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Preface 

Other than the familiar death and taxes, few events, if any, can 
be predicted with certainty. Virtually all of our decisions and ac­
tions are taken in the face of uncertainty, from the daily choice of a 
commuting route to the design of a spillway on a dam or regulatory 
approval of new drugs. In each of these cases, making a decision 
requires weighing the consequences of alternative actions and the 
likelihood of each consequence occurring. When the consequences 
are relatively unimportant, as in the daily commuting trip, we are 
usually content to make decisions quickly and informally. An extra 
10 minutes in traffic is not a very stiff penalty, though I remember 
situations when it was hard to summon any equanimity. However, 
when the consequences are major ,  as with most public actions, de­
cisions often can be improved by the formality and structure of risk 
analysis. 

Risk analysis is a generic term for methods that support deci­
sionmaking by quantifying consequences and their probabilities of 
occurrence. The various methods in different settings are called 
probabilistic risk assessment, risk assessment and management, or , 
simply, risk analysis. Whether one is talking about nuclear power 
plants or environmental regulation, the underlying problems are the 
same: identification of consequences, estimation of probabilities, and 
the combination and consideration of results prior to decisionmaking. 

vii 

Copyright © National Academy of Sciences. All rights reserved.

Estimating Probabilities of Extreme Floods:  Methods and Recommended Research
http://www.nap.edu/catalog.php?record_id=18935

http://www.nap.edu/catalog.php?record_id=18935


viii PREFACE 

This report concerns rare floods and the estimation of their prob­
abilities of occurrence. Our interest was in floods with a probability 
of occurrence of much less than once in 100 years, say 10-3 to 10-7 
chance per year . Our focus was entirely on the estimation of prob­
abilities . We did not perform risk analyses, nor did we review the 
methods or policy of risk-based decisionmaking. Other studies, espe­
cially that of the Committee on Safety Criteria for Dams (National 
Research Council, 1985) , have considered these issues. Indeed, var­
ious earlier reports provided excellent motivation for our study and 
served as our point of departure . 

Estimating the probabilities of extreme floods is an important 
and challenging problem. It is important because the stakes are 
high: very large floods kill people and destroy property, and the cost 
incurred in attempting to avoid these damages can be great. The 
probabilities that such floods will occur during the life of a particular 
project are a crucial part of the analytical input for making decisions 
about that project . 

Assigning probabilities to extreme floods is challenging because 
we cannot know for certain the probability that a given flood will 
occur or even the probability distribution that flood peaks follow. 
Basically our problem is to assign a probability to an event that may 
occur, say, once in a million years, using data for, perhaps, the last 
hundred years. It is a formidable task that one is tempted not to 
attempt. Yet, decisions must be made, and probabilities should be 
associated with floods to provide a sound basis for those decisions. 

How should these probabilities be estimated? Can these prob­
abilities be estimated with reasonable accuracy? What research 
should be performed to improve existing methods and develop new 
ones for probability estimation? These were the three questions that 
the committee was formed to address. 

This report provides answers to those three questions, but we are 
cautious in our recommendations. We were guided by a basic tenet: 
it's usually better to have more information, if you can collect the 
data and make sense of the results. Thus, we considered carefully all 
the major methods for flood probability estimation, evaluating them 
for their analytical cogency, physical soundness, and data require­
ments . Recognizing that no single method could solve the problem, 
we did not prepare a cookbook of recipes for flood estimation. In­
stead, we did something more valuable by laying out a coherent 
framework for flood probability estimation that provides guidance 
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PREFACE ix 

for current practice, a basis for critical evaluation of individual tech­
niques, and directions for future research. 

The history of research and practice in flood probability estima­
tion, like other fields in which observation of the object of analysis is 
difficult or impossible, has been marked by sharp disagreements and 
well-defined schools of thought. All camps were represented on the 
committee, and I am pleased to report that they worked together in 
remarkable harmony. The collegiality and productivity of the group 
were wonderful , and I thank the committee members and all the 
others involved (see page iii) for their participation and good work. 

JARED L. COHON, Chairman 
Committee on Techniques for Estimating 
Probabilities of Extreme Floods 
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1 

Background and Overview 

At the request of the U.S. Nuclear Regulatory Commission, the 
National Research Council, through its Water Science and Tech­
nology Board, in 1985 initiated a study of techniques for estimating 
probabilities of extreme floods. An enabling agreement provided that 
the National Research Council would establish a study committee to 
(1) review and critique various approaches to estimation of extreme 
flood probabilities, (2) assess and identify a preferred approach to 
flood estimation to be further developed (or used now, if possible) , 
and (3) identify research that can be expected to improve our ability 
to estimate flood magnitudes and probabilities using the recom­
mended approach and other approaches. The scientific methodology 
needed for estimating the probability of rare floods was the essence of 
the assignment: it was not to address policy matters, flood damage 
assessment methods, or flood risks at specific sites. 

The Water Science and Technology Board initiated this study 
in November 1985 with the appointment of the Committee on Tech­
niques for Estimating Probabilities of Extreme Floods. The commit­
tee included experts with backgrounds in hydrology, meteorology, 
applied probability, and statistics. During the study period, the 
committee met several times (January 20-21, March 11-12, June 
2-3 , October 20-21 ,  1986, and March 5-6, and June 2, 1987) for dis­
cussions and debates on substantive issues, report writing sessions, 
and reviews. In the period following the committee's last meeting 

1 
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2 ESTIMATING PROBABIUT/ES OF EXTREME FLOODS 

and until report publication, considerable effort was spent in improv­
ing the quality of this report to the satisfaction of the committee and 
the National Research Council 's Report Review Committee because 
it was hoped at the outset that the report would serve hydrologists 
as a valuable reference for years to come. 

The request from the U.S. Nuclear Regulatory Commission that 
the National Research Council undertake this study is but one more 
indication of the practical need to be able to assign probabilities to 
the occurrence of rare floods. Risk assessment and economic evalua­
tion methods have advanced to the point where improved estimates 
of the probabilities of extreme floods are being called for in a variety 
of planning and design situations. For example, the safety features 
of dams and nuclear power plants are designed on the basis of floods 
up to and including the probable maximum flood (PMF)-the flood 
that can be expected from the most severe combination of critical 
meteorologic and hydrologic conditions that are reasonably possible 
in the region. Previous studies of dam safety by the National Re­
search Council (1983b, 1985) have indicated the need for methods for 
estimating probabilities and uncertainty bounds for extreme floods 
ranging from return periods of several thousand years up to the PMF. 

A work group of the Hydrology Subcommittee of the Interagency 
Advisory Committee on Water Data investigated the feasibility of as­
signing probabilities and uncertainty bounds to floods of the order of 
magnitude of the PMF (Hydrology Subcommittee, 1986) . The work 
group examined the hydrologic and engineering literature on various 
methods of flood probability estimation, including joint-probability, 
regional-data, and paleohydrologic methods. It identified and dis­
cussed several obstacles to the use of available hydrometeorological 
data sets for defining the extreme tails of flood probability distri­
butions and concluded that the state of the art of extreme-flood 
probability analysis had not developed to the point where a method 
could be implemented for operational use. 

Floods of concern here include those with annual probabilities 
in the broad range of from 10-2 to "near 0." However, in the United 
States streamflow records of greater than 100 years are meager, and 
most records are considerably shorter. Consequently, any method 
for estimating probabilities of floods rarer than about the 100-year 
flood must include some form of extrapolation, a process that can, 
at best, introduce errors and, at worst, strain credulity. 

It is precisely because extreme floods are rare that it is difficult 
to quantify their probabilities. At the same time, increasing empha­
sis is being given to accounting more precisely for the risk of failure of 
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engineered structures. Decisions based on risk analysis have become 
more common in science, engineering, and public decisionmaking, yet 
techniques for estimating the probabilities and associated confidence 
limits of rare floods need to be improved considerably. This point 
of view is strongly supported by the Water Science and Technology 
Board in its Annual Reports for both 1983 and 1984, and also by the 
Board's Committee on Safety Criteria for Dams (National Research 
Council, 1985) . It is hoped that this report will further the science 
of rare flood hydrology. 

In the course of its work, the committee identified and reviewed 
various available approaches to the estimation of extreme flood mag­
nitudes and probabilities. Such approaches include several statistical 
techniques based on analysis of systematic streamflow records, tech­
niques based on analysis of joint probabilities of individual events, 
and techniques based on analysis of precipitation records, use of 
historical and paleoflood data, and regionalized approaches. The 
committee's review focused on the theoretical soundness and scien­
tific basis of each approach and concentrated mainly on available 
literature and data. Neither a thorough and systematic compara­
tive analysis nor data testing were carried out. Data were, however, 
acquired and analyzed in some cases where required for comparison 
purposes. 

The committee concluded that there are opportunities to im­
prove the practice and science of rare flood hydrology. As a point of 
departure, the committee observed that a framework that allows a 
range of floods and their probabilities to be estimated is preferred to 
an approach that focuses only on a single, large flood that is intended 
to represent some sort of "upper bound." The framework should be 
based on statistical and rainfall-runoff modeling methods. No single 
technique is clearly preferable to all others, and there are some tech­
niques that probably cannot be recommended in most situations. In 
the short term, the committee identified and recommended an ap­
proach that makes use of the best of the existing methods. Chapter 
2 summarizes this broad approach to flood probability estimation 
and includes suggestions that will require limited further research or 
development to make implementation possible. The many details of 
the various techniques that are important in understanding their use 
and the context for any recommendations are discussed in chapters 
3 and 4. Data are important for implementing any of the techniques, 
and data availability is discussed in chapter 5. Chapter 6 presents 
several topics for further development and research that can improve 
on the recommended approach to flood-frequency estimation. 
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2 

Improving the Theoretical Basis 

Extreme or rare floods, with probabilities in the range of 10-3 to 
10-7 (more or less) chance of occurrence per year, are of continuing 
interest to the hydrologic and engineering communities for purposes 
of design and planning. When compared to the very long return 
periods of interest, the historical record of such events is small; thus 
opportunities to test or compare estimated flood quantiles with expe­
rienced events almost never occur. Nevertheless, the need to design 
or plan for the occurrence of extreme floods is real. The committee 
believes that advances in the probabilistic modeling and statistical 
analysis of extreme events have been made and that these advances 
can be applied to improve extreme-event hydrologic analyses so that 
estimates of the probability of extreme hydrologic events will become 
possible. 

APPROACHES TO ESTIMATION 

There are many different methods that could be used to estimate 
magnitudes of extremely rare floods. The three general types of 
methods examined by the committee are summarized in Table 1. We 
note that although the first method, the deterministic estimation 
of "probable maximum floods," is used worldwide for engineering 
design, it does not provide the probabilities needed in risk-assessment 
work. Consequently, the committee focused its attention on the other 

4 
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IMPRO VING THE THEORETICAL BASIS 5 

TABLE 1 Suite of Methode for Estimating; Larg;e Floods 

I. Estimate largest _.,. Convert storm 
conceivable storm to streamflow 
(called "probable 

_.,. Larg;e flood hydrog;raph 
(called "probable 
maximum flood," PMF) 

maximum precipitation," 
PMP) 

II. Collect flood flow _.,. 
rate data (maximum 
flow rate per year) 

(1) Continuous flow 
(recent) 

(2) Include 
historic data 

(3) Geomorphically­
derived flood 
information 
(paleoflood) 

III. A. Select large storma 
from a region 

Use atatiatical _.,. 
frequency treat-
ment (flood fre-
quency analysis) 

(a) Analyse data 
at a site 

(b) Analyse data 
for a region to 
eatimate flood 
frequency at a 
aite 

Estimated probabilities 
of flood peaks, or 
estimated flood 
magnitudes of given 
return period 
(hydrog;raph not 
provided) 

_.,. Transpose to catchment of 
interest 

Model deter- _.,. Produce approximate 
ministic probability statement• 
rainfall-runoff for resultant large 
transformation flood hydrog;rapha 

B. Construct a stochastic 
mathematical model of 
extreme rainfall 

Generate several large 
synthetic atorma 
from model 

(in apace and time) 
c; Model deter-

miniatic 
rainfall-runoff 
transformation 

Produce approximate 
probability statements 
for resultant larg;e flood 
hydrog;rapha 

two methods, which provide both flood magnitudes and estimates of 
associated probabilities. 

The committee endorses the concept that the objective of flood 
studies should be to generate as much information as practicable 
about the range of flood potential at a site. This is consistent with 
the idea that choices of the dimensions of engineered structures or 
planning criteria should be based on an evaluation of the risk and 
consequences of the decision . Not including the PMF approach, there 
are two broad categories of approach for estimating ranges of flood 
potential from available data: those employing statistical analysis 
of streamflow data, and those employing statistical analysis of me­
teorological data and some type of model to simulate the physical 
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6 ESTIMATING PROBAB1LITIES OF EXTREME FLOODS 

processes of runoff. The committee did not identify a specific algo­
rithm for computing the probabilities of floods of interest. Rather, 
this chapter summarizes some principles and two general recom­
mended approaches that should both be considered in flood studies. 
Flood probability estimates should usually be made employing both 
approaches because increased insight relevant to decisionmaking will 
be gained from both types of information. While a problem may re­
main in relating the presumably different estimates, further research 
and development should improve our ability to combine results from 
the two approaches (see chapters 3 through 5) . 

THREE PRINCIPLES FOR IMPROVING ESTIMATION 

Estimating the probabilities of extreme floods will always re­
quire extrapolation well beyond the data set, and guidance for doing 
this is not well defined. Even methods that extend records, such as 
using paleohydrologic data, do not provide enough information for 
estimating flood probabilities on the order of 10-s or smaller. Faced 
with this difficulty, we have identified three principles for improv­
ing extreme flood estimation. These principles, applicable to both 
statistical analysis of streamflow and hydrometeorological modeling, 
are: (1) "substitution of space for time" ; (2) introduction of more 
"structure" into the models; and (3) focus on extremes or "tails" 
as opposed to or even to the exclusion of central characteristics. In 
addition, the interest in extreme floods increases the importance of 
explicit uncertainty analysis. 

The first principle, substitution of space for time, is useful where 
the dynamic hydrological characteristics of the site of interest are 
similar to those of a broad region. If differences and interdepen­
dences are properly accounted for, this regional information can 
effectively increase the data base at the site. The magnitude of this 
increase, the degree of reduction of estimation error, and the extent 
of additional information about rare events will depend on the num­
ber, homogeneity, and degree of statistical independence among data 
records in the region. In flood frequency analysis (chapter 3) , this 
step is represented by "regionalization," i.e., incorporating in the 
analysis information from other flood data sets from other locations, 
streams, and watersheds in the same region. In rainfall-runoff mod­
eling (chapter 4) , the substitution is accomplished in different ways 
by different methods, for example, by probabilistically transposing 
storms observed in the meteorologically homogeneous region. 
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IMPROVING THE THEORETICAL BASIS 7 

The second principle is the introduction of more structure into 
statistical and simulation models or into the process of regionaliza­
tion. In the case of regionalized flood-frequency estimation (chapter 
3), this structure appears in two ways: first, in the nature of the 
spatial stochastic dependence assumptions, and second, and more 
importantly, in the assumption of definite relationships among the 
regional parameters. As discussed in chapter 4, analogous assump­
tions may be built into stochastic rainfall models and regionalized 
intensity-duration-frequency curves (IDFs); in the stochastic storm 
transposition methods, there are stronger assumptions about the 
event recurrence model (e.g., Poisson) and the homogeneity in space 
of the mean arrival rate. These stronger assumptions put added 
emphasis on the need to include the model uncertainty in the total 
uncertainty analysis along with the more familiar and more widely 
reported parameter uncertainty for a given model. However, the in­
formation to support these stronger modeling/structure assumptions 
comes from more than local data. The continuity of nature is often 
presumed, so that if a certain structure has been verified in other 
areas, it may be valid in the region of interest; however the assump­
tion should be critically evaluated. The assumptions included in such 
models make the assessment of model uncertainty difficult to carry 
out in any statistically rigorous manner. 

The third principle, the focus on "tails" or extreme events, is 
self-evident and is the basis of probable maximum flood practice 
brought here to the probabilistic context. It is based on the ob­
servation that hydrometeorological and watershed processes during 
extreme events are likely to be quite different from those same pro­
cesses during more common events. Under extreme conditions, for 
example, assumptions about watershed physical conditions, such as 
soil moisture, may become less critical, or stream hydraulics may 
change. But the focus on tails may also simplify some aspects of the 
problem. For example, data collection and analysis for more common 
events can be de-emphasized, and paleodata may exist at the upper 
flood levels, effectively extending the amount of relevant available 
data. In chapter 3,  this principle manifests itself in the recent trend 
towards the use of tail-weighted estimation schemes. In chapter 4, 
we see methods, such as storm transposition, that use only the data 
from extreme storms. 
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8 ESTIMATING PROBABILITIES OF EXTREME FLOODS 

RECOMMENDED STATISTICAL TECHNIQUES 

In any flood study, the analyst should make use of all information 
available, including at-site streamflow and raingage data, regional 
streamflow data, regional storm data, available historic and pale­
oflood data, and available probable maximum flood estimates. The 
flood-frequency assessment should address a range of flood pote�tial 
at a given site. Initially, a single at-site analysis can be performed. 
This is a good starting point, and it uses recorded data at the point 
of interest. However, it must be recognized that data at a single site 
are too limited to permit more than a rough estimate and then only 
for relatively common floods. 

In the "at-site" category, both parametric and nonparametric 
analyses may be performed. In the case of parametric analyses, 
annual peak flow data should be assembled first. The Hydrology 
Subcommittee (1982) has issued a set of guidelines known as Bulletin 
17-B, which is followed by federal agencies for assembling, displaying, 
and analyzing annual peak flow data using the log-Pearson Type III 
distribution. A histogram or probability plot can be prepared to 
perform a crude goodness-of-fit analysis. This might help to eliminate 
some obviously unsuitable parent distributions while allowing many 
others. For the allowable parent distributions, estimates of and 
standard errors for quantiles of interest should be obtained. There 
are numerous probability density functions. The log-Pearson Type 
III is one and it is generally used by federal agencies. Another 
is the generalized extreme value distribution (GEV) that is used 
in the United Kingdom and elsewhere, and under some conditions 
can be theoretically supported. Still another is the Wakeby, which 
possesses substantial flexibility. These would make good starting 
parent distributions. Partial duration series analysis is part of the 
"tail" methods and is the heart of Smith's approach (see chapter 
3) . For nonparametric single-site analyses, we suggest performing 
various tail analyses including the extrapolation method proposed 
by Breiman and Stone (see chapter 3) . 

Mter these preliminaries, the emphasis should be on increasing 
the data pool as much as practicable. There are two ways to do 
this: use of historical and other data, and use of regional analysis. 
All historical and other data should be considered and used if they 
are of acceptable quality and relevant to the location of interest. 
Information obtained by paleohydrologic methods is an example of 
the type of data that can be obtained; the committee recommends its 
consideration. It may prove useful to perform a reconnaissance study 
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to determine whether paleoflood information of appropriate quality 
can be produced at reasonable cost. While sometimes problems 
exist in making these data systematic for direct incorporation into 
statistical techniques (see chapter 5) , historical and paleoflood data 
can be useful for comparison purposes. 

Geographic regional analysis is another way to extend the data 
set for estimating the annual peak flood distribution. First, a "lar­
gish" data set, where "largish" has not been specifically defined, for 
the "region" should be assembled, using site descriptors as an aid. 
The assemblage of the regional data set should provide some of the 
following desirable characteristics. Some degree of homogeneity is 
essential. Little serial correlation is expected but, if present, needs 
to be accounted for. Further, if nonnegligible cross-correlation ex­
ists, a few-parameter surface fit may be performed to the correlation 
function defined over the region and an appropriate joint distribu­
tion used. The absence of substantial cross-correlation makes the 
next step easier. A "structure," which is an assumption about the 
parameters in the distribution of peaks at the sites in the region, is 
necessary and its selection is still a major hurdle. An index flood 
scheme with a G EV parent as described in chapter 3 is a start­
ing point. Research on alternatives is needed. Next, estimates of 
the quantile function and its standard error are obtained. Simula­
tion and bootstrap methods may be useful for estimating statistical 
sampling errors. [A useful starting point for those unfamiliar with 
jackknife and bootstrap procedures is Efron (1982).] Finally, new 
estimates should be obtained using parent distributions other than 
GEV but which appear nearly as likely, given the characteristics 
of the observed data. Such comparisons might help to provide an 
assessment of the model's robustness. 

RECOMMENDED RUNOFF MODELING TECHNIQUES 

While discharge (runoff) models have not often been used to 
generate flood-frequency distributions for ranges far beyond the 10-� 
annual-probability event, they have been used since their inception 
to define extreme flood events, such as the probable maximum flood. 
The committee believes that runoff models, in conjunction with in­
formation on magnitude and frequency of extreme meteorological 
events, have considerable potential as tools for providing estimates 
of the exceedance probabilities of very rare floods. Runoff mod­
els, with given meteorological inputs, provide for simulation of the 
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physical processes that produce streamflow. Such models generate 
entire hydrographs, often useful in design, and can be applied where 
streamflow data are limited. Potentially, their greatest advantage is 
that they permit a separate consideration of the meteorological fac­
tors that cause flooding and the watershed response that establishes 
the runoff characteristics of peak and volume. This in tum permits 
regionalization of meteorological factors that are more similar over 
broad regions. 

Chapter 4 contains considerable detail about the choice and ap­
plication of runoff models. While numerous "continuous" or "event" 
models are available, the committee did not critique them. The 
committee recommends that the chosen model should simulate the 
physical processes that will occur during very large events that are 
outside the range of its calibration. 

A critical choice in runoff modeling is the type of meteorological 
input to be used, i.e., the choice among direct use of historic precip­
itation data including both station and storm records, stochastically 
generated storms, or synthetic storms. or these, the committee be­
lieves the synthetic-storm approach is most promising for application 
and future development. There are two general types of synthetic­
storm development: transposition of historic storm information, 
and regionalization of depth-duration-frequency station data. The 
committee recommends storm transposition methods, which are de­
scribed in detail in chapter 4. We note, however, that there are major 
geographical areas where the historic storm catalog-maintained by 
the U.S. Army Corps of Engineers-is limited. Storm transposition 
will not be possible in these regions until they have longer and more 
complete records of major storms. In areas where the storm catalog 
is limited, regionalization of station data is recommended as a way 
of obtaining meteorologic inputs to the chosen event runoff model. 
The committee recognizes, however, that both storm transposition 
and other methods of regionalization may be difficult in areas with 
complicating factors such as orographic effects. Improvements in hy­
drometeorological methodology may be needed to permit effective 
use of synthetic storm runoff modeling in such areas. 

Because the use of a synthetic-storm approach requires an event 
runoff model (as opposed to a continuous model), the estimation 
of antecedent conditions may be critical. Depending upon the re­
gion and the watershed, such conditions can include soil moisture, 
reservoir conditions, and snowpack. Use of a continuous accounting 
model is recommended in estimating a frequency distribution for soil 
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moisture. The committee did not explicitly address the matter of 
initial reservoir conditions (or upstream dam failures); judgments 
must be made based on an evaluation of the expected conditions for 
the storm being postulated. Though snowpack melt is important to 
runoff generation in some regions, the committee did not make an 
intensive study of the methods used to model this phenomenon. 

The calibrated runoff model, using meteorologic and antecedent 
condition inputs, will produce flood hydrographs as outputs. Prob­
abilities can be estimated by integrating the joint probabilities of 
storm and antecedent condition inputs. 

UNCERTAINTY ANALYSIS 

A thorough study of low-frequency extreme events requires in­
clusion of an explicit uncertainty analysis. Sources of uncertainty 
are many and include sampling uncertainty, measurement errors, 
and modeling assumptions. Some aspects of an uncertainty analysis, 
such as determination of the standard error of the estimator of a 
quantile given the underlying model, are familiar and are discussed 
in chapters 3 and 4. Other aspects, such as incorporation of model 
uncertainty, are less familiar. An assessment of relative weights (de­
grees of belief) on alternative distributions and/or models may be 
needed. Also, several types or philosophies of uncertainty analysis 
are possible (Statistical Science, 1987); they include, for example, 
use of certainty factors and belief functions, use of fuzzy set theory, 
or use of Bayesian methods. An uncertainty analysis requires that 
several uncertainties be combined to yield net uncertainty, and the 
method for combining must be reckoned with. The model-to-model 
uncertainty may dominate parameter uncertainty in extreme natural 
event analysis. 

Uncertainty pervades many fields and disciplines; currently the 
calculus of uncertainty is being actively researched in the field of 
artificial intelligence and expert systems. Such work-as well as en­
gineering practice in related applications, such as extreme seismic 
events or nuclear power plant risk assessments-should be reviewed 
for procedures and experience, including exercises in multiple-expert 
opinion assessment and aggregation. Experiments that compare 
model-predicted flows with observed extreme flood flows are needed 
for valid assessments (see chapters 3 through 5). 
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Flood-Based Statistical Techniques 

INTRODUCTION 

This chapter considers estimation of extreme flood probabili­
ties by methods involving probabilistic modeling of flood flows and 
statistical analysis of flood flow data. Modeling here refers to distri­
butional assumptions regarding the underlying random variables; its 
meaning is elaborated later. Interest is focused on the annual peak 
discharge at a given site or location in space. 

Let Y denote the random variable representing the annual peak 
discharge (maximum instantaneous flow rate in a water year) at 
the given site . The distribution of Y is unknown. Two estimation 
problems are to be considered with emphasis on the second: 

(i) Estimate P[  Y > Yo] for large fixed Yo, 
(ii) Estimate the qth quantile of Y, denoted by e9 and defined 

by P[ Y � e9) = q, for large q. 

The first of the two is referred to as tail probability estimation 
and the second as tail quantile estimation. Estimation itself can be 
(a) point estimation accompanied by some measure of precision , often 
in the form of standard error of estimator; or, (b) interval estimation, 
usually in the form of confidence intervals. 

For the sake of specificity and brevity, the discussion in this 
chapter focuses on tail quantile estimation of flood peak discharges. 
With a few minor modifications in specific details, the same method-

12 
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ologies could be applied to flood volumes or other measures of flood 
magnitude . Similarly, the estimation of tail probabilities is regarded 
as fundamentally equivalent to the estimation of tail quantiles. Cer­
tainly a probability plot of estimated tail quantiles can be used to 
read off tail-probability estimates for any specified discharge. It is 
recognized that the statistical performance of such estimates might 
not be as desirable as that of estimates specifically derived for prob­
abilities. Nonetheless, the fundamental mathematical structures and 
the essential points of discussion in this chapter are as applicable to 
probability estimation as to quantile estimation and it is expected 
that any necessary adaption of the details for application to proba­
bility estimation can be supplied by the interested reader. 

Estimation is based on all available flow data pertinent to the 
site of interest , including systematic flow data at the site as well as 
at neighboring regional sites and any available historical/paleoflood 
data. The data are viewed as a value of some random vector, 
and modeling is defined as the making of assumptions about the 
probabilistic structure of such a random vector. Key components 
are regionalization and inclusion of historical/paleo information in 
the modeling and analysis. Another key component is robustness. 
Loosely speaking, an estimator of the quantile e., is robust if it per­
forms well for a wide variety of underlying population distributions 
of Y. Robustness is important and deserves careful consideration, 
inasmuch as it is unlikely that the distribution of Y can be correctly 
identified. 

By its definition, a flood peak is an extreme event, which suggests 
extreme-value theory may have some place in a study of this sort, 
and it does indeed play two roles, one in the modeling itself and the 
other in robustness considerations. 

A more detailed discussion of the problem, along with some 
illustrations, appears in the ensuing subsections. No attempt is 
made to review the literature or to list all contributors. Although 
any recommended procedure may involve regionalization, inclusion 
of historical/paleoflood data, and robustness, it is not convenient to 
discuss all of these jointly. 

