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PREFACE 

The Board on Mathematical Sciences held its third National Science and Technology Week 
Symposium at the National Academy of Sciences in Washington, DC on April 28, 1988. These 
symposia present significant mathematical developments of importance to science, technology, 
and national needs. The topics discussed at the 1988 symposium were nonlinear mathematics, 
chaos, and fractals. These concepts have gained prominence in the last one and one-half 
decades in concert with advancements in computer graphics. Nonlinear mathematics provides 
the machinery for mathematical models that are better approximations of some physical 
phenomena than linear models, and the new computer graphics capabilities enhance the 
researcher's ability to simulate and illustrate these phenomena. 

The 1988 symposium featured presentations by the following scholars on the indicated topics: 

Heinz-Otto Peitgen 
Professor of Mathematics 
University of Bremen and 
University of California, Santa Cruz 
•Fractals: Algorithms to Model Realilf 

Fereydoon Family 
Associate Professor of Physics 
Emory University 
•Mathematical Modelling of Snowflake Growth• 

Francis C. Moon 
Professor of Mechanical Engineering 
Director, Sibley School of Mechanical and 
Aerospace Engineering 
Cornell University 
•Fractals and Chaos in Mechanical Systems• 

Phillip S. Marcus 
Associate Professor of Mechanical Engineering 
University of California, Berkeley 
"Nonlinear Mathematics and Jupiter's Red Spot• 

The symposium was moderated by James A Yorke, Acting Director, Institute for Physical 
Science and Technology, University of Maryland. This volume contains summaries of the 
presentations and the ensuing discussions. 
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WELCOMING REMARKS 

Lawrence R Cox 
Director 

Board on Mathematic:al Sciences 
National Research Council 

Good afternoon. I am Larry Cox, Director of the Board on Mathematical Sciences which is 
sponsoring this event, the tide of which is Pfbe Impact of Mathematics: Nonlinear 
Mathematics, Chaos, and Fractals in Science.• The Board on Mathematic:al Sciences is generally 
interested in what is new, important, and exciting in mathematics and, also, in its impact in the 
sciences and engineering. That is why we are here today. This event is supported by the 
National Science Foundation, the Air Force Office of Scientific Research, the Army Research 
Office, the Department of Energy, the National Security Agency, the Office of Naval Research, 
and the Conference Board of the Mathematical Sciences. Our moderator for today will be 
James Yorke of the University of Maryland. I will now tum the program over to Jim. 
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INTRODUCTORY REMARKS 

JaJDes I\. Yorke 
Acting Director 

Institute for Physical Science and Technology 
University of Maryland 

I would like to welcoJDe you to a treat in JDatheJDatical concepts. You are going to 
encounter a wide variety of ideas that are unified JDainly by their difficulty. The speakers today 
were chosen for their ability to present their JDaterial, but the JDaterial they are presenting is 
very coJDplicated. The ideas to be presented today really caJDe to the fore about a dozen years 
ago. For exaJDple, a dozen years ago the nuJDber of people who had high quality coJDputer 
graphics was very snuill. The usual situation was as follows: One subJDitted a deck of cards and 
a day later it C81De back saying that the cards were in the wrong order. The cards were finally 
submitted in the right way and one obtained a fonn of graphics; big sheets with X's and O's, 
because that was the only way one could plot. While coJDputers have been around in some 
sense since the 19SO's, there has recently been a tremendous change in computer graphics. A 
nuJDber of the speakers today will JDake use of these improvements. 

The title of today's conference mentions •nonlinear mathematics: Mathematics is an 
attempt to JDirror the world. Linear models are not realistic in most cases. Thus, as our ability 
to handle JDore difficult situations increases, we must deal with a world that is not linear. To 
get a better approximation of reality, one must deal with new ideas that result from nonlinearity. 

We will begin with Heinz-Otto Peitgen who is certainly a pioneer in the use of graphics. 
He is, also, independently, an excellent mathematician. The title of his talk is •Fractals: 
AlgorithJDs to Model Reality: 

2 

Impact of Mathematics: Nonlinear Mathematics, Chaos, and Fractals in Science: Proceedings of a Symposium

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/20361


FRACTALS: ALGORinlMS TO MODEL REALITY 

Heinz-Otto Peitgen 
Professor of Mathematics 
University of Bremen and 

University of California at Santa Cruz 

Hartmut Jurgens 
Director Graphics Laboratory 

University of Bremen 

"Fractal Geomeuy will make you see everything differently. There is a danger in reading 
further. You risk the loss of your childhood vision of clouds, forests, galaxies, leaves, feathers, 
Dowers, mountains, torrents of water, carpets, bricks, and much else besides. Never again will 
your interpretation of these things be quite the same.• 

Michael Barnsley, 1988 

1. Introduction 

Our way to discuss and introduce fractals will be guided by the metaphor of languages. 
While Western languages, such as English, have a finite alphabet, Eastern languages, such as 
Chinese, have such a large number of characters that it is appropriate to say they have an 
infinite number of elements. Similarly, traditional geometry, i.e., Euclidean geometry, rests upon 
a few elements, such as the straight line, the circle and so on. Thus, Euclidean geometry 
compares very much to Western languages, while the new fractal geomeuy is more like an 
Eastern language, i.e., the number of its elements is unlimited. 

Black Box 

Figure 1: Algorithm/Feedback Loop 
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We will see that, in fact, there are even infinitely many dialects of fractal languages. What 
are they? 1be best way to describe them is to identify them as basic algorithms or feedback 
loops. 1be icon on the right of Figure 1 comprises a feedback loop with one processor. Figure 
1 shows the typical scheme of a feedback loop. We use the icon on the right hand side as a 
symbol for feedback loops with one processor. 

2. Unear Dialect 

1be most fundamental dialect is a version of the linear dialect. It has in turn, as all fractal 
dialects, an infinite number of elements (algorithms). We describe their typography in another 
metaphor: the multiple [eduction £Opying machine (MRCM), see Figure 2. 

Figure 2: Multiple Reduction Copying Machine 

1be gist of the machine is this: It has several independent reduction lens systems (e.g., 
three in Figure 2), which reduce any given picture individually and displace the reduced copy. If 
we implement this machine into our general processor of Figure 1 we have an element of the 
linear fractal dialect and we have a different one for any choice of reductions and displacements. 

Figure 3 shows an example. Step 0 identifies the initial picture, which is arbitrary. Step 
1 displays the result after one application of the MRCM, thereby identifying the particular 
reductions and displacements. Incidentally, the reduction factor is 2 for each reduction lens here. 

Figure 3 suggests that there is a final limit image, known in mathematics as the 'Sierpinsky 
triangle'. How does this element depend on the initial image fed into the MRCM? This is 
demonstrated in Figure 4, where we start the same MRCM as in Figure 3 with two more initial 
images, a triangle and the logo NRC. 

Remarkably, the limit picture is always the same. Indeed, we have just illustrated a 
· mathematical theorem, due to J. Hutchinson, which states that there is a unique limit picture 
for any MRCM and that limit picture can be obtained starting with an arbitrary image. Figure 
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Figure 3: Development of final element 

5 shows 3 more MRCMs, out of a variety of infinitely many choices, demonstrating the 
fascinating richness of the linear fractal dialect. Incidentally, reductions need not be uniform 
into all directions of the plane. For example, they may squeeze more horiwntally than 
vertically, as demonstrated in the examples. Note that each element of the linear dialect is 
determined by 6 · N numbers, where N is the number of reduction lenses in a MRCM. 

Indeed, each reduction lens is given by a linear contraction transformation f of the plane 
which is usually described by a matrix and a displacement vector 

f(x) • Ax + b. (1) 

It is obvious that any black and white picture (given by some finite number of, say, black pixels 
on white background) can be coded in a trivial MRCM. Just select the trivial contraction for 
any black pixel for which the a 1J = O and the vector b identifies the pixel. M. Barnsley (2) has 
developed algorithms which approximate a given picture by a number N of contraction 
transformations which is small in comparison to the number of (black) pixels, i.e., the linear 
fractal dialect can be used for the task of image compression. 

Once an image is compressed into N contractions of the form (1) the approximation which 
it yields with respect to the given image can be recovered in principal by applying the 
associated. Example 2 in Figure 5, however, shows that there is a computational problem. 
There we have 4 contractions and therefore the number of rectangles to be drawn when 
applying this MRCM grows like 41t, Unfonunately, as one can see in Figure 5, one of the 
contractions reduces only slightly and therefore it would take some 50 apglications of the 
MRCM to arrive close enough to the limit picture. Obviously 450 - 103 little rectangles 
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Figure 5: More elements of the linear dialect 
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are beyond the power of any reasonable computer. In other words, one needs a different 
algorithm to recover images from the set of N contractions, say f 1, ... , f •• which have been 
chosen to oompras a given image. This is the !andom iteration g.Jgorilhm, RIA. One chooses N 
probabilities p 1, ... p., i.e., p 1 > 0 for each i and their sum is 1, and then iterates the f 1 
randomly. More precisely, one selects an arbitrary staning point z0 in the plane and then one 
generates the sequence 

z11:+i = f n(11:) (z,J, 11: = 0, 1, ... (2) 

where in each step n(11:) e {l, ... , N} is chosen randomly with probability Pn<ic>· The sequence 
thus generated fills the final picture densely and it does so the more efficiently the better the p 1 

are adapted to the a>ntractiveness of f 1, i.e. one chooses p 1 larger if f 1 contracts less. 

