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PREFACE

This report is the output of a panel created under the auspices of the
Committee on Applied and Theoretical Statistics (CATS). The Panel on
Discriminant Analysis and Clustering was organized in May 1981 with 11
members, including the author of this preface as Chairman.

It was agreed that the general objective of the report would be both to
provide a summary of the state-of-the-art in discriminant analysis and clustering
and also to identify key research and unsolved problems that need to be
addressed in these two areas. The goal was to have four chapters in the report:
Theoretical Aspects, Methods, Algorithms & Software, and Applications. [A
fifth possible chapter to address pedagogical aspects was initially considered
but dismissed.]

The intended audience for this report was assumed to be reasonably
familiar with statistical concepts and terminology although not necessarily to
possess expertise in the methodologies considered here. Also, the report could
be useful to people in many fields of applications of statistical methods of
classification and clustering who may be generally familiar with the issues and
procedures but not be professional statisticians. The tradeoffs between the
experience gathered as a user and the technical knowledge of a statistical expert
would hopefully enable a wider audience to benefit from the report. As a
summary of state-of-the-art methods (with references for pursuing details) the
report was intended to be useful to users, while as an attempt to indicate
additional directions for methodological research it would be of interest to
professional statisticians.

The first meeting of the panel was held in Washington, D.C., on November
19 and 20, 1982, and was attended by all but one member of the panel. At this
meeting, the objectives of the panel were discussed and sharpened, and by the
end of it, an outline for a possible report had emerged. Specific assignments to
individual committee members for providing first drafts were agreed upon and,
in addition, certain individuals undertook the responsibility for coordinating the
efforts so as to result in particular chapters of

PREFACE vii
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the intended report. The general commitment was to have all of the individual
contributions in to the coordinators by the end of the summer of 1983.

For a variety of reasons, the initial goals had to be pared down.
Specifically, the chapter on Applications had to abandoned. While the intended
scope had to be cut back, the present report would not have been possible
without the particular help of some of the panel members. Drs. R. K. Blashfield,
O. J. Dunn, J. A. Hartigan, P. A. Lachenbruch and R. A. Olshen all provided
drafts for the pieces they undertook. The chapter on Theoretical Aspects is the
work of Drs. R. A. Olshen and J. A. Hartigan. The chapter on Methods was
pulled together by Drs. R. Gnanadesikan and J. R. Kettenring based on useful
inputs supplied by various members of the panel mentioned above. The chapter
on Algorithms and Software is a blending of material from Drs. P. A.
Lachenbruch and R. K. Blashfield. While some editorial efforts were expended
at putting in references to material across chapters written by different people,
inevitably, there remains some duplication of coverage and inconsistency of
notation, which we hope are not too distracting.

A draft of the full report was circulated to all members of the panel and
was also made available to all current and a few past members of CATS.
Helpful comments received from Drs. R. A. Olshen and F. J. Rohlf, members of
the panel, and from Drs. R. A. Bradley and R. Pyke (respectively former and
present chairmen of CATS) led to the first version of the report. Additional
comments received from reviewers were useful in developing this final version.

Aside from the above-mentioned panel and CATS members, it is a
pleasure to thank Nancy K. Davidson and Hester A. Glynn for their major help
in the word processing effort for this report. Thanks are also due to Bell
Communications Research for their facilities and support in this process.

R. Gnanadesikan
November 1987
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CHAPTER 1

INTRODUCTION

An interest in “classification” permeates many scientific studies and also
arises in the contexts of many applications. From speech and speaker
recognition problems in acoustics, to problems of numerical taxonomy in
biology, and problems of classifying diseases by symptoms in health sciences,
as well as problems of classifying artifacts in archaeology, or identifying market
segments in market research, the central interest is in classifying “objects”,
“subjects” or entities of some kind. When the classification is based on
measurements of a set of characteristics or variables, statistical techniques are
available to aid the systematic process. The major concern of this report is with
such statistical methods.

Classification is an inherently multivariate problem. Whether the interest is
in deciding admissions to college, diagnosing a patient's illness for treatment
purposes, or pattern recognition in specific applications, the most likely
scenario is one in which the data on hand pertain to many variables measured
on each entity and not one involving just a single variable. This high-
dimensional nature of classification provides an opportunity but also presents
some difficulties to the developer of appropriate statistical methodology.

One can distinguish two broad categories of classification problems. In the
first, one has data from known or prespecifiable groups as well as observations
from entities whose group membership, in terms of the known groups, is
unknown initially and has to be determined through the analysis of the data. For
instance, one may have several repeated utterances of a specific word by
different persons, and acoustic parameters extracted from each utterance labeled
by the particular speaker would constitute the known replicate representations
(also called training samples). In such a situation, if some additional utterances
of the same word become available but one does not know from which person
these
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utterances arose, one may need to make such an assignment statistically (i.e.,
the so-called speaker recognition problem) where the classification is with
respect to the known speakers (groups). In the pattern recognition literature
(see, e.g., Duda and Hart, 1973) this type of classification problem is referred to
as supervised pattern recognition or learning with a teacher. In statistical
terminology it falls under the heading of discriminant analysis.

On the other hand there are classification problems where the groups are
themselves unknown a priori and the primary purpose of the data analysis is to
determine the groupings from the data themselves so that the entities within the
same group are in some sense more similar or homogeneous than those that
belong to different groups. Many problems of numerical taxonomy, as well as
market segments that are determined on the basis of demographics and
psychographic profiles of people, provide examples of this second type of
classification problem where the groups are data-dependent and not
prespecified. This type of classification problem is referred to as unsupervised
pattern recognition or learning without a teacher, and in statistical terminology
falls under the heading of cluster analysis.

While discriminant analysis and cluster analysis constitute a useful
dichotomy of classification problems, there are of course many real-life
problems that combine the features of both situations. One might have some
preliminary or imprecise idea of the groups from which the data arise but wish
some verification of the meaningfulness of the prespecified groups in certain
problems. Some combination of the tools from the two types, or perhaps
entirely different and as yet unavailable tools, may be appropriate for these
situations.

The earlier-mentioned wide-spread prevalence of the classification
problem (in all of its guises) in many fields, stimulated by the easy access to
both numerical and graphical computing facilities, has seen the development of
a plethora of new approaches and algorithms for discriminant analysis and
cluster analysis in the last two decades. If one were to consider classification
problems in three stages, viz. input, algorithms and output, it would be fair to
say that the vast majority of the work has focussed on the second of these. It is
clear, however, that
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careful thought about what variables to use and how to characterize and/or
summarize them as inputs to methods of classification are very important issues
that would involve both statistical and subject matter considerations in
applications. Similarly, the most challenging aspect of most analyses of data
tends not to be the choice of a particular method but interpretation of the output
and results of algorithms.

The three stages clearly interact with each other and statistical issues and
methods play central roles in all three of them. To illustrate this point, the
importance of choosing the variables and/or features to use initially for
classification purposes has been mentioned. Nevertheless, despite the care with
which this is done by a user, there may be a tendency to include “too many”
rather than “too few” variables from the point of view of informativeness of the
variables. (The opposite problem of using too few variables sometimes occur,
too, giving rise to poor results.) Sorting out the resultant redundancy among the
variables, and identifying those that have incremental statistically useful
information for classification purposes, are problems that can benefit from
statistical methods for variable selection. It is usual to consider algorithms for
variable selection as part of the process of understanding and interpreting the
results of an initial application of a discriminant or cluster analysis procedure.

The discriminant analysis situation has been a more integral part of the
historical development of multivariate statistics, while the cluster analysis case
received most of its impetus from fields such as psychology and biology until
relatively recently. In part, the lack of statistical emphasis in cluster analysis
may be due to the greater inherent difficulty of the technical problems
associated with it. Even a precise and generally agreed upon definition of a
cluster is hard to come by. The data-dependent (presumably “random”) nature
of the clusters, the number of them, and their composition appear to cause
fundamental difficulties for formal statistical inference and distribution theory.
Except for ad hoc algorithms for carrying out cluster analyses themselves,
counterparts of many other statistical methods that exist for the discriminant
analysis case are by and large unavailable for the cluster analysis situation.
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The main dual purposes of this report are to take stock of the current state
of the art in both discriminant and cluster analysis and to identify important
problems that still need to be addressed in both domains. In Chapter 2, the focus
is on methodology while in Chapter 3 theoretical aspects of the subject are
reported. The fourth chapter provides a survey of available software and
algorithms for both discriminant and cluster analysis. The final chapter contains
a brief summary of the current state of the art and lists some problems that need
more attention from researchers.
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CHAPTER 2

METHODS

2.1 INTRODUCTION

In this chapter, brief descriptions are provided of the methods of
discriminant analysis and of cluster analysis. The intention is not to provide
details or derivations, since those are available in a number of books, but
merely skeletal descriptions of the essential steps in the statistical procedures
and algorithms.

Section 2.2, concerned with methods of discriminant analysis, is an
amalgam, both edited and modified, of written material supplied by two
members of the panel, O. J. Dunn and P. A. Lachenbruch. Section 2.3, written
by R. Gnanadesikan and J. R. Kettenring, pertains to methods of clustering.

2.2 METHODS OF DISCRIMINANT ANALYSIS

2.2.1 General Remarks

The discriminant analysis situation is characterized by the following: one
has two types of multivariate observations - the first, called training samples, 
are those whose group identity (i.e., membership in a specific one of say G 
given groups is known a priori ), and the second type, referred to as test
samples, consists of observations for which such a priori information is not
available and which have to be assigned to one of the G groups.

The variables constituting the multivariate observations, and the “groups”
involved, will depend on the particular application. For instance, in
anthropometry, the variables might be different measurements on fossils and the
groups might be a known taxonomy of the fossils (e.g., different races or
different stages of
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evolution). In a medical application, the variables could be results of various
clinical tests and the groups could be collections of patients known to have
different diseases. In an acoustical application, the variables might be a set of
acoustical parameters extracted from the utterance of a specific word by an
individual while the groups are repeated utterances of the same word by
different individuals. In each of these cases, there are observations whose group
identity is known (the training samples) but there will also be some
observations whose classification is unknown (e.g., a fossil whose race group is
unknown, a patient whose disease category is unknown, or an utterance whose
source speaker is unknown).

Before discussion of the major numerically-oriented methods of
discriminant analysis, mention should be made of a number of developments in
computer graphics for representing multivariate data that are useful informal
aids for classification. Schematic graphical displays of multivariate
observations proposed by Anderson (1957), Andrews (1972), Chernoff (1973b),
and Kleiner and Hartigan (1981) can be and have been used for informal
classification of objects. The essential idea is to represent either the individual
training samples or some typical value (e.g., the mean of a group) via a
schematic display, do the same for the test samples, and then by inspection of
these displays decide to assign a test sample to the group whose training sample
displays (or typical value display) look “visually closest” to the test case's
display. In practice, large numbers of observations or variables, as well as
poorly understood visual perception biases, can limit the usefulness of these
graphical techniques.

In thinking of the more numerically-oriented methods of discriminant
analysis, it is useful to distinguish two stages of the analysis, although not all of
the available statistical methods either make such a distinction or are equally
useful for the two stages. The first stage, concerned solely with the training
samples, is to find a representation of these observations so as to, in some sense,
clearly separate the G groups. The resulting representation, usually a spatial
one, is often called the discriminant space. Such a representation when
presented graphically has major descriptive and diagnostic value in analyzing
data.
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The second stage of a discriminant analysis is concerned with assigning
the test samples (i.e., those observations whose group identity is initially
unknown) to one of the G specified groups. At this stage, the focus is on correct
classification. Some measure of correct classification, using the training
samples and not the test samples, is often used to evaluate the performance of
discriminant analysis methods (see discussion below on evaluation). An
important scientific consideration, that is sometimes not emphasized adequately
in the statistics literature on discriminant analysis, is that in the real world it
may turn out that an item whose classification is unknown may not belong to
any of the prespecified groups but indeed be a member of an entirely different
or hitherto unknown group. (See Rao, 1960, 1962; Andrews, 1972.)

Statistical considerations in discriminant analysis have to do with
distributional assumptions concerning the observations, measures of separation
among the groups, algorithms for carrying out both stages of the discriminant
analysis and the study of the properties of proposed algorithms. Historically,
Fisher (1936) was the first to propose a procedure for the two-group (G = 2)
case based on maximizing the separation between the groups in the spirit of
analysis of variance. This procedure is equivalent to the likelihood ratio
procedure that arises if one assumes multivariate normality (with a common
covariance matrix) for the observations from both groups. The initial extensions
of this were concerned with multiple groups and with heterogeneous covariance
matrices across groups, but still retained the multivariate normal assumption.
These normality-based methods are the ones most widely used in practice.
Provided the measured variables are not constrained to take on only a few
distinct values, as in the case of binary variables, transformations of them might
enhance their normality and enable the more sensible use of the normality-
based procedures (see further discussion of transformations below).

There are real situations involving variables, such as binary or categorical
ones, that are not sensibly transformed. Distribution-free and non-parametric
methods, which move away from the normality assumption, have been
developed relatively recently to handle such data. See, e.g., Hand (1981,
Chapter 5) and Lachenbruch (1975, Chapter 4).
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After developing a classification rule, the natural next step is to evaluate its
performance. When information on costs of misclassification is available, then
one might look at the expected (average) cost of misclassification. However,
such information is not usually available, and an oft-used criterion is just the
error rate itself (i.e., the proportion of items that are misclassified).

A number of possible rates may be considered:

1.  The optimum error rate - the rate which would hold if all
parameters are known.

2.  The actual error rate - the rate which holds for a classification rule
under consideration when it is used to classify all possible future
samples.

3.  The apparent error rate - the rate we obtain by resubstituting the
training sample and determining the misclassifications.

It is possible to evaluate the overall error rate or the individual group rates.
Both are of interest. The likelihood ratio procedure (e.g., see §§ 2.2.2, 2.2.3)
determines the rule so as to minimize the overall rate for specified parametric
distributions. However, this may lead to a rule which has a high error rate in
one of the groups, and this may be unacceptable to the user. In such cases, the
“cutoff point” involved in the rule will be altered to give a more balanced set of
error rates. This usually does not increase the overall error rate greatly.

Many procedures that depend heavily upon the assumption of normality
have been proposed to estimate the error rates. Consideration is given here to
estimators that may be used in any context. First, the apparent error rate (or
resubstitution estimator) simply classifies the training sample using the rule
calculated from it. This estimator is typically over optimistic and can badly
mislead the user if the sample size is not much larger than the number of
variables in the rule. It is also hazardous if there is initial misclassification in
the training samples. However, for those cases in which the number of initially
correctly classified observations is sufficiently large, the bias will be small. The
second method of estimation is called leave-one-out and is similar in spirit to
the jackknife. This procedure omits an observation, recalculates
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the classification rule from the remaining observations, classifies the deleted
observation, and repeats these steps for each observation in turn. Counting the
errors of misclassification yields an almost unbiased estimate of the error rate.
Unfortunately, the variables indicating misclassification are correlated so that
this estimate has a large variance. In many cases, the mean square error of the
leave-one-out method is larger than that of the resubstitution estimator. The
third procedure is the bootstrap method. This seems to combine the best
features of the previous two estimators: it is almost unbiased, and it has a small
variance. The major drawbacks of the bootstrap are its expense and its inability,
even asymptotically, to deal with sufficiently large biases. One must compute as
many classification rules as there are replicates. If the classification rule is
based on density estimation, this could become prohibitively expensive. A
fourth possibility, closely analogous to the leave-one-out method, is cross
validation. One splits the training sample into k parts, uses all but one to
develop the classification rule, and classifies the left out part. This process is
repeated k times, and error rates are averaged (see p.50). Popular choices of k 
are the sample size (the jackknife case) and two. Provided enough data are
available to carry it out, this has the advantages of being nearly unbiased.
However, as for the jackknife, the mean square error may be large.

In summary, the apparent error rate is optimistically biased and should be
used with caution when the sample sizes are small relative to the number of
variables. The other methods mentioned can be useful alternatives in this case.
Otherwise, the apparent error rate should be a satisfactory estimator. For a
bibliography on error rates, see Toussaint (1974).

In the sections that follow, specific methods of discriminant analysis are
outlined and for many of them some discussion is provided of their absolute/
relative performances, including error rate behaviors.
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2.2.2 Classical Two-group Linear Discriminant Analysis

The most widely used rule, for classifying an observation x into one of two
populations, Π1 or Π2, is that which classifies x into Π1 if
υ = (x−(1) −x −(2))�S −1(x − (1/2) (x−(1) + x −(2)) ≥ c  (1)

or into Π2 otherwise. Here x−(1) and x−(2) denote the vector means of two
independent samples (the training samples) of sizes n1 and n2, respectively, and
S denotes the pooled sample covariance matrix, ((sii´)), where

x is a p component vector. The linear discriminant function (LDF) (x−(1) − x
−(2))�S−1x was suggested by Fisher (1936), who introduced it as that linear
combination of the p variables which separates the two (training) samples as
much as possible. Specifically, for any linear combination, say d�x, the squared
difference between the two sample means, divided by the pooled estimate of the
variance of that difference is maximized by d = S−1(x−(1) − x−(2)). This property
of the LDF is a strong argument in favor of its use for classification purposes
for populations with a common covariance matrix.