PROBLEM DELINEATION-BACKGROUND­
MODELING-NOTATION 

A general mathematical framework, along with the requisite 
notation, for describing the problem follows. Streamflow at a given 
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14 ESTIMATING PROBABILITIES OF EXTREME FLOODS 

point in space varies over time. Let t be the variable that indexes time 
for some convenient time scale and let s be the variable that indexes 
space or site location. For example, s could be a two-dimensional 
vector identifying a point in space (site) by giving its latitude and 
longitude. The possible values of s may be the points in space that 
trace a stream. Let X(t,s) denote the streamflow at a particular 
instant t and site s. The stochastic process {X(t,s) : t  ranges over 
time and s ranges over space} is the process of interest . There 
may be some probabilistic structure that governs the behavior of 
the stochastic process. This structure is unknown, but it is rich 
enough that it gives the distribution of the stochastic process, which 
is defined to be the collection of all possible finite dimensional joint 
distributions; a representative finite dimensional joint distribution is 
the joint distribution of 

X(t1 1 a1 ) , • • •  , X(tA , a• ) for arbitrary 

(t1 , at ) , . . .  , (tA: , a.) . 

By model we mean any set of assumption(s) about the probabilistic 
structure of the stochastic process. It is recognized and accepted 
that there is at present no way of identifying the true distribution 
of the entire stochastic process either from physical or empirical 
considerations. But, the advantage of such a general mathematical 
setting is that it is the most general setting, and that it inherently 
admits dependence in both time and space, a feature that is observed 
in nature. 

More specific stochastic structures can be deduced from the 
general setting. For example, time can be discretized. Define 

(3. 1) }j· (a) = sup{X(t, a) }, 

t e year j, 

which is the peak flow at site s for year j. (Here, sup, short for 
supremum, can be considered an abbreviation for maximum.) Let 
so denote the site of interest and set Y j = Y j(s0) . Let us restrict 
our attention to models that say that the distribution of Y j does not 
depend on i ;  this is a type of stationarity called spatial homogeneity 
(Dalrymple, 1960). Let F(·) be the cumulative distribution function 
(cdf ) of Y j, i.e. , 

(3.2) F(y) = Fy1 (y) = PlY; � yJ .  

Copy r i gh t  ©  Na t i ona l  Academy  o f  Sc iences .  A l l  r i gh t s  rese rved .

Es t ima t i ng  P robab i l i t i es  o f  Ex t reme  F loods :   Me thods  and  Recommended  Resea rch
h t t p : / /www.nap .edu /ca ta log .php? reco rd_ id=18935

http://www.nap.edu/catalog.php?record_id=18935


FLOOD-BASED STATISTICAL TECHNIQUES 15 

Of course, the true distribution F(·) is not known and never likely 
to be completely identifiable. The qth quantile of F ( ·) , denoted by 
eq (F) , is defined as 

(3.3) eq (F) = inf {F(y) � q}, 0 � q � 1. 
!I 

(Here, inf, short for infimum, can be considered an abbreviation for 
minimum.) Note that if F(·) is absolutely continuous and eq is a 
point of increase of F (·) then eq is given by F(eq)  = q. As mentioned 
earlier, our interest lies in the estimation of 

(i) F(yo) = 1 - F(yo) = P[Y,· > Yo ] for large fixed !/o , or 
(ii) eq (F) for large q. 

eq (F) is the annual flood (instantaneous peak or some other 
flood indicator) having return period T = 1/(1 - q) ; e.g. , the .99th 
quantile is the flood with a 100-year return period. F is included in 
the notation to stress that the quantile depends on the (unknown) 
cumulative distribution function, cdf F(·) . Sometimes a parametric 
model is assumed for the distribution of Y 1· •  That is, it is assumed 
that the true F (·) belongs to some parametric family (such as the 
generalized extreme value, log Pearson Type III, Wakeby, log normal, 
or other distribution) , say 

(3 .4) {F(•; 9) : 9 E 9} . 

Here 9 is our generic parameter (possibly a vector) and 9 is our 
parameter space. Now F( ·) is indexed by 9 so one can write 

(3.5) 

and the assumed parametric family gives the function eq (• ) . For 
example, if 

{F(y; 9) : 9 E 9} = { ( 1 - e-911)/(o,oo) (!l) : 9 > 0} 

then 1 - e-9(• = q implies eq (9) = -tn (l - q)/9 for 0 < q < 1 .  Here 
and later I(a,b) (J) is the usual indicator notation, i .e . ,  I(a,b) (Y) equals 

Copyright © National Academy of Sciences. All rights reserved.

Estimating Probabilities of Extreme Floods:  Methods and Recommended Research
http://www.nap.edu/catalog.php?record_id=18935

http://www.nap.edu/catalog.php?record_id=18935


16 ESTIMATING PROBABILITIES OF EXTREME FLO ODS 

1 if a < y < b and equals 0 otherwise. Parametric modeling for single 
site da(a is considered in the next subsection. 

Having introduced the modeling aspect of the problem, the data 
aspect comes next. Let !. be generic notation for all available data 
pertinent (interpreted to be all data to be used in analysis) to site 
s0 , the site of interest. In general, !. will contain Bow data at several 
sites and include both systematically recorded Bow data as well as 
historical/paleodata that may have been transformed into Bow rates. 
It may be that a consists only of systematic data or only of historical 
data. To bring the problem into the realm of statistical theory, a is 
considered a value of some random vector (or random function) , say 
X. Modeling can now be condensed to making assumptions about 
the distribution of X. Based on the data !., our objective is to 
estimate (1) the tail probability F(y0) = P[ Y i > Yo] for fixed large 
Yo , or, {2) the tail quantile e., (F) for fixed large q. 

In the quantile point estimation case we seek a statistic (defined 
to be some function of the data) , say -t( ·) , where -tO evaluated at a 
gives our point estimate of e., (F) . The estimation problem is first to 
discover or find what statistics t( ·) make useful estimators, and then 
to arrive at some criteria for assessing the goodness of the estimator. 
There are several classical measures of goodness including low bias, 
asymptotic unbiasedness, low mean square error, uniformly minimum 
variance unbiasedness, consistency, efficiency, etc. Consistency is the 
property that the estimator converges in some sense to the true 
parameter value when the size of the data set is expanded to infinity. 
Bias is the difference between the expected value of the estimator 
and the value of the parameter to be estimated, i.e. 

(3 .6) biaa of estimator -t( -) of e., (F) ia Eft(X)J - e., (F) . 

An estimator t{·) is unbiased if it has bias equal to zero so that 

E[-t(X) J  = e., (F) . 

The mean square error of an estimator tO of e, (F) is 

(3.7) 

Since MSE measures the spread, in the sense of squared error, 
of the estimator to be estimated, small MSE is desirable. When an 
estimator is unbiased the MSE equals the variance of the estimator . 

Copyright © National Academy of Sciences. All rights reserved.

Estimating Probabilities of Extreme Floods:  Methods and Recommended Research
http://www.nap.edu/catalog.php?record_id=18935

http://www.nap.edu/catalog.php?record_id=18935


FLOOD-BASED STATISTICAL TECHNIQUES 17 

The standard error of estimate is the standard deviation of the 
estimator, a useful measure of the goodness of unbiased (or nearly 
unbiased) estimators. Efficiency of an estimator is a notion that 
measures how well that estimator does relative to the best that can 
be done. 

Just as there are several standard measures of the goodness 
of an estimator, there are several standard procedures for finding 
estimators. These include the method of least squares, method 
of moments, method of probability weighted moments, maximum 
likelihood procedure, .minimum distance method, and the Bayesian 
method. Among statisticians, the contemporary standard of these 
is the method of maximum likelihood estimation (MLE) , primarily 
because of its desirable property of asymptotic efficiency, illustrated 
below. For small finite samples, typical in flood-frequency analysis, 
MLE's may be inefficient, and other estimation procedures may be 
preferred. 

To illustrate the method of maximum likelihood let us assume 
a parametric model for X., using the same notation as in (3.4) , but 
now it is the distribution of X that is being considered. Let X have 
a joint density belonging to a parametric family, say 

(3.8) {/x (�; 8) = /(�; 8) : 8 E e}, 

where both the function / (·;·) and e are known but the value of 8 
is unknown; 8 may be a vector. The MLE of 8 ,  denoted by 6, is 
obtained by maximizing the likelihood function as a function of 8 
for fixed � where the likelihood function is the joint density of X. 
By the invariance property of maximum likelihood estimation, the 
MLE of r(8) for a known function r(•) is r (6} ; that is, a function of 
a MLE is itself a MLE. In our case r(8) = e9 (8) and the function 
eq (•) will be derived and known from the assumed model. Asymp­
totic theory for MLEs exists and it enables one (under regularity 
conditions) to obtain an approximate standard error of an estimator, 
or an approximate confidence interval. Also this same theory says 
that maximum likelihood estimation leads to asymptotically efficient 
estimators. For later use, the asymptotic theory alluded to above is: 
Under regularity conditions, 

(3 .9) 8 � MVNI8, 1;1 (8) J ,  

where In (8) is the Fisher information matrix having ijth entry 
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18 ESTIMATING PROBABILITIES OF EXTREME FLOODS 

E [a log /(X.; 0) a log /(X.; 0) ] 
8 ao, ao; ' 

� reads "is asymptotically distributed as," and MVN(0�1 (0)]  ab­
breviates multivariate normal with mean vector 0 and variance­
covariance matrix 1;; 1 (0) .  Here 0 = (o. , . . .  ,ok) is a k-dimensional 
vector. If r(O) = (r. (O) , . . . ,rr (O) ) and 

then 

(3 .10) 

,.. = [ar1 (0) ] ao; rzk 

The subscript n is a sample size indicator. Use of these results 
germane to our problem appears in subsections below. 

One valuable feature of ML estimation is that the ML estimate 
and its asymptotic variance can be obtained by adjusting the model, 
so that an explicit formula for the estimator is not required. Hence 
for a given data set one can use one of many available computer 
optimization routines to maximize the likelihood and possibly some 
numerical routine to evaluate the Fisher information matrix to get 
the standard error of the estimator. Essentially, once a parametric 
model has been selected, ML estimation says you have done about 
as well as you can do asymptotically. 

How does one pick and verify the model? One possibility is to 
perform some sort of goodness of fit based on the data. This is 
not likely to be a viable option inasmuch as there is rarely enough 
data to discriminate among competing parametric models. Another 
possibility is to derive the model based on other considerations, 
including regionalization or physical considerations. Within available 
statistical theory, eztreme-value theory has the possibility of assisting 
one in building a model. We sketch some particulars associated with 
eztreme-value theory next. Leadbetter et al. (1983) give a detailed 
treatment of this theory. 

Let z. ,  Z2 , . . .  ,z" be a sequence of independent and identically 
distributed (iid) random variables with common cdf F(•). Let Mn = 
max (z. , . . .  ,Zn) ·  Now the exact cdf of Mn is given by: 

Fu,. (m) = P[Mn 5 mJ = F"(m) .  

C o p y r i g h t  ©  N a t i o n a l  A c a d e m y  o f  S c i e n c e s .  A l l  r i g h t s  r e s e r v e d .

E s t i m a t i n g  P r o b a b i l i t i e s  o f  E x t r e m e  F l o o d s :   M e t h o d s  a n d  R e c o m m e n d e d  R e s e a r c h
h t t p : / / w w w . n a p . e d u / c a t a l o g . p h p ? r e c o r d _ i d = 1 8 9 3 5
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Further, according to the extremal types theorem, if there exist se­
quences of constants , say { a"} and { bn} > 0 such that 

(3 . 1 1) P!(Mn - an)/bn < zj = F"(bn:& + an) - A( :e) , 

where A(·) is a nondegenerate* limit cdf, then A(·) must be one of 
the three extreme value distributions given by : 

Type I : A1 (:e) = exp( -e-s) 
Type II : A2 (:e; 1) = exp(-:e-" )l(o,oo) (:e) , where 1 > 0 

Type III : A3 (:e; 1) = expl-(-:e)" ]I(-oo,o) (:t:) + I(o,oo ) (:e) ,  
where 1 > 0. 

The latter two types are parametric families with parameter 1· 
We say F(·) is attracted to A(·) ,  or belongs to the domain of attrac­
tion of A(·) , if (3. 11) is satisfied, and we write F E D(·) .  Examples of 
distributions F E  D(A1)  are: exponential, gamma, Weibull, normal, 
log normal, logistic , and A1 itself. Examples of distributions F E 
D(A2) are: t-distribution, Pareto, Cauchy, log gamma, and A2 itself. 
Finally, examples of F E D(A3) are: uniform, beta, and A3 . Although 
not all distributions have a domain of attraction, most do and one 
sees the potential of using extreme-value theory in modeling. In fact 
the iid assumption of the extremal types theorem can be relaxed (see 
Leadbetter et al. ,  1983) and hence one may be able to justify as­
suming that the annual peak discharge random variable Y (it is the 
largest of several discharges) has an approximate extreme-value dis­
tribution. The convergence to a limiting extreme-value distribution 
can be quite slow, which affects the usefulness of the approxima­
tion. Since the actual type of extreme-value distribution may be 
unknown, a generalized extreme-value (GEV) distribution, one that 
is rich enough in parameters that it contains all three of the types, 
seems useful. Such a distribution does exist and can be given by 

A(:e; a, ,8, ��:) = exp{-11 - lt ( :& ; 01) J11"'} for 

(3 .12) �e(:e - a)/.8 < 1 , where ,8 > 0. 

• A degenerate cdf has all ita maaa at a single point. 
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20 ESTIMATING PROBABIUT/ES OF EXTREME FLO ODS 

The parameter 11: doubles as the type selector and the replacement 
for 1· 1t = 0 [defined as 1t - 0 in (3 . 12)] corresponds to Type I, 1t < 0 
corresponds to Type II, and 1t > 0 to Type III. a and {3 are location 
and scale parameters , respectively. We will return to the GEV in the 
next subsection. 

AB mentioned earlier , an estimator, say t(·) ,  of e, (F) is robust 
if it performs well for a wide variety of cdf's F( ·) of Y. Robustness 
can be quantified in a number of ways. One way is to utilize the 
notion of efficiency. Efficiency too can be defined in a variety of 
ways; for example, efficiency of an estimator can be defined to be the 
reciprocal of the variance of the estimator times a best lower bound 
for such variances. Suppose one is interested in comparing estimators 
t-1 (·) and f-.! (·) to ascertain which one is the more robust and suppose 
robustness is to be judged relative to some family, say 1, of F's. Let 
eft'(t,F) be the efficiency of estimator t: when F is the correct cdf. H 
eft'(t,F) = 1 for some -t(·) and F(·) then estimator -t(·) is best (most 
efficient) when F(·) is the cdf. Efficiencies near one are desired . H 
eft'(f:t ,F) � eft'(t2 ,F) for all F E 1 then naturally one prefers t-1 and 
agrees t1 is more robust than t2 • What is likely to occur is that t1 
will be more efficient than � for some F and less efficient for other F, 
making an unambiguous comparison impossible. In such cases one 
could use a maximin concept and prefer t-1 over � if 

(3 . 13) inf eft'("tt , F) � inf eft'(t2 , F) , 
Fe1 Fe1 

since then t1 's worst efficiency relative to F is higher than � 's worst 
efficiency. One would like that there be an estimator, say t* (·) ,  that 
has "high" efficiency for all F e 1. 

Probability Weighted Moments 

A method of estimation based on probability weighted moments 
(PWMs) has recently been suggested as an alternative to the method 
of maximum likelihood , or other methods. AB is the case in the 
classical method of moments estimation , estimators are obtained 
by equating sample PWMs to population PWMs which are defined 
as follows. [An extensive discussion of PWMs is given by Hosking 
(1986a) .] 

Let X be a real-valued random variable with cumulative distri­
bution function F(·) . The (population) PWMs of X or F are defined 
to be 
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FLOOD-BASED STATISTICAL TECHNIQUES 21 

(3. 14) 

where A:, r, and 8 are real numbers. H r and 8 are nonnegative integers 
and X ;:m is the jth smallest order statistic of a random sample of 
size m from the distribution F then 

(3.15) r!8 ! EIXIc J /Jic,r,• = (r + 8 + 1) ! r+l :r+•+l  • 

This linkage between expectations of order statistics and PWMs 
suggests taking appropriate linear combinations of order statistics as 
sample PWMs and this is what is done. Define 

(3. 16) Or = JJt,O,r and f:Jr = #Jt,r,o for r = 0, 1, ... Further define 

(3. 18) Br = { 1/ [ m ( m ; 1 ) ] } � ( i � 1) Xi:m for r = 0, 1 , . . . .  , m- 1. 

The Ar 's and Br 's are called sample PWMs. It is easy to show that 

EIArJ = Or and EIBr J = f:Jr 1 

so that Ar and Br are unbiased estimators of or and f:Jr , respectively. 
In practice the combinatorial coefficients in Equations (3 .17) and/or 
(3. 18) are sometimes replaced by asymptotic equivalents. 

Estimators of, say, A: parameters can be obtained by equating A: 
sample PWMs to A: population PWMs and solving the equations for 
the parameters. 

Since estimators obtained by the method of PWMs will be func­
tions of linear combinations of order statistics, an asymptotic distri­
bution for a linear combination of order statistics is useful. A simple 
result follows. 
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22 ESTIMATING PROBABILITIES OF EXTREME FLOODS 

AB before, let X l:m � . . .  �X m:m be the order statistics correspond­
ing to a random sample of size m from F. Let F m(·) be the sample 
cdf, then, under mild conditions on J (·) , a weight function, and F(·) ,  

(3. 19) 

converges in distribution to a normal with mean 0 and variance u2 , 
where 

and 

m 

!oo Tm = ( 1/m) E J(jfm)X;:m = -oo zJ!Fm(z) JdFm(z) 

u2 = 2 I I J!F(z) JJIF(y) JF(z) ll - F(y) Jdzdy. 
% < !1 

Result (3 . 19) is useful in finding the asymptotic standard error of a 
PWM estimator. 

Moments of Floods and Rainfall Maxima 

The moments of a random variable are useful characteristics of 
the random variable. In this section we discuss (population) mo­
ments and sample moments as estimators of population moments, 
concluding with some comments regarding data. 

Four characteristics of a random variable X based on the first 
four moments are :  

the mean JJ = JJX = E(X) 
the standard deviation u = ux = {EIX - JJJ2}0•6 , 

the skewneu coefficient 1 = 1x = {EIX - JJJ3}/u3 , 
the kurtosis coefficient A =  Ax =  {EIX - JJJ4/u4 }. 

The moment estimators for a sample of size n are 

n 
(3 .20) fs = L X,fn, 

t=l 
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(3 .2 1) u = [t Xf fn - {J2] o.5 , 
•=1 

(3 .22) 1 = [t x: fn - 3{Ju2 - jJ3] fu3, 
•=1 

(3 .23) � = [txt fn - 4fJU3i - 6fJ2u2 - p.•] ;a-•. 
•=1 

23 

Equation (3.20) is an unbiased estimate of p, but the succeeding 
estimators are increasingly biased. The magnitude of the bias in 
equations (3.21)-(3.23) is dependent upon n and the distribution of 
X. For the small n 's likely to be encountered in sequences of flood 
maxima these biases may be quite large. 

Consider the results shown in Figure 1 where the cumulative 
distributions of jJ, u, and 1 have been plotted and their average 
values shown for comparison purposes. The figure shows that for log 
normal distribution with p = 0, u = 1 ,  and 1 = 15 (indicative of an 
extreme skew case) the biases in the higher moments can be expected 
to be considerable. In this case, for an n = 30, E(u] is 0.77, while 
E(1] is 3 .6. Regionalization procedures that depend upon averaging 
at-site estimates of the moment estimators can give poor quantile 
estimates in the upper tails that are of interest in flood studies. 
The problems of small sample biases and nonnormal distributions 
for estimates of higher moments (Hosking, 1986a) . Schaefer (1987) 
has reported a successful application of this concept with rainfall 
maxima for the state of Washington. 

It is an algebraic fact that the value of the sample skew coefficient 
is bounded as follows (Kirby, 1974) : 

(3 .24) n - 2  
i 5 

yn-:t
• n - 1  

Equation (3.24) is distribution free, and for an n of 30 the upper 
bound of i is 5 .2 ,  which is evident in Figure 1 .  

Figure 2 shows that hourly rainfall maxima tend to be highly 
skewed, and with skew-kurtosis relationships that are quite GEV­
like. As might be expected, 24-hour point rainfall data are tess 
variable and less skewed than the corresponding hourly data, but 
still quite GEV-like in their skew-kurtosis relationship (Figure 2) . 
Similar results have been observed for point rainfall data for the 
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•• 30.000 y• l5.000 LDG-NORMAL 
18 .0 r-r-...,-""'T"'--,.---,I'"""T�---,r-�-r.., 

MEAN 

ST. DEV 0. 180 

SKEW 2.392 

l<lln'OSIS 2J.e77 

1\ 
y 

0.770 2.627 

o.e97 1 .011 
5.790 0.500 

-�O L-L-�-L��������-
0.01 1 .0 20.0 60.0 MD 999 

0.1 5.0 4QO 8QO 91D 99.99 
P (X< a )  

FIGURE 1 Cumulative distributions of p. ,  u, and 1 for a three-parameter log 
normal distribution with p. = 0, u = 1 ,  and 1 = 15 for n = 30 (after Wallis et 
al., 1974).  

state of Washington, as well as for European and New Zealand 
rainfall data (Wallis , personal communication, 1987) . 

Covariance Among Flood and Ralnfall Maxima 

A final item of background is that of covariance and correlation. 
The covariance between two random variables X and Y is 

Cov(X, Y) = E{IX - P.x J IY - p.y J }. 

The standardized measure of the linear relationship between X and 
Y is the coefficient of correlation 

(3.25) Cov(X, Y) p =  PX,Y = . uxuy 

p can be estimated from n pairs of observations (Xl t Y 1 ) , (X2 , 
Y 2 ) , . . . ,(Xn , Y n) by the sample correlation coefficient defined by 
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1 00 1 00 

• Hourly • Dally 
Cl) . GEV 0 • GEV 0 

1 0  t: 1 0  :J 
� , . . • . • •  

· · · · · · · 
· · · · · · 

1 1 

.1  1 1 0  .1  1 1 0 

Skew 

FIGURE 2 Skew-kurtosis relationship for annual maxima of California point 
rainfall data estimated by the WAK/R algorithm and with no small sample 
bias corrections attempted (after Wallis, 1982) .  

" 

I:( X, - Pz) (Yt - P11) 
p = __ ._=_1 ________ -=-::-[t.cx; - !l.)' t.(Y; - P.)' r (3.26) 

Benson ( 1962) made a study of 164 New England annual flood records 
in which the average correlation between sites was reported to be 
0.26. Using an equation attributed to Yule and Alexander, 

(3.27) N. - N 
e - 1 + (N - l)p ' 

where N is the number of sites in the region , p is the correlation 
between sites, and N e is the equivalent number of independent sites , 
Benson stated that the data from all 164 sites of his study were 
equivalent to that of only three independent sites. This means that 
the standard errors of regionalized estimates (of the mean) would be 
reduced by a factor of about 2 compared to the at-site estimates, 
rather than by a factor of about 12.  Under an apparent assumption 
that regionalized quantile estimates would be at least as subject 
to error as regionalized means, Benson concludes from this finding 
that it is not possible to reduce sampling errors indefinitely simply 
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26 ESTIMATING PROBABILITIES OF EXTREME FLOODS 

by adding more stations to a regional gaging network. In Benson's 
example, 4 sites would provide nearly the same accuracy (for a 
regional mean) as 164 sites. Benson thus concludes that operation of 
a gage network is more beneficial for developing information about 
floods at ungaged sites than for reducing estimation error at gaged 
sites. More recent and explicit studies concerning the effects of 
cross-correlation on accuracy of regionalized quantile estimates are 
developed in example 3.8 later in this chapter. [See also Stedinger 
(1983) .] 

Rain gages are small and usually widely spaced in relationship to 
the moving cells of intense precipitation that give rise to the annual 
maxima; hence short-time-interval rain gage maxima exhibit little or 
no cross-correlation between gages. 

SINGLE SITE ESTIMATION 

With the background of the previous section, we turn now to 
the single site frequency estimation, the simplest statistical situation 
that can be encountered. The primary assumption throughout this 
subsection is that the only data to be analyzed are data at the site 
of interest. Such data may include historical/paleoflood data. The 
purpose here is to give some indication of how well one can estimate 
quantiles in some simple and idealized settings. The examples show 
rather dramatically that large errors can be expected when the prob­
abilities of rare floods are estimated with only the data from the site 
of interest . 

Sbnple Parametric Setting 

Suppose now that the data z consists solely of n years worth of 
annual peak flows at the site of interest . Thus � = (!11 , . . .  ,y") where 
y, is the actual peak flow for year i, i = 1, . . .  ,n. y, is a value of 
random variable Y , .  

Ezample 9.1 Assume Y 1 , • • •  , Y" are independent and identically 
distributed with common exponential distribution with rate parame­
ter 8 .  That is, Y t , • • •  , Y" are independent and identically distributed 
as f (y ;6) = e e-811 for y ?:  0. We chose the exponental distribution for 
demonstration purposes only ; its properties are well known, allowing 
conclusions to be drawn analytically and simply. 

Let e., ( e) be the qth quantile. Based on Y 1 , • • •  , Y" we want to 
estimate e., = e., ( e) . Since q = F(e.,) = 1 - e-8(, , e., (e) = -in pjfJ 
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where p = 1 - q. Now, it is known that the MLE of 9 is 1/Y so the 
MLE of eq ( 6) is ( -tn p) Y'. Here the exact distribution of the MLE is 
known (it 's a gamma) but the central limit theorem tells us 

(-ln p)Y '"i-- N!€q (6) ,  (-ln p)2 /n62J 
= Nl€q (6) ,  €� (6)/nJ . 

Therefore, the approximate standard error of the MLE is eq (6)f..fo. 
Also, since ..fo[(-ln p) Y - eq (6)]/€q (6) � N (0,1) an approximate 
100( 1 - a) percent confidence interval estimator of eq (6) is 

(-ln p)Y' (-ln p)Y'  
1 + zf..fo' 1 - zf..fo' 

where �(z) - �(-z) = 1 - a. The length of this confidence interval 
estimator is 

(-ln )Y 
2z/..fo 

. p 1 - z2fn 

Since both the standard error of estimator and length of confidence 
interval are proportional to ( -ln p) , one can easily see the effect of p 
on the precision of estimation. 

-
"

- 11
1/100 

1
1/1000 

1
1/10, 000 

1 1 , 000, 000
. 

-ln p 4.6 6.9 9.2 11 .5 

Under this model the length of the confidence interval estimator for 
the 10,000-year flood is twice what it is for the 100-year flood. 

As a second example consider the case of the log normal distri­
bution. 

Example S. e Assume Y 1 , • • •  , Y n are independent and identically 
distributed as log normal with parameters I' and u2 • Equivalently, 
assume ln Y 1 , • • •  ,ln Y n are independent and identically distributed 
as N (p,u2 ) .  Note 

which implies that ln eq (6) = JJ + ZqO' where Zq is given by �(zq) 
= q. Finally eq (6) = exp{JJ + Zqu} . In terms of our generic 9 ,6 = 
(p,u) and r (6) = eq (6) = exp{p + Zqu} . The MLE of 6 is routinely 
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obtained and is (E ln Y.jn, [E (ln Y, - ln Y)2 /nJ 112)  from which 
the MLE of eq (6) can be seen to be 

exp{ln Y + zq !E (lnl'; - lnY)2 /nJ112 } . 

Further, the asymptotic distribution [see (3 . 10)] of this latter esti­
mator is N [eq , (aeqfap., aeqjau) 1;; 1 (6) (aeqja,_,., aeqfau)'] and the 
entries can be computed and a comparison can be made. Note that 
aeqj8p. = eq and aeqj8u = Zq eq SO that the asymptotic variance 
becomes 

Now, 

/(Y; 6) = � exp [ 2-� (Y - p.)2] , ao 
Y 21ru u 

1 
ln /(Y; 6) = -ln Yyli; - ln  u -

2u2 
(Y - p.)2 , 

a
a 

ln /(Y, 6) = (Y � p.) 
and 

a
a 

ln /(Y; 6) = _ .!_  + (Y -/")2 , ,.,. (7 (7 (7 (7 

E { [:,.,. ln / (Y; 6)r} = E(Y - p.)2 ju• = u-2 , 

E { [:u
ln /(Y; 6)r} = { [ (Y�/)2  - �r} 

= :6 E{ I (Y - p.)2 - u2J2 }  = u-e iE(Y - p.)• 

- 2u2 E(Y - p.)2 + u• J = 2u-2 , and 

E { [:,.,. ln /(Y; 6)] [:u 
ln /(Y; 6)] } = 0. 