3. Quadratic Dialect 

Apan from the linear dialect there is an infinite number of nonlinear dialects. We will 
look into one of them: the quadratic dialect. This dialect is intimately connected with the recent 
development of chaos theory and is derived from the equation 

(3) 

where x, c, and u are complex numbers and c serves as a control parameter. Solving (3) for x 
we obtain 

x1 ~ + Ju - c and x2 = - ju - c. (4) 

Thus, for each c there are two transformations 

u -+ + ju - c and u -+ ..:. ju - c. 

which we implement into our MRCM setting. 

Figure 6 shows that again we have limit pictures. In fact, the existence of these pictures 
follows from the theory of Julia sets (see [12), [7], [3)). For all choices of c we find different 
limit pictures, so again there is an infinite number of elements in this dialect. 

So far we have learned to speak in two different fractal dialects. As there are many more, 
we want to address now our final question. This is one of the most important questions in 
developing a theory of fractal languages. The question is: Is there a useful grammar for the 
dialect? Or mathematically spoken: Is there an order principle in the infinite variety of images 
obtained from (3). The answer is one of the most beautiful disa>veries of modem mathematics. 
It rests upon a dichotomy, known as the Julia-Fatou dichotomy for quadratic polynomials. This 
establishes that for any choice of c the resulting image is classified by one of only two possible 
characteristic cases: It is (Figure 7) 

• one piece (mathematically connected) or 

• a cloud of infinitely many points (mathematically a Cantor set). 
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Figure 8: The Mandelbrot set as a grammar for the quadratic dialect 
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This leads us to the grammar of the quadratic dialect, the Mandelbrot set (Figure 8). It 
was obtained by a history-making experiment of B. Mandelbrot [13) in 1980, where each point c 
in the complex plane was colored black or white according to the dichotomy (a pixel 
representing a value· c is set black provided the final image resulting from the corresponding 
MRCM for that c-value is connected). 

The Mandelbrot set shows an amazingly complex pattern. Each of its parts can be 
identified With a distinctive paragraph of the grammar. Figure 9 shows a blow up sequence of 
the Mandelbrot set which reveals that little copies of itself can be found by magnifying. These 
identify subdialects of the quadratic dialect having similar grammars. 

Our final point is a brief discussion of one of the most beautiful propenies of the 
Mandelbrot set; i.e., it can be seen as a dictionary of all elements of the quadratic dialect. This 
is illustrated in Figure 10. Magnifying (by about 106) about the c-value identified by the 
crosshair in the Mandelbrot set we obtain a structure which we like to identify as a 
double-spiral. Looking up the corresponding MRCM-element for that c-value we obtain the 
structure in the lower right, which lives in the u-plane of complex numbers. Fixing c in that 
plane, which is the crosshair in that picture, and magnifying around that value by again about 
106 we obtain the double spiral in the lower left. In this sense the Mandelbrot set can be seen 
as an image compressor of infinitely many fractal images, the entire quadratic dialect. 

This property explains the unimaginable complexity of the Mandelbrot set and was already 
observed experimentally by its discoverer. Only recently it was established in all mathematical 
rigor by Tan Lei [18) for a subset of c-values which are dense in the boundary of the 
Mandelbrot set (the set of M. Misiurewicz points). Tan Lei's work rests upon a series of 
mathematical jewels by A Douady and J. H. Hubbard (4), (5), (16) who have integrated one of 
the most beautiful shapes into some of the most beautiful mathematics. 

Meanwhile the Mandelbrot set has been observed in many other nonlinear dialects as an 
order principle. This property has become known as the universality of the Mandelbrot set (sec 
[6]). 

The discovery of the Mandelbrot set has stimulated hope that fractal dialects (and even 
more generally, dynamical systems) can be understood through appropriate order principles as, 
for example, the Julia-Fatou dichotomy for the quadratic dialect. 

4. Conclusion 

This short" note was intended to give a brief introduction to fractal languages. This is only 
one of many exciting interpretations and applications of the fractal approach (see (14)). 
Moreover, many current developments could not be discussed for reasons of length. Some 
should be mentioned at least. 
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Figure 9: Blow up sequence of the Mandelbrot set 
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Figure 10: Similarity between Mandelbrot set and elements of the quadratic dialect 

13 

Impact of Mathematics: Nonlinear Mathematics, Chaos, and Fractals in Science: Proceedings of a Symposium

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/20361


It may appear that the ideas for fractal image compression are restricted to black and white 
images. M. Barnsley et al. (2) have recently shown how the random iteration algorithm can be 
used for half tone and thus also for color images. 

The term fractal in this note means deterministic fractal. There is a whole world of fractals 
which are best characterized as random fractals (see (14), (17)) and which have their own 
languages. Actually, the random iteration algorithm is not in that class. It merely reflects a 
generating method for a deterministic fractal. Indeed, if one uses the random iteration 
algorithm for any of the images in Figures 3 - 5 the final image does not depend on the choices 
of the probabilities p 1• They only have an impact on the efficiency of the algorithm. 

A typical random fractal is obtained by the midpoint displacement method: Choose a line 
segment, pick its midpoint and liMower it by a randomly chosen amount. Then repeat for the 
resulting line segments, and so on. Obviously, the choice of the random process leaves its 
imprints on the final image (assume that the random lifts decrease according to some power 
law). R. Voss has demonstrated the power of related methods for the graphical construction of 
clouds, mountains, etc., very convincingly (see (17)). 

A final remark is about dimensions. There are numbers attached to fractals which 
characterize their intrinsic complexity. This is the family of fractal dimensions. There is 
Hausdorff dimension, self-similarity dimension, capacity dimension, information dimension and 
so on (see (8) and [10)). Some people appear to be disappointed that there are that many 
dimensions. However, each of them characterizes one significant aspect of the complexity of 
fractal structures. Another exciting development is the multifractal approach. Here one tries to 
discuss a whole spectrum of characteristic fractal dimensions (see [15) and (9)). 
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MATIIEMATICAL MODELLING OF SNOWFLAKE GROWIH 

1. Introduction 

Fere,dOOn Family 
Associate Professor of Physics 

Depanmentof Physk:s 
Emory University 

Snowflakes, with their poetic beauty and delicate geometrical complexity, have occupied the 
interests of generadons of scientists and laymen alike. Snow crystals are solidified water 
droplets or ice, arranged in a UmiUess variety of shapes and patterns. 'The earliest recorded 
study of snow crystals dates back to the second century B.C. when a Chinese scholar, Han Yin 
[1), observed that while •Flowers of plantl and tnu an gaaeraUy Jive point«/, those of snow fill 
always six-poinud.' The first illustradon of snowflakes (roprocluced in Figure la) is found in a 
book published in l.S.S.S on natural phenomena by Olaus Magnus (2), Archbishop of Uppsala. A 
long standing puzzle is that among the 23 patterns in this book only one of them is a six-sided 
star and the rest bear no resemblance to snowflakes. Systematic and serious scientific study of 
snow crystals began with the works of Kepler [3] in 1611 and Descanes [4) in 1635. They 
clearly rea>gniml the hexagonal symmetry of the snow crystal (see Figure lb) and made serious 
attempts to explain bow they are formed and why they are six-sided. Since then, the greatest 
advances have been in the qualitadve and quantitative illustrations of the variety of snow 
crystals. From an aesthetic, rather than scientific, point of view, the most fascinating and 
familiar collections of snowflakes are found in Snow Crp/llb by Bentley and Humphreys (5). 
This book contains 2,000 photographs of snow crystals taken by BenUey in Vermont in a 50 
year period. Even a small sample of these patterns, such as those reproduced in Figure le, 
gives one a feeling of the beauty and variety of snow crystal shapes. In more modern times, 
understanding the growth of snow crystals has been a problem of considerable experimental and 
theoretical interest [6]. 

Despite many attempts, no theoretical approach bad ever produced the variety of intricate 
snow crystal shapes that are found in nature. Thus, the recent development of the deterministic 
growth model (7) by my colleague TalllU Vicsek, my graduate student Daniel Platt, and myself, 
which for the first time could produce a limitless variety of snowflake patterns, has been a step 
forward in understanding the complexity of this remarkable phenomenon. The goal of the 
model is to generate snow crystal patterns using the fundamental mathematical and physical laws 
that govem the solidification of ice molecules under conditions appropriate for the growth of 
snowflakes and other dendritic solidification processes. 

One of the novel features of the deterministic growth model is that in this model we solve 
the governing mathematical equations for the growth of snow crystals using a computer 
simulation method based on an aggregation process. An aggregation approach lends itself very 
naturally to modelling of diffusion-limited growth processes, such as the growth of snow crystals. 
This is in contrast to methods based on numerically solving the thermal diffusion equation, such 
as the boundary integral method, which are not intuitive and consequently have not been 
successful in generating realistic snowflake patterns. In this talk I will describe the deterministic 
growth model [7] and I will attempt to demonstrate the effectiveness of this approach in 
modelling the growth of snow crystals. I believe that our ability to model the formation of 
snow crystals using computer simulations will provide us with a deeper understanding of a 
variety of other solidification problems and will enhance our admiration of the beauty of 
snowflakes and strengthen our appreciation of natural phenomena in general. 
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Figure 1: Snow crystals. From (a) Olaus Magnus, 1555, (b) Descanes, 1635, and (c) Bentley 
and Humphreys, 1931. 
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2. Why Study Snow Crystal Growth? 