The cutoff point c in (1) can be chosen in various ways. Sometimes it is
chosen so that the number misclassified from the two training samples is as
small as possible. If the p variables used in the discrimination are normally
distributed, and if their covariance matrices are the same in the two populations,
then a frequently used cutoff point is
c = ln (π �(2) / π �(1)). (2)
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Here π�(g) is some estimate of π(g), the a priori probability that an
individual to be classified comes from Πg. With this value of c, the
classification rule is a sample estimate of the rule that classifies into Π1 if

and into Π2 otherwise; here µ(1), µ(2), ∑ are the population counterparts of x
−(1), x−(2), S.

If the two populations have normal distributions with equal covariance
matrices, then (3) is the best possible classification rule in the sense that the
expected probability of misclassification is as small as possible. That is, P = π(1)
P (2|1) + π(2)P (1|2) is minimized, where P (2|1) is the probability of
misclassifying an individual from Π1 and P (1|2) is the probability of
misclassifying an individual from Π2.

Occasionally the π(g) are known; e.g., in developing a function to
discriminate between carriers and noncarriers of a genetically based disease, the
prior probability that an individual is a carrier might be known. Sometimes π(g)
might be approximated well from knowledge of the relative sizes of the two
populations. When little is known about the relative population sizes, it is usual
to set π�(1) = π�(2) = 1/2 so that ln (π�(2)|π�(1)) = c = 0.

Another method determines the cutoff c so that P (2|1) = P (1|2); then an
observation from Π1 is just as likely to be misclassified as an observation from
Π2. This method has the advantage that no knowledge of the a priori 
probabilities is necessary. To accomplish this the cutoff c is determined so that

whose solution is c = 0. Here �(·) is the distribution function of the
univariate standard normal distribution and
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∆2 = (µ(1) − µ(2))�∑−1(µ(1) − µ(2))

is the Mahalanobis Squared Distance between the two population means.
This approach again suggests use of (1) with c = 0 in practice.

It was suggested by Wald (1944) that misclassification cost rather than
misclassification probability should be used as a criterion in discrimination. If

C = π(1)P (2|1)C (2|1) + π(2)P (1|2)C (1|2)

is the expected cost, with C (2|1) the cost of misclassifying an individual
from Π1 into Π2 and similarly for C (1|2), the rule that minimizes expected cost
is to assign x to Π1 if

In practice it is usually difficult to estimate the relative costs. In some
situations, however, when the ratio π(2) / π(1) is known to be small, the cost
ratio C (1|2) / C (2|1) is clearly large, so that setting c = 0 is not unreasonable.

If one wishes to select a cutoff point so that the expected costs of
misclassifying observations from each of the two populations are approximately
equal, then in (1) c is chosen so that

where D2 = (x−(1) − x−(2))�S−1(x−(1) − x−(2)), the Mahalanobis Squared
Distance between the two sample means.
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Relation to Regression Analysis

It is possible to obtain the coefficients of the LDF by using a regression
program. A dummy variable y is introduced that takes on the value n2/ (n1 + n2)
for observations from Π1 and −n1/ (n1 + n2) for observations from Π2. If the two
data sets are then treated as a single sample of size n1 + n2, the coefficients in
the regression of y on x are proportional to S−1(x−(1) − x−(2)). (See Anderson,
1958.)

Tests of Hypotheses

Under the normality assumption and with equal covariance matrices, the
hypothesis that the p variates have no discriminatory power can be stated as
either Ho : ∆2 = 0 or Ho : µ(1) = µ(2). This can be tested (Rao, 1965) with the
statistic  this statistic is known as Hotelling's T2. When multiplied
by (n1 + n2 − p − 1) / p(n1 + n2 − 2), it has an F-distribution with degrees of
freedom p, n1 + n2 − p − 1, and with noncentrality parameter  This
F-test is the same as the F-test that would be made in the regression analysis
with the dummy variable y to test whether all the regression coefficients are
zero. The F-test of whether a subset of the regression coefficients are zero may
be used to test whether that subset of variables adds anything to the
discrimination. See Rao (1952) for details.

For deciding between the hypotheses that x is from Π1 or from Π2, a
Bayesian approach can be taken. This approach compares a posteriori 
probabilities. In particular, under the nor-reality and equal covariance matrix
assumptions, one can easily estimate the needed a posteriori probabilities P (Πg|
x). These probabilities are
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P (Π1|x) = π(1)exp(u) / (π(2) + π(1)exp(u)), (7)
and

P (Π2|x) = π(2) / (π(2) + π(1)exp(u)),

and they can be estimated by
P� (Π1|x) = π(1)exp(υ) / (π(2) + π(1)exp(υ)), (8)
and

P� (Π2|x) = π(2) / (π(2) + π(1)exp(υ)).

Advantages of the LDF

Clear advantages of this discrimination method are simplicity and the
availability of package programs. Further, the idea of replacing p variates - if
they are in the same units - by a linear index is sometimes easily accepted by
the statistical layman. Also, if the researcher's aim is to estimate a posteriori 
probabilities rather than to classify, these are particularly simple to obtain. If, as
is frequently the case, his purpose is to understand the difference between Π1

and Π2 rather than to classify, the sizes of the standardized coefficients in the
LDF may give him some clue. Also, projections of the training samples onto the
LDF can be studied graphically. Indeed, Fisher's (1936) original paper shows
histograms of such projections. The histograms are not only visually useful for
looking at the separation between the two groups but also have diagnostic value
in checking the reasonableness of the assumptions of normality and
homoscedasticity.

These advantages have led to the widespread use of the LDF Without the
assumptions of normality and equal covariance matrices, the main justification
for its use is that it spreads the two sample means apart as far as possible, scaled
in a particular way, using a linear combination of variables. Since the LDF is
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often used with all types of nonnormality and with unequal covariance matrices,
its performance under these departures becomes important.

To evaluate LDF performance, one might use as a criterion the expected
value of any of the following:

P = π(1)P (2|1) + π(2)P (1|2),

Max [P (2|1), P (1|2)], (9)

C = π(1)P (2|1)C (2|1) + π(2)P (1|2)C (1|2),

Max [P (2|1)C (2|1), P (1|2)C (1|2)].

These are, respectively, the total error rate, the maximum group-specific
error rate, the total cost, and the maximum of group-specific costs.

An estimate of any one of the four quantities in (9) for any particular
discriminant function might be selected by a researcher for evaluating that
particular function. To evaluate the LDF method, however, one must estimate
the expected value over all possible LDF's (that is, over the distribution of x−(1), x
−(2), and S).

Considerable work has been done on the robustness of the LDF, much of it
being in comparison with other specific alternative methods. In general, the
LDF is thought to perform relatively well for moderate sample sizes in
comparison with other more complicated methods. Its performance is often
improved by the use of transformations of the variables.

Variable Selection

Some of the strengths of the LDF can also be a source of weakness. It has
become dangerously easy for the researcher to toss a large number of variables
into the computer and then on the basis of coefficient size to make extremely
doubtful statements

METHODS 15

Ab
ou

t 
th

is
 P

D
F 

fil
e:

 T
hi

s 
ne

w
 d

ig
ita

l r
ep

re
se

nt
at

io
n 

of
 t

he
 o

rig
in

al
 w

or
k 

ha
s 

be
en

 r
ec

om
po

se
d 

fro
m

 X
M

L 
fil

es
 c

re
at

ed
 f

ro
m

 t
he

 o
rig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 f
ro

m
 t

he
or

ig
in

al
 ty

pe
se

tti
ng

 fi
le

s.
 P

ag
e 

br
ea

ks
 a

re
 tr

ue
 to

 th
e 

or
ig

in
al

; l
in

e 
le

ng
th

s,
 w

or
d 

br
ea

ks
, h

ea
di

ng
 s

ty
le

s,
 a

nd
 o

th
er

 ty
pe

se
tti

ng
-s

pe
ci

fic
 fo

rm
at

tin
g,

 h
ow

ev
er

, c
an

no
t b

e
re

ta
in

ed
, a

nd
 s

om
e 

ty
po

gr
ap

hi
c 

er
ro

rs
 m

ay
 h

av
e 

be
en

 a
cc

id
en

ta
lly

 in
se

rte
d.

 P
le

as
e 

us
e 

th
e 

pr
in

t v
er

si
on

 o
f t

hi
s 

pu
bl

ic
at

io
n 

as
 th

e 
au

th
or

ita
tiv

e 
ve

rs
io

n 
fo

r a
ttr

ib
ut

io
n.



Copyright © National Academy of Sciences. All rights reserved.

Discriminant Analysis and Clustering 

concerning the relative importance of the different variables in discrimination.
It has been shown that when many variables are included, the LDF may do

extremely well in classifying the observations in the two training samples, but
perform worse in classifying new observations than an LDF based on fewer
variables. Good practice therefore necessitates selecting a small number of
variables relative to the sizes of the two training samples. There are as many
possible ways of doing this as there are in the corresponding regression
problem. (In discrimination there may be a greater tendency to have large
numbers of variables than in regression.)

Often several variables known by the researcher to be highly correlated
can be replaced by just one variable. Sometimes the variables included are
simply those whose scaled between-group squared distances, Di

2 = (x−i
(1) − x−(2))2/

sii, are the largest. This often works quite well, but it is not a foolproof method.
Indeed, even if the Mahalanobis Squared Distance between the two populations
based on only the ith variable, (µi

(1) − µi
(2))2/σii, equals zero, it is possible that

the ith variable may increase the Mahalanobis Squared Distance considerably
when it is used with some other variables.

Often a stepwise discriminant program is used for variable selection. In a
forward selection program, variables are included one at a time; at each step the
next variable included is the one that increases the sample Mahalanobis
Squared Distance the most. In a backwards stepwise procedure one begins with
the entire set and then at each step drops the variable that decreases the
Mahalanobis Squared Distance the least.

With a large number of variables, the stepwise procedures seem a sensible
way to select, say 3 to 5 variables. One must always bear in mind, however, that
the set of variables selected may not be the best possible set, even for the
purpose of classifying the original observations. For the purpose of identifying
which variables are important in discriminating between Π1 and Π2, a single run
of a stepwise program is particularly inadequate. If one believes that several
important variables have been found, they should be dropped, and the stepwise
procedure done without them
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in order to see how well the other variables discriminate.
Some simulation studies have indicated that with many variables a

combination of first using the Mahalanobis Squared Distance based on each
single variable to reduce the number of variables and then a stepwise program is
a reasonable plan (Farver and Dunn, 1979).

As mentioned earlier, an F test can be used to test whether a subset of the
variables adds significantly to the separation of the two groups (Rao, 1952). It is
a routine matter, in many problems, to compute significance levels for all
possible subsets. These can be plotted and studied informally as a guide to
selecting subsets for the discriminant analysis (McKay, 1978).

For further discussion of variable selection, in discriminant analysis, see,
e.g., Hand (1981, Chapter 6), McKay and Campbell (1982a,b), and Seber
(1984, Section 6.10).

2.2.3 Classification Into One of Several Populations

When an observation x is to be classified into one of G populations where
G > 2, then the procedure that minimizes the expected value of the probability
of misclassification is to classify x into Πk if
π(g)pg (x) ≤ π(k)pk (x) for g = 1 , . . . , G, g � k, (10)

where π(g) is the a priori probability that an observation belongs to the gth 
group and pg (x) is the probability density function for the gth group. This is the
Bayes procedure.

For multivariate normal populations, this Bayes rule becomes:

for each g = 1 , . . . , G, classify into Πk if
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ugk (x) = (µ(k) − µ(g))�∑−1(x − (1/2) (µ(k) + µ(g)))

The sample based estimate of the Bayes rule is to classify x into Πk if
υgk (x) = (x−(k) − x−(g))�S−1(x −(1/2) (x−(g) + x−(k)))

Each of the υgk provides the usual LDF for discriminating between two
groups, and thus to classify x one may first decide between pairs of groups in
the usual way and finally decide among all G groups. The situation is somewhat
analogous to a baseball league in which each team plays every other team once
to determine the winner; the analogy breaks down, however, for in
classification, one population always emerges as winner.

In using (12) to approximate the Bayes solution, it is necessary to know or
estimate the π(g)'s, the a priori probabilities. If one does not know the π(g), one
may seek the minimax solution, and choose the cutoff points so that the
expected probabilities (or costs) of misclassification are all equal, no matter
from which population an observation is drawn. It has been shown that the
minimax solution is the same as the Bayes solution for some set of π(1) , . . . , π
(G). Therefore, one may use (12) and find c1, . . . , cG to replace ln π(1) , . . . , ln π
(G) such that the estimated expected costs are approximately equal based on the
rule: classify into Πk if

υgk (x) ≥ cg − ck, g = l , . . . , G, g � k.
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These constants can be determined by trial and error.
An alternate approach (Rao 1948, 1952) to classifying into one of several

populations is a generalization of Fisher's original idea of choosing a linear
function with maximum squared distance between means as compared with the
variances.

The within-population covariance matrix is ∑ ; the covariance matrix of
the G population means is the “between population” covariance matrix

 where  One seeks α such that υ = α�B 
α / α�∑ α is a maximum. When G = 2, the solution is α = ∑−1(µ(1) − µ(2)). For
general G, the extreme values of υ are obtained by using the eigenvectors,
α1, . . . , αs of the matrix ∑−1B.

There are no more than s = min(G − 1, p) nonzero eigen-values, γ1 ≥ γ2 ≥ . . . ≥
γs of ∑−1B. These have eigenvectors α1, . . . , αs which are linearly
independent. If one uses u1 = α1�x , . . . , us = αs�x as the discriminant functions,
then the rule is to classify into Πi if

Rule (13) involves knowledge of the population parameters. This rule is
equivalent to (11) if the prior probabilities are equal. The corresponding sample
based rule substitutes the pooled within-groups estimate of the covariance
matrix, W, for ∑, and

for B, where  and  Then the sample
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discriminant functions υj = α �� ��j�x are used in place of the uj where α �� ��j is an
eigenvector of W−1B� , j = 1 , . . . , s.

This method has certain advantages in reducing the use of a large number
of variates to a small number of canonical variables. Although the sample υj are
not uncorrelated, as are the uj�s, the sample estimates of their covariances are
zero, so that calculations are greatly simplified. When not all the canonical
variables are used in classification, the procedure using (13) cannot be expected
to be optimal, but its sample based counterpart may be better because the
additional canonical variables may be mostly reflecting noise. Indeed, in
practice, only the first few canonical variables are often used. When all the
canonical variables are used, the procedure gives the same results as the one
using all the original variables.

Projections of the training samples onto the canonical variables, especially
the first few of them, can be useful in much the same way as projections onto
the LDF in the two-groups case. Scatter-plots of such projections (see, e.g.,
Rao, 1952, and Gnanadesikan, 1977) can be studied for separations amongst the
groups and for evaluating the reasonableness of assumptions such as the
homogeneity of the group covariance matrices.

2.2.4 Heterogeneous Covariance Matrices Case

The Quadratic Discriminant Function

Given two populations with mean vectors and covariances matrices, µg,
∑g, g = 1, 2, and a priori probabilities π(1) and π(2) that an observation belongs
to each of them, the quadratic discriminant rule is to assign x to Π1 if

x�(∑2
−1 − ∑1

−1)x − 2x�(∑2
−1µ2 − ∑1

−1µ1) + (µ2�∑2
−1µ2 − µ1�∑1

−1µ1)

≥ ln (|∑2| / |∑1|) + 2ln (π(2) / π(1)), (14)
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and to Π2 otherwise. If the two populations are normally distributed, the
quadratic discriminant rule is the best discriminant rule, in the sense of
minimizing the expected probabilities of misclassification. It reduces to the
LDF if ∑1 = ∑2.

The sample based rule corresponding to (14) is that x is assigned to Π1 if

x�(S2
−1 − S1

−1)x − 2x�(S2
−1x−2 − S1

−1x−1) + (x−2�S2
−1x−2 − x−1�S1

−1x−1)

≥ ln (|S2| / |S1|) + 2ln (π(2) / π(1)). (15)

Best Linear Discriminant Function

An attractive simplicity of Fisher's LDF is that it is a linear function in the
original variables. The preceding discussion, however, established that when the
covariance matrices across groups are not the same, even under normality
assumptions, the optimal discriminant function is no longer linear in the
variables. Nevertheless, as an approximation, one may limit consideration to
linear functions and seek a “best LDF” for two normally distributed populations
whose covariance matrices are unequal. The “best LDF” procedure was
developed independently by Riffenburgh and Clunies-Ross (1960), Clunies-
Ross and Riffenburgh (1960), Anderson and Bahadur (1962) and Jennrich
(1962). It is the linear combination of measurements that discriminates best
between the two populations.

