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Preface 

Research Briefings 1987 is the sixth volume 
of research briefing reports published by the 
Committee on Science, Engineering, and 
Public Policy (COSEPUP) . * It brings to 37 the 
number of such reports prepared on a broad 
range of topics since the first volume in 1982 
(see the list of topics on page iv) . The brief­
ings are prepared at the request of the Presi­
dent's Science Advisor, who also serves as 
Director of the Office of Science and Technol­
ogy Policy (OSTP), and the Director of the 
National Science Foundation (NSF). 

Five reports are presented in this collec­
tion-the first four on what might be called 
traditional science and technology topics 
similar to those covered in earlier years, and 
the fifth on a policy topic, which is a new de­
parture for the research briefing activity. The 
policy briefing was undertaken at the spe­
cific request of Erich Bloch, Director of the 
NSF, who encouraged COSEPUP to apply 
the research briefing approach to a broader 
set of issues. One of the four traditional brief-

*COSEPUP is a joint committee of the National Acad­
emy of Sciences (NAS), the National Academy of Engi­
neering (NAE), and the Institute of Medicine (I OM). 

v 

ings (High-Temperature Superconductivity) 
was also prepared at the specific request of 
the NSF director after the 1987 briefing activ­
ity was already well under way, in response 
to the exciting new developments in super­
conductivity in ceramic oxide materials an­
nounced earlier this year. 

Research briefing topics generally are se­
lected by the OSTP and NSF directors in the 
late fall in response to suggestions put for­
ward by COSEPUP. COSEPUP' s sugges­
tions are selected from a much larger list of 
suggestions offered by the commissions and 
boards of the National Research Council 
(NRC); members of the NAS, NAE, and 
10M Councils; members of COSEPUP; as 
well as officials of the NSF and OSTP. Indi­
vidual briefings are designed either (1) to as­
sess the status of a field and identify high­
leverage research opportunities and barriers 
to progress in the field (including where ap­
propriate, progress in commercial exploita­
tion), or (2) to identify and illuminate critical 
aspects of a policy issue related to the health 
of U. S. science and technology. The brief­
ings are then prepared by panels of experts, 
usually in the spring, with the day-to-day as­
sistance of NRC staff. This schedule allows 
time for COSEPUP review in late spring and 
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Report of the 
Research Briefing Panel on 
Order, Chaos, and Patterns: 

Aspects of Nonlinearity 

ThiTRODUCTION AND BACKGROUND 

Linear analysis developed as a formal 
mathematical discipline during the nine­
teenth century, and in the intervening years 
its applications have achieved many spectac­
ular successes throughout science and engi­
neering. But in fact most phenomena ob­
served in nature are nonlinear, and the linear 
approximations historically used to describe 
them are too often tacit admissions that the 
true problems simply cannot be solved. In 
some instances, including many of techno­
logical importance, the effects of nonlinear­
ity can be understood in terms of small per­
turbations on linear behavior. In other cases, 
however, incorporation of the true nonlin­
earities completely changes the qualitative 
nature of the system's possible behavior. 
This report focuses on several aspects of 
these essentially nonlinear phenomena. 

The difficulties posed by essential nonlin­
earity can be illustrated by a familiar exam­
ple. When water flows through a pipe at low 
velocity, its motion is laminar and is charac­
teristic of linear behavior: regular, predict­
able, and describable in simple mathematical 
terms. However, when the velocity exceeds 

1 

a critical value, the motion becomes turbu­
lent, with eddies moving in a complicated, 
irregular, erratic way that typifies nonlinear 
behavior. Many other nonlinear phenomena 
exhibit sharp and unstable boundaries, er­
ratic or chaotic motion, and dramatic re­
sponses to very small influences. Such prop­
erties typically defy full analytical treatment 
and make even quantitative numerical de­
scription a daunting task. And yet, this task 
must be confronted, for the point where phe­
nomena become nonlinear is often precisely 
where they become of interest to technology. 
In applications ranging from laser/plasma 
interactions in inertial-confinement thermo­
nuclear fusion, to designs for high-perfor­
mance and fuel-efficient aircraft, to ad­
vanced oil recovery, nonlinearity prevails. 

Within the past two decades, the system­
atic, coordinated investigation of nonlinear 
natural phenomena and their mathematical 
models has emerged as a powerful and excit­
ing interdisciplinary subject. Studies of non­
linearity seek to understand a variety of com­
plicated, nonlinear problems encountered in 
nature and to discover their common fea­
tures. The scientific methodology has de­
pended on the synergetic blending of three 
distinct approaches: 
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• "Experimental mathematics, " which is 
the use of cleverly conceived computer­
based numerical simulations, typically in­
volving visualization techniques such as 
interactive, high-quality graphics, to give 
qualitative insights into and to stimulate 
conjectures about analytically intractable 
problems; 

• Novel and powerful analytical mathe­
matical methods to solve, for example, cer­
tain nonlinear partial differential equations 
and to analyze nonlinear stability; and 

• Experimental observation of similar be­
havior in natural nonlinear phenomena in 
many different contexts and the quantifica­
tion of this similarity by high-precision ex­
periments. 

The success of this three-pronged attack 
is clearly evidenced by the remarkable 
progress already made toward solving many 
nonlinear problems long considered intrac­
table. Essential to this progress has been the 
discovery that distinct nonlinear phenom­
ena from many fields do indeed display com­
mon features and yield to common methods 
of analysis. This commonality has allowed 
the rapid transfer of progress in one disci­
pline to other fields and confirms the inher­
ently interdisciplinary nature of the subject. 
Despite these stimulating developments, 
however, the present-day approach to non­
linear problems is not entirely systematic. 
Rather it relies on the identification and ex­
ploitation of paradigms, namely, unifying 
concepts and associated methodologies that 
are broadly applicable in many different 
fields. 

