989. "Apple wins first round in software copyright case,"March 22.

Wall Street Journal. 1989. "Microsoft sees gain in ruling on Apple's suit,"March 22.

Wall Street Journal. 1989. "Trade-secret fight imperils a start-up,"March 22.

Wall Street Journal. 1989. "Three computer industry leaders gird for battle over copyright
infringement," April 7.

Washington Post. 1989. "From software to sportswear, Bangkok is the capital of counterfeit
products,"March 12.

Washington Post. 1989. "Thailand's refusal to protect copyrights produces cheap goods, disputes
with U.S.,"March 12.

Washington Post. 1989. "The battle over software protection,"April 2.

Washington Post. 1989. "U.S. businesses urge trade sanctions to stop piracy of software in
China,"April 10.

‘Watson, Thomas J., Jr., and Peter Petre. 1990. Father, Son & Co., Bantam Books, New York.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

98

BIBLIOGRAPHY

"uonNguyIe 1o} UOISISA SAlle}lIoyINe 8y} se uonedlignd siy} Jo uoisiaA juld sy} 8sn ases|d pauasul Ajjejuaplooe usaq aney Aew sios oiydelbodA} swos pue ‘pauiejal
aq jouued ‘Janamoy ‘Bumniewloy oyoads-BuiesadAy Jayjo pue ‘sojAls Buipeay ‘syeaiq pisom ‘syibua)| aul| {jeulblio ay) 0} anly aie syeaiq abed ‘sa|i BuimesadAy jeulblo
ay} wolj Jou ‘jooq Jaded [eulbluo 8y} wouy pajeald sajiy X Woly pasodwodas usaq sey yiom [eulbuo ay} jo uonejuasaidal [eybip mau siyl @) 4ad SIY} Inoqy

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

99

Appendixes

"uonNguyIe 1o} UOISISA SAlle}lIoyINe 8y} Se uonedlgnd siy} Jo uoisiaA juld sy} 8sn ases|d pauasul Ajjejuaplooe usaq aney Aew sious oiydelbodA} swos pue ‘pauiejal
aq jouued ‘Janamoy ‘Bumnewloy olyoads-BuipesadAy Jayjo pue ‘sojAis Buipeay ‘syeaiq piom ‘syibua)| aul| {jeulblio ay) 0} anly ase syeaiq abed ‘sa|i BuiesadAy jeulblo
a8y} wolj Jou ‘yooq Jaded [eulbuo 8y} wouy pajeald sajiy X Woly pasodwodas usaq sey yiom [eulbuo ay} jo uonejuasaidal [eybip mau siyl @) 4ad SIY} Inoqy

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

100

"uonNguyIe 1o} UOISISA SAlle}lIoyINe 8y} Se uonedlgnd siy} Jo uoisiaA juld sy} 8sn ases|d pauasul Ajjejuaplooe usaq aney Aew sious oiydelbodA} swos pue ‘pauiejal
aq jouued ‘Janamoy ‘Bumnewloy olyoads-BuipesadAy Jayjo pue ‘sojAis Buipeay ‘syeaiq piom ‘syibua)| aul| {jeulblio ay) 0} anly ase syeaiq abed ‘sa|i BuiesadAy jeulblo
a8y} wolj Jou ‘yooq Jaded [eulbuo 8y} wouy pajeald sajiy X Woly pasodwodas usaq sey yiom [eulbuo ay} jo uonejuasaidal [eybip mau siyl @) 4ad SIY} Inoqy

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

APPENDIX A 101

Appendix A

Intellectual Property Challenges in
Software Workshop Program and
Participants*

PROGRAM

Tuesday, September 12

1. Opening Remarks and Introductions 9:00 a.m.
Lewis Branscomb

2. The Environment for Software Five Years Down the Road 9:15 am.
Paul Goldstein, Organizer & Moderator

Questions:

What elements of software are protected by copyright, patents, and

trade secrets?