The sample based best linear rule is that an observation x is classified into
Π1 if

x����b ≥ x−1b − t1b���� S1b = x−2b + t2b����S2b ,

or otherwise into Π2. Here x−g, Sg, g = 1, 2, are the sample mean vector and
covariance matrix in group g , and
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b = (t1S1 + t2S2)−1(x−1 − x−2),

and t1 and t2 are chosen to minimize the estimated expected probabilities
(or costs) of misclassification. The quantities, t1 and t2, can be normalized so
that the minimization can be carried out with respect to a single variable; see
Anderson and Bahadur (1962).

Asymptotically, the best LDF must perform better than Fisher's LDF if ∑1

� ∑2 and reduce to Fisher's if ∑1 = ∑2. However, under normality the quadratic
discriminant rule performs better asymptotically than either the best LDF or the
Fisher LDF rule when ∑1 � ∑2; under equality all three methods are
asymptotically the same. For small samples, however, the quadratic
discriminant function can behave appreciably worse than the linear functions as
has been shown in simulation studies, see (Marks and Dunn, 1974). This
tendency increases as the two populations are moved farther apart and is more
pronounced when more variables are used; as expected, it decreases as the
sample sizes increase and as departures from equality increase.

When gross inequality is present, the best LDF has a certain advantage
over the quadratic discriminant function from the standpoint of ease in
interpretation. However, compared with either Fisher's LDF or the quadratic, it
takes more computation time.

In Fisher's LDF the coefficients remain the same if one changes the a
priori probabilities π(g); in the best LDF these coefficients vary as one varies
the π(g). Thus the coefficients seem even less meaningful for the best LDF

Marks and Dunn (1974), in the same simulation study referred to above,
find that with small departures from equality of covariance matrices the best
LDF performs quite well. For extremely large departures, it performs
appreciably better than the usual LDF, but usually in such cases the quadratic
discriminant function performs still better.

The quadratic discriminant function appears to perform poorly under non-
normality. This is not surprising because the
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difference between the linear and quadratic discriminant functions is most
marked in the tails of the distributions. When population means coincide, the
quadratic discriminant function comes into its own; in this situation, the LDF
becomes useless.

2.2.5 Two-group Classification by Logistic Regression

The logistic regression discrimination procedure involves a (linear)
discriminant function for use with certain nonnormal populations. Suggested by
Cornfield (1962), it was used by Truett, Cornfield, and Kannel (1967) in the
Framingham study. Hand (1981, § 5.3.1) and Lachenbruch (1975, Chapter 6)
provide more detail and references than are provided here.

In the logistic regression procedure, the data set is considered to consist of
a single sample of size n = n1 + n2 from the combined population. For each
observation xj, j = 1 � n = n1 + n2, a y variable is introduced: for the n1

observations that are from Π1, y = 1 for the n2 observations from Π2, y = 0.
The variable y is a binary variable and the a priori probability that y equals

1 is π(1). If the x variables are normally distributed with equal covariance
matrix ∑ in both groups, the a posteriori probability that y equals 1 is of the
form (see earlier eqns (7)),

P(y = 1|x) = π(1)exp u / (π(2) + π(1)exp u)

= exp(α + x�β) / [1 + exp(α + x�β)]. (16)
Equation (16) holds for a wider class of distributions than the normal, and

for any such distribution, one may obtain a (linear) discriminant function, υ = α�
+ x�β� � by estimating the parameters α and β. One method of estimating α and β is
the maximum likelihood method. With a sample of size n = n1 + n2 and
binomial parameter  the likelihood function is
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assuming that the first n1 observations are from Π1 and the remaining are
from Π2. The estimates α � and β �� �� are chosen to maximize (17).

In practice, it is usual to have two samples rather than a single sample from
the combined population. Then n1 and n2 are chosen by the researcher rather
than being random variables. In this case, the same procedure is nevertheless
used. After obtaining α � and β �� ��, the coefficients β �� �� are retained, but a constant to
replace β � is chosen by considering the number of the training samples
misclassified by the discrimination rule for various possible choices of the value
of the constant. The final choice of constant may be the one that yields the
lowest total number misclassified, or the one that minimizes the maximum
proportion of misclassified observations.

Selection of variates is a problem in this method as in others. Package
programs for stepwise logistic regression are available. See § 4.2.3 for details.

Strengths and Weaknesses

A disadvantage of the logistic regression approach is that it involves more
extensive computations, a factor that becomes important when using stepwise
procedures (but see p.47).

It is clear that under normality the logistic procedure cannot be expected to
classify as well as does the LDF [Efron (1975) in comparing the asymptotic
relative efficiency of the two procedures under normality found that when π(1)
= π(2) = 1/2 (the case most favorable to logistic regression) the asymptotic
relative efficiency decreased from one at ∆ = 0 to about .3 at ∆ = 3.5, where ∆
is the Mahalanobis Distance between the two populations.
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2.2.6 Kernel and Nearest Neighbor Methods

These methods are based on nonparametric density estimation algorithms
which have been developed since the early 1950s.

The kernel methods estimate densities based on the sum of a set of functions

where k must satisfy certain regularity conditions (see, e.g., Cacoullos,
1966).

The direct use of these functions is not needed (see, e.g., Silverman, 1986,
§ 3.5). The Fast Fourier Transform speeds the calculations greatly. An
additional advantage is the apparent resistance to the effect of outliers. Since a
kernel must become small far from a point, a single outlying point will not
contribute greatly to the estimate of the density of points in the middle of the
distribution. Thus, even if the training sample is contaminated with outliers, the
resulting allocation rule should perform well. Various types of kernels have
been proposed, e.g., a multivariate normal density with a diagonal covariance
matrix. Some of the most important kernels can be negative for some values of
their arguments. If the kernel function is zero for distant points, outliers
generally have no influence on estimates of the density at the majority of points.
The nearest neighbor rule allocates points on the basis of a “majority vote”. For
equal prior probabilities, the k closest points to the point to be allocated are
found and the unknown point is classified in the group to which the majority of
these neighbors belong. This rule may be modified easily to account for unequal
prior probabilities. It has been applied to continuous and discrete distributions.
The density estimates are consistent and the error rates tend to the optimal ones.
Another class of rules are those based on Fourier Series estimates of densities
(see, e.g., Tarter and Kronmal, 1970).

The behavior of kernel estimates does not depend on the form of the kernel
as much as it does on the smoothing parameter. This
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parameter determines the weight given to a point and is related to the
smoothness of the estimated density function. Several solutions have been
proposed but none seems to be generally accepted. Breiman, Meisel and Purcell
(1977) have considered variable kernel estimates. The problems they address
include selection of the smoothing parameter and methods of smoothing the
estimates in regions of low density. They proposed a smoothing parameter of
the form

∑jk = (αk dj,k) ,

where dj,k  is the distance from xj to its kth nearest neighbor and αk is a
constant specific to the value of k.

An alternative approach to discrimination might be to estimate the ratio of
the densities nonparametrically, rather than the densities themselves. This is a
problem since with kernels involved, one would have the ratio of two sums of
functions that may not be smooth. Simple approximations to these sums may
merely lead us back to parametric densities.

2.2.7 Classification Trees

A rather different method of discriminant analysis is to portray the
problem in terms of a binary tree. The tree provides a hierarchical-type of
representation of the data space that can be readily used as a basis for
classification by tracing down the appropriate branches of the tree.

This line of development was started by Morgan and Sonquist (1963) and
Morgan and Messenger (1973). It has been vigorously pursued and refined by
several people. Recent work is described in depth in the book by Breiman,
Friedman, Olshen, and Stone (1984). The earlier work is often referred to as
AID (for automatic interaction detection) while the contributions by Breiman et
al. are known by the acronym, CART (for classification and regression trees).
The primary differences between AID and CART are in details of how the
binary trees are formed.
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In its simplest form, the CART method produces a tree that is based on
individual variables. For example, the split at the top of the tree might be
determined by the question, “Is x5 ≤ 6.2?”. This will determine a left and right
branch. The left branch corresponding to x5 ≤ 6.2 might then be divided
according to the question, “Is x3 ≥ 1.4?” and the right branch, for which x5 >
6.2, might be split according to the question, “Is x1 ≥ 0?”. The methodology has
three components to it: the set of questions, rules for selecting the best splits,
and a criterion for choosing the extent of the tree. With the tree in place, each
terminal node of the tree can then be associated with one of the G groups.

More sophisticated questions can also be handled by this approach, such
as, “Is ∑ αjxj ≤ c?” or “Is x � A?”. The variables themselves can be categorical,
continuous, or a mixture of both.

Many of the issues that arise in classical discriminant analysis show up in
this procedure as well. These include: selection of variables, use of
misclassification costs and prior distributions, construction of classification
rules using training samples, estimation of error rates, etc.

Generally speaking, CART is a flexible procedure that can result in very
intuitive and easy-to-use classification rules. At the same time, there has not
been enough wide-spread use of these methods to know how generally effective
they are. Arriving at the best tree structure is a non-trivial matter and the tree
itself may not be reliably determined. The descriptive value of the LDF is lost
in the sense that the tree is a higher-level summary that is further removed from
the raw data. Moreover, the discriminant function approach focuses more
directly on spatial separations among groups, as revealed in scatter plots of the
discriminant variables.

The current state of CART is perhaps best summarized by its developers
(Breiman et al., 1984, p. viii):
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Binary trees give an interesting and often illuminating way of looking at data
in classification or regression problems. They should not be used to the
exclusion of other methods. We do not claim they are always better. They do
add a flexible nonparametric tool to the data analyst's arsenal.

2.3 METHODS OF CLUSTER ANALYSIS

2.3.1 General Remarks

Cluster analysis involves the search through data for observations that are
similar enough to each other to be usefully identified as part of a common
cluster. This is a very intuitive and natural objective and one that is easy to
think about. For example, the galaxies of stars in the universe can be described
as clusters in a three-dimensional setting.

However, to be even a bit more precise about what is meant by a cluster
can quickly get one bogged down in controversy and details. In fact, there is no
generally accepted precise definition. Some would claim that clusters
correspond to real underlying groups or populations and the challenge is to
discover them. Others tend to think of clusters in a much weaker structural
sense but still find the data-determined groups to be useful. For now, it will
suffice to take the rather ambiguous attitude that clusters consist of observations
that are close together and that the clusters themselves are clearly separated. If
each observation is associated with one and only one cluster, then the clusters
constitute a partition of the data that can be very useful for statistical purposes.

For instance, it is often possible to summarize a large multivariate data set
in terms of a “typical” member of each cluster. This would be more meaningful
than only looking at a single “typical” member of the entire data and much
more concise than individual descriptions of each observation.

METHODS 28

Ab
ou

t 
th

is
 P

D
F 

fil
e:

 T
hi

s 
ne

w
 d

ig
ita

l r
ep

re
se

nt
at

io
n 

of
 t

he
 o

rig
in

al
 w

or
k 

ha
s 

be
en

 r
ec

om
po

se
d 

fro
m

 X
M

L 
fil

es
 c

re
at

ed
 f

ro
m

 t
he

 o
rig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 f
ro

m
 t

he
or

ig
in

al
 ty

pe
se

tti
ng

 fi
le

s.
 P

ag
e 

br
ea

ks
 a

re
 tr

ue
 to

 th
e 

or
ig

in
al

; l
in

e 
le

ng
th

s,
 w

or
d 

br
ea

ks
, h

ea
di

ng
 s

ty
le

s,
 a

nd
 o

th
er

 ty
pe

se
tti

ng
-s

pe
ci

fic
 fo

rm
at

tin
g,

 h
ow

ev
er

, c
an

no
t b

e
re

ta
in

ed
, a

nd
 s

om
e 

ty
po

gr
ap

hi
c 

er
ro

rs
 m

ay
 h

av
e 

be
en

 a
cc

id
en

ta
lly

 in
se

rte
d.

 P
le

as
e 

us
e 

th
e 

pr
in

t v
er

si
on

 o
f t

hi
s 

pu
bl

ic
at

io
n 

as
 th

e 
au

th
or

ita
tiv

e 
ve

rs
io

n 
fo

r a
ttr

ib
ut

io
n.



Copyright © National Academy of Sciences. All rights reserved.

Discriminant Analysis and Clustering 

Another use occurs when one is attempting to model data in the presence
of cluster structure. Better results may be achieved by taking this structure into
account before attempting to estimate any of the relationships that may be
present.

Finding the partition into clusters is not as easy as it may sound. Except in
small problems, to “do it right,” i.e., to consider all possible partitions of the
data into clusters, is computationally out of the question. Consequently,
numerous different algorithms have evolved as compromise procedures for
finding clusters in a reasonably efficient way. Some authors prefer to start with
a model, e.g., a mixture model (see § 3.3.5), of clusters and then to find a
practical algorithm for extracting the clusters in the context of that model. In the
following discussion, such models are not discussed at all.

The development of algorithms has, for the most part, come out of
applications-oriented disciplines such as biology and psychology rather than
statistics. The explanation would appear to be that experts in these fields have
developed tailored methods to solve their own problems because a general body
of adequate clustering methodology was lacking.

Mentioning a few examples of applications of clustering methods may help
to convey the types of problems they can contribute to:

taxonomy: clustering species of bees into higher-level taxonomic groups
(Michener and Sokal, 1957)

genetics: studying genetic diversity within and between populations of an
endangered fish species (Vrijenhoek, Douglas, and Meffe, 1985)

medicine: developing clusters of patients based on physiological variables
(Siegel, Goldwyn, and Friedman, 1971)

speech processing:: constructing a speaker independent word recognition
system (Rabiner, Levinson, Rosenberg and Wilpon, 1979)
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glaciology: mapping the Antarctic and Arctic regions in terms of clusters of
types of sea ice and fern (Rotman, Fisher, and Staelin, 1981)

archaeology: grouping broaches from an Iron Age site in Switzerland based on
their attributes (Hodson, Sneath, and Doran, 1966)

education: dividing up a class of workers in the telephone industry based on
their common training needs (Kettenring, Rogers, Smith, and Warner, 1976)

business: clustering corporations according to their financial characteristics
(Chen, Gnanadesikan, and Kettenring, 1974).

These examples are typical of many in the literature in that the clustering
was done with the aid of familiar numerical algorithms. These algorithms will
be discussed in more detail in § 2.3.2, but it is worth pointing out here that they
are the products of the type of research on clustering methodology that was
going on in the late 1950's and 1960's. The algorithms are pretty straightforward
and easy to describe. More recently there has been a very pronounced trend
towards more complex algorithms that attempt to achieve better results through
their sophistication and exploitation of currently available computing power.
Another trend has been the development of dynamic graphical display devices
that can be very effective at revealing characteristics of the data including
clusters.

Somewhat ironically, given their early lack of involvement, statisticians
have recently been using cluster analysis as a building block for other
procedures, especially in the area of regression diagnostics (Landwehr,
Pregibon, and Shoemaker, 1984, and Gray and Ling, 1984).
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2.3.2 Algorithms

Since detailed discussions of specific clustering algorithms are readily
available (see, e.g., Anderberg, 1973; Cormack, 1971; Everitt, 1980; Hartigan,
1975; Seber, 1984, Chapter 7; and Sneath and Sokal, 1973), the focus here will
be more on general approaches.

Clustering data is often convincingly useful even if an unambiguously
“correct” solution is lacking. The same can be said about attempts to classify
the existing clustering algorithms: they are not as clean-cut as one might like
but they do help to summarize the types that are available.

Among the numerical algorithms whose primary function is to reveal
clusters, three general types can be distinguished: hierarchical, partitioning, and
overlapping. Only the second of these is strictly compatible with the loose
definition of clustering used in the previous section.

The hierarchical algorithms result in a tree-like representation of the data,
often called a dendrogram. At the top of the tree each observation is represented
as a separate “cluster.” At intermediate levels observations are grouped into
fewer “clusters” than at the higher levels. At the bottom, all of the observations
are merged into one “cluster.” In some problems, the entire tree structure may
be of interest. In others, the tree is just a convenient tool for obtaining a
partition. This is usually done by cutting the tree at a suitable level which forces
a particular partition.

Some hierarchical algorithms form the tree from the bottom up in a
divisive fashion, but most work agglomeratively from the top down. Hartigan
(1975, p.12) attributes this to the difficulty in finding effective splitting rules as
well as the possible expense involved in executing them. Nevertheless, aside
from their pragmatic advantage, the current emphasis on the agglomerative
approach may be overdone because it may be possible to build more
sophisticated algorithms that are less sensitive to local idiosyncrasies in the data
by working in the other direction.

A further distinction among the hierarchical algorithms is in the type of
data they require. Some operate directly on pairwise
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measures of similarity or dissimilarity between every pair of observations. This
is appealing from at least two points of view: first, the initial data, which
commonly take the form of n observations on p variables, are not used by the
algorithm once the interpoint distances have been determined; and, second,
sometimes the raw form of the data is a set of pairwise dissimilarities or
“distances” between points and it is convenient to be able to cluster points
directly with these as input.

Perhaps the best known and most widely used of the hierarchical
algorithms are the single linkage (nearest neighbor), complete linkage (farthest
neighbor), and average linkage methods. In the single linkage approach,
successive mergings are made according to the rule that the two clusters to be
joined are the ones with the smallest interpoint distance between them. The
complete linkage procedure focuses on the largest pairwise distances and joins
those clusters that have the smallest of these values. The average linkage
method operates similarly but on the average distances between members of
pairs of clusters.