Therefore 

and 

1(6) = ["/
o
u2 o ] 

2n/u2 

r1 (6) = (1/n) [ �2 
u�/2 ] . 

Finally, the asymptotic variance is 
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Thus the asymptotic standard error of estimate is ( 2 ) 1/2 
u exp{�o£ + Zqu} � + ;� , 

which is proportional to exp{uzq } (1 + z�/2) 112 = g (p) , which is 
computed in the table below for u = 1 and three values of p. 

L II 111oo I 111000 
I 

1j 1o, ooo I . 
g(p) 19.7 52.8 331.6 

In this case, the length of the confidence interval estimators for 
the 10,�year flood is almost seventeen times what it is for the 
100-year flood. 

Example 9. 9 As mentioned in the previous subsection, the GEV 
is a candidate distribution . Suppose Y 1 , • • •  , Y n are independent and 
identically distributed with common cdf given by (3. 12} . Now 0 
= (a,,B ,�t} and eq = eq (O) = a + (,8/�t) [1 - (- ln q)'"] , where eq (O) 
is defined at 1t = 0 as the limit as 1t -+ 0. A scheme for finding 
the MLE of 0 and then the MLE of eq (O) by invariance is given in 
Prescott and Walden (1980, 1983} . The Fisher information matrix 
is also given and the requisite regularity conditions are satisfied 
for 1t < 1/2 so one can obtain an asymptotic standard error of 
estimator. Hosking et al.  (1985a} propose estimating the parameters 
and quantiles of the GEV by the method of probability weighted 
moments. Asymptotic properties of the estimators were investigated 
for small and moderate samples via simulation . The method of 
probability-weighted moments compares favorably with the method 
of maximum likelihood. Several tables and graphs are given that 
portray efficiencies. Such analysis is not repeated here; the main 
point is that for this parametric family, the analytics necessary to 
see how well one can do have been accomplished . 

Tall Behavior Results 

In all three of the above examples the data record consisted of 
n years of annual peak flow data. Such peak flows may have had 
different causes. For example, peak flows could result from just 
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snowmelt , thunderstorm and snow melt, thunderstorm on frozen 
ground, thunderstorm on ground saturated by a general wet period, 
or hurricane and frontal produced rainfall . One can argue that each of 
these peak types ought to have its own distribution and that the true 
annual peak discharge distribution is a mixture of the distributions 
associated with the respective causes (Hazen, 1930) . It is unlikely 
that one would ever have sufficient data to characterize either the 
peak type distributions or the relative weights in the mixture to be 
given to these types. Some other method is needed. The tail behavior 
of a mixture is often dictated by the tail behavior corresponding to 
the distribution in the mixture having the heaviest tail. Thus, one 
way of circumventing the problem is to consider techniques based on 
tail behavior and the largest data values. The first of these methods 
is usually credited to Weissman (1978) . 

Example 9.� Assume Y 1 ,  . . .  , Y n are independent and identically 
distributed as F and F e D(A1 ) .  Let Y 1n ;::: Y2n ;::: . . .  ;::: Y nn be the 
ordered Y 1 ,  . . .  , Y n , indexed from largest to smallest. For fixed /c, 
there exists {an} and { bn > 0} 

where M 1e is a random vector having density 

le 
(3.29) g(!11 , . . .  , !lie ) =  exp!-exp(-y�e) - L !Ii i for !11 ;::: !12 ;::: • • .  ;::: y,. . 

i= 1 

Hence Y 1n , . . .  , Y len has approximate density given by 

(3.30) 

Now MLEs of an and bn , based on Y 1n ,  . . .  , Y len and approximate 
density (3 .30) , are 

!. = [ (t.Y;./k) - Y,.] and a,. =  !. tnk + Y, . . 

By assumption, Fn (bnz + an) � exp{ -exp( -z) } , or Fn (z) � exp{ -exp 
[-(z - an)/bn J l i  so q

n = F" (eq) � exp{-exp[-(eq - an)/bn J} and eq can 
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be  solved for in terms of a,. and 6n and then an approximate MLE 
e9 can be obtained. Further, using the asymptotic theory for MLE 
one can get an approximate standard error of the estimator. Boos 
( 1984) analyzes the performance of such estimators. 

The procedure described in Example 3.4 presumably would be 
reasonably robust for all F e  D(AI) . Similar results are available for 
the other two extreme value types and presumably would also then 
work for the G EV. 

There are other estimation procedures that are based on upper 
tail behavior. Davis and Resnick ( 1984) give an estimator of a tail 
probability based on the upper k order statistics that is consistent 
(k - oo ,  but k/n - 0 as n - oo) for a wide class of distributions. 
Their method is based on the Pareto-like tail behavior that comes 
out of extreme-value theory. [See Pickands (1975) .] Also, their tail 
probability estimator can be inverted to give a tail quantile estimator. 

R. L. Smith (1985) also utilized the Pickands (1975) result to get 
upper tail behavior of a generalized Pareto-type distribution and ties 
it to the "peaks over threshold" methods. J .  A. Smith (1986) is the 
most recent contributor along these lines. 

A possible advantage of techniques based on tail behavior is that 
only the "upper" part of the data is used for estimating upper tail 
probabilities or upper tail quantiles. In doing so one does not have to 
worry about whether or not the "lower" data values really follow the 
distribution. A disadvantage , of course, is that these techniques are 
based on asymptotics and one needs to check whether or not one can 
invoke asymptotics for the small sample sizes one is apt to encounter 
in practice . 

Nonparametric Procedures 

In a certain sense the methods referenced in the last section 
are nonparametric. Breiman and Stone (1985) give a method for 
computing estimates and confidence bounds for tail quantiles based 
on the upper tail of the data that does not depend on an assumed 
parametric model for the distribution of the data. They essentially fit 
a quadratic tail model to the upper part of the data and extrapolate. 
A simulation study with large samples shows the method may have 
promise for a family of distributions that are neither too-heavy nor 
too-light tailed. 
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Incorporation of Hlatorlcal Data 

Historical data includes any information/data on floods that 
occurred before or after systematic streamflow gauging. Such in­
formation/data can be variable in form and/or accuracy. Historical 
data might be simply the knowledge that a certain water level had 
been exceeded sometime prior to or after the systematic gauging, or 
it might be quite specific , such as knowing the flood level and year 
of such level for several floods. The incorporation of historical data 
into our modeling depends on the form of data and will be illustrated 
with two examples. 

Example 9.5 Let Y 1 , . . .  , Y n represent the systematic record of I 
annual peak flows for n years. Additionally, suppose that it is known 
that level y0 was exceeded exactly k times during a time span of 
m years. Model by assuming the Y t , . . .  , Y n are independent and 
identically distributed as I {. ; 9 ) ,  9 f e and that z t , . . .  ,Z m are indicator 
variables independently and identically distributed as Bernoulli {p 
= P[ Y, > y0 ) = 1 - F(y0 ; 9 ) } .  Z; equals ! if level y0 was exceeded 
in year j and 0 if not for the m years in. the historical record . The 
Y i 's and Z ; 's are independent , and F( •;9) is the cdf corresponding 
to density /(· ;9) . The likelihood function becomes 

n m 
(3.31) II / (!Ii i 9) lilt - F(!lo i  9W1 !F(!Io i 9w-·i ,  

i=l  j=l 
where 1/l ,  . . .  ,Jin represent the observed values of the annual peaks 
Y, of the systematic record and z1 , . . .  ,zm are observed values of the 
indicator variables Z ; . Since level y0 was exceeded k times during 
the time span of the historical record, 

m 
I:z; = k 
j=l 

and the likelihood could be rewritten as 

which can be maximized as a function of 9 ,  to get the MLE of e ,  
for any assumed parametric family. Under this model the historical 
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information is not very precise. All that is needed is whether or not 
a fixed level was exceeded for m years and the number of times that 
it was. Further, the MLE of a tail quantile can be readily obtained 
as well as an approximate standard error estimator using the asymp­
totic theory for MLE's which ought to be quite good in this case. 
Stedinger and Cohn {1985 , 1986a,b) discuss the model assumed here 
and include some numerical results for the two-parameter log normal 
model, which indicate what gain can be anticipated by incorporating 
error-free historical information data into the analysis. They argue 
that the value of the historical data is greater in higher dimensional 
parameter models than in lower dimensional ones. Other families 
of probability distributions ought to be considered; for example , it 
would be useful to carry out similar. analytics for the GEV. 

Ezample 9. 6 Assume as in the previous example that Y l J . . .  , Y n 

represent the systematic record of annual peak flows for n years. 
Additionally, assume that the flood level of each of the k largest 
floods over a time span of m years is known. {For the model to 
be assumed here, the years in which such floods occur carry no 
additional information .) Let Z1 � . . .  � Z�c denote the flood levels 
of the k historical floods. Now model by assuming Y h . . .  , Y n are 
independent and identically distributed as /(·;9 ) ,  9 f e and zl J . . .  ,zk 
are the k largest order statistics of a random sample of size m from 
/(· ;9) , and that the Yt 's are independent of the Z; 's. The likelihood 
function is proportional to 

n 1c 
(3.33) II /(!Ii i 9) [F(z�c ;  8 Jm-k II f(z; ; 8) , 

i- 1 i=l 

where Y1 J . . . ,yn are the values of Y 1 , . . .  , Y n and Z 1  � . . .  � Z1c the values 
of Z 1 � . . . � Z�c . Again the MLE of 9 can be found , and transformed 
into the MLE of a tail quantile, for any assumed parametric model. 
The actual maximization may have to be accomplished numerically. 
Again, the asymptotics of maximum likelihood estimation would 
allow for the computation of an approximate standard error of es­
timator and the gain earned by including the historical information 
obtained for any assumed parametric model. One can anticipate 
slightly greater gain under this model than under that of the first 
example inasmuch as the information incorporated here is more pre-

; i  cise. 
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Stedinger and Cohn (1986a) argue that it is often more reason­
able to assume that the historical data is in the form of those extreme 
flood levels exceeding a fixed threshold, rather than the fixed num­
ber, k, of historical extremes considered in Example 3 .6. Such an 
assumed model is amenable to maximum likelihood analysis similar 
to that in Example 3.6. 

Many other models that incorporate historical information/ data 
into the analysis could be discussed. For instance, the historical 
information might be such that the level is known for some historic 
floods and only the exceedance level for others. Both of these types of 
information can be handled by the method of maximum likelihood. 
It could be that the actual level or estimate of the historic flood is less 
precise than that in the systematic record and that one has to account 
for this uncertainity in the modeling. This could be accomplished 
by modeling an error component into the historic readings. Or, one 
could perform a sensitivity analysis to see the effect of changing the 
magnitudes of the historic data. 

It would seem that historic data are ideally suited and amenable 
to the types of analysis on tail behavior described in the Tail Behavior 
subsection. After all, the data represent upper extremes and the 
time span of the historic record ought to be long enough so that 
the asymptotics of that theory can be reasonably assumed to be 
valid. On the other hand, if the time span is long, one has to ask 
whether stationarity is a valid assumption. Such factors as melting 
of glaciers, erosion, climatic change, and land use changes could 
make the assumption of stationarity questionable . However, since the 
assumption of independence of the historic random variables and the 
systematic ones is certainly viable, the two types of information need 
not be analyzed the same way. In any case, historical information is 
potentially quite valuable since it usually is data regarding the tail 
quantity of interest. 

MULTISITE/REGIONAL ANALYSIS 

The assumption here is that our data � consists of peak flow 
readings for several sites within a region, but we are interested in 
estimating quantiles for a particular site . For concreteness and sim­
plicity in initiating the discussion, assume that we have k sites, each 
site having annual peak flow data for the same n years. Our data 
can then be displayed as 
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where z,; is the reading for site i and year j. Again, assume z,; is 
a value of random variable Xii · Modeling now consists of assuming 
something about the joint distribution of the X,; , i = 1 ,  . . .  ,k and j = 
1 ,  . . .  , n. 

Suppose we are interested in estimating quantiles at site 1 .  From 
the modeled joint distribution of the x.i the marginal distribution 
at site 1 can be found and then the desired quantile can be obtained. 
Let X be the vector of X,; . Specifically let X =  (X.u , . . .  ,.X)on) where 
Xlc; = (X 1; , X2; ,  • • •  ,Xk;) ,  the random variables for the readings at 
the k sites for year j. A parametric model is one where 

/x (.;; 0) = /(�; 9 ) ,  0 ( e. 
for / {· ; ·) and 9 is assumed known and the parameter 0 unknown. 0 

is likely to be a vector including the parameters indigenous to each 
of the individual sites. 

One might wonder how it is that data at sites other than site 
1 ,  the site of interest , can be useful in estimation at site 1 .  In 
fact, there are times when neighboring sites are of no use at site 1 .  
If, for instance, all sites were perfectly correlated, there would be 
no additional information in the neighboring sites, unless of course 
they are for longer periods. Also, if the site random vectors were 
independent and there were no assumed relationship among the site 
parameters, then again, there would be no additional information 
in the neighboring sites useful for estimation at site 1 .  Conversely, 
potential useful information at neighboring sites exists if there is some 
dependence among the site vectors and/or some assumed structure 
among the site parameters. We illustrate with a simple example and 
see what sort of gain is possible using regional analysis. 

Ezample 9. 7-Multivariate Log Normal For our model let us 
assume that L1 , • • •  ,Ln are independent, which assumes indepen­
dence over years. Further, let us assume stationarity over years so 
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that all }U;'s have the same distribution and assume that the com­
mon distribution is a multivariate two parameter log normal. That 
is, assume 

In general, our parameter 8 is 2k + { 1/2) (k2 - k) dimensional, there 
being k l'i 's, k u; 's, and {1/2) {P - k)p,/s. Site i has a marginal log 
normal distribution with parameters P.i and u, . We are interested in 
estimating quantiles at site 1, which are given by 

e., = exp[JJ1 + Zq0'1 J ,  

and are readily obtainable from the assumed log normal model . Now 
MLEs of all parameters can be found and in particular the MLE of 
the desired e., can be obtained . It will depend only on site 1 data, 
and, consequently, dependence alone contributes nothing more than 
would a single site analysis for this model . 

Let us assume some structure among the site parameters to 
examine the effect of such an assumption. .AJJ a simple assumed 
structure among the site parameters, let us assume that all l'i are 
proportional to p. and all u, are proportional to u with known pro­
portionality constants. The k l'i 's are reduced to a single parameter 
p. and the k u, 's to the single u. {If one were to try to rationalize 
such an assumption one could hypothesize that the proportionality 
constants depend on known basin characteristics.) Let C, and D, , i 
= 1 ,  . . .  ,k, denote the known proportionality constants for the JJi 'S and 
the O'i 's, respectively ; that is 

JJi = C,p. and O'i = Diu for i = 1, . . .  , k. 

An estimate of the desired e., = exp [JJl + z., 0'1 ) can be obtained if 
estimates of p.1 and u1 are found. So temporarily, let 's concentrate 
on estimating p.1 . Now 

1 n 
- "" tn  X· · nC: LJ '1 

• j=1 

is an unbiased estimator of p. for each i, so 
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1 k C n 
- � -1 � ln X· ·  
k LJ nC· LJ '1 

i= l • j= l 

is an unbiased estimator of IJl that uses all the regional data: 

(3 .34) 

37 

This variance could now be compared to the single site estimator 
variance, which is D1u2 / n, for various choices of C ; 's, D ; 's, and 
p1,; 's. One can see that the best one can hope to do is to have the 
multisite variance 1/k times the single site variance, which would 
occur when the double sum over r and s in {3 .34) behaves like k. 
Such gain would be inherited by the estimator of the desired quantile. 

The not-surprising end result is that regional analysis can, under 
an assumption of a strong relationship among site parameters and no 
cross-correlation, essentially expand the effective data set from that 
at the single site to the entire region; that is, from n observations to 
nk observations. The corresponding reduction in standard error of 
estimate is by a factor of ..fk. In practice the gain due to regional­
ization will lie somewhere between no gain and the full gain possibly 
obtainable with no cross-correlation and a strong assumed structure 
among the site parameters. 

A variety of regionalization studies have recently been performed. 
Lettenmaier and Potter { 1985) propose a regional model and report 
on the relative performance of several methods of regionalization 
under the assumption that the proposed regional model is correct. 
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Hosking et al. (1985b) and Wallis and Wood (1985) also report on 
regional analysis based on index flood methods. Lettenmaier et al. 
(1986) performed an extensive simulation study designed to explore 
the robustness of selected regional and single site estimation proce­
dures with respect to: (a) the assumed underlying model; (b) moment 
(including higher moments) heterogeneity over sites; and (c) varia­
tions in record length over sites. Wiltshire (1986a) gives a procedure 
for classifying basins into distinct, homogeneous groups for regional 
flood frequency analysis. It is based on coefficients of variation and 
does not use skewness. Further it does not give unique solutions. 
Also, Wiltshire (1986b) gives two tests for regional homogeneity and 
applies them in Wiltshire ( 1986c) . 

These regionalization studies have focused increased attention 
on the idea that hydrologically homogeneous regions need to be 
delineated in terms of hydrologically meaningful basin characteristics 
and flood statistics as well as in terms of geographic location . Early 
regionalization efforts using index flood methods were hampered 
by difficulties in defining geographic regions in which all sites had 
similarly shaped frequency curves. These difficulties led to use of 
regionalization by regression methods, which were better able to 
represent the relationships between basin characteristics and flood 
frequency curves (Benson, 1962) . These two competing approaches 
to regionalization can now be reconciled. The regression method 
describes the set of all flood frequency distributions in a study area in 
terms of one or more sets offunctions of basin parameters. The index­
flood approach postulates that the set of all flood-frequency curves 
can be partitioned into a small number of classes , each one of which 
can be characterized by a single regional frequency distribution or 
quantile function. Depending on the number of classes, there will be 
more or less within-class variability around the regional distributions. 
For each regional-distribution class, the regional-regression functions 
define a corresponding set of basin-characteristic values that produce 
distributions in that class. These sets of basin characteristics thus 
define hydrologically homogeneous regions: each basin in a region has 
a frequency distribution belonging to the same regional-distribution 
class, even though individual parameter values may vary from basin 
to basin. These regions, moreover, are not simply geographical areas, 
and it may be difficult to portray them effectively on maps. 

Much of the recent activity on regional flood analysis is based 
on indez flood method8. In such methods, the data at each site 
are "normalized" (often using the at-site-mean) and then using all 
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(over all sites) "normalized" data, the parameters of an assumed 
parametric model for the regional normalized flood are estimated. 
The actual estimation technique used may depend on the assumed 
model . Once the regional parameters are estimated, the distribution 
at each of the sites is assumed to be the same, except for the factor 
used in the "normalization." Such an assumption is strong and 
similar to that made in Example 3. 7. 

The following is an example, more detailed than earlier ones, 
that considers and illustrates index flood methods for three models. 

Ezample 9. 8-Three Flood Models Let N denote the number 
of sites and let e. ( q) be the quantile function of the annual peak 
flood distribution at site i. This quantile function depends on the 
flood distribution at site i even though it does not appear in the 
notation . Let J.'i be the mean at site i. Let e( q) be an assumed 
regional quantile function. Note that the notation here is different 
from that used earlier where q was subscripted. Here q is used in 
the argument position of the quantile function to stress that aspect 
of the function. 

The indez flood assumption is that 

(3.35) 
That is, the site-i quantile function is assumed to equal the site-i 
mean times the regional quantile function. This is a strong as­
sumption and imposes constraints on the site distributions that are 
mentioned later. 

To estimate the site-i quantile function, e, (q) ,  an estimate of J.'i 
and an estimate of e(q) are needed. Estimate J.'i by fit ,  the sample 
mean at site i. To estimate e(q) , first obtain the sample PWMs 
at each site and then average (possibly a weighted average) these 
sample PWMs to get regional sample PWMs. Use these regional 
sample PWMs to estimate the parameters of an assumed regional 
distribution with quantile function e(q) . Replace the parameters in 
e(q) by the estimated parameters to produce e(q) . Finally, 

(3.36) 

The three index flood models denoted by WAK/R, GEV-1 ,  and 
GEV-2 can now be defined. WAK/R is the above-described index 
flood scheme with e( q) defined by 
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(3.37) e(q) = m + all - (1 - q)"] - ell - ( 1 - q) -4] . 

e(  q) is the quantile function of the Wakeby distribution, which is 
a five-parameter distribution defined by its quantile function (which 
is the inverse of a cdf) . An account of the Wakeby distribution and 
its properties is given in Hosking (1986b) . 

GEV-1 is the above-described index flood scheme with an as­
sumed GEV for the regional distribution. Here 

(3.38) e(q) = a + (,8/�t) { l - 1-tn qJIC }. 

[See equation (3 .12) and Example 3 .3. ]  
GEV-2 is similar to GEV-1 inasmuch as equation (3 .35) is as­

sumed and GEV is the assumed regional distribution . The two 
models differ in the method used to estimate the parameters. For 
GEV-2 the location and scale parameters, at and .Bi in equation 3 . 12, 
are estimated for each site using site data and the parameter 1t is 
estimated regionally. 

All three procedures are somewhat ad hoc, inasmuch as they 
possess strong internal constraints under certain assumptions; how­
ever, they may provide a useful and robust approach. To illustrate 
the type of constraint that can arise, suppose that each of the i sites 
has a GEV distribution with , say, parameters oi , ,8i , and lti ·  Under 
index flood assumption equation (3 .35) , one can deduce that lti = �t; 
and oi/.Bi = o;/,8; for i :f:. j. lti = �t; says that all the sites have the 
same shape parameter, and oi/.Bi = o;/,8; says that all sites have the 
same location to scale ratio, which makes the site distributions quite 
homogeneous. 

A simulation study was performed to illustrate the performance 
of the three regional procedures. Again the emphasis is on illus­
tration . It is not intended that the numbers that appear in this 
simulation resemble nature . In fact,  it seems unlikely that one would 
ever find such homogeneity over so many stations with such long 
records. 

Monte Carlo Experiments 

Consider five GEV Floodsets (Table 2) ,  for one of which (Flood­
set 1 ) a more detailed specification is given in Table 3 .  Floodsets 
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TABLE 2 Summary Description of Five Floodaeta 

Floodaet Number N !! p heterogeneous 

1 41 100 0.00 yea 
2 41 100 0.00 no 
8 82 100 0.00 no 
4 41 200 0.00 no 
5 41 100 0.26 yea 

1 ,  2,  and 5 have 4,100 station-years of data ( n = 100 years at n 
= 41 stations) . All sites have high coefficient of variation (Cv) and 
high skew. Floodset 2 is similar to Floodset 1, but each site has a 
distribution identical to that of site 21 of Floodset 1 .  Floodset 3 is 
similar to 2, but with 82 sites, while 4 is similar to 2, but with n 
= 200 for all sites. Floodset 5 is similar to 1 ,  but with an average 
cross-correlation coefficient among annual floods at each site of .26. 

The five Floodsets being considered here have very high Cv 's 
and skewness and are representative of the extreme flood potentials 
that occur in portions of the arid southwestern United States. 

The correlation between sites i and j of Floodset 5 is 

(3.39) Pi,; = exp(- a  X do;) ,  

where d,; are iid from a uniform distribution, and a is chosen to give 
p = 0.26. The simulation data were generated as multivariate normal 
and then transformed to GEV. 

To allow for ease of comparison between sites that have different 
e. ( q) , the e. (q) were scaled as 

(3 .40) !· (T) = (, (q) - e. (q) • e. (q) 
. 

Similarly, to allow for comparisons of the e(q) between Floodsets, 
scaling using equation (3.41) was performed. 