The aesthetic beauty and the complex processes involved in the formation of snowtlakes 
would, in most cases, be considered overwhelmingly sufficient justification for attempting to 
answer the question: How are snowflakes formed? It turns out that the problem of the growth 
of snow crystals is related to a host of other equally perplexing phenomena of considerable 
scientific and practical interesL These problems arise naturally in many diverse fields ranging 
from pure mathematics and physics to meteorology and chemical engineering. I will discuss 
three of these areas of interesL I will emphasize how understanding the growth of snow crystals 
could lead to significant developments in solving other problems of both scientific and practical 
importance. 

2.1 Meteorology 

The severe effects of snow on conditions of human life needs little elaboration and 
discussion. This alone is a compelling reason for wanting to know how snow is formed and how 
it can be controlled. There are, however, many less obvious reasons for wanting to understand 
snow crystal growth in meteorology. Snow crystals are unique among all atmospheric 
phenomena in that they arrive on earth carrying with them a complete record of all the 
environmental conditions that they have passed through. Rather precise phase diagrams have 
been developed relating the qualitative shapes of snow crystals to such environmental conditions 
as temperature and humidity. Therefore, snow crystal patterns can be used as precise scientific 
tools for studying atmospheric phenomena far from the observation point. From another 
practical point of view, understanding how snow crystals are formed will eventually lead to a 
better understanding of snow clouds and snow storms. This will in tum make the flight of 
aircraft and communications through snow clouds safer and more effective, respectively. 

2.2 Metallurgy: Dendrltlc SolldlOcatlon 

Almost all metallic and most other types of materials used in industrial and scientific 
applications are formed by casting, which is the method of shaping a material by first melting it 
and then allowing it to solidify into a specific shape. Many properties of materials are 
determined by the detail of the processes that it undergoes during casting. For many centuries, 
casting has been an art, rather than a science, because solidification is one of the least 
understood processes in materials science. One of the most complex problems during a 
solidification process is the formation of tiny crystalline protrusions that look like pine trees. 
These are called dendrites, from the Greek word for tree. Dendrites form during any process 
where a small piece of a material grows out into an undercooled liquid. The fact that this 
protrusion extends beyond the rest of the solid enhances its ability to release heat, and, 
therefore, it tends to solidify faster than the rest of the interface. 

Dendritic solidification commonly occurs in castin~ and its presence has significant effects 
on the properties of materials. The cause of unstable dendritic growth in casting is the presence 
of impurities from which tree-like projections form in the liquid. The formation of dendrites 
during commercial production of metals is one of the long-standing problems in metallurgy. 
The growth of snow crystals is the classic example of dendritic solidification. Therefore, 
understanding the complex morphology and dendritic structure of snow crystals is of 
fundamental importance in solving the problem of how and why dendrites are formed and how 
they can be used to produce man-made materials with specific properties. 
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2.3 Pattern Formation: Self·Orpnlzed ComplexllJ 

One of the most exciting and challenging problems of current interest is to understand how 
matter and energy ~ the innate ability to spontaneously form complex structures and 
patterns. The study of self-organized pattern formation processes encompasses all areas of 
science, from physics and astronomy to chemistry and biology. The classic example of 
self-organi7.ation is the formation of snow crystals (8). Here, billions of water molecules join 
together to produce patterns of immense complexity and symmetry on scales that far exceed the 
range of the forces that bold the molecules together. The initial state of the water molecules 
before agglomerating to form the snowflake is completely chaotic. Yet the final product is a 
snowflake ~ing immense geometrical intricacy and mathematical symmetry. This is an 
example of forming order from chaos, a process which points to the inadequacy of the second 
law of thermodynamics in describing such complex processes. 

In recent years it has been recognized that the formation of a wide variety of complex 
patterns, both fractal (9) and regular [10), is governed by the diffusion equation which also 
controls the growth of snowflakes. This implies that understanding how snow crystal patterns 
are formed could open the door for understanding other processes in which complex patterns 
are spontaneously generated. In particular, it would be of both scientific and industrial interest 
to understand such related processes as dendritic solidification, viscous fingering, 
electrodeposition, and dielectric breakdown. To indicate the richness and variety of the patterns, 
a few examples are shown in Figure 2. In addition to physical processes, the formation of such 
biological structures as the networks of blood vessels and nerves (Figure 2) are also governed by 
the diffusion equation. The possibility that the same mathematical models developed for 
understanding snow crystals could be useful in understanding biological development is a 
significant prospect that can not be overemphasized. 

3. The Deterministic Growth Model 

Snow crystals are formed by the freezing of water molecules. We know very well that this is 
not sufficient to explain the formation of snowflakes, because when we make ice by freezing 
water in an ice tray we do not get snowflakes. To see why, let us consider the two types of 
solidification processes shown in Figure 3. Both of these systems consist of a container that is 
filled with a liquid, such as water, and heat is removed through the walls. The main difference 
between the two systems is that in the system in Figure 3a the liquid is initially at a 
temperature above the melting temperature. In this case, solidification starts at the walls and 
proceeds uniformly toward the center of the container. This type of growth is completely stable 
and no dendritic patterns are formed. On the other hand, in the system Figure 3b the liquid is 
initially cooled to a temperature well below the melting temperature. If the solidification is 
initiated from a seed at the center of the vessel, then the heat generated at the surface of the 
solid must be carried away by the surrounding liquid. The most efficient way to remove heat is 
to increase the surface area. Thus, the liquid-solid interface breaks up into more and more 
wrinkles to allow for more heat to be removed. This leads to an unstable growth because if a 
little wrinkle bulges out from the surface, the temperature gradient there will increase. Thus, 
more heat can diffuse away, which in turn will lead to faster growth at that tip. This effect -­
known as the Mullins-Sekerka instability [8) -- is responsible for the dendritic shapes found in 
snowflakes. 
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(a) (b) 

(c) (d) 

Figure 2: Examples of diffusion-limited pattern formation. (a) Viscous fingering patterns in 
nematic liquid crystals (From Buka, Vicsek and Ken~z, Nature 323, 424, 1986), (b) blood 
vessels in a chick embryo (From Tsonis and Tsonis, Pmpect. Biol. Med. 30, 355, 1986), (c) 
Fractal viscous fingering pattern (From Daccord, Nitmann and Stanley, Phys. Rev. Leu. 56, 336, 
1986), (d) Amorphous Al-Ge crystals (From Deutscher and Lareah, Physica 140A, 191, 1986) 
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Snow crystals are formed under conditions similar to Figure 3b, except that the growth 
occurs in a low-density vapor rather than a liquid. Water vapor in the air diffuses into the 
surface of the growing crystal and freezes there. Mass conservation implies that the speed with 
which the interface advances is proponional to the gradient of the vapor density. Similarly, the 
latent heat generated in the solidification process diffuses away by escaping to the atmosphere. 
Again, heat conservation imposes the condition that the normal velocity at a given point on the 
interface is proponional to the temperature gradient there. Thus, one can treat the growth of 
snow crystals as either aggregation of water molecules, diffusion of heat, or both. It turns out 
that, mathematically, these are all equivalent formulations of the problem, because they all lead 
to the same set of mathematical equations, namely the diffusion equation 

DV2u = au/at, (1) 

with the boundary condition at the surface, 

(2) 

Here, u(r,t) is the normalized diffusion field, D is the diffusion coefficient, and v0 is the 
component of the velocity normal to the interface. In addition to (1) and (2), the field u is 
assumed to be constant at a distance much larger than the size of the growing crystal, which for 
dimensions greater than two can be taken to be infinity. 

The Mullins-Sekerka instability (8), implies that under conditions (1) and (2) a smooth 
surface is unstable against small penurbations of all wavelengths, such as noise. Therefore, if a 
part of the surface moves faster, then the gradient at the tip of this protrusion is increased, 
leading to further growth at this tip. This effect results in continuous branching of tips. Thus, 
any wrinkling at the interface is amplified, leading to more wrinkling at the next length scale. 
Under these conditions, the resulting structures are fractal patterns. 

If (1) and (2) were the only factors controlling the growth, all snowflakes would be stringy 
and tenuous fractal objects. The factor that stabilizes this instability is the surface tension. The 
effect of surface tension is to smooth out the perturbations at the surface so that the instability 
due to the increased gradient at sharp tips is reduced. Surface tension is introduced by the 
Gibbs-Thomson condition which specifies the value of the diffusion field u at the interface r, 

(3) 

where u0 is the value of the field at the interface in the absence of surface tension, the capillary 
length d0 is proportional to surface tension, and " is the surface curvature. Let us assume that u 
is proportional to the temperature. Suppose a bump appears at the interface. Then by (3) the 
temperature at that point is slightly reduced because of positive curvature, and heat will flow 
there causing the bump to melt back. Thus, the effect of surface tension is to reduce the 
gradient at sharp tips and stabilize smooth surfaces. 

In addition to describing the growth of snow crystals, (1) - (3) contain the essential 
mathematics of a wide class of non-local growth processes with moving boundary conditions, 
including aggregation [11,12), electrodeposition [13,14], dielectric breakdown [15), and viscous 
fingering [16,17). In the last two cases the field u satisfies the Laplace equation. But despite 
their generality and intensive efforts, little progress has been made in generating snowflake 
patterns by analytically solving the equations. On the other hand, numerical methods based on 
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Figure 3: Conditions which produce (a) stable and (b) unstable solidification. 
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aggregation models (11,12,15,18) have been developed in recent years which are very effective in 
producing a variety of patterns. Because of these successes the deterministic growth model (7) 
is also based on an aggregation-type model in which the motion of the interface is simulated by 
addition of single particles to a growing cluster. 