These three hierarchical methods have been singled out not only because
of their fairly wide-spread use but also because they illustrate some of the trade-
offs among the algorithms. The single and complete linkage methods have the
attractive feature that the topologies of the dendrograms are invariant under
monotone transformations of the distances. However, the single linkage method
is frequently shunned by practitioners because of its propensity to produce long,
stringy clusters that are of little interest (see, e.g., Sneath and Sokal, 1973, p.
223). The complete linkage method has the opposite problem of being “biased”
in the direction of small compact clusters (see, e.g., Sneath and Sokal, 1973, pp.
222-223). Other criticisms of complete linkage have been raised by Hartigan
(1981); see also § 3.3.3. For more discussion of the pros and cons of the single
and complete linkage methods, see Shepard and Arabie (1979). The average
linkage method is a compromise between the extremes of the other two, but it
does not have their invariance feature.

The broad-based popularity of the hierarchical approach to clustering is
illustrated by the fact that all but two of the practical applications mentioned
earlier were based on some method of this
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type. Simplicity and availability are probably the primary reasons for their
frequent use rather than performance or optimality.

The partitioning methods offer a class of alternatives that are generally
more flexible, on the one hand, and more difficult to use, on the other. In a
typical algorithm of this type, an initial specification of cluster “centers” is
made. Then observations are assigned to the clusters according to their nearest
cluster centers. Cluster “centers” are refined and observations are reallocated.
The procedure continues until some type of stability is achieved. Among the
details that vary across the algorithms are the starting points, the frequency in
which updating of the cluster centers occurs, the flexibility to change the
number of clusters, and the manner in which clusters are added or deleted.
Perhaps the best known of the partitioning procedures is the k-means algorithm
(see, e.g., Hartigan, 1975, Chapter 4).

One can imagine situations where a standard hierarchical or partitioning
algorithm would be inappropriate for the data because of the need to allow for
overlapping clusters. While easy to contemplate, there has been relatively little
work in this area. Perhaps this is due more to the shortage of satisfactory
algorithms than to the potential for applications. Several methods are mentioned
by Seber (1984, pp. 387-388). See also Arabie (1977), Arabie and Carroll
(1980), and Shepard and Arabie (1979).

This cursory discussion of clustering methods has, to this point,
concentrated on numerical algorithms for identifying clusters. However, many
practitioners seem to rely on methods whose primary objective is something else.

A common example is the use of principal components analysis: the data
are projected down into the space of the first two or three principal components
and clusters are then identified by eye. Reliance on the eyes may seem
unscientific, but they do offer great flexibility and efficiency in processing what
they can see. The more important issue is the appropriateness of the projection.
It offers, in some sense, the two- or three-dimensional space of maximum
variance in the data, or it can be thought of as the two- or three-dimensional
plane of closest fit to the data configuration. However, neither objective equates
to cluster
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seeking. In fact, it is easy to conjure up data for which such a projection would
be useless for “seeing” clusters.

This illustrates the risks involved in relying on such methods for extracting
clusters. If cluster analysis is a serious objective, then one is probably better off
using clustering methods -- in spite of their limitations and imperfections.

The static graphical displays mentioned in § 2.2.1 could also be used for
cluster detection be subjective visual grouping of the pictorial representations of
the data. Without any clues as to the cluster structure, this can be hard when
either the number of variables or observations is large.

Sophisticated dynamic graphical systems that allow one to see data from
many different perspectives are perhaps the best current hope for a genuine
methodology breakthrough in multivariate data analysis generally and cluster
analysis particularly. An easy-to-use and accessible system that will
systematically traverse the data space along directions most likely to reveal
clustering is a realistic objective for the near future. The directional guidance
will come from numerical intelligence gleaned from the data, the cluster
identification will come from human intelligence and what is seen by eye, and
the implementation will be eased by the hardware and software tools now
emerging for artificial intelligence. Many of the parts for such a system are
already in place or under-vigorous development (see, e.g., Asimov, 1985; Buja
et al., 1986; Donoho et al., 1985; Fisherkeller et al., 1974; Friedman and Tukey,
1974; Huber, 1985).

2.3.3 Perspective

To place clustering methodology in perspective, it may be helpful to
dissect the main steps in the process of using these methods and to comment on
some of the stumbling blocks. Three stages can be identified: (i) the input stage 
where the data are adjusted as needed into a form suitable for clustering, (ii) the
algorithm where a clustering method is applied to the adjusted input data, and
(iii) the output stage where the results of applying the algorithm are studied for
statistical sensibleness. While the choice
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of algorithm or algorithms is surely important, the other two stages are at least
as crucial for achieving sound results.

The input stage involves the choice, transformation, and scaling of
variables plus - for many algorithms - commitment to a distance metric. It is
obvious that the analysis depends upon the selection of useful variables in the
first place. Coming up with an effective list is not always easy. For example,
cultural and personal biases may enter (Sokal, 1974). To be safe, there is a
temptation to throw in everything that comes to mind, but that is also a trap.
Extra variables that do not reveal anything about the cluster structure tend to
dilute the analysis and cause the standard algorithms to go astray. There are few
statistical procedures to assist in variable selection for clustering; see Fowlkes
et al. (1987) for one method.

One can also expect that the clustering results will be very sensitive to
transformations of the input variables. In archaeology, analyses are often based
on trace elements and it is commonly argued that logarithms of such variables
should be employed. Such transformations can, in effect, create, accentuate,
diminish, or destroy clusters.

The scaling or weighting of variables needs careful thought. In its simplest
form, this may involve a conscious scaling up of a variable in order to magnify
its impact relative to other variables. If these variables are measured in the same
units, then this rescaling is relatively easy to rationalize.

Of more concern is how to equalize the roles of the variables, especially
when their measurement units are not comparable, or, going further, to make
the results invariant to nonsingular linear transformations of the data. These are
tricky problems that are circular in the sense that one really needs to know the
cluster structure to begin to grapple with them correctly.

A common solution to equalizing the roles is to divide each variable by the
square root of its total variance. However, this form of equalization is artificial
and can, e.g., inappropriately downplay a variable that exhibits strong cluster
structure. The only defense for this approach is that it may be better than doing
nothing.
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A more effective way to rescale the individual variables would be to utilize
estimates of the within cluster variability in place of the total variance. Statistics
based on the smallest absolute pairwise differences of the data on a particular
variable are natural to consider for this purpose.

This line of thinking presumes that the within-cluster variability is roughly
comparable across clusters. If this is true in a multivariate sense as well, then
pairwise differences in the vector observations can be used in an iterative
fashion to develop an estimate W*, of the within-cluster variability without
knowing the clusters in advance (Art et al., 1982). Scaling the data by W*−1/2 

should then render the clusters roughly spherical in shape and hence amenable
to detection by algorithms, like the k-means one, that are particularly effective
at detecting such clusters.

More work is needed on effective ways of scaling the data when the
assumption of within-cluster homogeneity is inappropriate either in the
univariate or multivariate sense. In such cases, it may be necessary to consider
several possible scalings.

For algorithms taking distances or dissimilarities as their inputs, one must
consider, in addition to the previously mentioned issues, the type of distance
metric that will most effectively reflect the kinds of differences between
observations that are important for a particular problem. Two very popular
types of distances are Manhattan, which is the sum of absolute differences
across variables for two observations, and Euclidean, which is the square root of
the sum of squared differences. Many other types are discussed in the standard
cluster analysis books; see, e.g., Sneath and Sokal (1973, Chapter 4).

An overview of algorithms has already been provided in § 2.3.2. Each has
limitations, but their overall performance can be ameliorated by careful choice
of the inputs to them.

A temptation worth resisting is to take the output of any clustering
algorithm and to accept it without scrutiny. Issues worth investigating include
cluster location, dispersion, orientation, separation, tightness, and stability.
Elementary data analytic displays and summary statistics can help address many
of these. Resampling and perturbation techniques are potentially of
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use for checking on stability, but exactly what should be done is not so clear.
Several ideas in this vein are mentioned in Gnanadesikan, Kettenring, and

Landwehr (1977). Some examples include:

distances: plot the distance of each object to all the cluster centroids to check
on the strength of its association with a particular cluster

summary statistics: for any two clusters, measure their separation on each
variable according to the p-value of the usual t-statistic to find out which ones
provide relatively more discrimination

projections: treating the clusters as fixed groups, display them in the space of
the first few discriminant variables, to assess separation, tightness, orientation,
and dispersion; see also Gnanadesikan, Kettenring, and Landwehr (1982)

sensitivity analysis: check stability by adding noise to the original data and
comparing clusters from the original and perturbed data sets.

There is a need for more ideas and more experimentation on effective ways
of analyzing the output of clustering algorithms. This would include further
development of practical inferential tools for assessing cluster validity. For
further reading on statistical inference in clustering, see, e.g., Bock (1985),
Fowlkes and Mallows (1983), Sneath and Sokal (1973, pp. 284-287), as well as
the discussion in § 3.3 of this report.
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CHAPTER 3

THEORY

3.1 INTRODUCTION

This chapter emphasizes certain theoretical statistical aspects of the
techniques of discriminant and cluster analyses discussed in Chapter 2.
Section 3.2 written by R. A. Olshen, pertains to discriminant analysis while §
3.3, written by J. A. Hartigan, is concerned with the theory of clustering
algorithms.

3.2 THEORETICAL ISSUES IN DISCRIMINANT ANALYSIS

3.2.1 Introduction

The questions and techniques which are addressed in this chapter are quite
simple to state, but are rich in areas of application. Problems of computer aided
diagnosis in medicine, military surveillance, and speech recognition, for
example, can sometimes be formulated in a common way. Observations are
available from a source that belongs to a unique population among a set of
populations. For example, the observations might be gathered by radar as a
plane flies over a ship at sea. The ship is the source of the data. It is assumed
that the ship is one (the unique population) of five ship types (the set of
populations), and the classification question is which one. Such data are often
termed “test” data or “test samples”. The set of candidate populations is
assumed to be finite. Indeed, two is perhaps the most popular number. The
values of a set of features -- that is, covariates, or “independent” variables such
as the radar measurements on the ship -- are available for each unit to be
classified, and it is on the basis of these data that assignments are made. In
problems which are our focus here,
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something is assumed known about the conditional distributions of features
given population (or perhaps more commonly “class”) membership. These
distributions are generally known, or assumed to be known from some previous
experience -- in which case the problem of class assignment can be rather
simple -- or learned from other data, a “learning” or “training” sample. Prior
probabilities of class membership and costs of misclassifying candidate
observations are implicit to most schemes for “classification” or
“discrimination”. They will be made explicit in what follows. But before that
beginning of our more technical discussion, we draw the principal distinction
between the topic of this section and the notion of “classification” which is
usually associated with clustering. Namely, here it is assumed without question
that the classes are well defined. Thus, what is discussed here applies to the
assignment of a cancer patient to one of several recognized stages of illness on
the basis of some data, and decidedly not to the question of how many stages it
makes sense to ascribe to the cancer itself. Solution to the latter question,
however fundamental to science and technology, is a requisite preprocessing to
the tasks we confront here. Also, we will have little to say regarding the
fundamental question of feature selection, which has been so prominent a part
of recent literature on regression (see, e.g., Shibata, 1981). On the other hand,
the probability distribution of the data within a given class will not be assumed
to be known in most of our discussion. In fact, it will be evident that to do
effective discrimination one need not know these distributions -- only one
aspect of the rank ordering of certain linear combinations of their (generalized)
densities.

The formulation of “discrimination” which follows is adapted from the
recent book by Breiman et al. (1984). Suppose that the variable Y can assume
any integer value between, say, 1 and J < � and that the value of Y is unknown;
Y represents “class”. [Note: in Chapter 2 the total number of classes or groups
was denoted as G instead of J.] But suppose that features X of Y are observed or
are otherwise available. On the basis of X we wish to infer Y. Assume further
that there are J densities f (·|Y = j) with respect to some dominating measure µ
on a space X which is the range of X. We use a dot to indicate the argument of
the
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conditional density f, and a vertical bar to denote “given” or “given that”.
Generally speaking, X can be taken to be Euclidean, but it is the decided
exception in practice for all the f 's to be absolutely continuous (with respect to
Lebesgue measure) since discrete features are common in applications. We
denote by π(j) = P (Y = j) the “prior” probability that an observation whose class
membership is unknown is of class j. While the use of prior probabilities can be
controversial in other settings, it seems difficult to formulate discrimination in a
satisfactory way without them. Also, in the present context they often have a
compelling frequentistic basis. Applications of the technologies under
discussion are often in the context of new data like those of an existent and at
least moderately well-understood database.

A more controversial aspect of our formulation is the set of numbers C (i|
j), the cost of classifying an observation to class i given it is of class j. It is
typically convenient to take C (i|i) = 0 and C (i|j) > 0 for i � j. Consider the
problem of classifying a patient who enters an emergency room with a
complaint of chest pain as to whether he has suffered a heart attack. The patient
who desires that the most extensive medical resources be made available to him
just in case he has actually had a heart attack may have C's that are very
different from those of the director of a coronary care unit, who must make
careful and responsible allocations of scarce, expensive resources. (See
Breiman et al., 1984, pp. 176 and 177.)

A (nonrandomized, measurable) decision rule d - such rules are all that we
need consider in discrimination - arises from a partition of X into disjoint
subsets. If X belongs to the jth of these, we decide that Y = j, that is, d (X) = j.

The expected cost of the rule d is
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A rule dB is called a “Bayes rule” if its cost is as small as possible. All
Bayes rules have the same expected cost. One concludes that if d (x) = i implies

for all i�, then d is a Bayes rule. Specialize to the case J = 2 to see that for µ
almost all x, dB (x) = 1 implies

So obviously we “know” a Bayes rule if we know the “densities” f (·|Y = 1)
and f (·|Y = 2). And this observation is precisely why discrimination or
classification as pursued here is a subject of serious inquiry. Imagine, as is the
case in many applications, that X is, say, twenty dimensional, and that we have
available learning samples of, say, hundreds or even thousands of observations
from f (·|Y = 1) and f (·|Y = 2), which are not assumed to be of any particular
functional form. Think of the crudest partitioning of the axes of X into two parts
each; the resulting product partition has a total of 220 bins, or more than a
million. Most will have no members of the learning sample at all. The
estimation of the densities is thus hopeless. But from (19) it is clear that we
need not know the densities exactly. We only need to know when their ratio
exceeds a specified constant. Fortunately, it is far easier to know when that
occurs than it is to know the densities themselves.

One needs a benchmark from which to gauge the performance of any
classifier d ; an obvious candidate is the no data Bayes rule. Such a rule assigns
every observation to a class i for which
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is minimized. In case of ties, the usual convention is to take the smallest
minimizing index.

We have discussed learning samples in casual terms, but by so doing we
obscure what can be a troubling distinction in theoretical work and an important
difference between prospective and retrospective studies. In the case of the
former, one generally assumes that the learning sample is of the form (X1,
Y1) , . . . , (XN, YN), where the pairs are independent and independent of (X, Y),
and each (Xi, Yi) is distributed as (X, Y); N is assumed to be a nonrandom
constant. In retrospective studies it often happens that an existing database is
searched for preassigned numbers of pairs in each of the J classes. Then the
assumption of unconditional independence is not reasonable, and the basis for
choosing the prior probabilities may be somewhat unclear. Yet it can be
plausible to assume that Yn is 1 , . . . , J valued for each n = 1, 2 , . . . and that
conditioned on Yn = jn for n ≥ 1, the random variables Xn, n ≥ 1 are independent.
As Efron (1975, p. 898) indicates, in most practice the distinction between
unconditional and conditional independence is ignored. He details how in
normal linear discrimination and in logistic regression -both to be discussed -
one can deal theoretically with the more difficult case of conditional
independence. In other contexts, theoretical problems regarding the subtle issue
at hand are raised by Olshen in his discussion of Stone's (1977) landmark paper
and by Stone in his reply (p. 641) to the discussants. See also Gordon and
Olshen (1978), and especially Chapter 12 of Breiman et al. (1984). For ease of
exposition, in what follows the point of view is that the observations that make
up the learning sample are independent and identically distributed.
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3.2.2 The Fisher Linear Discriminant and Some of Its Children

As with much of what is worthwhile in statistics, the starting point for a
discussion of explicit rules for discrimination is a result of Fisher (1936). The
Fisher linear discriminant and procedures to which it has led have been
remarkably useful in practice.