(3 .41) 

Here, T is the return period, i.e . ,  T = 1/p and p = 1 - q. 
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TABLE 3 Description of Floodset 1 

S i te 1(. J) a Mean S . D .  C . V .  Skew Kur tos i s  N Probabi l i t i e s  
0 . 9900 0 . 9990 0 . 9999 

Quan t i l e s  

1 -0 . 1 76900 17 . 5 1 0  10 . 52 24 . 3  30 . 37 1 . 25 3 . 00  29 . 4  100 . 1 34 . 9  247 . 4  4 1 6 . 4  

2 -0 . 175557 17 . 524 10 . 76 24 . 5  30-. 3 1  1 . 24 2 . 97 28 . 7  100 1 34 . 8  246 . 6  4 1 3 . 8  

3 -0 . 1 742 1 4  17 . 538 1 L 0 1 24 . 7  30 . 24 1 . 22 2 . 95 28 . 0  100 1 34 . 7  245 . 7  4 1 1 . 2 

4 -0 . 17287 1 17 . 552 1 1 . 25  25 . 0  30 . 18 1 . 21 2 . 92 27 . 4  100 1 34 . 6  244 . 8  408 . 7  

5 -0 . 17 1528 17 . 567 1 1 . 50 25 . 2  30 . 12 1 . 20 2 . 90  26 . 7  100 1 34 . 5  244 . 0  406 . 2  
6 -0 . 170 1 85 17 . 58 1 1 1 . 74 25 . 4  30 . 05  1 . 18 2 . 87 26 . 1  1 00  1 34 . 4  243 . 1 403 . 7  
7 -0 . 168842 17 . 595 1 1 . 99  25 . 6  29 . 99  1 . 17 2 . 85 25 . 6  100 1 34 . 4  242 . 3  40 1 . 3  
8 -0 . 167498 17 . 609  1 2 . 23 25 . .9 29 . 93 1 . 16 2 . 82 25 . 0  100 1 34 . 3  241 . 4  398 . 8  
9 -Q . 166155 17 . 623 12 . 48 26 . 1  29 . 87 1 . 1 5 2 . 80  24 . 5  100 1 34 . 2  240 . 6  396 . 4  

1 0 -0 . 1 648 1 2  17 . 637 12 . 72 26 . 3  29 . 8 1 1 . 1 3 2 . 77 24 . 0  100 134 . 1 239 . 8  394 . 0  

1 1 -0 . 163469 17 . 651 12 . 97 26 . 5  29 . 74 1 . 1 2 2 . 75 23 . 5  100 1 34 . 0  �::1 . 0  39 1 . 6  
1 2 -0 . 1 62126 17 . 665  1 3 . 2 1 26 . 7  29 . 68  1 . 1 1 2 . 73 23 . 0  100 1 34 . 0  238 . 1 389 . 3  
1 3  -0 . 160783 17 . 680  13 . 45 27 . 0  29 . 62 1 . 10 2 . 70 22 . 5  100 1 33 . 9  237 . 3  387 . 0  
1 4 -0 . 159440 17 . 694 13 . 70 27 . 2  29 . 57 1 . 09 2 . 68  22 . 1 100 1 33 . 8  236 . 5  384 . 6  
15 -0 . 158097 17 . 708 13 . 94 27 . 4  29 . 51 1 . 08 2 . 66  2 1 . 6  100 1 33 . 7  235 . 7  382 . 4  
16 -0 . 156754 17 . 722 1 4 . 1 9  27 . 6  29 . 45 1 . 07 2 . 64 2 1 . 2  100 1 33 . 7  235 . 0  380 . 1 
17 -0 . 1554 1 1 17 . 736 14 . 43 27 . 9  29 . 39 1 . 05 2 . 6 1 20 . 8  100 1 33 . 6  234 . 2  377 . 9  
18 -0 . 154068 17 . 750 14 . 68  28 . 1 29 . 33 1 . 04 2 . 59 20 . 4  1 00  1 33 . 5  233 . 4  375 . 6  
19 -0 . 152725 17 . 764 14 . 92 28 . 3  29 . 28  1 . 03 2 . 57 20 . 0  100 133 . 4  232 . 6  373 . 4  
20 -0 . 151382 17 . 778 15 . 17 28 . 5  29 . 22 1 . 02 2 . 55  1 9 . 6  100 1 33 . 4  23 1 . 9  37 1 . 2  
21 -0 . 150038 17 . 793 15 . 4 1 28 . 8  29 . 16 1 . 01 2 . 53 19 . 3  100 133 . 3  231 . 1  369 . 1 
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22 -o . 1 48695 17 . 807 15 . 65 29 . 0  29 . 1 1 1 . 00 2 . 5 1 18 . 9  100 1 33 . 2  230 . 4  366 . 9  
23 -o . 1 47352 17 . 82 1  15 , 90  29 . 2  29 . 05 0 . 99  2 . 49 1 8 . 6  100 1 33 . 2  229 . 6  364 . 8  
24 -o . 1 46009 17 . 835 16 . 14 29 . 4  29 . 00  0 . 99  2 . 47 18 . 3  1 00  1 33 . 1 228 . 9  362 . 7  
25 -0 . 1 44666 17 . 849 1 6 . 39 29 . 6  28 . 94 0 . 98 2 . 45 17 . 9  100 1 33 . 0  228 . 1 360 . 6  
26 -0 . 143323 17 . 863 16 . 63 29 . 9  28 . 89  0 . 97 2 . 43  17 . 6  1 00  1 33 . 0  227 . 4  358 . 6  
27 -0 . 1 4 1 980 17 . 877 1 6 . 88  30 . 1  28 . 83 0 . 96  2 . 41 17 . 3  100 1 32 . 9  226 . 7  356 . 5  
28 -0 . 1 40637 17 . 89 1  17 . 12 30 . 3  28 . 78 0 . 95 2 . 39 1 7 . 0  100 1 32 . 9  226 . 0  354 . 5  
29 -0 . 139294 1 7 . 905 17 . 37 30 . 5  28 . 73 0 . 94 2 . 38  16 . 8  100 1 32 . 8  225 . 3  352 . 5  
30 -0 . 1 37951 1 7 . 920 17 . 61 30 . 8  28 . 67 0 . 93 2 . 36  1 6 . 5  100 1 32 . 7  224 . 6  350 . 5  
3 1  -0 . 1 36608 17 . 934 17 . 85 3 1 . 0  28 . 62 0 . 92 2 . 34 1 6 . 2  1 00  1 32 . 7  223 . 9  348 . 6  
32 -o . 1 35265 17 . 948 1 8 . 1 0  3 1 . 2  28 . 57 0 . 92 2 . 32 1 6 . 0  100 1 32 . 6  223 . 2  346 . 6  
33 -0 . 133922 1 7 . 962 1 8 . 34 3 1 . 4  28 . 52 0 . 9 1 2 . 30  15 . 7  100 1 32 . 6  222 . 5  344 . 7 
34 -0 . 1 32579 17 , 976 18 . 59 3 1 . 7  28 . 47 0 . 90  2 . 29 1 5 . 5  100 1 32 . 5  22 1 . 8  342 . 8 
35 -0 . 1 3 1 235 1 7 . 990  18 . 83 3 1 . 9  28 . 42  0 . 89 2 . 27 1 5 . 2  100 1 32 . 5  221 . 1  340 . 9  
36 -o . 129892 18 . 004 19 . 08  32 . 1  28 . 37 0 . 88  2 . 25  15 . 0  100 132 . 4  220 . 4  339 . 0  

37 -o . 128549 19 . 018 19 . 32 32 . 3  28 . 32 0 . 88  2 . 23 1 4 . 7  100 132 . 4  2 19 . 8  337 . 1 
38 -0 . 127206 18 . 033 19 . 57 32 . 6  28 . 27 0 . 87 2 . 22 1 4 . 5  100 1 32 . 3  2 19 . 1 335 . 3  

39 -0 . 1 25863 1 8 . 047 1 9 . 8 1 32 . 8  28 . 22 0 . 86  2 . 20 1 4 . 3  100 1 32 . 3  2 18 . 5  333 . 5  

40 -o . 1 24520 1 8 . 061 20 . 06  33 . 0  28 . 1 7  0 . 85 2 . 1 8  1 4 . 1 100 1 32 . 2  217 . 8  33 1 . 7  

4 1  -o . 1 23 1 77 18 . 075 20 . 30  33 . 2  28 . 1 2  0 . 85 2 . 1 7  1 3 . 9  100 1 32 . 2  2 17 . 2  329 . 9  

To ta l S ta t i on-years = 4100 
SCALED REGIONAL aJRVE (HARMONIC MEAN) 4 . 500 7 . 738 12 . 266 
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Floodaet 1 and 2: 2'1 (T) 

For comparison purposes, it may be helpful to consider �i of 
Floodset 2 fitted by an at-site method (unbiased PWM) . AB shown in 
Figure 3, the estimated quantiles from successive samples are highly 
variable, with 25 percent of the T10,000 estimates being more than 
27 percent too big, and a further quarter being below 30 percent of 
their true value. This confirms what was stated earlier. For large T 
estimates are highly variable. 

For Floodset 2 (using all sites) , the GEV-1 and GEV-2 results 
for site 21 are given in Figures 4 and 5, respectively, where it can be 
seen that the estimators are unbiased and remarkably stable . Fig­
ure 6 shows the comparable analysis to that of Figures 3-5 but for 
WAK/R. The WAK/R results exhibit little variability between suc­
cessive estimates but the bias of -15 percent for the T 1o,ooo event may 
be unacceptably large for the purpose of estimating the recurrence 
interval of a probable maximum flood (PMF) . Floodset 2 is homoge­
neous, and as such the results obtained for each site are, except for 
sampling variability, identical, but this situation does not extend to 
Floodset 1 and 5. The quantile estimates for nonrepresentative sites 
in an heterogeneous Floodset may be severely biased, but what is 
rather surprising and very useful in the context of this report is the 
phenomenon that the quantile estimates for representative sites in 
a heterogeneous floodset are essentially as good as those obtainable 
from homogeneous Floodsets (for instance, compare Figure 7 with 
Figure 4, or Figure 8 with Figure 5) . 

With GEV-1 and WAK/R analyses of heterogeneous Floodsets 
some sites will have negatively biased (( q) [e.g. ,  Figure 9 gives Z1 ( T)) , 
while others will be positively biased [Figure 10 shows 2'41 ( T) for 
Floodset 1 and GEV-1) . 

H the Floodset is large enough and the Cv is high, better results 
for the less representative sites (if needed) may be obtained by GEV-
2 (compare Figure 11  and 9, and 12 with 10) . It is dear that 
heterogeneity in a Floodset need not cause undue alarm, providing 
that the design site is more or less representative of the set as a whole. 
Finally, let it be recognized that one need not necessarily abandon an 
index flood approach to flood frequency analysis just because there 
is heterogeneity among the floodset catchments. 

Floodaet 5: .t. (F) 
AB suggested earlier the observed correlation among the sites 
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FIGURE 3 At-site GEV quantile estimates (based upon unbiased PWM's) 
for site 21 of Floodeet 2, showing the median as well as the upper and lower 
quartile and decile values. 

Floodset 2, Site 2 1 ,  GEV-1 unbiased PWM 
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FIGURE 4 GEV-1 quantile estimates (based upon unbiased PWM's) for site 
21 of Floodset 2, showing the median as well as the upper and lower quartile 
and decile values. 
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Floodset 2, Site 2 1 ,  GEV-2 unbiased PWM 
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FIGURE 5 GEV-2 quantile estimates (based upon unbiased PWM's) for site 
21 of Floodset 2 ,  showing the median as well as the upper and lower quartile 
and decile values. 

Floodset 2, Site 2 1 ,  WAK/R unbiased PWM 
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FIGURE 6 WAK/R quantile estimates (based upon unbiased PWM's) for site 
21 of Floodset 2, showing the median as well as the upper and lower quart ile 
and decile values. 
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Floodset 1 ,  Site 2 1 ,  GEV-1 unbiased PWM 
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FIGURE 7 GEV-1 quantile estimates (based upon unbiased PWM's) for site 
21 of Floodset 1, showing the median as well as the upper and lower quartile 
and decile values. 

Floodset 1 ,  Site 1 ,  GEV-2 unbiased PWM 
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FIGURE 8 GEV-2 quantile estimates (based upon unbiased PWM's) for site 
21 of Floodset 1, showing the median as well as the upper and lower quartile 
and decile values. 
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Floodset 1 ,  Site 41 ,  GEV-2 unbiased PWM 
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FIGURE 9 GEV-1 quantile estimates (baaed upon unbiased PWM's) for site 
1 of Floodset 1, showing the median as well as the upper and lower quartile 
and decile values. 

Floodset 5, Site 2 1 ,  GEV-1 unbiased PWM 
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FIGURE 10 GEV-1 quantile estimates (baaed upon unbiased PWM's) for site 
41 of Floodset 1, showing the median as well as the upper and lower quartile 
and decile values. 
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Floodset 1 ,  Site 21,  GEV-2 unblasea PWM 
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FIGURE 1 1  GEV-2 quantile estimates (based upon unbiased PWM's) for site 
1 of Floodset 1, showing the median as well as the upper and lower quartile 
and decile values. 

Floodset 1 .  Site 1 ,  GEV-1 unbiased PWM 
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FIGURE 12 GEV-2 quantile estimates (based upon unbiased PWM's) for site 
41 of Floodset 1, showing the median as well as the upper and lower quartile 
and decile values. 
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Floodset 1 ,  Site 41,  GEV-1 unbiased PWM 
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FIGURE 13 GEV-1 quantile estimates (baaed upon unbiased PWM's) for site 
21 of Floodset 5, showing the median as well as the upper and lower quartile 
and decile values. 

of real world Floodsets is usually low, and as such need not be of 
great concern to those making the types of analyses presented here. 
While a p of 0.26 does cause a deterioration in the e, ( q) , it is not of 
the magnitude that is implied by Equation (3 .27) . To illustrate the 
actual degradation likely to be experienced as a result of correlation 
compare Figures 7 and 13. 

Ploodset 3 and 4: t, (T) and z(T) 
It has been stated that if one had 40 years of record at 100 

gages in a region, then one would have 4,000 station-years of data. 
However, this is still far less than the 10,000 to 1 ,000,000 station­
years of data that would be desirable to reliably and credibly estimate 
floods with return periods on the order of 104-1()6 years (National 
Research Council, 1985) .  Morever, when robust regional estimators 
are used the reduction in the size of the confidence invervals may be 
rather small after the data sets grows larger than a few thousand 
station-years. 

As Floodsets increase in size the e( q) rapidly approach an esti­
mate that changes only incrementally as further sites are added. For 
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Floodset 1 and G EV - 1  the median and upper and lower deciles of the 
growth curve, z( T) are shown on Figure 14. It is also interesting to 
compare Figure 14 and Figure 15,  which shows similar results from 
the addition of a further 41 sites, each with an n of 100. It is clear 
that once the N of a Floodset gets large the addition of more sites 
will increase the accuracy of e. ( q) only very slowly. 

It would appear that if we wish to increase the accuracy of 
e, (q) we must devise a method for improving the estimate of the 
at-site component of regionalization. Regressions or similar methods 
from the ungaged watershed approach are possibilities, and longer 
records might be another way to improve e, (q) .  AB can be seen from 
comparing Figure 16 and Figure 7 the improvements in e, that result 
from longer records may also be slqw in arriving. Even if very long 
records exist, one should be wary of nonstationarities. 

It would appear that the chief benefits of accruing an extremely 
large floodset would be, first, to allow for a more judicious selection 
of floodset sites, and second, to serve as a data base for better 
estimation of the at-site component of the analysis. 

Floodset 2, G EV-1 unbiased PWM 
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FIGURE 14  GEV-1 growth curve estimatea (based upon unbiased PWM's) , 
for Floodset 2, showing the median as well as the upper and lower decile values. 
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Floodset 3, GEV-1 unbiased PWM 
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FIGURE 1 5  GEV-1 growth curve estimates (based upon unbiased PWM's), 
for Floodset 3, showing the median as well as the upper and lower decile values. 

Floodset 4, Site 21,  GEV-1 unbiased PWM 
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FIGURE 16 G EV- 1 quantile est imates (based upon unbiased PWM's) for site 
21 of Floodset 4, showing the median as well as the upper and lower quartile 
and decile values. 
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ASSESSMENT 

In a regional analysis, a single storm/hydrologic event may pro­
duce annual peak readings at all or most sites in a region. For such 
a year one might expect the readings to be highly correlated, and, 
consequently, the regional information is not much more than single 
site information . Such dependence detracts from any gain that might 
be obtained in assuming a strong structure among site parameters. 
For instance, if the Pr,•  are large then the double sum in (3 .34) may 
grow like Jc2 and negate the /c2 in the denominator. One would not 
be much better off than by doing a single-site analysis. 

Another method that has potential for use in a regional analysis 
is that of employing empirical Bayesian techniques. In a Bayesian 
analysis some prior distribution on the parameter space is assumed. 
Regionalization might suggest that the various sites have the same 
prior distribution . The neighboring sites could then be used to es­
timate the prior distribution, and then a Bayes estimator of the 
parameters at the site of interest could be obtained based on the 
estimated prior distribution, using empirical Bayes methods. 

Just as historical/paleoflood data ought not to be ignored, re­
gional data should not be either. The problem in regional analysis 
is twofold. First , how does one select/identify and check appropriate 
joint parametric models? One has difficulty in selecting a single site 
model, and selecting a joint (versus marginal) model is an order of 
magnitude more difficult. Second, since the potential gain in multi­
site analysis is primarily due to the assumed structure among the 
site parameters, how does one select and verify such a structure? 

A STRATEGY FOR ESTIM ATING e, (q) 

From the preceding discussions it would appear that a strategy 
for estimating e. ( 'I) for a specific site i of interest would be to: 

1 . Compile a large set of flood records from sites that are hy­
drologically similar to the site of interest. (See chapter 5 discussion 
on streamflow data sample size.) 

2. Depending upon the amount and kind of data, pick a ro­
bust regionalization procedure including the model and estimation 
method. 

3. Estimate e, ( q) and obtain the standard error of estimator via 
Monte Carlo, jackknife, or bootstrap type simulations (Efron, 1982) , 
as appropriate. 
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4. Check to see that the estimation method does not have ex­
cessive bias at the desired return period and check consistency. 

5. Using alternative parent distributions (depending upon how 
sure one is about the choice in step 2, check to see that the method 
selected is sufficiently robust for the quantile or quantiles of interest . 

CONCLUSION 

AB noted in the beginning of this chapter, the essential ingre­
dients of rtgionalization, historical/paleoflood data, and robustness 
associated with the estimation problem have been discussed more or 
less individually. These should now be combined. With few excep­
tions the discussion has focused on the annual peak data case . Of 
course, one has more than just annual peak data and the utility of the 
other data, such as flood volumes and durations, should be explored. 
Most of the statistical considerations discussed in this chapter apply 
also to these other types of flood data. 

The bulk of the cited literature is very recent and does not 
contain a satisfactory general solution. H one were willing to accept 
a specific parametric model (capable of handling regionalization and 
incorporating historical/paleoflood data) , then the tools are in place 
to derive the desired estimate and obtain a measure of the precision 
of the estimator. Since there is no way in practice that one is going 
to be able to check the assumed model, one has to adopt a procedure 
that is robust .  The work on tail behavior is promising and needs 
to be articulated in a regional setting; it is ready built to handle 
historical data that can be interpreted as censored random samples. 
Parametric modeling and analysis still have a role, and can be used 
as a base on which to compare robust procedures. 
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4 

Runoff Modeling Met hods 

INTRODUCTION 

This chapter considers methods for estimating flood probabil­
ities using runoff models. The basic idea is as follows. A runoff 
model is selected and calibrated for the catchment in question. Then 
meteorologic inputs are developed, the most important of which is 
rainfall. Associated with these inputs is some sort of probabilistic 
structure, either implicit or explicit . The runoff model is run with 
the meteorologic inputs, and streamflows are obtained. Based on 
these streamflows, flood exceedance probabilities are estimated, with 
the method of estimation depending on the assumed probabilistic 
structure of the meteorologic inputs, especially rainfall . 

The most obvious advantage of a runoff modeling method is that 
it can be used at locations at which there is little or no streamflow 
data (though the calibration of the runoff model depends on the 
availability of some data) . For this reason runoff modeling meth­
ods for estimating flood probabilities are in common use , though 
nearly all applications involve relatively common floods (with ex­
ceedance probabilities that are greater than or equal to 10-2) .  A 
second advantage of runoff models is their ability to generate entire 
hydrographs, which may be critical in applications for which flood 
volumes are important . Finally, with runoff models it is possible to 
account explicitly for changes in land use. 

55 
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For our problem-the estimation of exceedance probabilities of 
extremely rare floods-the greatest potential advantage of runoff 
modeling has to do with regionalization. In a region of homogeneous 
meteorology, the differences in population flood frequency distribu­
tions at various sites will be due largely to differences in the physical 
characteristics of the corresponding catchments, rather than to differ­
ences in meteorology. Hence it should be advantageous to regionalize 
the meteorologic factors, especially rainfall, and then use a runoff 
model to account for drainage basin characteristics. 

Since their development, runoff models have been used in a vari­
ety of ways to estimate flood probabilities. The applications generally 
have been limited to floods with exceedance probabilities greater than 
or equal to I0-2 or to computations of probable maximum floods. 

The use of a runoff model to estimate flood probabilities involves 
several distinct steps. 

• First , a runoff model must be selected and calibrated for the 
catchment of interest. Either a continuous model or an event model 
can be used. A continuous runoff model simulates both storm events 
and interstorm periods. Hence it continuously models all forms of 
moisture storage, such as soil moisture, groundwater storage, and 
snowpack. An event model simulates only storm events. 

• Once a runoff model has been calibrated, meteorologic inputs 
and an associated probabilistic structure must be developed. A 
continuous runoff model requires a continuous record of rainfall, 
as well as information on conditions that affect the depletion of 
moisture storage, such as potential evapotranspiration, temperature, 
and solar radiation. An event model requires rainfall amounts only 
for the storm events of interest . 

• Before the runoff model can be run using the meteorologic 
inputs, initial conditions must be specified for various model states, 
such as moisture storage . This so-called specification of antecedent 
conditions is not critical in the case of a continuous runoff model, 
since the impact of antecedent conditions usually becomes negligible 

· after the model has simulated a few weeks or months of streamflow. 
In the case of an event model , antecedent conditions must be specified 
for each storm event that is simulated. Hence their specification is a 
critical part of the process. 

• Next the runoff model is run using the meteorologic inputs 
and the specified antecedent conditions. 

• This is followed by estimation of the exceedance probabilities 
of the resulting peak flood discharges. The procedure for doing this 
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depends on the nature of the assumed probabilistic structure of the 
rainfall inputs. In the case of an event model , this step must also 
account for the specification of antecedent conditions. 

• The final step is to estimate the uncertainty in the computed 
probability distribution. 

Many strategies have been proposed and used to conduct each 
of the previously described steps. No attempt is made to review 
the literature on this subject. Instead we focus on those strategies 
which are most appropriate for estimating exceedance probabilities 
of extreme floods. In some cases we also propose new strategies 
that we believe to be promising. We begin by considering runoff 
modeling. Then we focus on the development of meteorologic inputs, 
particularly rainfall. The critical issue here is how to regionalize 
the probabilistic structure that is developed for the rainfall input. 
We follow with a discussion of the estimation of probabilities of 
the simulated peak flood discharges, and conclude with the problem 
of evaluating the uncertainty in the resulting estimated exceedance 
probabilities. 

RUNOFF MODELS 

Runoff models (also known as rainfall-runoff models) are hydro­
logic models which simulate streamflow at one or more locations in 
a catchment. Runoff models require three types of input: meteo­
rologic data, antecedent conditions, and catchment characteristics. 
Hourly rainfall during a storm is an example of meteorologic data. 
Soil moisture at the start of the storm is an antecedent condition. 
Stream channel length and slope are typical catchment characteris­
tics. 

A runoff model is a collection of algorithms that mimic the hydro­
logic processes involved in the transformation of rainfall into stream­
flow. The most important of these processes are the infiltration of 
water into the soil during storm events and the movement or "rout­
ing" of water over the land, through the subsurface, and through the 
channel network . The algorithms composing a runoff model contain 
parameters which represent catchment characteristics. Many of these 
parameters represent physical characteristics that can be directly 
measured, such as channel characteristics. Other parameters, such 
as those governing soil infiltration, are usually specified to produce 
the best possible match between simulated and observed streamflow 
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(where available) . This process is called calibration. When calibrat­
ing models for use in estimating extreme floods it is important to 
calibrate against the largest floods of record so as to minimize the 
degree of extrapolation. 

In addition to simulating hydrologic processes during storm 
events, a continuous model also simulates processes during inter­
storm events. The most important of these interstorm processes are 
depletion of soil moisture by evapotranspiration and drainage and 
the discharge of ground water into the stream channel {baseflow) . 
When a continuous rainfall record is used as input to a continuous 
runoff model , antecedent conditions, such as initial soil moisture, 
need only be specified at the start of the simulation. The model will 
continuously account for changes in soil moisture through the simu­
lation. By starting a continuous simulation well before the time of 
occurrence of the first storm of interest it is possible to minimize the 
impact of the choice of antecedent conditions. An event model, on 
the other hand, simulates only storm events (or sequences of storm 
events) . Hence the specification of antecedent conditions is of much 
greater importance. 

DEVELOPMENT OF METEOROLOGIC INPUTS 

Once a runoff model has been selected and calibrated, the next 
step in using the model to estimate flood probabilities is to develop 
meteorologic inputs and some sort of associated probabilistic struc­
ture. In the case of an event model applied in a region in which 
floods are due to rainfall alone, only rainfall inputs are needed. A 
continuous model requires additional inputs to account for the evap­
otranspiration process. For applications in regions where snowmelt 
is a factor, additional meteorologic inputs are required to model that 
process. In this section we focus on the development of rainfall in­
puts. At the end of this section a few comments are provided on 
other meteorologic inputs. 

Rabd'all Inputs 

Several strategies have been used to develop rainfall inputs for 
use in estimating flood probabilities by runoff modeling. In only 
a minority of cases has the focus been on extreme floods. Hence 
we will focus more on what could be done rather than what has 
been done. We have classified potential methods into three groupe, 
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depending on whether they are based on: (1) direct use of actual 
data, (2) stochastic rainfall models, or (3) synthetic storms. This 
classification is motivated by the probability structure associated 
with each kind of input. When actual data are used as input to 
a runoff model, it is assumed that the data represent a random 
sample of possible rainfall. Stochastic rainfall models are developed 
to reproduce explicitly an inferred probabilistic structure of rainfall. 
The use of synthetic storms is based on the concept of a storm event 
for which explicit exceedance probabilities can be estimated. Note 
that this classification of potential methods is somewhat arbitrary. 
It is not difficult to conceive of methods that have characteristics of 
more than one class. 

It should be kept in mind that rainfall varies over both space 
and time in an extremely complex manner, which to date is only 
partly understood. Furthermore, over certain spatial and temporal 
scales this variability translates into comparable variability in the 
runoff process. The strategies discussed below for developing rainfall 
inputs differ significantly in the extent to which they account for this 
temporal and spatial variability. 

Direct Use of Actual Data 

The most obvious approach to using runoff modeling to estimate 
flood probabilities is to run a calibrated continuous runoff model 
using one or more long continuous records of rainfall that have been 
measured in or near the catchment of interest. It is assumed that 
the observed rainfall records can be considered to be a random sam­
ple from a population of rainfall sequences. A modification of this 
approach is to restrict the modeling to storm events that are judged 
to be significant. For example, some simple criteria can be used to 
select the most significant storms from each year of the observational 
record. These storms can then be run through a calibrated event 
runoff model, and the largest peak discharge in each year retained 
for subsequent analysis. It is assumed that the selection criteria en­
sure that the storm that would produce the annual peak would be 
included in the selected set. This approach had been demonstrated as 
early as 1957 (Paulhus and Miller, 1957) and has been used routinely 
by the U.S. Geological Survey (e.g. , Hauth, 1974; Thomas, 1982, 
1986a,b; Krug and Goddard, 1985) . In these applications there has 
been no attempt at regionalization; unless this can be done, the 
direct use of station data is not a promising method for estimating 
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exceedance probabilities of extreme floods, in view of the relatively 
short length of available rainfall records. 

Stochastic Models 

Stochastic models have several conceptual advantages for use in 
generating rainfall inputs to runoff models. Generic model structures 
can be developed based on data from long records or dense networks. 
This in itself is a form of regionalization . The resulting model can 
then be calibrated for the site of interest, allowing an additional 
opportunity for regionalization. 

Stochastic rainfall models fall into three broad groups. One­
dimensional temporal models simulate rainfall at a point. Multidi­
mensional space-time models simulate rainfall in both space and time, 
commonly employing random field theory to preserve the known reg­
ularities in the space-time structure of rainfall. Intermediate between 
these groups are multistation models; these are based on temporal 
models that are fitted to station data and linked together to pro­
vide some degree of spatial structure by preserving certain cross­
correlational properties. 

Of these three groups, one-dimensional temporal models have 
received the most attention. [See Waymire and Gupta (1981) for a 
recent survey.] Due to intermittency of the rainfall process at small 
time scales, such as hours or days, the general approach is to model 
separately the occurrence of rainfall events (suitably defined} , their 
duration, and the amount of rainfall in each event. Models have 
been constructed for both continuous and discrete time, with the 
day being the most common interval of discrete models. 

Despite the significant body of literature on one-dimensional 
temporal models, there is some question as to whether they ad­
equately model extreme rainfalls. Valdes, Rodriguez-Iturbe, and 
Gupta (1985} addressed this question in the following way. Using 
the multidimensional space-time model of Waymire, Gupta, and 
Rodriguez-Iturbe (1984} , they simulated rainfall traces at a fixed 
location. They then aggregated the data over various time intervals, 
fitted the parameters of three well-known one-dimensional temporal 
models to the aggregated data, and generated rainfall traces from the 
fitted models. Extreme value analysis of all rainfall traces indicated 
that none of the temporal models was able to reproduce correctly 
the upper tail distribution of the multidimensional model on which 
it was based. 
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Multidimensional space-time models have been developed in re­
cent years to preserve known regularities in the structure of rainfall 
in space and time. For example, the previously mentioned model of 
Waymire, Gupta, and Rodriguez-Iturbe (1984} captures the observed 
space-time structure of rainfall in extratropical cyclonic storms and is 
consistent with the empirical results of Zawadzki (1973} concerning 
the covariance structure of rainfall intensities. Space-time model­
ing, however, is in its infancy; fully operational models may not be 
available for several years. Of particular concern is the problem of 
estimating the large number of parameters that space-time modeling 
requires. In fact no space-time models have been fitted to actual 
data. Furthermore, in many practical applications the lack of a suffi­
ciently dense gage network may make space-time modeling infeasible. 
An alternative is to use a space-time model based on radar data, such 
as the one developed by Kavvas and Herd (1985} . In addition to the 
issue of parameter estimation , there are two other questions regard­
ing the use of space-time models to estimate the probabilities of rare 
floods. First , how well do space-time models represent extreme rain­
falls? Second, what level of space-time detail is required for runoff 
modeling? To date, there appears to have been no research on these 
questions. 

Multistation models fall between one-dimensional temporal mod­
els and multidimensional space-time models. Generally, they are 
based on temporal models that have been modified to account for 
spatial structure. In several cases multi-station models have been de­
veloped specifically to provide rainfall inputs to runoff models. Two 
of these cases are discussed below. 