What protections and remedies are available to holders of each?

How is each regime evolving in the United States?

Where are current legal developments taking us, and is it a place that

makes sense?

What's right and what's wrong with current protection systems?

How well will these protection systems apply to emerging technologies?

*Workshop held September 12-13, 1989, in Room GR 130, National Academy
of Sciences, 2001 Wisconsin Avenue, N.W., Washington, D.C.

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

not from the

original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book

APPENDIX A

102

Opening remarks by Paul Goldstein

Panelists:

Pamela Samuelson Emory School of Law
Donald Chisum University of Washington
Robert Spinrad Xerox Corporation

3. Software Protection From

Various Vantage Points

Mitchell Kapor, Organizer & Moderator
Questions:

Assessment of the environment for software from various perspectives:

small companies

large companies

integrated companies
Is financial return to developers the only or the most effective
incentive for getting good work done?
Where is the balance between the relative importance of original
prototype creation and the process of turning prototypes into products?
Does that have any ramifications for forms of protection?
‘What happens as commercial software standards begin to emerge?
Opening remarks by Mitchell Kapor

Panelists:

Esther Dyson EDventure Holdings, Inc.
Nat Goldhaber The Cole Gilburne Fund
Lee Keet Vanguard Atlantic, Limited

Harry Reinstein

4. What's Special About Software?
Anita Jones, Organizer & Moderator
A. Case Studies

Questions:

What was developed?

What was the essence you wished to protect?

What legal method was selected for that protection?

Aion Corporation

11:00 a.m.

1:45 p.m.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

APPENDIX A 103

£
5
= How well did it work? What were the benefits, problems with it?
§ Opening remarks by Anita Jones
; Panelists:
Charles Geschke Adobe Systems, Inc.
John Muskivitch The MacNeal-Schwendler
Corporation
Norris van den Berg IBM Corporation
B. Discussion 3:00 p.m.
Questions:

What is the essence of software creation as an intellectual activity?
Where is the effort in software?

How is the art of writing software likely to change in the future?
Are legal approaches relevant to technical realities?

Opening remarks by Anita Jones

Panelists:
Randall Davis Massachusettes Institute of
Technology
Gideon Frieder Syracuse University
Mitchell Kapor ON Technology, Inc.
Wednesday, September 13
5. Differences in Legal Systems Worldwide 9:00 a.m.
Paul Goldstein, Organizer & Moderator
Questions:

What are the differences and similarities in international patent,
copyright, and trade secret law?

What are current issues affecting international protection?

What factors affect these differences and similarities? How do they

affect us?

Panelists:

Dennis Karjala Arizona State University
Michael Keplinger Patent & Trademark Office

original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be
retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

not from the

original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book

APPENDIX A

104

6. Other Forces Affecting Software

Peter Schneider, Organizer & Moderator

Questions:

‘What are the forces other than protection systems that affect the
creation and dissemination of software?

What role do government policies, market forces, etc., play?

Are there barriers to dissemination of knowledge and disincentives to
creativity?

How should we deal with the problems of protection vs.
standardization and need for compatibility?

How should we balance the rewards for innovation with the
importance of universally adopted interfaces, languages, and other
functions needing standardization?

Can software interfaces be defined separately from other elements of
software, and if so, should they be separately protectable?

Can programming languages be defined separately from other
elements of software, and if so, should they be separately protectable?
Opening remarks by Peter Schneider

Panelists:

Stanley Besen The RAND Corporation
Ruann Ernst Hewlett Packard
Ronald Laurie Irell & Manella

7. Open Discussion and Summary Session

Lewis Branscomb, Organizer & Moderator

Questions:

Are the existing legal regimes satisfactory for the protection of
software?

Is there a case for a sui generis protection system for software?
If so, what might be its characteristics?

‘What might be the benefits/costs to such an approach?

Should there be different systems for different types

10:15 a.m.