Suppose that J = 2 and that given Yi= j, Xi � Np (µi, ∑). That is, X has a p-
dimensional normal distribution with mean µj and covariance ∑. Then, if ∑ is of
full rank and prime denotes transpose, one calculates that a Bayes rule

d(x) = 1 if β0 + β�x > 0, where

β� = (µ1� − µ2�) ∑−1.
Otherwise, d (x) = 2.
The coefficients β� in (20) have been described by Truett, Cornfield, and

Kannel (1967) as “the amount by which the logit of risk increases for unit
increase in the risk factor.” The logit of risk is the log odds (given its features)
that an observation of unknown class actually is of class 1. There is no loss in
assuming that ∑ is nonsingular, since singular cases can always be made
nonsingular by an appropriate reduction of dimension. In practice µ1, µ2 and ∑
are seldom assumed known, and must be estimated from the learning sample. If
N1 = # {i ≤ N : Yi= 1} and N2 = # {i ≤ N : Yi= 2}, then the method of maximum
likelihood gives
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if, in addition, π(1) and π(2) are unknown, then
π�(1) = N1/N and π�(2) = N2/N.

The maximum likelihood estimates can be substituted for their
corresponding parameters in (20). There results one version of an estimated
linear discriminant. This estimate of d and various stepwise versions of it are
widely used in practice, even when the conditional distributions of X given Y 
not only do not share a common covariance, but also when the distributions are
not normal at all. Robustness of the Fisher linear discriminant has been noticed
by many users and studied by some. One reference on the subject is
Lachenbruch (1982).

Even though the most important issues involve errors of classification, one
may ask from a decision theoretic point of view how the estimators defined by
(20) and (21) perform when the model is correct. Thus, for some positive
definite matrix Q, one might study the “risk”

and ask whether any other estimator does at least as well risk-wise as β �� �� for
all µ1, µ2 and ∑, and better for some values. The
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phenomenon, which leads to the coordinates of a vector of estimated parameters
being pulled towards a pre-chosen value, with salutary decision-theoretic
implications, surfaces here provided N1 ≥ 2, N2 ≥ 2, and N > p + 3. This idea
figures in what has come to be known as James-Stein estimation. See Stein
(1956) and James and Stein (1961). Haff (1986) has shown that in this case the
estimated Fisher linear discriminant coefficients β �� �� can be improved by
improving the estimate ∑ �−1 of ∑−1. Basically, if one adds a multiple of Q which
depends on the trace of ∑ �−1 Q to ∑� before inverting and substituting into (20),
then the resulting estimate of β improves upon β �� ��, at least in the sense given by
(22).

Another departure from the substitution of maximum likelihood estimates
into (20) is given by “logistic regression”. (See § 2.2.5.) Its starting point is the
observation that if the stated nor-real model is correct, then

P (Y = 1|X) = exp(β0 + β1� X) / [1 + exp(β0 + β1� X)]
P (Y = 2|X) = 1 − P (Y = 1|X). (23)

To estimate (β0, β1�), one can maximize the conditional (binomial)
likelihood based on (23). (This maximization must be done on a computer by
numerical maximization techniques (see § 4.2.3.), but is relatively easy as such
problems go since the likelihood is unimodal and logarithmically concave.)
These estimates can be substituted into (20). Of course, if the original normal
model is correct, this estimated d must somehow be less efficient than that
based on (21), which utilizes the full likelihood function. However, the
“logistic” likelihood function is valid under more general assumptions of the
exponential family than is the likelihood function which leads to (21). Efron
(1975) has investigated the efficiency of logistic regression relative to estimated
Fisher linear discrimination when the normal model is correct and found it to be
“between one half and two thirds as effective as normal discrimination for
statistically interesting values of the parameters.”
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Yet another departure from the model with which this section begins is
this. Suppose that given Yi= j, Xi ~ Np(µj, ∑j), where ∑1 may not equal ∑2. (See
also § 2.2.4.) It is straightforward to compute a Bayes rule, but several
individuals have taken a different point of view. Suppose first that p = 1. Then
in an obvious notation and as Becker (1968) indicates,

is a useful measure of the separation of the two conditional distributions. If
p > 1, then since linear functions of normal vectors are normal, one might
consider b�(µ1 − µ2) for various nonrandom vectors b. If Y = j, b� Xj ~ N (b� µj, b�
∑jb), and thus Becker's measure extends to

a criterion actually studied earlier by Anderson and Bahadur (1962).
Suppose now that one chooses to compute a linear function of X, say b0� X, so
that d (X) = 1 if b0� X ≤ c, and otherwise d (X) = 2. If the goal is to minimize P 
(d (X) � Y|Y) (that is, the probability of a mistake), then pick b0 to maximize S 
(b), and

This fact follows from work of Anderson and Bahadur (1962). Chernoff
(1972, 1973a) indicates how to compute b0 and notes that the common
probability of a mistake is �(− S (b0)). Of course, in order to implement the
Anderson - Bahadur - Chernoff ideas in practice, one must estimate those
parameters which are not known.
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In case J > 2, the slick appearance of the Fisher linear discriminant Bayes
rule disappears. Generalizations of logistic regression to this case have been
studied by many authors. Chapters 4 through 6 of the recent book by by
McCullagh and Nelder (1983) are an excellent recent summary. We choose not
to provide details here because the issues which arise pertain to modeling
conditional distributions of X given Y, and the main aspects are not discussed in
the explicit context of discrimination.

3.2.3 Estimating Misclassification Costs

When a decision rule d is estimated from a learning sample, then it follows
from Fubini's theorem that the expression (18) for the expected cost of d is
really the conditional expected cost given the learning sample. The
unconditional expected cost is the expectation of (18) with respect to the
distribution of the learning sample: n independent copies of the joint
distribution of (X, Y). Of course, that distribution is assumed here to be
unknown, and we are left to estimate the unconditional expected cost from data.
(See earlier discussion in § 2.2.1.) In the best of all worlds, we have available a
genuinely independent test sample, taken to be independent of the learning
sample, distributed as (X, Y), and large enough to permit reasonable inferences.
This happy situation occurred, for example, with the work of Goldman et al.
(1982), but unfortunately seems to be the exception rather than the rule in
practice. And in the absence of such a test sample we are left to estimate the
misclassification cost associated with the prospective use of d from the learning
sample.

The starting point for the estimation of misclassification costs from the
learning sample is the so-called “resubstitution” estimate. If the prior
probabilities are assumed to be known and the learning sample is of cardinality
N, then the resubstitution estimate is
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If the π's are not assumed to be known, then the analogue to (24) is

These resubstitution estimates may occasionally be of practical value with
some parametric procedures such as the Fisher linear discriminant. However,
they are subject to enormous over optimistic biases for nonparametric
techniques such as those discussed in the next section. One approach to
overcoming the biases is that of cross-validation. By m-fold cross-validation
(see Breiman et al., 1984) is meant this. The learning sample is divided at
random into m disjoint subsets of approximately equal size. Call them L1, . . . ,
Lm. Successively, the data of Lυ are deleted to yield L(υ). The classifier d(υ) is
computed from those data in L(υ) according to the same algorithm by which d 
was calculated from all of the data. Then Lυ is used as a test sample. The
process is repeated for υ = 1 , . . . , m and the results averaged. In order to
simplify the exposition we suppose in what follows that (25) applies. Thus, the
estimated cost of misclassification is

The most widely advertised choice of m is N, the “leave one out” method.
However, N-fold repetitions of computationally expensive procedures is not
practical, and seems not to be best for theoretical reasons in some cases (see
Efron, 1983, p. 327).

The discussion thus far has been vague as to how the Lυ are chosen. For
example, one might think of stratifying the sampling by class even in the
present context in which the π's are not assumed known. With cross-validation
stratified, each class is as nearly as possible equally represented in each of the m
Lυ. The results on the effects of enforced stratification are skimpy and
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specialized -- see Breiman et al. (1984, pp. 80, 179, 245-247) and Olshen et al.
(1985, § 5) -- but thus far what theory there is suggests that stratification does
not hurt, and typically helps.

One popular approach to the estimation of misclassification costs was
termed the “bootstrap” by Bradley Efron when he introduced it in 1979. His
starting point is the resubstitution estimate (25). To this he adds a bias
adjustment, which is arrived at as follows. Generate a random sample, a
“bootstrap” sample, with replacement from the learning sample. Compute a
classifier dB from the bootstrap sample by the same algorithm which produced
d. Classify the learning sample and the bootstrap sample by dB, and compute
their misclassification costs. Since dB is tailored to the bootstrap sample, it
typically will do better for the bootstrap sample than for the learning sample.
The difference in these two misclassification costs is the estimated bias
adjustment. If a superscripted asterisk denotes membership in the bootstrap
sample, then the bias adjustment can be written

Expression (26) can and should be computed from independent bootstrap
samples and averaged to obtain an overall bias adjustment, which then is added
to (25) to give the final estimated misclassification cost for d.

By way of comparison, the bootstrap technique tends to be less variable in
its estimation of misclassification costs than is cross-validation. But it can be
more biased. For parametric procedures in which resubstitution estimates are
not so severely biased, the bootstrap typically outperforms cross-validation, as
Efron's work indicates (see Efron, 1983, and its references). However, in utterly
nonparametric situations, the bootstrap can badly underestimate
misclassification costs (Breiman et al., 1984, § 11.7) and even be inconsistent.
The cited example -- which amounts to a single nearest neighbor rule applied to
a problem where X and Y are actually independent -- and one way out of the
severe
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biases possible with the bootstrap rest on the same simple observation for a
starting point. That is, in any given bootstrap sample, the expected number of
observations (from among the N in the learning sample) which actually appear is

or approximately 63.2 per cent of the learning sample.
Efron (1983) has several approaches to correcting bootstrap biases, but

none more intriguing or more successful in his simulations than the “.632
estimator”. The .632 estimate of misclassification cost is a weighted average of
the resubstitution estimate (25) and the bootstrap estimate computed for those
members of the learning sample not occurring in the bootstrap sample. The
respective weights are .368 and .632 . Neither Efron's (1983) work on this new
estimate of misclassification cost, nor the results of Gong (1982), are definitive;
and, moreover, the .632 rule only partly meets the criticism of Breiman et al.
Yet it still seems to merit further study.

3.2.4 Nonparametric Techniques

It is clear from § 3.2.1 that any procedure by which probability densities
are estimated carries with it a technique for discrimination. So, for example,
kernel and series expansion procedures for density estimation imply
corresponding procedures for the problem at hand. At the same time, it is clear,
too, from § 3.2.1 that for most problems of practical interest the relevant
densities cannot be estimated at all well. Nonetheless, there are available a
variety of procedures which confront the discrimination problem directly and
are not tied to parametric assumptions. In this section two approaches, nearest
neighbors -- of which mention has been made -- and recursive partitioning, are
discussed. These techniques are applicable to the general regression problem as
well. Not only are discrimination and density estimation closely
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connected, but also discrimination is closely related to regression, and
regression can be viewed as a special instance of generalized density estimation.
It is to these connections that we now turn.

Consider a general (X, Y) pair with Y real-valued and E (|Y|) < �; if X is as
before, then h (x) = E (Y|X = x) is the regression of Y on X. It is a particular case
of this situation that Y has finite range and assumes only the values 1 , . . . , J.
Then, with an obvious indicator function notation, one may write

The problem of discrimination can be viewed thus as a special regression
problem in which Y can be written as in (27) and the estimate of h (x) is of the
same form, say

If we return to the general regression problem, then we may think of µ
defined for measurable subsets B of X by µ(B) = E (Y I[X� B]). The measure µ is
absolutely continuous with respect to the distribution of X, and in fact the
regression function h (x) is the density (Radon-Nikodym derivative) of µ with
respect to that distribution.

There could hardly be a simpler approach to discrimination than that of the
single nearest neighbor rule. Its motivation is that of the physician who
tentatively diagnoses his present patient as having the same disease as what was
known to be the correct diagnosis for that past patient whose symptoms and
history most closely match those at hand. With this motivation it may seem
reasonable to the physician to compare the present patient with a number of
previous patients who are also quite similar, though not necessarily the “most”
similar. And thus we are led to more general nearest neighbor type procedures.
In subsequent discussion, for convenience we take C (i|j) = 1 if i � j, 0
otherwise. Much of the presentation is based on the important paper of Stone
(1977).
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Assume no particular functional form for the joint distribution of X and Y.
Then it follows from our assumptions regarding C and the formulation of §
3.2.1 that a Bayes rule dB satisfies

dB(x) = i if P (Y = i|X≥ P (Y = i�|X) for all i�. (29)
Denote its cost of misclassification by R. Motivated by the informal

discussion of the previous paragraph, imagine estimating P (Y = i|X) from the
learning sample by

where the W's are weights and Ii(Yk) = 1 if Yk= i, and 0 if not. The
estimated conditional probabilities can then be plugged into (29) to estimate a
Bayes rule. The cited simple nearest neighbor rule is clearly of this form, where

WNk= WNk(X) = WNk(X ; X1, . . . , XN) = 1

for Xi the the set of covariates in the learning sample which is “closest” to
X. We can ask what happens as N grows without bound to the expected cost of
a Stone type rule, i.e., a rule of the form (29), (30). In our formulation, we
suppose (with slight loss of generality) that WNk≥ 0, all N, k, and that

 Stone indicates that the limiting expected cost of any such
classifier is at most

no matter what be the joint distribution of (X, Y) provided only
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that two conditions are satisfied:

in probability ;

and

There is a D ≥ 1 such that, for every (measurable)

nonnegative function f on X

If we take X formally to be Euclidean, then any positive definite norm will
do in (33), which is simply a requirement that the classifier be asymptotically
“local”. While (32) permits rules to do well in large samples for general
distributions of (X, Y), any classifier which satisfies it cannot be asymptotically
efficient in any reasonable sense relative to a Bayes rule for a parametric
problem.

Note that WNk(X)f (Xk) has the same distribution as UNk(Xk)f (X), where
UNk(Xk) = WNk(Xk; X1, . . . , X , . . . , XN).

So the left-hand expectation in (33) can be written
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Therefore, (33) says that the random transformation which takes f (X) to
 must be bounded from the linear space of random variables

with finite expectation to itself. This kind of condition resembles other
necessary and sufficient conditions for convergence in ergodic theory. Stone's
Theorem 1 puts it as both sufficient and in a certain sense necessary for his
consistency results. Indeed, for any classifier constructed so that (32), (33), and

are satisfied, the limiting expected misclassification cost is R itself. Of
course, (34) entails that with arbitrarily large probability, no finite number of
observations determine the rule.

An instance of the result which precedes and includes (31) was discovered
by Cover and Hart (1967) in the case of single nearest neighbor classifiers.
Their arguments apply to the situation where, with probability 1, nearest
neighbors are uniquely defined. In Stone's work, any weight attached to kth 

nearest neighbors is divided equally when there are ties. Also, his notion of
distance can involve a random scaling so that certain coordinatewise affinely
invariant rules are covered. The first important theoretical work on the
consistency of nearest neighbor classifiers in the presence of some regularity
was by Fix and Hodges (1951). They gave the K = K (N) nearest neighbors
equal weights, where K → � and K / N → 0.

In practice, nearest neighbor rules can be victimized by missing data, and
by noise coordinates which should have been eliminated in the selection of
covariates. Also, a criticism which might be made of Stone's (1977) work is that
the weights are
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insufficiently adaptive because they ignore the Y's of the learning sample. An
extension to the case where the W's depend on Y1, . . . ,YN as well as X1, . . . , XN

was made by Gordon and Olshen (1980). They were studying tree-structured
recursive partitioning rules, to which we turn next.

Tree-structured rules are the subject of the recent book by Breiman et al.
(1984). (We assume that the reader is familiar with the basic notion of a binary
tree. A formal definition and details are given in § 10.1 while an informal
approach that relates trees, partitions, and classifiers can be found in §§ 2.2 and
2.3 of this book.) These techniques deal in a salutary fashion with the three
mentioned shortcomings of nearest neighbor procedures, and they have proven
successful in practice. The basic theme of recursive partitioning is based on the
learning sample, X. The range of X, is successively partitioned, or split, into
“boxes” by a sequence of linear inequalities. (Unordered discrete covariates can
be handled, too.) The partitioning amounts to choosing a sequence of yes-no
questions that can be answered by knowing values of the features. A binary
decision tree is associated with the process of partitioning, and the associated
classifier d is constant on the terminal nodes, which correspond to terminal
subsets of the partitioning; X corresponds to the root node of any tree T. The
partitioning of a node t � T is according to some criterion which is designed to
produce daughter nodes more homogeneous as to class content than their
parents. More precisely, if for any node s , P� (s) = {# i ≤ N : Xi� s} / N, and i (s)
is an index of the “impurity” of the node s, then one may state the rule for
partitioning t :

form left daughter node tL and right daughter node tR so as to maximize

A popular index of impurity is the so-called Gini index:
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where
p (l|s) = # {i ≤ N : Xi� s and Yi= l} /

# {i ≤ N : Xi� s},

and usually C (i|j) is taken to be 0 or 1 according to whether i = j or not. A
large tree is grown initially, according to the cited splitting criterion or some
other. (There are built-in constraints to this initial tree development which
restrict the tendency of tree-structured methods to “sliver” nodes.) At each
terminal node a Bayes rule is estimated from the members of the learning
sample which belong to that node. Since the terminal nodes partition X, the
process completely specifies a classifier d.