This report focuses on three of the central 
paradigms of nonlinearity: coherent struc­
tures, chaos, and complex configurations 
and pattern selection. The following sections 
cover recent progress in research and future 
opportunities for research and technological 
applications of these paradigms, the interna­
tional standing of U. S. work in the field, and 
administrative strategies for enhancing 
progress in this important interdisciplinary 
subject. 

2 

PARADIGMS OF NONLINEARITY: 
DEFINIDONS, OPPORTUNmES, AND 

APPLICATIONS 

CoHERENT STRUCTURES AND ORDER 

From the Red Spot of Jupiter, to dumps of 
electromagnetic radiation in turbulent plas­
mas, to microstructures on the atomic scale, 
long-lived, spatially localized, collective ex­
citations abound in nonlinear systems. 
These coherent structures show a surprising 
order in the midst of complex nonlinear be­
havior and often represent the natural 
modes for expressing the dynamics. Thus, 
for example, isolated coherent structures 
may dominate long-time behavior, and anal­
ysis of their interactions may explain the ma­
jor aspects of the dynamical evolution. Rec­
ognition of these possibilities constitutes a 
fundamental change in the approach to non­
linear systems and has opened up a range of 
new analytical and computational tech­
niques that yield deep insights into nonlin­
ear natural phenomena. 

Although the importance of vortices and 
eddies in turbulent fluid flows has been ap­
preciated since ancient times, the critical 
event in the modern concept of coherent 
structures was the discovery in 1965 of the 
remarkable "soliton" behavior of localized 
nonlinear waves governed by the Korte­
weg-deVries equation, which describes 
waves in a shallow, narrow channel of water 
(e . g . ,  a canal) and in many other physical 
media. Solitons represent coherent struc­
tures in the purest sense in that their form is 
exactly restored after temporary distortion 
during interactions. Surprisingly, many 
equations, of wide applicability, have turned 
out to support solitons, and a major mathe­
matical success has been the revelation that 
most of these equations can be solved explic­
itly and systematically by a novel analytical 
technique known as the inverse spectral 
transform. 

These developments have draw n upon 
and greatly stimulated several branches of 
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ORDER, CHAOS, AND PATI'ERNS: ASPECTS OF NONLINEARITY 

pure mathematics, including infinite­
dimensional analysis, algebraic geometry, 
partial differential equations, and dynamic 
systems theory. For instance, soliton equa­
tions have been shown to correspond to a 
very special subclass of those nonlinear dy­
namic systems that have an infinite number 
of independent parts. Technically, the num­
ber of parts is referred to as the number of 
degrees of freedom or the phase-space 
dimension. The special characteristic of a so­
liton equation is that it describes a Hamilto­
nian dynamic system of infinite phase-space 
dimension that is, in technical parlance, 
completely integrable. The Hamiltonian 
consequently possesses infinitely many in­
dependent conservation laws, which deter­
mine its behavior. The existence of individ­
ual solitons can be understood as a delicate 
balance between nonlinear focusing and dis­
persive broadening, while the invariance of 
solitons under interactions is a consequence 
of the many conservation laws. 

A wide variety of soliton equations has 
been discovered, allowing a broad range of 
applications to natural phenomena. In fiber 
optics, Josephson transmission lines, con­
ducting polymers and other chainlike solids, 
and plasma "cavitons," the prevailing 
mathematical models are slight modifica­
tions of soliton equations. Thus, with sys­
tematic approximations, the behavior of real 
physical systems can be described quite ac­
curately. An example of potential technolog­
ical significance can be drawn from nonlin­
ear optics. In this discipline, as the name 
suggests, nonlinear phenomena, including 
self-induced transparency, optical phase 
conjugation, and optical bistability, are dom­
inant. Considerable recent research has in­
vestigated the prospect of using solitons to 
improve long-distance communications in 
optical fibers. At low intensities, light pulses 
in optical fibers propagate linearly and tend 
to disperse, degrading the signal. To com­
pensate for this and reconstruct the pulse, 
repeaters must be added to the fiber at regu­
lar intervals. If the light intensity is increased 
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into the nonlinear regime, soliton pulses can 
be formed, the nonlinearity compensating 
for dispersion. In the idealized limit of no 
dissipative energy loss, the solitons propa­
gate without degradation of shape; they are 
indeed the natural, stable, localized modes 
for propagation in the fiber. Further, realistic 
theoretical estimates suggest that a soliton­
based system could have an information rate 
one order of magnitude greater than that of 
conventional linear systems. Although de­
tailed questions of practical implementation 
remain (primarily costs), the prospects for 
using optical solitons in long-distance com­
munication are real. 