1:30 p.m.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

APPENDIX A 105

of software (applications, systems, languages, tools, databases, and so
on)?

Different approaches for different phases of work (conception,
algorithms, code)?

Are there articulable ideas that might make a positive difference in the
evolution of legal protection for software?

How can communication be improved between software developers
and policymakers/judges/lawyers?

not from the

original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

Panelists:

Jerome Reichman Vanderbilt University

Michael Remington House Judiciary Committee

Steering Committee:

Lewis M. Branscomb Harvard University

Paul Goldstein Stanford Law School

Anita K. Jones University of Virginia

Mitchell D. Kapor On Technology, Inc.

Michael O. Rabin Harvard University

Peter R. Schneider IBM Corporation

8. Closing remarks by Lewis Branscomb 3:30 p.m.
PARTICIPANTS

Henry Beck Ruann Ernst

Lord Day & Lord, Barret Smith Hewlett-Packard

Mark Bello Francis D. Fisher

Alexandria, Virginia Cambridge, Massachusetts

Stanley M. Besen Gideon Frieder

The RAND Corporation Syracuse University

Marjory S. Blumenthal Charles Geschke

National Research Council Adobe Systems Incorporated

Lewis M. Branscomb (Chair) Nat Goldhaber

Harvard University The Cole Gilburne Fund

Donald S. Chisum Paul Goldstein

University of Washington Stanford Law School

Randall Davis Allen R. Grogan

Massachusetts Institute of Technology Blanc Gilburne Williams & Johnston

Esther Dyson C.K. Gunsalus

EDventure Holdings, Inc. University of Illinois

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

not from the

original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book

APPENDIX A

106

Bertram Herzog

Center for Information Technology Integration
Anita K. Jones

University of Virginia

Brian Kahin

Cambridge, Massachusetts

Mitchell D. Kapor

ON Technology, Inc.

Dennis S. Karjala

Arizona State University

Ernest E. Keet

Vanguard Atlantic Ltd.

Michael S. Keplinger

U.S. Patent & Trademark Office
Ronald S. Laurie

Irell & Manella

L. Thorne McCarty

Rutgers University

John Muskivitch

The MacNeal-Schwendler Corporation

Susan H. Nycum

Baker & McKenzie

Michael O. Rabin

Harvard University

Jerome H. Reichman
Vanderbilt University

Harry C. Reinstein

Aion Corporation

Michael J. Remington

U.S. House of Representatives
Pamela Samuelson

Emory University School of Law
Peter R. Schneider

IBM Corporation

John F. Shoch

Asset Management Company
Robert Spinrad

Xerox Corporation

Norris van den Berg

IBM Corporation

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

APPENDIX B 107

Appendix B

Intellectual Property Issues in Software
Forum Program and Participants*

PROGRAM

Thursday, November 30

9:00 a.m. Overview
Lewis M. Branscomb, Chair, Forum Steering Committee, John F.
Kennedy School of Government, Harvard University
Esther Dyson, EDventure Holdings, Inc.
Ronald Laurie, Irell & Manella

10:30 p.m. The Public Interest
Lewis M. Branscomb [Moderator], John F. Kennedy School of
Government, Harvard University
Francis D. Fisher
Anita Jones, Department of Computer Science, University of Virginia
John F. Schoch, Asset Management Company

12:00 p.m. Luncheon and Presentation: '""Entrepreneur's Perspectives'
Daniel Bricklin, President, Software Garden, Inc.

1:30 p.m. How Software Is Special

*Forum held November 30 and December 1, 1989, in the Lecture Room,
National Academy of Science, 2001 Constitution Avenue, N.W., Washington,
D.C.

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

APPENDIX B

108

3:30 p.m.

5:30 p.m.
6:45 p.m.