For any tree T and any α ≥ 0, a measure of the merit of T is
Rα(T) = Resub (T) + α|T� |,

where Resub (T) is the resubstitution estimate of d's misclassification cost,
and |T �� �� | is the number of terminal nodes of T. Clearly, Rα(T) involves a trade-off
of “bias” in its first term and “variance” in its second. For each α the large
initial tree mentioned in the last paragraph has a subtree which is optimal in the
sense of being the smallest subtree which minimizes Rα. As α increases, there
arises a finite, nested sequence of optimally pruned subtrees. (To prune a tree at
node t is to delete the branch of the tree that has t as its “root node”.) The
estimation of how well each will perform if used prospectively is accomplished
by cross-validation; for some reason 10-fold cross-validation has been used in a
variety of applications. The optimally pruned subtree for
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which the cross-validated misclassification cost is smallest is an obvious
candidate for prospective use. Arguments have been advanced and techniques
developed for some further pruning of this initially grown tree -- see Breiman et
al. (1984).

If the partitions of X are nested as N grows, then the martingale
convergence theorem bears upon the consistency of recursive partitioning
decision rules. Regardless, available arguments all lean heavily on the uniform
convergence of empirical probabilities of certain sets to their true probabilities.
Thus, the pioneering work of Vapnik and Chervonenkis (1971, 1974) bears
upon the asymptotic properties of tree-structured methods. Consistency in the
sense described for nearest neighbor rules has been established for many
recursive partitioning rules, and consistency with probability 1 has been, too.
Always the diameter of p is required to tend to 0, but also  is
required. And finally, the sizes of nodes must become “small” asymptotically.
For details, see Chapter 12 of Breiman et al. (1984) and the papers of Gordon
and Olshen (1978, 1980, 1984).

There are new procedures which may prove to be competitive with those
which have been discussed. Both projection pursuit classification and additive
logistic regression seem particularly promising. But, at this writing substantial
track records are lacking, and their story will wait for another day.

3.3 STATISTICAL THEORY IN CLUSTERING

3.3.1 Introduction

Classification, placing sets of objects in similar classes, is necessary for
language and thought and is the foundation of statistical data collection and of
probability judgements. You believe this toss of a coin gives heads with
probability 1/2 because you classify it with other remembered coin tosses, half
giving heads and half giving tails. You predict rain after thunder because you
classify the thunder with other thunders followed by rain.
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The statistician is pleased to inform the biologist that his fossil shellfish
divide distinctly into three clusters evidenced by a tri-modal distribution of the
measurements of number of whorls and relative diameter of the innermost and
outermost chambers of the shell. The biologist is not surprised because they
looked like three different species and he made those measurements that he
thought would best distinguish them. Classification precedes measurement.

Statistical theory cannot provide a complete theory of classification. We
cannot say how similarities should be judged, although we can give technical
assistance in constructing distances. See § 2.3.3. Different classifications are
right for different purposes, so we cannot say any one classification is best.
Statistical theory in clustering provides a testing ground for various clustering
methods -- we discover how well the methods work for various idealized forms
of data, and reject those methods that fail, at least for application to similar
types of real data.

One general model is that the data form a random sample X1, X2, . . . , Xn

from some population with a probability distribution P. A technique produces
some clusters in the sample. A theoretical model generates some clusters in the
population with the distribution P. We evaluate the technique by asking how
well the sample clusters agree with the population clusters.

Perhaps you wish to classify the 50 United States by their agricultural
products, where the population is the sample. Nevertheless, you might not want
to use a clustering technique, such as complete linkage (maximum diameter)
clustering that produces clusters that do not depend asymptotically on the
distribution P. Frequently, you have available a sample that cannot be regarded
as random. You collect all the specimens available at the site, but you wish to
form a taxonomy of general utility. Some species will be represented much
more highly than others; if you treat the whole as a random sample, the
overrepresented species will receive too much attention. In survey sampling
theory, much attention is paid to probability sampling, where the probability
that each individual in the population enters the sample is known; perhaps this
theory can be adapted to clustering problems. We do not usually know selection
probabilities, but we might be able to

THEORY 58

Ab
ou

t 
th

is
 P

D
F 

fil
e:

 T
hi

s 
ne

w
 d

ig
ita

l r
ep

re
se

nt
at

io
n 

of
 t

he
 o

rig
in

al
 w

or
k 

ha
s 

be
en

 r
ec

om
po

se
d 

fro
m

 X
M

L 
fil

es
 c

re
at

ed
 f

ro
m

 t
he

 o
rig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 f
ro

m
 t

he
or

ig
in

al
 ty

pe
se

tti
ng

 fi
le

s.
 P

ag
e 

br
ea

ks
 a

re
 tr

ue
 to

 th
e 

or
ig

in
al

; l
in

e 
le

ng
th

s,
 w

or
d 

br
ea

ks
, h

ea
di

ng
 s

ty
le

s,
 a

nd
 o

th
er

 ty
pe

se
tti

ng
-s

pe
ci

fic
 fo

rm
at

tin
g,

 h
ow

ev
er

, c
an

no
t b

e
re

ta
in

ed
, a

nd
 s

om
e 

ty
po

gr
ap

hi
c 

er
ro

rs
 m

ay
 h

av
e 

be
en

 a
cc

id
en

ta
lly

 in
se

rte
d.

 P
le

as
e 

us
e 

th
e 

pr
in

t v
er

si
on

 o
f t

hi
s 

pu
bl

ic
at

io
n 

as
 th

e 
au

th
or

ita
tiv

e 
ve

rs
io

n 
fo

r a
ttr

ib
ut

io
n.



Copyright © National Academy of Sciences. All rights reserved.

Discriminant Analysis and Clustering 

progress by assuming the selection probabilities are the same within each
cluster. For example, in the normal mixture model we could estimate the normal
parameters for each component in the population, but not the mixing
proportions, because these would be confounded with unknown selection
probabilities.

3.3.2 High Density Clusters

A model suggested by clusters of stars is that a cluster corresponds to a
high density region in p-dimensional space, Hartigan (1975).

Let P be the population distribution, let x be a typical point in p-
dimensional Euclidean space, let f be the density of P with respect to Lebesgue
measure. The population clusters are the maximal connected subsets of the high
density region {x|f (x) ≥ c} for each c. The family of population clusters forms a
tree, in that two clusters are disjoint, or one includes the other. This model is
thus suitable for examining hierarchical techniques. Taking the density of P 
with respect to Lebesgue measure rather than some other measure ensures that
the population clusters are the same if a non-singular linear transformation is
performed on the space.

For discrete data, we might assume that P is supported by the vertices of a
cube in p-dimensional space, and take f to be the density with respect to the
uniform distribution on the vertices. A set of vertices is connected if any two
vertices in the set may be connected by a chain of cube edges between vertices
in the set. The same definition of high density clustering may then be used.

Methods of density estimation produce clusters in the sample, namely the
high density clusters corresponding to the estimate. This is to be expected
because density estimates at a point depend on nearby sample points, and the
definition of “nearby” corresponds to the similarity assessments in clustering
methods. (Probability rests on the similarity between what we know and what
we are guessing!) Conversely hierarchical clustering methods may be
interpreted as estimates of density contours, although the density itself is only
specified by the clustering up to a monotone transformation.
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3.3.3 Agglomerative Methods for High Density Clusters

Agglomerative methods define a distance between any two possible
clusters, and the clusters are constructed by beginning with n singleton clusters,
one for each point, and successively joining the closest pairs of clusters to form
new clusters. These methods are poor estimates of high density clusters.

Complete linkage, in which the distance between clusters is the maximum
distance between points in the two clusters, is the worst of all standard methods
for high density clustering. If the distribution P is carried by a compact set C on
which the minimum density is positive, I conjecture that the asymptotic
behavior of the complete linkage clustering depends only on C, not on P. To be
more precise, fix three points x, y, z and, for a given sample size n, let the
closest sample points to them be xn, yn, zn. Then the conjecture is that the
probability that xn and yn are clustered together, before xn and zn are, depends
only on C as n → �.

Complete linkage remains a popular method because it gives nice evenly
bifurcating trees for almost all data sets -- the real world, not so nice, does not
show through. If P is supported by disconnected sets, then complete linkage
will discover those sets, which depend only on C, the supporting set. What
upsets complete linkage is the little fuzz of observations between the high
density regions.

Why does complete linkage fail? After we have joined the small clusters
together, all clusters have roughly the same diameter (if the maximum diameter
of the clusters is d, no neighboring pair of clusters can amalgamate to a cluster
of diameter less than d, so at least one of the pair must have diameter d/2 or
larger, assuming that some pair of points in the two clusters are negligibly
close). Later decisions are made entirely on the pairwise distances between
clusters, which do not depend on the number of points in the clusters; thus at
this stage information about the distribution of points is already lost.

Average linkage defines distance between clusters as the average distance
between pairs of points in the two clusters. It is known in the numerical
taxonomy literature as the unweighted
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pair group method. It behaves somewhat better than complete linkage in
sensitivity to the population distribution because the distance measure is
affected by the number of points in the clusters. If two neighboring clusters are
formed that cut across a high density region, the distance between clusters will
be smaller than usual because of the many close pairs of points, and so these
neighboring clusters will be quickly joined identifying the high density region.
See Figure 1, where the clusters (2,3) and 4 are joined before (2,3) and 1. so that
the high density clustor (3,4) is separated from the high density cluster 1. The
weighted pair group method, in which distance between two clusters is just the
average distance between component clusters (rather than points), should be no
better than complete linkage, since after a small amount of joining the numbers
of points in the various clusters becomes irrelevant.
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Figure 1. Comparative behavior of complete, average and single linkage
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The centroid method measures distance between clusters 1 and 2 by n1n2ρ2(x
−

1, x−2) / (n1 + n2) where ni is the number of points and x−i the mean point in the
ith cluster, and ρ is Euclidean distance. This ensures that the two clusters are
joined to least increase the within cluster sum of squares; the method is the
hierarchical analogue of the k-means algorithm. The resulting clusters are
sensitive to the population distribution; the intermediate clusters (those obtained
by a moderate amount of joining) are smaller in diameter in high density
regions. Nevertheless these clusters are not consistent for high density clusters
-- it is easy to have the edge of a large cluster join with a neighboring small
cluster rather than with the other parts of the large cluster.

3.3.4 Single Linkage, the Minimum Spanning Tree and
Percolation

Single linkage clustering measures the distance between clusters as the
minimum distance between pairs of points in the two clusters. Single linkage
clustering is consistent for high density clusters in one dimension in the sense
that two fixed disjoint population clusters will eventually lie within some two
disjoint sample clusters with probability one. Only approximate consistency
holds in more than one dimension: let A and B be two disjoint population
clusters, and define the distance between two sets C and D,

If ρ(C, D) is small, every point of C has some point of D close to it, so that
D approximately includes C. As n → �, with probability one, there exist disjoint
single linkage clusters Anand Bn such that ρ(A, An) → 0, ρ(B, Bn) → 0, Hartigan
(1981). The single linkage clusters are straggly affairs whose contours by no
means approximate the population density contours, but each of the two single
linkage clusters has a point near each point in the two population clusters.
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Figure 2. Single linkage's approximate consistency

Single linkage clusters have a number of equivalent characterizations that
make single linkage attractive for theoretical study. For example, divide the
points into two clusters so that the
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minimum distance between the two clusters is as large as possible, and continue
dividing the clusters obtained, in the same way. This produces single linkage
clusters; the other agglomerative methods have no simple divisive
characterization, and so it is to be expected that the large clusters they produce
have no known desirable properties.

Replace each point by a sphere of radius d and consider the maximal
connected subsets of the union of spheres, for all d. These are the single linkage
clusters. Clusters of this type are studied in percolation theory (Broadbent and
Hammersley, 1957, Smythe and Wierman, 1978) and so asymptotic results
about single linkage clusters may be obtained from percolation asymptotics.

The nearest neighbor density estimate is, in p dimensions,

The high density clusters of fn are the maximal connected subsets of
unions of spheres of the previous paragraph, the single linkage clusters. The
nearest neighbor density estimate is a poor estimate, not consistent for the true
density; it is remarkable that single linkage clusters retain approximate
consistency. Following Wishart (1969) and Ling (1973) we should use high
density clusters corresponding to some form of kth nearest neighbor density
estimation, where for consistency k → � as n → � but k/n → 0. For example,
we define distance between clusters in a joining algorithm by the kth smallest
among distances between pairs of points in the two clusters. This clustering
method is the analogue of kth nearest neighbor discriminant procedures, in
which a new point is allocated to the class that appears most frequently in its k 
nearest neighbors.

Another characterization of single linkage clusters is through the ultrametric
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The ultrametric satisfies ρ*(x, y) ≤ sup[ρ*(x, z ), ρ(y, z)] and determines a
family of clusters {x|ρ*(x, y) ≤ C} for various C, y, that turn out to be the single
linkage clusters.

Finally, the minimum spanning tree is the graph of minimum total length
connecting the sample points. Gower and Ross (1969) show that single linkage
clusters are the connected sets obtained by successively deleting, largest to
smallest, the links of the minimum spanning tree. Thus single linkage
computation and asymptotics are intimately related to minimum spanning tree
computation and asymptotics.

3.3.5 Mixtures

The population density

is a mixture of components fi in proportions pi. This may be viewed as a
model for k clusters. The fiand pi are unidentified without some further
constraints. The usual assumption is that each fi is a member of the same
parametric family, the multivariate normal (e.g., Wolfe, 1970; Day, 1969; Dick
and Bowden, 1973); however the mixture model may also be applied to general
sample spaces, not only to points in p dimensional Euclidean space. In
discriminant analysis, a random observation X is associated with a classification
I into one of k classes. Suppose that I takes the value i with probability pi, and
that X given I = i has density fi. Then the marginal density of X is just f = ∑Pifi.
In discriminant analysis we know X and I; in clustering we know only X; thus
the mixture model for clustering corresponds to the marginal probability model
for discriminant analysis. Lack of knowledge of the classification variable
makes the general mixture model unidentifiable however, so further constraints
are needed for clustering.
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Let p (i|x) = pifi(x) / ∑ pifi(x) denote the posterior probability that the
observation x belongs to class i. These posterior probabilities are useful in
maximum likelihood estimation for the model

f (x) = ∑ pifi(x, θi)

where the fi are known up to the parameter θi taking values in r-
dimensional Euclidean space. Assume the fi are differentiable with respect to θi.
Then the maximum likelihood estimates for pi, θibased on observations X1,
X2, . . . , Xn satisfy

The estimation proceeds in alternating steps: given p (i|Xj), estimate θi

weighting the observations Xj by their probability of belonging to the ith 
component; then given these estimates θj, estimate pi and p (i|Xj); then repeat
the first step.

Rao (1948) appears to have been the first to use maximum likelihood for
normal mixtures. See also Day (1969), Wolfe (1970), Hosmer (1973), Everitt
and Hand (1981). We can't show that the alternating procedure leads to the true
maximum likelihood estimates, or even that the likelihood increases after each
step, even in the simple case of normal mixtures in one dimension. The standard
maximum likelihood regularity conditions do not hold in the normal case, and
the usual asymptotic consistency and distribution results do not always hold.

For well-separated clusters, the posterior probabilities p (i|Xj) are all near 0
or 1, and the maximum likelihood solution is approximated by dividing the
observations into k clusters,
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estimating θi by maximum likelihood separately within the clusters, and finding
that division into k clusters that maximizes the product of the likelihoods. This
procedure is the strict maximum likelihood estimate for the model in which the
observations {Xj} are supposed drawn from components {Ij}, and the
components are regarded as unknown parameters. The likelihood is

L[X1, . . . , Xn, I1, . . . , In, θ1, θ2, . . . , θk] = Π fIj(Xj, θIj).

In practice we can rarely afford to search all partitions, but we use an
alternating step algorithm:

(i)� : Given Ij, select θi to maximize 

(ii)� : Given θi, select Ij to maximize fIj(Xj, θIj).

Thus given the clusters we estimate θi by maximum likelihood, and given
the θi we specify cluster membership to make Xj most likely. This is the
alternating method for mixture maximum likelihood when the p (i|Xj) are all
zero or one.

In the particular case when
fi(X) = (2π)−p/2 exp[− 1/2(X − µi)�(X − µi)],

the above algorithm has a simplified form known in the clustering
literature as k-means. (See, e.g., Macqueen, 1967, and Hartigan, 1975). We
select µi to be the mean of the observations in the ith cluster, and we allocate the
observation Xj to that cluster i  that minimizes the distance between Xj and µi.
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3.3.6 The Number of Clusters: Modes

In the high density clustering model, we associate a family of clusters with
each mode of the density f : f has a mode at m if there is a neighborhood M of m 
such that f (x) ≤ f (m) for x � M, and f (x) < f (m) for x in the boundary of M.
There are disjoint high density clusters only if f is multimodal. Thus we can test
for the presence of clusters by testing for multimodality.