Franz, Kraeger, and Linsley (1986} introduced a multistation 
rainfall model that they used in a continuous runoff model to es­
timate probabilities of flood events with recurrence intervals of up 
to 104 years. The rainfall model generates hourly rainfall at two 
stations. At each station the model is based on a nonobservable 
background process that is assumed to be Gaussian and autoregres­
sive. Values of the background process yield zero rainfall when they 
fall below a specified threshold (appropriately defined to preserve the 
run-properties of the data) ; values above the threshold are converted 
into rainfall by a two-parameter nonlinear transformation. The at­
site parameters are seasonally estimated to preserve the following 
characteristics of station rainfall: probability of a storm; probabil­
ity of rain in any given hour; mean, variance, and distribution of 
hourly intensity during storms; distribution of storm lengths; serial 
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autocorrelation. The single-station model is generalized to a two­
station model through the background process, which is assumed to 
be bivariate normal. The generalized model is calibrated with sta­
tion data to preserve the probability of joint occurrences at lag-zero 
through lag-two. With respect to the specific station characteristiC& 
that were targeted for preservation, the performance of the model 
was deemed satisfactory, except in the case of the distribution of 
storm lengths. The model also did an adequate job of mimicking the 
probability distribution of the annual maximum depths for durations 
of 1, 12, 24, and 36 hours. However, the model was unable to preserve 
adequately the distribution of interstorm lengths. 

Bras et al. (1985) also developed a multistation rainfall model 
that was used to generate rainfall inputs to an event runoff model. 
The rainfall model generates the starting time, total depth, and dura­
tion of the storm; determines the subbasin in which the storm center 
is located and the number of subbasins affected by the storm; and 
partitions the storm depth at 50 percent and 100 percent of the storm 
duration into corresponding subbasin depths, to preserve the histor­
ically observed spatial covariances. (In the example of Bras et al. , 17 
subbasins were used.) At each subbasin the temporal distribution of 
the storm (called "storm interior" ) is generated based on techniques 
first suggested by Wilkinson and Tavares (1972) . All model param­
eters are estimated seasonally, based on average subbasin rainfall 
computed from gage data. 

In summary, stochastic models offer several conceptual advan­
tages for use in developing rainfall inputs to runoff models to esti­
mate flood probabilities. They can exploit many kinds of data and 
can incorporate details of the space-time characteristics of rainfall. 
Regionalization can be employed in both model development and cal­
ibration. However, further research is needed to evaluate the ability 
of stochastic models to represent extreme events. 

Synthetic Storm�� 

In both of the previous methods, exceedance probabilities as­
sociated with the rainfall inputs are implicit . An observed rainfall 
record is assumed to represent a random sample. Stochastic models 
are used to generate random samples. In the case of synthetic storms, 
exceedance probabilities are explicitly associated with specific storm 
events. 
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AB previously noted, rainfall varies over space and time in an ex­
tremely complex manner. In order to assign exceedance probabilities 
to specific storm events, it is necessary to simplify observed storms by 
averaging over space and time. Typically this is done in the following 
way. First, a storm is defined to have a fixed duration. Sometimes 
this duration is chosen to equal the characteristic response time of 
the catchment, though often other times are used. Next, for any 
given average depth over this duration the exceedance probability is 
estimated from existing rainfall data using methods discussed below. 
Finally, a temporal structure is specified for the storm, usually based 
on observed characteristic temporal distributions of intensity. 

The critical step in the development of synthetic storms is the 
estimation of exceedance probabilities. By far the most commonly 
used approach for doing this, particularly for small storms (100 
mi2 or less) of exceedance probability 10-2 and higher, is based 
on estimating depth-duration-frequency relationships from station 
data. We refer to this as the depth-duration-frequency relationship 
method. A second approach, which has been suggested for use with 
very low probability storms, is based on a historic storm catalog, 
such as the one compiled by the National Weather Service and the 
U.S. Army Corps of Engineers. Methods based on this approach will 
be referred to as storm transposition methods. 

Depth-Duration-Frequency Relationship Method A depth-du­
ration-frequency relationship gives, as a function of duration, the 
total depth of rainfall at a point that will be exceeded in any year with 
specified probability. An individual relationship is estimated from 
data from a single station. The National Weather Service has done 
this for station data throughout the United States (Hershfield, 1961; 
Miller et al. ,  1973) and has interpolated the resulting relationships 
for use at any location. [See Wenzel (1982) for a description of the 
procedures which have been used.) 

A synthetic storm of specified exceedance probability is con­
structed in the following way. The depth is obtained from the depth­
duration-frequency relationship based on the specified probability 
and duration. Next, to account for the fact that depth-duration­
frequency relationships are based on point data, an area adjustment 
factor is applied to the rainfall depth. [Factors such as those devel­
oped by the Weather Bureau (1958) are commonly used (for areas 
less than 400 mi2).] Finally, a method is used to distribute the rainfall 
depth over time. [Wenzel (1982) discusses several such methods.) 
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Depth-duration-frequency relationships can be and have been 
regionalized. The National Weather Service has regionalized depth­
duration-frequency relationships for rainfall depths with probabili­
ties down to 10-2 •  One approach for more extreme rainfall depths 
is to use one of the regionalization techniques discussed in the previ­
ous chapter. Hosking and Wallis (1987) have used such an approach 
with California rainfall maxima. Richards and Wescott (1986) sug­
gest several approaches for regionalization based on a hybrid series 
composed of the largest annual point value of rainfall for a speci­
fied duration from all stations within a 50-mile radius of the site of 
interest. 

Storm Transposition Methods Storm transposition is a deter­
ministic concept that has been used extensively in the development 
of estimates of probable maximum precipitation (PMP) . Its use here 
is a natural extension of that application. 

In the PMP application, storm transposition is based on the 
assumption that there exist meteorologically homogeneous regions 
such that a major storm occurring somewhere in the region could 
occur anywhere else in the region, with the provision that there may 
be differences in the averaged depth of rainfall produced based upon 
differences in moisture potential. In practice, scaling is based on 
the ratio of moisture potential at the transposed location to that 
at the observed storm location. Computation of this ratio is com­
monly performed using precipitable water amounts corresponding to 
observed maximum persisting 12-hour 1 ,000-mb dew points at the 
two sites. Analyses of the latter are found in the Climatic .Atlas of 
the United States (Environmental Data Service , 1968) , and tables 
of precipitable water equivalents can be found in the Manutd for 
Estimation of Probable Mazimum Precipitation (World Meteorolog­
ical Organization, 1986) . In some locations orographic adjustments 
are also made. For our application, the concept of storm transposi­
tion is extended to incorporate the probability of occurrence. Thus, 
it is assumed that meteorologically homogeneous regions exist such 
that a major storm of a given magnitude occurring somewhere in 
the region has the same probability of occurring anywhere else in 
the region , subject to an appropriate adjustment of the magnitude. 
Hence, by using extreme storm ev�nts that have occurred historically 
in a meteorologically homogeneous region that is large compared to 
the catchment of interest , it is possible to "effectively" extend the 
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data base used to estimate storm exceedance probabilities for the 
catchment. 

Ideally, the use of storm transposition to estimate exceedance 
probabilities of very extreme events would be based on a long-term, 
complete record of the space-time characteristics of major storms. 
For the contiguous United States, data have been collected and 
archived for many of the major rainfall events that have occurred 
during the last 100 years or more. A similar data base exists for 
Canada. The U.S . Army Corps of Engineers has developed depth­
area-duration tables for about 570 of the United States storms, 
covering a period between 1875 and 1972. As seen from Figure 
17, these storms are unevenly distributed throughout the United 
States. Limited information is available on an additional 290 storms, 
covering a period between 1819 and 1984. The location of these 
storms is shown on Figure 18. 

There have been only a few applications of storm transposition 
to the problem of estimating exceedance probabilities of rare rainfall 
events. Alexander (1963, 1969) introduced the concept , but provided 
no examples of its application. Newton and Cripe (1973) applied a 
version of Alexander's method to watersheds in the Tennessee Valley 
region; subsequently the basic concept has been used to evaluate 
flood risks to dams and nuclear power plants in the region. Yankee 
Atomic Electric Company (1984) presents an original method for 
using storm transposition to estimate exceedance probabilities of 
rare rainfall events, and used the method to evaluate the probability 
of overtopping of a dam on a small catchment in Vermont. In the next 
section we formalize the concept of storm transposition and outline a 
general approach for using it in conjunction with a complete historic 
storm catalog to estimate storm probabilities. We then show how 
this general approach relates to the methods proposed by Alexander 
(1963, 1969) and Yankee Atomic Electric Company (1984) . 

Formulation of a Storm 'n'ansposltlon Model 

Consider a catchment of area Ac located in a larger "meteorolog­
ically homogeneous" region of area A,. . (In the context of the storm 
transposition model developed here, the term "meteorologically ho­
mogeneous" is defined below. Note that this context differs from that 
of PMP.) Assume that the critical duration of the catchment is De . 

Define a "significant storm" to be a rainfall event of duration 
D c that is sufficiently large to produce an average rainfall over the 
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FIGURE 1 7  Distribution of major precipitation events for which official (U.S . Army Corps of 
Engineen) depth-area-duration data have been published. 
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FIGURE 18 Distribution of major precipitation events for which limited information is available. 
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catchment , if optimally centered, which equals or exceeds a critical 
value Ze. Assume that Ze is chosen sufficiently large so that the 
probability of two or more storms occurring in the region in a given 
year is much smaller than the probability of occurrence of a single 
storm. 

Let X be a random variable representing the largest value of 
average rainfall occurring on the catchment over an interval De in 
any year. The probability distribution of X is the key result of this 
analysis; it is subsequently used to estimate exceedance probabilities 
of extreme annual floods. Note that the random variable depends 
on both meteorologic factors and the geometry of the catchment. 
Further, by defining a storm to have a duration De we are implicitly 
assuming that an event of duration De "causes" the annual flood in 
each year in which the threshold Ze is exceeded. 

We want to estimate p (z} , where 

p(z) = P{X � z} . 

This can be done by conditioning on the occurrence and location of 
significant storms in the region. 

Let (y,z} be cartesian coordinates of an arbitrary point in the 
homogeneous region. Assume that , given a significant storm has 
occurred in the homogeneous region, the probability that its center 
of mass falls in any small region of area (.6y}(.6z} centered at (y,z} 
is (.6y} (.6z}/Ah . (This is the first of two assumptions that can be 
used to define a meteorologically homogeneous region.} Let Ph be 
the probability that a "significant" storm occurs in the homogeneous 
region in a given year. Let p [z, (y,z}] be the probability that , given 
a "significant" storm is centered at (y,z} , it will produce an average 
depth of rainfall on the catchment equalling or exceeding z. Then 

(4 .1) p(z) � (Ph/Ah) J J p[z, (y, z) Jdydz . .  
Ah 

This relationship is approximate because it ignores the possibility 
that more than one significant storm will occur in a given year. 

The critical assumption used to derive (4 .1}  is that storm loca-­
tions have a uniform distribution over Ah . This assumption could 
be used to define a "meteorologically homogeneous" region. Strict 
meteorologic homogeneity could also be assumed to imply that the 
probability p[z, (y, z) J in (4 . 1} depends on the relative locations of 
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the storm and catchment centers, rather than on the absolute lo­
cations. This assumption is not absolutely necessary, provided the 
dependence of p[z, (y, z) J on absolute catchment location can be spec­
ified. This dependence could account for known variations in storm 
characteristics with location. 

Esthnatlon 

Assume that over some time period of length N years we have 
data on all significant storms in a meteorologically homogeneous 
region containing the catchment of interest. (At present the existence 
of a complete data base for any region is uncertain.) Let m be the 
number of significant storms. We can estimate Ph by 

Ph =  mfN. 
The probability p [z,(y,z)] can be estimated as follows. Create 

a square grid on the homogeneous region. Let �.A be the area of 
each square and let i be the index of the coordinates of the center 
of each square (grid centers) . Locate the center of each of the m 
significant storms at each grid center and determine whether or not 
the storm produces an average depth of rainfall on the catchment 
equaling or exceeding z. In this step we could account for known 
variations in storm characteristics with location. For example, the 
average rainfall could be adjusted to account for the location of the 
grid center. If storm orientations are known to vary throughout the 
region, the storm could be rotated to conform to the characteristic 
orientation of the site. Alternatively, one could rotate the storm to 
several possible orientations and compute a weighted average depth 
based on the observed frequency distribution of orientations at the 
site. Next, let m, (z) be the number of storms which produce an 
average rainfall z or more on the catchment, when centered at the 
ith grid center. Then, for any point (y,z) in the ith square, p [z, (y,z)] 
can be estimated by 

p[z, (y, z) J = mt{z)fm. 
Finally, p{z) can be estimated by 

{4.2) 
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or, simplifying, 

(4.3) 

Alexander's Method 

Alexander (1963, 1969) proposed a storm transposition method 
which is similar in concept to the one presented above, but which 
makes a key simplification to facilitate the computation of p(x) .  In 
particular,  Alexander defines a storm as having a fixed area .A. , 
determined as follows. 

Let A. (y,z) be the storm area required to cover the catchment 
if the storm were centered at the point (y,z) . In calculating p(x) , 
Alexander fixes the storm area to equal A. , the average value of 
A. (y,z) for all points in the catchment. Thus 

1 f f A. = Ac Ac A. (y, z )dydz. 

Note that by averaging over points in the catchment Alexander is 
ignoring the possibility that a storm centered outside the catchment 
might produce the desired rainfall z. Furthermore, rather than actu­
ally performing the integral, Alexander recommends using a nominal 
value of 

A. = 3Ac . 
Based on this definition of a storm, Alexander proceeds as fol­

lows. For a particular depth of rainfall, let m(z) be the number of 
storms with mean rainfall equalling or exceeding :r (over area A. ) .  
Then p ( :r) is estimated by 

p(x) = (Ac/Ah) [m(x)/NJ. 
This result can be derived from (4.3) , provided the storm area 

is fixed at A. , and rainfall is assumed uniform over A • .  With these 
assumptions 

Fni(x) = m(x) 
for all grid centers in Ac. Summing over all grid centers in the 
catchment , 

AAEFni(x) = Acm(x) . 
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Hence from (4.3) , 

This is the same result obtained by Alexander. Note, however, that 
p(x) approaches zero as Ac approaches zero. This erroneous result 
follows from the requirement that the storm must be centered in 
the catchment. For a catchment, which is small compared to most 
storms, this can introduce a significant error. 

Yankee Atomic Electric Company Method 

The estimate of p(x) developed by Yankee Atomic Electric Company 
(1984) can be obtained from (4.3) in the following way. Define bij as 
an indicator variable such that 

1 if the average rainfall over the catchment from the jth 
storm equals or exceeds x when the storm is centered at 
the ith grid center; 

0 otherwise. 
Then 

Substituting for Fni(z) in (4.3) , 

Changing the order of summation we get 

p(x) = N
l
A �dA�bij· 

h. 1 ' 
In the Yankee Atomic Electric Company Method, the catchment is 
assumed to be a point . Hence dA Eibij is area exceeding z for the 
jth storm. Denote this area Aj(z). Then 

Finally, letting 

p(x) = N�h 7Aj(x) . 

A(x) = (1/m) �Aj(x) , 
1 

Copyright © National Academy of Sciences. All rights reserved.

Estimating Probabilities of Extreme Floods:  Methods and Recommended Research
http://www.nap.edu/catalog.php?record_id=18935

http://www.nap.edu/catalog.php?record_id=18935


72 ESTIMATING PROBABILITIES OF EXTREME FLOODS 

p(x) = (m/N) IA(x)/Ahl ·  
This is the same result obtained by Yankee Atomic Electric Company. 

Yankee Atomic Electric Company (1984) provides a documented 
example of the use of storm transposition to estimate rainfall and 
flood probabilities. The catchment considered has a drainage area 
of 400 km2 •  Depth-area-duration data were used to estimate A(x) .  
To account for the fact that the catchment h ad  finite area, only data 
from storms which produced an average depth of at least z over an 
area of 340 km2 were utilized. For the smallest depth considered, 
15.2 em, a total of 22 storms were used. A simple model of the 
spatial distribution of rainfall was used to estimate exceedance areas 
for various rainfall depths based on the depth-area-duration data. 
The value of N was assumed to equal 100 years. The area of the 
meteorologically homogeneous region was 145,000 km2 • Hence for 
a range of z from 15.2 em up to the highest observed depth which 
occurred over at least 340 km2 ,  a nonzero estimate of exceedance 
probability p (z) was obtained. The maximum observed 24-hour 
rainfall depth in this case was 61.0 em; the corresponding estimated 
exceedance probability was 10-.7 •  

Other Meteorologic Inputs 

In addition to rainfall, runoff models may require other meteo­
rologic inputs. Continuous models must account for evapotranspira­
tion. However, evaporation and transpiration influence flood flows 
only prior to a rainfall event by changing initial moisture conditions. 
Hence cumulative values of evapotranspiration over several months 
are important, and these values are generally well behaved and con­
sistent. In the absence of more complete data, monthly mean values 
of evapotranspiration can thus be used in the modeling. 

The situation is much more complicated in the case of catch­
ments that develop extreme flood flows due to snowmelt, rainfall and 
snowmelt, or rainfall on frozen ground. These are complicated pro­
cesses that, while fairly well understood, are difficult to model on a 
large scale. The key meteorologic variables are air temperature, wind 
velocity, solar radiation, and atmospheric moisture. Snowmelt runoff 
rates are further influenced by the initial conditions in the snowpack, 
particularly by the snowpack water equivalent. Meteorologic con­
ditions causing high rates of snowmelt are estimated for probable 
maximum flood determinations. Systematic statistical studies have 

Copyright © National Academy of Sciences. All rights reserved.

Estimating Probabilities of Extreme Floods:  Methods and Recommended Research
http://www.nap.edu/catalog.php?record_id=18935

http://www.nap.edu/catalog.php?record_id=18935


RUNOFF MODELING METHODS 73 

not been conducted for these meteorologic conditions. These studies 
will be needed if a runoff modeling approach is to be used for catch­
ments for which rain floods are affected by snowmelt and/or frozen 
ground. 

ESTIMATION OF PROBABILITIES 

The way in which probabilities are estimated depends on whether 
a continuous or event runoff model is used and on the probability 
structure associated with the precipitation input. 

Estimating probabilities is relatively straightforward when a con­
tinuous runoff model is used, either with historic rainfall data or 
with rainfall amounts generated from a stochastic model. The runoff 
model is run with the rainfall inputs and the resulting annual flood 
peaks are treated as a random sample. H historical rainfall data are 
used to drive the model, a parametric frequency analysis of the resul­
tant annual peaks can be used to estimate exceedance probabilities. 
Note that for historical records of about 100 years, a considerable 
extrapolation is required to define floods of several thousand years 
return period. In the case of a stochastic model, a virtually infinite 
series of annual floods can be simulated. Hence, model probabilities 
can be obtained directly from the simulated empirical cumulative 
distribution function. Regardless of the size of the simulated sample, 
however, the accuracy of the resultant model flood probabilities is 
limited by the statistical sampling errors in the observed hydrome­
teorological data sets used as the basis for specifying the stochastic 
model . 

When one-dimensional temporal models of rainfall are coupled 
with very simple runoff models, it may be possible to obtain explicitly 
the probability distribution of floods. Eagleson (1972) does this with 
a simple exponential model of rainfall and a kinematic wave model 
of the runoff process. More recently the geomorphic instantaneous 
unit hydrograph developed by Rodriguez-lturbe and Valdes (1979) 
has been used in this fashion. While such an approach is extremely 
useful for improving our understanding of the rainfall-runoff process, 
the great simplification it entails may limit its applicability to the 
problem of estimating exceedance probabilities of extreme floods. 

When an event runoff model is used, estimation of probabilities is 
complicated by the need to specify antecedent conditions. Common 
practice is to set antecedent conditions at characteristic values, such 
as historic means or maxima. Undoubtedly this can lead to large 
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errors in the resulting estimates of ftood probabilities. A better 
approach is to treat antecedent conditions as random variables rather 
than fixed values. This can be done in several ways, two of which are 
discussed below. 

One approach, which would be applicable for use with a stochas­
tic rainfall model, is to develop a stochastic model of antecedent 
conditions. This model can then be used to generate antecedent 
conditions for each storm that is generated by the stochastic rainfall 
model. In essence, the stochastic model of antecedent conditions 
makes up for the fact that the runoff model is an event model rather 
than a continuous one. In a sense, it is just an extension of the rain­
fall model . [For example, Beven (1975) develops a stochastic model 
of initial discharge and root-zone storage.) Hence, no changes are 
needed in the procedure used to estimate exceedance probabilities. 

When synthetic storms are used as input to the runoff model, 
another approach is required. In this case explicit probabilities are 
assigned to the individual storms. Likewise, probability distribu­
tions can be assigned to antecedent conditions. Marino and Bradley 
(1986) present some methods for doing this. Determination of the 
exceedance probability of a specified ftood discharge requires inte­
gration of the joint distribution of storm depths and antecedent 
conditions which can combine to produce ftoods equaling or exceed­
ing the specified ftood discharge. This integration can be facilitated 
by using methods developed for analogous problems in structural 
engineering. [See, for example, Madsen, Krenk, and Lind ( 1986) .] 
A joint probability approach has also been developed for estimat­
ing storm surge probabilities [e.g. , Myers (1970) ; National Research 
Council (1983a) .] 

ANALYSIS OF UNCERTAINTY 

Estimates of the probability distribution of annual ftoods ob­
tained by runoff modeling will be subject to uncertainties. Quantifi­
cation of this uncertainty serves three roles. First, it may enable the 
analyst to choose among competing methods. Second, it enables the 
analyst to focus on those aspects of the problem which most affect 
the final results. Third, an estimate of uncertainty in the final results 
is useful, if not essential, to the decision-maker using the results. 

In the previous chapter we discussed how the uncertainty in em­
pirical ftood frequency estimates could be quantified. In the case 
of a runoff modeling approach, the problem is more complex. Such 
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an approach involves the coupling of various models, both statisti­
cal and deterministic. Data, which are subject to both error and 
random variation,  are used to estimate parameters of these models. 
Furthermore, the models themselves are likely to be sources of signif­
icant uncertainty. These three kinds of error-data, parameter, and 
model-require different methods of analysis. Of these, parameter 
error is the easiest to quantify, particularly in the context of a statis­
tical model. In most specific situations the analyst can use standard 
statistical techniques to quantify parameter error. Model error is the 
most difficult to quantify, and may be the dominant source of error. 
Estimation of model error requires comparison of model prediction 
with results from the actual process being modeled , or from results 
generated by other models. In our problem, real-world results are 
difficult to obtain ; hence we may have to resort to the less desirable 
approach of model comparison. An analysis of model error can and 
should be performed in the context of specific applications. It is also 
desirable to conduct systematic evaluations of models that can be 
generalized for use in specific applications. 

In subsequent sections we cqnsider data, parameter, and model 
error in the use of runoff modeling to estimate exceedance proba­
bilities of rare floods. This is not intended to be a comprehensive 
discussion of ways to quantify such errors. Instead we focus on the 
most likely sources of error, those associated with the rainfall input, 
the runoff modeling, and estimation of flood probabilities. 

Errors ln the Precipitation Input 

Each type of precipitation input has its own sources of error. 
With the direct use of station data, the key question is how accu­
rately the available data portray the spatial and temporal distribu­
tion of storm events. The answer of course depends on the length of 
record, the density of the gage network ,  the availability of continuous 
data, and the spatial and temporal variability of the storm events. 
Standard statistical methods can be used to evaluate the uncertainty 
due to finite record length . Wilson et al. (1979) , Beven and Horn­
berger (1982) , and Schilling and Fuchs (1986) explore the importance 
to runoff modeling of accurately portraying the spatial distribution 
of rainfall . Troutman (1983) uses a linear regression framework to 
develop estimates of errors in runoff modeling that can result from 
spatial variability in precipitation. 

Stochastic rainfall models are subject to parameter and model 
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error. Parameter error can be quantified by standard statistical 
procedures. The quantification of model error requires generic studies 
of individual types of models, such as the study of temporal models 
performed by Valdes, Rodriguez-Iturbe, and Gupta (1985) . 

The use of synthetic storms introduces several sources of error. 
First , the approach itself is a source of error. Storm data are averaged 
over time (and possibly space) so that univariate statistical analysis 
can be performed on storm depths over some critical duration. Then 
"characteristic" spatial and temporal patterns are given to storm 
depths of various probabilities. The critical assumption is that rea­
sonable estimates of the probability of a specified flood discharge can 
be obtained by integrating the joint probability distribution of rain­
fall depths and antecedent conditions over the domain that results 
in peak discharges equaling or exceeding the specific discharge. This 
assumption needs to be evaluated, particularly as regards the fixing 
of storm duration . Continuous stochastic models of rainfall would 
provide a means for making such an evaluation. The results could be 
used to quantify the errors that are possible in specific applications 
of the synthetic storm approach. • 

A second source of error in the use of synthetic storms is in the 
estimation of the probability distribution of storm depths. If storm 
transposition is used, errors can result from incompleteness of the 
storm catalog, from the reconstruction of historical storms and from 
the estimation procedure itself. A generic study of storm transpo­
sition methods based on a stochastic rainfall model would be very 
useful in assessing the overall methodology. If storm probabilities are 
estimated by statistical analysis of station data, standard techniques 
can be used to estimate the uncertainty in the probabilities of point 
rainfall. The error in the probabilities of storm rainfall could be sub­
stantially larger. Its estimation would require a generic study, which 
could also involve using a stochastic rainfall model. 

Errors in Runoff' Modeling 

There has been considerable research on the question of errors 
in runoff-modeling. Little of this research focuses on flood peaks, 
and there has been virtually no research on the modeling of floods 
that are much larger than those for which the runoff model is cali­
brated. This, of course, is precisely the situation with which we are 
dealing. There is reason to expect that a well-designed runoff model 
may perform well for floods which are much larger than those for 

Copyright © National Academy of Sciences. All rights reserved.

Estimating Probabilities of Extreme Floods:  Methods and Recommended Research
http://www.nap.edu/catalog.php?record_id=18935

http://www.nap.edu/catalog.php?record_id=18935


RUNOFF MODELING METHODS 77 

which it is calibrated. Infiltration modeling during extreme floods 
tends to become less critical as the magnitude of the storm increases, 
since losses become a smaller proportion of the storm rainfall. More 
significant errors are likely to result from the flow routing, partic­
ularly if there are complications such as complex floodplain flows, 
extreme channel erosion, extremely high sediment concentrations, 
or ice-affected flow. In any case,  physically based routing methods 
should be more reliable than empirical methods. 

A comprehensive study is needed to evaluate the errors that are 
possible when runoff models are used to simulate floods that are 
much larger than the floods used to calibrate the model. This could 
be done by modeling historically observed extreme floods, such as 
those cataloged in Bullard ( 1986) . One problem with executing such 
a study is that there may be relatively few large floods for which 
there exists reliable data on both rainfall and streamflow. 

Errors In the Estbnatlon of :Flood Probabllitles 

The issue here is to determine how the uncertainties that arise 
from various sources affect the final calculation of flood probabilities. 
This is a problem in error propagation, which can be addressed 
by various methods, such as first order analysis and Monte Carlo 
simulation. Until strategies for using runoff modeling to estimate 
flood probabilities have been better developed and sources of error 
explored, it is not possible to be any more specific about this issue. 

CONCLUSIONS 

Runoff-modeling techniques are in common use for estimating 
flood probabilities. There are very few well-documented cases, how­
ever, where the use involved floods with exceedance probabilities less 
than 10-2• Furthermore, in none of these cases was much attention 
paid to the estimation of uncertainties. Nevertheless, runoff model­
ing appears to be a potentially useful tool for estimating exceedance 
probabilities of very rare floods. 

In view of the dearth of case studies and the lack of attention to 
analyses of uncertainty, we cannot recommend a specific procedure 
which would be widely applicable in all situations. However, a few 
recommendations are possible, regarding both immediate use and 
needed research. 
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Runoff Models 

Several runoff models exist which appear to be suitable for esti­
mating extreme flood probabilities. Models that are more physically 
based should perform better than empirical models for floods much 
larger than those used in calibration. Future research is needed to 
evaluate the performance of runoff models in simulating well docu­
mented historically observed extreme floods, such as those cataloged 
in Bullard (1986) . It is particularly important to determine whether 
there exist physical processes which are critical to very large floods 
but which do not operate at lower discharges. 