In the deterministic growth model the cluster starts to grow from a seed particle placed at 
the center of a lattice. Since according to (2) the growth of the cluster depends on the gradient 
of the diffusion field, we must first determine u everywhere on the lattice by solving (1). In 
order to simplify the calculation, we first assume that the interface advances so slowly that we 
can make the quasi-stationary approximation and replace (1) with the Laplace equation, 

v2u = o. ,(4) 

At each time step, the field u is calculated by solving the lattice Laplace equation (4) subject to 
the boundaly conditions (2) and (3) at the surface, and u=O on a circle of radius R, which is 
taken to be much larger than the si2:e of the cluster. After the field u is calculated, the 
gradients at all the perimeter sites are determined. As in a model developed by Family, Vicsek, 
and Taggett (18) (FVT model) these gradients are then normali2:ed by dividing them by the 
wlue of the largest gradient on the interface. In the FVT model, the normalized gradient at 
each site is compared to a random number and all perimeter sites with a gradient larger than 
the random number are filled. In the deterministic growth model this condition is generalized 
by comparing the gradients with a parameter, p, whose choice is dictated by the physics of the 
problem. In this model only those sites having a normali2:ed gradient larger than the parameter 
p are filled. When p is a random number, we recover the FVT model (18). The correct choice 
of p for crystal growth is the one which satisfies boundary conditions (2) and (3). 

4. Random Fractals: FVI' Model 

Before I discuss the form of p which would be appropriate for the solidification problem, I 
would like to show you what happens when p is a random wriable, i.~., its wlue wries from 
one perimeter site to the next, and the surface tension is zero. This is equiwlent to the FVT 
model (18). In the simulation, the wlue of the normalized gradient at a perimeter site is 
compared with a random number and the site is occupied if the wlue of the gradient is larger 
than the random number. The process of picking a new random number for each surface site 
and testing and occupying the site is repeated until all the perimeter sites have been checked. 
After this process is finished, the field u is determined everywhere using a relaxat~on method 
and the above steps are repeated again. aearly, in this approach a finite number of particles 
are added to the growing cluster before the field u is relaxed. 

A typical fractal pattern obtained from the FVT model on the square lattice is shown in 
Figure 4 (18). One of the main features of this figure is the anisotropic shape of the cluster. 
This four-fold anisotropy was not imposed by the growth process. It is due to the inherent 
anisotropy of the underlying square lattice. Thus, in the growth of snowflakes we have used the 
six-fold anisotropy of the triangular lattice to simulate the effects of the six-fold anisotropy in 
their surface tension. 

s.· Regular Fractals: Laplace Carpets 

Instead of choosing a different random number for each perimeter site we now let p be a 
fixed constant throughout the growth process and let d0 = 0, i.e., no surface tension. Unlike 
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Figure 4: Random Laplace Fractal pattern generated using the FVT model. 

(a) 

(b) 

Figure 5: Regular Fractals: Laplace carpets generated on a triangular lattice by the 
deterministic growth model with no surface tension. 
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the previous model and most other growth models, there is no noise in this process, Le., this is 
a dnmniniltic growth model [7]. Consequently, the patterns generated in this process are 
regular fractals (7]. The resulting patterns on a triangular lattice for p • 0.30 and p • 0.40 are 
shown in Figure 5. In the limit p • 0, all perimeter sites are filled and the result is a dense 
polygon having the symmetry of the underlying lattice. For finite p, the patterns are regular 
fractals with a fractal dimension which varies from 2 to 1 as p is increased from 0 to 1. 

The Laplace carpets closely resemble the type of patterns that are often found in a cellular 
automaton (19). It would be instructive to investigate the possibility of a deeper connection 
between these two processes than visual similarity. 1bis would provide the first direct 
connection between a local growth model - the cellular automaton - and a nonlocal diffusive 
process. 

6. Dendrltlc Solidification: Snowftakel 

As shown in Figure 6a, when p Is a constant, as in the previous model, v0 Is constant at 
surface sites having a normalized gradient larger than p and zero otherwise. In contrast, 
dendritic growth Is governed by (2), and the interface growth velocity must be proponional to 
the local gndient, as shown in Figure 6b. This implies that within a time interval M, p must 
V8J}' linearly with the time so that sites having maximum gndient are always filled, while those 
with smaller gndients are filled less frequently, depending on the local gradient In order to 
implement this bounduy condition in our model, we discretize the time interval into c steps and 
assume that during this time interval p Is given by (18) 

p=a+b·tmoc1c• (5) 

which is a piecewise function with c steps, approximating a straight line with slope b. 

The above method can produce practically all types of observed two-dimensional dendritic 
patterns by changing the surface tension in (3) and parameters a and b in (5). In order to take 
surface tension into account, we first solve for u everywhere outside the cluster. We then apply 
boundary condition (3) by numerically determining " using a method developed by Vicsek (20). 
After the new values of u at the surface sites are determined, we calculate the gradients and 
proceed to normalize them as discussed before. The parameter a in (5) can be varied in order 
to simulate the effects of changing the environmental conditions during the growth. By 
changing a, we can effectively compensate for the quasi-stationuy approximation made in 
replacing (1) with (4). Large and positive values of a lead to the formation of highly branched 
and dendritic patterns, while for negative values of a we obtain smooth, almost equilibrium 
hexagonal crystal shapes. For intermediate values of the parameters, combinations of these 
patterns are obtained. Changing a also accounts for such factors as surface migration and 
rearnngements that occur with varying degrees under different environmental conditions. 

The effectiveness of the deterministic growth method is best demonstrated by the great 
variety of morphologies it generates. In Figure 7, we show only a few examples of six-fold 
symmetric snowflakes generated by varying the environmental conditions during the growth. All 
of these figures were generated by the stepwise function (5), with c • 5 and varying a. To 
obtain a faceted, near equilibrium interface pattern, a was made negative (0 > a > -0.1), and to 
obtain a boundary with a sharp, dendritic shape, a was made greater than zero (0.5 > a > 0). 
As a was changed, b was adjusted to account for the fact that at the end of each time interval 
the straight line must pass through the point p = 1. 
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Figure 6: (a) When p is a constant, the interface velocity is a step function and resulting 
patterns are regular Laplace carpets. (b) In dendritic solidifcation, the fact that (2) must be 
satisfied implies that p must be a linear function of time. 
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(a) 

(b) 

Figure 7: (a) Three examples of snow crystal patterns are shown which were generated by the 
deterministic grown model, (b) three patterns of natural snowflakes. From [7]. 

7. Conclusions 

In this brief talk I have discussed simulations of the growth of snow crystals by the 
deterministic growth model [7] based on aggregation-type processes. This approach appears to 
be much more effective in producing complex dendrilic structures than the previous methods 
based on numerical solutions to the solidification equations. The most rewarding feature of the 
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model is that despite its simplicity, it can generate an infinite variety of snowflake patterns that 
are in striking resemblance to those found in nature. I hope that this has convinced you that 
the mathematics behind the deterministic growth model contains . the essential ingredients for 
describing the growth of snow crystals. This model is going to be a useful tool for sorting out 
various long-standing and pUZzling aspects of the growth and formation of complex snow crystal 
patterns. 

Aclmowledplents: I would like to thank Scott Anderson and Daniel Hong for their comments 
on the manuscript. This work was partially supported by the omce of Naval Research. 
Acknowledgment is also made to the donors of the Petroleum Research Fund, administered by 
ACS, for panial suppon of this research. 
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1. Introduction 

FRACTALS AND CHAOS IN MECHANICAL SYSTEMS 

Francis C. Moon 
Director 

Professor of Mecbanic:al Engineering 
Sibley School of Mecbanic:al and Aerospace Engineering 

Cornell University 

I like to collect quotes on chaos. Here is one from Milton: •1n the beginning, bow the 
heavens and earth rose out of chaos.• 1bis quote illustrates the idea of chaos before the 
current revolution in physics and mathematics. 1bis idea was that chaos existed before there 
was order. It goes back to the Greek concept of the original state of the universe as some 
primeval state which was in disorder out of which c:ame our present world which is rather 
ordered. But, the current thinking of chaos is just the opposite, as illustrated by the Oow of 
Ouid past a cylinder. In front of the cylinder there is ordered Oow, while in the cylinder's wake 
there results a rather disordered Oow or turbulence. Here the idea of chaos is that one can 
start with a very deterministic world, a world described by deterministic differential equations, 
and when the system is evolved over a long period of time one can end up with a state of chaos 
and disorder. 

2. Chaotic Vibrations 

What are chaotic vibrations? They are random-like motions in deterministic systems. They 
occur in systems with a sensitive dependence on initial conditions. They are motions with 
fractal properties in the phase space, and a loss of absolute predictability. Of course, they occur 
in systems with strong nonlinearities. 

An example of one system which we have constructed in the laboratory is a particle in a 
two-well potential (Figure 1). If we imagine a little ball that we put in one of the two potential 
wells, then the ball can sit in one well or the other; so, when there is no applied motion there 
are two stable equilibrium positions. But, if we begin to vibrate this two-well potential gently 
back and fonb with some periodic motion (not a random input, but a deterministic input) then 
the ball will begin to rock back and fonh. It will begin to jump back and fonh between one 
well and the other. The question one asks is: If the input is periodic, will the output be 
periodic? Will the bopping back and fonh occur in a periodic way? The answer is that it 
doesn't always jump back and fonh in a periodic way. In fact, if one does a Fourier analysis of 
this jumping back and forth, then one can see a broad spectrum of frequencies, usually of 
subharmonics. 