For X one dimensional, unimodal and bimodal densities may be fit by
maximum likelihood giving a likelihood ratio test for bimodality, but it is
difficult to handle the large contributions to the likelihood made by small
intervals between neighboring observations. A better test is the dip test, which
measures the maximum difference between the empirical distribution function,
and the unimodal distribution function chosen to minimize that maximum
difference. The dip approaches zero for unimodal distributions, and some non-
zero value for multimodal distributions, as the sample size increases. It is
therefore consistent for distinguishing unimodal from multimodal distributions.
It is argued in Hartigan and Hartigan (1985) that the uniform is the appropriate
null unimodal distribution, because the dip is asymptotically stochastically
larger for the uniform than for other unimodal distributions; the asymptotic
distribution of the dip and some empirically determined distributions for finite
sample sizes are given in that paper.

The dip does not generalize simply to many dimensions. The minimum
spanning tree provides a kind of ordering of the n sample points that may be
used to generate an analogue of the dip statistics: select a particular sample
point x0 to be the mode or root, and consider probability distributions P 
supported by the links of the minimum spanning tree. Define P to be unimodal
if P has a density, with respect to the uniform distribution on the tree, that is a
non-decreasing function of x as x moves toward the root. At each point x on the
tree define a distribution function value F (x) to be the probability that a random
point X is such that x lies between X and x0. Let Fn be the empirical distribution
function corresponding to the empirical distribution which gives each sample
point probability 1/n. Define
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 where F is unimodal with mode x0,

This procedure locates an optimal mode x0, and states how well the data fit
the unimodal hypothesis, DIP (Fn). In the one dimensional case the usual
definition of dip gives the same value. The asymptotic behavior of the
multivariate version is unknown.

3.3.7 The Number of Clusters: Components

If the components of a multivariate normal mixture are sufficiently well
separated, there will be one mode for each component. In this case the number
of clusters is the number of components or the number of modes, but in general
the number of modes is fewer than the number of components, so testing for the
presence of more than one component is less conservative than testing for the
presence of more than one mode.

Wolfe (1971) considers the likelihood ratio test for say one component
against two, but notes that the regularity conditions which are usually required
for the log likelihood ratio to be proportional to a chisquare are not fulfilled.
See also Binder (1978) and Hartigan (1977).

Consider the simplest case: X1, . . . , Xn sample from N (0, 1) under the null
hypothesis, and from (1 − p) N (0, 1) + pN (µ, 1) for some 0 ≤ p ≤ 1, − � < µ < �
under the alternative hypothesis. Let Zi= exp(Xiµ − 1/2 µ2) − 1. Then the
likelihood is proportional to L (p, µ) = Πn

i=1(1 + pZi). Note that Zihas mean 0
and variance eµ2 − 1; if Zi(µ) and Zi(µ�) denote the Z-values computed for µ and µ
�, then cov (Zi(µ), Zi(µ�)) = eµµ� − 1.
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For each fixed µ, log L (p, µ) is a concave function of p that has maximum
value 0 if ∑ Zi< 0 but maximum value approximately (∑ Zi)2 / 2(∑ Zi

2)
otherwise. Thus asymptotically, L (µ) =  log L (p, µ) is equal to zero with
probability 1/2, and to (�2

1) / 2 with probability 1/2. The (�2
1) / 2 would be

expected from usual likelihood asymptotics.
If µ and µ� are widely separated, Zi(µ) and Zi(µ�) are nearly uncorrelated,

and so asymptotically L (µ) and L (µ�) are nearly independent. Thus  L (µ) is
greater than the maximum of k nearly independent L (µ) for each k. Thus  L 
(µ) is asymptotically infinite.

The likelihood ratio test does not therefore follow the usual asymptotics,
and is not conservative: the usual significance test will (with probability 1
asymptotically) reject the hypothesis of a single component when only a single
component is present. For each µ,  L (p, µ) has asymptotically the same
distribution, and these distributions are nearly independent for well-separated µ;
maximum likelihood computations will therefore be difficult; we can expect to
see local maxima of  L (p, µ) near every value of µ.

If µ has prior density normal with mean 0 and variance 1, large values of µ
are inhibited and the maximum posterior density will occur only with µ
moderate. The corresponding ratio test may have better asymptotic behavior
than the likelihood ratio test. More generally, if the mixture model has
components with means µ1, µ2, . . . , µk we might assume the µk to be a priori a
sample from a normal; this prevents the artificially large separation of µ's that
occurs in likelihood estimation and testing.

The behavior of the likelihood ratio statistic in the k-means case has been
examined in one dimension by Hartigan (1978) and in higher dimensions by
Pollard (1982).
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3.3.8 Ultrametric and Evolutionary Distances

Assume that there are N objects, and N (N − 1) / 2 distances between pairs
of objects. From these distances we wish to form clusters of close objects. One
way to go about constructing the clusters is to require that the distances satisfy
certain properties in the final clustering. For example, all distances within two
disjoint clusters must be smaller than all distances between the clusters. Or,
each pair of points in the same cluster must be connected by a chain of points
such that neighboring points in the chain are closer than some neighboring
points in a chain connecting points in different clusters. (This definition leads to
single linkage.) Another way is to suppose that the clusters correspond to some
ideal distance matrix, and to attempt to approximate the given distance matrix d
with a best fitting cluster distance D. For example, hierarchical clustering might
correspond to an ultrametric D, a distance satisfying D(i,j) ≤ sup[D (i,k), D 
(j,k)] and we would find the ultrametric D closest to d. See Hartigan (1967),
Johnson (1967) and Jardine, Jardine and Sibson (1967). Another plausible
definition, the evolutionary model from Fitch and Margoliash (1967), is based
on an evolutionary tree generating the objects. The distance between any pair of
objects is the sum of links on the unique path connecting them in the tree. If
there exists an ancestor in the tree such that all points are equidistant (in sums
of links) from the ancestor, then this evolutionary distance reduces to an
ultrametric. Given the tree, the best fitting evolutionary distance or ultrametric
can be fitted by regression methods; the hard part is searching for the best tree.

Baker (1974) has considered probability models in which an observed
distance matrix d varies by some amount from an ultrametric D, and has
investigated empirically how well the various hierarchical techniques recover
the true ultrametric D. The results are opposite to those obtained using the high
density model: complete linkage does well, and single linkage poorly.

Euclidean distances in p-dimensional space will form an ultrametric
distance matrix on at most (p + 1) points. For a density f, we can construct an
ultrametric by
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where C is any path connecting x and y. Thus x and y are close if they can
be connected by a path of high density, or equivalently if they lie together in a
high density cluster. In fitting such an ultrametric to objects in p-dimensional
space we would use only the small distances between objects to obtain an
estimate of the density f. Single linkage works only with the small distances,
whereas complete linkage depends on the large distances. This may be the
explanation for Baker's results favoring complete linkage, in that he requires the
fitted ultrametric to be close to the true ultrametric when averaged over all 
distances, and the large distances are neglected by single linkage. In practice,
the large distances deviate most from the fitted ultrametric (however fitted) and
it seems correct to downweight their contribution. Theoretically, if we wish to
allow clusters of arbitrary shape and size, it also seems impossible to give large
distances much weight. Perhaps we should fit an ultrametric D to minimize

∑ w (D) [d (i,j) − D (i,j)]2 / ∑ w (D)

where w (D) is small or zero for D large. This moves single linkage a little
way towards average linkage. More weight should be given to the large
distances in high-dimensional spaces.

Let the objects 1 , . . . , n be generated by an evolutionary tree, beginning
at some ancestor, 0. For a particular measurement X taking values Xi on the
objects, assume that X changes in time t, t + ∆t on a particular link of the tree,
by an amount that has mean 0, variance σ2∆t, and is uncorrelated with changes
in different intervals or links.

Then, letting EY denote the expected value of the random variable, Y,
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E(Xi− Xj)2 = 2σ2tij

where tij is the time since i  and j evolved from their most recent ancestor,
so E (Xi − Xj)2 is an ultrametric!

If we had used different rates of evolution in the different links of the tree,
so that the changes in X had variance σi

2∆t for link i, then E (Xi − Xj)2 would be
an evolutionary distance.

Suppose that X is normal, and there are p independent samples of X, 
namely, X1, X2, . . . , Xp. (Here the number of objects is fixed, and the
measurements are assumed sampled from an infinite population of possible
measurements; it will require careful standardization to achieve something like
this in practice.) Then

Let  an ultrametric. For large p,
d (i,j) ~ D (i,j) [1 +N (0, 2/p)].

This suggests fitting the ultrametric D by minimizing
∑ [D (i,j) − d (i,j)]2 / D2(i,j)

which downweights the large distances nicely, but probably not enough.
We have to take note also of the high correlation between the large distances,
arising from the high fraction of their paths
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through the tree that they have in common. We can compute these, but the
criterion to be minimized is then a complex quadratic in D − d.
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CHAPTER 4

SOFTWARE AND ALGORITHM
IMPLEMENTATION

4.1 INTRODUCTION

This chapter provides a summary of available software and algorithms for
discriminant and cluster analyses. While it is intended to be up to date, the
current pace of statistical software evolution is such that some of the more
recent developments may be inadvertently excluded.

Section 4.2, which focuses on discriminant analysis, was written by P. A.
Lachenbruch. Section 4.3 on cluster analysis was prepared by R. A. Blashfield.
The final section, 4.4, which talks about software needs, combines materials
written by both Blashfield and Lachenbruch.

4.2 DISCRIMINANT ANALYSIS

4.2.1 Linear and Quadratic Discriminant Functions

Many packages are available for performing linear discriminant analyses.
Fewer are available for quadratic discriminant analyses and only one (to my
knowledge) is available for performing density estimate discriminant analysis.
These are reviewed in the section on packages. I have not attempted to cover
programs which are not widely available in the United States. BMDP, GLIM,
IMSL, Minitab, P-STAT, SAS, SPSS-X, and Statgraphics are now available in
versions for MS-DOS compatible microcomputers. In addition, several
statistical systems developed specifically for microcomputers have appeared on
the market: SYSTAT, CRISP, GAUSS, and STATA are examples.
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The linear discriminant function is well implemented for most
applications. The numerical techniques are standard, the equations and
algorithms (inversion, solution of a set of linear equations) have been tested
thoroughly and accuracy is not a major concern. Estimating errors in
discriminant analysis is generally done by reclassifying the training sample. If
the sample sizes are sufficiently large (say 3 to 5 times the number of variables
in each group), this method is satisfactory and has an approximately binomial
distribution. One package offers the jackknife (or leaving-one-out) method.
This has a smaller bias than the resubstitution method, but because of the
correlation among the pseudo-observations has a larger variance. This method
should only be used for small samples when the danger of the optimistic bias of
the resubstitution method is substantial. Plots of the linear discriminant
variables are available in most packages. Weighting of cases is possible in SAS
and SPSS, and it is not clear from the manuals whether it is possible in BMDP
and P-STAT. None of the packages offer the option of proportional covariance
matrices. This intermediate step between the full quadratic function and the
linear function involves estimation of only one additional parameter for each
additional group, rather than the full covariance matrix for the added group, and
may be a satisfactory compromise in many cases.

4.2.2 Review of Packages

P-STAT

The P-STAT discriminant analysis procedure is similar to the BMDP7M
program. It is a backward stepwise procedure and allows from 10 to 40 groups
depending on the P-STAT size. No warning on the sample size requirements for
the many groups case is given. This may lead some naive users astray. Also, the
assumption of common covariance is not discussed. The resubstitution method
is available for estimating error rates. There are three types of runs:
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1.  Analyze and classify a data set.
2.  Classify a known data set using previously generated functions.

This can be used as a validation method by holding out a fraction
of the data.

3.  Classify an unknown data set.

Output data sets contain the original group, the assigned group, the
posterior probability the observation belongs to its original group, and the
posterior probability it belongs to its highest probability group.

The program does not automatically step in the batch mode but is stepwise
when run interactively.

SPSS-X

The DISCRIMINANT procedure in SPSS-X allows one to use a fixed set
of variables or to select variables in a forward manner. Removal of variables is
possible, but backward stepping does not appear to be possible. Five criteria are
possible to select variables. Inclusion levels are available to force variables into
the discriminant function.

For the multiple groups problem, the canonical discriminant functions are
computed rather than the likelihood ratio functions which minimize the total
(weighted) error rate.

Cases with missing values are excluded. It is possible to select a subset of
cases to analyze and then test the performance of the rule on the remainder of
the cases.

Plots may be obtained which map the two-dimensional space of canonical
functions and show the classification boundary, an all-groups plot which plots
each case, or a separate-groups plot. A variety of matrix operations are possible
on the discriminant coefficients.
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BMDP7M

The BMDP7M Stepwise Discriminant Analysis program is the descendent
of the oldest discriminant analysis packaged program. It offers forward and
backward stepping, forcing levels for inclusion or exclusion of variables, and
two criteria for variable entry. It is possible to specify prior probabilities. For
estimating error rates, the resubstitution method and the jackknife method are
available. Plots of canonical variables are given either by group or for any
subset of groups. The error rates may be printed at any set of steps in the
variable selection process. The size of the problem is a function of the number
of variables, groups and cases. It is not clear if there is an upper limit on groups
or variables. Quadratic discrimination does not appear to be available.

SAS PROCEDURES

SAS offers four discriminant procedures: DISCRIM, NEIGHBOR,
CANDISC, and STEPDISC. CANDISC performs a canonical discriminant
analysis and provides output for other SAS procedures for plotting or printing.
A number of statistics ar available. The DISCRIM procedure computes a linear
or a quadratic discriminant function on a fixed set of variables. Prior
probabilities may be specified. Classification may be done on the training
sample or on a test sample. Stratified analyses may be performed using a BY
statement. The NEIGHBOR procedure performs a nearest-neighbor
discriminant analysis. Either the single nearest-neighbor or the k-nearest-
neighbor rule may be used. Prior and posterior probabilities are printed and an
error matrix is given. The STEPDISC procedure performs a stepwise
discriminant analysis. It is similar to the BMDP7M program. The Wilks'
lambda criterion is used to determine which variable enters or is removed.
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Other Packages

MINITAB (Ryan et al., 1982) has no discriminant analysis procedure,
although it is possible to use a linear regression program to obtain the
discriminant coefficients. After using the regression procedure, one could
calculate the resubstitution estimator of error rates by the MULTiply and ADD
commands. Other packages would be preferred for discriminant analysis.

IMSL has two subroutines for linear discriminant analysis, ODFISH and
ODNORM. In ODFISH, the canonical discriminant functions are calculated. In
ODNORM, the multivariate normal discriminant functions are computed. These
subroutines do not print output; this becomes the user's responsibility. There are
also routines which will estimate a density function using the kernel method.
The user must supply a kernel function. The subroutine computes density
estimates at a set of points requested by the user. Printing is the user's
responsibility. These routines are NDKER and NMPLE which estimate the
density for a one dimensional problem.

ALLOC (Hermans et al., 1982) is a program which computes allocation
rules based on density estimation. It uses multivariate normal kernels with a
diagonal covariance matrix. The smoothing parameter is estimated by the
program. A subsequent modification allows the program to use variable kernels
to obtain better estimates of densities.

4.2.3 Logistic Regression

The major statistical packages all offer some form of logistic regression
analysis. Additionally, there are a number of other programs available to
perform these computations. The method was originally suggested by Cornfield
(1962) in connection with the Framingham studies. Walker and Duncan (1967)
suggested a weighted least squares method of estimating the parameters which
has been widely used. Day and Kerridge (1967) discussed several properties of
the method. Nelder and Wedderburn (1972) derived the theory of generalized
linear models which has been the basis
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for much further important work. The program, GLIM (Generalized Linear
Interactive Modeling), is an outgrowth of this work and is easily used for fitting
these models which include the logistic regression model.

BMDP offers a logistic regression program based on a method developed
by Jennrich and Moore (1975). This is a stepwise program and uses iteratively
reweighted least squares. Conditional logistic regression is possible for matched
pairs analyses.

SAS includes a procedure, LOGIST, in their supplementary programs
which performs logistic regression by computing maximum likelihood
estimates of the parameters. Stepwise variable selection is possible.

SPSS does not have a separate logistic regression procedure. One can get
estimates of the regression coefficients if the observations can be analyzed
using a categorical analysis program. Thus, continuous variables cannot be
handled by SPSS.

The program, GLIM, was developed by the Numerical Algorithms Group
(NAG), in conjunction with the Royal Statistical Society, to estimate parameters
from the Nelder-Wedderburn models. Special cases of this model include
logistic regression, log-linear categorical models, analysis of variance, and
multiple regression. This program fits these models using maximum likelihood.
A new program, PRISM, has recently been issued by NAG which includes all
facilities of GLIM.

A general criticism of these packages is that they offer little in the way of
diagnostic computations for the detection of influential observations. Work by
Pregibon (1981) is now available and new revisions of these programs should
include these results.

4.2.4 Classification Trees

Recent work on classification trees was summarized briefly in § 2.2.7.
Batch and interactive versions of the CART methodology are available through
California Statistical Software, Lafayette, CA.
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4.3 CLUSTER ANALYSIS

The amount and diversity of cluster analysis software has been surprisingly
large for a statistical method with effectively only a twenty year history. New
methods are produced continually, and there appears to be no end in sight to the
process in innovation. Probably hundreds of software packages and programs
are available to perform cluster analysis, and it is likely that many researchers
have written their own “home-grown” versions of popular algorithms. That so
much clustering software has been written can be explained by two factors: (1)
unlike many statistical procedures, clustering algorithms, which are often no
more than heuristics, are relatively easy to program on a computer; and (2)
since most sciences have different goals, analytical needs and methodological
requirements, many different clustering methods have been developed to exploit
these needs.