In the more general case, coherent struc­
tures interact strongly and do not necessarily 
maintain their form or even their separate 
identities for all times. Instabilities generat­
ing fluid vortices can lead to vortex pairs, 
and a pair may merge to form a single coher­
ent structure equivalent to a new and larger 
vortex. Interactions among shock waves 
give rise to diffraction patterns of incident, 
reflected, and transmitted waves. Bubbles 
and droplets interact through merging and 
splitting. Significantly, physical examples of 
these more general coherent structures are 
nearly universal and, apart from the struc­
tures already mentioned, include elastoplas­
tic waves and shear bands, chemical-reac­
tion waves and nonlinear diffusion fronts, 
phase boundaries, and dislocations in 
metals. There is a deep mathematical basis to 
this universality. In a first approximation, 
these nonlinear wavelike phenomena are 
subject to conservation laws. In contrast to 
the soliton case, there are usually only a few 
conserved quantities (e. g. , mass, energy, 
and momentum). Nonetheless, these few 
conservation laws strongly restrict the possi­
ble behavior of the system. Nonlinearity im­
plies that the speed of a wave depends on the 
amplitude of the wave itself. As a result, the 
conservation laws lead to focusing and defo­
cusing of waves. The defocused waves dis­
perse, while the focused waves become co­
herent structures, the nonlinear modes in 
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which the dynamics is naturally described. 
They may dominate the long-time behavior 
of the system, engage in complicated mo­
tions and interactions, or organize into com­
plex configurations and patterns. 

Fluid vortices-a classic example of which 
is provided by the Red Spot of Jupiter (Figure 
1)-can be used to illustrate the essential role 
of general coherent structures in nonlinear 
systems. The existence and stability of the 
Red Spot of Jupiter have been confirmed 
since the seventeenth century. A more mod­
ern example is the vortex pattern formed in 
the wake of an airfoil. These vortices are of 
sufficient size and importance that they gov­
ern the allowed spacing between aircraft at 
landing and thus limit the efficiency of air-

port utilization. Similarly, the manner in 
which vortices are shed from the airfoil 
strongly affects fuel efficiency and is essen­
tial in designing high-performance aircraft. 
Specifically, vortices are microstructures 
that make up the critical turbulent boundary 
layer at the wing surface. More generally, an 
understanding of the highly nonlinear dy­
namics of vortices is one of the central prob­
lems of applied fluid dynamics. 

Further examples of dominant coherent 
structures can be drawn from almost any 
field of the natural sciences or engineering. 
Chemical-reaction fronts are important in 
many situations and, in flame fronts and in­
ternal combustion engines, are coupled 
strongly to fluid modes. Concentration 

Figure 1 A close-up of the giant Red Spot of Jupiter, a coherent structure that exists in the turbulent shear flow in the 
Southern Hemisphere. Note the coexistence of this large vortex with smaller eddies on many different scales. Al­
though it is not apparent from this single image, the series of time-lapse photographs taken by the Voyager spacecraft 
shows that the Red Spot is highly dynamic, spinning rapidly and moving westwardly at 11 km/hr. (Courtesy National 
Aeronautics and Space Administration, Jet Propulsion Laboratory) 

4 

Copyright © National Academy of Sciences. All rights reserved.

Research Briefings, 1987
http://www.nap.edu/catalog.php?record_id=18905

http://www.nap.edu/catalog.php?record_id=18905


ORDER, CHAOS, AND PATTERNS: ASPECTS OF NONLINEARI1Y 

fronts arise in the leaching of minerals from 
ore beds. Fronts between infected and unin­
fected individuals can be identified in the ep­
idemiology of diseases such as rabies. In ge­
ology, elastoplastic waves are important in 
the slow, long-time deformation of struc­
tures. For example, salt domes are formed by 
a gravitational instability in which the flow of 
rock layers occurs on geological time scales. 
Understanding the development of such ge­
ological formations is important both theo­
retically and in the evaluation of potential oil 
reservoirs. Finally, at the microscopic level 
the nonlinear dynamics of dislocations may 
lead to novel effects crucial for interpreting 
the behavior of materials subjected to high 
strain rates, and transport phenomena in 
certain classes of quasi-one-dimensional ma­
terials may be controlled by the nonlinear co­
herent structures they support. 

A final example with potential major tech­
nol�gical implications is the recent identifi­
cation of new types of coherent structures 
and interactions in wave phenomena in oil 
reservoirs. The essential discovery is that 
when the speeds of two families of nonlinear 
waves coincide, a type of nonlinear reso­
nance may give rise to a surprising range of 
novel wave phenomena. It has recently been 
shown that nonlinear resonance of this type 
must occur in three-phase flow in oil reser­
voirs, and a systematic program is well un­
der way to identify and classify all possible 
types of nonlinear wave interaction and to 
assess their importance for oil recovery 
methods. 

Given the ubiquity and importance of co­
herent structures in nonlinear phenomena, 
it is gratifying that recent years have wit­
nessed remarkable progress in studying 
them and that there is great promise for still 
deeper insights. Significantly, this progress 
has been achieved by precisely the synergy 
among computation, theory, and experi­
ment that characterizes nonlinear science. In 
particular, experimental mathematics has 
been essential to the understanding of co­
herent structures and their interactions. 

5 

Typically, the forms of the coherent struc­
tures are not immediately obvious from the 
underlying nonlinear equations. Hence vi­
sualizations of flow patterns and dynamics 
using interactive graphics will play an in­
creasingly important role. 

In summary, coherent structures reflect an 
essential paradigm of nonlinear acience, pro­
viding a unifying concept and an associated 
methodology at the theoretical, computa­
tional, and experimental levels. Their impor­
tance for technological applications, as well 
as their inherent interest for fundamental 
science, guarantees their central role in all fu­
ture research in this subject. 