Anita Jones [Moderator], Department of Computer Science,
University of Virginia

Randall Davis, Artificial Intelligence Laboratory, Massachusetts
Institute of Technology

Robert Spinrad, Corporate Strategy Office, Xerox Corporation
Bruce Tognazzini, Ministry Ltd. to Human Interface, Apple
Computer, Inc.

Legal Challenges

Paul Goldstein [Moderator], Stanford School of Law, Stanford
University

Morton D. Goldberg, Schwab Goldberg Price & Dannay
Michael Keplinger, Office of Legislation and International Affairs,
U.S. Patent and Trademark Office

Jerome Reichman, School of Law, Vanderbilt University
Reception in the Rotunda

Dinner and Keynote Address: ''The Ecology of Innovation"
Mitchell D. Kapor, Chairman, ON Technology, Inc.

Friday, December 1

8:45 a.m.

9:00 a.m.

9:45 a.m.

11:20 p.m.

Introduction

Lewis M. Branscomb, Chair, Forum Steering Committee, John F.
Kennedy School of Government, Harvard University
"Intellectual Property in the Global Market Place'

Howard Figueroa, Commercial and Industry Relations, IBM
Corporation

Interfaces/Standards/Business Entry

Peter Schneider [Moderator], IBM Corporation

Scott G. Davis, Digital Equipment Corporation

Frank Ingari, Lotus Development

Harry C. Reinstein, Aion Corporation

Issues for the Future

Lewis M. Branscomb [Moderator], John F. Kennedy School of
Government, Harvard University

Donald S. Chisum, School of Law, University of Washington

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

APPENDIX B 109

Ernest E. Keet, Vanguard Atlantic Ltd.
Pamela Samuelson, School of Law, Emory University
Peter Schneider, IBM Corporation
12:30 p.m. Summary
Lewis M. Branscomb, Chair, Forum Steering Committee, John F.
Kennedy School of Government, Harvard University
Paul Goldstein, School of Law, Stanford University
Anita Jones, Department of Computer Science, University of Virginia
Mitchell D. Kapor, ON Technology, Inc.
Michael O. Rabin, Aiken Computer Laboratory, Harvard University
Peter Schneider, IBM Corporation

PARTICIPANTS
John Atwood John Carson
U.S. Customs Service George Washington University
Donald M. Austin Lynn Robert Carter
U.S. Department of Energy Carnegie Mellon University
Henry Beck Richard P. Case
Lord Day & Lord, Barret Smith IBM Corporation
Mark Bello Virginia Castor
Alexandria, Virginia The Pentagon
Kathleen C. Bernard David W. Cheney
Cray Research, Incorporated Council on Competitiveness
Fred Blosser Bernard Chern
The Bureau of National Affairs, Inc. National Science Foundation
Marjory S. Blumenthal Y.T. Chien
National Research Council National Science Foundation
Lewis M. Branscomb (Chair) Donald S. Chisum
Harvard University University of Washington
Joseph W.B. Bredie Anthony L. Clapes
The World Bank IBM Corporation
Dan Bricklin Frank W. Connolly
Software Garden, Inc. American University
Charles N. Brownstein Eileen D. Cooke
National Science Foundation American Library Association
James Burger Richard P. Corben
Apple Computer Inc. Hewlett-Packard
Dianne Callan Randall Davis
Lotus Development Corporation Massachusetts Institute of Technology

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

APPENDIX B

110

Scott G. Davis

Digital Equipment Corporation
Esther Dyson

EDventure Holdings, Inc.
Howard G. Figueroa

IBM Corporation

Francis D. Fisher

Cambridge, Massachusetts
Gideon Frieder

Syracuse University

Ian M. Friedland

National Research Council
Thomas F. Gannon

Digital Equipment Corporation
Steven W. Gilbert

EDUCOM

Martin A. Goetz

Goetz Associates

Morton David Goldberg

Schwab Goldberg Price & Dannay
Paul Goldstein

Stanford Law School

Jacques J. Gorlin

Washington, D.C.