A historic:al note I like to make is from the front page of Newton's Principia. Note the date. 
The imprimatur is 1686. We have passed the tricentennial of the publication of the Principia, 
with almost no recognition of Newton's contribution to physics. I should say until about a 
dozen years ago, it was thought that classical or Newtonian physics was dead. There was not 
much interest in classical physics. Anything in physics that bad any surprises was in quantum 
mechanics or nuclear physics. Yet, we are learning now that we didn't completely understand 
classical physics. The so-called •deterministic models of Newton• can result in rather complex 
behavior. Hence, simple physical laws do not necessarily imply a simple physical outcome. 
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Here is a quote that epitomizes the thoughts about classical mechanics or physics from Mark 
Twain. He was no physicist, but he said, •ay the terms of the law of periodic repetition, 
nothing whatsoever happens a single time only. Everything happens again, and yet again, and 
yet again, monotonously. Nature has no originality.• That was more or less the view of 
dynamics and Newtonian physics before 1975. Of course, all of that has changed. 

In the field of mechanical engineering we are looking at problems in space structures; large 
structures that might be very flexible and could be put in space, and may be subject to various 
kinds of vibrations. We have built a model of a satellite (Figure 2) which consists of a 
shell-like structure with some beam-like connectors and two plate-like structures which simulate 
solar panels. When we apply a steady periodic input to the structure, we see rather complex 
dynamic behavior. For example, one of the things that we do is look at motions in the phase 
plane by plotting the displacement versus the velocity (Figure 3a). This is experimental output. 
One can see a rather elliptical motion for the vibration of that structure for small forcing 
amplitude. Yet, if we push the amplitude just a little harder, we get complex behavior which is 
not periodic (Figure 3b). However, the input is highly periodic. 
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Now, there are some simple examples that one can do in the laboratory where one can see 
chaotic vibrations. One of them has to do with problems with multiequilibrium states. In the 
case of structural mechanics one creates the buckling or multiequilibria by placing a very thin, 
slender beam under a compressive load. Beyond a critical value of the force, there are two 
deformed states. If this structure is vibrated, then one can observe chaotic dynamics. If it is 
observed in the phase plane, one can see orbits about one equilibrium position, orbits about a 
second equih"brium position, and orbits about both equilibrium positions. There is very little 
information in this picture. But, if one looks stroboscopically at the motion, in other words, 
instead of looking at thinp continuously in time, one looks at the motion at a particular phase 
of the forcing motion, then the result is a set of dots or a Poincar6 map. We have learned to 
take some of the new mathematical ideas about nonlinear maps and fractals and implement 
them in the vibrations laboratory to describe these Poincar6 maps. 

These pictures were taken from an analog oscilloscope (Figure 4). One can see a kind of 
fingerprint of chaos. 1be pattern shows a fractal-like structure. This pattern is about 4,000 
points. If we go out to lunch, come back, and take another 4,000 points, we would get the 
same pattern. 

This fractal picture is an experimental measurement. It is not generated by a computer. 
One can think of the Poincar6 map by imagining an abstract picture of the motion. If we think 
of the buckled beam problem, and look at the position, the velocity, and time as a third variable 
in three-dimensional space, then we can think of the motion as taking place on a torus; if you 
are from New York City, a motion in a bagel, where time is represented as a periodic variable 
around the bagel. Then we can think of the Poincar6 section as slicing the bagel. This 
continuous orbit is convened into a series of points or maps, and if the beam motion is 
periodic, one gets these fractal looking patterns. Not only that, we can slice the bagel at 
different points around this attractor and obtain a series of Poincar6 maps. These fractal 
objects can be seen in a laboratory, and one does not need exotic equipment to see them. 

In addition, there is structure in these Poincar6 maps. If this pattern is observed at zero 
time phase and again at 180° around the torus, one will see a structure; by rotating the map at 
zero-phase, the pattern at the 180° phase results. But, the rotation doesn't occur in a rigid 
body way. Note that one of the arms in the Poincar6 deforms into another arm. There is 
tremendous structure in these maps. So, with chaotic dynamics, there is a kind of double 
paradox. One begins with Newton's laws. Years ago our physics professors said that all we 
have to do is write down Newton's laws for all particles, and if we had a big enough computer, 
we could predict what was going to happen. I know people are laughing because they 
remember that. Untrue! The biggest super computer in the world cannot predict what is going 
to happen. Yet, out of this chaos, there is an order. There is structure that can be observed in 
the laboratory. 

We see fractal-looking patterns in other experiments. For example, we experimented with a 
stepper motor, or a little rotor, with a permanent magnet on the axis and four stator coils. If 
you are interested in differential equations, this motor is described by a second order equation 
with sines and cosines. We also get some interesting Poincar6 maps. The Poincar6 map in a 
polar coordinate form is shown in Figure 5. We have over a dozen different types of 
experiments which have been constructed in the laboratory; control system experiments, fluid 
running through flexible tubes, objects bouncing on one another, and flexible structures. Every 
time we look for chaos, we find it. 
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Figure 5: Experimental Poincar6 Maps 

3. Fractals and Nonlinear Vibrations 

One can ask, •Are fractal concepts useful in nonlinear vibrations?• We are using fractal 
mathematics to describe these Poincar6 maps in the laboratory and to identify and categorize 
classes of motions. We are also using fractals to calculate chaos criteria. We are looking for 
those parameters in the system for which the system will behave in a regular, predictable way, 
and for parameters for which the system behaves in a chaotic manner. Also, we are calculating 
the fractal dimension of chaotic motions using the concepts of fractals. So, the message here is 
that this is a tool that is being used in engineering research laboratories. It is one of the 
examples of how fast mathematics can go from chalk dust on a mathematician's blackboard to 
the laboratory and to potential applications. 

Now, let me ask another question, •Are fractals practical?• We will see. Certainly right now 
it is exciting to be able to go into the laboratory and take ordinary mechanical-type things and 
to be able to see this beautiful mathematics embodied in the laboratory data. How useful 
fractals will be 10 to 15 years from now to practicing engineers and scientists I don't know. But 
right now, it is very exciting to be able to explore the potential for applying this new 
mathematical tool to engineering problems. 

Here is a quote from the physicist Brillouin: •Determinism is dead.• Brillouin published a 
book on scientific uncertainty in 1963, on the work of Poincar6, a mathematician around the 
tum of the century. The ideas put forward by Brillouin in the sixties were largely ignored; that 
is, that classical mechanics is a great source of unpredictability. We have only begun to 
appreciate this idea in the last decade. 

Let us look at the two-well potential problem again. Consider the case where, when the 
particle is excited with a periodic force, one observes whether the ball ends up vibrating in the 
right or the left well. I am going to adjust the forcing so that it is not chaotic. I just want to 
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know when it is going to osdllate in one well or the other. So, going back to my differential 
equations, I adjust the sinusoidal forcing function at a fixed frequency and see whether the 
particle vibrates in the right well or in the left. I was inspired to do this by a lecture that Jim 
Yorke of the University of Maryland gave at Cornell to our applied mathematics seminar. The 
idea is the following. I ask, •What happens to the system when I stan with different initial 
positions and velocities?• I am watch the system physically or I can use the computer to 
integrate the differendal equations that descn"be the system. 'Ibis set of computer experiments 
is known as a basin boundary calculation. One looks for all the initial conditions (initial 
position, initial velocity) that lead to one attractor or the other. Points which lead to motion of 
the particle in the left potendal well are colored blue. Those that lead to motion of the 
particle in the right well are colored red. The region of the two-dimensional plane of position 
and velocity with the same color is called a basin of attraction, while the boundary between the 
two colored regions is called the basin boundary. 

Now, when the level of periodic fordng on the particle is low, the boundary appears to be 
smooth. But, as the fordng amplitude is increased, this boundary appears to become fractal. 
That is, the two colors become mixed up. Our pictures were calculated at the National 
Supercomputer Center at Cornell University and involve 640,000 pairs of initial conditions. For 
each initial condition, the differential equations are integrated numerically to see in which well 
the panicle ends up after a long time. 

So before the panicle motion becomes chaotic, there are fractal propenies in the basin 
boundary. Fractal basin boundaries imply unpredictability in deterministic systems. To 
understand bow unpredictability arises in this two-well potential problem, imagine that I choose 
some inidal condition near the basin boundary. Now, all physical systems have some 
uncertainties in measurement or calculation. So my initial point is really a disc whose size is a 
measure of the uncertainty. If the uncertainty is large, then the disc will straddle the boundary 
and I only have a knowledge of the probability of the panicle going to the left or right well. If 
the boundary is smooth, I can always shrink the size of the uncertainty so that the disc lies 
completely in one well or the other. When the boundary is fractal, however, the disc of 
uncertainty may still have points in each well no matter how small I make the uncertainty. This 
I call deterministic uncertainty or unpredictability. It usually occurs in systems that are on the 
threshold of chaotic behavior. 

We have performed these computer experiments for other physical problems. The pictures 
are a different type from Poincar~ maps. We look at initial condition space instead of physical 
space. 