Meteorologic Inputs 

Of the various methods for developing rainfall inputs, we fa­
vor synthetic storm methods based on storm transposition. These 
methods have the potential for making the widest use of data over 
both space and time. Use of this approach requires that there be a 
complete record of the most extreme storms for some defined period 
for the meteorological region of interest. The existing storm catalog 
varies in completeness and length of record, with the most complete 
record being of storms which have occurred east of the 105th merid­
ian. This storm catalog needs to be expanded, particularly west of 
the 105th meridian. This is likely to be an expensive effort. Addi­
tional research is needed to define those regions of the country that 
can be considered meteorologically homogeneous and the time period 
and storm magnitude for which the storm catalog can be considered 
complete. 

We also encourage research on the regionalization of depth­
duration-frequency relationships. Very little has been done in this 
area, and the potential may be even greater than in the regional­
ization of flood frequency estimation. Regionalized depth-duration­
frequency relationships could provide a useful check on probabilities 
based on the historic storm catalog. 

Stochastic modeling of rainfall should also be developed further. 
Two applications of multisite rainfall models have been applied to 
the problem of extreme floods, in one case to a small basin and 
in the other to a moderately large basin. Significant advances can 
be expected in stochastic modeling in the near future, given the 
high level of current research activity. As of this date , stochastic 
models have not been regionalized, and hence their use in estimating 
the probability of extreme floods can entail significant extrapolation 
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beyond the range of the data on which they have been calibrated. 
There is no reason, however, why stochastic models could not be 
regionalized. 

Lastly, there has been very little work done on basins for which 
extraordinary floods are affected by snowmelt .  Clearly much addi­
tional work is needed. 

Estbnatlon of Probablllttes 

When a continuous runoff model is used, the estimation of ex­
ceedance probabilities is relatively straightforward. The difficult case 
is the use of an event model, which necessitates the specification of 
antecedent conditions. Additional research is needed to develop and 
evaluate methods for doing this. 

Estbnatton of Uncertainties 

The major sources of errors in using runoff modeling to estimate 
exceedance probabilities of extreme floods lie in the selection of the 
rainfall input and in the runoff modeling. Research is needed to 
quantify these errors. 
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5 

Data Characteristics and Availability 

INTRODUCTION 

Estimates of magnitudes and probabilities of extreme floods, 
to be meaningful , must reflect and be consistent with hydromete­
orological conditions at the sites of interest. These conditions are 
represented by various types of hydrometeorological data. Different 
estimation methods may require different types of data or may use 
the same types of data in different ways. The purpose of this chapter 
is to identify the major types of data that may be relevant to the 
estimation of extreme flood probabilities and to describe any special 
characteristics of the data that may affect their usability for this 
purpose. 

The principal types of data discussed are streamflow and rainfall 
data. Streamflow data are used directly by a variety of statistical 
procedures for estimating extreme flood probabilities , as discussed in 
chapter 3. Streamflow data also are needed for calibration and veri­
fication of the rainfall-runoff models described in chapter 4. Rainfall 
data can be used in various ways in conjunction with rainfall-runoff 
models as a surrogate for or supplement to streamflow data. 

Although strictly speaking a category of streamflow data, pa­
leohydrologic flood data is discussed in a separate section. This is 
because paleoflood determinations involve a number of observational 

80 

Copyright © National Academy of Sciences. All rights reserved.

Estimating Probabilities of Extreme Floods:  Methods and Recommended Research
http://www.nap.edu/catalog.php?record_id=18935

http://www.nap.edu/catalog.php?record_id=18935


DATA CHARA CTERISTICS AND AVAILABILITY 8 1  

and analytical techniques not generally used in the gaging of contem­
porary streamflows. Also, paleoflood determinations provide more 
information than just the magnitudes of ancient floods. Under favor­
able conditions, the paleohydrologic record may furnish information 
to the effect that the record shows all occurrences of floods greater 
than some threshold. This or similar auxiliary information is needed 
for meaningful statistical interpretation of the paleoflood record. 

Several other types of data also are important in assessing flood 
magnitudes and probabilities. Basin-physiographic factors such as 
drainage areas and soil types are needed for rainfall-runoff modeling 
and may be helpful in interpreting streamflow records. Other types 
of meteorological data, including data on evaporation, snow accu­
mulation , and temperature, are necessary for describing important 
features of the rainfall-runoff relationship, and are discussed briefly. 

The principal focus of this report, however, is on the frequency 
of occurrence of extreme flood events, and not on the mechanisms 
of flood formation or rainfall-runoff relations. Thus the emphasis 
of this chapter will be on streamflow and rainfall, the principal 
variables whose values reflect the occurrence or nonoccurrence of 
extreme floods, and particularly on the ability of available streamflow 
and rainfall data sets to meaningfully represent the frequency of 
occurrence of extreme flood events. 

Streamflow and precipitation are complex multidimensional pro­
cesses. They exhibit strong and complicated patterns of variability 
in both space and time. It has not been possible to directly mea­
sure, record, and store enough data to represent these processes in 
all their natural detail. Various forms of selection, sampling, and 
aggregation have been required in order to obtain usable data at 
an affordable cost. Conflicting requirements for various data uses 
sometimes require compromises in sampling and observational con­
ditions. The sampling plans and observational procedures thus may 
affect the usability of a data set for estimation of extreme flood fre­
quency. For this reason relevant aspects of observational procedures 
and statistical sampling plans for various data types are discussed. 

Systematic Versus Nonsystematic Records 

For purposes of flood-probability estimation, flood-flow and rain­
fall data sets can be grouped into two broad categories: systematic 
and nonsystematic. These categories differ in their ease of statistical 
interpretation . The essential distinction is that systematic records 
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provide complete records of the occurrences of well-defined classes 
of events, whereas nonsystematic records define only the occurrences 
of particular events. The entries in a nonsystematic record are not 
defined in terms of their relationship to a larger class or population 
of events; they are merely listed as unique events. Thus, there is 
no guarantee that a nonsystematic record includes all occurrences of 
any particular class of events or that absence of an event from the 
record implies that the event did not occur. Thus the systematic 
record can be interpreted directly in terms of relative frequencies of 
occurrence of events whereas the nonsystematic record cannot be so 
directly interpreted. 

Systematic records, as their name suggests, are collected under 
relatively uniform, consistent, and standardized observation proce­
dures. Although the nature of the conditions of recording may affect 
the character of the record, the effect of the conditions of recording is 
known and can be taken into account in the hydrologic interpretation 
of the record . 

For example, the simplest kind of systematic record is an unin­
terrupted annual flood series or annual-maximum rainfall series, the 
beginning and ending of which are unrelated to any flood or rainfall 
event . Each year

,
s maximum flow rate or rainfall depth is recorded, 

whether or not it is of noteworthy magnitude and even whether or 
not it might be considered a hydrologically significant event . Another 
example of a systematic record is a partial-duration series, which is 
documented in such a way as to ensure that the absence of above­
threshold peaks in a year

,
s record implies that no above-threshold 

peaks occurred during the year. Knowledge about the characteristics 
of the gage and the protocol of recording are necessary for correct 
hydrologic interpretation of the partial-duration record. A similar 
example is a censored annual flood series, in which the magnitudes 
of only the above-threshold annual peaks are recorded, along with 
the information that all unrecorded annual peaks during the record 
period were below the threshold. 

In each of these examples, the systematic record was defined 
in terms of a well-defined class of events. The recorded variables 
have straightforward and clear-cut representations in terms of ran­
dom variables associated with repeatable statistical experiments. In 
each case the description of the systematic record has a natural 
correspondence with a statistical model as defined in chapter 3. 

In contrast to the systematic records, nonsystematic records are 
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not collected under a defined protocol. The collection and preser­
vation of the nonsystematic record depends on undefined auxiliary 
events, such as the interest or leisure of the observer, in addition to 
the character of the event of interest . Such records include anecdotal 
historical accounts from newspapers and journals and personal rec­
ollections of long-time residents. Many kinds of paleohydrologic data 
might have to be included in this category as well, unless the condi­
tions that caused the marks to be made and preserved were known 
and understood. An example of a nonsystematic record is as follows: 
"the following noteworthy floods on __ River were reported in the 

__ City newspaper: 1896, 30,000 cfs; 1907, 37,000 cfs; 1924, 45 ,000 
cfs; 1939, 46,000 cfs. The continuous record began in 1943." No 
information is given as to the basis for observing or recording the 
peaks from before the continuous record period. There is no basis 
for associating this record with any particular statistical model. 

The essential characteristic of the nonsystematic record thus is 
that the recipient does not know the system governing its collection. 
The nonsystematic record may be converted into a systematic one 
when it is possible to provide additional information that does define 
the system. Thus if it were known that the peaks listed above were 
all of those that exceeded 25,000 cfs since 1887, the nonsystematic 
record would become a complete censored sample that could be 
analyzed by various historical adjustment procedures. On the other 
hand, if it were known that the 1896 peak was the largest since 
1887 and that the others were successive record-breaking peaks, the 
record again would become systematic, but would be governed by a 
different system and would have to be analyzed by more complicated 
statistical analyses; the simple censored-sample analysis would not be 
appropriate. An essential prerequisite for statistical interpretation of 
nonsystematic records thus is the collection of additional information 
or interpretations that would enable the records to be associated with 
a statistical model. 

Nonsystematic records may provide excellent information about 
occurrences of events of unusual magnitude, but often do not pro­
vide unequivocal evidence about nonoccurrence of such events. Such 
information may be very useful for defining the potential for future 
occurrence of extreme events, but does not provide a basis for argu­
ing that larger events cannot occur or for estimating the probability 
of occurrence. 

Statements about flood risk ultimately boil down to assertions 
about the relative proportions of occurrences and nonoccurrences of 
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events. These assertions ultimately have to be based on experiences 
of occurrences and nonoccurrences. Systematic records, by their 
mode of collection, automatically provide this information. Nonsys­
tematic records do not provide the needed information about nonoc­
currences, and thus are not so readily usable in flood-risk assessment. 

STREAMFLOW DATA 

AvaUabUlty or Streamflow Data 

Streamflow data of various kinds are collected and stored by 
a variety of federal, state, and local agencies. To promote public 
access to their data, many of these agencies cooperate with the 
U.S. Geological Survey (USGS) in operating a National Water Data 
Exchange (NAWDEX) . Water-data producers supply information to 
NAWDEX about locations at which data are collected, the types of 
data collected, the periods of time for which data are available ,  and 
procedures for obtaining copies of the data. NAWDEX, through its 
assistance centers throughout the country, uses this information to 
help water-data users identify and acquire relevant available data. 

For most data users, the most convenient and efficient points of 
contact for obtaining streamftow data are the NAWDEX assistance 
centers. These centers are located in most USGS state and district 
offices. These offices are located near the capitals or state univer­
sities of most states. The locations of NAWDEX centers also can 
be obtained from the USGS Public Information Office in Washing­
ton , D.C. In addition, USGS district offices not only can provide 
assistance in using NAWDEX to locate and retrieve water data but 
also can help the user understand the local hydrologic and hydraulic 
conditions and assess the adequacy and reliability of the available 
data. 

USGS itself collects, processes, publishes, and stores stream­
flow records for over 11 ,000 currently active sites nationwide. Most 
of these records are published in an annual series of USGS Water­
Data Reports for each state. Theae reports are available in many 
major technical libraries and from the National Technical Informa­
tion Service. These reports provide a useful overview of hydrologic 
conditions, data-collection activities, and availability of data in the 
state. In addition, most of these records are stored in the com­
puterized files of the National Water Data Storage and Retrieval 
System (WATSTORE) . Records for perhaps another 30,000 inactive 
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streamflow sites (an exact count is not available) also are kept on 
file in the WATSTORE system. Some data collected or processed 
by other agencies also are stored in WATSTORE; conversely, some 
other agencies maintain their own water-data management systems 
that contain data obtained from WATSTORE. 

Types of Streamflow Data 

USGS maintains three principal computerized files of streamflow 
data: the peak-flow file , the unit-values file, and the daily-values file.  
These files contain time-series data with different time steps and dif­
ferent statistical-sampling relationships to the continuous streamflow 
process. Two other files, the station-header file and the streamflow­
basin characteristics file, contain information about the geographic 
location at which the data were collected. The files were designed 
to support routine computation, storage , and retrieval of gaging­
station data and to support certain types of routine analyses and 
displays of gaging-station data. The organization and format of the 
files reflect these intended uses. The primary ordering of all the files 
is by gaging-station identification number and secondarily, within 
the station, by water year. Lists of gaging stations within specified 
geographical areas may be obtained by appropriate searches of the 
station-header file. Instructions for searching and retrieving these 
files are given in the WATSTORE User's Guide (Hutchison, 1975; 
Lepkin et al. ,  1979) , although the most efficient way to identify and 
obtain the relevant data is with the help of the NAWDEX assistance 
office in the state where the study area is located. 

Time-Series Data Files The peak-flow file contains records of 
annual maximum instantaneous flood-peak discharges and stages, 
and their times of occurrence. This file is used primarily to support 
flood-flow frequency analyses of annual-flood data at gaging stations. 
These at-site results are correlated with drainage basin characteris­
tics to develop regional flood-frequency relations that are published 
in separate reports for each state. In addition to the annual maximum 
values, the file also contains, for many stations, values of instanta­
neous peak discharges, stages, and times of secondary peaks within 
the water year that were less than the annual maximum but exceeded 
a defined flood-base threshold (the so called partial-duration series) . 
Data qualification codes are provided in the file to identify historic 
( nonsystematic) records and records affected by other nonstandard 
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measurement conditions or hydrologic conditions. The file contains 
records for about 21 ,000 locations nationwide, with an average of 
about 22 years of record per site . Average record lengths for most 
states are in the range of 18 to 27 years. The areal density of gages 
is about 7 per 1 ,000 square miles as an average for the entire con­
terminous United States; about half the states have gage densities 
between 5 and 10 per 1 ,000 square miles. 

The available flood-peak data do not everywhere have the tem­
poral and spatial coverage required for developing regional flood­
frequency relations. In one attempt to alleviate this deficiency, 
rainfall-runoff models have been used to transform long-term rainfall 
records into synthetic flood-peak records (Dawdy et al. ,  1972; Hauth, 
1974) . 

The WATSTORE unit-values file was designed to hold rainfall 
and discharge data for selected storm events for use in calibrating 
rainfall-runoff models and for generating synthetic long-term flood 
series. The file also contains some water-quality data for use in 
urban-runoff and land-use studies. 

In contrast to the peak-flow file, the unit-values file contains com­
plete storm-period discharge hydrographs and rainfall hydrographs, 
but only for those few sites for which rainfall-runoff models have been 
calibrated and for only as many storms as were needed to calibrate 
the model. Only about 4,000 sites are represented in the file, and 
over half of these are located in just 10 states. The data are recorded 
as time series with uniform time steps ranging from 5 minutes to 1 
hour. The time step is chosen for adequate resolution of hydrographs 
and tends to be directly related to basin size. Most of the basins 
represented in the file are quite small; for most of them, rainfall and 
runoff both were measured at the same location at the mouth of the 
basin. For convenience of use in generating synthetic flood series, 
the file also contains selected storm-period data obtained from the 
National Weather Service for selected long-term rainfall stations. 

The third and largest major national water-data file in the USGS 
WATSTORE system is the daily values file. The file provides essen­
tially continuous records of streamflow, rainfall , evaporation, tem­
perature, stage, and other parameters on a calendar-day basis. In 
addition to streamflow data, various types of ground-water data and 
water-quality data also are present in the daily values file. In con­
trast to the unit-values records, which generally cover only storm 
periods, the daily values records provide essentially complete cover­
age of the entire year (or scheduled seasonal periods) for periods of 
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several years or many years. Because the data are given at calendar­
day time steps, they may not have adequate resolution for modeling 
flood peaks on smaller streams. These data are useful, however, for 
modeling daily-flow flood hydrographs and 1-day and multiday flood 
volumes. They also are useful for modeling the interstorm drainage 
and drying processes that determine the antecedent conditions at the 
beginning of storm periods. 

Supplementary Data Files In addition to the three major time­
series files are two files that contain supplementary geographic in­
formation about the data-collection sites. The station-header file, 
mentioned previously, contains a record for each site for which data 
are stored in the WATSTO RE system; this amounts to more than 
380,000 sites, of which approximately 70,000 are surface-water sites. 
Information relating to flood flows has been collected at only about 
40,000 of these sites. Information in the station-header record in­
cludes latitude and longitude, state and county codes, hydrologic 
unit code, drainage area (contributing and noncontributing) , and 
elevation . More detailed information for approximately 16,000 sites 
is contained in the streamflow-basin characteristic file . This file was 
designed to support various studies of correlation between stream­
flow characteristics and drainage-basin characteristics. Among the 
characteristics represented in the file are flood-peak discharges and 
volumes for various return periods and durations; basin latitude, lon­
gitude, and elevation; basin length, width, and orientation; drainage 
area; basin and channel slopes; percentages of forest and wetland; 
and mean annual precipitation and 2-year, 24-hour rainfall intensity. 
Not all characteristics are available for all basins. The streamflow 
characteristics, however, can be readily determined from the basic 
data in the peak flow and daily-values files. 

Not all available data are stored in centralized computer files. 
Many flood-frequency and rainfall-runoff studies require unique sta­
tistical and hydrologic computations that are not provided by the 
computer software packages associated with the centralized water­
data file system. It frequently happens that, for purposes of compu­
tation, the data are compiled and stored in the format required by 
the computer software being used. When the projects are complete ,  
the data are published in either data reports or interpretive reports 
and are sent to the archives without ever entering the centralized 
computer files. This is more likely to happen to basin-characteristic 
data than to field-collected rainfall and runoff data. An extensive 
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bibliography of USGS flood-frequency reports is given by Thomas 
(1986a) ; many of these reports contain detailed tabulations of flood 
and basin characteristics. However, the most efficient way to identify 
and obtain such data is with the assistance of local USGS NAWDEX 
user-assistance personnel, who will be familiar with the identity, 
location, and status of such data sets. 

Finally, all USGS districts maintain extensive files of flood­
discharge determinations. These files include both direct current­
meter measurements and indirect measurements by methods such 
as the slope-area method. Most of the measurements are made at 
active gaging-station sites , but significant numbers are made at sites 
of discontinued gages and at miscellaneous ungaged sites. The mea­
surements at active gaging stations are used primarily to develop, 
extend , and verify the stage-discharge ratings for the stations. These 
measurements have no direct applicability to estimation of extreme 
flood probabilities. Most of them refer to low and medium flows. 
Information on flood flows at gaging stations is contained in the 
peak-flow file. 

Flood measurements at miscellaneous ungaged sites are made to 
document the occurrence, extent, and magnitudes of extreme floods. 
These measurements are made to supplement the areal coverage 
provided by the regular gaging stations. These records are nonsys­
tematic in the sense discussed above. They cannot readily be related 
to any statistical model. Measurements are made only in response 
to known extreme flooding in the area and are intended to provide 
evidence of the ultimate potential for extreme flooding. Flood dam­
ages and local interest in obtaining information also are considered 
when deciding whether to make these measurements. These records 
thus may be used to develop flood envelope curves (Jarvis , 1926; 
Creager and Justin, 1950; Crippen and Bue, 1977; Costa, 1985) , but 
do not provide any direct evidence as to the frequency of occurrence 
of extreme floods. The measurements themselves usually are pub­
lished either in annual data reports or in special flood-documentation 
reports. Thomas (1986b) has compiled a bibliography of USGS flood­
documentation reports. Because the arrangement and management 
of the miscellaneous-measurement files vary from district to district, 
the assistance of local USGS personnel should be obtained to identify 
and retrieve relevant information. 
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General Prlnclples of Streamflow Data Collection and Computation 

Streamflow data are collected by three basic methods: direct 
measurements, indirect measurements, and calibration-curve meth­
ods. Direct measurements of streamflow are made by direct mea­
surement of the velocity of the water and the width and depth of the 
channel; the discharge is computed from its definition as the product 
of the directly measured factors. 

Because direct measurements often cannot be obtained during 
the occurrence of peak flows, extreme flood peak flow sometimes must 
be determined by indirect methods. Indirect discharge determina­
tions use various hydraulic formulas, most commonly the Bernoulli 
and Manning formulas, to calculate flood-peak discharges based on 
postflood surveys of high-water marks and channel dimensions and 
on field estimates of roughness coefficients and other relevant hy­
draulic factors (Benson and Dalrymple, 1967; Barnes and Davidian, 
1978) . 

Direct and indirect measurements both provide flow data only 
at discrete instants of time. They are not practical for collection of 
continuous records throughout an interval of time. For this purpose, 
various calibration-curve methods are used. Most commonly, a con­
tinuous record of water stage or gage height is collected by means 
of a counterweighted float or a gas-pressure manometer connected 
to a suitable recording apparatus. The recorded gage heights are 
applied to a stage-discharge rating curve or calibration curve to ob­
tain the corresponding discharges. The rating curve is established 
by correlating direct and indirect discharge measurements with their 
corresponding gage heights. Such a correlation is possible at suitably 
chosen sites where both cross-sectional area and velocity are definable 
functions of stage (or of flow depth) . At some sites more complicated 
calibrations are needed, involving factors such as rate of change of 
stage, variable water surface slope, or velocity indices, in addition 
to stage , but these factors frequently diminish in importance under 
flood-peak flow conditions and so need not be discussed here. The 
water stages commonly are recorded on computer-readable media, 
the stage-discharge conversions commonly are done by computer, 
and the results are stored directly in computer files. 

Methods of streamflow data collection and computation are de­
scribed briefly by Linsley et al. (1982) and in detail by Rantz (1982) , 
Brakensiek et al. (1979) , and Office of Water Data Coordination 
( 1977) . 

Copyright © National Academy of Sciences. All rights reserved.

Estimating Probabilities of Extreme Floods:  Methods and Recommended Research
http://www.nap.edu/catalog.php?record_id=18935

http://www.nap.edu/catalog.php?record_id=18935


90 ESTIMATING PROBABILITIES OF EXTREME FLOODS 

Accuracy of Streamflow Data 

Accuracy of flood-flow data depends in part on the method by 
which the flow was determined. In general, the number and severity 
of the error sources increase with the degree to which the data de­
pend on interpretation and calculation as opposed to direct physical 
measurement. Principal sources of error include loss of data during 
periods of extreme flood flow, inaccuracies of direct and indirect flow 
measurements, inadequate definition of stage-discharge relations for 
extreme floods, and inadequate interpretation of available data. Er­
rors in flood-flow data may be large enough to distort the statistical 
properties of the flood series (Potter and Walker, 1982} . 

Direct current-meter measurements are affected primarily by 
problems in obtaining representative mean velocities, problems in 
measuring depths and velocities using sounding lines in swift and 
debris-laden currents, and problems in completing the measurement 
quickly enough for it to be meaningful during rapidly varying flow 
conditions. The USGS rates its current-meter measurements as ex­
cellent if their errors are believed to be less than 2 percent , good if 5 
percent , and fair if 8 percent (Rantz et al. ,  1982, p. 178 ff} . 

Indirect measurements are affected by problems in finding con­
sistent high-water marks to define the water surface profile, problems 
in analyzing postflood evidence to determine channel and flow condi­
tions including scour during the peak flow, problems in determining 
the hydraulic laws that governed the flow, problems in estimating 
judgmental coefficients such as Manning's n, and problems in defin­
ing flat water-surface slopes with sufficient accuracy (Benson and 
Dalrymple, 1967; Jerrett , 1985} . The USGS rates its indirect mea­
surements as good if errors are judged to be less than 10 percent, fair 
if less than 15 per�ent (Benson and Dalrymple, 1967} . 

Accuracy of calibration-curve methods is affected by errors in 
stage measurement, and by errors in the stage-discharge rating curve. 
Stage-measurement errors can be caused by surge, drawdown, stag­
nation, or plugging or fouling of intakes or orifices. Many of these 
effects are most severe at the high velocities associated with high flood 
flows. Flood damage sometimes may result in complete loss of the 
stage record during the flood peak . These errors may be mitigated 
to some extent by conscientious use of high-water marks to verify 
or supplement recorded peak stages. Errors in the stage-discharge 
rating result from the combined effects of all errors affecting the 
measurements of stage and discharge upon which the rating is based. 
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Although the measurement errors tend to be averaged out during 
the construction of the rating curve, this effect is largely offset by 
the scarcity of measurements at extreme flood flows. Most ratings 
need to be extrapolated to accommodate extreme flood peaks. The 
best-available rating-extrapolation methods use hydraulic principles, 
coefficients, and data that are comparable to indirect discharge mea­
surements. Ratings extended by step-backwater calculations may 
have errors of 15 or 20 percent (Cook, 1985).  The USGS rates its 
published streamflow records as excellent if about 95 percent of the 
daily discharges are judged to be within 5 percent of their true val­
ues; good , if within 10 percent; fair, if within 15 percent; and poor 
otherwise (Rantz, 1982, p. 613) . 

Accurate determination of flood magnitudes is only one aspect 
of the general question of the accuracy of flood data. Other issues 
that relate to the usability of flood data for estimation of flood prob­
abilities include spatial and temporal correlations and the statistical 
characteristics of the sampling plan governing the data-collection 
program. These issues apply to rainfall data and paleohydrologic 
data as well as to streamflow data and thus are discussed separately 
at the end of the chapter. 

RAINFALL DATA 

Precipitation data useful for determining extreme flood events 
include the following: 

• Point observations (systematic) 
- Continuous daily and hourly observations of rain and snow 

at gages. 
• Areal observations (Some of these data, in both of the cate­

gories below, can be classified as systematic.) 
- Weather radar observations of rainfall intensities. 
- Satellite observations of distribution or persistence of clouds. 

(Quantitative estimates of rainfall provided by satellite data 
have not yet been used in studies dealing with extreme flood 
events.) 

• Extreme-event observations (generally nonsystematic) 
- Some possible sources: "bucket surveys," diaries, histories, 

disaster surveys. 

For each of these data types, different methods for observing, 
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processing, and archiving the data are used. The errors associated 
with each type of observation vary widely. In the paragraphs below 
we describe observational networks, data acquisition, and available 
information about the errors associated with the data. 

A vaUabllity of Rainfall Data 

Rainfall and other meteorological data are collected for various 
purposes by many federal, state, and local agencies and by pri­
vate organizations and individuals. To make this data more readily 
available, the National Oceanic and Atmospheric Administration 
(NOAA) operates the National Environmental Data Referral Ser­
vice (NEDRES) within the National Environmental Satellite Data 
and Information Service (NESDIS) , Washington, D.C.' NEDRES is a 
publicly available service that identifies the existence, location, char­
acteristics, and availability of all types of environmental data sets. 
NEDRES itself does not provide the actual data but does enable 
the data requestor to make contact with holders of appropriate data 
sets. For hydrologic data relating to extreme ftoods, the NEDRES 
activities are coordinated with the National Water Data Exchange 
(NAWDEX) of the U.S. Geological Survey. 

The most comprehensive source of precipitation data (and other 
climatic data) for use in extreme ftood studies is the National Cli­
matic Data Center (NCDC) in Asheville, North Carolina. The 
NCDC archives and publishes various kinds of weather and climatic 
data collected by the National Weather Service (NWS) and by other 
NOAA-supervised stations, including the Cooperative Observer Net­
work . Available data are organized into a large number of predefined 
data sets described in the NCDC catalog, "Selective Guide to Cli­
matic Data Sources" (Hatch, 1983} . Additional specialized searches 
and .tabulations can be obtained if necessary by special arrangement 
with NCDC. The published data sets that seem most likely to be 
of use in the estimation of extreme ftood probabilities are described 
briefty in the following paragraphs. These data are published both as 
computer-readable files and as serial publications that are available 
for reference in many major technical libraries. 

Daily precipitation records, obtained primarily from the NWS 
Cooperative Observer Network, are published for approximately 
8,500 currently active stations nationwide. Archived observations 
from before 1900 to the present are available. The data are pul> 
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lished on a current basis for each state by NCDC in the monthly 
and annual Climatological Data series listed in the NCDC catalog 
(Hatch, 1983) . The data are published in computer-readable form 
as Summary-of-the-Day and Summary-of-the-Month Co-op Element 
Files. In addition to precipitation data, these files may contain data 
on several other weather parameters, including snowfall and snow 
depth, maximum and minimum temperatures, and evaporation. The 
complete nationwide data set occupies more than 100 reels of mag­
netic computer tape. It is possible to select only those states, stations, 
and parameters of interest. Not all parameters are available at all 
stations. The locations of stations and the various available types 
of data normally collected are shown on maps in the Climatological 
Data publications. 