CHAOS 

The appearance of irregular, aperiodic, in­
tricately detailed, unpredictable motion in 
deterministic systems is a truly nonlinear ef­
fect. Loosely termed chaos, it is remote from 
linear phenomena. Although chaotic motion 
is observed, the processes are strictly deter­
ministic: sufficiently accurate knowledge of 
an initial state allows arbitrarily accurate pre­
dictions-but only over a limited interval of 
time. In particular, it is not necessary to drive 
a process randomly to observe motion of a 
stochastic character. Indeed, attempting to 
model "deterministically chaotic" systems 
as responding to random forces fails to cap­
ture their true behavior. 

While the mathematical seeds had already 
been planted by Poincare at the tum of the 
century, they have germinated only in the 
past three decades, with the advances in in­
teractive computation that we have termed 
experimental mathematics playing an essen­
tial role. One striking recent development 
has been the recognition that certain chaotic 
motions unfold themselves with a total lack 
of regard for the specific mechanisms at 
work: objects exhibiting certain complex mo­
tions follow similar destinies independent of 
whether their microscopic behavior is gov­
erned by equations derived from the theory 
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of chemical interactions, or fluids, or electro­
magnetism. The discovery of this universal­
ity and its application to experiments on the 
transition to turbulence is one of the tri­
umphs of nonlinear science. 

The field of chaotic dynamics continues to 
undergo explosive growth, with many ad­
vances and applications being made across a 
broad spectrum of disciplines, including 
physics, chemistry, engineering, fluid me­
chanics, ecology, and economics. Chaotic 
systems can be observed in both experimen­
tal data and numerical models. Examples in­
clude the weather, chemical systems, and 
beating chicken hearts. The dripping of 
household faucets can be chaotically irregu­
lar, while it has been argued that the satellite 
Hyperion of Saturn tumbles chaotically in its 
eccentric elliptical orbit, having no fixed axis 
because it is constantly kicked by the varying 
tidal pulls of Saturn. 

Medical research has revealed that many 
physiological parameters vary chaotically in 
the healthy individual, while more regular­
ity can be a sign of pathology. For example, 
the familiar pattern of the beating heart is 
subtly irregular under close examination, 
and the absence of chaotic components 
seems to occur in pathological conditions. 
Similarly, the normally chaotic oscillations of 
red and white blood cell densities become 
periodic in some leukemias and anemias. 
There are many similar examples including 
periodic catatonias and manic-depressive 
disorders. 

Recent research suggests possible applica­
tions to realistic economic models. General 
equilibrium-theory models have been con­
structed that are chaotic, but with parameter 
values that do not mesh well enough with 
empirical studies to be persuasive. On the 
other hand economists, motivated by the 
ideas of chaotic dynamics, have developed 
new and powerful statistical tests for analyz­
ing time series, which may be useful in other 
areas of nonlinear science. 

As this brief listing suggests, deterministic 
chaos is essential to the understanding of 
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many real-world nonlinear phenomena. To 
indicate further aspects of our present un­
derstanding, more technical detail is neces­
sary. The concept of the phase-space dimen­
sion of a dynamic system was discussed ear­
lier. For a complex object, this dimension is a 
priori quite high; for a continuous system, 
such as a fluid, it is in fact infinite. However, 
if many parts are effectively locked together, 
as in a coherent structure like a fluid vortex, 
the effective dimension is reduced, perhaps 
drastically. This general phenomenon is re­
ferred to as mode reduction. As the character 
of the system's motion changes, so will the 
number of reduced modes and hence the ef­
fective dimension. In the example of pipe 
flow quoted in the introduction, as veloc­
ity increases, the fluid motion becomes 
suddenly more complex. Such sudden tran­
sitions to qualitatively new motions are re­
lated to the mathematical phenomenon of bi­
furcations. Recent advances in the study of 
bifurcations provide an understanding of 
the mechanism leading from ordered to cha­
otic behavior. More specifically, transitions 
in the behavior of physical systems can arise 
through an infinite cascade of bifurcations, 
the best known and first isolated of which is 
period doubling. This period-doubling cas­
cade is controlled by a special behavior (with 
certain scaling properties) just at the point of 
transition, which fully organizes both the or­
derliness prior to transition and the chaotic 
behavior after it. Significantly, theory shows 
that this behavior is correctly expressed by a 
very low-dimensional, mode-reduced dy­
namics, independent of the original phase­
space dimension of the system. Even more 
important, the behavior is universal: what­
ever the system, the properties exhibited are 
identical. Recent experimental confirmation 
of these theoretical predictions in systems 
from convecting fluids to nonlinear elec­
tronic circuits is one of the triumphs of non­
linear science. 

Once it is recognized that the original 
equations contain superfluous information 
because of mode reduction, it becomes im-
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portant to deduce the actual number of effec­
tive equations-that is, the dimension of the 
reduced system-and then to determine the 
form of the equations. The first part of this 
program has been well implemented in the 
last few years by so-called phase-space re­
construction techniques. Provided that the 
data support a dimension of below, say, 10, 
that number can be extracted reliably. In­
deed, ideas from thermodynamics provide a 
graphic depiction that can quickly illuminate 
some details of the nature of the excitations 
as well as the dimension. These methods, 
however, must be refined. 