In these computer experiments we looked at a magnetic mass as it vibrates near magnets; 
similar to a kind of roulette game. Except in these experiments we are exdting the roulette 
table with periodic motion and want to know if we stan at a certain position and velocity, will 
we end up orbiting about one magnet or another. There is a different color assigned to each 
basin of attraction. As the forcing is increased, there is some mixing of the colors. 

Here is a four-color game where we have four magnets. This plane consists of initial 
horizontal position and venical position (Plate 1). The velocities are set to zero inidally. 
When the level of periodic fordng is small, the basins of attraction show up as four quadrants 
of different colors with smooth boundaries between each color. As the fordng increases, the 
basin boundary becomes fractal-looking and the colors get mixed up as in a paint commercial. 
The pattern resembles an insect shape. We call this a butterfly attractor. These beautiful 
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fractal pictures illustrate how small uncertainties in deterministic systems can lead to 
unpredictability in classical physics. 

4. Conclusion 

In some ways, engineers have always known about unpredictability. When the machine 
wasn't working right, they would give It a kick. I have a feeling that what they knew 
instinctively was that there was another attractor somewhere, and all they bad to do was change 
the initial conditions. I hope I have given )'OU some examples to show bow research in modem 
mathematics bas changed the way we look at dynamical processes in engineering. 

QUESTION: In a very simple limit there are Matthieu-type equations with the forcing 
condition Ams(..,,) because the old problem 34, years ago, was the inverse pendulum. Oscillate 
it, and )'OU get stability. Is that related in some way? 

DR. MOON: If )'OU push It bard enough, you will see chaotic behavior and fractal basin 
boundaries. I think James Yorke may have done work along those lines. One can get chaos 
out of that problem. 

QUESTION: How does the Mandelbrot set relate to this Poincar6 map? 

DR. MOON: The Mandelbrot set is related to a complex two-dimensional map. The Poincar6 
maps that I showed )'OU are two-dimensional, but they are not complex in the sense that they 
are not analytic. The Mandelbrot set results from analytic maps. These physical Poincare maps 
are not necessarily analytic maps. 

QUESTION: Can one get analytic maps out of mechanical systems? 

DR. MOON: Probably In very special cases. We don't know the mathematical form of these 
maps. We know the differential equations, but we do not have rules for the maps. We can 
observe them computationally. One of the gaps left in the mathematics is to go from the 
differential equation to the maps. 

QUESTION: It appears that the physical device you were modeling is symmetric, mechanically 
symmetric. The four-magnet problem appears to be symmetric, but the maps are not symmetric. 

DR. MOON: We were forcing It along one dimension. That destroyed the symmetry. However, 
it does not have to be symmetric for the experiment. One can also make the problems 
non-symmetric and still see chaos and fractal basin boundaries. 

DR. YORKE: Also, it depends on the phase of the forcing. One must choose it. The picture 
is being made at a given instant in time. Change the given instant, and the opposite picture 
results. 
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NONLINEAR MATIIEMATICS AND JUPITER'S OREAT RED SPOT 

1.0 lntroducdoa 

Phillip S. Marcus 
Associate Professor of Mechanical Engineering 

University of California, Berkeley 

The planet Jupiter, unlike Earth, is almost entirely a fluid. Jupiter's solid surface lies deep 
beneath the upper atmosphere which is the only pan that c:an be seen from Earth-based optical 
telescopes or from those aboard the Voyager satellites. The Jovian "weather• that we can 
observe is therefore very dift'erent from terrestrial weather which is strongly ooupled to the 
Earth's surface. The most striking feature of the Jovian weather is that it is dominated by a set 
of strong east-west winds that endrcle the planeL Through a telescope. these belts and zones of 
winds appear as an alternating series of light and dark bands. We do not yet have a good 
theoretical understanding of bow the belts and zones were created or how they are maintained. 

1be sea>nd most striking Jovian feature is that the belts and zones oontain spots that look 
superficially like hurricanes. Some are large enough to be observable from Eanh, but there are 
many small ones as well, and over 100 were catalogued from photographs made during the 
Voyager spacecraft fly-by of the planet during the 1970's. The best known is the Great Red 
Spot which lies at 23 • S latitude (Plate 2). It is huge - the diameter is over 26,000 kilometers, 
and the oontinental United States would fit into it over 200 times. The Great Red Spot is old 
oompared with the average lifetime of terrestrial storms and hurricanes, and it has been 
observed and documented in the sdentific literature for over 300 years. 

We would like to understand the physics that created and maintains the Great Red Spot 
(and its smaller oousins). The physics is especially fascinating because the Red Spot thrives 
among the chaos and turbulence in its surrounding east-west wind. Unlike a hurricane which 
derives its energy from the warm surface water of an ocean, the Red Spot obtains its energy 
directly from the turbulence of the surrounding winds. It merges with and appends smaller 
nearby spots, suggesting that it was created by the self-organi7.8tion of small scale chaos into a 
large ooherent feature. In panicular, we would like to know if the Oreat Red Spot and its self­
organi7.ation can be explained by the usual simple equations of motion that govern terrestrial 
fluids, from the movements of oceans to the waves in a bathtub. 

20 The Physics or Bathtubs and Jupiter 

We have all been told that if you let the tub water go down the drain it will rotate 
oounter-clockwise in the nonhern hemisphere and clockwise in the southern. It is doubtful 
whether any of us has actually seen this happen because even the smallest penurbation or 
splash will overwhelm this phenomenon. However, if we had a 26,000-kilometer bathtub on 
Jupiter, the effect would be spectacular. To understand this, consider an infinitesimal particle or 
element of water in the bathtub. As the tub containing the water rotates about the planet, each 
spinning element of water conserves its own angular momentum or spin. (We are ignoring 
viscosity which is very small.) The total spin of a fluid element as seen by an inenial observer 
far from the rotating planet is equal to the sum of the local spin seen by an observer sitting in 
(and rotating with) the bathtub and the spin of the rotating planeL As on Eanh, Jupiter's spin 
is counter-clockwise when viewed by an observer perched above the North Pole or anywhere else 
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in the nonhern hemisphere and clockwise above the South Pole or elsewhere in the southern 
hemisphere. Let the observer in the bathtub pour a small closed circle of blue ink onto the 
surface of the water. The total integrated spin of all the water inside this blue boundary as 
measured by the initial observer is conserved in time - no matter where the boundary moves or 
bow its shape distorts. This total spin is the amount that the observer in the tub measures plus 
the angular velocity or spin of the planet times the area inside the blue boundary. If the 
bathtub drain beneath the blue boundary is opened, the area enclosed by the blue ink decreases. 
To keep the total spin as measured by the inenial observer constant, the local spin as seen by 
the observer in the tub must increase. If the Ouid, as seen by the bathtub observer, were 
initially motionless, the bathtub observer would see the Ouid begin to spin as soon as the drain 
was opened. The direction of the spin is the same as the planet's spin and hence is counter­
clockwise in the northern hemisphere and clockwise in the southern. 

Most tubs have sloping bottoms, so consider an experiment in which the blue ink that is 
poured into a circle on the surface diffuses downward to the bottom of the tub. The boundary 
of ink now encloses a cylinder of fluid. Suppose this column of fluid drifts from the shallow 
end of the tub to the deep end. The volume of fluid inside the blue boundary must be 
conserved; because the height of the column increases, the area of its top surface must decrease. 
However, we already know that if the area decreases, the local spin of the fluid as observed by 
the tub observer increases to keep the total spin inside the blue boundary constant. 

The same principle applies to the Red Spot and other Jovian spots. Imagine the Red Spot 
to be confined to a spherical shell of atmosphere where the shell bas a small but finite radial 
thickness (for example, the layer of atmosphere between 70,000 and 70,200 kilometers above the 
planet's center). If the Red Spot were to move from the north to the south it would act as a 
gyroscope because it is rapidly rotating, and therefore it would keep its own spin axis parallel to 
the nonb-south spin axis of the planet. If the radial thickness of the spherical shell that 
contains the Red Spot were constant, then its effective depth is a function of latitude. The 
depth is defined as the distance between the top and bottom boundaries of the shell as 
measured parallel to the nonh-south spin axis of the planet. At the poles, the depth is equal to 
the radial thickness of the shell, while at the equator it is much larger. Because the effective 
depth of the shell of atmosphere changes with location, it acts like the depth of a bathtub. A 
column of fluid that moves away from the nonh pole towards the equator moves into "deeper 
water" and spins-up. Mathematicians express this equation which governs a fluid in a rotating 
tub or planet as a conservation law: although the local spin of a fluid element as measured by 
an observer on the rotating planet is not conserved, the Ouid's •potential vorticity" which is the 
sum of its spin plus the spin due to the rotating tub or planet (all multiplied by 2) is conserved. 
Thus, each fluid element on Jupiter carries with it its own value of potential vorticity which 
never changes. 

In a homogeneous turbulent flow, fluid elements are well mixed in space, and every fluid 
element visits every location equally often. Because each element carries its value of potential 
vorticity with it, a parcel of fluid that contains many elements will on average have the same 
mean value of potential vorticity regardless of where that parcel is located. Thus, if the zonal 
wind that contains the Great Red Spot is well mixed, its mean potential vorticity is uniform 
throughout the zone. We shall assume that Jupiter's zonal winds have uniform potential 
vonicity. (By measuring the zonal wind velocity we can determine the effective depth of the 
shell of atmosphere that contains the zone.) The Great Red Spot is a deviation of the potential 
vorticity from the mean value of the zonal wind. We shall call this deviation or excess spin q, 
so mathematically the Great Red Spot is just a region of large q. The total velocity of the 
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atmosphere of the planet is the sum of the zonal wind plus the velocity due to q. 