Hourly precipitation data are published by NCDC for over 
5,550 currently operational stations nationwide. These records are 
obtained primarily from NWS and Cooperative Observer stations 
equipped with continuous raingage charts or punched-paper-tape 
recorders. Hourly data collected during the period from before 1948 
to the present are available . A smaller amount of data observed 
at 15-minute intervals is available for the period from 1971 to the 
present. These data are published on a current basis for each state 
except Alaska in the NCDC's monthly and annual Hourly Precipi­
tation Data series listed in the NCDC catalog (Hatch, 1983) . The 
data are available in computer-readable form in the Hourly and 15-
Minute Precipitation Element Files. The complete data set occupies 
approximately 20 computer tape reels. Data on magnetic tape can 
be ordered by state, station number, and date. It is possible to select 
only those stations of interest. Maps in the Hourly Precipitation Data 
publications show the locations of stations collecting hourly data. 

Daily, hourly, and more frequently observed precipitation data 
also are collected by a wide variety of other governmental, institu­
tional, and private observers not included in the NWS Cooperative 
Observer Network and not published by NCDC. The U.S . Agricul­
tural Research Service (ARS) , for example, operates several highly 
instrumented research watersheds with dense coverages of raingages 
and runoff gages (Thurman and Roberts, 1987) . The ARS data and 
many other non-NCDC data sets are indexed in the NEDRES and 
NAWDEX data-referral services. Many of the remaining observa­
tions are used solely for current operational purposes and are not 
archived for future reference. 

A large number of stations, approximately equal to those in the 
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published hourly precipitation network , report through the Geosta­
tionary Operational Environmental Satellite (GOES) Data Distribu­
tion System. About one-half of these (over 2 ,000) report precipita­
tion. GOES-reporting stations are owned by several organizations, 
primarily the U.S . Army Corps of Engineers and the U.S. Geologi­
cal Survey. The stations are unattended automatic data collection 
platforms (DCP's) that generally make observations every hour and 
report every 3 or 4 hours. Reporting times are offset so that the 
reporting rate is spread evenly throughout the 3- or 4-hour cycle. 
Some of these stations also report data whenever rainfall intensities 
exceed a preset value. The data can be accessed in real time by a 
direct-readout down-link , through arrangement with NOAA or the 
station owner. Data archiving and quality control are under the con­
trol of the owner of the DCP. Many of these same stations report in 
the NOAA publications of hourly or daily data mentioned previously. 

Accuracy and Interpretatlcm of Preclpltatlon Data 

Several characteristics of precipitation data may affect its usabil­
ity and proper interpretation in extreme Hood probability studies. 
These characteristics relate both to the accuracy of the recorded 
values at the measurement point and to the extent to which the mea­
sured values are representative of the past and future occurrences of 
precipitation in the area. 

Care must be used in applying and combining the data. In runoff 
studies, for example, it is important to note that precipitation data 
published by NCDC do not distinguish between liquid precipitation 
and water equivalent of snow. Precautions must be taken when part 
of the precipitation is snow. The need for caution in relating runoff 
to precipitation events will be discussed under the section on snow 
data. 

Similarly, the classification "daily precipitation data" generally 
is construed to mean precipitation that is accumulated in a gage 
over a 24-hour period and then measured. The accumulation period, 
however, is not necessarily tied to a calendar day. The NWS cooper­
ative network stations do not all take observations at the same times. 
Some stations take observations in the evenings, some in the morn­
ings, and some at other times. For the NWS cooperative network, 
reporting times are published for each state in the Annual Summary 
of Climatological Data series and also are available by computer. A 
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difference in observation times can cause the same storm to appear 
to occur on different days. For example, a storm occurring at noon 
on January 1 would be observed as January 1 by an evening observer 
but as January 2 by a morning observer. 

In addition to these fundamental problems of interpretation, 
numerous human, mechanical, and environmental errors affect pre­
cipitation data. Measurement procedures and many of the more 
common error sources are described briefly by Linsley et al. (1982) 
and in more detail by references cited below. 

Wind is perhaps the main cause of errors in all point precipitation 
measurements. This error is especially noticeable with snow. Errors 
caused by wind are described by Peck (1972a,b) and Larson and 
Peck (1974) . Changes in the station environment that occur with 
time can also cause errors, e.g . ,  urbanization, changes in observers, 
removal or regrowth of vegetation, etc. Tests for such changes and 
corrections to restore intergage consistency are discussed by Chow 
(1964) , Hydrologic Research Laboratory Staff (1972) , and Sevruk 
(1982) . 

To help minimize these and other errors, stations submitting 
data to be published by the NCDC are expected to operate stan­
dard equipment and follow a standard procedure, with observations 
taken at standard times. These standard procedures are described 
in Weather Bureau Observing Handbook No. f (WB-ESSA, 1970) , 
currently (1987) undergoing revision. Stations are visited by NWS 
personnel once or twice a year to be serviced and to verify compli­
ance with standard operating procedures. The period of record varies 
from station to station but is generally indicated in the published 
records. 

In addition to the procedures described in Observing Handbook 
No. f, there are very general descriptions of methods for observa­
tion of precipitation contained in the National Handbook of Rec­
ommended Methods for Water Data Acquisition (Office of Water 
Data Coordination, 1977) and the Field Manual for Research in 
Agricultural Hydrology (Brakensiek et al. ,  1979) . A brief descrip­
tion of precipitation measurement methods also is given by Linsley 
et al. (1982) . There are also many non-NWS supervised networks 
that maintain some standards for equipment and observations. Some 
networks, however, accept almost any available data, regardless of 
quality. Thus data quality from available non-NWS networks cov­
ers such a broad spectrum that it is difficult to generalize about its 
accuracy or precision. 

Copyright © National Academy of Sciences. All rights reserved.

Estimating Probabilities of Extreme Floods:  Methods and Recommended Research
http://www.nap.edu/catalog.php?record_id=18935

http://www.nap.edu/catalog.php?record_id=18935


96 ESTIMATING PROBABILITIES OF EXTREME FWODS 

Speclal Preclpltatlcm Network• 

The distribution of official observation stations is neither uniform 
nor particularly well suited to defining the details of the distribution 
of precipitation in storms. In many instances, intense precipitation 
amounts may go entirely unobserved. Sometimes numerical estimates 
of amounts of rainfall in miscellaneous containers such as buckets 
and bowls are collected from residents of areas receiving heavy rain. 
These unofficial "bucket surveys," made after some unusual events, 
may disclose amounts that allow isohyetal analysis to point to a 
likely maximum. Such nonsystematic data may serve to enhance 
systematic rainfall records. 

From time to time special dense networks of rain gages are oper­
ated by various agencies, frequently for research in areal distribution 
of precipitation. Although useful for this purpose, the data collected 
at these sites often cannot be considered indicative of severe storm 
probabilities because the data often are collected only on an ad hoc 
basis during significant storms, without consistent statistical sam­
pling criteria. In addition, some networks collect data routinely for 
operational purposes but do not archive the data. Summaries of spe­
cial networks have been made by the American Geophysical Union 
(AGU, 1965) and by the American Society of Civil Engineers (Tucker 
1969, 1970a,b) . These summaries are not complete, however, and nu­
merous other networks exist. Many television stations, for example, 
sponsor local Weatherwatchers networks. A comprehensive survey 
of such data has not been made and would be difficult to make. The 
NEDRES and NAWDEX data referral services might be useful for 
identifying some networks having these types of data. 

The Storm Ralnf'all Catalog 

Storm Rainftdl in the United States is an unpublished catalog of 
storms collected jointly by the U.S. Army Corps of Engineers and the 
National Weather Service. Assembly of this catalog was begun by 
the Corps in 1937 because of their interest in accumulating a com­
prehensive set of extreme precipitation data. The data have been 
used primarily to develop estimates of probable maximum precipi­
tation (PMP). Briefly, all available data for each individual storm 
were assembled and mass curves showing the time distribution of 
rainfall at each station were constructed. These mass curves aided 
in setting the time distribution of the storm. A depth-area-duration 
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(D-A-D) matrix of average precipitation was computed (Weather 
Bureau, 1946) . 

The principal results of these studies are illustrated in Figures 
19 and 20. It is cautioned that the D-A-D data (Figure 19) are not a 
chronological sequence of rainfall, but the largest amounts for the in­
cremental periods indicated. It is also true that these data are nested 
in time such that the 12-hour amount is contained in the 18-hour 
amount, etc. Isohyetal maps (Figure 20) usually are available only 
for total storm precipitation. The records of these studies are stored 
at the Directorate of Civil Works, Office of the Chief of Engineers 
in Washington, D.C. We emphasize that the sample of completed 
storms is not a complete record of significant storm events either 
in time or in location . Models requiring complete data cannot be 
applied until these inadequacies are remedied. Attempts to use in­
complete data will cause the results to be questionable (see research 
recommendations, chapter 6) . 

Currently, a total of 563 storm studies have been completed. The 
spatial distribution of the storms is shown in Figure 17 in chapter 
4 .  Very few storms in the mountainous western states have been 
analyzed for inclusion in the Storm Catalog because of problems 
inherent in orographic regions. 

Over 400 of the storms in the catalog occurred between 1900 
and 1940. It seems likely that all the pre-1900 storms were outstand­
ing events that required analysis despite limited data. Similarly, 
most post-1940 storms were selected because they exceeded previous 
storms or occurred in locations or seasons not previously analyzed. 
As the catalog accumulated, a "background" of extreme storms was 
established, and only those additional storms that exceeded the other 
storms were processed. The "threshold" for including new storms 
thus varies from region to region. 

The storm analysis is currently a manual process that can take 
more than a year to complete for the larger storms. The number 
of storms studied has been restricted by limited funds. As a result, 
many extreme storms, especially those that occurred after the 1940's, 
have not been analyzed. Thus, the storm record presented in the 
catalog is not statistically complete. 

There is considerable variability in the data sets used to develop 
the analyses. Almost all the first storm analyses were based on 
archived data. The oldest storm studies thus were usually based 
on data from fewer stations than the more recent studies. Analyses 
of some storms that occurred after 1940 may have benefited from 
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FIGURE 19 Example of completed United States storm-study results--storm 
location map and maximum depth-area-duration data for the storm of July 
9-13, 195 1 ,  centered near Council Grove, Kans. From U.S . Army Corps of 
Engineers, ongoing analyses: 1945 to present. 

Copyright © National Academy of Sciences. All rights reserved.

Estimating Probabilities of Extreme Floods:  Methods and Recommended Research
http://www.nap.edu/catalog.php?record_id=18935

http://www.nap.edu/catalog.php?record_id=18935


DATA CHARACTERISTICS AND AVAILABILITY 99 

FIGURE 20 Example of completed United States storm-study results-total­
storm iaohyetal map and mass curves for principal rainfall centers for the storm 
of July 9-13, 195 1 ,  centered near Council Grove, Kana. From U.S . Army Corps 
of Engineers, ongoing analyses: 1945 to present. 
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supplemental data, including that from unofficial "bucket surveys." 
The quality of the resulting analyses is undoubtedly affected by 
the number and the spatial distribution of the available observation 
locations. The resulting inconsistencies need to be given proper 
consideration in any attempted statistical analysis of this data set. 

Extremes of depth-area-duration data also have been compiled 
by Shipe and Riedel (1976) . They summarized the greatest known 
rainfall depths for various areas and durations for so x so latitude­
longitude grid units of the United States. The input data for this 
summary have been placed on magnetic tape. Additional work in 
this area was done by Riedel and Schreiner (1980) , who compared 
the greatest observed rainfalls with generalized PMP estimates. 

Recently, in 198S the Bureau of Reclamation began to automate 
the storm analysis procedure and hopes to reduce the time to com­
plete a study to about 1 month per storm, although some work still 
has to be done manually. The intent is to provide a means to process 
a relatively large number of storms in the western United States and 
thereby improve studies of Probable Maximum Precipitation for that 
region. 

Similarly, the Canadian Atmospheric Environment Service has 
developed a semiautomated storm analysis system. In this system, 
computer data files and procedures are used to plot maps showing to­
tal storm rainfall depths at gage locations. The maps are interpreted 
and isohyetal contours drawn manually. The total-depth isohyets 
then are digitized . The computer apportions the depth by time and 
area using available recording-gage data and computes and prints 
depth-area-duration tables and charts. A catalog of over SOO severe 
storms has been compiled (Pugsley, 1981) . 

Snow Data 

Precipitation falling completely or partly as snow generally can­
not be associated with runoff attributed to a single storm. Caution 
should be taken in using observations of such precipitation to gener­
ate runoff from storms. The runoff from solid or mixed precipitation 
may be significantly reduced by that portion of the precipitation re­
maining as snow cover in the basin. This situation frequently occurs 
in mountainous areas. However, especially large runoff can occur 
from basins with significant snow cover when rains are accompanied 
by warm temperatures. But on some occasions (fairly deep snow 
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pack and cool temperatures) , the snow pack may absorb the liquid 
precipitation resulting in significantly slower runoff. 

Generally, snowfall data are considered a subset of precipitation 
data. A vail able snowfall and snow on the ground data are stored 
on the same magnetic tapes as the daily rainfall data, at NCDC 
in Asheville , N.C. Another source is the World Data Center A for 
Glaciology (Snow and Ice), University of Colorado, Boulder. This 
Center has data different from the hydrometeorological data avail­
able at NCDC, e.g. ,  water equivalent of snow obtained from gamma 
detection Bights conducted by NWS on selected Bight lines in the 
upper midwest during the winter. 

The primary agencies archiving snow-gage and snow-course data 
are: Soil Conservation Service (SCS) of the U.S. Department of 
Agriculture , the Eastern Snow Conference, and the California De­
partment of Water Resources . The SCS data includes observations 
from a telemetered snow-monitoring network called SNOTEL. Snow 
data from the eastern United States may be obtained from the Pro­
ceedings of the Eastern Snow Conference. Snow data from the west 
(except for California) are available from the SCS series of publica­
tions Water Supply Outlook and Federal-State-Private Cooperative 
Snow Surveys. Snow data for California are published in Water 
Conditions in California by the California Department of Water Re­
sources. Statistical summaries of extreme snowfall data have been 
published by Ludlum (1962) and Thorn (1957) . 

Radar RainCall Data 

General 

An advantage of this form of data is that radar observations of 
precipitation can be taken over large regions (radius of up to 85 km) 
during relatively short periods (minutes) . Currently there are two 
forms of operational digital rainfall data from radar systems. Both 
are derived from the primary radars employed by NWS. 

In the first form, called manually digitized radar (MDR) , a radar 
operator manually digitizes radar echo intensities. The product of 
such digitization is based on the maximum echo intensity within an 
MDR box (22 by 22 nautical miles) during the observation period 
(1 hour) . The product does not specify the precise location of the 
maximum echo within an MDR box. 

The second form comes from a system called RADAP II (Radar 
Data Processor II, previously called D/Radex) (Greene et al . ,  1983). 
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It is a fully automated system capable of creating several products, 
including estimates of rainfall accumulations, for periods as short 
as 1 hour. The RADAP II system is presently implemented at 1 1  
locations in the country. 

In the relatively near future (1990-1992), a new weather radar 
system called Next Generation Weather Radar (NEXRAD) will re­
place both of the systems just mentioned. Rainfall estimates in 
digital format will be provided hourly on a grid approximately 4 km 
on a side. The quality of these data will be superior to the quality 
of the data collected by existing systems because the hardware and 
software designs minimize many error-causing factors. 

Other radar systems in the country are operated primarily in a 
research mode. Two important systems are those operated by NCAR 
in Boulder, Colo. , and the National Severe Storms Laboratory in 
Norman, Okla. Additional systems are operated by universities, such 
as Massachusetts Institute of Technology, Texas A&M University, 
and the University of Chicago. Information on the operation and 
data archiving policies should be obtained directly from these centers. 

MDR Do.to. 

MDR data have been archived since November 1973. The re­
flectivity intensity codes along with the number and type of severe 
local storms that have occurred during the hour in an MDR box 
are archived. The archiving is done by the Techniques Development 
Laboratory (TDL) at NWS Headquarters in Silver Spring, Md. ,  and 
the data are available through the National Center for Atmospheric 
Research (NCAR) in Boulder, Colo. The MDR data serve as a basis 
for the National Radar Summary chart, which shows hourly radar 
data across the country, annotated with severe storm information. 
These charts are archived on microfilm at NCDC. These data are 
systematic. 

MDR data are generally continuous and checked for errors. How­
ever, the quality of MDR data is a function of the skill of the radar 
operator. Also, severe weather affects the quality of MDR data. 
A busy and tired operator is bound to make more mistakes under 
severe weather conditions. Low resolution, in both space and mag­
nitude, makes MDR data of limited usefulness for flood frequency 
studies; however, these data could be used to assist in determination 
of spatial distribution of storms. 
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RADAP II Do.to. 

Routine archiving of RADAP II data began in 1985 . The 
archived data consist of reflectivities for every 10 minutes for as 
many standard elevation angles (usually four) as necessary to reach 
the storm top. The data are archived by the Oklahoma Clima-­
tological Survey in Norman, Okla. , and on an "as time permits" 
basis by the Techniques Development Laboratory of the National 
Weather Service. No hourly or longer-period accumulations are rou­
tinely archived. Users interested in accumulated rainfall must do 
the necessary processing themselves. Several algorithms for this task 
are available from the TDL (W /OSD2) or the Office of Hydrology 
(W /OH) at NWS Headquarters, Silver Spring, MD 20910. 

Radars supplying the RADAP II data can be taken out of the 
automatic mode whenever the operator desires and in the past have 
frequently been diverted to other activities during severe storms. For 
this reason these data cannot be considered systematic. The major 
problem with quality is occasional anomalous propagation (AP) of 
the radar signal. Other important contributors are calibration errors, 
partial beam-filling, and the variability of the relationship between 
the reflectivity and the rainfall rate. For a more detailed discussion 
of radar and its uses, see, for example, Battan (1973) . In order to 
partially eliminate errors, it is recommended that radar analysis be 
merged with rain gage data using procedures such as those described 
by Crawford (1979) and Krajewski and Hudlow (1983) . 

Satellite Data 

Satellite data considered in this chapter are sensed by instru­
ments on board a satellite and telemetered to the ground for further 
use. This definition excludes in situ information that is transmitted 
from one point on the ground to another via satellite. 

Those data in most common use are the data from the Very 
High Resolution Radiometer on board the NOAA polar orbiting 
satellites and from the Visible-Infrared Spin Scan Radiometers on 
board the GOES weather satellites. The observations (imagery) 
from the NOAA and GOES weather satellites primarily consist of 
reflected visible radiation and emitted thermal infrared radiation. 
Resolutions range from 1 to 8 km. This imagery can be used to 
note persistence of clouds over storm areas. The application of these 
data to rainfall estimation is described by Farnsworth et al. {1984) . 
Access to both archived and real-time data can be arranged through 
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the NOAA National Environmental Satellite and Data Information 
Service (NESDIS) . 

AJr Temperature 

Air temperature is primarily of interest as an aid in differenti­
ating between rain and snow and as the primary observation used 
to drive snowmelt model simulations. NWS stations in the United 
States have been recording temperatures in degrees Fahrenheit. Most 
thermometers used to measure temperature are accurate to within 
1 degree. Daily maximum and minimum temperature values are the 
values most commonly recorded and archived in the climatological 
data sets available from NCDC, as discussed in the rainfall data 
section . 

Some stations, designated as synoptic stations, observe hourly 
or 3-hourly surface air temperature values. These observations also 
are available from NCDC. Upper air temperature soundings from the 
radiosonde network covering the United States, which may be useful 
for determining whether precipitation is rain or snow, are available 
as described in the NCDC data catalog. 

Evaporation 

Hydrologic models used to estimate runoff from rainfall or snow­
melt must account for water lost to evapotranspiration. Transpira­
tion is highly dependent on vegetative cover and therefore quite site 
specific. Evaporation is measured during months with above-freezing 
temperatures by a network of pans covering the entire country. These 
daily data are published in Climatological Data and are available 
on magnetic tape with other daily observations from NCDC. Two 
NOAA reports on evaporation, one an atlas (Farnsworth et al. ,  1982) 
and one a tabular report of United States pan data (Farnsworth and 
Thompson, 1982) are available. 

Other Hydrometeorologlcal Data 

There are many networks, both private and public, observing 
hydrometeorological data. Generally, the data that are easiest to 
access are those of the NWS networks that report climatic data to 
NCDC. While NCDC archives data from many sources, it publishes 
only the data meeting the standards set forth in Weather Bureau 
Observing Handbook No. t. Most of these data are listed in the 
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publication Selective Guide to Climatic Data Sources (Hatch, 1983} . 
This guide includes information on data such as upper air soundings, 
solar radiation, storms, and storm tracks. 

An additional source of hydrometeorologic information is con­
tained in various atlases. These data are important, for example, 
when using procedures involving transposition of storms from one 
basin to another. Analysts using such procedures should consider 
climatic probabilities of storm direction. Climatic norms for many 
variables, including prevailing winds for selected stations, are de­
picted in the Climatic Atlas of the United States (Environmental 
Data Service, 1968} . 

Also of interest are rainfall-frequency atlases, including those of 
Hershfield (1961} , Miller et al. (1973),  Miller and Frederick (1966} , 
and Frederick et al. (1977} . 

PALEOFLOOD HYDROLOGY 

General Characteristics of Paleohydrologic and Historical Records 

In the broadest sense, paleohydrology is the study of movements 
of water and sediment before the time of continuous measurement by 
modern hydrologic procedures. In the study of ancient floods, a dis­
tinction can be made on the basis of human observation. Historical 
flood records involve human observation and documentation of the 
actual flow events at the time of their occurrence. Because historical 
records often have been accumulated under a mixture of observa­
tional techniques and criteria for determining whether events were 
significant enough to record, these data require careful evaluation 
to make them compatible with data derived from modern hydro­
logic procedures. Paleohydrologic records, on the other hand, are 
produced by physical processes during the occurrence of the ancient 
flood. Where this evidence has been preserved, it may be possible to 
reconstruct the age and magnitude of these paleofloods (Baker, 1985; 
Kochel and Baker, 1982} . Because paleoflood records are produced 
by deterministic physical processes and tend to be preserved at sta­
ble geological sites, they may in some cases be superior to historical 
records in terms of accuracy and ease of interpretation. 

In this report we distinguish between a broad category of paleo­
geomorphic-based flow data and a specific category of paleostage­
based flow data. The reason for the distinction is that in the broader 
class of geomorphic settings, paleoflow estimates can be achieved 
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only with relatively low accuracy. In certain geomorphic settings, 
however, paleostage studies can yield accurate determinations of 
discharge and age for paleofloods. 

Paleogeomorphlc-Based Flow Data 

Many techniques are available to extend flow records into the 
past using principles of geomorphology and related aspects of Qua­
ternary stratigraphy, sedimentology, and geobotany (Costa, 1978; 
Costa and Baker, 1981 ;  Foley et al., 1984; Gregory, 1983; Williams, 
1984) . Among the categories of analysis are regime-based paleoflow 
estimates, maximum-particle-size-based estimates and paleostage­
based estimates. The latter, because of their greater accuracy, will 
be treated separately. 

Regime-based paleoflow estimates (RBPE) involve empirically 
derived relationships that relate relatively high-probability flow 
events, such as the mean annual flood or bankfull discharge, to 
paleochannel dimensions, sediment types, paleochannel gradients, 
and other field evidence. Such relationships apply to alluvial chan­
nels, which adjust their width, depth, sediment transport, and slope 
to the flood discharge. These variables are related to discharge by 
regression expressions derived from observations of relationships in 
modern alluvial channels. RBPE studies have been summarized by 
Dury (1976) , Ethridge and Schumm (1978) , and Williams (1984) . 
Because nearly all RBPE relationships apply only to relatively fre­
quent floods, they are of little use in the evaluation of extreme floods. 

Maximum-particle-size studies involve regression expressions and 
theoretical considerations that determine shear stress, velocity, or 
stream power (SS-V-SP) . The paleohydrologic applications assume 
that the SS-V -SP estimates apply to the maximum floods that trans­
ported the particles. Whether based on theoretical (Baker, 197 4) or 
empirical procedures (Costa, 1983) , the key data for SS-V-SP stud­
ies are paleochannel dimensions, slopes, and maximum particle sizes. 
A critical assumption is that particles sufficiently large to have been 
transported near the competence limit of the flood were present in 
the reach. Church (1978) notes that the error can reach an order of 
magnitude where local controls on sediment transport are not known. 
Much better accuracy can be achieved by a combination of proce­
dures (Costa, 1983) , but irreducible error remains high and nearly 
impossible to specify accurately. Although SS-V-SP studies apply 
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to rare, large floods, such studies usually will produce only a single 
estimate of the largest flood experienced in a given time period. 

Paleostage-Based Flow Data 

General Principles Paleostage-based flow data are generated 
from stable-boundary fluvial reaches characterized by slackwater de­
position and paleostage indicators (SWD-PSI} . Slackwater deposits 
consist of sand and silt (occasionally gravel} that accumulate rel­
atively rapidly from suspension during major floods, particularly 
where flow irregularities result in markedly reduced local flow veloci­
ties. Under suitable conditions, the tops of these deposits indicate the 
paleostage or maximum elevation of water surface during the flood. 
By use of hydraulic calculations involving paleostages at one or more 
sites in the reach, the channel dimensions, and appropriate hydraulic 
resistance coefficients,  the corresponding peak flow rate can be de­
termined. The hydraulic calculations are essentially similar to those 
used in indirect discharge determinations based on high-water marks 
of contemporary floods. What is unique is the methodology used to 
identify the paleo-high-water marks (paleostages} ,  to determine the 
ages of these marks, and to establish the paleochronological sequence 
of flood occurrences at the site . 

Stage Discharge Computations After paleoflood stages have 
been established by methods to be described below, the stage data 
must be transformed into paleodischarge estimates. This can be ac­
complished by several hydraulic procedures, including the slope-area 
method (Barnes and Davidian, 1978; Dalrymple and Benson, 1967} 
and the step-backwater method (Davidian, 1984; Feldman, 1981} .  
The slope-area method was used in the first SWD-PSI studies (Baker 
et al. ,  1979, 1983; Baker, 1983; Kochel and Baker, 1982; Kochel et 
al . ,  1982} , but more recent work has used the step-backwater anal­
ysis (Ely and Baker, 1985; O'Connor et al. ,  1986; Partridge and 
Baker, 1987} . A significant advantage of step-backwater analysis 
over the slope-area method is that the step-backwater calculations 
can be performed independently of the high-water indicator survey 
to produce a stage-discharge relationship covering a range of stages 
and discharges. This relationship can be used with a smaller num­
ber of more poorly defined paleostages than might be required for a 
slope-area calculation. 

or prime importance to accurate flow modeling is an accurate 
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characterization of channel geometry. The hydraulic cross sections 
should be chosen to be representative of the reach between them 
and to permit proper evaluation of energy losses due to friction, ex­
pansion, and contraction. The channel geometry should be defined 
for a sufficient distance downstream to eliminate profile dependence 
on the starting downstream stage. Roughness coefficients should be 
estimated and documented on the basis of field observations. When 
sufficient and appropriate cross sections are chosen to define the 
flow geometry of a reach (Benson and Dalrymple, 1967; Davidian, 
1984} , the errors in the slope-area calculations result mainly from 
the errors in measuring water-surface fallswd, Manning's n, expan­
sion/contraction coefficients, and scour/fill relationships (Jarrett ,  
1985; Kirby, 1985} . The best paleoflood sites are located in chan­
nel reaches with flow boundaries constrained by bedrock or other 
resistant boundary materials. Such channels produce relatively large 
stage changes for changes in Hood disch'arge (Baker, 1977, 1984) . 
Moreover, they do not change their cross sections appreciably dur­
ing major Hoods. High levels of accuracy are difficult to obtain for 
high-gradient streams (Jarrett , 1984} , expanding reaches, and espe­
cially for alluvial streams with a high scour uncertainty. Such reaches 
should be avoided , if possible. 