The second part of this program has rarely 
been accomplished and then only on a case­
by-case basis. In some instances, assumed 
forms can be fit to the data. At this point an 
easily simulated simple set of equations 
completely replaces the original ones. For 
example, three first-order ordinary differen­
tial equations exactly replace the full fluid 
equations throughout a certain regime of 
motion. Now a real payoff accrues: the 
model system can easily be time-depen­
dently forced, in contrast to an actual experi­
mental fluid with its physically imposed exi­
gencies, such as boundaries. This can lead to 
insights of profound technological impor­
tance. A recent Soviet effort has apparently 
succeeded by just this program in forestall­
ing the onset of turbulence in a nozzle flow 
by imposing periodic stress; clearly such 
suppression (or enhancement) of turbulence 
could have many vital applications. More 
generally, away from transition regions, the 
specific forms of the mode-reduced equa­
tions may play a role. In this regard, an im­
portant and generally open problem is to es­
tablish the relation, if any, between coherent 
structures observed in a given motion and 
the reduced modes that in principle charac­
terize the motion. In certain specific prob­
lems, notably perturbed soliton equations 
and models for chemical-diffusion fronts, 
progress has been made, but much further 
research is required. 

To delve still deeper into current progress 

7 

and to indicate what may lie ahead, it is nec­
essary to introduce some additional termi­
nology. For dissipative systems (e. g. , those 
with friction) a wide class of initial motions 
may in the long-time limit approach some set 
of phase-space points, which is then called 
an attractor. Very commonly an attractor is a 
single point or a closed curve. However, 
sometimes the attracting set is much more ir­
regular, and for a ''strange attractor'' the di­
mension need not even be an integer. This 
concept of fractional dimension, related to 
mathematical work begun in the 1920s, has 
recently become more widely appreciated 
through the development and application of 
the theory of such "fractal" objects. Knowl­
edge of fractals is essential to understanding 
modem nonlinear dynamic systems theory. 
For example, in a deterministically chaotic 
system, the attracting set can be a chaotic 
strange attractor, on which two initially very 
close points begin to separate exponentially 
fast. This yields an exquisite sensitivity to 
initial conditions, for tiny initial uncertain­
ties later produce profound ones. In general, 
a complicated physical system may contain 
several attractors, each with its own basin of 
attraction. A subtle further consequence of 
nonlinear dynamics is that the boundaries 
between these basins of attraction can them­
selves be extraordinarily complex and, in 
fact, fractal. These fractal basin boundaries 
mean that totally different long-time behav­
ior can result from indistinguishably close 
initial configurations. 

An illustration of these concepts is pro­
vided by weather forecasting. A chaotic dy­
namic model, based on a crude approxima­
tion of atmospheric fluid flow, explains why 
weather prediction works only for short pe­
riods of time. Since small uncertainties grow 
so rapidly, there is a limit on how far ahead 
one can predict whether it will rain on a 
given day, no matter how large and fast the 
computer that is used to forecast. At the 
same time, specific familiar local weather 
patterns-for example, summer thunder­
showers in the mountains-can be under-
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stood in terms of attractors in local models of 
weather. 

Figure 2 depicts a strange attractor found 
in a model simulation of the behavior of an 
optical switch. The sequence shown reveals 
the persistence of the attractor' s convoluted 
structure at successively greater magnifica­
tions. This nontrivial structure appearing on 
all scales correctly suggests that the object 
does not fill the two-dimensional surface on 
which it lies, but rather is a fractal with di­
mension between 1 (a smooth curve) and 2 (a 
smooth surface). In fact it has dimension 1. 7. 
An unmistakable property of the sequence 
of Figure 2 is that the very small details are 
reminiscent of the entire object. This prop­
erty is called scaling, the formal theory of 
which allows the construction of fine detail 
from crude features. Thus, a conceptually 
new means of describing complicated ob­
jects has emerged from these studies. The 
systematic classification of the strange sets 
that arise in low-dimensional chaotic mo­
tions remains one of the challenges of cur­
rent studies in nonlinear dynamics. 

The impact of deterministic chaos is only 
now beginning to be felt throughout science. 
The recognition that even simple systems 

Figure 2 The trajectory traced out by the time 
evolution of a nonlinear dynamic system model­
ing the behavior of an optical switch. The com­
plicated path never closes on itself and hence the 
motion never exactly repeats: the trajectory is a 
"strange attractor." As the three successive 
magnifications (top right, lower left, lower right) 
suggest, the intricate detail persists, in slightly 
modified form, on all length scales. (Courtesy 
Institute for Physical Science and Technology, 
University of Maryland) 

can exhibit incredibly complicated behavior 
and that this behavior can be quantified is 
now widely appreciated and is being applied 
in many fields. Given the generality of mode 
reduction and the universality of certain as­
pects of chaos, the scientific applicability of 
the concepts of chaotic motion will grow sig­
nificantly with each step in unraveling these 
matters. 

CoMPLEX CoNFIGURATIONs AND 
PAITERN SELECTION 

When an extended nonlinear system is 
driven far from equilibrium, the many local­
ized coherent structures that typically ap­
pear in it can organize into an enormous 
range of spatial patterns, regular or random. 
This process is familiar in turbulent fluid 
flows (note the complex pattern surround­
ing the Red Spot in Figure 1) in which tem­
poral behavior is chaotic, but it also occurs in 
many other phenomena, ranging from me­
soscale textures in metallurgy to markings 
on seashells. The resulting problem of com­
plex configurations and pattern selection 
represents a third paradigm of nonlinearitj. 

At present, this paradigm is being investi-

....... 
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gated on two levels. The first level is the 
experimental-mathematical search for com­
plicated, anisotropic configurations that go 
beyond the highly symmetric patterns that 
have been accessible via traditional closed 
form, pencil-and-paper calculations. The 
second level is the attempt (as in various ex­
perimental studies of fluid flows) to deter­
mine how they arise dynamically. Nonlinear 
competitions can determine which particu­
lar pattern emerges from the bewildering ar­
ray typically explored by the chaotic interac­
tion of the individual components. 