3.0 N-Body Dynamics 

The equation that governs q and the winds it produces is highly nonlinear and therefore 
difficult to solve. However, because the equation represents a oonservation law, its meaning is 
easy to oonvey. We now present a technique to demonstrate the dynamics associated with q 
that can be used on a a>mputer (with a little modification) to solve the equation for q. The 
potential vorticity q is a a>ntinuous function of position and time, so to use a digital oomputer 
we must first discreti7.e iL Imagine dividing the fluid in the Jovian layer that a>ntains the Red 
Spot into squares and labeling each square with the average value of q or excess spin of the 
fluid in that square. A zone with one Oreat Red Spot would have q = O in all of the squares 
not inside the Spot. To solve for q, the oomputer need a>nsider only those N interacting 
squares or bodies where q ,.. 0. Each body produces a velocity clockwise or a>unter-clockwise 
around itself (but never radial to itself) where the magnitude is proportional to q. The sign of 
the velocity depends on the sign of q, and the velocity's strength decreases as one goes away 
from the body. However, the velocity produced by a body on itself is always zero. The total 
velocity of the fluid is the sum of the N a>ntributions p/Uf the velocity of the zonal wind. Each 
body •goes with the now;• that is, it moves with the total velocity at the position of the body. 

First, a>nsider the one-body problem. If only one body has q ,.. 0, then that one body 
produces no velocity at its own location, so it just moves with the zonal wind. If the zonal wind 
were zero, the bo4y's position remains f1x:ed for all time. 

There are two types of two-body problems. Let there be no zonal flow, and let the two 
bodies with q ,.. 0 have q with the same sign and magnitude. They orbit about themselves. 
When there is no zonal flow and when the two bodies have q with opposite sign and the same 
magnitude, they move in a straight line perpendicular to the vector that points from one body 
to the other. This movement of opposite-signed bodies can be seen in the a>ntrails of airplanes 
and in the cross-sections of smoke rings. When there is a zonal flow, these motions are 
superimposed onto the zonal velocity. With N > 2 bodies, the equations for the N particles of 
fluid must be solved numerically, but there is an analogy between N particles with excess spin q 
and N infinitely-long, a>-parallel rods with electric charge q. An ensemble of rods or bodies 
that all have the same sign of q has a •self energy- that is large and positive when the ensemble 
is a>mpact or when the spacing between the rods or bodies is small. That is, it requires energy 
to push distant bodies with the same sign together. 

When the zonal wind is not zero, there is an additional term in the energy. This 
•interaction energy• is due to the interaction between the bodies and zonal wind. It is 
analogous to the interaction energy between charged rods and an applied external electric field. 
We shall discuss its form and oonsequences in the next section. 

4.0 Numerical Simulations 

Using a very accurate spectral numerical method, we have solved the equation for q with a 
variety of different staning oonditions. Plate 3 shows q in one example. Here, as in all of the 
other figures, the colored annulus represents Jupiter's atmosphere between 20· and 26° south 
latitude. This figure is the view that one would have perched high above the South Pole 
looking down onto the atmosphere (and disregarding all of the atmosphere not between 20 • and 
26°). The azimuthal angle around the annulus corresponds to the planetary longitude and the 

49 

Impact of Mathematics: Nonlinear Mathematics, Chaos, and Fractals in Science: Proceedings of a Symposium

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/20361


distance from the center to the latitude. The green color corresponds to q • 0. Where q • 0, 
there is only a mnal wind. The mnal wind is clockwise (to the east) at the inner boundaly, 
counter-clockwise at the outer boundaly, and is zero balfway between the boundaries. Notice 
that the shear of the mnal wind (the direction that an infinitesimal paddle wheel would tum if 
it were placed in the wind) is counter-clockwise. Superimposed on the mnal wind are vortices 
where q ,.. 0. We use the colors as ordered in the spectrum to represent q, with the reddest 
color representing fluid elements spinning more counter-clockwise than the mnal wind (like the 
Red Spot) and bluest for fluid spinning clockwise with respect to the mnal wind. Plates 4-6 
show the temporal evolution of the flow and clearly demonstrate that the mnal wind first pulls 
the blue q into a thin spiral and then pulls it toward the inner and outer boundaries. In 
contrast, the red q is focussed midway between the two boundaries. This effect can be 
understood by using the rules stated in the previous section. For example, follow the motion of 
the fluid element represented by the blue pixel in the large blue spot that is closest to the outer 
boundary of the annulus (at the top of the large blue spot). At first its motion is dominated by 
the mnal velocity which pushes it in a counter-clockwise direction. Once the pixel is to the left 
of the large blue spot, it feels the velocity produced by the blue spot. This component of the 
velocity is clockwise about the center of the blue spot and therefore pushes the blue pixel 
towards the outer boundary. A similar analysis of the fluid element represented by the blue 
pixel in the large blue spot that is closest to the inner boundary of the annulus (at the bottom 
of the large blue spot), shows that it is pushed first to the right and then towards the inner 
boundary. Thus, the blue spot is pulled apart. The same type of analysis shows that the red 
spot is pushed together; the subsequent evolution shows that the blue spot is ripped into small 
pieces and in fact becomes a small-scale, chaotic component of the mnal wind. The red spot 
stays intact. 

A second numerical simulation is shown in Plates 7-10. In Plate 7, the flow begins as an 
approximately axisymmetric disturbance in the mnal wind. (Here q = 0 corresponds to blue; 
there are no initial motions with clockwise q.) The red band breaks up into three vonices that 
then merge together. It is this merging process that is responsible for both the formation and 
stability of the Great Red Spot; Jupiter's turbulent atmmphere is constantly produdng small 
vonices of both signs in the mnal wind. In the language presented here and shown in Plates 4-
6, turbulence produces fluid elements with both red and blue q. The small pieces of blue q do 
not merge together; in fact, they break into even smaller pieces. The red pieces merge together 
and form a large spot. If the turbulent mnal flow were to break the Red Spot into two or 
more pieces, they would merge back together. 

Detailed numerical solutions have been carried out to find the conditions needed for two 
spots to merge together. We have found that two spots of q merge together if and only if the 
energy of the coherent, non-chaotic, component of the flow (that is, the energy of the large 
coherent spots) decreases. We saw in the last section that if two infinitesimal fluid elements 
with the same sign q were to merge, their •self energy- would increase. It can be shown n,z> 
that the •interaction energy- of spots with the mnal wind decnasu when two finite-size elements 
with the same sign q merge if q has the same sign or spin as the shear of the mnal wind. If 
they have the oppmite sign, the •interaction energy• increases. Thus, both the •self energy- and 
the •interaction energy- prevent blue elements of q from merging. The red elements merge 
together if and only if the decrease in the "interaction energy- is greater than the increase in the 
•self energy.• Arguments based on energy have allowed us to make predictions about vonex 
mergers. In panicular, we have carried out numerical experiments with two or more vonices 
initially placed in the same mnal wind, and we have been able to predict successfully how many 
merges will occur and how many vonices will remain after the merging is finished. The Oreat 
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Red Spot merges with all other spots in its zonal wind, and so it is unique. 

s.o Conclusion 

Any explanadon of the behavior of the Oreat Red Spot and the other smaller, long-lived 
spots on Jupiter requires a direct comparison to the detailed observadons of the Voyager 
satellites to be convincing. Much of the observed behavior of the Jovian spots, such as their 
mergers, shapes, and wind speeds can be ac:counted for in a refinement of the theory sketched 
here. However, some of the details will require more sophisdcated models that account for 
variadons in the atmosphere as a function of depth and a better understanding of the physics 
that maintains the zonal winds. One of the most interesdng results of this study of Jupiter's 
Oreat Red Spot has been the demonstradon of self-organization of small-scale, chaodc modons 
into large-scale coherent ones. 11lis nonlinear behavior is not limited to Jupiter's atmosphere, 
and some of the most challenging problems in nonlinear mathematics are in the understanding 
of self-organi7.adon observed in terrestrial flows in the oceans, atmosphere, and laboratory. 

Dllcusslon 

QUFSTION: What chance is there that this model has something to do with the formation of 
planets? 

DR. MARCUS: Probably none. The physics is very different. Perhaps if one couched both 
problems in the same language one would find that the underlying mathematics is the same, but 
it is not obvious to me. 

QUESTION: One excidng thing about fractals is that they unite completely, intuitively, 
disparately. 

DR. MARCUS: It is not obvious that fractals have anything to do with this process. 

QUFSTION: Do you have any prediction of whether or not the Red Spot of Jupiter will break 
up? 

DR. MARCUS: If the zone in which the Red Spot sits does not break up, I predict the spot 
wouldn't break up. It is constantly losing pieces of itself, but constantly reamalgamating other 
pieces. 

QUESTION: Why doesn't one see this type of phenomenon on others of the large gaseous 
fast-rotating planets? 

DR. MARCUS: One does see long-lived spots on Saturn. 
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CLOSINO REMARKS 

James A. Yorke 
University of Maryland 

The program now calls for me to make some comments on all of this. I should first point 
out that the people you beard talk have been working on these concepts in some cases for five 
years. 1bey have compressed their talks into 2S minutes. I am supposed to a>mpress them 
even more. Instead, I would like to discuss the nature of fractal pictures. 