Discharge estimation error in paleoHood studies is governed by 
the same factors as errors in other indirect flood measurements. 
However, because good paleoflood information tends to be preserved 
primarily at exceptionally stable geological sites, some of the princi­
pal error sources may be better controlled in paleoHood studies than 
in some historic or systematic flood studies. Methods of reducing pa­
leodischarge estimation error in the various categories are discussed 
by Kochel et al. (1982} and Baker (1985) .  

Collection and Interpretation of Paleostage Data Paleostage 
information is obtained by determining the elevations of the upper 
surfaces of slackwater deposits. Conventional surveying methods 
(Benson and Dalrymple, 1967} are appropriate for determining the 
elevations, but specialized techniques are needed to identify the slack­
water deposits and to establish the relationships between the deposits 
and the corresponding paleoflood water surfaces. 

Assuming available bed material for transport , local sites of 
slackwater deposition may include mouths of tributaries, caves and 
rockshelters on canyon walls, How-separation zones in abrupt chan­
nel expansions, and eddy zones or ineffective How areas associated 
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with channel bends or valley-side alcoves, channel constrictions, or 
other flow obstructions. 'Iributary mouth sites are very common. 
They occur because relatively small tributaries debouch their peak 
flows before mainstem flood peaks. The mainstem flooding may 
then backflood the tributary up to a level nearly equivalent to the 
mainstem flood stage. Bedrock caves are less common, but they are 
especially valuable for the long-term preservation of flood slackwater 
sediments. The cave environment prevents subsequent rainwater and 
tributary flow erosive effects. Reduced biological activity preserves 
deposit stratigraphy. The dynamics of flood slackwater sedimenta­
tion is described by Baker et al. (1983} , Kochel et al. (1982} , and 
Patton et al. (1979} . 

Interpretation of slackwater deposits in terms of paleostages, the 
dating of the deposits, and the interpretation of flood chronologies 
require principles of stratigraphy and geochronology. Stratigraphy is 
the branch of geology that deals with the arrangement of sedimentary 
strata, especially in relation to chronologie order of sequence. This 
aspect of a paleoflood study requires analysis by a specialist trained 
in stratigraphic geology. Individual flood sedimentation units are 
recognized, discriminated, and correlated among several sites along 
a paleoflood study reach (Kochel et al. ,  1982). Radiocarbon dating 
is the most common geochronologic tool used to provide absolute 
dates of the individual paleoflood events. A radiocarbon date is de­
rived from a geochemical laboratory determination of the remaining 
present-day activity of the radiogenic isotope 14C in an appropriate 
organic material (Faure, 1986; Stuiver and Polach, 1977} . Analyses 
can be accomplished on small quantities of charcoal, seeds, and other 
organics that are commonly intercalated with ancient flood deposits. 
Floods in the period 1950 to present can be dated essentially to the 
calendar year (Baker et al . ,  1985} . Floods in the period 1650 to 1950 
require supplemental dating by historical documentation, archaeol­
ogy, dendrochronology, or other means. Floods in the period 10,000 
to 350 years ago generally can be dated with typical accuracy for 
that period by conventional radiocarbon procedures. 

SWD-PSI studies can yield varying amounts of information on 
the paleostages and ages associated with ancient flow events. The 
minimal amount of information is a single paleostage indicator and 
a single date on the event. A somewhat more informative case is 
a single, vertically stacked sequence of dated slackwater deposits. 
Each successive deposit implies the occurrence of a paleoflood stage 
higher than the previous deposit . Thus the recorded flood series 
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is censored and the censoring threshold increases when exceedances 
occur. However, the exact magnitude of exceedance is unknown, 
since various depths of flood water above the threshold are capable 
of emplacing a deposit. 

In practice it is rare that a SWD-PSI study will yield only 
a single indicator. More commonly, numerous vertically stacked 
deposits along a reach are identified, traced, and correlated through 
stratigraphic analysis (Kochel et al. ,  1982) . Floods that fail to leave 
deposits at one site, because they fail to exceed the local threshold , 
may be preserved at other sites. Deposits of a given paleoflood are 
traced laterally to their highest levels as they thin upstream along a 
tributary. Additional checks on the maximum flood level are provided 
by scour lines that can be traced to dated deposits. The highest 
deposit or mark of a given flood defines the magnitude of that flood. 
Thus, greater accuracy is achieved (at the cost of additional field 
work) when the slackwater paleoflood study attempts to document 
as many sites as possible in an appropriate study reach. 

Availability of Paleoflood Data Although numerous useful 
SWD-PSI studies have been performed (see previous citations) , there 
as yet exists no comprehensive archive of paleoflood data. At present, 
paleoflood data would have to be developed by individual at-site in­
vestigations at almost any site where it might be desired . AB further 
paleoflood work is completed, this situation may change. Experience 
with paleoflood investigations has led to a recognition of regional fac­
tors conducive to slackwater sediment emplacement and preservation 
and to long-term channel stability, which is necessary for accurate 
transformation of paleoflood stages to discharges. These criteria in­
clude : (1) confined canyons or gorges developed in resistant geologic 
materials; (2) adequate concentrations of sand, silt, and coarser ma­
terials in transport ; and (3) channel beds not subject to aggradation 
or degradation. These criteria are met in numerous upland areas 
of the West,  the Midwest (Edwards and Ozark plateaus) , the Ap­
palachians, and New England. Appropriate sites for a SWD-PSI 
study should be identified by reconnaissance prior to investment in 
a detailed investigation. 

A limiting factor in the adoption of SWD-PSI methodology is its 
multidisciplinary complexity. SWD-PSI studies require expertise in 
geology and geomorphology as well as in hydrology and hydraulics. 
In addition, the proper statistical interpretation of paleoflood data 
in regional flood-frequency analysis may require considerable statisti-
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cal expertise and ingenuity. Computerized statistical procedures and 
data-management facilities for integrating historical and paleoflood 
data with systematic gaged records are not available. Lack of famil­
iarity with concepts and terminology have hindered the adoption by 
engineers of paleoflood methodologies. Nonetheless, the expense of 
such studies is minor in relation to planning costs for major high­
risk projects such as nuclear power plants or large dams. At present 
these opportunities are largely being ignored . The potential contri­
bution of paleoflood data to augment the systematic records used in 
regional flood-frequency analyses should not be overlooked. At a min­
imum, the physical evidence of large paleofloods can be considered 
to provide objective evidence of the past occurrence and potential 
for recurrence of larger floods than might have been documented in 
systematic or historic flood records. For critical projects the paleo­
flood data should at least be collected, appropriately weighed, and 
considered in the overall decision process leading to design. 

ADDITIONAL CHARACTERISTICS OF FLOOD DATA 

Accurate determination of flood magnitudes is only one aspect 
of the general problem of accuracy of flood data. A general definition 
of data accuracy must include the ability of the data to support (or 
contradict) hypotheses or conclusions based on the data. Accuracy 
of flood data, therefore, must include its usability for drawing conclu­
sions about flood frequency. These considerations apply to all types 
of flood data: streamflow data, rainfall data, and paleoflood data; 
subsequent references to flood data are intended to apply to all three 
types. Flood-data attributes that govern this aspect of accuracy 
include sample size, spatial and temporal correlation, spatial and 
temporal homogeneity, and the nature of the sampling plan govern­
ing the data-collection program. These attributes must be considered 
in conceptualizing the probabilistic generating mechanisms and pop­
ulations used to represent the rainfall and flood processes and in 
selecting the statistical methode used to analyze the data. 

Sample Sbe 

Extreme or extraordinary floods are those that have return pe­
riods in excess of about 100 years or annual exceedance probabilities 
(tail probabilities) less than about 10-2 •  The problem addressed 
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by this report thus is the use of hydrologic theory and data to es­
timate annual exceedance probabilities that are less than 10-2•  It 
is known, however, that a data sample of size n, in the absence 
of a priori distributional assumptions, can furnish information only 
about exceedance probabilities greater than approximately 1/n. For 
hydrologic records, n hardly ever is as large as 100, and so a single 
hydrologic record cannot furnish any direct information about the 
extreme tails of the flood-frequency distribution from which it was 
drawn. 

Of course, one may fit a distribution to a sample of size 20 and 
use it to estimate 100-year or 10,000-year floods. The user must 
recognize, however, that such a model is based on extrapolation and 
that it begs the question of the form of the tail. 

An obvious way to investigate the form of the flood-frequency 
tail thus is to enlarge the sample size. The station-year method 
(Fuller, 1914; Linsley et al. ,  1958) attempts to do this by pooling 
suitably normalized records from a number of stations into a single 
large sample of size equal to the total number of station years of 
record. Normalizations that have been used include division by the 
drainage area, division by the at-site sample mean, division by the 
estimated at-site 5-year flood (Rowe et al. ,  1957) , or subtraction of 
the mean and division by the standard deviation. 

Under the assumption that the pooled sample is equivalent to 
a random sample from a single homogeneous population, return 
periods of the order of the total number of station years presumably 
could be investigated. However, spatial correlation between samples 
tends to significantly reduce the total number of station years, i .e . ,  
the validity of the station-year approach depends on the stations 
being far enough apart to be somewhat independent, yet close enough 
together to be in the same hydrologically homogeneous region. These 
conflicting requirements and the realities of hydrologic record lengths 
tend to limit maximum station-year network sizes to a few hundred 
to a few thousand station years, with corresponding limits on the 
return periods that can be investigated . 

Spatial Correlation 

It is common knowledge that weather, climate, and hydrologic 
conditions all exhibit some degree of spatial structure. This spa­
tial structure can be expressed statistically as a cross correlation 
among the records in a station-year network. Matalas and Benson 
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(1961} found that a network of 164 stream-gaging stations in New 
England had an average cross correlation of 0.26 for annual floods. 
With this degree of interstation correlation, the sample mean based 
on the pooling of 164 stations has the same variance as the sample 
mean based on only 4 independent stations (Matalas and Benson, 
1961) . Stedinger (1983} has found less stringent but similar results 
for sample variances and skew coefficients. These findings are roughly 
consistent with the fact that the same five or six major storms caused 
the three or four highest flood peaks (totalling about 500-600 station 
years) at most stations in the New England network (Matalas and 
Benson , 1961) . In effect , the network did not see 500 independent 
floods during these storms, but rather about 80 representations of 
each of about six major regional storms. (See also Dalrymple (1960, 
p. 26} and Benson (1962, p. 25 ff) .] It must be acknowledged that 
New England is small and more subject to large regional-scale storms 
than other parts of the country. Thus the effects of spatial correla­
tion may be stronger there than elsewhere. Nonetheless, it appears 
that use of a i-station network instead of a single site is not likely to 
yield a full i-fold extension of the return periods that can be studied 
or to yield as much as a v'k-fold improvement in estimation errors. 
Thus, the effects of interstation correlation need to be investigated 
for any frequency-analysis approach that involves pooling of flood or 
rainfall records. In particular, the maximum return period (or min­
imum exceedance probability) for which the pooled sample contains 
information should be critically evaluated. 

Investigation of these matters would benefit from improvements 
in the structure and organization of the data bases used to store 
and retrieve flood data. Existing data bases have been organized 
primarily for convenience in storing and retrieving time-series data 
at fixed gage locations. The spatial aspects of the data have not 
been given high priority. Studies of interstation correlations, storm 
structure and movement, geographic distribution of floods, and other 
spatial characteristics of flood data would benefit from an improved 
ability to access spatial arrays of flood data at selected instants of 
time. 

Nonstatlonarlty 

In addition to pooling concurrent records, available sample sizes 
sometimes may be enlarged by temporal extension. Information from 
historical sources such as newspaper articles, diaries, and personal 
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recollections of long-time residents often can be used to reconstruct 
chronologies of historic floods (Thomson et al. ,  1964) . If the histor­
ical records are detailed enough and hydraulic conditions have been 
sufficiently stable, it may be possible to determine the magnitudes, as 
well as the dates, of the flood events (Sutcliffe, 1985) ;  this has been 
a very important source of flood-frequency information in China 
(Luo, 1985) and in other places (Tennessee Valley Authority, 1961) .  
Paleohydrologic flood information similarly may be  developed by ge­
ological and hydraulic analyses of fluvial deposits and landforms, as 
described elsewhere in this chapter and by Baker (1985) . 

Whenever historical or paleohydrologic information is pooled 
with more recent observations, the comparability of the two types of 
data comes into question. Several questions must be asked. First, 
it must be determined whether the hydrologic and hydraulic mech­
anisms that generated the historic floods and paleofloods were com­
parable to the mechanisms that generated the gaged events. In 
addition, it may be asked whether the generating mechanisms of 
the present and past will be representative of the mechanisms that 
will generate floods during the time period for which the flood fre­
quency is being assessed. The fact of climatic change is well accepted 
in principle, although the magnitude and direction of any current 
change may be subject to debate and although it may be impos­
sible to distinguish between irregular nonstationarities and random 
or correlation-induced fluctuations in a long-term stationary record. 
Similarly, changes in land use and hydraulic conditions in rivers are 
well known. USGS peak-flow records even contain qualification codes 
to document such changes. Finally, in view of the importance of mea­
surement error, it may be asked whether differences in measurement 
technique affect the usability of the pooled data. 

All of these questions apply also to long systematic (gaged) 
records, although they apply with more force to historic and pa­
leohydrologic records. If the records are nonstationary, then the 
statistical characteristics of the nonstationarity need to be modeled, 
estimated, and extrapolated into the future before the records can 
be used. 

These questions all have been widely discussed in the hydro­
logic and geoscience literature without achievement of a consensus 
on practically usable guidelines. Thus, these questions have to be 
investigated and resolved for each specific case in which historic or 
paleoflood data are to be incorporated into flood-frequency analysis. 
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Statistical Sampling Conditions 

Finally, a fundamental problem exists in the statistical inter­
pretation of paleoflood, historic , and miscellaneous-site flood mea­
surements. AB was discussed above, systematic records are relatively 
easy to interpret statistically, but nonsystematic records are not easy 
to interpret because they pertain to particular unique events rather 
than to the predefined classes of events that are the subject of proba­
bility and statistics. Whether a record is systematic or nonsystematic 
depends upon whether or not it was collected and preserved under a 
protocol that ensures that the record contains all occurrences of the 
events of interest and that it excludes all events that do not belong 
to the class of interest . 

Records that are historic in the sense used here are by definition 
nonsystematic. Some records collected in the distant historic past, 
such as the records of the annual floods of the Nile at Alexandria, 
may in fact be systematic, despite their antiquity, provided that they 
were collected and preserved independently of the magnitudes of the 
events. It is conceivable that some of the historical texts pertaining 
to floods in China in fact may be systematic records of data such 
as tax receipts, agricultural yields, and expenses that are correlated 
with the occurrence of floods. 

Much recent work on the treatment of historical information 
in flood-frequency analysis (Hirsh, 1985 ; Hydrology Subcommittee, 
1982; Stedinger and Cohn, 1985, 1986a,b; Zhang, 1982) rests on as­
sumptions that the historical records contain all occurrences of peaks 
exceeding some threshold. Such a record, in the terminology of Ste­
dinger and Cohn (1985) and Hirsch (1985) , is a censored sample and 
is in fact a special kind of systematic sample. The recording and 
preservation of historic information does not necessarily produce a 
record of this kind. It seems quite possible, for example , that of three 
floods ranked 3, 2 ,  1 and occurring in years 1850, 1875, and 1877, 
the 1875 flood might be superseded in the historical record by the 
1877 flood, whereas the 1850 flood, by virtue of its primacy and iso­
lation in time , might be remembered. Thus, another possible model 
for the record is that provided by Hosking and Wallis (1986a,b ) , 
who characterize the historical record in terms of knowledge only of 
the historical maximum event. The mechanisms by which historic 
flood events were detected, recorded, and preserved at a particular 
site were discussed in detail by Gerard and Karpuk (1979) ; further 
investigation, understanding, and mathematical modeling of these 
mechanisms is needed for reliable interpretation of historic records. 
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Similar remarks apply to paleohydrologic records. In this case, 
however, the mechanisms governing the recording and preservation 
of the events are geological and hydraulic. These physically based 
mechanisms may be somewhat more amenable to statistical modeling 
and interpretation than historic-record mechanisms. 

Proper statistical treatment of historical and paleoftood data re­
quires the use of auxiliary information in addition to the ftood mag­
nitudes. Such information includes the historical censoring threshold 
and historical period that enable a historical record to be treated as a 
censored sample. Some paleohistorical records may require multiple 
thresholds and historical periods or other as yet undetermined types 
of information for proper analysis. Existing ftood-data archives have 
not been designed for storage and retrieval of the specialized param­
eters needed for proper interpretation and analysis of historical and 
paleoftood data. They also have not been designed for effective man­
agement and utilization of isolated ftood determinations and their 
integration with systematic gaged records. 

The importance of the statistical sampling plan is particularly 
apparent in the cases of the miscellaneous ftood measurement records 
of the USGS and other agencies, and the U.S. Army Corps of Engi­
neers' catalog of major storms. Both of these measurement programs 
were directed toward documentation of record-breaking events with 
the objective of providing information on extreme ftood potentials, 
probable maximum precipitation (PMP) , and probable maximum 
ftoods (PMF) . Numerous significant storms and ftoods were never in­
cluded in theses files simply because they did not significantly exceed 
previous events that already were recorded. These files thus may 
contain much useful data on magnitudes of record-breaking events, 
but they do not reftect the relative proportions of events of different 
magnitudes or the absolute rates of occurrence of events. Although 
these data sets tend to resemble sequences of record-breaking events, 
their modeling and interpretation are complicated by several factors. 
The essential problem is the spatial dimension of the data sets. In 
most cases only one event has been observed at any particular site. 
Thus the data sets contain few, if any, actual sequences of record­
breaking events at the same site. But storm climatology varies from 
site to site, and ftood magnitudes depend on site characteristics such 
as drainage area, slope, and soil type. Thus, it is not obvious how to 
pool observations made at different sites in a region to form sample se­
quences of record-breaking events usable for statistical analysis. The 
problem is further complicated because even some record-breaking 
events have been omitted from these files because they were super-
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seded by still-larger events before they could be recorded in the files. 
Thus a concerted research effort would be required to develop a 
suitable methodology before meaningful statistical interpretations or 
estimates could be made from these files. 

Seismologists have a somewhat similar problem in the analysis 
of earthquake records. Earthquakes, like storms and floods, occur 
"randomly" in time and space and have associated with them certain 
numerical measures that characterize their magnitudes or intensities. 
Similarly, there is a mixture of systematic and nonsystematic report­
ing: seismograph installations provide systematic records, whereas 
citizen reports of various kinds constitute nonsystematic records. 
The resulting earthquake records or catalogs tend to be quite com­
plete for large recent earthquakes, but incomplete for small past 
earthquakes. The degree of completeness is related to the density 
and sensitivity of both the seismograph network and the general 
population. Stepp (1972) describes a method for accounting for this 
incompleteness by estimating earthquake occurrence rates separately 
for each earthquake intensity class using only the part of the cata­
log that is complete for that class. The period of completeness for 
each class was determined by plotting the estimated average arrival 
rate (number of occurrences divided by record length) as a function 
of record length, measured backward from the present time. The 
point at which the plot begins to decrease with record length is the 
beginning of the period of completeness. Veneziano and Van Dyck 
(1985) have generalized this model by considering spatial variability 
of the seismicity parameters and by characterizing the incomplete­
ness by probabilities of detection by people and by instruments. The 
detection probabilities are correlated with population density and 
seismograph network density and sensitivity and thus are functions 
of space and time. A maximum likelihood technique is described for 
simultaneous estimation of all seismicity and incompleteness param­
eters. 

It should be noted that the earthquake catalog completeness 
problem is not identical to the hydrometeorological one. For exam­
ple, the earthquake catalog model does not address the fact that some 
major storms and floods simply have not been cataloged because 
they are not record-breaking events. Nonetheless, the probabilis­
tic models and statistical estimation techniques used in earthquake 
catalog analyses are relevant and applicable in general terms to the 
hydrometeorological problem. Careful study and adaption of these 
techniques to the analysis of hydrometeorologic event catalogs would 
be well worthwhile. 
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6 

Developmental Issues and 
Research Needs 

AB indicated throughout this report , the theoretical basis for 
the estimation of flood probabilities in the range of interest is in 
need of improvement. The report discusses opportunities to im­
prove estimation through application of regional statistical analy­
sis of streamflow, consideration of paleohydrologic data, and use of 
rainfall-runoff models driven by synthetically derived precipitation 
inputs. The committee recommends these new directions not be­
cause they are tested and proven, but because of their promise and 
apparent scientific cogency. There is little in this report that can be 
taken by the practitioner and applied without further development or 
research. However, with development (e.g. ,  refinement of procedures 
and "how-to" guidance) and research, our ability to estimate proba­
bilities of rare floods should improve. Specifically, the committee is 
confident that application of the recommendations of this report will 
be strengthened and more widely accepted through development and 
research on the following topics. 

FLOOD STATISTICAL ANALYSIS 

Regionalization techniques should be explored . Parametric mod­
el considerations have two principal components: spatial dependence 
and parametric structure. A study of joint distributions with pre­
scribed marginal probabilities to account for spatial dependence is 
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needed. Structure on the parameters among the sites is a key issue 
and a limited number of such structures have been studied to date. 
Existing index flood schemes imply a structure among the parame­
ters, and the suitability of these implied structures needs attention . 
Explicit parametric structures ought to be based on studies of phys­
ical/hydrologic conditions and then validated. For nonparametric 
models, extrapolation techniques such as the Breiman-Stone (1985) 
methods should be extended to higher dimensions to learn how they 
behave in the presence of spatial dependence. Similarly, tail methods 
should be extended to higher dimensions. 

RUNOFF MODELING 

Each stage of a runoff modeling method for estimating ex­
ceedance probabilities of extreme floods involves methods which 
require research, testing, and development. The most critical is­
sues involve the precipitation input. The synthetic storm approach, 
which involves estimation of probabilities of temporally and spatially 
averaged storm depths followed by reconstruction of temporal and 
spatial patterns for individual storm events, needs to be evaluated 
critically. Stochastic rainfall models could be used effectively to do 
this. The critical assumption of storm transposition should be tested; 
that is, along with storm catalog development the various steps of 
implementation of storm transposition need testing. The data en­
hancement proposed in the next section will provide a solid base 
for research. We strongly recommend research on stochastic rainfall 
models, particularly emphasizing upper tail behavior and regional­
ization. Storm transposition based on a historic storm catalog needs 
much additional research. 

A second general issue for additional research in runoff modeling 
is the capability of existing rainfall-runoff transformation models to 
simulate extreme events accurately. This issue could be addressed 
through modeling experiments on historically observed large floods 
for which reliable data are available on both rainfall and streamflow. 
Such experiments would be useful for comparing models, estimating 
the likely magnitude of errors, and identifying physical mechanisms 
which may not be operating at lower discharges. 

Several other topics require research, including the problem of 
estimating probability distributions for antecedent conditions, for 
snowmelt rates and for the occurrence of frozen ground. Methods for 
error analysis need to be developed, so that some kind of measure 
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of uncertainty can be applied to probabilities estimated by runoff 
modeling techniques. 

DATA CONSIDERATIONS 

Most of the approaches discussed in this report have been in­
hibited in development and verification by a lack of systematic data. 
Major efforts are needed to compile comprehensive data bases for de­
veloping and testing approaches proposed in chapters 3 and 4. Until 
this is done, the level of confidence needed for field implementation 
of techniques for estimating probabilities of extreme floods will be 
severely limited. 

The primary step in the statistical strategy described in chapter 
3 was the compilation of a large set of flood records from sites that are 
hydrologically similar to the sites of interest. The availability of the 
peak flow records, as described in chapter 5 ,  is on the order of one sta­
tion per 150 square miles, and the average record length is 22 years. 
Regionalization of these data potentially adds to the effective sample 
length ; however, it is questionable , even when regionalization is used, 
whether currently available records are sufficient to model 1 ,000-
to 10,000-year return-period floods. The consideration of paleo­
flood and historical flood data and their incorporation into regional 
flood-frequency analyses are worthy of further development and re­
search. Lack of familiarity with these concepts has hindered the 
gathering of such data, and there may be statistical difficulties in the 
consideration of paleoflood and historical data in regional analyses. 
Research is needed on the mechanisms by which paleoflood and his­
torical flood records are produced and preserved with an emphasis on 
constructing statistical models that reflect these mechanisms, as well 
as consideration of climatological changes that may have occurred 
between the historical event and the contemporary data record. 

Efforts also should be made to develop flood data storage and 
retrieval systems that can help to integrate isolated historical and 
paleoflood measurements and measurements at miscellaneous sites 
with systematic records collected at gaged sites. Such systems should 
support spatial representation of flood data as well as the traditional 
point-time-series representations. In addition, provision should be 
made for storing and retrieving the various types of auxiliary in­
formation needed for statistical analysis of historical and paleoflood 
data. 

Runoff modeling approaches described in chapter 4 depend on 
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the adequacy and accuracy of available precipitation records. The 
use of continuous models requires continuous data (at least for the 
duration of the events that are simulated) .  Furthermore, many appli­
cations of space-time models have been considered infeasible because 
of the lack of sufficiently dense gage networks. 

The primary data sets available for use with runoff models are 
the systematic hourly and daily precipitation data, and the storm 
catalog. However, the large size of the systematic hourly and daily 
precipitation data sets accessible at NCDC makes data management 
and quality control formidable tasks. Additionally, a high percentage 
of these data are unrelated to severe floods of interest . The storm 
catalog (upon which the storm transposition methods introduced 
in the section on synthetic storms in chapter 4 were based) was 
developed by the National Weather Service and U.S. Army Corps of 
Engineers. Methods using transposition , such as those proposed in 
this report , are based on the assumption that the input data include 
a complete and uniform record of "significant" storms. The storm 
catalog, as described, is a unique and essential data set. However, 
it does not form a systematic record and the quality of the storm 
estimates is not consistent from storm to storm. 

Given these substantial data limitations, probably the most im­
portant of several data development efforts would involve under­
standing how the systematic NCDC precipitation records could be 
used to complete the storm catalog. Relationships should be devel­
oped between storms described in both the storm catalog and the 
continuous (digital) rainfall records. From such comparisons, adjust­
ment factors may be determined to adjust storm events recorded 
in the archived data set but not in the storm catalog, so that such 
storms could be represented in the storm catalog, making the catalog 
comprehensive for storms with accumulations above some specified 
significance level. Assessments of the storm events described by the 
archived data (the systematic NCDC records) will benefit by com­
parison with assessments of the same events described in the storm 
catalog, because of the greater density of observations associated 
with bucket surveys (used in analyzing cataloged storms) . This pro­
cess will improve the assessment of storm means and total volumes. 
The resulting storm catalog should be structured for easy access 
by scientists and engineers working on probabilities of hydrologic 
catastrophes. 

Other important data development projects are: to further auto­
mate and speed processing of storms not yet included in the catalog; 
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to find ways to simplify the procedures (possibly using network de­
sign principles) or reduce the cost and effort involved in reviewing all 
of the systematic rainfall records; and to expand the understanding 
of homogeneous regions and regionalization of hydrologic events. 

A COMPREHENSIVE STATISTICAL MODEL 

A comprehensive statistical model needs to be developed for re­
lating probability estimates based on flood statistics to estimates 
based on runoff modeling. One possibility is to use the stochas­
tic structure of the storm-rainfall and antecedent-condition process 
to induce a stochastic structure (derived distribution) on the flood 
process by means of a deterministic rainfall-runoff transformation 
(Eagleson, 1972) . This is discussed in chapter 4. Also, as discussed 
in Chapter 5, combined statistical-deterministic models have become 
highly developed in the area of seismic risk analysis (Veneziano and 
Van Dyck, 1985) . Many valuable lessons might be learned from 
study of this work . In addition to whatever theoretical insights the 
derived distribution might furnish about flood tail probabilities, an 
integrated statistical-deterministic hydrologic model would permit 
joint use of all available rainfall and flood-flow data in estimation of 
extreme flood probabilities. 
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