An increasingly tractable instance of pat­
tern selection is provided by the behavior of 
unstable fluid interfaces, where instabilities 
can give rise to entrainment and to a chaotic 
mixing layer. There are many examples of 
this phenomenon. An interface separating 
fluids moving at different velocities is subject 
to shear instabilities and, through a process 
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known as roll-up, leads to wound-up vorti­
ces along the surface. The original boundary 
becomes fully entangled by coherent struc­
tures (vortices) in the final state. Figure 3 il­
lustrates the complex patterns formed by 
this shear instability in a case of particular 
technological importance that was men­
tioned earlier, namely, the vortices that occur 
in the wake of an aircraft. Recently, multiple­
scale analytic techniques have been applied 
to derive approximate phase and amplitude 
equations which, in some fairly simple cir­
cumstances, can describe the evolution of 
these patterns. Another important instance 
of interfacial instability, with potential tech­
nological implications for metallurgical pro­
cesses and crystal growth problems, occurs 
in phase transitions in supersaturated or 
metastable media. Here nonuniform growth 
of the stable phase produces fingers, known 
as dendrites, which compete, grow irregu-

Figure 3 Results of a numerical simulation of 
vortex sheet model for the shear layer that forms 
in an aircraft wake. The aircraft is flying perpen­
dicular to and into the plane of the figure. The 
wake is shown at four positions downstream 
from the wing's trailing edge. Computational 
points are drawn on the left, and an interpolat­
ing curve is drawn on the right. Initially, the vor­
tex sheet is the straight line segment -1 s x s 1, 
y = 0, corresponding to the wing's trailing edge. 
Single-branched wingtip vortices form at the 
sheet's end points. Double-branched spirals 
form further inboard due to the effects of de­
ployed flaps and the fuselage. The vortices' roll­
up and interaction are strongly nonlinear. (Cour­
tesy Robert Krasny, Courant Institute, "Compu­
tation of Vortex Sheet Roll-up in the Trefftz 
Plane," Journal of Fluid Mechanics, in press) 
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larly, and produce still more complex config­
urations and patterns, such as found in 
snowflakes. 

To illustrate this interfacial instability in a 
technologically vital context, we note that 
the displacement of oil by water in an oil res­
ervoir sometimes leads to an unstable inter­
face. This Saffman-Taylor instability and the 
resulting viscous fingering are critical to effi­
cient oil recovery; consequently geologists, 
petroleum engineers, theoretical physicists, 
applied mathematicians, computer scien­
tists, and experts from other disciplines have 
focused intensely on this problem. The spe­
cific technical issue is that almost half of the 
oil deposited in limestone or other porous 
media is typically unrecovered during ordi­
nary oil extraction because it remains stuck 
in the pores. To recover this oil, a technique 
called water flooding is used, in which water 
is injected into the field to force out the oil. 
The viscous fingering phenomenon often 
means that nothing is recovered but the in­
jected water, slightly polluted by traces of 
oil. Clearly a full understanding of this effect 
and ways to control it are of great impor­
tance. 

Recent work of a combined experimental, 
theoretical, and computational nature has 
led to a semiquantitative understanding of 
several specific aspects of this problem. 
First, laboratory experiments have estab­
lished, under controlled conditions, the na­
ture of the complex configurations that arise 
in certain parameter ranges of viscous fin­
gering. Figure 4 shows an image of one such 
configuration in a flat, effectively two-di­
mensional cylindrical cell. This branched, 
complex configuration is a fractal. To esti­
mate the fractal dimension, imagine cover­
ing the image of the viscous fingering with 
square cells of side I and calculating, for a 
given I, the number of cells required to cover 
the object entirely. As the length of the side I 
goes to zero, the number of cells required 
grows as 1/ld, where dis the fractal dimen­
sion. Performing this calulation for the vis­
cous finger in Figure 3 gives d = 1.70 ± 0. 05. 
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Figure 4 A viscous fingering effect observed when 
water (black) is forced through a circular inlet in the 
center of a flat, cylindrical Hele Shaw cell originally 
filled with high-viscosity fluid. The pattern has a re­
producible numerical value, measured by several 
methods, including the one described in the text, for 
the fractal dimension of 1.70 ± 0.05. (Courtesy G. Dac­
cord, J. Nittmann, and H. E. Stanley, Physical Review 
Letters, 56:336, 1986) 

Hence, this object possesses a fractional di­
mension closer to that of a plane surface (d = 

2) than to that of a straight line (d = 1). Sec­
ond, in both the viscous fingering and den­
dritic growth problems, analytic studies 
identified an intriguing nonuniqueness to 
certain features of the pattern selection in the 
simplest models. Additional physical ef­
fects, such as the inclusion of surface ten­
sion, were then shown to remove at least in 
part this nonuniqueness. Although the re­
sulting pattern selection problem has not yet 
been fully solved, exciting recent progress 
includes an analytic treatment of effects be­
yond all orders in perturbation theory. 
Third, computational simulations have sug­
gested a number of different models and ap­
proaches to the problem. Much further re­
search is required, but an accurate and prac­
tical procedure for modeling realistic 
problems now seems possible. 