Fractal pictures are somewhat akin to music. A great deal of music consists of variations 
on a theme. So, one bas a linear string of tones. One bears patterns of tones ranging from a 
scale of less than a second, to a duration of several minutes. The composer places similar types 
of patterns through the piece and one's interest is in looking at the variations on those regular 
patterns. People wbo study music say that it bas the characteristics of •1 over F noise.• That is 
a scientist's way of saying that there is a lot of persistence and repetition in music. Of course, 
simply having regular or irregular variations on a theme does not result in music. As one looks 
at scales varying over perhaps a factor of 1,000 one can see that little patterns are repeated over 
a longer and longer period of time. That, in fact, is what one sees in fractal pictures. These 
pictures are much more like music than they are like standard western an. People sometimes 
say these pictures remind them of the work of &«:her. Now, why is that? &cber may show 
pictures of birds changing into fish. There may be a repetition of perhaps ten fish venically, 
and ten such le~ to right, one order of magnitude. When we see pictures of chaos, we see 
repetitions on all scales. Artists don't seem to be able to do this. I believe fractal pictures are 
something totally new in western an simply because western anists have not tried to produce 
variations on a theme on so many different scales of distance. Perhaps they cannot produce 
such a large number of scales while maintaining the unity of form. 
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DISCUSSION 

QUESTION: Dr. Marcus, do you anticipate that the present computational facilities would 
permit you to look at vonex rings, in other words, ~imensional versions of this type of 
behavior? 

DR. MARCUS: Yes, that can be done on the current version of, say, Cray XMP in a matter of 
an hour to an hour and one-half. Some models have been developed to show bow the Red 
Spot would actually change if one really did a three-dimensional simulation with vertical flows. 
'lbe model shows that the spot would only exist in cenain zones, give itself a natural height, 
and look like a pancake type object. 

QUESTION: Dr. Marcus, have you tried to carry out this two-dimensional analogy between 
vorticity and electromagnetism in experiments, possibly with wires: separate wires attracting and 
repelling and so forth? 

DR. MARCUS: There are enough differences, particularly in the subtle dissipation mechanisms 
which we really want to understand that we don't want to actually do that experimenL 

QUESTION: Dr. Peitgen, I am intrigued on the fundamental understanding of the Mandelbrot 
seL What is the parameter that produces the Cantor sets? I am puzzled as to bow controlling 
it is, and why you constantly find this set as a representation in all the patterns at all scales. 

DR. PEITGEN: 'lbe point about the Mandelbrot set is that it is not just beautiful, but rather a 
paradigm of organi7.ation and order in dynamical systems. Of course, as already pointed out by 
Francis Moon, it will never be a paradigm for all possible dynamical systems. It does occur in 
analytic dynamical systems. 1be reason that it occurs is related to the fact that in any 
dynamical system the first approximation one would do by a more simple dynamical system 
would be one which just carries quadratic second-degree terms. 

QUESTION: Are Feigenbaum numbers connected? 

DR. PEITGEN: Of course. A Feigenbaum number is in the Mandelbrot picture if you look at 
the Mandelbrot seL There is the main body, and attached to it are many disk-like components. 
If one goes along the rear axis in that complex plane and measures the diameter of those 
disk-like components and looks at their ratio in the proper sense, that is exactly the Feigenbaum 
number. There are other paths one could take in the Mandelbrot set to other disk-like 
components and get other numbers. All of them would be universal in the sense that the 
Feigenbaum number is universal. That is a nice point of view because it says that the 
Mandelbrot set incorporates infinitely many different routes to chaos. 

DR. YORKE: The origins of the work you heard about today date back 100 years in most 
cases, but much of this work is based on computer power and specifically on computer graphics. 
This graphics capability bas only become available to the scientist in the last dozen years. 
Innovators such as today"s speakers are looking for what is new and surprising, and, as such, 
they cannot predict the course of the future in their field. I would like to ask them, contrary to 
their natures, to predict the future of their fields in the next ten years. 

DR. MOON: Maybe I can speak about vibration engineering. Back in the late fifties as a 
student aide in the New York Nav~l Shipyard I was a spectrum analyst. The engineers would 
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come in with a roll of charts showing the VI1>ration of submarines or ships and I would take a 
caliper and measure the periods of the vibrations. Now, of course, the Fourier transform is on 
a chip, and it is done thousands of times per second. I think some of these tools, such as 
fractal dimensions and Poincare maps, will find their way into electronic chips so that scientists 
and engineers will press a button labeled FD for fractal dimension or PM for Poincart map. 

DR. FAMILY: In my area of condensed matter physics, or materials science, it will provide a 
much deeper understanding of disordered systems. We now are learning how they can be 
described by their fractal properties. Chemists can put together all kinds of polymers, but there 
is very little really known about their propenies from a fundamental point of view. As we 
develop techniques where we can do more and more mathematical modeling with the help of 
computers we will have a better understanding of this kind of material There is very little 
known about most of the kinds of pattern-forming phenomena that I was talking about. We are 
now, also, moving toward understanding pattern formation in biology. Some of that will come 
from some of these extensive numerical analyses of complicated mathematical equations. 

DR. MOON: Until recently it was thought that physics was concerned with discovering the law, 
the rule, and that the rest was simply computation. I think that what we have been discovering 
in the last dozen years is that the patterns of change, the evolution from those laws, are just as 
important as the law itself. One could have very simple laws which lead to complex patterns of 
behavior. I think that is a kind of physics. It involves mathematics and physics, but it is, in 
some ways, just as importanL 

DR. MARCUS: I would repeat that. Basically, I consider myself son of a computational fluid 
mechanic. So, I am very optimistic about computation over the next ten years. Numerical 
algorithms have exponentially grown over the last ten years. I think that both the onset of the 
exploitation of computers, and the fact that very soon everyone will have a PC on his/her desk 
that has the power of a present Cray are going to make a big difference. There will be a lot 
more phase space computations. 

DR. PEITGEN: I would like to suppon Francis' point of view, but let me answer the question 
as a mathematician and say how I see changes in mathematics. I feel lots of tension in 
mathematics about these issues. Experimental mathematics of the kind we do is not considered 
mainstream mathematics. It is a big challenge to mathematicians to see the popularity of this 
kind of mathematics. It is a challenge of most mathematicians to accept that all of a sudden 
there is an interesting topic in mathematics which can be understood to some degree by the 
general public. I think these forces on mathematics are tremendous. They have to be thought 
out and will bring changes for the good or the worse. I am not sure what is going to happen. 
So, I am very pleased about occasions, like this today, to somehow bring out the potential. 

DR. YORKE: May I pick up on that point? The greatest inventions of scientists are not 
individual laws. The greatest invention of science is actually science and how one proceeds. We 
understand how to reproduce and continue in the directions that scientists have led in the past, 
but science is still in its creative stages. There are imperfections in the structure of science as it 
has been created. For example, there is an immense gulf between mathematics and physics or 
the other sciences. This gap is man-made. We create it by giving tenure to people who are 
only on the correct side of the line, and then the line broadens. Dr. Peitgen is talking about 
people who are trying to cross the line or straddle the line. These individuals are confronting 
on a daily basis the question, •What is science?• They are trying to change what is perceived as 
science through their work. The individual experiments may be the least of their contributions. 
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Rather, they are leading the way for other people to follow with totally new definitions of 
science. 

QUESTION: Actually, I have comments. Dr. Moon may wish to respond to one of them. I 
am not quite sure about the other panel members. nus is for the engineers in the audience. 
1be classical approach to control systems was, also, either deterministic or with stochastic terms 
added. As a control system designer, I can tell you that the hunting behavior that is seen in 
actual control systems, especially in those that have any so-called •dead band• and feedback in 
them, what we called limit cycles, oc::curring down here when you were dose to the desired aim 
points, were really bounded strange attractors in some cases. These occur in everyday control 
systems. We simply did not pay much attention to them. nus is dosely related to a second 
point. 1be question has come up as to whether chaotic signals may be related, in some sense, 
to stochastic process modeling. There is now a result due to Jonathan Victor which says the 
following: If one wishes to identify nonlinear systems, one must have an input noise which has 
high fractal dimension or something which random number generators and computer modeling 
had not looked at until very recently. 

DR. MOON: I will comment on the first one. I could have put up a set of view-gnphs on an 
experiment we did on precisely that. We had a control system in which there was a dead band. 
We were looking at a •pick and place• type of robotic system. We wanted to shuttle it back 
and forth between two positions. It turned out that if we made the control system go slowly, it 
was predictable. If we tried to speed it up, it would become schi7.0phrenic. So, we believe that 
there is such a thing as schimphrenic robots, and the schimphrenia is a kind of chaos. So, yes, 
it is in control systems. If one goes back to some papers in nonlinear vibrations in the past one 
finds little notes. Chaos has always been there, and it has been seen. Technicians know about 
noise. Why didn't we recognize it as something more meaningful than that? I think it had to 
do with the way we were taught. Both scientists and engineers, and in some ways 
mathematicians, are to blame. They gave us what they thought were the most beautiful 
examples of mathematics. They called it linear mathematics. It had a structure that was 
complete and could be presented in one or two years. So, all engineers and scientists have been 
taught linear mathematics. In fact, even now, with chaos theory in the last ten years, there are 
very· few changes in that mathematics education. I think that we really have to broaden the 
kind of mathematics that we teach scientists and engineers if they are going to recognize these 
complexities in dynamical systems. 
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