Stephen Gould

Library of Congress

Allen R. Grogan

Blanc Gilburne Williams & Johnston
C.K. Gunsalus

University of Illinois

Auke Haagsma

Delegation of the Commission of the
European Communities

Herb Hellerman

Amdahl Corporation

Karen Hersey

North Carolina State University
Bertram Herzog

Center for Information Technology
Integration

Heidi Hijikata

U.S. Department of Commerce

John D. Holmfeld

U.S. House of Representatives
Frank Ingari

Lotus Development Corporation
Luanne James

ADAPSO

J. Jancin, jr.

IBM Corporation

Douglas C. Jerger

ADAPSO

Anita K. Jones

University of Virginia

Brian Kahin

Cambridge, Massachusetts
Robert E. Kahn

Corporation for National Research
Initiatives

Mitchell D. Kapor

ON Technology, Inc.

Dennis S. Karjala

Arizona State University
Ernest E. Keet

Vanguard Atlantic Ltd.
Michael S. Keplinger

U.S. Patent & Trademark Office
Marilyn J. Kretsinger

Library of Congress

Ronald S. Laurie

Irell & Manella

Bruce A. Lehman

Swidler & Berlin

Mark Lieberman

U.S. Department of Commerce

Jean Loup

Association of Research Libraries
Patrice Lyons

Haley, Bader & Potts

Steven Metalitz

Information Industry Association

Pat Mortenson
University of Georgia

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

About this PDF file: This new digital representation of the original work has been recomposed from XML files created from the original paper book, not from the
original typesetting files. Page breaks are true to the original; line lengths, word breaks, heading styles, and other typesetting-specific formatting, however, cannot be

retained, and some typographic errors may have been accidentally inserted. Please use the print version of this publication as the authoritative version for attribution.

APPENDIX B

111

John Muskivitch

The MacNeal-Schwendler Corporation
David B. Nelson

U.S. Department of Energy

Jeff Nuechterlein
U.S. Senate

Susan H. Nycum

Baker & McKenzie

Hans J. Oser

National Research Council
Ron Palenski

ADAPSO

Abraham Peled

IBM Corporation

Michael O. Rabin

Harvard University

Jerome H. Reichman
Vanderbilt University

Ron Reiling

Digital Equipment Corporation
Harry C. Reinstein

Aion Corporation

Michael J. Remington

U.S. House of Representatives

Carol A. Risher

Association of American Publishers
William C. Rolland

National Electrical Manufacturers
Association

Laurence C. Rosenberg

National Science Foundation

William Ryan

AT&T Bell Laboratories
Pamela Samuelson

Emory University School of Law
Peter R. Schneider

IBM Corporation

Robert Schware

The World Bank

Mary Shaw

Carnegie Mellon University
John F. Shoch

Asset Management Company

E.A. Silva

Office of Naval Research

Eric H. Smith

International Intellectual Property
Alliance

Oliver R. Smoot

Computer & Business Equipment
Manufacturers Association (CBEMA)
Alfred Z. Spector

Transarc Corporation

Robert Spinrad

Xerox Corporation

August W. Steinhilber

National School Boards Association
Richard H. Stern

Washington, D.C.

Alfred D. Sumberg

American Association of University
Professors

Charles P. Thacker

Digital Equipment Corporation
Bruce Tognazzini

Apple Computer, Inc.

Joseph F. Traub

Columbia University

Ingrid A. Voorhees

Computer & Business Equipment
manufacturers Association (CBEMA)
Ralph Wachter

Office of Naval Research

Allen B. Wagner

University of California at Berkeley

Robert M. White
Microelectronics and Computer
Technology Corporation

Edith Wilson
Burson-Marsteller

James D. Wilson

U.S. House of Representatives
Joan D. Winston

U. S. Congress

Helen M. Wood

U.S. Department of Commerce

Copyright © National Academy of Sciences. All rights reserved.

http://www.nap.edu/catalog/1788.html