Fractals play an essential role in several 
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other areas of practical application of the par­
adigm of complex configurations. In an ef­
fort to make ceramics tougher-that is, able 
to contain a few large flaws without failing­
much interest has focused on fractal crack 
patterns. These arise primarily from two 
sources: the voids that develop during the 
sintering process, and the materials harder 
than ceramics-for example, diamond-nor­
mally used to machine them. Instead of mov­
ing straight along the surface of the ceramic 
in a planar path, the propagating crack takes 
a more tortuous route if it interacts with 
some microscopic feature of the ceramic-for 
instance, a second material added to the pri­
mary constituent to enhance its toughness. 
Since the crack will expend more energy in 
moving out of the plane than it would in 
propagating unimpeded, it will do less dam­
age to the overall ceramic. Interestingly, the 
fractal dimension of the crack appears to be 
related to the fracture toughness of the ce­
ramic. Electron micrographs of cracks put 
into silica-nitride ceramics, one of the new 
high-performance materials being consid­
ered for high-temperature, high-stress ap­
plications such as engine parts, were used to 
determine the fractal dimension of the 
cracks. The higher the fractal dimension, the 
tougher the ceramic. 

In certain surface processes, such as 
roughening, fractal patterns also are ob­
served. For these surface fractals, the lower 
limit of the fractal dimension is 2, character­
istic of a perfectly smooth surface, and the 
upper limit is 3, a surface so rough and con­
voluted that it has become a three-dimen­
sional object. The complex configuration of 
these fractal surfaces can be very important, 
particularly for processes such as chemical 
catalysis, where in many cases the higher the 
fractal dimension of the surface, the greater 
the catalytic effect. 

Many further interesting and relevant il­
lustrations of complex configurations and 
patterns can be found in nonlinear phenom­
ena from virtually all disciplines. In the bio­
logical sphere, the richness of pattern forma-
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tion is particularly evident, from tigers' 
stripes to human digits. Certain features of 
the problem of morphogenesis can already 
be understood from plausible nonlinear 
mathematical models. The development of 
convection rolls during the transition to tur­
bulence in a fluid heated from below has 
been extensively studied experimentally 
and successfully modeled using a combina­
tion of computational and analytic tech­
niques. On the other hand, understanding 
the pattern formation seen in fully devel­
oped, three-dimensional turbulence re­
mains one of the most challenging problems 
of modem science. 

Finally, a fascinating class of discrete non­
linear dynamic systems, known as cellular 
automata, exhibit remarkable pattern forma­
tion properties and are currently being sub­
jected to rigorous mathematical scrutiny. At 
a more speculative level, these highly dis­
crete systems have suggested novel compu­
tational algorithms-often called lattice-gas 
models-for solving certain continuum non­
linear partial differential equations. These al­
gorithms may prove especially valuable for 
computers based on massively parallel archi­
tectures, although both their virtues and 
their limitations require further study. 

This section has focused only on those par­
adigms of nonlinear science that have been 
most thoroughly developed and explored, 
but there are clear indications of many other 
emerging paradigms. Two are particularly 
exciting. The concept of adaptation refers to 
nonlinear dynamic systems that adapt or 
evolve in response to changes in their envi­
ronment. Here one crucial aspect is that the 
nonlinear equations describing the system 
can themselves be modified on a slow time 
scale. Among the initial tentative applica­
tions of this concept are models for the hu­
man immune system and for autocatalytic 
networks of proteins. A related but some­
what distinct concept is often termed con­
nectionism and reflects the appealing idea 
that many simple structures connected to­
gether can exhibit complex behavior collec-

Copyright © National Academy of Sciences. All rights reserved.

Research Briefings, 1987
http://www.nap.edu/catalog.php?record_id=18905

http://www.nap.edu/catalog.php?record_id=18905


tively because of the connections. Recent 
specific instances of this approach include 
mathematical models called neural net­
works. Typically only loosely patterned after 
true neurological systems, these models are 
remarkable in their promise for being able to 
learn behavior from experience. The con­
cepts of familiar dynamic systems-such as 
basins of attraction and coexistence of multi­
ple stable patterns-have already played a 
crucial role in interpreting the behavior of 
these more complex systems. 

ISSUES, RECOMMENDATIONS, 
AND CONCLUSIONS 

INTERNATIONAL STANDING OF U.S. WORK 

Researchers in the United States have 
played a significant but not dominant role in 
the recent achievements of nonlinear sci­
ence. In particular, they have made uniquely 
important contributions to the experimental 
mathematics aspect and also provided sub­
stantial insights into the experimental and 
analytic aspects. Nonetheless, the reception 
of this work within the U.S. scientific com­
munity has not been comparable to that seen 
elsewhere, especially in the Soviet Union 
and France. In both those countries long­
standing traditions in mathematical physics 
and applied mathematics have helped to 
stimulate interest in nonlinear phenomena, 
and the high level of importance that many 
leading scientists attach to this enterprise is 
readily noticed in their public comments and 
in their contributions to the field, particu­
larly in the analytic and experimental areas. 
Since connections with the active French 
groups are fairly well established, special 
emphasis should be placed on strengthening 
ties with the Soviet efforts, for the United 
States stands to gain considerably from in­
creased interaction with Russian researchers 
in this area. From the Soviet perspective, the 
U.S. leadership in experimental mathemat­
ics provides� natural quid pro quo. 
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In many other countries, work of the high­
est caliber has been accomplished, and in 
some there has already been an institutional 
response, with centers focusing on nonlin­
ear problems established at several universi­
ties. It is worth noting that the European Sci­
ence Foundation recently hosted a meeting 
on nonlinear science at which the creation of 
a major European institute on the subject 
was discussed. 