Clustering software can be placed into four major categories: (1)
collections of subroutines and algorithms, (2) general statistical packages which
contain clustering methods, (3) cluster analysis packages, and (4) simple
programs which perform one type of clustering (Blashfield, Aldenderfer,
Morey, 1982). Since a comprehensive review of clustering software is beyond
the scope of this report, the focus shall be only upon those programs and
packages which are widely available.

4.3.1 Collections of Subroutines and Algorithms

Three major collections of software are available today in this category;
books by Anderberg (1973), Hartigan (1975), and Jambu and Lebeaux (1983)
plus the International Mathematical and Statistical Library (IMSL, 1977).
Although much of this software is fairly sophisticated, it requires the user to
supply all job control language of the computing system to link and
subsequently run the routines. As a result, these programs are not very “user-
friendly”. The user must be familiar with the local control language as well as
FORTRAN in order to be able to get the programs running. In general the level
of user support for these

SOFTWARE AND ALGORITHM IMPLEMENTATION 82

Ab
ou

t 
th

is
 P

D
F 

fil
e:

 T
hi

s 
ne

w
 d

ig
ita

l r
ep

re
se

nt
at

io
n 

of
 t

he
 o

rig
in

al
 w

or
k 

ha
s 

be
en

 r
ec

om
po

se
d 

fro
m

 X
M

L 
fil

es
 c

re
at

ed
 f

ro
m

 t
he

 o
rig

in
al

 p
ap

er
 b

oo
k,

 n
ot

 f
ro

m
 t

he
or

ig
in

al
 ty

pe
se

tti
ng

 fi
le

s.
 P

ag
e 

br
ea

ks
 a

re
 tr

ue
 to

 th
e 

or
ig

in
al

; l
in

e 
le

ng
th

s,
 w

or
d 

br
ea

ks
, h

ea
di

ng
 s

ty
le

s,
 a

nd
 o

th
er

 ty
pe

se
tti

ng
-s

pe
ci

fic
 fo

rm
at

tin
g,

 h
ow

ev
er

, c
an

no
t b

e
re

ta
in

ed
, a

nd
 s

om
e 

ty
po

gr
ap

hi
c 

er
ro

rs
 m

ay
 h

av
e 

be
en

 a
cc

id
en

ta
lly

 in
se

rte
d.

 P
le

as
e 

us
e 

th
e 

pr
in

t v
er

si
on

 o
f t

hi
s 

pu
bl

ic
at

io
n 

as
 th

e 
au

th
or

ita
tiv

e 
ve

rs
io

n 
fo

r a
ttr

ib
ut

io
n.



Copyright © National Academy of Sciences. All rights reserved.

Discriminant Analysis and Clustering 

routines is low; Hartigan's algorithms are described in a separate user's manual
(Dallal, 1975), whereas Anderberg's algorithms are only documented in his
book. While the IMSL clustering algorithms are embedded within the
documentation of the entire collection of IMSL subroutines, this does not
necessarily make them any easier to use. The FORTRAN programs in the
Jambu and Lebeaux book (1983) are quite extensive and represent a
considerable effort by these two French writers. Like the routines in Hartigan
(1975), the algorithms in Jambu and Lebeaux are unique. Despite the breadth of
methods available, algorithms in this category are not recommended for use by
the novice unless extensive guidance is available.

Statistical Packages Containing Clustering Software

The most convenient cluster analysis available for general use is that
contained within popular packages of statistical programs such as BMDP
(Dixon, 1981), SAS (SAS Institute, 1985), and SPSS-X (SPSS, 1986). The
philosophy of these packages is well known; they provide non-programmers
with relatively easy access to sophisticated statistical methods for a wide variety
of research problems. The packages provide an “umbrella” of support for the
user in that they use a consistent control language that communicates the needs
of the user to the computing system with a minimum of effort. These packages
also contain a full range of data screening and manipulation methods which
help to make complex analyses simple and feasible. If the package contains the
method of interest to the user, the advantages of using existing statistical
packages are substantial.

Until recently, the range of clustering options contained in most statistical
packages has been severely limited. For instance, before 1980, SAS contained
only one clustering method and SPSS had no clustering methods. However, this
state of affairs has changed dramatically. Since 1979, BMDP has developed
four procedures devoted to cluster analysis: (1) a collection of single, complete
and average linkage to cluster variables; (2) an average linkage (centroid
sorting) method to cluster cases; (3) a block clustering method (Hartigan, 1975)
to simultaneously cluster cases and
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variables; and (4) an iterative k-means method which forms partitions among
the cases. The BMDP procedures are well annotated, have clear output and are
relatively easy to use. The most serious limitations of this package are the
limited range of hierarchical agglomerative methods, especially for clustering
cases, and the choice of only a single similarity measure, Euclidean distance.

Earlier versions of the second statistical package, SAS, contained one
method of cluster analysis -- complete linkage. However, a recent release of this
package, SAS 1985, includes substantial additions. This version of SAS
contains Ward's single linkage, complete linkage, average linkage plus seven
other hierarchical agglomerative methods. Euclidean distance is still the only
similarity measure offered. In procedure FASTCLUS, a k-means method
(Anderberg's centroid sorting method) has been added, and finally, a factor
analysis-type variable clustering method has been included (procedure
VARCLUS). The diagnostics of the package has been expanded. In addition,
the output provides a great deal of information about the solutions. A major
limitation, however, is that SAS continues to use “sky line” plots to represent
hierarchical trees; these plots are difficult to use with large data sets. Of
considerable interest in SAS is the inclusion of a new statistic, cubic clustering
criterion, for the determination of the number of clusters.

The 1986 version of SPSS-X contains two major clustering procedures:
CLUSTER and QUICK CLUSTER. The former emphasizes hierarchical
agglomerative methods including seven of the most commonly used techniques
(single linkage, complete linkage, average linkage, Ward's method, etc.). There
are six distance measures and three types of plots available. The second
procedures, QUICK CLUSTER, uses a k-means method with limited options
for starting partitions. Interesting aspects of this procedure are provisions for
missing data and the ability to handle extremely large data sets.
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4.3.2 Cluster Analysis Packages

For the sophisticated and serious user of cluster analysis, cluster analysis
packages represent the ultimate in flexibility and user convenience. These
packages combine the advantages of general statistical packages, such as an
integrated control language and data screening and manipulation procedures,
with features of interest to users of cluster analysis, such as a diversity of
clustering methods, special diagnostic features, and enhanced graphics. Of the
greatest importance is that many of the packages contain hard-to-find clustering
methods or analytical procedures which are appropriate for special problems.

The first of these packages in NT-SYS which is and has been important
because it adopts the terminology and methodology inherent in the most
frequently cited book on cluster analysis, Sneath and Sokal (1973). This
package has undergone numerous revisions and updates in its 15 year existence.
Moreover, there now exists a micro-computer version, called NTSYS-pc which
contains the standard hierarchical agglomerative methods, graph theoretic
methods, and an eigenvector routine. This version can handle similarity
matrices up to 400×400 plus it contains three graphics programs.

The most versatile of the clustering packages is CLUSTAN. Like BMDP,
SAS and SPSS-X, CLUSTAN contains procedures for hierarchical
agglomerative and iterative partitioning methods. However, CLUSTAN also
contains a number of other procedures including NORMIX to decompose
multivariate normal mixtures (Wolfe, 1971); INVARIANT, which uses
partitioning methods to optimize MANOVA statistics; DENDRITE, which is a
minimum spanning tree method, plus others. In addition, CLUSTAN has cluster
diagnostic and validation aids, including the procedures called RULES and
COMPARE, which implement the stopping rules of Mojena (1977) and the
cophenetic correlation coefficient of Mojena and Wishart (1980). A total of 38
similarity measures are contained in procedure CORREL, and the package
contains a utility procedure which permits the user to define any type of
similarity coefficient (DEFINE). Other important utilities are those which
prepare a number of cluster diagnostics or which produce a
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wide variety of graphical output. The novice user of CLUSTAN should be
aware that although this package contains a large number of methods, the
package contains little guidance on which methods may be most appropriate for
what types of data sets.

There are three other packages which are devoted to cluster analysis.
CLUS (Friedman and Rubin, 1967) is an old program which used a powerful set
of iterative partitioning methods. A more modern version of CLUS is the
procedure INVARIANT in CLUSTAN. Another large package is BC-TRY.
Like CLUS, this program was written in the 1960's and contained the
innovative ideas of Tryon who was one of the earliest writers about cluster
analysis (Tryon, 1939). Currently this program is being revised for re-
distribution. Finally, a recent clustering package for use on micro-computers
has been developed called MICRO-CLUSTER (Edmonston, 1985). This
package contains seven hierarchical agglomerative methods and an iterative
partitioning method.

4.3.3 Simple Cluster Analysis Programs

Simple cluster analysis programs are just that: simple. These are programs
written primarily in FORTRAN, and they implement one or two cluster analysis
methods. In some ways, they strongly resemble the subroutine of the first
category defined above, in that they require the user to be fully competent in the
job control language of the computing system as well as the language in which
the program is written. In general, these programs have no or few aids for
checking programming errors, are poorly documented, and provide limited
output information. These programs are important, however, because they have
often been used within particular scientific areas, or they have been used for the
basis for the algorithms presented in major packages such as SAS, IMSL, and
OSIRIS. Some of the more popular of these simple programs are HGROUP, a
method which implements Ward's minimum variance method (Veldman, 1967);
JCLUST, which implements single and complete linkage as discussed in the
influential article by Johnson (1967); and ISODATA, a flexible iterative
partitioning method which has used extensively in engineering (Hall and
Khanna, 1977).
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Another category of cluster analysis programs consists of those that handle
large data sets (N is greater than 500). Unfortunately most clustering routines
statistical packages are somewhat limited in the number of cases which can be
analyzed at one time. Typically, most have a practical upper limit of 200 cases.
In response to this problem, a number of authors have extended the capabilities
of popular hierarchical agglomerative and iterative partitioning methods to deal
with very large data sets. Among the most important of these is Sibson's (1973)
single linkage algorithm (SLINK). Note: SLINK is now incorporated within
CLUSTAN 2.1.; CLUSTER (Levisohn and Funk, 1974) and QUICLUSTR
(Bell and Korey, 1975) which implement Ward's methods; and programs by
Defays (1977) and Rohlf (1977) for complete linkage clustering. Rohlf (1982)
presented a number of different algorithms for single linkage that could be
useful for large data sets. Lennington and Rossbach (1978) have developed
CLASSY, an iterative partitioning method based upon the logic of ISODATA,
for use with the very large data sets obtained LANDSAT satellite research.

4.4 NEEDS

For parametric (multivariate normal) discriminant problems, relatively
little is needed. A variety of programs are available which offer flexibility of
use, adequate error rate estimation, and many variable selection options. A
general shortcoming is advice on usage. For many users, the only place they
will learn about discriminant analysis is in the user's manual of a computer
package. Some discussion of the limitations (e.g., if you have many groups, you
need many observations) and robustness (e.g., transform your data if a variable
is badly skewed) is needed. Some of the programs seem to have the attitude, if
it can be programmed, include it. For example, in one program up to 40 groups
can be included in discriminant analysis. A user with that many groups has
probably not thought sufficiently about the problem. (Nevertheless, there are
some problems, such as speaker recognition, where the only interesting
situation is having many groups.)
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The quadratic discriminant function, available only in SAS, has some serious
robustness problems. These should be noted.

The ability to enter previously coefficients or a set of means and
covariances is useful. It is valuable to enter a simplified set of coefficients (say
integers) and compare the performance of the rule to the optimal rule.

Other than the IMSL routines for unidimensional problems and ALLOC,
no package has any programs for density estimation. This is a useful procedure,
especially when distributions are rather far from normal. Nearest neighbor
procedures, which are related to non-parametric density estimates, are available
in SAS in the Neighbor Procedure.

Concerning cluster analysis programs, the inclusion of k-means and
hierarchical agglomerative methods in the SPSS and SAS packages have helped
standardize the clustering methods that are used in applied research. The SAS
manual is particularly helpful concerning the use of these techniques since it
provides a skeptical perspective and references some of the best articles in the
field. Nonetheless, none of the packages is successful in providing sufficient
cautions and indications of the practical problems that are of serious concern to
new users of these procedures (e.g., guidelines on the choice of methods, the
number of clusters problem, the issue of outliers, the choice of the similarity
measure).

The preceding discussion has focused largely on mainframe and mini-
computers since most users of these procedures have access to such computing
equipment at the present time. Several of the programs available on
microcomputers offer discriminant analysis routines. BMDP, SAS, P-STAT,
and SPSS-PC offer discriminant analysis through the usual programs. SYSTAT
provides a discriminant analysis facility by using the module MGLH. Other
programs offer regression capabilities which give an equivalent analysis,
although not tailored exactly to the purposes of allocation.

Development of graphical methods for allocation and their computer
implementation is needed. The mainframe packages usually offer plots of the
sample discriminant variables which often is adequate to determine differences
among groups.
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However, these variables are linear combinations of the observed variables and
are not always easily interpretable. A “simple” exploratory graphical program
would be welcome. Such a program would be interactive, with very good
graphics (i.e., much better than the usual transcription of a page of text to
graphical symbols). Graphic clustering procedures have also been neglected in
generally available programs.

There are no interactive programs for allocation or clustering that are
generally available. Such a program would allow the user to specify the
variables to be included in the allocation rule, to specify the form of the rule
(e.g., linear, quadratic, tree structure for discrimination), to enter new variables
or delete old ones, and to detect influential observations.

Regression diagnostics have become increasingly important in statistical
practice, but little in the way of diagnostics is available for allocation rules. In a
sense, the regression diagnostics suffice for classical linear discriminant theory,
and Pregibon's work has large application in logistic regression. See also
Landwehr, Pregibon and Shoemaker (1984) and Fowlkes (1987). Diagnostic
procedures are generally lacking in cluster analysis. However, this lack is
primarily due to the problems in developing an adequate statistical theory for
clustering rather than reflecting a programming deficiency. Nevertheless, a few
procedures have been developed and appear to be useful; see § 2.3.3.
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CHAPTER 5

CLOSING PERSPECTIVE

Discriminant analysis and cluster analysis must be “classified” as among
the most useful statistical techniques for society's problems. This report has
attempted to summarize and assess their status in terms of methodology, theory,
and software. The material, it is hoped, will be informative both to users of
these techniques, who may want an update on the state-of-the-art, and to
professional statisticians, who may be more interested in current research and
what remains to be done.

Even casual readers of this report will have noticed tremendous differences
between the conditions of discriminant analysis and cluster analysis. The former
is a well developed subject with a variety of effective methods and supporting
theory. The latter is lacking in firm foundations and agreed-upon methodology.
Perhaps it is only along the software coordinate that there is approximate parity.
Indeed, there may be more software for cluster analysis simply because of the
proliferation of ad hoc methods for this purpose.

In spite of its relatively advanced state, there are still many interesting
problems to be worked on in discriminant analysis. Specific mention was made
in Chapter 2 and Chapter 3 of the promising new areas of projection pursuit
classification and additive logistic regression analysis; the need for more study
of biases associated with the use of the bootstrap in estimating error rates and of
the tradeoffs between bias and mean square error performance of different
estimates of error rates; and, generally, the opportunities for additional
development and experimentation with the variety of nonparametric and
semiparametric methods that are now available.

However, the greatest needs appear to be in the cluster analysis arena.
Unless significant breakthroughs in theory and insights into the behavior of
procedures are produced, cluster analysis is likely to remain a largely
descriptive technique whose
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results are too dependent upon the vagaries of particular methods. A list of
research problems, some of which were discussed in Chapter 2 and Chapter 3,
includes:

•   developing a stronger base of inferential and diagnostic tools (a high
priority should be placed on the development of sample reuse
techniques that will work in the clustering context);

•   closing the gap between theory and practice (the need is illustrated by
the attractiveness of single linkage clustering from a theoretical point
of view in spite of its frequent poor performance in practice);

•   compensating for the lack of adequate theory with empirical
development of new insights about existing algorithms (clever and
extensive simulation studies may be the only way around the
mathematical and theoretical difficulties in this field); variables that
are effective at bringing out cluster structure

•   finding tools for selection, scaling, and transformation of (iterative
schemes may be required because the clusters are unknown in advance);

•   learning how to make clustering algorithms robust to data
idiosyncrasies (the payoff may prove to be in the “local” application of
the robustness concept rather than a crude global attack that is
insensitive to fine cluster structure).

Another area that is ripe for more research concerns problems that fall
between discriminant analysis and cluster analysis. A fair amount of work has
been done near the discriminant end of the spectrum, e.g., dealing with the
situation where errors are present in the group labels of the training sample.
Little is known about how to do cluster analysis in the presence of limited prior
information on the composition of clusters.
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