In summary, U.S. research in nonlinear 
science is of high quality and is widely recog­
nized internationally. Ironically, recognition 
of this subject within the American scientific 
community is less developed. Indeed, the 
interdisciplinary character of the field ap­
pears to be problematic for U.S. institutions 
and agencies. In particular, typical U.S. uni­
versities, having departmental structures 
fairly rigidly defined along traditional disci­
plines, appear to lack the flexibility to re­
spond adequately to this subject. Students, 
while interested, seem worried (for good 
reason) about future positions. In general, 
while there is strong individual motivation, 
one hardly senses a more communal na­
tional one. 

PERSONNEL 

Given the interdisciplinary character of 
nonlinear science, we expect that most of the 
successful long-term research efforts in this 
subject will typically result from experts in 
widely different fields pooling their intellec­
tual resources. Accordingly, agencies and 
academic administrators should consider 
both the support of loosely coordinated re­
search networks and the creation of more fo­
cused centers in this area. At the same time, 
however, since many outstanding contribu­
tions can be traced to scientists working es­
sentially alone, it is vital to foster and reward 
high-quality individual research. In particu­
lar, the needs of younger scientists eager to 
become involved but anxious about the lack 
of a disciplinary base must be confronted. In­
creased support for junior faculty, postdoc-
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toral fellows, and advanced predoctoral stu­
dents working on nonlinear problems from 
an interdisciplinary perspective is clearly 
necessary. But it is also necessary to ensure 
the continued input of experts from the tra­
ditional disciplines so that studies of nonlin­
ear phenomena address significant and rele­
vant problems. 

Several changes in standard university 
curricula should be contemplated to bring 
the excitement of this field to still younger 
students and to train a cadre of potential re­
searchers. With closed-form analyses of in­
teresting nonlinear phenomena infrequent 
and inadequate, an increased comprehen­
sion of the schemes of analysis and calcula­
tion is required and the general level of 
mathematical and computer literacy of all 
natural-science students should be raised. 
Coursework in differential equations should 
include more modern dynamic-systems 
ideas; calculus should more regularly be fol­
lowed by deeper courses in analysis; me­
chanics courses should stress the limitations 
of perturbation theory and the omnipres­
ence of nonintegrability. A course in numeri­
cal methods that leads to intuitive algorithm 
development based on deep understanding 
could prepare a researcher to perform mean­
ingful experimental mathematics. Greater 
exposure should be given to topics such as 
modern asymptotic and multiple-scale 
methods, phase and amplitude equations 
derived from fluids, specific examples of sol­
vable soliton equations, and methods of nu­
merical analysis. Fluids and continuum me­
chanics should be given higher profiles in 
physics curricula, and introductory courses 
in the qualitative phenomenology of chaos 
and solitons and other nonlinear waves 
should be generally available. Further, sum­
mer institutes focused on specific aspects of 
nonlinear science should be supported. 

FACILITIES 

With respect to facilities, one of the major 
administrative opportunities is the creation 
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of research centers of excellence, either in in­
stitutions with preexisting efforts or in re­
sponse to new proposals. Crucial to this ap­
proach is the provision of block or umbrella 
funding for the interdisciplinary research, 
rather than balkanization of the research by 
dividing support among specific disciplines. 
Again, however, we stress that grants sup­
porting fundamental research by outstand­
ing individuals in this area should be avail­
able. These grants should have one or more 
natural homes within the organizational 
s�ctures of the federal funding agencies, 
and special care should be taken that they are 
not endangered by their interdisciplinary 
content. On a much grander scale, perhaps 
one of the proposed National Science Foun­
dation science and technology centers could 
be devoted to this subject; given its interdis­
ciplinary nature and broad applicability, this 
may be an attractive prospect. 

The central role of computation in nonlin­
ear science clearly suggests that increased 
access to supercomputers-at the National 
Science Foundation centers, the National 
Center for Atmospheric Research, the Na­
tional Aeronautics and Space Administra­
tion, the Department of Energy laboratories, 
and elsewhere - i s  v i t a l  for continued 
progress. In particular, interagency coopera­
tion in enhancing supercomputer access is 
essential. But apart from supercomputer ac­
cess, individual researchers must be given 
high-powered scientific work stations with 
interactive graphics capabilities and a more 
truly interactive environment. In this matter 
theorists doing experimental mathematics 
really do need to be regarded as experimen­
talists and supported accordingly with the 
appropriate hardware. Although funding 
agency awareness of this situation has 
grown dramatically over the past five years, 
still greater support is needed. 

CoNCLUSioNs 

As a consequence of its fundamental intel­
lectual appeal and potential technological 
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applications, nonlinear science is currently 
experiencing a phase of very rapid growth. 
During this critical period, science adminis­
trators in government, education, and in­
dustry can play essential roles in further 
stimulating and guiding this growth. In par­
ticular, they can marshal the resources nec­
essary to respond to the challenging re­
search opportunities. In any effort to guide 
this research, however, it is imperative that 
nonlinear science be recognized for what it 
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is: an inherently interdisciplinary effort not 
suited to confinement within any single con­
ventional discipline or department. Hence 
the administrative structure of research in 
this area is likely to remain more fragile, and 
in greater need of attention, than traditional 
subjects with their natural constituencies. 
Accompanying this fragility, however, is a 
remarkable breadth of application and the 
potential to influence both our basic under­
standing of the world and our daily life. 
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